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Abstract
In this paper, we study the problem of locally constructing a sparse spanning subgraph (LSSG),
introduced by Levi, Ron, and Rubinfeld (ALGO’20). In this problem, the goal is to locally decide
for each e ∈ E if it is in G′ where G′ is a connected subgraph of G (determined only by G and the
randomness of the algorithm). We provide an LSSG that receives as a parameter a lower bound,
ϕ, on the conductance of G whose query complexity is Õ(

√
n/ϕ2). This is almost optimal when ϕ

is a constant since Ω(
√
n) queries are necessary even when G is an expander. Furthermore, this

improves the state of the art of Õ(n2/3) queries for ϕ = Ω(1/n1/12).
We then extend our result for (k, ϕin, ϕout)-clusterable graphs and provide an algorithm whose

query complexity is Õ(
√
n + ϕoutn) for constant k and ϕin. This bound is almost optimal when

ϕout = O(1/
√
n).
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1 Introduction

When dealing with huge graphs, several practical constraints arise: (i) Memory Limitations:
It is often impractical or infeasible to store the entire graph in the local memory of a
processing unit. (ii) Algorithmic Efficiency: Due to the graph’s size, running linear-time
(or even slower) algorithms becomes challenging. (iii) Parallel Computation: Relying on a
single processing unit for computations can be inefficient. The Centralized Local model,
also called Locally Computable Algorithms (LCA), was introduced by Rubinfeld et al. [27]
to address these challenges. This model treats the input graph as if it is stored in a
(likely distributed) database. External processing units can query this database to perform
computations efficiently. The system prohibits shared memory or communication between
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querying processes to reduce coordination overhead. Instead, shared randomness accompanies
input access. The approach involves running sublinear-time algorithms to extract global
graph properties or locally examining the input graph as needed by applications.

One of the problems studied in this model is locally constructing a sparse spanning
subgraph of a connected input graph. It was introduced and formalized by Levi, Ron, and
Rubinfeld [17] as follows.

▶ Definition 1 ([17]). An algorithm A is a Local Sparse Spanning Graph (LSSG) algorithm
if, given n ≥ 1, ε > 0, a sequence of random bits r ∈ {0, 1}∗ and query access to the
incidence-lists representation of a connected graph G = (V,E) over n vertices, 1 it provides
oracle access to a subgraph G′ = (V,E′) of G such that:
(1) G′ is connected, and
(2) |E′| ≤ (1 + ε) · n with probability at least 1 − 1/Ω(n), where E′ is determined by G and

r. 2 3

As observed in [17], if we insist that G′ should have the minimum number of edges
sufficient to span G, namely, that G′ be a spanning tree, then the task cannot be performed
by an LCA in general without inspecting almost all of G. On the other hand, even under the
above relaxation, [17] showed that this task requires Ω(

√
n) queries. 4 They complimented

this negative result with an almost tight upper bound that works under the promise that the
input graph expands extremely fast. In particular, their algorithm is tight when the growth
rate of their graph is Ω(d) for small sets (of size roughly

√
n), where d is the maximum vertex

degree. In fact, their result achieves a sublinear query complexity only when the growth rate
(on small sets) is at least d1/2+1/ log n. 5 This raises the question whether it is possible to
obtain a similar result also for graphs whose growth rate is just a small constant? (which, in
particular, may not depend on d). Namely, for graphs, which are just good expanders. We
answer this question affirmatively by showing almost tight results for expanders. Moreover,
our upper bound works for general graphs and receives as a parameter a lower bound on the
conductance of the graph, defined as follows.

▶ Definition 2 (Graph Conductance). Let G = (V,E) be an undirected graph with maximum
vertex degree d. Let S ⊆ V denote a nonempty subset of V , then the conductance of S w.r.t.
G is ϕG(S) def= e(S,V \S)

d|S| , where e(A,B) def= |{{a, b} ∈ E | a ∈ A, b ∈ B}|, for A,B ⊆ V . The
conductance of G, ϕ(G) is then defined as

ϕ(G) def= min
S⊆V

|S|≤|V |/2

ϕG(S) . (1)

To explain why conductance comes into play in our algorithm, we first describe a common
paradigm for constructing sparse spanning subgraphs and spanners. In many cases, the
paradigm is to select a random set of vertices, also referred to as centers, and to partition the
vertices of the graphs into Voronoi cells according to this selection of centers. Usually, it is
easy to span the Voronoi cells (assuming the centers are selected u.a.r.), and the challenging

1 Namely, the algorithm can query each vertex v ∈ V and an index i, who is the ith neighbor of v (where
if v has less than i neighbors, then a special symbol is returned, e.g., “no neighbor”).

2 E′ is determined only by G and r and not from, e.g., the queries made to the oracle or their order.
3 We say that an event occurs with high probability (w.h.p) if it occurs with probability at least 1−1/Ω(n).
4 One way to show this is by reducing the problem of testing cycle-freeness to the LSSG problem.
5 To illustrate this drawback, note that even for d = 5 and growth rate = 2 their algorithm is not

guaranteed to be sublinear.
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part is to preserve the connectivity between Voronoi cells. This is also the approach taken
by [17] (and generalized in [12, 23, 2]). To bypass the challenging part of connecting the
Voronoi cells, we aim to choose centers that are initially connected and distributed nearly
uniformly. To this end, we select the centers by performing random walks from a single
vertex and taking the endpoints of these walks to be the set of centers. We set the length of
the random walks to be at least the mixing time of the graph, which, in turn, depends on
the conductance of the graph, so the selected centers are distributed almost uniformly. We
then add the edges traversed by the random walks to our constructed subgraph, so it only
remains to span the Voronoi cells (which can be done efficiently, assuming the centers are
distributed almost uniformly).

Since every graph can be partitioned into expanders (see, e.g., [22]), one may wonder if
this approach can be extended to work in general graphs. To make this question concrete,
consider an input graph composed of two expanders (of equal size) connected with a single
edge between them. While the inner conductance of each expander is high, the overall
conductance of the graph is O(1/n), and consequently, the mixing time of the graph is high.
So, the question that might come to mind is whether it is possible to extend the approach
mentioned above so the length of the random walks will depend on the inner-conductance
of the expanders (which is a constant) and not on the conductance of the entire graph.
This question becomes more interesting as the connectivity between the expanders, which is
referred to as the outer-conductance of the expanders, grows but not to the extent in which
the overall conductance is high. We show that our approach can be extended to support a
wide range of inner-conductance and outer-conductance. More specifically, we extend our
result to clusterable graphs as defined in the work of Gharan and Trevisan [9] and Czumaj,
Peng, and Sohler [6].

▶ Definition 3 (Graph Clusterability. Based by [6]). Let G = (V,E) be an undirected graph
with maximum degree d. Let n def= |V |. For any S ⊆ V , let G[S] be the induced subgraph
of G on the vertex set S. We say that a graph G is (k, ϕ)-clusterable, where k ∈ {1, . . . , n},
ϕ ∈ [0, 1], if there exists a partition of V into h sets C1, . . . , Ch s.t. 1 ≤ h ≤ k, and that
for each i ∈ {1, . . . , h} it holds that ϕ(G[Ci]) ≥ ϕ. We refer to each Ci as a ϕ-cluster and
the corresponding partition to h clusters as an (h, ϕ)-clustering. Similarly, We say that a
graph G is (k, ϕin, ϕout)-clusterable, if for each i ∈ {1, . . . , h} it holds that ϕ(G[Ci]) ≥ ϕin
and ϕG(Ci) ≤ ϕout. We refer to each Ci as a (ϕin, ϕout)-cluster. 6

Aside from connectivity, another desirable property of G′ is that it will preserve the
pairwise distances between vertices. In particular, we say that the subgraph G′ is an α-
spanner of G if for every u, v ∈ V , distG′(u, v) ≤ α · distG(u, v) where distG′(u, v) and
distG(u, v) denote the length of the shortest path from u to v in G′ and G, respectively. We
refer to α as the stretch factor of the spanner G′.

In the next section, we state the performances of our upper bounds in terms of their
query complexity, the number of random bits they use, and the stretch factor of the obtained
spanning subgraph, G′.

