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Abstract
Assume we are given sample access to an unknown distribution D over a large domain [N ]. An
emerging line of work has demonstrated that many basic quantities relating to the distribution,
such as its distance from uniform and its Shannon entropy, despite being hard to approximate
through the samples only, can be efficiently and verifiably approximated through interaction with an
untrusted powerful prover, that knows the entire distribution [Herman and Rothblum, STOC 2022,
FOCS 2023]. Concretely, these works provide an efficient proof system for approximation of any
label-invariant distribution quantity (i.e. any function over the distribution that’s invariant to a
re-labeling of the domain [N ]).

In our main result, we present the first efficient public coin AM protocol, for any label-invariant
property. Our protocol achieves sample complexity and communication complexity of magnitude
Õ(N2/3), while the proof can be generated in quasi-linear Õ(N) time.

On top of that, we also give a public-coin protocol for efficiently verifying the distance a between
a samplable distribution D, and some explicitly given distribution Q.
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1 Introduction

Given sample access to a distribution, what can we learn about the distribution, and what is
the complexity of learning? These questions are central to computer science and statistics
and have guided a rich body of work with applications ranging many fields. An emerging
line of work asks the following question:

What is the complexity of verifying claims about a samplable distribution?

That is, suppose there exists a powerful yet untrusted prover that claims to have drawn
many samples from a distribution D, and concluded that it satisfies some condition, e.g. its
support is of size at most K, its Shannon entropy is h, etc. Can a verifier interacting with
the prover be convinced that the claim is (approximately) correct, while taking fewer samples
and running in less time than required to compute these measures directly from samples?

This question was raised by Chiesa and Gur [5], and recently Herman and Rothblum
[14] showed that a rich family of distribution properties, namely label-invariant distribution
properties - those distribution measures that remain unchanged after permuting the domain
(such as the distribution’s support size and Shannon entropy) - have (doubly) efficient
proof systems, that for natural problems, allow verification that is significantly faster than
computation from samples only. These protocols are private-coin protocols, in which the
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verifier can draw samples from D, toss random coins, and choose whether to send them to
the prover, or keep them hidden from it. Indeed, the protocols in [14] rely heavily on the
fact that the verifier hides its random coin-tosses in order to perform the verification. In
this work we explore public-coin protocols for verifying distribution properties, in which the
verifier reveals to the prover every coin it tosses immediately upon drawing it. We construct
efficient public-coin proof systems for label-invariant distribution properties, and more.

More concretely, we follow the definition of public-coin proof systems for distribution
properties from Chiesa and Gur [5], in which the verifier can only send random coin tosses
to the prover, and the samples they draw from D are independent from the transcript of the
protocol, and are drawn only after the communication phase.

Our work studies the power of public-coin proof systems in the context of verifying
properties of an unknown samplable distribution. We find this to be a foundational question:
indeed, the power of public-coin proof systems has been a central question since they were
first introduced [10, 2]. In the classical setting (verifying the membership of a fixed and
known input in a language), Goldwasser and Sipser [11] showed how to convert general
protocols into public-coin ones (albeit their transformation does not preserve the honest
prover’s running time [19, 1]). In our context, where the verifier only has sampling access to
the unknown distribution, no such general transformation is known. Chiesa and Gur showed
upper and lower bounds for public-coin interactive proofs for distribution properties. Beyond
the foundational importance of public-coin protocols, they are also important for removing
interaction using the Fiat-Shamir paradigm [7] and for transforming general protocol into
zero-knowledge ones [9, 4]

1.1 This Work: Public-coin Protocols for Label-Invariant Distribution
Properties

Our main result is a new public-coin protocol for label-invariant distribution properties. We
proceed to present this result, and put it into context with the private-coin setting of [14],
and the other public-coin distribution verification protocols of [5].

A distribution property P = (PN )N∈N is an ensemble such that PN is a set of distributions
over domain [N ]. We consider the distance of a distribution D over domain [N ] from the
property by the total variation of D from the closest distribution to it in PN . A distribution
property is said to be label-invariant if permuting the domain doesn’t change P . This family
of distribution properties contains many natural properties, such as the property of being
close to uniform over some subset of the domain, or having Shannon entropy roughly k.

▶ Theorem 1 (Main result: public-coin IPs for label-invariant properties, informal). For every
label-invariant distribution property P with a doubly-efficient approximate decision procedure,1
there exists a 2-message public-coin interactive protocol as follows. The prover and the verifier
both get as input an integer N and proximity parameters εc, εf ∈ [0, 1] where εc < εf , as
well as sampling access to an unknown distribution D over support [N ], and the following
properties hold:

1 See Definition 28. In a nutshell, these are label-invariant properties that can be efficiently decided from
the τ -approximate bucket-histogram of the distribution, i.e. by only knowing how many elements have
probability roughly (1+τ)j

N for all j, see Definition 5. [13] showed that this assumption is quite mild,
and many natural distribution properties admit such a procedure, the reader is referred to [13] for a
deeper exploration of this notion.
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Completeness: if D is εc-close to the property (its total variation distance from the closest
distribution in the property is at most εc), and the prover follows the protocol, then w.h.p.
the verifier accepts.
Soundness: if D is εf -far from the property (its total variation distance from every
distribution in the property is at least εf ), then w.h.p. no matter how the prover cheats,
the verifier rejects.
Doubly-efficient prover: Taking ρ = εf − εc, the honest prover’s runtime and sample
complexity are Õ(N) · poly(1/ρ).
Efficient verification: the communication complexity and the verifier’s sample complexity
and runtime are all Õ

(
N2/3) · poly(1/ρ).

Public-coin verification vs. testing of label-invariant distribution properties

Observe that the protocol above allows us to efficiently approximate the distance of D from
P , by running a binary search with different values for εc, εf . Raskhodnikova et al. [17], and
Valiant and Valiant [20] showed that approximating the distance between D and natural
label-invariant distribution properties, given only black-box sample access to the distribution,
requires Θ(N/ log N) samples. This includes approximating the distance from being uniform
over the entire domain, from having entropy k, and more. Thus, our result demonstrates
that public-coin verification can be more efficient than stand-alone computation with no
access to a prover for these natural distribution problems.

Comparison with the secret-coin setting of Herman and Rothblum [14]

Herman and Rothblum provided a secret-coin interactive proof for verifying membership
in any label-invariant distribution property (that admits an efficient approximate decision
procedure) with verifier sample complexity, runtime, communication complexity of magnitude
Õ
(√

N
)

, and only two messages. The first message in their protocol contains a tuple of
elements in [N ], where each element was sampled with probability 1

2 from the distribution
D, and with probability 1

2 was drawn uniformly from [N ]. Crucially for their argument,
the verifier doesn’t share with the prover which samples were drawn according to which
distribution, and later capitalizes on that fact to reject dishonest prover behavior.

In our public-coin protocol not only is the verifier required to share the random coin
tosses, it also cannot send samples from D as part of the communication. Thus, Theorem 4
achieves a similar result qualitatively to theirs, but using only public coins, at the cost of
more samples and communication.

Comparison with Chiesa and Gur [5]

Chiesa and Gur provided public-coin protocols for any property with communication c =
Õ(N), and verifier sample complexity s = O

(√
N
)

, by having the prover send an explicit
description of the distribution, and the verifier use an identity tester from the distribution
testing literature to check that the description matches the samplable distribution. Then, the
verifier accepts if D is both close to the explicit distribution provided, and if this description
is of a distribution inside the property. Moreover they also proved that for a distribution
property that requires Ω(t) samples to test, any public-coin proof system for this property
must satisfy s · c = Ω(t). As mentioned above, verifying the distance from uniformity or
approximating the entropy of a distribution requires Ω̃(N) samples, and so, every AM
protocol that verifies this property must also satisfy s · c = Ω̃(N). Our protocol for this
problem achieves c · s = Õ(N4/3), and the question of whether there exists a more efficient
public-coin proof system for this problem remains open.

