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Abstract
A tournament is a complete directed graph. A source in a tournament is a vertex that has no
in-neighbours (every other vertex is reachable from it via a path of length 1), and a king in a
tournament is a vertex v such that every other vertex is reachable from v via a path of length at
most 2. It is well known that every tournament has at least one king. In particular, a maximum
out-degree vertex is a king. The tasks of finding a king and a maximum out-degree vertex in a
tournament has been relatively well studied in the context of query complexity. We study the
communication complexity of finding a king, of finding a maximum out-degree vertex, and of finding
a source (if it exists) in a tournament, where the edges are partitioned between two players. The
following are our main results for n-vertex tournaments:

We show that the communication task of finding a source in a tournament is equivalent to the
well-studied Clique vs. Independent Set (CIS) problem on undirected graphs. As a result, known
bounds on the communication complexity of CIS [Yannakakis, JCSS’91, Göös, Pitassi, Watson,
SICOMP’18] imply a bound of Θ̃(log2 n) for finding a source (if it exists, or outputting that
there is no source) in a tournament.
The deterministic and randomized communication complexities of finding a king are Θ(n). The
quantum communication complexity of finding a king is Θ̃(

√
n).

The deterministic, randomized, and quantum communication complexities of finding a maximum
out-degree vertex are Θ(n log n), Θ̃(n) and Θ̃(

√
n), respectively.

Our upper bounds above hold for all partitions of edges, and the lower bounds for a specific partition
of the edges.

One of our lower bounds uses a fooling-set based argument, and all our other lower bounds follow
from carefully-constructed reductions from Set-Disjointness. An interesting point to note here is
that while the deterministic query complexity of finding a king has been open for over two decades
[Shen, Sheng, Wu, SICOMP’03], we are able to essentially resolve the complexity of this problem in
a model (communication complexity) that is usually harder to analyze than query complexity.
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1 Introduction

Graph problems have been very widely studied through the lens of query and communication
complexity. In the most natural query setting, an algorithm has query access to an oracle
that on being input a pair of vertices, outputs whether or not an edge exists between those
vertices. In the basic communication complexity setup for graph problems, two parties,
say Alice and Bob, are given the information about the edges in E1 and E2, respectively,
where E1 and E2 are disjoint subsets of all possible edges in the underlying graph. Their
task, just as in the query model, is to jointly solve a known graph problem on the graph
formed by the edges in E1 ∪ E2. Several interesting results are known in these basic query
and communication settings in the deterministic, randomized, and quantum models, see, for
example, [5, 27, 19, 29, 40, 9, 11] and the references therein.

A prime example of a graph problem whose query complexity and communication
complexities have been widely studied is Graph Connectivity. The randomized and quantum
communication complexities of this problem are known to be O(n log n) and Ω(n). This gap
has been open for a long time, and the question of closing it has been explicitly asked [29, 27].
On the other hand, its deterministic communication complexity is known to be Θ(n log n) [27].

A graph problem that has been extensively studied in the context of communication
complexity is the Clique vs. Independent Set (CIS) problem [47, 25, 26, 8]. The CIS problem
is so fundamental that it makes an appearance in the first chapter of standard textbooks
on communication complexity [32, 41] (in fact, it is defined on the first page of the latter
textbook). The CIS problem is parametrized by a graph G = ([n], E), known to both
Alice and Bob. Alice is given C ⊆ [n] that forms a clique in G, Bob is given I ⊆ [n] that
forms an independent set in G, and their task is to determine whether or not C ∩ I = ∅.
Note that if C ∩ I ̸= ∅, then it must be the case that |C ∩ I| = 1. It was long known
that the communication complexity of CIS is O(log2 n) for all graphs G. More than two
decades after this upper bound was discovered, a near-matching lower bound of Ω̃(log2 n)
was shown to hold for a particular G, in a culmination of a long line of ground-breaking
work [31, 28, 3, 45, 25, 26].

▶ Theorem 1 ([47], [26, Theorem 1.2]). Let G be an n-vertex graph. Then, Dcc(CISG) =
O(log2 n). Furthermore, there exists an n-vertex graph G such that Dcc(CISG) = Ω̃(log2 n).

This lower bound on the communication complexity of CIS also gives the currently-best-
known lower bound for the exponent in the famous log-rank conjecture [35]. We remark that
the upper bound above also holds if the task is to output the label of the unique intersection
of C and I if C ∩ I ̸= ∅.

While not as well-studied as the undirected case, communication complexity of directed
graph problems has also received some attention in the past (see, for example, [29, 6, 13]).
In this work, we consider tournaments, which are directed graphs with exactly one directed
edge between each pair of vertices (i.e. the underlying undirected graph is complete). We
adopt the natural communication complexity setting where Alice knows the orientation of a
subset E of the edges, Bob knows the orientation of the remaining edges, and their goal is to
jointly solve a known task on the tournament.
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A source of a tournament is a vertex with no in-neighbour. The first problem that we
study is source-finding: finding the source of a tournament (if it exists, and reporting that no
source exists otherwise). The source-finding problem has recently played a central role in the
recent breakthrough by Chattopadhyay, Mande and Sherif that refuted the log approximate-
rank conjecture [15] which is the randomized analog of the famous log-rank conjecture [35] of
communication complexity. It was as also used in the follow-up results [4, 46] that refuted the
quantum version of this conjecture. Source-finding has been studied in the context of query
complexity and voting theory (see [18] and the references therein). In fact, the problem of
finding a source in a tournament (in the bounded-round communication complexity setting)
has been studied by Chakrabarti et al. [13, Sections 3, 4] with applications to streaming
lower bounds. In a recent preprint, Ghosh and Kuchlous [24] studied the communication
complexity of source-finding in general graphs. Interestingly, they showed that source-finding
in general directed graphs can be exponentially harder than source-finding in tournaments
as demonstrated by our results (Corollary 3).

We denote the source-finding problem in the specific communication setting discussed
above by SRCE (recall that E is the set of edges whose orientation is known to Alice).
Perhaps surprisingly, we show that this task is equivalent to the CIS problem on undirected
graphs.

▶ Theorem 2.
For all n-vertex graphs G = ([n], E), Dcc(CISG) ≤ Dcc(SRCE) + O(log n).
For all subsets of edges E of the complete n-vertex graph, there exists an n-vertex graph
G such that Dcc(SRCE) ≤ Dcc(CISG).

Using known near-tight bounds on the communication complexity of CIS (Theorem 1),
Theorem 2 immediately yields the following corollary which gives near-tight bounds on the
communication complexity of finding a source in a tournament.

▶ Corollary 3. For all subsets E of the edges of the complete n-vertex graph, the deterministic
communication complexity of finding a source of a tournament if it exists, or outputting that
there is no source is

Dcc(SRCE) = O(log2 n).

Furthermore, there exists a subset E of edges of the complete n-vertex graph such that the
deterministic communication complexity of finding a source is

Dcc(SRCE) = Ω̃(log2 n).

We believe that this equivalence between SRC and CIS will generate further insights into
relationships among complexity measures in query and communication settings that are yet
to be resolved. Recall that the source-finding function was also recently used to refute the
randomized and quantum versions of the log-rank conjecture [15, 4, 46]. In particular, these
works showed that the randomized and quantum communication complexities of finding a
source in a tournament is polynomially large in the input size. However, in their settings,
Alice and Bob each know a bit per edge, and that edge’s direction is determined by the
bitwise XOR of Alice and Bob’s bits for that edge. In view of this, Corollary 3 demonstrates
a fundamental difference between the communication complexities of the source-finding
problem when the edge directions are partitioned between Alice and Bob, and when Alice
and Bob jointly have partial information about each edge.

Motivated to find a “most-dominant vertex” in a tournament, Landau defined the notion
of a king in a tournament [34]. A king in a tournament is a vertex v such that every other
vertex w is either reachable via a path of length 1 or length 2 from v. While it is easy

APPROX/RANDOM 2024
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to see that there are tournaments that do not have a source, it is also easy to show that
every tournament has a king [34, 38]. If a tournament has a source, then it is a unique king
in the tournament. In view of this, a natural variant of SRCE (and hence CIS, in view of
Theorem 2) is the communication task of finding a king in a tournament.

