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Abstract
Tanner codes are graph-based linear codes whose parity-check matrices can be characterized by a
bipartite graph G together with a linear inner code C0. Expander codes are Tanner codes whose
defining bipartite graph G has good expansion property. This paper is motivated by the following
natural and fundamental problem in decoding expander codes:

What are the sufficient and necessary conditions that δ and d0 must satisfy, so that every
bipartite expander G with vertex expansion ratio δ and every linear inner code C0 with minimum
distance d0 together define an expander code that corrects Ω(n) errors in O(n) time?

For C0 being the parity-check code, the landmark work of Sipser and Spielman (IEEE-TIT’96)
showed that δ > 3/4 is sufficient; later Viderman (ACM-TOCT’13) improved this to δ > 2/3 − Ω(1)
and he also showed that δ > 1/2 is necessary. For general linear code C0, the previously best-known
result of Dowling and Gao (IEEE-TIT’18) showed that d0 = Ω(cδ−2) is sufficient, where c is the
left-degree of G.

In this paper, we give a near-optimal solution to the above question for general C0 by showing
that δd0 > 3 is sufficient and δd0 > 1 is necessary, thereby also significantly improving Dowling-Gao’s
result. We present two novel algorithms for decoding expander codes, where the first algorithm is
deterministic, and the second one is randomized and has a larger decoding radius.
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1 Introduction

Graph-based codes are an important class of error-correcting codes that have received
significant attention from both academia and industry. They have a long history in coding
theory, dating back to Gallager’s [19] celebrated low-density parity-check codes (LDPC codes
for short). LDPC codes are a class of linear codes whose parity-check matrices can be
characterized by low-degree (sparse) bipartite graphs, called factor graphs. Gallager analyzed
the rate and distance of LDPC codes, showing that with high probability, randomly chosen
factor graphs give rise to error-correcting codes attaining the Gilbert-Varshamov bound. He
also presented an iterative algorithm to decode these codes from errors caused by a binary
symmetric channel. Since the 1990s, LDPC codes have received increased attention due to
their practical and theoretical performance (see [12, 14, 22, 35, 38, 42, 43]).

As a generalization of the LDPC codes, Tanner [49] introduced the so-called Tanner codes,
as formally defined below. Let c, d, n be positive integers and L := [n], where [n] = {1, . . . , n}.
Given a (c, d)-regular bipartite graph G with bipartition V (G) = L∪R and a [d, k0, d0]-linear
code C0

1, the Tanner code T (G, C0) ⊆ Fn
2 is the collection of all binary vectors x ∈ Fn

2
with the following property: for every vertex u ∈ R, xN(u) is a codeword of the inner
code C0, where N(u) ⊆ L is the set of neighbors of u and xN(u) = (xv : v ∈ N(u)) ∈ Fd

2
denotes the length-d subvector of x with coordinates restricted to N(u); in other words,
T (G, C0) := {x ∈ Fn

2 : xN(u) ∈ C0 for every u ∈ R}.
Expander codes are Tanner codes whose defining bipartite graphs have good expansion

properties, namely, they are bipartite expanders. To be precise, for real numbers α, δ ∈ (0, 1],
a (c, d)-regular bipartite graph G with bipartition V (G) = L ∪ R with L = [n] is called a
(c, d, α, δ)-bipartite expander if for each subset S ⊆ L with |S| ≤ αn, S has at least δc|S|
neighbors in R, i.e., |N(S)| := | ∪v∈S N(v)| ≥ δc|S|. As each S ⊆ L can have at most c|S|
neighbors in R, being a (c, d, α, δ)-bipartite expander means that every bounded size subset
in L has as many neighbors in R as possible, up to a constant factor.

Sipser and Spielman [46] studied the Tanner code T (G, C0) with G being a bipartite
expander and C0 being a parity-check code. For simplicity, let Par = {(x1, . . . , xd) :∑d

i=1 xi = 0} denote the parity-check code in Fd
2. They remarkably showed that the

expansion property of G can be used to analyze the minimum distance and the decoding
complexity of T (G, Par). Roughly speaking, they showed that for every bipartite expander
G with sufficiently large expansion ratio δ > 1/2, T (G, Par) has minimum distance at least
αn, which further implies that T (G, Par) defines a class of asymptotically good codes. More
surprisingly, they showed that if the expansion ratio is even larger, say δ > 3/4, then for every
such G, T (G, Par) admits a linear-time decoding algorithm that corrects a linear number of
errors in the adversarial noise model. Spielman [48] showed that expander codes can be used
to construct asymptotically good codes that can be encoded and decoded both in linear time.

Besides the construction based on vertex expansion, [48] also provides a construction
based on spectral expansion. This construction again inherits the general structure of
Tanner code, i.e., it combines of an underlying bipartite graph and an inner code. The main
difference is that the underlying graph is an edge-vertex incidence graph of a (non-bipartite)
spectral expander. Spectral expander codes also have linear time encoding and decoding,
and their (rate & distance) parameters are different from those of vertex expander codes. In
this paper, we mainly focus on vertex expander codes. The reader is referred to references
[5, 26, 34, 36, 37, 41, 47, 52, 53] for more details on spectral expanders.

1 The reader is referred to Section 1.2 for basic definitions on graphs and codes.
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Given the strong performance of expander codes, they have been of particular interest
in both coding theory and theoretical computer science, and have been studied extensively
throughout the years. For example, [23, 45] utilized expander codes to obtain near MDS
codes with linear-time decoding. A line of research [2, 9, 16, 18, 44, 50, 51, 52] improved
the distance analysis and decoding algorithm for expander codes in various settings. Very
recently, a sequence of works applied expander codes on quantum LDPC and quantum
Tanner code construction, finally achieving asymptotically good constructions and linear-time
decoding [6, 7, 15, 17, 21, 24, 27, 29, 30, 31, 32, 33, 39, 40].

Given the discussion above, it is natural to suspect that the expansion ratio δ plays a
prominent role in analyzing the properties of T (G, Par). More precisely, one can formalize
the following question. We always assume c, d, α, δ are constants while n tends to infinity.

▶ Question 1. What is the minimum δ > 0 such that every (c, d, α, δ)-bipartite expander
G with V (G) = L ∪R and |L| = n defines an expander code T (G, Par) ⊆ Fn

2 that corrects
Ωc,d,α,δ(n) errors in Oc,d,α,δ(n) time?

This question has already attracted considerable attention. Sipser and Spielman [46]
used the bit-flipping algorithm (developed on the original algorithm of Gallager [19]) to
show that δ > 3/4 is sufficient to correct (2δ − 1)αn errors in O(n) time. Using linear
programming decoding, Feldman, Malkin, Servedio, Stein and Wainwright [18] showed that
δ > 2

3 + 1
3c sufficient to correct 3δ−2

2δ−1 α · n errors, while at the cost of a poly(n) decoding time.
Viderman [50] introduced the “Find Erasures and Decode” algorithm to show that δ > 2

3 −
1
6c

is sufficient to correct Ω(n) errors in O(n) time. Moreover, he also shows that there exists a
(c, d, α, 1/2)-bipartite expander G such that T (G, Par) only has minimum distance two, and
therefore cannot correct even one error. Viderman’s impossibility result implies that δ > 1/2
is necessary for the assertion of Question 1 holding for every (c, d, α, δ)-bipartite expander.

The above results only consider the case where the inner code C0 is a parity-check code.
Therefore, it is tempting to think about whether one can benefit from a stronger inner code
C0. Let us call a code good if it can correct Ω(n) errors in O(n) time. Chilappagari, Nguyen,
Vasic and Marcellin [11] showed that if G has expansion radio δ > 1/2 and C0 has minimum
distance d(C0) ≥ max{ 2

2δ−1 − 3, 2}, then every such Tanner code T (G, C0) is good. The
above result implies that for ϵ → 0 and δ = 1/2 + ϵ, d(C0) = Ω(ϵ−1) is sufficient to make
every Tanner code T (G, C0) good. Very recently, Dowling and Gao [16] significantly relaxed
the requirement on δ by showing that for every δ > 0,

d(C0) ≥ Ω(cδ−2) (1)

is sufficient2 to make every Tanner code T (G, C0) good, and be able to correct αn errors. In
particular, their result implies that, as long as the minimum distance of C0 is large enough,
any tiny positive expansion ratio is sufficient to construct a good Tanner code.

