
Randomness Extractors in AC0 and NC1: Optimal
up to Constant Factors
Kuan Cheng #Ñ

CFCS, School of CS, Peking University, China

Ruiyang Wu #

CFCS, School of CS, Peking University, China

Abstract
We study randomness extractors in AC0 and NC1. For the AC0 setting, we give a logspace-uniform
construction such that for every k ≥ n/ poly log n, ε ≥ 2− poly log n, it can extract from an arbitrary
(n, k) source, with a small constant fraction entropy loss, and the seed length is O(log n

ε
). The seed

length and output length are optimal up to constant factors matching the parameters of the best
polynomial time construction such as [13]. The range of k and ε almost meets the lower bound
in [10] and [7]. We also generalize the main lower bound of [10] for extractors in AC0, showing
that when k < n/ poly log n, even strong dispersers do not exist in non-uniform AC0. For the NC1

setting, we also give a logspace-uniform extractor construction with seed length O(log n
ε

) and a
small constant fraction entropy loss in the output. It works for every k ≥ O(log2 n), ε ≥ 2−O(

√
k).

Our main techniques include a new error reduction process and a new output stretch process,
based on low-depth circuit implementations for mergers, condensers, and somewhere extractors.

2012 ACM Subject Classification Theory of computation → Expander graphs and randomness
extractors; Theory of computation → Pseudorandomness and derandomization

Keywords and phrases randomness extractor, uniform AC0, error reduction, uniform NC1, disperser

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.69

Category RANDOM

Related Version Full Version: https://eccc.weizmann.ac.il/report/2024/040/

1 Introduction

Randomness extractors are functions that can transform weak random sources into distri-
butions close to uniform. A typical definition of weak random sources is by min-entropy.
A random variable (weak rsource) X has min-entropy k if for every x in the support of
X, log 1

Pr[X=x] ≥ k. To extract from an arbitrary weak source of a certain min-entropy,
Nisan and Zuckerman [23] introduced the definition of seeded extractor, where the ex-
tractor has a short uniform random seed as an extra input. Specifically, a function
Ext : {0, 1}n × {0, 1}d −→ {0, 1}m is defined to be a strong (k, ε)-extractor, if for every
source X with min-entropy k,

∥ (Ud, Ext(X, Ud)) − Ud+m∥ ≤ ε,

where Ud and Um are uniform distributions over {0, 1}d and {0, 1}m respectively, and ∥ · ∥
is the statistical distance. The entropy loss of such a strong extractor is k − m. On the
contrary, a weak (k, ε)-extractor has the same definition except we only require

∥Ext(X, Ud) − Um∥ ≤ ε.

The entropy loss of such a weak extractor is k + d − m.

© Kuan Cheng and Ruiyang Wu;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 69; pp. 69:1–69:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ckkcdh@pku.edu.cn
https://ckkcdh.github.io/
https://orcid.org/0000-0002-8972-1749
mailto:2301111967@stu.pku.edu.cn
https://orcid.org/0009-0009-5613-3631
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.69
https://eccc.weizmann.ac.il/report/2024/040/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

69:2 Randomness Extractors in AC0 and NC1: Optimal up to Constant Factors

As a fundamental pseudorandom construction, extractors are closely related to other
pseudorandom objects and also have various applications in computational complexity,
combinatorics, algorithm design, information theory, and cryptography. See surveys [21, 29,
37, 30, 1, 38].

Optimizing extractor constructions aims to get, for every k and ε, an extractor with d

as small as possible, and m as large as possible. An existential bound for strong extractors
can be given by a probabilistic argument, which has d = log(n − k) + 2 log(1/ε) + O(1),
m = k − 2 log(1/ε) − O(1). This is optimal up to some additive constants for k ≤ n/2, due
to the lower bound by [24]. After [23], a long line of work has been done to seek explicit
extractors with parameters close to the existential bounds [40, 31, 11, 32, 41, 25, 21, 27, 36,
33, 26, 20, 13, 34, 9, 19]. Among them, [13] first achieves d = log n + O(log(k/ε)) and an
arbitrary constant factor entropy loss, and also achieves m = k − 2 log(1/ε) − O(1) with
d = log n+O(log k · log(k/ε)). [34] and [19] can also achieve the same parameters by replacing
the condenser in [13] with their condenser versions. On the other hand, [34] and [9] achieve
subconstant entropy loss m = (1 − 1/ poly log n)k, d = O(log n) when ε ≥ 1/2logβ n for any
constant β < 1.

In terms of computational complexity, an explicit construction is an algorithm that can
compute the function in deterministic polynomial time on given parameters. A natural
question is whether one can construct extractors in lower complexity classes, with matching
parameters to the current best explicit ones. Some early work on extractors already pays
attention to constructions in low-complexity models. For example, Zuckerman [41] showed
that his construction is actually in NC. Also Bar-Yossef, Reingold, Shaltiel, and Vadhan
[2] showed streaming constructions for several pseudorandom objects including extractors.
Furthermore, extractors in low-complexity models have already been used in derandomization
tasks for certain low-complexity classes, such as in [35, 8]. In this paper, we specifically focus
on two low-complexity classes, i.e. AC0 and NC1. AC0 is the class of all uniform circuit
families of polynomial-size, constant depth, with NOT, AND, and OR gates, where AND
and OR gates have unbounded fan-in. NC1 is the class of all uniform circuit families of
polynomial-size, O(log n) depth, with NOT, AND, and OR gates, where AND, OR gates
have fan-in 2. Unless otherwise specified, our constructions are all logspace-uniform circuit
families, i.e. there exists a logspace Turing machine that can output the description for each
circuit in the family.

Viola [39] raised the question on extractor construction in AC0 and showed that for every
constant D, there exists a polynomial p such that as long as k ≤ n/p(log n), no extractor in
AC0 with depth D extract even 1 bit with a constant error, no matter how long the seed
is. Goldreich and Wigderson [10] extend the result for bit-fixing sources. This rules out the
possibility for the case that k = n/ logω(1) n. For the case k ≥ n/ poly log n, [10] gives a strong
extractor in AC0 that has an output length linear to the seed length. Lately Cheng and Li [7]
give a construction that significantly improves the parameters. For the case that ε = 1/ poly n,
δ = 1/ poly log n, they achieve d = O(log n), m = O(δn). For the more general case that
ε = 2− poly log n, δ = 1/ poly log n, they achieve d = O

(
(log n + log(n/ε) log(1/ε)

log n)
)

, m = O(δn).
They also show that ε has to be at least 2− poly log n for AC0 extractors.

For extractors in NC1, unlike the AC0 case, there are no known lower bounds for k

or ε. Indeed the extractor based on universal hash functions [5], argued by the leftover
hash lemma [16], can achieve an arbitrary ε and k. It can be realized in NC1 since there
are simple linear function constructions for such hash functions. Trevisan’s extractor [36],
and its improved version [26] can also be realized in NC1, since their main components, the
average-case hard function based on local list-decodable codes can be computed in NC1.

K. Cheng and R. Wu 69:3

Extractors can also be derived from averaging samplers [41]. Healy [15] constructs a sampler
in NC1. However if one simply applies the transformation of [41] on it, then this can only
give an extractor with a constant error. So it is still a question whether one can achieve
extractors in NC1 with better parameters for arbitrary k and ε.

1.1 Our results
Our main positive result is an AC0 computable extractor with parameters optimal up to
constant factors.

▶ Theorem 1. For every constant a, c > 0, γ ∈ (0, 1), every k ≥ n
loga(n) , ε ≥ 2− logc(n), there

exists an explicit (k, ε)-strong extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m in AC0 with depth
O(a + c + 1)2, such that d = O(log n

ε), and m ≥ (1 − γ)k.

Notice that this is much better in seed length compared to the previous best AC0 construc-
tions [7], which requires d = O

((
log n + log(n/ε) log(1/ε)

log n

)
loga n

)
for such an output length.

Also, notice that there are lower bounds for k and ε in the AC0 construction setting, i.e. k

has to be at least n/ poly log n by [10] and ε has to be 2− poly log n by [7]. Thus roughly in
the plausible range for k and ε, we achieve parameters optimal up to constant factors.

Our method can also be used to give NC1 computable extractors.

▶ Theorem 2. For every constant γ ∈ (0, 1) every k ≥ Ω(log2(n)), ε ≥ 2−O(√
k), there

exists a strong (k, ε) extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m computable in NC1, with
d = O(log(n/ε)), m = (1 − γ)k.

To our knowledge, the previous best known NC1 construction is the improved Trevisan’s
extractor from [26], which has seed length O(log2 n log 1

ε), for all k, ε. Our parameters are
optimal up to constant factors for ranges of k, ε as stated.

Our negative result generalizes the previous entropy parameter lower bound by [10] for
strong extractors in AC0 to strong dispersers in AC0.

▶ Theorem 3. For every d, s > 0, every constant δ ∈ (0, 1), if C : {0, 1}n × {0, 1}r → {0, 1}
is a (k, 1

2 − δ)-disperser that can be computed by a non-uniform AC circuit of size s and
depth d, then k ≥ Θ(δn

logd−1 s
).

1.2 Technique Overview
1.2.1 Extractor in AC0

Our AC0 computable extractor is constructed by three main parts.

1.2.1.1 Merger in AC0

In this part, we show that any somewhere high-entropy source X can be merged to be a
high-entropy source in AC0 under a restricted setting of parameters. The merger is a crucial
building block in the construction of our extractor.

