Explicit and Near-Optimal Construction of *t***-Rankwise Independent Permutations**

Nicholas Harvey $\mathbf{\Theta}$

Department of Computer Science and Department of Mathematics, University of British Columbia, Vancouver, Canada

Arvin Sahami ⊠[®]

Department of Computer Science and Department of Mathematics, University of British Columbia, Vancouver, Canada

Abstract

Letting $t \leq n$, a family of permutations of $[n] = \{1, 2, \ldots, n\}$ is called *t*-rankwise independent if for any *t* distinct entries in [*n*], when a permutation π is sampled uniformly at random from the family, the order of the *t* entries in π is uniform among the *t*! possibilities.

Itoh et al. show a lower bound of $(n/2)^{\lfloor \frac{t}{4} \rfloor}$ for the number of members in such a family, and provide a construction of a *t*-rankwise independent permutation family of size $n^{O(t^2/\ln(t))}$.

We provide an explicit, deterministic construction of a *t*-rankwise independent family of size $n^{O(t)}$ for arbitrary parameters $t \leq n$. Our main ingredient is a way to make the elements of a *t*-independent family "more injective", which might be of independent interest.

2012 ACM Subject Classification Theory of computation → Pseudorandomness and derandomization

Keywords and phrases Rankwise independent permutations

Digital Object Identifier [10.4230/LIPIcs.APPROX/RANDOM.2024.67](https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.67)

Category RANDOM

1 Introduction

An important topic in the area of pseudorandomness is the construction of random variables such that any *t* of them are independent (for some parameter $t \in \mathbb{N}$), given a small source of purely random bits. A fundamental notion introduced by Wegman and Carter in 1979 [\[2\]](#page-10-0) is that of a *t*-independent family^{[1](#page-0-0)}, defined as follows (see also [\[9,](#page-10-1) Definition 3.31]).

▶ **Definition 1** (*t*-independent family). Let m, n, t be positive integers with $t \leq m$. A family H *of functions mapping* $[m] \to [n]$ *is called t-independent if, when* $h \in \mathcal{H}$ *is chosen uniformly at random, for any t distinct* $x_1, \ldots, x_t \in [m]$ *and t elements* $y_1, \ldots, y_t \in [n]$ *,*

$$
\mathbb{P}\left(h(x_i)=y_i \text{ for } i=1,\ldots,t\right)=\frac{1}{n^t},
$$

or equivalently, that the t random variables $h(x_1), \ldots, h(x_t)$ *are independently and uniformly distributed in* [*n*]*.*

These *t*-independent families are well-studied, and have found various applications. One example is to derandomize a randomized algorithm that uses certain independent random variables, but one can relax the assumption of being *mutually* independent to any *t* of them being independent. Then often one can derandomize the algorithm by iterating over the elements of H to find a function for which the algorithm succeeds. See [\[9,](#page-10-1) section 3.5] for such

© Nicholas Harvey and Arvin Sahami; $\boxed{6}$

licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024).

Editors: Amit Kumar and Noga Ron-Zewi; Article No. 67; pp. 67:1–67:12 [Leibniz International Proceedings in Informatics](https://www.dagstuhl.de/lipics/)

¹ Throughout this paper, we use the term "family" to refer to a multiset, meaning that the members need not be distinct.

67:2 Explicit and Near-Optimal Construction of *t***-Rankwise Independent Permutations**

an application for the MaxCut problem. It is then desirable to have explicit constructions of such a family H with small size. In fact, explicit constructions of such families of near-optimal size are known [\[4\]](#page-10-2) for any parameters $1 \le t \le m$ and any *n*.

One can also define analogous families when restricting to permutations of [*n*] instead of general functions. This natural restriction yields the notion of *t*-independent permutations.

▶ **Definition 2** (*t*-independent permutation)**.** *A family* Π *is called t-independent if it contains permutations of* $[n]$ *such that, for any t distinct* $x_1, \ldots, x_t \in [n]$ *and any t distinct elements* $y_1, \ldots, y_t \in [n],$

$$
\mathbb{P}(\pi(x_i) = y_i \text{ for } i = 1, ..., t) = \prod_{i=0}^{t-1} \frac{1}{n-i}
$$

when $\pi \in \Pi$ *is chosen uniformly at random.*

Explicit construction of such families with a small size, namely such that $|\Pi| \leq n^{O(t)}$, remains an open problem. This bound is near-optimal, since there is an obvious lower bound of $|\Pi| \ge \prod_{i=0}^{t-1} (n-i)$, which follows from the definition.

In fact, there are few non-trivial constructions of such families for any $t \geq 4$. Perhaps the closest result in this direction is a probabilistic proof for the existence of small (i.e., with $|\Pi| \leq n^{O(t)}$ *t*-independent permutations for any $1 \leq t \leq n$ due to Kuperberg, Lovett and Peled [\[7\]](#page-10-3). However, their proof does not seem to yield an efficient deterministic or randomized construction of the family, as it has a tiny success probability.

Many relaxed notions related to *t*-independence have been proposed for permutation families, including "*t*-restricted min-wise independent" [\[1\]](#page-10-4) and "*t*-rankwise independent" families [\[5\]](#page-10-5). The latter is the focus of this paper.

▶ **Definition 3** (*t*-rankwise independent permutation)**.** *A family* Π *of permutations over* [*n*] *is called t*-rankwise independent if for any *t* distinct points $x_1, \ldots, x_t \in [n]$,

$$
\mathbb{P}\left(\pi(x_1) < \pi(x_2) < \ldots < \pi(x_t)\right) = \frac{1}{t!}
$$

when $\pi \in \Pi$ *is chosen uniformly at random.*

Another interesting type of permutation families has recently been proposed in the cryptography community. This is the notion of a *perfect sequence covering array* (PSCA).

