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Abstract
We introduce a novel concept termed “stochastic distance” for property testing. Diverging from
the traditional definition of distance, where a distance t implies that there exist t edges that can
be added to ensure a graph possesses a certain property (such as k-edge-connectivity), our new
notion implies that there is a high probability that adding t random edges will endow the graph with
the desired property. While formulating testers based on this new distance proves challenging in a
sequential environment, it is much easier in a distributed setting. Taking k-edge-connectivity as a
case study, we design ultra-fast testing algorithms in the CONGEST model. Our introduction of
stochastic distance offers a more natural fit for the distributed setting, providing a promising avenue
for future research in emerging models of computation.
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1 Introduction

Property testing has become a major focus in computational research over the years. One of
the main goals in this field is to quickly determine if a given structure has a specific property
or is far from having it. Traditionally, this “distance” from a property has been defined using
the Hamming distance, which counts the number of changes needed to give the structure
the desired property. But a question arises: Is this the best way to measure distance in all
situations, especially in emerging models of computation?

Consider the following motivating example. Distributed dynamic systems, such as peer-
to-peer networks, frequently experience changes in their structure as nodes (clients) join or
depart and edges may experience failures. For the sake of resilience against failures, it is
imperative for these systems to maintain a topology with certain advantageous features, like
k-edge-connectivity1. However, maintaining this throughout the evolution of the network

1 Going forward we simply write k-connectivity.
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may require resource-intensive corrections, which ideally should be minimized. Still, it might
be the case that some topologies are “easy” to correct, in the sense that simply adding a small
number of random edges to the graph will make the network topology k-connected. This
can be seen as a “low-cost” fixing operation, compared to executing an elaborate algorithm
that guarantees k-connectivity for every topology. A question arises: can we detect these
easy-to-fix topologies fast?

We take a first step in addressing the above and introduce a new distance measure which
we call stochastic distance. That is, we say that a graph G = (V, E) is t-stochastically-close
to a property P if it holds with high probability (w.h.p)2 that adding (roughly) t random
edges to G will make it have property P. Intuitively, the Hamming distance metric can be
seen as asking whether the input graph is close to at least one graph instance that has a
desired property, while our new distance measure asks whether the graph is close to many
instances that have the property.

To exemplify the usefulness of our new distance measure, we take the property of k-
connectivity as a case study. This is an extremely desirable graph property in the distributed
setting, as it guarantees that the system remains connected even under several edge failures.
In Section 3 we note that the simple case of connectivity already becomes hard to test in
the sequential setting. However, using the distributed power of the system we can design
extremely fast distributed testers for both connectivity and k-connectivity.

1.1 Our model and results
In the distributed setting, a network of nodes, which is represented by a communication
graph G = (V, E), aims to solve some graph problem with respect to G. Every node in G

has unique ID of O(log n) bits. Computation proceeds in synchronous rounds, in each of
which every vertex can send a message to each of its neighbors. The running time of the
algorithm is measured as the number of communication rounds it takes to finish. Our results
hold for the CONGEST model of distributed computation, where messages are limited to
O(log n) bits (where n = |V |).

A distributed 1-sided tester [5] for a property P (or simply a tester) has the following
guarantee. If the graph G has the property, then all nodes accept. If the graph is ϵ-far
from having the property, then with probability larger than 2/3 at least one node rejects.
This definition remains the same for both the Hamming distance metric and our stochastic
distance measure.

Note that ϵ ∈ (0, 1) indicates the distance from the property relative to the number of
edges in the graph (i.e., ϵ|E| in the general model) or to the possible number of edges in the
graph (i.e., ϵ

(
n
2
)

in the dense model). In our model every non-edge is added with probability
t/(

(
n
2
)

− |E|) (see Section 2 for an exact definition), therefore it is more natural to use t ∈ N
as the distance parameter rather than ϵ. That is, our testers decide whether the graph has a
certain property or if it is t-far from it. We state and prove the following two theorems3:

▶ Theorem 1. There exists a deterministic algorithm in the CONGEST model, that for a
parameter s ∈ N runs in O(s) rounds and distinguishes whether the graph G is connected, or
is Ω((n log n)/s)-stochastically-far.

