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Abstract
We study algorithms for the Schatten-p Low Rank Approximation (LRA) problem. First, we show
that by using fast rectangular matrix multiplication algorithms and different block sizes, we can
improve the running time of the algorithms in the recent work of Bakshi, Clarkson and Woodruff
(STOC 2022). We then show that by carefully combining our new algorithm with the algorithm of
Li and Woodruff (ICML 2020), we can obtain even faster algorithms for Schatten-p LRA.

While the block-based algorithms are fast in the real number model, we do not have a stability
analysis which shows that the algorithms work when implemented on a machine with polylogarithmic
bits of precision. We show that the LazySVD algorithm of Allen-Zhu and Li (NeurIPS 2016) can
be implemented on a floating point machine with only logarithmic, in the input parameters, bits
of precision. As far as we are aware, this is the first stability analysis of any algorithm using
O((k/

√
ε) poly(log n)) matrix-vector products with the matrix A to output a 1 + ε approximate

solution for the rank-k Schatten-p LRA problem.
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1 Introduction

Low Rank Approximation (LRA) is an important primitive in large scale data analysis.
Given an m× n matrix A, and a rank parameter k, the task is to find a rank-k matrix B

that minimizes ∥A − B∥ where ∥ · ∥ is some matrix norm. Typically, we also require that
the algorithms output a factorization B = XY such that X ∈ Rm×k and Y ∈ Rk×n. Such a
factorization lets us compute the product Bz with an arbitrary vector z in time O(k(n + m))
which can be significantly smaller than the nnz(A) time required to multiply a vector with
the original matrix A. Here nnz(A) denotes the number of non-zero entries of the matrix A.
Thus, replacing A with a low rank approximation can make downstream tasks much faster.
Additionally, if the matrix A has a low rank structure but is corrupted by noise, a low rank
approximation of A can recover the underlying structure under suitable assumptions on the
noise. We note that many low rank approximation algorithms, including ours, compute a
rank-k orthonormal matrix W such that ∥A(I −WW ⊤)∥ is small and then define X = AW

and Y = W ⊤.
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55:2 Schatten-p Low Rank Approximation

In this paper, the error metric we consider is given by the Schatten-p norm for p ≥ 1.
Given a matrix M , the Schatten-p norm of M denoted by ∥M∥Sp

is defined as (
∑

i σi(M)p)1/p

where σi(M) denotes the i-th singular value of M . Note that Schatten-2 norm is the same
as the Frobenius norm, denoted by ∥M∥F = (

∑
i,j M2

ij)1/2 and the Schatten-∞ norm is the
same as the operator norm, denoted by ∥M∥2 = maxx ̸=0 ∥Mx∥2/∥x∥2. In the presence of
outliers, the Schatten-1 norm,

∑
i σi(M), is considered to be more robust since the errors

introduced by the outliers are not “squared” as it is done in the case of the Frobenius norm.
The Schatten-p norm low rank approximation problem asks to find a rank-k matrix B

that minimizes ∥A−B∥Sp . As the Schatten-p norms are unitarily invariant, we have from
Eckart-Young-Mirsky’s theorem that ∥A − Ak∥Sp

= minrank-k B ∥A − B∥Sp
for all p ≥ 1,

where Ak is the matrix obtained by truncating the Singular Value Decomposition (SVD) of
A to only the top k singular values. This implies that a single matrix Ak is a best rank-k
approximation for A for all values of p. However, computing the SVD of an m× n matrix
takes O(min(mnω−1, nmω−1)) time (see Appendix A), where ω is the matrix multiplication
exponent. This time complexity is prohibitive when m and n are large. Thus, we relax the
requirements and ask for a rank-k matrix B satisfying ∥A−B∥Sp ≤ (1 + ε)∥A−Ak∥Sp in
the hope of obtaining faster algorithms than the SVD.

While a single matrix Ak is a best low rank approximation for A in all Schatten-p
norms, it is not the case for approximate solutions, i.e., if B is a rank-k matrix that satisfies
∥A − B∥Sp

≤ (1 + ε)∥A − Ak∥Sp
for some p, it may not be the case that ∥A − B∥Sq

≤
(1 + ε)∥A−Ak∥Sq for q ̸= p. Thus, many approximation algorithms for Schatten-p LRA are
tailored to the particular value p. There are two different lines of works for Schatten-p LRA
in the literature: (i) Sketching based algorithms of Li and Woodruff [9] and (ii) Iterative
algorithms of Bakshi, Clarkson and Woodruff [2]. We summarize the running times of the
algorithms in Table 1. The sketch-based algorithms are usually non-adaptive and the iterative
algorithms adaptively pick their matrix-vector product queries depending on the results in
the previous round which makes them powerful as we can see from the superior running time
over sketch-based algorithms when we desire solutions with small ε.

Sketching Algorithms. Li and Woodruff [9] gave (almost) input-sparsity time algorithms
for Schatten-p LRA, extending the earlier input-sparsity time algorithms for Frobenius norm
LRA from [4]. For p < 2, their algorithm runs in Õ(nnz(A) + max(m, n) · poly(k/ε)) time
and for p > 2, their algorithm runs in Õ(nnz(A) + max(m, n) ·min(m, n)αp poly(k/ε)) time,
where αp = (ω − 1)(1− 2/p). Note that for the current value of ω ≈ 2.37, their algorithm
runs in Ω(mn) time for p ≥ 7.4 and hence is not an “input-sparsity time” algorithm but
for all constant p, k, ε, their algorithm runs in o(min(mnω−1, nmω−1) time and therefore is
faster than computing the SVD.

Table 1 Running times for 1 + ε rank-k Schatten-p LRA algorithms for m × n matrices assuming
m ≥ n.

Time Complexity

Li and Woodruff [9] (p ∈ [1, 2)) O(nnz(A) log n) + Õp(mk2(ω−1)/p/ε(4/p−1)(ω−1))
+Õp(k2ω/p/ε(4/p−1)(2ω+2))

Li and Woodruff [9] (p > 2) O(nnz(A) log n) + Õp(nω(1−2/p)k2ω/p/ε2ω/(p+2))
+Õp(mn(ω−1)(1−2/p)(k/ε)2(ω−1)/p)

Bakshi et al. [2] O(p1/6ε−1/3 nnz(A)k log(n/ε) + mp(ω−1)/6kω−1ε−(ω−1)/3)
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Iterative Algorithms. Recently, Bakshi, Clarkson, and Woodruff [2] gave an iterative al-
gorithm for Schatten-p LRA. Their algorithm runs the Block Krylov iteration algorithm of
Musco and Musco [11] at two different block sizes for different number of iterations respectively.
They show that the algorithm succeeds in computing a low rank approximation at one of the
block sizes and show how to compute which block size succeeds in computing the approxima-
tion. For Schatten-p LRA, their algorithm requires O(kp1/6 poly(log n)/ε1/3) matrix-vector
products with the matrix A and hence can be implemented in Õ(nnz(A)kp1/6/ε1/3) time. At
a high level, their algorithm runs the Block Krylov iteration algorithm with block size k for
O(p1/6ε−1/3 poly(log n)) iterations and with block size O(p−1/3ε−1/3k) for O(√p poly(log n))
iterations. They set these parameters such that the algorithm requires an overall same number
of matrix-vector products with A at both block sizes. They argue that for a matrix with a
“flat” spectrum, the low rank approximation computed by the block size k algorithm is a
1 + ε approximation and for a matrix with a “non-flat” spectrum, the solution computed by
block size O(p−1/3ε−1/3k) algorithm is a 1 + ε approximation.

Comparison. As we can see from Table 1, the running times of these algorithms depend in
a quite complicated way on the parameters nnz(A), m, n, ε and p. Throughout the paper, we
assume that m = n, nnz(A) = n2 (i.e., the matrix A is dense) and k ≤ nc for a small constant
c so that k ≪ n. In some cases, where sparsity in the datasets cannot be well exploited, such
as when processing the datasets using GPUs, it is natural to analyze the time complexities
of the algorithms and compare the performances assuming that the inputs are dense.