1.1 Our Results
Our first result is an LSSG that receives as a parameter a lower bound, ϕ, on the conductance
of the graph, whose query complexity is Õ(

√
n/ϕ2) for constant d, as stated next.

6 Note that requiring ϕ > 0 implies that each induced cluster of G is also connected.

APPROX/RANDOM 2024
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▶ Theorem 4. There is an LSSG algorithm that given query access to a connected graph
G = (V,E) and a lower bound ϕ on ϕ(G), provides access to G′ = (V,E′) such that the
following holds. (1) The graph G′ is a connected subgraph of G and with high probability
|E′| = n + O

( √
n log2 n

ϕ2

)
. Moreover, the stretch factor of G′ is O

(
log n

ϕ2

)
. (2) The query

complexity of the algorithm is O
(√

n ·
(

log2 n
ϕ2 + d2

))
, and (3) the number of random bits it

uses is O
(

log d·log2 n
ϕ2

)
, where d is a bound on the maximum degree of G.

Therefore, for constant ϕ and constant d this upper bound is tight, up to polylogar-
ithmic factors in n. Moreover, it improves the state-of-the-art upper bound for general
bounded-degree graph of Õ(n2/3) queries by Lenzen and Levi [12] if and only if ϕ > n−1/12.
Consequently, we may assume that ϕ > n−1/12 throughout this paper. As a result, we obtain
that |E′| = n+ o(n), which makes G′ an ultra-sparse spanner of stretch O(logn/ϕ2).

Our next main result is stated in the next theorem.

▶ Theorem 5. There is an LSSG algorithm that given query access to a connected (k, ϕin, ϕout)-
clusterable graph G = (V,E), where each cluster is of size at least β · n, provides access to
G′ = (V,E′) such that the following holds. (1) The graph G′ is a connected subgraph of G and
with high probability |E′| ≤ n(1 + ε). Moreover, the stretch factor of G′ is Θ

(
log n
ϕ2

in

)
. (2) The

query complexity of the algorithm is O
(
log2 n · (βϕout)−1 + n log2 n · k3d3ϕout(εϕin)−1)

, and
(3) the number of random bits it uses is O

(
log d·log2 n

ϕ2
in

)
, where d is a bound on the maximum

degree of G.

For instances where ϕin, k, β, ε, and d are constants, we obtain the following corollary.

▶ Corollary 6. There is an LSSG algorithm that given query access to a connected
(Θ(1),Θ(1), ϕout)-clusterable graph G = (V,E), where each cluster is of size at least β · n,
provides access to G′ = (V,E′) such that the following holds. (1) The graph G′ is a connected
subgraph of G and with high probability |E′| ≤ n(1 + ε). Moreover, the stretch factor of G′ is
Θ(logn). (2) The query and time complexity of the algorithm is Õ(

√
n+ ϕoutn), and (3) the

number of random bits it uses is O(log2 n).

Namely, our algorithm is nearly tight in this case as long as ϕout = O(1/
√
n) and improves

over the state-of-the-art for ϕout = O(1/n1/3).

1.2 Overview of Our Algorithms
1.2.1 The case of a single cluster
We begin by describing our algorithm for k = 1 for the case where the graph is rapidly mixing,
namely, that its mixing time, τ , is O(logn). We first describe the algorithm from a global
point of view. The algorithm picks an arbitrary vertex as a primary-center. It then performs
Θ̃(

√
n) lazy random walks of length τ from that center, where τ denotes the mixing time of

the graph. The end-vertex of each one of these walks is added to the set of secondary centers.
The edges traversed by these random walks are added to E′. Consequently, there is a path of
length at most 2τ between every pair of secondary centers. In the second step, the graph’s
vertex set is partitioned into Voronoi-cells with respect to the selected secondary centers.
Namely, each vertex joins the cell of its closest secondary center (breaking ties by ids). A
spanning tree of each Voronoi-cell is then added to the spanner. The specific spanning tree
added is rooted at the secondary center, where the path from each vertex to the root has the
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least lexicographical order. As shown by [17], it is possible to reconstruct the edges incident
to a vertex v in this tree at the same cost as performing the BFS exploration to find the
secondary center of v. The resulting subgraph clearly spans the graph: for a pair of vertices
u and v in the same Voronoi cell, there is a path between u and the respective secondary
center of the cell and likewise for v; If u and v are not in the same Voronoi cell, then their
secondary centers are connected to the primary-center by paths of length at most τ . Thus
the stretch-factor of the spanner is O(τ + ℓ) where ℓ is an upper bound on the diameter of
the Voronoi-cells, which is bounded by O(logn/ϕ2).

The local implementation proceeds as follows. On query {u, v}, the local algorithm
simulates the first step of the global algorithm and returns YES if {u, v} is an edge traversed
by one of the random walks performed by the algorithm. Otherwise, it performs a BFS, layer
by layer (that is, it reveals an entire layer in each step) from u until it finds the secondary
center of u, likewise for v. If the centers of u and v are different, then the algorithm returns
NO. Otherwise, it returns YES iff {u, v} is an edge of the tree selected to span the Voronoi-cell
of u and v (as described above).

The query and time complexity of performing the first step of the local algorithm is
clearly Õ(

√
n · τ). For the second step, since the length of the random walks performed

in the first step is τ , the Θ(
√
n) secondary centers are distributed almost uniformly in the

graph. Therefore, with high probability, each vertex in the graph sees a secondary center
after exploring Õ(

√
n) vertices. If this is not the case, we can afford to add all the edges

incident to v to E′ without harming the sparsity of G′ while preserving the connectivity
of G′.

1.3 The case of k-clusterable graphs
We next describe our algorithm for k-clusterable graphs for the case that the mixing time of
each cluster is O(logn), namely, that ϕin is a constant, and ϕout is O(1/

√
n). The first phase

of the algorithm is similar to the algorithm for a single cluster. The only difference is that we
start with Θ(logn) primary-centers (chosen uniformly at random) rather than a single one.
Thus, with high probability we hit every cluster with at least one primary-center. Therefore,
after the first phase, our spanner consists of edges of Θ̃(

√
n) random walks, traversed from

each one of the primary centers, and the edges of the spanning trees of the Voronoi-cells
which are constructed with respect to the set of secondary centers (which are now originated
from several primary centers). Let us call the set of secondary centers originating from the
same primary-center and their respective Voronoi-cells an artificial-cluster. Clearly, after the
first step of the algorithm, the spanner spans each of the artificial clusters (from the same
reasoning as above). Our goal is to ensure that every pair of artificial-clusters with an edge
in their cut in the original graph will have an edge in their cut in the spanner. To this end,
we sample u.a.r. a set of Θ(logn/ϵ) edges and add these edges to the spanner. Let us denote
this set of edges by T . For every pair of artificial-clusters whose cut does not intersect the
set T , we add all the edges in their cut to the spanner. The rationale is that if the respective
cut is large, it will intersect T ; otherwise, we can afford to add its edges to the spanner.

The analysis. The challenging part in analyzing this algorithm is to show that the secondary
centers are distributed (almost) uniformly in each one of the clusters. This is crucial for
proving that the query complexity remains Õ(

√
n). More specifically, this is crucial for

claiming that with high probability, each vertex sees a secondary center after exploring
Õ(

√
n) vertices. This is where the requirement on the outer-conductance of each cluster

comes into play. We show that if the outer-conductance is O(1/
√
n) then for a constant

APPROX/RANDOM 2024
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fraction of the vertices in the cluster, v, the end-vertex of a random walk from v of length
O(logn) is likely to be any vertex in the cluster w.p. at least Ω(1/n) except for a small set
of vertices of size O(

√
n). This is sufficient to upper bound the query complexity of the BFS

exploration to find the center.

1.4 Related Work

1.4.1 LSSG Algorithms
The problem of finding a sparse spanning subgraph in the Centralized Local model was first
studied in [16, 17], where the authors show a lower bound of Ω(

√
n) queries for constant ε

and ∆ (see also survey by Rubinfeld [26]). They also present an upper bound with nearly
tight query complexity for graphs with very good expansion properties.