2 With probability at least 1−n−c for some constant c > 1. The choice of c does not affect the asymptotics
of our results.

3 Where Õ subsumes factors logarithmic in n.
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▶ Theorem 2. There exists a randomized algorithm in the CONGEST model, that for
a parameter s ∈ N runs in Õ(s4) rounds and distinguishes w.h.p whether the graph G is
k-connected, or is Ω((kn log n)/s)-stochastically-far from being one.

Intuitively, the above states that the more random edges are added the easier it is to
check if the graph will become k-connected or not. That is, if s ≈ kn log n then checking
whether a constant number of random edges will make the graph k-connected is as hard as
checking if the graph is connected, which requires traversing the entire graph. If s = O(1),
then so many edges are added that the graph almost surely becomes k-connected. Our results
provide a smooth transition between these two cases.

Related work

In (non-distributed) property testing, the objective is to devise algorithms that can distinguish
between graphs satisfying a property P and graphs that are ϵ-far from having the property
with a high probability. Testing connectivity properties in the bounded-degree model, where
we have query access to the input graph via a list of incidence lists, has been extensively
studied, including k-connectivity [13, 21, 17], k-vertex-connectivity [22, 17], (k, l)-sparsity [14]
and supermodular-cut conditions [19].

The first distributed property testing algorithm was due to [3]. A thorough study of
distributed property testing was initiated in [5]. This was followed by a long line of work,
presenting new and improved testers for various properties [1, 9, 12, 11, 16, 10]. All of these
works consider the Hamming distance handed down from the sequential testing model.

k-connectivity received a large amount of attention in the distributed literature [20, 4, 8,
7, 6, 18, 2]. There is a large body of work that aims to find sparse connectivity certificates –
for a k-connected graph the goal is to find a k-connected subgraph that has O(kn) edges.
Another related problem is computing a k-edge-connected spanning subgraph (k-ECSS) –
for a k-connected graph the goal is to find the sparsest possible k-connected subgraph. We
note that both these problems assume that the input graph is k-connected, and are therefore
inherently different than the problem we consider.

2 Preliminaries

Distance from a property

We identify simple graphs G = (V = [n], E) with the
(

n
2
)
-dimensional characteristic vector

of their edge set E ⊆
(

V
2
)
, and use the Hamming metric over these vectors, defined by

dHAM(G, G′) =
∣∣∣{i ∈

(
V
2
)

: G(i) ̸= G′(i)}
∣∣∣, where G(i) is the ith entry in the vector G.

By extension, the distance of a graph G from a family of graphs G is:

dHAM(G, G) = min
G′∈G

dHAM(G, G′).

A property P is formally a family of graphs (e.g., all connected graphs). Given positive
integers n and t, we define the YES case of the corresponding testing problem to be all graphs
G = (V, E) in P over n vertices:

YES := {G ∈ {0, 1}(V
2 ) : G ∈ P}

We define the NO case, denoted NO′
t, to be all graphs G = (V, E) over n vertices with

Hamming distance at least t from YES:

NO′
t := {G ∈ {0, 1}(V

2 ) : dHAM(G, YES) ≥ t}

APPROX/RANDOM 2024
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Motivated by connectivity, in the following we only consider monotone non-decreasing
properties, for which it is easy to see that only additions count towards the distance from
the property (note that many properties in the literature are monotone non-increasing
instead. For these, one can replace additions with deletions). Formally, if P is a monotone
non-decreasing property, and G /∈ P is a graph that does not satisfy it, then for any
H ∈ P with dHAM(G, H) = dHAM(G, P), we have EG ⊆ EH (or alternatively, dHAM(G, H) =∣∣∣{i ∈

(
V
2
)

: G(i) = 0 ∧ H(i) = 1}
∣∣∣).

