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Abstract
To ensure differential privacy, one can reveal an integer fuzzily in two ways: (a) add some Laplace
noise to the integer, or (b) encode the integer as a binary string and add iid BSC noise. The
former is simple and natural while the latter is flexible and affordable, especially when one wants to
reveal a sparse vector of integers. In this paper, we propose an implementation of (b) that achieves
the capacity of the BSC with positive error exponents. Our implementation adds error-correcting
functionality to Gray codes by mimicking how software updates back up the files that are getting
updated (“coded Gray code”). In contrast, the old implementation of (b) interpolates between
codewords of a black-box error-correcting code (“Grayed code”).
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1 Introduction

Differential privacy is the art of publishing collective facts without leaking any detail of any
user. A mathematically rigorous way to do so is adding noise to an aggregation function
that is Lipschitz continuous (sometimes of bounded variation) in every argument. More
concretely, suppose that we are interested in a feature φ : {0, 1}n → [m] that satisfies

|φ(u) − φ(u′)| ⩽ 1, for u := (u1, . . . , ui, . . . , un) and u′ := (u1, . . . , 1−ui, . . . , un),

i.e., changing the data of the ith user does not change the feature too much. Then publishing
φ(u) + L, where L follows the Laplace distribution with decay rate ε, is ε-differentially
private [3]. That is,

Prob{φ(u) + L < t} ⩽ exp(ε) Prob{φ(u′) + L < t} (1)

for any number t ∈ R, meaning that a data broker will have a hard time telling if ui is 0 or 1.
Publishing φ(u) + L is called the Laplace mechanism [3]. It is optimal1 privacy-wise

as (1) assumes equality half of the time. But it turns out to be randomness-costly and
space-inefficient when we have many features φ1, . . . , φℓ to publish, wherein only k ≪ ℓ of
them are non-zero2 for a given x. In this case, the Laplace mechanism will add noise to

1 Note that we can always choose to publish φ(u) + 100L, which is more private than φ(u) + L by being
less informative and less useful. We say that φ(u) + L is optimal because it strikes a balance between
(1) and utility.

2 For example, φi(u) could be the number of times the ith English word was mentioned in a forum archive
u. Most word counts are going to be zero.
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n bits

S TRETCH OUT RANDOMLY
E(φi1(u)) = ⇝1 11 10 01 10 01 11 11 11 1
E(φi2(u)) = ⇝1 11 11 10 01 10 00 00 00 0
E(φi3(u)) = ⇝1 11 10 01 10 01 10 01 10 0
E(φi4(u)) = ⇝1 10 01 10 00 00 01 10 00 0
E(φi5(u)) = ⇝1 10 01 11 10 01 11 11 11 1
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tape is Θ(kn) bits

Figure 1 A space-efficient differential privacy mechanism. Step 1: encode integers as binary
strings. Step 2: spread out the bits. Step 3: superimpose them on a tape. Features φi1 (u), . . . , φi5 (u)
are the ones that are nonzero. Labels c and e mean collision and empty, respectively; collisions will
be replaced by random bits; empty places will be filled with 0.

all φi(u) and then publish all ℓ of them. For one, this means that we are forced to sample
Laplace distribution ℓ times. Even if we can afford that, the output will be Ω(ℓ log m) in size
(m is an upper bound on the φ’s) while the raw data is only O(k log(ℓ) log(m)).

A brilliant idea of Lolck and Pagh [6], which is a generalization of an earlier work by
Aumüller, Lebeda, and Pagh [1], reduces the space requirement as well as the sampling cost.
The idea is that, instead of working on the ordered field R, we encode each φi(u) as a binary
string E(φi(u)) ∈ {0, 1}1×n and put the bits of E(φi(u)) at n random places on a tape of
length Θ(kn). This is illustrated in Figure 1. Note that E(φi1(u)) and E(φi2(u)) might end
up choosing the same random places. Such a collision is resolved, fairly, by putting a random
bit there. These random bits together with additional random bit-flips will play the role of
the Laplace noise – protecting privacy by making precise decoding impossible.