We remark here that the deterministic query complexity of finding a king in an n-vertex
tournament is still unknown, and the state-of-the-art bounds are Ω(n4/3) and O(n3/2),
and are from over 2 decades ago [44]. Recently, [37] essentially resolved the randomized
and quantum query complexities of this problem: they showed that the randomized query
complexity of finding a king in an n-vertex tournament is Θ̃(n), and the quantum query
complexity is Θ̃(

√
n). The complexity of finding a king and natural variants of it have also

been fairly well-studied in different contexts [44, 2, 10, 33].
We consider the communication complexity of finding a king in an n-vertex tournament,

denoting this task by KINGn. Perhaps surprisingly, while resolving the query complexity of
finding a king in a tournament seems hard, we are able to essentially resolve its asymptotic
deterministic, randomized, and quantum communication complexities.

▶ Theorem 4. For all disjoint partitions E1, E2 of the edges of a tournament, the determin-
istic, randomized, and quantum communication complexities of finding a king (where Alice
knows the edge directions of edges in E1 and Bob knows the edge directions of edges in E2)
are as follows:

Dcc(KINGn) = O(n), Rcc(KINGn) = O(n), Qcc(KINGn) = O(
√

n log n).

Furthermore, there exists a disjoint partition E1, E2 such that the deterministic, randomized,
and quantum communication complexities of finding a king are as follows:

Dcc(KINGn) = Ω(n), Rcc(KINGn) = Ω(n), Qcc(KINGn) = Ω(
√

n).

In order to show our deterministic and randomized upper bounds, we give a O(n) cost
deterministic protocol. Our quantum upper bound follows from the upper bound in Theorem 5
(the upper bound in Theorem 5 is for the problem of finding a vertex of maximum out degree
in the same setting, which is always a king [34]). Our lower bounds follow from a carefully
constructed reduction from Set-Disjointness. We sketch our proofs in Section 1.1.

Interestingly, our lower bounds actually hold for tournaments that are promised to have
exactly 3 kings. It is well known that a tournament cannot have exactly 2 kings [38]. Thus,
the only “easier” case than this promised one is that where the input tournament is promised
to have exactly one king. This case is handled in Corollary 3 (it is easy to see that a
tournament has a unique king iff the unique king is a source in the tournament).

It is folklore [34] that a vertex with maximum out-degree in a tournament is also a king
in the tournament. Thus, another natural question that arises is: what is the complexity of
finding a maximum out-degree vertex? The deterministic and randomized query complexity
of this task is known to be Θ(n2), and its quantum query complexity is between Ω(n) and
O(n3/2) [7, 37]. Let MODn denote the search problem of finding a maximum out-degree
vertex in an n-vertex tournament. We study the communication complexity of MODn, again
in the natural setting where the edges of the tournament are partitioned between Alice and
Bob. We show the following:

▶ Theorem 5. For all disjoint partitions E1, E2 of the edges of a tournament, the determin-
istic, randomized, and quantum communication complexities of finding a maximum out-degree
vertex (where Alice knows the edge directions of edges in E1 and Bob knows the edge directions
of edges in E2) are as follows:

Dcc(MODn) = O(n log n), Rcc(MODn) = O(n log log n), Qcc(MODn) = O(
√

n log n).
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Furthermore, there exist disjoint partitions such that the deterministic, randomized, and
quantum communication complexities of finding a maximum out-degree vertex are as follows:1

Dcc(MODn) = Ω(n log n), Rcc(MODn) = Ω(n), Qcc(MODn) = Ω(
√

n).

We direct the reader’s attention to the similarity between our communication complexity
bounds for MODn and known bounds for the communication complexity of Graph Connectiv-
ity mentioned earlier in this section: just like in that case we are able to give tight bounds
on the deterministic communication complexity, but our bounds are loose by logarithmic
factors in the randomized and quantum settings.2 Our randomized and quantum lower
bounds follow using exactly the same reduction from Set-Disjointness as in Theorem 4. Our
deterministic lower bound follows by a carefully constructed fooling set lower bound. We
give a sketch of our proofs in Section 1.1.

While most of the relevant literature of finding kings in tournaments deals with minimizing
the number of queries to find a king (which is equivalent to minimizing the depth of a decision
tree that solves KING), none deal with minimizing the size complexity of a decision tree that
solves KING. Logarithm of decision tree size complexity is characterized, upto a log factor
in the input size, by the rank of the underlying relation (see [36] for definition of size), and
these are measures that have gained a significant interest in the past few years in various
contexts (see, for instance, [14, 17, 16] and the references therein). While the decision tree
depth complexity of KINGn lies between Ω(n4/3) and O(n3/2), we show a tight bound of
n− 1 on rank(KINGn), which implies and Ω(n) lower bound and an O(n log n) upper bound
on the logarithm of decision tree size for KINGn. We omit the statement of this result and
its proof due to lack of space, and refer the reader to the full version of the paper [36].

1.1 Sketch of proofs of main results
1.1.1 Equivalence of source-finding and CIS
We first sketch the proof of Theorem 2, which is the equivalence of finding a source in a
tournament and the Clique vs. Independent Set problem. Below is a sketch of the proof
of the first part of this theorem. Consider a graph G = ([n], E), and an input C, I to the
Clique vs. Independent Set problem. Here Bob is given C ⊆ [n] which is a clique in G, and
Alice is given I ⊆ [n] which is an independent set in G (we switch the order of inputs for
convenience). Alice and Bob construct the following instance to the source-finding problem:

Alice has the edge directions of all edges in E, and Bob has the remaining edge directions
in E.
Alice constructs her edge directions such that all vertices in I have in-degree 0 with
respect to her edge directions in E. This is easy to do since there are no edges between
any pair of vertices in I. She also ensures that all vertices in [n] \ I have in-degree at
least 1, with respect to her edge directions in E. She can ensure this if G is a connected
graph. (see Section 3.)
Just as the above, Bob ensures that all vertices in C have in-degree 0 w.r.t. E, and all
vertices in [n] \ C have in-degree at least 1 w.r.t. E.

1 The edge partition we use to prove our deterministic lower bound is different from the partition we use
to prove our randomized and quantum lower bounds.

2 After a full version of our work appeared in the public domain [36], Ghosh [23] communicated to us a
proof of a matching randomized Ω(n log log n) lower bound in Theorem 5, showing that our randomized
upper bound is tight.

APPROX/RANDOM 2024
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Using the properties above, it is not hard to show that s = C ∩ I iff s is a source in the
tournament jointly constructed by Alice and Bob above. This concludes the reduction from
CIS to source-finding.

In the other direction, if Alice is given edge directions for the subset E of edges of the
complete n-vertex graph, then the underlying graph G that Alice and Bob construct for the
CIS problem is G = ([n], E). For the purpose of this reduction, we assume that Alice has
an independent set as input to CIS, and Bob has a clique. Alice considers her input, an
independent set, I to the CIS problem to be the set of all vertices with in-degree 0 w.r.t. E

(note that these vertices must form an independent set in G), and Bob constructs his input
clique C to be all vertices with in-degree 0 w.r.t. his edges (these form a clique w.r.t. E, and
hence in G). Note that a source in the initial tournament, if it exists, must be a vertex in
I ∩C since it must have in-degree 0 both w.r.t. Alice’s and w.r.t. Bob’s edges. Moreover this
is the only way in which I intersection C is non-empty. In other words, I ∩ C ≠ ∅ iff there
is a source in the initial tournament. This concludes the reduction from source-finding to
CIS, and hence Theorem 2. Known upper bounds and lower bounds on the communication
complexity of the Clique vs. Independent Set problem (Theorem 1) then yield Corollary 3.

Some of our proofs of the lower bounds in Theorems 4 and 5 follow the same outline.
In the next section, we sketch our upper bounds, and we sketch our lower bounds in the
following section.

