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Abstract
We give new bounds on the cosystolic expansion constants of several families of high dimensional
expanders, and the known coboundary expansion constants of order complexes of homogeneous
geometric lattices, including the spherical building of SLn(Fq). The improvement applies to the
high dimensional expanders constructed by Lubotzky, Samuels and Vishne, and by Kaufman and
Oppenheim.

Our new expansion constants do not depend on the degree of the complex nor on its dimension,
nor on the group of coefficients. This implies improved bounds on Gromov’s topological overlap
constant, and on Dinur and Meshulam’s cover stability, which may have applications for agreement
testing.

In comparison, existing bounds decay exponentially with the ambient dimension (for spherical
buildings) and in addition decay linearly with the degree (for all known bounded-degree high
dimensional expanders). Our results are based on several new techniques:

We develop a new “color-restriction” technique which enables proving dimension-free expansion
by restricting a multi-partite complex to small random subsets of its color classes.
We give a new “spectral” proof for Evra and Kaufman’s local-to-global theorem, deriving better
bounds and getting rid of the dependence on the degree. This theorem bounds the cosystolic
expansion of a complex using coboundary expansion and spectral expansion of the links.
We derive absolute bounds on the coboundary expansion of the spherical building (and any order
complex of a homogeneous geometric lattice) by constructing a novel family of very short cones.
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1 Introduction

High dimensional expansion, which is a generalization of graph expansion to higher dimen-
sional objects, is an active topic in recent years. The importance of graph expansion across
many areas of computer science and mathematics, suggests that high dimensional expansion
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may also come to have significant impact. So far we have seen several exciting applications
including analysis of convergence of Markov chains [1], and constructions of locally testable
codes and quantum LDPC codes [16, 55].

Several notions of expansion that are equivalent in graphs, such as convergence of random
walks, spectral expansion, and combinatorial expansion, turn out to diverge into two main
notions in higher dimensions.

The first is the notion of local link expansion which has to do with the expansion of the
graph underlying each of the links of the complex; where a link is a sub-complex obtained
by taking all faces that contain a fixed lower-dimensional face. This notion is qualitatively
equivalent to convergence of random walks, it implies agreement testing, and it captures
a spectral similarity between a (possibly sparse) high dimensional expander and the dense
complete complex. It allows a spectral decomposition of functions on the faces of the complex
in the style of Fourier analysis on the Boolean hypercube, see [13, 41, 31, 3, 25].

The second notion is coboundary and cosystolic expansion. Here we look at the complex
not only as a combinatorial object but also as a sequence of linear maps, called coboundary
maps, defined by the incidence relations of the complex. The i-th coboundary map δi maps
a function on the i-faces to a function on the i + 1-faces, C0 δ0→ C1 δ1→ · · · δd−1→ Cd where
Ci = Ci(X,F2) = {f : X(i) → F2} is the space of functions on i faces with coefficients in
F2 (we will consider general groups of coefficients, beyond F2). These functions are called
i-chains. The coboundary map δi is defined in a very natural way: the value of δf(s) for any
s ∈ X(i+ 1) is the sum of f(t) for all s ⊃ t ∈ X(i) (the precise definition is in Section 2).

Coboundary (or cosystolic1) expansion captures how well the coboundary map tests its
own kernel, in the sense of property testing. Given f ∈ Ci such that δf ≈ 0, coboundary
expansion guarantees existence of some g ∈ ker δi such that f ≈ g. More precisely, a complex
is a β coboundary (or cosystolic) expander if

wt(δf) ⩾ β · min
g∈Kerδ

dist(f, g)

where wt(δf) is the hamming weight of δf . We denote by hi(X) the largest value of β that
satisfies the above inequality for all f .

Whereas for i = 0 coboundary expansion coincides with the combinatorial definition of
edge expansion, for larger i, it may appear at first glance to be quite mysterious. However,
this definition is far from being a merely syntactical generalization of the i = 0 case and
turns out to provide a rich connection between topological and cohomological concepts and
between several important concepts in TCS, which we describe briefly below.

The study of coboundary and cosystolic expansion was initiated independently by Linial,
Meshulam and Wallach [45], [51] in their study of connectivity of random complexes, and by
Gromov [29] in his work on the topological overlapping property. Kaufman and Lubotzky [36]
were the first to realize the connection between this definition and property testing. This
point of view is important in the recent breakthroughs constructing locally testable codes
and quantum LDPC codes [16, 55] (see also earlier works [23]).

Moreover, the coboundary maps come from a natural way to associate a (simplicial)
complex to a constraint satisfaction problem. Attach a Boolean variable to each i-face, and
view the (i + 1)-faces as parity constraints. The value that an assignment f : X(i) → F2

1 The difference between coboundary and cosystolic expansion is just whether the cohomology is 0 or not
(i.e. whether Kerδi+1 = Imδi). This distinction is not important for this exposition and the expansion
inequality is the same in both cases.
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gives on s ∈ X(i+ 1) is δf(s). This connection to CSPs has been harnessed towards showing
that the CSPs derived from certain cosystolic expanders are hard to refute for resolution and
for the sum of squares hierarchy, [17, 33].

In addition, cosystolic expansion of 1-chains (with non-abelian coefficients) of a complex
has been connected to the stability of its topological covers [20]. Informally, a complex is
cover-stable if slightly faulty simplicial covers are always “fixable” to valid simplicial covers.
Perhaps surprisingly, this is related to agreement testing questions, particularly in the small
1% regime, which is a basic PCP primitive and part of the initial motivation for this work.
We discuss agreement testing and its relation to coboundary expansion in more detail further
below in this introduction.

In light of all of the above, we believe that cosystolic expansion is a fundamental notion
that merits a deeper systematic study. Along with the aim of exploring its various implications,
a more concrete research goal would be to give strong bounds, and ultimately nail down
exactly, the correct expansion values for the most important and well-studied high dimensional
expanders. We mention that to the best of our knowledge even for the simplest cases, such
as expansion of k-chains in the n-simplex, exact expansion values are not yet completely
determined.

In this work we provide new bounds for the coboundary expansion of the spherical
building, and the cosystolic expansion of known bounded-degree high dimensional expanders
including the complexes of [49, 48, 42].

Two of the most celebrated results in this area are the works of [35] and [22] showing that
the bounded-degree families of Ramanujan complexes of [48] are cosystolic expanders. These
works introduce an elegant local-to-global criterion, showing that if the links are coboundary
expanders, and further assuming spectral expansion, then the entire complex is a cosystolic
expander.

The estimates proven by [35, 22] for the coboundary expansion parameters are roughly
hk(X) ⩾ min

(
1
Q , (d!)−O(2k)

)
. Here X is a d dimensional LSV complex and Q is the maximal

degree of a vertex which is roughly equal to 1/λO(d2) in these complexes, where λ is the
spectral bound on the expansion of the links. Subsequent works by Kaufman and Mass
[37, 38, 39], improved this bound to

hk(X) ⩾ min
(

1
Q
, (d!)−O(k)

)
. (1)

We completely get rid of the dependence on the ambient dimension d and on the maximal
degree Q, and prove

▶ Theorem 1. For every integer d > 1 and every small enough λ > 0 let X be a d-dimensional
LSV complex whose links are λ-one-sided expanders. For every group 2 Γ, every small enough
λ > 0 and every integer k < d− 1, hk(X,Γ) ⩾ exp(−O(k6 log k)).

Our bounds for hk only depend on the dimension k of the chains, so for k = 1 they are
absolute constants. For larger k we still suffer an exponential decay. We do not know what
the correct bound should be and whether dependence on k is at all necessary.

The case of k = 1 is interesting even in complexes whose dimension is d ≫ 1, because h1

controls the cover stability of the complex, as shown in [20]. Our bounds also immediately
give an improvement for the topological overlap constants, when plugged into the Gromov
machinery [30, 21, 22]. We elaborate on both of these applications later below.

2 The theorem holds for every group Γ for which cohomology is defined, namely, abelian groups for k > 1
and any group for k = 1.

APPROX/RANDOM 2024
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The result is proven by enhancing the local-to-global criterion of [22], and introducing a
variant of the local correction algorithm that makes local fixes only if they are sufficiently
cost-effective. This is inspired by and resembles the algorithms in [22, 16, 55].

