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Abstract
Let G = (V, E) be a graph on n vertices and let m∗(G) denote the size of a maximum matching in
G. We show that for any δ > 0 and for any 1 ≤ k ≤ (1 − δ)m∗(G), the down-up walk on matchings
of size k in G mixes in time polynomial in n. Previously, polynomial mixing was not known even for
graphs with maximum degree ∆, and our result makes progress on a conjecture of Jain, Perkins,
Sah, and Sawhney [STOC, 2022] that the down-up walk mixes in optimal time O∆,δ(n log n).

In contrast with recent works analyzing mixing of down-up walks in various settings using
the spectral independence framework, we bound the spectral gap by constructing and analyzing a
suitable multi-commodity flow. In fact, we present constructions demonstrating the limitations of
the spectral independence approach in our setting.
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1 Introduction

Sampling and counting matchings in graphs is a central and well-studied problem. An early
success in this direction is the classical algorithm of Kasteleyn for counting the number of
perfect matchings in a planar graph [18]. Starting with the foundational work of Valiant [23],
it was established that Kasteleyn’s algorithm is exceptional in the sense that it is #P-hard to
(exactly) count the number of perfect matchings, even for restricted classes of input graphs
such as bipartite graphs and graphs of bounded degree. In fact, perhaps quite surprisingly,
the more general problem of counting matchings of a given size is #P-hard, even restricted
to the class of planar graphs [15].

Given the above hardness results, the best one can hope for is fully polynomial-time
(possibly randomized) approximation schemes. In particular, in connection with fully
polynomial-time randomized approximation schemes (FPRAS) for the number of matchings
(possibly of a given size), as well as being an important problem in its own right, much work
has been devoted to the problem of approximately sampling from various distributions on
matchings of a graph. The celebrated work of Jerrum and Sinclair [16] showed that for the
monomer-dimer model at activity λ (i.e. the distribution on matchings where the probability
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63:2 Rapid Mixing of the Down-Up Walk on Matchings of a Fixed Size

of a matching M is proportional to λ|M |; λ is known as the activity), the Glauber dynamics
mixes in time polynomial in n and λ. For graphs G = (V, E) of bounded degree and λ = O(1),
the optimal mixing time O(|E| log n) was obtained by Chen, Liu, and Vigoda [6].

By combining with a rejection sampling procedure, both of these works give polynomial
time algorithms to approximately sample from the uniform distribution on matchings of
size k ≤ (1 − δ)m∗(G) for any fixed δ > 0, where m∗(G) denotes the matching number of G

i.e. the size of a largest matching in G; approximately sampling from the uniform distribution
on perfect matchings of a graph remains a major open problem, although in the bipartite
case, this was famously resolved by Jerrum, Sinclair, and Vigoda [17]. For the class of
bounded degree graphs, an algorithm with near-optimal run time was provided by a recent
work of Jain, Perkins, Sah, and Sawhney [14]; they gave an algorithm which, given a graph
G of maximum degree ∆, an integer 1 ≤ k ≤ (1 − δ)m∗(G), and a parameter ε > 0, outputs
a random matching M of size k in time Õ∆,δ(n)1 such that the total variation distance is
less than ε between the distribution on M and the uniform distribution on Mk(G): the
matchings in G of size k.

Despite this progress, the mixing time of perhaps the simplest random walk on Mk(G) –
the so-called down-up walk – is not understood. By the down-up walk for matchings of size
k, we refer to the following chain:
1. Denote the state at time t by Mt ∈ Mk.
2. Choose e ∈ Mt and e′ ∈ E uniformly at random.2

3. Let M ′ := Mt ∪ {e′} \ {e}. If M ′ ∈ Mk, then Mt+1 = M ′. Else, Mt+1 = Mt.
It is clear that the down-up walk is reversible with respect to the uniform distribution on
Mk so that whenever it is ergodic (this need not be the case; for instance, consider the
uniform distribution on perfect matchings of an even cycle), it converges to the uniform
distribution on Mk. It is believed that for any fixed δ > 0 the down-up walk on Mk mixes
in polynomial time for all 1 ≤ k ≤ (1 − δ)m∗(G).3 In fact, it was conjectured by Jain,
Perkins, Sah, and Sawhney [14, Conjecture 1.4] that for graphs G of maximum degree ∆
and 1 ≤ k ≤ (1 − δ)m∗(G), the ε-total-variation mixing time of the down-up walk on Mk(G)
is O∆,δ(n log(n/ε)), which would be optimal up to the implicit constants.