Putting everything together, it is interesting to understand how the expansion ratio δ of
G and the minimum distance d0 of C0 affect the goodness of the Tanner code. We have the
following generalized version of Question 1.

▶ Question 2. What are the sufficient and necessary conditions that δ and d0 must satisfy,
so that every (c, d, α, δ)-bipartite expander G with V (G) = L ∪R, |L| = n, and every inner
linear code C0 ⊆ Fd

2 with d(C0) ≥ d0, together define an expander code T (G, C0) ⊆ Fn
2 that

corrects Ωc,d,α,δ(n) errors in Oc,d,α,δ(n) time?

2 More precisely, d(C0) ≥ 2t + c(t − 1)2 − 1 with t > 1
δ .

APPROX/RANDOM 2024
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The main purpose of this paper is to provide a near-optimal solution to the above question,
as presented in the next subsection. On the negative side, we show that when d0δ ≤ 1,
there exists an extension of Viderman’s construction, yielding expander codes of constant
distance (see Proposition 4 below). Therefore, d0δ > 1 is a necessary condition for a general
expander code T (G, C0) to be considered good (compared to the δ > 1

2 condition in the
case of T (G, Par)). On the positive side, we show that d0δ > 3 is sufficient to make every
expander code good (see Theorem 3 below for details). Our result only loses a multiplicity
by three compared to the above necessary result.

1.1 Main results
Deterministic decoding of expander codes

Our main result, which significantly improves on (1), is presented as follows.

▶ Theorem 3. Let G be a (c, d, α, δ)-bipartite expander and C0 be a [d, k0, d0]-linear code,
where c, d, α, δ, d0, k0 are positive constants. If δd0 > 3, then there exists a linear-time decoding
algorithm for the Tanner code T (G, C0) that can correct γn errors, where γ = 2α

d0(1+0.5cδ) .

Theorem 3 shows that δd0 > 3 is sufficient to make every Tanner code T (G, C0) good.
On the other hand, the next proposition shows that for every d0 ≥ 2, δd0 > 1 is necessary.

▶ Proposition 4. For every d, d0 ≥ 2 and n ≥ 10d0, there exist constants 0 < α < 1, c ≥ 3
and a (c, d, 0.9α, 1

d0
)-bipartite expander G with V (G) = L∪R and |L| = n such that for every

[d, k0, d0]-linear code C0, T (G, C0) has minimum Hamming distance at most d0.

Theorem 3 and Proposition 4 together show that our requirement δd0 = Ω(1) is in
fact almost optimal for Question 2. Moreover, we have the following conjecture on the
fundamental trade-off between δ and d0.

▶ Conjecture 5. If δd0 > 1, then for every (c, d, α, δ)-bipartite expander G and every inner
code C0 ⊆ Fd

2 with d(C0) ≥ d0, the expander code T (G, C0) ⊆ Fn
2 can correct Ωc,d,α,δ(n)

errors in Oc,d,α,δ(n) time.

Due to space limit, we will omit the proof of the linear-running time of our algorithm, as
well as the proof of Proposition 4. They can be found in the full version of this paper [10].

Randomized decoding of expander codes

Another important direction in the study of expander codes is to understand the maximum
number of errors that can be corrected in a linear-time decoding algorithm. Chen, Cheng, Li,
and Ouyang [9] obtained a quite satisfactory answer to this problem for T (G, Par). They
showed that for every δ > 1/2 and (c, d, α, δ)-bipartite expander G, T (G, Par) has minimum
distance at least α

2(1−δ) · n− O(1), and this is tight up to a 1− o(1) factor. Moreover, for
δ > 3

4 , they also gave a linear-time decoding algorithm which corrects 3α
16(1−δ) · n errors. A

similar problem for general expander codes T (G, C0) was studied by [16].
Our decoding algorithm for Theorem 3 is deterministic and corrects γn errors in linear

time. Theorem 6 shows that one can correct more errors by using a randomized algorithm.

▶ Theorem 6. Let G be a (c, d, α, δ)-bipartite expander and C0 be a [d, k0, d0]-linear code,
where c, d, α, δ, d0, k0 are positive constants. If δd0 > 3, then there exists a linear-time
randomized decoding algorithm for Tanner code T (G, C0) such that if the input has at most
αn errors from a codeword, then with probability 1−exp {−Θc,δ,d0 (n)}, the decoding algorithm
can output the correct codeword.
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1.2 Notations and definitions

A graph is a pair G = (V, E), where V is a set whose elements are called vertices and E

is a set of 2-subsets of V , whose elements are called edges. For a vertex u ∈ V , the set of
neighbors of u in G is denoted by N(u) := {v ∈ V : {u, v} ∈ E}. For a subset S ⊆ V (G),
let N(S) = ∪u∈SN(u) be the set of all the neighbors of the vertices in S. A graph G is
bipartite if V (G) admits a bipartition V (G) = L ∪ R such that both L and R contain no
edge. Furthermore, G is (c, d)-regular if every vertex v ∈ L has exactly c neighbors in R and
every vertex u ∈ R has exactly d neighbors in L.

Let F2 = {0, 1} denote the finite field of size 2. A code C is simply a subset of Fn
2 .

For two vectors x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Fn
2 , the Hamming distance between

x and y, denoted by dH(x, y), is the number of coordinates where x and y differ, that is,
dH(x, y) = |{i ∈ [n] : xi ̸= yi}|. The minimum distance of a code C ⊆ Fn

2 , denoted by d(C),
is the minimum of dH(x, y) among all distinct x, y ∈ C. Let wt(x) denote the number of
nonzero coordinates of x. A code C ⊆ Fn

2 is said to be an [n, k, d(C)]-linear code if it is a
linear subspace in Fn

2 with dimension k and minimum distance d(C). It is well-known that
for every linear code C, d(C) = min{wt(x) : x ∈ C \ {0}}.

Throughout, let G be a (c, d, α, δ)-bipartite expander, and C0 be a [d, k0, d0] linear code.
Let T (G, C0) be the Tanner code defined by G and C0. Let Check be the error-detection
algorithm of C0, which checks whether a vector in Fd

2 is a codeword of C0. Assume that Check
takes h0 time. Similarly, let Decode be the correct-correction algorithm for C0, which corrects
up to ⌊d0−1

2 ⌋ errors. Assume that Decode takes t0 time. Note that h0, t0 are constants
depending only on C0 but not on n.

Conventionally speaking, let us call the vertices in L variables and the vertices in R

constraints. Given a vector x ∈ Fn
2 , which is corrupted from some codeword y ∈ T (G, C0),

let us call a constraint u ∈ R satisfied if xN(u) ∈ C0, otherwise call it unsatisfied.

1.3 Some related works

Below, we briefly review two previous works [16, 46] that are closely related to our decoding
algorithms for Theorems 3 and 6. Let us start from the decoding algorithm of Sipser and
Spielman [46]. We summarize as follows the so-called iterated decoding or message-passing
algorithm of [46] that decodes T (G, Par).

Let y ∈ T (G, Par) be the correct codeword that we want to decode from the received
vector x. In the first round, the algorithm runs Check(xN(u)) for every u ∈ R. If a
constraint u is unsatisfied, then it sends a “flip” message to every variable in N(u) ⊆ L.
Sipser and Spielman showed that as long as the expansion ratio of G is sufficiently large
(δ > 3/4) and the number of corruptions in x is sufficiently small but not identically zero
(that is, 1 ≤ dH(x, y) ≤ (2δ− 1)α ·n), then there must exist a variable v ∈ L that receives
> c/2 flip messages, which implies that more than half constraints in N(v) are unsatisfied.
The algorithm then flips xv and updates x and the status of the constraints in N(v).
Note that since Par is the parity-check code, flipping xv makes all satisfied constraints in
N(v) unsatisfied and all unsatisfied constraints in N(v) satisfied. Therefore, by flipping
xv one can strictly reduce the number of unsatisfied constraints.
The algorithm then runs the above process repeatedly. As long as there are still unsatisfied
constraints, it finds the desired v ∈ L so that flipping xv strictly reduces the number of
unsatisfied constraints. As there are at most |R| = cn/d unsatisfied constraints, the above
process must stop in O(n) rounds and therefore yields an O(n) time decoding algorithm.

