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Abstract

We study a variant of the down-up (also known as the Glauber dynamics) and up-down walks over
an n-partite simplicial complex, which we call expanderized higher order random walks – where the
sequence of updated coordinates correspond to the sequence of vertices visited by a random walk
over an auxiliary expander graph H. When H is the clique with self loops on [n], this random
walk reduces to the usual down-up walk and when H is the directed cycle on [n], this random walk
reduces to the well-known systematic scan Glauber dynamics. We show that whenever the usual
higher order random walks satisfy a log-Sobolev inequality or a Poincaré inequality, the expanderized
walks satisfy the same inequalities with a loss of quality related to the two-sided expansion of the
auxillary graph H. Our construction can be thought as a higher order random walk generalization
of the derandomized squaring algorithm of Rozenman and Vadhan (RANDOM 2005).

We study the mixing times of our expanderized walks in two example cases: We show that when
initiated with an expander graph our expanderized random walks have mixing time (i) O(n log n)
for sampling a uniformly random list colorings of a graph G of maximum degree ∆ = O(1) where
each vertex has at least (11/6 − ε)∆ and at most O(∆) colors, (ii) Oh

(
n log n

(1−∥J∥op)2

)
for sampling the

Ising model with a PSD interaction matrix J ∈ Rn×n satisfying ∥J∥op ≤ 1 and the external field
h ∈ Rn– here the O(•) notation hides a constant that depends linearly on the largest entry of h. As
expander graphs can be very sparse, this decreases the amount of randomness required to simulate
the down-up walks by a logarithmic factor.

We also prove some simple results which enable us to argue about log-Sobolev constants of higher
order random walks and provide a simple and self-contained analysis of local-to-global Φ-entropy
contraction in simplicial complexes – giving simpler proofs for many pre-existing results.
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1 Introduction

Let U1, · · · , Un be a collection of finite sets. The down-up walk P↓↑ on Ω ⊂ U1 × · · · Un with
respect to a given distribution π : Ω → R≥0, also known as the Glauber dynamics on Ω
according to π, is the following simple process: Starting from an arbitrary tuple ω(0), we
obtain the (t+1)-st tuple ω(t+1) visited by this random walk from the t-th tuple ω(t) as follows,

Update Rule for the Down-Up Walk, P↓↑

1. sample a uniformly random coordinate i ∼ uni[n],
2. sample a random tuple ω(t+1) ∼ π conditional on ω

(t+1)
j = ω

(t)
j for all

j ∈ [n] \ {i}.

The following variant of the down-up walk, called the systematic scan Pscan on Ω according
to π, is a variant of the down-up walk P↓↑ which uses less randomness and is easier to
implement in practice: starting from an arbitrary tuple ω(0), we obtain the (t + 1)-st tuple
ω(t+1) visited by this random walk from the t-th tuple ω(t) as follows,

Update Rule for the Systematic Scan, Pscan

1. set i = t + 1 (mod n),
2. sample a random tuple ω(t+1) ∼ π conditional on ω

(t+1)
j = ω

(t)
j for all

j ∈ [n] \ {i}.

In both cases, the coordinate i that is sampled on the first step of the update can be thought
as a vertex visited by the simple random walk on a graph. For the down-up walk, this
is a random walk on the clique with self-loops, whereas for the systematic scan this is a
(deterministic) walk on the directed cycle.

The main object of study in this paper will be the so-called expanderized down-up walk
Q↓↑ on Ω with respect to the distribution π : Ω → R>0 and the k-regular graph H = ([n], E)
for some constant k. Starting this random-walk from an arbitrary coordinate i(0) ∈ [n] and
an arbitrary tuple ω(0), we obtain the (t + 1)-st coordinate i(t+1) and tuple ω(t+1) according
to the following update rule,

Update Rule for the Expanderized Down-Up Walk Q↓↑

1. sample a random neighbor s of i(t) in H,
2. sample a random tuple ω(t+1) ∼ π conditional on ω

(t+1)
j = ω

(t)
j for all j ∈

[n] \ {s},
3. set i(t+1) to be a random neighbor of s in H.

We notice that according to the above update rule when i(0) is sampled uniformly at random
and H equals the clique with self-loops on [n] the evolution of ω(t) is as dictated by the
down-up walk P↓↑. Similarly, when i(0) = 1 and H is the directed cycle,1 the evolution of
ω(t) is as dictated by the systematic scan Pscan.

1 To be more precise, H needs to be a directed cycle of length 2n, in which the vertices corresponding to
the coordinates and dummy vertices are interleaved.
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The main contribution of this paper is an analysis of the expanderized down-up walk
assuming, (i) the graph H is a spectral expander2 and (ii) the down-up walk P↓↑ satisfies
some kind of isoperimetric inequality, e.g. a log-Sobolev inequality or a Poincaré inequality.
Indeed our methods allow us to extend our results to all down-up and up-down walks.

Motivation and Contributions. The systematic scan Pscan is a random walk of great
practical and theoretical interest. Yet, rapid mixing results for this walk are only known
under restricted circumstances [18, 33, 23, 24, 51, 29] and it is very hard to directly relate the
rapid mixing of P↓↑ to that of Pscan. A particularly useful framework for establishing rapid
mixing for the down-up walk is the method of high-dimensional expansion, in particular the
frameworks of spectral independence and entropic independence [2, 9, 16, 17, 14, 7, 6, 8]
which led to many breakthrough results in the field of sampling algorithms.

In [3], an attempt was made to study the mixing of the systematic scan3 using techniques
of high-dimensional expansion – while their techniques allowed them to establish rapid
mixing results for constant dimensional partite simplicial complexes, their result is too
restrictive to take advantage of mixing results obtained through spectral independence or
entropic independence. As a step towards directly being able to take advantage of the
mixing results for P↓↑, which could potentially be obtained through the high-dimensional
expansion framework, we introduce our expanderized down-up walks Q↓↑. As expander
graphs have proven themselves very successful at approximating dense objects, we hope –
and indeed also prove – that transfering mixing time bounds from the usual down-up walks
to our expanderized walks to be an easier task than establishing mixing times for Pscan. As
expander graphs can be very sparse, our expanderized walks can be thought as replacing the
sparse object used in the definition of the systematic scan Pscan, i.e. the directed cycle, with
another sparse yet highly connected object – an expander graph with constant degree.

In spirit, the expanderized walks can be thought as a higher order random walk analogue
of the derandomized squaring algorithm introduced in [52]. This algorithm was introduced
to simplify the seminal result of [49] concerning the existence of a logspace algorithm for
deciding undirected connectivity. The derandomized squaring operation uses an auxiliary
k-regular expander graph H on the vertex set [d] to approximate the square of a graph
d-regular graph G on [n]. Whereas the actual square G2 is a d2-regular graph, by picking
k = O(1) one can ensure that the derandomized square is O(d)-regular, i.e. a much sparser
object. This result rests on the observation that the actual square G2 is obtained from
the graph G by attaching a clique to every vertex – replacing this clique with an expander
graph suffices to ensure that the resulting derandomized square is closed to the actual square.
Fortunately, the same intuition also leads to proofs showing that the expanderized walks
approximate the standard walks well.

We show that we can use our expanderized walks to have more randomness efficient
versions of several Markov chains of interest for sampling list colorings [10, 41] and for
sampling from Ising Models [27, 7, 40], under assumptions ensuring bounded marginals.
In these settings, our expanderized walks have the same asymptotic mixing time but use
fewer random bits. To help us with our goals we also prove some simple estimates for the
log-Sobolev constants of higher order random walks and provide a self-contained analysis of
local-to-global Φ-entropy contraction.

2 i.e. all non-trivial eigenvalues of H are bounded away from 1
3 More formally, n successive steps of the systematic scan, which the authors call the sequential sweep

Pseq.

APPROX/RANDOM 2024
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Related Work. High dimensional expansion has proven itself to be a very successful research
program for establishing mixing times for down-up walks. For example [36, 21, 37, 20, 2]
use spectral local-to-global arguments for establishing spectral gap bounds for these walks.
In conjunction with the spectral independence framework, due to [9, 15, 30], these results
paved the way for many new in the field of random sampling: rapid mixing of the down-up
walk for the hardcore model in the uniqueness regime [9], rapid mixing of the down-up walk
for sampling graph colorings in correlation decay regime [30, 15], optimal mixing for many
Markov chains of interest[17, 10, 41]. For more information regarding spectral independence,
we refer the reader to the excellent survey [54] and the dissertation [42]. In [6, 8, 17, 32]
local-to-global strategies for establishing entropic contraction bounds was studied. In [14] a
connection between these local-to-global methods and the stochastic localization framework
of [25] was explored. We refer to the works [39, 26, 13, 38, 28, 27] and references therein for
applications of the stochastic localization framework. Our inductive strategy for establishing
Φ-entropy contraction on simplicial complexes is heavily inspired by the presentation in [14].
In [40] mixing estimates about the walk P↓↑

n↔n−1 is used to obtain estimates for P↓↑
n↔ℓ for all

ℓ < n − 1. The key intuition behind this work is the observation that the down move of the
down-up walk is (passively) utilizing an expander, the down-move of the down-up walk of
the so-called Bernoulli-Laplace model, and that one can use the expansion of this walk to
show that once ℓ decreases the mixing times estimates get better and better. Morally, this is
very similar to our idea of picking the replacement-indices for our expanderized walks via
an expander walk as opposed to sampling them uniformly at random. For other classical
techniques which can be used to bound mixing times of Markov chains, we refer the reader
to the texts [1, 46, 55].

