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Abstract
The exponential increase in the amount of available data makes taking advantage of them without
violating users’ privacy one of the fundamental problems of computer science. This question has been
investigated thoroughly under the framework of differential privacy. However, most of the literature
has not focused on settings where the amount of data is so large that we are not even able to
compute the exact answer in the non-private setting (such as in the streaming setting, sublinear-time
setting, etc.). This can often make the use of differential privacy unfeasible in practice.

In this paper, we show a general approach for making Monte-Carlo randomized approximation
algorithms differentially private. We only need to assume the error R of the approximation algorithm
is sufficiently concentrated around 0 (e.g. E[|R|] is bounded) and that the function being approximated
has a small global sensitivity ∆. Specifically, if we have a randomized approximation algorithm
with sufficiently concentrated error which has time/space/query complexity T (n, ρ) with ρ being
an accuracy parameter, we can generally speaking get an algorithm with the same accuracy and
complexity T (n, Θ(ϵρ)) that is ϵ-differentially private.

Our technical results are as follows. First, we show that if the error is subexponential, then the
Laplace mechanism with error magnitude proportional to the sum of the global sensitivity ∆ and
the subexponential diameter of the error of the algorithm makes the algorithm differentially private.
This is true even if the worst-case global sensitivity of the algorithm is large or infinite. We then
introduce a new additive noise mechanism, which we call the zero-symmetric Pareto mechanism.
We show that using this mechanism, we can make an algorithm differentially private even if we only
assume a bound on the first absolute moment of the error E[|R|].

Finally, we use our results to give either the first known or improved sublinear-complexity
differentially private algorithms for various problems. This includes results for frequency moments,
estimating the average degree of a graph in subliinear time, rank queries, or estimating the size of
the maximum matching. Our results raise many new questions and we state multiple open problems.
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1 Introduction

With the increase in the amount of available data, the problem of analyzing it in a privacy-
preserving manner has become a central problem in computer science. One commonly used
tool for this task is differential privacy, which is a well-established notion of privacy that
is commonly used in data analysis and machine learning. However, with some notable
exceptions, the literature on differential privacy has focused on the setting where the amount
of data is small enough that we would be able to practically solve a given problem exactly
in the non-private setting. However, in practice, this assumption is often not realistic –
this is after all the reason for the existence of (among others) streaming and sublinear-time
algorithms.

Our goal is thus to get very efficient (sublinear) algorithms that at the same time guarantee
differential privacy. In the streaming or sublinear-time setting, the error coming from the
algorithm not being exact will generally speaking be much bigger than the amount of noise
that the given problem necessitates for ensuring differential privacy. The main objective
in this setting is thus not to simply minimize the amount of noise we add, but rather to
achieve a given level of accuracy while minimizing the complexity (e.g. space, time, or query
complexity) of the algorithm. Of course, some amount of noise inherently has to be added to
achieve privacy, but this is usually so small, that one would need linear complexity to get
such a level of accuracy even without privacy. In the sublinear regime, we thus usually do
not have to worry whether a given level of accuracy is achievable and we instead focus as our
central objective on the complexity needed to achieve it.

One of the main difficulties in making sublinear algorithms private is that most sublinear-
time and streaming algorithms are randomized and give only probabilistic guarantees on
the quality of the output. This makes adding noise based on global sensitivity1 – which is
commonly used to get differentially private algorithms – unsuitable for this situation, as
in the worst case the global sensitivity of the approximation algorithm2 can be very large
even if the global sensitivity of the function being approximated is small. In this paper, we
propose a way to get around this issue by showing additive noise mechanisms that only need
that (1) the function being approximated has low global sensitivity and (2) the answer of
the algorithm is sufficiently concentrated around the true value.

We give two main results. The first one states that if the error has subexponential tails3,
adding the Laplace distribution suffices to achieve pure differential privacy – this can be seen
as a generalization of the standard Laplace mechanism. The second result shows a similar
result for a different distribution, and it only assumes bounded mean deviation (or higher
moments) of the error instead of being subexponential. While the first result has much
stronger assumption about the error distribution, it is also stronger in that it also works for
multiple adaptive queries that are not answered independently. This is useful for example for
streaming algorithms, where multiple queries can be answered using a single sketch and are
thus not answered independently. Note that the standard composition theorem would allow
us to perform multiple queries only if they were answered independently.