One problem remains: To what extent can we translate the binary tape back to real
numbers? This motivates the definition of robust Gray codes.

1.1 Robust Gray Codes

A Gray code encodes integers as binary strings such that any two consecutive strings differ
at exactly one place. A popular construction of Gray codes is via the ruler sequence [7,
A001511]

ρj := the greatest number r such that 2r divides 2j. (2)

The first few terms read 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5. Then, the (j + 1)th string of
the k-bit reflected Gray code is obtained by flipping the min(ρj , k)th bit of the jth string.
For simplicity, we will write min(ρj , k) as ρj , and so we can write gj+1 = gj + eρj instead of
gj + emin(ρj ,k), where er is the rth standard basis vector of length k. As an example, when
k = 4,
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ρ1 = 1
ρ2 = 2
ρ3 = 1
ρ4 = 3
ρ5 = 1
ρ6 = 2
ρ7 = 1
ρ8 = 4

g1 = 0 0 0 0
g2 = 1 0 0 0
g3 = 1 1 0 0
g4 = 0 1 0 0
g5 = 0 1 1 0
g6 = 1 1 1 0
g7 = 1 0 1 0
g8 = 0 0 1 0
g9 = 0 0 1 1

are the first nine strings. (Digits that are flipped are highlighted.)
A robust Gray code [1, 6] encodes integers as binary strings such that they can be fuzzily

recovered even if some bits are erased or corrupted. Given the motivational Figure 1, let us
use the binary symmetric channels (BSC) with crossover probability p ∈ (0, 1/2) to model
the errors. Then a robust Gray code is a pair of encoder

E : [m] → {0, 1}1×n

and decoder

D : {0, 1}1×n → [m]

such that (a) E(x) and E(x + 1) differ by one bit and (b)

Prob
{∣∣∣D(

BSCn
p (E(x))

)
− x

∣∣∣ > t
}

< 2−Ω(n) + 2−Ω(t) (3)

for all x ∈ [m − 1] and all t > 1. Here, BSCn
p flips each of the n bits with probability p. Note

that (3) is almost as good as the Laplace mechanism in that 2−Ω(t) decays exponentially in
t. The only catch is that when t ≫ n, the other error term 2−Ω(n) dominates 2−Ω(t). This
2−Ω(n) is unavoidable because there is always3 a 2−O(n) chance that BSC will flip all ones to
zero.

Apart from robustness, we also care about space efficiency. We know that, by Shannon’s
theory, the code rate log2(m)/n cannot exceed the capacity of BSCp, which is 1 + p log2(p) −
(1 − p) log2(1 − p). But how close can they be? Before our work, Lolck and Pagh’s
construction [6] achieves 1/4 of the capacity (1/3 in [6, Appendix A]) and Fathollahi and
Wootters’s construction [4] achieves 1/2 of the capacity. This means that the latter uses half
of the space to achieve the same privacy level.

In this work, and in a concurrent work by Con, Fathollahi, Gabrys, and Yaakobi [2], we
will show that the capacity can be achieved. This means that, subject to the framework of
Figure 1, the tradeoff between privacy and space is now asymptotically tight. We also show
that our code has linear encoding and decoding complexity, meaning that even the speed
cannot be significantly improved.

3 Note that we implicitly assume that p is bounded away from zero. This is a common practice in coding
theory where channel parameters, p in this case, are fixed while the other parameters vary. Also note
that BSCp here plays the role of the Laplace noise, so it would make less sense to have p too close to
zero unless, of course, one is aiming for some special privacy regime.

APPROX/RANDOM 2024
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(a) An error-correcting code is some points
that can be decoded up to some radius.

{0, 1}n

(b) A gray code is a Hamiltonian cycle that
only goes in the cardinal directions.

Figure 2 Figurative illustrations of error-correcting codes and Gray codes.