In contrast with down-up walks, results establishing rapid mixing for the random walk
Pscan are fewer [18, 33, 23, 51] and mostly rely on estimates on the Dobrushin matrix [22]. [3]
studied the mixing time of this random walk using techniques of high dimensional expansion,
however their techniques fell short of establishing mixing time bounds under the assumption
of spectral independence.

The work of [29] is also related to our work in spirit. In this work, the authors show
that under suitable assumptions a wide array of random walks, including the single site
systematic scan Pscan and the down-up walk P↓↑, can be derandomized, i.e. they devise
efficient deterministic counting algorithms on the basis of rapid mixing results for these
chains. It is an interesting question whether one can carefully pick the expander graph H, to
make this derandomization task more efficient.

As mentioned above our expanderized random walks are heavily inspired by the deran-
domized squaring algorithm of [52]. This algorithm was initially used to give an alternative
and simpler proof of the seminal result of [49] concerning the derandomization of the com-
plexity class SL and establishing SL = L. Concretely, both [49] and the subsequent work
of [52] show the existence of a deterministic logspace algorithm deciding undirected graph
connectivity. Since then, the derandomized squaring algorithm has also found other uses in
derandomization, e.g. [47, 48]. We conclude by noting that the inital algorithm of [49] was
based on the zigzag product construction [50], which has also inspired research in the field
of high dimensional expansion [35]. For more information on expander graphs, we refer the
reader to the excellent survey [34].
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2 Preliminaries

2.1 Linear Algebra
We will denote functions and vectors by bold faces, i.e. f ∈ RV . The indicator function of
i ∈ V will be denoted by 1i, i.e. 1i(j) = 0 for all j ̸= i and 1i(i) = 1. For A ⊆ V , we will
write 1A =

∑
a∈A 1a. We will adopt the convention of using π, ν, µ : V → R≥0 for various

probability distributions over V .
Let f , g ∈ RV and a measure π : V → R>0 be given. We will use the notations ⟨f , g⟩π

and ∥f∥π to denote the inner-product and the norm with respect to the distribution π, i.e.

⟨f , g⟩π = E
x∼π

f(x)g(x) =
∑
x∈V

π(x) · f(x)g(x) and ∥f∥2
π = ⟨f , f⟩π. (1)

Given f , g ∈ Rn we will write ⟨f , g⟩ℓ2
for the inner-product between f and g in the counting

measure, i.e. ⟨f , g⟩ℓ2
=
∑n

i=1 f(i)g(i). We will also write ∥f∥ℓ1
, ∥f∥ℓ2

, and ∥f∥ℓ∞
for the

ℓ1, ℓ2, and ℓ∞ norms of f respectively. Formally,

∥f∥2
ℓ2

=
n∑

i=1
f(i)2 ; ∥f∥ℓ1

=
n∑

i=1
|f(i)| ; and ; ∥f∥ℓ∞

= max
i∈[n]

|f(i)|.

Matrices and Eigenvalues
In this section, we will recall some results concerning eigenvalues and eigenvectors of matrices.

Serif faces will be used to denote matrices, i.e. A, B ∈ RU×V . We will call a matrix
B ∈ RU×V row stochastic if rows of B sum up to 1 and B contains no negative entries.
Formally,

for all u ∈ U, v ∈ V B(u, v) ≥ 0 and B1 = 1. (row stochastic)

Let B ∈ RU×V and distributions πU : U → R>0 and πV : V → R>0 be given. The adjoint
B∗ of B with respect to the measures πU and πV is the unique matrix which satisfies the
following equation,

⟨f , Bg⟩πU
= ⟨B∗f , g⟩πV

for all f ∈ RU , g ∈ RV . (adjoint)

If U = V and πU = πV , the operator B is called self-adjoint when B∗ = B. If B is a
row-stochastic matrix, we will call B∗ the time-reversal of B with respect to πU , πV and say
that B is reversible if B = B∗. It is well known that the operator B∗ ∈ RV ×U is uniquely
determined by the choice of B ∈ RU×V and the inner-products defined by πU and πV (see
e.g. [53, p. 318]),

▶ Proposition 1. Let B ∈ RU×V be arbitrary. We write B∗ for the adjoint operator to B
with respect to the inner-products defined by the distributions πU and πV . Then,

B∗(y, x) = B(x, y) · πU (x)
πV (y) for all x ∈ U, y ∈ V.

We also recall the following standard fact which is an immediate consequence of Proposi-
tion 1,

▶ Proposition 2. If B ∈ RU,V is a row-stochastic matrix satisfying πU B = πV , then the
adjoint matrix B∗ with respect to πU , πV is also row-stochastic and satisfies πV B∗ = πU .

APPROX/RANDOM 2024
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It is well known that a self-adjoint matrix A ∈ RV ×V has |V | real eigenvalues. We will
write, λ1(A) ≥ λ2(A) ≥ · · · ≥ λ|V |(A) := λmin(A) for the sequence of eigenvalues of A sorted
in decreasing order. We say that the matrix is positive semi-definite, henceforth PSD, if it is
self-adjoint and satisfies λmin(A) ≥ 0.

Given a matrix A ∈ RV ×V and a distribution µ : V → R>0, we will write ∥A∥op,µ for the
operator norm of A, defined in the following manner

∥A∥op,µ := max
{ ∥Af∥µ

∥f∥µ

∣∣∣∣ f ∈ RV and f ̸= 0
}

. (operator norm)

If A is self-adjoint with respect to the measure µ, we have ∥A∥op,µ = max{λ1(A), |λmin(A)|}.
Similarly when A ∈ RV ×V is a reverisble row-stochastic matrix, with stationary measure

µ. We will write λ(A) for the two-sided expansion of A. Formally,

λ(A) = max{λ2(A), |λmin(M)|}. (two-sided expansion)

When A represents the simple random walk over an undirected graph H = (V, E), i.e.

A(i, j) = 1[{i, j} ∈ E]
deg(i) for all i, j ∈ V,

we will simply write λ(H) instead of λ(A). For convenience, we recall

▶ Observation 3. Let H = (V, E) be a k-regular graph and suppose A represents the random
walk over H. Then, uniV A = uniV , i.e. the uniform distribution on V is stationary for A.

We note that there exist infinite families of graphs such that every graph H in the family
has constant degree and λ(H) bounded above by a constant bounded above by 1 [43, 44]. In
this paper, we will consider families that contain graphs on n vertices for every sufficiently
large n. Such constructions were given in [5], and in particular were based on the infinite
families from [43, 44]. We refer the reader to the excellent survey [34] for more information
on expander graphs.

We will also make use of the following simple result,

▶ Lemma 4. Let a matrix A ∈ RU×V and measures µU : U → R>0 and µV : V → R>0
be given, such that µU A = µV . Assume without loss of generality that |U | ≤ |V |, then
λj(AA∗) = λj(A∗A) for all j = 1, . . . , |U |, where A∗ is the adjoint of A with respect to the
measures µU and µV .

2.2 Probability Distributions
Throughout the paper, we will assume Ω (or X(n)) to be a set of n-tuples for some n ≥ 1.
Given a set S ⊂ [n], the projection of Ω on S is denoted by Ω[S] , i.e.

Ω[S] = {(ωs)s∈S : (ω1, . . . , ωn) ∈ Ω}. (projection)

Let µ : Ω → R≥0 be a distribution. For ωS ∈ Ω[S], the notations ΩωS
and µ(ωS) will be

used for the ωS-pinning of Ω and µS respectively, where

ΩωS
= {ω̄ ∈ Ω[Sc] : ωS ⊕ ω̄ ∈ Ω} and µ(ωS)(ω̄) = µ(ωS ⊕ ω̄)∑

ω̃∈Ω[Sc] µ(ωS ⊕ ω̃) , (ωS-pinning)
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We recall that the total variation distance ∥µ − ν∥tv between two distributions µ, ν : Ω →
R≥0 is defined as follows,

∥µ − ν∥tv = 1
2 ·
∑
ω∈Ω

|µ(ω) − ν(ω)| (total variation distance)

Finally, we talk about some conventions that we will use throughout the paper: (i) We
will be using the notation uniA to denote the uniform distribution over various finite sets A.
(ii) When we want to emphasize that the a distribution µ : Ω → R≥0 has full support, we
will simply write µ : Ω → R>0.

Finally we recall that the product distribution µ⊗ν ∈ △Ω×Ω′ , given µ ∈ △Ω and ν ∈ △Ω′

is defined by: (µ ⊗ ν)(ω, ω′) = µ(ω) · ν(ω′) for all ω ∈ Ω, ω′ ∈ Ω.

