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Abstract
We study Ramsey properties of randomly perturbed 3-uniform hypergraphs. For t ≥ 2, write K̃

(3)
t to

denote the 3-uniform expanded clique hypergraph obtained from the complete graph Kt by expanding
each of the edges of the latter with a new additional vertex. For an even integer t ≥ 4, let M denote
the asymmetric maximal density of the pair (K̃(3)

t , K̃
(3)
t/2). We prove that adding a set F of random

hyperedges satisfying |F | ≫ n3−1/M to a given n-vertex 3-uniform hypergraph H with non-vanishing
edge density asymptotically almost surely results in a perturbed hypergraph enjoying the Ramsey
property for K̃

(3)
t and two colours. We conjecture that this result is asymptotically best possible

with respect to the size of F whenever t ≥ 6 is even. The key tools of our proof are a new variant of
the hypergraph regularity lemma accompanied with a tuple lemma providing appropriate control
over joint link graphs. Our variant combines the so called strong and the weak hypergraph regularity
lemmata.
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1 Introduction

1.1 Ramsey properties of random hypergraphs
Given a distribution R over n-vertex hypergraphs, as well as an n-vertex hypergraph H,
referred to as the seed hypergraph, unions of the form H∪R with R ∼ R define a distribution
over the super-hypergraphs of H, denoted by H ∪ R. The hypergraphs H ∪ R are referred to
as random perturbations of H. The study of the properties of such hypergraph distributions
has its origins in the seminal work of Spielman and Teng [52, 53] who coined the term
Smoothed Analysis whilst investigating the performance of algorithms on randomly perturbed
inputs.

Recently, the paradigm of Smoothed Analysis, originating from Theoretical Computer
Science, has captured the attention of numerous researchers in Combinatorics. In the latter
avenue, two dominant strands of results have emerged. One strand pertains to the study of the
thresholds for the emergence of various spanning and nearly-spanning configurations within
such structures (see, e.g., [3, 4, 5, 6, 10, 11, 12, 13, 21, 28, 34, 35, 41]). The second strand
pertains to the extremal and Ramsey-type properties (see, e.g., [1, 2, 6, 8, 18, 19, 20, 36, 46])
of such hypergraphs. Our result lies in the latter vein. We recall the arrow notation
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59:2 Ramsey Properties of Randomly Perturbed Hypergraphs

G −→ (H1, H2) , signifying the validity of the asymmetric Ramsey statement that every
2-colouring of the edges of G yields a monochromatic copy of H1 in the first colour or a
monochromatic copy of H2 in the second colour. Moreover, in the symmetric case when
H1 = H2 = H we simply write G −→ (H).

Ramsey properties of randomly perturbed graphs were first investigated by Krivelevich,
Sudakov, and Tetali [36]. In that work it was shown that n−2/(t−1) is the threshold for
the asymmetric Ramsey property G ∪ G(n, p) −→ (K3,Kt), whenever G is an n-vertex
graph of edge density d ∈ (0, 1/2) independent of n. The general problem, put forth by
Krivelevich et al., of determining the threshold for the property G ∪G(n, p) −→ (Ks,Kt),
whenever G is dense and s, t ≥ 4, was recently (essentially) resolved by Das and Treglown [20].
Those authors showed that n−1/m2(Kt,K⌈s/2⌉) is the threshold for the property G∪G(n, p) −→
(Ks,Kt), when G is a dense n-vertex graph and t ≥ s ≥ 5, where m2(H1, H2) denotes the
asymmetric maximal 2-density of two graphs H1 and H2 (see equation (2) for the definition).
For other values of t and s we also refer to the work of Das and Treglown [20, Theorem 1.7
and Theorem 5(ii)] and for the special case s = t = 4 in addition to the work of Powierski [46,
Theorem 1.8].

The aforementioned Ramsey-type results for randomly perturbed dense graphs are
formulated for 2-colourings only. This restriction is well-justified. Indeed, suppose that more
than two colours are available. The colouring in which the seed is coloured using one colour
and the random perturbation is coloured using all the remaining colours, reduces the problem
to that of studying the Ramsey property at hand for truly random hypergraphs.

The earlier results [20, 36, 46], as well as our result, stated in Theorem 1 below, are
affected by and closely related to research on Ramsey properties in random graphs and
hypergraphs (see, e.g., [17, 26, 27, 29, 30, 31, 38, 39, 40, 42, 44, 45, 47, 48, 49, 50]). For
random graphs, the thresholds for symmetric Ramsey properties are well-understood due
to work of Rödl and Ruciński [47, 49]. Minor exceptions for F being a star forest aside,
this work asserts that n−1/m2(F ) is the threshold for the property G(n, p) −→ (F ), where
m2(F ) denotes the maximal 2-density of the given graph F (see equation (1) below). The
1-statement of the threshold was extended to random k-uniform hypergraphs by Conlon and
Gowers [17] and by Friedgut, Rödl, and Schacht [26]. However, a complete characterisation
of the exceptional cases is not yet available and for the progress towards the 0-statement we
refer to the work of Nenadov et al. [44] and Gugelmann et al. [27].

The thresholds of asymmetric Ramsey properties in random graphs are the subject of
the Kohayakawa–Kreuter conjecture [30]. The 1-statement stipulated by this conjecture has
been fairly recently verified by Mousset, Nenadov, and Samotij [42] and progress has been
made with respect to the corresponding 0-statement by several researchers [27, 29, 38, 40].
Following some progress [14, 37, 42], the conjecture was finally fully resolved by Christoph,
Martinsson, Steiner, and Wigderson [15].

1.2 Main result
We study Ramsey properties of randomly perturbed hypergraphs; stating our results requires
preparation. A hypergraph H is said to be linear if |e ∩ f | ≤ 1 holds whenever e, f ∈ E(H)
are distinct. Amongst the linear hypergraphs, expanded cliques are of special interest. Given
t ≥ 2 and k ≥ 2, the k-uniformly expanded clique of order t, denoted by K̃(k)

t , is the k-uniform
hypergraph with vertex set of size t+

(
t
2
)
(k − 2) obtained from the complete graph Kt by

expanding every edge of Kt by k− 2 new vertices; in particular, K̃(2)
t = Kt holds. Expanded

cliques have attracted some attention in the literature and related extremal and Ramsy-type
questions were addressed by Mubayi [43] and by Conlon, Fox, and Rödl [16].
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Two natural measures of density, arising in the context of random hypergraphs, are the
maximum density of a k-uniform H = (V,E), denoted m(H), and its maximum k-density,
denoted mk(H). The former is given by

m(H) = max
{
e(F )
v(F ) : F ⊆ H and v(F ) ≥ 1

}
and the latter is defined by

mk(H) = max
{
dk(F ) : F ⊆ H

}
, where dk(F ) =


0, if e(F ) = 0,
1
k , if e(F ) = 1, v(F ) = k,
e(H)−1
v(H)−k , otherwise.