APPROX/RANDOM 2024
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Dowling and Gao [16] extend Sipser and Spielman’s algorithm from T (G, Par) to the
more general setting T (G, C0) by making use of the minimum distance of C0. Their algorithm
works for linear codes defined on any finite field, but we will describe it only for F2.

The algorithm begins by setting a threshold t ≤ ⌊d0−1
2 ⌋ and then runs Decode(xN(u)) for

every u ∈ R. If a constraint u ∈ R satisfies 1 ≤ dH(Decode(xN(u)), xN(u)) ≤ t− 1, then
it sends a “flip” message to every variable v ∈ N(u) with Decode(xN(u))v ̸= xv. Note
that Decode(xN(u)) ∈ Fd

2 is a codeword in C0. The algorithm then flips all xv for those v

receiving at least one flip, and then updates x. [16] showed that as long as the minimum
distance d0 of C0 is sufficiently large (see (1)), then flipping all variables that receive at
least one flip can reduce the number of corrupted variables in x by some positive fraction.
In the next steps, the algorithm runs the above process repeatedly. As the number of
corrupted variables is at most O(n), the algorithm will stop in O(log n) rounds. Crucially,
in order to show that the running time of the algorithm is still linear-order but not of
order n log n, the authors proved that the running time of every single round is within
a constant factor of the number of corrupted variables at the beginning of this round.
As the numbers of corrupted variables form a decreasing geometric sequence with the
leading term at most n, the total running time, which is within a constant factor of the
sum of this geometric sequence, is also O(n).

Lastly, it is worth mentioning that there are several very recent works on the explicit
constructions of bipartite graphs with good vertex expansion properties, including the lossless
expanders [8, 13, 20] and the unique-neighbor expanders [1, 3, 4, 25, 28].

1.4 Key new ideas in our work
In this subsection, we briefly introduce the key new ideas in our work. Let us focus on the
deterministic decoding algorithm that proves Theorem 3. Let us begin by analyzing the
following two possible places where the previous algorithm in [16] could be improved.

In every decoding round of the above algorithm, the constraints in R which satisfy
1 ≤ dH(Decode(xN(u)), xN(u)) ≤ t− 1 (and hence send at least one and at most t− 1 flips
to L) in fact have two statuses, as detailed below. Let A be the set of constraints u ∈ R

that sends at least one flip and Decode(xN(u)) computes the correct codeword in C0 (i.e.,
Decode(xN(u)) = yN(u)); let B be the set of constraints u ∈ R that sends at least one flip
and Decode(xN(u)) computes an incorrect codeword in C0 (i.e., Decode(xN(u)) ̸= yN(u)).

Two possible places where the previous algorithm could be improved

(i) It could be the case that every constraint u ∈ A satisfies dH(Decode(xN(u)), xN(u)) = 1
and hence sends only one correct flip to L; in the meanwhile, every constraint u ∈ B

may satisfy dH(Decode(xN(u)), xN(u)) = t − 1 and sends as many as t − 1 flips to L,
which could be all wrong. In this case, the constraints in R altogether send |A| correct
flips and (t− 1)|B| wrong flips to the variables in L.

(ii) Unfortunately, the situation could be worse. Since our bipartite graph G is (c, d)-regular,
it could be the case that the neighbors of the constraints in A are highly concentrated
(e.g., all |A| correct flips are received by as few as |A|/c variables in L), and the neighbors
of the constraints in B are highly dispersed (e.g., all (t− 1)|B| possibly wrong flips are
received by as many as (t − 1)|B| variables in L). Consequently, a small number of
corrupted variables but a large number of correct variables in L receive flip messages.

Given the two issues above, if we flip all variables that receive at least one flip, then
in the worst case, we could correct |A|/c old corrupt variables but produce (t− 1)|B| new
corrupt variables. Recall that to make the algorithm in [16] work, in each round, we need



K. Cheng, M. Ouyang, C. Shangguan, and Y. Shen 61:7

to reduce the number of corrupted variables by at least a positive fraction, which implies
that in the worst case it is necessary to have |A|/c ≥ (t− 1)|B|. Together with some lower
bound on |A| and upper bound on |B| (see [16] for details), one can prove that in such worst
scenario (1) is necessary for Dowling and Gao’s algorithm to work.

Our new algorithm begins by noting that we could indeed fix the two problems mentioned
above. To do so, we introduce several new ideas as briefly presented below.

Key new ideas in our work

Let F := {i ∈ [n] : xi ̸= yi} be the set of corrupt variables in x. Similarly to [16], our
new algorithm begins by setting a threshold t = ⌊ 1

δ ⌋ and then runs Decode(xN(u)) for every
u ∈ R.
(a) To fix the first problem, if a constraint u ∈ R satisfies 1 ≤ dH(Decode(xN(u)), xN(u)) ≤

t−1, then instead of sending a flip message to every v ∈ N(u) with Decode(xN(u))v ̸= xv,
the new algorithm just arbitrarily picks exactly one such variable v, and sends a flip
message to only this specific v. So, every constraint in A ∪B sends exactly one flip to L.

(b) To fix the second problem, we associate each v ∈ L with a counter τv ∈ {0, 1, . . . , c}
that counts the number of flips received by v. For each m ∈ [c], let Sm denote the set
of variables that receive exactly m flips. Then, instead of flipping every variable that
receives at least one flip, i.e., instead of flipping ∪c

m=1Sm, we only flip Sm for some
m ∈ [c]. Crucially, we show that if the number |F | of corrupt variables is not too large,
then there must exist some m ∈ [c] such that |Sm| has the same order as |F |, and
more importantly, a (1/2 + κ)-fraction of variables in |Sm| are corrupted (and therefore
can be corrected by the flipping operation), where κ is an absolute positive constant.
Therefore, it follows that by flipping all variables in Sm, one can reduce |F | by some
positive fraction.

Note that the details of (a) and (b) can be found in Section 3.2, where we call the algorithm
corresponding to (a) and (b) “EasyFlip” and write EasyFlip(x, m) as the output of the
EasyFlip if x is the input vector and Sm is flipped (see Algorithm 2).

However, there is still a gap that needs to be fixed, that is, how to find the required
Sm? A plausible solution is to run EasyFlip(x, m) for every m ∈ [c]. This would roughly
increase the total running time by a c factor, which will still be O(n), provided that the
original running time is O(n). Unfortunately, by doing so we still cannot precisely identify the
required Sm, as in general we do not know how to count the number of corrupted variables
in some corrupted vector. We will fix this issue by introducing our third key new idea:
(c) Note that what we can explicitly count in each round of the algorithm is the number of

unsatisfied constraints. Roughly speaking, our strategy is to run EasyFlip iteratively for
a large but still constant number of times and then pick the final output that significantly
reduces the number of unsatisfied constraints.
More precisely, assume that we will run EasyFlip iteratively for s rounds. Let x0 := x

and write x1 := EasyFlip(x0, m1) as the output of the 1st EasyFlip invocation where the
variables in Sm1 are flipped for some m1 ∈ [c]; more generally, for k ∈ [s], write xk :=
EasyFlip(xk−1, mk) as the output of the kth EasyFlip invocation where the variables in
Smk

is flipped for some mk ∈ [c]. Note that in Algorithm 3 we call the above iterated
invocations of EasyFlip as “DeepFlip”, and write xk := DeepFlip(x, (m1, . . . , mk)) as the
output of the kth EasyFlip invocation. For 0 ≤ k ≤ s, let F k ⊆ L and Uk ⊆ R denote
the sets of corrupted variables and unsatisfied constraints caused by xk, respectively. We
prove that there are constants 0 < ϵ≪ ϵ′ ≪ ϵ′′ < 1 such that the following two wordy
but useful observations hold:
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(c1) If the number of corrupted variables is reduced dramatically then the number of
unsatisfied constraints is reduced significantly, i.e., if for some k ∈ [s], |F k| ≤ ϵ|F 0|,
then |Uk| ≤ ϵ′|U |;

(c2) If the number of unsatisfied constraints is reduced significantly, then the number of
corrupted variables must be reduced by a least a constant fraction i.e., if for some
k ∈ [s], |Uk| ≤ ϵ′|U0|, then |F k| ≤ ϵ′′|F |.