For p ∈ [1, 2), we have that the time complexity of the algorithm of [9] is O(n2 log n +
n poly(k)/ε(4/p−1)(ω−1) + poly(k)/ε(4/p−1)(2ω+2)) and the time complexity of the algorithm
of [2] is O(ε−1/3n2k log(n) + n poly(k)/ε(ω−1)/3). We see that only when

1/ε > n
1

(4/p−1)(ω+1)−1/6 ,

the algorithm of [2] is faster than the sketching based algorithm of [9]. For ω ≈ 2.371 and
p = 1, the above is achieved only when 1/ε ≥ n≈0.1. Hence, in the high accuracy regime, the
algorithm of [2] is faster than that of the sketching based algorithm of [9]. For other values
of p ∈ [1, 2), ε has to be even smaller than 1/n0.1 for the algorithm of [2] to be faster than
the algorithm of [9].

For comparing the algorithms in the case p > 2, first we pick ε to be a constant and obtain
that the running time of the algorithm of [9] is O(n2 log n + n1+(ω−1)(1−2/p) poly(k)) and the
algorithm of [2] has a running time of O(p1/6n2k log(n)). Thus, as long as (ω−1)(1−2/p) ≤ 1,
the sketch-based algorithm is faster than the iterative algorithm. We call p such that
(ω − 1)(1− 2/p) ≤ 1, the crossover point from “sketch” to “iterative”. For the current value
of ω ≈ 2.371, the crossover point is ≈ 7.39.

Now consider the case of ε = 1/n and constant p. The iterative algorithm of [2] has a
running time of O(n2+1/3k log(n)) and the sketch based algorithm of [9] has a running time
of O(nω poly(k)) and thus offers no improvement over the naïve SVD algorithm. This again
shows that in the high precision regime, the small dependence on ε in the running time
of the algorithm of [2] is crucial to obtain better than O(nω) time algorithm. Overall, we
summarize the comparison between the algorithms in Table 2.

Our Improvements. We first improve the time complexity of the iterative algorithm of [2] for
all parameter regimes. While the focus of their paper was to minimize the number of matrix-
vector products required, we observe that by using fast rectangular matrix multiplication
algorithms, we can obtain even faster algorithms using their technique of running the block

APPROX/RANDOM 2024



55:4 Schatten-p Low Rank Approximation

Table 2 In the case of m = n, nnz(A) = n2 and k = no(1), the table lists which of the previous
works is asymptotically faster for the current value of ω ≈ 2.371. Iterative algorithm refers to the
algorithm of [2] and the Sketching algorithm refers to the algorithm of [9]. In the above, crossover
≈ 7.4.

Small ε (≈ 1/n) Large ε

p ∈ [1, 2) Iterative Sketching
2 < p < crossover Iterative Sketching
p > crossover Iterative Iterative

Krylov iteration algorithm at different block sizes. Fast rectangular matrix multiplication
algorithms let us obtain a different block-size vs iteration trade-off giving us faster algorithms.
This algorithm directly achieves the fastest running times for small ε since we improve upon
[2] in all regimes.

We saw above that for constant ε, the sketch based algorithm takes only O(n2 log n)
time when p ≲ 7.4 and hence cannot be improved upon over asymptotically by more than
polylog(n) factors in that regime. We show that using a combination of our fast iterative
algorithm and the algorithm of [9] gives an algorithm that runs in near-linear time1 for all
p ≲ 22 for appropriate ε values extending the values of p for which a Schatten-p LRA can be
computed in O(n2 log n) time, when the rank parameter k ≤ nc.

Our combined algorithm works as follows: to solve a sub-problem in the algorithm of [9],
we run our improved iterative algorithm for Schatten-p LRA with accuracy parameter ε = 1/n.
As our improved iterative algorithm has a better dependence on ε than earlier algorithms,
we obtain a faster algorithm for solving the sub-problem and hence obtain an O(n2 log n)
time algorithm for all p ≲ 22. Thus, improving the performance of iterative algorithms in
the small ε regime let us obtain faster algorithms overall in the large ε regime!

Numerically Stable Algorithms

While the algorithm of [2] and our modification give fast algorithms for Schatten-p Low
Rank Approximation, it is not known if the Block Krylov iteration algorithm is stable when
implemented on a floating point machine with O(log(n/ε)) bits of precision. It is a major
open question in numerical linear algebra to show if the Block Krylov iteration algorithm
is stable. Obtaining fast algorithms that provably work on finite precision machines is a
tricky problem in general. We note that until the recent work of Banks, Garza-Vargas,
Kulkarni and Srivastava [3], it was not clear if an eigendecomposition of a matrix could be
computed in Õ(nω) time on a finite precision machine. Building on these ideas, another recent
work [14] obtains fast and stable algorithms for the generalized eigenvalue problem. The
sketch-and-solve methods, such as the algorithm of [9], are usually stable as the operations
do not blow up the magnitude of the entries. As we note above, for large p, the algorithms in
[9] are not input-sparsity time and hence an important question is if there are any stable
input-sparsity time algorithms for large p. We answer this question in affirmative by showing
that the LazySVD algorithm of [1] can be stably implemented on a floating point machine
with O(log mκ/ε) bits of precision where κ = σ1(A)/σk+1(A). The LazySVD algorithm
computes a low rank approximation for all p ≥ 2.

1 Note the near-linear here means Õ(n2) as the input-matrix is assumed to have n2 nonzero entries.
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Similar to the Block Krylov iteration algorithm, LazySVD also needs O(k poly(log n)/
√

ε)
matrix-vector products with A. Additionally, the factorization output by LazySVD is simultan-
eously a 1+ε approximation for all p ≥ 2. To find a rank-k approximation of A, the LazySVD
algorithm first computes a unit vector v which is an approximation to the top eigenvector
of A⊤A. Then the algorithm deflates A⊤A and forms the matrix (I − vv⊤)A⊤A(I − vv⊤)
and proceeds to find an approximation to the top eigenvector of (I − vv⊤)A⊤A(I − vv⊤)
and so on for a total of k rounds. The authors show that the span of k vectors found
across all the iterations contains a 1 + ε approximation if the eigenvector approximations
satisfy an appropriate condition. Thus, to implement the LazySVD algorithm on a floating
point machine, we first need a stable routine that can compute approximations to the top
eigenvector of a given matrix. We show that such a routine can be implemented stably using
the Lanczos algorithm [12]. We additionally modify the LazySVD algorithm and show that
the modification allows us to compute matrix-vector products with the deflated matrix to a
good enough approximation which lets the Lanczos algorithm compute an approximation to
the top eigenvector of the deflated matrix. Our slight modification to LazySVD turns out to
be important in making the stability analysis go through.

The novelty of our stability analysis is that instead of showing each of the vectors
ṽ1, . . . , ṽk computed by a finite precision algorithm are close to the vectors v1, . . . , vk that
would be computed by an algorithm with unbounded precision, we essentially argue that for
all i, the projection matrices onto the subspaces spanned by ṽ1, . . . , ṽi and v1, . . . , vi are close
using induction. This change makes the stability analysis work with only a polylogarithmic
number of bits of precision whereas showing all ṽis are individually close to corresponding
vis would require polynomially many bits of precision.