(1)

It is well known that n−1/m(H) is the threshold for the appearance of H as a subhypergraph in
the binomial random k-uniform hypergraph H(k)(n, p). For H(k)(n, p) to satisfy the Ramsey
property for H a.a.s. it is reasonable to expect that many intermingled copies of H are
required; this as to create colour restrictions forcing the Ramsey property for H. Indeed,
for (hypergraph) cliques it is necessary that many cliques sharing a single hyperedge would
appear a.a.s. in H(k)(n, p). This results in the higher threshold n−1/mk(H) being encountered
for Ramsey properties.

For asymmetric Ramsey properties, another notion of hypergraph density arises. This
notion traces back to the work of Kohayakawa and Kreuter [30]. Given two k-uniform
hypergraphs H1 and H2, each with at least one edge and satisfying mk(H1) ≥ mk(H2), the
asymmetric maximal k-density of H1 and H2 is given by

mk(H1, H2) = mk(H2, H1) = max
{

e(F )
v(F ) − k + 1/mk(H2) : F ⊆ H1 and e(F ) ≥ 1

}
, (2)

where here we do not mean that mk(·, ·) is symmetric only that in our notation we do
not keep track over the location in which H1, the hypergraph with the potentially higher
mk(·)-density is higher, is placed. The equality mk(H,H) = mk(H) is easy to verify.

With the above notation in place, our main contribution can be stated; this can be viewed
as a hypergraph extension of the aforementioned results of Das and Treglown [20]. Below we
always tacitly assume that Hn and H(3)(n, p) share the same vertex set.

▶ Theorem 1 (Main result). For every d > 0 and every even integer t ≥ 4, there exists a
constant C > 0 such that for every sequence of 3-uniform n-vertex hypergraphs (Hn)n∈N with
e(Hn) ≥ dn3 for every n ∈ N we have

lim
n−→∞

P
(
Hn ∪H(3)(n, p) −→ (K̃(3)

t )
)

= 1,

whenever p = p(n) ≥ Cn− 1
M for M = m3(K̃(3)

t , K̃
(3)
t/2).

Our proof of Theorem 1 relies on two main technical results, which are related to the
regularity method for hypergraphs. We present these results in Section 1.3-1.4 below.

The proof of Theorem 1 presented here can be adapted for k-uniform hypergraphs and
the asymmetric Ramsey properties Hn ∪H(k)(n, p) −→ (K̃(k)

s , K̃
(k)
t ) with t ≥ s. For the sake

of brevity, we restrict ourselves to 3-uniform hypergraphs and the symmetric case for even t.
In particular, from here on, unless stated otherwise, we use the term hypergraph to mean a
3-uniform hypergraph. We conjecture that Theorem 1 uncovers the threshold for the Ramsey
property in question.

APPROX/RANDOM 2024



59:4 Ramsey Properties of Randomly Perturbed Hypergraphs

▶ Conjecture 2. For every even integer t ≥ 6 there exist constants d, c > 0, and there exists
a sequence of 3-uniform n-vertex hypergraphs (Hn)n∈N with e(Hn) ≥ dn3 for every n ∈ N
such that

lim
n−→∞

P
(
Hn ∪H(3)(n, p) −→ (K̃(3)

t )
)

= 0 ,

whenever p ≤ cn−1/M for M = m3
(
K̃

(3)
t , K̃

(3)
t/2
)
.

Conjecture 2 may hold for t = 4 as well. However, this value is excluded due to the distinct
behaviour seen in the graph case [20, 46]. The proof of Theorem 1 presented here extends for
the asymmetric Ramsey property H −→ (K̃(3)

t , K̃
(3)
s ) for sufficiently large integers t ≥ s and

M replaced by m3
(
K̃

(3)
t , K̃

(3)
⌈s/2⌉

)
. It seems plausible that the corresponding generalisation of

Conjecture 2 may also hold.

1.3 A tuple lemma for link graphs
A key feature of the regularity method of graphs is the control over joint neighbourhoods
in the regular environment provided by Szemerédi’s regularity lemma (see, e.g., Lemma 8
below). For the proof of Theorem 1, we establish a similar lemma in the context of the
regularity method for hypergraphs.

For a vertex v in a hypergraph H = (V,E), define the link graph LH(v) of v to have
vertex set V ∖ {v} and edge set comprised of those pairs of vertices which together with v

form a hyperedge in H, i.e., E(LH(v)) = {uw : uvw ∈ E}. In particular, e(LH(v)) is the
vertex degree of v in H and is also denoted by degH(v). Given a graph G with vertex set
V (G) = V we define the link graph of v supported on G by

LH(v,G) = E
(
LH(v)

)
∩ E(G) .

Link graphs are a natural hypergraph extension of vertex neighbourhoods in the context
of graphs. A tuple lemma for hypergraphs would have to control the sizes of the intersections
of link graphs. In that, given a set of vertices U ⊆ V , we seek to control the sizes of the joint
link graph and the joint link graph supported by G given by

LH(U) =
⋂

u∈U

LH(u) and LH(U,G) =
⋂

u∈U

LH(u,G) ,

respectively. For a random hypergraph H = (V,E) with edge density d, one would expect
|LH(U)| ∼ d|U |(|V |

2
)

to hold with high probability. Our tuple lemma asserts that in the regular
environment for hypergraphs this random intuition can be transferred to the deterministic
situation. (We defer the definitions concerning regular hypergraphs to Section 2.)

▶ Proposition 3 (Tuple lemma for joint links). For every t ≥ 2 and ε, d3 > 0, there exists a
δ3 > 0 such that for every d2 > 0 there exist δ2 > 0 and r ≥ 1 such that the following holds.

Let H = (X ∪· Y ∪· Z,EH) be a tripartite hypergraph which is (δ3, d3, r)-regular with respect
to a (δ2, d2)-triad P = (X ∪· Y ∪· Z,EP ). Then, all but at most 2ε|X|t of the t-tuples of
vertices X ′ = {x1, . . . , xt} ⊆ X satisfy∣∣LH(X ′, P ) − dt

3d
2t+1
2 |Y ||Z|

∣∣ ≤ εd2t+1
2 |Y ||Z| . (3)

Due to space limitations, our proof of Proposition 3 is omitted and can be found in [7] - the
full version of this extended abstract - the former extends to all hypergraph uniformities.
Alternatives to Proposition 3 exerting some control over the sizes of joint link graphs of
vertex tuples whilst relying on weaker versions of the hypergraph regularity do exist. Such
alternatives are established in the extended account [7].
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1.4 A variant of the hypergraph regularity lemma
The second main technical lemma is a new variant of the hypergraph regularity lemma
established in [51]. The necessary definitions are deferred to Section 2.

