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—— Abstract

We consider the problem of sampling from the Ising model when the underlying interaction matrix
has eigenvalues lying within an interval of length . Recent work in this setting has shown various
algorithmic results that apply roughly when v < 1, notably with nearly-linear running times based
on the classical Glauber dynamics. However, the optimality of the range of v was not clear since
previous inapproximability results developed for the antiferromagnetic case (where the matrix has
entries < 0) apply only for v > 2.

To this end, Kunisky (SODA’24) recently provided evidence that the problem becomes hard
already when v > 1 based on the low-degree hardness for an inference problem on random matrices.
Based on this, he conjectured that sampling from the Ising model in the same range of v is NP-hard.

Here we confirm this conjecture, complementing in particular the known algorithmic results by
showing NP-hardness results for approximately counting and sampling when v > 1, with strong
inapproximability guarantees; we also obtain a more refined hardness result for matrices where only
a constant number of entries per row are allowed to be non-zero. The main observation in our
reductions is that, for v > 1, Glauber dynamics mixes slowly when the interactions are all positive
(ferromagnetic) for the complete and random regular graphs, due to a bimodality in the underlying
distribution. While ferromagnetic interactions typically preclude NP-hardness results, here we work
around this by introducing in an appropriate way mild antiferromagnetism, keeping the spectrum
roughly within the same range. This allows us to exploit the bimodality of the aforementioned
graphs and show the target NP-hardness by adapting suitably previous inapproximability techniques
developed for antiferromagnetic systems.
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On Sampling from Ising Models with Spectral Constraints

1 Introduction

The Ising model with a symmetric interaction matrix J € RV*¥ is a probability distribution
py over {—1,1} with

wy(o) = Zi] exp (;O'TJO') for all vectors o € {—1,1}V,
where the normalizing constant Z; = 206{71’1}1\; exp (%O‘T JU) is the partition function of
the model. The most well-studied setting for the Ising model is when the underlying matrix
J corresponds to the adjacency matrix of a graph G, scaled by a real parameter S which
corresponds to the (inverse) temperature;! for 3 > 0 the model is called ferromagnetic, and
antiferromagnetic otherwise. The more general setting with non-uniform weights in the
entries of J arises frequently in statistical learning settings, see, e.g., [9, 30, 25, 12].

The Ising model is the most fundamental example of a spin system, capturing how local
interactions affect the global macroscopic behaviour, see [48, 41, 40, 33] for applications
in various areas. From a computer science perspective, sampling from the Ising model
plays a key role in various learning and inference problems. Understanding the limits of
efficient sampling has therefore been a major focus in the literature, yielding new algorithmic
techniques as well as exploring the power of classical algorithms (such as Glauber dynamics)
and their connections to phase transitions in statistical mechanics; we briefly review some of
the relevant literature below.

The prototypical setting where the problem of sampling for the Ising model has been
studied is lattices (such as Z?), where the landscape for Markov-chain algorithms has been
well-understood [38, 39, 37]. Random graph models have also been considered more recently
such as sparse random graphs [43, 13, 6, 16, 36] or the Sherrington-Kirkpatrick model
[18, 17, 26]. More closely related to the setting considered in this paper is the case of
general graphs. In the ferromagnetic case, where the entries of J are all nonnegative, the
classical algorithm by Jerrum and Sinclair [28] gives a poly-time sampler (albeit with a
relatively large running-time polynomial), see also [24, 19]. In the antiferromagnetic case,
the problem is more interesting for bounded-degree graphs, where in the case of uniform
weights the existence of polynomial-time algorithms is connected to the uniqueness threshold,
see [46, 47, 21, 45, 35].

Recently, the development of spectral independence [4, 1] has given tight results on the
performance of Glauber dynamics. This has lead to nearly linear-time algorithms in various
settings, see e.g., [11, 10, 18, 3, 31] and has made it possible to connect the performance of
Glauber dynamics with the eigenvalues of the underlying matrix J. In this direction, [18, 3]
show that Glauber dynamics is fast mixing when Apax(J) — Amin(J) < 1 which significantly
improves upon the standard Dobrushin’s uniqueness condition (the latter only applies when
> il <1 for all i € [N]).