The main result of this note establishes that the down-up walk on Mk(G) mixes in
polynomial time for all 1 ≤ k ≤ (1 − δ)m∗(G). While our mixing time is unfortunately not
sharp enough to resolve the aforementioned conjecture from [14], our result has the benefit
of being applicable to arbitrary graphs (as opposed to graphs of bounded degree).

▶ Theorem 1. Let δ ∈ (0, 1). For a graph G = (V, E) on n vertices and m edges, and an
integer 1 ≤ k ≤ (1 − δ)m∗(G), the down-up walk on matchings of size k has ε-mixing time
O(n4/δm4k log(1/ε)).

▶ Remark 2. Restricted to the class of graphs of maximum degree ∆, our proof gives the
improved ε-mixing time bound of O∆,δ(n6k log(1/ε)) by Equation (7) and Equation (1). We
leave it as a very interesting open problem whether the mixing time can be improved to
Õ∆,δ(n) in this case (as was conjectured in [14]).

1 Õ hides polylogarithmic factors in n and 1/ε.
2 Another convention is to choose e′ uniformly at random among those edges for which Mt∪{e′}\{e} ∈ Mk;

in our setting, this would only have the effect of leading to a constant factor speed-up in the mixing
time.

3 Some restriction on the range of k is needed since, as just mentioned, the down-up walk is not even
ergodic in general.
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Our proof is based on bounding the spectral gap using a carefully constructed flow. It is
natural to ask whether the powerful spectral independence framework (developed in [3]) can
be used to derive a similar result; in Section 3, we present examples showing that there are
serious barriers to this, even for the class of bounded degree graphs. Roughly, the main point
is that the condition k ≤ (1 − δ)m∗(G) is not closed under pinnings (even if we take pinnings
at random); this is not the case for the parameter range of independent sets considered
in [13] and is key to making the spectral independence approach amenable in their setting.

1.1 Related work
For the down-up walk, notice that even the case when G is itself a matching is already
interesting; in this case, the down-up walk coincides with the classical and well-studied
Bernoulli-Laplace chain to sample from the uniform distribution on

([n]
k

)
(e.g. [10, 19]).

As discussed earlier, there are polynomial time algorithms, based on the rapid mixing of
Glauber dynamics for the monomer-dimer model, to approximately sample from the uniform
distribution on Mk(G), 1 ≤ k ≤ (1 − δ)m∗

k(G); instead of combining rejection sampling with
the Glauber dynamics, one may also combine rejection sampling with a local random walk
to sample from the uniform distribution on the union of matchings of size k and k − 1 (the
rapid mixing of this walk is shown in [8]). For bipartite graphs [17] and planar graphs [1],
there are polynomial time algorithms to approximately sample from the uniform distribution
on Mk(G) for all 1 ≤ k ≤ m∗(G).

Perhaps most relevant to this note is recent work of Jain, Michelen, Pham, and Vuong [13]
which established optimal mixing of the down-up walk on independent sets of a given size
1 ≤ k ≤ (1 − δ)αc(∆)n, for the class of n vertex graphs G with maximum degree ∆ (using
the spectral independence framework). Here, αc(∆) is a function such that the problem
of (approximately) sampling independent sets of size k > αc(∆)n on n vertex graphs with
maximum degree ∆ is computationally intractable, unless NP = RP; this was shown by
Davies and Perkins [9]. In the same paper, Davies and Perkins showed that by combining
the rapid mixing of the Glauber dynamics for the hard-core model in the tree uniqueness
regime ([3, 6]) with a rejection sampling step, one can obtain a polynomial time algorithm to
approximately sample from the uniform distribution on independent sets of size k provided
that 1 ≤ k ≤ (1 − δ)αc(∆)n; this is entirely analogous to how [16, 6] imply polynomial time
approximate samplers for the uniform distribution on Mk(G) for 1 ≤ k ≤ (1 − δ)m∗(G).
Davies and Perkins conjectured [9, Conjecture 5] that the down-up walk for independent sets
mixes in polynomial time provided that 1 ≤ k ≤ (1 − δ)αc(∆)n and this was resolved (in a
stronger form) by [13]; our work may be viewed as resolving the analog of the conjecture of
Davies and Perkins for matchings.

Finally, we remark that there is a large body of literature in probability concerned with
the mixing of analogous walks for product(-like) domains with conservation laws (in our
setting, the size of the matching is a conserved quantity); see, e.g., [5, 12] and the references
therein. In our setting, the base measure (the natural choice is the monomer-dimer model
at a suitable activity) is significantly more complicated and very far from being a product
distribution, although we remark works are often able to exploit product structure and other
symmetries to obtain rather precise results.

1.2 Organization
In Section 2, we present the proof of Theorem 1. In Section 3, we discuss barriers to a
potential spectral independence approach for proving Theorem 1. In each (sub)section, we
begin with an overview of the proof and some motivation.