1.1.2 Upper bounds

We start with ideas behind the upper bounds in Theorem 4. Throughout this paper, we
will view a n-vertex tournament as a string G ∈ {0, 1}(

n
2), where the indices are labeled by

pairs {i < j ∈ [n]} and Gi,j = 1 means the edge between vertices i and j is directed from i

to j. Recall that the goal is to construct a communication protocol for finding a king in a
tournament G ∈ {0, 1}(

n
2) whose edges are partitioned into E1 (with Alice) and E2 (with

Bob).
Consider the deterministic communication model. At a high level, our protocol proceeds

in rounds, and in each round Alice and Bob reduce the problem to king-finding in a smaller
subtournament. In the beginning of each round assume without loss of generality that Alice
has a larger number of edges. Alice sends Bob the label of a vertex v with maximum number
of out-neighbours in E1 along with the in-neighbourhood of v in E1 as a bit-string (one bit for
every other vertex u in the current subtournament for which Alice knows the direction of the
edge between u and v). Upon receiving v, Bob also sends the in-neighbourhood of v in E2 as a
bit-string. Thus both players know the entire in-neighbourhood of v in the entire tournament
by the end of the round. The communication cost so far is at most 2n + log n = O(n), where
n is the number of vertices in the current tournament. The players now reduce to finding a
king in the in-neighbourhood of v, since by [38] (also see Lemma 11), this would give a king in
the tournament G. Since |E1| ≥ |E2|, the number of out-neighbours of v is at least (n− 1)/4.
This yields a communication protocol of cost T (n) that is described by a recurrence of the
form T (n) ≤ T (3n/4) + O(n), which is easily seen to give a solution of T (n) = O(n). For
the quantum upper bound, we note that a maximum out-degree vertex is always a king [34].
Our O(

√
n log n) quantum upper bound for finding a king then immediately follows from

Theorem 5, which we describe shortly.
We now sketch proofs of the upper bounds in Theorem 5. Our upper bounds follow from

communication protocols for the following problem: Alice and Bob are given A ∈ [n]n and
B ∈ [n]n, respectively. Their goal is to output an index i ∈ [n] that maximizes ai +bi. We call
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this communication problem MAXSUMn,n. The reduction from MODn to MAXSUMn,n is easy
to see: Alice and Bob construct A, B to be the vector of out-degrees of all vertices w.r.t. their
edges. Thus a deterministic communication protocol of cost O(n log n) immediately follows
for MODn: Alice sends A to Bob, who then computes an answer. We now sketch the
randomized upper bound. Let S = (s1, . . . , sn) where si = ai + bi. The first observation is
that deciding si ≥ sj is equivalent to deciding ai − aj ≥ bj − bi. The latter can be done with
cost O(log log n) and error at most 1/3 by using the communication protocol of Greater-Than
due to [39, Theorem 1] (see Theorem 21). Thus Alice and Bob have access to a “noisy”
oracle that decides whether si ≥ sj , for all i, j ∈ [n], independently with probability at least
2/3. Finding arg maxi∈[n] si with error probability 1/3 can be done by making O(n) such
queries (due to [21], see Theorem 20). This gives a protocol with an overall communication
cost of O(n log log n). The quantum communication protocol is an application of a result
of [12], along with a quantum query upper bound for computing argmax (see Theorem 15),
see Section 5 for details.

1.1.3 Lower bounds
Our intuition for the lower bounds is that a “hard” partition of edges between Alice and
Bob should be such that every vertex has an equal number of incident edges with Alice and
with Bob. One such natural partition of the edges is as follows: Alice receives the complete
tournament restricted to the first n/2 vertices and the complete tournament restricted to
the last n/2 vertices, and Bob receives all of the edges between these vertices. While we
are unable to use this partition of edges to prove a lower bound for KINGn, we do use it
to show a deterministic lower bound for MODn. Our approach to showing a deterministic
communication lower bound for MODn is to construct a large fooling set (see Lemma 19).
More precisely, for a permutation σ ∈ S, where S is a suitably chosen large (size 2Ω(n log n))
subset of Sn, we construct inputs Aσ, Bσ to Alice and Bob such that vertex 1 is a unique
maximum out-degree vertex for all σ ∈ S. We also ensure that “cross-inputs” (Aσ, Bσ′) with
σ ̸= σ′ lead to vertex 1 not being a maximum out-degree vertex as long as σ and σ′ are far
away in the ℓ∞ norm, which we force to be true for all permutations in S by our construction.
We refer the reader to Section 5 for technical details.

While we are unable to make the same reduction work to show the communication
lower bounds for KINGn (and for good reason, since this argument gives an Ω(n log n) lower
bound, and there is an O(n) upper bound for the communication complexity of KINGn) and
randomized and quantum communication lower bounds for MODn, our partition constructed
there has a similar flavor to that above. A key intermediate function that we consider
for showing our remaining lower bounds is a variant of KING inspired by the well-studied
Indexing function. Aptly, we name our variant IndexKING, defined below. For a tournament
G ∈ {0, 1}(

n
2) with vertex set [n], and a set S ⊆ [n], we use the notation G|S to denote the

subtournament of G induced on the vertices in S.

▶ Definition 6. Let n > 0 be a positive integer. Define the IndexKINGn communication
problem as follows: Alice is given a set S ⊆ [n] and Bob is given a tournament G ∈ {0, 1}(

n
2)

on n vertices. Their goal is to output a king in G|S.

We consider the restriction of IndexKING to those inputs where Bob’s tournament is a
transitive tournament (see Definition 12). We denote this variant by t-IndexKING. A moment’s
observation (see Observation 8) reveals that this problem is equivalently formulated as follows.
We name this version the Permutation Maximum Finding problem, defined below, and we
believe that this problem is of independent interest.

APPROX/RANDOM 2024
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▶ Definition 7 (Permutation Maximum Finding). Let n > 0 be a positive integer. In the
Permutation Maximum Finding problem, PMFn, Alice is given as input a subset S of [n],
Bob is given a permutation σ ∈ Sn, and their goal is to output

PMFn(S, σ) =
{
⊥ S = ∅
arg maxj∈S σ(j) S ̸= ∅.

Unless explicitly mentioned otherwise, we assume that Alice’s input S to PMFn is always a
non-empty set. In other words, in the PMF problem, Alice is given a subset of [n], Bob is
given a ranking of all elements in [n] (here, σ(i) denotes the rank of i), and their goal is to
find the element in Alice’s set that has the largest rank.

▶ Observation 8. Let n > 0 be a positive integer. Then, cost(PMFn) = cost(t-IndexKINGn),
where cost ∈ {Dcc, Rcc, Qcc}.3

We refer the reader to the full version [36] for a proof.
We show that Set-Disjointness reduces to PMF (see Lemma 28 and its proof). The

lower bound results for PMF follow from known results for communication complexity of
Set-Disjointness (see Theorem 17).

Next we reduce from PMFn to KING. Our reduction ensures that an instance (S, σ) to
PMFn gives us a tournament GS,σ with the following properties:

The tournament has 3n vertices, partitioned into V1, V2, V3, of n vertices each, each
labeled by elements of [n]. The internal edges (edges in

(
V1
2

)
,
(

V2
2

)
and

(
V3
2

)
) in each of the

partitions are with Bob, and these correspond to transitive tournaments defined by σ.
The remaining “cross” edges are all with Alice, and the directions of these are determined
by S (see Figure 1 for details).
The tournament GS,σ has exactly three kings (which are also the three unique maximum
out-degree vertices), one in each Vi, and each of these is labeled by PMFn(S, σ).

Thus finding a king or a maximum out-degree vertex in GS,σ amounts to Alice and Bob
solving PMFn, which we’ve already sketched to be hard via a reduction from Set-Disjointness.
An interesting point to note is that this actually shows a lower bound on the communication
complexity of finding a king, even when the input tournament is promised to have exactly three
kings. Recall that we showed that finding a king can be done with O(log2 n) deterministic
communication when an input is promised to have exactly one king (Corollary 3). Also it is
easy to show using Lemma 11 that there are no tournaments with exactly two kings. Thus,
the “easiest” non-trivial case of a promised tournament with exactly three kings is already
hard for communication.