2.3 Functional Inequalities, Isoperimetric Constants, and Mixing Times
Given a distribution µ ∈ △Ω and a convex function Φ : R≥0 → R≥0 Φ-entropy functional
EntΦ

µ (•) is defined by the equation,

EntΦ
µ (f) = E

ω∼µ
Φ(f(ω)) − Φ

(
E

ω∼πn

f(ω)
)

for all f ∈ RΩ
≥0 (Φ-entropy)

We also recall that for the special choices of Φ(t) = t log t and Φ(t) = t2, the Φ-entropy
equals the variance functional Varµ(•) and entropy functional Entµ(•) respectively.

Entµ(f) = E
ω∼µ

[f(ω) log f(ω)] −
(

E
ω∼µ

f(ω)
)

log
(

E
ω∼µ

f(ω)
)

, (entropy)

Varµ(f) = E
ω∼µ

f(ω)2 −
(

E
ω∼µ

f(ω)
)2

. (variance)

Let P ∈ RΩ×Ω be a reversible Markov chain, with stationary measure of π. A Poincaré
inequality for P is an inequality of the form,

C · Varπ(f) ≤ ⟨f , (I − P)f⟩π for all f ∈ RΩ. (Poincaré inequality)

The largest constant C > 0 for which this inequality holds, is called the Poincaré constant or
the spectral gap of P and is denoted by gap(P). This nomenclature is due to the following
well-known consequence of the Courant-Fischer-Weyl Principle,

gap(P) = min
{

⟨f , (I − P)f⟩π

Varπ(f)

∣∣∣∣ Varπ(f) ̸= 0
}

= 1 − λ2(P). (spectral gap)

The log-Sobolev (LSI) inequality for a reversible random walk P ∈ RΩ×Ω with stationary
measure π is defined to be,

C · Entπ(f2) ≤ ⟨f , (I − P)f⟩π for all f ∈ RΩ
≥0. (LSI)

The largest constants C ≥ 0 for which LSI holds is called the log-Sobolev constant of P
respectively and is denoted by ls(P). Formally,

ls(P) = inf
{

⟨f , (I − P)f⟩π

Entπ(f2)

∣∣∣∣ Entπ(f) ̸= 0, f ∈ RΩ
≥0

}
. (2)

APPROX/RANDOM 2024
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▶ Lemma 5 ([19]). Let π : Ω → R>0 be a probability distribution and write Jπ = 1 · π, i.e. Jπ

is the walk with stationary measure π which mixes in a single step.
Then, ls(Jπ) ≥ 1−2π⋆

log(π−1
⋆ −1) if | supp(π)| > 2 else ls(Jπ) = 1. More generally for

any reversible Markov chain M ∈ RΩ×Ω and stationary distribution π, we have ls(M) ≥
1−2π⋆

log(π−1
⋆ −1) · gap(M) if | supp(π)| > 2 else ls(Jπ) = gap(M).

For a convex function Φ : R≥0 → R≥0, we also define the Φ-entropy contraction constant
cfΦ(P) of a Markov chain P ∈ RΩ1×Ω2 satisfying π1P = π2 for some choice of measures
π1 ∈ △Ω1 , π2 ∈ △Ω2 , as the solution to the following variational problem,

cfΦ(P) = 1 − sup
{

EntΦ
π1

(Pf)
EntΦ

π2
(f)

∣∣∣∣∣ f ∈ RΩ
≥0, EntΦ

π2
(f) ̸= 0

}
. (Φ-entropy contraction)

We note that cfΦ(P) cruicially depends on the choice of distributions π1, π2. Since for
our purposes the choice of measures π1 and π2 will always be clear, we will supress this
dependency.

It is equivalent to define cfΦ(P) as the largest constant C ∈ R≥0 such that the inequality,

EntΦ
π1

(Pf) ≤ (1 − C) · EntΦ
π2

(f),

is valid for each f ∈ RΩ2
≥0. When Φ(t) = t log t, we will simply write ec(P) in place of cfΦ(P).

Similarly, for the choice of Φ(t) = t2, it is easy to observe that cfΦ(P) = gap(P∗P).
We will also need the following consequence of Jensen’s inequality.

▶ Lemma 6 (Data Processing Inequality). Let P ∈ RΩ1×Ω2 be a row-stochastic matrix,
satisfying π1P = π2 for probability distributions π1 : Ω1 → R>0 and π2 : Ω2 → R>0. Then,
for any convex function Φ : R≥0 → R≥0, we have: EntΦ

π1
(Pf) ≤ EntΦ

π2
(f) for all f ∈ RΩ2

≥0.

▶ Lemma 7 (Proposition 6, [45]). Let P ∈ RΩ1×Ω2 satisfying µ1P = µ2, for distributions
µ1 : Ω1 → R>0 and µ2 : Ω → R>0. We have, ec(P) ≥ ls(P∗P).

The ε-mixing time τmix(P, ε) of the random walk is the least time point t ∈ N, such
that the distribution µ(t) = µ(0)Pt of the random walk P is guaranteed to be ε-close to the
stationary distribution π in the total variation distance regardless of the initial distribution
µ(0). In particular,

τmix(P, ε) = min
{

t ∈ N |
∥∥∥µ(t) − π

∥∥∥
tv

≤ ε for all µ(0) ∈ △Ω

}
(ε-mixing time)

It is well known that the functional inequalities and the corresponding isoperimetric constants
introduced previously can be used to bound mixing times. We recall in particular,

▶ Theorem 8 ([11]). There exists a universal constant C such that, for any reversible random
walk P ∈ RΩ×Ω with stationary distribution π : Ω → R>0, i.e. πP = π. We have

τmix(P, ε) ≤ C

ec(P) ·
(

log log 1
minω∈Ω π(ω) + log ε−1

)
.

where the constant C does not depend on the pair (P, π).

2.4 (Partite) Simplicial Complexes
A simplicial complex is a downward closed collection of subsets of a finite set U . Formally,
X ⊂ 2U and whenever β ∈ X for all α ⊂ β we have α ∈ X. The rank of a face α is |α|.
Given some j, we will adopt the notation X(j) to refer to the collection faces of X of rank j
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and the notation X(≤j) to refer to the collection of faces of X of rank at most j. We say X

is a simplicial complex of rank n if the largest rank of any face α ∈ X is n. We note that by
definition X(0) = {∅}.

We say that a simplicial complex X of rank n is pure, if any face α ∈ X(j) for any j < n

is contained in another face β ∈ X(n). Equivalently, in a pure simplicial complex the only
inclusion maximal faces are those of maximal rank. In this article, we will only deal with
pure simplicial complexes.

A rank-n pure simplicial complex X is called n-partite if we can partition X(1) into
disjoint sets X[1], . . . , X[n] such that

for all β ∈ X(n) and for all i = 1, . . . , n we have |β ∩ X[i]| = 1. (n-partiteness)

We will call the sets X[1], . . . , X[n] the sides of the complex X. Equivalently, every element
of a rank-n face β ∈ X[n] comes from a distinct side X[i]. We observe that a bipartite graph
is a 2-partite simplicial complex.

To keep our nomenclature simple, we will simply refer to a pure n-partite simplicial
complex of rank n as an n-partite simplicial complex, i.e. we will not consider n-partite
complexes which are not pure.

For a face α ∈ X we introduce the notation, type(α) = {i ∈ [n] : α ∩ X[i] ̸= ∅} for the
type of the face α, i.e. the collection of sides of X that α intersects.

For any i ∈ [n] and β ∈ X(n) we will write βi ∈ X(1) for the unique element of β

satisfying {βi} = β ∩ X[i]. We will refer to βi as the i-th coordinate of β. We will also write
βT = {βt : t ∈ T} for all T ⊂ [n]. We extend this notation to arbitrary faces α ∈ X and
T ⊂ type(α). In keeping with the view that a face α ∈ X with type(α) = {t1, . . . , tk} can be
represented as a tuple (at1 , · · · , atk

), we will favour the notation α ⊕ α′ to denote the union
of two faces α, α′ ∈ X with type(α) ∩ type(α′) = ∅ over the usual notation α ∪ α′.

We observe that for facets β ∈ X(n), i.e. faces of maximal rank, we have type(β) = [n].
Given, α ∈ X we recall that the link Xα is defined as,Xα = {(β \ α) ∈ X : β ∈ X, β ⊃ α}.

For T ⊂ [n], we will also introduce the notation X[T ] to refer to all faces of X of type T .

Weighted Simplicial Complexes

A weighted simplicial complex (X, π) of rank n is a pure simplicial complex of rank n where
π := πn : X(n) → R≥0 is a probablity distribution with full support.