 \triangleright **Definition 4** (Yuster [\[10\]](#page-10-6)). Let $t \leq n$. The family Π of permutations of $[n]$ is called a $PSCA(n,t)$ *if there exists a fixed* $\lambda \in \mathbb{N}$ *such that for any t distinct indices* $i_1, \ldots, i_t \in [n]$ *, there are exactly* λ *permutations* $\pi \in \Pi$ *such that*

 (i_1, i_2, \ldots, i_t) *is a subsequence of* $(\pi(1), \pi(2), \ldots, \pi(n))$.

(The notation and wording have been adapted to match ours.)

Let $g^*(n,t)$ denote the smallest size of a PSCA family Π. Naturally, researchers in this field are interested in the value of $g^*(n,t)$, and in the construction of families that asymptotically achieve this minimum size.

It was observed in [\[6\]](#page-10-7) that *t*-rankwise independent families and PSCAs are isomorphic. Specifically, Π is a $PSCA(n, t)$ family if and only if $\Pi^{-1} = \{\pi^{-1} : \pi \in \Pi\}$ is a *t*-rankwise independent family of permutations over [*n*]. Consequently, our construction of *t*-rankwise independent permutations can immediately be translated into a construction of PSCAs. Henceforth we will only use the terminology of *t*-rankwise independent families, and will no longer refer to PSCAs.

Itoh et al. [\[5\]](#page-10-5) show a lower bound of $(n/2)^{\lfloor \frac{t}{4} \rfloor} \leq |\Pi|$ for the size of a *t*-rankwise independent family Π. They also construct a family Π with $|\Pi| \leq n^{O(t^2/\ln(t))}$, which does not asymptotically match the lower bound.

We present a deterministic algorithm for constructing a *t*-rankwise independent family Π of permutations over $[n]$, with $|\Pi| \leq n^{O(t)}$. This asymptotically matches the known lower bound. Formally, the following is our main result.

 \triangleright **Theorem 5** (Main). *There exists a constant* $C > 0$ *such that the following is true. Let n, t be positive integers with t* ≤ *n. Then there exists a t-rankwise independent family* Π *consisting of permutations of* $[n]$ *such that* $|\Pi| \leq (Cn)^{35t}$. Furthermore, the whole family can *be constructed by a deterministic algorithm in* $n^{O(t)}$ time. (The implied constant in the $O(.)$ *notation does not depend on either n or t).*

Our construction starts in Section [2.2](#page-2-0) with a *t*-independent family H , based on Reed-Solomon codes. The next step, appearing in Section [2.3,](#page-3-0) modifies it to obtain another t -independent family $\mathcal G$ whose members, roughly speaking, look "more injective". This step is the main technical contribution of the paper, and might be of independent interest. (Note that, since $\mathcal G$ is a *t*-independent family, not all the maps in $\mathcal G$ can be injective). Finally, in Section [2.4,](#page-7-0) we use this *t*-independent family G to construct permutations of $[n]$, yielding the *t*-rankwise independent family Π.

2 The construction

2.1 Overview

Our construction involves three steps, which build upon each other.

- **1.** Construct \mathcal{H} , a *t*-independent family of $[n] \to \mathbb{Z}_N$ maps, where $N = \Theta(n^3)$.
- **2.** Construct G, a *t*-independent family of $[n] \to \mathbb{Z}_N$ maps, such that each map's image has size at least $n - 16t$. Intuitively, this condition says that each map has very few collisions, or is almost injective. (Being injective is equivalent to the image having size exactly *n*).
- **3.** Construct Π, a *t*-rankwise independent family of permutations on [*n*].

The most substantial of these steps is the construction of \mathcal{G} , whereas the construction of H is the most trivial. We explain these steps in the following sections.

2.2 Construction of H

The construction of H is standard. The first step is to find a prime p in the interval $[n^3, 2n^3]$. This must exist, by Bertrand's postulate, and can be found in $\tilde{O}(n^3)$ time using exhaustive search and a deterministic primality test. We set $N = p$, and therefore

$$
n^3 \le N \le 2n^3. \tag{1}
$$

Let H be the family of $[n] \to \mathbb{F}_N$ maps defined by polynomials over \mathbb{F}_N of degree less than t, namely

$$
\mathcal{H} = \left\{ \sum_{0 \le i \le t-1} a_i x^i : a_i \in \mathbb{F}_N \right\}.
$$

This family is well-known to be *t*-independent; see, e.g., [\[3,](#page-10-8) Exercise 5.8]. Note that the size of the family is $|\mathcal{H}| = p^t = N^t$.

APPROX/RANDOM 2024

67:4 Explicit and Near-Optimal Construction of *t***-Rankwise Independent Permutations**

2.3 Construction of G

The next step is to use the family H to build a family G . Each map in H will yield exactly one map in G. The family G will retain \mathcal{H} 's property of being *t*-independent. In addition, we will be able to guarantee that every map in G has image size at least $n - 16t$. Thus each map has few collisions (although this is an informal term that we have not yet defined).

The family G has a simple form, and it is constructed by the pseudocode shown in Algorithm [1.](#page-4-0) This algorithm computes a single, specific map $\alpha : [n] \to \mathbb{Z}_N$, then it constructs

$$
\mathcal{G} = \{ h + \alpha : h \in \mathcal{H} \}.
$$

 \triangleright Claim 6. For any map α , the resulting family G will be t-independent.