2 Preliminaries

Let [n] = {1, . . . , n}. We use the notation polylog(n) to denote O(log(n)c) for some fixed
constant c. For f : N → N, we use the notation Õ(f) to denote O(f logc1 f) and Ω̃(f) to
denote Ω(f/(logc2 f)), for some constants c1, c2.

A tournament G ∈ {0, 1}(
n
2) is a complete directed graph on n-vertices. For v, w ∈ [n]

such that v < w, if Gv,w = 1 then there is an out-edge from v to w, i.e. v → w (otherwise
there is an out-edge from w to v). In this case we say that v 1-step dominates w. Similarly,
for u, w ∈ [n], if there exists a v ∈ [n] such that u→ v and v → w then we say that u 2-step

3 We actually prove the stronger statement that the problems PMFn and t-IndexKINGn are equivalent, in
the sense that Alice and Bob need not communicate to go one from one problem to another.
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dominates w. Let S ⊆ [n] be such that v 2-step (1-step) dominates w for all w ∈ S. We then
say that v 2-step (1-step) dominates S. It is easy to see that there are tournaments where no
vertex 1-step dominates all other vertices (such a vertex is called the source of G). However,
it is now folklore that every tournament has a vertex v such that every vertex w ̸= v is either
1-step or 2-step dominated by v. Such a vertex is called a king of the tournament (see [34]).

▶ Lemma 9 (Folklore). Let G ∈ {0, 1}(
n
2) be a tournament. Then there exists a vertex v ∈ [n]

such that v is a king of G.

For a vertex v ∈ [n], let N−(v) = {w ∈ [n] : w → v} and N+(v) = {w ∈ [n] : v → w}.
Thus N−(v) and N+(v) denote the in-neighbourhood and out-neighbourhood of v in G,
respectively. The in-degree of v, denoted by d−(v) is defined as |N−(v)|, and similarly the
out-degree of v is denoted by d+(v) and is defined as |N+(v)|. If a vertex has maximum
out-degree in the tournament, then that vertex is a king of the tournament (a proof can be
found in [38]).

▶ Lemma 10 ([34]). Let G ∈ {0, 1}(
n
2) be a tournament and v ∈ [n] be a vertex of maximum

out-degree in G. Then v is a king in G.

For S ⊆ [n] let G|S be the tournament induced on S by G, i.e. G|S is a tournament with
vertex set as S and direction of edges in S are same as that in G.

The following is an important lemma that we use often.

▶ Lemma 11 ([38]). Let G ∈ {0, 1}(
n
2) be a tournament and v ∈ [n]. If a vertex u is a king

in G|N−(v), then u is a king in G.

A special class of tournaments is the class of transitive tournaments, which we define
next.

▶ Definition 12 (Transitive Tournament). A tournament G ∈ {0, 1}(
n
2) is transitive if it

satisfies the following property: for all u, v, w ∈ [n], u→ v and v → w implies u→ w.

In other words, a transitive tournament is a tournament which is a directed acyclic graph.

▶ Lemma 13 (Properties of Transitive Tournaments). Let G ∈ {0, 1}(
n
2) be a transitive

tournament. There is an ordering v1, . . . , vn of [n] such that
v1 is a source vertex and hence a unique king in G, and
for all i ∈ {2, . . . , n}, vi is source vertex in G|[n]\

⋃i−1
j=1

{vj}.

Proof. Since G is a directed acyclic graph, a topological sort on the vertices gives a source of
the graph. Let this vertex be v1. The vertex vi is obtained by applying the same argument
over the transitive tournament G|[n]\

⋃i−1
j=1

{vj}. ◀

2.1 Query and Communication Complexity
We refer the reader to the full version [36] of our paper for the formal setup of deterministic,
randomized, and quantum query complexity.

▶ Definition 14 (ARGMAXk,n). Let k be a positive integer and let a ∈ ([k])n. Given query
access to a, find i ∈ [n] such that ai ≥ aj for all j ̸= i ∈ [n].

▶ Theorem 15 ([20]). There exists a quantum query algorithm for ARGMAXk,n with query
cost O(

√
n).
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We refer the reader to the full version [36] of our paper for the formal setup of deterministic,
randomized, and quantum communication complexity.

▶ Definition 16 (Set-Disjointness). Let n > 0 be a positive integer. The Set-Disjointness
problem is denoted by DISJn : {0, 1}n × {0, 1}n → {0, 1} and is defined by

DISJn(A, B) = 1 ⇐⇒ A ∩B = ∅,

where A, B ⊆ [n] are the characteristic sets of Alice and Bob’s inputs, respectively.

The communication complexity of DISJn is extensively studied. We require the following
known bounds on its communication complexity [5, 30, 43, 42, 1].

▶ Theorem 17 (Communication complexity of Set-Disjointness). The deterministic, randomized,
and quantum communication complexity of DISJn is as follows:

Dcc(DISJn) = n, Rcc(DISJn) = Θ(n), Qcc(DISJn) = Θ(
√

n).

It is a folklore result that, classically, query algorithms for functions give communication
protocols for these functions composed with small gadgets with very little blowup in the
complexity. In the quantum setup we have the following theorem, that essentially follows
from [12].

▶ Theorem 18 ([12]). Let f ⊆ Dn
f × R be a relation where Df = [k] for some finite k,

and let g : Dg × Dg → Df be a function. For all ε > 0, if Qε(f) ≤ T then Qcc
ε (f ◦ g) ≤

2T (⌈log n⌉+ ⌈log k⌉+ ⌈log |Dg|⌉).

We refer the reader to the full version [36] of our paper for a proof.
A fooling set for a communication problem f ⊆ (X × Y)×R is a set S ⊆ X × Y such

that for all pairs s1 = (x1, y1) and s2 = (x2, y2) in S, we have

{r ∈ R|(x1, y1, r) ∈ f ∧ (x1, y2, r) ∈ f ∧ (x2, y1, r) ∈ f ∧ (x2, y2, r) ∈ f} = ∅.

▶ Lemma 19. Let f ⊆ (X × Y)×R be a communication problem, and let S ⊆ X × Y be a
fooling set for f . Then, Dcc(f) ≥ log |S|.

We refer the reader to standard texts for a formal proof [32, Lemma 1.20]. We remark that
standard texts usually frame the fooling set lower bound as a lower bound technique for
communication complexity of functions rather than relations, but the same proof technique
is easily seen to show the statement above as well. A sketch of the proof is as follows: The
leaves of a protocol tree of depth c yields a partition of the space X × Y into 2c rectangles,
each of which has at least one r ∈ R that is a valid output for all pairs of inputs in the
rectangle. By the property of a fooling set, each element of it must belong to a different leaf.
This implies the number of leaves in any protocol for f must be at least |S|, implying that
the depth of any protocol must be at least log |S|.

We require the following theorem that gives an algorithm to find the maximum in a list
given noisy comparison oracle access. The formulation we use below follows easily from [21,
Theorem 15].

▶ Theorem 20 ([21, Theorem 15]). Let S = (s1, . . . , sn) be a list of n numbers. Suppose we
have access to a “noisy” oracle, that takes as input a pair of indices i ̸= j ∈ [n], and outputs
a bit that equals I[si ≥ sj ] with probability at least 2/3, independent of the outputs to the
other queries. Then there is an algorithm that makes O(n) queries to the noisy oracle and
outputs arg maxi∈[n] si with probability at least 2/3.
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▶ Theorem 21 ([39, Theorem 1]). Let n > 0 be a positive integer. The GT : [n]× [n]→ {0, 1},
where Alice is given x ∈ [n] and Bob is given y ∈ [n] is defined as GT(x, y) = 1 if and only if
x ≥ y. The randomized communication complexity of GT is O(log log n).

2.2 Formal definitions of graph problems of interest
For clarity and completeness, we include formal definitions of the tasks of finding a king and
finding a maximum out-degree vertex in this section.