APPROX/RANDOM 2024
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Obtaining approximate tags of elements in [N ]

The method through which our protocol allows the verifier to verify any label invariant
distribution property is by having the verifier uniformly draw elements from [N ], and verifiably
obtain an approximation of the probability of each element according to D, that is correct
on average (we call this a uniformly drawn approximate tagged sample). Formally, for some
accuracy parameter σ ∈ (0, 1), and a tuple (zi) ∈ [N ]s, we define:

▶ Definition 2 (σ-approximate tags for (zi) with respect to D). σ-approximate tags for (zi)
with respect to D is a tuple (πi)i∈[s] ∈ [0, 1]s that satisfies the following inequality:

1
s

∑
i∈[s]

(
1 − min

{
D(zi)

πi
,

πi

D(zi)

})
≤ σ (1)

In other words, on average, πi ∈ [1 ± σ] D(zi). A uniformly drawn approximate tagged
sample allows to approximate the probability histogram of a distribution, as explained in
the following sections. Note that in [13] and [14] the authors obtain an approximate tagged
sample drawn according to D, rather than from a uniformly drawn sample, and use it to
approximate the probability histogram of D. Thus, upon obtaining the probability histogram,
our approaches converge, and we follow these works to bridge the gap between obtaining a
probability histogram of a distribution and the estimation of distance from a label-invariant
property. Note that the main difficulty is obtaining the tagged sample, a task that without
communication would’ve required Ω̃(N) samples, and so, this paper will focus on this point.

Moreover, [13, 14] not only contain secret coins, but also rely on the fact that the verifier
can send samples from D to the prover. In this work, we allow the verifier to only send
random coins, not even samples from D. This choice is justified in Chiesa and Gur [5], and
allows our protocol to utilize properties of public-coin protocols over other objects with
different access models.

We also show that a uniformly drawn approximate tagged-sample can also be used to
verify distribution properties that are not label-invariant. Specifically, we also show that for
the well-studied problem of approximating the distance of D from an explicit distribution Q,
an approximate tagged uniform sample is sufficient:

▶ Theorem 3 (Tolerant Verification of Identity). Given an explicit description of distribution
Q over [N ], parameters 0 < εc < εf <, and sample access to distribution D over domain
[N ], there exists a 2-message public-coin protocol, with verifier sample complexity and
communication complexity Õ(N2/3) · poly( 1

εf −εc
) such that:

If ∆SD(D, Q) ≤ εc, the verifier accepts with high probability.
If ∆SD(D, Q) ≥ εf , the verifier rejects with high probability.

1.2 Further Related Works
Interactive proof systems were introduced in the seminal work of Goldwasser, Micali and
Rackoff [10] in the context of proving computational statements about an input that is fully
known to the prover and the verifier. In our work, the distribution can be thought of as the
input, but it is not fully known to the verifier, and is accessed implicitly through samples.
We aim for verification without examining the distribution in its entirety, using minimal
resources (samples, communication, runtime, etc.).

Our work builds on a line of work that studied the power of sublinear time verifiers,
who cannot read the entire input [6, 18, 12], on verifying properties of distributions using a
small number of samples [5, 13, 14], and the rich literature of distribution testing, of which
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most notably, we extensively use the ideas of Batu and Canonne in [3], as explained in the
technical overview. We also note that Herman and Rothblum [15] recently showed that a
very rich family of distribution properties, those that can be decided by a small circuit from
an explicit description of the distribution, can be doubly-efficiently verified with asecret-coin
protocol.

2 Technical Overview

As discussed in the introduction above, the protocol behind Theorem 1 is based on obtaining
verified Θ(ρ)-approximate tags with respect to D for a sample uniformly drawn from [N ]. In
this section, we describe the public-coin protocol for obtaining this object. We then detail
how this tagged sample can be leveraged to verify membership in label-invariant distribution
properties.

▶ Theorem 4 (Informal). There exists a 2-message public-coin interactive protocol between a
verifier and a (potentially malicious) prover, where the verifier receives as input parameters
σ ∈ (0, 0.1) and N ∈ N, as well as sample access to a distribution D over domain [N ].
The communication complexity, verifier sample complexity, and verifier runtime are all
s = Õ

(
N2/3) poly(σ−1), the honest prover with the same input as the verifier has sample

complexity and runtime Õ(N)poly(σ−1). At the end of the interaction, the verifier rejects or
outputs (Si) ∈ [N ]s that is drawn uniformly from [N ], and (πi) ∈ [0, 1]s such that:

If the prover is honest, for all i ∈ [s], πi = D(Si), and with probability at least 0.75, the
verifier doesn’t reject.
Whatever strategy a dishonest prover follows, with probability at most 0.25 over the
verifier’s coin tosses and samples, the verifier accepts and outputs (πi) such that doesn’t
satisfy Inequality (1).

We outline the protocol behind Theorem 4. We highlight that some details are swept under
the rug for sake of simplicity. In particular, we assume that D(x) ≤ 1

s for all x ∈ [N ]. After
we present the protocol under this assumption, we discuss how to remove this assumption.

The communication phase

The verifier draws an i.i.d. sample S = (Si) of size s = Õ
(
N2/3) · poly

(
σ−1) uniformly

from [N ], and sends the sample the prover. For each sample Si received, the prover replies
with πi such that πi = D(Si). Note that with high probability, due to the choice of s, there
doesn’t exist an element in x ∈ [N ] that was sampled more than 3 times,2 and in general,
the fraction of elements that were sampled twice or three times is very small with respect to
s. Therefore, for sake of simplicity, assume that S contains only unique elements.

Moreover, since we assumed D(x) ≤ 1
s for all x ∈ [N ], by choice of s, the sample S

contains with overwhelming probability many samples uniformly distributed inside Supp(D).

Verifing the prover’s message

The verifier divides the samples in S into buckets according to their alleged probability, where
inside each bucket all the samples are claimed to have roughly the same mass. Concretely,
for τ = O(σ3), and for every j, denote by BS

j ⊆ [s] the collection of indices in S that the

2 The probability that 4 samples collide is
∑

x∈[N ] D(x)4 = 1
N3 while there are only

(
s
4

)
= O(N8/3)

possible 4-tuples in the sample S.

APPROX/RANDOM 2024
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prover claimed have probability in the range
[

(1+τ)j

N , (1+τ)j+1

N

]
. The verifier then tests for

every such j that the average probability of the elements in BS
j is indeed roughly (1+τ)j

N , and
that D

∣∣
BS

j

is close to uniform:
Checking that the average mass is correct. The verifier draws a fresh sample T ,
and checks that the empirical mass of BS

j in T is roughly s ·
∣∣BS

j

∣∣ · (1+τ)j

N , and rejects
otherwise. Observe that for any distribution D, the true mass of BS

j is
∑

k∈BS
j

D(Sk).
And so, by choice of s, since the empirical mass of BS

j in T is strongly concentrated
around its mean, if the test passes, then with high probability:

s ·
∑

k∈BS
j

D(x) τ
≈ s ·

∣∣BS
j

∣∣ · (1 + τ)j

N

Where for α ∈ (0, 1) we use the notation a
α
≈ b to indicate that a ∈ (1 ± α)b. We conclude

that with high probability:

E
k

uni∼ BS
j

[D(Sk)]
O(τ)
≈ (1 + τ)j

N
(2)

Verifying that D
∣∣
BS

j

is close to uniform. The verifier draws another fresh D-sample
T ′ of size s, and counts how many 3-way collisions occur between elements in BS

j

and the two samples T, T ′, i.e. the number of 3-tuples (k, r, r′) ∈ [s]3 satisfy k ∈ BS
j ,

Sk = Tr = T ′
r′ . If this quantity is far from s2 ·

∣∣BS
j

∣∣ ·( (1+τ)j

N

)2
, the verifier rejects. Similar

to before, for any fixed pair of entries in T, T ′, (r, r′) ∈ [s]2, the true expected number of
k ∈ BS

j for which Sk = Tr = Tr′ is
∑

k∈BS
j

(D(Sk))2. The total expected number of such
3-tuples is s2 ·

∑
k∈BS

j
(D(Sk))2. This quantity is also strongly concentrated around its

mean by choice of s = Θ(N2/3)poly(σ−1). We conclude that if this test passed, then with
high probability:

s2 ·
∑

k∈BS
j

(D(Sk))2 O(τ)
≈ s2 ∣∣BS

j

∣∣ ·
(

(1 + τ)j

N

)2

And equivalently:

E
k

uni∼ BS
j

[
(D(Sk))2

] O(τ)
≈
(

(1 + τ)j

N

)2

(3)

We are thus left to argue that Equations (2) and (3) imply that D
∣∣
BS

j

is close to uniform.
Following Batu and Canonne [3], observe that:

Var
k

uni∼ BS
j

[D(Sk)] = E
k

uni∼ BS
j

[
(D(Sk))2

]
−
(
E

k
uni∼ BS

j

[D(Sk)]
)2

And so, assuming Equations (2) and (3) hold, we get that Var
k

uni∼ BS
j

[D(Sk)] =

O (τ) (E [D(x)])2. Using Chebychev’s Inequality:

Pr
k

uni∼ BS
j

(∣∣∣∣D(Sk) − E
k

uni∼ BS
j

[D(Sk)]
∣∣∣∣ ≥ O

(√
τ

σ

)
· E

k
uni∼ BS

j

[D(Sk)]
)

≤ O(σ) (4)
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From which we conclude all but σ-fraction of entries i ∈ BS
j satisfy:

πi

O(τ)
≈ (1 + τ)j

N

O(τ)
≈ E

k
uni∼ BS

j

[D(Sk)]
O(

√
τ/σ)

≈ D(Si)

Where the first inequality stems from the definition of Bs
j , the second from Equation (2),

and the last from Inequality (4). Plugging in τ = O(σ3), we get: πi

O(σ)
≈ D(Si).

We thus showed that if both verifier tests pass, then with high probability over the
randomness of the verifier, it holds that for every j, the tags over BS

j are σ-approximately
correct, from which Inequality (1) is inferred.

Assuming D contains no heavy elements

Observe that the probability of all elements with probability larger than 1/s can be well-
approximated through their empirical mass in a sample of size Θ̃(s) from D. Therefore, we
can think of a verifier that estimates without need of a prover the mass of all such elements.
This process is described in detail in [13], and we describe it shortly here. The reader is
referred to their work for further detail. After receiving the prover’s tags, the verifier performs
the following step: the verifier draws a fresh D-sample, denoted H, of size Õ(s)poly(σ−1)
from D. With high probability, by a coupon-collector argument, this set contains all elements
with probability at least 1

s (if any exist).
The verifier tests the mass of H be drawing a fresh sample and examining the empirical

mass of H in that new sample. If it is significant, i.e. Ω(σ), the verifier “learns” D
∣∣
H up to σ

distance by subsampling from this distribution and running a folklore distribution learner (see
Theorem 4). This requires Õ(s)poly(σ−1) samples from D, and thus doesn’t incur significant
overhead to the sample complexity of the protocol. Thus, the verifier obtains an explicit
description of the distribution PH, which is O(σ)-close to D

∣∣
H. Since H is a set of size at

most s, and the sample S was drawn drawn i.i.d. from [N ], with overwhelming probability
it holds that |S ∩ H| = O(N1/3) = o(s), and in order to verify the prover’s answer’s in the
protocol described above, the verifier can just “erase” every element in S that appeared in H,
and run the protocol presented above over just elements guaranteed with high probability to
be of probability at most 1/s, without affecting the correctness of the protocol. Thus, the
verifier obtains full tags for H, and tags for S \ H. Later, the verifier can “fill-in” the missing
parts in S to obtain a full tagged sample. If D is entirely supported over heavy elements,
then the protocol can be avoided all together by also checking the mass of H is larger than
1 − O(σ), and ignoring the prover’s message.

Verifying label-invariant distribution properties

In order to verify label-invariant distribution properties, it suffices to know the probability
histogram of the distribution, i.e., how many elements have probability p for every p ∈ [0, 1].
Herman and Rothblum [13] observed that for many natural properties an approximation of
this histogram is sufficient, and define the τ -bucket histogram as follows:

▶ Definition 5 (τ -bucket histogram of D). For any j ∈ {. . . , −1, 0, 1, . . . , log N
τ }, the j’th

bucket of D over domain [N ] is:

BD
j =

{
x :∈ Supp(D) : D(x) ∈

[
(1 + τ)j

N
,

(1 + τ)j+1

N

)}
The τ -bucket histogram of D is the tuple

(
(j, D(BD

j ))
)

j:BD
j

̸=ϕ
.

APPROX/RANDOM 2024
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In [13] the authors focus their attention on those label-invariant distribution properties for
which the information

(
(j, D(BD

j ))
)

j:BD
j

̸=ϕ
is sufficient in order to efficiently approximate

the distance (in total-variation) of D from the property. They say that such properties admit
an efficient approximate decision procedure, and show that many natural label-invariant
problems are of this type, including the property of having Shannon entropy roughly k, or
being close to uniform over some set of size M ≤ N .

In our protocol the verifier obtains a uniformly drawn tagged sample3. We argue that
this tagged sample allows the verifier to compute an approximation of the bucket histogram
of D: if our protocol didn’t end in rejection, then with high probability, the tags are roughly
correct. In other words, for every j, |BS

j |
s is the empirical mass of BD

j in the uniform sample

S. Since we expect there to be about |BD
j |

N -fraction of samples in S that landed in BD
j , we

conclude that:∣∣BS
j

∣∣
s

≈
∣∣BD

j

∣∣
N

And since D(BD
j ) ≈

∣∣BD
j

∣∣ · (1+τ)j

N , if we set pj =
(

|BS
j |

s · N

)
· (1+τ)j

N , then D(BD
j ) ≈ pj , and

we get with high probability, a τ -histogram which is O(σ) close to the true histogram of D

in the following sense: there exists a distribution D′ with histogram exactly ((j, pj)) that is
O(σ)-close to D in total variation distance. Thus, using the decision procedure, the verifier
decides whether ((j, pj)) is consistent with some distribution close to P, and thus, conclude
whether D is far from the property, or close to it.

3 Preliminaries

For an integer n ∈ N, we use [n] to denote the set {1, . . . , n}.

▶ Definition 6. The total variation distance (alt. statistical distance) between distributions
P and Q over a finite domain X is defined as:

∆SD(P, Q) = 1
2
∑
x∈X

|P (x) − Q(x)|

▶ Theorem 7 (Folklore distribution learner [8]). There exists an algorithm that given sample
access to a distribution P over the domain [N ], and an accuracy parameter α ∈ (0, 1), it
runs in time Õ(N/α2), takes O(N/α2) samples, and with probability at least 0.99 outputs a
full description of a distribution Papprox such that ∆SD(P, Papprox) ≤ α.

▶ Definition 8 (Distribution property). We say the P = (PN )N∈N is a distribution property
if PN ⊆ ∆N , where ∆N is the set of all distributions over domain [N ].

▶ Definition 9 (Distribution tester for property P). Let P be a distribution property. A tester
T of property P is a probabilistic oracle machine, that on input parameters N and ε, and
oracle access to a sampling device for a distribution D over a domain of size [N ], outputs a
binary verdict that satisfies the following two conditions:
1. If D ∈ PN , then Pr(T D(N, ε) = 1) ≥ 2/3.
2. If ∆SD(D, PN ) > ε, then Pr(T D(N, ε) = 0) ≥ 2/3.

3 Here we differ from [13] that obtain a D-sampled tagged sample, i.e. (zi) in their case was drawn from
D.
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In the context of this work, the relevant distance measure is statistical distance as defined
above. An extension of this definition, introduced by Parnas, Ron, and Rubinfeld [16] is the
following:

▶ Definition 10 ((εc, εf )-tolerant distribution property tester). For parameters εc, εf ∈ [0, 1]
such that εc < εf , a (εc, εf )-tolerant tester T of property Π is a probabilistic oracle machine,
that on inputs N, εc, εf and given oracle access to a sampling device for distribution D over
a domain of size N , outputs a binary verdict that satisfies the following two conditions:
1. If δ(D, ΠN ) ≤ εc, then Pr(T D(N, εc, εf ) = 1) ≥ 2/3.
2. If δ(D, ΠN ) ≥ εf , then Pr(T D(N, εc, εf ) = 0) ≥ 2/3.
Note that a tolerant distribution test is for some property Π is at least as hard as a standard
non-tolerant tester for the same property.

