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Abstract
Determining the approximate degree composition for Boolean functions remains a significant unsolved
problem in Boolean function complexity. In recent decades, researchers have concentrated on proving
that approximate degree composes for special types of inner and outer functions. An important and
extensively studied class of functions are the recursive functions, i.e. functions obtained by composing
a base function with itself a number of times. Let hd denote the standard d-fold composition of the
base function h. The main result of this work is to show that the approximate degree composes if
either of the following conditions holds:

The outer function f : {0, 1}n → {0, 1} is a recursive function of the form hd, with h being any
base function and d = Ω(log log n).
The inner function is a recursive function of the form hd, with h being any constant arity base
function (other than AND and OR) and d = Ω(log log n), where n is the arity of the outer
function.

In terms of proof techniques, we first observe that the lower bound for composition can be
obtained by introducing majority in between the inner and the outer functions. We then show that
majority can be efficiently eliminated if the inner or outer function is a recursive function.
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1 Introduction

Representations of Boolean functions f : {0, 1}n → {0, 1} in terms of multivariate polynomials
p(x) play a pivotal role in theoretical computer science. There are different notions of
representations;
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exact representation: f(x) = p(x) for all x ∈ {0, 1}n,
approximate representation: |f(x) − p(x)| ≤ 1/3 for all x ∈ {0, 1}n, and
sign representation: (1 − 2f(x))p(x) > 0 for all x ∈ {0, 1}n.

Arguably the most important measure associated with a polynomial is its (total) degree.
Let deg(f), d̃eg(f), and deg±(f) denote the minimal possible degree of a real polynomial
exactly, approximately, and sign representing f , respectively. These different notions of
degrees capture notions of efficiency in many different models of computation (e.g., decision
trees, quantum query, perceptrons), and are thus well-studied in literature (see, e.g., [6, 7, 14]
and the references therein).

For instance, deg±(f) (called sign degree) has strong connections to – separations among
complexity classes [7], designing efficient learning algorithm [28, 27], and lower bounds
against circuits, formulas, communication complexity, etc. [12, 18]. Similarly, upper bounds
on d̃eg(f) (called approximate degree), has strong connections to learning theory [25, 29, 37],
approximate inclusion-exclusion [24, 43], differentially private data release [47, 17], etc. While
the lower bounds on approximate degree lead to lower bounds in quantum query complexity
[5, 2, 1], communication complexity [43, 38], circuit complexity [3], etc.

Despite decades of work in this area, there are many important problems that are yet
to be resolved completely. One such problem pertains to the composition of approximate
degrees. For any two Boolean functions f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1}, define
the composed function f ◦ g : {0, 1}nm → {0, 1} as follows

f ◦ g(x11, . . . , x1m, . . . . . . , xn1, . . . , xnm) = f(g(x1), . . . , g(xn)),

where xi = (xi1, . . . , xim) ∈ {0, 1}m for i ∈ [n]. The function f is called the outer function
and g the inner function.

Investigating the behaviour of complexity measures under composition has been a quint-
essential tool in our quest to gain insights into relationships among different measures. In
particular, composition has been used successfully on numerous occasions to show separ-
ations between various complexity measures associated with Boolean functions, see, e.g.,
[36, 33, 23, 4, 46, 19]. A big open problem in this context is to understand how approximate
degree behaves under composition. More formally, it asks whether for all Boolean functions
f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1},

d̃eg(f ◦ g) = Θ̃(d̃eg(f) · d̃eg(g))?

The tilde in the Θ̃ notation hides a factor polynomial in log(n+m). This problem is often
referred to as the “approximate degree composition” problem.

The upper bound, d̃eg(f ◦ g) = O(d̃eg(f) · d̃eg(g)), was established in a seminal work [42]
of Sherstov. Thus to completely resolve the problem it remains to prove a matching lower
bound on the approximate degree of a composed function in terms of the approximate degree
of the individual functions. In other words, does the following hold for all Boolean functions
f and g,

d̃eg(f ◦ g) = Ω̃
(

d̃eg(f) · d̃eg(g)
)

?

In this article we will refer to the aforementioned (lower bound) question by the phrase
“approximate degree composition” problem.

Numerous works, including those by [33, 4, 39, 41, 40, 13, 8, 15], actively pursued these
lower bounds, leading to newer connections with several important problems in the field.
However, establishing the lower bound d̃eg(f ◦ g) = Ω̃

(
d̃eg(f) d̃eg(g)

)
even for specific
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functions or restricted classes of functions is often very challenging. For example, consider
the composed function OR ◦ AND, it took a long series of work [33, 44, 4, 41, 40, 13] over
nearly two decades to prove that d̃eg(OR ◦ AND) = Ω

(
d̃eg(OR) d̃eg(AND)

)
. Till date we

know that the approximate degree composes in the following cases:
when the outer function f has full approximate degree, i.e., Θ(n) [39],
when the outer function f is a symmetric function [8],
when the outer function f has minimal approximate degree with respect to its block
sensitivity, i.e., d̃eg(f) = O(

√
bs(f)) [15], and

when the sign degree of the inner function is same as its approximate degree [39, 30].