APPROX/RANDOM 2024
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2 Proof of Theorem 1

2.1 Preliminaries
Let P denote the transition matrix of an ergodic Markov chain on the finite state space
Ω, which is reversible with respect to the (unique) stationary distribution π. Let E(P ) =
{(x, y) ∈ Ω × Ω : P (x, y) > 0} denote the “edges” of the transition matrix. Recall that the
Dirichlet form is defined for f, g : Ω → R by

EP (f, g) := 1
2

∑
x,y∈Ω

π(x)P (x, y)(f(x) − f(y))(g(x) − g(y)).

The spectral gap α is defined to be the largest value such that for all φ : Ω → R,

α Varπ[φ] ≤ EP (φ, φ).

The (total-variation) mixing time is defined by

τmix = max
x∈Ω

min{t : d(P tx, π)TV < 1/4},

where d(·, ·)TV denotes the total variation distance between probability distributions.4 The
following relationship between the spectral gap and the mixing time is standard (see, e.g. [20]):

τmix ≤ α−1 log
(

1
minx∈Ω π(x)

)
. (1)

In order to bound the spectral gap of the down-up walk, we will use the technology of
multicommodity flows ([22, 11]).

▶ Definition 3. Consider the undirected graph H = (Ω, E(P )). For x, y ∈ Ω, let Qxy denote
the set of all simple paths from x to y in H. Let Q =

⋃
x,y Qxy. A flow is a function

f : Q → R≥0 such that
∑

q∈Qxy
f(q) = π(x)π(y). Given a flow f , we define its cost by

ρ(f) = max
(x,y)∈E(P )

1
π(x)P (x, y)

∑
q∋(x,y)

f(q),

and its length by

ℓ(f) = max
q:f(q)>0

|q|,

where |q| denotes the number of edges in the path q.

It was shown in [22, 11] that any flow gives a lower bound on the spectral gap.

▶ Theorem 4. Let P be a reversible ergodic Markov chain and f be a flow. Then the spectral
gap α satisfies

α ≥ 1/(ρ(f)ℓ(f)).

For each t ∈ E(P ), let paths(t) = {q ∋ t : f(q) > 0}. A common tool (see, e.g., [22])
for bounding ρ(f) is a flow encoding, which is a collection of maps ηt : paths(t) → Ω for all
t ∈ E(P ). If all the maps are poly(n)-to-one and the measure π is “fairly tame” (the uniform
measure on Ω automatically satisfies this condition), then this gives an inverse polynomial
bound on the spectral gap.

4 Note that the quantity 1/4 is fairly arbitrary here. Replacing 1/4 with ε increases the mixing time by
at most a factor of log2(ε−1).
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2.2 Constructing a flow
Recall that 1 ≤ k ≤ (1 − δ)m∗(G) and Ω denotes the set of matchings in G of size exactly
k. Given two matchings x, y ∈ Ω, our flow will be constructed by uniformly distributing
the demand π(x)π(y) over a collection of carefully constructed paths. Compared to the
construction of a flow in [16], we face two challenges:

First, since we are not working with perfect matchings (or matchings which are a constant
additive size away from being perfect), using just one path to route all the flow for each
pair of matchings in the natural fashion results in a flow with exponentially high cost.
To get around this issue, we use the (standard) idea of distributing the flow uniformly
among essentially all possible paths, as is done for the Bernoulli-Laplace model (see [22])
and also for a random walk on the union of matchings of size k and k − 1 [8].
Second – and this is the main new ingredient in our construction – our state space
consists of matchings of a fixed size, whereas all previous walks and flow constructions
(e.g. [16, 8]) required working with matchings of at least two adjacent sizes. In order to
route flow along such paths while still incurring only polynomial cost, we divide pairs of
matchings into a “good” set and a “bad” set depending on the combinatorial structure
of the symmetric difference. For the good set, it is fairly simple to construct a flow,
incorporating the above idea of distributing the flow uniformly among all possible paths.
For a pair in the bad set (x, y), we show that there is a nearby good pair (x̃, y), in the
sense that x can be transformed into x̃ using a short path. The fact that we can transform
x to a suitable x̃ with a short path is key to bounding the cost of the flow, and this is
where we use that k ≤ (1 − δ)m∗(G).

Let x ⊕ y denote the symmetric difference (x \ y) ∪ (y \ x). Since x and y are each
matchings and so have maximum degree 1, x ⊕ y is a disjoint union of paths and even-length
cycles. For the sake of analysis, place arbitrary total orders on the set of even length paths in
G and the set of even length cycles in G. Associate to each cycle one arbitrary distinguished
vertex and to each odd-length path one arbitrary distinguished endpoint. These will all
remain fixed for the remainder of the paper.