▶ Definition 11 (Proof system for tolerant distribution testing problems). A proof system for
a tolerant distribution testing problem P with parameters εc and εf is a two-party game,
between a verifier executing a probabilistic polynomial time strategy V , and a prover that
executes a strategy P . Given that both V and P have black-box sample access to distribution D

over the domain [N ], and are given N , the interaction should satisfy the following conditions:
Completeness: For every D over domain of size at most N , such that ∆SD(D, PN ) ≤ εc,
the verifier V , after interacting with the prover P , accepts with probability at least 2/3.
Soundness: For every D over domain of size at most N such that ∆SD(D, PN ) ≥ εf ,
and every cheating strategy P ∗, the verifier V , after interacting with the prover P ∗, rejects
with probability at least 2/3.

The complexity measures associated with the protocol are: the sample complexity of the verifier
as as the honest prover (strategy P), the communication complexity, the runtime of both
agents, and the round complexity (how many messages were exchanged).

▶ Definition 12 (Label invariant distribution property). A distribution property P is called
label invariant if for all N ∈ N, it holds that any permutation σ over N elements satisfies
that D ∈ PN if and only if σ(D) ∈ PN .

4 Public Coin Protocol for Verified Tagged Sample

Using the same approach as Herman and Rothblum [13], we provide an algorithm to obtain
a tagged sample assuming that the samplable distribution D satisfies that for every x ∈ [N ],
D(x) ≤ 1

s , where s = O
(

log N
ε5 · N2/3

)
. In Section 2 we discuss why we can assume this

without loss of generality.

▶ Theorem 13. There exists 2-message AM interactive protocol between an honest verifier and
a (potentially malicious) prover, where the verifier receives as input parameters σ ∈ (0, 0.1)
and 100 < N ∈ N, as well as sample access to a distribution D over domain [N ]. Set τ = σ3

8000 .
Assume D(x) ≤ 1

s for s = O
(

log N
ε5 · N2/3

)
. The communication complexity, verifier sample

complexity, and verifier runtime are all s. Given sample access to the distribution D, the
honest prover requires with high probability Õ (N) poly(σ−1) samples and runtime.

At the end of the interaction, the verifier rejects or outputs ((zi, πi))i∈[s] where (zi)i∈[s]
is a sample of size s drawn uniformly i.i.d. from [N ] and:

Completeness. If the prover is honest, then with probability at least 0.75, the verifier
doesn’t reject, and ((zi, πi))i∈[s′] satsifies 1

s

∑
i∈[s]:πi≥ σ

1000N

(
1 − min

{
πi

D(zi) , D(zi)
πi

})
=

O(τ), while 1
s

∑
i∈[s]:πi≤ σ

1000N
D(zi) ≤ σ

50N .
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Soundness. Whatever strategy a dishonest prover follows, with probability at most 0.25
over the verifier’s coin tosses and samples, they accept and ((zi, πi))i∈[s′] satisfies:

1
s

∑
i∈[s]:πi≥ σ

1000N

(
1 − min

{
πi

D(zi)
,

D(zi)
πi

})
≥ σ (5)

or

1
s

∑
i∈[s]:πi≤ σ

1000N

D(zi) ≥ σ

10N
(6)

Note that we use the convention that min
{

πi

D(zi) , D(zi)
πi

}
= 1 if πi = 0 and D(zi) ̸= 0, or

πi ̸= 0 and D(zi) = 0.

We show that Protocol 1 satisfies the conditions of Theorem 13.

Protocol 1 Public-Sample Tagged Sample Retrieval Protocol.

Input: parameters N ∈ N, σ ∈ (0, 1), as well as sample access to distribution D over domain [N ]
such that for all x ∈ [N ], D(x) ≤ 1

s
for s = O

( log N
ε5 N2/3).

1. V: draw s uniformly from [N ]. Denote the sample (Si)i∈[s]. Reject if there exists x ∈ [N ] such
that x appears more than log N times in S. Otherwise, send (Si) to P.

2. P: set τ = σ3

80000 . For every i ∈ [s], if D(Si) ≥ σ
100N

, send πi such that πi = D(Si), otherwise,
send πi = 0.

3. V: for every j set Sj =
{

i ∈ [s] : πi ∈
[

ejτ

N
, e(j+1)τ

N

)}
. Draw two fresh samples of size s

from D, T = (Ti)i∈[s] and T ′ = (T ′
i )i∈[s]. For every j such that

∣∣Sj
∣∣ ≥ e−jτ · s · ε·τ

100 log N
and

ejτ

N
≥ σ

1000N
, set:

C̃pair
j =

∣∣{(k, r) ∈ [s]2 : k ∈ Sj , Sk = Tr

}∣∣
C̃triple

j =
∣∣{(k, r, r′) ∈ [s]3 : k ∈ Sj , Sk = Tr = T ′

r

}∣∣
Reject unless for all such j:∣∣∣∣C̃pair

j − s ·
∣∣Sj
∣∣ · ejτ

N

∣∣∣∣ ≤ 4τ · s ·
∣∣Sj
∣∣ · ejτ

N
(7)

And∣∣∣∣∣C̃triple
j − s2 ·

∣∣Sj
∣∣ ·
(

ejτ

N

)2
∣∣∣∣∣ ≤ 4τ · s2 ·

∣∣Sj
∣∣ ·
(

ejτ

N

)2

(8)

4. V: denote S−∞ = {i ∈ [s] : πi = 0}. Reject unless C̃pair
−∞ ≤ s ·

∣∣S−∞
∣∣ · σ

50N
.

5. V: Output ((Si, πi))i∈[s]
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4.1 Protocol 1 is Complete
We first show that Step 1 of Protocol 1 does not result in rejection.

▷ Claim 14. With probability at least 0.99 over the choice of S, there doesn’t exist an
element x ∈ [N ] that was sampled more than 3 times in S, and the verifier doesn’t reject
after Step 1 of Protocol 1.

Proof. Fix x ∈ [N ] and i1, i2, i3, i4 ∈ [s] such that for all k, k′ ∈ [log N ], ik ̸= ik′ . Note that:

Pr
S

(Si1 = Si2 = Si3 = Si4) =
(

1
N

)4

There are
(

s
4
)

possible choices for i1, i2, i3, i4 ∈ [s]. Therefore, the probability that there
exists some set of 4 indices whose respective samples equal x is at most:(

s

4

)
· 1

N4 ≤
( s

N

)4
≤ 1

N4/3

Taking the union bound over all possible x ∈ [N ] yields the desired result. ◁

Next, we argue that if the prover is honest, with high probability, the verifier collision
tests don’t result in rejection.

▷ Claim 15. Assuming the verifier didn’t reject after Step 1 and that the prover is honest,
then with probability at least 0.8 over the choice of T, T ′ the verifier doesn’t reject.

Proof. For every j such that ejτ

N ≥ σ
1000N and

∣∣Sj
∣∣ ≥ e−jτ · s · ε·τ

100 log N by Propositions 30
and 31 and choice of s, it also holds that:

E
[
C̃pair

j

]
= s

(∑
i∈Sj

D(Si)
)

≥ s ·
∣∣Sj
∣∣ · ejτ

N
≥ 300 log2 N

τ3

E
[
C̃triple

j

]
≥ s2

∑
i∈Sj

(D(Si))2 = s2 ·
∣∣Sj
∣∣ ·
(

ejτ

N

)3

≥ 300 log2 N

τ3

And so, since there are at most 2 log N/τ buckets for which ejτ

N ≥ σ
1000N , we conclude from

Propositions 30 and 31 that with probability at least 0.8 over the choice of T, T ′ for all j as
described in statement it holds that:∣∣∣C̃triple

j − E
[
C̃triple

j

]∣∣∣ ≤ E
[
C̃triple

j

]
·

√√√√ 300 log2 N

τ · E
[
C̃triple

j

] ≤ 4τs2 ∣∣Sj
∣∣ (ejτ

N

)2

And similarly:∣∣∣C̃pair
j − E

[
C̃pair

j

]∣∣∣ ≤ E
[
C̃pair

j

]
·

√√√√ 300 log2 N

τ · E
[
C̃

pair]
j

] ≤ (eτ − 1) s
∣∣Sj
∣∣ ejτ

N
· τ ≤ 4τs

∣∣Sj
∣∣ ejτ

N

◁

▷ Claim 16. If the prover is honest, with high probability over T , the final verifier test
passes with high probability, and:

1
s

∑
i∈[s]:πi< σ

1000N

D(Si) ≤ σ

10N
(9)
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Proof. Since the prover is honest, E
[
C̃−∞

]
= s ·

∑
i∈S−∞ D(Si) ≤ s · |S−∞| · σ

1000N , and so,

by Markov’s Inequality, with probability at least 0.95, C̃−∞ ≤ s · |S−∞| · σ
50N , and the final

test passes. Moreover, Inequality (9) holds. ◁

▶ Remark 17 (Honest prover complexity). For sake of simplicity we assume the honest prover in
Protocol 1 knows D(Si) exactly. However, this is not necessary. A prover that approximates
this quantity for every sample up to sufficient accuracy using only Õ(N)poly(τ−1) samples
suffices. See Remark 4.14 in [14] for a detailed discussion.

4.2 Protocol 1 is Sound
Note that by Claim 14, regardless of the prover’s response, the verifier rejects after Step 1
with probability at most 0.01, and so, throughout this section, we assume that Step 1 passed,
and S doesn’t contain elements appearing more than 4 times, even when not stated explicitly.

First, we address the last verifier test:

▷ Claim 18. For every index j such that ejτ

N ≥ σ
1000N and

∣∣Sj
∣∣ ≥ e−jτ · s · ε·τ

100 log N , with
probability at least 0.98 over the choice of T and T ′, either the verifier rejects, or it holds
that:

E
[
C̃pair

j

]
≥ 300 log2 N

τ3 (10)

and

E
[
C̃triple

j

]
≥ 300 log2 N

τ3 (11)

Proof. Fix some j0 such that
∣∣Sj0

∣∣ ≥ s· ετ
100 log N , ej0τ

N ≥ ε
100N , and also E

[
C̃triple

j0

]
< 300 log2 N

τ3 .
By Markov’s Inequality, with probability at least 0.99:

C̃triple
j0

≤ 100E
[
C̃triple

j0

]
≤ 30000 log2 N

τ3

However, the verifier rejects unless:

C̃triple
j0

≥ (1 − 4τ) s2 ∣∣Sj0
∣∣ (ej0τ

N

)2

≥ s3 · τε3

2 · 1003N3 log N
>

30000 log2 N

τ3

Where the last inequality is justified since s ≥ 300 log N
τ4/3ε

N2/3. We thus conclude that for
every j such that vj0 ≥ ετ

100 log N , ej0τ

N ≥ ε
100N , either E

[
C̃triple

j

]
≥ 300 log2 N

τ3 or the verifier

reject with probability at least 0.99. An analogous argument can be made w.r.t. to C̃pair
j .

Taking the union bound over both these events yields the required result. ◁

▷ Claim 19. With probability at least 0.8 over the choice of T and T ′, for every j such that∣∣Sj
∣∣ ≥ e−jτ · s · ε·τ

100 log N and ejτ

N ≥ σ
1000N , and for which Inequalities (10) and (11) hold, it

further holds that:∣∣∣∣∣C̃pair
j − s

∑
i∈Sj

D(Si)

∣∣∣∣∣ ≤ 4τ · s
∑
i∈Sj

D(Si) (12)

As well as:∣∣∣∣∣C̃triple
j − s2

∑
i∈Sj

(D(Si))2

∣∣∣∣∣ ≤ 4τ · s2
∑
i∈Sj

(D(Si))2 (13)
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Proof. By Propositions 30 and 31 it holds that with probability 0.8 over the choice of T and
T ′ for every j such that

∣∣Sj
∣∣ ≥ s · ε·τ

100 log N and ejτ

N ≥ ε
100N , the following holds:

∣∣∣C̃pair
j − E

[
C̃pair

j

]∣∣∣ ≤ E
[
C̃pair

j

]
·

√√√√ 300 log2 N

τ · E
[
C̃pair

j

]
∣∣∣C̃triple

j − E
[
C̃triple

j

]∣∣∣ ≤ E
[
C̃triple

j

]
·

√√√√ 300 log2 N

τ · E
[
C̃triple

j

]
Moreover, from the same propositions we know that:

E
[
C̃pair

j

]
= s

∑
i∈Sj

D(Si)

E
[
C̃triple

j

]
= s2

∑
i∈Sj

(D(Si))2

We thus conclude that for all the j as specified above:∣∣∣∣∣C̃pair
j − s

∑
i∈Sj

D(Si)

∣∣∣∣∣ ≤ E
[
C̃pair

j

]
·

√√√√ 300 log2 N

τ · E
[
C̃pair

j

] ≤ τs
∑
i∈Sj

D(Si)

Where the last inequality above stems from the assumption that Inequality (11) holds.
Similarly:∣∣∣∣∣C̃triple

j − s2
∑
i∈Sj

(D(Si))2

∣∣∣∣∣ ≤ τs2
∑
i∈Sj

(D(Si))2 ◁

▷ Claim 20. Assuming the verifier didn’t reject, with probability at least 0.8 over the choice
of T and T ′, for every j such that

∣∣Sj
∣∣ ≥ e−jτ · s · ε·τ

100 log N and ejτ

N ≥ σ
1000N , and for which

Inequalities (10) and (11) hold. It further holds that:

1
|Sj |

∑
i∈Sj

D(Si) ∈ ejτ

N
[1 − 10τ, 1 + 10τ ] (14)

1
|Sj |

∑
i∈Sj

(D(Si))2 ∈
(

ejτ

N

)2

[1 − 10τ, 1 + 10τ ] (15)

Proof. By Claim 19, with probability at least 0.8 over the choice of T and T ′, for every j

such that and
∣∣Sj
∣∣ ≥ e−jτ · s · ε·τ

100 log N and ejτ

N ≥ σ
1000N , and for which Inequalities (10) and

(11) hold, Inequalities (12) and (13) hold.
Furthermore, if the verifier didn’t reject, for all such j, Inequalities (7) and (8) holds as

well for all such j. Putting it all together, we get that:∣∣∣∣∣s ·
∣∣Sj
∣∣ · ejτ

N
− s

∑
i∈Sj

D(Si)

∣∣∣∣∣ ≤
∣∣∣∣s ·
∣∣Sj
∣∣ · ejτ

N
− C̃pair

j

∣∣∣∣+

∣∣∣∣∣C̃pair
j − s

∑
i∈Sj

D(Si)

∣∣∣∣∣ (16)

≤ 4τs ·
∣∣Sj
∣∣ · ejτ

N
+ 4τs

∑
i∈Sj

D(Si) (17)
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Rearranging Inequality (16):

s
∑
i∈Sj

D(Si) ∈ s ·
∣∣Sj
∣∣ · ejτ

N

[
1 − 4τ

1 + 4τ
,

1 + 4τ

1 − 4τ

]

Likewise:∣∣∣∣∣s2 ·
∣∣Sj
∣∣ (ejτ

N

)2

− s2
∑
i∈Sj

(D(Si))2

∣∣∣∣∣ ≤ +4τs2 ·
∣∣Sj
∣∣ (ejτ

N

)2

+ 4τs2
∑
i∈Sj

(D(Si))2 (18)

Similarly, for Inequality (18):

s2
∑
i∈Sj

(D(Si))2 ∈ s2 ·
∣∣Sj
∣∣ (ejτ

N

)2 [1 − 4τ

1 + 4τ
,

1 + 4τ

1 − 4τ

]

And through the relation 1−4τ
1+4τ ≥ 1 − 10τ and 1+4τ

1−4τ ≤ 1 + 10τ that holds for all τ > 0, we
get the desired result. ◁

▶ Definition 21. Define the distribution USj to be the uniform distribution over Sj.