This work focuses on the behavior of approximate degree when recursive functions are
composed with other general functions (as outer or inner function). Here, by recursive
functions, we mean the functions of the kind hd (h composed with itself d times) where the
arity of h is small. The function h is often called the base function and the function f is
called the recursive-h function.

Recursive functions are an important class of Boolean functions that are studied in various
different contexts in the analysis of Boolean functions, mainly in proving various lower bounds
[4, 45, 36, 33, 34, 9]. For example, the Kushilevitz’s function [34] which is the only known
non-trivial example of functions with low degree and high sensitivity is a recursive function
of a carefully chosen base function. Recursive majority, MAJd

3, is another recursive function
that has been studied extensively in the literature for its different properties [36, 22, 31, 32].
Boppana (see, e.g., [36]) used it to provide the first evidence that the randomized query
is more powerful than deterministic query [36]. In the same article, they show a similar
separation using recursive AND2 ◦ OR2 function too. In a different application of recursive
AND2 ◦ OR2, [23] show separation between deterministic tree-size complexity and number of
monomials in the minimal DNF or CNF.

The approximate degree composition was not known when the outer or inner function is
a recursive function, in general. For some special recursive functions, however, it was known
that the approximate degree composes. For example, the OR function on n = 3d bits is same
as ORd

3. After a series of works ([33, 4, 40, 13, 41]), it was proven that the approximate degree
composition holds when the outer function is OR, and in general symmetric [8]. Similarly,
from the result of [39, 30] it can be observed that the lower bound holds when either the
inner or outer function is recursive PARITY. Unfortunately, these results can’t be applied in
general even when the base function is symmetric or it has full approximate degree.

This scenario leads to the natural question:

Can we prove that d̃eg(f ◦ g) = Ω(d̃eg(f) · d̃eg(g)) when the outer function f

or the inner function g is recursive?

1.1 Our Results

Let h : {0, 1}k → {0, 1} be a function on k-bits. Let hd denote the Boolean function
represented by the complete k-ary tree of depth d such that each internal node of the tree is
labelled by h and the leaves of tree are labelled by distinct variables. Our main result shows
that the composition theorem holds for any hd (except a few specific h’s), either as the outer
function with any inner function or as the inner function with any outer function.

APPROX/RANDOM 2024
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▶ Theorem 1. Let f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1} be two Boolean functions
and d ≥ C log logn for a large enough constant C. Then,

d̃eg(f ◦ g) = Ω
(

d̃eg(f)d̃eg(g)
polylog(n)

)
,

if either of the following conditions hold:
1. f = hd, for any Boolean function h.
2. g = hd, for any Boolean function h with constant arity and not equal to AND or OR.

In light of the above theorem, understanding the composition of approximate degree when
inner function is OR is the central case for making progress towards the general composition
question.

We would like to emphasize that there are not many results which prove composition
theorem for a general class of inner functions. Theorem 1 shows that the composition
property holds if the inner function is recursive irrespective of the outer function.

We further note that Theorem 1 doesn’t follow from the known results even when the
composition theorem is known to hold for the base function. Firstly, it is known that the
composition lower bound holds when the outer function is symmetric [8]; though, a repeated
composition of a symmetric function will incur the factor of (logn)d (because of the logn
factor hiding in the Ω̃ notation). Secondly, while the majority function, MAJn, has full
approximate degree (Θ(n)), MAJd

3 doesn’t have full approximate degree. Thus, Sherstov’s
result [39] that proves composition theorem holds for functions with full approximate degree
cannot be applied in the case of recursive majority. The situation is similar for the inner
function as well.

Moving ahead, the proof of Theorem 1 uses two ideas.
We first prove that a similar theorem works for the specific case of h = MAJ3 and
h = AND2 ◦ OR2 functions.
Then, we use a general h to simulate AND2 ◦ OR2; hence, proving composition for the
general case.

The case of recursive h = MAJ3 and h = AND2 ◦ OR2 functions is in itself very interesting.
There have been several works towards exploring the approximate degree and other properties
of these two functions [21, 26, 36, 23]. Given their importance, and the fact that it is a
central step in our main result (Theorem 1), we state the composition theorem for these two
functions separately.

▶ Theorem 2. Let f and g be two Boolean functions. Then,

d̃eg(f ◦ hd) = Ω̃(d̃eg(f) d̃eg(hd)) and d̃eg(hd ◦ g) = Ω̃(d̃eg(hd) d̃eg(g)),

where h is either MAJ3 : {0, 1}3 → {0, 1} or AND2 ◦ OR2 : {0, 1}4 → {0, 1}, n is the arity of
the outer function, d ≥ C log logn for a large enough constant C, and Ω̃(·) hides polylog(n)
factors.

To prove Theorem 2 we will need the following lemma. Even though the lemma can
be obtained from a combination of known results (e.g., [39] and [10]) with appropriate
parameters, we give a self-contained simpler proof of the lemma, inspired by the primal-dual
perspective of [40].

▶ Lemma 3. For any Boolean functions f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1},

d̃eg(f ◦ MAJt ◦ g) = Ω(d̃eg(f)d̃eg(g)) (1.1)

for t ≥ C logn for a large enough constant C.
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Note that, Lemma 3 gives a way to settle the composition question affirmatively. In
particular, if d̃eg(f ◦ MAJt ◦ g) = Õ(d̃eg(f ◦ g)), where t is Θ(logn) and n is the arity of f ,
then it follows that the composition holds for f and g.