1.1 Our Results
In the following, α denotes the constant such that an arbitrary n×n matrix can be multiplied
with an arbitrary n× nα matrix using O(n2+η) arithmetic operations for any constant η > 0.
The matrix multiplication exponent ω is the smallest constant such that an arbitrary n× n

matrix can be multiplied with an arbitrary n×n matrix using O(nω+η) arithmetic operations
for any constant η > 0. For simplicity, we ignore the constant η, and write as if the matrices
can be multiplied in O(nω) time. We define β := (ω − 2)/(1− α). Note that β ≤ 1.2

▶ Theorem 1 (Informal, Theorem 5). Given an n× n matrix A, a rank parameter k and an
accuracy parameter ε, there is an algorithm that outputs a rank-k orthonormal matrix W

that with probability ≥ 0.9 satisfies, ∥A(I −WW ⊤)∥Sp
≤ (1 + O(ε))∥A−Ak∥Sp

. If k ≤ ε ·nα,
then the algorithm runs in Õ(√pn2+η) time for any constant η > 0.

Combining the algorithm in the above theorem and the algorithm of [9], we obtain the
following result:

▶ Theorem 2 (Informal, Theorem 8). Given an n× n matrix A, a rank parameter k inde-
pendent of n and any constant η > 0, there is a randomized algorithm that runs in time
Õ((n1−2/p)2+η+(1−α)β/(1+2β) poly(1/ε) + n2) and outputs a rank-k projection Q̂ that satisfies
∥A(I − Q̂)∥p

Sp
≤ (1 + ε)∥A−Ak∥p

Sp
, with probability ≥ 0.9

The above theorem shows that for all p at most a suitable constant, the algorithm runs in
Õ(n2) time for ε > 1/ncp for a small enough constant cp and hence is faster than using the
algorithm of [9] or the algorithm in Theorem 1.

2 See Section 2.2.

APPROX/RANDOM 2024



55:6 Schatten-p Low Rank Approximation

The following result shows that our modification of LazySVD can be stably implemented
on a floating point machine.

▶ Theorem 3 (Informal, Theorem 11). Given an n × d matrix A with condition number
κ(A) = σ1(A)/σk+1(A), an accuracy parameter ε, a rank parameter k and probability
parameter η, if the machine precision εmach ≤ poly(εη/nκ(A)), then there is an algorithm
that outputs a d × k matrix Vk such that κ(Vk) ≤ 4 and with probability ≥ 1 − η, for all
p ∈ [2,∞],

∥A(I − Projcolspace(Vk))∥Sp
≤ (1 + O(ε))∥A−Ak∥Sp

,

and runs in time O( nnz(A)k√
ε

poly(log(dκ(A)/εη)) + d poly(k, log(dk/ηε))).

In the above theorem, Projcolspace(M) denotes the orthogonal projection matrix onto the
column space of M .

1.2 Implications to Practice
While the theoretical fast rectangular matrix multiplication algorithms are not practically
efficient, the message of this paper is that by optimizing for the number of matrix-vector
products as in [2], we are leaving a lot of performance on the table. In modern computing
architectures, multiplying an n× n and an n× b matrix is, for example, much faster than b

times the time required to multiply the n×n and an n×1 vector because of data locality and
the opportunities for parallelization. Thus, in the algorithm of [2], running the block size k

version for fewer iterations while increasing the larger block size b can give faster algorithms
in practice than using the parameters that optimize for the number of matrix-vector products.
We include a small experiment in the appendix which compares the time required to compute
the product of an n× n matrix with matrices that have different numbers of columns.

LazySVD with our stability analysis uses a similar number of matrix vector products as
the widely used Block Krylov iteration algorithm while requiring only polylogarithmic bits of
precision. While as mentioned above, block-based algorithms such as Block Krylov iteration
can be much faster than single-vector algorithms such as LazySVD and our modification of
it, it is only the case when the matrix is directly given to us. When the matrix is implicitly
defined in other ways (for e.g., as the Hessian of a neural network where we can efficiently
compute Jacobian-Vector products), the difference in performance between block-based
algorithms and single-vector algorithms is less pronounced. When guarantees of stability are
required, the fastest algorithms in practice for Low Rank Approximation should use some
combination of sketching as in [9] to reduce dimension stably and then use our modification
of LazySVD algorithm to find the necessary top k subspace.

2 Preliminaries

2.1 Notation
For a positive integer n, we use [n] to denote the set { 1, . . . , n }. We use the notation
Õ(f(n)) to denote O(f(n) poly(log(f(n)))) and Õq(f(n)) to hide the multiplicative factors
that depend only on the parameter q. For a vector x, we use ∥x∥2 = (

∑
i |xi|2)1/2 to denote

the Euclidean norm of x. Given an m× n matrix A, we use Ai,j to denote the entry in the
index (i, j) of A. We use Ai∗ to denote the i-th row of A and A∗j to denote the j-th column.
We identify the multiplication of an m× n matrix with an n× k matrix with the notation
[m, n, k]. For a matrix A, we use colspace(A) to denote the vector space {Ax | x ∈ Rn}. For
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any vector space V ∈ Rn, we use ProjV to denote the linear operator which maps a vector
x to the projection of x in the subspace V i.e., the nearest vector to x in V in terms of
Euclidean distance. If the columns of X are an orthonormal basis for V , then ProjV = XX⊤.

Let A = UΣV ⊤ be the singular value decomposition (SVD) of A and let σ1 ≥ · · · ≥ σn

(recall m ≥ n) denote the singular values of A. For k ≤ n, let Ak :=
∑k

i=1 σiU∗i(V ⊤)i∗ be
the matrix obtained by truncating the SVD of A to the top k singular values.

We use ∥A∥F to denote the Frobenius norm (
∑

i,j A2
i,j)1/2 and ∥A∥2 to denote the operator

norm maxx ̸=0 ∥Ax∥2/∥x∥2. For p ≥ 1, we define ∥A∥Sp
= (
∑n

i=1 σp
i )1/p to be the Schatten-p

norm. As ∥ · ∥Sp
defines a norm, we have ∥A + B∥Sp

≤ ∥A∥Sp
+ ∥B∥Sp

for any two m× n

matrices A and B. Additionally, we have ∥A⊤∥Sp = ∥A∥Sp and for any unitary matrices
U ′, V ′, we have ∥U ′AV ′∥Sp

= ∥A∥Sp
.

2.2 Fast Rectangular Matrix Multiplication
Let ω denote the best matrix multiplication exponent. The current upper bound on ω is
≈ 2.371 [5] and for γ < 1, let ω(γ) denote the exponent such that the product of an n× n

with an n × nγ matrix can be computed using O(nω(γ)+η) arithmetic operations for any
constant η > 0. There exists α > 0.31 [8, 6] such that for all γ < α, ω(γ) = 2 and for all
γ ≥ α,

ω(γ) ≤ 2 + (ω − 2)γ − α

1− α
.

See [7, 10] for the above bound on ω(γ). Recall β := ω−2
1−α . We now observe that n1−αn2 ≥ nω

since a matrix product of the form [n, n, n] can be computed using n1−α matrix products of
the form [n, n, nα]. Hence, 1− α ≥ ω − 2, which implies β ≤ 1.

3 Schatten-p LRA using Fast Matrix Multiplication

Algorithm 1 Block Krylov Iteration Algorithm [11].