Recall that X = (X1, . . . , XΛ) is a simple somewhere (n, k) source if there exists i ∈
[Λ], Xi is a (n, k) source. We call each Xi a segment. A somewhere (n, k) source is a
convex combination of simple somewhere (n, k) sources. A (k, k′, ε) merger is a function
Merge : {0, 1}nΛ × {0, 1}d → {0, 1}m, such that for any input somewhere (n, k) source X,
Merge(X, U) has entropy k′. [9] gives a fairly good merger for somewhere uniform sources,
which has m = n = k, k′ = (1 − δ)k, d = 1

δ (log 2Λ
ε). Our key observation is that if the

APPROX/RANDOM 2024

69:4 Randomness Extractors in AC0 and NC1: Optimal up to Constant Factors

number of segments in the somewhere uniform source is poly log n, δ is a small constant,
and error ε = 2− poly log n, then this merger can be computed in AC0. To see this, note that
the computation of [9] is over a finite field Fq, where q = 2d = 2poly log n in this setting. The
computation only involves three operations: (1) the summation of poly log n elements; (2)
the powering yi where y ∈ Fq, i = poly log n; (3) the product of a constant number of field
elements. (1) is clearly in AC0 since it is actually the summation of poly log n bits, while (2)
and (3) are shown to be in AC0 by [14]. Note that this can be straightforwardly generalized
to a merger for somewhere high-entropy source by first applying an extractor to each segment
and then merging them.

1.2.1.2 Error Reduction

In this part, we give a new error reduction that can be realized in a highly parallel way. The
required seed length is optimal up to constant factors, significantly better than [7]. Our
method takes the basic extractor from [7], applies error reduction and stretches the output
length to poly(log n) bits. The stretching is designed to satisfy the requirement in the next
part.

Let X be an input (n, k)-source with k = n/ loga n for some constant a. We start from
an AC0 computable (k, ε0) extractor Ext0 : {0, 1}n × {0, 1}d0 → {0, 1}m0 where ε0 = 1/n,
d0 = O(log n), m0 = O(k2/n), which is achieved in [7]. Then for every given constant c, the
new error reduction can reduce the error to be as small as ε = 2− logc(n), with a seed length
O(log n

ε). We briefly describe the main steps of the procedure along with their arguments.
1. Apply Ext0 to X for t = log(n/ε)

log n times in parallel, using independent seeds, outputting
Y1, Y2, . . . , Yt respectively, each of length m0.
Notice that by the error reduction of [25], one can show that with probability at least
1 − ε′ ≥ 1 − O(ε0)t, there exists i such that Yi has min-entropy at least m0 − O(log t),
while the seed length used here is only td0 = O(log(n/ε)). Hence one can deduce that
(Y1, . . . , Yt) is tε′ close to a somewhere (m0, m0 − O(log t)) source. We stress that this
step is also the first step in the error reduction of [7]. But we differ from [7] after then.

2. For each i, cut Yi into l = O(log n) blocks such that their lengths form a geometric
sequence. That is Yi = (Yi,1, Yi,2, . . . , Yi,l), where we let mj = |Yi,j | = m0.1

0 · 3j . Denote
Yi,1...j as the first j blocks of Y . Then for each j, let Bj = (Y1,1...j , Y2,1...j , . . . , Yt,1...j),
i.e. the i-th segment of Bj is the first j blocks from Yi. Regard Bj as a somewhere
high-entropy source and merge it by the merger from the previous part, attaining Zj .
Here we use the same seed for each j. Then we regard (Z1, Z2, . . . , Zl) as a block source
and extract in a standard way by using an extractor Ext1. Here Ext1 is constructed by
first sampling O(log n

ε) bits from the source and then applying universal hashing.
Notice that since the high entropy segment of Y is a (m0, m0 − O(log t)) source, each Bj

has to be a somewhere (Mj , Mj − O(log t)) source, where Mj = m1 + m2 + · · · + mj . Also,
as t = poly log n, the merger can be implemented in AC0. As a result of merging, Zj has a
high constant entropy rate. Since mj , j ∈ [l] forms a geometric sequence, Zj is a constant
times longer than Zj−1. Thus (Z1, Z2, . . . , Zl) is indeed very close to a block source that
has a constant conditional entropy rate. The output length is Ω(log n log n

ε) since for each
block we can sample O(log n

ε) bits and then apply an extractor from the left-over hash
lemma. The seed length is O(log n

ε) since both the merger and the sample-then-extract
have a seed length O(log n

ε).
3. Assume the previous steps give an extractor Ext′. To increase the output length, we run

the above steps again but instead use Ext′ to replace Ext1 in the second step. This can
increase the output length by a Ω(log n) factor. We do this for b times to finally get an
extractor with output length Ω(logb n · log n

ε), for a given arbitrary constant b.

K. Cheng and R. Wu 69:5

Note that in this way the circuit depth has a factor b blow-up. The seed length also has
a factor b blow-up. But as b is a constant, the construction is still in AC0 and the seed
length is still O(log n

ε).

1.2.1.3 Output Stretch

The last part is a new output stretch procedure for AC0 computable extractors. Compared
to the one in [7], the new method attains an output length (1 − γ)k with a seed length
O(log n

ε).
Observe that if the input source already has a constant entropy rate, then this is an

easy case. Because one can do sampling to get a two-block source with constant conditional
entropy rates. Then one can use the extractor derived from the previous part to extract from
the second source, attaining a poly log n

ε length output, and then use it to extract the first
block by applying the main extractor from [7]. However, the hard case is when the entropy
rate is sub-constant i.e. k = n

loga n . The above simple strategy does not work since we don’t
know how to argue that the block attained from sampling can keep a constant fraction of
all entropy while conditioned on this block, the source still keeps a fairly large conditional
entropy. To resolve this issue, we follow a general strategy used in [9]. We describe the
following 3 steps to reduce the hard case to the easy case.
1. Use Ta-shma’s somewhere-block-source converter [33] to convert the original source into

a somewhere-two-block-source.
Recall that Ta-shma’s converter tries every position of the input source. For each position,
the source is cut into two substrings. To avoid having too many segments in the resulting
somewhere-two-block-source, one can pick a cutting position after, for example, every
n/ log2a n consecutive positions. In this way, the number of segments is Λ = log2a n. [33]
shows that for at least one of the position choices, the cutting can give a two-block source
where the first block has entropy Ω(k), and the second has conditional entropy Ω(k).

2. For each segment, apply our extractor in the error reduction part for the second block
and then use the output as a seed to extract the first block by the extractor in [7].
As at least one segment of the somewhere source is indeed a two-block source, the
extraction for the second block can provide an output of length poly log n

ε . This is enough
to extract a constant fraction of entropy i.e. Ω(k) from the first block by [7]. Then what
we get is very close to a somewhere uniform source.

3. Use the merger in AC0 from the previous part to get a source with a constant entropy
rate and min-entropy Ω(k).
As we only have poly log n segments, ε = 2− poly log n, and the entropy rate attained is
a constant, it holds that the merger is in AC0, with a seed length O(log n

ε). Then after
merging, the hard setting is reduced to the previously discussed easy setting, i.e. the
constant entropy rate case.

1.2.2 Extractor in NC1

Our construction for extractor in NC1 can be described by the following 3 steps.
1. First apply a condenser from [19]. Regard the output as (Y1, Y2) such that Y1, Y2 have a

equal length.
Compared to the condenser in [13], the condenser in [19] can only work for k ≥
Ω(log2(n)), ε ≥ 2−O

(√
k(n)
)
, However, the advantage is that it is computable in NC1.

Recall that the [19] (k, k +d, ε) condenser can actually be viewed as Cond : Fn
q ×Fq → Fm

q .
It views the input source as coefficients of a degree n − 1 polynomial f(x) =

∑n−1
i=0 aix

i

APPROX/RANDOM 2024

69:6 Randomness Extractors in AC0 and NC1: Optimal up to Constant Factors

over field Fq, log q = O(log n
ε). The seed is a random element of Fq. The computation is

actually Cond(f, u) = (u, f(u), f (1)(u), . . . , f (m)(u)). Where f (j)(u) =
∑d

i=0
i!

(i−j)! aiu
i−j

is the j-th derivative of f . Notice that all these coefficients i!
(i−j)! can be precomputed

and hardwired in the circuits. The polynomial evaluation consists of three operations:
(1) the powering xi−j , (2) the multiplication of two Fq elements, and (3) the summation
of a polynomial number of elements. The powering could be implemented with two
steps: powering in N and then divided by q, which is computable in NC1 by [4]. The
multiplication and summation are both in NC1 by straightforward realizations. So after
condensing, we get a source (Y1, Y2) with an entropy rate > 3/4. As Y1 and Y2 have an
equal length, they form a two-block source with constant conditional entropy rates.

2. For Y2, apply the extractor from our error reduction to get Z of length O(log2 n log(n/ϵ)).
This step is basically the same as the AC0 case. We make sure the error reduction can
also be done in NC1 under this parameter setting, and the seed length is still O(log n

ε).
3. Apply the improved Trevisan’s extractor [26] to Y1 using Z as the seed.

Notice that this extracts O(k) bits with a desired error. It can be further stretched to
(1 − γ)k by a standard parallel method. Also, notice that it is a folklore that Trevisan’s
extractor [36] and its improved version [26] can be realized in NC1. So our whole
construction is in NC1. The required seed length for improved Trevisan’s extractor is
O(log2 n log(n/ϵ)), and the output from step 2 is enough to feed it. Hence the overall
seed length is O(log n

ε).