▶ Proposition 4 (Variant of the regularity lemma for hypergraphs). For every δ3 > 0 and
functions δ2 : N −→ (0, 1], r : N2 −→ N, and constants ℓ0, t0, and s ∈ N, there exist n0 and
T ∈ N such that for every n ≥ n0 and every family (H1, . . . ,Hs) of n-vertex hypergraphs
satisfying V = V (H1) = · · · = V (Hs), there are integers t and ℓ satisfying t ≥ t0 and ℓ ≥ ℓ0,
a vertex partition V with V1 ∪· · · · ∪· Vt = V and an ℓ-equitable partition B with respect to V
such that the following properties hold.
(R.1) |V1| ≤ |V2| ≤ · · · ≤ |Vt| ≤ |V1| + 1,
(R.2) for all 1 ≤ i < j ≤ t and α ∈ [ℓ], the bipartite 2-graph Bij

α is (δ2(ℓ), 1/ℓ)-regular,
(R.3) Hi is δ2(ℓ)-weakly regular with respect to V for every i ∈ [s], and
(R.4) Hi is (δ3, r(t, ℓ))-regular with respect to B for every i ∈ [s].

Due to space limitations, our proof of Proposition 4 is omitted and can be found in [7]
- the full version of this extended abstract. In Proposition 4 there is a combination of the
environment of the hypergraph regularity lemma [51] (see Lemma 10) and the so-called weak
hypergraph regularity lemma (see Lemma 9 below), which is the straightforward extension
of Szemerédi’s regularity for graphs. A lemma of similar spirit can be found in the work of
Allen, Parczyk, and Pfenninger [9].

In the sequel, these hypergraph regularity lemmata are distinguished by referring to these
as the Strong Lemma and Weak Lemma, respectively. The difference between the Strong
Lemma and Proposition 4 is Property (R.3). The former, when applied to dense hypergraphs,
provides access to triads P set over a vertex set, say, X ∪· Y ∪· Z with respect to which the
regularised hypergraphs is (δ3, d, r)-regular. This, in turn, provides ζ-weak regularity control
for ζ = δ

1/3
3 , by which we mean the ability to control the hyperedge distribution of the

hypergraphs along sets X ′ ⊆ X, Y ′ ⊆ Y , and Z ′ ⊆ Z satisfying |X ′| ≥ ζ|X|, |Y ′| ≥ ζ|Y |,
and |Z ′| ≥ ζ|Z|.

The added Property (R.3), however, provides weak regularity control over vertex sets
with much smaller density. In fact, there the control δ2 is allowed to be a function of ℓ and
the quantification of the Strong Lemma leads to δ3 ≫ ℓ−1.

Organisation
Theorem 1 is proved in Section 3. Various required preliminaries are collected in Section 2.
As mentioned above, the proofs of Propositions 3 and 4 are omitted from this account due
to space limitations and can be seen in [7] - the full version of this account.

Notational remark
Throughout, we often write the enumeration of a result in the subscripts of the constants
that it presides over. For instance, the constant t0 in Proposition 4 becomes t4 and the
constant δ3 in the same lemma is written δ

(3)
4 and so on. This aids in keeping track of the

various constants encountered throughout the proofs.

2 Preliminaries

Let V be a finite set. A partition U of V given by V = U1 ∪· · · · ∪· Ur is said to be equitable if
|U1| ≤ |U2| ≤ · · · ≤ |Ur| ≤ |U1| + 1. Given an additional partition of V , namely V, of the
form V = V1 ∪· · · · ∪· Vℓ, we say that V refines U , and write V ≺ U , if for every i ∈ [ℓ] there

APPROX/RANDOM 2024



59:6 Ramsey Properties of Randomly Perturbed Hypergraphs

exists some j ∈ [r] such that Vi ⊆ Uj holds. For k ≥ 2, write K(k)(U) to denote the complete
|U|-partite k-uniform hypergraph whose vertex set is V and whose edge set is given by all
sets of V (k) = {K ⊆ V : |K| = k} meeting every member of U (termed cluster hereafter) in
at most one vertex. If U = {U,U ′} consists of only two clusters, then we abbreviate K(2)(U)
to K(2)(U,U ′). We write K(2)(V ) to denote the complete graph whose vertex set is V .

2.1 Graph regularity
Let d, δ > 0 be given. A bipartite 2-graph G = (X ∪· Y,E) is said to be (δ, d)-regular if

eG(X ′, Y ′) = d|X ′||Y ′| ± δ|X||Y |

holds1 for every X ′ ⊆ X and Y ′ ⊆ Y . If d coincides with the edge density of G, i.e. d = e(G)
|X||Y | ,

then we abbreviate (δ, d)-regular to δ-regular. It follows directly from the definition that G is
a (δ, d)-regular bipartite graph if, and only if, its (bipartite) complement is (δ, 1 − d)-regular.

A tripartite 2-graph P with vertex set V (P ) = X ∪· Y ∪· Z is said to be a (δ, d)-triad, if
P [X,Y ], P [Y,Z], and P [X,Z] are all (δ, d)-regular. For a 2-graph G, let K3(G) denote the
family of members of V (G)(3) spanning a triangle in G. We shall employ the well known
triangle countling lemma (see, e.g., [25, Fact A]).

▶ Lemma 5 (Triangle counting lemma). Let d > 0, let 0 < δ < d/2, and let P be a (δ, d)-triad
with vertex set V (P ) = X ∪· Y ∪· Z. Then,

(1 − 2δ)(d− δ)3|X||Y ||Z| ≤ |K3(P )| ≤ ((d+ δ)3 + 2δ)|X||Y ||Z|.

In particular, if d ≤ 1/2, then

|K3(P )| = (d3 ± 4δ)|X||Y ||Z| (4)

holds. ⌟

We shall also use the variant of the triangle counting lemma with only two of the bipartite
graphs being regular and its proof is included for completeness.

▶ Lemma 6. Let P = (X ∪· Y ∪· Z,EP ) be a tripartite 2-graph such that P [X,Y ] and P [X,Z]
are both (δ, d)-regular. In addition, let X ′ ⊆ X be a set of size |X ′| ≥ δ|X|. Then,

(d− δ)d|X ′|e(P [Y,Z])−2δ|X||Y ||Z| ≤ |K3(P,X ′)| ≤ (d+ δ)d|X ′|e(P [Y, Z])+2δ|X||Y ||Z|

holds, where K3(P,X ′) denotes the set of triangles of P meeting X ′.