Our analysis is novel and departs from previous proofs: instead of relying on the so-called
“fat machinery” of [22] (and its adaptations [37, 38]), our proof is 100% fat free and relies on
the up/down averaging operators on real-valued functions. Our main argument is to show
that, for a function h that is the indicator of the support of a (locally minimal) k-chain,

∥D · · ·Dh∥2 ≳ · · · ≳ ∥DDh∥2 ≳ ∥Dh∥2 ≳ ∥h∥2,

where D is the down averaging operator, and we write a ≳ b whenever a ⩾ Ω(b). From here
we easily derive a lower bound on ∥h∥2 showing that either the correction algorithm has
found a nearby cocycle, or else the coboundary of our function was initially very large to
begin with.

This method gives universal bounds on the cosystolic expansion of any complex whose
links have both sufficient coboundary-expansion and sufficient local spectral expansion,

▶ Theorem 2. Let β, λ > 0 and let k > 0 be an integer. Let X be a d-dimensional simplicial
complex for d ⩾ k + 2 and assume that X is a λ-one-sided local spectral expander. Let Γ be
any group. Assume that for every non-empty r ∈ X, Xr is a coboundary expander and that
hk+1−|r|(Xr,Γ) ⩾ β. Then

hk(X,Γ) ⩾ βk+1

(k + 2)! · 4 − eλ.

Here e ≈ 2.71 is Euler’s number.

Armed with an improved local-to-global connection, we derive Theorem 1 from Theorem 2
by further strengthening the coboundary expansion of the links of the LSV complexes,
namely spherical buildings. The best previously known bound on coboundary expansion
of k-cochains in spherical buildings is due to [30] and [47]. They proved a lower bound of((

d+1
k+1

)
(d+ 2)!

)−1
. This decays exponentially with the ambient dimension d, and with the

cochain level k. We remove the dependence on d by developing a new technique which we
call “color-restriction”. The d-dimensional spherical buildings are colored, namely, they are
d+1-partite. For a set of ℓ colors F ⊂ [d+1], the color restriction XF is the complex induced
on vertices whose color is contained in F . The restriction to the the colors of F reduces the
dimension of X from d to ℓ− 1. We say that a color restriction XF is a β-local coboundary
expander, if XF is a β-coboundary expander, and the same holds for the intersection of XF

with links (neighbourhoods) of faces whose color is disjoint from F . We show that if a typical
color-restriction is a local coboundary expander, then the entire complex is a coboundary
expander, and the expansion is independent of the dimension. Namely,

▶ Theorem 3. Let k, ℓ, d be integers so that k + 2 ⩽ ℓ ⩽ d and let β, p ∈ (0, 1]. Let X be a
(d+ 1)-partite d-dimensional simplicial complex so that

P
F ∈([d+1]

ℓ )

[
XF is a β-locally coboundary expander

]
⩾ p.

Then hk(X) ⩾ pβk+1

e(k+2)! .
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Finally, to prove that the spherical building satisfies the conditions of this theorem, we
need to show that a typical random color-restriction is a good coboundary expander. For
this we rely on the “cone machinery” developed by Gromov [30], Kozlov and Meshulam [44],
and Kaufman and Oppenheim [42]. We construct in the full version of this paper [10], a
novel family of short cones, thus proving the following.

▶ Theorem 4. Let k ⩾ 0. There is an absolute constant βk = exp(−O(k5 log k)) ⩾ 0 so
that the following holds. Let X be the SLn(Fq)-spherical building for any integer n ⩾ k + 1
and prime power q. Let Γ be any group. Then X is a coboundary expander with constant
hk(X,Γ) ⩾ βk.

In fact, we prove a more general version of this theorem, that holds for the order complex of
any homogeneous geometric lattice, see the full version of this paper [10].

Most earlier works on cosystolic expansion focus on F2 coefficients (see [37] and [20] for
two exceptions). This is an important case especially in light of Gromov’s result connecting
F2-expansion and topological overlap. However, expansion (of 1-chains) with respect to more
general coefficients is necessary for results on topological covers and in turn for agreement
testing. The theorems stated above show expansion of k-chains with respect to coefficients
not only in F2 but in general abelian groups Γ, and when k = 1 also for non abelian groups
Γ. In other words, the theorems hold for all groups of coefficients where the cohomology is
defined.

Finally, we end with an upper bound. While most of our work is focused on lower bounds
for coboundary and cosystolic expansion, we show in the full version of this paper [10] that
families of dense simplicial complexes cannot have cosystolic expansion greater than 1 + o(1).
This implies that high degree, in some weak sense, limits cosystolic expansion. It is interesting
to compare this to a result of Kozlov and Meshulam that shows upper bounds on coboundary
expansion of complexes with bounded degree [44].

1.1 Applications of cosystolic expansion
We describe two applications of cosystolic expansion for deriving topological properties of
simplicial complexes.

Topological overlap

Cosystolic expansion was studied by [30] to give a combinatorial criterion for the topological
overlapping property. Let f : X → Rk be continuous mapping (with respect to the natural
topology on X), i.e. f realizes X in Rk. A point p ∈ Rk is called c-heavily covered if

P
s∈X(k)

[p ∈ f(s)] ⩾ c.

A well known result by [24] showed that for every affine map from the complete 2-dimensional
complex to the plane, there exists a 1

27 -heavily covered point. Gromov’s greatly generalized
this theorem to all continuous functions (instead of only affine functions), all dimensions
k (instead of k = 2) and complexes that are cosystolic expanders (instead of the complete
complex), with c that depends on the dimension of the map k, as well as the cosystolic
expansion constant. For a precise statement, see the full version of this paper [10].

The motivation for [22] was to show that there exists families of bounded degree simplicial
complexes which have this property. They use [48] complexes and achieve a lower bound of
c ⩾ min( 1

Q , (d!)−O(2k)), which comes from their bound on cosystolic expansion. This bound
has been improved as a corollary of [39] to min( 1

Q , (d!)−O(k)). Here again, d is the dimension
of X, which may be much larger than k, and Q is the maximal degree of a vertex in X.

APPROX/RANDOM 2024
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Plugging in our bounds into Gromov’s theorem gives the bound c ⩾ exp(−O(k7 log k))
for the topological overlapping property. This bound is free of the ambient dimension and of
the degree.

Cover stability

The second author and Meshulam studied a topological locally testable property called cover
stability [20]. This property is equivalent to cosystolic expansion of 1-chains. A covering map
between two simplicial complexes X,Y is a surjective t-to-1 simplicial map3 ρ : Y (0) → X(0)
such that for every ũ ∈ Y (0) and ρ(ũ) = u ∈ X(0), it holds that the links of ũ, u are
isomorphic Yũ

∼= Xu.
Graph covers (also known as lifts) have been quite useful in construction of expander

graphs. Bilu and Linial showed that random covers of Ramanujan graphs are almost
Ramanujan [6]. A celebrated result by [50] used these techniques to construct bipartite
Ramanujan graphs of every degree. Recently, [9] showed that random covers could also be
applied for constructing new simplicial complexes that are local spectral expanders.

Dinur and Meshulam [20] show that there exists a test that for any simplicial complex
X and an alleged cover given by a simplicial map ρ : Y → X samples q points (ui, ρ(ui))
and measures how close ρ is to an actual covering map. The query complexity of the test is
q = 3t points. Its soundness is affected by the cosystolic expansion of 1-chains. Using our
new bounds on cosystolic expansion, we show that the complexes constructed in [48] or in
[42] are cover-stable, i.e. that there exists some universal constant c > 0, such that for every
ρ : Y (0) → X(0)

P
(ui,ρ(ui))q

i=1

[test fails] ⩾ c · min {dist(ρ, ψ) | ψ : Y (0) → X(0) is a cover} ,

where the distance is Hamming distance.