1.2.3 A lower bound for AC0 computable dispersers
Our lower bound follows from the improved switching lemma in [28]. Assume Disp :
{0, 1}n × {0, 1}r → {0, 1} is a strong (k, 1

2 − δ)-disperser computable in AC0 with depth d

and size s. Notice that we only need to consider the 1 bit output setting. Consider that
for a fixed seed y ∈ {0, 1}r, we apply a random restriction on Cy := Disp(·, y). Let the
random restriction be Rp over {0, 1, ∗}n such that for every i ∈ [n], independently we have
Pr[Rp(i) = ∗] = p, Pr[Rp(i) = 0] = Pr[Rp(i) = 1] = 1−p

2 . For a restriction ρ sampled from
Rp, the function Cy|ρ is defined to be a function such that if ρi is 1 or 0 then fix the i-th input
to be ρi, otherwise leave it unfixed, and then apply Cy on this modified input. The switching
lemma from [28] basically shows that Prρ∼Rp [Cy|ρ is not constant] ≤ δ, if p = δ

Θ(log s)d−1 .
Also notice that when δ is a constant, with probability at least 1 − 2−O(pn) > 1 − δ, the
number of stars in ρ is at least p/2 fraction. By a union bound and an averaging argument,
one can show that there exists a ρ which has at least pn/2 stars such that for > 1 − 2δ

fraction of y, Cy|ρ is a constant. Notice that if we take this ρ for a uniform input source, then
it becomes a bit-fixing source of entropy k ≥ pn/2 = Θ(δn

logd−1 s
). Also notice that for every

y such that Cy|ρ is not fixed, Supp(Cy|ρ(X)) ≤ 2 as Cy only has 1 bit output. This implies
that | Supp(U, Disp(X, U))| is less than 2δ2r · 2 + (1 − 2δ)2r ≤ (1

2 + δ)2r+1, a contradiction
to the disperser definition.

1.3 Paper Organization
In Section 2 we prepare some basic tools used in the rest of the paper. In Section 3 we show
that merger can be implemented in AC0. In Section 4 we give our new error reduction. In
Section 5 we give our new output stretch and show our AC0 computable extractor finally. In
Section 6 we show our NC1 computable extractor. In Section 7 we give our lower bound for
dispersers in AC0. In Section 8 we describe some open questions.

K. Cheng and R. Wu 69:7

2 Preliminaries

We use the following results from previous works. First, we review the extractors in AC0

from [7]. They are actually logspace-uniform constructions, though [7] did not explicitly
mention this. We briefly explain the reason after exhibiting their results.

▶ Theorem 4 ([7]). For every constant a, c ≥ 1, every k = δn = Θ(n/ loga n) there exists an
explicit (k, 1/nc)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m computable in AC0 with depth
O(a), where d = O(log n), m = k0.01.

▶ Remark 5. Theorem 4 uses several tools and all of them can be implemented by logspace-
uniform AC0 circuits. Specifically they use hardness amplifications from [17] and [18] and the
Nisan-Wigderson (NW) generator [22]. These tools only use 4 kinds of operations: 1) pairwise
independent generator; 2) inner product in FO(log n)

2 ; 3) parity function on O(log n) bits; 4)
Construct a combinatorial design and run the NW generator. It is straightforward to see
that Procedure 1), 2) and 3) are all logspace-uniform. Procedure 4) is also logspace-uniform
by Lemma A.3 in [6].

For smaller errors, they have the following theorem.

▶ Theorem 6 ([7] for small entropy). For every constant γ ∈ (0, 1), a, c ≥ 1, k = δn =
Θ(n/ loga n), ε = 2−Θ(logc n), there exists an explicit (k, ε)-extractor Ext : {0, 1}n ×{0, 1}d →
{0, 1}m in AC0 with depth O(a+c), where d = O

((
log n + log(n/ε) log(1/ε)

log n

)
/δ
)

, m ≥ (1−γ)k.

Also, recall the sample-then-extract technique in AC0.

▶ Theorem 7 ([7] Sample-then-extract). For every constant δ ∈ (0, 1], c ≥ 1 and every
ϵ = 2− logc n, there exists an explicit strong (δn, ϵ)-extractor Ext : {0, 1}n ×{0, 1}d → {0, 1}m

in AC0 with depth O(c), where d = O(log(n/ε)), m = Θ(log(n/ε)).

▶ Remark 8. Theorem 7 has two main ingradients: 1) The NC1 sampler from [15]. 2)
Transforming a circuit of input length l = Θ(logc n), depth O(log l) and size poly(l) to a
AC0 circuit, from [12] (See also Lemma 12). Both of them are indeed logspace-uniform.

Theorem 6 uses Theorem 4 together with an error reduction and output stretch procedure.
Both the error reduction and output stretch only consist of some sample-then extract
techniques and some utilities of the transformation from [12]. Hence it is also logspace-
uniform.

Leftover hash lemma is also needed in our construction.

▶ Lemma 9 (Leftover Hash Lemma [16]). Let X be an (n′, k = δn′)-source. For any ∆ > 0,
let H be a universal family of hash functions mapping n′ bits to m = k − 2∆ bits. The
distribution U ◦ Ext(X, U) is at distance at most 1/2∆ to uniform distribution where the
function Ext : {0, 1}n′ × {0, 1}d → {0, 1}m chooses the U ’th hash function hU in H and
outputs hU (X).

For universal hash functions, we use the construction from Toeplitz matrices. For every
u, the hash function hA(x) equals to Ax where A is a Toeplitz matrix.

Error reduction for extractors has been extensively studied in previous works. We recall
the following key ingredient in the classic error-reducing technique [25].

▶ Lemma 10 (Gx Property [25]). Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (k, ϵ)-extractor
with ϵ < 1/4. Let X be any (n, k + t)-source. For every x ∈ {0, 1}n, there exists a set Gx

such that the following holds.

APPROX/RANDOM 2024

69:8 Randomness Extractors in AC0 and NC1: Optimal up to Constant Factors

For every x ∈ {0, 1}n, Gx ⊂ {0, 1}d and |Gx|/2d = 1 − 2ϵ.
If we draw a y from Ext(X, GX) (draw an x from X, then draw gx uniformly from the
set Gx, take y = Ext(x, gx)), then with probability at least 1 − 2−t over this random
drawing, the y we get can have the property that Pr [Ext(X, GX) = y] ≤ 2−(m−1). Here
Ext(X, GX) is obtained by first sampling x according to X, then choosing r uniformly
from Gx, and outputting Ext(x, r).

We also need to use the following lemmas about low-depth circuits computing.

▶ Lemma 11 (folklore, see also [7]). Let a > 0 be an absolute constant. Then loga(n)-bit
parity can be computed by an AC0 circuit with O(a) depth and poly(n) size.

▶ Lemma 12 ([12]). For every c ∈ N, every integer l = Θ(logc n), if the function fl :
{0, 1}l → {0, 1} can be computed by circuits of depth O(log l) and size poly(l), then it can be
computed by AC0 circuits of depth c + 1, size poly(n).

▶ Remark 13. The transformation from [12] mainly uses Barrington’s Theorem [3] which
provides a Dlogtime-uniform AC0 reduction from any NC1 circuit to a downward self-reducible
NC1-complete language. The self-reducible here is logspace-uniform NC0 reduction. Thus
the NC1 complete language of input size l = Θ(logc n) can be reduced to a language of input
size O(log n) and thus can be decided by logspace-uniform AC0 circuits.

Finally, we use some folklore facts about block sources. Proofs of them can be found in
the full version.

▶ Definition 14 (block source). Let X = (X1, . . . , Xl) such that each Xi is distributed
on {0, 1}ni . We say X is a (n1, k1, n2, k2, . . . , nl, kl)-block source if for every i ∈ [l] and
(x1, . . . , xi−1) ∈ {0, 1}n1+···+ni−1 , Xi|X1=x1,...,Xi−1=xi−1 is a (ni, ki)-source.

▶ Lemma 15. Fix t ∈ N and k, s, n, n1, . . . , nk ∈ N such that n1 + · · · + nk = n. Let
X = (X1, . . . , Xl) be a (n, n − k)-source on {0, 1}n such that Xi is distributed on {0, 1}ni for
each i ∈ [t]. Then (X1, . . . , Xl) is l ·2−s-close to a (n1, n1 −k, n2, n2 −k−s, . . . , nl, nl −k−s)-
source.

▶ Lemma 16. Let X = (X1, . . . , Xl) be a (n1, k1, n2, k2, . . . , nl, kl)-block source on {0, 1}n.
Suppose that Exti : {0, 1}ni × {0, 1}r → {0, 1}mi is a strong (ki, ε)-extractor for each
i ∈ [l]. Let Y be a uniformly random variable on {0, 1}r. Take Z = (Z1, . . . , Zl) such that
Zi = Exti(Xi, Y). Then (Y, Z) is l · ε-close to uniform.

▶ Definition 17 (strong two-block extractor). We say a function Ext : {0, 1}n1 × {0, 1}n2 ×
{0, 1}r → {0, 1}m is a strong (k1, k2, ε)-two-block extractor, if for any (k1, k2)-block-source
X = (X1, X2) and independent uniform random distribution Ur on {0, 1}r, the joint distri-
bution (Ur, Ext(X1, X2, Ur)) is ε-close to uniform distribution on {0, 1}r × {0, 1}m.

▶ Lemma 18. Let Ext1 : {0, 1}n1 × {0, 1}m1 → {0, 1}m2 be a (k1, ε1)-strong extractor, and
Ext2 : {0, 1}n2 × {0, 1}r → {0, 1}m1 be a (k2, ε2)-strong extractor. Then the construction

Ext(X1, X2, Ur) = Ext1(X1, Ext2(X2, Ur)) (1)

is a strong (k1, k2, ε1 + ε2)-two-block extractor

K. Cheng and R. Wu 69:9

3 Merger in AC0

In this section, we will examine the merger construction in [9] and show that the merger can
indeed be implemented in AC0 for some specific setting of parameters.

We start by defining somewhere-(n, k) sources.

▶ Definition 19 (somewhere-(n, k) source). Let X = (X1, . . . , XΛ) such that each Xi is
distributed on {0, 1}n. We say X is a simple somewhere-(n, k) source with Λ segments if there
exists i ∈ [Λ] such that Xi is a (n, k)-source on {0, 1}n. We say X is a somewhere-uniform
source if X is a convex combination of simple somewhere-(n, k) sources.

If n = k in the above definition, which means that Xi is uniform, we say X is a
somewhere-uniform source.

A merger is a function that takes a somewhere-uniform source and a uniform random
seed as input and outputs a (m, k′)-source. The remaining entropy k′ is usually less than
the original entropy k.