Proof. Let Y ′ ⊆ Y consist of all vertices y ∈ Y satisfying degP (y,X ′) ≥ (d− δ)|X ′|; note
that |Y ′| ≥ (1 − δ)|Y | holds by Lemma 8. We may then write

|K3(P,X ′)| ≥
∑

y∈Y ′

(
d(d− δ)|X ′| degP (y, Z) − δ|X||Z|

)

= d(d− δ)|X ′|

∑
y∈Y

degP (y, Z) −
∑

y∈Y ∖Y ′

degP (y, Z)

−
∑

y∈Y ′

δ|X||Z|

≥ d(d− δ)|X ′|e(P [Y,Z]) − d(d− δ)δ|X||Y ||Z| − δ|X||Y ||Z|
≥ d(d− δ)|X ′|e(P [Y,Z]) − 2δ|X||Y ||Z|.

1 Given x, y, z ∈ R, we write x = y ± z if y − z ≤ x ≤ y + z.
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Next, we prove the upper bound. Let Y ′′ ⊆ Y consist of all vertices y ∈ Y satisfying
degP (y,X ′) ≤ (d + δ)|X ′|; note that |Y ′′| ≥ (1 − δ)|Y | holds by Lemma 8. We may then
write

|K3(P,X ′)| ≤
∑

y∈Y ′′

(
d(d+ δ)|X ′| degP (y, Z) + δ|X||Z|

)
+

∑
y∈Y ∖Y ′′

|X ′||Z|

≤ d(d+ δ)|X ′|

∑
y∈Y

degP (y, Z) −
∑

y∈Y ∖Y ′′

degP (y, Z)


+
∑

y∈Y ′′

δ|X||Z| +
∑

y∈Y ∖Y ′′

|X||Z|

≤ d(d+ δ)|X ′|e(P [Y,Z]) + 2δ|X||Y ||Z| . ◀

The next lemma is commonly referred to as the Slicing Lemma (see, e.g., [33, Fact 1.5]).

▶ Lemma 7 (Slicing lemma). Let d = d7, let δ = δ7 > 0, and let G = (A ∪· B,E) be a
(δ, d)-regular bipartite graph. Let δ ≤ α = α7 ≤ 1, and let A′ ⊆ A and B′ ⊆ B be sets of sizes
|A′| ≥ α|A| and |B′| ≥ α|B|. Then, G[A′, B′] is (δ′, d′)-regular where δ′ = max{δ/α, 2δ}
and d′ = d± δ. ⌟

The tuple property of dense regular bipartite graphs, also referred to as the intersection
property, reads as follows (see [33, Fact 1.4]).

▶ Lemma 8 (Tuple lemma for graphs). Let G = (X ∪· Y,E) be a δ-regular bipartite graph of
edge density d > 0. Then, all but at most 2δℓ|X|ℓ of the tuples {x1, . . . , xℓ} ⊆ X satisfy

|NG(x1, . . . , xℓ, Y
′)| = |{y ∈ Y ′ : xiy ∈ E(G) for all i ∈ [ℓ]}| = (d± δ)ℓ|Y ′|, (5)

whenever Y ′ ⊆ Y satisfies (d− δ)ℓ−1|Y ′| ≥ δ|Y |. ⌟

2.2 Hypergraph regularity
A direct generalisation of the notion of δ-regularity, defined in the previous section for
2-graphs, reads as follows. Let d, δ > 0. A tripartite hypergraph H = (X ∪· Y ∪· Z,E) is said
to be (δ, d)-weakly regular if

eH(X ′, Y ′, Z ′) = d|X ′||Y ′||Z ′| ± δ|X||Y ||Z|

holds whenever X ′ ⊆ X, Y ′ ⊆ Y , and Z ′ ⊆ Z. If d = e(H)
|X||Y ||Z| , then we abbreviate

(δ, d)-weakly regular to δ-weakly regular.
Given a partition V of a finite set V defined by V = V1 ∪· · · · ∪· Vt, a hypergraph H with

V (H) = V is said to be δ-weakly regular with respect to V if H[X,Y, Z]2 is δ-weakly regular
with respect to all but at most δ

(
t
3
)

triples {X,Y, Z} ∈ V(3). We state the straightforward
adaptation of Szemerédi’s graph regularity lemma [32, 33, 54].

▶ Lemma 9 (Weak hypergraph regularity lemma). For every δ = δ9 > 0 and positive integers
s = s9, t = t9, and h = h9 satisfying t ≥ h, there exist positive integers n0 and T = T9
such that the following holds whenever n ≥ n0. Let (H1, . . . ,Hs) be a sequence of n-vertex
hypergraphs, all on the same vertex set, namely V , and let U = U9 be a vertex partition of

2 H[X, Y, Z] is the subgraph of H over X∪· Y ∪· Y whose edge set is {{x, y, z} ∈ E(H) : x ∈ X, y ∈ Y, z ∈ Z}.

APPROX/RANDOM 2024



59:8 Ramsey Properties of Randomly Perturbed Hypergraphs

V given by V = U1 ∪· . . . ∪· Uh. Then, there exists an equitable vertex partition V, given by
V = V1 ∪· V2 ∪· · · · ∪· Vt′ , where t ≤ t′ ≤ T , such that V ≺ U and, moreover, Hi is δ-weakly
regular with respect to V for every i ∈ [s]. ⌟

We proceed to the statement of the Strong hypergraph Regularity Lemma for hyper-
graphs following the formulation seen in [51]. Given a 2-graph G, the relative density of a
hypergraph H with vertex set V (H) = V (G), with respect to G is given by

d(H|G) = |E(H) ∩ K3(G)|
|K3(G)| . (6)

For δ, d > 0 and a positive integer r, a tripartite hypergraph H = (X ∪· Y ∪· Z,EH) is said to
be (δ, d, r)-regular with respect to a tripartite 2-graph P = (X ∪· Y ∪· Z,EP ) if∣∣∣∣∣∣∣ r⋃

i=1
(EH ∩ K3(Qi))

∣∣∣− d
∣∣∣ r⋃

i=1
K3(Qi)

∣∣∣∣∣∣∣ ≤ δ
∣∣K3(P )

∣∣ (7)

holds for every family of, not necessarily disjoint, subgraphs Q1, . . . , Qr ⊆ P satisfying∣∣∣∣ r⋃
i=1

K3(Qi)
∣∣∣∣ ≥ δ

∣∣K3(P )
∣∣ > 0 .

Let V be a finite set and let V be a partition V1 ∪· . . . ∪· Vh of V , where h is some positive
integer. Given an integer ℓ ≥ 1, a partition B of K(2)(V) is said to be ℓ-equitable with respect
to V if it satisfies the following conditions:
(B.1) every B ∈ B satisfies B ⊆ K(2)(Vi, Vj) for some distinct i, j ∈ [h]; and
(B.2) for any distinct i, j ∈ [h], precisely ℓ members of B partition K(2)(Vi, Vj).
We view partitions of K(2)(V) as partitions of V (2) under the agreement3 that the set
{K(2)(Vi) : i ∈ [h]} of complete graphs is added to the former; such an addition of cliques
does not hinder the equitability notion defined in (B.2); it does violate (B.1), but this will
not harm our arguments. Moreover, it is under this agreement that we say that a partition
of V (2) refines a partition of K(2)(V).