Agreement testing

Coboundary expansion found an exciting new application in agreement testing [28, 11, 5].
An agreement test is a consistency test that originated as a component in low degree testing
[58, 2, 56], but has been extensively studied ever since (see e.g. [26, 34, 18]). This test is a
crucial component in many PCP constructions [57, 26, 15, 34, 19]. Given a set of partial
functions on a set, an agreement test is a way to test whether these functions are correlated
with some function that defined on the whole vertex set. The works [28, 11, 5] mentioned
above use coboundary expansion to characterize when an agreement test is sound. Via this
characterization they analyze agreement tests on high dimensional expanders. Continuing
this line of works, [12, 14, 4] use theorems and tools developed in a preliminary version of
this paper, to lower bound coboundary expansion of new high dimensional expanders, and
with these lower bounds they obtain new agreement tests. These include the first agreement
tests where the underlying complex family is bounded degree in the so called “list decoding
regime” (the regime that is relevant to high-soundness PCPs such as the parallel repetition
PCP [57, 34]).

3 simplicial means that every i-face in Y is sent to an i-face in X.
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1.2 Related work

Coboundary and Cosystolic expansion was defined by Linial, Meshulam and Wallach [45],
[51], and indpendently by Gromov [30]. Gromov studied cosystolic expansion as a proxy for
showing the topological overlapping property. Linial, Meshulam and Wallach were interested
in analyzing high dimensional connectivity of random complexes.

Kaufman, Kazhdan and Lubotzky [35] introduced an elegant local to global argument
for proving cosystolic expansion of 1-chains in the bounded-degree Ramanujan complexes of
[49, 48]. This was significantly extended by Evra and Kaufman [22] to cosystolic expansion
in all dimensions, thereby resolving Gromov’s conjecture about existence of bounded degree
simplicial complexes with the topological overlapping property in all dimensions. Kaufman
and Mass [37, 38] generalized the work of Evra and Kaufman from F2 to all other groups
as well, and used this to construct lattices with good distance. The best previously known
bound for LSV complexes (1) was shown by Kaufman and Mass in [39].

Following ideas that appeared implicitly in Gromov’s work, Lubotzky Mozes and Meshulam
analyzed the expansion of many “building like” complexes [47]. Kozlov and Meshulam [44]
abstracted the main lower bound in [47] to the definition of cones (which they call chain
homotopies), in order to analyze the coboundary expansion of geometric lattices and other
complexes. Their work also connects coboundary expansion to other homological notions, and
gives an upper bound to the coboundary expansion of bounded degree simplicial complexes.
In [42], Kaufman and Oppenheim defined the notion of cones in order to analyze the cosystolic
expansion of their high dimensional expanders (see [40]). In addition, they also come up
with a criterion for showing that complexes admit short cones. They prove lower bounds on
the cosystolic expansion of their complexes for 0- and 1-chains. The case of k-chains with
k ⩾ 2 is still open.

Several works tried to define quantum LDPC codes as cohomologies of simplicial complexes.
Cosystolic expansion is used for analyzing the distance of the quantum code. Works by
Evra, Kaufman and Zémor [23] and by Kaufman and Tessler [43] used cosystolic expansion
in Ramanujan complexes to construct quantum codes that beat the

√
n-distance barrier.

This continued in a sequence of works [54, 32, 7] which culminated in the breakthrough
work of [55] that construct quantum LDPC codes with constant rate and distance. This
later code is a cohomology of a certain chain complex, albeit not a simplicial complex; and
it is analyzed essentially through the cosystolic expansion. Developing new techniques for
cosystolic expansion can be potentially useful in this domain as well.

1.3 Open questions

The works by [47], [44] and [42] analyze a variety of symmetric complexes (that support a
transitive group action). Could one combine our “color restriction” technique with the cone
machinery to get lower bounds independent of degree and dimension on these complexes
as well? There are a number of concrete constructions of local spectral high dimensional
expanders that have excellent local spectral properties [8, 46, 27, 52, 9]. Are any of them
cosystolic expanders?

Another intriguing direction of research is to develop additional techniques for analyzing
coboundary or cosystolic expansion. The current techniques are limited to complexes that
either have a lot of symmetry, or have excellent local expansion properties. Are there other
complexes with these properties?

APPROX/RANDOM 2024
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Our expansion bounds still have a dependence on the level (k) of the chains. In the
complete complex, for instance, this is not necessary. The complete complex is a β = 1 + o(1)
coboundary expander for all k-chains [47]. It is not clear whether a dependence on k is
necessary even in the spherical building. Which complexes have coboundary expansion that
does not decay with the size of the chains?

Finally, the notion of coboundary and cosystolic expansion is closely related to locally
testable codes and quantum LDPC codes. They also have connections to agreement expanders.
It is interesting to find additional applications for these expanders.

1.4 Overview of the proof of Theorem 1
We start with a complex X that is a finite quotient of the affine building, as constructed
by [48]. Our goal is to lower bound the cosystolic expansion of X. The proof has three
components:

(Theorem 2) A new local-to-global argument that derives cosystolic expansion of the
complex from coboundary and spectral expansion of its links.
(Theorem 3) A general color restriction technique that reduces the task of analyzing the
coboundary expansion of a partite complex, to that of analyzing the local coboundary
expansion of random color restrictions of it.
(Theorem 4) Bounds on random color restrictions of (links of) the spherical building.
Towards this end we construct a novel family of short cones for the spherical building
(not based on apartments as in previous works [47]).

Below we give a short overview of each of these steps. For simplicity we assume in this
subsection that Γ = F2, which captures the main ideas.

The local to global argument, Theorem 2

Let X be our simplicial complex. We describe a correction algorithm, that takes as input
a k-chain f : X(k) → F2, with small coboundary P [δf ̸= 0] = ε and outputs a k-chain
f̃ : X(k) → F2 close to f that has no coboundary, i.e. δf̃ = 0. For this overview, we focus
on k = 1, i.e. f is a function on edges, which already exhibits the main ideas.

Let η > 0 be some predetermined parameter. Our algorithm locally fixes “stars” of lower
dimensional faces, that is, sets Stark(r) = {s ∈ X(k) | s ⊇ r} for r ∈ X(j) (when j ⩽ k).
The fix takes place only if it is sufficiently useful: whenever it decreases the weight of δf by
at least η P [Stark(r)]. In the case at hand, k = 1, so r is either a vertex or an edge, so
1. If r ∈ X(1), Star1(r) = {r} and a fix just means changing the value of f(r).
2. If r ∈ X(0), Star1(r) = {ru}u∼r are all edges adjacent to r. Here a fix means changing

the values of all {f(ru) | u ∼ r} simultaneously.

▶ Algorithm 5.
1. Set f0 := f . Set i = 0.
2. While there exists a vertex or edge r ∈ X(0) ∪X(1) so that Stark(r) has an assignment

that satisfies a η P [Stark(r)]-fraction of faces more than the current assignment.
Let fixr : Stark(r) → Γ be an optimal assignment to Stark(r).

Set fi+1(s) =
{
fi(t) r ̸⊆ s

fixr(s) r ⊆ s
.

Set i:=i+1.
3. Output the final function f̃ := fi.
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The fact that we correct f locally only if the fix satisfies η fraction more triangles will promise
that dist(f, f̃) ⩽ 1

ηwt(δf). The output of the algorithm, f̃ , is not necessarily locally minimal
in the sense of [35, 22], but it is “η-locally-minimal”.

Notation: For functions g, h : X(ℓ) → R we denote by ⟨g, h⟩ = Er∈X(ℓ) [g(r)h(r)] the
usual inner product. For ℓ = 1, 2, denote by Dℓ the down operator that takes h : X(2) → R
and outputs Dℓh : X(2 − ℓ) → R via averaging. Namely Dℓh(r) is the average of h(s) over
s ⊇ r, Es⊇r [h(s)].

Let h : X(2) → R indicate the support of a δf̃ , so h(t) = 1 iff δf̃ ≠ 0. Our main argument
is to show

∥D3h∥2 ≳ ∥D2h∥2 ≳ ∥Dh∥2 ≳ ∥h∥2.

Eventually D3h = E[h]2 is just a constant function. This shows that (E[h])2 = const · E[h]
which implies that either the algorithm corrected f to a cosystol, i.e. h = 0, or that h has
large weight, which implies that δf had large weight to begin with.