For j ∈ [0, n − 1], we inductively define the probability distributions πj : X(j) → R as

πj(α) = πj(α) = 1(
n
j

) ∑
β⊃α,

β∈X(n)

πn(β). (3)

Similarly, given a face α ∈ X(j), we define the distribution π(α) on X
(n−j)
α by conditioning

π on the containment of α. Of particular importance to us will be the link graph Mα ∈
RX(1)

α ×X(1)
α given any α ∈ X(≤n−2). We recall that for all distinct pairs of vertices x, y ∈ X

(1)
α ,

we have

Mα(x, y) = π(α∪{x})(y) = Prω∼πn
[ω ⊃ α ∪ {x, y} | ω ⊃ α ∪ {x}]

n − |α| − 1 , (link)

and Mα(x, x) = 0 for all x ∈ X
(1)
α .
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2.5 Higher Order Random Walks on Simplicial Complexes
Let (X, π) be a simpicial complex of rank n. The up-down walk P↑↓

ℓ↔n := UpDownℓ↔n(X, π)
between the ℓ-th and n-th levels, X(ℓ) and X(n) respectively, is defined as the following
random walk on X(ℓ): Starting from an arbitrary face ω̂(0) ∈ X(ℓ) for all t ≥ 1 move from
ω̂(t−1) to ω̂(t) according to the following simple rule,

Update Rule For the Up-Down Walk, P↑↓
ℓ↔n

sample ω ∼ πn, conditional on ω ⊃ ω̂(t−1),
draw a uniformly subset among all the subsets of ω of size ℓ, and output
it as ω̂.

Similarly, the down-up walk P↓↑
n↔ℓ between the n-th and ℓ-th levels, X(n) and X(ℓ)

respectively, as the following random walk X(n): Starting from an arbitrary ω(0) ∈ X(n) and
moves from ω(t−1) to ω(t) according to the following simple rule,

Update Rule for the Down-Up Walk, P↓↑
n↔ℓ

draw a subset ω̂ of ω of size ℓ, uniformly at random,
draw a subset ω ∼ π conditioned on containing ω̂, and output it as ω(t).

It is well known, [2, 21, 20], that the random walks P↓↑
n↔ℓ and P↑↓

ℓ↔n can be decomposed
as a product of random down- and up-movements on X. Formally, for 0 ≤ ℓ ≤ k ≤ n, we
define the up-walk P↑

ℓ→k := Upℓ→k(X, π) and the down-walk P↓
k→ℓ := Downk→ℓ(X, π) as the

following random walks,

P↑
ℓ→k(ω̂, ω) = π

(ω̂)
k−ℓ(ω) =

1[ω ⊃ ω̂] · Pr
ω̃∼πn

[ω̃ ⊃ ω | ω̃ ⊃ ω̂](
n−ℓ
k−ℓ

) , (up-walk)

P↓
k→ℓ(ω, ω̂) = 1[ω̂ ⊂ ω](

k
ℓ

) . (down-walk)

▶ Proposition 9 (Folklore). Let (X, π) be a simplical complex of rank n, then writing P↓↑
n↔ℓ :=

DownUpn↔ℓ(X, π), P↑↓
ℓ↔n := P↑↓

ℓ↔n(X, π), P↑
ℓ→n = Upℓ→n(X, π), and P↓

n→ℓ = Downn→ℓ(X, π)
for the down-up, up-down, up- and down-walks between the n-th and ℓ-th levels of X respect-
ively, we have
1.
(

P↑
ℓ→n

)∗
= P↓

n→ℓ, i.e. the operators P↑
ℓ→n and P↓

n→ℓ are adjoint operators with respect to
the measures πn and πℓ,

2. P↑↓
ℓ↔n = P↑

ℓ→nP↓
n→ℓ – in particular the operator P↑↓

ℓ↔n is PSD,
3. P↓↑

n↔ℓ = P↓
n→ℓP

↑
ℓ→n – in particular the operator P↓↑

n↔ℓ is PSD.
For any ω̂ ∈ X and any 0 ≤ ℓ ≤ n′ = n − |ω̂|, we will write P↑

ω̂,ℓ→n′ , P↓
ω̂,n′→ℓ, P↑↓

ω̂,ℓ↔n′ ,

and P↓↑
ω̂,n′↔ℓ for the corresponding up, down, up-down, and down-up walks in the complex

(Xω̂, πω̂).

2.6 Local to Global Analysis
Given a simplicial complex (X, π) of rank n, we define the local Φ-entropy contraction factor
lcΦ(ω̂) for any ω̂ ∈ X(≤r−2) as follows,

lcΦ(ω̂) := sup

 EntΦ
π

(ω̂)
1

(P↑
ω̂,1→n′g)

EntΦ
π

(ω̂)
n′

(g)

∣∣∣∣∣∣ g ∈ RX
(n′)
ω̂ and n′ = n − |ω̂|.

 (4)
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Equivalently, lcΦ(ω̂) ∈ R>0 is the smallest constant satisfying the equality

EntΦ
πω̂

1
(P↑

ω̂,1→n′g) ≤ lcΦ(ω̂) · EntΦ
π

(ω̂)
n′

(g) for all g ∈ RX
(n′)
ω̂ where n′ = n − |ω̂|.

When Φ(t) = t log t, we will simply write lec(ω̂) in place of lcΦ(ω̂). We also make the
following observation for the special case Φ(t) = t2, i.e. when EntΦ

• (•) equals the variance
functional Var•(•). The following proposition is well understood,

▶ Proposition 10. 4 Let (X, π) be a simplicial complex of rank n. Then, for the choice of
Φ(t) = t2, for any ω̂ ∈ X(≤n−2) we have

lcΦ(ω̂) = 1
n − |ω̂|

+ n − |ω̂| − 1
n − |ω̂|

· λ2(Mω̂),

where Mω̂ is the link graph of ω̂.

A crucial tool we will be using in Section 4 is the so called Garland method, due to [31].
To this end, we define the localization f |ω̂ ∈ RXω̂(k−j) of a function f ∈ RX(k) on a link
ω̂ ∈ X(j) for j ≤ k as the following function,

f |ω̂(α) = f(ω̂ ⊔ α) for all α ∈ X
(k−j)
ω̂ . (localization)

We first observe that by appealing to the chain rule for the Φ-entropy, one can obtain a
convenient expression for it in terms of localizations.

▶ Lemma 11 (Chain Rule for Φ-Entropy). 5 Let (X, π) be a simplicial complex of rank n. For
all 0 ≤ ℓ ≤ r ≤ n and non-negative f ∈ RX(r)

≥0 , we have

EntΦ
πr

(f) = E
ω̂∼πℓ

EntΦ
π

(ω̂)
r−ℓ

(f |ω̂) + Entπℓ

(
P↑

ℓ→rf
)

,

where P↑
ℓ→r := Upℓ→r(X, π) is the up-walk on X

We also recall the following identities,

▶ Lemma 12. Let (X, π) be a simplicial complex of rank n. Writing P↓↑
n↔r =

DownUpn↔r(X, π), P↑↓
n−1 = UpDownn−1↔n(X, π), and Mω̂ for the link of the face ω̂ ∈ X(≤n−2),

for all f ∈ RX(n) and ℓ ≤ r ≤ n, we have
1. ⟨f , f⟩πn

= Eω̂∼πℓ
⟨f |ω̂, f |ω̂⟩

π
(ω̂)
n−ℓ

,

2.
〈
f , P↓↑

n↔rf
〉

πn
= Eω̂∼πℓ

〈
f |ω̂, P↓↑

ω̂,n−ℓ↔r−ℓf |ω̂
〉

π
(ω̂)
n−ℓ

,

3.
〈

f , P↑↓
n−1f

〉
πn

= Eω̂∼πn−2

(〈
f |ω̂,

( I
n + n−1

n · Mω̂

)
f |ω̂
〉

π
(ω̂)
1

)
We recall the following result due to [40],

▶ Lemma 13 (Theorem 3.5, [40]). Let (X, π) be an n-partite simplicial complex and let
0 ≤ k < n. If ec(P↑

n−1→n) ≥ (Cn)−1 for some C ∈ R>0, then ec
(

P↑
k→k+1

)
≥ 1

(k+1)(C+1) .

4 We provide a proof for this statement in the full version of our paper, [4]
5 A proof is supplied in the full version of our paper, [4]
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3 Expanderized Random Walks

Let (X, π) be an n-partite simplicial complex. For any ℓ ≤ n, the up-down walk P↑↓
ℓ↔n :=

UpDownℓ↔n(X, π) on the ℓ-th level X(ℓ) of X introduced in Section 2.5 admits the following
alternative description: Starting from an arbitrary face ω̂(0) ∈ X(ℓ) move from ω̂(t−1) to ω̂(t)

according to the following simple rule,

Update Rule for the Up-Down Walk, P↑↓
ℓ↔n

sample ω ∼ π, conditional on ω ⊃ ω̂(t−1),
sample S ∼ uni([n]

ℓ ),
output ω̂(t) = ωS .