We partition Ω2 := Ω × Ω into (Ω2)g ∪ (Ω2)b where

(Ω2)b = {(x, y) : x ⊕ y contains a cycle and no odd-length paths},

(Ω2)g = Ω2 \ (Ω2)b.

We will first describe the collection of paths between the “good pairs” (Ω2)g. Later, we will
leverage this collection on paths along with an additional idea to obtain a suitable collection
of paths between the “bad pairs” (Ω2)b.

Good pairs

Let (x, y) ∈ (Ω2)g. The symmetric difference x ⊕ y consists of even length paths, even length
cycles, odd length paths with more edges in y (which are necessarily x-augmenting paths),
and odd length paths with more edges in x (which are necessarily y-augmenting paths).
We have an induced ordering on the even paths and the cycles from our total order. Since
|x| = |y|, x ⊕ y contains the same number of x-augmenting and y-augmenting paths; suppose
there are 2j total odd-length paths. Let σx, σy be permutations of the sets of x-augmenting,
y-augmenting paths respectively. For each such choice of (σx, σy), we construct a path as
follows from x to y in Ω. Before proceeding to the formal details, let us briefly describe the
procedure: we first change x to y along all even paths. We then change x to y along the

APPROX/RANDOM 2024
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first x-augmenting path σx(1); at the end of such a path, there is an additional y-edge to
be added, which gives us the necessary room to switch from x to y along all cycles, while
still remaining in Ω. At the end of the cycle processing stage, there is an additional y-edge
to be added; we pair this up with switching x to y along the first y-augmenting path σy(1).
Finally, we switch x to y along pairs of x-augmenting and y-augmenting paths σx(i), σy(i) in
the natural fashion.

Formally, set M0 = x and proceed as follows:
1. Process all even length paths in order. To process an even path, enumerate the edges

e1, e2, . . . , e2ℓ such that ei ∩ ei+1 ̸= ∅ and e1 ∈ y. This places all odd edges in y and the
evens in x. Suppose t steps have been taken. First make the transition Mt+1 = Mt∪e1\e2,5
then Mt+2 = Mt+1 ∪ e3 \ e4, and continue until Mt+ℓ = Mt+ℓ−1 ∪ e2ℓ−1 \ e2ℓ. After
processing all even paths, if we have reached y, terminate.

2. Process the first x-augmenting path p = σx(1). Let e∗ ∈ p be the edge incident to the
distinguished endpoint. Process p \ e∗ as an even path as in step (1), leaving only e∗ to
be added.

3. Process all cycles in order. For a cycle c, let e (respectively e′) be the edge in c ∩ x

(respectively c ∩ y) incident to the distinguished vertex of c. First, let Mt+1 = Mt ∪ e∗ \ e

to complete the previous path and puncture the cycle. Now, process c \ {e, e′} as an even
path as in step (1). Label e∗ := e′ and process the next cycle in the same way. At the
end of this step, some e∗ will remain.

4. Process the first y-augmenting path p = σy(1). Let e ∈ p be the edge incident to the
distinguished endpoint. Begin with Mt+1 = Mt ∪ e∗ \ e, then process p \ e as an even
path as in step (1).

5. Process any remaining x-augmenting and y-augmenting paths in pairs p = σx(i), p′ = σy(i).
Let e (respectively e′) denote the edges incident to the distinguished endpoints of p

(respectively p′). First process p\e as an even path, then exchange Mt+1 = Mt ∪ e \ e′,
then process p′\e′ as an even path.

This defines a unique path from x to y for any two permutations σx, σy, and so gives
(j!)2 total paths x → y. We uniformly distribute the demand π(x)π(y) = 1/|Ω2| by setting
f(q) = 1/(|Ω|2(j!)2) for each path q thus defined.

Bad pairs

Given (x, y) ∈ (Ω2)b, we will route the flow through (Ω2)g by choosing some suitable
(x̃, y) ∈ (Ω2)g and adding a suitable prefix to all paths (as above) from x̃ to y. Since
|x| ≤ (1 − δ)m∗(G), x has some augmenting path p of length at most 2δ−1. This follows
from the pigeonhole principle: for M∗ a maximum matching in G, x ⊕ M∗ is a graph with at
most 2m∗(G) non-isolated vertices and at least δm∗(G) disjoint x-augmenting paths, so that
there must be an x-augmenting path of length at most 2δ−1. Consider now x+ := x ⊕ p; this
is a matching of size k + 1. We claim that there exists some e ∈ x+ such that for x̃ := x+ \ e