Stochastic distance

We define stochastic closeness to a property as follows:

▶ Definition 3 (Random addition of edges). For a graph G = (V, E), we choose a random
subset E′ of the edge set Ē =

(
V
2
)
\E, by adding each edge with probability t/

∣∣Ē∣∣ independently,
for parameter t ∈

[
0,

∣∣Ē∣∣]. We define the random graph Add(G, t) := (V, E ∪ E′). We say
that G′ = Add(G, t) is created from G by a random addition of edges with parameter t.

The parameter t should be understood intuitively as the (expected) number of random edges
required to make the graph have the property P w.h.p. Per our motivation, and in accordance
with previous results for testing connectivity, we allow ourselves the mild assumption that∣∣Ē∣∣ = Ω(n2) which clearly holds for any input relevant to our setting. The amount of edges
we aim to add, however, is always significantly smaller, t = o(n2). In particular it is always
the case that t ≤

∣∣Ē∣∣, as desired.

▶ Definition 4 (Stochastic closeness to a monotone property). For a monotone property P, a
graph G /∈ P over n vertices is said to be t-stochastically-close to satisfying P if the graph
G′ = Add(G, t) satisfies

Pr[G′ /∈ P] ≤ n−c

for some global constant c > 1. As shown in Appendix A, the constant c can be chosen
arbitrarily without affecting stochastic closeness by more than a constant factor.

We are now able to define the alternative set of NO instances:

NOt := {G ∈ {0, 1}(V
2 ) : G /∈ YES and G is not t-stochastically-close to P}

In this text our main focus is solving promise problems of type (YES, NOt), rather than
(YES, NO′

t).

Comparing the two notions of distance

As an illustrative example, consider two n-node graphs, both with exactly two connected
components: in G1 a constant-size component is disconnected from the rest of the graph,
while in G2 there are two components of the same size, n/2. While both graphs are exactly
one edge away from being connected (i.e, both have hamming distance 1). The situation is
quite different if edges are added randomly, instead of being handpicked, leading to different
stochastic distance. While a small number of edges (∼ log n) are already likely to connect
G2, the same amount has only probability o(1) to connect G1.
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3 Warm-up: Connectivity with Stochastic Distance

In this section we deal with the graph connectivity property for a network that is not
necessarily connected. This section aims to present the ideas used in the following section
about k-connectivity. We use the following terminology: when a graph is disconnected, write
G =

⋃m
i=1 Ci as the unique decomposition of G into its connected components C1, . . . , Cm,

with Ci = (Vi, Ei), and si := |Vi| for their sizes.
We make the following observation:

▶ Observation 5. Let G =
⋃m

i=1 Ci be a disconnected graph (i.e., m ≥ 2), and let s =
1
m

∑
i∈[m] si, then G is O( n

s )-close to being connected in Hamming distance.

Indeed, it holds that s = 1
m

∑
i∈[m] si = n/m, which means that m = n/s. As a single edge

can be used to connect two components, adding m − 1 = n/s − 1 edges suffices to connect
the graph.

The observation is also tight: there exist graphs that require exactly this number of
additions. Joined with a Markovian argument, one can deduce that for any graph that is far
from connectivity, there exists many small connected components. This is a key argument in
the analysis of existing connectivity testers (using Hamming distance) [13].

The main part of this section deals with proving a statement of similar taste for stochastic
distance. While the Hamming distance of a graph from being connected is dictated by the
average size of a connected component, for stochastic distance this is dictated by the minimum
size of a connected component. As a result, a graph that is far from being connected in
stochastic distance is only guaranteed to have one small connected component. Formally, we
prove the following lemma:

▶ Lemma 6. Let G =
⋃m

i=1 Ci be a disconnected graph (that is, m ≥ 2), with components
of sizes si = |Vi|. Then G is O((n log n)/s)-stochastically-close to being connected, where
s = mini∈[m]{si}.

