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—— Abstract

Letting ¢ < n, a family of permutations of [n] = {1,2,...,n} is called ¢-rankwise independent if for

any t distinct entries in [n], when a permutation 7 is sampled uniformly at random from the family,
the order of the t entries in 7 is uniform among the t! possibilities.

Itoh et al. show a lower bound of (n/ 2)L%J for the number of members in such a family, and
provide a construction of a t-rankwise independent permutation family of size pO(#/Im®),

We provide an explicit, deterministic construction of a ¢-rankwise independent family of size
nP® for arbitrary parameters ¢ < n. Our main ingredient is a way to make the elements of a

t-independent family “more injective”, which might be of independent interest.
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1 Introduction

An important topic in the area of pseudorandomness is the construction of random variables
such that any ¢ of them are independent (for some parameter ¢ € N), given a small source of
purely random bits. A fundamental notion introduced by Wegman and Carter in 1979 [2] is
that of a t-independent family?, defined as follows (see also [9, Definition 3.31]).

» Definition 1 (¢-independent family). Let m,n,t be positive integers with t < m. A family
H of functions mapping [m] — [n] is called t-independent if, when h € H is chosen uniformly
at random, for any t distinct z1,...,x; € [m] and t elements y1,...,y: € [n],

. 1

P(h(xt) =Yi fOTZ = 177t) = Ea

or equivalently, that the t random variables h(x1),...,h(x:) are independently and uniformly
distributed in [n).

These t-independent families are well-studied, and have found various applications. One
example is to derandomize a randomized algorithm that uses certain independent random
variables, but one can relax the assumption of being mutually independent to any t of them
being independent. Then often one can derandomize the algorithm by iterating over the
elements of H to find a function for which the algorithm succeeds. See [9, section 3.5] for such

L Throughout this paper, we use the term “family” to refer to a multiset, meaning that the members need
not be distinct.
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an application for the MaxCut problem. It is then desirable to have explicit constructions of
such a family H with small size. In fact, explicit constructions of such families of near-optimal
size are known [4] for any parameters 1 < ¢ < m and any n.

One can also define analogous families when restricting to permutations of [n] instead of
general functions. This natural restriction yields the notion of ¢-independent permutations.

» Definition 2 (t-independent permutation). A family I is called t-independent if it contains

permutations of [n] such that, for any t distinct x1,...,2; € [n] and any t distinct elements
Yty -5 Yt S [TL],
=1y
P (n(z;) = y; fori=1,...,t) = :
(@) = we for =115

when 7 € 11 is chosen uniformly at random.

Explicit construction of such families with a small size, namely such that |TI| < n9®)]

remains an open problem. This bound is near-optimal, since there is an obvious lower bound
of [II| > Hf;é (n — ), which follows from the definition.

In fact, there are few non-trivial constructions of such families for any ¢ > 4. Perhaps the
closest result in this direction is a probabilistic proof for the existence of small (i.e., with
ITII] < n®®) t-independent permutations for any 1 < ¢t < n due to Kuperberg, Lovett and
Peled [7]. However, their proof does not seem to yield an efficient deterministic or randomized
construction of the family, as it has a tiny success probability.

Many relaxed notions related to t-independence have been proposed for permutation
families, including “t-restricted min-wise independent” [1] and “t-rankwise independent”
families [5]. The latter is the focus of this paper.

» Definition 3 (¢-rankwise independent permutation). A family IT of permutations over [n] is
called t-rankwise independent if for any t distinct points xy,...,xs € [n],

P (r(z1) < 7(ws) < ... < w(z)) = %

when w € 11 is chosen uniformly at random.

Another interesting type of permutation families has recently been proposed in the
cryptography community. This is the notion of a perfect sequence covering array (PSCA).

» Definition 4 (Yuster [10]). Let t < n. The family II of permutations of [n] is called a
PSCA(n,t) if there exists a fized A € N such that for any t distinct indices i1, ...,i; € [n],
there are exactly A permutations m € Il such that

(i1,19,...,1;) is a subsequence of (mw(1),m(2),...,m(n)).
(The notation and wording have been adapted to match ours.)

Let g*(n,t) denote the smallest size of a PSCA family II. Naturally, researchers in
this field are interested in the value of g*(n,t), and in the construction of families that
asymptotically achieve this minimum size.