▶ Definition 22. Let n > 0 be a positive integer. Define KINGn ⊆ {0, 1}(
n
2) × [n] to be

(G, v) ∈ KINGn ⇐⇒ v is a king in the tournament G.

▶ Definition 23. Let n > 0 be a positive integer. Define MODn ⊆ {0, 1}(
n
2) × [n] to be

(G, v) ∈ MODn ⇐⇒ v is a maximum out-degree vertex in the tournament G.

When we give communication upper bounds for these problems, our upper bounds hold for
all partitions of the input variables

(
n
2
)

between Alice and Bob. When we give lower bounds,
we exhibit specific partitions for which our lower bounds hold.

3 Communication complexity of finding a source

We consider the communication complexity of finding a source in a tournament if it exists.
Alice knows the edge directions of a subset EA of the edges of a tournament T ∈ {0, 1}(

n
2),

Bob knows the directions of the remaining edges EB , and their goal is to output the label of
a source in the whole tournament if it exists, or output that the tournament has no source.
Formally, for a partition of edges EA, EB of the complete n-vertex graph, define

SRCEA
: {0, 1}EA × {0, 1}EB → {0, 1, . . . , n} (1)

to be SRCEA
(a, b) = 0 if there is no source in the tournament defined by edge directions a, b,

and SRCEA
(a, b) = i if vertex i is the (unique) source in the same tournament. We define

the decision version of this problem to be SRCdec
EA

: {0, 1}EA × {0, 1}EB → {0, 1}. That is,
SRCdec

EA
outputs 0 if there is no source in the tournament, and outputs 1 if there is a source.

Below, we define the celebrated Clique vs. Independent Set problem on an n-vertex graph
G [47], which we henceforth abbreviate as CISG. The CISG problem is associated with an
n-vertex undirected graph G = (V, E). In this problem, Alice and Bob both know G. Alice
is given as input a clique x ⊆ [n] in G, Bob is given as input an independent set y ⊆ [n], and
their goal is to either output that x ∩ y = ∅, or output the label of the (unique) vertex v

with {v} = x ∩ y.4
There has been a plethora of work on the Clique vs. Independent set problem, see for

example, [47, 25, 26, 8]. Of relevance to us is Theorem 1, which gives near-tight bounds on
the deterministic communication complexity of this problem.

Perhaps surprisingly, we show that the communication problem of finding a source in a
tournament is equivalent to the Clique vs. Independent Set problem. Corollary 3 would then
immediately follow. We now prove Theorem 2.

4 Conventionally, the Clique vs. Independent Set problem is phrased as a decision problem, where the
task is to determine if x ∩ y is empty or non-empty. The known bounds we state here are easily seen to
hold for the “search version” that we consider as well.
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Proof of Theorem 2. In this proof, we assume for convenience that in the Clique vs. Inde-
pendent Set Problem, Alice is given an independent set and Bob is given a clique.

Let G = (V, E) be an n-vertex graph. Let I, C ⊆ [n] be Alice and Bob’s input to CISG,
respectively. Recall that the vertices in I form an independent set in G and the vertices
in C form a clique in G. We now describe the reduction from CISG to SRCE . Before
delving into the main reduction, we do a preprocessing of small communication cost to
make sure that G is connected and the size of the independent set I is at least 3.
Preprocessing: Bob sends the label of the connected component in G that his clique C is
part of. Alice removes from her independent set I, all vertices that aren’t part of this
connected component. She now sends a bit to Bob to indicate whether |I| ≥ 3. If not, she
further sends labels of the two vertices in I to Bob who then responds with an answer.
This requires a total of O(log n) communication cost. We can therefore assume that the
graph G is connected and |I| ≥ 3 for the rest of the reduction. Alice and Bob locally
construct the following inputs to SRCE (recall that Alice must construct edge directions
in E, and Bob must construct the remaining edge directions).

Alice orients the edges in E, using Claim 24 and the fact that G is a connected graph,
such that only the vertices in I have in-degree 0.
Bob orients the edges in E as follows. For vertices in C, he orients the edges in their
connected components in G, using Claim 24, such that only the vertices in C have
in-degree 0. Next he orients the edges of connected components that don’t contain
vertices of C. If this connected component is not a tree, he uses Claim 25 to orient
the edges such that no vertex has in-degree 0. If the connected component is a tree,
he orients the edges in an arbitrary way.

Let T denote the tournament constructed above. We next show that (I, C) is a 1-input
to CISG iff there exists a source in T . This would prove the first part of the theorem.
Moreover, we show that when there is a source in the constructed tournament, the source
vertex is the same as the unique vertex in I ∩ C.
Let (I, C) be a 1-input to CISG and s be the unique vertex in I ∩ C. We show that s

is the source in the tournament T . By construction, the neighbours of s in E are the
outneighbours of s in Alice’s input, and the neighbours of s in E are the outneighbours
of s in Bob’s input.
We prove the contrapositive for the other direction. Let (I, C) be a 0-input to CISG, i.e.,
I ∩ C = ∅. We show that there is no source in T . Vertices in I are ruled out from being
a source by the orientation of Alice’s edges. Now the vertices of I forms a clique in Bob’s
input, thus they form a connected component that is not a tree (since |I| ≥ 3). Since
this connected component does not contain a single vertex from C (since we assumed
I ∩ C = ∅), the construction above (using Claim 25) implies that all vertices in I have
in-degree at least 1 w.r.t. Bob’s edge directions. Thus, there is no source in the entire
tournament.
In the other direction, let {0, 1}EA and {0, 1}EB be Alice and Bob’s input to SRCEA

,
where EA, EB form a partition of the edges of the n-vertex complete graph. Say that the
tournament formed by these inputs is T . Alice and Bob construct the following instance
to the Clique vs. Independent Set problem.

The graph is G = (V, E) with V = [n] and E = EA.
Alice constructs I ⊆ [n] to be all of the vertices with in-degree 0 w.r.t. EA. It is easy
to see that I forms an independent set in G since any edge between vertices in I causes
one of the vertices in I to have in-degree at least 1.
Bob constructs C ⊆ [n] to be all of the vertices with in-degree 0 w.r.t. EB . As in the
previous bullet, it is easy to see that C forms an independent set in G, and hence a
clique in G.
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Consider the input (I, C) to CISG as constructed above. We show now that I ∩ C ̸= ∅ iff
there is a source in T , which would prove the second part of the theorem since (I, C) and
G were constructed using no communication.
Suppose s is a source in T . Since s has in-degree 0 w.r.t. both EA and EB, we must
have s ∈ I ∩C. Moreover, since every other vertex must have in-degree at least 1, such a
vertex is either not in I or not in C. Thus, s = I ∩ C. In the other direction, suppose
s = I ∩ C. By the construction above, s must have in-degree 0 w.r.t. both EA and EB,
and hence is a source in T . ◀

▷ Claim 24. Let T be a tree, V be its vertex set and I be an independent set in T . Then
there exists an orientation of the edges of T such that exactly the vertices in V \ I have
in-degree at least 1.

Proof of Claim 24. We now show a procedure to orient the edges such that the set of vertices
with in-degree 0 equals the set I. Consider a (left-to-right) listing of subsets of vertices based
on their distances from the set I. So if the listing looks like V0, V1, · · · , Vj , · · · , then V0 = I,
and Vj ⊆ V \ I is the set of vertices such that the length of a shortest path to reach a vertex
in I equals j. We orient the edges from Vi → Vi+1 for i ≥ 0. The edges within a partition,
say Vi, are oriented arbitrarily. Now using the fact that tree is a connected graph, it is easily
seen that every vertex in V \ I has in-degree at least 1. Moreover, by our construction, all
vertices in V0 = I has in-degree 0. ◁

▷ Claim 25. Let G be a connected graph that is not a tree. Then, there exists an orientation
of the edges of G such that every vertex of G has in-degree at least 1.