We use our results to give new differentially private algorithms for various problems:
for maximum matching under node-level privacy, frequency moments, counting connected
components under edge-level privacy, and rank queries. We also show how a common

1 Global sensitivity of a function g with respect to a relation ∼ is defined as supx∼x′ |g(x) − g(x′)|.
2 Here, we see the approximation algorithm as a deterministic function of the input and a string of random

bits.
3 A distribution is subexpoential if its tails are dominated by the tail of an exponential distribution.
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technique for designing relative-approximation sublinear-time algorithms – advice removal by
geometric search – can be made differentially private. This implies an edge-differentially-
private algorithm for estimating the average degree of a graph, improving upon the state of
the art [5], but we think it could also be useful for many other problems. Our algorithm
for maximum matching also answers an open problem from [5]. For the other mentioned
problems, we give the most efficient differentially private algorithm known.

Notably, a concurrent work [7] gave a similar result. In the context of global sensitivity,
their result makes weaker assumptions and results in algorithms that are less efficient since
they rely on postprocessing to turn approximate differential privacy into pure differential
privacy. We discuss this in detail in Section 1.3.

1.1 Our results

We now informally state our main technical results and then we state the results for specific
results that we obtained using the technical results. We also show how to use our technical
results to give algorithms for specific problems in Section 1.2. We start with a result for
algorithms with subexponential error tails, which appears in Section 3:

▶ Theorem 9, simplified version. Assume we have an algorithm A(D) for D being a dataset.
Assume there exists a function g with global sensitivity ≤ ∆1 w.r.t. D such that A(D) − g(D)
has subexponential diameter4 ≤ ∆2, i.e. P[|A(D) − g(D)| ≥ t] ≤ 2e−t/∆2 for t ≥ 0. Then
releasing A(D) + Laplace

(
O
(
(∆1 + ∆2)/ϵ

))
is ϵ-differentially private for ϵ ≤ O(1).

Moreover, with noise Laplace
(
O
(
k(∆1 + ∆2)/ϵ

))
, this also holds if we make k such

releases with different algorithms A1, · · · , Ak chosen adaptively that are executed with the
same randomness.

Note that this generalizes the claim that the Laplace mechanism with noise magnitude
proportional to the global sensitivity gives differential privacy (this can be seen by setting
A(D) = g(D)). Note also that in the second half, the algorithms use the same randomness,
and we thus cannot get this part of the result by standard composition.

We then prove in Section 4 that in the case of a single query, it is sufficient to assume a
bound on some deviation moments (multiple independently answered queries can be handled
using the standard composition theorem).

▶ Theorem 13, simplified version. Let us have an algorithm A such that there exists a
function g with global sensitivity ≤ ∆ and such that E[|A(D) − g(D)|3] ≤ ∆3 for any dataset
D. Then for ϵ ≤ O(1) there exists a random variable Y with E[|Y |] ≤ O(∆/ϵ), such that
A(·) + Y is ϵ-differentially private.

We now state results which, as we show in Section 5, follow from the above technical
results. For all the following results, our algorithm is the most efficient known, except for
the streaming algorithm for rank queries, which is incomparable with the algorithm from
[19]. With the result for maximum matching, we (together with the concurrent [7]) answer
positively the open question of Blocki, Grigorescu, and Mukherjee [5], and the algorithm for
estimating the number of edges improves upon the algorithm from [5]. For more detailed
comparison with [7], see Section 1.3.

4 The subexponential diameter of a distribution roughly corresponds to the smallest parameter σ, such
that the tail of Laplace(1/σ) dominates the tails of the distribution.

APPROX/RANDOM 2024
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▶ Corollaries 16–20, simplified versions. There exists an ϵ-differentiallly private
1. streaming algorithm for the frequency F2 moment problem with space complexity O( 1

ρ2ϵ2 )
(Corollary 16),

2. sublinear-time algorithm for estimating the number of connected components with time
complexity O( 1

ρ2ϵ2 log 1
ρϵ ) (Corollary 17),

3. sublinear-time algorithm for estimating the size of the maximum matching with time
complexity dO(1/(ρ2ϵ2))/(ρϵ)O(1/(ρϵ)) (Corollary 18),

4. streaming algorithm for answering k (adaptive) rank queries in space O( k log2 k
ρϵ ) (Corol-

lary 19),
5. sublinear-time algorithm for approximating the number of edges in a graph in time

O( n
ϵ2ρ2√

m
) (Corollary 20).