1.2 Previous approaches
Earlier works [6, 4] baked robust Gray codes with the following recipe.

Take a good [n, k]-error correcting code C = {c1, c2, . . . , c2k } ⊂ {0, 1}1×n.
Let E map “milestone” integers 1 =: µ1 < µ2 < · · · < µ2k := m to the codewords of C,
i.e., E(µj) := cj .
“Interpolate” between the milestones. That is, if x ∈ [µj , µj+1], then the prefix of E(x)
will come from E(µj) and the suffix from E(µj+1).

The technicality is with the third bullet point. A decoder of C can translate E(x) back to µj

if x is close enough to µj . But there is going to be a middle ground between µj and µj+1
such that the decoder will be confused.

To eliminate the confusion, Lolck and Pagh [6] proposed the following data structure

E(µj) := cj∥cj∥cj∥cj ∈ {0, 1}1×4n,

where ∥ is the string concatenation operator. They then interpolate between consecutive
milestones µj and µj+1 as

E(µj.1) := cj ∥ cj ∥ cj ∥ cj ,

E(µj.2) := cj+1∥ cj ∥ cj ∥ cj ,

E(µj.3) := cj+1∥cj+1∥ cj ∥ cj ,

E(µj.4) := cj+1∥cj+1∥cj+1∥ cj ,

E(µj.5) := cj+1∥cj+1∥cj+1∥cj+1

for some minor milestones µj =: µj.1 < µj.2 < µj.3 < µj.4 < µj.5 := µj+1. Note that only one
copy is undergoing interpolation at any given time (which is highlighted). So the advantage
of repeating cj four times is that there are always two other copies that will decode to the
same codeword. To elaborate, between µj.1 and µj.3, the two cj to the right will decode
correctly; between µj.3 and µj.5, the two cj+1 to the left will decode correctly.

Later, Fathollahi and Wootters [4] streamlined the data structure from 4n bits to (2+3ε)n
bits by using buffers – consecutive zeros and ones. They map milestones to

E(µj) := 0εn∥cj∥0εn∥cj∥0εn ∈ {0, 1}1×(2+3ε)n
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(a) “Grayed code”: Old approach takes an
error correcting code and then interpolates
between codewords.
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(b) “Coded Gray code”: New approach mul-
tiplies a Gray code with the generator matrix
of an error-correcting code.

Figure 3 Old approach (not capacity-achieving) versus new approach (capacity-achieving).

if j is even, and to

E(µj) := 1εn∥cj∥1εn∥cj∥1εn ∈ {0, 1}1×(2+3ε)n

if j is odd. They then interpolate between the milestones as

E(µj.1) := 0εn∥ cj ∥0εn∥ cj ∥0εn,

E(µj.2) := 1εn∥ cj ∥0εn∥ cj ∥0εn,

E(µj.3) := 1εn∥cj+1∥0εn∥ cj ∥0εn,

E(µj.4) := 1εn∥cj+1∥1εn∥ cj ∥0εn,

E(µj.5) := 1εn∥cj+1∥1εn∥cj+1∥0εn,

E(µj.6) := 1εn∥cj+1∥1εn∥cj+1∥1εn

for some minor milestones µj =: µj.1 < µj.2 < µj.3 < µj.4 < µj.5 < µj.6 := µj+1. In
this construction, the decoder is left with two, not four, copies of cj . It knows that the
one sandwiched between 0εn and 1εn is the one undergoing interpolation, and hence the
other one will decode correctly. To be more precise, between µj.1 and µj.4, the left one is
undergoing interpolation and the right cj is trustworthy; between µj.3 and µj.6, the right
one is undergoing interpolation and the left cj+1 is trustworthy.

1.3 New approach
While this paper was in preparation, it came to our attention that Con, Fathollahi,
Gabrys, Wootters, and Yaakobi have achieved similar results, but with different tech-
niques [2]. In particular, their approach uses code concatenation.

In this and the concurrent work by Con, Fathollahi, Gabrys, Wootters, and Yaakobi, we
aim to rightsize the length to n + Θ(εn) bits. While their work uses code concatenation, we
begin with a generator matrix A ∈ {0, 1}k×n of some error-correcting code. We then reorder
the codewords c1, . . . , c2k using Gray code:

cj+1 = gj+1A = (gj + eρj )A = cj + Aρj ∈ {0, 1}1×n.