We also highlight that a tighter lower bound can be obtained when the middle function
MAJ is replaced by an “amplifier function” in Lemma 3. Define H to be a strong hardness
amplifier function for g if

d̃eg 1−2−Ω(t)
2

(H ◦ g) = Ω(d̃eg(H) ◦ d̃eg(g)).

We also observe that,

d̃eg(f ◦H ◦ g) = Ω(d̃eg(f)d̃eg(H)d̃eg(g)), (1.2)

when H is a strong hardness amplifier function for g. We discuss this improvement in the
full version of the paper [16].

1.2 Proof Ideas

To address the lower bound for the composition of two Boolean functions f and g, f ◦ g, we
will call f to be the “outer function” and g to be the “inner function”. In the case of three
layered composed functions (f ◦H ◦ g), we will call H to be the “hardness amplifier” and f

and g to be the outer and inner functions respectively.

Primal dual approach to composition. Our proof technique is based on the primal-dual
view used by [40] for proving the composition of ANDn ◦ ORn. Here, instead of using
“dual-composition method” (see [13, 14]) we will be using only the dual witness of the inner
function. The primal-dual approach is to construct an approximating polynomial for f with
smaller degree than d̃eg(f) by applying a linear operator L on the assumed approximating
polynomial for f ◦ g (say p, with smaller degree than claimed), leading to a contradiction.
The linear operator L is defined by taking the input to f , extending it to a probability
distribution (which depends upon the dual of g) over the inputs of f ◦ g and outputting the
expectation.

Let ψ be the dual witness of g, we get µ0 and µ1 by restricting ψ on support which takes
positive and negative values respectively; by the properties of dual witness, µ1 (and µ0) will
mostly be supported on inputs x such that g(x) = 1 (and g(x) = 0 respectively). The input
to f is expanded bit by bit using µ0 and µ1, creating a distribution on inputs of f ◦ g.

Formally, L takes a general function h : {0, 1}mn → {0, 1} and gives Lh : {0, 1}n → R.

Lh(z1, . . . , zn) = E
x1∼µz1

E
x2∼µz2

· · · E
xn∼µzn

[h(x1, x2, . . . , xn)], (1.3)

where xi ∈ {0, 1}m for all i ∈ {1, 2, . . . , n}.
To complete the proof, the following two properties of L are required:

1. Showing that the polynomial Lp indeed approximates f in l∞ norm. Intuitively this
happens because the restricted distributions (µ0 and µ1) are a pretty good indicator of
the value of g.

2. The degree of Lp is small, intuitively because L reduces the degree of every monomial by
a factor of d̃eg(g).

APPROX/RANDOM 2024
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Problem with the primal dual approach. Unfortunately, the recipe described above doesn’t
work well in general due to the error introduced by the expectation over µ0 and µ1 in the
string (z1, . . . , zn). To handle a noisy string in place of a Boolean string, the approximating
polynomial p needs to be robust. A polynomial is robust to noise 1

3 , if for all inputs x and
for all ∆ ∈

[
− 1

3 ,
1
3
]m, |p(x) − p(x+ ∆)| < ε.

While any polynomial p can be made robust up to error ε with degree at most deg(p) +
log( 1

ε ) (see Theorem 11 by [42]), such polynomials are not known to be multilinear, making
the analysis of expectation difficult. [11] gives a robust multilinear polynomial for any
Boolean function f : {0, 1}n → {0, 1}; though, the polynomial is defined on a perturbation
matrix of input x instead of x itself. We now discuss how to overcome this problem.

We give the proof ideas of Theorem 1, Theorem 2 and Lemma 3 in the reverse order, the
way they are obtained from each other.

Proof idea of Lemma 3. We will use MAJt to get past this difficulty; it helps to reduce
the noise in the input of f to error 1

n . Using the fact that any multilinear polynomial on n

variables is robust up to error 1
n , we have our lower bound for the function d̃eg(f ◦ MAJt ◦ g)

where t = Ω(logn).

Proof idea of Theorem 2. Using previously known constructions ([48, 20]), MAJlog n can
be projected to MAJd

3 and (AND2 ◦ OR2)d, where d ≥ C log logn. We now replace MAJlog n

in Lemma 3 with these recursive functions; by using the associativity of the composition of
functions and the approximate degree upper bound [42], we finish the proof of the theorem.
Note that we only lose a factor of polylog(n) in the lower bound since we only need to
simulate MAJlog n.

Now we give the idea about how to replace AND2 ◦OR2 with almost any recursive function
to get our main result.

Proof idea of Theorem 1. Given Theorem 2, it is natural to ask, what other recursive
functions satisfy the composition property. We show that almost any h can be used to replace
the AND2 ◦ OR2 function. This is done by simulating AND2 and OR2 using restrictions of
h and its powers. The proof of this simulation is divided into two cases: monotone h and
non-monotone h.

For the monotone case (except when h is AND or OR): We show that both AND2 and
OR2 will be present as sub-cubes of the original Boolean hypercube of h.