Proof. Suppose that h is chosen uniformly at random from H . For any t distinct entries $x_1, \ldots, x_t \in [n], \{h(x_i)\}_{i \in [t]}$ are independent, and hence $\{f_i(h(x_i))\}_{i \in [t]}$ are independent for any deterministic functions f_i . In particular, since α is not random, letting $f_i(z) = z + \alpha(x_i)$, we have that $\{h(x_i) + \alpha(x_i)\}_{i \in [t]}$ remain independent. Lastly, for any $k \in [n]$, $h(k)$ + $\alpha(k)$ is uniformly distributed since $h(k)$ is uniform in \mathbb{Z}_N , and α is not random. Thus $\{(h + \alpha)(x_i)\}_{i \in [t]}$ are independent and uniform in \mathbb{Z}_N , as desired.

We will prove that there is a specific choice of α such that *every* $h \in \mathcal{H}$ satisfies

$$
|(h+\alpha)([n])| = |\{h(x)+\alpha(x) : x \in [n]\}| \ge n-16t,
$$

which is the desired property of the family \mathcal{G} . In fact, it is possible to show that a random choice of *α* will satisfy this property with positive probability. However, this would not quite achieve the goals of this paper, since ultimately we want an explicit, deterministic construction of a *t*-rankwise independent family of permutations. Instead, we will obtain a deterministic construction by derandomizing the randomized construction of *α*.

Algorithm [1](#page-4-0) contains pseudocode for this procedure, which we now briefly explain. The algorithm computes the values $\alpha(1), \alpha(2), \ldots, \alpha(n)$ one-by-one, in that order. Thinking of $h + \alpha$ as mapping the "balls" [*n*] to the "bins" \mathbb{Z}_N , then S_k^h is the set of bins that have already received balls (for this particular function *h*). In order to be as injective as possible, we want to avoid a collision (for every h) between the k^{th} ball and these bins – that is, we want $(h + \alpha)(k) \notin S_k^h$ $\forall h \in \mathcal{H}$. To do so, the algorithm uses a potential function (shown in [\(2\)](#page-4-1)) in which the variable *x* corresponds to the value that will be used for $\alpha(k)$. This function penalizes any value x which would cause any further collision among any function $h \in \mathcal{H}$. This potential function is essentially a pessimistic estimator, as explained in Section [2.3.1](#page-4-2) below.

▶ **Lemma 7.** *Algorithm [1](#page-4-0) returns a t-independent family* G *satisfying the following.*

$$
|g([n])| \ge n - 16t \quad \forall g \in \mathcal{G}
$$

The subset of the codomain that experienced a "collision" is defined to be

 $\mathcal{Y} = \{ y \in \mathbb{Z}_N : |g^{-1}(y)| \ge 2 \},\$

and the subset of the domain involved in these collisions is defined to be

$$
\mathcal{X} = \bigcup_{y \in \mathcal{Y}} g^{-1}(y) = g^{-1}(\mathcal{Y}).
$$

▶ **Corollary 8.** *The family G produced by Lemma* γ *satisfies* $|\mathcal{X}|$ ≤ 32*t.*

Algorithm 1 Main Algorithm.

Input: *t*-independent family \mathcal{H} of $[n] \to \mathbb{Z}_N$ maps s.t. $|\mathcal{H}| = N^t$. **Output:** *t*-independent family G of $[n] \to \mathbb{Z}_N$ maps s.t. $|\mathcal{G}| = N^t$, $|g([n])| \geq n - 16t \ \forall g \in \mathcal{G}$. 1: $\lambda \leftarrow \ln(16tN/n^2)$ 2: $\mathcal{G} \leftarrow \emptyset$ 3: **for** $k = 1, ..., n$ **do** 4: \rhd *Compute the value* $\alpha(k)$ 5: **for** $h \in \mathcal{H}$ **do** 6: Let $S_k^h = \{ h(i) + \alpha(i) : 1 \le i \le k - 1 \} \subseteq \mathbb{Z}_N$, and note that $S_1^h = \emptyset$. This is $(h + \alpha)([k-1])$, the set of values that already appear in the image of $h + \alpha$. 7: Define $\beta_k^h(\alpha(1), \alpha(2), \ldots, \alpha(k-1), x) =$ $\int 1$ if $h(k) + x \in S_k^h$ 0 otherwise To ease notation, we will use the shorthand $\beta_k^h(x) = \beta_k^h(\alpha(1), \alpha(2), \ldots, \alpha(k-1), x).$ 9: **end for** 10: Pick $a \in \operatorname{argmin}_{x \in \mathbb{Z}_N} \sum$ *h*∈H $\exp\left(\lambda\left(\beta_k^h(x) + \sum\right)$ 1≤*i*≤*k*−1 $\beta_i^h(\alpha(1), \ldots, \alpha(i))$ (2) 11: Let $\alpha(k) \leftarrow a$ 12: **end for** 13: **return** the family $\mathcal{G} = \{ h + \alpha : h \in \mathcal{H} \}.$

A formal proof is in Appendix [A,](#page-10-9) and here we present only a sketch.

Proof (Sketch). The size of $\mathcal X$ is maximized by having exactly 16*t* bins containing exactly 2 balls, and $n - 32t$ bins containing exactly 1 ball.

2.3.1 Proof of Lemma [7](#page-3-1)

For each function $h \in \mathcal{H}$ and integer $k \in [n]$, there is a function $\beta_k^h: \mathbb{Z}_N^k \to \{0,1\}$ that is defined in Algorithm [1,](#page-4-0) and which we define equivalently here as

$$
\beta_k^h(x_1,\ldots,x_k) = \begin{cases} 1 & \text{if } \exists 1 \le i \le k-1 \text{ s.t. } h(k) + x_k = h(i) + x_i \pmod{N} \\ 0 & \text{otherwise.} \end{cases}
$$

We will use the notation $\beta_k^h(x_k)$ for $\beta_k^h(x_1,\ldots,x_k)$ when x_1,\ldots,x_{k-1} are clear from context.