In [17], the authors also provide an efficient algorithm for minor-free graphs that was later
improved in [19]. The algorithm presented in [19] achieves a polynomial query complexity in
∆ and 1/ε and is independent of n. The stretch factor of this algorithm is also independent
of n and depends only on ∆, 1/ε, and the size of the excluded minor h. A more general
family of graphs, hyperfinite graphs, is studied in [14]. They show an upper bound (which
builds on an algorithm in [17]) that has a query complexity that is independent of n (however,
super-exponential in 1/ε). Informally, both minor-free graphs and hyperfinite graphs are
families of graphs that are, roughly speaking, sufficiently non-expanding everywhere. On
the other hand, they show that, for a family of graphs with expansion properties that are
slightly better, any local algorithm must have a query complexity that depends on n.

The first LSSG algorithm for general (bounded degree) graphs was introduced in [12],
presenting a query complexity of Õ(n2/3 · poly(1/ε, d)) and a stretch factor of O(log2 n ·
poly(d/ε)). Recently, Bodwin and Fleischmann [4] introduced an Adjacency Oracle for a
Spanning Subgraph of (1 + ε)n edges for general (non-bounded degree) graphs that works in
Õ(n/ε) time, hence sublinear in the number of edges on a dense graph. Adjacency Oracles
are closely related to LCA, except that Adjacency Oracles are allowed to perform a centralized
pre-processing but demand a query time of Õ(1). Their Adjacency Oracle implies an LSSG
algorithm for general (non-bounded degree) graphs in Õ(n) time, which works by constructing
an Adjacency Oracle and uses it once for each query.

For more related work on LCAs for spanners, graph clustering, and LCAs for other graph
problems, see Appendix A.

2 Preliminaries

In this section, we describe our main technical tools. Omitted proofs appear in Appendix B.

Notation. Throughout this paper, we consider a bounded degree (undirected) simple
graph G = (V,E), where V = [n] and its maximum degree is d = maxv∈V dG(v), where dG(v)
denotes the degree of v w.r.t. the graph G. The identifier (ID in short) of a vertex v ∈ V is
simply v. For each A ⊆ V , we define NG(A) to be the number of neighbors of A outside of
A in G, i.e., NG(A) def= |{v ∈ V \ A | {u, v} ∈ E, u ∈ A}|. When the graph G is clear from
the context, we omit the subscript G. For a vertex v, we call the set of vertices of distance
at most ℓ from v the ℓ-ball around v. Let Γh(v) denote the minimum size ball around v that
contains at least h vertices. Since the maximum degree of the graph is bounded by d, it
holds that h ≤ |Γh(v)| ≤ (h− 1)d.
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The total order over the vertices induces a total order (ranking) ρ over the edges of
the graph in the following straightforward manner: for any {u, v}, {u′, v′} ∈ E, ρ({u, v}) <
ρ({u′, v′}) if and only if min{u, v} < min{u′, v′} or min{u, v} = min{u′, v′} and max{u, v} <
max{u′, v′}. The total order over the vertices also induces an order over those vertices visited
by a Breadth First Search (BFS) starting from any given vertex v, and whenever we refer to
a BFS, we mean that it is performed according to this order. Instead of writing log2(·), we
use log(·). We use Õ for Õ(x) = O(x) · poly(log x).

2.1 Mixing-Time of Regular Graphs
Let G = (V,E) be an undirected and d-regular graph (where self-loops and multiple edges are
allowed). The Adjacency Matrix of G, denoted by A(G) is real and symmetric and so it has n
real eigenvalues λ1 ≥ λ2 . . . ,≥ λn where λ1 = d and λ1 > λ2 iff G is connected. A d-regular
graph on n vertices is called an (n, d, α)-graph if |λ2|, |λn| ≤ αd. Define λ(G) = max(|λ2|, |λn|)
and α(G) = λ(G)/d. Thus, every d-regular graph on n vertices is an (n, d, α(G))-graph.
Let Â(G) = 1

dA(G) denote the normalized adjacency matrix of G. Note that Âtp⃗ is the
distribution on the vertices resulting from random walks of length t w.r.t. the initial vertex
distribution p⃗. We shall use the following (folklore; see, e.g., [11, 10]) theorem and lemmas.

▶ Theorem 7. Let G be an (n, d, α)-graph with the normalized adjacency matrix Â. Then
for any distribution vector p⃗ and any positive integer t: ∥Âtp⃗ − u⃗∥1 ≤

√
n · αt , where u⃗

denotes the uniform distribution vector, i.e., u⃗ def= 1
n · 1⃗.

One can obtain from Theorem 7 an upper bound, t, such that random walks of length at
least t (independent of the initial vertex distribution) yield a distribution on the vertices
that is almost uniform. We denote this upper bound by τ(G) and refer to it as the mixing
time of G. When the graph G is evident from the context, we denote the mixing time by τ .

▶ Corollary 8. Let G be an (n, d, α)-graph with the normalized adjacency matrix Â. For
any τ ≥ log(2n3/2)

log(1/α) and for any distribution vector p⃗ it holds that (Âτ p⃗)i ∈
[ 1

2n ,
3

2n

]
, for every

i ∈ [n].

2.2 Mixing-Time of General Bounded Degree Graphs
Given a d-bounded degree graph G = (V,E), we would like to relate its mixing time to
ϕ(G). For this purpose, we define (G)2d

reg = (V,R) where R contains all the edges in E and
self-loops. In particular we add 2d− dG(v) self-loops to each vertex v ∈ V . Thus, (G)2d

reg is a
2d-regular graph. When d is clear from the context, we use (G)reg to denote (G)2d

reg.
We shall use the following classical results to relate ϕ(G) and the mixing-time of (G)reg.

▶ Theorem 9 (Perron-Frobenius, Symmetric Case (see e.g., [30])). Let G be a connected
(weighted) graph. Let A(G) be its adjacency matrix, and let λ1 ≥ λ2 ≥ · · · ≥ λn be its
eigenvalues. Then,
(1) λ1 has a strictly positive eigenvector,
(2) λ1 ≥ −λn, and
(3) λ1 > λ2.

▶ Lemma 10 (Cheeger’s Inequality [5]). Let G be a d-regular graph with eigenvalues λ1 ≥
λ2 . . . ,≥ λn. Then, d−λ2

2d ≤ ϕ(G) ≤
√

2d(d−λ2)
d .

We first prove (following [29, P. 106]) that the maximum eigenvalue in absolute value of
A((G)reg) is λ2.

APPROX/RANDOM 2024
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▷ Claim 11. Let G be a connected, d-bounded degree graph. Let {λi}i denote the eigenvalues
of A((G)reg), then max(|λ2|, |λn|) = λ2.

The following claim, combined with Corollary 8 provides an upper bound on the mixing-
time of (G)reg.

▷ Claim 12. Let G = (V,E) be a connected d-bounded degree graph on n vertices, then
(G)reg is an

(
n, 2d,

(
1 − ϕ2(G)

2

))
-graph.

The next Corollary follows from Corollary 8 and Claim 12.

▶ Corollary 13. Let G = (V,E) be a connected d-bounded degree graph on n vertices and
let v ∈ V . If we perform a random-walk in (G)reg, starting from v, of length at least
τ(G) def= log(2n3/2)

log
((

1− ϕ2(G)
2

)−1
) , then the probability this walk ends in u is at least 1/(2n) for every

u ∈ V .

3 LSSG for a Single Cluster

In this section, we prove Theorem 4, in particular, we present and prove correct our LSSG
algorithm for the case where the input graph is a single cluster, i.e., a (1, ϕ)-clusterable
graph. As such, our algorithm receives ϕ as a parameter where ϕ is a lower bound on the
conductance of the input graph. We first describe our algorithm from a global point of view
(Subsection 3.1) and then explain how this global algorithm can be implemented locally
(Subsection 3.3).

3.1 The Global Algorithm for a Single Cluster

The algorithm has two stages. In the first stage, it picks an arbitrary vertex, P, as the
primary-center. It then performs r def= Θ̃(

√
n) s-wise independent lazy random walks from

P and takes the end-vertices of these walks to be the set of secondary centers (Steps 4-5).
As defined in Section 2, when performing a lazy random walk, in each step, an edge is
selected uniformly and independently with probability 1/2d (recall that we add 2d− dG(v)
self-loops to each vertex v to obtain a 2d-regular graph). The edges traversed by the random
walks (which are not self-loops) are added to the spanner (Step 6). This guarantees that
all the secondary centers are connected in the spanner. The length of the random walks τ
is determined by Corollary 8 to ensure that the secondary centers are distributed almost
uniformly in V .