▷ Claim 22. Assuming the verifier didn’t reject, with probability at least 0.8 over the choice
of T and T ′, for every j such that

∣∣Sj
∣∣ ≥ e−jτ · s · ε·τ

100 log N and ejτ

N ≥ σ
1000N , and for which

Inequalities (10) and (11) hold. It further holds that:

Ei∼USj [D(Si)] ∈ ejτ

N
[1 − 10τ, 1 + 10τ ]

Vari∼USj [D(Si)] ≤ 60τ
(
Ei∼USj [D(Si)]

)2

Proof. With high probability, for all j as specified in the claim statement, by Claim 20:

Ei∼USj [D(Si)] =
∑
i∈Si

1
|Sj |

D(Si) ∈ ejτ

N
· [1 − 10τ, 1 + 10τ ]

Furthermore:

Ei∼USj

[
(D(Si))2

]
= 1

|Sj |
∑
i∈Sj

(D(Si))2 (19)

≤ (1 + 10τ)
(

ejτ

N

)2

(20)

≤ (1 + 10τ)
(
Ei∼USj [D(Si)]

)2 1
(1 − 10τ)2 (21)

≤ (1 + 40τ)
(
Ei∼USj [D(Si)]

)2 (22)

And so, we conclude that:

Vari∼USj [D(Si)] = Ei∼USj

[
(D(Si))2

]
−
(
Ei∼USj [D(Si)]

)2

≤ (1 + 40τ)
(
Ei∼USj [D(Si)]

)2 − (1 − 20τ)
(
Ei∼USj [D(Si)]

)2

≤ 60τ
(
Ei∼USj [D(Si)]

)2
◁
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▷ Claim 23. Assuming the verifier didn’t reject, with probability at least 0.8 over the choice
of T and T ′, for every j such that

∣∣Sj
∣∣ ≥ e−jτ · s · ε·τ

100 log N and ejτ

N ≥ σ
1000N , and for which

Inequalities (10) and (11) hold, it further holds that:

Ei∼USj

[
min

{
D(Si)

πi
,

πi

D(Si)

}]
≥ 1 − σ

50 (23)

Proof. By Claim 22, for every j as specificied in the claim statement, it holds that:

Ei∼USj [D(Si)] ∈ ejτ

N
[1 − 10τ, 1 + 10τ ]

Vari∼USj [D(Si)] ≤ 60τ
(
Ei∼USj [D(Si)]

)2

Therefore, through Chebychev’s Inequality:

Pr
i∼U

Sj

(
|D(Si) − E [D(Si)]| ≥

√
6000τ

σ
· E [D(Si)]

)
≤

60τ
(
Ei∼U

Sj [D(Si)]
)2(

Ei∼U
Sj [D(Si)]

)2 · 6000τ/σ
≤ σ

100

Observe that with probability at least 1 − σ
100 over the choice of i ∼ USj it holds that:

|D(Si) − πi| ≤ |D(Si) − E [D(Si)]| +
∣∣∣∣E [D(Si)] − ejτ

N

∣∣∣∣+
∣∣∣∣ejτ

N
− πi

∣∣∣∣
≤
√

6000τ

σ
· E [D(Si)] +

∣∣∣∣E [D(Si)] − ejτ

N

∣∣∣∣+ (eτ − 1) · ejτ

N

≤
√

6000τ

σ
· ejτ

N
(1 + 10τ) + 12τ · ejτ

N

≤

(
2
√

6000τ

σ
+ 12τ

)
ejτ

N

≤ eτ

(
2
√

6000τ

σ
+ 12τ

)
πi

≤

(
3
√

6000τ

σ
+ 12τ

)
πi

Where the second to last inequality stems from the fact that by definition for all i ∈ Sj ,
πi ∈

[
ejτ

N , e(j+1)τ

N

]
. We conclude that for all such i it holds that:

D(Si)
πi

∈

[
1 − 3

√
6000τ

σ
− 12τ, 1 + 3

√
6000τ

σ
+ 12τ

]

By choice of τ , this implies that with probability at least 1 − 1
100σ over the choice of i ∼ USj ,

it holds that:
D(Si)

πi
∈
[
1 − σ

100 , 1 + σ

100

]
Next, since for all i by definition min

{
D(Si)

πi
, πi

D(Si)

}
≤ 1, we get that for all j as specified in

the claim statment, with probability at least 0.8 over the choice of T and T ′ if the verifier
didn’t reject, it holds that:

Ei∼USj

[
min

{
D(Si)

πi
,

πi

D(Si)

}]
≥ σ

100 +
(

1 − σ

100

)(
1 − σ

100

)
≥ 1 − σ

50 ◁
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▷ Claim 24. Assume the prover’s tags satisfy the following inequality:

1
s

∑
i∈[s]:πi≥ σ

1000N

(
1 − min

{
πi

D(zi)
,

D(zi)
πi

})
≥ σ (24)

Then, there exists some j0 such that
∣∣Sj0

∣∣ ≥ s · e−j0τ · ε·τ
100 log N and ej0τ

N ≥ ε
100N , and:

Ei∼U
Sj0

[
min

{
D(Si)

πi
,

πi

D(Si)

}]
≤ 1 − 0.7σ (25)

Proof. We decompose the sum in Inequality (5) according to alleged buckets as follows:

σ ≤ 1
s

∑
i∈[s]:πi≥ σ

1000N

(
1 − min

{
πi

D(zi)
,

D(zi)
πi

})

= 1
s

∑
j:|Sj |≠ϕ

∑
i∈Sj

(
1 − min

{
πi

D(zi)
,

D(zi)
πi

})

=
∑

j:|Sj |≠ϕ

∣∣Sj
∣∣

s
· 1

|Sj |
∑
i∈Sj

(
1 − min

{
πi

D(zi)
,

D(zi)
πi

})

=
∑

j:|Sj |≠ϕ

∣∣Sj
∣∣

s
· Ei∼USj

[
1 − min

{
D(Si)

πi
,

πi

D(Si)

}]

Define J =
{

j :
∣∣Sj
∣∣ ≥ e−jτ · s · ε·τ

100 log N , ejτ

N ≥ σ
1000N

}
, and denote

∑
j /∈J

|Sj|
s = α. Define

next Jc =
{

j : 0 <
∣∣Sj
∣∣ < e−jτ · s · ε·τ

100 log N , ejτ

N ≥ σ
1000N

}
. Observe that:

∑
j∈Jc

∣∣Sj
∣∣

s
≤ 1

s

∑
j∈Jc

1

e−jτ · s · ε · τ

100 log N
≤
∑
j∈Jc

1

100
σ

· ε · τ

100 log N
≤ σ

20

Then:∑
j∈J

∣∣Sj
∣∣

s
· Ei∼USj

[
1 − min

{
D(Si)

πi
,

πi

D(Si)

}]
≥ 0.7σ

Consider thus the distribution B that assigns to every j ∈ J the probability
∣∣∣ Sj

s·(1−α)

∣∣∣, and 0
otherwise. Then:

Ej∼B

[
Ei∼USj

[
1 − min

{
D(Si)

πi
,

πi

D(Si)

}]]
≥ σ − σ

20 ≥ 0.9σ

And so it must hold that there exists some j0 ∈ J such that:

Ei∼U
Sj0

[
1 − min

{
D(Si)

πi
,

πi

D(Si)

}]
≥ 0.9σ

Finally, this implies that for j0:

Ei∼U
Sj0

[
min

{
D(Si)

πi
,

πi

D(Si)

}]
≤ 1 − 0.9σ ◁
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▷ Claim 25. With high probability over the choice of S, T, T ′, if Inequality (5) holds, then,
with high probability, the verifier rejects.