APPROX/RANDOM 2024
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Here, gj is the jth string of the Gray code, eρj is the ρjth cardinal vector, and Aρj is the
ρjth row of A, all as row vectors. Our data structure will look like

cj∥0εn∥ρj∥βj∥0εn∥ρj∥βj∥0εn

or

cj∥1εn∥ρj∥βj∥1εn∥ρj∥βj∥1εn

depending on the parity of j, Here, βj is a subvector of cj obtained by collecting bits where Aρj

has 1. More precisely, if Aρj has 1 at indices i1, i2, . . . , iw, then βj := cj
i1

cj
i2

· · · cj
iw

∈ {0, 1}1×w,
where w is the Hamming weight of Aρj .

The purpose of keeping ρj in E is to take note of which row of A we are going to add to
cj to obtain cj+1. The purpose of keeping βj in E is to back up the bits of cj that are going
to be modified. We then interpolate between minor milestones

cj ∥0εn∥ ρj ∥ βj ∥0εn∥ ρj ∥ βj ∥0εn,

cj+1∥0εn∥ ρj ∥ βj ∥0εn∥ ρj ∥ βj ∥0εn,

cj+1∥1εn∥ ρj ∥ βj ∥0εn∥ ρj ∥ βj ∥0εn,

cj+1∥1εn∥ρj+1∥ βj ∥0εn∥ ρj ∥ βj ∥0εn,

cj+1∥1εn∥ρj+1∥βj+1∥0εn∥ ρj ∥ βj ∥0εn,

cj+1∥1εn∥ρj+1∥βj+1∥1εn∥ ρj ∥ βj ∥0εn,

cj+1∥1εn∥ρj+1∥βj+1∥1εn∥ρj+1∥ βj ∥0εn,

cj+1∥1εn∥ρj+1∥βj+1∥1εn∥ρj+1∥βj+1∥0εn,

cj+1∥1εn∥ρj+1∥βj+1∥1εn∥ρj+1∥βj+1∥1εn,

Note that we use Fathollahi and Wootters’s data structure to protect ρj and βj , and so the
backup data is almost always available.4

An analogy of this construction is to think of cj as the state of our computer at version j.
Now a software update comes in and attempts to add Aρj to cj . To avoid messing things up,
the updater backs up the files that are going to be updated, which are at i1, . . . , iw; and βj

is the backup data.
Our construction, at any code rate below capacity, achieves positive error exponents and

linear encoding and decoding complexity.

▶ Theorem 1 (Main theorem). Fix a BSC with p ∈ (0, 1/2) and a gap to capacity ε > 0.
For sufficiently large n, there exists a pair of encoder E : [m] → {0, 1}1×n and decoder
D : {0, 1}1×n → [m] with code size m > 2(Capacity(BSCp)−ε)n such that (a) E(x) and E(x + 1)
differ by one bit and (b)

Prob
{∣∣∣D(

BSCn
p (E(x))

)
− x

∣∣∣ > t
}

< 2−Ω(n) + 2−Ω(t)

for all x ∈ [m − 1] and all t > 1. Moreover, the time complexity of E and D scales5 linearly
in n.

Organization

The rest of the paper is dedicated to proving Theorem 1.

4 There is no reason not to protect ρj and βj using error-correcting codes. We omit that here but will
discuss in the formal proof.

5 exponentially in 1/ poly(ε)
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2 Proof of Theorem 1

Fix a crossover probability p and a gap to capacity ε > 0. Let n and k be very large.

2.1 The building blocks B and C
We begin with a linear code B with block length εn and dimension εk. Using well-known
constructions [5, Theorem 8], we can make the code rate k/n ε-close to the capacity if n is
large enough. Moreover, the encoding and decoding complexity can be made linear in n. Let
B be the generator matrix of B.

We stack B to construct a larger generator matrix

A :=


B B̄

B B̄

B B̄
. . . . . .