In the second stage, the algorithm constructs spanning trees of the Voronoi cells, which are
defined w.r.t. the secondary centers (Steps 7-8). Since the secondary centers are distributed
almost uniformly in V , with high-probability, all vertices v ∈ V will have a secondary center
in Γh(v) where h def=

√
n. If this is not the case (i.e., no secondary center is found in Γh(v)),

then all the edges incident to v are added to the spanner (Step 9). Note that removing Step 9
yields an LSSG algorithm that spans G w.h.p., while including it yields an algorithm that
outputs a spanning subgraph with probability 1.
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Algorithm 1 Globally Computing a Sparse Spanning Subgraph.
Input: A graph G = (V,E) with conductance at least ϕ and maximum degree bounded by

d.
Output: G′ = (V,E′) is a sparse spanning subgraph of G w.h.p.

1 E′ ← ∅.
2 Select a primary-center P ∈ V arbitrarily.
3 Let r def= Θ(

√
n · logn), h def=

√
n, s def= Θ(logn), τ def= Θ

( log n
ϕ2

)
.

4 Perform r s-wise independent lazy random walks R def= {ρ1, . . . , ρr} where
ρi = (v(i)

1 = P, . . . , v(i)
τ ).

5 Let S denote the set of secondary centers defined as follows S def=
⋃

i∈[r]{v
(i)
τ }. // The

end-vertices of the random-walks are selected to be the set of secondary centers.
6 E′ ← E(R) ∩ E. // where E(R) denotes the edge set of the random walks in R. Add

all the edges traversed by the random walks (that are not self-loops) in R to
the set E′.

7 Every vertex v ∈ V assigns itself to the closest secondary center in Γh(v) denoted by σ(v)
(break ties by choosing the one with the smallest ID). If Γh(v) ∩ S = ∅ then set σ(v) = ⊥.

8 For each s ∈ S, let Vor(s) def= {v ∈ V | σ(v) = s}. Let STree(s) denote the BFS tree that
spans Vor(s). E′ ← E′ ∪ STree(s).

9 Add to E′ all the edges incident to vertices, v, such that σ(v) = ⊥.
10 return G′ = (V,E′).

3.2 Correctness of the Global Algorithm for a Single Cluster
To prove the correctness of the global algorithm, we claim that w.h.p. when the algorithm
stops, there is a path in G′ from each vertex to a secondary center and that this path is
short; We begin by proving that w.h.p., every vertex v ∈ V has a secondary center in Γh(v).
We shall use the following concentration bound, which applies for s-wise independent random
variables defined as follows. 7

▶ Definition 14 (s-wise independence). A set of discrete random variables X1, . . . , Xn are
called s-wise independent if for any set I ⊆ {1, . . . , n} with |I| ≤ s and any values xi we
have Pr[

∧
i∈I(Xi = xi)] =

∏
i∈I Pr[Xi = xi].

Note that the random walks that the algorithm performs are also random variables. In
particular, this is a set of s-wise independent random walks, i.e., any subset of size at most s
of walks (out of the r walks that the algorithm performs) are mutually independent.

▶ Theorem 15 (Theorem 5(III) in [28]). If X is a sum of s-wise independent random variables,
each of which is in the interval [0, 1] with µ = E(X), then For δ ≤ 1 and s ≤ ⌊δ2µe−1/3⌋, it
holds that Pr[|X − µ| ≥ δµ] ≤ e−⌊s/2⌋.

▷ Claim 16. With high probability, for every u ∈ V , Γh(u) ∩ S ≠ ∅.

Proof. Fix P and let v be a vertex in V . Consider a random walk on (G)reg (or alternatively,
a lazy random-walk on G) that starts at P . By Corollary 13, when performing a random-walk
from P of length τ in (G)reg, the probability that v is the end-vertex of the random walk is at

7 Having bounded independence reduces the number of random bits used by the local implementation of
this algorithm, as shown in the next section.
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least 1
2n . Let Ev

i denote the event that the i-th random walk ended at v, namely the event that
v

(i)
τ = v, and let Xv

i denote the indicator variable for this event. Thus, Pr[Ev
i ] = E[Xv

i ] ≥ 1
2n .

Let H ⊆ V be a set of cardinality h and let EH
i denote the event that the i-th random walk

ended at H. Let XH
i denote the indicator variable for this event. Since the events {Ev

i }v∈V are
disjoint (i.e. mutually exclusive) we obtain that E[XH

i ] = Pr[EH
i ] =

∑
v∈H Pr[Ev

i ] ≥ h
2n . By

linearity of expectation, E
[∑

i∈[r] X
H
i

]
≥ hr

2n = Θ(logn), where the last equality follows since
h =

√
n. Since we perform r s-wise independent random walks from P , the random variables

{XH
i }i∈[r] are also s-wise independent. Set Y def=

∑
i∈[r] X

H
i and µ

def= E[Y ] = Θ(logn).

By Theorem 15 ,Pr[|Y − µ| ≥ µ/2] ≤ e−⌊s/2⌋ where s def= ⌊ 1
4

(
hr
2n

)
e−1/3⌋ ≤ ⌊ 1

4µe
−1/3⌋. If

|Y − µ| < µ/2, then Y > µ/2 ≥ 1. Thus, the probability that none of the r random-walks
ends in H is at most e−⌊s/2⌋ = 1/nc, where c is determined by the exact setting of r. Hence,
by the union bound over all vertices, we obtain that with high probability Γh(v) ∩ S ̸= ∅ for
every v ∈ V . ◁

The following claim (the proof of which appears in Appendix C) argues that BFS trees are
of height logarithmic in the number of their vertices.

▷ Claim 17. Let G = (V,E) be a d-bounded degree graph and let ϕ be a lower bound on
ϕ(G). For any v ∈ V and x ≤ |V |/2, the ℓ-ball centered at v contains at least x vertices
provided that ℓ ≥ log x

log(1+ϕ) .

Claim 17 implies that the paths’ length from every vertex to its secondary center is
logarithmic in n, formalized as follows.

▶ Corollary 18. Let s ∈ S. Then the depth of STree(s) is at most log h
log(1+ϕ) .

We now prove the main theorem of this section, which bounds the stretch factor and size
of the graph, G′ = (V,E′) obtained by Algorithm 1. In particular, for constant ϕ it follows
that |E′| = n+ o(n), and the stretch is Θ(logn).

▶ Theorem 19. Algorithm 1 computes a Sparse Spanning Graph of G, G′ = (V,E′), such
that:
(1) The attained stretch is Θ

(
log n

ϕ2

)
, and

(2) |E′| = n+O
( √

n log2 n
ϕ2

)
with high probability.

Proof. We first prove Item 1 of the claim. Consider an edge {u, v} which belongs to E but
not to E′. We first note that it follows that both σ(u) ̸= ⊥ and σ(v) ̸= ⊥ because otherwise
{u, v} is added to E′ in Step 9. If u and v belong to the same Voronoi cell then the distance
between them in G′ is at most 2 log

√
n

log(1+ϕ) (since, by Corollary 18, the distance from every
vertex to its secondary center is at most log

√
n

log(1+ϕ) ). If u and v do not belong to the same
Voronoi cell, then the distance in G′ between their respective centers, σ(u) and σ(v) is at
most 2τ (because the distance in G′ between every secondary center to P is at most τ),
where τ def= log(2n3/2)

log
((

1− ϕ2
2

)−1
) . Thus, in this case the distance in G′ between u and v is at most

2 ·
(
τ + log

√
n

log(1+ϕ)

)
. Since for all x ≥ 0 it holds that x− x2/2 ≤ ln(1 + x), it follows that the

attained stretch is Θ
(

log n
ϕ2

)
, as claimed.