For distinct indices i, j ∈ [h], the partition of K(2)(Vi, Vj) induced by B is denoted by

Bij = {Bij
α = (Vi ∪· Vj , E

ij
α ) : α ∈ [ℓ]} .

The triads of B are the tripartite 2-graphs having the form

Bijk
αβγ = (Vi ∪· Vj ∪· Vk, E

ij
α ∪· Eik

β ∪· Ejk
γ ),

where i, j, k ∈ [h] are distinct and α, β, γ ∈ [ℓ]. Recall that a triad is called a (δ, d)-triad
if each of the three bipartite graphs comprising it is (δ, d)-regular. A hypergraph H with
vertex set V (H) = V is said to be (δ, r)-regular with respect to B if∣∣∣∣∣

{ ⋃
1≤i<j<k≤h

α,β,γ∈[ℓ]

K3(Bijk
αβγ) : Hijk is not

(
δ, d(H|Bijk

αβγ), r
)
-regular w.r.t. Bijk

αβγ

}∣∣∣∣∣ ≤ δ|V |3 ,

where Hijk = H[Vi ∪· Vj ∪· Vk]. A formulation of the Strong Lemma [51, Theorem 17] for
hypergraphs, reads as follows.

3 We appeal to this agreement in our proof of Proposition 4 omitted from this account and which can be
found in [7].
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▶ Lemma 10 (Strong hypergraph regularity lemma). For all 0 < δ3 ∈ R, δ2 : N −→ (0, 1],
r : N2 −→ N, and s, t, ℓ ∈ N, there exist n0, T ∈ N such that for every n ≥ n0 and every
sequence of n-vertex hypergraphs (H1, . . . ,Hs), satisfying V = V (H1) = · · · = V (Hs), there
are t′, ℓ′ ∈ N satisfying t ≤ t′ ≤ T and ℓ ≤ ℓ′ ≤ T , a vertex partition V = V1 ∪· · · · ∪· Vt′ ,
namely V, and an ℓ′-equitable partition B with respect to V such that the following properties
hold.
(S.1) |V1| ≤ |V2| ≤ · · · ≤ |Vt′ | ≤ |V1| + 1;
(S.2) for all 1 ≤ i < j ≤ t′ and α ∈ [ℓ′], the bipartite 2-graph Bij

α is (δ2(ℓ′), 1/ℓ′)-regular;
and

(S.3) Hi is (δ3, r(t′, ℓ′))-regular with respect to B for every i ∈ [s]. ⌟

3 Monochromatic expanded cliques

In this section, we prove Theorem 1. The required Ramsey properties of H(3)(n, p) are
collected in Section 3.1; a proof of Theorem 1 can be found in Section 3.2. For an integer
t ≥ 3, the t vertices of K̃(k)

t having their 1-degree strictly larger than one are called the
branch-vertices of K̃(k)

t . Set

v(t) = v(K̃(3)
t ) and e(t) = e(K̃(3)

t ).

3.1 Properties of random hypergraphs
The main goal of this section is to state Proposition 11 which is an adaptation of [20,
Theorem 2.10]. This proposition collects the Ramsey properties of H(3)(n, p) that will be
utilised throughout our proof of Theorem 1.

A k-graph H is said to be balanced if mk(H) = dk(H) holds; if all proper subgraphs F of
H satisfy mk(F ) < mk(H), then H is said to be strictly balanced. It is not hard to verify
that expanded cliques are strictly balanced. In particular,

mk

(
K̃

(k)
t

)
=

(
t
2
)

− 1
t+ (k − 2)

(
t
2
)

− k

holds for any k ≥ 2 and t ≥ 3. In the special case k = 3 we obtain

m3
(
K̃

(k)
t

)
= t2 − t− 2
t2 + t− 6 = 1 − 2t− 4

t2 + t− 6 < 1, (8)

that is, 3-uniformly expanded cliques are sparse. Note that this is in contrast to graph cliques
(on at least 3 vertices) whose 2-density is larger than one. For a simpler notation we set an
integer t ≥ 2

m(t) = m(K̃(3)
t ) and Mt = m3(K̃(3)

t ) .

Similarly for integers t1, t2 ≥ 2 we set

Mt1,t2 = Mt2,t1 = m3
(
K̃

(3)
t1
, K̃

(3)
t2

)
.

Let H1 and H2 be two k-graphs, each with at least one edge and such that mk(H1) ≥
mk(H2). If mk(H1) = mk(H2), then mk(H1, H2) = mk(H1); otherwise mk(H2) <

mk(H1, H2) < mk(H1) holds. The k-graph H1 is said to be strictly balanced with re-
spect to mk(·, H2) if no proper subgraph F ⊊ H1 maximises (2). For instance, it is not hard
to verify that K̃(3)

t is strictly balanced with respect to m3(·, K̃(3)
t/2), assuming t ≥ 4 is even.
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Let F and F ′ be k-graphs and let µ = µ(n) be given. An n-vertex k-graph H is said to be
(F, µ)-Ramsey if H[U ] −→ (F )2 holds for every U ⊆ V (H) is of size |U | ≥ µn. Similarly, H is
said to be (F, F ′, µ)-Ramsey if H[U ] −→ (F, F ′) holds for every U ⊆ V (H) of size |U | ≥ µn.
Given F ⊆

( [n]
v(F )

)
and F ′ ⊆

( [n]
v(F ′)

)
, we say that H is (F, F ′)-Ramsey with respect to (F ,F ′)

if any 2-colouring of E(H) yields a monochromatic copy K of F (in the first colour) with
V (K) /∈ F or a monochromatic copy K ′ of F ′ (in the second colour) with V (K ′) /∈ F ′.

▶ Proposition 11. Let t ≥ 4 be an even integer. The binomial random hypergraph H ∼
H(3)(n, p) a.a.s. satisfies the following properties.
(P.1) There are constants γ11 = γ11(t) and C

(1)
11 = C

(1)
11 (t) such that if F1 ⊆

( [n]
v(t)
)

and
F2 ⊆

( [n]
v(t/2)

)
satisfy |F1| ≤ γ11n

v(t) and |F2| ≤ γ11n
v(t/2), then H is (K̃(3)

t , K̃
(3)
t/2)-

Ramsey with respect to (F1,F2), whenever p = p(n) ≥ C
(1)
11 n

−1/Mt,t/2 .
(P.2) For every fixed µ > 0, there exists a constant C(2)

11 = C
(2)
11 (µ, t) such that H is

(K̃(3)
t−1, µ)-Ramsey, whenever p = p(n) ≥ C

(2)
11 n

−1/Mt−1 .