The scalar $\lambda > 0$ is as defined as in Algorithm [1.](#page-4-0) Additionally, define the scalar $c_{\lambda} > 0$ and the function $\psi_k: \mathbb{Z}_N^k \to \mathbb{R}^+$ by

$$
c_{\lambda} = \mathbb{E} \exp(\lambda Y) > 0
$$

$$
\psi_k(x_1, \dots, x_k) = \sum_{h \in \mathcal{H}} \exp\left(\lambda \sum_{i=1}^k \beta_i^h(x_1, \dots, x_i)\right) \cdot c_{\lambda}^{n-k},
$$
 (3)

APPROX/RANDOM 2024

67:6 Explicit and Near-Optimal Construction of *t***-Rankwise Independent Permutations**

where *Y* is a random variable having the Bernoulli distribution with parameter n/N , which we write as Bern (n/N) . We will often write $\psi_k(x_k)$ instead of $\psi_k(x_1,\ldots,x_k)$ for notational convenience.

Intuitively, $\psi_k(x_1,\ldots,x_k)$ is a pessimistic estimator of the expected number of functions $h \in \mathcal{H}$ which would have $|(h + \alpha)([n])| > n - 16t$ given that $\alpha(i) = x_i \ \forall i \in [k]$, and that the rest of the entries $\alpha(k+1), \ldots, \alpha(n)$ are chosen uniformly at random from \mathbb{Z}_N .

Let α : $[n] \to \mathbb{Z}_N$ be the mapping constructed by Algorithm [1.](#page-4-0)

 \triangleright Claim 9. $\psi_0 \ge \psi_1(\alpha(1)) \ge \psi_2(\alpha(2)) \ge \ldots \ge \psi_n(\alpha(n))$, where here we use the notation $\psi_i(\alpha(i))$ to denote $\psi_i(\alpha(1), \alpha(2), \ldots, \alpha(i)).$

▷ Claim 10. 1 *> ψ*⁰ = exp(−16*λt*) · |H| · [E exp(*λY*)]*ⁿ* .

Together, Claims [9](#page-5-0) and [10](#page-5-1) imply that

$$
1 > \psi_n(\alpha(n)) = \sum_{h \in \mathcal{H}} \exp \left(\lambda \left(\sum_{i=1}^k \beta_i^h(\alpha(i)) \right) - 16\lambda t \right).
$$

Since all summands are non-negative, it follows that, for every $h \in \mathcal{H}$, we have

$$
\exp\left(\lambda\Big(\sum_{i=1}^k\beta_i^h(\alpha(i))\Big)-16\lambda t\right) < 1.
$$

Observe that $\sum_{i \leq k} \beta_i^h(\alpha(i)) = k - |S_k^h| \forall k, h$. Taking the log and rearranging, we obtain that

$$
n-|S_n^h| = \sum_{i=1}^n \beta_i^h(\alpha(i)) < 16t \quad \forall h \in \mathcal{H}.
$$

Let $g = h + \alpha$. Since $|g([n])| = |S_n^h|$, we have $|g([n])| > n - 16t$ for all $h \in \mathcal{H}$. This completes the proof of Lemma [7.](#page-3-1)

Proof of Claim [9.](#page-5-0) We will show that $\psi_k(\alpha(k)) \leq \psi_k(\alpha(k-1)) \ \forall 1 \leq k \leq n$. So let $k \in [n]$ be arbitrary.

Our first observation is that, in the algorithm's iteration *k*, it chooses the value $a = \alpha(k)$ to minimize $\psi_k(\alpha(1), \ldots, \alpha(k-1), a)$. This holds because the functions

$$
\sum_{h \in \mathcal{H}} \exp \left(\lambda \beta_k^h(x) + \lambda \sum_{i=1}^{k-1} \beta_i^h(\alpha(i)) \right) \quad \text{and} \quad \psi_k(\alpha(1), \alpha(2), \dots, \alpha(k-1), x)
$$

are positive multiples of each other.

Since $\alpha(k)$ minimizes ψ_k , we clearly have

 $\psi_k(\alpha(1), \ldots, \alpha(k)) \leq \mathbb{E}_{U \sim \text{Unif}(\mathbb{Z}_N)} \psi_k(\alpha(1), \ldots, \alpha(k-1), U),$

where Unif(*S*) denotes the uniform distribution on the set *S*. Hence in order to show that $\psi_k(\alpha(k)) \leq \psi_{k-1}(\alpha(k-1))$, it suffices to prove that

$$
\mathbb{E}_{U \sim \text{Unif}(\mathbb{Z}_N)} \psi_k(\alpha(1)\dots, \alpha(k-1), U) \leq \psi_{k-1}(\alpha(k-1)). \tag{4}
$$

Since ψ_k and ψ_{k-1} are both sums over $h \in \mathcal{H}$, it will suffice to prove this inequality for each summand. More specifically, we will ignore the $e^{-16\lambda t}$ constant and define

$$
\psi_k^h(x) = \exp\left(\lambda \sum_{i=1}^{k-1} \beta_i^h(\alpha(i)) + \lambda \beta_k^h(x)\right) \cdot c_{\lambda}^{n-k},
$$

N. Harvey and A. Sahami 67:7

where, as above, $c_{\lambda} = \mathbb{E} \exp(\lambda Y)$, and Y is Bern (n/N) . Towards our inductive proof, we may rewrite this as

$$
\psi_k^h(x) = \psi_{k-1}^h(\alpha(k-1)) \cdot \frac{1}{c} \cdot \exp\left(\lambda \beta_k^h(\alpha(1), \ldots, \alpha(k-1), x)\right).
$$