B B̄

 ∈ {0, 1}k×(1+ε)n (4)

and denote the corresponding code by C ⊂ {0, 1}1×(1+ε)n. Here, B̄ is the bitwise complement
of B. We put B̄ next to B so that all rows of [B B̄] has the same Hamming weight, εn.
This means that the backup data βj will be exactly εn bits long. We repeat B and B̄ 1/ε

times so that A has block length (1 + ε)n and dimension k. This makes the code rate of C
2ε-close to the capacity.

Decoding C is straightforward. Given a received word y ∈ {0, 1}1×(1+ε)n, apply B’s
decoder to y1, . . . , yεn to obtain x1, . . . , xεn. Subtract the influence of x1, . . . , xεn from
yεn+1, . . . , y2εn and apply B’s decoder to obtain xεn+1, . . . , x2εn. Repeat this process until
we obtain xn.

We also use B to protect the row index ρj ∈ [k] and the backup data βj ∈ {0, 1}εn.
Denote by B(ρj , βj) the result of encoding these log2(k) + εn bits of information using

2n

k
⩾

⌈ log2(k) + εn

εk

⌉
blocks of B. This means that B(ρj , βj) has length 2εn2/k.

2.2 Encoding E
Recall that ρj is the ruler sequence defined in (2) capped at k. Recall that gj is the jth string
of the Gray code and is obtained by flipping the min(ρj−1, k)th bit of gj−1. We assume an
ordering on the codewords C = {c1, . . . , c2k } by Gray code, i.e., cj := gjA. Let βj be the
subvector of cj obtained by deleting the bits where Aρj has 0.

We now place the milestones at

µj := jεn(4 + 2n/k)

for j ∈ [2k]. Consequently, E will encode integers up to m := (2k − 1)εn(4 + 2n/k) + 1 =
(1 + o(1))2k. We then define data structure:

E(µj) := cj∥0εn∥B(ρj , βj)∥0εn∥B(ρj , βj)∥0εn

and

E(µj) := cj∥1εn∥B(ρj , βj)∥1εn∥B(ρj , βj)∥1εn
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depending on the parity of j. Here, B(ρj , βj) is the bitwise complement of B(ρj , βj). Note
that each E(µj) is (1 + 4ε + 4εn/k)n bits long. We infer that the code rate of E is O(ε)-close
to the capacity.

Next, we show that the Hamming distance between E(µj) and E(µj+1) is εn(4 + 2n/k).
Trivially, the consecutive zeros and ones contributes 3εn bits of Hamming distance. Next,
note that

cj+1 − cj = gj+1A − gjA = (gj+1 − gj)A = eρj A = Aρj .

This is the ρjth row of A. By the construction (4), any row of A contributes exactly εn bits
of Hamming distance. Next, B(ρj , βj) and B(ρj+1, βj+1) contributes an unknown amount
of distance. But it is complement to the distance between B(ρj , βj) and B(ρj+1, βj+1).
Therefore, the B part contributes exactly 2εn2/k. In total, the Hamming distance is exactly
εn(4 + 2n/k).

Now that the distance between consecutive milestones matches the Hamming distance,
we can interpolate between them. In particular, for even j,

E(µj) := cj ∥0εn∥ B(ρj , βj) ∥0εn∥ B(ρj , βj) ∥0εn,

E(µj + εn) := cj+1∥0εn∥ B(ρj , βj) ∥0εn∥ B(ρj , βj) ∥0εn,

E(µj + 2εn) := cj+1∥1εn∥ B(ρj , βj) ∥0εn∥ B(ρj , βj) ∥0εn,

E(µj + 2εn + d) := cj+1∥1εn∥B(ρj+1, βj+1)∥0εn∥ B(ρj , βj) ∥0εn,

E(µj + 3εn + d) := cj+1∥1εn∥B(ρj+1, βj+1)∥1εn∥ B(ρj , βj) ∥0εn,

E(µj + 3εn + 2εn2/k) := cj+1∥1εn∥B(ρj+1, βj+1)∥1εn∥B(ρj+1, βj+1)∥0εn,

E(µj + 4εn + 2εn2/k) := cj+1∥1εn∥B(ρj+1, βj+1)∥1εn∥B(ρj+1, βj+1)∥1εn,

where d is the Hamming distance between B(ρj , βj) and B(ρj+1, βj+1).