For the non-monotone case (except when h is PARITY or ¬PARITY): The proof requires
more work here because of these two issues. First, there need not be both functions AND2 and
OR2 as sub-cubes (though, we show that at least one will be present). Second, the sub-cube
could be rotated. The resolution to both these issues is same. We use the non-monotonicity
to construct the negation function. This allows us to rotate the sub-cube as well as construct
AND2/OR2 from the other one.

A slight technical point to note is that when h is a non-constant arity function and hd is
the inner function, then the loss in the lower bound will be larger than polylog(n). However,
even for the case when the base function h has arity that is a “slowly” growing function of n
we still obtain a non-trivial lower bound composition result.

The remaining cases of Theorem 1, that is,
(i) when f or g equals hd for h ∈ {PARITY,¬PARITY} follows from [39], and (ii) when
f = hd and h ∈ {AND,OR} follows from [8].
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2 Notations and Preliminaries

In this paper, we will assume a Boolean function has domain {0, 1}n and range {0, 1}. We
start with some of the important definitions.

▶ Definition 4 (Generalized Composition of functions). For any Boolean function f : {0, 1}n →
{0, 1} and n Boolean functions g1, g2, . . . , gn, define the composed function

f ◦ (g1, g2, . . . , gn)(x1, x2, . . . , xn) = f(g1(x1), g2(x2), . . . , gn(xn)),

where gi’s can have different arities and xi ∈ Dom(gi) for all i ∈ [n].
When all the copies of gi are the same function g then the composed function is denoted

by f ◦ g.

▶ Definition 5 (Recursive functions). For any Boolean function f : {0, 1}t → {0, 1} we define
recursive function fd : {0, 1}td

→ {0, 1} by fd = f ◦ f ◦ . . . ◦ f︸ ︷︷ ︸
d times

.

▶ Definition 6 (Approximate degree (d̃eg)). For some constant 0 < ε < 1/2, a polynomial
p : Rn → R is said to ε-approximate a Boolean function f : {0, 1}n → {0, 1} if for all
x ∈ {0, 1}n, |p(x) − f(x)| ≤ ε. The ε-approximate degree of f , d̃egε(f), is the minimum
possible degree of a polynomial that ε-approximates f . Conventionally we use d̃eg(·) as the
shorthand for d̃eg1/3(·).

Note that the constant ε in the above definition can be replaced by any constant strictly
smaller than 1/2 which changes d̃egε(f) by only a constant factor. We note this well-known
fact about error reduction.

▶ Lemma 7 (Error reduction). For any ε > 0, d̃egε(f) = Θε(d̃eg(f)), where Θε(·) denotes
that the constant in Θ(·) depends on ε.

▶ Lemma 8 ([38, 39]). Let f : {0, 1}n → R be a function and ε > 0. Then, d̃egε(f) ≥ d iff
there exists a function ψ : {0, 1}n → R such that∑

x∈{0,1}n

|ψ(x)| = 1, (2.1)

∑
x∈{0,1}n

ψ(x) · f(x) > ε, and (2.2)

∑
x∈{0,1}n

ψ(x) · p(x) = 0 for every polynomial p of degree < d. (2.3)

In a seminal work, Sherstov [42] showed that the approximate degree can increase at
most multiplicatively under composition.

▶ Theorem 9 ([42]). For all Boolean function f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1},
d̃eg(f ◦ g) = O(d̃eg(f) · d̃eg(g)).

At times we will be working with inputs that are not Boolean but are close to Boolean. So
we would also need the following notion of robust approximating polynomials.

▶ Definition 10 ((δ, ε)-robust approximating polynomial). Let p : {0, 1}m → [0, 1] be a
polynomial. Then, for δ, ε > 0, a (δ, ε)-robust approximating polynomial for p is a polynomial
probust : Rm → R such that for all x ∈ {0, 1}m and for all ∆ ∈ [−δ, δ]m,

|p(x) − probust(x+ ∆)| < ε.

APPROX/RANDOM 2024
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Sherstov [42] proved that for any Boolean function f : {0, 1}n → {0, 1} there exists a robust
approximating polynomial with degree at most O(d̃eg(f) + log(1/ε)).

▶ Theorem 11 ([42]). A (δ, ε)-robust approximating polynomial for p : {0, 1}n → [0, 1] of
degree Oδ(deg(p) + log(1/ε)) exists. Here Oδ(·) denotes that the constant in O(·) depends on
δ.

Note that a robust approximating polynomial need not to be multilinear. For our purposes,
we need a multilinear robust approximating polynomial.

▶ Theorem 12 (Folklore). Any multilinear polynomial p : {0, 1}n → {0, 1} is
(

δ
n , δ
)
-robust.

A proof of the theorem above can be found at [11, Lemma 3].

▶ Theorem 13 ([8]). For any symmetric Boolean function f : {0, 1}n → {0, 1} and any
Boolean function g : {0, 1}m → {0, 1},

d̃eg(f ◦ g) = Ω
(

d̃eg(f)d̃eg(g)
logn

)
.

Finally, we define projection of functions.