1.2 Our techniques

We now sketch the techniques that we use in our paper. In each part of this section, we also
give a reference to the corresponding section of this paper.

1.2.1 Subexponential error, one query (Section 3)

Suppose we have a randomized algorithm A(D) for D being a dataset that approximates a
function g(D) with global sensitivity ≤ ∆1 for some parameter ∆1. Define the error R as
the random variable R = A(D) − g(D) and assume that it is tightly concentrated around 0,
namely P[|R| > t] ≤ 2e−t/∆2 for some value ∆2 (∆2 is an upper bound on the “subexponential
diameter” of R). Intuitively speaking, ∆2 determines the “scale” of R, and ∆2 is in fact up
to a constant factor an upper bound on E[|R|]. Note that the tails of R decrease at least at
the same rate as those of the Laplace distribution. This suggests Laplacian noise with large
enough magnitude could “hide R”. Indeed, we prove that Laplacian noise will guarantee
privacy. We now sketch the proof.

High-level view. Assume for simplicity that both ∆1, ∆2 ≤ 1. The same approach works
for general values of ∆1, ∆2 by simple re-scaling. Let Y ∼ Laplace(c/ϵ) for appropriately
chosen value of c. We will prove that for any random variable X with subexponential
diameter ≤ 3 5 (that is P[|X| ≥ t] ≤ 2e−t/3), the probability density functions satisfy
fX+Y (y)/fY (y) = e±Θ(ϵ) for any y. We can use this to prove privacy, as we now show. For
two neighboring datasets D1, D2, we set R1 = A(D1)−g(D1) and R2 = A(D2)−g(D1) (note
the asymmetry in the definitions). It then holds that R1 has subexponential diameter ∆2 ≤ 1.
One can also show that the subexponential diameter of R2 = (A(D2)−g(D2))+(g(D2)−g(D1))
is ≤ 3 (Lemma 5). Let y′ = y − g(D1). It then holds for any y that

fA(D1)+Y (y)
fA(D2)+Y (y) =

fg(D1)+R1+Y (y)
fg(D1)+R2+Y (y) = fR1+Y (y′)

fR2+Y (y′) = fR1+Y (y′)
fY (y′) · fY (y′)

fR2+Y (y′) = e±Θ(ϵ)

where the last equality uses the claim fX+Y (y′)/fY (y′) = e±Θ(ϵ) for X = R1 and for X = R2.
This implies differential privacy.

5 We choose value 3 as this is the value we will need below. The claim holds also for larger constants
with c chosen appropriately.
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Bounding ratios of density functions. We now sketch why fX+Y (y)/fY (y) = e±Θ(ϵ). Since
Y is continuous, we may re-write

fX+Y (y) = E[fY (y − X)] = ϵ

2c
E[e−ϵ|X−y|/c] = (∗)

where the first equality is a standard identity [16]. We now use the inequalities |X − y| ≤
|X| + |y| and |X − y| ≥ |y| − |X|. This allows to bound

(∗) ≤ ϵ

2c
E[e−ϵ(|y|−|X|)/c] = ϵ

2c
e−ϵ|y|/cE[eϵ|X|/c]

(∗) ≥ ϵ

2c
E[e−ϵ(|X|+|y|)/c] = ϵ

2c
e−ϵ|y|/cE[e−ϵ|X|/c]

while it holds that fY (y) = ϵ
2c e−ϵ|y|/c. It is thus sufficient to prove that E[eϵ|X|/c] ≤ eO(ϵ)

and E[e−ϵ|X|/c] ≥ e−O(ϵ). While the first inequality is standard, the second is not. We will
now sketch a proof for both.