Proof. Assume the prover’s response (πi)i∈[s] satisfies Inequality (24). Then, by Claim 24, it
holds that there exists some j0 such that

∣∣Sj0
∣∣ ≥ s · ε·τ

100 log N and ej0τ

N ≥ ε
100N , and for which:

Ei∼U
Sj0

[
min

{
D(Si)

πi
,

πi

D(Si)

}]
≤ 1 − 0.9σ (26)

Next, by Claim 18, with probability at least 0.98 over the choice of T, T ′, Inequalities (10)
and (13) hold for j0. Then, assuming the verifier didn’t reject, by Claim 23 it holds that
with probability at least 0.8 over the choice of T, T ′ that:

Ei∼U
Sj0

[
min

{
D(Si)

πi
,

πi

D(Si)

}]
≥ 1 − σ

50 (27)

Note that Inequality (26) and Inequality (27) contradict one another, from which we conclude
that if the prover’s response satisfies Inequality (24), then with probability at least 0.75 over
the choice of S, T, T ′, the verifier should reject. ◁

Finally, concerning the final verifier test:

▷ Claim 26. If the prover’s answer didn’t result with the verifier rejecting the test in Step 4
of Protocol 1, then with probability at most 0.01, Inequality (6) holds.

Proof. By Proposition 30 E
[
C̃−∞

]
= s

∑
i:πi< σ

1000N
D(x). Thus, assuming that Inequality

(6) holds, every entry in T has probability at least
∑

i∈[s]:πi< σ
1000N

D(x) ≥ s · σ
10N of landing

on S−∞, and by Hoeffdings Inequality, this will yield:

C̃−∞ ∈ (1 + 1√
s

)s2 · σ

10N
> s ·

∣∣S−∣∣ · σ

50N

And the verifier rejects with high probability. ◁

4.3 From verified uniform tagged sample to property verification
▶ Lemma 27. For every two distributions D, Q over domain [N ], and parameter σ ∈ (0, 1).
Let (zi)i∈[s] be a sample of size s = Õ(N2/3)poly(σ−1) drawn uniformly from [N ]. There
exists an algorithm that runs in time O(s) and outputs δ ∈ [0, 1], such that |δ − ∆SD(Q, D)| =
O
(

σ + 1√
s

)
, given the following input:

The sample (zi)i∈[s].
(πi)i ∈ [0, 1]s, that satisfy the following two inequalities:

1
s

∑
i∈[s]:πi≥ σ

1000N

(
1 − min

{
πi

D(zi)
,

D(zi)
πi

})
≤ σ (28)

1
s

∑
i∈[s]:πi≤ σ

1000N

D(zi) ≤ σ

10N
(29)

Q(zi), for all i ∈ [s].
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Proof. Consider the following algorithm: for every i ∈ [S], set θ′
zi

= |πi−Q(zi)|
2 , and output

δ = 1
s

∑
i∈[s] θ′

zi
. We show that this algorithm satisfies the conditions of the lemma.

For every x ∈ [N ] define θx = |D(x)−Q(x)|
2 . Observe that by definition, ∆SD(D, Q) =

Ex∼U[N] [θx]. Since the sample (zi) was drawn i.i.d., the collection (θx) is independent. By
Hoeffding’s Inequality:

Pr
S

∣∣∣∣∣∣1s
∑
i∈[s]

θzi − ∆SD(D, Q)

∣∣∣∣∣∣ >
2√
s

 ≤ 2e−8 < 0.01

And so, with probability at least 0.99 over the choice of (zi):∣∣∣∣∣∣1s
∑
i∈[s]

θzi
− ∆SD(D, Q)

∣∣∣∣∣∣ ≤ 2√
s

(30)

By assumption over (πi) and the Triangle Inequality:∣∣∣∣∣∣1s
∑
i∈[s]

θzi
− 1

s

∑
i∈[s]

θ′
zi

∣∣∣∣∣∣ ≤ 1
s

∣∣∣∣∣∣
∑
i∈[s]

(
|D(zi) − Q(zi)|

2 − |πi − Q(zi)|
2

)∣∣∣∣∣∣ (31)

≤ 1
2s

∑
i∈[s]

|(|D(zi) − Q(zi)| − |πi − Q(zi)|)| (32)

≤ 1
2s

∑
i∈[s]

|(D(zi) − Q(zi)) − (πi − Q(zi))| (33)

= 1
2s

∑
i∈[s]

|D(zi) − πi| (34)

For every i such that D(zi) ̸= 0, it holds that save for at most σ-fraction of i ∈ [s], πi ∈
(1 ± O(σ)) D(zi), and for every i such that D(zi) ̸= 0, it must hold that 1

s

∑
i∈[s]:D(zi)=0 πi ≤

σ. And so:
1
2s

∑
i∈[s]

|D(zi) − πi| ≤ 1
2s

∑
i∈[s]:D(zi) ̸=0

D(zi)
∣∣∣∣1 − πi

D(zi)

∣∣∣∣+ 1
2s

∑
i∈[s]:D(zi)=0

πi (35)

≤ 1
2

1
s

∑
i∈[s]:D(zi)

O(σ)
≈ πi

D(zi)
∣∣∣∣1 − πi

D(zi)

∣∣∣∣+ 1
s

∑
i∈[s]:D(zi)

O(σ)
̸≈ πi

D(zi)
∣∣∣∣1 − πi

D(zi)

∣∣∣∣+ σ


(36)

≤ 1
2 (O(σ) + O(σ) + σ) (37)

= O(σ) (38)

We thus conclude that with high probability over (zi), the algorithm yields δ such that:
|δ − ∆SD(D, Q)| = O(σ + 1√

s
) ◀

An immediate corollary of this lemma is Theorem 3. We note here that this method can
also be leveraged to achieve an efficient protocol for identity testing from an approximate
tagged sample drawn according to D, and so, can be also implemented on the output of [14]
without incurring further overhead.

We now address the question of verification of label-invariant distribution problems. First,
we recall the following definition:
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▶ Definition 28 (Efficient approximate decision procedure, [13]). A distribution property P
has a µ-efficient approximate decision procedure if there exists a polynomial-time procedure
A as follows. A gets as input the domain size N , a distance parameter σ ∈ (0, 1), and a
histogram (mj)j satisfying

∑
j

∣∣∣mj − Q(BQ
j )
∣∣∣ ≤ µ. For every integer N , every distribution

D over [N ] and every σ > 0:
If Q is in P, then A accepts the (mj)j.
A rejects every (mj)j histogram that is consistent with a distribution that is not σ-close
to P.

▶ Corollary 29. Let P be a label-invariant distribution property, 0 ≤ εc < εf ≤ 1 distance
parameters, and assume P admits an efficient τ -approximate decision procedure, where
τ = O (εf − εc)3. Given sample access to distribution D over domain [N ], there exists a
2-message public-coin protocol with verifier sample complexity and communication complexity
Õ(N2/3) · poly(τ−1), such that:

Completeness. If ∆SD(D, P) ≤ εc, the verifier accepts with high probability.
Soundness. If ∆SD(D, P) ≥ εf , the verifier rejects with high probability.

We outline how to obtain a protocol for every label-invariant distribution property
admitting an efficient decision procedure from a uniform verified tagged sample. Generally,
we follow [13]. The reader is referred to their work for further detail on efficient decision
procedures, as well as examples for such procedures for natural label-invariant properties,
such as those relating to Shannon entropy, support size, and distance from uniformity. We
note that the main obstacle in the protocol behind the above corollary, addressed by this
paper in a novel way, is obtaining a good approximation of the probability according to D

of randomly chosen elements in the domain. Recall that without communication, this task
requires Õ(N) samples and runtime from the verifier.

We provide an outline the protocol behind Corollary 29. The verifier and the prover run
Protocol 1 over distribution D with distance parameter σ = εf −εc

3 , and with the following
addition: the prover also sends, alongside (πi)i∈[s], the tags (qi)i∈[s], such that for all i ∈ [s],
qi = Q(i), for some distribution Q ∈ P. The verifier performs the following checks:
1. The verifier runs the tests outlined in Protocol 1 with respect to (πi), and rejects w.h.p.

if prover tags satisfy Inequalities (5) or (6).
2. The verifier uses (qi) to compute the bucket histogram of distribution Q. The size of

every bucket of significant mass j of Q can be approximated to high accuracy from a
uniform tagged sample (qi). Then, the mass of each bucket can be approximated by the
product of the size and ejτ

N . Note that this process yields a probability histogram for Q

that is accurate with high probability up to τ multiplicative factor. Then, the verifier
runs the τ -approximate decision procedure with distance parameter σ, to check that
indeed Q ∈ PN , and reject if it’s far.