On the other side, the optimality of these algorithmic results in terms of the spectrum is
less clear. It is known [34, 14] that Glauber dynamics mixes slowly in the complete graph
for temperatures 8 > 1, which corresponds precisely to the condition Amax(J) — Amin(J) > 1
by taking J to be the adjacency matrix of the N-vertex complete graph, scaled by 8/N.
This does not however translate in a straightforward way to hardness results and does not
preclude the possibility that various alternative methods could potentially go beyond the
1-gap, see, e.g., [44, 31, 27] for some recent approaches using variational methods. To this

! Note that in this parametrization p.j(0) o exp(%ﬁUTAJ), where A is the adjacency matrix of the graph.
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end, Kunisky [32] gave further evidence that Amax(J) — Amin(J) > 1 is hard for sampling
via a reduction to hypothesis testing in a Wishart negatively-spiked matrix model that
involves random matrices (which is known to resist low-degree algorithms [5]). Kunisky
also posed the conjecture that in fact NP-hardness for sampling under spectral constraints
should hold when Apax(J) — Amin(J) > 1. To add a bit to the mystery, it is noteworthy that
the inapproximability results for the antiferromagnetic case (mentioned earlier) only apply
roughly when Apax(J) — Amin(J) > 2, see also below for a more detailed discussion.

1.1  Our results

Our aim in this work is to address Kunisky’s conjecture and close the gap between algorithmic
and NP-hardness results. In particular, we answer in the affirmative the conjecture in [32],
obtaining NP-hardness results that complement the algorithmic results of [18, 3]. This
completes the program initiated in [32], i.e., showing that Glauber is effectively optimal for
“general-purpose” Ising model sampling, and clarifies the picture in terms of the computational
complexity landscape under spectral constraints.

To formally state the result, we define the following computational problem.

Problem: SPECTRALISING(7)
Input: A symmetric matrix J € RV*N  with Apax(J) — Amin(J) < 7
Output: The partition function Z; = Eae{fl,Jrl}N exp (%O’TJU>.

» Theorem 1. Fiz any real v > 1. Then, it is NP-hard to approzimate SPECTRALISING(7),
even within an exponential factor 2°N for some constant ¢ = c(vy) > 0.

This confirms Conjecture 1.9 of [32] and complements the algorithm of [18, 3]. Using
Theorem 1, we get the following result using the standard reduction [29] from counting to
sampling (the problem is self-reducible under scaling of the matrix J). Recall, the total
variation distance between probability distributions y and v is defined as TV (p, v) = 3 ||u—v|1.

» Corollary 2. For every real v > 1, the following holds. Suppose there is a poly-time sampler
that, on input a symmetric matriz J € RN*N with Apax(J) — Amin(J) < v and 6 > 0, returns
a configuration o whose distribution is within TV distance 0 from py. Then NP = RP.

As we will explain next, it is also possible to obtain a more refined version of Theorem 1,
for the restricted case where each row of the interaction matrix J has at most d non-zero
entries, for some fixed integer d > 4.

Problem: BOUNDEDSPECTRALISING(d, )

Input: A symmetric matrix J € RV XN with < d non-zero entries per row and Ayax(J) —
)\min(J) < Y.

Output: The partition function Z; = ZUE{_l 41}V €Xp (%O’TJO').

» Theorem 3. Fiz any integer d > 4 and real v > $In(1+ 25)(d — 1+ 2v/d — 2). Then,
it is NP-hard to approzrimate BOUNDEDSPECTRALISING(d, ), even within an exponential
factor 2N for some constant ¢ = c(7y) > 0.

Note that when taking the limit d — oo in the above bound, we recover the spectral
condition v > 1 of Theorem 1, so asymptotically the bound is tight; we are not aware of
algorithmic results that apply specifically to the d-sparse setting under the spectral condition.

APPROX/RANDOM 2024
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We remark further that applying the results of [47, 21] would yield hardness only in the
setting where v > dIn(1 + ;25) (see [32, Section 1.2] for a detailed description on how to
translate the results), so Theorem 3 improves on this by roughly a factor of 2 asymptotically.
It should be noted however that the setting in these results is more restrictive (negative
weights, which have the same value on all edges) and hence not directly comparable.