Proof. Recall that when considering stochastic distance every non-edge is added with some
probability p. Consider the set of bad events {Bk}⌊m/2⌋

k=1 , where Bk is the event that there
exists a set of exactly k connected components Ci1 , . . . Cik

such that none of the edges
between

⋃k
j=1 Cij and the rest of the graph are added. The important observation is that

the graph stays disconnected if and only if one of these bad events occurs. We go on to
bound the probability of each of these bad events.

Fix k. Our goal is to bound Pr[Bk]. There are
(

m
k

)
ways to choose a subset of k

components. Fix one such choice i1, . . . ik and denote the set of vertices in these components
by U =

⋃k
j=1 Vij

. As each component is of size at least s, we have |U | ≥ ks, applying the same
reasoning to the remaining graph, made of the rest of the components: |V \ U | ≥ (m − k)s ≥
ks nodes (the second inequality holds since k ≤ m/2). Thus, we have ks ≤ |U | ≤ n − ks,
and consequently we get:

|U | · |V \ U | = |U | · (n − |U |) ≥ ks(n − ks).

where the inequality is true since f(x) = x(n − x) is unimodal and symmetric on the interval
[ks, n − ks]. The probability of U staying disconnected from V \ U is thus bounded by:

(1 − p)|U |(n−|U |) ≤ e−p|U |(n−|U |) ≤ e−pks(n−ks)

And by a union bound over all choices of U with k connected components, we get:

Pr[Bk] ≤
(

m

k

)
e−pks(n−ks) ≤ e−pks(n−ks)+k log m ≤ e−pksn+p(ks)2+k log n

APPROX/RANDOM 2024
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Thus, by taking p = 2(c + 2) log n/(sn), the expression in the exponent is bounded by:

−2(c + 2) log n · ksn

sn
+ 2(c + 2) log n(ks)2

sn
+ k log n = (2(c + 2)(ks/n − 1) + 1)k log n

≤ −(c + 1)k log n

where the inequality uses ks/n ≤ (m/2)s/n ≤ 1/2. This, in turn, bounds the probability
of the bad event by:

Pr[Bk] ≤ e−(c+1)k log n ≤
(

1
n

)−(c+1)k

Using a union bound over all values of k, we get

Pr

⌊m/2⌋∨
k=1

Bk

 ≤
⌊m/2⌋∑

k=1
n−(c+1)k ≤

∞∑
k=1

n−(c+1)k ≤ 2n−(c+1) ≤ n−c

where the second to last inequality uses the sum of an infinite geometric series with common
ratio n−(c+1) ≤ 1/2, and the last simply uses n ≥ 2.

Finally, we get that G is connected w.h.p. This implies that G is t-stochastically-close to
being connected, with t = O((n log n)/s) (recall that

∣∣Ē∣∣ = Ω(n2)). ◀

Tightness of Lemma 6

We focus on the smallest connected component, Vi of size si = s. There are at most s(n−s) ≤
sn potential edges to connect Vi to the rest of the graph. If we take p′ = c log n/(4sn), then
the probability none of them is added satisfies:

(1 − p′)s(n−s) ≥ (1 − p′)sn ≥ e−2p′sn = e−c log n/2 = n−c/2 > n−c,

where the second inequality uses 1 − x ≥ e−2x, which holds for x ∈ [0, 1/2].
Using the counter-positive of Lemma 6, a graph G that is O((n log n)/s)-stochastically-far

from being connected is guaranteed to have a connected component of size at most O(s).
It is clear that a sequential tester is ill-suited to detect such small witnesses. Indeed,

consider distinguishing the connected cycle over all n nodes, from a disconnected n-node
graph consisting of an n − 1 cycle and a single isolated node (chosen uniformly at random).
On the one hand, all disconnected graphs are as stochastically far as a graph can be from
connectivity (requiring roughly n log n random edge additions). Still, a sequential tester
would require Ω(n) queries to an oracle in order to detect the isolated node.