▶ Definition 14 (Projection of functions). Let f : {0, 1}n → R and g : {0, 1}m → R be two
functions. We say that f is a projection of g, denoted f ≤proj g, iff

f(x1, . . . , xn) = g(a1, . . . , am)

for some ai ∈ {0, 1} ∪ {x1, x2, . . . , xn}. That is, f is obtained from g by substitutions of
variables of g by variables of f or constants in {0, 1}.

We need the following theorems about computing MAJn using a projection of recursive
functions.

▶ Theorem 15 ([20]). There exists a constant C > 0, such that MAJn : {0, 1}n → {0, 1} is
a projection of MAJd

3 where d = C logn.

▶ Theorem 16 ([48]). There exists a constant C > 0, such that MAJn : {0, 1}n → {0, 1} is
a projection of (AND2 ◦ OR2)d where d = C logn.

3 Composition theorem for recursive Majority and alternating
AND-OR trees

In this section we give a proof of Theorem 2. We begin with a proof highlight of Lemma 3.
The missing proofs are in the full version of the paper [16].

3.1 Proof of Lemma 3
▶ Lemma 3. For any Boolean functions f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1},

d̃eg(f ◦ MAJt ◦ g) = Ω(d̃eg(f)d̃eg(g)) (1.1)

for t ≥ C logn for a large enough constant C.
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Proof. We will present a proof inspired by the primal-dual view of [40]. Fix any constant
0 < ε < 1/2. Let h := f ◦ MAJt ◦ g be the composed function, and ph : {0, 1}ntm → R be an
ε-approximating polynomial for h.

Further, define d := d̃eg 1−ε
2

(g). Then, by Lemma 8, there exists a function ψ : {0, 1}m →
R such that∑

x∈{0,1}m

|ψ(x)| = 1, (3.1)

∑
x∈{0,1}m

ψ(x) · g(x) > 1 − ε

2 , and (3.2)

∑
x∈{0,1}m

ψ(x) · p(x) = 0 for every polynomial p of degree < d. (3.3)

Let µ be the probability distribution on {0, 1}m given by µ(x) = |ψ(x)| for x ∈ {0, 1}m.
From (3.3), we have

∑
x∈{0,1}m ψ(x) = 0. Therefore, the sets {x | ψ(x) < 0} and {x | ψ(x) >

0} are weighted equally by µ. Let µ0 and µ1 be the probability distributions obtained by
conditioning µ on the sets {x | ψ(x) < 0} and {x | ψ(x) > 0} respectively. Hence,

µ = 1
2µ0 + 1

2µ1, and ψ = 1
2µ1 − 1

2µ0.

We note an important property of the distributions µ0 and µ1 which shows that the error
between sign(ψ(x)) and g(x) is low.

▶ Lemma 17. Ex∼µ1 [g(x)] > 1 − ε.

▶ Lemma 18. Ex∼µ0 [g(x)] < ε.

Consider the following linear operator L that maps functions h : {0, 1}ntm → R to
functions Lh : {0, 1}n → R,

Lh(z) = E
x11∼µz1
x12∼µz1

...
x1t∼µz1

E
x21∼µz2
x22∼µz2

...
x2t∼µz2

· · · E
xn1∼µzn
xn2∼µzn

...
xnt∼µzn

[h(x11, . . . , x1t, x21, . . . , x2t, . . . , xn1, . . . , xnt)]. (3.4)

Recall h = f ◦ MAJt ◦ g and ph be ε-approximating polynomial for h. Thus by convexity
of L we have ∥L(h− ph)∥∞ ≤ ε. We will now observe some useful properties of the linear
operator L.

▶ Lemma 19. deg(Lph) ≤ deg(ph)/d, where d = d̃eg 1−ε
2

(g).

We now show that Lph is in fact an approximating polynomial for f .

▶ Lemma 20. Fix 0 < δ < 1/2. Recall ph is an ε-approximating polynomial for h =
f ◦ MAJt ◦ g. Let t = Θ(logn+ log(1/δ)) where the constant in Θ(·) depends on ε. Then,
Lph is a (δ + ε)-approximating polynomial for f . That is,

∥f − Lph∥∞ ≤ ∥f − Lh∥∞ + ∥Lh− Lph∥∞ ≤ δ + ε.

APPROX/RANDOM 2024
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Proof. It suffices to show ∥f − Lh∥∞ ≤ δ. To this end, consider Lh(z).

Lh(z) = E
x11∼µz1
x12∼µz1

...
x1t∼µz1

E
x21∼µz2
x22∼µz2

...
x2t∼µz2

· · · E
xn1∼µzn
xn2∼µzn

...
xnt∼µzn

[f ◦ MAJt ◦ g(x11, . . . , x1t, . . . , xn1, . . . , xnt)]

= f

(
MAJt

(
E

µz1
[g], . . . , E

µz1
[g]
)
, . . . ,MAJt

(
E

µzn

[g], . . . , E
µzn

[g]
))

= f(z′
1, z

′
2, . . . , z

′
n),

where ∥z − z′∥∞ ≤ δ/n because t = Θε(logn+ log(1/δ)) and Lemmas 18 and 17.
Therefore, for any z ∈ {0, 1}n, |f(z) −Lh(z)| = |f(z) − f(z′)| ≤ δ, since ∥z− z′∥∞ ≤ δ/n

and Lemma 12. ◀

Since Lph is a (δ + ε)-approximating polynomial for f , we also have deg(Lph) ≥ d̃egδ+ε(f).
We therefore have the following inequalities

d̃egδ+ε(f) ≤ deg(Lph) ≤ deg(ph)
d̃eg 1−ε

2
(g)

.