Plugging this into our goal [\(4\)](#page-5-2), it suffices to prove that

$$
\mathbb{E}_{U \sim \text{Unif}(\mathbb{Z}_N)} \ \psi_{k-1}^h(\alpha(k-1)) \cdot \frac{1}{c} \cdot \exp\left(\lambda \beta_k^h(\alpha(1), \ldots, \alpha(k-1), U)\right) \ \leq \ \psi_{k-1}(\alpha(k-1)),
$$

or equivalently (observing that $\psi_{k-1}^h(\alpha(k-1)) > 0$),

$$
\mathbb{E}_{U \sim \text{Unif}(\mathbb{Z}_N)} \exp \left(\lambda \beta_k^h(\alpha(1), \dots, \alpha(k-1), U) \right) \le c_{\lambda} = \mathbb{E} \exp(\lambda Y). \tag{5}
$$

Note that there are exactly $|S_k^h|$ values of *U* that result in $\beta_k^h(\alpha(1), \alpha(2), \ldots, \alpha(k-1), U)$ taking the value 1, whereas the rest result in the value 0. Since *U* is uniformly distributed on \mathbb{Z}_N and $|S_k^h| \leq n$ for all $k \in [n]$, $h \in \mathcal{H}$, it follows that $\beta_k^h(\alpha(1), \ldots, \alpha(k-1), U)$ has a Bernoulli distribution Bern (p) where $p \leq n/N$. Since *Y* has the distribution Bern (n/N) , the desired inequality [\(5\)](#page-6-0) follows. \lhd

For the next proof, we will require the following statement of the Chernoff bound. A proof is given in Appendix [A.](#page-10-9)

▶ **Theorem 11** (Poisson tail of Chernoff bound). Let Y_1, \ldots, Y_n be independent random *variables supported on* [0,1]*. Let* $\mu = \mathbb{E}\sum_{i=1}^{n} Y_i$ *. Then, for any* $\delta \geq 1$ *, if* $\lambda = \ln(1+\delta)$ *then*

$$
\mathbb{P}\left(\sum_{i=1}^n Y_i \ge (1+\delta)\mu\right) \le \mathbb{E}\exp\left(\lambda \sum_{i=1}^n Y_i - \lambda(1+\delta)\mu\right) \le (1+\delta)^{-(1+\delta)\mu/4}.
$$

Proof of Claim [10.](#page-5-1) Let Y_1, \ldots, Y_n be i.i.d. Bern $(\frac{n}{N})$ random variables. We may rewrite the definition of ψ_0 from [\(3\)](#page-4-3) using these Y_i random variables as

$$
\psi_0 = |\mathcal{H}| \cdot \mathbb{E} \exp\Big(\lambda \sum_{i=1}^n Y_i - 16\lambda t\Big).
$$

To prove the claim, we must show that this is less than 1.

To do so, consider any fixed $h \in \mathcal{H}$. We will use the Chernoff bound as stated in Theorem [11,](#page-6-1) with $1 + \delta = 16tN/n^2$. (Note that $\delta \ge 1$, as required, since $N \ge n^3$.) The value of λ required by the theorem is $\ln(1+\delta) = \ln(16tN/n^2)$, which matches the definition in Algorithm [1.](#page-4-0) Lastly, note that

$$
\mu = \mathbb{E}\sum_{i=1}^{n} Y_i = n^2/N,
$$

since each Y_i is Bern (n/N) . Thus $\lambda(1+\delta)\mu = 16\lambda t$. Applying the theorem, we obtain

$$
\mathbb{E} \exp \left(\lambda \sum_{k=1}^{n} Y_i - 16\lambda t \right) \le (1+\delta)^{-(1+\delta)\mu/4} = (16tN/n^2)^{-4t} < n^{-4t} \le N^{-t},
$$

since $n^3 \le N \le 2n^3$ by [\(1\)](#page-2-1), and also using $n \ge 2$. Thus, in conclusion

$$
\psi_0 \ < \ |\mathcal{H}| \cdot N^{-t} \ = \ 1.
$$

67:8 Explicit and Near-Optimal Construction of *t***-Rankwise Independent Permutations**

Algorithm 2 Construction of Π from G. **Input:** *t*-independent family \mathcal{G} of $[n] \to \mathbb{Z}_N$ maps. **Output:** *t*-rankwise independent family of permutations on [*n*]. 1: Let $\Pi \leftarrow \emptyset$ 2: Let $\tau \leftarrow 32t$ 3: **for** $q \in \mathcal{G}$ **do** 4: Let $\Sigma = \{ (\sigma_1, \ldots, \sigma_N) : \sigma_i \text{ is a permutation of } g^{-1}(i) \}$ 5: Let $s \leftarrow \tau!/|\Sigma|$ 6: **for** $(\sigma_1, \ldots, \sigma_N) \in \Sigma$ **do** 7: Let $L \leftarrow \lceil \cdot \rceil$ be an empty list 8: **for** $i = 1, ..., N$ **do** 9: Append to *L* the elements of $g^{-1}(i)$ in the order given by σ_i 10: **end for** 11: Add *s* copies of the permutation $\pi : [n] \to [n]$, where $\pi(i) = L[i]$, to the set Π 12: **end for** 13: **end for** 14: **return** Π

2.4 Construction of Π

The last step is to use the family G of maps to build the *t*-rankwise independent family Π of permutations on [*n*]. Pseudocode for this process is shown in Algorithm [2.](#page-7-1) Roughly speaking, the algorithm first sorts the elements of [*n*] according to the order induced by the functions in G and then "breaks ties" using permutations in Σ (see line [4\)](#page-7-1); also note that the number of new permutations will hence depend on $|\Sigma|$ which is not necessarily fixed for all $g \in \mathcal{G}$. The algorithm finally inserts the new permutations in Π. Note that in the algorithm, we view integers $i \in [N]$ as elements of \mathbb{Z}_N in the natural manner.