▶ Definition 20 (merger and strong merger). We say Merge : {0, 1}Λ·n × {0, 1}r → {0, 1}m

is a (k, k′, ε)-merger if for any somewhere-(n, k) source X = (X1, . . . , XΛ), the distribution
Merge(X, Ur) is ε-close to a k′-source. Here Ur is a independent uniform random distribution
on {0, 1}r

Furthermore, if (Ur, Merge(X, Ur)) is ε-close to (Ur, W), we say Merge is a strong
(k, k′, ε)-merger. Here W is a distribution such that for all a ∈ {0, 1}r, W |Ur=a is a k′-
source.

We examine the merger introduced in [9], and find that the merger can be implemented
in AC0 if the number of segments is not too large.

▶ Theorem 21 (merger in [9]). For any constant a, c > 0, δ ∈ (0, 1), let Λ(n) ≤ loga(n), ε(n) ≥
2− logc(n). Then there exists explicit (n, δn, ε(n))-mergers Merge : {0, 1}Λ(n)·n × {0, 1}r(n) →
{0, 1}n. Here r(n) = O(log(1

ε)).
Furthermore, the mergers can be implemented in AC0 with O(a + c + 1) depth and poly(n)

size,

The merger in [9] is defined as follows:
Define q = 2s be a power of two which is decided later. Let Fq be the finite field of order

q. Let X = (X1, . . . , XΛ) be a somewhere-uniform-source with Λ segments. Regard each Xi

as distributed on FK
q with K = n

s . Then

Xi = (Xi,1, . . . , Xi,K), Xi,j ∈ Fq. (2)

Note that the uniform distribution on FK
q is equivalent to the uniform distribution on

{0, 1}n.
Take γ1, . . . , γΛ be Λ unique points in Fq. Let C1, . . . , CΛ be Λ unique polynomials in

Fq[x] of degree at most Λ − 1, such that Ci(γj) = 1 if i = j and Ci(γj) = 0 if i ̸= j. Then
the merger is defined as:

Merge(X, y) =
(Λ∑

i=1
Ci(y)Xi,1, . . . ,

Λ∑
i=1

Ci(y)Xi,K

)
, (3)

where y ∈ Fq.

APPROX/RANDOM 2024

69:10 Randomness Extractors in AC0 and NC1: Optimal up to Constant Factors

▶ Lemma 22 (merger in [9]). For any constant δ > 0, let q ≥
(2Λ

ε

)1/δ. Then the function
Merge : FK·Λ

q × Fq → FK
q is a (K log q, k, ε)-merger, where k = (1 − δ) · K · log q.

The condition q ≥
(2Λ

ε

)1/δ is equivalent to r ≥ 1
δ log

(2Λ
ε

)
. When Λ = loga(n), ε =

2− logc(n), this requires r ≥ 2
δ logc(n). So we can pick r(n) = min{s ∈ N|s ≥ 2

δ logc(n), ∃d ∈
N, s = 3 · 2d}. As δ is a constant, r(n) = O(logc(n)) = O

(
log
(1

ε

))
.

▶ Lemma 23. For any constant a, c, δ ∈ (0, 1), let Λ(n) ≤ loga n, ε(n) ≥ 2− logc(n). Define
r(n) = min{s ∈ N | s ≥ 2

δ logc(n), ∃d ∈ N, s = 3 · 2d}, q(n) = 2r(n), K(n) = n
r(n) . Then the

(n, δn, ε)-merger Merge : {0, 1}Λ(n)·n × {0, 1}r(n) → {0, 1}n can be implemented in uniform
AC0 with O(a + c + 1) depth and poly(n) size.

To prove the lemma, we can express the Λ polynomials C1, . . . , CΛ by their Λ2 coefficients.
That is:

Ci(y) =
Λ∑

j=1
ci,jyj−1, ci,j ∈ Fq, i ∈ [Λ].

These coefficients are not necessarily computable in AC0. Instead, they can be pre-
determined and stored in the circuit. Note that Λ = loga(n) and r2(n) = O(logc(n)).
Therefore it requires O(logc(n)) bits to store one coefficient, and O(log2a+c(n)) bits to store
all the coefficients.

Therefore, the AC0 circuit for the merger is only required to do three types of operations:
powering, multiplication and summation. The parameters of these operations satisfies the
following conditions:
1. The powering operation is to compute yj , where j ≤ loga(n), and y ∈ Fq. The order

q = 2s is a power of 2, and s = O (logc(n)).
2. The multiplication operation is to compute ci,jyj−1Xi,k, for each i ∈ [Λ], j ∈ [Λ], k ∈ [K].

All of the three multipliers are in Fq.
3. The summation operation is to compute

∑Λ
i=1
∑Λ

j=1 ci,jyj−1Xi,k for each k ∈ [K]. All
the addends are in Fq, and the total number of them is log4a(n).

The following theorems in the work of Healy and Viola [14] show that the powering and
multiplication are indeed in AC0.

▶ Lemma 24 ([14, Corollary 6(1)]). Let a, c > 0 be absolute constants. Let y ∈ Fq where
q = 2s and s = 2 · 3d for some d ∈ N. Suppose that j ≤ loga(n) and s ≤ logc(n), then yj can
be computed by a logspace-uniform AC0 circuit with O(a + c) depth and poly(n) size.

▶ Lemma 25 ([14, Corollary 6(2)]). Let a, c > 0 be absolute constants. Let y1, y2 ∈ Fq where
q = 2s and s = 2 · 3d for some d ∈ N. Suppose that s ≤ logc(n), then y1 · y2 can be computed
by a logspace-uniform AC0 circuit with O(c) depth and poly(n) size.

The summation operation is also in AC0, as the summation of elements in Fq where
q = 2s is equivalent to bitwise parity of the binary representation of the elements if we
implement Fq by polynomial fields with coefficients in F2. When the number of addends is
poly log n, it is in AC0 by Lemma 11.

With these results, the merger can be implemented in AC0 with O(a + c) depth and
poly(n) size.

K. Cheng and R. Wu 69:11

Proof of Lemma 23. It is sufficient prove that each
∑Λ

i=1
∑Λ

j=1 ci,jyj−1Xi,k can be com-
puted in AC0 with O(a + c) depth and poly(n) size. The powering could be computed in
O(a + c) depth and poly(n) size by Lemma 24. The multiplication could be computed in
O(c) depth and poly(n) size by Lemma 25. The summation could be computed in O(a)
depth and poly(n) size by Lemma 11. ◀

Theorem 21 follows directly from Lemma 22 and Lemma 23.

Proof of Theorem 21. Take r(n) = min{s ∈ N|s ≥ 2 logc(n)
δ , ∃d ∈ N, s = 3 · 2d}, q(n) =

2r(n), K(n) = n
r(n) as discussed above. By Lemma 22, we know that the merger is a

(n, k(n), ε(n))-merger, where k(n) = (1 − δ)n. By Lemma 23, we know that the merger can
be implemented in AC0 with O(a + c) depth and poly(n) size. ◀

As noted in [9], their merger for somewhere uniform sources can be extended to handle
somewhere high entropy sources. Following their idea, we also prepare a merger for somewhere
high entropy sources, and furthermore, it is computable by low-depth circuits.

▶ Corollary 26. Let δ ∈ (0, 1), Λ(n) ≤ poly(n), ε(n) = 2−O(n) , ∆(n) = O(log(n
ε)).Then there

exists a strong (n − ∆(n), δm(n), ε(n))-merger Merge : {0, 1}Λ(n)·n × {0, 1}r(n) → {0, 1}m(n).
Here r(n) = O(log(n

ε)) and m(n) = Ω(n). The merger is computable in logspace-uniform
AC0[2].

If Λ(n) ≤ loga(n), ε(n) ≥ 2− logc(n) for constant a, c > 0, then the merger can be imple-
mented in AC0 with O(a + c + 1) depth and poly(n) size.

4 Error Reduction

The main theorem of this section is the following:

▶ Theorem 27. For any constant a, c > 0, b ∈ N+, every k(n) ≥ n/ loga(n), ε(n) ≥ 2− logc(n),
there exists a strong (k(n), ε(n))-extractor Ext : {0, 1}n × {0, 1}r(n) → {0, 1}m(n), where
r(n) = O(log(n

ε(n))), m(n) = Θ
(

logb(n) · log(n
ε(n))

)
.

Furthermore, the extractor can be implemented in AC0 with O(b(a + c + 1)) depth.

We show this theorem by giving a new error reduction stated as the following. To describe
it, We fix a > 0 to be a constant and k(n) = n

loga n .

▶ Lemma 28. For any ε0 ∈ (0, 1) every constant c > 0 and ε = 2− logc n, suppose there exists
a (k, ε0)-extractor Ext0 : {0, 1}n ×{0, 1}d0 −→ {0, 1}m0 with m0 ≥ k0.01 and a family of strong
(n1/100, ε)-extractors Ext1 : {0, 1}n1 × {0, 1}d1 −→ {0, 1}m1 for every n1 ∈ [m0.1

0 , m0], Then
for any ε = 2− logc n, there exists a strong (k, ε)-extractor Ext′ : {0, 1}n × {0, 1}d → {0, 1}m,
where d = O(d1 + d0 · log ε

log ε0
), m = Θ (m1 · log n).

If Ext0 and Ext1 can be realized by depth h and g AC circuits respectively,then Ext′

can be realized by a depth O(h + g + c + 1) AC circuit.

Now we describe the construction and analysis of Lemma 28.

4.1 Step 1: extracting in parallel
We apply Ext0 for t = log(1/ε)

log(1/ε0) times in parallel, with independent seeds. Specifically, take
U1,i be independent uniform seeds in {0, 1}d0 for every i ∈ [t]. Let Y = (Y1, Y2, . . . , Yt),
where Yi = Ext0(X, U1,i).

The step can be computed by depth h AC circuits because the extractor Ext0 has depth
h, and the parallel extraction can be done without increasing the depth.