Proof of Claim 25. Since G is connected but not a tree, it contains a cycle, say C. Orient
the edges of C in a cyclic way to give in-degree 1 to every vertex in C, and then orient the
edges “away” from the cycle C (in a manner similar to the proof in Claim 24 where V0 = C

here) to add 1 to in-degrees of vertices in V \C. Thus the directed graph so constructed has
no vertex with in-degree 0. ◁

4 Communication complexity of KING

The proof of Theorem 4 is divided into two parts. We show the upper bounds in Section 4.1
and the lower bounds in Section 4.2.

4.1 Upper bounds on communication complexity of KINGn

We start by proving an O(n) upper bound on the deterministic communication complexity
which also implies an O(n) upper bound on the randomized communication complexity.

▶ Lemma 26. Let G ∈ {0, 1}(
n
2) be a tournament and let E1, E2 be a partition of the edges

of G. The deterministic and randomized communication complexity of finding a king of G,
where Alice is given E1 and Bob is given E2, is upper bounded as follows

Dcc(KINGn) = O(n), Rcc(KINGn) = O(n).
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Proof. The proof follows via the Protocol in Algorithm 1.

Algorithm 1 Deterministic Communication Protocol for KINGn.

1: Input: Let G ∈ {0, 1}(
n
2) be a tournament and E1, E2 ⊆ {(i, j) : i < j ∈ [n]} be a

partition of the edges of G. Alice (Player 1) is given {0, 1}E1 and Bob (Player 2) is given
{0, 1}E2 .

2: S = [n]
3: while |E1| > n and |E2| > n do
4: b← arg max

i∈{0,1}
|Ei| ▷ Ties broken arbitrarily

5: v ← arg max
w∈[n]

{out-degree(w) in Eb} ▷ Ties broken arbitrarily

6: Player b sends to Player 1− b the label of v along with a |S|-bit indicator vector of
the in-neighbourhood of v in Eb

7: Player 1− b sends an |S|-bit indicator vector of the in-neighbourhood of v in E1−b

8: S ← S ∩N−(v)
9: E1 ← the edges of E1 that are present in G|S

10: E2 ← the edges of E2 that are present in G|S
11: end while
12: if |E1| ≤ n then
13: Alice sends E1 to Bob
14: Bob outputs a king of the tournament.
15: else if |E2| ≤ n then
16: Bob sends E1 to Alice
17: Alice outputs a king of the tournament.
18: end if

Correctness. It is easy to see that in every iteration of the while loop, the size of either E1
or E2 decreases by at least 1. This shows that our algorithm always terminates.

Let S(i) denote the set S in i’th iteration of the while loop, where S(1) = [n]. We
maintain the invariant that in every iteration of the while loop, a king in G|S(i+1) is also
a king in G|S(i) . This follows easily from Lemma 11 since S(i+1) is obtained from S(i) by
restricting to vertices in the in-neighbourhood of some vertex v in Line 8. Assume without
loss of generality that the while loop terminates with |E1| ≤ n. In this case, in Line 13,
Alice sends her edges to Bob who outputs a king of G.

Cost. We show that the cost of Protocol 1 is upper bounded by O(n) for all tournaments
G ∈ {0, 1}(

n
2). Suppose we enter the while loop with |S| = k. Let c(k) be the number of

bits communicated during the execution of the while loop. Consider Line 6, and assume
without loss of generality that |E1| ≥ |E2|, thus |E1| ≥ (1/2 ·

(
k
2
)
). Since every edge in E1 is

an out-edge for some vertex (note that E1 and E2 are subsets of edges of G|S due to Line 9
and Line 10) we have

∑
u∈S d+(v) ≥ (1/2 ·

(
k
2
)
) (where the out-degrees are only computed in

E1) and hence by an averaging argument there exists v ∈ S such that the out-degree of v

when restricted to E1 (and therefore S) is at least (k − 1)/4. Thus the in-degree of v in S is
at most (3/4 · (k − 1)). Furthermore, in each iteration of the while loop, ⌈log k⌉+ k bits
are communicated in Line 6 and k bits are communicated in Line 7. We have the following
upper bound on c(k): c(k) ≤ c(3k/4) + ⌈log k⌉ + 2k, and thus c(n) = O(n). Also observe
that either Line 13 or Line 16 is executed and in each case at most n bits are communicated.
Thus the overall number of bits communicated in O(n). ◀
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Next, we give an O(
√

n log n) cost quantum communication protocol for KINGn. Our
quantum communication upper bound is a corollary of Theorem 5 which gives a quantum
communication protocol for finding a maximum out-degree vertex in a tournament (such a
vertex is also a king, see Lemma 10).

▶ Lemma 27. Let G ∈ {0, 1}(
n
2) be a tournament and let E1, E2 be a partition of E. The

quantum communication complexity, where Alice is given E1 and Bob is given E2. Then

Qcc(KINGn) = O(
√

n log n).

4.2 Lower bounds on communication complexity of KINGn

Next, we prove the lower bound. In order to do this, we first give a lower bound on the
communication complexity of PMFn. Recall that, in this problem, Alice is given as input a
subset S of [n], Bob is given a ranking of elements of [n] defined by σ, and their goal is to
output the element in S that has the largest rank according to σ.

▶ Lemma 28. The deterministic, randomized, and quantum communication complexity of
PMFn is as follows:

Dcc(PMFn) = Ω(n), Rcc(PMFn) = Ω(n), Qcc(PMFn) = Ω(
√

n).

Proof. We show that Set-Disjointness reduces to PMFn and the lemma follows from The-
orem 17. We describe the reduction next.

Consider an input to Set-Disjointness, S, T ⊆ [n] where S is with Alice and T is with
Bob. Alice and Bob locally construct the following instance of PMFn: Alice retains her set
S, and Bob creates an arbitrary σ such that the following holds:

∀i ̸= j ∈ [n], (Ti = 0) ∧ (Tj = 1) =⇒ σ(i) < σ(j).

In other words, Bob creates a permutation σ of [n] that ranks all of the indices in T higher
than all of the indices outside T . They then run a protocol for PMFn with inputs S, σ, let
k be the output of this protocol. If k ∈ T then they return S ∩ T ̸= ∅ else they return
S ∩ T = ∅.

Correctness. If PMFn(S, σ) = ⊥, then the players know (without any additional commu-
nication) that S = ∅ and hence DISJn(S, T ) = 1. Thus, we may assume S ̸= ∅. Since any
protocol for PMFn must output an index k ∈ S. By Bob’s construction of σ, the elements of
T are ranked higher than elements that are not in T . Since k is the output of a protocol
for PMFn, k is the highest ranked element in S by σ. Thus if k is not among the top |T |
ranked elements, then all elements of S are ranked lower than all elements of T (by Bob’s
construction of σ) and S ∩ T = ∅. On the other hand if k is among the top |T | ranked
elements then k ∈ T ∩ S. These conditions can be checked by Bob who has σ and k. ◀

By the equivalence of PMF and the transitive variant of IndexKING (Observation 8),
Lemma 28 implies the same lower bounds on t-IndexKINGn.

We thus immediately conclude the same lower bounds on the general IndexKING problem
(where Bob’s tournament is arbitrary, and need not be transitive).

▶ Corollary 29. The deterministic, randomized, and quantum communication complexity of
IndexKINGn is as follows:

Dcc(IndexKINGn) = Ω(n), Rcc(IndexKINGn) = Ω(n), Qcc(IndexKINGn) = Ω(
√

n).
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S0

T0

S2

T2

S1

T1

Figure 1 Visual depiction of GS,σ. For each b ∈ {0, 1, 2}, Sb contains the vertices {ib : i ∈ S}
and Tb contains the vertices {ib : i /∈ S}. There are four types of edges (also see Definition 30):

Edges of Type 1 are those within each Tb ∪ Sb, here ib → jb iff σ(i) > σ(j).
Edges of Type 2 are those between Sb and Tb′ for b ̸= b′, here ib → jb′ .
Edges of Type 3 are those between Sb and Sb′ for b ̸= b′, here ib → jb′ iff b′ = b + 1 (mod 3).
Edges of Type 4 are those between Tb and Tb′ for b ̸= b′, here ib → jb′ iff b′ = b + 1 (mod 3).