1.2 Techniques

Before giving the proofs, we explain briefly the main idea behind Theorem 1, the idea for
Theorem 3 is almost identical, modulo the gadget used in the reduction.

The key ingredient in obtaining Theorem 1 is to exploit the slow mixing of Glauber
dynamics on the complete graph in a suitable way. Recall that [34] showed exponential mixing
time for Glauber dynamics on the N-vertex complete graph when the weights on the edges are
ferromagnetic equal to §/N (entry-wise) for any 8 > 1 (note that the corresponding matrix
J has Anax(J) — Amin(J) = B). Intuitively, the slow mixing is caused because the distribution
exhibits bimodality, i.e., it is concentrated around two modes/“phases” corresponding roughly
to the all-plus and all-minus configurations (see Section 2 for more details). Therefore, we
would like to use the binary behaviour of the complete graph as a gadget in the reduction.
The main trouble here is caused by the ferromagnetic interactions which cannot typically
be related to NP-hard problems; by contrast, in the antiferrromagnetic case § < 0, the
max-probability configurations in the Ising distribution correspond to maximum cuts (when
J encodes the adjacency matrix of a graph), and the respective gadgets in the constructions
had bipartite structure.?

Hence, in order to get NP-hardness, we need to introduce some “mild” antiferromagnetism
(small negative weights): mild to keep the spectrum unchanged and antiferromagnetic to
allow us to reduce from an NP-hard problem (we will use MaxCut); this is quite different than
the approach of [32] where the positive and negative entries in the constructed instance are
more heavily mixed up (randomly). At this stage, the main observation is that the previous
reductions used in the antiferromagnetic case [46, 47, 21] can accommodate this relatively
easily; the only difference here is that we need to use small negative weights to connect
disjoint copies of the gadgets, and amplify their effect using appropriately-sized matchings;
conveniently, since the matchings (with the small weights on their edges) correspond to a
low-rank perturbation, the spectrum of the underlying matrix is close to that of the complete
graph.

The proof of Theorem 3 is almost identical. The main difference needed to make our
construction sparse is to use a random d-regular graph as the gadget, which is known to
exhibit slow mixing when 8 > 34 := %ln(l + ﬁ) [22, 13, 43, 42], with a similar bimodal
behaviour to that of the complete graph for 5 > 1. Relative to the spectrum, the well-known
result of Friedman [20] shows that the adjacency matrix A of a random d-regular graph
satisfies w.h.p. Amax(A) — Amin(A) < g+ € for any constant € > 0, where Ay := d+2v/d — 1.
For technical reasons (see Remark 10 for details), we need to actually use a (d — 1)-regular
graph as a gadget in the reduction, so the argument sketched above yields NP-hardness when
v > Big—1Ag—1 and d > 4.

2 As a side note, we remark that the factor-2 gap from the antiferromagnetic setting (mentioned below
Theorem 3) comes from the use of bipartite gadgets in these results, which have a symmetric spectrum
around zero and hence effectively double the range of the eigenvalues.
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1.3 OQutline and Discussion

We give the details of the gadget in Section 2 and the reduction in Section 3.1. This gives
a self-contained proof of Theorem 1; for Theorem 3 the argument is identical modulo the
use of the (random) d-regular graph as the gadget, for which we need to import a couple of
non-trivial results from the literature.

As a final remark before proceeding to the proofs, it would be interesting to explore whether
the statistical hardness perspective from [32] (or some variant) perhaps applies to other
counting/sampling problems where NP-hardness results are unlikely, such as approximating
the number of independent sets in a bipartite graph [15], or approximating the partition
function of the ferromagnetic Potts model [23]. Another related question is whether such
statistical hardness results can be invoked on sparse random graph models where the spectral
threshold A\pax(J) — Amin(J) = 1 (that applies to worst-case instances) is known not to be
tight (see [10, 31, 36]).

2 The Gadget of Theorem 1

Our main gadget will be a clique graph K,, = (V, E) with n vertices, where V = {1,2,...,n}.
We will consider n to be an absolute (large) constant that we will choose later. For a small
integer t > 0, let S C V be an arbitrary subset of V' with |S| =¢. Let » = n — ¢. Intuitively,
S contains the nodes that will be used to connect the gadgets with each other.