In the CONGEST model, however, an efficient testing procedure exists.

▶ Theorem 1. There exists a deterministic algorithm in the CONGEST model, that for a
parameter s ∈ N runs in O(s) rounds and distinguishes whether the graph G is connected, or
is Ω((n log n)/s)-stochastically-far.

Proof. Assume that the parameter s is known to all nodes in the network. Each node runs
a distributed DFS algorithm. Every execution is associated with an ID, which is simply
the ID of the root of the DFS tree. When multiple DFS executions visit the same node, all
execution are terminated, except that with the maximum ID. When a DFS execution visits
s nodes, it terminates and checks whether there is an outgoing edge from any visited node to
any unvisited node. If there is, then it accepts (i.e., the graph is connected), otherwise it
rejects (i.e., the graph is far from being connected). Correctness follows from Lemma 6. It is
clear that there is no congestion and that the algorithm terminates in O(s) iterations. ◀
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4 Stochastic Distance from k-Connectivity

This section deals with k-connectivity, for any k ≥ 1. We aim to characterize stochastic
distance of a graph in terms of cuts, focusing on a specific parameter-of-interest denoted by
sk(G): the smallest size of a vertex set that has a cut strictly smaller than k. In terms of
this parameter, the following can be shown:

▶ Theorem 7. Let G = (V, E) and s = sk(G), then G is O((k · n log n)/s)-stochastically-close
to being k-connected.

Similarly to Lemma 6, this theorem is tight, up to a factor of k. The rest of this section
deals with proving the above theorem. First the parameter sk(G) is formally defined and
discussed. Later, we generalize Lemma 6 to bound the number of random edge additions
required to increase the connectivity of a graph by one. In the last part we formally prove
Theorem 7.

4.1 Properties of minimal cuts
For any vertex set, U ⊆ V , we write the cut size of U as c(U) := |E(U, V \ U)|. We use
d(t) := t(n − t) for the potential amount of edges between any t vertices and the rest of the
graph, and for a specific vertex set, U , we slightly abuse notation and write d(U) = d(|U |).

For any parameter k ∈ N and graph G = (V, E), we define the collection of small cuts as
the cuts that are strictly smaller than k:

Sk(G) := {U ⊆ V : c(U) < k and U ̸= ∅}

A value of interest for us will be the size of the smallest set in such a collection. Formally we
define:

sk(G) := min
U∈Sk(G)

|U |

When the connectivity parameter k and the graph G are clear from context, we omit either
one or both (writing sk, s(G) or simply s instead). If the collection is empty for some k and
G, we define sk(G) = n. Note that sk(G) = n if and only if G is indeed k-connected.

We show that sk(G) has certain monotonicity properties with respect to the parameters
G and k. Indeed, by definition a larger value for k creates a larger collection of cuts, i.e.,
Sk(G) ⊆ Sk+1(G). On the other hand, adding edges to the graph can only increase the cut
of any given vertex set, U . Thus, any U with a small cut after additions, also had a small
cut before additions. Formally, if G ⊆ G′ (i.e., G = (V, E), G′ = (V, E′) and E ⊆ E′), we
have Sk(G′) ⊆ Sk(G). The minimum over elements in a collection can only decrease if we
add elements to the collection, and hence we have:

▶ Observation 8 (Monotonicity of sk(G)). The parameter sk(G) is monotone non-increasing
in k, and monotone non-decreasing in G.

Below, we will be interested in finding the smallest vertex set U in the collection Sk(G).
This element determines the value s. The following proposition shows a property of such a
set U that will be useful for the algorithm:

▶ Proposition 9. Fix k ∈ N and a graph G = (V, E). For any subset U ⊆ V with a cut less
than k (c(U) < k) and of minimal size (|U | = sk) the induced subgraph G[U ] is connected.