In order for line [11](#page-7-1) to make sense, we must establish the following claim.

 \triangleright Claim 12. The value $s = \tau!/|\Sigma|$ is a positive integer.

Proof. As above, define

$$
\mathcal{Y} = \{ y \in \mathbb{Z}_N : |g^{-1}(y)| \ge 2 \}
$$

$$
\mathcal{X} = \bigcup_{y \in \mathcal{Y}} g^{-1}(y) = g^{-1}(\mathcal{Y}).
$$

Informally, Y is the set of bins containing multiple balls, and X is the set of balls that are not alone in their bin. By Lemma [7,](#page-3-1) we know that $|\mathcal{X}| \leq 32t = \tau$.

Let S_K denote the symmetric group on the set K. Observe that Σ is simply the direct product $\prod_{y\in\mathbb{Z}_N} S_{g^{-1}(y)}$, which has an obvious isomorphism to $\prod_{y\in\mathcal{Y}} S_{g^{-1}(y)}$, since we can ignore *y* with $|g^{-1}(y)| \in \{0, 1\}$. In turn, this is isomorphic to a subgroup of $S_{\mathcal{X}}$. It follows that $|\Sigma|$ divides $|S_{\mathcal{X}}|$, which divides τ ! since $|\mathcal{X}| \leq \tau$.

▷ Claim 13. The family Π is *t*-rankwise independent.

Proof. We want to show

$$
\mathbb{P}\left(\pi(x_1) < \ldots < \pi(x_t)\right) = \frac{1}{t!} \tag{6}
$$

for any *t* distinct indices x_1, \ldots, x_t . For notational convenience, let us assume $x_1 = 1, x_2 =$ $2, \ldots, x_t = t$. It can be seen that our proof does not use the indices x_1, \ldots, x_t .

N. Harvey and A. Sahami 67:9

To generate π , we will first pick $g \in \mathcal{G}$ uniformly at random, then pick $(\sigma_1, \ldots, \sigma_N) \in \Sigma$ uniformly at random. Since each $g \in \mathcal{G}$ produces exactly τ ! elements in Π , this is equivalent to picking π uniformly. Note that, since Σ is a Cartesian product, the distribution on the σ_i is equivalent to picking $\sigma_i \in S_{q^{-1}(i)}$ uniformly and independently at random.

For $i \in [t]$ define

$$
R_i = \text{rank of } \pi(i) \text{ among } \pi(1), \dots, \pi(t) = |\{j \in [t] \colon \pi(j) \leq \pi(i)\}|.
$$

Let $\overline{R} = (R_1, \ldots, R_t)$. Let us view \overline{R} as an element of the symmetric group S_t (with $\overline{R}(i) = R_i$. In the remainder of the proof, we will establish that

$$
\mathbb{P}\left(\overline{R}=r\right) = \mathbb{P}\left(\overline{R}=r\rho\right) \quad \forall r, \rho \in S_t. \tag{7}
$$

Together with the fact that $1 = \sum_{\rho \in S_t} \mathbb{P}(\overline{R} = r\rho)$, we obtain $\mathbb{P}(\overline{R} = r) = \frac{1}{t!} \forall r \in S_t$. Thus, when *r* is the identity permutation, this establishes [\(6\)](#page-7-2), for the case $x_i = i \forall i \in [t]$.

In order to prove [\(7\)](#page-8-0), let us introduce some notation for convenience. Throughout the proof, let \overline{X} denote the random vector (X_1, X_2, \ldots, X_t) where $X_i = g(i)$. Let \overline{i} denote the *t*-tuple $\overline{i} = (i_1, \ldots, i_t) \in \mathbb{Z}_N^t$. Intuitively, *X* gives the random locations of the first *t* balls, and \overline{i} gives a specific list of locations that might be the outcome for those balls.

By the law of total probability

$$
\mathbb{P}\left(\overline{R}=r\right) = \sum_{\overline{i}\in\mathbb{Z}_N^t} \mathbb{P}\left(\overline{R}=r \mid \overline{X}=\overline{i}\right) \cdot \mathbb{P}\left(\overline{X}=\overline{i}\right) \tag{8}
$$

$$
\mathbb{P}\left(\overline{R} = r\rho\right) = \sum_{\overline{i} \in \mathbb{Z}_N^t} \mathbb{P}\left(\overline{R} = r\rho \mid \overline{X} = \overline{i}\right) \cdot \mathbb{P}\left(\overline{X} = \overline{i}\right)
$$
\n(9)

Since ρ is a permutation, one can write the second equation as

$$
\mathbb{P}\left(\overline{R} = r\rho\right) = \sum_{\overline{i} \in \mathbb{Z}_N^t} \mathbb{P}\left(\overline{R} = r\rho \mid \overline{X} = \overline{i}\rho\right) \cdot \mathbb{P}\left(\overline{X} = \overline{i}\rho\right),\tag{10}
$$

where, for a *t*-tuple *v* and permutation $\rho \in S_t$, the notation $v\rho$ denotes the *t*-tuple whose coordinates are permuted according to ρ , i.e., $(v\rho)_i = v_{\rho(i)}$.

Observe that by the *t*-independence of X_1, \ldots, X_t , we have

$$
\mathbb{P}\left(\overline{X}=\overline{i}\right)=\mathbb{P}\left(\overline{X}=\overline{i}\rho\right) = \frac{1}{N^t}.
$$

Thus to show (8) equals (10) , it suffices to show that

$$
\mathbb{P}\left(\overline{R} = r \mid \overline{X} = \overline{i}\right) = \mathbb{P}\left(\overline{R} = r\rho \mid \overline{X} = \overline{i}\rho\right).
$$

Call the permutation $r \in S_t$ "feasible" w.r.t. the sequence i_1, \ldots, i_t if for any $p, q \in [t]$, if $i_p < i_q$ then $r(p) < r(q)$. In words, this means that the order of i_1, \ldots, i_t is given by the permutation *r*. It is possible that several indices in [*t*] have the same value in the sequence i_1, \ldots, i_t , in which case *r* is allowed to induce any ordering among them.