We define the phase of the configuration o € {—1,1}" on V\S as

YUZ]_{ Z Ui>0}—1{ Z O'ZSO}
i€V\S iE€V\S

Note that the phase of a configuration is defined using only the spins in V' \ S. For any fixed
B > 0, consider solutions to the equation

1
In @

+28(2a—1) =0 (1)

for @ € [0,1]. It is not hard to see that for § > 1 there are exactly three solutions
a=q,1/2,q% which satisfy ¢t —1/2=1/2 — ¢~ > 0. Using these, we define the product
measure QJSr (resp. Qg) on configurations on S, where each spin takes the value +1 with
probability ¢*, and —1 with probability 1 — ¢* (resp. ¢~ and 1 — ¢~). Concretely, for
7€ {-1,+1}°, we have

Zies”“ tizies” t/2 + #
Qi) = (@) TF (- = (- (5:) T . @
We now state a lemma that presents the basic properties of the Ising model on our gadget
graph. A similar lemma appears in the seminal results of [46, 47]. Informally, the lemma
states that conditioned on the phase of the spins in V'\ S, the spins in S behave almost

independently from each other, with bias depending on the phase.

» Lemma 4. Let § > 1. Then, for any real € > 0 and integer t > 1, for all sufficiently
large integers n = n(t,€) such that n —t is odd, the following holds for the Ising model with
interaction matrixz J € R™*™ given by J = %111 where 1 is the n-dimensional vector with
all ones.
Let S C [n] be a subset of the vertices with |S| =t. Then:
1. The phases on V\S appear with the same probability, i.e., Proo,,[Y, = +] =
Pr,.,,[Y, =—-]=1/2.

70:5
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2. Conditioned on the phase, the joint distribution of the spins in S is approzimately given
by the product distribution Qf, i.e.,

for any T € {—1,+1}%, it holds that Pro,, [os =7 | Y, =£] = (1 £ €)QE ().

Proof. Let r = n —t. For r odd (as in the statement of the lemma), we have by symmetry
that the phases appear with equal probability. So, we focus on proving the second item. For
a vector x with entries +1 or —1, we denote by |z| the sum of its entries.

Let o € [0, 1] be such that ar is an integer. For a configuration 7 € {—1,+1}%, let Z%(7)
be the contribution to the partition function of configurations o with ar spins from V\S set
to +1, (1 — «)r spins from V\S set to —1 and og = 7. Concretely,

Z%(r) = Z exp(30 ' Jo).

oe{—1,+1}V;05=1, |lov\s|=(2a—1)r

The number of configurations o with og = 7 and exactly ar of the spins in V'\ S equal to
1is (). Using that J = éll—r, for each such o, we have 30" Jo = §(|Uv\s| +|7))?% =
Z((2a=1)r+|r))°. So,

@ r B 2 B 2
Z = —(2a -1 200 — 1 — .
)= (] ) eww (52— 0Pr -+ pt2a - Dl + S17P) )
We use the well-known approximation of the binomial coefficient using Stirling’s approxima-
tion. This yields, for any « € [0, 1], that

(Ofr) — exp(rH(a) +o{r)). (1)

where H(«) := —alna — (1 — a)In(l — «) is the binary entropy function. Asymptotically in
r, we can also ignore the term exp(;%h'\z), so we obtain that
B

Z*(1) = exp (rf(a) + o(r)) where f(a) = H(a) + 5(2@ —1)2 (5)

The function f(«) plays a key role since for large r it controls the asymptotic order of Z%(7).
The important point, as we will see below, is that the global maximum of f is attained for
a=q" .

Indeed, we have

fl(@) = —In(a) + In(1 — a) +28(2a — 1)

and f"(a) = —ﬁ + 4f. Since f” has at most two zeros, we have that f’ has at most
three distinct zeros and hence f has at most three critical points. For § > 1, we have
f(1/2) =0and f"(1/2) = —4+48 > 0, so f has a local minimum at o = 1/2; therefore, the
maximum of f in the interval [0,1] is attained at some point o # 1/2. Using the symmetry
of f around a = 1/2, there must be at least two global maxima, one in the interval (0,1/2)
and (1/2,1). Since f has at most three critical points (and 1/2 is one of them), we conclude
that there are exactly two critical points/maxima other than o = 1/2, which must therefore
be the values ¢, ¢~ as defined in (1).