In the following, we will briefly argue how we will make use of the two observations (c1)
and (c2). Recall that in (b) we have essentially guaranteed that for every k ∈ [s], there
exists some m∗

k ∈ [c] such that by flipping Sm∗
k

in EasyFlip, one could reduce the number of
corrupted variables by an η-fraction for some η ∈ (0, 1). It follows that if we run DeepFlip
iteratively for (m1, . . . , ms) = (m∗

1, . . . , m∗
s), then we have |F s| ≤ (1 − η)s|F | < ϵ|F |,

provided that s > log(1−η)−1 ϵ−1 is sufficiently large (but still a constant independent
of n). Therefore, if we run DeepFlip thoroughly for all (m1, . . . , ms) ∈ [c]s, then by
(c1) there must exist at least one3 xk := DeepFlip(x, (m1, . . . , mk)) with k ≤ s such
that |Uk| ≤ ϵ′|U |. Moreover, using the last inequality, such xk and (m1, . . . , mk) can
be explicitly identified. Now, by (c2) we can conclude that the number of corrupted
variables is indeed reduced by at least a constant fraction.

Note that the above brute-force search only increases the total running time by at most a
cs factor. The details of (c) and the analysis of DeepFlip can be found in Section 3.3 and
Algorithm 3. Moreover, we call the algorithm that runs DeepFlip(x, (m1, . . . , ms)) thoroughly
for all (m1, . . . , ms) ∈ [c]s as “HardSearch”, and is discussed in Section 3.4 and Algorithm 4.
The discussion above basically shows that every HardSearch invocation could reduce the
number of corrupted variables by a constant fraction.

Running HardSearch iteratively for O(log n) rounds, the total number of corrupted
variables will be smaller than ⌊d0−1

2 ⌋, which can be easily corrected by running Decode for
every u ∈ R. The main algorithm that puts everything together is called “MainDecode”, and
is presented in Section 3.1 and Algorithm 1.

To show that the total running time is still linear in n, we adopt an argument similar to
that in the previous works (e.g., [16]). We show that the running time of every HardSearch
invocation is within a constant factor of the number of corrupted variables at the beginning
of this invocation.

Lastly, we would like to mention that our randomized decoding algorithm (see Algorithm 5),
which proves Theorem 6 and has a larger decoding radius than the deterministic algorithm,
basically follows from the same framework mentioned above. Loosely speaking, the high-level
idea of the randomized algorithm is to reduce the number of corruptions to a moderate size
that can be handled by the deterministic algorithm. For that purpose, we design a random
flip strategy which can be summarized as follows.

Recall that for every m ∈ [c], Sm denotes the set of all variables that receive exactly
m flips. First, for every constraint u ∈ R satisfying 1 ≤ dH(Decode(xN(u)), xN(u)) ≤ t, we
arbitrarily pick exactly one variable v ∈ N(u) with Decode(xN(u))v ̸= xv and send a flip
message to this specific v. Then, we collect all suspect variables that receive at least one
flip. Subsequently, we design a random sampling procedure to select a subset of ∪m∈[c]Sm to
flip. We show that this procedure can ensure, with high probability, that this subset has
more corrupted variables than correct variables, as long as the total number of corruptions
is at most αn. By applying this strategy iteratively, we can show that in each iteration,
the number of corruptions will be reduced by a positive fraction. Then, after running a

3 Clearly, DeepFlip(x, (m∗
1, . . . , m∗

s)) gives a candidate for such xk.
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constant number of iterations, the number of corrupted bits can be reduced to a range that
the deterministic algorithm can handle. At this point, the deterministic algorithm is invoked
to correct all remaining corrupted variables. Moreover, as n increases, the fail probability of
each iteration tends to 0. So the overall random algorithm will succeed with high probability.

2 An auxiliary lemma

Given two subsets S, T ⊆ V (G), let E(S, T ) denote the set of edges with one endpoint in S

and another endpoint in T . For every positive integer t, let
N≤t(S) = {u ∈ V (G) : 1 ≤ |N(u) ∩ S| ≤ t},
Nt(S) = {u ∈ V (G) : |N(u) ∩ S| = t},
and N≥t(S) = {u ∈ V (G) : |N(u) ∩ S| ≥ t}.

We will make use of the following crucial property of bipartite expander graphs.

▶ Proposition 7 (Folklore). Let G be a (c, d, α, δ)-bipartite expander. Then, for every set
S ⊆ L with |S| ≤ αn and every integer t ∈ [d], we have that|N≤t(S)| ≥ δ(t+1)−1

t · c|S|.

3 Deterministic decoding: Decoding Ω(n) corruptions in O(n) time

We need to set some parameters. Suppose that d0 > 3
δ − 1. Let t = ⌊ 1

δ ⌋. Take ϵ0 > 0 such
that d0 > 3

δ −1 + 2ϵ0 and ⌊ 1
δ + ϵ0⌋ = ⌊ 1

δ ⌋. For every 0 < ϵ1 < ϵ0δ2

100 , let ϵ2 = ϵ1
c+1 ·

δ(t+1)−1
t > 0

and ϵ3 = ϵ2

(
2(1− ϵ1)

(
1
2 + ϵ0δ2

2

)
− 1

)
> 0. It is not hard to check that ϵ1, ϵ2 and ϵ3

are all well-defined. Lastly, let ϵ4 = δd0−1
d0−1 · (1 − ϵ3), ℓ =

⌈
log1−ϵ3

(⌊
d0−1

2
⌋ 1

γn

)⌉
and

s0 =
⌈
log1−ϵ3

(
ϵ4

δd0−1
d0−1

)⌉
.

3.1 The main decoding algorithm – MainDecode
Given a corrupt vector x ∈ Fn

2 with at most γn corruptions, our main decoding algorithm
(see Algorithm 1 below) works as follows. The algorithm is divided into two parts. In the first
part (see steps 2-10 below), it invokes HardSearch (see Algorithm 4 below) recursively for ℓ

rounds, where in every round the number of corrupt variables is reduced by a (1−ϵ3)-fraction.
After ℓ executions of HardSearch, the number of corrupt variables is reduced to at most
⌊d0−1

2 ⌋. Then, in the second part of the algorithm (see steps 11-13 below), the decoder of
the inner code C0 is applied to finish decoding.

The next two lemmas justify the correctness and the linear running time of MainDecode.

▶ Lemma 8.
(i) Let x be the input vector of HardSearch and let F be the set of corrupt variables of x.

Let x′ := HardSearch(x) and F ′ be the set of corrupt variables of x′. If |F | ≤ γn, then
|F ′| ≤ (1− ϵ3) · |F |.

(ii) In step 11 of MainDecode, the number of corrupt variables in xℓ is at most ⌊d0−1
2 ⌋.

▶ Lemma 9.
(i) Let x be the input vector of HardSearch and let F be the set of corrupt variables of x.

If |F | ≤ γn, then the running time of HardSearch is at most O(n + |F |).
(ii) Furthermore, if the number of corrupt variables in the input vector of MainDecode is

at most γn, then the running time of MainDecode is O(n).
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Algorithm 1 Main decoding algorithm for expander codes – MainDecode.

Input: G, C0, x ∈ Fn
2

Output: x′ ∈ Fn
2

1 Set i = 1 and x0 = x;
2 for 1 ≤ i ≤ ℓ do
3 U i−1 ← {u ∈ R : xi−1

N(u) /∈ C0};
4 if |U i−1| = 0 then
5 return x′ ← xi−1;
6 else
7 xi ← HardSearch(xi−1);
8 i← i + 1 ;
9 end

10 end
11 for every u ∈ R such that xℓ

N(u) /∈ C0 do
12 xℓ

N(u) ← Decode(xℓ
N(u))

13 end
14 return x′ ← xℓ;

Proof of Theorem 3. Let y ∈ T (G, C0) be a codeword and x ∈ Fn
2 be a corrupted vector.