Let us show for example that ∥D3h∥2 ≳ ∥D2h∥2 given that ∥D2h∥2 ≳ ∥Dh∥2 ≳ ∥h∥2.
To do so, we define an auxiliary averaging operator N based on a random walk from vertices
to triangles, and use the fact that in local spectral expanders,

∥D3h∥2 ≈ ⟨Nh,D2h⟩. (2)

The operator N : ℓ2(X(2)) → ℓ2(X(0)) is defined by Nh(v) = Es [h(s)], where s is sampled
according to the following walk: Given v ∈ X(0), sample some t ∈ X(3) such that v ∈ t, and
then go to the triangle s = t \ {v}. We mention that the concept of localizing over such a
distribution has appeared in [39]. The proof of (2) follows by localizing the expectation to
the links and relying on the link expansion as in [53], [13, Claim 8.8] and in [41].

The key lemma in the proof shows that if there are many faces s′ ⊇ v0 such that h(s′) = 1,
then there are many s such that v /∈ s, {v} ∪ s = t ∈ X(3), where h(s) = 1. More precisely,
we will show that for every v ∈ X(0) it holds that

Nh(v) ≳ β(D2h(v) − η)4. (3)

This immediately implies that

⟨Nh,D2h⟩ = E
v

[
D2h(v)Nh(v)

]
(3)
≳ β(E

v

[
(D2h(v))2]

− η E
v

[
D2h(v)

]
)

≳ β∥D2h∥2 − βη∥h∥2

≳ β∥D2h∥2.

The second inequality follows from Ev

[
D2h(v)

]
= Es [h(s)] = ∥h∥2. The last inequality

follows from the assumption that ∥h∥2 = O(∥D2h∥2). Combining this with (2) gives us the
desired inequality.

Let us understand what is written in (3). On the right-hand side, D2h(v) =
Pxy∈Xv(1) [h(vxy) = 1] is the fraction of triangles vxy containing v, such that δf̃(vxy) ̸= 0.
On the left-hand side, Nh(v) is the fraction of s that complete v to some t = v ∪ s ∈ X(3),
so that δf̃(s) ̸= 0. For such an s = uxy,

0 = δδf̃(vuxy) = δf̃(uxy) + (δf̃(vux) + δf̃(vuy) + δf̃(vxy)). (4)

Set g : Xv(1) → F2 to be g(xy) = δf̃(vxy), and note that g has the following properties:
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1. By (4), δf̃(uxy) = 1 ⇐⇒ δg(uxy) = 1.
2. P [g ̸= 0] = Ps∋v

[
δf̃(s) ̸= 0

]
= D2h(v).

3. η-local-minimality: which is dist(g,B1(Xv)) ⩾ P [g ̸= 0] − η, where B1(Xv) =
{δψ | ψ : Xv(0) → F2} is the set of coboundaries.

We explain the third item. Assume towards contradiction that dist(g,B1(Xv)) < P [g ̸= 0]−η
and let δψ be a coboundary closest to g. Then by changing the values of f̃ on Star(v) to
be f̃ ′(vu) := f̃(vu) + ψ(u), we have that whenever g(xy) = δψ(xy), then the fixed function
satisfies δf̃ ′(vxy) = 0. I.e.

dist(g, δψ) = P
vxy

[
δf̃ ′(vxy) = 0

]
< P

vxy

[
δf̃(vxy) = 0

]
− η.

This is a contradiction to the η-local minimality of f̃ which is guaranteed by the algorithm.
Here is where the coboundary expansion of Xv comes into play. By coboundary expansion,

we have that P [δg(uxy) = 1] ⩾ β dist(g,B1(Xv)). By combining the above we will get that

Nh(v) = P
uxy∈Xv(2)

[
δf̃(uxy) ̸= 0

]
⩾ β( P

xy∈Xv(1)
[g(xy) ̸= 0] − η) = β(D2h(v) − η).

The “color restriction” technique, Theorem 3

For this overview, assume that k = 2 The full details are in the full version of this paper [10].
Let Y be a d-dimensional (d+ 1)-partite complex so that a p-fraction of its color restrictions
Y F are β-local-coboundary expanders. We begin with a 2-chain f : Y (2) → F2 with small
coboundary, namely Ps∈Y (3) [δf(s) ̸= 0] = ε. We need to find a 1-chain g : Y (1) → F2 so
that dist(f, δg) ⩽ O( ε

β3p ).
We first select a random color restriction, i.e. a set of colors so that Y F is a local

coboundary expander, that the weight of δf when restricted to triangles whose colors are
in F is close to weight of δf on all Y . Averaging arguments guarantee that such F exists.
Using this F , we construct g in three steps. In the first step we define g on edges with both
endpoints colored in F , uv ∈ Y F . In the second step we define g on edges with one endpoint
colored in F , i.e. uv ∈ Y (1) where u ∈ Y F and v /∈ Y F . In the third step we define g on
edges uv ∈ X(1) with neither endpoints colored in F , i.e. where u, v /∈ Y F . Every step
uses the values of g that were constructed in the step before. For k > 2 the (k − 1)-chain is
constructed following a similar sequence of k + 1 steps.
1. We start with the values of g on edges vu ∈ Y F (1). By the choice of F , the weight of δf

inside Y F is roughly ε. Local coboundary expansion implies that there exists a 1-chain
g0 whose coboundary is close to f on Y F . We set g(uv) = g0(uv) for all uv ∈ Y F (1).

2. Next we define g on edges vu so that v /∈ Y F and u ∈ Y F . Fix some v /∈ Y F . Let
Y F

v =
{
s ∈ Y F

∣∣ s ∪ v ∈ Y
}

. This is the color restriction of the link of v. We wish to set
values for g(vu) for all edges vu such that u ∈ Y F

v (0). We describe a system of equations
that we use to set the values of g on the edges vu so as to satisfy a maximal number of
equations. For every u1u2 ∈ Y F

v (1), the triangle vu1u2 defines an equation:

f(vu1u2) + g(u1u2) = g(u1v) + g(u2v). (5)

Note that the left-hand side of the equation is known since we have the values of f on
all triangles, and we already constructed g for edges u1u2 ∈ Y F (1). So the above is an
equation with two unknowns. We set g(vu) simultaneously for all u ∈ Y F

v (1) to be an
assignment that satisfies the largest fraction of equations (ties broken arbitrarily).
The idea behind this step is the following. Obviously, we’d like that f(vu1u2) = g(u1u2) +
g(u1v) + g(u2v) for as many triangles as possible, so it makes sense to define g to satisfy
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Figure 1 Tiling a cycle.

the largest amount of equations (5). Let hv : Y F
v (1) → F2 be the left-hand side of (5), i.e.

hv(u1u2) = f(vu1u2) + g(u1u2). We want to find an assignment gv : Y F
v (0) → F2 so that

hv(u1u2) = gv(u1) + gv(u2) for as many equations (5) as possible (and set g(vu) = gv(u)).
Finding a solution gv : Y F

v (0) → F2 that satisfies (5) is equivalent finding gv so that
hv(u1u2) = δgv(u1u2). Hence, to find an assignment that satisfies most of the equations
is the same showing that hv is close to a coboundary. In the analysis we show that
δhv ≈ 0. This together with the local coboundary expansion of Y F (which says that
h1(Y F

v ,F2) ⩾ β) will show that indeed we can find satisfying {gv}v /∈Y F so that f ≈ δg

where the distance is over edges uv where v /∈ Y F , u ∈ Y F .
3. Finally we need to define the values of g on edges vu so that v, u /∈ Y F . Let vu be such

an edge. Every triangle uvw where w ∈ Y F
vu(0) defines a constraint on g(vu):

f(uvw) + g(uw) + g(vw) = g(uv). (6)

As in the previous case, f(uvw) is known, and g(uw), g(vw) were determined in step 2. We
set g(vu) = maj

{
f(uvw) + g(uw) + g(vw)

∣∣ w ∈ Y F
uv(0)

}
. Ties are broken arbitrarily.

Here we use the local coboundary expansion of Y F in a way similar to the previous step,
to show that indeed f ≈ ∂g.

New bounds on color-restrictions of the spherical building via cones, Theorem 4

In order to apply the color restriction technique we need to show that for a d-dimensional
spherical building, many color restrictions are coboundary expanders5. For this overview
we assume that k = 1 and |F | = 5. Let us see how to bound coboundary expansion by
constructing short cones.