APPROX/RANDOM 2024

69:12 Randomness Extractors in AC0 and NC1: Optimal up to Constant Factors

Analysis

We now show that Y is close to a somewhere-(m0(n), m0(n) − O(log t))-source. The main
idea is that by Lemma 10, we know that with high probability, at least one of the seeds Ui

lands in Gx, which makes Yi a good source with a high entropy rate. The following lemma
states this formally:

▶ Lemma 29. Let Ext0 : {0, 1}n × {0, 1}d0 → {0, 1}m0 be an (k, ε0)-extractor and X be a
(n, k + s)-source. Take independent seeds U1, U2, . . . , Us ∈ {0, 1}d0 . Let Y = (Y1, Y2, . . . , Yt),
where Yi = Ext0(X, Ui). Then Y is (2ε0)t + t ·2−s-close to a somewhere-(m0, m0 −O(log t))-
source

Take x from a fixed distribution X and fix extractor Ext. Let Gx be the set of good seeds
from Lemma 10. We first denote event BADi = {Ui ̸∈ GX}. Note that these events are not
necessarily independent. However, the probability that all of them happen is exponentially
small, as the following claim shows.

▷ Claim 30. Pr[BAD1 ∧ BAD2 ∧ · · · ∧ BADt] ≤ (2ε0)t.

We define an indicator random variable I ∈ {0, 1}[t] as follows:

∀i ∈ [t], i ∈ I ⇐⇒ Ui ∈ GX . (4)

With probability at least 1 − (2ε0)t, The set I is not an empty set. Take Yi = Ext(X, Ui).
By Lemma 10, Yi|(BADi)c = Yi|i∈I is 2−s-close to a (m0, m0 − O(1)) source.

We apply the technique from [20] to prove that (Y1, Y2, . . . , Yt) is indeed close to a
somewhere-(m0, m0 − O(log t))-source.

▶ Lemma 31 ([20]). Let Y = (Y1, . . . , Yt) be the random variable defined in Lemma 29. Let
I be a random set subset of [t]. Assume I ̸= ∅, and for every i ∈ [t], Yi|i∈I is ε-close to a
(m, k)-source. Then Y is (t · ε)-close to a somewhere-(m, k − log t) source.

By Claim 30 and Lemma 31, we can prove Lemma 29:

Proof of Lemma 29. Take I as the random set indicator defined above. By Lemma 10,
Yi|(BADi)c = Yi|i∈I is 2−s-close to a (m0, m0 −O(1)) source. By Claim 30, we know that with
probability at least 1 − (2ε0)t, I is not an empty set. Conditioning on such events, Lemma 31
implies that Y |{I ̸=∅} is t · 2−s-close to a somewhere-(m0, m0 − O(log t)) source. The lemma
follows. ◀

4.2 Step 2: divide and merge
Assume we have a somewhere-(m0, m0 − O(log t))-source. We divide each segment of the
source into a sequence of blocks whose lengths form a geometric sequence. Specifically, take
Y = (Y1, Y2, . . . , Yt) to be a simple somewhere-(m0, m0 − O(log t))-source. We divide each
Yi into l + 1 blocks of length m1, m2, . . . , ml+1 respectively, such that

Yi = (Yi,1, Yi,2, . . . , Yi,l+1) for every i ∈ [t]. (5)

The lengths satisfies

mj = m0.1
0 · 3j−1 for every j ∈ [l]. (6)

K. Cheng and R. Wu 69:13

where l =
⌊
log3 m0.9

0
⌋
. Denote Yi,1...j = (Yi,1, Yi,2, . . . , Yi,j) for every i ∈ [t] and j ∈ [l].

Define Bj as:

Bj = (Y1,1...j , Y2,1...j , . . . , Yt,1...j) for every j ∈ [l]. (7)

We denote Mj = m1 + m2 + · · · + mj for every j ∈ [l].
Let Mergej : {0, 1}t·Mj × {0, 1}d2(n) → {0, 1}(1−α)Mj be a strong (Mj − ∆, 3

4 (1 −
α)Mj , ε(n)/l)-merger from Corollary 26 for every j ∈ [l], where α is a constant. The
seed length of the merger is d2(n) = O(log(Mj

ε(n))) = O(log(m(n)
ε(n))). Let U2 be a uniform

random variable on {0, 1}d2(n). Define

Zj = Mergej(Bj , U2) for every j ∈ [l]. (8)

The gap between source length and source entropy is ∆ = O(log t) = O(log 1
ε(n)), which

meets the requirement that ∆ = O(log Mj

ε(n)) in Corollary 26.
Next, we apply the strong extractor family Ext1 to extract from the block source.

Let Ext1,j : {0, 1}(1−α)Mj × {0, 1}d3(n) → {0, 1}m′(n) be a strong ((1 − α)Mj/100, ε(n)/l)-
extractor for every j ∈ [l]. These Ext1,j , j ∈ [l] with different input lengths, are all from the
family Ext1. Let U3 be a uniform random variable on {0, 1}d3(n). Then

Wj = Ext1,j(Zj , U3) for every j ∈ [l]. (9)

Analysis

Now we give our analysis. Note that since Y is a simple somewhere high entropy source,
by dividing it into blocks, each prefix Bj is a simple somewhere-(Mj , Mj − O(log t))-source.
Through merging, Zj ’s are correlated high-entropy sources with different lengths. They are
close to a block source.

▶ Lemma 32. Zj is ε(n)/l-close to a ((1 − α)Mj , 3
4 (1 − α)Mj)-source for every j ∈ [l].

Proof. Let Yi be a (m0, m0 − O(log t))-source in Y . Then Yi,1...j must have entropy at least
mj − O(log t). Therefore Bj is a somewhere-(mj , mj − O(log t))-source. By Corollary 26, Zj

is ε(n)/l-close to a ((1 − α)Mj , 3
4 (1 − α)Mj)-source. The claim follows. ◀

Denote Z0 = (U1, U2) as the seeds used in all previous steps to obtain Z1, . . . , Zj . We
stress that the sequence Z0, Z1, . . . , Z1 is of exponentially increasing length and each contains
|Zj | − O(log 1

ε(n)) bits of min-entropy. Therefore, even if all the randomness in (Z0, . . . Zi) is
contained in Zi+1, there still must be Ω(|Zi+1|) bits of conditional min-entropy within Zi+1.
That makes the sequence a block source. We formalize the inspection into the following
lemma.

▶ Lemma 33. (Z0, Z1, Z2, . . . , Zl) is 2ε(n)-close to a block source (Z0, Z ′
1, Z ′

2, . . . , Z ′
l). The

conditional entropy of Z ′
j is larger than (1 − α)Mj/100 = Ω((1 − α)Mj) for each j ∈ [l]

Then we can extract from the block-source (Z0, Z1, Z2, . . . , Zl) using standard methods,
which gives (Z0, U3, W1, W2, . . . , Wl):

▶ Lemma 34. (Z0, U3, W1, W2, . . . , Wl) is 3ε(n)-close to (Z0, U3, V), where V is a independ-
ent uniform distribution.

APPROX/RANDOM 2024

69:14 Randomness Extractors in AC0 and NC1: Optimal up to Constant Factors

4.3 Wrap-up to prove Lemma 28 and Theorem 27

Proof of Lemma 28. Take X be the sources, U1, U2, U3 be the seeds. Let Y = (Y1, Y2, . . . , Yt)
such that Yi = Ext0(X, U1,i) for every i ∈ [t] as in the first step. By Lemma 29,
Y is ε(n)-close to a somewhere-(m(n), m(n) − O(log t))-source. Let Bj be the source
(Y1,1...j , Y2,1...j , . . . , Yt,1...j) for every j ∈ [l]. Then take Zj = Mergej(Bj , U2) and Wj =
Ext1,j(Zj , U3) for every j ∈ [l] as in the second step. Here Ext1,j is the strong extractor
from family Ext1 with source length n1 = mj . By Lemma 34 and its remark, (U1, U2, U3, W)
is 3ε(n)-close to uniform if Y is a somewhere-(m(n), m(n) − O(log t))-source. By the triangle
inequality, W is 4ε(n)-close to uniform.

Step 1 executes the extractor Ext0 in parallel, which costs depth h. Step 2 executes the
merger Mergej from Corollary 26 and the extractor Ext1,j , for every j ∈ [l] in parallel. This
takes depth O(c + g). So the overall depth is as the lemma stated.

The seed length of the extractor is d(n) = |U1| + |U2| + |U3|. U1 = (U1,1, U1,2, . . . , U1,t)
where |U1,i| = d0 for every i ∈ [t] and t = log ε(n)

log ε0
. |U2| = O(log(n

ε(n))) and |U3| = d1.
Therefore d = O(d1 + d0 · log ε

log ε0
).

The output consists of Θ (log n) parts of length m1. Therefore the output length is
m = Θ (m1 · log n). ◀

We instantiate Ext0 as the extractor from Theorem 4 and Ext1 as the strong extractors
from Theorem 7, which gives the following theorem:

▶ Corollary 35. For any constant a, c > 0, every k(n) ≥ n/ loga(n), ε(n) ≥ 2− logc(n),
there exists a strong (k(n), ε(n))-extractor Ext : {0, 1}n × {0, 1}r(n) → {0, 1}m(n), where
r(n) = O(log(n

ε(n))), m(n) = Θ
(

log(n) · log(n
ε(n))

)
.

Furthermore, the extractor can be implemented in uniform AC0 with O(a + c + 1) depth.

The only gap between Corollary 35 and Theorem 27 is that the output length of Co-
rollary 35 is only Θ

(
log(n) · log(n

ε)
)

instead of Θ
(

logb(n) · log(n
ε)
)

. We resolve the issue
by repeatedly using Lemma 28, each time instantiating Ext1 in Lemma 28 as the strong
extractor family provided by the immediate previous using of Lemma 28. After an iteration,
the output length is multiplied by a Θ(log n) factor. Therefore we can achieve the parameter
as in Theorem 27 after b iterations.