3. If non of the above tests failed, the verifier estimates the distance between Q and D using
(πi) and (qi) as outlined in Lemma 27, and rejects unless estimate smaller than εc + O(τ).

If the all tests passed, then with high probability it holds that Q is τ -close to P, and that
∆SD(Q, D) ≤ εc + O(τ), and the conditions of Corollary 29 hold. If D is εf far from the
property, and the tags (qi) produce a histogram consistent with a histogram of a distribution
that passes the efficient decision procedure, then by assumption, it holds that there exists
some Q ∈ P that is εf − τ far from D, and so the distance test will fail. We omit further
detail, as the process of verifying membership in distribution property from approximate
histogram is outlined in [13].
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A Collision Tests Analysis

A.1 Twoway Collisions

▶ Proposition 30. Assume that for every x ∈ [N ], D(x) ≤ 1
s . For every sample S such that

for every i ∈ [s], the element Si appears at most log N times in S, with probability at least
1 − τ

100 log N over the choice of the sample T , it holds that:

E
[
C̃pair

j

]
= s

∑
i∈Sj

D(Si)

As well as:

∣∣∣C̃pair
j − E

[
C̃pair

j

]∣∣∣ ≤ E
[
C̃pair

j

]
·

√√√√ 300 log2 N

τ · E
[
C̃pair

j

]
Proof. The reader is referred to the Appendix of Herman and Rothblum [14] for a detailed
proof of this claim. In a nutshell, For every k, r ∈ [s] denote by Ck,r the indicator of the
event {Sk = Tr}. Observe that C̃pair

j =
∑

k∈Sj

∑
r∈[s] Ck,r, and that ET [Ck,r] = D(Sk). By

the linearity of expectation:

E
[
C̃pair

j

]
=
∑

k∈Sj

∑
r∈[s]

E [Ck,r] =
∑

k∈Sj

∑
r,r′∈[s]

D(Sk) = s
∑

k∈Sj

D(Sk) (39)

In order to prove concentration we show that VarT

[
C̃pair

j

]
is small. Herman and Rothblum

[14] show that the variance can be bounded by log NE
[
C̃j

]
And so, the desired result is

thus achieved through Chebychevs’ Inequality. ◀
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A.2 Threeway Collisions
▶ Proposition 31. Assume that for every x ∈ [N ], D(x) ≤ 1

s . For every sample S = (Si)i∈[s]
such that for every i ∈ [s], the element Si appears in at most log N locations in S, with
probability at least 1 − τ

100 log N over the choice of the samples T, T ′, it holds that for any set
of bucket indices J of size at most 2 log N

τ , for every j ∈ J :

E
[
C̃triple

j

]
= s2

∑
i∈Sj

(D(x))2

As well as:∣∣∣C̃triple
j − E

[
C̃triple

j

]∣∣∣ ≤ E
[
C̃triple

j

]
·

√√√√ 300 log2 N

τ · E
[
C̃triple

j

]
Proof. For every k, r, r′ ∈ [s] denote by Ck,r,r′ the indicator of the event {Sk = Tr = T ′

r′}.
Observe that C̃triple

j =
∑

k∈Sj

∑
r,r′∈[s] Ck,r,r′ , and that ET,T ′ [Ck,r,r′ ] = (D(Sk))2. By the

linearity of expectation:

E
[
C̃triple

j

]
=
∑

k∈Sj

∑
r,r′∈[s]

ET,T ′ [Ck,r,r′ ] =
∑

k∈Sj

∑
r,r′∈[s]

(D(Sk))2 = s2
∑

k∈Sj

(D(Sk))2 (40)

Next, we show that for every j ∈ J the random variable C̃triple
j is well concentrated

around its mean. In order to do so, we bound the variance of C̃triple
j . Note that:

Var
[
C̃triple

j

]
=

∑
(k0,r0,r′

0)∈[s]3

(k1,r1,r′
1)∈[s]3

Cov
[
Ck0,r0,r′

0
, Ck1,r1,r′

1

]

And so, in order to bound the variance, consider the following case analysis for the pair
((k0, r0, r′

0), (k1, r1, r′
1)):

Type I. Sk0 ̸= Sk1 , then: either r0 ̸= r1 and r′
0 ̸= r′

1 in which case
Cov

[
Ck0,r0,r′

0
, Ck1,r1,r′

1

]
= 0 as the variables are independent; or r0 = r1 or r′

0 = r′
1, in

which case since Sk0 ̸= Sk′
1
, it cannot be that Ck0,r0,r′

0
= 1 and Ck1,r1,r′

1
= 1 simultan-

eously, which means that Cov
[
Ck0,r0,r′

0
, Ck1,r1,r′

1

]
< 0.

Type II. Sk0 = Sk1 and (r0, r′
0) = (r1, r′

1), then Cov
[
Ck0,r0,r′

0
, Ck1,r1,r′

1

]
=

V ar
[
Ck0,r0,r′

0

]
≤ E

[
Ck0,r0,r′

0

]
.

Type III.:
Type IIIa. Sk0 = Sk1 and r0 = r1 = r, however r′

0 ̸= r′
1, then:

Cov
[
Ck0,r,r′

0
, Ck1,r,r′

1

]
≤ E

[
Ck0,r,r′

0
· Ck1,r,r′

1

]
= (D(Sk0))3

Type IIIb. Sk0 = Sk1 and r′
0 = r′

1 = r′, however r0 ̸= r1, then:

Cov
[
Ck0,r,r′

0
, Ck1,r,r′

1

]
≤ E [Ck0,r0,r′ · Ck1,r1,r′ ] = (D(Sk0))3

Since all pairs of indicators of Type I do not contribute to the variance, we are left to quantify
how many pairs of indicators are there of Type II and Type III. Fix k0 ∈ [s], and denote
Ak0 = {i ∈ [s] : Si = Sk0}.

Type II. By assumption over S, |Ak0 | ≤ log N , and so, there are at most log N options
for k1. Then, there are s2 ways to pick (r, r′). Therefore, k0 participates in at most
s2 · log N pairs of Type II.
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Type III. This type is divided into two symmetric sub-types. As above, for a fixed k0,
there are at most log N possible values for k1. Then, there are s3 ways to pick r, r′

0, r′
1.

Therefore, k0 participates in at most 2 · s3 · log N pairs of Type IIIa. Type IIIb is the
symmetric where both triplets agree on r′, but have two different values r0 and r1.

First, we calculate the contribution of all the Type II pairs to the variance:∑
(k0,r,r′)∈[s]3

∑
k1∈Ak0

Cov [Ck0,r,r′ , Ck1,r,r′ ] ≤
∑

(k0,r,r′)∈[s]3

∑
k1∈Ak0

E [Ck0,r,r′ ] (41)

≤ log N
∑

(k0,r,r′)∈[s]3

E [Ck0,r,r′ ] (42)

= log N · E
[
C̃triple

j

]
(43)

As for the Type IIIa pairs:∑
(k0,r,r′

0,r′
1)∈[s]4

∑
k1∈Ak0

Cov
[
Ck0,r,r′

0
, Ck1,r,r′

1

]
≤

∑
(k0,r,r′

0,r′
1)∈[s]4

∑
k1∈Ak0

(D(Sk0))3 (44)

≤ log N
∑

(k0,r,r′
0,r′

1)∈[s]4

(D(Sk0))3 (45)

≤ s · log N
∑

(k0,r,r′
0,)∈[s]3

(D(Sk0))3 (46)

= log N · E
[
C̃triple

j

]
(47)

Similarly, all Type IIIb contribute at most log N ·E
[
C̃triple

j

]
to the variance as well. We thus

conclude that:

Var
[
C̃triple

j

]
≤ 3 log N · E

[
C̃triple

j

]
Therefore, using Chebichev’s Inequality:

Pr
T,T ′

∣∣∣C̃triple
j − E

[
C̃triple

j

]∣∣∣ ≥

√
300 log2 N

τ
· E
[
C̃triple

j

] ≤
3 log N · E

[
C̃triple

j

]
300 log2 N

τ · E
[
C̃triple

j

] (48)

≤ τ

100 log N
(49)

Taking union bound over all j ∈ J yields the desired result. ◀
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