It turns out easier to do so when the set of colors is a set of colors that are geometrically
increasing (e.g. for k = 1 we need colors F = {i1, i2, ..., i5} so that ij ⩾ 10ij−1). The fraction
of such sets of colors F is a constant that doesn’t depend on d (it may depend on k). For
example, there is a constant probability that we select colors F so that for j = 1, 2, .., 5,

d
1016−3j ⩽ ij <

2d
1016−3j , since each of these intervals are a constant fraction of the interval

[1, 2, ..., d]. When these inequalities hold then ij ⩾ 10ij−1.
Denote by Y the SLd(Fq)-spherical building. Let Y F be a complex induced by the

subspaces of dimensions (i.e., colors) F = {i1, i2, ..., i5} so that ij ⩾ 10ij−1). Using the cone
technology described in the full version of this paper [10], showing the Y F is a coboundary
expander reduces to showing that there is a short 1-cone on Y F . A 1-cone consists of three
things:

5 In fact, we need to show that the links of the color restrictions are also coboundary expanders, but we
ignore this point in the overview for brevity.
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1. A vertex v ∈ X(0) (sometimes called the apex).
2. For every u, a path pu from the apex v to u in Y F (1).
3. For every edge uw ∈, a tiling by triangles tuw ⊂ Y F (2) of the cycle that consists of the

path pu from v to u, the edge uw and the path pw from w back to v. Denote this cycle by
pu ◦ uw ◦ pw. Here a tiling is a set of triangles whose boundary is the edges of the cycle.

We give a formal and general definition of cones in the full version of this paper [10]. The
radius of a cone is rad((v, {pu}u∈Y F (0), {tuw}uw∈Y F (1))) = maxuw∈X(1)|tuw|.

We start by choosing an apex v = v0 of dimension i1 arbitrarily. Next we choose our
paths to be as short as possible, and to consist of subspaces of dimension as low as possible.
Explicitly we do the following.
1. For u adjacent to v0, set pu = (v0, u).
2. For u of the same dimension as v0 we find some w of dimension i2 so that w is a neighbour

of v0 and u, and set pu = (v0, w, u). This is always possible since the dimension of u+ v0
is at most 2i1, so we can take any w of dimension i2 ⩾ 2i1 that contains the sum of spaces.
(Notice how the fact that dimensions are geometrically increasing is important here).

3. For other u ∈ Y F (0), we first take some w2 ⊆ u of dimension i1. Then we find some w1
who is a neighbour of v0 and of w2 and we set pu = (v0, w1, w2, u).

Constructing tw1w2 requires more care. Let us first consider the easier case. If
dim(w1), dim(w2) ⩽ i4 then the cycle pw1 ◦ w1w2 ◦ pw2 contains at most 7 vertices, all
of dimension ⩽ i4. In particular, the sum of all the vertices/subspaces is of dimension at
most 7i4 ⩽ i5, so there is a vertex u∗ of dimension i5 that contains all the vertices in the
cycle. The set of triangles u∗xy for all edges xy in the cycles is indeed a tiling of the cycle.

In the general case, it could be that the dimension of (say) w1 is i5. For example, assume
that dim(w1) = i5, dim(w2) = i4 (in particular w2 ⊆ w1. It is useful to read this description
while looking at Figure 1. In this case, we first find a tiling that “shifts” the cycle to a cycle
of low dimension vertices. More explicitly, we find some w′

2 ⊆ w2 of dimension i3, that is
also connected to w’s neighbours in the cycle. These neighbours are w1 (and any subspace
of w2 is connected to it), and some u′

2 of dimension ⩽ i2, so we can indeed find some w′
2

that is connected to u and u′
2 of dimension i3. We tile the cycle with w2w

′
2u

′
2, w2w

′
2w1. This

exchanges w2 with w′
2 in the untiled cycle. We perform a similar vertex-switch, for w1 as

well, finding some w′
1 of dimension i4 that is connected to w1 neighbours in the untiled cycle.

After these two steps, we can find a u∗ that is connected to all the (now low-dimensional)
cycle as in the previous case.

1.5 Organization of this paper and the full version
Section 2 contains preliminaries. We prove Theorem 2 that connects coboundary expansion
in links to cosystolic expansion in Section 3 via the local correction algorithm. We develop
the “color restriction” technique and prove Theorem 3 in the full version of this paper [10].
We analyze the expansion of the spherical building and other homogeneous geometric lattices
in the full version of this paper [10]. In the full version [10], we also tie everything up and
prove Theorem 1, as well as present the aforementioned applications of this bound. We also
give there an upper bound on the cosystolic expansion of dense complexes.

2 Preliminaries and notation

For a more thorough preliminary section, see the full version of the paper [10].
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Simplicial complexes

A pure d-dimensional simplicial complex X is a set system (or hypergraph) consisting of
an arbitrary collection of sets of size d + 1 together with all their subsets. The sets of
size i + 1 in X are denoted by X(i), and in particular, the vertices of X are denoted by
X(0). We will sometimes omit set brackets and write for example uvw ∈ X(2) instead of
{u, v, w} ∈ X(2). As convention X(−1) = {∅}. Unless it is otherwise stated, we always
assume that X is finite. Let X be a d-dimensional simplicial complex. Let k ⩽ d. We
denote the set of oriented k-faces in X by

→
X(k) = {(v0, v1, ..., vk) | {v0, v1, ..., vk} ∈ X(k)}.

For s = (v0, v1, ..., vk) ∈
→
X(k) we denote set(s) = {vi}k

i=0, but when its clear from context
we abuse notation and write s for its underlying set instead of set(s). For an oriented face
s ∈

→
X(k) and an index i ∈ {0, 1, ..., k}, we denote by si the face obtained by removing the

i-th vertex of s.
Finally, Let s = (v0, ..., vi), and t = (u0, ..., uj). We denote by the concatenation

s ◦ t = (v0, v1, ..., vi, u0, u1, ..., uj).

Probability over simplicial complexes

Let X be a simplicial complex and let Pd : X(d) → (0, 1] be a density function on X(d)
(i.e.

∑
s∈X(d) Pd(s) = 1). This density function induces densities on lower level faces

Pk : X(k) → (0, 1] by Pk(t) = 1
(d+1

k+1)
∑

s∈X(d),s⊃t Pd(s). We can also define a probability over

directed faces, where we choose an ordering uniformly at random. Namely, for s ∈
→
X(k),

Pk(s) = 1
(k+1)! Pk(set(s)). When it’s clear from the context, we omit the level of the faces,

and just write P[T ] or Pt∈X(k) [T ] for a set T ⊆ X(k).

2.1 Coboundary and cosystolic expansion

Asymmetric functions

Let X be a d-dimensional simplicial complex. Let −1 ⩽ k ⩽ d be an integer. Let Γ be a
group. A function f :

→
X(k) → Γ is asymmetric if for every (v0, v1, ..., vk) ∈

→
X(k), and every

permutation π : [k] → [k] it holds that

f(v0, v1, ..., vk) = f(vπ(0), vπ(1), ..., vπ(k))sign(π).

We denote the set of these functions by Ck(X,Γ). We note that by fixing some order to
the vertices X(0) = {v0, v1, ..., vn}, there is a bijection between functions f : X(k) → Γ and
asymmetric functions

→
f :

→
X(k) → Γ. Given f : X(k) → Γ and a set s = {vi0 , vi1 , ..., vik

} so
that i0 < i1 < ... < ik, we set

→
f (vπ(i0), vπ(i1), ..., vπ(ik)) = f(s)sign(π).

Let f :
→
X(k) → Γ. The weight of f is wt(f) = Pt∈X(k) [f(t) ̸= 0]. For two functions

f, g :
→
X(k) → Γ the distance between f and g is dist(f, g) = wt(f−g) = Pt∈X(k) [f(t) ̸= g(t)].

Cohomology

Let Γ be an abelian group. The coboundary operator δk : Ck(X,Γ) → Ck+1(X,Γ) is defined
by δkf(s) =

∑k
i=0(−1)if(si). It is a direct calculation to verify that for any asymmetric

function f ∈ Ck the function δkf is indeed an asymmetric function, and that δk+1 ◦ δk = 0.

APPROX/RANDOM 2024



62:14 Coboundary and Cosystolic Expansion Without Dependence on Dimension or Degree

Let Bk(X,Γ) = Im(δk−1) be the space of coboundaries. Let Zk(X,Γ) = Ker(δk) be the
space of cosystols. As δk+1 ◦ δk = 0, it holds that Bk(X,Γ) ⊆ Zk(X,Γ). The k-cohomology
is Hk(X,Γ) = Zk(X,Γ)/Bk(X,Γ).