It was observed in [6] that t-rankwise independent families and PSCAs are isomorphic.
Specifically, IT is a PSCA(n,t) family if and only if II"! = {77': 7 € I} is a t-rankwise
independent family of permutations over [n]. Consequently, our construction of t-rankwise
independent permutations can immediately be translated into a construction of PSCAs.
Henceforth we will only use the terminology of ¢-rankwise independent families, and will no
longer refer to PSCAs.
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Itoh et al. [5] show a lower bound of (n/2)l%) < [II| for the size of a t-rankwise inde-
pendent family II. They also construct a family IT with [TT| < nO®/ In(t)) " which does not
asymptotically match the lower bound.

We present a deterministic algorithm for constructing a ¢t-rankwise independent family IT
of permutations over [n], with |TI| < n®®). This asymptotically matches the known lower
bound. Formally, the following is our main result.

» Theorem 5 (Main). There exists a constant C > 0 such that the following is true. Let
n,t be positive integers with t < n. Then there exists a t-rankwise independent family T1
consisting of permutations of [n] such that |II| < (Cn)3%. Furthermore, the whole family can
be constructed by a deterministic algorithm in n®® time. (The implied constant in the O(.)
notation does not depend on either n ort).

Our construction starts in Section 2.2 with a ¢t-independent family H, based on Reed-
Solomon codes. The next step, appearing in Section 2.3, modifies it to obtain another
t-independent family G whose members, roughly speaking, look “more injective”. This step
is the main technical contribution of the paper, and might be of independent interest. (Note
that, since G is a t-independent family, not all the maps in G can be injective). Finally, in
Section 2.4, we use this t-independent family G to construct permutations of [n], yielding the
t-rankwise independent family II.

2  The construction

2.1 Overview

Our construction involves three steps, which build upon each other.

1. Construct H, a t-independent family of [n] — Zy maps, where N = O(n?3).

2. Construct G, a t-independent family of [n] — Zy maps, such that each map’s image has
size at least n — 16¢. Intuitively, this condition says that each map has very few collisions,
or is almost injective. (Being injective is equivalent to the image having size exactly n).

3. Construct II, a t-rankwise independent family of permutations on [n].

The most substantial of these steps is the construction of G, whereas the construction of
‘H is the most trivial. We explain these steps in the following sections.

2.2 Construction of H

The construction of H is standard. The first step is to find a prime p in the interval [n3, 2n3].
This must exist, by Bertrand’s postulate, and can be found in O(n?) time using exhaustive
search and a deterministic primality test. We set N = p, and therefore

ndP < N < 2nd. (1)
Let H be the family of [n] — Fy maps defined by polynomials over Fy of degree less than ¢,
namely

H = Z a;x': a; € Fy

0<i<t—1

This family is well-known to be t-independent; see, e.g., [3, Exercise 5.8]. Note that the size
of the family is |H| = p' = N*.

67:3
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2.3 Construction of G

The next step is to use the family H to build a family G. Each map in ‘H will yield exactly
one map in G. The family G will retain H’s property of being ¢-independent. In addition, we
will be able to guarantee that every map in G has image size at least n — 16t. Thus each
map has few collisions (although this is an informal term that we have not yet defined).
The family G has a simple form, and it is constructed by the pseudocode shown in
Algorithm 1. This algorithm computes a single, specific map « : [n] — Zy, then it constructs

G={h+a:heH}.
> Claim 6. For any map «, the resulting family G will be ¢-independent.

Proof. Suppose that h is chosen uniformly at random from . For any ¢ distinct entries
z1,...,@¢ € [n], {h(xi)};cpy are independent, and hence {f;(h(x:))};c(y are independent for
any deterministic functions f;. In particular, since « is not random, letting f;(z) = z + a(z;),
we have that {h(z;) + a(xi)},c,) remain independent. Lastly, for any k € [n], h(k) +
a(k) is uniformly distributed since h(k) is uniform in Zy, and « is not random. Thus
{(h+ a)(z)};c, are independent and uniform in Zy, as desired. <

We will prove that there is a specific choice of a such that every h € H satisfies
[(h+a)([n])] = { h(z)+alz) : zen]}] = n-16t

which is the desired property of the family G. In fact, it is possible to show that a random
choice of o will satisfy this property with positive probability. However, this would not
quite achieve the goals of this paper, since ultimately we want an explicit, deterministic
construction of a t-rankwise independent family of permutations. Instead, we will obtain a
deterministic construction by derandomizing the randomized construction of a.