satisfies (x̃, y) ∈ (Ω2)g. To see this, note that since |x+| > |y|, x+ ⊕y contains a y-augmenting
path p′. If x+ ⊂ p′, then x+ ⊕ y cannot contain a cycle, as p′ is an alternating path between
edges in x+ and in y, and |x+| = |y| + 1, and so y ⊂ p′ as well. Thus x+ ⊕ y = p′ is a single
path and contains no cycles, so we may choose any e ∈ x+ and (x̃, y) ∈ (Ω2)g. Otherwise, by
choosing any edge e ∈ x+ \ p′, we guarantee x̃ ⊕ y has odd-length paths (in particular, p′)
and so (x̃, y) ∈ (Ω2)g.

5 As a slight abuse of notation, when m is a matching, we will write m ∪ e to mean m ∪ {e} and similarly
m \ e instead of m \ {e}.
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For every pair (x, y) ∈ (Ω2)b, we make a fixed (but otherwise arbitrary) choice of p (an
x-augmenting path of length at most 2δ−1) and e as above. For a path q̃ ∈ Qx̃y, we define
q ∈ Qxy as follows.
1. Process p as an x-augmenting path (see previous step 2), leaving some e∗ to be added.
2. Make the exchange Mt+1 = Mt ∪ e∗ \ e, arriving at x̃.
3. Follow the path q̃.

We assign f(q) = f(q̃) so that the same amount of flow is routed from x to y as from x̃

to y. We remark that choosing an augmenting path of length Oδ(1) is crucial for bounding
the cost of the flow below.

2.3 Flow encoding
For t ∈ E(P ), we now bound f(t) :=

∑
q∋t f(q) using the method of flow encodings. Recall

that paths(t) = {q ∋ t : f(q) > 0}. Fix some transition t = (z, z′) ∈ E(P ). We will partition
paths(t) into three sets and bound the contribution to f(t) from each of the three using a
“partial flow encoding”. We have the “good” paths pathsg(t) consisting of paths q ∈ paths(t)
whose endpoints are in (Ω2)g. Recall that the paths in (Ω2)b consist of two phases: the prefix
from x → x̃, and then a good path from x̃ → y. Denote by pathsa(t) those paths which use
the transition t in the prefix x → x̃, and by pathsb(t) those paths which use the transition t

in the path from x̃ → y. We will frequently need the set of short paths in G

Pδ :=
{

(v1v2 · · · vℓ) : {vi, vi+1} ∈ E(G), ℓ ≤ 2/δ
}

.

We will construct Ω × Pδ-valued functions ηg, ηb, ηa on these subsets of paths(t).

Construction of ηg

We first construct ηg : pathsg(t) → Ω × Pδ. Let t = (z, z′) ∈ E(P ). For a path q, let q−, q+

be the endpoints. Let m = q− ⊕ q+ ⊕ (z ∪ z′). It is easily checked that m is a matching
of size k − 1 and that m′ ⊕ (z ∪ z′) = q− ⊕ q+ (the same construction is used in [16]).
For consistency, we further map m into an element of Ω × Pδ using a fixed (but otherwise
arbitrary) m′-augmenting path p ∈ Pδ. The existence of a short m-augmenting path is
guaranteed by the fact that |m| < (1 − δ)m∗(G). Formally, we have

ηg : pathsg(t) → Ω × Pδ

q 7→ (q− ⊕ q+ ⊕ (z ∪ z′) ⊕ p, p).

Note that given the image (m ⊕ p, p), we take (m′ ⊕ p) ⊕ p to recover m, which then recovers
q− ⊕ q+ as before. We can now reindex the sum∑

q∈pathsg(t)

f(q) =
∑

(m,p)∈Ω×Pδ

∑
q∈η−1

g (m,p)

f(q).

The endpoints of every q ∈ η−1
g (m, p) have the same symmetric difference as noted above.

Let this symmetric difference have 2j odd-length paths. By our construction of the flow,
f(q) = |Ω|−2(j!)−2 for all q ∈ η−1

g (m, p). We now count how many paths use the transition
(z, z′) based on which G-paths it is processing. This requires some case analysis, but
ultimately, is based on blending the analysis of the flow encoding for the Glauber dynamics
for the monomer-dimer model in [16] with the flow encoding for the Bernoulli-Laplace
model [22].