Coboundary expansion

For a function f :
→
X(k) → Γ let dist(f,Bk) = ming∈Ck−1 dist(f, δg), be the minimal distance

between f and a coboundary. The k-th coboundary constant of a complex X (with respect
to an abelian group Γ) is hk(X,Γ) = minf∈Ck\Bk

wt(δf)
dist(f,Bk) where Bk = Bk(X,Γ). Note that

hk(X,Γ) > 0 if and only if Hk = 0.

Cosystolic expansion

A very related high dimensional notion of expansion is cosystolic expansion. The k-th
cosystolic expansion constant of X (with respect to an abelian group Γ) is

hk(X,Γ) = min
f∈Ck\Zk

wt(δf)
dist(f, Zk) ,

where Zk = Zk(X,Γ). Notice that when Bk(X,Γ) = Zk(X,Γ), namely, when Hk = 0, this
coincides with the definition of coboundary expansion, and this justifies using the same
notation hk, where the term coboundary expansion (as opposed to cosystolic expansion) is
taken to indicate Hk = 0.

Another useful way to understand the constant is the following. hk(X,Γ) ⩾ β if and
only if for every f :

→
X(k) → Γ there is some h ∈ Zk(X,Γ) so that β dist(f, h) ⩽ wt(δf). We

note that in the work of [22] cosystolic expanders were also required to have no small weight
f ∈ Zk(X,Γ) \Bk(X,Γ). We don’t focus on this notion in our work.

Non abelian coboundary and cosystolic expansion

For k = 0, 1 we can define the cohomology with respect to non abelian groups as well. Let
Γ be a non abelian group. As before, for every k we can define Ck(X,Γ). We define the
coboundary operators as follows:
1. δ−1 : C−1(X,Γ) → C0(X,Γ) is δ−1h(v) = h(∅).
2. δ0 : C0(X,Γ) → C1(X,Γ) is δ0h(vu) = h(v)h(u)−1.
3. δ1 : C1(X,Γ) → C2(X,Γ) is δ1h(vuw) = h(vu)h(uw)h(wv).
It is easy to check that δk+1 ◦ δkf = e where e ∈ Γ is the unit. The definitions for hk(X,Γ)
and coboundary expansion are the same as in the abelian case for k = 0, 1.

2.2 Local properties of simplicial complexes
Links of faces

Let X be a d-dimensional simplicial complex. Let k < d and s ∈ X(k). The link of s is a
d−k− 1-dimensional simplicial complex defined by Xs = {t \ s | t ∈ X, t ⊇ s}. We point out
that the link of the empty set is X∅ = X. Let s ∈ X(k) for some k ⩽ d. The density function
Pd on X induces on the link is Ps

d−k−1 : X(d− k − 1) → (0, 1] where Ps
d−k−1[t] = P[t∪s]

P[s](d+1
k+1)

.
We usually omit s in the probability, and for T ⊆ Xs(k) we write Pt∈Xs(k) [T ] instead.

High dimensional local spectral expanders

Let X be a d-dimensional simplicial complex. Let k ⩽ d. The k-skeleton of X is X⩽k =⋃k
j=−1 X(j). In particular, the 1-skeleton of X is a graph.
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▶ Definition 6 (Spectral expander). Let G = (V,E) be a graph (that is, a 1-dimensional
simplicial complex). Let A be its normalized adjacency operator, i.e. for every f : V → R,
Af : V → R is the function Af(v) = Euv∈E [f(u)]. Let 1 = λ1 ⩾ λ2 ⩾ ... ⩾ λ|V | ⩾ −1 be the
eigenvalues of A.

Let λ ⩾ 0. We say that G is a λ-one sided spectral expander if λ2 ⩽ λ. We say that G is
a λ-two sided spectral expander if λ2 ⩽ λ and λ|V | ⩾ −λ.

▶ Definition 7 (high dimensional local spectral expander). Let X be a d-dimensional simplicial
complex. Let λ ⩾ 0. We say that X is a λ-one sided (two sided) local spectral expander if for
every s ∈ X⩽d−2, the 1-skeleton of Xs is a λ-one sided (two sided) spectral expander.

3 Cosystolic expansion

In this section we prove that local spectral expanders whose links are coboundary expanders
are cosystolic expanders, that is, Theorem 2.

In fact, we prove a slightly more general statement, allowing for different coboundary
expansion in every level.

▶ Theorem 8. Let k > 0 be an integer and let β0, β1, β2, ..., βk ∈ (0, 1] and λ > 0. Let X be
a d-dimensional simplicial complex for d ⩾ k + 2 and assume that X is a λ-one-sided local
spectral expander. Let Γ be any group. Assume that for every 0 ⩽ ℓ ⩽ k and r ∈ X(ℓ), Xr is

a coboundary expander and that hk−ℓ(Xr,Γ) ⩾ βk−ℓ. Then hk(X,Γ) ⩾
∏k

ℓ=0
βℓ

(k+2)!·4 − eλ.

Here e ≈ 2.71 is Euler’s number. Obviously, Theorem 2 follows from Theorem 8 by setting
βℓ = β for every ℓ = 0, 1, 2, ..., k. The following proposition, that is important for the
topological overlapping property will also be proven via similar arguments.

▶ Proposition 9. Let k > 0 be an integer and let β0, β1, β2, ..., βk−1 ∈ (0, 1] and λ > 0.
Let X be a d-dimensional simplicial complex for d ⩾ k + 1 and assume that X is a λ-one-
sided local spectral expander. Let Γ be any group. Assume that for every 0 ⩽ ℓ ⩽ k − 1
and r ∈ X(ℓ), Xr is a coboundary expander and that hk−ℓ(Xr,Γ) ⩾ βk−ℓ−1. Then every

g ∈ Zk(X,Γ) \Bk(X,Γ), has wt(g) ⩾
∏k−1

ℓ=0
βℓ

(k+1)! − eλ.

We remark that the when Γ is non abelian, these statements make sense only when k = 1.
Turning back to Theorem 8, we present a correction algorithm. We will show that when
f ∈ Ck(X,Γ) has a small coboundary, then the algorithm below returns some f̃ ∈ Zk(X,Γ)
that is close to f .

▶ Algorithm 10. Input: A function f :
→
X(k) → Γ, a parameter η ⩽ 1. Output: A function

f̃ :
→
X(k) → Γ.

1. Set f0 := f . Set i = 0.
2. While there exists ℓ ⩽ k, and a face r ∈

→
X(ℓ) so that Stark(r) = {s ∈ X(k) | r ⊆ s}

has an assignment that satisfies a η P [Stark(r)]-fraction of faces more than the current
assignment, do:

Let fixr : Stark(r) → Γ be an optimal assignment to Stark(r), satisfying the maximal
number of k + 1-faces containing r.

Set fi+1(s) =
{
fi(s) r ̸⊆ s

fixr(s) r ⊆ s
.

Set i:=i+1.
3. Output f̃ := fi.
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3.1 Properties of Algorithm 10
Before proving Theorem 8 we record some properties of Algorithm 10.

▷ Claim 11. Algorithm 10 halts on every input.

▷ Claim 12. Let f :
→
X(k) → Γ and let η ⩽ 1. Let f̃ :

→
X(k) → Γ be the output of

Algorithm 10 on (f, η). Then η dist(f, f̃) ⩽ wt(δf).

These claims are elementary, they proven in full in the full version of this paper [10].

3.2 Local minimality
▶ Definition 13 (Restriction). Let g ∈ Ck(X,Γ) and let r ∈ X(ℓ) for some 0 ⩽ ℓ ⩽ k − 1.
The restriction of g to r is the function gr ∈ Ck−ℓ−1(Xr,Γ) is defined by gr(p) = g(r ◦ p).

▶ Definition 14 (Local minimality). Let η ⩾ 0 and let g ∈ Ck(X,Γ). We say that g is
η-locally minimal, if for every 0 ⩽ ℓ ⩽ k − 1, every r ∈ X(ℓ), and every h ∈ Ck−ℓ−2(Xr,Γ)
it holds that wt(gr) ⩽ wt(gr + δh) + η.