Bounding the expectation of exponentials of a subexponential random variable. If
we knew the density function of X, we could easily express the expectations as integrals.
However, not only we do not have a bound on the density, but the density may even not exist.
We thus use the following trick. We use the fact that for any real random variable Z, it holds
that Z has the same distribution as F −1

Z (u) for u ∼ Unif(0, 1) where FZ is the cumulative
distribution function (CDF) of Z. This allows us to write E[e−ϵ|X|/c] = Eu[e−F −1

ϵ|X|/c
(u)] and

similarly for E[eϵ|X|/c].
Unlike the density function, we do have a bound on the cumulative distribution func-

tion. Specifically, we are assuming P[|X| > t] ≤ 2e−t/3 which implies that F −1
ϵ|X|/c(u) ≤

− 3ϵ
c log( 1−u

2 ). Upper-bounding the CDF like this reduces the problem to computing the
expectation of a function of the uniform random variable, which can be done straightforwardly.
This proves the desired bounds.

1.2.2 Subexponential error, multiple queries (Section 3)
We would like to be able to release answers to multiple queries which are not answered
independently (such as if they are answered based on the same sketch). Since the answers
are not independent, we cannot use the composition theorem. We now sketch an alternative
approach.

For fixed queries, the above proof goes through with minor modifications even in the
multivariate case. Instead of using the inequalities |y −X| ≤ |y| + |X| and |y −X| ≥ |y|− |X|
in the case of y, X ∈ R, we use the analogous version for ℓ1 norms in the case of y, X ∈ Rk:
∥y − X∥1 ≤ ∥y∥1 + ∥X∥1 and ∥y − X∥1 ≥ ∥y∥1 − ∥X∥1. We then use that if X is a vector
of k subexponential random variables with diameter ≤ ∆, then ∥X∥1 has subexponential
diameter ≤ 3k∆ (Lemma 5).

This however gives the result only in the nonadaptive case, when the queries do not
depend on the released values: the identity fX+Y (y) = E[fY (X − y)] relies crucially on
X = (X1, · · · , Xk) and Y = (Y1, · · · , Yk) being independent. In the case of adaptive queries,
Xi could depend on Y1, · · · , Yi−1 (the query that we perform – and thus also the answer to
it – can be influenced by the noise we add to the previous answers). We instead use our
non-adaptive version of the claim and make it adaptive in a black box fashion, by proving a
claim that may be of independent interest: If we have a countable number of mechanisms
such that releasing the answers of any fixed subset of size k is ϵ-differentially private, then
we may also pick this subset adaptively and it will still be ϵ-differentially private.

APPROX/RANDOM 2024
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1.2.3 Error with polynomial tails (Section 4)
In the case that the error has polynomial tails, we only consider the case of a single query.
Our techniques do not seem to generalize to the multivariate case, and we conjecture that
this is impossible (see Section 6). The case when multiple queries are answered independently
may be still handled by the standard composition theorem.

An approach similar to the one described above can be made to work, with the difference
that we use the inequality |x−X| ≥ max(0, |x|−|X|) instead of the weaker |x−X| ≥ |x|−|X|.
This approach, however, requires proving the following inequality for all y, s ≥ 0, α > 1, 0 ≤
ϵ ≤ 1:∫ 1

0
min

(
(1 + |y|/s)α,

∣∣∣∣1 − (1 − 2−1/α)ϵ
(1 + |y|/s)(1 − u)1/α

∣∣∣∣−α
)

du ≤ 1 + 2α − 1
α − 1 ϵ.

This is the technically most challenging part of this paper. The trick is to bound the inside
of the integral for u ∈ [0, 1 − ϵ(1 + |y|/s)−α] by a simpler expression that can be successfully
integrated. The rest of the interval [0, 1] contributes at most ϵ, as its length is ϵ(1 + |y|/s)−α

and the maximum value of the function being integrated is ≤ (1 + |y|/s)α.

1.2.4 How to use our technical results (Section 5)
1.2.4.1 Error with subexponential tails

We now sketch how one can use Theorem 9 to get differentially private mechanisms for
specific problems. Recall that the theorem states that if our algorithm approximates a
function with global sensitivity ≤ ∆1 and the subexponential diameter of the error is ≤ ∆2,
then adding noise from Laplace(O(∆1 + ∆2)/ϵ) makes the algorithm ϵ-differentially private.