Algorithm 1 contains pseudocode for this procedure, which we now briefly explain. The
algorithm computes the values a(1),a(2),...,a(n) one-by-one, in that order. Thinking of
h + « as mapping the “balls” [n] to the “bins” Zy, then S{; is the set of bins that have
already received balls (for this particular function k). In order to be as injective as possible,
we want to avoid a collision (for every h) between the k' ball and these bins — that is, we
want (h+ a)(k) € St Vh € H. To do so, the algorithm uses a potential function (shown in
(2)) in which the variable & corresponds to the value that will be used for a(k). This function
penalizes any value x which would cause any further collision among any function h € H.
This potential function is essentially a pessimistic estimator, as explained in Section 2.3.1
below.

» Lemma 7. Algorithm 1 returns a t-independent family G satisfying the following.
lg([n])] > n—16t VYgeg
The subset of the codomain that experienced a “collision” is defined to be
Y={yeZy:lg7')|>2},

and the subset of the domain involved in these collisions is defined to be

X =gy =90

yey

» Corollary 8. The family G produced by Lemma 7 satisfies |X| < 32t.
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Algorithm 1 Main Algorithm.

Input: t-independent family H of [n] — Zy maps s.t. |H| = N*.
Output: t-independent family G of [n] — Zy maps s.t. |G| = Nt, |g([n])] > n—16t Vg € G.
1: A« In(16tN/n?)
2: G+ 1]
3: fork=1,...,ndo
4: > Compute the value (k)
5 for h € H do
6: Let SP = { h(i) + (i) : 1<i<k—1}C Zy, and note that St = ().
This is (h+ «)([k — 1]), the set of values that already appear in the image of h+ «.
7 Define

1 if h(k) +z € Sh

0 otherwise

B (a(1),a(2),...,ak —1),2) = {

To ease notation, we will use the shorthand
n(x) = B (a(l), a(2),...,ak — 1),95).

9: end for
10: Pick
a € argmin, Z exp <)\(5,’§(x) + Z Bl (a(1),. .., a(z)))) (2)
hert 1<i<k—1

11: Let a(k) «+ a
12: end for
13: return the family G={ h+a : heH }.

A formal proof is in Appendix A, and here we present only a sketch.

Proof (Sketch). The size of X' is maximized by having exactly 16¢ bins containing exactly 2
balls, and n — 32t bins containing exactly 1 ball. |

2.3.1 Proof of Lemma 7

For each function h € H and integer k € [n], there is a function B7: Z% — {0,1} that is
defined in Algorithm 1, and which we define equivalently here as

L 1 i3I <i<k—1st. h(k)+zr=n(i)+2; (mod N)
Bp(x1,...,xk) = )
0 otherwise.
We will use the notation Bf(zy) for 8l (x1,...,2)) when z1,..., 751 are clear from context.

The scalar A > 0 is as defined as in Algorithm 1. Additionally, define the scalar ¢y > 0
and the function ¢y : Z% — RT by

cx = Eexp(AY) >0
k
Yr(T1,.. ., 1) = Z exp <)\Zﬂf(xl, e ,x1)> . c’;_k, (3)
heH i=1

APPROX/RANDOM 2024
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where Y is a random variable having the Bernoulli distribution with parameter n/N, which
we write as Bern (n/N). We will often write ¢y (xy) instead of ¢ (z1,...,zx) for notational
convenience.

Intuitively, ¥x (21, ..., 2x) is a pessimistic estimator of the expected number of functions
h € H which would have |(h + «)([n])| > n — 16t given that «(i) = x; Vi € [k], and that the
rest of the entries a(k + 1),...,a(n) are chosen uniformly at random from Zy.

Let a: [n] = Zy be the mapping constructed by Algorithm 1.
> Claim 9. 9 > ¢¥1(a(1)) > ¥2(a(2)) > ... > ¥p(a(n)), where here we use the notation
;i (a(i)) to denote ¥; (a(1), a(2), ..., a(i)).
> Claim 10. 1 > ¢ = exp(—16At) - |H| - [Eexp(AY)]".

Together, Claims 9 and 10 imply that

k
1> du(a(n) = 3 exp (A(Z,@f(a(i))) 16)\t>.

heH

Since all summands are non-negative, it follows that, for every h € H, we have

exp <A(§:5f(a(i))) - 16>\t> < 1
i=1

Observe that Y, ., B (a(i)) = k — | S| Vk, h. Taking the log and rearranging, we obtain
that -

n—|Sk =Y Biali) < 16t  VheH.
i=1

Let g = h+a. Since |g([n])| = | S|, we have |g([n])| > n — 16t for all h € H. This completes
the proof of Lemma 7.