5 Output Stretch

In this section, we will use the framework introduced in [9], to further stretch the output
length from O(logc(n)) to a near-optimal O(k). The main theorem of this section is the
following:

▶ Theorem 36. For any constant a, c > 0 and γ ∈ (0, 1), let k(n) ≥ n
loga(n) , ε(n) ≥ 2− logc(n).

Then there exists a (k(n), ε(n))-strong extractor Ext : {0, 1}n × {0, 1}r(n) → {0, 1}m(n), such
that r(n) = O(log(n

ε)), and m(n) ≥ (1 − γ) · k(n).
Furthermore, the extractor can be implemented in AC0, with O(a + c + 1)2 depth and

poly(n) size.

We use a four-step method to extract randomness.

K. Cheng and R. Wu 69:15

5.1 Step 1: Converting to a somewhere-block-source
In this subsection, we will convert the original k-source into a somewhere-block-source. First,
we define the concept:

▶ Definition 37 (somewhere-block-source). Let X = (X1, . . . , XΛ) be a random variable
with Λ segments, each Xi distributed on {0, 1}n1 × {0, 1}n2 . We say X is a simple (k1, k2)-
somewhere-block-source if there exists i ∈ [Λ] such that Xi is a (k1, k2)-block-source. We
say X is a (k1, k2)-somewhere-block-source if X is a convex combination of simple (k1, k2)-
somewhere-block-sources.

Ta-shma’s somewhere-block-source converter [33] is a deterministic function that converts
a k1 + k2 + s-source into a (k1 − O(n/Λ), k2)-somewhere-block-source, which has Λ segments.

Take X1 ∈ {0, 1}n as the original source, assume n is divisible by Λ, otherwise pad X1
with 0’s. Regard X1 as a source with Λ parts, each of length n/Λ:

X1 = (X1,1, . . . , X1,Λ) ∈
(

{0, 1}n/Λ
)Λ

. (10)

Now define the following separation of these parts into (Yi, Zi):

Yi = (X1,1, . . . , X1,i, 0(Λ−i)·(n/Λ)), (11)

Zi = (0i·(n/Λ), X1,i+1, . . . , X1,Λ). (12)

Then (Yi, Zi) ∈ {0, 1}2n. The Ta-shma’s somewhere-block-source converter is defined as
the collection of all (Yi, Zi), for i ∈ [Λ]:

BΛ
T S(X1) =

{
(Yi, Zi) ∈ {0, 1}2n | i ∈ [Λ]

}
. (13)

▶ Theorem 38 ([33]). Let Λ be an integer and Λ divides n. Let BΛ
T S be the Ta-shma’s

somewhere-block-source converter defined above. Fix k, k1, k2, s ∈ N such that k = k1 + k2 + s.
Then for any k-source X ∈ {0, 1}n, BΛ

T S(X) is O(n · 2−s/3)-close to a (k1 − O(n/Λ), k2)-
somewhere-block-source.

Now we summarize the first step:

Step 1: Set Λ = log2a(n), Take X2 = (X2,1, . . . , X2,Λ) = BΛ
T S(X1) as a somewhere-block-

source.

▶ Lemma 39. For any constant a ≥ 0, let k ≥ n
loga(n) . Then for any k-source X1 ∈ {0, 1}n,

the somewhere-block-source X2 = BΛ
T S(X1) is n · 2− n

log2a n -close to a (k − O(n
log2a n

), n
log2a n

)-
somewhere-block-source.

The first step can be computed in AC0 with O(1) depth and poly(n) size, as it is only
splitting the input into blocks.

5.2 Step 2: Extracting from a somewhere-block-source
In this subsection, we focus on the good block of the somewhere-block-source, and extract
randomness from it. A two-block extractor is employed in this section. We use the block-
extraction technique together with our extractors from Theorem 6 and Theorem 27 to extract
O(loga+c n) randomness from the second block of the block source, then use it as seed for
another extractor, in order to extract O(k) randomness from the first block of the block
source.

APPROX/RANDOM 2024

69:16 Randomness Extractors in AC0 and NC1: Optimal up to Constant Factors

For a somewhere-block-source, we may apply the two-block extractor to each segment
such that the good segment is converted into a somewhere-close-to-uniform source. The
source is defined as follows:

▶ Lemma 40. Let X = (X1, . . . , XΛ) be a (k1, k2)-somewhere-block-source, where each
segments is a source on {0, 1}n1 × {0, 1}n2 . Let Ext : {0, 1}n1 × {0, 1}n2 × {0, 1}r → {0, 1}m

be a (k1, k2, ε)-strong-two-block extractor. Let Ur be a uniform random distribution on {0, 1}r.
Then

(Ext(X1, Ur), . . . , Ext(XΛ, Ur))

is ε-close to a somewhere-uniform-source.

Take Ext1 from Theorem 6 and Ext2 from Theorem 27. Construct Ext(X1, X2, Ur) =
Ext1(X1, Ext2(X2, Ur)) as a strong-two-block extractor. We have the following theorem:

▶ Theorem 41 (block-extraction in AC0). There exists a constant γ ∈ (0, 1). For any
constant a, c > 0, let k1(n) ≥ n

loga(n) , k2(n) ≥ n
log2a(n) , ε(n) ≥ 2− logc(n), there exists a

(k1(n), k2(n), ε(n))-strong-two-block extractor Ext : {0, 1}n × {0, 1}n × {0, 1}r → {0, 1}m,
such that r(n) = O(log(n

ε)), and m(n) ≥ (1 − γ)k1(n).
Furthermore, the extractor can be implemented in AC0, with O(a + c + 1)2 depth and

poly(n) size.

We summarize the second step here:

Step 2: Take Ext : {0, 1}n ×{0, 1}n ×{0, 1}r1(n) → {0, 1}m(n) as a (n
loga(n) , n

log2a(n) , ε(n))-
strong-two-block extractor, where r1(n) = O(log(n

ε)) and m(n) ≥ (1 − γ)k(n). Take
X3 = (Ext(X2,1, Ur1), . . . , Ext(X2,Λ, Ur1)) be 2 · ε(n)-close to a somewhere-uniform-
source.

This step can be implemented in AC0 with O(a + c) depth and poly(n) size, as it is
applying AC0 functions to each block of the input.

The source X3 is now ε(n)-close to a somewhere-uniform-source. It has Λ = log2a(n)
segments, each of length m(n) ≥ (1 − γ)k(n). The next step is using the merger introduced
in [9] to merge the segments into one source.

5.3 Step 3: Merging the segments

We use the merger introduced in [9] to merge the segments of the somewhere-uniform-source
into one source. The construction of the merger is discussed in Theorem 21.

Step 3: Take Merge : {0, 1}Λ·m(n) × {0, 1}r2(n) → {0, 1}m(n) be the (m(n), 3
4 m(n), ε(n))-

merger from Theorem 21. Then X4 = Merge(X3, Ur2).

As a direct consequence of Theorem 21 we have the following lemma.

▶ Lemma 42. X4 is 3 · ε(n)-close to a 3
4 m(n)-source.

Also, notice that the computation in AC0 with depth O(a+c), with seed length O(log(n/ε(n)).

K. Cheng and R. Wu 69:17

5.4 Step 4: Second extraction
The final step is as the following.

Step 4: Take Ext2 : {0, 1}m(n)/2 × {0, 1}m(n)/2 × {0, 1}r3(n) → {0, 1}m′(n) be the
(1

8 m(n), 1
8 m(n), ε(n))-strong-two-block extractor from Theorem 41, where r3(n) =

O(log(n
ε)) and m′(n) ≥ 1−γ

6 · m(n). Take X5 = Ext2(X ′
4, X ′′

4 , Ur3), where Ur3 is a
uniform random distribution on {0, 1}r3(n), where (X ′

4, X ′′
4) = X4.

▶ Lemma 43. X5 is 5ε(n) close to uniform.

The circuit depth of Ext2 is O(a + c + 1)2 by Theorem 41.
Now we prove the main theorem of this section:

▶ Theorem 44. For any constant a, c > 0, γ′ ∈ (0, 1), let k(n) ≥ n
loga(n) , ε(n) ≥ 2− logc(n).

Then there exists a (k(n), ε′(n))-strong extractor Ext : {0, 1}n ×{0, 1}r(n) → {0, 1}m(n), such
that r(n) = O(log(n

ε(n))), and m(n) ≥ (1 − γ′) · k(n).
Furthermore, the extractor can be implemented in AC0, with O(a + c + 1)2 depth and

poly(n) size.

Proof. The extractor Ext is defined as Ext(X1, Ur1 , Ur2 , Ur3) = X5, where X5 is defined
through the four steps above. Detailed analysis could be found in the full version. ◀

6 Extractors in NC1

Our method can also construct extractors in NC1 with improved parameters. The construction
consists of 3 parts:
1. Apply a condenser from [19]. It behaves like the GUV condenser but is computable in

NC1. It condenses the source into a source with a constant entropy rate. We regard the
output as a block source.

2. For the second block, apply our error reduction method which outputs a seed of length
O(log2 n log(n/ϵ)).

3. Apply the improved Trevisan’s extractor [26] to the first block, which outputs Ω(k) bits
of randomness.

The main theorem is as follows:

▶ Theorem 45. For every constant γ ∈ (0, 1) every k = k(n) ≥ Ω(log2(n)), ε = ε(n) ≥
2−O

(√
k(n)
)
, there exists a strong (k, ε) extractor Ext : {0, 1}n × {0, 1}r(n) → {0, 1}m(n)

computable in NC1, with r(n) = O(log(n/ε)), m(n) = (1 − γ)k(n).

6.1 Condenser in NC1

The first component in our construction is the condenser from [19]. A simplified version of
their result is as follows:

▶ Lemma 46 (condenser from [19]). For every k = k(n) ≥ Ω(log2(n)), ε = ε(n) ≥ n ·
2−

√
k(n)/1024, There exists m(n) ≤ 3

2 k(n) and a function Cond : {0, 1}n × {0, 1}r(n) →
{0, 1}m(n) with r ≤ 4 log(n

ε) such that Cond is a (k, k + r, ε)-condenser.