Item 2 of the claim follows from the construction. More specifically, at Step 6, we add at
most r · τ edges to E′. In Step 8, we add at most n − 1 edges since the Voronoi cells are
vertex-disjoint. Finally, by Claim 16, with high probability, in Step 9, we do not add any
edges to E′. ◀
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3.3 Details of the Implementation of the Local Algorithm for a Single
Cluster

In this section, we describe how to implement Algorithm 1 locally. We also bound the query
and time complexity of the local algorithm as well as the total number of bits it uses. We
conclude this section with the proof of Theorem 4.

Performing lazy random-walks in G. Performing a lazy-random walk of length ℓ in G

requires at most ℓ probes to G. In each step, we select an index uniformly at random from
i ∈ [2d] and perform a neighbor-query (v, i) to reveal the ith neighbor of v, where v denotes
the ID of the current vertex. 8 If the probe returns a vertex ID, then we move to that
neighbor; otherwise, the walk stays at v. We note that performing a lazy-random walk in G
is equivalent to performing a random walk in (G)reg.

Bounding the Number of Random Bits. Following [23], we shall use the classical result
from [31] for obtaining random bits with bounded independence in a local manner.

▶ Definition 20. For N,M, s ∈ N such that s ≤ N , a family of functions H = {h :
[N ] → [M ]} is s-wise independent if for all distinct x1, ..., xs ∈ [N ], the random variables
h(x1), ..., h(xs) are independent and uniformly distributed in [M ] when h is chosen randomly
from H.

▶ Lemma 21 (Corollary 3.34 in [31]). For every γ, β, s ∈ N, there is a family of s-wise
independent functions Hγ,δ = {h : {0, 1}γ → {0, 1}δ} such that choosing a random function
from Hγ,δ takes s · max{γ, δ} random bits, and evaluating a function from Hγ,δ takes time
poly(γ, δ, s).

▷ Claim 22. Performing r s-wise independent random walks from P in (G)reg can be imple-
mented by using O(logn(logn+ τ log d)) random bits and time-complexity r · poly(τ, logn).

Proof. Performing a single random-walk in (G)reg of length τ from P requires O(τ log d)
random bits (since we are performing τ steps and in each step, we are selecting an edge
u.a.r. out of 2d edges). Let γ def= Θ(log r) denote the number of bits that are required to
indicate the index of the random walk in [r] and let δ def= Θ(τ log d) denote the number of
random bits that are required for performing a single walk. To perform r s-wise independent
random walks, it suffices to choose a random function from a family of s-wise independent
functions, Hγ,δ which takes as parameter the index of the random walk and returns δ bits.
By Lemma 21 this can be done by using s · max{γ, δ} = O(logn(logn + τ log d)) random
bits. Furthermore, the time complexity of retrieving the bits for performing a single random
walk is poly(γ, δ, s) = poly(τ, logn). The claim follows. ◁

Locally Computing a Sparse Spanning Subgraph. On query {u, v}, the local algorithm
first performs the random walks as listed in Algorithm 1, Step 4. If {u, v} ∈ E(R), then
the algorithm returns YES. Otherwise, its finds σ(u) and σ(v). If either σ(u) = ⊥ or
σ(v) = ⊥ then it returns YES. Otherwise, if σ(u) = σ(v), then the algorithm returns YES
iff {u, v} ∈ STree(σ(v)). Otherwise, if σ(u) ̸= σ(v), the algorithm returns NO. Finding σ(v)

8 A common assumption in LCA in general and hence also in LSSG’s is that the algorithm knows n.
Similarly, as in [17], for bounded-degree graphs, the bound on the maximum vertex degree d of the
graph instance at hand is also known to the LSSG algorithm.
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can be done by making O(hd2) queries. To see this, observe that the number of vertices we
explore by performing a BFS, layer by layer, until we first see at least h vertices is at most
(h− 1)d. The subgraph induced on these vertices contains at most hd2 edges, thus the query
and time complexity of this step is indeed O(hd2) 9. Checking if {u, v} ∈ STree(σ(v)) can
be implemented at the same cost. To see this, observe that when we find σ(v) as described
above, then we also reveal all the shortest paths between v and σ(v) in G. Since we can
decide which one of these paths is the path between v and σ(v) in STree(σ(v)), we can decide
if {u, v} belongs to this path at the same cost of finding σ(v) and σ(u) 10. This concludes
the description of the local implementation of Algorithm 1. We are now ready to prove
Theorem 4.

Proof of Theorem 4. The correctness of the algorithm, that is, Item (1), follows from The-
orem 19. As described above (in the analysis of the local implementation), the algorithm
makes r · τ + hd2 = O

(√
n ·

(
log2 n

ϕ2 + d2
))

graph queries. By Claim 22 the local imple-

mentation of Algorithm 1 uses O(logn(logn+ τ log d)) = O
(

log d·log2 n
ϕ2

)
random bits, which

concludes the proof of the theorem. ◀

4 LSSG for Clusterbale Graphs

In this section, we prove Theorem 5. First, we describe our LSSG algorithm that works under
the promise that the input graph is a connected (k, ϕin, ϕout)-clusterable graph where each
cluster is of size at least βn.

4.1 The Global Algorithm for Clusterable graphs
The listing of our global algorithm appears as Algorithm 2. We next describe how it proceeds,
step by step. All the parameters we will mention are defined in Step 2 of the algorithm.
Initially, the set of edges of the spanner, E′, is empty (Step 1). The algorithm begins with
selecting p primary-centers uniformly at random from V (Step 3). It then performs r s-wise
independent lazy-random walks from each primary center (Step 4). It picks the endpoints of
these random-walks to be the set of secondary-centers (Step 5). Additionally, all the edges
traversed by these random walks are added to E′ (Step 4). After that, the vertices of the
graph are partitioned as follows. Each one of the vertices, v, joins the cell of the secondary
center, which is closest to v in Γh(v), breaking ties by ID (Step 6). If Γh(v) does not include
a secondary center, then all the edges that are incident to v are added to E′ (Step 9). In
Step 10 the algorithm picks t random pairs from V × [d]. For each such pair, (v, i), such
that v has an i-th neighbor, the edge {u, v} is added to E′ where u is the i-th neighbor of v
(Step 10). We define an artificial-cluster to be a maximal set of vertices that agree on their
primary-center (see formal definition in Step 7). For every pair of artificial-clusters such that
E′ does not include an edge from their cut, all the edges in the corresponding cut are added
to E′ (Step 11). This concludes the description of the algorithm.

4.2 Correctness of the Global Algorithm for Clusterable Graphs
To prove the correctness of the algorithm, we need to show that the obtained subgraph
spans the graph with a logarithmic stretch and that it is sparse. Proving that the obtained
subgraph spans the graph is relatively straightforward and follows by the design of the

9 This procedure appears in [17] as Algorithm Find-Center.
10 See more details in algorithm Get BFS outgoing-edges endpoints in [17].
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Algorithm 2 Globally Computing a Sparse Spanning Subgraph of a Clusterbale Graph.
Input: A connected (k, ϕin, ϕout)-clusterbale graph G = (V,E) where each cluster is of size

at least β|V |.
Output: G′ = (V,E′) is a sparse spanning subgraph of G w.h.p.

1 E′ ← ∅.

2 Let p def= Θ(β−1 logn), r def= Θ( log n
τϕout

), s def= Θ(logn), τ def= Θ
(

log n

ϕ2
in

)
, and h

def= Θ(kτϕoutn).

3 Select p primary-centers P def= {ψ1, . . . , ψp} u.a.r. in V .
4 From each primary-center, ψ ∈ P, perform r s-wise independent lazy random-walks. Add all

the edges in E traversed by these random walks to E′.
5 Let S denote the set of endpoints of these random-walks. We refer to S as the set of

secondary centers. We say that the primary-center of v ∈ S is ψ if the random-walk that
ended in v started at ψ (break ties by choosing the one with the smallest ID).

6 Every vertex v ∈ V assigns itself to the closest secondary center in Γh(v) denoted by σ(v)
(break ties by choosing the one with the smallest ID). If Γh(v) ∩ S = ∅ then set σ(v) = ⊥.

7 The primary-center of v is set to be the primary-center of σ(v). The artificial-cluster of v is
defined to be the set of all vertices whose primary-center equals the primary-center of v.