Input: An n× n matrix A, rank parameter k, block size b and number q of iterations
Output: An orthonormal matrix Z ∈ Rn×k

1 Π ∼ N (0, 1)n×b

2 K ←
[
AΠ (AA⊤)AΠ · · · (AA⊤)qAΠ

]
// The Krylov Matrix

3 Orthonormalize columns of K to get an n× qb matrix Q

4 Compute M := Q⊤AA⊤Q

5 Set Uk to the top k singular vectors of M

6 return Z = QUk

3.1 Block Krylov Iteration Algorithm
The block Krylov Iteration algorithm of Musco and Musco [11] is stated as Algorithm 1. For
any b, let T (n, b) be the time to multiply an n× n matrix with an n× b matrix. The Block
Krylov iteration algorithm with rank parameter k, block size b ≥ k and iteration count q

(with bq ≤ n) runs in time at most (2q + 1)T (n, b) + n(qb)ω−1 + 3T (n, qb) + (qb)ω + T (n, k).3

3 Assuming that SVD of the qb × qb matrix M in Algorithm 1 can be computed in time O((qb)ω).

APPROX/RANDOM 2024



55:8 Schatten-p Low Rank Approximation

Using the fact that T (n, qb) ≤ qT (n, b) and qb ≤ n, we obtain that the time complexity of
the algorithm is O(qT (n, b) + n(qb)ω−1). We now have T (n, b) ≥ (b/n)nω since otherwise the
matrix product of the form [n, n, n] can be computed quicker than in nω time by computing
the n/b products of the form [n, n, b]. Hence, qT (n, b) ≥ qbnω−1 ≥ n(qb)ω−1 using qb ≤ n.
Thus, we obtain that the time complexity of the Block Krylov Iteration algorithm with
parameters k, b, q satisfying b ≥ k and bq ≤ n is O(qT (n, b)). We now state a few properties
of the Block Krylov algorithm that we use throughout the paper.
▶ Theorem 4. With a large probability over the Gaussian matrix Π, the following properties
hold for the matrix Z computed by Algorithm 1:
1. There is a universal constant c such that for all i ∈ [k],

σi(Z⊤A)2 ≥ ∥A⊤(Z)∗i∥2
2 ≥ σ2

i − (c log2 n/q2)σ2
k+1.

This follows from the per-vector error guarantee of Theorem 1 in [11].
2. If gap := (σk/σb+1)− 1 and q ≥ C log(n/ε)/

√
min(1, gap) for a large enough constant C,

then for all i ∈ [k], σi(Z⊤A)2 ≥ ∥A⊤(Z)∗i∥2
2 ≥ σ2

i − εσ2
k+1.

The second guarantee in the above theorem follows from the gap-dependent error bounds in
Theorem 11 in [11]. Note the logarithmic dependence of q on 1/ε.

Algorithm 2 Schatten-p Norm Subspace Approximation.

Input: An n× n matrix A, rank parameter k and an accuracy parameter ε

Output: Approximate Solution to the Schatten-p Norm Subspace Approximation
problem

1 q ←


√

p k ≤ ε · nα

max(√p, p
1

2(1+2β) (k/nαε)
β

1+2β ) ε · nα ≤ k ≤ nα

max(√p, p
1

2(1+2β) /ε
β

1+2β ) k ≥ nα

2 b′ ← ⌈(3/2) max(1, k/q2ε)⌉
3 Z1 ← BlockKrylov(A, rank = k, block size = k, iterations = O(q log(n))
4 Z2 ← BlockKrylov(A, rank = k, block size = b′ + k, iterations = O(√p log(n/ε))
5 W1 ← colspan(A⊤Z1)
6 W2 ← colspan(A⊤Z2)
7 W ← W2 if σ̂k ≥ (1 + 1/2p)σ̂b′+k and W1 otherwise // These approximations to

σk and σb′+k can be computed using the M matrix computed in
Algorithm 1

3.2 Main Theorem
▶ Theorem 5. Given an n× n matrix A, a rank parameter k and an accuracy parameter
ε, Algorithm 2 outputs a k dimensional orthonormal matrix W that with probability ≥ 0.9
satisfies, ∥A(I −WW ⊤)∥Sp

≤ (1 + O(ε))∥A−Ak∥Sp
. For any constant η > 0, the running

time of the algorithm is as follows:
1. For k ≤ εnα, the algorithm runs in time Õ(√pn2+η).
2. For εnα ≤ k ≤ nα, the algorithm runs in time

Õ(max(√pn2+η, p
1

2(1+2β) n2+η(k/nαε)β/(1+2β))).
3. For k ≥ nα, the algorithm runs in time Õ((p1/2ε−β)1/(1+2β)n2+η−αβkβ).
Assuming p is a constant independent of ε, the dependence on ε is at least better than ε−1/3

as β ≤ 1 which implies β/(1 + 2β) ≤ 1/3. The proof of this theorem is similar to that of [2].
We include the proof in the full version.
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4 Comparison with the Algorithm of Li and Woodruff [9]

For n × n matrices and p > 2, the algorithm of [9] for the Schatten-p norm Subspace
Approximation problem, shown in Algorithm 3 runs in time

O(n2 log n) + Õp

(
nω(1−2/p)k2ω/p

ε2ω/p+2 + n1+(ω−1)(1−2/p)(k/ε)2(ω−1)/p

)
. (1)

Let K = k + ε/η1 = k + n1−2/pk2/p/ε2/p. To obtain the above running time, they use a ridge
leverage score sampling algorithm to compute a matrix S with s = O(ε−2K log n) rows that
satisfies (2) with a large probability. The same guarantee can instead be obtained by using the
Sub-sampled Randomized Hadamard Transform (SRHT) [16] with s = O(ε−2K log n) rows
and the matrix-product SA can be computed in time O(n2 log n). To obtain the subspace
embedding guarantee for T as required in Algorithm 3, we can let the matrix T again be
an SRHT with r = O(ε−2s log n) columns and the product SAT can be computed in time
O(ns log s) = O(ε−2n(k + n1−2/pk2/p/ε2/p)).

The singular value decomposition of the matrix SAT can be computed in O(rsω−1) =
O(ε−2ω(k + n1−2/pk2/p/ε2/p)ω polylog(n)) time and a basis for the rowspace of W ⊤SA can
be computed in O(skn) time. Overall, for constant k and ε, the algorithm of [9] runs in time
Õ(n2 + (n1−2/p)ω). For p > 2ω/(ω − 2), their algorithm runs in n2+cp time for a constant
cp > 0 that depends on p. For the same parameters, our algorithm runs in Õ(n2) time and
hence we have an improvement. For k ≤ nα and ε = 1/n, their algorithm runs in time Ω(nω)
which means that computing the SVD of A is already faster whereas our algorithm runs in
time Õ(n2+ (1−α)β

1+2β ) = o(nω) if ω > 2. Hence, our algorithm improves upon the algorithm of
[9] for a wide range of parameters. We note that computing the SVD of SAT turns out to
be the most expensive step for large p. In the next subsection, we show that our Algorithm 2
can be used to sidestep the computation of the SVD of SAT , thereby giving an even faster
algorithm.

We call p∗ = 2ω/(ω − 2), the crossover point. For p > p∗, our Algorithm 2 is faster than
the algorithm of [9]. For the current value of ω ≈ 2.37, p∗ ≈ 12.8. For p < p∗, the leading
order term in the time complexity of Algorithm 3 is O(n2 log n) for ε > n−cp for a constant
cp depending on p, and hence is faster than Algorithm 2.

Algorithm 3 Schatten-p Norm Low Rank Approximation for p > 2 [9].

Input: A matrix A ∈ Rm×n and an accuracy parameter ε

Output: A rank-k orthonormal projection Q satisfying
∥A(I −Q)∥Sp

≤ (1 + ε)∥A−Ak∥Sp

1 η1 ← O(ε1+2/p/k2/pn1−2/p)
2 S be a matrix with s rows that satisfies

(1− ε)A⊤A− η1∥A−Ak∥2
F · I ⪯ A⊤S⊤SA ⪯ (1 + ε)A⊤A + η1∥A−Ak∥2

F · I.