Proof of Claim 9. We will show that ¢, (ca(k)) < ¢p(a(k — 1)) V1 < k <n. So let k € [n] be
arbitrary.

Our first observation is that, in the algorithm’s iteration k, it chooses the value a = «/(k)
to minimize ¥y (a(1),...,a(k — 1),a). This holds because the functions

k—1
Z exp (/\ﬁ;?(.l?) + A Z Bf(a(z))) and Yr(a(l), a(2),...,alk—1),z)

heH

are positive multiples of each other.
Since «(k) minimizes 1y, we clearly have

wk(a(l), - 7Oz(k)) S ]EUNUnif(ZN)wk(a(l)a - ,Oé(k — 1), [])7

where Unif(S) denotes the uniform distribution on the set S. Hence in order to show that
Yr(a(k)) < p—1(a(k — 1)), it suffices to prove that

Ey~tnit@zy) Yr(a(l) ...,k =1),U) < p_1(a(k —1)). (4)

Since 1 and ;1 are both sums over h € H, it will suffice to prove this inequality for each

—16Xt

summand. More specifically, we will ignore the e constant and define

k—1
Ur(z) = exp <A25?(04(i)) + A@Q(z)) e
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where, as above, ¢y = Eexp(\Y), and Y is Bern(n/N). Towards our inductive proof, we
may rewrite this as

vha) = v (alk = 1) < exp (1), . alk — 1),2).

Plugging this into our goal (4), it suffices to prove that

Ev~unitzy) Yhor(alk—1))- % ~exp (ABg(a(l),...,a(k —1),0)) < vu—i1(alk—1)),
or equivalently (observing that ¥ (a(k — 1)) > 0),
EyUnif(zy) €XP ()\ﬁ,}j(a(l), oalk—1), U)) < ¢y = Eexp(AY). (5)

Note that there are exactly |SP| values of U that result in A(a(1),a(2),...,a(k —1),U)
taking the value 1, whereas the rest result in the value 0. Since U is uniformly distributed
on Zy and |SP'| < n for all k € [n], h € H, it follows that B! (a(1),...,a(k —1),U) has a
Bernoulli distribution Bern(p) where p < n/N. Since Y has the distribution Bern(n/N), the
desired inequality (5) follows. <

For the next proof, we will require the following statement of the Chernoff bound. A
proof is given in Appendix A.

» Theorem 11 (Poisson tail of Chernoff bound). Let Yi,...,Y, be independent random
variables supported on [0,1]. Let p =EY"" | Y;. Then, for any 6 > 1, if A = In(1 + §) then

P(Zm>(1+5)u> < Eexp (AZYZ-—)\(l—ké)u) < (14 6)~ o/,
i=1

i=1

Proof of Claim 10. Let Y1,...,Y, be ii.d. Bern(f) random variables. We may rewrite the
definition of 1 from (3) using these Y; random variables as

Yo = |H|-Eexp (AZH:Y ~16Xt).

i=1

To prove the claim, we must show that this is less than 1.

To do so, consider any fixed h € H. We will use the Chernoff bound as stated in
Theorem 11, with 1+ = 16tN/n?. (Note that § > 1, as required, since N > n?.) The value
of \ required by the theorem is In(1 + &) = In(16tN/n?), which matches the definition in
Algorithm 1. Lastly, note that

p=E) Yi=n*/N,
i=1
since each Y; is Bern(n/N). Thus A(1 + §)u = 16At. Applying the theorem, we obtain

< N7,

E exp (/\Zm—lmt) < (1+0)"FOmA = (16¢N/n2) Y <
k=1

since n® < N < 2n3 by (1), and also using n > 2. Thus, in conclusion

Yo < [H|-N7' = 1. <

67:7
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Algorithm 2 Construction of IT from G.

Input: t-independent family G of [n] — Zy maps.