APPROX/RANDOM 2024
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Proof. Assume otherwise, then we can break G[U ] into its connected components: U =
⋃

i Ui.
Each such component has strictly less nodes than U . Moreover, we have:

c(Ui) = E(Ui, V \ Ui) = E(Ui, V \ U) ≤ E(U, V \ U) = c(U),

where the second equality holds since there are no edges between different components of U .
We conclude that each Ui has a cut of size at most c(U) < k, but their size is strictly smaller
than s, which leads to a contradiction. ◀

4.2 Increasing the connectivity by one
Using the notations of this section, the statement of Lemma 6 is that any graph that is
“0-connected” (i.e., disconnected) is O(n log(n)/s1)-stochastically-close to being 1-connected.
This is true since s1 is exactly the size of the smallest connected component in G.

We generalize this statement for k-connectivity:

▶ Lemma 10. Any (k − 1)-connected graph G with n ≥ 4k nodes is O(n log(n)/sk)-
stochastically-close to being k-connected.

Proof. For k = 1, the proof is complete due to Lemma 6. For k > 1, let G be a (k − 1)-
connected graph. Thus, all minimum cuts have k − 1 ≥ 1 edges (G is connected). We
estimate the number of random edges needed to make all sets in Sk(G) have a cut of size at
least k.

We identify minimum cut with a partition of V to U and V \ U (w.l.o.g, |U | ≤ ⌊n/2⌋).
As in Lemma 6 assume that every non-edge is added with probability p. Consider the event
BU that U remains with cut of size k − 1. That is, not a single edge was added between U

and V \ U . There are exactly d(U) − (k − 1) potential additions, and so:

Pr[BU ] = (1 − p)d(U)−(k−1) = (1 − p)|U |(n−|U |)−(k−1) ≤ (1 − p)sk·n/4 ≤ e−sk·pn/4,

where the first inequality uses n − |U | ≥ n/2 , |U | ≥ sk(G) and k ≤ |U |n/4 to lower bound
the exponent.

By taking p = 4(c + 2) log n/(skn), this bound becomes

e−sk·pn/4 = e−(c+2) log n = n−(c+2)

We finish the proof by using a union bound over all minimum cuts. There are at most(
n
2
)

≤ n2 of them due to well known corollary of Karger’s Algorithm [15]. The probability
that G is not k-connected after the edge additions is at most∑

U∈Sk(G)

Pr[BU ] ≤ n2 · n−(c+2) = n−c. ◀

4.3 Putting it all together
We are now ready to prove Theorem 7. Our proof considers an alternative addition process
which is easier to analyze. Intuitively, let p′ ≈ p/k and consider the following process.
“Repeat k times: add each edge to the graph independently with probability p′”. We formalize
the above and bound the required value of p′ for the alternative process, analyzing each of
the k iterations separately with Lemma 10. We finish up by relating the original addition
processes to the alternative one.
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Proof of Theorem 7. Denote by r < k the connectivity of G (if G is disconnected, then
r = 0). We consider k − r (at most k) iterations of additions, which we enumerate by
r + 1, . . . , k. We further denote by Gi the graph after iteration i (and Gr = G).

First we consider process (A), where at each iteration i ∈ {r + 1, . . . , k}, each edge is
independently added with probability

pi = 4(c + 3)n log n/si+1(Gi).

Applying Lemma 10 for each iteration i we have the following: The probability that Gi is
i-connected, given that Gi−1 is (i − 1)-connected is at least 1 − n−(c+1). Using a union bound
over all k − r ≤ n iterations, we have that with probability at least 1 − n−c, the final graph
Gk is k-connected.

Next, consider an adjusted process (B) that also works in iterations, but uses a fixed
value

p′ = 4(c + 3)n log n/sk(G).