We will expanderize the up-down walk P↑↓
ℓ↔n in the following manner: Given a k-regular

labelled graph H on the vertex set
([n]

ℓ

)
, we will denote the a-th neighbor of vertex v by

OutH(v, a). We define the expanderized up-down walk Q↑↓
ℓ↔n = UpDownℓ↔n(X, π, H) as the

walk which starts from an arbitrary face ω̂(0) and moves from ω̂(t−1) to ω̂(t) according to the
following simple rule,

Update Rule for the Expanderized Up-Down Walk, Q↑↓
ℓ↔n

sample ω ∼ π, conditional on ω ⊃ ω̂(t−1),
sample a ∼ uni[k] and set S = OutH(type(ω̂(t−1)), a),a
output ω̂(t) = ωS .

a Where we recall that the type of ω̂ is the sides of the simplicial complex that ω̂
intersects

Similarly, the down-up walk P↓↑
n↔ℓ between the n-th level X(n) and the ℓ-th level X(ℓ)

of an n-partite simplicial complex (X, π) introduced in Section 2.5 admits the following
alternative description: Start from ω(0) ∈ X(n) and move from ω(t−1) to ω(t) according to
the following simple rule,

Update Rule for the Down-Up Walk, P↓↑
n↔ℓ

sample S ∼ uni([n]
ℓ ) uniformly at random,

set ω̂ = ωS ,
set ω(t) to be a random face drawn from π, conditional on containing ω̂.

Similarly, we define the expanderized down-up walk Q↓↑
n↔ℓ = DownUpn↔ℓ(X, π, H) to be the

random walk on X(n) ×
([n]

ℓ

)
, starting from an arbitrary face-subset pair (ω(0), S(0)) and

move from (ω(t−1), S(t−1)) to (ω(t), S(t)) according to the following simple rule,

Update Rule for the Expanderized Down-Up Walk, Q↓↑
n↔ℓ

sample a ∼ uni[k] and set S′ = OutH(S(t−1), a),
set ω̂ = ωS′ ,
set ω(t) ∼ π to be a random face conditional on containing ω̂,
sample b ∼ uni[k] and set S(t) = OutH(S(t−1), b),
output (ω(t), S(t)).



V. L. Alev and S. Rao 58:13

For convenience we also define the expanderized down- and up-walks given a degree regular
labelled graph H = (

([n]
ℓ

)
, E)

Q↓
n→ℓ = Downn→ℓ(X, π, H) ∈ R(X(n)×([n]

ℓ ))×X(ℓ)
and Q↑

ℓ→n = Upℓ→[n](X, π, H) ∈ RX(ℓ)×(X(n)×([n]
ℓ )),

as follows,

Q↓
n→ℓ((ω, S), ω̂) = 1[S ∼H type(ω̂)]

k
· 1[ω ⊃ ω̂] for all ω ∈ X(n), ω̂ ∈ X(ℓ), S ∈

(
[n]
ℓ

)
,

and Q↑
ℓ→n =

(
Q↓

n→ℓ

)∗
where the adjoint is taken with respect to the distributions πn ⊗uni([n]

ℓ )
and πℓ, i.e.

Q↑
ℓ→n(ω̂, (ω, S)) = 1[S ∼H type(ω̂)]

k
· Pr

ω̃∼πn

[ω̃ = ω | ω ⊃ ω̂] for all ω ∈ X(n), ω̂ ∈ X(ℓ), S ∈
(

[n]
ℓ

)
,

and the notation T ∼H S is used to denote the adjacency relation in the graph H, i.e. {S, T} ∈
E(H).

We summarize the random movements described by the expanderized up- and down-walks
in words as follows: The expanderized down-walk Q↓

n→ℓ first samples a random neighbor of T

of S in
([n]

ℓ

)
, and then restricts the coordinates of ω to T , i.e. moves to ωT . The expanderized

up-walk Q↑
ℓ→n on the other hand first samples a facet ω ∈ X(n) from π conditional on

containing ω̂ and after picking a random neighbor S of type(ω̂) in H moves to (ω, S).

▶ Proposition 14. For any n-partite pure simplicial complex (X, π) and a k-regular labelled
graph H = (

([n]
ℓ

)
, E), writing Q↓

n→ℓ = Downn→ℓ(X, π, H) and Q↑
ℓ→n = Upℓ→n(X, π, H) we

have,(
πn ⊗ uni([n]

ℓ )
)

Q↓
n→ℓ = πℓ and πℓQ↑

ℓ→n = πn ⊗ uni([n]
ℓ ).

Proof. Let (ω, S) ∼ πn ⊗ uni([n]
ℓ ) be a random sample. Notice that a random neighbor of S

in H is still distributed uniformly at random as the uniform distribution stationary for the
random walk over a k-regular graph, q.v. Observation 3. Thus, conditional on ω, a single
step of Q↓

n ends up restricting ω to a random set of coordinates S – this precisely yields the
distribution πℓ, q.v. Equation (3).

The second statement follows since Q↑
ℓ→n is the adjoint operator, q.v. Proposition 1. ◀

The following is easy to verify,

▶ Corollary 15. For any n-partite simplicial complex (X, π) and k-regular labelled graph
H =

(([n]
ℓ

)
, E)

)
,

UpDownℓ↔n(X, π, H2) = Upℓ→n(X, π, H) · Downn→ℓ(X, π, H),
DownUpn↔ℓ(X, π, H) = Downn→ℓ(X, π, H) · Upℓ→n(X, π, H).

We now summarize several useful properties of the expanderized up- and down-walks,

▶ Corollary 16. Let (X, π) be an n-partite complex and H = (
([n]

ℓ

)
, E) a k-regular graph.

For any ℓ ≤ n, writing Q↑↓
ℓ↔n = UpDownℓ↔n(X, π, H2), Q↓↑

n↔ℓ = DownUpn↔ℓ(X, π, H) Q↓
n→ℓ =

Downn→ℓ(X, π, H) and Q↑
ℓ→n = Upℓ→n(X, π, H) we have,

1. (πn ⊗ uni([n]
ℓ ))Q↓↑

n↔ℓ = πn ⊗ uni([n]
ℓ ), i.e. πn ⊗ uni([n]

ℓ ) is the stationary distribution of

Q↓↑
n↔ℓ,

2. πℓQ↑↓
ℓ↔n = πℓ, i.e. πℓ is the stationary distribution of Q↑↓

ℓ↔n.
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3. Q↓↑
n↔ℓ and Q↑↓

ℓ↔n are PSD operators.
4. Q↑↓

ℓ↔n and Q↓↑
n↔ℓ are self-adjoint operators.

Since in our proofs it will be more convenient to use Q↑↓
ℓ↔n := UpDownℓ↔n(X, π, H) directly,

initialized with H and not H2, we also note the following.

▶ Proposition 17. 6 Let (X, π) be an n-partite complex and H = (
([n]

ℓ

)
, E) a k-regular graph.

Then, the expanderized up-down walk Q↑↓
ℓ↔n := UpDownℓ↔n(X, π, H) has the stationary

distribution πℓ and is reversible.

Now, we present the results we prove for expanderized random walks. Our first result
shows that the expanderized up-down walk approximates the usual up-down walk in the
operator norm,

▶ Theorem 18. Let (X, π) be an n-partite simplicial complex and let H be a k-regular labelled
graph on the vertex set

([n]
ℓ

)
. Writing Q↑↓

ℓ↔n := UpDown(X, π, H) and P↑↓
ℓ↔n := UpDown(X, π)

for the expanderized- and the regular up-down walks on X(ℓ), we have∥∥∥Q↑↓
ℓ↔n − (1 − λ(H)) · P↑↓

ℓ↔n

∥∥∥
op,πℓ

≤ λ(H).

We present the proof of Theorem 18 in Section 3.1. Theorem 18 immediately implies the
following bounds for the spectral gap of expanderized walks,

▶ Corollary 19. 7 Let (X, π) be an n-partite simplicial complex and let H be a k-regular labelled
graph on the vertex set

([n]
ℓ

)
. Writing Q↑↓

ℓ↔n := UpDown(X, π, H), P↑↓
ℓ↔n = UpDownℓ↔n(X, π),

Q↓↑
n↔ℓ = DownUp(X, π, H), and P↓↑

n↔ℓ = DownUpn↔ℓ(X, π), we have

gap
(

Q↑↓
ℓ↔n

)
≥ gap

(
P↑↓

ℓ↔n

)
· gap⋆(H),

gap
(

Q↓↑
n↔ℓ

)
≥ gap

(
P↓↑

n↔ℓ

)
· gap⋆(H2),

where gap⋆(G) = 1 − λ(G) and λ(G) denotes the two-sided expansion of the graph G.

Unfortunately, a bound on the spectral gap is in many settings not enough to obtain optimal
mixing time bounds. We show however, that Theorem 18 allows us to transfer log-Sobolev
inequalities (LSI) for the usual up-down walks to the expanderized up-down walks,

▶ Corollary 20. Let (X, π) be an n-partite simplicial complex and let H be a k-regular
labelled graph on the vertex set

([n]
ℓ

)
. Writing Q↑↓

ℓ↔n := UpDownℓ↔n(X, π, H) and P↑↓
ℓ↔n :=

UpDownℓ↔n(X, π) for the up-down walk on X(ℓ), we have

ls
(

Q↑↓
ℓ↔n

)
≥ ls

(
P↑↓

ℓ↔n

)
· gap⋆(H),

where gap⋆(H) = 1 − λ(H) and λ(H) denotes the two-sided expansion of the graph H.