Output: ¢-rankwise independent family of permutations on [n].
1: Let I« 0
2: Let 7 < 32t
3: for g € G do

4: Let ¥ = { (01,...,0N) : 0y is a permutation of g=*(4) }

5 Let s « 7!/|%]

6 for (01,...,0n) € ¥ do

7: Let L < [] be an empty list

8: fori=1,...,N do

9 Append to L the elements of g~1(i) in the order given by o;

10: end for

11: Add s copies of the permutation 7 : [n] — [n], where (i) = L[i], to the set II
12: end for

13: end for

14: return II

2.4 Construction of II

The last step is to use the family G of maps to build the t-rankwise independent family IT of
permutations on [n]. Pseudocode for this process is shown in Algorithm 2. Roughly speaking,
the algorithm first sorts the elements of [n] according to the order induced by the functions
in G and then “breaks ties” using permutations in ¥ (see line 4); also note that the number
of new permutations will hence depend on |3| which is not necessarily fixed for all g € G.
The algorithm finally inserts the new permutations in II. Note that in the algorithm, we
view integers i € [N] as elements of Zy in the natural manner.
In order for line 11 to make sense, we must establish the following claim.

o> Claim 12. The value s = 7!/|X] is a positive integer.

Proof. As above, define

Y ={yeZy:lg'yl=2}
X =Ug'w =g

yey

Informally, ) is the set of bins containing multiple balls, and X is the set of balls that are
not alone in their bin. By Lemma 7, we know that |X| < 32t = 7.

Let Sk denote the symmetric group on the set K. Observe that 3 is simply the direct
product [], .5 Sg-1(y), which has an obvious isomorphism to [[, .y Sg-1(y),
ignore y with [¢g=%(y)| € {0,1}. In turn, this is isomorphic to a subgroup of Sx. It follows

that |X| divides |Sx|, which divides 7! since |X| < 7. 4

since we can

> Claim 13. The family II is t-rankwise independent.

Proof. We want to show
1

B(r(z1) < ... <m(ar) = 5 (6)

for any t distinct indices x1,...,x;. For notational convenience, let us assume z; = 1,25 =
2,...,x; = t. It can be seen that our proof does not use the indices 1, ..., x;.



N. Harvey and A. Sahami

To generate 7, we will first pick g € G uniformly at random, then pick (o1,...,0n5) € Z
uniformly at random. Since each g € G produces exactly 7! elements in II, this is equivalent
to picking 7 uniformly. Note that, since ¥ is a Cartesian product, the distribution on the o;
is equivalent to picking o; € Sy-1(;) uniformly and independently at random.

For i € [t] define

R; = rank of (i) among 7 (1),...,7(¢t) = |{j € [t]: 7(j§) < w(i)}].

= (R1,...,Ry). Let us view R as an element of the symmetric group S; (with
R(i) = R;). In the remainder of the proof, we will establish that

P(R=r) = P(R=rp) Vr,peSs. (7)

Together with the fact that 1 = ZPESt P (E = rp), we obtain P (E = r) = % Vr € S¢. Thus,
when r is the identity permutation, this establishes (6), for the case x; =i Vi € [t].

In order to prove (7), let us introduce some notation for convenience. Throughout the
proof, let X denote the random vector (X1, X, ..., X;) where X; = g(i). Let i denote the
t-tuple ¢ = (iy,...,i;) € ZY . Intuitively, X gives the random locations of the first ¢ balls,
and 7 gives a specific list of locations that might be the outcome for those balls.

By the law of total probability

P(R=r) :TZP(R:HY:E)P(Y:E) (8)
P(R=rp) ziz]P’(R:mﬂY:f)dP’(Y:%) (9)

Since p is a permutation, one can write the second equation as
P(R=rp) = ZP(RZTMY:E/))JP’(Y:@)), (10)
i€ZY,
where, for a t-tuple v and permutation p € S;, the notation vp denotes the t-tuple whose

coordinates are permuted according to p, i.e., (vp); = vV,
Observe that by the t-independence of X1, ..., X;, we have

. _ 1
IP’(X:z) :P(X:zp) = N

Thus to show (8) equals (10), it suffices to show that
P(R=r|X=i) = P(R=rp| X =1p).

Call the permutation r € S; “feasible” w.r.t. the sequence i1, ..., if for any p,q € [t], if
ip < iq then r(p) < r(g). In words, this means that the order of i,...,4; is given by the
permutation r. It is possible that several indices in [¢t] have the same value in the sequence
i1,...,%, in which case r is allowed to induce any ordering among them.

We observe that P(R=r | X =1i) =0 <= r is not feasible w.r.t i. We also note that
r is feasible w.r.t i iff rp is feasible w.r.t ip, and hence

PR=r|X=i)=0 < P(R=rp|X =ip) =0.

So it remains to check the equality of the conditional probabilities for a permutation r feasible
to the t-tuple 7. In fact we can calculate the conditional probability explicitly.