8 For each s ∈ S, let Vor(s) def= {v ∈ V | σ(v) = s}. Let STree(s) be a spanning tree of Vor(s).
E′ ← E′ ∪ STree(s).

9 Add to E′ all the edges that are incident to vertices, v, such that σ(v) = ⊥.
10 Select t def= Θ

(
ε−1k2d logn

)
pairs u.a.r. from V × [d]. Let T denote the set of edges that

correspond to these pairs (an edge {u, v} corresponds to the pair (v, i) if u is the i-th
neighbor of v). E′ ← E′ ∪ T .

11 Add to E′ all the edges between artificial-clusters not connected by an edge in T .
12 return G′ = (V,E′).

algorithm. Both the proof of the low stretch and sparsity of the obtained spanner appears in
Theorem 28, where for the sparsity proof, we need to show that the number of edges that
we add in Steps 4, and 8-11 is not too much. The proof that the obtained spanner is of a
low stretch is the main technical challenge of this section. To this end, it is sufficient to
show that w.h.p. for every v ∈ V , Γh(v) includes a secondary-center (see Claim 26). To this
end, we next analyze the distribution of the endpoints of the lazy-random walks that the
algorithm performs.

For any subset C ⊆ V , we slightly abuse notation and denote by (C)reg the 2d-regular
graph (G[C])reg, where G[C] is the subgraph induced on C in G.

Throughout this section, G = (V,E) is a (k, ϕin, ϕout)-clusterable graph, C ⊆ V is a
(ϕin, ϕout)-cluster of G and S is the set of self-loops that are added to (C)reg due to the edges
in the cut between C and V \C. Namely, for each v ∈ C, S contains e({v}, V \C) self-loops
of v.

For every u, v ∈ C, let pℓ,v(u) denote the probability that an ℓ-length random-walk that
starts at v in (C)reg ends at u. Thus

∑
u∈C p

ℓ,v(u) = 1. We let pℓ,v
bad(u) denote the probability

that an ℓ-length random-walk in (C)reg that starts at v ends in u and traverses an edge of S.
Let pℓ,v

good(u) def= pℓ,v(u) − pℓ,v
bad(u).

▷ Claim 23. For at least half of the vertices v ∈ C, it holds that
∑

u∈C p
ℓ,v
bad(u) ≤ ℓϕout. We

call such a vertex, v, useful.

Proof. We prove that if we perform an ℓ-length random-walk, ρ, in (C)reg from a vertex v
selected u.a.r. from C, then the probability that ρ traverses an edge from S is at most ℓϕout/2.
In other words, we will show that E[

∑
u∈C p

ℓ,v
bad(u)] ≤ ℓϕout/2, where the expectation is taken

over v which is selected u.a.r. from C. The claim will then follow by Markov’s inequality.
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Since (C)reg is 2d-regular and v is selected u.a.r. from C, all the vertices in ρ are
distributed uniformly at random from C as well (since Pu⃗ = u⃗ for every doubly-stochastic
matrix P ). The probability of traversing an edge from S when we select a vertex u.a.r. from
C and then take a single step from this vertex is |S|

2d|C| . This is simply because each one of
the edges in S is traversed with probability 1

|C| · 1
2d (recall that the edges in S correspond

to self-loops). Thus, by union bound, the probability of traversing an edge from S in one
of the ℓ steps of the random walk is at most ℓ|S|

2d|C| . Since |S|
d|C| ≤ ϕout we obtain that this

probability is at most ℓϕout/2, as desired. ◁

The following claim relates random-walks in (G)reg to random-walks in (C)reg.

▷ Claim 24. If we perform an ℓ-length random-walk in (G)reg from v ∈ C then the probability
that this random walk ends at u ∈ C is at least pℓ,v

good(u).

Proof. Recall that pℓ,v
good(u) is the probability that an ℓ-length random-walk in (C)reg that

starts at v ends in u and does not traverse an edge of S. The edge set of (C)reg includes
parallel self-loops. If we identify each edge by its endpoints and the labels of its ports, then
we get that from each vertex v ∈ C, there are exactly (2d)ℓ distinct paths of length ℓ in
(C)reg. Let P v denote the set of these paths. When we perform a random walk in (C)reg
from v, each path in P v occurs with probability 1/(2d)ℓ. Moreover, for every u ∈ C, let P v

u

denote the set of paths in P v that end at u and do not traverse an edge from S. Each path in
P v

u contributes 1/(2d)ℓ to pℓ,v
good(u) and each path in P v \ P v

u contributes 0. Assume, w.l.o.g.,
that (C)reg is obtained from G by first converting G to (G)reg and then replacing the edges
in the cut E(C, V \ C) with self-loops. This way, every self-loop in (C)reg which does not
belong to S also appears in (G)reg (when taking into account the port numbers). Thus, if we
perform a random-walk in (G)reg from v, each path from P v

u occurs with probability 1/(2d)ℓ

as well. The claim follows. ◁

▷ Claim 25. Let v be a vertex which is useful w.r.t. C. For all u ∈ C, except for at most
4τϕout|C| vertices, it holds that a τ -length random-walk in (G)reg from v ends at u with
probability at least (4n)−1.

Proof. Let v be a vertex, which is useful w.r.t. C, and let ℓ ∈ N. By Claim 23,∑
u∈C p

ℓ,v
bad(u) ≤ ℓϕout. Therefore E[pℓ,v

bad(u)] ≤ ℓϕout
|C| , where the expectation is taken over u

selected u.a.r. from C. Thus, by Markov’s inequality for at most γ-fraction of the vertices
u ∈ C it holds that pℓ,v

bad(u) > ℓϕout
γ|C| .

By replacing ℓ with τ and γ with 4τϕout we obtain that for at least (1 − 4τϕout)-fraction
of the vertices u ∈ C it holds that pτ,v

good(u) ≥ pτ,v(u) − 1
4|C| . Since C is a (ϕin, ϕout)-cluster

in G it follows from Corollary 13 that pτ,v(u) ≥ 1/(2|C|) for every u. Thus it holds that
pτ,v

good(u) ≥ 1/(4|C|) ≥ 1/(4n). Hence, the claim follows from Claim 24. ◁

▷ Claim 26. Let G = (V,E) be a connected (k, ϕin, ϕout)-clusterable graph and let C1, . . . , Cf

be a partition of G into f ≤ k (ϕin, ϕout)-clusters. If for every i ∈ [f ], Ci ∩ P contains a
useful vertex w.r.t. Ci, then w.h.p. for every v ∈ V , Γh(v) ∩ S ≠ ∅.

Proof. Let G = (V,E) be a connected (k, ϕin, ϕout)-clusterable graph and let C1, . . . , Cf be
a partition of G into f ≤ k (ϕin, ϕout)-clusters. Assume for every i ∈ [f ], Ci ∩ P contains
a useful vertex, ui, w.r.t. Ci. Let H be a set of vertices of cardinality at least h and
let γ = 4τϕout where h and τ are as defined in Step 2 of Algorithm 2. By Claim 25, for
every i ∈ [f ] and for all vertices u ∈ Ci except for at most γ|Ci| it holds that an τ -length
random-walk in (G)reg from ui ends at u with probability at least (4n)−1. Let us call these
vertices good w.r.t Ci.
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Let Cj be the dominant cluster in H. Namely, the cluster which maximizes the intersection
with H. By an averaging argument Cj ∩H ≥ h/k ≥ 5τϕoutn, where the last inequality holds
for an appropriate setting of h. Since the number of vertices in Cj which are not good (w.r.t.
Cj) is at most γ|Cj | ≤ 4τϕoutn, we obtain that the number of good vertices in Cj is at least
τϕoutn. From this point, the rest of the proof is similar to the proof of Claim 16. For v ∈ V ,
let Ev

i denote the event that the i-th random walk from uj ended at v and let Xv
i denote

the indicator variable for this event. Thus, for every good vertex, v, w.r.t. Cj holds that
Pr[Ev

i ] = E[Xv
i ] ≥ 1

4n . Let EH
i denote the event that the i-th random walk from uj ended at

H. Let XH
i denote the indicator variable for this event. Since the events {Ev

i }v∈V are disjoint
(i.e. mutually exclusive) we obtain that E[XH

i ] = Pr[EH
i ] =

∑
v∈H Pr[Ev

i ] ≥ τϕoutn
4n = τϕout

4 .
By linearity of expectation, E

[∑
i∈[r] X

H
i

]
≥ r · τϕout

4 = Θ(logn). Since we perform r

s-wise independent random walks from uj , the random variables {XH
i }i∈[r] are also s-

wise independent. Set Y
def=

∑
i∈[r] X

H
i and µ

def= E[Y ] = Θ(logn). By Theorem 15

,Pr[|Y − µ| ≥ µ/2] ≤ e−⌊s/2⌋ where s def= ⌊ 1
4

(
r·τϕout

4

)
e−1/3⌋ ≤ ⌊ 1

4µe
−1/3⌋. If |Y − µ| < µ/2,

then Y > µ/2 ≥ 1. Thus, the probability that none of the r random-walks ends in H is at
most e−⌊s/2⌋ = 1/nc, where c is determined by the exact setting of r. Thus, by union bound
over all vertices, we obtain that with high probability Γh(v) ∩ S ≠ ∅ for every v ∈ V . ◁