Using the monotonicity of sk(G), we have

sk(G) = sk(Gr) ≤ si+1(Gr) ≤ si+1(Gi),

and thus pi ≤ p′ for all values of i.
Let us focus on a single non-edge of G, call it (u, v), and follow it through the entire

process. The probability (u, v) is added to Gk is higher in process (B) than it is in process
(A), since p′ ≥ pi for all i. On the other hand, this probability is at most p′k, by a union
bound over all iterations of process (B).

Lastly, consider process (C), a one-shot random addition, using

p = p′k = 4(c + 3)kn log n/sk(G).

The probability of every non-edge being added in process (C) is higher than it is in process
(B) which is in turn higher than process (A). By monotonicity of k-connectivity (as a graph
property), the probability that Gk is a k-connected graph is therefore also higher in process
(C) than it is in process (A), and is therefore at least 1 − n−c. ◀

The counter-positive of Theorem 7 means that any graph G which is O((k · n log n)/s)-
stochastically-far from being k-connected has a set W of at most s nodes with a cut smaller
than k. We call such set W an (s, k)-witness, or simply a witness when k and s are clear
from context.

5 Distributed algorithm for k-connectivity

In this section, we provide a distributed algorithm that detects an (s, k)-witness within
O(s4 log n) rounds in the CONGEST model w.h.p. We state with the following useful lemma4:

▶ Lemma 11 (Lemma 3.16 in [13]). Let W be an (s, k)-witness. Suppose that each edge in the
graph is independently assigned a uniformly distributed cost in [0, 1]. Then, with probability
at least Θ

(
s−2(1−1/k)), W contains a spanning tree such that every edge in the tree has cost

smaller than any edge in the cut E(W, V \ W ).

4 The original lemma in [13] uses the notion of a j-extreme node set which is equivalent to our notion of a
(s, k)-witness.
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Specifically, if the tree guaranteed by the above lemma exists, the MST must also have
the same guarantees. Furthermore, as all edge costs are unique w.h.p., the MST is unique
w.h.p. When referring to the above lemma, it will be convenient to refer to a single tree, the
MST induced by the cost function (i.e., when referring to the spanning tree guaranteed by
Lemma 11, we always refer to an MST).

Given a starting vertex w and a size bound s, consider the following random process:
Input: start vertex u ∈ V , size bound s ∈ N.
Assign uniformly random weights to all edges: w : E → [0, 1].
Start with a singleton set W = {u}. As long as |W | < s, repeat the following:

Choose the smallest cut edge e = argmine∈E(W,V \W )w(e).
Update W to include the new node of e in V \ W .
If c(W ) < k then declare W as an (s, k)-witness.

Lemma 11 implies that repeating the above procedure Θ̃(s2) times detects a witness
w.h.p.

In [13] a small amount of random nodes is sampled, and the above procedure is applied
for each of them. This is possible since any graph that is far from k-connectivity in Hamming
distance contains many witnesses. In our case, a graph that is stochastically far only
guarantees a single witness, and therefore it is costly to detect the witness in the standard
(query) model. We leverage the distributed nature of the system to apply the witness
detection procedure to all nodes in parallel.

Distributed implementation

The above algorithm admits a simple distributed implementation. First, we assign random
weights in [0, 1] to all edges in the graph, this guarantees that with some small probability
there exists a spanning tree within the witness component satisfying the guarantees of
Lemma 11. Assume this tree exists and denote this tree by T . It will be clear from our
algorithm that if this tree does not exist, the running time does not change however we may
simply not detect the witness component if it exists.

Every node grows a cluster as follows. Every cluster can be implemented via a tree
rooted at a leader node. All nodes in the cluster know for each neighbor whether it is in
the cluster or not. To pick the next edge to be added to the cluster the edge weights are
propagated along the tree towards the root, taking the minimum at every node. Finally,
the root propagates the minimum value to all nodes in the cluster and the corresponding
edge is added to the cluster. After each edge addition the cluster checks whether the current
cut size is smaller than k and terminates if this is the case (a witness is found). For ease
of analysis let us define an iteration as the step of adding a single edge (and vertex) to the
cluster. When running this procedure from multiple nodes we can have every cluster wait for
Θ(i) rounds to complete the i-th iteration. This will guarantee when running this procedure
from multiple nodes that the iterations are executed in lock-step. We execute this process
for s iterations. This results in a running time of O(s2) rounds.