We are now ready to establish the second item of the lemma. We will argue about
the + phase, but the other phase is completely symmetric. Let 7,7" € {—1,1}* be two
configurations of spins in S. We have that

Prios = 7|Y (oy\5) = +] _ Za>1/2 Z*(7)
Prlos = 7'[Y(on\s) =+ XasipZ2(7)

(6)
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We will show that the sums in the numerator and denominator are dominated by a values
that are close to ¢. First, note that since ¢* is the unique global maximum of f(«) in
the interval [1/2,1], for any arbitrarily small constant § > 0, there is n > 0 such that
fla) < f(qg") —3n for all a > 1/2 with « ¢ [¢7 — &, ¢ " + §]. We pick § > 0 sufficiently small
and r > 0 sufficiently large so that exp(45td + 6;) < €/2. Since |7| < t, it follows that for r
large enough it holds that

Z%(r) < exp(r(f(q*) — 2n)).
a>1/2; |la—qt|>6

By the continuity of f, for « = ¢+ + O(1/r) we have f(a) = f(¢") + O(1/r) and therefore

> 2z eplr(fah) ).

a>1/2; |a—qgt|<s
It follows that

Za>1/2; la—qT|>6 ZQ(T)
2as1/2;Ja—gt|<s £ (T)

< exp(—nr) <e¢/2. (7)

for all sufficiently large r. Thus,

Za>1/2 Z%(7) < Za>1/2 Z(7) _ Za>1/2 Z(T) ] Z|a_q+|§5 Z(7)
Doas12 Z2(T) T Xacar1<s Z0(T) Xjacqr1<s Z0(T) Xjamgri<s 2°(T7)
Z\a—q+\§5 ZQ(T)

<(1+¢€/2 7 8
(oSt )
where the last inequality follows from (7).

On the other hand, for any a with |a — ¢*| < §, using (3) we get
Z%(r) _ 4 BUTE=1'?)
Zai) = o (B2 = D(ir] - 7)) + HEER)
< exp(4/3td + ﬁé)
exp (B(2¢" — )(I7] = |7'])) < (1 +¢/2) exp (B(2¢" = 1)(I7| = |7'])) , 9)

where the last inequality follows from the choice of ¢ and r. Using the definition (2) and the
fact that ¢ is a solution of (1), i.e., that f’(¢") = 0, we have that

’
[rl=17"]

exp(6(2q+—1)(ITI—IT’I))=( il ) -

1—gq*

Q5(r)
Q5 (™)

@ T(r . . .
Hence, from (9) we obtain that % <1+ 6/2)33((7'))' Since this holds for all « with
S

oo — g™ | < 8, we have

Dla—gti<s 2°(7) QL (7)
Dla—gti<s 2(T") Qs(r)’

Combining this with (6) and (8), we obtain that

Pr(os = 7|Y (ov\s) = +] . Q5 (1)
Prlos = 7'|Y(0v\g) = +] =1+ )QJSF(TI)

< (1+¢€/2)

(10)

70:7
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By interchanging the roles of 7,7, we also obtain the inverse inequality, so

QL (1) < Prlos = 7|Y (ov\5) = +] Q5 (1)
QE(r) ~ Prlos =7'[Y(ov\5) = +] Q)

(I—¢) <(1+e)

(11)

For 7 € {—1,1}%, observe that we can expand the ratio
Prios = 7] = +] _ 5, Qi(r)Prlos =7 | Y = ]
Q3 (7) > Q5(T)Prlog =7 | Y = +]
ai < Zz i

so using that min; e < Z 3 < max;
i i
i

ai

3+ for non-negative (a;);, (b;);, we obtain from (11)

that
P = Y = + / P = Y e
rlos =7V = 4] _ 1‘ < max [Ss(T)Prlos =7V =] )
Q5 (1) T QE(T)Priog =7"|Y = +]
This finishes the proof. |

3 Proofs of Main Results

3.1 Proof of Theorem 1

Let v > 1land 8 = (1++)/2 > 1. Following the technique in [46, 47, 21], we reduce MAXCUT
on 3-regular graphs to SPECTRALISING (7).