Rewriting we have

d̃egε(f ◦ MAJt ◦ g) = deg(ph) ≥ d̃egδ+ε(f) · d̃eg 1−ε
2

(g). (3.5)

This completes the proof of Lemma 3. ◀

3.2 Proof of Theorem 2
We note an easy to observe fact about approximate degree of projections of functions.

▶ Fact 3.6. Let f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1} be such that f ≤proj g, i.e., f
is a projection of g. Then, for any ε ∈ (0, 1/2), d̃egε(f) ≤ d̃egε(g).

Consider the recursive-majority function MAJd
3 given by the complete 3-ary tree of height

d with internal nodes labeled by MAJ3 and the leaves are labeled by distinct variables. Fix
d ≥ C log logn for a large enough constant C.

First, observe that MAJd
3 is not a symmetric function. Secondly, it doesn’t have full ap-

proximate degree ([35]). And finally, its approximate degree is not equal to Θ
(√

bs(MAJd
3)
)

(it follows from the fact that bs(MAJd
3) is linear with d̃eg(MAJd

3). See the full version [16]
for a proof of d̃eg(MAJd

3) = 2d). Thus, none of the previous works [39, 8, 15] imply that
approximate degree composes when one of the (inner or outer) functions is recursive-majority
MAJd

3.

Proof of Theorem 2. Let MAJd
3 be the recursive-majority function obtained by the complete

3-ary tree of height d with internal nodes labeled by MAJ3 and the leaves are labeled by distinct
variables. Let f : {0, 1}n → {0, 1} be an arbitrary function and consider the approximate
degree of the composed function f ◦ MAJt ◦ MAJd

3 where t = Θ(logn).

d̃eg(f ◦ MAJt ◦ MAJd
3) ≤ d̃eg(f ◦ MAJC log t

3 ◦ MAJd
3) = d̃eg(f ◦ MAJd

3 ◦ MAJC log t
3 ) (3.7)

= O(d̃eg(f ◦ MAJd
3) · d̃eg(MAJC log t

3 )) (3.8)

= O(d̃eg(f ◦ MAJd
3) · poly(t)). (3.9)
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The first inequality in (3.7) follows from the fact that MAJt is a projection of MAJC log t
3

(Theorem 15) and Fact 3.6. Then (3.8) follows from Theorem 9.
On the other hand, from Lemma 3, for t = Ω(logn) we have

d̃eg(f ◦ MAJt ◦ MAJd
3) = Ω(d̃eg(f) · d̃eg(MAJd

3)).

Combining with (3.9), we obtain the lower bound

d̃eg(f ◦ MAJd
3) = Ω

(
d̃eg(f) · d̃eg(MAJd

3)
polylog(n)

)
.

A similar argument shows the following inequalities, where in the last two inequalities we
use Theorem 16 instead of Theorem 15, for d = Ω(logn),

d̃eg(MAJd
3 ◦ f) = Ω̃(d̃eg(f) · d̃eg(MAJd

3)),
d̃eg(f ◦ (AND2 ◦ OR2)d) = Ω̃(d̃eg(f) · d̃eg((AND2 ◦ OR2)d)), and
d̃eg((AND2 ◦ OR2)d ◦ f) = Ω̃(d̃eg(f) · d̃eg((AND2 ◦ OR2)d)). ◀

4 Composition theorem for recursive functions

In this section we prove our main theorem (Theorem 1). It shows that the approximate
degree composes when either the inner function or the outer function is a recursive function.
More formally,

▶ Theorem 1. Let f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1} be two Boolean functions
and d ≥ C log logn for a large enough constant C. Then,

d̃eg(f ◦ g) = Ω
(

d̃eg(f)d̃eg(g)
polylog(n)

)
,

if either of the following conditions hold:
1. f = hd, for any Boolean function h.
2. g = hd, for any Boolean function h with constant arity and not equal to AND or OR.

The following cases of Theorem 1 follows from prior works:
1. f or g equals hd for h ∈ {PARITY,¬PARITY} [39].
2. f = hd and h ∈ {AND,OR} [8].
Therefore, it remains to prove Theorem 1 when h /∈ {PARITY,¬PARITY,AND,OR}. A crucial
technical insight that makes the proof work is that when h /∈ {PARITY,¬PARITY,AND,OR}
then AND2 and OR2 are projections of h3. We can thus simulate MAJ using a small power
of h. Thereafter, Lemma 3 is used to conclude Theorem 1. We now work out the details.
We first state the main technical lemma we need for Theorem 1 and then complete the proof
of the theorem. Finally, we prove the technical lemma in Section 4.1.

▶ Lemma 21. Let h : {0, 1}t → {0, 1} (where t ≥ 2) be a Boolean function which depends on
all t variables and is not equal to PARITY/¬PARITY/OR/AND. The function AND2 (and
similarly OR2) can be obtained by setting all but two variables to constants in hk for k ≤ 3.