In order to detect a witness component, we must execute the above algorithm to comple-
tion, starting from a node within the witness component. We do not know which nodes are
within the witness component before executing the algorithm, and running the procedure to
completion may cause congestion. To overcome this, we execute the procedure from all nodes
simultaneously, but prioritize executions that overlap according to a priority condition.

The priority of the cluster at iteration i is the largest edge cost that was added to the
cluster so far. Let us call this the max-edge value. Whenever multiple executions reach
the same node, executions with higher max-edge values are terminated (ties are broken via
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the cluster root IDs). As clusters add edges greedily according to edge weights, we know
that only edges from T will be added to clusters whose execution starts from the witness
component. That is, all edges in T will be added, at which point the small cut will be
detected and all nodes in the cluster will reject.

As we terminate executions that visit the same node, we never experience congestion.
It is sufficient to prove that at least one cluster execution that starts within the witness
component survives. As all edges in the tree have weights smaller than the cut edges this
means that the execution of clusters that start within the witness component is not affected
by clusters that start from outside the component. This is because they always have a lower
max-edge value due to guarantees on the weights of T . Furthermore, in every iteration
at least one cluster in the witness component is not terminated. That is, the cluster with
highest priority inside the witness component at iteration i must survive. We conclude that
there exists a cluster construction that start within the component and terminates within
O(s2) rounds. To get the guarantee of Lemma 11 w.h.p., we must repeat the process Õ(s2)
times. Thus, the final running time is Õ(s4). We state the following theorem:

▶ Theorem 2. There exists a randomized algorithm in the CONGEST model, that for
a parameter s ∈ N runs in Õ(s4) rounds and distinguishes w.h.p whether the graph G is
k-connected, or is Ω((kn log n)/s)-stochastically-far from being one.
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A Robustness of Stochastic Closeness

The following claim is used to show robustness of stochastic closeness (Definition 4) with
respect to the choice of the global constant c. Intuitively speaking, by repeating the random
addition only a constant number of times, the probability of not attaining the property P
can be reduced to any small polynomial.

▷ Claim 12. Fix a monotone property P , a graph G /∈ P over n vertices, and constant c > 1.
If for some t ∈

[
0,

∣∣Ē∣∣], it holds that

Pr[Add(G, t) /∈ P] ≤ n−c,

then for any m ∈ N such that mt ∈
[
0,

∣∣Ē∣∣], it holds that

Pr[Add(G, mt) /∈ P] ≤ n−mc.

Proof. Recall that in the randomly augmented graph Add(G, t) each edge e ∈ Ē is added
independently with probability t/|Ē|. Let G1, . . . , Gm be m independent copies of Add(G, t).
By definition, we have

Pr
[

m∧
i=1

Gi /∈ P

]
=

m∏
i=1

Pr[Gi /∈ P] ≤ n−mc.
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Define G′ =
⋃m

i=1 Gi, the union of all m randomly augmented graphs. G′ trivially contains
all edges of G. On the one hand, the probability that each edge e ∈ Ē appears in G′ is at
most (mt)/|Ē|, by a union bound over the m attempts to add it. Since the property P is
monotone, we have

Pr[Add(G, mt) /∈ P] ≤ Pr[G′ /∈ P].

On the other hand, G′ is a supergraph of Gi for all i ∈ [m]. Using again the monotonicity of
P, we can write

Pr[G′ /∈ P] = Pr
[

m∧
i=1

G′ /∈ P

]
≤ Pr

[
m∧

i=1
Gi /∈ P

]
≤ n−mc,

which concludes the proof. ◁
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