We observe that $\mathbb{P}(\overline{R} = r | \overline{X} = \overline{i}) = 0 \iff r$ is not feasible w.r.t \overline{i} . We also note that *r* is feasible w.r.t \overline{i} iff $r\rho$ is feasible w.r.t $\overline{i}\rho$, and hence

$$
\mathbb{P}\left(\overline{R}=r \mid \overline{X}=\overline{i}\right)=0 \iff \mathbb{P}\left(\overline{R}=r\rho \mid \overline{X}=\overline{i}\rho\right)=0.
$$

So it remains to check the equality of the conditional probabilities for a permutation *r* feasible to the *t*-tuple \overline{i} . In fact we can calculate the conditional probability explicitly.

67:10 Explicit and Near-Optimal Construction of *t***-Rankwise Independent Permutations**

Let $S = \{i_1, ..., i_t\}$ and for $s \in \mathbb{Z}_N$, let $B_s = \{k \in [t]: i_k = s\} \subseteq g^{-1}(s)$ (observe that $B_s = \emptyset \,\forall s \notin S$). If one views the indices [*t*] as balls being thrown into the bins \mathbb{Z}_N , then *S* would be the set of bins occupied by [*t*] and *B^s* represents balls among [*t*] falling into bin *s*. For $s \in \mathbb{Z}_N$ define the event

$$
E_s = \{ \forall i, j \in B_s, \ \sigma_s(i) < \sigma_s(j) \iff r(i) < r(j) \} = \{ \sigma_s \text{ permutes } B_s \text{ according to } r \}.
$$

Note that the permutation σ_s is chosen uniformly at random from $S_{g^{-1}(s)}$, and hence there is $\frac{1}{|B_s|!}$ probability that the rank induced over the indices appearing in B_s is the same rank as the one induced by *r*. That is,

$$
\mathbb{P}\left(E_s \mid \overline{X} = \overline{i}\right) = \frac{1}{|B_s|!}.
$$

Note that assuming *r* is feasible w.r.t \overline{i} , we have $\overline{R} = r$ iff \overline{R} and *r* induce the same order over all the entries of B_s for all $s \in S$. That is,

$$
\left\{ \overline{R} = r \right\} = \bigcap_{s \in S} E_s
$$

conditioned on $\overline{X} = \overline{i}$.

Note that the permutations $\{\sigma_s : s \in S\}$ are chosen independently when conditioned on $\overline{X} = \overline{i}$ so ${E_s}_{s \in S}$ are independent and hence

$$
\mathbb{P}\left(\overline{R}=r\mid \overline{X}=\overline{i}\right)=\mathbb{P}\left(\bigcap_{s}E_{s}\mid \overline{X}=\overline{i}\right)=\prod_{s\in S}\mathbb{P}\left(E_{s}\mid \overline{X}=\overline{i}\right)=\prod_{s\in S}\frac{1}{|B_{s}|!}.
$$

Finally, we verify that the analogous computation for $\mathbb{P}(\overline{R} = r | \overline{X} = i\rho)$ yields the same result. Let $S' = \{(\bar{i}\rho)_k : k \in [t]\};$ since ρ is a permutation, it follows that $S' = S$. Similarly letting $B'_{s} = \{k \in [t] : (\overline{i}\rho)_{k} = s\}$, this time we have

$$
\mathbb{P}\left(\overline{R}=r \mid \overline{X}=\overline{i}\rho\right)=\prod_{s \in S'=S}\frac{1}{|B'_s|!}.
$$

However it is clear that $|B_s| = |B'_s| \forall s \in \mathbb{Z}_N$, as $B'_s = (\rho^{-1})(B_s)$ (since ρ^{-1} is a bijection between the two sets). Therefore

$$
\prod_{s\in S'}\frac{1}{|B'_s|!}=\prod_{s\in S}\frac{1}{|B_s|!}
$$

which we argued earlier is sufficient to prove (7) .

 \triangleright Claim 14. There is a constant $C > 0$ such that $|\Pi| \leq (Cn)^{35t}$.

Proof. It is clear that each map $g \in \mathcal{G}$ contributes exactly $|\Sigma| \cdot s = \tau!$ permutations to Π . Thus,

 $|\Pi| = \tau! \cdot |\mathcal{G}| \leq (32t)^{32t} \cdot |\mathcal{H}| \leq (32n)^{32t} \cdot N^t \leq (32n)^{32t} \cdot (2n^3)^t,$

by [\(1\)](#page-2-1). \triangleleft

3 Conclusion and Future Work

Our algorithm for constructing Π runs in time $n^{O(t)}$, which is quite efficient size $|\Pi| = n^{O(t)}$. However, in applications often one is interested in sampling only a single permutation from Π. In this case, it may be unnecessary to construct the whole family. It is natural to ask if one can give a more explicit construction of *t*-rankwise independent families. That is, can a *t*-rankwise independent family Π of permutations of [*n*] be constructed such that

- $|\Pi| \leq n^{O(t)}$, and
- sampling a single permutation from Π can be done in time $O(n)$? \rightarrow

We also re-emphasize that the problem of explicitly constructing a *t*-independent permutation family Π over $[n]$ with $|\Pi| \leq n^{O(t)}$ remains open. Such a construction would strengthen the results of this paper, as it would be a *t*-rankwise independent permutation family as well.