▶ Definition 15 (Non abelian local minimality). If Γ is non-abelian we need the correct analogy
to adding coboundaries. The definition of η-minimality is as follows. If k = 1, we say that g is
η-locally minimal if for every v ∈ X(0), and every γ ∈ Γ, it holds that wt(gv) ⩽ wt(γ ·gv)+η.
If k = 2, we say that g is η-locally minimal if:
1. For every edge uv and every γ ∈ Γ, it holds that wt(guv) ⩽ wt(γ · guv) + η.
2. For every vertex v and every function h : Xv(0) → Γ, it holds that wt(gv) ⩽ wt(gh

v ) + η,
where gh

v (uw) = h−1(u)gv(uw)h(w).

The following claim is standard and is proven in the full version of this paper [10]

▷ Claim 16. Let f :
→
X(k) → Γ and let η ⩽ 1. Let f̃ :

→
X(k) → Γ be the output of

Algorithm 10 on (f, η). Then δf̃ is η-locally minimal.

3.3 Locally minimal cosystols are heavy
The following lemma states that non-zero functions that are locally minimal must have large
weight.

▶ Lemma 17. Let β0, ..., βk−1 and λ be as in Theorem 8. Let X be such that for every 0 ⩽
ℓ ⩽ k− 1 and every s ∈ X(ℓ) it holds that Xs is a coboundary expander and hk−ℓ−1(Xs,Γ) ⩾
βk−ℓ−1. Assume further that X is a λ-local spectral expander. Let g ∈ Zk(X,Γ) be non-zero
and η-locally minimal. Then

wt(g) ⩾
∏k−1

ℓ=0 βℓ

(k + 1)! − e(η + λ). (7)

Additionally, for the case of non-abelian Γ, when k = 2, (7) holds for η-locally minimal
and non-zero g = δf , for any f ∈ C1(X,Γ).

The last remark regarding k = 2 is needed since Z2(X,Γ) is not defined for non-abelian
groups Γ. This lemma implies Theorem 2 and Proposition 9 directly.
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Proof of Theorem 8, given Lemma 17. Fix η =
∏k

ℓ=0
βℓ

4((k+2)!) . Let f̃ be the output of Al-

gorithm 10 for some function f and η. If wt(δf) ⩾
∏k

ℓ=0
βℓ

4(k+2)! − eλ there is nothing to prove,

so we assume that wt(δf) <
∏k

ℓ=0
βℓ

4(k+2)! − eλ. Then δf̃ ∈ Zk+1(X,Γ) is an η-locally minimal
function so that wt(δf̃) ⩽ wt(δf). Hence by Lemma 17 (applied with k + 1 instead of k),
δf̃ = 0 and f̃ is a cosystol. By Claim 12, η dist(f, f̃) ⩽ wt(δf), and we are done. ◀

Proof of Proposition 9, given Lemma 17. For every r ∈ X(j) and h ∈ Ck−j−1(Xr,Γ), we
define h↑ : X(k) → Γ by

h↑(s) =
{
h(p) s = r ◦ p
0 r ̸⊆ s.

.

It is easy to see that gr + δh = (g + δh↑)r.
Now let 0 ̸= g ∈ Zk(X,Γ) \ Bk(X,Γ) be minimal among all Zk(X,Γ) \ Bk(X,Γ). By

the above, g is also 0-locally minimal (since otherwise we could have found some non-zero

coboundary δh↑ to add to g and decrease its weight). Thus wt(g) ⩾
∏k−1

ℓ=0
βℓ

(k+1)! − eλ as required.
We remark that the case where Γ is non-abelian and k = 1 is similar. Given g ∈

Z1(X,Γ) \B1(X,Γ) that is non-zero and has minimal weight over all such functions. First
we establish that it is locally minimal. Indeed, assume towards contradiction that there is
some vertex v ∈ X(0) and γ ∈ Γ so that wt(gv) < wt(γgv). Then the function

g′(xy) =


γg(xy) x = v

g(xy)γ−1 y = v

g(xy) otherwise

.

is also a cosystol. Taking some triangle vuw ∈ X(2) that contains v, the value of

δg′(vuw) = γδg(vuw)γ−1 = e

(the identity in Γ). For any triangle uwx that doesn’t contain v we have that δg′(uwx) =
δg(uwx) = e. On the other hand, wt(g′) < wt(g) so g′ is trivial, which implies that g = δh

where h(v) = γ and h(u) = e. A contradiction to the fact that g /∈ B1(X,Γ). ◀

The remainder of this section is devoted to proving Lemma 17. For this we need to define
averaging operators that play a crucial role in the theory behind local-spectral expanders.
We will only define what we need so for a more thorough exposition see e.g. [13]. Let
ℓ2(X(j)) be the Hilbert space of all functions f : X(j) → R where the inner product is
⟨f, g⟩ = Er∈X(j) [f(r)g(r)]. Let Dk : ℓ2(X(k)) → ℓ2(X(k − 1)) be the following operator

Dkf(s) = E
t⊇s

[f(t)] .

This operator’s adjoint is Uk−1 : ℓ2(X(k − 1)) → ℓ2(X(k)) that is defined by

Uk−1f(t) = E
s⊆t

[f(s)] .

As a shorthand we write Dℓ
k = Dk−ℓ+1Dk−ℓ+2...Dk for ℓ ⩾ 1 (and the same for U). For

ℓ = 0 D0
k = U0

k = Id. We record that Dℓ
kf is a function whose domain is X(k − ℓ), and that

U ℓ
kf is a function whose domain is X(k + ℓ).

APPROX/RANDOM 2024
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Let j ⩽ k < d. The operator Nk→j : ℓ2(X(k)) → ℓ2(X(j)) is defined by

Nk→jf(r) = E
t∈X(k+1),t⊇r

[
E

s⊆t,r ̸⊆s
[f(s)]

]
.

Let us spell out this expression. We average over f(s) where s is chosen according to the
following rule. We first sample some t ⊇ r in X(k + 1), and then we sample s ⊆ t given that
it does not contain r.

When j, k is clear from the context we simply write D,U,N .
The following is an operator norm inequality that is similar to [13], but for the one-sided

case. We prove it in the full version of this paper [10].

▷ Claim 18. Let X be a λ-one-sided local spectral expander. Then Uk−j
j Nk→j ⪯

Uk−j+1
j−1 Dk−j+1

k + λId for every j ⩽ k.

Here A ⪯ B for self adjoint operators A,B means that B −A is positive semi-definite, that
is, ⟨(B −A)h, h⟩ ⩾ 0 for every function h in the domain of A,B.

Proof of Lemma 17. Let h = 1g ̸=0. We will prove that wt(g) = E[h] ⩾
∏k−1

ℓ=0
βℓ

(k+1)! − e(η + λ).
We do this by showing that
1. ∥Dkh∥2 ⩾ 1

k+1 ∥h∥2 − λ∥h∥2.

2. For 0 ⩽ j < k, ∥Dk−j+1
k h∥2 ⩾ βk−j−1

j+1 · ∥Dk−j
k h∥2 −

(
βk−j−1η

j+1 + λ
)

∥h∥2.

We note that Dk+1h is a constant (as λ-local spectral expansion says in particular that
the complex is connected) - the average of h on all faces. Hence ∥Dk+1h∥2 = E[h]2. By
iteratively applying these inequalities we get that

E[h]2 = ∥Dk+1h∥2

⩾ βk−1∥Dkh∥2 − (βk−1η + λ) ∥h∥2

⩾
βk−1βk−2

2 ∥Dk−1h∥2 − βk−1

(
βk−2η

2 + λ

)
∥h∥2 − (βk−1η + λ) ∥h∥2

...

⩾ ∥h∥2 ·

∏k−1
ℓ=0 βℓ

(k + 1)! − η

k−1∑
j=0

βj

(k − j + 1)! − λ

1 +
k−1∑
j=0

βj

(k − j + 1)!

 .

By assuming βj ⩽ 1, we upper bound
∑k−1

j=0
βj

(k−j+1)! ⩽
∑∞

j=0
1
j! = e, and get E[h]2 ⩾

∥h∥2 ·
∏k−1

ℓ=0
βℓ

(k+1)! − e(η + λ). As ∥h∥2 = E[h] the lemma follows.