Consider a 3-regular graph H = (Vy,Eg) with |[Vy| = m vertices, an instance of
MaxCuTt. Let G be the clique graph on n vertices, with a subset S of the vertices with
|S| =t that will be used as terminals (cf. Lemma 4); for convenience, we assume that ¢ > 0
is a multiple of 3 (with n > 3t). We construct an instance H® of SPECTRALISING(7) as
follows:

We replace each node v € Vi with a distinct copy of the gadget clique graph G. In

particular, for any v € Vi, consider a copy G, = (W, E,) of the gadget G; each edge in

E, has weight wy = 8/r as in Lemma 4, where recall that 8 = (1 +)/2 > 1. For each

v € Vg, let S, C W, be a subset of the vertices in GG, of size t = n — r. Let HE be the

disjoint union of the G,’s for v € H. Note that the number of vertices of HEC is nm.

We now describe how to encode the edges of H using connections between the gadgets

(which will complete the construction of HS). Assume that the node u € Vi has neighbors

v1,v9,v3 in H, i.e., (u,v;) € Eg,i=1,...,3. Then, we partition S, into subsets S of

size t/3 each. Each subset S! corresponds to one of the three neighbors of u. Then, for
each i = 1,2,3, we add a perfect matching between S? and the corresponding subset

SJ. of S,, that corresponds to u. The weight of each of these edges in the matching will

be w_ = (1 —+)/5 < 0, since v > 1. This antiferromagnetic structure across different

copies will be crucial in order to approximate maxcut(H) by approximating the partition

function of H.

Let J be the adjacency matrix of the weighted graph HS. We first show that the spectrum
of J has the desired properties, i.e., that Apax(J) — Amin(J) < 7.

> Claim 5 (Structure of HY). The symmetric matrix J = D + E € R"™*"™" where D is a
block diagonal matrix where the matrix of each block of size n x n is 511—'— and E contains
in each row exactly one non-zero element of magnitude (1 —~v)/5.

Proof. By construction since n is the number of vertices of the gadget and m is the number
of vertices of the input graph. <
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> Claim 6 (Spectrum Preservation). For any integer ¢ > 0, there exists n(t,~) > 0, such that
for n > n(t,v) it holds [Amax(J) — Amin(J)] < 7.

Proof. We will use Claim 5. Using Weyl’s inequality (see Chapter 3 in [7]), which controls
the eigenspectrum of a matrix under small perturbations of the entries, we have that for any
i, it holds that |A\;(J) — X\i(D)| < ||E|l, where ||E|| is the spectral norm of E. By definition,
E has one element in each row of absolute value (y —1)/5, so ||E| < %_1 It follows that

‘)\max(t]) - )\min(J)l S |)\max(<]) - Amax(D)l + ‘)\max(D) - )\min(D)l + ‘)\min(D) - Amin(c])|
2y—=1) mnl+4+~v
< + — .
- 5 ro 2 (12)

In the above we used the well-known fact that the spectrum of D is the spectrum of each of
the blocks, which, in turn, is equal to

nl-+
)\max(D) - Amin(D) - *77;
r 2
since each block is a rank-1 matrix. Now, recall that n = r + ¢, so by choosing r sufficiently
large we can make 7 < gzié, which implies that the right hand side in (12) is < 7. <

We next show that if we could approximate Z; within an arbitrarily small exponential
factor in poly-time, we would obtain a PTAS for maxcut(H). This part of the argument is
largely based on the techniques of [47]; we first state the following lemma whose proof is
given for completeness in the full version.

» Lemma 7. It holds that

meo—m ZHG/Z}/‘-I\G m
(1 - 46) 2 < A3mt/2 (B/A)maxcut(H)t/B = (1 +46) ’

where B > A > 0 are constants depending only on ~.

With these pieces at hand, we are now ready to complete the reduction for Theorem 1,
which we restate here for convenience.