(2)
3 T ← Subspace embedding for s-dimensional subspaces with error O(ε)
4 W ← Top k left singular vectors of SAT

5 Z ← Matrix whose columns are an orthonormal basis for the row space of W ⊤SA

6 Q← ZZ⊤

APPROX/RANDOM 2024
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4.1 Further Improving the running time of [9] using our algorithm
Given an n× n matrix A, p ≥ 1 and r ≤ n, let ∥A∥(p,r) = (

∑r
i=1 σi(A)p)1/p. We can show

that ∥ · ∥(p,r) is a norm over n× n matrices. As ∥ · ∥(p,r) is unitarily invariant, we have by
Eckart-Young-Mirsky’s theorem that ∥A−Ak∥(p,r) = minrank-k B ∥A−B∥(p,r). In Lemma 4.2
of [9], they show that for S satisfying (2), if Q̂ is a rank-k projection matrix with

∥SA(I − Q̂)∥(p,r) ≤ (1 + ε) min
rank-k

projections Q

∥SA(I −Q)∥(p,r), (3)

then ∥A(I − Q̂)∥p
Sp
≤ (1 + Cpε)∥A−Ak∥p

Sp
, for a constant Cp that only depends on p. They

show that the matrix Q returned by Algorithm 3 satisfies (3) and then conclude that the
matrix Q is a 1 + O(ε) approximation to the Schatten-p norm low rank approximation
problem. We will now argue that there is a faster algorithm for computing a projection that
satisfies (3). The algorithm does not require the computation of the SVD of the matrix SAT

and hence does not incur the Op,k,ε(n(1−2/p)ω) term in the running time. We first show that
a 1 + ε approximate solution to the Schatten-p norm subspace approximation problem, is a
1 + εn/r approximation to the (p, r) subspace approximation problem.

▶ Lemma 6. For an arbitrary m× n matrix A (m ≤ n), if Q̂ is a rank-k projection matrix
satisfying ∥A(I − Q̂)∥p

Sp
≤ (1 + ε)∥A− Ak∥p

Sp
and colspan(Q̂) ⊆ rowspan(A), then for any

r ≤ n,

∥A(I − Q̂)∥p
(p,r) ≤ (1 + ε ⌈(m− k)/r⌉)∥A−Ak∥p

(p,r).

Proof. Let Q̂ be a rank-k projection such that

∥A(I − Q̂)∥p
Sp
≤ (1 + ε) min

rank-k projections Q
∥A(I −Q)∥p

Sp
= (1 + ε)

n∑
i=k+1

σi(A)p.

Note that ∥A(I − Q̂)∥p
Sp

=
∑m−k

i=1 σi(A(I − Q̂))p since the matrix A(I − Q̂) has rank at
most m− k from our assumption that colspan(Q) ⊆ rowspan(A). Now, ∥A(I − Q̂)∥p

(p,r) =∑r
i=1 σi(A(I − Q̂))p and therefore,

∥A(I − Q̂)∥p
(p,r) = ∥A(I − Q̂)∥p

Sp
−

m−k∑
i=r+1

σi(A(I − Q̂))p

≤ (1 + ε)
m∑

i=k+1
σi(A)p −

m−k∑
i=r+1

σi(A(I − Q̂))p.

Since the matrix AQ̂ has rank at most k, by Weyl’s inequality, σi(A(I − Q̂)) ≥ σi+k(A)
which implies

∥A(I − Q̂)∥p
(p,r) ≤

k+r∑
i=k+1

σi(A)p + ε∥A − Ak∥p
Sp

+

(
m∑

i=k+r+1

σi(A)p −
m−k∑

i=r+1

σi(A(I − Q̂))p

)
≤ min

rank-k projections Q
∥A(I − Q)∥p

(p,r) + ε∥A − Ak∥p
Sp

.

Finally, using the fact that ∥A−Ak∥p
Sp
≤ ⌈(m− k)/r⌉∥A−Ak∥p

(p,r), we obtain

∥A(I − Q̂)∥p
(p,r) ≤ (1 + ε⌈(m− k)/r⌉)∥A−Ak∥p

(p,r). ◀
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Finally, we have the following lemma which shows how to find an approximate solution to
the (p, r) Low Rank Approximation problem.

▶ Lemma 7. Let A ∈ Rm×n be an arbitrary matrix with m ≤ n. Given parameters k, p, r

and ε, there is a randomized algorithm to find a rank-k projection Q̂, that with probability
≥ 9/10 satisfies,

∥A(I − Q̂)∥p
(p,r) ≤ (1 + ε)∥A−Ak∥p

(p,r).

For constant p and k ≤ mα and any constant η > 0, the randomized algorithm runs in time
Õ(m2+η+(1−α)β/(1+2β)kβ/(1+2β) poly(1/ε) + nm + nkω−1) and for k ≥ mα, the algorithm
runs in Õ(m2+η−αβ+ β

1+2β kβ poly(1/ε) + nm1−αβkβ + nkω−1) time.

Proof. First we note that

min
rank-k projections Q

∥A(I −Q)∥p
(p,r) = min

rank-k projections W
∥(I −W )A∥p

(p,r) = ∥A−Ak∥p
(p,r).

Let T be an SRHT matrix with O(ε−2m polylog(n)) rows. With a large probability, T is an
ε subspace embedding for the rowspace of matrix A. Then

(1− ε)AA⊤ ⪯ ATT ⊤A⊤ ⪯ (1 + ε)AA⊤

and further for all rank-k projections W ,

(1 − ε)(I − W )AA⊤(I − W ) ⪯ (I − W )AT T ⊤A⊤(I − W ) ⪯ (1 + ε)(I − W )AA⊤(I − W ).

We then have for all i that σi((I − W )AT ) = (
√

1± ε)σi((I − W )A). Therefore, ∥(I −
W )AT∥p

(p,r) = (1± ε)p/2∥(I −W )A∥p
(p,r) for all rank-k projections W . Let Algorithm 2 be

run on the matrix T ⊤A⊤ with rank parameter k and approximation parameter ε/pm. By
Theorem 5, we obtain a rank-k projection Ŵ satisfying

∥T ⊤A⊤(I − Ŵ )∥p ≤ (1 + ε/pm) min
rank-k projections W

∥T ⊤A⊤(I −W )∥p

Using, Lemma 6, we obtain that

∥T ⊤A⊤(I − Ŵ )∥p
(p,r) ≤ (1 + ε) min

rank-k projections W
∥T ⊤A⊤(I −W )∥p

(p,r).

By using the relation between ∥(I −W )AT∥p
(p,r) and ∥(I −W )A∥p

(p,r) for all projections W ,
we get

∥A⊤(I − Ŵ )∥p
(p,r) ≤

(1 + ε)p/2+1

(1− ε)p/2 min
rank-k projections W

∥A⊤(I −W )∥p
(p,r)

≤ (1 + O(εp))∥A−Ak∥p
(p,r).

Now, ∥A − A(ŴA)+(ŴA)∥p
(p,r) ≤ ∥A − ŴA∥p

(p,r) = ∥(I − Ŵ )A∥p
(p,r) ≤ (1 + O(εp))∥A −

Ak∥p
(p,r). Scaling ε, we obtain the result.

Runtime Analysis. The matrix AT can be computed in time O(mn log n). For constant
p, Algorithm 2 runs on the matrix T ⊤A in time Õ(m2+η+(1−α)β/(1+2β)kβ/(1+2β) poly(1/ε))
for k ≤ mα and in time Õ(m2+η−αβ+ β

1+2β kβ poly(1/ε)) for k ≥ mα. Finally, the rowspace of
Ŵ ⊤A can be computed in time O(nm + nkω−1) for k ≤ mα and O(nm1−αβkβ + nkω−1) for
k ≥ mα. ◀

APPROX/RANDOM 2024
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Using the above lemma, we can find a rank-k projection Q̂ that satisfies

∥SA(I − Q̂)∥p
(p,r) ≤ (1 + ε)∥A−Ak∥p

(p,r)

in time Õ((n1−2/p)2+η+(1−α)β/(1+2β) poly(1/ε) + n2) for constant k improving on the Õ(n2 +
(n(1−2/p))ω poly(1/ε)) running time of [9] for the current value of ω since 2 + (1−α)β

1+2β =
2 + ω−2

1+2β < ω if β ̸= 0. We thus have the following theorem.