Let us begin with the first item. we call s ∈ X(k) active if h(s) = 1. By assumption,
g ∈ Zk(X,Γ), i.e.

δg(t) =
k+1∑
i=0

(−1)ig(ti) = 0.

Thus if t ∈ X(k + 1) contains an active s = ti1 , then it must also contain a second active
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s′ = ti2
6. This implies that Nk→kh(s) ⩾ 1

k+1h(s), and so

⟨h,Nk→kh⟩ = E
t
[h(t)Nk→kh(t)] ⩾ 1

k + 1∥h∥2.

By Claim 18 Nk→k ⪯ UD + λId, so

1
k + 1∥h∥2 ⩽ ⟨Nk→kh, h⟩ ⩽ ⟨UDh, h⟩ + λ∥h∥2 = ∥Dh∥2 + λ∥h∥2

so the first item is proven.
Next, we will prove the second item. As before, we will show that

⟨Uk−jNk→jh, h⟩ ⩾ βk−j−1

j + 1 · (∥Dk−jh∥2 − η∥h∥2). (8)

Then we rely on Claim 18

∥Dk−j+1h∥2 ⩾ ⟨Uk−jNk→jh, h⟩ − λ∥h∥2. (9)

Combining these inequalities completes the proof.
We now state the following claim, which is proven using the coboundary expansion of Xr

where r is a j-face.

▶ Lemma 19 (Key lemma). Let r ∈ X(j). Then

Nk→jh(r) ⩾ βk−j−1

j + 1 (Dk−jh(r) − η).

From this pointwise inequality, (8) follows easily:

⟨Uk−jNk→jh, h⟩ = ⟨Nk→jh,D
k−jh⟩ ⩾ E

r

[
Dk−jh(r) · βk−j−1

j + 1 · (Dk−jh(r) − η)
]

= βk−j−1

j + 1 · (∥Dk−jh∥2 − η∥h∥2) (10)

◀

We will prove Lemma 19 under the assumption that Γ is abelian since additive notation
is more convenient. For non-abelian groups, see Remark 20.

Proof of Lemma 19. First, let us understand the meaning of the inequality in Lemma 19.
Recall that Nk→jh(r) is an average of h(s) over faces s ∈ X(k) so that r, s ⊆ t for some
t ∈ X(k + 1) and r ̸⊆ s. As h is an indicator function this is the same as writing

Nk→jh(r) = P
t,s

[h(s) = 1] ,

where t, s are as above. On the other side of the inequality there is Dk−jh(r) = Ps⊇r [h(s) = 1].
Hence, we need to show that if there are many active faces that contain r, there must also
be many active faces that “complete” r to a (k + 1)-face.

We first note that

Nk→jh(r) = P
t,s

[h(s) = 1] ⩾ 1
j + 1 P

t
[∃s ⊆ t h(s) = 1 and r ̸⊆ s] , (11)

so we shall actually lower bound Pt [∃s ⊆ t h(s) = 1 and r ̸⊆ s].

6 in the case where Γ is non-abelian and g = δf ∈ C2(X, Γ), even though δg(abcd) is not defined, one still
observes that δf(abc) = δf(acd) = δf(abd) = e implies that δf(bcd) = 0 so the same conclusion holds.
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As g ∈ Zk(X,Γ), for every t = r ◦ p ∈ X(k + 1)

0 = δg(r ◦ p) =
j∑

i=0
(−1)ig(ri ◦ p) + (−1)j

k−j∑
i=0

(−1)ig(r ◦ pi). (12)

And in particular

k−j∑
i=0

(−1)ig(r ◦ pi) ̸= 0 ⇐⇒
j∑

i=0
(−1)ig(ri ◦ p) ̸= 0. (13)

Recall that the restriction of g is gr : Xr(k − j − 1) → Γ, defined by gr(p) = g(r ◦ p). As we
can see, δgr(p) is the left-hand side of (13). Thus

P
t

[∃s ⊆ t h(s) = 1 and r ̸⊆ s] ⩾ P
t=r◦p

[
k−j∑
i=0

(−1)ig(r ◦ pi) ̸= 0
]

(14)

= P
p∈Xr(k−j)

[δgr(p) ̸= 0] . (15)

By assumption Xr is a βk−j−1-coboundary expander, this is at least βk−j−1 ·
dist(gr, B

k−j−1(Xr,Γ)).
To conclude we need to show that

dist(gr, B
k−j−1(Xr,Γ)) ⩾ P

s⊇r
[g(s) ̸= 0] − η. (16)

But

dist(gr, B
k−j−1(Xr,Γ)) = min

f∈Ck−j−2(Xr,Γ)
{wt(gr + δf)} ⩾ wt(gr) − η. (17)

where the inequality follows from η-minimality of g. As wt(gr) = Ps⊇r [h(s) = 1] we have
proven

Nk→jh(r) ⩾ βk−j−1

j + 1 dist(gr, B
k−j−1(Xr,Γ)) ⩾ βk−j−1

j + 1

(
P

s⊇r
[h(s) = 1] − η

)
. ◀

▶ Remark 20 (The non-abelian case). The first place where we need to accommodate for the
non-commutativity is in the derivation of (14). Let us understand how to substitute (12)
which implies (13), for non-abelian groups.

If for example, if r ∈ X(0) and g ∈ Z1(X,Γ), and ruw ∈ X(2) we can write

e = δg(ruw) = g(ru)g(uw)g(wr)

instead of (12). This implies that

g(uw) = g(ur)g(rw) (18)

or

g(rw)g(uw)g(wr) = g(rw)·(g(ur)g(rw))·g(wr) = g(rw)g(ru)−1 = gr(w)gr(u)−1 = δgr(wu)

where in the first equality we plugged in the first part of (18) and in the second to last
equality we plugged in the second part of (18). Since the left hand side is a conjugation of
g(uw), we deduce that g(uw) ̸= e ⇐⇒ δgr(uw) ̸= e. This is the same conclusion as we get
in (12). The case where r ∈ X(1) is similar.
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If k = 2 we cannot even define (12) since the coboundary map is not defined. Still, let us
see that a similar conclusion to (13) holds. Let g = δf ∈ C2(X,Γ). Let r = ab ∈ X(1) and
t = abcd ∈ X(3). Denote by γ = f(ab)f(bc)f(cd). Then

γ−1δgr(cd)γ = γ−1g(rc)g(rd)−1γ

= γ−1g(abc)g(adb)γ

= f(dc) ·
((((((((((
(f(cb)f(ba)f(ab)f(bc)) · f(ca)f(ad)f(db) ·(((((((f(ba)f(ab)) · f(bc)f(cd)

= (f(dc)f(ca)f(ad))(f(db)f(bc)f(cd))
= δf(dca)δf(dbc)

= g(dca)g(dcb)−1.

In particular, we deduce that g(dca)g(dcb)−1 ̸= e ⇐⇒ δgr(cd) ̸= e, and (14) now becomes

P
t

[∃s ⊆ t h(s) = 1 and r ̸⊆ s] ⩾ P
t=r◦cd

[
g(dca)g(dcb)−1 ̸= 0

]
= P

cd∈Xr(1)
[δgr(cd) ̸= 0] . (19)

Similarly, when r = a ∈ X(0) and t = abcd we observe similarly that

f(ab)g(bcd)f(ba) = f(ab)(f(bc)f(cd)f(db))f(ba)
= f(ab)f(bc) · (f(ca)f(ac)) · f(cd) · (f(da)f(ad)) · f(db)f(ba)
= δf(abc)δf(acd)δf(adb)
= ga(bc)ga(cd)ga(db)
= δga(bcd),

and in particular

P
t

[∃s ⊆ t h(s) = 1 and r ̸⊆ s] ⩾ P
t=a◦bcd

[g(bcd) ̸= e] = P
bcd∈Xa(2)

[δga(bcd) ̸= e] . (20)

The second equality we need to modify is (17). For example, take an η-locally minimal
g ∈ C2(X,Γ), a vertex r ∈ X(0), and δh ∈ B1(Xr,Γ) that is a closest coboundary to
gr ∈ C1(Xr,Γ). Then

dist(gr, δh) = P
[
gr(vu) ̸= h(v)h(u)−1]

= wt(gh
r ) ⩾ wt(gr) − η.

The case where r ∈ X(1) is similar.
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