Let F = {i ∈ [n] : xi ̸= yi} be the set of corrupt variables of x with respect to y. To prove
the theorem, it suffices to show that as long as |F | ≤ γn, MainDecode finds y correctly in
linear time. We will analyze the following two cases:

If the algorithm returns xi for some 0 ≤ i ≤ ℓ − 1, then as |U i| = 0, we must have
xi ∈ T (G, C0). Let F i be the set of the corrupt variables of xi. Then it follows by
Lemma 8 (i) that d(xi, y) = |F i| ≤ (1 − ϵ3)i|F | ≤ (1 − ϵ3)iγn < d(T (G, C0)), which
implies that xi = y.
If the algorithm does not return xi for any 0 ≤ i ≤ ℓ− 1, then it follows by Lemma 8 (ii)
that d(xℓ, y) ≤ ⌊d0−1

2 ⌋. Therefore, one can find y by running Decode for every u ∈ R.
Moreover, by Lemma 9 the running time of MainDecode is O(n). ◀

The remaining part of this section is organized as follows. In Section 3.2 below, we will
introduce the basic building block of deterministic decoding – EasyFlip, which also corresponds
to items (a) and (b) in Section 1.4. In Section 3.3 we will introduce the algorithm DeepFlip,
which runs EasyFlip iteratively for a constant number of times. DeepFlip corresponds to
item (c) in Section 1.4. In Section 3.4 we will introduce HardSearch, which is designed by
running DeepFlip thoroughly for all choices of (m1, . . . , ms) until the number of unsatisfied
constraints is significantly reduced. The proof of Lemma 8 is also presented in Section 3.4.

3.2 The basic building block of deterministic decoding – EasyFlip

In this subsection, we will present the algorithm EasyFlip (see Algorithm 2 below), which is
the basic building block of our deterministic decoding. It contains the following two parts:

EasyFlip (i): in the first part (see steps 1-6 below), it invokes Decode for each constraint
u ∈ R and sends flips to some variables v ∈ L;
EasyFlip (ii): in the second part (see steps 7-11 below), it counts the number of flips
received by each variable in L and flips all variables that receive exactly m flips.
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Algorithm 2 Flip all variables receiving exactly m flips – EasyFlip.

Input: G, C0, x ∈ Fn
2 , and m ∈ [c]

Output: x′ ∈ Fn
2

1 for every u ∈ R do
2 ω ← Decode(xN(u));
3 if 1 ≤ dH(ω, xN(u)) ≤ t then
4 send a “flip” to an arbitrary vertex v ∈ N(u) with ωv ̸= xv

5 end
6 end
7 for every v ∈ L do
8 if v receives exactly m flips then
9 flip xv

10 end
11 end
12 return x′ ← x

Our goal is to show that there must exist an integer m ∈ [c] such that by flipping all
variables v ∈ L that receive exactly m flips, one can reduce the number of corrupt variables
in x′ by a (1− ϵ3)-fraction, as compared with x. Note that for this moment, it suffices to
prove the existence of such an m and we do not need to find it explicitly. In fact, later we
will find the required m by exhaustive search.

We make the discussion above precise by the following lemma.

▶ Lemma 10. Let x be the input vector of EasyFlip and let F be the set of corrupt variables
of x. If |F | ≤ αn, then there exists an integer m ∈ [c] such that the following holds. Let
x′ = EasyFlip(x, m) be the output vector of EasyFlip and F ′ be the set of corrupt variables
of x′. Then |F ′| ≤ (1− ϵ3)|F |.

3.2.1 Proof of Lemma 10
Let us first introduce some notation and easy inequalities. Let y ∈ T (G, C0) be the correct
codeword that we want to decode from x. Let A be the set of constraints u ∈ R that sends a
flip and Decode(xN(u)) computes the correct codeword in C0 (that is, Decode(xN(u)) = yN(u)).
Similarly, let B be the set of constraints u ∈ R that sends a flip and Decode(xN(u)) computes
an incorrect codeword in C0 (i.e., Decode(xN(u)) ̸= yN(u)).

By the definitions of A and N≤t(F ), it is easy to see that

A = {u ∈ R : 1 ≤ |N(u) ∩ F | ≤ t} = N≤t(F ). (2)

Therefore, it follows by (2) and Proposition 7 that

|A| ≥ δ(t + 1)− 1
t

· c|F |. (3)

Moreover, since a constraint u ∈ R computes an incorrect codeword in C0 only if it sees at
least d0 − t corrupt variables in its neighbors (recall that d(C0) ≥ d0), we have that

B = {u ∈ R : |N(u) ∩ F | ≥ d0 − t and ∃ ω ∈ C0 s.t. 1 ≤ dH(ω, xN(u)) ≤ t} ⊆ N≥d0−t(F ). (4)

By counting the number of edges between F and N(F ), we see that

(d0 − t)|B| ≤ |E(F, B)| ≤ |E(F, N(F ))| = c|F |,
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which implies that

|B| ≤ c|F |
d0 − t

. (5)

Consider the following two equalities,

d∑
k=1

k · |Nk(F )| = c|F | and
d∑

k=1
|Nk(F )| = |N(F )| ≥ δc|F |.

By multiplying the second by 1
δ + ϵ0 and subtracting the first one, we have

t∑
k=1

(1
δ

+ ϵ0 − k)|Nk(F )| −
d∑

k=t+1

(k − 1
δ

− ϵ0)|Nk(F )| ≥
((1

δ
+ ϵ0

)
δ − 1

)
c|F | ≥ ϵ0δc|F |,

Moreover, it follows by (2) and (4) that

t∑
k=1

(1
δ

+ ϵ0 − k)|Nk(F )| −
d∑

k=t+1
(k − 1

δ
− ϵ0)|Nk(F )|

≤
t∑

k=1
(1
δ

+ ϵ0 − k)|Nk(F )| −
d∑

k=d0−t

(k − 1
δ
− ϵ0)|Nk(F )|

≤ (1
δ

+ ϵ0 − 1)|N≤t(F )| − (d0 − t− 1
δ
− ϵ0)|N≥d0−t(F )|

≤ (1
δ

+ ϵ0 − 1)|A| − (d0 − t− 1
δ
− ϵ0)|B|.

As d0 > 3
δ − 1 + 2ϵ0 and t = ⌊ 1

δ ⌋, we have d0 − t− 1
δ − ϵ0 > 1

δ + ϵ0 − 1. Combining the
above two inequalities, one can infer that

ϵ0δc|F | ≤ (1
δ

+ ϵ0 − 1)|A| − (d0 − t − 1
δ

− ϵ0)|B| ≤ (1
δ

+ ϵ0 − 1)(|A| − |B|) ≤ 1
δ

(|A| − |B|),

which implies that

|A| − |B| ≥ ϵ0δ2c|F |. (6)

On the other hand, since A and B are disjoint subsets of N(F ), we have that

|A|+ |B| ≤ |N(F )| ≤ c|F |. (7)

For every integer m ∈ [c], let Sm be the set of variables in L that receive exactly m flips.
Then the variables in Sm receive a total number of m|Sm| flips. In EasyFlip, every constraint
in A ∪B sends exactly one flip to L. The total number of flips sent by constraints in R and
received by variables in L is exactly

|A|+ |B| =
c∑

m=1
m|Sm|. (8)

Let Z be the set of correct variables that receive at least one flip, i.e., Z = (∪c
m=1Sm) \F .

Observe that the set F ′ of corrupt variables in the output vector x′ consists of corrupt
variables not flipped by EasyFlip, which is F \Sm, and correct variables that are erroneously
flipped by EasyFlip, which is Sm ∩ Z. Therefore,

F ′ = (F \ Sm) ∪ (Sm ∩ Z). (9)
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Let αm be the fraction of corrupt variables in Sm. Then we have that

αm = |Sm ∩ F |
|Sm|

and 1− αm = |Sm ∩ Z|
|Sm|

. (10)

Let βm denote the fraction of flips sent from A to Sm among all flips received by Sm, i.e.,

βm = the number of flips sent from A to Sm

m|Sm|
. (11)

The following inequality is crucial in the analysis of EasyFlip.

▷ Claim 11. For every m ∈ [c], αm ≥ βm.

Proof. As every variable in Sm receives the same number of m flips, by (10) the number
of flips received by Sm \ F is (1 − αm)m|Sm|. Moreover, by (11) the number of flips sent
from B to Sm is (1 − βm)m|Sm|. Since the constraints in A always compute the correct
codewords in C0, they always send correct flips to their neighbors in L. Therefore, the
flips received by Sm \ F (which are the wrong flips) must be sent by B, which implies that
(1− αm)m|Sm| ≤ (1− βm)m|Sm|, where the inequality follows from the fact that B could
also send flips to Sm ∩ F (which are the correct flips). Thus, αm ≥ βm, as needed. ◁

The following result shows that there exists an integer m ∈ [c] such that there exists a
large set Sm that contains many corrupt variables.