2.3 Decoding D
Suppose that we are given

c∥ϕ∥B′∥ϕ′∥B′′∥ϕ′′′ (5)

as the noisy version of E(x) for some x ∈ [m], where
c ∈ {0, 1}1×(1+ε)n is the noisy version of cj , cj+1, or anything in between,
ϕ, ϕ′, ϕ′′ ∈ {0, 1}1×εn are the noisy version of the buffers, and
B′, B′′ ∈ {0, 1}1×2εn2/k are the noisy version of the B part.

We first apply Fathollahi and Wootters’s decoder [4] to the second half of (5)

ϕ∥B′∥ϕ′∥B′′∥ϕ′′′.

Their decoder counts how many ones and zeros are in ϕ, ϕ′, and ϕ′′. This tells us which
minor milestone we are at. We use this information to determine which of B′ or B′′ is
undergoing interpolation, and which is trustworthy. And then, we use the trustworthy one
to recover the row index ρj and the backup data βj (or ρj+1 and βj+1 depending on if x is
past µj + 2.5εn + d or not). From now on, we just call them ρ and β.

We define the rollback function Roll : {0, 1}(1+ε)n × [k] × {0, 1}εn → {0, 1}(1+ε)n that
overwrites messed-up bits using backup data. More precisely, Roll(c, ρ, β) will be the vector
c after replacing ci1 with β1, ci2 with β2, and so on, where i1, i2, . . . are the indices where
Aρ has 1. Our claim is that, it does not matter if it is cj , 0εn, or B that is undergoing
interpolation, Roll(c, ρ, β) will just look like the noisy version of cj or cj+1, which can be
decoded by the decoder of C. This can be seen more clearly by considering three cases.
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Case 1: x is between µj and µj + εn. This is the stage where we are adding Aρ to
cj . In this case, the B part backs up the subvector of cj that is undergoing interpolation;
Roll(c, ρ, β) would just be a noisy version of cj that can be decoded by C.

Case 2: x is between µj + εn and µj + 2.5εn + d. This is the case where B′ is not
trustworthy and so Fathollahi and Wootters’s decoder will decode B′′ to (ρj , βj). In this
case, Roll(c, ρj , βj) will be a noisy version of cj that can be decoded by C.

Case 3: x is between µj + 2.5εn + d and µj + 4εn + 2εn2/k. This is the case where B′′ is
not trustworthy and so Fathollahi and Wootters’s decoder will decode B′ to ρj+1, βj+1. In
this case, Roll(c, ρj+1, βj+1) will be a noisy version of cj+1 that can be decoded by C.

Examining these three cases, we can see that Roll(c, ρ, β) will always yield cj or cj+1.
With that, we can compute gj and j. Now that we know x ∈ [µj , µj+1], it suffices to
compare (5) with E(µj), . . . , E(µj+1) and see which one minimizes the Hamming distance.
The minimizer will be our best bet of x.

2.4 Complexity and tail estimation
The complexity of E and D is linear in n. This is because Gray’s encoding, Gray’s decoding,
B’s encoding, B’s decoding, determining whether ϕ, ϕ′, and ϕ′′ are zeros or ones, determining
whether B′ or B′′ is trustworthy, and Roll are all linear in n.

The tail estimation (3) boils down to the following components.
With probability 2−Ω(n), we obtain the wrong j, i.e., x /∈ [µj , µj+1].
The guesswork of x conditioned on correct j has tail probability 2−Ω(t).

The first bullet point is a consequence of the error probability of B being 2−Ω(εn), which is
2−Ω(n) as we fixed ε. The second bullet point relies on what minimizes the Hamming distance
between (5) and E(µj), . . . , E(µj+1). Such analysis has been done before [6, Lemma 3.7] [4,
Lemma 13], and we do not repeat it here. This finishes the proof.
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