67:9
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Let S = {i1,...,i;} and for s € Zy, let Bs = {k € [t]: ix = s} C g~ '(s) (observe that
Bs; =0 Vs ¢ S). If one views the indices [t] as balls being thrown into the bins Zy, then S
would be the set of bins occupied by [t] and B; represents balls among [¢] falling into bin s.
For s € Zy define the event

E, = {Vi,j € By, 05(i) <0s(j) < r(i) <r(j)} = {os permutes B, according to r }.
Note that the permutation o is chosen uniformly at random from Sy-1(,, and hence

there is ﬁ probability that the rank induced over the indices appearing in B; is the same
rank as the one induced by r. That is,

P(E,|X =) = .

Note that assuming r is feasible w.r.t 7, we have R = r iff R and r induce the same order
over all the entries of B, for all s € S. That is,

{Rzr}: ﬂES

ses

conditioned on X = i.
Note that the permutations {o,: s € S} are chosen independently when conditioned on
X =i so {E,},.q are independent and hence

]P’(R:r|X=i)=IP’<ﬂEs|X:i> =HP(ES'X:i):HS|£?13|!'

seS

Finally, we verify that the analogous computation for P (R =r | X = ip) yields the same
result. Let S = {(ip)i: k € [t]}; since p is a permutation, it follows that S’ = S. Similarly
letting B, = {k € [t]: (ip)x = s}, this time we have

1
1By

P(R=r|X=ip) = H
s€S’'=S

However it is clear that |Bs| = |B.| Vs € Zn, as B, = (p~1)(Bs) (since p~! is a bijection
between the two sets). Therefore

1 1
T H 1
s€S’ |BS| sES |B5|'

which we argued earlier is sufficient to prove (7). <
> Claim 14. There is a constant C' > 0 such that |II| < (Cn)35t.

Proof. Tt is clear that each map g € G contributes exactly |3| - s = 7! permutations to II.
Thus,

I = 7!-|G] < (32t)**" . |H| < (32n)%% . N' < (32n)3% . (2n3)!,

by (1). <
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3 Conclusion and Future Work

Our algorithm for constructing IT runs in time n®®, which is quite efficient size |II| = no®,

However, in applications often one is interested in sampling only a single permutation from
II. In this case, it may be unnecessary to construct the whole family. It is natural to ask if
one can give a more explicit construction of t-rankwise independent families. That is, can a
t-rankwise independent family IT of permutations of [n] be constructed such that

ITI| < n°® and

sampling a single permutation from II can be done in time O(n)?

We also re-emphasize that the problem of explicitly constructing a ¢t-independent permuta-
tion family IT over [n] with |TI| < n©®)
the results of this paper, as it would be a t-rankwise independent permutation family as well.

remains open. Such a construction would strengthen
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A  Omitted proofs

Proof of Corollary 8. For notational convenience, let X; = |g~1(i)| for i € [N]. Observe
that n =3,y Xi and [g([n])| = >2;c(n) 1{x,>1}- Then we may write

2-(n—lg()l) = 2 ) ( Xi—lyx,>1y ) = Y lpxsay-2(X— 1)

€[] =0 if X; € {0,1} i€[N] >lix,;>21 X
> D lxesy - Xi = |
i1€[N]
Thus, by Lemma 7, |X| < 2 (n — [g([n])|) <2 (16t) = 32t. <
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Proof of Theorem 11. Observe that

s vizaeouy S P (/\ZYi R 6)“)
=1

and hence taking expectations implies

EL(S yisaom} = P(an(lw)u) < Eexp (AZYi—)\(lJr(S)u).
i=1

i=1

Next, as shown in [8, Theorem 4.1 and its proof], letting A = In(1+ 4), we have the inequality

E exp ()\2”:}/1 —/\(1—|—5)u) < <(1+€;)1-|-5)#'

It remains to prove that

S5 I
((14_65)1-&-6) < (1 +5)7(1+6)”/4 Vo > 1.

As 0 < p, it suffices to show

é

(lfw < (1+5)_(1+6)/4 Vo > 1.

After taking logs and performing simple algebraic manipulations, we arrive at another
equivalent inequality

4

3 < (1+3)In(1+46) V6>1.

For z > 0, let f(z) = (1+ 2)In(1+ z). We note that
z—In(1+ )

fla)="——5—=20 V>0

since In(z + 1) <z Va > 0. Thus in particular f is non-decreasing over [1,c0) and hence
1

(1+5

YIn(1+48) = f(6) > f(1) =2In(2) > g Vo > 1

as desired. <
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