▶ Theorem 8. Given a dense n × n matrix A, a constant rank parameter k

and any constant η > 0, there is a randomized algorithm that runs in time
Õ((n1−2/p)2+η+(1−α)β/(1+2β) poly(1/ε) + n2) and outputs a rank-k projection Q̂ that, with
probability ≥ 9/10, satisfies ∥A(I − Q̂)∥p

Sp
≤ (1 + ε)∥A−Ak∥p

Sp
.

For this algorithm, the crossover point is p̃ = 4(1+2β)
ω−2 + 2 i.e., only when p > p̃, Algorithm 2

is faster than the algorithm in the above theorem for constant k and ε. For current values of
ω, α, we have p̃ ≈ 22. In particular, for constant k and ε > n−cp , for p ≲ 22, the algorithm
has a time complexity of only Õ(n2).

5 Stability of LazySVD

5.1 Finite Precision Preliminaries
Following the presentation of [12], we say that a floating point machine has precision εmach if
it can perform computations to relative error εmach. More formally, let fl(x◦y) be the result of
the computation x◦y on the floating point machine where ◦ ∈ {+,−,×,÷}. We say that the
floating point machine has a precision εmach if for all x and y, fl(x ◦ y) = (1 + δ)(x ◦ y) where
|δ| ≤ εmach. Additionally, we also require fl(

√
x) = (1 + δ)

√
x for some δ with |δ| ≤ εmach.

Ignoring overflow or underflow, a machine which implements the IEEE floating point standard
with ≥ log2(1/εmach) bits of precision satisfies the above requirements (see [12, Section 5]).
Given matrices A and B with at most n rows and columns, we can compute a matrix C, on
a floating point machine, that satisfies ∥C −A ·B∥2 ≤ εmach poly(n)∥A∥2∥B∥2 by directly
computing Cij as fl(

∑
k AikBkj).

5.2 Stability Analysis

Algorithm 4 LazySVD [1].

Input: A positive semidefinite matrix M ∈ Rd×d, k ≤ d, ε, εpca, η

Output: Vectors v1, . . . , vk

1 M0 ←M and V0 ← []
2 for s = 1, . . . , k do
3 v′

s ← AppxPCAε/2,εpca,η/k(Ms−1)
4 vs ← (I − Vs−1V ⊤

s−1)v′
s/∥(I − Vs−1V ⊤

s−1)v′
s∥2

5 Vs ← [Vs−1 vs]
6 Ms ← (I − VsV ⊤

s )M(I − VsV ⊤
s ) // The matrix Ms is not computed as we

only need matrix vector products with Ms

7 return Vk

The LazySVD algorithm (Algorithm 4) of [1] crucially requires a routine called AppxPCA
that computes an approximation to the top eigen vector of the given positive semidefinite
matrix. While they use a particular AppxPCA algorithm in their results, any routine that
satisfies the following definition can be plugged into the LazySVD algorithm.
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▶ Definition 9 (AppxPCA). We say that an algorithm is AppxPCA with parameters ε, εpca and
η if given a positive semidefinite matrix M ∈ Rd×d with an orthonormal set of eigenvectors
u1, . . . , ud corresponding to eigenvalues λ1 ≥ · · · ≥ λd ≥ 0, the algorithm outputs a unit
vector w such that with probability ≥ 1− η,

∑
i∈[d]:λi≤(1−ε)λ1

⟨w, ui⟩2 ≤ εpca.

We now show that Lanczos algorithm can be used to stably compute a vector that satisfies
the AppxPCA guarantee.

▶ Lemma 10. If for any vector x, we can compute a vector y such that

∥y −Msx∥2 ≤ O(εmach poly(n)κ)∥Ms∥2∥x∥2

and if εmach ≤ poly(εpcaη/nκ), then we can compute a unit vector v such that
with probability ≥ 1 − η,

∑
i:λi(Ms)≤(1−ε)λ1(Ms)⟨v, ui(Ms)⟩2 ≤ ε. The algorithm uses

O( 1√
ε

poly(log(d/εηεpca))) matrix vector products with Ms.

Proof. Let z be a d dimensional random vector with each coordinate being an independent
Gaussian random variable. Let Ms =

∑
i λiuiu

⊤
i be the eigendecomposition. Let r be the

largest index such that λr ≥ (1− ε)λ1. Consider the vector Mq
s z for a q we choose later. We

have

y = Mq
s z =

d∑
i=1

λq
i ⟨ui, z⟩ui.

Consider ⟨u1, z⟩. By 2-stability of Gaussian random variables, ⟨u1, z⟩ ∼ N(0, ∥u1∥2
2) =

N(0, 1). Hence with probability 1 − η, |⟨u1, z⟩| ≥ η. We also have that with probability
≥ 1 − η, for all i = 1, . . . , d |⟨ui, z⟩| ≤ O(

√
log d/η). Condition on these events. Now,

∥y∥2
2 =

∑d
i=1 λ2q

i ⟨ui, z⟩2 ≥ λ2q
1 ⟨u1, z⟩2 ≥ λ2q

1 η2. Define ŷ = y/∥y∥2. Let i > r so that
λi < (1− ε)λ1 by definition of r. We have

|⟨ui, ŷ⟩| = |⟨ui, y⟩|
∥y∥2

≤ λq
i |⟨u1, z⟩|

λq
1η

≤
λq

i

√
log d/η

λq
1η

≤ (1− ε)q C
√

log d/η

η
.

If q ≥ Cε−1 log(d/εpcaη) for a large enough constant C, we get |⟨ui, ŷ⟩| ≤ poly(εpca/d). Thus,∑d
i=r+1 |⟨ui, ŷ⟩|2 ≤ poly(εpca).
Now define f(x) = xq so that f(Ms)z = y and define ρ = λ1/q. From [13, Chapter 3]

there is a polynomial p(x) of degree
√

2q log 1/γ such that for all x ∈ [−ρ, λ1 + ρ],

|p(x)− xq| ≤ eγλq
1.

As we can compute matrix-vector products with Ms up to an additive error of
O(εmach poly(n)κ), using Theorem 1 of [12] as long as εmach ≤ ε′ρ/(poly(n)κ∥Ms∥2) ≤
ε′/ poly(n)κ, we can compute a vector y′ on a floating point machine, using

√
2q log 1/γ

iterations such that

∥y− y′∥2 = ∥(Ms)qz− y′∥2 ≤ ((7eγ
√

2q log 1/γ)λq
1 + ε′λq

1)∥z∥2

≤ O(γ
√

2q log 1/γ + ε′)λq
1
√

d.

where we used that ∥z∥2 ≤ O(
√

d) with high probability. As ∥y∥2 ≥ λq
1η, we further obtain

that

∥y− y′∥2 ≤ O(γ
√

2q log 1/γ + ε′)
√

d∥y∥2/η.
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We set γ = poly(εpcaη/dq) and ε′ = poly(εpcaη/d) to obtain that ∥y − y′∥2 ≤
poly(εpca/d)∥y∥2. Thus,

∥ŷ− y′/∥y′∥2∥2 ≤ ∥y/∥y∥2 − y′/∥y′∥2∥2 ≤ poly(εpca/d).

On a floating point machine, we can normalize the vector y′ to obtain a vector ŷ′ such that
∥ŷ′∥2 = (1± εmach poly(d)) and ∥ŷ′ − y′/∥y′∥2∥2 ≤ εmach poly(d). By triangle inequality, we
then obtain ∥ŷ− ŷ′∥2 ≤ poly(ε/d) + εmach poly(d). Finally, for i > r

|⟨ui, ŷ′⟩| ≤ |⟨ui, ŷ⟩|+ ∥ŷ− ŷ′∥2 ≤ poly(εpca/d) + εmach poly(d)

which then implies that as long as εmach ≤ poly(εpca/d), we get
∑d

i=r+1⟨ui, ŷ⟩2 ≤ poly(εpca).
Thus, we overall obtain that if εmach ≤ poly(εpcaη/dκ), we can obtain a vector ŷ′

by running the Lanczos method for O( 1√
ε

poly(log(d/εpcaηε))) iterations such that with
probability ≥ 1− η, ∥ŷ′∥2 = (1± εmach poly(d)) and∑

i:λi(Ms)≤(1−ε)λ1(Ms)

⟨ŷ′, ui⟩2 ≤ εpca.