» Theorem 1. Fix any real v > 1. Then, it is NP-hard to approximate SPECTRALISING(7),
even within an exponential factor 2¢V for some constant ¢ = ¢(y) > 0.

Proof. Assume that for any arbitrarily small constant § > 0, there is an oracle approx;
such that, for any J with Apax(J) — Amin(J) < 7, we have that, when F' = approxs(.J),
|F' —log(Z(J))| < ém. We will show how to obtain a PTAS for MAXCUT on 3-regular
graphs, i.e., approximate MAXCUT on 3-regular graphs within an arbitrarily small factor.

Let H be a 3-regular graph H on m vertices, an instance of MAXCUT. The maximum
cut of H is at least the expected value of a random cut which is equal to 3m/4. We then
construct HE and HC as above. Observe that Z (ﬁ &) can be computed in poly-time since
HCisa disjoint collection of constant-size gadget graphs. Moreover, by Claim 6, H® is an
instance of SPECTRALISING(7). So, we can use the oracle approx; on H, which will give us
an output Fy with the guarantee

|Fg —log Zga| < dmn.

Lemma 7 implies that

3log ( Zuc /2 he

2" Zya /2
A3mt/2(1+46)m

<

< maxcut(H) < tlog(B/A)

tlog(B/A)
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Thus, by using the output Fz we can compute upper and lower bounds for the maximum
cut value, which differ by O((én + 1)m/t). Since m < 4/3maxcut(H), to show the desired
PTAS for MAXCUT, it only remains to show that the quantity R = (dn + 1)/t can be made
arbitrarily small, say less than some target value (, where ( > 0 is an arbitrary constant.
We first take ¢ to be sufficiently large, so that 1/t < (/2 is sufficiently small. This makes n
to be large, but still a constant, and hence n/t is a constant. So, by taking ¢ small enough,
we will have dn/t < (/2, making R < ¢ as desired.

This yields the desired PTAS. Since MAXCUT is APX-hard [2], we conclude that it is
NP-hard to approximate Z; within some exponential factor, as wanted. |

3.2 Proof of Theorem 3

For integers d,n > 3 with dn even, let G,, 4 be a d-regular graph chosen uniformly at random
among all such graphs with vertex set V' = {1,2,...,n}. Let S C [n] be an arbitrary subset
of the vertices of size t. Consider the Ising distribution p; with J = A where A is the
adjacency matrix of G and g > %ln(l + ﬁ)

The range of 5 corresponds to the so-called non-uniqueness regime on the d-regular tree;
roughly, this implies that on the d-regular tree of height h, when we condition the leaves to
be 4+ and take the limit h — oo, the marginal probability that the root is plus converges
to some value ¢* > 1/2. Similarly, when we condition the leaves to be —, the marginal
probability that the root is plus converges to some value ¢~ < 1/2.3

It is well-known by now [13, 42] that this behaviour on the tree manifests itself on the
random d-regular graph, roughly because of the tree-like neighborhoods in the latter. To
make this more precise in our setting, analogously to Section 2, for a subset S C V', define the
phase Ys (o) of a configuration o € {—1,+1}"V to be + if Yiev\s 0i = 0, and — otherwise.
We also define the product measures Q§ on S analogously to (2), using now the values of
q",q " as defined above (see also Footnote 3). Then, the following lemma captures the main
properties of the gadget that we need.

» Lemma 8. Let d > 3 be an integer and 5 > %ln(l + %) Then, for any real € > 0 and
integer t > 1, for all sufficiently large integers n = n(t,€) with n —t odd, the following holds
with probability 1 — € over the choice of G ~ Gy, q. Let S CV be a subset of vertices with
|S] =t.
Consider the Ising model with interaction matriz J = BA where A is the adjacency matrix
of G. Then:
L Amax(J) = Amin(J) < B(d+2Vd — 1) +e.
2. The phases appear with the same probability, i.e., Pro,,[Yo = +] = Proy, [Yo = -] =
1/2.
3. Conditioned on the phase, the joint distribution of the spins in S is approximately given
by the product distribution Qﬁ, i.e.,

for any T € {—1,+1}%, it holds that Pro,, 05 =7 |Y, =+] = (1 £ QL (7).