APPROX/RANDOM 2024
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Case I: If (z, z′) is processing even length paths, then we can use our total order on even
length paths to identify which parts of each cycle belong to q− and to q+. We know that
we have not yet begun processing odd paths or cycles, so the parts in z belong to q− and
those outside z belong to q+. We thus know q− and q+ and so there are exactly (j!)2

paths using (z, z′).
Case II: If (z, z′) finishes processing an odd-length G-path and begins processing a cycle,

then we know the odd G-path is the first such processed, and by the same reasoning
as before, we can deduce the endpoints q− and q+. We also know σx(1) is the path
intersecting z ⊕ z′. The remainder of σx and the entirety of σy is free, so there are (j!)2/j

paths using (z, z′).
Case III: If (z, z′) is processing entirely cycles, then z has a perfect matching on j + 1 of the

odd-length paths and the interior edges on j − 1 of the odd-length paths. One of these
G-paths has already been augmented, and then there will be a path for every ordering of
the remaining G-paths. Thus there are (j + 1)j!(j − 1)! = (1 + 1/j)(j!)2 paths.

Case IV: If (z, z′) finishes a cycle and begins an odd-length path, then z has a perfect
matching on j + 1 odd paths (one of which is being de-augmented in (z, z′)) and the
interior edges on j − 1 odd paths. The path touched by z ⊕ z′ is σy(1). We must choose
one of the remaining j perfectly matched paths to be σx(1), and then the remainder of
σx, σy are free on the sets of j − 1 interior, perfect paths respectively. There are thus
j((j − 1)!)2 = (j!)2/j paths using (z, z′).

Case V: If (z, z′) is augmenting an odd-length path, then of the other 2j − 1 paths, z is
perfect on j and interior on j − 1. Suppose 2r paths have already been processed. Then
we may choose the already-augmented paths (

(
j
r

)
choices), the already-de-augmented

paths (
(

j−1
r

)
choices), the order for each ((r!)2 choices), and the order for the remaining

augmentations and de-augmentations ((j − r)!(j − 1 − r)! choices). This gives j!(j − 1)!
paths through (z, z′) that have already processed r pairs of G-paths. We now sum over
0 ≤ r ≤ j − 1 to get j(j!)(j − 1)! = (j!)2 total paths through (z, z′).

Case VI: If (z, z′) is de-augmenting an odd-length path, then by the same logic but with
j − 1 perfect paths and j interior paths, we again have (j!)2 total paths.

Case VII: If (z, z′) finishes augmenting one odd path and begins de-augmenting the next,
then we know these G-paths occur adjacently in the path q. Then by the same reasoning
as Case V but with j − 1 perfect paths and j − 1 interior paths, we will get (j!)2/j total
paths through (z, z′).

In all cases, we have at most (1+1/j)(j!)2 ≤ 2(j!)2 paths in η−1
g (m, p) that use the transition

(z, z′). As each has weight f(q) = |Ω|−2(j!)−2, this means the inner sum is at most 2/|Ω|2
and so we can bound∑

q∈pathsg(t)

f(q) =
∑

(m,p)∈Ω×Pδ

∑
q∈η−1

g (m,p)

f(q) ≤
∑

(m,p)∈Ω×Pδ

2
|Ω|2

= 2|Pδ|
|Ω|

. (2)

Construction of ηb

Recall that pathsb(t) are those paths that use the transition t as part of following a “good”
path from x̃ to y. Thus we may instead choose the good path q that is routed through t,
and then count how many starting points x could route through q− (the starting point of q)
to get to q+ (the ending point of q). By the construction of our paths, this requires x ⊕ q−

to be a single short augmenting G-path in Pδ together with a single edge in E(G). These
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together will uniquely determine the total path x → q+. Thus each good path through t is
used in at most |Pδ| |E(G)| bad paths, and the value of f is unchanged by the prefix, so we
may bound using Equation (2)∑

q∈pathsb(t)

f(q) ≤
∑

q̃∈pathsg(t)

|Pδ| |E(G)|f(q̃) ≤ 2|Pδ|2|E(G)|
|Ω|

. (3)

Construction of ηa

Finally, for t = (z, z−) and q ∈ pathsa(t), let p be the G-path that is augmented during the
prefix. Then, define the function

ηa : pathsa(t) → Ω × Pδ

q 7→ (q+, p).

Suppose q ∈ η−1
a (m, p) for some matching m ∈ Ω and G-path p ∈ Pδ and let t = (z, z−).