We say that a pair of artificial-clusters are heavy if the number of edges in their edge-cut
is at least εn/(2k2).

▷ Claim 27. With high probability, T contains an edge from the cut of every pair of heavy
artificial-clusters.

Proof. Let C1 and C2 be a heavy pair of artificial-clusters. By definition, the number of
edges in their cut is at least εn/(2k2). Thus the probability that a pair chosen u.a.r. from
V × [d] hits this cut is at least εn

2k2 · 1
dn = ε

2k2d . Thus, the claim follows by union bound over
all pairs of artificial-clusters and the setting of t. ◁

We are now ready to prove the correctness of the global algorithm, as stated in the next
theorem.

▶ Theorem 28. Under the promise that the input graph, G = (V,E), is a connected
(k, ϕin, ϕout)-clusterable graph, with clusters of size at least βn, Algorithm 2 computes a
sparse spanning subgraph of G, G′ = (V,E′), such that:
1. The attained stretch is Θ

(
log n
ϕ2

in

)
, and

2. |E′| ≤ n(1 + ε) with high probability.

Proof. Let G = (V,E) be a connected (k, ϕin, ϕout)-clusterable graph and let C1, . . . , Cf be
a partition of G into f ≤ k (ϕin, ϕout)-clusters of size at least βn. We begin by proving Item 1
of the claim. Let E1 denote the event that for every i ∈ [f ], Ci ∩ S contains a useful vertex
w.r.t. Ci. Fix i ∈ [f ]. By definition (see Claim 23), at least half of the vertices in Ci are
useful. Since |Ci| ≥ βn, the probability that v which selected u.a.r. from V is a useful vertex
of Ci is at least β/2. Therefore w.p. at least 1 − 1/nc, P contains a useful vertex w.r.t. Ci

where c is determined by the exact setting of p. Thus, by union bound over all i ∈ [f ], w.h.p.
E1 occurs.

Let E2 denote the event that for every v ∈ V , Γh(v) ∩ S ̸= ∅. Conditioned on E1, by
Claim 26 w.h.p. E2 occurs.

Consider an edge {u, v} which belongs to E but not to E′. We first note that it follows
that both σ(u) ̸= ⊥ and σ(v) ̸= ⊥ because otherwise {u, v} is added to E′ in Step 9. From
Claim 17 it follows that for every v ∈ V such that σ(v) ̸= ⊥ the distance from v to σ(v) is at
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most log h
log(1+ϕin) . To see this, observe that the ℓ-ball centered at v in G[C] is contained ℓ-ball

centered at v in G where C denotes the cluster of v according to the partition mentioned
above (in other words the neighborhood of v expands in G at least as fast as it does in G[C]).
Thus, if u and v belong to the same Voronoi cell, then the distance between them in G′

is at most 2 log h
log(1+ϕin) . If u and v belong to the same artificial-cluster then the distance in

G′ between their respective centers, σ(u) and σ(v) is at most 2τ (because the distance in
G′ between a secondary center to its primary center is at most τ). Thus, in this case the
distance in G′ between u and v is at most 2 ·

(
τ + log h

log(1+ϕin)

)
. Finally, if u and v belong to

different artificial-clusters then by Steps 10 and 11 there exists {u′, v′} ∈ E′ such that u′ and
u are in the same artificial-cluster and likewise for v and v′. Thus, by the above the distance
in G′ between u and v is at most 2 ·

(
2 ·

(
τ + log h

log(1+ϕin)

))
+ 1, where τ def= log(2n3/2)

log
((

1−
ϕ2

in
2

)−1) .

Since for all x ≥ 0 it holds that x− x2/2 ≤ ln(1 + x) and since w.l.o.g. h ≤ n, it follows that
the attained stretch is Θ

(
log n
ϕ2

in

)
, as claimed.

Item 2 of the claim follows from the construction. More specifically, at Step 4 we add at
most p · r · τ = Θ(ϕ−1

outβ
−1 log2 n) edges to E′. This is o(n) since we may assume that our

query complexity is Õ(n2/3) = o(n) (otherwise we may run the algorithm by Lenzen and
Levi [12]). In Step 8, we add at most n− 1 edges due to the fact that the Voronoi cells are
vertex-disjoint. Conditioned on E2, which occurs w.h.p., in Step 9 we do not add any edges
to E′. In Step 10 we add at most t edges to E′. Let E3 denote the event that T contains
an edge from the edge-cut of every pair of artificial-clusters. By Claim 27 w.h.p. E3 occurs.
Finally, Conditioned on E3, in Step 11 we add at most k2 · ε · n/(2k2) = εn/2 edges to E′.
The claim follows. ◀

4.3 Details of the Local Algorithm
In this section, we describe how to implement Algorithm 2 locally. The local implementation
of all the steps of the algorithm is similar to the local implementation of the analogous
steps of Algorithm 1 (with different parameters). The only new ingredient in the local
implementation is the implementation of Step 11. Next, we describe how this step can be
implemented locally. On query {u, v}, if u and v belong to the same artificial-cluster, then
we proceed as before. Namely, we return YES if and only if u and v belong to the same
Voronoi cell and {u, v} belongs to the tree that spans the cell. If u and v belong to different
artificial-clusters then we consider three cases. The first case we consider is when {u, v} ∈ T ,
the sample of edges selected in Step 10. In this case, we would like to return YES on the
query {u, v}. The second case is when {u, v} /∈ T but there exists {u′, v′} ∈ T such that u
and u′ are in the same artificial-cluster and likewise for v and v′. In this case, we would
like to return NO. Otherwise, we would like to return YES. Therefore, we can decide if to
return YES or NO if we find for each edge in T the identities of the artificial-clusters (i.e.,
the IDs of the primary centers of the corresponding artificial-clusters) of its endpoints. This
is accomplished as follows. For each one of the pairs, (v, i), selected in Step 10, we perform a
neighbor query to obtain the i-th neighbor of v. If such a neighbor exists then let us denote
it by u. We then find σ(v) and σ(u) by making O(hd2) queries. This also reveals to which
artificial-cluster v belongs and likewise for u. This allows us to obtain the list of pairs of
artificial-clusters that already have an edge from their cut in T . Thus, on query {u, v} where
u and v belong to different artificial-clusters which are not on that list, the algorithm will
return YES. Overall, implementing this check requires O(thd2) queries and Õ(thd2) time.
We conclude that the query complexity of the algorithm is dominated by the implementation
of Step 4 which requires O(prτ) = O(log2 n/(βϕout)) queries and Step 11 which requires
O(thd2) = O(ϕ−1

in ε
−1k3d3ϕout · n log2 n) queries.
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In this next claim, we bound the number of random bits that our algorithm uses.

▷ Claim 29. Performing r s-wise independent random walks from each ψ ∈ P in (G)reg
can be implemented by using O(logn(logn + τ log d)) random bits and time-complexity
r · poly(τ, logn).