Proof. The first item is Friedman’s result [20], see also [8]. The second item is by symmetry
of the configuration space (since n is odd). The third item follows by [42, Theorem 2.4], see
also [13, Theorem 2.7] and [47, Proposition 4.2] for related results. Technically, there is a bit
of work to translate the results here, we give the details in the full version. |

3 To define ¢, ¢~ more explicitly, for 8 > %ln(l + ﬁ), let g* > 1> G~ > 0 be the solutions of z =

d—1
exp(2B)a+1 + - Y stexp(28)§T+1 T —exp(28)d +1
(W) - Then, g7, ¢~ are defined from 2177 = 7 Tty and 1= =0 T mm

see also [21, Section 3.
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» Remark 9. We use the gadget of Lemma 8 for some large but otherwise constant value of n.
So, we can find a d-regular graph G satisfying Items 1-3 of Lemma 8 in deterministic time.

We are now ready to prove Theorem 3, which we restate here for convenience.

» Theorem 3. Fix any integer d > 4 and real v > £ In(1 + 25)(d — 14 2v/d — 2). Then,
it is NP-hard to approximate BOUNDEDSPECTRALISING(d, ), even within an exponential
factor 2¢V for some constant ¢ = ¢(y) > 0.

Proof. Let
Bici =3I (1+ 323), Aac1:=d—1+2Vd-2 (13)

and set 8 = B4—1+ 1, A = Ag—1 + 1 where n > 0 is a small constant so that S\ + 2n < v
(note that such an 7 exists since v > Bg_1Aq—1).

Assume that we are given a 3-regular instance H of MAXCuUT with m vertices. Let G be
a (d — 1)-regular gadget with n vertices for some sufficiently large n, i.e., G satisfies Items 1-3
of Lemma 8 for degree d — 1 and 8 = B4_1 + 1, see also Remark 9. So, according to Item 1
there, the interaction matrix Jg corresponding to G satisfies Apax(Ja) — Amin(Ja) < BA.

Using G, the construction of the graph H® is identical to that of Section 3.1, i.e., we
have a distinct copy of G for each node of H and, for each pair of neighbouring nodes of
H, we add a matching of size t/3 between the corresponding gadgets using the vertices in
S. Note that H® has maximum degree d, so the interaction matrix of H, denoted by J
henceforth, has at most d non-zero entries per row.

The weight of an edge inside the gadget is wy = S > 0 and the weight of the edges
that connect two gadgets is w_ = —n < 0 (antiferromagnetic connections). Analogously to
Claim 5, the symmetric matrix J can be written as D + E € R™*™™ where (i) D is a block
diagonal matrix with the matrix in each block being the n x n adjacency matrix of G scaled
by wy, and (ii) F contains in each row exactly one non-zero element of magnitude w_. The
same argument as in the proof of Claim 6 gives that

‘)\max(J) - )\min(J)| S |>\max(J) - Amax(D)l + ‘Amax(D) - )\min(D)l + ‘Amin(D) - >\m1n(c])|
<4 BA< .

This establishes that H is a valid instance of BOUNDEDSPECTRALISING(d, ).

Now, using Item 3 of Lemma 8, we obtain the exact same estimate as in Lemma 7 (with
the same expressions for the constants A, B modulo the new values of w; and w_), and
therefore the same argument used in the proof of Theorem 1 applies verbatim to show
NP-hardness of approximating the partition function within an arbitrarily small exponential
factor. <

» Remark 10. Note that we could make the graph H to be d-regular for any integer d > 3 by
taking the gadget G to be a random d-regular graph with a matching of size ¢t removed (and
using the endpoints of the matching as the set S of terminals); this more refined construction
has been used for example in the hardness results of [46, 47, 21]. While one can show the
analogue of Items 2 and 3 with minor modifications (analogously to what was done in the
proof of Lemma 8), the proof of Item 1 for this modified gadget seems to require more careful
adaptation of the proofs in [20, 8]. It is nevertheless reasonable to expect that the same
bound on the range of the eigenvalues as stated currently in Item 1 will still apply; provided
this is indeed the case, one can improve slightly the parameters of Theorem 3 to d > 3 and
v > BaAd, where B4, \g are as in (13).
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