Then we know that q+ = m, and we know that q− consists of z \p and the interior alternating
edges of p. Thus all paths in η−1

a (m, p) have the same endpoints, and so their total flow is at
most the net flow between those two points, which is |Ω|−2. We can then calculate∑

q∈pathsa(t)

f(q) =
∑

(m,p)∈Ω×Pδ

∑
q∈η−1

a (m,p)

f(q) ≤
∑

(m,p)∈Ω×Pδ

1
|Ω|2

= |Pδ|
|Ω|

. (4)

Bounding the cost of the flow

Using Equation (2), Equation (3), and Equation (4), for any transition t ∈ E(P ),∑
q∈paths(t)

f(q) =
∑

q∈pathsg(t)

f(q)+
∑

q∈pathsb(t)

f(q)+
∑

q∈pathsa(t)

f(q) ≤ 3|Pδ| + 2|Pδ|2|E(G)|
|Ω|

. (5)

Since π(z) = 1/|Ω| for all z ∈ Ω and P (z, z′) ≥ 1/(k|E(G)|) (since the possible transitions
from z consist of removing one of k edges and adding one of |E(G)| edges), we get that

ρ(f) ≤ |Ω| · k|E(G)| · 3|Pδ| + 2|Pδ|2|E(G)|
|Ω|

≤ 3k|E(G)|2|Pδ|2.

Finally, let ∆ denote the maximum degree of G and note that |Pδ| ≤ 2n∆2/δ−1 to get that

ρ(f) ≤ 12k|E(G)|2 · n2∆4/δ−2. (6)

2.4 Rapid mixing
We will use Theorem 4 to bound the spectral gap via the flow f defined in Section 2.2. Note
that the down-up walk is reversible with respect to the uniform distribution, aperiodic since
P (x, x) > 0, and irreducible (for instance, by using the paths used in our flow f). Therefore,
the assumptions of Theorem 4 are satisfied. To bound the maximum length ℓ(f) of any
path used in our flow, note that by construction, any edge in G is included in at most three
exchanges. Hence, ℓ(f) ≤ 3|E(G)|. Combining this with Equation (6), we see that the
spectral gap α of the down-up walk satisfies

α−1 ≤ 36k|E(G)|3 · n2∆4/δ−2. (7)

Finally, the mixing time bound in Theorem 1 follows from Equation (1) by noting that
log |Ω| ≤ log 2|E(G)| ≤ |E(G)|.

APPROX/RANDOM 2024
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3 Barriers to the spectral independence approach

For a distribution π on
([n]

k

)
, we define the (signed) pairwise influence matrix Mπ ∈ Rn×n by

Mπ(i, j) =
{

0 if j = i,

Pπ[j | i] − Pπ[j | i] otherwise.
,

where Pπ[i] = PS∼π[i ∈ S] and Pπ[i] = PS∼π[i /∈ S]. We say that π is η-spectrally
independent (at link ∅) if λmax(Mπ) ≤ η and that π is η-ℓ∞-independent (at link ∅) if
maxi∈[n]

∑n
j=1 |Mπ(i, j)| ≤ η. Note that the latter condition implies the former.

We begin by noting that for the class of bounded degree graphs, for k bounded away from
the matching number, the uniform distribution on matchings of size k is O(1)-ℓ∞-independent.

▶ Proposition 5. Let G = (V, E) be a graph on n vertices with maximum degree ∆. Let
δ > 0 and for 1 ≤ k ≤ (1 − δ)m∗(G), let π be the uniform distribution on matchings of G of
size k. Then π is Oδ,∆(1)-ℓ∞-independent (at link ∅).

Proof. For k = o(n), this is implied by a coupling argument (e.g. [21]). For k = Ω(n), the
proof follows from the same argument as in the proof of [13, Theorem 8]: the differences
are that we compare to the monomer-dimer model at activity λ = Oδ,∆(1) using [14,
Lemma 4.1], replace [13, Theorem 9] by [6, Theorem 2.10], and replace [13, Theorem 15]
by a suitable multivariate zero-free region for the matching polynomial (e.g. [7]). We omit
further details. ◀

Given Proposition 5, one might hope to obtain an inverse polynomial bound on the
spectral gap of the down-up walk (at least for the class of bounded degree graphs) using
the powerful spectral independence framework as is done, for instance, in the case of the
down-up walk on independent sets of a fixed size in [13]; we refer the reader to [3] for an
introduction to this framework. In order to do this, we need to show that the distribution
remains Oδ,∆(1)-spectrally independent under any pinning. In our situation, a pinning τ

is a matching of size ℓ < k. We would then consider Ωτ = {m ∈ Ω : τ ⊂ m} under the
distribution induced by π (uniform, in our case), and show Oδ,∆(1)-spectral independence of
this space. We note that there is a more powerful “average-case” version of this argument,
which (roughly) allows us to consider typical pinnings obtained by starting from some fixed
matching of size k and pinning a random subset of k − ℓ edges to be included (see [4, 2]).
We present barriers to this approach.