▷ Claim 12. If |F | ≤ αn, then there exists an integer m ∈ [c] such that αm ≥ (1− ϵ1) |A|
|A|+|B|

and |Sm| ≥ ϵ2|F |.

Proof. Suppose for the sake of contradiction that for every m ∈ [c], we have either αm <

(1 − ϵ1) |A|
|A|+|B| or |Sm| < ϵ2|F |. Then, by counting the number of flips sent from A to L

(which is exactly |A|), we have that

|A| =
c∑

m=1
βmm|Sm| ≤

c∑
m=1

αmm|Sm| < (1− ϵ1) |A|
|A|+ |B|

c∑
m=1

m|Sm|+
c∑

m=1
mϵ2|F |

= (1− ϵ1)|A|+ c(c + 1)
2 · ϵ2|F |,

where the first inequality follows from Claim 11, the second inequality follows from our
assumption on αm and |Sm|, and the last equality follows from (8).

Rearranging gives that |A| < ϵ2(c+1)
2ϵ1

· c|F | = δ(t+1)−1
2t · c|F |, contradicting (3). ◁

Next, we will show that by flipping all the variables in Sm, where m satisfies the conclusion
of Claim 12, one can reduce the size of the set of corrupt variables by a (1 − ϵ3)-fraction,
thereby proving Lemma 10.

Proof of Lemma 10. Let m ∈ [c] satisfy the conclusion of Claim 12. Combining the two
inequalities (6) and (7), one can infer that

|A|
|A|+ |B| = 1

2 + |A| − |B|
2(|A|+ |B|) ≥

1
2 + +ϵ0δ2c|F |

2c|F |
= 1

2 + ϵ0δ2

2 . (12)

Therefore, it follows by (12) that

αm ≥ (1− ϵ1) |A|
|A|+ |B| ≥ (1− ϵ1)

(
1
2 + ϵ0δ2

2

)
. (13)
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It follows by (9) that

|F ′| = (|F | − |Sm ∩ F |) + |Sm ∩ Z| = |F | − (2αm − 1)|Sm|

≤ |F | −
(

2(1− ϵ1)
(

1
2 + ϵ0δ2

2

)
− 1

)
|Sm| = |F | − (ϵ3/ϵ2)|Sm| ≤ |F | − ϵ3|F |,

as needed, where the second equality follows by (10), the first inequality follows by (13), the
last equality follows by the definition of ϵ3 and the last inequality follows by Claim 12. ◀

We will conclude by the following inequality, which shows that for an arbitrary m ∈ [c],
flipping Sm would not significantly increase the number of corrupt variables.

▷ Claim 13. For arbitrary x ∈ Fn
2 and m ∈ [c], let x′ := EasyFlip(x, m). Let F and F ′ be

the sets of corrupt variables of x and x′, respectively. Then |F ′| ≤ (1 + c
d0−t )|F |.

Proof. Since the constraints in A always compute the correct codewords in C0, they always
send correct flips to their neighbors in L. Therefore, the wrong flips must be sent by B.
Therefore, in the worst case (i.e., assuming that A = ∅), we have that

|F ′| ≤ |F |+ |B| ≤
(

1 + c

d0 − t

)
|F |,

where the second inequality follows from (5). ◁

3.3 Running EasyFlip iteratively for a constant number of times –
DeepFlip

In this subsection, we will present and analyze DeepFlip (see Algorithm 3 below), which is de-
signed by running EasyFlip iteratively for s times for a particular choice of (m1, . . . , ms) ∈ [c]s.
By iteratively we mean a sequence of operations x0 := x, x1 := EasyFlip(x0, m1), . . . , xs =
EasyFlip(xs−1, ms).

Algorithm 3 Running EasyFlip iteratively for a particular choice (m1, . . . , ms) ∈ [c]s –
DeepFlip.

Input: G, C0, x ∈ Fn
2 , and (m1, . . . , ms) ∈ [c]s

Output: xs ∈ Fn
2 or ⊥

1 Set k = 1 and x0 = x;
2 for 1 ≤ k ≤ s do
3 xk ← EasyFlip(xk−1, mk);
4 Uk ← {u ∈ R : xk

N(u) /∈ C0};
5 if |Uk| > (1− ϵ3)k · cγn then
6 return ⊥
7 else
8 k ← k + 1
9 end

10 end
11 return xs

Our goal is to show that as long as the number of corrupt variables in x is not too large,
by running EasyFlip iteratively for a large enough (but still constant) number of times, there
exists a vector (m1, . . . , ms) ∈ [c]s such that the number of corrupt variables in the final
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output xs is at most a (1 − ϵ3)-fraction of the number of corrupt variables in the initial
input x. Most importantly, later we will show that such a vector (m1, . . . , ms) can be found
explicitly and efficiently.

The above assertion will be made precise by the following lemma.

▶ Lemma 14. Let x be the input vector of DeepFlip and let F be the set of corrupt variables
of x. If |F | ≤ γn, then for every s ≥ s0 there exists a nonempty subset M ⊆ [c]s such that
the following holds for every (m1, . . . , ms) ∈M . Let xs :=DeepFlip(x, (m1, . . . , ms)) be the
output vector of DeepFlip and F s be the set of corrupt variables of xs. Then |F s| ≤ (1−ϵ3)|F |.

3.3.1 Proof of Lemma 14
Given (m1, . . . , ms) ∈ [c]s and x0 := x, for each k ∈ [s], let xk :=EasyFlip(xk−1, mk). With
this notation, xs = EasyFlip(xs−1, ms) = DeepFlip(x, (m1, . . . , ms)), is exactly the output
vector of DeepFlip. Let F be the set of corrupt variables in x and U be the set of unsatisfied
constraints with respect to x. Sometimes, we will also use F 0 := F and U0 := U . For k ∈ [s],
define F k and Uk similarly with x replaced by xk. Then

N≤d0−1(F ) ⊆ U ⊆ N(F ), (14)

where the first inclusion holds since d(C0) = d0.
The following lemma can be viewed as an “idealized” version of Lemma 14.

▶ Lemma 15. With the above notation, the following holds. If |F | ≤ αn, then there exists a
vector (m1, . . . , ms) ∈ [c]s such that

(i) |F s| ≤ (1− ϵ3)s|F |;
(ii) for each k ∈ [s], |Uk| ≤ (1− ϵ3)k · c|F |;
(iii) |Us| ≤ (1− ϵ3)s · d0−1

δd0−1 · |U |.

Proof. As |F | ≤ αn, by Lemma 10, there exists m1 ∈ [c] such that x1 = EasyFlip(x, m1)
satisfies |F 1| ≤ (1− ϵ3)|F | ≤ αn. Continuing this process, it follows by Lemma 10 that for
each k ∈ [s], there exists mk ∈ [c] such that xk = EasyFlip(xk−1, mk) satisfies

|F k| ≤ (1− ϵ3)|F k−1| ≤ (1− ϵ3)k|F | ≤ αn. (15)

Such a vector (m1, . . . , ms) ∈ [c]s clearly satisfies property (i).
To prove (ii), note that it follows by (14) and (15) that for each k ∈ [s],

|Uk| ≤ |N(F k)| ≤ c|F k| ≤ (1− ϵ3)k · c|F |.

To prove (iii), as |F | ≤ αn, applying Proposition 7 in concert with (14) gives that
δd0−1
d0−1 · c|F | ≤ |N≤d0−1(F )| ≤ |U |. Combining the equation above and (i) gives that
|Us| ≤ c|F s| ≤ (1− ϵ3)s · c|F | ≤ (1− ϵ3)s · d0−1

δd0−1 · |U |, completing the proof of (iii). ◀

Lemma 15 (i) indicates that there exists an “ideal” choice, say (m∗
1, . . . , m∗

s) ∈ [c]s, such
that if |F | ≤ αn, then after the execution of EasyFlip iteratively for s times (directed
by (m∗

1, . . . , m∗
s)), the number of corrupt variables in the final output xs is at most a

(1− ϵ3)s-fraction of the number of corrupt variables in the initial input x0 = x.
Unfortunately, in general, there is no way to compute the number of corrupt variables

in the input and output of each execution of EasyFlip. From this perspective, there is no
easy way to explicitly find the ideal (m∗

1, . . . , m∗
s) ∈ [c]s. However, Lemma 15 (iii), which is

a consequence of Lemma 15 (i), essentially shows that if the number of corrupt variables
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reduces dramatically, then the number of unsatisfied constraints also reduces significantly -
fortunately, it is clear that this quantity can be computed in linear time! The analysis of our
deterministic decoding algorithm relies heavily on this observation.