Overall, the algorithm uses O( 1√
ε

poly(log(d/εηε))) matrix vector products with Ms and
uses an additional O( d√

ε
poly(log(d/εpcaηε))) floating point operations. ◀

Finally, we modify the LazySVD algorithm (see Algorithm 5) to make it more stable when
implemented on a floating point machine. The modification preserves the semantics of the
algorithm in the real number model while allowing the stability analysis to go through. For
the matrices that we need to run the routine AppxPCA on, we show that we can compute very
accurate matrix-vector products so that the Lanczos algorithm can be used to approximate
the top eigenvector to obtain the following theorem:

▶ Theorem 11. Given an n× d matrix A with condition number κ(A) = σ1(A)/σk+1(A),
an accuracy parameter ε, a rank parameter k and probability parameter η, if εmach ≤
poly(εη/nκ(A)), there is an algorithm that outputs a d× k matrix Vk such that κ(Vk) ≤ 4
and for all p ∈ [2,∞],

∥A(I − Projcolspace(Vk))∥Sp ≤ (1 + O(ε))∥A−Ak∥Sp

and runs in time O( nnz(A)k√
ε

poly(log(dκ(A)/εη)) + d poly(k, log(dk/ηε))).

Algorithm 5 Modified LazySVD.

Input: A positive semidefinite matrix M ∈ Rd×d, k ≤ d, ε, εpca, η

Output: Vectors v′
1, . . . , v′

k

1 M0 ←M and V0 ← []
2 for s = 1, . . . , k do
3 v′

s ← AppxPCAε,εpca,η/k((I − Projcolspace(Vs−1))M(I − Projcolspace(Vs−1)))
4 Vs ← [Vs−1 v′

s]
5 return Vk

For convenience, we denote any algorithm that satisfies Definition 9 as AppxPCAε,εpca,η. We
abuse notation and say that if a unit vector w satisfies

∑
i∈[d]:λi(M)≤(1−ε)λ1(M)⟨w, ui(M)⟩2 ≤

εpca, then “w is AppxPCAε,εpca
(M)”.
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In [1], the authors show that if εpca = poly(ε, 1/d, λk+1/λ1), then with probability ≥ 1−η

(union bounding over the success of all k calls to the AppxPCA routine), the orthonormal
matrix Vk output by Algorithm 4 satisfies
1. ∥(I − VkV ⊤

k )M(I − VkV ⊤
k )∥2 ≤ λk+1(M)

(1−ε) ,
2. (1− ε)λk(M) ≤ v⊤

k Mvk ≤ 1
1−ε λk(M) and

3. for every p ≥ 1, ∥(I − VkV ⊤
k )M(I − VkV ⊤

k )∥Sp
≤ (1 + O(ε))(

∑d
i=k+1 λp

i )1/p.

Since, the modified algorithm (Algorithm 5) has the same semantics as Algorithm 4, the
properties 1 and 3 continue to hold for the modified LazySVD algorithm.

The advantage of the modification is that given any vector x, we can compute (I −
Projcolspace(Vs

))x very accurately on a floating point machine using stable algorithms for the
least squares problem, thereby obtaining a vector y on a floating point machine that is a
very good approximation to Msx = (I − Projcolspace(Vs))M((I − Projcolspace(Vs)))x for any
given x. Below we have a result that states the stability of solving the Least Squares problem
on a floating point machine.

▶ Theorem 12 (Theorem 19.1 of [15]). The algorithm for solving the least squares problem
minx ∥Ax − b∥2

2 using Householder triangulation is backwards stable in the sense that the
solution x̃ satisfies

∥(A + δA)x̃− b∥2
2 = min

x
∥(A + δA)x− b∥2

2

for some matrix δA satisfying ∥δA∥2 ≤ O(εmach∥A∥2).

Let x∗ = A+b and from the above theorem, we have x̃ = (A + δA)+b. Assuming εmach ≤
1/2κ(A), we have A + δA is full rank and therefore (A + δA)+ = ((A + δA)⊤(A + δA))−1(A +
δA)⊤ using which we obtain that ∥Ax̃ − Ax∗∥2 ≤ O(εmach poly(κ(A))∥b∥2). Note that
Ax∗ = Projcolspace(A)b. Thus, given a matrix A and a vector x, we can compute a vector y

on a floating point machine such that ∥y − Projcolspace(A)x∥2 ≤ O(εmach poly(κ(A), d)∥x∥2).
Finally, we can compute another vector y′ satisfying ∥y′ − (I − Projcolspace(A))x∥2 ≤

O(εmach poly(κ(A), d)∥x∥2). Thus, given any vector x, if operations are computed using
machine precision εmach and if we assume that for any arbitrary vector x, we can compute a
vector y satisfying ∥y −Mx∥2 ≤ εM∥M∥2∥x∥2, then given any vector x, we can compute
a vector y on a floating point machine satisfying ∥y −Msx∥2 ≤ O(εmach poly(κ(Vs), d) +
εM )∥M∥2∥x∥2.

We now bound κ(Vs). Assume that the vector v′
s satisfies ∥v′

s∥2 = (1± poly(d)εmach). If
the vector v′

s is AppxPCAε,εpca
(Ms−1), then

∥Projcolspace(Vs−1)v
′
s∥2

2 ≤
∑

i∈[d]:λi(Ms−1)≤(1−ε)λ1(Ms−1)

⟨v′
s, ui(Ms)⟩2 ≤ εpca

where the first inequality follows from the fact that colspace(Vs−1) is spanned by the
eigenvectors of Ms−1 corresponding to zero eigenvalues. Using the above inequality, we can
upper bound σmax(Vs) and lower bound σmin(Vs).

▶ Lemma 13. Suppose Vs−1 is a d × (s − 1) matrix such that σmax(Vs−1) = αs−1 and
σmin(Vs−1) = βs−1. Let v′

s be a vector with ∥v′
s∥2 = (1 ± poly(d)εmach) and satisfies

∥Projcolspace(Vs−1)v
′
s∥2

2 ≤ εpca. Let Vs = [Vs−1 v′
s]. Then σmax(Vs) ≤ max(σmax(Vs−1), 1 +

poly(d)εmach) +√εpca and

σmin(Vs) ≥
√

max(0, min(σmin(Vs−1)2, 1− poly(d)εmach)− σmax(Vs−1)√εpca).

APPROX/RANDOM 2024



55:16 Schatten-p Low Rank Approximation

Proof. Let Q be an orthonormal basis for the column space of Vs−1 and let Vs−1 = QR for
a matrix R with σmax(R) = σmax(Vs−1) = αs−1 and σmin(R) = σmin(Vs−1) = βs−1. We have
that ∥Q⊤v′

s∥2
2 = ∥QQ⊤v′

s∥2
2 = ∥Projcolspace(Vs−1)v

′
s∥2

2 ≤ εpca. Let x ∈ Rs be an arbitrary unit
vector. Let x1 ∈ Rs−1 and x2 ∈ R be such that x = (x1, x2). Now,

∥Vsx∥2
2 = ∥QRx1 + v′

sx2∥2
2 = ∥Rx1∥2

2 + x2
2∥v′

s∥2
2 + (2x2)x⊤

1 R⊤Q⊤v′
s

≤ α2
s−1∥x1∥2

2 + (1 + poly(d)εmach)x2
2 + (2|x2|)αs−1∥x1∥2

√
εpca

≤ max(α2
s−1, 1 + poly(d)εmach) + αs−1

√
εpca(∥x1∥2

2 + |x2|2)

which implies that ∥Vs∥2 ≤ max(αs−1, 1 + poly(d)εmach) +√εpca. Similarly,

∥Vsx∥2
2 = ∥QRx1 + v′

sx2∥2
2 = ∥Rx1∥2

2 + x2
2∥v′

s∥2
2 + (2x2)x⊤

1 R⊤Q⊤v′
s

≥ β2
s−1∥x1∥2

2 + (1− poly(d)εmach)x2
2 − 2|x2|∥x1∥2αs−1

√
εpca

≥ min(β2
s−1, 1− poly(d)εmach)− αs−1

√
εpca.