Proof. As claimed in the proof of Claim 22, performing a single random-walk in (G)reg of
length τ from any vertex requires τ log(2d) random bits. If we choose a random function from
a family of s-wise independent functions, Hγ,β = {h : {0, 1}γ → {0, 1}β}, where γ = log(p · r)
is the number of bits that are required to indicate the index of the vertex in P and the index
of the walk in [r] and β = τ log(2d) is the number of bits that are required for performing
the walk then we obtain that the total number of random bits that the algorithm uses for
performing the walks is s ·max{γ, β} = O(logn(logn+τ log d)). We obtain the desired result
since performing a single random walk requires poly(γ, β, s) = poly(τ, logn) time. ◁

We are now ready to prove Theorem 5.

▶ Theorem 5. There is an LSSG algorithm that given query access to a connected (k, ϕin, ϕout)-
clusterable graph G = (V,E), where each cluster is of size at least β · n, provides access to
G′ = (V,E′) such that the following holds. (1) The graph G′ is a connected subgraph of G and
with high probability |E′| ≤ n(1 + ε). Moreover, the stretch factor of G′ is Θ

(
log n
ϕ2

in

)
. (2) The

query complexity of the algorithm is O
(
log2 n · (βϕout)−1 + n log2 n · k3d3ϕout(εϕin)−1)

, and
(3) the number of random bits it uses is O

(
log d·log2 n

ϕ2
in

)
, where d is a bound on the maximum

degree of G.

Proof of Theorem 5. The correctness of the algorithm, i.e., Item (1), follows from The-
orem 19. The query complexity of the algorithm is analyzed in the description of the
local implementation that appears above. Finally, by Claim 22 the local implementation of
Algorithm 1 uses O(logn(logn+ τ log d)) = O

(
log d·log2 n

ϕ2

)
random bits, as claimed. This

concludes the proof of the theorem. ◀

To obtain Corollary 6 from Theorem 5, we observe that we can take the upper bound on
ϕout to be the maximum between ϕout and 1/

√
n. More specifically, if we consider k, d, ϕin, ε

and β to be constants then the query complexity is Õ(1/ϕout + nϕout). Since 1/ϕout > nϕout
only when ϕout < 1/

√
n we only need to show that the query complexity in this case is

Õ(
√
n). Indeed, since ϕout is only an upper bound on the outer-conductance, we may take

ϕout = 1/
√
n in this case and obtain the desired complexity.

▶ Corollary 6. There is an LSSG algorithm that given query access to a connected
(Θ(1),Θ(1), ϕout)-clusterable graph G = (V,E), where each cluster is of size at least β · n,
provides access to G′ = (V,E′) such that the following holds. (1) The graph G′ is a connected
subgraph of G and with high probability |E′| ≤ n(1 + ε). Moreover, the stretch factor of G′ is
Θ(logn). (2) The query and time complexity of the algorithm is Õ(

√
n+ ϕoutn), and (3) the

number of random bits it uses is O(log2 n).
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A Other Related Work

A.1 LCAs for Spanners

A desirable property for a spanning subgraph is that it also preserves, up to a predetermined
multiplicative factor α ≥ 1 (a.k.a the stretch factor), the pairwise distances of the vertices
in the original graph. Such a spanning subgraph is called an α-spanner. In [15, 25]
poly(h log (d)/ε)-spanners for minor-free graphs are presented. For general (bounded degree)
graphs, the algorithm of [12] outputs an O(log2 n · poly(d/ε))-spanner. Their result is later
extended by Parter et al. [23], who presented an algorithm that constructs an O(k2)-spanner,
independent of both n and d, but has O(n1+1/k) edges. The query complexity of [23] is
O(n2/3d4), and is later improved by Arviv et al. [2] to O(n2/3d2). A recent work by Biswas,
Cao, Pyne, and Rubinfeld [3] presents several LCAs that receive random graphs (i.e., Erdős-
Rényi or Preferential Attachment graph) as an input and gives access to a sparse spanner of
that graph.
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A.2 Graph Clustering

In the Property Testing model, Czumaj et al. [6] introduce an algorithm for testing the
clusterability of a graph. In the Property Testing model, an algorithm accepts (with constant
probability) any graph that is (k, ϕ)-clusterable and rejects graphs that are ε far from
being (k, ϕ∗)-clusterable, i.e., εdn edges are required to be either added or removed from
the input graph so that it becomes (k, ϕ∗)-clusterable, where ϕ∗ = O( ϕ2ε2

log n ). The query
complexity of their algorithm is Õ(

√
n · poly(ϕ, k, 1/ε)) and with a success probability of

at least 2/3. Peng [24] uses similar ideas as [6] to construct a clustering oracle that given
an input graph that is ε-close from being

(
k, ϕ,O

(
εϕ

k3 log n

))
-clusterable gives w.h.p. query

access to the adjacency list of a
(
k, ϕ

2 , O
( √

εϕ1.5

k3 log n

))
-clusterable graph with preprocessing and

query complexity of O
(√

n · poly( k log n
ϕε )

)
, and with at most O

(
k
√

ε
ϕ · n

)
outliers (vertices

that are not associated with any cluster).

A.3 LCAs for Other Graph Problems

The model of local computation algorithms (LCA) (sometimes also referred to as The
Centralized-Local model (CentLocal)) as used in this work, was defined by Rubinfeld et al. [27]
(see also [1] and survey in [13]). Such algorithms for maximal independent set, hypergraph
coloring, k-CNF, approximated maximum matching and approximated minimum vertex cover
for bipartite graphs are given in [27, 1, 20, 21, 7, 18, 8].

B Omitted Proofs of Section 2

Proof of Coro. 8. By Theorem 7, for any distribution vector p⃗ it holds that ∥Âτ p⃗− u⃗∥1 ≤
√
n · α

log(2n3/2)
log(1/α) = 1

2n . If there exists an index i such that either (Âτ p⃗)i <
1

2n or (Âτ p⃗)i >
3

2n

then
∣∣∣(Âτ p⃗)i − 1

n

∣∣∣ > 1
2n , which implies that ∥Âτ p⃗− u⃗∥1 >

1
2n , in contradiction to the above

Equation. ◀

Proof of Claim 11. Since (G)reg is 2d-regular it holds that λ1 = 2d. Let {λ̂i}i denote the
eigenvalues of Â where Â = 1

2dA((G)reg). By Theorem 9, it follows that λ̂1 = 1 > λ̂2, . . . ,≥
λ̂n ≥ −1. Since Âi,j ≥ 0 and Âj,j ≥ 1

2 it holds that the matrix M
def= 2Â − I, where I is

the identity matrix, is non-negative. Hence, M corresponds to a weighted connected graph.
Moreover, the eigenvalues of M , {µi}i satisfy µi = 2λ̂i − 1. 11 In particular, µ1 = 1. Thus,
Theorem 9 applied on M implies that µi ≥ µn ≥ −1 for all 1 ≤ i ≤ n. Thus, 2λ̂i − 1 ≥ −1
and hence λ̂i ≥ 0 for all 1 ≤ i ≤ n. Since λi = 2dλ̂i, it follows that |λ2| > |λn|. The claim
follows. ◁

Proof of Claim 12. We first observe that ϕ(G) = ϕ((G)reg). Since (G)reg is 2d-regular, by
Cheeger’s Inequality it holds that λ2 ≤ 2d ·

(
1 − ϕ2(G)

2

)
. Thus the claim follows from

Claim 11. ◁

11 To see why µi = 2λ̂i−1, multiply the eigenvector that corresponds to λ̂i, νi, by M which gives 2λ̂iνi−νi.
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C Omitted Proofs of Section 3

Proof of Claim 17. Let v be a vertex in G. By Equation (1), for any subset S ⊆ V of size
at most |V |/2 it holds that e(S, V \ S) ≥ ϕ · d · |S|. In particular, if S is the set of vertices
of the j-ball centered at some vertex v then the j + 1-ball centered at v contains at least
|S| +ϕ|S| = (1 +ϕ)|S| vertices. Thus, after exploring ℓ layers of the BFS rooted at v at least
one of the following holds: either we explored more than |V |/2 vertices, or we explored at
least (1 + ϕ)ℓ vertices. Thus we explore at least x vertices for any ℓ such that (1 + ϕ)ℓ ≥ x.
The claim follows. ◁
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