The above discussion motivates the following definition.

▶ Definition 16. Given the input vector x of DeepFlip, let M be the set consisting of all
vectors (m1, . . . , ms) ∈ [c]s which satisfy the following two properties:
(a) for each k ∈ [s], |Uk| ≤ (1− ϵ3)k · cγn;
(b) |Us| ≤ ϵ4|U |, where ϵ4 = δd0−1

d0−1 · (1− ϵ3).

The following result is an easy consequence of Lemma 15.

▷ Claim 17. If |F | ≤ γn and s ≥ s0, then M ̸= ∅.

Proof. Since |F | ≤ γn < αn, there exists a vector (m1, . . . , ms) ∈ [c]s that satisfies Lemma 15.
By substituting |F | ≤ γn into Lemma 15 (ii), it is easy to see that such a vector also satisfies
Definition 16 (a). Moreover, by substituting s ≥ s0 =

⌈
log1−ϵ3

(
ϵ4

δd0−1
d0−1

)⌉
into Lemma 15

(iii), it is not hard to see that Definition 16 (b) also holds. Therefore, M ̸= ∅, as needed. ◁

As briefly mentioned above, in general one cannot explicitly find the ideal (m∗
1, . . . , m∗

s) ∈
[c]s which dramatically reduces the number of corruptions. Instead, under a stronger
condition |F | ≤ γn (recall that Lemma 15 assumes |F | ≤ αn), Lemma 14 shows that for
every (m1, . . . , ms) ∈ M , xs = DeepFlip(x, (m1, . . . , ms)) reduces the number of corrupt
variables of x by a (1− ϵ3)-fraction, which makes every member of M an acceptable (which
may be not ideal) choice for DeepFlip.

Now we are ready to present the proof of Lemma 14.

Proof of Lemma 14. First of all, we would like to show that Lemma 14 is well defined,
namely, for every |F | ≤ γn and (m1, . . . , ms) ∈M , DeepFlip(x, (m1, . . . , ms)) does not return
⊥. Indeed, as (m1, . . . , ms) ∈ M , by Definition 16 (a) we have that for every 1 ≤ k ≤ s,
|Uk| ≤ (1− ϵ3)k · cγn, which implies that Uk always passes the test in step 5 of Algorithm 3.
Therefore, under the assumption of Lemma 14, the output of DeepFlip is a vector xs ∈ Fn

2 .
To prove the lemma, assume for the moment that |F s| ≤ αn. Given the correctness of

this assertion, applying Proposition 7 in concert with (14) gives that

δd0 − 1
d0 − 1 · c|F

s| ≤ |N≤d0−1(F s)| ≤ |Us|.

Moreover, by combining the above equation and Definition 16 (b), we have

δd0 − 1
d0 − 1 · c|F

s| ≤ |Us| ≤ ϵ4|U | ≤
δd0 − 1
d0 − 1 · (1− ϵ3) · c|F |,

which implies that |F s| ≤ (1− ϵ3)|F |, as needed.
Therefore, it remains to show that |F s| ≤ αn. We will prove by induction that for each

0 ≤ k ≤ s, |F k| ≤ αn
1+c/(d0−t) ≤ αn. For the base case k = 0, it follows by assumption that

|F 0| ≤ γn < αn
1+c/(d0−t) as d0 ≥ 3, δd0 > 3 and t = ⌊ 1

δ ⌋. Suppose that for some k ∈ [s]
we have |F k−1| ≤ αn

1+c/(d0−t) . Since xk =EasyFlip(xk−1, mk), it follows by Claim 13 that
|F k| ≤ (1 + c

d0−t )|F k−1| ≤ αn. Therefore, we have

δd0 − 1
d0 − 1 · c|F

k| ≤ |N≤d0−1(F k)| ≤ |Uk| ≤ (1− ϵ3)k · cγn ≤ cγn,
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where the first inequality follows from Proposition 7, the second inequality follows from
(14), and the third inequality follows from Definition 16 (a). The last equation implies that
|F k| ≤ d0−1

δd0−1 γn < d0
2 γn ≤ αn

1+c/(d0−t) , as needed, where the second inequality follows from
the assumption δd0 > 3 and the last inequality follows from the definition of γ in Theorem 3,
δd0 > 3 and t = ⌊ 1

δ ⌋. The proof of the lemma is thus completed. ◀

3.4 Running DeepFlip thoroughly until significantly reducing the number
of unsatisfied constraints – HardSearch

In this subsection, we describe and analyze HardSearch (see Algorithm 4 below). Given an
input vector x ∈ Fn

2 with at most γn corruptions, HardSearch runs DeepFlip(x, (m1, . . . , ms))
over all choices of (m1, . . . , ms) ∈ [c]s until it finds one, say (m′

1, . . . , m′
s), such that the

number of unsatisfied constraints with respect to DeepFlip(x, (m′
1, . . . , m′

s)) is at most an
ϵ4-fraction of the number of unsatisfied constraints with respect to x. Then Lemma 8 shows
that the number of corruptions in x′ is at most a (1−ϵ3)-fraction of the number of corruptions
in x. Therefore, running HardSearch iteratively for ℓ rounds gives us a (1− ϵ3)ℓ-reduction
on the number of corruptions.

Algorithm 4 Running DeepFlip over all (m1, . . . , ms) ∈ [c]s until finding an “acceptable”
one – HardSearch.

Input: G, C0, x ∈ Fn
2 , and s = s0

Output: x′ ∈ Fn
2

1 U ← {u ∈ R : xN(u) /∈ C0};
2 for every (m1, . . . , ms) ∈ [c]s do
3 x′ ← DeepFlip(x, (m1, . . . , ms));
4 if x′ ̸= ⊥ then
5 U ′ ← {u ∈ R : x′

N(u) /∈ C0};
6 if |U ′| ≤ ϵ4|U | then
7 return x′

8 end
9 end

10 end

3.4.1 Proof of Lemma 8
To prove (i), let M be the set of vectors in [c]s which satisfy the two conditions in Definition 16
with respect to F and s, where |F | ≤ γn and s = s0. By our choices of F and s, it
follows by Claim 17 that M ̸= ∅. By Lemma 14, as long as HardSearch finds a vector
(m1, . . . , ms) ∈ M , it would output a vector x′ = DeepFlip(x, (m1, . . . , ms)) such that
|U ′| ≤ ϵ4|U |4 and |F ′| ≤ (1− ϵ3)|F |, as needed.

It remains to prove (ii), which is an easy consequence of (i). Let F i be the set of
corruptions in xi for all 0 ≤ i ≤ ℓ. Then by (i) for every 0 ≤ i ≤ ℓ − 1, we have either
xi ∈ T (G, C0) (if |U i| = 0) or |F i+1| ≤ (1 − ϵ3)|F i| (if |U i| ̸= 0). Therefore, after at
most ℓ =

⌈
log1−ϵ3

(⌊
d0−1

2
⌋ 1

γn

)⌉
iterative executions of HardSearch, the number of corrupt

variables is at most (1− ϵ3)ℓγn ≤
⌊

d0−1
2

⌋ 1
γn · γn =

⌊
d0−1

2
⌋
, as needed.

4 This holds since (m1, . . . , ms) ∈ M satisfies Definition 16 (b).
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4 Randomized decoding: Reduce large corruptions to a moderate size

In this section, we present our randomized decoding for Tanner codes which can correct
more errors. The general strategy is as follows. First, we use a voting process to derive a
set S := ∪m∈[c]Sm of candidate variables to flip. More precisely, each constraint u ∈ R that
satisfies 1 ≤ dH(Decode(xN(u)), xN(u)) ≤ t sends exactly one flip to an arbitrary variable
v ∈ N(u) with Decode(xN(u))v ̸= xv. We then design a special sampling process to pick a
large fraction of variables from S and flip them. This process can, with high probability,
reduce the number of corrupted variables by a positive fraction. We repeat the above
random process until the number of corrupted variables drops below γn, in which case our
deterministic decoding MainDecode in Algorithm 1 can work correctly, or we run out of time
and stop. Finally, we use MainDecode to get the codeword.