We now present the proof of Theorem 1 using Lemma 21.

Proof of Theorem 1. Let h : {0, 1}t → {0, 1} be any Boolean function such that h /∈
{PARITY,¬PARITY,AND,OR}. We know from Lemma 3 that d̃eg(f ◦ MAJk ◦ hd) =
Ω(d̃eg(f)d̃eg(hd)) where k = Θ(logn). Like in the proof of Theorem 2, we will simu-
late MAJk using hℓ for sufficiently large ℓ. From Lemma 21, it follows that (AND2 ◦ OR2)ℓ

is a projection of h6ℓ. Therefore, we obtain from Theorem 16 that MAJk is a projection of
hC log k for some constant C > 0. We thus have the following sequence of inequalities,
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d̃eg(f ◦ hd) ≥ d̃eg(f ◦ MAJk ◦ h(d−C log k))

= Ω(d̃eg(f)d̃eg(h(d−C log k)))

= Ω
(

d̃eg(f)d̃eg(hd)
tC log k

)

= Ω
(

d̃eg(f)d̃eg(hd)
polylog(n)

)
.

Note that the last equality above uses the fact that t is a constant. When hd is the outer
function then we don’t need t to be a constant, while the rest of the argument remains the
same to give

d̃eg(hd ◦ g) = Ω
(

d̃eg(hd)d̃eg(g)
polylog(n)

)
. ◀

This completes the proof of the main theorem. We now present a proof of Lemma 21.

4.1 Proof of the main technical lemma (Lemma 21)
We proceed by proving an intermediate result (Lemma 22) before going to the proof of
Lemma 21.

Suppose we are allowed to modify a Boolean function by two operations: negating some
of its variables, and restricting some of the variables to constant values. Lemma 22 proves
that almost every Boolean function can be modified to either an AND2 or an OR2 function.
A restriction of the variables amounts to looking at a smaller hypercube translated to a new
point, and negating a variable amounts to rotating the smaller hypercube. In other words,
we want to show that there is a shifted AND2 or OR2 in the Boolean hypercube of h (see
Figure 1 for an example).

This shifted AND2/OR2 in the Boolean hypercube of a Boolean function can be concretely
defined by the concept of a sensitive block. For a block of variables S ⊆ [n] and an input
x ∈ {0, 1}n, define x⊕S ∈ {0, 1}n to be the input which flips exactly the variables in S at
the input x. Given a Boolean function f : {0, 1}n → {0, 1}, a block S is called sensitive on
x iff f(x) ̸= f(x⊕S). A block S is called minimal sensitive for x at f , if no subset of S is
sensitive for x at f .

Notice that a shifted AND2/OR2 is a square with three vertices labelled 0 and one vertex
labelled 1 or vice versa. This gives us a minimal sensitive block on the vertex opposite to the
unique value. It can be easily verified that the converse is also true. So, we define a function
to have a shifted AND2/OR2 iff it has a minimal sensitive block of size 2.

We show below that almost all functions have a minimal sensitive block of size 2.

▶ Lemma 22. Let h : {0, 1}t → {0, 1} (where t ≥ 2) be a Boolean function which depends
on all t variables and is not equal to PARITY/¬PARITY. Then, there exists an x ∈ {0, 1}t

such that h has a minimal sensitive block of size 2 on x.

Proof. We will prove the result using induction on the variables. The statement can be
easily verified for t = 2.

Define g0 (and g1) to be the restrictions of h by setting xt = 0 (and xt = 1) respectively.
Let ey be the edge ((y, 0), (y, 1)) in the Boolean hypercube, and St := {ey : y ∈ {0, 1}t−1}.
Color an edge ey red if g0(y) = g1(y), and blue otherwise.
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Figure 1 A function on 3 bits with a shifted OR marked with red edges.

Notice that not all the edges in St can be red, otherwise h does not depend on xt. Suppose
all the edges in St are blue, i.e, g1 = ¬g0 (in other words, h = g0 ⊕ xt). Since h depends on
all variables, then g0 depends on all variables x1, x2, · · · , xt−1. If g0 is PARITY/¬PARITY,
then h is also PARITY/¬PARITY. Implying that g0 is dependent on all its variables and is
not PARITY/¬PARITY. By induction, there exists a minimal sensitive block of size 2 for g0
(and hence h).

For the rest of the proof, we can assume that there exists both a red and a blue edge
in St.

Let ex be red and ey be blue, this means that g0(x) = g1(x) but g0(y) ̸= g1(y). If x and
y were at Hamming distance 1, then vertices (x, 0), (x, 1), (y, 0) and (y, 1) will give us the
required minimal sensitive block of size 2.

If x, y are not at Hamming distance 1, look at any path from x to y in the t−1 dimensional
hypercube, say z0 = x, z1, z2, · · · , zl = y. The edge ez0 is red and ezl

is blue. Since the color
needs to switch at some point, there exist zi, zi+1 at Hamming distance 1 such that ezi

is
red and ezi+1 is blue. Again, the vertices (zi, 0), (zi, 1), (z1+1, 0) and (zi+1, 1) will give us the
required minimal sensitive block of size 2. ◀

We are prepared to prove Lemma 21 which shows: given a Boolean function h, AND2
(and OR2) can be obtained by restricting some of the variables to constants in a very small
power of h. Compared to Lemma 22, we need to remove negation and simulate both AND2
and OR2 and not just one of them.