We will prove Corollary 20 in Section 3.2. We state a convenient corollary of Corollary 20
which immediately follows from Lemma 7, Corollary 16, and the data processing inequality
Lemma 6,

6 As Corollary 16 reaches the same end by replacing H with H2 we will omit this proof and refer the
reader to the full version of our paper [4]

7 Since this result does not get used in our applications, we refer the reader to the full-version of our
paper [4] for a proof.
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▶ Corollary 21. Let (X, π) be an n-partite simplicial complex and let H be a k-regular
labelled graph on the vertex set

([n]
ℓ

)
. Then, writing Q↓

n↔ℓ = Downn→ℓ(X, π, H) and P↑↓
ℓ↔n =

UpDownℓ↔n(X, π) we have,

ec(Q↓
n↔ℓ) ≥ ls(P↑↓

ℓ↔n) · gap⋆(H2).

In particular, we have for Q↑↓
ℓ↔n := UpDownℓ↔n(X, π, H2) and Q↓↑

n↔ℓ =
DownUpn↔ℓ(X, π, H),

ec(Q↑↓
ℓ↔n) ≥ ls(P↑↓

ℓ↔n) · gap⋆(H2) and ec(Q↓↑
n↔ℓ) ≥ ls(P↑↓

ℓ↔n) · gap⋆(H2),

where gap⋆(H2) = 1 − λ(H2) and λ(H2) denotes the two-sided expansion of the graph H2.

As we will see in Section 5, Corollary 21 will indeed allow us to prove optimal mixing time
bounds for the expanderized walks in many cases of interest.

3.1 Closeness in Operator Norm: Proof of Theorem 18
Proof of Theorem 18 . For convenience, we will write Q↑↓ := Q↑↓

ℓ↔n and P↑↓ := P↑↓
ℓ↔n.

Let M denote the random-walk matrix of the graph H where each transition occurs with
the probability 1/k and J the random-walk matrix of the clique over

([n]
ℓ

)
with self-loops,

i.e. J = 11⊤/
([n]

ℓ

)
. We will write, λ := λ(M).

Let S ∈
([n]

ℓ

)
be arbitrary and suppose some ω̄ ∈ X(ℓ) is given such that type(ω̄) = S.

For all f ∈ RX(ℓ) , we have

[Q↑↓f ](ω̄) =
∑

ω̂∈X[Sc]

Pr
ω∼π

[ωSc = ω̂ | ωS = ω̄] ·
∑

a∈[k]

f
(
(ω̄ ⊕ ω̂)OutH (S,a)

)
k

.

Similarly, we have

[P↑↓f ](ω̄) =
∑

ω̂∈X[Sc]

Pr
ω∼π

[ωSc = ω̂ | ωS = ω̄]
∑

T ∈([n]
ℓ )

f((ω̄ ⊕ ω̂)T )(
n
ℓ

) .

For any given facet ω ∈ X(n) we define the function gω ∈ R([n]
ℓ ) as, gω(T ) = f(ωT ).

We have,

[Mgω](T ) =
∑

a∈[k]

f
(
ωOutH (T,a)

)
k

and [Jgω](i) =
∑

T ∈([n]
ℓ )

f(ωT )(
n
ℓ

) .

Thus, we have

[Q↑↓f ](ω̄) =
∑

ω̂∈X[Sc]

Pr
ω∼π

[ωSc = ω̂ | ωS = ω̄] · [Mgω̄⊕ω̂](S), (5)

[P↑↓f ](ω̄) =
∑

ω̂∈X[Sc]

Pr
ω∼π

[ωSc = ω̂ | ωS = ω̄] · [Jgω̄⊕ω̂](S). (6)

In particular combining Equation (5) and Equation (6) and noticing that for ω ∼ π the law
of ωSc conditional on ωS = ω̄ is given by π

(ω̂)
n−ℓ,
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∥∥(Q↑↓ − (1 − λ)P↑↓)f
∥∥2

πℓ
= E

ω̄∼πℓ

(
E

ω̂∼π
(ω̄)
n−ℓ

[
[Mgω̄⊕ω̂](type(ω̄)) − (1 − λ)[Jgω̄⊕ω̂](type(ω̄))

])2

,

≤ E
ω̄∼πℓ

E
ω̂∼π

(ω̄)
n−ℓ

[(
[Mgω̄⊕ω̂](type(ω̄)) − (1 − λ)[Jgω̄⊕ω̂](type(ω̄))

)2
]
.

where the last inequality is obtained by appealing to Jensen’s inequality and the convexity
of t → t2.

Now, we observe the law of ω̄ ⊕ ω̂ obtained by first sampling ω̄ ∼ πℓ and then ω̂ ∼ π(ω̄) is
given by π. Furthermore, any ω ∈ X(n) occurs exactly

([n]
ℓ

)
times in the expectation above –

once for each S ∈
([n]

ℓ

)
acting as type(ω̄), which happens with probability

(
n
ℓ

)−1. Thus,

∥∥(Q↑↓ − (1 − λ)P↑↓)f
∥∥2

πℓ
≤ E

ω∼πn

 E
S∼uni([n]

ℓ )
([(M − (1 − λ)J)gω](S))2

,

≤ E
ω∼πn

[
λ2 · ∥gω∥2

uni([n]
ℓ )

]
where the last inequality is due to ∥M − (1 − λ)J∥op,uni([n]

ℓ )
≤ λ as λ(M) ≤ λ!

Now, we finally note

E
ω∼π

[
∥gω∥2

uni([n]
ℓ )

]
= E

ω∼π

 1(
n
ℓ

) ∑
S∈([n]

ℓ )
f(ωS)2

 = E
ω̄∼πℓ

f(ω̄)2 = ∥f∥2
πℓ

,

The last equality is due to the observation that first sampling ω ∼ π and then outputting
ωS for S ∼ uni([n]

ℓ ) picked uniformly at random amounts to simply sampling ω̄ ∼ πℓ,
q.v. Equation (3).

In particular,∥∥(Q↑↓ − (1 − λ)P↑↓)f
∥∥

πℓ
≤ λ · ∥f∥πℓ

.

As f was picked arbitrarily, this allows us to conclude the proof of our theorem by appealing
to the definition of the operator norm. ◀

3.2 Log-Sobolev Bound: Proof of Corollary 20
Proof of Corollary 20. Let f ∈ RX(ℓ)

≥0 be an arbitrary function satisfying Entπℓ
(f2) ̸= 0. We

have,〈
f ,
(
I − Q↑↓

ℓ↔n

)
f
〉

πℓ

Entπℓ (f)2 =

〈
f ,
(
I − (1 − λ(H)) · P↑↓

ℓ↔n

)
f
〉

πℓ

Entπℓ (f2)
+

〈
f ,
(
(1 − λ(H))P↑↓

ℓ↔n − Q↑↓
ℓ↔n

)
f
〉

πℓ

Entπℓ (f2)
.

Notice that by Theorem 18, we should have〈
f ,
(

(1 − λ(H))P↑↓
ℓ↔n − Q↑↓

ℓ↔n

)
f
〉

πℓ

≥ −λ(H) · ⟨f , If⟩πℓ
.

Thus,〈
f ,
(

I − Q↑↓
ℓ↔n

)
f
〉

πℓ

Entπℓ
(f)2 ≥

〈
f ,
(

I −
(

(1 − λ(H)) · P↑↓
ℓ↔n + λ(H) · I

))
f
〉

πℓ

Entπℓ
(f2)

,

≥ ls
(

(1 − λ(H)) · P↑↓
ℓ↔n + λ(H) · I

)
,

= ls(P↑↓
ℓ↔n) · gap⋆(H),
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where the last inequality is obtained by noticing:

⟨f , (I − (a · I + (1 − a)P))f⟩µ = (1 − a) · ⟨f , (I − P)f⟩µ,

and the variational formula for the log-Sobolev constant (Equation (2)) . Appealing to the
definition of the log-Sobolev inequality (LSI) once again yields the result. ◀

4 Functional Inequalities on Simplical Complexes

In this section, we will prove several functional inequalities involving the down-up walk P↓↑
n↔ℓ.

For convenience we define the set Cℓ(X) as the set of ℓ-chains in X, i.e. the collection of
sequences

∅ := ω(0) ⊊ ω(1) ⊊ · · · ⊊ ω(ℓ) ∈ X(ℓ),

such that ω(i) ∈ X(i) for all i = 0, . . . , ℓ. Similarly, for x ∈ X(1) we define Cℓ(x) as the set of
ℓ-chains in X starting from x ∈ X(1), i.e. the collection of sequences

x =: ω(1) ⊊ ω(2) ⊊ · · · ⊊ · · · ⊊ ω(ℓ),

such that ω(i) ∈ X(i) for all i = 0, . . . , ℓ.