We now give a lower bound on the communication complexity of KINGn. For this we first
define a class of tournaments that we use in our proof.

4.3 A class of tournaments
In this section, we define a special class of tournaments on 3n vertices, that are parametrized
by a subset S ⊆ [n] and an ordering σ of [n].

▶ Definition 30. Given a set S ⊆ [n] and σ ∈ Sn, define the tournament GS,σ on 3n vertices
as follows:

The vertex set is V = {ib : i ∈ [n], b ∈ {0, 1, 2}}.
For each b ∈ {0, 1, 2} and all i ̸= j ∈ [n], the direction of the edge between ib and jb is
ib → jb iff σ(i) > σ(j). We refer to these as Type 1 edges.
For all b ̸= b′ ∈ {0, 1, 2}, all i ∈ S and all j /∈ S, ib → jb′ is an edge. We refer to these
as Type 2 edges.
For all b ̸= b′ ∈ {0, 1, 2} and all i ̸= j ∈ S, the direction between the edge ib and jb′ is
ib → jb′ iff b′ = b + 1(mod 3). We refer to these as Type 3 edges.
For all b ̸= b′ ∈ {0, 1, 2} and all i ̸= j /∈ S, the direction between the edge ib and jb′ is
ib → jb′ iff b′ = b + 1(mod 3). We refer to these as Type 4 edges.

We refer the reader to Figure 1 for a pictorial representation and some additional notation.

▶ Lemma 31. Let n > 0 be a positive integer, S ⊆ [n] and σ ∈ Sn. Then, the tournament
GS,σ has exactly three kings, namely k0, k1, k2, where k = arg maxj∈S σ(j). Moreover,
k0, k1, k2 are the only vertices with maximum out-degree in GS,σ.

Proof. We first show that k0 is a king. The argument for k1, k2 being kings follows similarly.
To show that k0 is a king, we exhibit paths of length one or two from k0 to all other vertices
in the tournament.
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First note that for any element j ∈ S, there is an edge from k0 to j0 since k =
arg maxj∈S σ(j) (this is an edge of Type 1). Thus, k0 1-step dominates S0.
For all j /∈ S and b ∈ {1, 2}, there is an edge (of Type 2) from k0 to jb. Thus, k0 1-step
dominates T1 and T2.
For j, j′ ∈ S, there is an edge (of Type 3) from k0 to j1. Thus k0 1-step dominates S1.
There is also an edge (also of Type 3) from j1 to j′

2. Thus, k0 2-step dominates S2.
For an arbitrary j ∈ S, as noted above, there is an edge from k0 to j1. For j′ /∈ S, there
is an edge (of Type 2) from j1 to j′

0. Thus, k0 2-step dominates T0.
This shows that k0 (and similarly k1 and k2) is a king in GS,σ.5 We next show that no other
vertex is a king. We do this by showing for every other vertex k′

b, a vertex that is not 1-step
or 2-step dominated by k′

b.
Consider k′ ̸= k ∈ S and b ∈ {0, 1, 2}. We now show that k′

b does not 1-step or 2-step
dominate kb.

Since kb is the unique king in the transitive tournament (GS,σ)|Sb
(see Lemma 13), k′

b

does not 1-step dominate kb via Type 1 edges. Moreover, the only vertices that are
1-step dominated by k′

b via Type 1 edges are a subset of vertices in Sb ∪ Tb. None of
these vertices can 1-step dominate kb since (GS,σ)|Sb∪Tb

is a transitive tournament.
This shows that k′

b cannot 1-step dominate or 2-step dominate kb by first using an
edge of Type 1.
The only other out-going edges from k′

b are either of Type 2 or Type 3.
Consider a Type 2 edge which goes from k′

b to Tb+1 (mod 3) (Tb+2 (mod 3) follows
similarly). By construction, there is no edge from any vertex in Tb+1 (mod 3) to kb (see
Figure 1).
Now consider a Type 3 edge which goes from k′

b to Sb+1 (mod 3). By construction,
there is no edge from any vertex in Sb+1 (mod 3) to kb (see Figure 1).

Consider k′ /∈ S and b ∈ {0, 1, 2}. We now show that k′
b does not 1-step or 2-step

dominate kb+2 (mod 3).
The only out-going edges from k′

b are either of Type 1 or Type 4. On taking a Type
1 edge, k′

b can only 1-step dominate a subset of vertices of Sb ∪ Tb. None of these
vertices have an edge to kb+2 (mod 3) (see Figure 1). Thus, k′

b cannot 2-step dominate
kb+2 (mod 3) by first taking a Type 1 edge.
A Type 4 edge goes from k′

b to a vertex in Tb+1 (mod 3). By construction, no vertex in
Tb+1 (mod 3) has an edge to kb+2 (mod 3) (see Figure 1).

Finally, we observe that k0, k1, k2 are the only three vertices with maximum out-degree in
GS,σ. Observe that the out-degrees of k0, k1, k2 are all equal by symmetry. By Lemma 10, a
vertex with maximum out-degree in GS,σ is a king in GS,σ. This, along with the proof above
that shows that k0, k1, k2 are the only kings in GS,σ, immediately implies that k0, k1, k2 are
the only three vertices with maximum out-degree in GS,σ. ◀

4.4 Proof of Theorem 4

We now prove Theorem 4. The upper bounds follow from the arguments in Section 4.1. For
the lower bounds, we do a reduction from PMF. The class of tournaments constructed in
Section 4.3, and its properties, play a crucial role in the reduction.

5 We remark here that there is an alternative proof that shows k0 to be a king: consider an arbitrary
j1 for an arbitrary j ∈ S. The in-neighborhood of j1 contains S0 and a subset of S1 ∪ T1. It can be
verified that k0 is a source (and hence a king) in the tournament restricted to the in-neighbourhood of
j1. Lemma 11 then implies that k0 is a king. We choose to keep the current proof for clarity.
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Proof of Theorem 4. The upper bounds follow from Lemma 26 and Lemma 27.
For the lower bounds, consider an input S ⊆ [n] to Alice and σ ∈ Sn to Bob for

PMFn. Alice and Bob jointly construct the tournament GS,σ. Note that this construction is
completely local and involves no communication; Alice can construct all edges of Types 2, 3
and 4, and Bob can construct all edges of Type 1 (see Figure 1). By Lemma 31, there are
exactly 3 kings in GS,σ and these are

{
ib : b ∈ {0, 1, 2} , i = arg maxj∈S σ(j) = PMFn(S, σ)

}
(recall Definition 7). Thus, running a protocol for KING3n on input GS,σ (where Alice has
edges of Types 2, 3 and 4, and Bob has edges of Type 1) gives the solution to PMFn(S, σ) at
no additional cost. Lemma 28 implies the required lower bounds. ◀

5 Communication complexity of MOD

Recall that in the MODn communication problem, Alice and Bob are given inputs in {0, 1}E1

and {0, 1}E2 , respectively, where E1 and E2 form a partition of the edge set
(

n
2
)
. Their goal

is to output a vertex v that has maximum out-degree in the tournament formed by the union
of their edges. We next prove Theorem 5. In this theorem we settle the communication
complexity of finding a maximum out-degree vertex in a tournament in the deterministic,
randomized, and quantum models, up to logarithmic factors in the input size. In the
deterministic model we are able to show a tight Θ(n log n) bound.

We first define an intermediate communication problem, MAXSUMn,k, which seems
independently interesting to study from the perspective of communication complexity.

▶ Definition 32. Let n, k > 0 be positive integers. In the MAXSUMn,k problem, Alice is
given A = (a1, . . . , an) ∈ [k]n, Bob is given B = (b1, . . . , bn) ∈ [k]n, and their goal is to
output arg maxj∈[n](aj + bj) (if there is a tie, they can output any of the tied indices).

MAXSUMn,k is easily seen to be the composition of two problems: the outer problem is
ARGMAX2k,n (see Definition 14) and the inner function is SUMk (which adds two integers
in [k], one with Alice and the other with Bob). It is also easy to see that MODn reduces
to MAXSUMn,2n: Alice and Bob can locally construct (a1, . . . , an) and (b1, . . . , bn) to be
the out-degree vectors of all the vertices restricted to edges in their inputs. Thus, a cost-c
protocol for MAXSUMn,2n also gives a protocol for MODn.