Hence, σmin(Vs) ≥
√

max(0, min(σmin(Vs−1)2, 1− poly(d)εmach)− σmax(Vs−1)√εpca). ◀

Conditioned on the event that ∥Projcolspace(Vs−1)v
′
s∥2

2 ≤ εpca and ∥v′
s∥2

2 = (1± poly(d)εmach)
for all s = 1, . . . , k, from the above lemma, we obtain that ∥Vs∥2 ≤ 1+poly(d)εmach +k

√
εpca.

If εpca ≤ 1/ poly(k) and εmach ≤ 1/ poly(d), then ∥Vs∥2 ≤ 2 for all s = 1, . . . , k which in turn
implies that for all s = 1, . . . , k, σmin(Vs) ≥

√
1− poly(d)εmach − 2k

√
εpca ≥ 1/2 assuming

εpca ≤ 1/ poly(k) and εmach ≤ 1/ poly(d).
Hence, κ(Vs) ≤ 4 for all s = 1, . . . , k in Algorithm 5 conditioned on the success of all the

calls to AppxPCA. Thus, we can assume that given any vector x, we can compute a vector
y on a floating point computer with precision εmach ≤ 1/ poly(d) such that ∥y −Msx∥2 ≤
O(εmach poly(d) + εM )∥M∥2∥x∥2.

Let A ∈ Rn×d be an arbitrary matrix with n ≥ d. Define M = A⊤A to be a d ×
d matrix. Given any vector x, we can compute a vector y satisfying ∥A⊤Ax − y∥2 ≤
O(εmach poly(n)∥A∥2

2∥x∥2). As ∥A∥2
2 = ∥M∥2, we thus have that for any x, we can compute

y satisfying O(εmachine poly(d)∥M∥2∥x∥2). Thus, εM as defined above can be taken as
εmach poly(d). Let κ = λ1(M)/λk+1(M). By definition of eigenvalues, for any matrix V with
at most k columns, we have ∥(I − Projcolspace(V ))M(I − Projcolspace(V )))∥2 ≥ λk+1. Hence
for all s = 1, . . . , k, ∥Ms∥2 ≥ ∥M∥2/κ. Thus, given any vector x, we can compute a vector y

satisfying ∥y −Msx∥2 ≤ O(εmach poly(n)κ)∥Ms∥2∥x∥2.

Finally, we have the main theorem showing the stability of the LazySVD algorithm.

Proof of Theorem 11. Note that the algorithm in Lemma 10 satisfies the AppxPCAε,εpca,η

definition. Thus, if εpca ≤ poly(ε/dκ), by Theorem 4.1 of [1], Algorithm 5 when run on
the d × d matrix A⊤A outputs a matrix Vk such that with probability ≥ 1 − η, ∥(I −
Projcolspace(Vk))A⊤A(I − Projcolspace(Vk))∥2 ≤ 1

1−ε σk+1(A)2 and for all p′ ≥ 1,

∥(I − Projcolspace(Vk))A⊤A(I − Projcolspace(Vk))∥Sp′ ≤ (1 + O(ε))(
d∑

i=k+1
σi(A)2p′

)1/p′
.

Thus, we have ∥A(I − Projcolspace(Vk))∥2 ≤ (1 + O(ε))σk+1(A) and using the fact that
∥A⊤A∥p

Sp
= ∥A∥2p

S2p
, for all p ≥ 2, ∥A(I − Projcolspace(Vk))∥Sp ≤ (1 + O(ε))∥A − Ak∥p. We

additionally have κ(Vk) ≤ 4 from Lemma 13.



P. Kacham and D. P. Woodruff 55:17

Runtime Analysis. In each iteration of Algorithm 5, we require O(ε−1/2 poly(log(dκ/ηε)))
matrix vector products with the matrices A and A⊤. For iterations s = 1, . . . , k, we solve
O(ε−1/2 poly(log(dκ/ηε))) least squares problems on a fixed d× s matrix and different label
vectors. Thus, the overall time complexity of the algorithm is

O

(
nnz(A)k√

ε
poly(log(dκ/ηε)) + d poly(k, log(dκ/ηε))

)
. ◀
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A Time Complexity of SVD in the Real RAM model

Consider an m× n matrix A where m ≤ n. We can compute the matrix M = A⊤A in time
O(nmω−1), where ω is the matrix multiplication exponent. Using the eigendecomposition
algorithm of [3], we can then compute a matrix V and a diagonal matrix D satisfying
∥M − V DV −1∥2 ≤ ∥M∥2/ poly(n) in time Õ(mω). Although the matrix M is symmetric,
the matrix V output by the algorithm may not be orthonormal. In the real RAM model, we
can perform the following changes to their algorithm:
1. The Ginibre perturbation step is replaced with the symmetric Gaussian Orthogonal

Ensemble perturbation as mentioned in Remark 6.1 of [3].
2. In step 5 of the algorithm EIG in [3], after computing the orthonormal matrices Q̃+

and Q̃−, we modify Q̃− to an orthonormal basis of the column space of the matrix
(I − Q̃+Q̃⊤

+)Q̃−. This ensures that Q̃⊤
+Q̃− = 0, while preserving the properties of Q̃−

guaranteed by the algorithm DEFLATE. Note that the matrix Q̃− can be updated in time
Õ(nω) in the real RAM model.

Thus, the algorithm of [3] can be used to compute an orthonormal matrix V and a diagonal
matrix D such that ∥M − V DV ⊤∥2 ≤ ∥M∥2/ poly(n) in Õ(nmω−1) time in the real RAM
model.

If we define U = AV · D−1/2, then U, D1/2, V ⊤ is an approximate singular value de-
composition of the matrix A, where the matrices U, V are orthonormal up to a 1/ poly(n)
error. Since the matrix AV can be computed in Õ(nmω−1), we obtain that SVD of a well
conditioned matrix can be computed in Õ(nmω−1) time.

B An Experiment

We consider multiplying an n × n matrix with an n × d matrix while varying d. We set
n = 10,000 and vary d to take values in the interval [10, 100]. If td is the median amount of
time (over 5 repetitions) to compute the product of an n×n matrix with an n×d matrix, we
obtain a color map (Figure 1) of the values (j/i)/(tj/ti) for j ≥ i. If (j/i)/(tj/ti) is large then
tj is much smaller than ti(j/i) which is what we would expect if the matrix-multiplication
time scales linearly with the dimension.

The experiment was performed using NumPy on a machine with 2 cores. We see that fixing
an i, as we increase j, tj becomes smaller compared to ti · (j/i). Hence, it is advantageous
to run with larger block sizes if it means that it reduces the number of iterations for which
the smaller block size is to be run. In the proof of Theorem 5, we see that if we increase the
larger block to 4 times the original, then the number of iterations the smaller block size is to
be run decreases to 0.5x the original. Based on the characteristics of the machine, we can
obtain significant improvements over the parameters obtained by optimizing for matrix-vector
products.

https://doi.org/10.48550/arXiv.2311.10459
https://doi.org/10.48550/arXiv.2311.10459
https://doi.org/10.1137/1.9780898719574
https://doi.org/10.1142/S1793536911000787


P. Kacham and D. P. Woodruff 55:19

Figure 1 Color Map of (j/i)/(tj/ti).
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