References

- **1** Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael Mitzenmacher. Min-wise independent permutations. *Journal of Computer and System Sciences*, 60(3):630–659, 2000. [doi:10.1006/jcss.1999.1690](https://doi.org/10.1006/jcss.1999.1690).
- **2** J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions. *Journal of Computer and System Sciences*, 18:143–154, 1979. [doi:10.1016/0022-0000\(79\)90044-8](https://doi.org/10.1016/0022-0000(79)90044-8).
- **3** Venkat Guruswami, Atri Rudra, and Madhu Sudan. *Essential Coding Theory*, 2018. Manuscript.
- **4** Nicholas Harvey and Arvin Sahami. Explicit orthogonal arrays and universal hashing with arbitrary parameters. In *Proceedings of the ACM Symposium on Theory of Computation (STOC)*, 2024.
- **5** Toshiya Itoh, Yoshinori Takei, and Jun Tarui. On permutations with limited independence. In *Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms*, SODA '00, pages 137–146, USA, 2000. Society for Industrial and Applied Mathematics.
- **6** Enrico Iurlano. Growth of the perfect sequence covering array number. *Des. Codes Cryptography*, 91(4):1487–1494, December 2022. [doi:10.1007/s10623-022-01168-3](https://doi.org/10.1007/s10623-022-01168-3).
- **7** Greg Kuperberg, Shachar Lovett, and Ron Peled. Probabilistic existence of rigid combinatorial structures. In *Proceedings of the forty-fourth annual ACM symposium on Theory of computing*, pages 1091–1106, 2012. [doi:10.1145/2213977.2214075](https://doi.org/10.1145/2213977.2214075).
- **8** Rajeev Motwani and Prabhakar Raghavan. *Randomized Algorithms*. Cambridge University Press, 1995.
- **9** Salil P. Vadhan. Pseudorandomness. *Foundations and Trends® in Theoretical Computer Science*, 7(1–3):1–336, 2012. [doi:10.1561/0400000010](https://doi.org/10.1561/0400000010).
- **10** Raphael Yuster. Perfect sequence covering arrays. *Des. Codes Cryptography*, 88(3):585–593, March 2020. [doi:10.1007/s10623-019-00698-7](https://doi.org/10.1007/s10623-019-00698-7).

A Omitted proofs

Proof of Corollary [8.](#page-3-2) For notational convenience, let $X_i = |g^{-1}(i)|$ for $i \in [N]$. Observe that $n = \sum_{i \in [N]} X_i$ and $|g([n])| = \sum_{i \in [N]} 1_{\{X_i \geq 1\}}$. Then we may write

$$
2 \cdot (n - |g([n])|) = 2 \sum_{i \in [N]} (\underbrace{X_i - 1_{\{X_i \ge 1\}}}_{=0 \text{ if } X_i \in \{0, 1\}}) = \sum_{i \in [N]} \underbrace{1_{\{X_i \ge 2\}} \cdot 2(X_i - 1)}_{\ge 1_{\{X_i \ge 2\}} \cdot X_i} \ge \sum_{i \in [N]} 1_{\{X_i \ge 2\}} \cdot X_i = |\mathcal{X}|.
$$

Thus, by Lemma [7,](#page-3-1) $|\mathcal{X}| \leq 2 \cdot (n - |g(|n|)|) \leq 2 \cdot (16t) = 32t$.

67:12 Explicit and Near-Optimal Construction of *t***-Rankwise Independent Permutations**

Proof of Theorem [11.](#page-6-1) Observe that

$$
1_{\left\{\sum_{i=1}^{n} Y_i \ge (1+\delta)\mu\right\}} \le \exp\left(\lambda \sum_{i=1}^{n} Y_i - \lambda (1+\delta)\mu\right)
$$

and hence taking expectations implies

$$
\mathbb{E}1_{\left\{\sum_{i=1}^n Y_i \ge (1+\delta)\mu\right\}} = \mathbb{P}\left(\sum_{i=1}^n Y_i \ge (1+\delta)\mu\right) \le \mathbb{E}\exp\left(\lambda \sum_{i=1}^n Y_i - \lambda(1+\delta)\mu\right).
$$

Next, as shown in [\[8,](#page-10-10) Theorem 4.1 and its proof], letting $\lambda = \ln(1+\delta)$, we have the inequality

$$
\mathbb{E} \exp \left(\lambda \sum_{i=1}^n Y_i - \lambda (1+\delta) \mu \right) \ \le \ \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}} \right)^{\mu}.
$$

It remains to prove that

$$
\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu} \le (1+\delta)^{-(1+\delta)\mu/4} \quad \forall \delta \ge 1.
$$

As $0 \leq \mu$, it suffices to show

$$
\frac{e^{\delta}}{(1+\delta)^{1+\delta}} \le (1+\delta)^{-(1+\delta)/4} \quad \forall \delta \ge 1.
$$

After taking logs and performing simple algebraic manipulations, we arrive at another equivalent inequality

$$
\frac{4}{3} \le (1 + \frac{1}{\delta})\ln(1 + \delta) \quad \forall \delta \ge 1.
$$

For $x \ge 0$, let $f(x) = (1 + \frac{1}{x}) \ln(1 + x)$. We note that

$$
f'(x) = \frac{x - \ln(1+x)}{x^2} \ge 0 \quad \forall x > 0
$$

since $\ln(x+1) \leq x \quad \forall x > 0$. Thus in particular f is non-decreasing over $[1,\infty)$ and hence

$$
(1 + \frac{1}{\delta})\ln(1 + \delta) = f(\delta) \ge f(1) = 2\ln(2) > \frac{4}{3} \quad \forall \delta \ge 1
$$

as desired. \blacktriangleleft