APPROX/RANDOM 2024

69:18 Randomness Extractors in AC0 and NC1: Optimal up to Constant Factors

The condenser takes the input x as the representation of a degree ≤ d = O(n
log q)

polynomial over Fq for some prime q ≥ d, log q ≥ r. Denote the degree ≤ d polynomial as f .
The condenser takes the seed y as a point in Fq. Then the output is defined as:

Cond(x, y) = (y, f(y), f (1)(y), . . . , f (s)(y)) (14)

for some s = s(n) ≤ m(n)
r(n) . f (i) denotes the i-th formal derivative of f .

To apply the condenser, we need to transform a source on {0, 1}n to a source on Fq

and transform it back for the output. We use division to do the transformation, which is
computable in NC1.

The condenser itself requires two sorts of operations: polynomial evaluation and formal
derivative. Denote f(x) =

∑d
i=0 aix

i. Then f (j)(x) =
∑d

i=0
i!

(i−j)! aix
i−j . There are at

most d2 such coefficients i!
(i−j)! , which can be precomputed and stored in the circuit. The

multiplication of ai and i!
(i−j)! can be done in NC1. Therefore, the formal derivative is

computable in NC1.
The polynomial evaluation consists of three operations: calculating the powering xi−j ,

multiplication and summation. The powering can be implemented with two steps: O(n)-th
powering and division by q, which are computable in NC1 according to [4]. The multiplication
and iterated summation are both in NC1.

Putting it together, we can obtain the following lemma:

▶ Lemma 47. The condenser from Lemma 46 is computable in NC1.

Regard the output of the condenser as (X1, X2), |X1| = |X2| = 1
2 m(n). By Lemma 15,

(X1, X2) is ε(n)-close to a (1
2 m(n), 1

6 m(n), 1
2 m(n), 1

6 m(n))-source.

6.2 Error Reduction in NC1

After condensing, we only need to handle an input (n, k) source X over {0, 1}n with constant
entropy rate δ = k

n . To extract a seed of length O(log n log(n/ϵ)), we use almost the same
procedure as in Section 4 despite some minor changes.

For the first step to convert the source to a somewhere source, we use the same extractors
as in Section 4. We apply the extractors in parallel for t = log n

log(1/ε) = O(
√

k) times. Then
the output is ε-close to a somewhere (m0, m0 − log(t))-source, where m0 = Ω(k).

For the second step, we still apply the (m0 − log(t), 0.9m0, ε)-merger from Corollary 26
to the output of the first step as in Section 4. Since ε ≥ 2−O(

√
k) and t = poly(k), the merger

is computable in NC1.
After applying the merger, we obtain a block-source with exponentially increasing length.

We require a modification to Theorem 7 for the NC1 setting. The main difference is
that the error is now 2−O(

√
k) instead of 2− poly(log n). Also we setup the block length

mj = 3j · 10 log n
ε , j ∈ [l], where l can still be O(log n), since ε = 2−O(

√
k).

To extract from the block source, we require the following extractor in NC1.

▶ Lemma 48. For every constant δ ∈ (0, 1] and every ε = 2−O(n), there exists an explicit
(δn, ε)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m in NC1, where d = O(log(n/ε)), m =
Θ(log(n/ε)).

We use the sample-then-extract technique with leftover hash lemma to construct the
extractor. Detailed analysis could be found in the full version.

Using the extractor to extract from the block source as in Section 4, we obtain a seed of
length O(log n log(n/ε)).

One can use the iteration of Section 4 to stretch the output to O(log2 n log(n/ε)).

K. Cheng and R. Wu 69:19

This gives us the following lemma:

▶ Lemma 49. For every δ ∈ (0, 1), k = δn, ε = ε(n) = 2−O(
√

k), there exists a strong
(k(n), ε(n))-extractor Ext : {0, 1}n × {0, 1}r(n) → {0, 1}m(n) computable in NC1, with
r(n) = O(log(n/ε)), m(n) = O(log2(n) log(n/ε)).

6.3 Improved Trevisan’s Extractor in NC1

With the seed of length O(log2 n log(n/ε)), We apply the extractor from [26] to the first
block of the block source. Their extractor could be implemented in NC1

▶ Theorem 50 (Improved Trevisan’s Extractor [26]). For every k = k(n), ε = ε(n), there
are explicit (k(n), ε(n))-extractors ExtT rev : {0, 1}n × {0, 1}r(n) → {0, 1}m(n) with r(n) =
O(log2(n) log(n/ε)) and m(n) = Ω(k(n)).

Moreover,the extractor ExtT rev is computable in NC1.

6.4 Putting it together
Now we can prove Theorem 45.

Proof of Theorem 45. Take X as the input source. Let Cond : {0, 1}n × {0, 1}r1(n) →
{0, 1}m(n) be the (k, k + r1, ε/4)-condenser from Lemma 46. Take (X1, X2) = Cond(X, U1),
where U1 is the seed of length r1 = O(log(n/ε)). By Lemma 15, (X1, X2) is ε/2-close to a
(1

2 m(n), 1
6 m(n), 1

2 m(n), 1
6 m(n))-source.

For X2, apply the (1
6 m(n), ε/4)-strong extractor Ext1 from Lemma 49 with seed U2 of

length r2 = O(log(n/ε)). The output is Y = Ext1(X2, U2) of length O(log2(n) log(n/ε)).
For X1, apply the (1

2 m(n), ε/4)-extractor ExtT rev from Theorem 50 with seed Y , which
outputs a distribution W of length Ω(k).

By the property of Ext1, (X1, Y) is 3ε/4-close to (X1, Y ′) such that Y ′ is a independent
uniform distribution. Therefore W = ExtT rev(X1, Y) is ε-close to uniform.

The extractor Ext is defined as Ext(X, U1, U2) = W . Cond, Ext1, ExtT rev are all
computable in NC1. Therefore, Ext is computable in NC1. ◀

7 Entropy lower bound for AC0 dispersers

In the context of AC0 computation, not all sources are extractable. A well-known result
of [10] shows that extracting even one bit of randomness is impossible for sources with
entropy less than n

poly(log n) . Similar result from [7] shows that extracting randomness with
error less than 2−poly(log n) is impossible for AC0 extractors.

In this section, we will extend the bound from extractors to dispersers. Dispersers are
functions that take a source and a seed and output a distribution like extractors. The only
difference is that the output distribution is not necessarily uniform, but rather supported
on all but a small fraction of the codomain. We will show that strong AC0 dispersers for
sources with entropy less than n

poly(log n) do not exist.

▶ Definition 51 (Disperser). A function Disp : {0, 1}n × {0, 1}r → {0, 1}m is a (k, ε)-
disperser if for every k-source X on {0, 1}n and uniformly random variable Y on {0, 1}r,
| Supp(Disp(X, Y))| ≥ (1 − ε)2m.

Furthermore, Disp is a strong (k, ε)-disperser if for every k-source X on {0, 1}n and
uniformly random variable Y on {0, 1}r, | Supp(Y, Disp(X, Y))| ≥ (1 − ε)2r+m.

APPROX/RANDOM 2024

69:20 Randomness Extractors in AC0 and NC1: Optimal up to Constant Factors

We remark that the requirement for X to have entropy ≥ k can be replaced by a weaker
requirement, which only requires Supp(X) ≥ 2k, without changing the definition.

Our proof is based on the new switching lemma for AC0 circuits by Rossman in [28].
Their original result says that every AC0 circuit can be reduced to a decision tree of arbitrary
depth under a random restriction for all but a small fraction of the inputs. By restricting
the inputs for the second time, it is reduced to a constant function.

▶ Definition 52 (Restrictions). A restriction ρ is a string on {0, 1, ∗}n. We denote the
application of ρ to x ∈ {0, 1}n by ρ ◦ x, which is defined as:

(ρ ◦ x)i =
{

ρi if ρi ̸= ∗,

xi if ρi = ∗.
(15)

The restriction on a function f : {0, 1}n → {0, 1}m is defined as:

f |ρ(x) = f(ρ ◦ x). (16)

We use Rp to denote the independent uniform random restriction with star probability p.
That is, for every i ∈ [n], Pr[Rp(i) = ∗] = p, Pr[Rp(i) = 0] = Pr[Rp(i) = 1] = 1−p

2 .

The switching lemma for AC0 circuits is stated as follows:

▶ Lemma 53 (Switching Lemma for AC0 circuits [28]). For every δ ∈ (0, 1), d > 0, s = s(n),
there exists p = δ

Θ(log s)d−1 such that for every AC0 circuit C of size s and depth d,

Pr
ρ∼Rp

[C|ρ is not constant] ≤ δ. (17)

The following negative result for strong dispersers directly follows from the switching
lemma.

▶ Theorem 54. For every d > 0, s = s(n), every constant δ ∈ (0, 1), if C : {0, 1}n ×{0, 1}r →
{0, 1} is a (k, 1

2 − δ)-disperser that can be computed by a non-uniform AC circuit of size s

and depth d, then k ≥ Θ(δn
logd−1 s

).

8 Open Questions

We mention the following open questions.
For extractors in AC0, can we further improve the circuit depth? The current depth is
O(a + c + 1)2. Is it possible to be linear in a + c + 1, while maintaining other parameters
to be roughly the same?
For extractors in NC1, can we improve the plausible range of k and ε? For example is it
possible to give an NC1 construction that can work for all k, ε, matching the parameters
in [13]?
Some components of our NC1 computable extractors are actually in AC0[2]. Is it possible
to give an extractor in AC0[2], with parameters optimal up to constant factors?
For weak dispersers, we do not have a similar negative result to that of Section 7. The
reason is that a single good seed in the seed space can make the disperser good enough,
regardless of other seeds. So it remains an open question whether weak dispersers can
constructed in AC0, specifically for sources with entropy less than n

poly(log n) .