(P.3) For every fixed µ > 0, there exists a constant C(3)
11 = C

(3)
11 (µ, t) such that H is

(K̃(3)
t , K̃

(3)
t/2, µ)-Ramsey, whenever p = p(n) ≥ C

(3)
11 n

−1/Mt,t/2 .

▶ Remark 12. A straightforward albeit somewhat tedious calculation shows that Mt,t/2 ≥ Mt−1
holds for every even integer t ≥ 4. It thus follows that Properties (P.1) and (P.3) are the most
stringent in terms of the bound these impose on p. Hence, if p = p(n) ≥ max

{
C

(1)
11 , C

(3)
11

}
·

n−1/Mt,t/2 , then a.a.s. H satisfies Properties (P.1), (P.2), and (P.3) simultaneously.

Property (P.1) is modelled after [20, Theorem 2.10(i)]; Properties (P.2) and (P.3) are both
specific instantiations of [20, Theorem 2.10(ii)]. The aforementioned results of [20] handle
2-graphs only. Nevertheless, proofs of Properties (P.1-3) can be attained by straightforwardly
adjusting the proofs of their aforementioned counterparts in [20, Theorem 2.10] so as to
accommodate the transition from 2-graphs to hypergraphs. Theorem 2.10 in [20] requires
that the maximal 2-densities of the two (fixed) configurations would both be at least one; this
can be omitted in our setting. Indeed, this condition is imposed in [20, Theorem 2.10] in order
to handle setting (a) in that theorem where the maximal 2-densities of the two configurations
coincide; by (8), this is not an issue in our case. The fact that K̃(3)

t is strictly balanced with
respect to m3(·, K̃(3)

t/2) is required by setting (b) appearing in [20, Theorem 2.10].

3.2 Proof of Theorem 1

We commence our proof of Theorem 1 with a few observations facilitating our arguments;
proofs of these observations are included for completeness.

▶ Observation 13. Let d ∈ (0, 1], let G = (A ∪· B,E) be a bipartite graph satisfying e(G) ≥
d|A||B|, and let k ≤ d|B|/2 be a positive integer. Then, |{v ∈ A : degG(v) ≥ k}| ≥ d|A|/2.

Proof. Let Ak = {v ∈ A : degG(v) ≥ k} and suppose for a contradiction that |Ak| < d|A|/2.
Then,

e(G) < k|A| + |Ak||B| < d|A||B|/2 + d|A||B|/2 ≤ e(G)

which is clearly a contradiction. ◀
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The next lemma captures the phenomenon of supersaturation (first 4 recorded in [22, 23,
24]) for bipartite graphs; to facilitate future references, we phrase this lemma with the host
graph being bipartite as well.

▶ Lemma 14. For every bipartite graph K and every d ∈ (0, 1), there exists a constant
ζ = ζ14 > 0 and a positive integer n0 such that every n-vertex bipartite graph G = (A∪· B,E)
satisfying n ≥ n0, |A| ≤ |B| ≤ |A| + 1, and e(G) ≥ d|A||B| contains at least ζnv(K) distinct
copies of K.

▶ Observation 15. For every graph K and every d ∈ (0, 1), there exists a constant ξ = ξ15 > 0
and an integer n0 such that the following holds whenever n ≥ n0. If an n-vertex graph G

contains dnv(K) distinct copies of K, then it contains at least ξn pairwise vertex-disjoint
copies of K.

Proof. Any given copy of K meets O
(
nv(K)−1) copies of K. ◀

Proof of Theorem 1. Given d, t, and H as in the premise of Theorem 1, set

0 < d3 ≪ d and 0 < ε ≪ min
{
d

v(t/2)
3 , γ11(t)

}
. (9)

The Tuple Property (Theorem 3) applied with t3 = v(t/2), ε3 = ε, and d
(3)
3 = d3, yields the

existence of a constant

0 < δ3 = δ
(3)
3 (v(t/2), ε, d3) ≪ d3 (10)

as well as the functions

δ̃2(x) = δ
(2)
3 (x, t3, ε, d3, δ3) and r(x) = r3(x, t3, ε, d3, δ3),

where δ̃2 : R −→ (0, 1] and r : N −→ N. Define δ2 : N −→ (0, 1] such that

0 < δ2(x) ≪ min
{
δ̃2(x), d

2v(t/2)
3

v(t/2) · x6·(2v(t/2)+1)

}
(11)

holds for every x ∈ N. Lemma 4, applied with

H1 = · · · = Hs = H, δ
(3)
4 = δ3, δ

(2)
4 = δ2, r4 = r5, ℓ4 ≫ d−1

3 , and t4 ≫ d−1, (12)

yields the existence of constants T4, t̃, ℓ ∈ N satisfying t4 ≤ t̃ ≤ T4 and ℓ4 ≤ ℓ ≤ T4, along
with partitions V = V1 ∪· · · · ∪· V

t̃
= V (H) and (Pij)1≤i<j≤t̃

satisfying Properties (R.1-4). Set
auxiliary constants

d2 = 1/ℓ and η = d
v(t/2)
3 d

2v(t/2)+1
2
2 (13)

and fix

0 < µ ≪ ξ15(ζ14(η/2)) · d3+2v(t/2)
3 · d10+4v(t/2)

2
v(t/2)2 · T4

. (14)

4 Rademacher (1941, unpublished) was first to prove that every n-vertex graph with ⌊n2/4⌋ + 1 edges
contains at least ⌊n/2⌋ triangles
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We claim that there exist three distinct clusters X,Y, Z ∈ V along with a (δ2(ℓ), d2)-triad
P = P ijk

αβγ , with i, j, k, α, β, γ appropriately defined, satisfying V (P ) = X ∪· Y ∪· Z such that
H[X ∪· Y ∪· Z] is δ2(ℓ)-weakly-regular and, moreover, H[X ∪· Y ∪· Z] is (δ3, d3, r)-regular with
respect to P . To see this, note first that at most t̃

(⌈n/̃t⌉
3
)

≤ n3

t̃2 ≪ dn3 edges of H reside
within the members of V , where the last inequality relies on t̃ ≥ t4 ≫ d−1, supported by (12).
Second, by Property (R.3), the number of edges of H captured within δ2(ℓ)-weakly-irregular
triples (Vi, Vj , Vk), where i, j, k ∈ [t̃], is at most δ2(ℓ) · t̃3 ·

(
n

t̃
+ 1
)3

≤ 2δ2(ℓ)n3 ≪ dn3, where
the last inequality holds by (9) and (11). Third, by Property (R.4), the number of edges
of H residing6 in (δ3, d(H|P ijk

αβγ), r)-irregular triads P ijk
αβγ is at most δ3n

3 ≪ dn3, where the
last inequality holds by (9) and (10). Fourth and lastly, it follows by the Triangle Counting
Lemma (Lemma 5) and by (6), that the number of edges of H found in (δ2(ℓ), d2)-triads
P ijk

αβγ , where i, j, k ∈ [t̃] and α, β, γ ∈ [ℓ], satisfying d(H|P ijk
αβγ) < d3 is at most

t̃3ℓ3d3
(
d3

2 + 4δ2(ℓ)
)(n

t̃
+ 1
)3

≤ 2d3
(
ℓ3d3

2 + 4ℓ3δ2(ℓ)
)
n3 (13)= (2 + 8ℓ3δ2(ℓ))d3n

3 ≪ dn3,

where the last inequality holds by (9) and (11).
It follows that at least dn3/2 edges of H are captured in (δ2(ℓ), d2)-triads with respect

to which H is (δ3, d3, r)-regular and such that H is δ2(ℓ)-weakly-regular with respect to the
three members of V defining the vertex-sets of these triads. The existence of X,Y, Z ∈ V and
P as defined above is then established. Throughout the remainder of the proof, we identify
H with H[X ∪· Y ∪· Z].