We observe that such an approach cannot work for the down-up walk. Indeed, if it were to
work, then one would also be able to show that the down-up walk has inverse polynomial
spectral gap for the induced uniform distribution on size ℓ matchings obtained by starting
with an arbitrary matching of size k and pinning a uniform subset of k − ℓ edges to belong
to the matching. However, as we discuss below, it is easy to construct an example where
even for polynomially large ℓ, with high probability, the down-up walk is not even ergodic
(Claim 7).
In the above example, the failure of ergodicity may be circumvented by using an O(1)-step
down-up walk. However, it is still the case that proving mixing of the O(1)-step down-up
walk using the (average) spectral independence framework necessitates proving mixing for
the O(1)-step down-up walk for the aforementioned induced distributions on matchings
of size ℓ. We present a construction (Claim 6) showing that these induced distributions
can correspond to the uniform distribution on size ℓ matchings in pretty arbitrary graphs
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with matching number ℓ(1 + o(1)); hence, there does not seem to be a way to use this
machinery without basically showing that O(1)-step down-up walks mix rapidly for
(almost) maximum matchings in arbitrary bounded-degree graphs, which is a major open
problem.

Our examples will follow the same general template. To set up some notation, given a
graph G = (V, E) and a pinning τ (a matching τ in G), define the residual graph Gτ to be
the induced subgraph

Gτ = G[V (Gτ )],

where

V (Gτ ) = V (G) \
⋃
e∈τ

e.

Sampling from the uniform distribution on matchings in G of size k, conditioned on pinning
τ to be in the matching, is equivalent to finding a matching of size k − |τ | in Gτ .

We are now ready to construct our examples. Fix some 0 < δ < 1/5 the desired gap from
maximality, as in the statement of Theorem 1. We define a graph G = (V, E) where |V | = n

as follows: G consists of δn/2 disjoint copies of P9 (the path with 10 vertices and 9 edges)
and an arbitrary graph G′ on the remaining (1 − 5δ)n vertices such that G′ has a perfect
matching. Let M be the matching given by taking the union of a perfect matching M ′ in G′

with the interior alternating edges on each P9; note that |M | = n/2 − δn/2 = (1 − δ)m∗(G).
We will be considering pinning a uniform random subset of M of a fixed size.

▷ Claim 6. For a random pinning τ of size (1 − λ)|M |, the ratio

E
[
1 − |M | − |τ |

m∗(Gτ )

]
= O(δλ4).

The implication of this claim is that, while we started with the uniform distribution on
matchings of size at most (1 − δ) of the maximum matching in G, we now need to deal with
the uniform distribution on matchings of size at least (1 − δλ4) times the maximum matching
in Gτ .

Proof. Let τ be a random pinning of size (1 − λ)|M |. Let Xτ be the number of P9s that τ

does not intersect. Then by linearity of expectation,

E[Xτ ] = δn

2 Pr[τ avoids a fixed P9] = O(δnλ5). (8)

The key observation here is that once we have pinned any edge in M ∩ P9 for some copy of
P9, we have split P9 into two even paths and are demanding a maximum matching on each
of those. Hence, by construction, we see that m∗(Gτ ) = |M | − |τ | + Xτ . We now compute

E
[
1 − |M | − |τ |

m∗(Gτ )

]
= 1 − E

[
|M | − |τ |

|M | − |τ | + Xτ

]
≤ 1 − |M | − |τ |

|M | − |τ | + E[Xτ ]

≤ E[Xτ ]
λ|M |

= O(δλ4),

where the first line uses Jensen’s inequality and the second line uses Equation (8). ◀

In the above construction, take G′ to be a disjoint union of (1 − 5δ)n/4 copies of C4 (the
4-cycle) and accordingly, take M ′ to be a union of perfect matchings on each C4.

APPROX/RANDOM 2024
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▷ Claim 7. For a random pinning τ of size n/2 − n2/3, with high-probability, the down-up
walk on matchings of size |M | − τ on the induced graph Gτ is not ergodic.

Proof. It suffices to show that for a random pinning τ of size n/2−n2/3, with high probability,
(i) τ intersects every P9, (ii) τ fails to intersect some C4.

For (i), by a union bound and direct computation, we get that

P[τ avoids some P9 ∩ M ] ≤ δn

2 P[τ avoids a fixed P9 ∩ M ] = O(δn−1/3).

For (ii), we get that

P[τ intersects all C4] = P[τ c contains no C4 ∩ M ]

≤ nO(1)P[τ c does not contain a fixed C4 ∩ M ](1−5δ)n/4

≤ exp(−Θ(n1/3)),

where the second follows by comparing probabilities between the independent model of
density Θ(n−1/3) and the slice model and the last line follows by direct computation. The
union bound now shows that with high probability, (i) and (ii) simultaneously hold. ◁
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