K. Cheng and R. Wu 69:21

References
1 Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge

University Press, 2009.
2 Z. Bar-Yossef, O. Reingold, R. Shaltiel, and L. Trevisan. Streaming computation of com-

binatorial objects. In Proceedings of the 17th Annual IEEE Conference on Computational
Complexity, pages 165–174, 2002.

3 David A Barrington. Bounded-width polynomial-size branching programs recognize exactly
those languages in nc. In Proceedings of the eighteenth annual ACM symposium on Theory of
computing, pages 1–5, 1986.

4 Paul Beame, Stephen A. Cook, and H. James Hoover. Log depth circuits for division and
related problems. SIAM J. Comput., 15(4):994–1003, 1986. doi:10.1137/0215070.

5 J. L. Carter and M. N. Wegman. Universal classes of hash functions. Journal of Computer
and System Sciences, 18:143–154, 1979.

6 Lijie Chen and Roei Tell. Hardness vs randomness, revised: Uniform, non-black-box, and
instance-wise. In 62nd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 125–136. IEEE, 2021. doi:
10.1109/FOCS52979.2021.00021.

7 Kuan Cheng and Xin Li. Randomness extraction in ac0 and with small locality. In Ap-
proximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM) 2018. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.

8 Gil Cohen, Dean Doron, Ori Sberlo, and Amnon Ta-Shma. Approximating iterated multiplic-
ation of stochastic matrices in small space. In Barna Saha and Rocco A. Servedio, editors,
Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, Or-
lando, FL, USA, June 20-23, 2023, pages 35–45. ACM, 2023. doi:10.1145/3564246.3585181.

9 Zeev Dvir, Swastik Kopparty, Shubhangi Saraf, and Madhu Sudan. Extensions to the Method
of Multiplicities, with Applications to Kakeya Sets and Mergers. SIAM Journal on Computing,
42(6):2305–2328, January 2013. doi:10/f5msx6.

10 Oded Goldreich, Emanuele Viola, and Avi Wigderson. On randomness extraction in AC0. In
Proceedings of the 30th Conference on Computational Complexity, CCC ’15, pages 601–668,
Dagstuhl, DEU, June 2015. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

11 Oded Goldreich and Avi Wigderson. Tiny families of functions with random properties
(preliminary version) a quality-size trade-off for hashing. In Proceedings of the twenty-sixth
annual ACM symposium on Theory of computing, pages 574–584, 1994.

12 Shafi Goldwasser, Dan Gutfreund, Alexander Healy, Tali Kaufman, and Guy N. Rothblum.
Verifying and decoding in constant depth. In Proceedings of the thirty-ninth annual ACM
symposium on Theory of computing, pages 440–449. ACM, 2007.

13 Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. Unbalanced expanders and
randomness extractors from Parvaresh–Vardy codes. Journal of the ACM, 56(4):1–34, June
2009. doi:10/ctbzhm.

14 Alexander Healy and Emanuele Viola. Constant-Depth circuits for arithmetic in finite fields
of characteristic two. In Proceedings of the 23rd Annual Conference on Theoretical Aspects of
Computer Science, STACS’06, pages 672–683, Berlin, Heidelberg, February 2006. Springer-
Verlag. doi:10/df5dfs.

15 Alexander D Healy. Randomness-efficient sampling within nc1. Computational Complexity,
17(1):3–37, 2008.

16 Russel Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation from one-
way functions. In Proceedings of the 21st Annual ACM Symposium on Theory of Computing,
pages 12–24, 1989.

17 Russell Impagliazzo. Hard-core distributions for somewhat hard problems. In Foundations
of Computer Science, 1995. Proceedings., 36th Annual Symposium on, pages 538–545. IEEE,
1995.

18 Russell Impagliazzo and Avi Wigderson. P=BPP unless E has sub-exponential circuits:
Derandomizing the xor lemma. In Proceedings of the 29th Annual ACM Symposium on Theory
of Computing, 1997.

APPROX/RANDOM 2024

https://doi.org/10.1137/0215070
https://doi.org/10.1109/FOCS52979.2021.00021
https://doi.org/10.1109/FOCS52979.2021.00021
https://doi.org/10.1145/3564246.3585181
https://doi.org/10/f5msx6
https://doi.org/10/ctbzhm
https://doi.org/10/df5dfs

69:22 Randomness Extractors in AC0 and NC1: Optimal up to Constant Factors

19 Itay Kalev and Amnon Ta-Shma. Unbalanced expanders from multiplicity codes. In Ap-
proximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM) 2022, volume 245 of LIPIcs, pages 12:1–12:14. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.APPROX/RANDOM.2022.12.

20 Chi-Jen Lu, Omer Reingold, Salil Vadhan, and Avi Wigderson. Extractors: Optimal up
to Constant Factors. Proceedings of the thirty-fifth annual ACM symposium on Theory of
computing, June 2003. doi:10/bw2j9d.

21 Noam Nisan and Amnon Ta-Shma. Extracting randomness: A survey and new constructions.
Journal of Computer and System Sciences, 58:148–173, 1999.

22 Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of Computer and System
Sciences, 49(2):149–167, October 1994.

23 Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of Computer and
System Sciences, 52(1):43–52, 1996.

24 Jaikumar Radhakrishnan and Amnon Ta-Shma. Bounds for dispersers, extractors and depth-
two superconcentrators. Siam Journal on Discrete Mathematics, 13:2–24, 2000.

25 Ran Raz, Omer Reingold, and Salil P. Vadhan. Error reduction for extractors. In 40th Annual
Symposium on Foundations of Computer Science, FOCS ’99, pages 191–201. IEEE Computer
Society, 1999. doi:10.1109/SFFCS.1999.814591.

26 Ran Raz, Omer Reingold, and Salil P. Vadhan. Extracting all the randomness and reducing
the error in trevisan’s extractors. J. Comput. Syst. Sci., 65(1):97–128, 2002. doi:10.1006/
JCSS.2002.1824.

27 Omer Reingold, Ronen Shaltiel, and Avi Wigderson. Extracting randomness via repeated
condensing. In 41st Annual Symposium on Foundations of Computer Science, FOCS 2000,
pages 22–31. IEEE Computer Society, 2000. doi:10.1109/SFCS.2000.892008.

28 Benjamin Rossman. An entropy proof of the switching lemma and tight bounds on the
decision-tree size of AC0, 2017. URL: https://users.cs.duke.edu/~br148/logsize.pdf.

29 Ronen Shaltiel. Recent developments in explicit constructions of extractors. Bulletin of the
European Association for Theoretical Computer Science, 77:67–95, 2002.

30 Ronen Shaltiel. An introduction to randomness extractors. In Proceedings of the 38th
International Colloquium on Automata, Languages, and Programming, 2011.

31 A. Srinivasan and D. Zuckerman. Computing with very weak random sources. SIAM Journal
on Computing, 28:1433–1459, 1999.

32 Amnon Ta-Shma. On extracting randomness from weak random sources. In Proceedings of
the 28th Annual ACM Symposium on Theory of Computing, pages 276–285, 1996.

33 Amnon Ta-Shma. Almost optimal dispersers. In Proceedings of the Thirtieth Annual ACM
Symposium on the Theory of Computing, 1998, pages 196–202. ACM, 1998. doi:10.1145/
276698.276736.

34 Amnon Ta-Shma and Christopher Umans. Better condensers and new extractors from
parvaresh-vardy codes. In 2012 IEEE 27th Conference on Computational Complexity, pages
309–315. IEEE, 2012.

35 Roei Tell. Improved bounds for quantified derandomization of constant-depth circuits and
polynomials. computational complexity, 28(2):259–343, 2019.

36 Luca Trevisan. Extractors and pseudorandom generators. Journal of the ACM, 48(4):860–879,
2001. doi:10.1145/502090.502099.

37 Salil Vadhan. The unified theory of pseudorandomness. SIGACT News, 38, 2007.
38 Salil Vadhan. Pseudorandomness. Foundations and Trends® in Theoretical Computer Science,

7(1–3):1–336, 2012.
39 Emanuele Viola. The complexity of constructing pseudorandom generators from hard functions.

computational complexity, 13(3-4):147–188, 2005.
40 Avi Wigderson and David Zuckerman. Expanders that beat the eigenvalue bound: Explicit

construction and applications. Combinatorica, 19(1):125–138, 1999.
41 David Zuckerman. Randomness-optimal oblivious sampling. Random Structures and Al-

gorithms, 11(4):345–367, December 1997. doi:10/cr8kht.

https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2022.12
https://doi.org/10/bw2j9d
https://doi.org/10.1109/SFFCS.1999.814591
https://doi.org/10.1006/JCSS.2002.1824
https://doi.org/10.1006/JCSS.2002.1824
https://doi.org/10.1109/SFCS.2000.892008
https://users.cs.duke.edu/~br148/logsize.pdf
https://doi.org/10.1145/276698.276736
https://doi.org/10.1145/276698.276736
https://doi.org/10.1145/502090.502099
https://doi.org/10/cr8kht

	1 Introduction
	1.1 Our results
	1.2 Technique Overview
	1.2.1 Extractor in AC^0
	1.2.2 Extractor in NC^1
	1.2.3 A lower bound for AC^0 computable dispersers

	1.3 Paper Organization

	2 Preliminaries
	3 Merger in AC^0
	4 Error Reduction
	4.1 Step 1: extracting in parallel
	4.2 Step 2: divide and merge
	4.3 Wrap-up to prove Lemma 28 and Theorem 27

	5 Output Stretch
	5.1 Step 1: Converting to a somewhere-block-source
	5.2 Step 2: Extracting from a somewhere-block-source
	5.3 Step 3: Merging the segments
	5.4 Step 4: Second extraction

	6 Extractors in NC^1
	6.1 Condenser in NC^1
	6.2 Error Reduction in NC^1
	6.3 Improved Trevisan's Extractor in NC^1
	6.4 Putting it together

	7 Entropy lower bound for AC^0 dispersers
	8 Open Questions