We note here that our upper bounds (Theorem 5) actually give upper bounds for the more
general MAXSUMn,k problem; the deterministic, randomized, and quantum communication
upper bounds here are O(n log k), O(n log log k) and O(

√
n log k log n), respectively. Next,

we proceed to give a proof of Theorem 5.

Proof of Theorem 5. For the upper bounds, we exhibit protocols of the required cost for
MAXSUMn,n, which is only a (potentially) harder problem.

For the deterministic upper bound, note that Alice can just send her input to Bob with
cost n log n, and Bob can output the answer.
The randomized upper bound follows by using Theorem 20 with the list s = (a1 +
b1, . . . , an + bn), and observing that testing whether ai + bi ≥ aj + bj can be done with
communication O(log log n) and success probability at least 2/3 (Theorem 21).
For the quantum upper bound, recall that MAXSUMn,n is the composition of ARGMAX2n,n

(with an input list in [2n]n) and SUM (sum of 2 integers in [n], one with Alice and the
other with Bob). Here, ARGMAX2n,n has query complexity O(

√
n), where query access

is to the values of the elements of the list (see Theorem 15) and SUM : [n]× [n]→ [2n].
Setting Dg = [n], Df = [2n], g = SUMn : Dg ×Dg → Df , , f = ARGMAX2n,n ⊆ Dn

f × [n]
in Theorem 18, this gives a quantum communication upper bound of O(

√
n log n).
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Randomized and quantum lower bounds. The randomized and quantum lower bounds
follow the same proof as that of Theorem 4 (see Section 4.4) because the three kings in GS,σ

are precisely the maximum out-degree vertices there as well (see Lemma 31). This argument
also shows a deterministic lower bound of Ω(n).

Deterministic lower bound. We now turn our attention to the deterministic lower bound of
Ω(n log n), which does not use the same reduction as in the proof of Theorem 4. We show this
via a fooling set argument (Lemma 19). Below, we assume that the first half of Alice’s input
corresponds to the out-degree sequence of a tournament on vertex set L = {1, 2, . . . , n/2},
the second half of her input corresponds to the out-degree sequence of a tournament on
vertex set R = {1′, 2′, . . . , (n/2)′}, and Bob’s input is the out-degree sequence of the complete
bipartite tournament between L and R. We focus on inputs that are induced by tournaments
of the following form, that are defined for a permutation σ ∈ Sn/2−1 that acts in an identical
fashion on {2, 3, . . . , n/2} and {2′, 3′, . . . (n/2)′}. We call Alice and Bob’s input constructed
below Aσ and Bσ, respectively.
1. Vertex 1 is the source in L, and vertex 1′ is the source in R. These edges are with Alice.6

2. Vertex 1 has edges towards 1′ and σ−1(2′). All other vertices in {3′, 4′, . . . (n/2)′} have
edges pointing towards vertex 1. These edges are with Bob.

3. For all i, j ∈ {2, 3, . . . , n/2}, there is an edge from i to j iff σ(i) < σ(j). Similarly there
is an edge from i′ to j′ iff σ(i′) < σ(j′). These edges are with Alice.

4. For i ∈ {2, 3, . . . , n/2}, there is an edge from i to 1′. These edges are with Bob.
5. For i, j ∈ {2, 3, . . . , n/2}, there is an edge from i to j′ iff σ(i) ≤ σ(j). These edges are

with Bob.
We now verify that vertex 1 is the unique vertex with maximum out-degree in the whole
tournament (and hence the first coordinate must be output in the corresponding inputs to
Alice and Bob for MODn).

Items 1 and 2 above ensure that vertex 1 has out-degree n/2− 1 + 2 = n/2 + 1.
Item 1 and Item 4 ensure that the out-degree of vertex 1′ is n/2− 1.
Item 1 and Item 5 ensure that vertex σ−1(2′) has out-degree n/2− 2.
For i ∈ {2, 3, . . . , n/2}, the out-degree of vertex σ−1(i) is n/2 − i from Alice’s input
(Item 3) plus i from Bob’s input (Item 5), which gives a total of n/2.
For i ∈ {3, 4, . . . , n/2}, the out-degree of vertex σ−1(i′) is n/2 − i from Alice’s input
(Item 3) plus i− 1 from Bob’s input (Item 5), which gives a total of n/2− 1.

These bullets verify that for input (Aσ, Bσ), vertex 1 is the unique maximum out-degree
vertex. Our fooling set will be of the form F = {(Aσ, Bσ) : σ ∈ S}, where S ⊆ Sn/2−1 is
chosen appropriately. The property that S will satisfy is that for all σ ̸= σ′ ∈ S, at least one
of the inputs (Aσ, Bσ′) or (Aσ′ , Bσ) will not have vertex 1 as a maximum out-degree vertex.
We will also construct S such that |S| = 2Ω(n log n). Lemma 19 will then imply the required
deterministic communication lower bound of Ω(n log n).

It remains to construct S ⊆ Sn/2−1, which we do in the remaining part of this proof. We
construct S such that it satisfies the following property.

∀σ ̸= σ′ ∈ S, ∃i ∈ {2, 3, . . . , n/2} : |σ(i)− σ′(i)| ≥ 2.

6 When we say “edges are with Alice/Bob”, we actually mean Alice/Bob’s out-degree of vertices is
determined by the directions of the underlying edges. In this case we mean Alice’s first coordinate is
n/2 + 1 because vertex 1 is a source in L.
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In the two bullets below, we first show why such an S satisfies the required fooling set
property, and then show a construction of S of size 2Ω(n log n).

Let σ ̸= σ′ be an arbitrary pair of elements of S. Without loss of generality, assume that
i ∈ {2, 3, . . . , n/2} is such that σ′(i)− σ(i) ≥ 2 (otherwise switch the roles of σ and σ′

and run the same argument). Consider the input (Aσ, Bσ′). Note that the out-degree of
vertex 1 remains n/2 + 1 because all edges incident on it are fixed for all inputs in our
fooling set. Alice’s contribution to the out-degree of vertex i is n/2 − σ(i), and Bob’s
contribution is σ′(i), which gives a total of n/2 + σ′(i)− σ(i) ≥ n/2 + 2. Thus vertex 1
cannot be a maximum out-degree vertex in the input (Aσ, Bσ′).
We construct such an S greedily one element at a time. At any step in the construction
we maintain the invariant that the current set T satisfies

∀σ ̸= σ′ ∈ T, ∃i ∈ {2, 3, . . . , n/2} : |σ(i)− σ′(i)| ≥ 2.

Additionally we maintain a “candidate” set of permutations in Sn/2−1 that are not in T ,
and have the property that adding any of them to T will satisfy T ’s invariant. Initially
we start with T = ∅ and the candidate set as Sn/2−1, which clearly satisfies the required
invariant. At any stage, after adding σ to T , we remove the set Sσ from the candidate
set, where Sσ is defined as

Sσ :=
{

τ ∈ Sn/2−1 : |τ(i)− σ(i)| < 2
}
∀i ∈ {2, 3, . . . , n/2} .

It is easy to verify by induction that T and the candidate set thus constructed always
satisfy the required invariant. The initial size of the candidate set is (n/2−1)! = 2Ω(n log n),
and at each step we are removing at most 3n elements from the candidate set. This means
that the number of iterations of this construction is at least 2Ω(n log n−n) = 2Ω(n log n),
which is what we needed. ◀

We remark that while it may seem like the argument used in the previous proof may be
adaptable to prove a deterministic communication lower bound of Ω(n log n) for KINGn, this
is not possible in view of our O(n) deterministic communication upper bound for KINGn

from Theorem 4. This shows an inherent difference between MODn and KINGn in the setting
of deterministic communication complexity.
▶ Remark 33. We note that our Ω(n log n) lower bound for MODn also solves Problem 2
in [22].
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