Let F ⊆
(

X
v(t/2)

)
be the family of all sets {x1, . . . , xv(t/2)} ⊆ X satisfying∣∣∣∣∣∣

⋂
j∈[v(t/2)]

LH(xj , P )

∣∣∣∣∣∣ <
(
d

v(t/2)
3 − ε

)
d

2v(t/2)+1
2 |Y ||Z|. (15)

Then,

|F| ≤ ε|X|v(t/2) (9)
≪ γ11(t)|X|v(t/2)

holds by (3). This application of the Tuple Lemma is supported by our choice ℓ4 ≫ d−1
3 ,

seen in (12), ensuring that d2 ≪ d3 holds and thus fitting the quantification of the Tuple
Lemma. With foresight (see (C.1) and (C.2) below), let

C = max
{
C

(1)
11 (t), C(2)

11 (µ, t), C(3)
11 (µ, t)

}
· t̃1/Mt,t/2

and put

p = p(n) = C max
{
n−1/Mt,t/2 , n−1/Mt−1

}
= Cn−1/Mt,t/2 ;

for the last equality consult Remark 12. Proposition 11 then asserts that the following
properties are all satisfied simultaneously a.a.s. whenever R ∼ H(3)(n, p); in the following
list of properties, whenever an asymmetric Ramsey property is stated, the first colour is
assumed to be red and the second colour is assumed to be blue.

6 Supported by triangles of such triads.
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(C.1) R[X] is (K̃(3)
t , K̃

(3)
t/2)-Ramsey with respect to (∅,F);

(C.2) R[X] is (K̃(3)
t/2, K̃

(3)
t )-Ramsey with respect to (F ,∅);

(C.3) R is (K̃(3)
t−1, µ)-Ramsey;

(C.4) R is (K̃(3)
t , K̃

(3)
t/2, µ)-Ramsey;

(C.5) R is (K̃(3)
t/2, K̃

(3)
t , µ)-Ramsey.

Fix R ∼ H(3)(n, p) satisfying Properties (C.1-5) and set Γ = H ∪R.
Let ψ be a red/blue colouring of E(Γ) and suppose for a contradiction that ψ does not

yield any monochromatic copy of K̃(3)
t . For every v ∈ V (H), let L(r)

H (v) denote the red link
graph of v in H under ψ, that is, L(r)

H (v) is a spanning subgraph of LH(v) consisting of the
edges of LH(v) that together with v yield a red edge of H under ψ. Similarly, let L(b)

H (v)
denote the blue link graph of v in H under ψ. Note that, for any fixed vertex v, these two
link subgraphs are edge-disjoint.

We say that blue (respectively, red) is a majority colour of ψ in H if |{e ∈ E(H) :
ψ(e) is blue}| ≥ |{e ∈ E(H) : ψ(e) is red}| (respectively, |{e ∈ E(H) : ψ(e) is red}| ≥ |{e ∈
E(H) : ψ(e) is blue}|).

▷ Claim 16. If blue is a majority colour of ψ in H, then e
(
L

(r)
H (v)

)
≤ η

2v(t/2) · |Y ||Z| holds
for every v ∈ X.

Proof. Suppose for a contradiction that there exists a vertex v ∈ X which violates the assertion
of the claim. The Triangle Counting Lemma (Lemma 5) coupled with the assumption of
H being (δ3, d3, r)-regular with respect to the (δ2(ℓ), d2)-triad P (take Q1 = · · · = Qr = P

in (7)) collectively yield

e(H) ≥ (d3 − δ3)|K3(P )|
(4)
≥ (d3 − δ3)

(
d3

2 − 4δ2(ℓ)
)

|X||Y ||Z|

≥
(
d3d

3
2 − δ3d

3
2 − 4d3δ2(ℓ)

)
|X||Y ||Z|

≥ d3d
3
2

2 |X||Y ||Z|, (16)

where the last inequality is owing to δ3 ≪ d3 and δ2(ℓ) ≪ d3
2 supported by (10) and (11),

respectively. Blue being the majority colour implies that at least d3d3
2

4 |X||Y ||Z| of the edges
of H are blue and thus there exists a vertex u ∈ Z satisfying e

(
L

(b)
H (u)

)
≥ d3d3

2
4 |X||Y |; note

that L(b)
H (u) ⊆ X × Y . Set

Av =
{
z ∈ Z : deg

L
(r)
H

(v)(z) ≥ t
}

⊆ Z and Au =
{
x ∈ X : deg

L
(b)
H

(u)(x) ≥ t
}

⊆ X.

Then,

|Av| ≥ η

4v(t/2) |Z|
(11)
≥ δ2(ℓ)|Z| and |Au| ≥ d3d

3
2

8 |X|
(11)
≥ δ2(ℓ)|X| (17)

both hold by Observation 13. Since H is δ2(ℓ)-weakly-regular, it follows that

eH(Au, Y, Av)
(16)
≥
(
d3d

3
2

2

)
· |Au||Y ||Av| − δ2(ℓ)|X||Y |Z|

(17)
≥
(
d3d

3
2

2

)
·
(

η

4v(t/2)

)
·
(
d3d

3
2

8

)
|X||Y ||Z| − δ2(ℓ)|X||Y |Z|
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=
(

d2
3d

6
2η

64v(t/2) − δ2(ℓ)
)

· |X||Y ||Z|

(11)
≥
(

d2
3d

6
2η

65v(t/2)

)
· |X||Y ||Z|. (18)

If red is a majority colour seen along EH(Au, Y, Av), then there exists a vertex v′ ∈ Av ⊆ Z

satisfying∣∣∣E (L(r)
H (v′)

)
∩ (Au × Y )

∣∣∣ (18)
≥
(

d2
3d

6
2η

130v(t/2)

)
|X||Y | ≥

(
d2

3d
6
2η

130v(t/2)

)
|Au||Y |.