▶ Theorem 22. For all n-partite simplicial complexes (X, π) and convex Φ : R≥0 → R≥0,
we have:

cfΦ(P↑
ℓ→n) ≥ min


ℓ−1∏
j=0

(1 − lcΦ(ω(j)))

∣∣∣∣∣∣∅ =: ω(0) ⊊ ω(1) ⊊ · · · ⊊ ω(ℓ) ∈ Cℓ(X)

. (7)

In particular, writing lc(i)
Φ (X, π) = maxω̂∈X(i) lcΦ(ω̂), we have

cfΦ

(
P↑

ℓ→n

)
≥

ℓ−1∏
j=0

(
1 − lc(j)

Φ (X, π)
)

.

As mentioned before our proof is inspired by the exposition in [14] and follows the Garland
method, [31]. After submitting our results to arxiv, it came to our attention that the same
proof technique for proving a weaker version of Theorem 22 already appeared in [42] in the
context of variance contraction. We will list a few immediate consequences of Theorem 22.
The following bound is immediate given Proposition 10 and Theorem 22,

▶ Corollary 23 (Spectral Gap Bound). Let (X, π) be a simplicial complex of rank n. We have,

gap(P↓↑
n↔ℓ) ≥ n − ℓ

n
· min

{
ℓ−1∏
i=0

gap(Mzi)

∣∣∣∣∣ ∅ =: ω(0) ⊊ ω(1) ⊊ · · · ⊊ ω(ℓ) ∈ Cℓ−1(X)
}

. (8)

In particular, writing gapk(X, π) := minx∈X(k) gap(Mx) we have

gap(P↓↑
n↔ℓ) ≥ n − ℓ

n
·

ℓ−1∏
i=0

gapi(X, π).

We also prove a useful lemma that shows we can directly relate the entropy contraction
constant to the log-Sobolev constant of the down-up walk,
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▶ Lemma 24. Let (X, π) be a simplicial complex of rank n. For any ω̂ ∈ X, we set

π⋆
ω̂,k = min

ω̃∈X
(k)
ω̂

π
(ω̂)
k (ω̃), gapn−2(X, π) = min

ω̂∈X(n−2)
gap(Mω̂), and

Cω̂,k =


1 π⋆

ω̂,k > 1/2,
1−2π⋆

ω̂,k

log
((

π⋆
ω̂,k

)−1
−1
) otherwise.

where Mω̂ is the link of ω̂ and gap(•) denotes the spectral gap. We have,

ls(P↓↑
n↔ℓ) ≥ min

{
Cω(ℓ),n−ℓ

∣∣ ω(ℓ) ∈ X(ℓ)} · ec
(
P↑

ℓ→n

)
,

ls(P↑↓
n−1) ≥ n − 1

n
· min

{
Cω(n−2),1

∣∣ ω(n−2) ∈ X(n−2)} · gapn−2(X, π) · ec(P↑
n−2→n−1).

In particular, writing leci(X, π) := minω̂∈X(i) lec(ω̂) and Cℓ,k = minω̂∈X(ℓ) Cω̂,k,

ls(P↓↑
n↔ℓ) ≥ Cℓ,n−ℓ ·

ℓ−1∏
i=0

(1 − leci(X, π))

We will prove this result in Section 4.2.

4.1 Proof of Φ-Entropy Contraction Bounds, Theorem 22
Proof of Theorem 22. For ℓ = 0, the LHS is equal to 0, thus we see the product in
Equation (7) is taken over an empty set and equals 1. Thus, equality holds in this case with
cfΦ(P↑

0→n) = 1. We proceed by induction on the rank of the simplicial complex. We have
by the chain rule for Φ-entropy (Lemma 11),

EntΦ
πℓ

(P↑
ℓ→nf) = E

x∼π1
EntΦ

π
(x)
ℓ−1

(P↑
x,ℓ−1→n−1f |x) + EntΦ

π1
(P↑

1→nf),

where we have used (i) (P↑
ℓ→nf)x(ω) = [P↑

x;ℓ−1→n−1f |x](ω \ x) and (ii) that P↑
ℓ→n is row-

stochastic, i.e. E(P↑
ℓ→nf) = Ef . Let c := minx∼X(1) cfΦ(P↑

x,ℓ−1→n−1). By the induction
hypothesis,

c ≥ min


ℓ−1∏
j=1

(1 − lcΦ(ω(j)))

∣∣∣∣∣∣x ∈ X(1), x =: ω(1) ⊊ ω(2) ⊊ · · · ⊊ ω(ℓ−1) ∈ Cℓ−1(x)

. (9)

Hence, we obtain,

EntΦ
πℓ

(P↑
ℓ→nf) ≤ (1 − c) E

x∼π1
EntΦ

π
(x)
n−1

(f |x) + EntΦ
π1

(P↑
1→nf).

Now, using the chain-rule (Lemma 11) for Φ-entropy once more, we have
Ex∼π1 EntΦ

π
(x)
n−1

(f |x) = EntΦ
πn

(f) − Entπ1(P↑
1→nf). Substituting this in the inequality above,

we obtain:

EntΦ
πℓ

(P↑
ℓ→nf) ≤ (1 − c) ·

(
EntΦ

πn
(f) − EntΦ

π1
(P↑

1→nf)
)

+ EntΦ
π1

(P↑
1→nf),

= (1 − c) · EntΦ
πn

(f) + c · EntΦ
π1

(P↑
1→nf).

Now, using EntΦ
π1

(P↑
1→nf) ≤ lcΦ(∅) · EntΦ

πn
(f) we obtain

EntΦ
πℓ

(P↑
ℓ→nf) ≤ (1 − c · (1 − lcΦ(∅))) · EntΦ

πn
(f).

The statement now follows from Equation (9) and the definition of the Φ-entropy contraction
factor. ◀
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4.2 Proof of the log-Sobolev Inequality, Lemma 24
Proof of Lemma 24. We follow a similar strategy to what we have followed to establish
Theorem 22. We have,〈

f ,
(
I − P↓↑

n↔ℓ

)
f
〉

πn
= ⟨f , f⟩πn

−
〈
P↑

ℓ→nf , P↑
ℓ→nf

〉
πℓ

,

= E
ω̂∼πℓ

[
⟨f |ω̂, f |ω̂⟩

π
(ω̂)
n−ℓ

− E
ω̂∼πℓ

〈
P↑

ω̂,0→n−ℓf |ω̂, P↑
ω̂,0→n−ℓf |ω̂

〉
π

(ω̂)
n−ℓ

]
,

= E
ω̂∼πℓ

[〈
f |ω̂,

(
I − P↓↑

ω̂,n−ℓ↔0

)
f |ω̂
〉

π
(ω̂)
n−ℓ

]
,

= E
ω̂∼πℓ

[〈
f |ω̂,

(
I − J

π
(ω̂)
n−ℓ

)
f |ω̂
〉

π
(ω̂)
n−ℓ

]
,

where we have used Items (1) and (2) of Lemma 12 to obtain the second equality and have
written Jµ = 1µ for the clique with respect to µ.

Now, by Lemma 5, we have ls
(

J
π

(ω̂)
n−ℓ

)
≥ Cω̂,n−ℓ – where Cω̂,n−ℓ is defined as in the

statement of Lemma 24. Thus, writing Cℓ,n−ℓ := minω̂∈X(ℓ) Cω̂,n−ℓ, we have〈
f ,
(
I − P↓↑

n↔ℓ

)
f
〉

πn
≥ Cℓ,n−ℓ · E

ω̂∼πℓ

Ent
π

(ω̂)
n−ℓ

(
f2|ω̂

)
, ≥ Cℓ,n−ℓ ·

(
Entπn (f2) − Entπℓ

(
P↑

ℓ→nf2))
where we have used the chain rule for entropy, Lemma 11, to obtain the last statement.

Now, using the definition of Φ-entropy contraction, i.e. writing for Φ(t) = t · log t,

Entπℓ

(
P↑

ℓ→nf2
)

≤
(

1 − ec
(

P↑
ℓ→n

))
· Entπn

(
f2).

Thus,〈
f ,
(

I − P↓↑
n↔ℓ

)
f
〉

πn

≥ Cℓ,n−ℓ · ec
(

P↑
ℓ→n

)
· Entπn

(
f2).