Let γ be the relative decoding radius of Theorem Theorem 3. The exact randomized
decoding is given as Algorithm 5, which yields the following result.

Algorithm 5 Randomized Decoding.

Input: x ∈ Fn
2 with at most α fraction errors

Output: a codeword in T (G, C0) or ⊥
1 Set t = ⌊ 1

δ ⌋;

2 for ℓ = 1, . . . ,

⌈
log γ

α

log
(

1− 3ϵ(δ(t+1)−1)
4t

)⌉
do

3 for every u ∈ R do
4 ω ← Decode(xN(u));
5 if 1 ≤ dH(ω, xN(u)) ≤ t then
6 send a “flip” message to the vertex v ∈ N(u) with the smallest index such

that ωv ̸= xv

7 end
8 end
9 ∀m ∈ [c], Sm ← {v ∈ L : v receives m “flip” messages};

10 S ←
⋃

m Sm;
11 Randomly pick P ⊆ S: for every m ∈ [c], for each variable in Sm, pick it with

probability m
2c , using independent randomness;

12 Flip all bits in P ;
13 U ← {u ∈ R : xN(u) /∈ C0};
14 if |U | ≤

(
δ − 1

d0

)
cγn then

15 return MainDecode(x)
16 end
17 end
18 return ⊥

The following two lemmas demonstrate the correctness and linear running time of
Algorithm 5, respectively5.

▶ Lemma 18. If the input has distance at most αn from a codeword, then with probability
1− exp {−Θc,δ,d0(n)}, Algorithm 5 outputs the correct codeword.

5 We only prove Lemma 18. The proof of Lemma 19 can be found in the full version of this paper [10]
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▶ Lemma 19. If the input has distance at most αn from a codeword, then Algorithm 5 runs
in linear time.

Assuming the correctness of the above lemmas, we can prove Theorem 6 as follows.

Proof of Theorem 6. If the input word has at most αn errors, then by Lemma 18, with
probability 1− exp {−Θc,δ,d0(n)}, the decoding outputs the correct codeword. Furthermore,
the running time is linear by Lemma 19. ◀

4.1 Proof of Lemma 18
Recall that we defined A as the set of constraints u ∈ R that sends a flip and Decode(xN(u))
computes the correct codeword in C0 ( see (2)), and B to be the set of constraints u ∈ R

that sends a flip and Decode(xN(u)) computes an incorrect codeword in C0 (see (4) ). Also,
recall we let αm denote the fraction of corrupt variables in Sm (see (10)) and we let βm

denote the fraction of flips sent from A to Sm among all flips received by Sm (see (11)). Now
we let M := A ∪B.

First, we bound the size of P in an arbitrary iteration.

▷ Claim 20. For every constant ϵ > 0, with probability ≥ 1− exp {−Θc,ϵ(|M |)}, the size of
P is in

[
(1− ϵ) |M |

2c , (1 + ϵ) |M |
2c

]
.

Proof. In Algorithm 5, for every m ∈ [c], each variable in Si is picked independently with
probability m

2c . For each v ∈ S, let Xv be the indicator random variable of the event that the
variable v is picked. So for every v ∈ Sm, Pr[Xv = 1] = m

2c . Let X =
∑

v∈S Xv. It is easy to
see that X = |P |. By the linearity of expectation, we have that

EX =
∑
v∈S

EXv =
∑

m∈[c]

m

2c
|Sm| =

|M |
2c

.

By Hoeffding’s inequality,

Pr
[

X ∈
[

(1 − ϵ) |M |
2c

, (1 + ϵ) |M |
2c

]]
≥ 1 − 2 exp

{
−

2
(
ϵ |M|

2c

)2

|S|

}
≥ 1 − 2 exp

{
− ϵ2|M |

2c2

}
,

where the second inequality follows from the fact that |S| ≤ |M |. ◁

Next, we show that P contains significantly more corrupted variables than correct
variables.

▷ Claim 21. There exists a constant ϵ such that with probability ≥ 1− exp {−Θc,ϵ(|M |)},
the number of corrupted variables in P is at least (1/2 + ϵ) |M |

2c .

Proof of Claim 21. For every v ∈ S, let Yv be the indicator random variable of the event
that Xv = 1 and v ∈ F . Let Y =

∑
v∈S Yv. By definition, Y = P ∩ F . Note that for every

v /∈ S ∩ F , Pr [Yv = 1] = 0. By the linearity of expectation, we have that

EY =
∑
v∈S

EYv =
∑

m∈[c]

∑
v∈Sm

EYv =
∑

m∈[c]

∑
v∈Sm∩F

m

2c
=

∑
m∈[c]

m

2c
αm|Sm| ≥

∑
m∈[c]

m

2c
βm|Sm|,

(16)

where the inequality follows from Claim 11.
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By the definition of βm, mβm|Sm| = |{ The number of “flips” sent from A to Sm}|.
Hence, one can infer that

EY ≥
∑

m∈[c]

|{ The number of “flips” sent from A to Sm}|
2c

= |{ The number of “flips” sent from A to S}|
2c

= |A|2c
,

where the last equality is due to that each constraint in R can only send at most 1 message.
Set ϵ = ϵ0δ2

4 > 0. It follows by (12) that |A| ≥
(

1
2 + ϵ0δ2

2

)
|M | =

( 1
2 + 2ϵ

)
|M |. Thus, we

can infer that EY ≥ |A|
2c ≥

( 1
2 + 2ϵ

) |M |
2c .

By Hoeffding’s inequality,

Pr
[
Y ≤

(
1
2 + ϵ

)
|M |
2c

]
≥ 1− exp

−
2

(
ϵ |M |

2c

)2

|S|

 ≥ 1− exp
{
−ϵ2|M |

2c2

}
,

where the second inequality follows from that |S| ≤ |M |. ◁

The following claim shows that as long as the number of unsatisfied constraints is small
enough, we can ensure that the number of corrupt variables is at most γn. Hence, we can
handle the matter with Algorithm 1.

▷ Claim 22. If |U | ≤
(

δ − 1
d0

)
cγn and |F | ≤ αn, then |F | ≤ γn.

Proof. Suppose that γn < |F | ≤ αn. By Proposition 7, we have that

|U | ≥ δd0 − 1
d0 − 1 c|F | >

(
δ − 1

d0

)
cγn,

which is a contradiction. ◁

Now, we can give the proofs of Lemma 18 and Lemma 19, respectively, as follows.

Proof of Lemma 18. In each iteration, consider the case that the number of errors |F | is
at most αn. If |U | ≤

(
δ − 1

d0

)
cγn, then by Claim 22, |F | ≤ γn. Therefore, it follows by

Theorem 3 that when δd0 > 3, all errors can be corrected. Otherwise, we claim that the
number of corrupt variables can be decreased by a constant fraction in this iteration.

Recall that M = A ∪B ⊆ U . It follows by (3) that

|M | = |A|+ |B| ≥ δ(t + 1)− 1
t

c|F |. (17)

Note that by Claim 21, with probability 1− exp{−Θc,δ,d0(n)}, the number of corruptions
in P is at least (1/2 + ϵ) |M |

2c where ϵ > 0 is a constant. Also note that by Claim 20, with
probability 1−exp{−Θc,δ,d0(n)}, the size of P is in

[
(1− ϵ/2) |M |

2c , (1 + ϵ/2) |M |
2c

]
. When both

of these events occur, by flipping all variables in P , the number of corruptions is reduced
by at least 3ϵ|M |

4c . It follows by (17) that 3ϵ|M |
4c ≥ 3ϵ(δ(t+1)−1)

4t |F |. This shows the number of
corrupt variables indeed is decreased by a constant fraction in this iteration.

As a result, after at most log γ
α

log
(

1− 3ϵ(δ(t+1)−1)
4t

) iterations, the number of corruptions is at

most γn. Then the decoding can call Algorithm 1 to correct all errors. ◀
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