We just show how to obtain AND2, the case for OR2 is similar. We handle the case of h
being monotone and non-monotone separately.

Monotone h

This case is simpler, and AND2 can be obtained as a restriction of h itself. Let a minimal
1-input be a x ∈ {0, 1}t such that setting any 1 bit of x to 0 changes the value of h. If there
is a minimal 1-input x of Hamming weight more than 2, we get a AND2 by choosing any two
indices which are 1 in x. The following claim finishes the proof for monotone functions.

▷ Claim 23. Let h : {0, 1}t → {0, 1} be a monotone Boolean function which depends on all
variables. If there is no minimal 1-input with Hamming weight more than 2, then h is the
OR function.

APPROX/RANDOM 2024



71:14 Approximate Degree Composition for Recursive Functions

Figure 2 An example for constructing AND2 using a non-monotone function. Let
h : {0, 1}3 → {0, 1} be 0 at x = 001 and 1 otherwise. Use the shifted OR2/minimal sensitive
block at 001 with indices {2, 3}.

Proof. By abusing the notation, let 0 denote the all 0 input. Since the function is monotone
but not constant, we know that h(0) = 0. Let S ⊆ [t] capture the indices such that the
corresponding Hamming weight 1-input has function value 0,

S = {i : h(0⊕i) = 0}.

For a y ∈ {0, 1}t, if the set of 1-indices are not a subset of S, then h(y) = 1 by monotonicity.
If the set of 1-indices are a subset of S, then h(y) = 0 because there is no minimal 1-input
with Hamming weight more than 2.

In other words, h is the OR function on the remaining [t] \ S variables. Since h depends
on all the t variables, h is the OR function. ◁

Non-monotone h

Since h is a non-monotone function, there exists an input a ∈ {0, 1}t and an index i ∈ [t]
such that h(a) = 1, ai = 0 and h(a⊕i) = 0. Restricting the variables according to a (except
the i-th bit) gives h1(xi) = ¬xi.

From Lemma 22, there exists a b ∈ {0, 1}t such that h has a minimal sensitive block of
size 2 on b (shifted AND2/OR2). The main idea of this proof is to use negation and this
shifted AND2/OR2 (Figure 2 gives an example).

For the formal proof, without loss of generality assume that the block have indices 1, 2
(that means h(b) = h(b⊕{1}) = h(b⊕{2}) ̸= h(b⊕{1,2})). We will finish the proof by considering
the two cases h(b) = 0 and h(b) = 1.
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h(b) = 0 (shifted AND2): Suppose b1 = 0 and b2 = 1 (other cases can be handled
similarly). Notice that AND2(x, y) = h(x,¬y, b3, · · · , bt), giving us AND2(x, y) =
h(x, h1(y), b3, · · · , bt).
h(b) = 1 (shifted OR2): Suppose b1 = 1 and b2 = 0 (other cases can be handled similarly).
Notice that OR2(x, y) = h(x,¬y, b3, · · · , bt); using De Morgan’s law,

AND2(x, y) = ¬OR2(¬x,¬y) = ¬h(¬x, y, b3, · · · , bt) = h1(h(h1(x), y, b3, · · · , bt))

Since h1 is also a restriction of h, the proof is complete.

5 Conclusion

Towards the main open problem of approximate degree composition, we have the following
immediate question in light of Lemma 3. Can we upper bound d̃eg(f ◦ MAJt ◦ g) in terms of
d̃eg(f ◦ g)? Precisely,

▶ Open question 24. Is d̃eg(f ◦ MAJt ◦ g) = Õ(d̃eg(f ◦ g)), where t = Θ(logn) and n is the
arity of the outer function f?

Observe that an affirmative solution to the above question solves the composition question
for approximate degree in positive. Another interesting question is to find other classes of
functions for which the analogue of Equation 1.2 holds.

▶ Open question 25. Find non-trivial classes of functions H such that d̃eg(f ◦ h ◦ g) =
Ω̃(d̃eg(f) · d̃eg(h) · d̃eg(g)) for all h ∈ H?

It has the following two useful implications. First, this gives composition for functions
h ∈ H. In particular, when one of the functions h (inner or outer) belongs to the class H
then d̃eg(f ◦ h ◦ g) = Ω̃(d̃eg(f) · d̃eg(h) · d̃eg(g)) along with Theorem 9 implies

d̃eg(h ◦ g) = Ω̃(d̃eg(h) · d̃eg(g)) and d̃eg(f ◦ h) = Ω̃(d̃eg(f) · d̃eg(h)).

Second, a function h ∈ H can be used as “hardness amplifier” functions.
Another very interesting question that may provide us insights to make progress towards

the main question of approximate degree composition is to prove that approximate degree
composes when the inner function is OR.

▶ Open question 26. Show that d̃eg(f ◦ OR) = Ω̃(d̃eg(f).d̃eg(OR)).
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