Now, the first statement follows by appealing to the definition of the log-Sobolev inequality
(LSI) and the log-Sobolev constant (Equation (2)). The second statement concerning P↓↑

n↔ℓ

now immediately follows from Theorem 22.
To obtain the log-Sobolev inequality for P↑↓

n−1, we make use of Items (1) and (3) in
Lemma 12 and proceed as above. We have,〈

f ,
(

I − P↑↓
n−1

)
f
〉

πn−1
= n − 1

n
· E

ω̂∼πn−2

[
⟨f |ω̂, (I − Mω̂)f |ω̂⟩

π
(ω̂)
1

]
Now, appealing to Lemma 5, we obtain ls(Mω̂) ≥ gap(Mω̂) · Cω̂,1 for all ω̂ ∈ X(n−2). Thus,〈

f ,
(
I − P↑↓

n−1
)
f
〉

πn−1
≥ n − 1

n
· Cn−2,1 · gapn−2(X, π) · E

ω̂∼πn−2
Ent

π
(ω̂)
1

(f2|ω̂),

= n − 1
n

· Cn−2,1 · gapn−2(X, π) ·
(
Entπn−1 (f2) − Entπℓ

(
P↑

n−2→n−1f2)),
= n − 1

n
· Cn−2,1 · gapn−2(X, π) · ec

(
P↑

n−2→n−1
)

· Entπn−1 (f2), (10)

where we have appealed to the chain rule for entropy, Lemma 11, to obtain the first
equality. ◀

5 Application: Sampling Using the Expanderized Walks

In the present section, present our results concerning the rapid mixing of the expanderized
walks for sampling (i) list-colorings and (ii) Ising models with bounded interaction matrix.
First, we describe the random sampling problems we are interested in mention the state of
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the art sampling results we are interested in expanderizing, and state our results and present
a proof of the list coloring chain. Due to space considerations, we only present the proof
of our list-coloring result here in Section 5.1 and refer the reader to the full version of our
paper in [4] for the proof of our mixing time estimate for the Ising Model.

A list coloring instance (G, L) consists of a graph G = (V, E) and a collection of colours
L = (L(v))v for every vertex. A valid list coloring of (G, L) is then a set of pairs {(v, c(v))}v∈V

satisfying the following two conditions,
1. c(v) ∈ L(v) for all vertices v ∈ L,
2. c(u) ̸= c(v) for all edges {u, v} ∈ E.
We will write (X(G,L), uni(G,L)) for the simplicial complex of proper list coloring of (G, L)
weighted by the uniform distribution (G, L) on all list colorings, i.e.

X(G,L) =

{
α ⊂

⊔
v∈V

{v} × L(v)

∣∣∣∣∣ there is a proper list coloring χ of (G, L) such that α ⊂ χ

}
.

We will show that the expanderized walks rapidly mix when sampling list colorings of bounded
degree graphs. Further, the lower bound in the number of colors matches with the state of
the art – see [12, 41, 10].

▶ Theorem 25. Let (G, L) be a list-coloring instance where G = (V, E) is a graph on n

vertices of maximum degree ∆ ≤ O(1) and Hn be a labelled graph on [n] of constant two-
sided expansion λ(Hn) bounded away from 1. Then, for some absolute constant ε ≈ 10−5,8
and any K = O(1), if (11/6 + K)∆ ≥ |L(v)| ≥ (11/6 − ε) · ∆ for all vertices v ∈ V ,
the mixing time of the expanderized walks Q↑↓

n−1 = UpDownℓ↔n(X(G,L), uni(G,L), H2) and
Q↓↑

n = DownUpn↔ℓ(X(G,L), uni(G,L), H) satisfies,

τmix(Q↑↓
n−1, ε) ≤ C1 · n

(
log n + log ε−1) and τmix(Q↓↑

n , ε) ≤ C2 · n
(
log n + log log ε−1),

where C1 and C2 are universal constants not depending on n but on ∆.

▶ Remark 26. By [5], we can pick a constant degree graph as the graph Hn in the statement of
Theorem 25. Thus, a single step of the random walk can be implemented using O(1)-random
bits – making the total number of random bits used in the random walk O(n log n). In
contrast, the standard down-up walk or the up-down walk requires O(log n) random bits to
perform a single step, and O(n log2 n) random bits in total.

We recall that the Ising model µJ,h : {+1, −1}n → R≥0 with interaction matrix J ∈ Rn×n

and external field h ∈ Rn from statistical physics is a probability distribution on the
hypercube satisfying,

µJ,h(x) =
exp
(

1
2 ⟨x, Jx⟩ℓ2

+ ⟨h, x⟩ℓ2

)
Z(J, h) where Z(J, h) =

∑
x∈{+1,−1}n

exp
(1

2 ⟨x, Jx⟩ℓ2
+ ⟨h, x⟩ℓ2

)
(11)

We notice that we can identify any x ∈ {+1, −1}n with a value by using the encoding,

x± = {(i, x(i)) | i ∈ [n]}.

Thus, we define the simplicial complex (X(J,h), µJ,h), where

X(J,h) = {α ⊂ [n] × {±1} | for each i ∈ [n], α contains at most one element (i, x)}.

We show that our expanderize walks mix rapidly assuming that the external field h ∈ Rn

is well-behaved, i.e. ∥h∥ℓ∞ does not grow with n,

8 See [12].
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▶ Theorem 27. Let (X(J,h), µJ,h) be the simplicial complex defined above corresponding to
the Ising model defined by the interaction matrix J ∈ Rn×n and external field h ∈ Rn and
Hn a constant degree graph whose two-sided expansion is a constant bounded away from 1.
Under the assumption that J is PSD and satisfies ∥J∥op ≤ 1, the following hold,

τmix(Q↑↓
n−1, ε) ≤

O
(
∥h∥ℓ∞

)
· n

(1 − ∥J∥op)2

(
log(n + ∥h∥ℓ1

) + log ε−1) and

τmix(Q↓↑
n , ε) ≤

O
(
∥h∥ℓ∞

)
· n

(1 − ∥J∥op)2

(
log(n + ∥h∥ℓ1

) + log ε−1),
where the O(•) notation hides a universal constant not depending on n, J, or h. Furthermore,
the term (1 − ∥J∥op)2 in the denominator can be replaced with (1 − ∥J∥op)(1 − θ) if the
maximum operator norm of any two-by two principal submatrix of J is θ.

▶ Remark 28. By [5], we can pick a constant degree graph as the graph Hn in the statement
of Theorem 27. Thus, ignoring numerical difficulties in simulating biased coins, a single step
of the random walk can be implemented using O(1)-random bits – making the total number
of random bits used in the random walk O(n log n) when ∥h∥ℓ∞

= O(1). In contrast, the
standard down-up walk or the up-down walk requires O(log n) random bits to perform a
single step and O(n log2 n) random bits in total.

5.1 List Coloring of Bounded Degree Graphs
We make the following observations about the complex associated to proper list colorings,

▶ Proposition 29 (Folklore). 9 Let (G = (V, E), L) be a list-coloring instance. Let K+, K− ∈
N be parameters satisfying deg(v) + K+ ≥ |L(v)| ≥ deg(v) + K− for all v ∈ V . Then, writing
(Y, π) := (X(G,L), uni(G,L)) we have,

λ2(Mχ̂) ≤ 1
K−

for all χ̂ ∈ Y (n−2),

where Mχ̂ is the link of the face χ̂.
Similarly, for any χ̂ ∈ Y (n−2), we have min(u,c)∈Y

(1)
χ̂

π
(χ̂)
1 (u, c) ≥ K−

(∆+K+)2 where ∆ =
maxv∈V deg(v).

We recall the following result of [41, 10],

▶ Theorem 30 (Theorem 1.2, [41]). Let (G, L) be a list-coloring instance where G = (V, E)
is a graph on n vertices of maximum degree ∆ ≤ O(1). Then, for some absolute constant
ε ≈ 10−5,10 if |L(v)| ≥ (11/6 − ε) · ∆ for all vertices v ∈ V , then the spectral gap and the log-
Sobolev constants (Equation (2)) of the down-up walk P↓↑

n = DownUpn↔n−1(X(G,L), uni(G,L))
on the collection of proper list colorings is Ω(n−1).

Then, the following corollary immediately follows by Lemma 7 and Proposition 9,

▶ Corollary 31. Let (G, L) be a list-coloring instance where G = (V, E) is a graph on n vertices
of maximum degree ∆ ≤ O(1). Then, for some absolute constant ε ≈ 10−5, if |L(v)| ≥ (11/6−
ε) · ∆ for all vertices v ∈ V , then the up-operator P↑

n−1→n = Upn−1→n

(
X(G,L), uni(G,L)

)
on

the collection of proper list colorings of (G, L) satisfies ec(P↑
n−1→n) ≥ Ω(n−1).

9 See the full version of this paper [4] for a proof.
10 See [12]
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Proof of Theorem 25. Notice that by Lemma 13, Corollary 31 implies that ec(P↑
n−2→n−1) ≥

Ω(n−1) since by Proposition 29 when ∆ = O(1), Cn−2 = Ω(1), we have
gapn−2(X(G,L), uni(G,L)) = Ω(1), by invoking Lemma 24 we obtain that the up-down walk
P↑↓

n−1 = UpDownn−1↔n(X(G,L), uni(G,L)) satisfies, ls(P↑↓
n−1) ≥ Ω(n−1). Then, by Corollary 21

and the assumption that the two-sided expansion λ(Hn) is a constant bounded away from
1, we obtain ec(Q↑↓

n ), ec(Q↓↑
n−1) ≥ Ω(n−1). The result, concerning mixing times follows

using Theorem 8 and the observation that the state space for both walks is of size at most
n · ((K + 11/6) · ∆)n. ◀
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