Consequently, the set

Au,v′ =
{
x ∈ Au : deg

L
(r)
H

(v′)(x) ≥ t
}

⊆ Au ⊆ X

satisfies

|Au,v′ | ≥
(

d2
3d

6
2η

260v(t/2)

)
|Au|

(17)
≥
(

d2
3d

6
2η

260v(t/2)

)
·
(
d3d

3
2

8

)
|X|

≥
(

d3
3d

9
2η

2100v(t/2)

)
·
⌊
n

t̃

⌋
(14)
≥ µn,

where the first inequality holds by Observation 13. We may then write that Γ[Au,v′ ] −→
(K̃(3)

t−1)2 owing to R being (K̃(3)
t−1, µ)-Ramsey, by Property (C.3). Let K be a copy of

K̃
(3)
t−1 appearing monochromatically under ψ within Γ[Au,v′ ]. Let x1, . . . , xt−1 denote the

branch vertices of K. It follows by the definition of Au,v′ that there are distinct vertices
y1, . . . , yt−1 ∈ Y such that {xi, yi, v

′} is a red edge of H for every i ∈ [t− 1]. Similarly, since
Au,v′ ⊆ Au, there are distinct vertices y′

1, . . . , y
′
t−1 ∈ Y such that {xi, y

′
i, u} is a blue edge

of H for every i ∈ [t − 1]. Therefore, if K is red, then it can be extended into a red copy
of K̃(3)

t including v′; if, on the other hand, K is blue, then it can be extended into a blue
copy of K̃(3)

t including u. In either case, a contradiction to the assumption that ψ admits no
monochromatic copies of K̃(3)

t is reached.
It remains to consider the complementary case where blue is a majority colour in

EH(Au, Y, Av). The argument in this case parallels that seen in the previous one with the
sole cardinal difference being that instead of finding a monochromatic copy of K̃(3)

t−1 in a
subset of Au ⊆ X, such a copy is found in a subset of Av ⊆ Z. An argument for this case is
provided for completeness. If blue is a majority colour seen along EH(Au, Y, Av), then there
exists a vertex u′ ∈ Au ⊆ X satisfying∣∣∣E (L(b)

H (u′)
)

∩ (Y ×Av)
∣∣∣ (18)

≥
(

d2
3d

6
2η

130v(t/2)

)
|Y ||Z| ≥

(
d2

3d
6
2η

130v(t/2)

)
|Y ||Av|.

Consequently, the set

Av,u′ =
{
z ∈ Av : deg

L
(b)
H

(u′)(z) ≥ t
}

⊆ Av ⊆ Z

satisfies

|Av,u′ | ≥
(

d2
3d

6
2η

260v(t/2)

)
|Av|
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(17)
≥
(

d2
3d

6
2η

260v(t/2)

)
·
(

η

4v(t/2)

)
|Z|

≥
(

d2
3d

6
2η

2

1100v(t/2)2

)
·
⌊
n

t̃

⌋
(14)
≥ µn,

where the first inequality holds by Observation 13. Then, Γ[Av,u′ ] −→ (K̃(3)
t−1)2 owing to R

being (K̃(3)
t−1, µ)-Ramsey, by Property (C.3). A monochromatic copy of K̃(3)

t−1 appearing in
Γ[Av,u′ ] can be either extended into a red copy of K̃(3)

t including the vertex v or into a blue
such copy including u′. In either case, a contradiction to the assumption that ψ admits no
monochromatic copy of K̃(3)

t is reached. ◁

The following counterpart of Claim 16 holds as well.

▷ Claim 17. If red is a majority colour of ψ in H, then e
(
L

(b)
H (v)

)
≤ η

2v(t/2) · |Y ||Z| holds
for every v ∈ X.

Proceeding with the proof of Theorem 1, assume first that blue is a majority colour
of ψ in H. By Property (C.1), either there is a red copy of K̃(3)

t (within X) or there is
a blue copy of K̃(3)

t/2 within X not supported on F . If the former occurs, then the proof
concludes. Assume then that K ⊆ Γ[X] is a blue copy of K̃(3)

t/2 such that V (K) /∈ F , and
write LH(K,P ) =

⋂
x∈V (K) LH(x, P ) to denote the joint link graph of the members of V (K)

supported on P . Then,

e(LH(K,P )) ≥
(
d

v(t/2)
3 − ε

)
d

2v(t/2)+1
2 |Y ||Z|,

holds by (15). Remove E(L(r)
H (x)) from E(LH(K,P )) for every x ∈ V (K); that is, remove

any edge in LH(K,P ) that together with a vertex of K gives rise to a red edge of H with
respect to ψ. By Claim 16, at most∑

x∈V (K)

e
(
L

(r)
H (x)

)
≤ v(t/2) · η

2v(t/2) |Y ||Z| = η

2 |Y ||Z|

edges are thus discarded from LH(K,P ), leaving at least

[(
d

v(t/2)
3 − ε

)
d

2v(t/2)+1
2 − η

2

]
|Y ||Z|

(9)
≥

(
d

v(t/2)
3 d

2v(t/2)+1
2
2 − η

2

)
|Y ||Z|

(13)=
(
η − η

2

)
|Y ||Z|

= η

2 |Y ||Z|

edges in the residual joint link graph of K, denoted L′
H(K,P ). It follows by Lemma 14 and

Observation 15 that L′
H(K,P ) contains at least

ξ15(ζ14(η/2))2n
T4

(14)
≥ µn

vertex-disjoint copies of the bipartite graph K1,t/2. Let S ⊆ V (L′
H(K,P )) consist of the

centre-vertices of all said copies of K1,t/2. Property (C.4) coupled with |S| ≥ µn collectively
assert that Γ[S] −→ (K̃(3)

t , K̃
(3)
t/2). If the first alternative occurs, then there is a red copy
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of K̃(3)
t and thus the proof concludes. Suppose then that the second alternative takes

place so that a blue copy K ′ of K̃(3)
t/2 arises in Γ[S]. Let u1, . . . , ut/2 denote the branch-

vertices of K ′ and let x1, . . . , xt/2 denote the branch-vertices of K. It follows by the
definitions of L′

H(K,P ) and S that there are t2/4 distinct vertices {wij : i, j ∈ [t/2]} ⊆
V (L′

H(K,P ))∖ {u1, . . . , ut/2, x1, . . . , xt/2} such that {ui, xj , wij} forms a blue edge of H for
every i, j ∈ [t/2]. We conclude that Γ admits a copy of K̃(3)

t which is blue under ψ.
Next, assume that red is a majority colour seen for ψ in H. Replacing the appeals to

Claim 16, Properties (C.1) and (C.4) in the argument above with appeals to Claim 17 and
Properties (C.2), and (C.5), respectively, leads to the rise of a monochromatic copy of K̃(3)

t

in Γ under ψ in this case as well. ◀
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