We start with a randomized approximation algorithm whose error is subexponentially
concentrated around zero (often, this is either known or easy to prove) that approximates
a parameter with a small global sensitivity ∆1. This is the case for example for the YYI
maximum matching algorithm [34] under node-level privacy or the KLL sketch [20] for rank
queries. Suppose the complexity (such as time/space/query/sample or other complexity) of
the algorithm is T (n, ρ) and has additive error of scale (i.e. with subexponential diameter)
ρn. If we want the final error with privacy to be O(ρn), then we run the algorithm with error
parameter ϵρ, making the error’s subexponential diameter be O(ϵρn). We then get from
Theorem 9 that adding noise of magnitude O(ρn) is sufficient to get ϵ-differential privacy,
assuming ∆1 is sufficiently small, giving us the desired result. The complexity of the private
algorithm will thus be T (n, Θ(ϵρ)). This allows us to achieve a given level of accuracy6

under pure differential privacy, while not significantly worsening the algorithm’s complexity.
We describe this approach in greater detail and with general failure probabilities (not just
constant) in Section 5.

To illustrate the second part of the theorem, consider for example a rank queries sketch
(see Section 5.5 for details). The algorithms A1, · · · , Ak correspond to making k adaptive
queries to the sketch of a dataset (assume we are given k queries we need to perform) and
the fact that the algorithms use the same randomness corresponds to us querying the same
sketch (as compared to k independent sketches). Specifically, the algorithm Ai here builds

6 This is true unless ρ is very small, as otherwise the global sensitivity will necessitate some level of
noise. As we noted, this usually happens only when T (n, ϵρ) ≥ Ω(n), making this uninteresting for our
sublinear setting.
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the sketch (using the shared randomness), and then performs the i-th query. Note that the
fact that we only use one sketch prevents us from using the composition theorem to get this
from just the first part of the theorem.

1.2.4.2 Error with polynomial tails

If the error has polynomial tails, we can make it private in a way essentially the same
as in the subexponential case using Theorem 13. Moreover, it holds that if we have
E[|A(D) − g(D)|] ≤ ∆, then by taking a median of 5 independent executions of A, we get
an algorithm A′ whose error’s third moment is also bounded: E[|A′(D) − g(D)|3] ≤ O(∆3)
[21]. This means that we can make an algorithm private even if we only have a bound on
E[|A(D) − g(D)|], for g being a low-global-sensitivity function, or the mean squared error
E[(A(D) − g(D))2].

1.3 Related work
To the best of our knowledge, the work on differentially private approximation algorithms
started with private sketches. Mir, Muthukrishnan, Nikolov, and Wright [25] gave pan-
private7 sketches for heavy hitters. An improved sketch has been recently given by Pagh and
Thorup [27]. A private version of the deterministic Misra-Gries sketch [26] for heavy hitters
has been recently given by Tětek and Lebeda [22]. Heavy hitters were also investigated in
the multi-party computation setting [18], in the local differential privacy setting [3], and
using cryptographic assumptions [24, 17, 18].

A sketch for fractional frequency moments Fp for 0 ≤ p ≤ 1 has been given by Wang,
Pinelis, and Song [33]. After releasing this paper, Epasto, Mao, Andres, Mirrokni, Vassilvitskii,
and Zhong [15] have given an algorithm general value of p in the continual release setting. A
sketch for differentially private quantiles has been given by Alabi, Ben-Eliezer, and Chaturvedi
[1]. A technique for stream sanitization has been given by Kaplan and Stemmer [19]; this
work resulted in improved differentially private sketches for approximate quantiles. An
approach for differentially privately estimating distances in euclidean spaces using private
sketches has been given by Stausholm [31]. A general approach to making linear sketches
differentially private was given by Zhao, Qiao, Redberg, Agrawal, Abbadi, and Wang [35].

A recent line of work has shown that many sketches already provide privacy by themeselves
or with only small modifications, without adding any noise. Blocki, Blum, Datta, and Sheffet
[6] have shown that the Johnson-Lindenstrauss transform by itself ensures differential privacy.
Smith, Song, and Guha Thakurta [30] have shown that this is also the case for the Flajolet-
Martin sketch for counting distinct elements and a similar result is known for the LogLog
algorithm [9, 11]. This was recently generalized [10] to show that this is not only the case
for the two above-mentioned sketches, but in fact for a large class of sketches for counting
distinct elements.

As far as sublinear-time algorithms are concerned, Sivasubramaniam, Li, and He [29]
have shown a differentially private algorithm that returns a 2 + ρ approximation of the
number of edges in a graph in time Õρ,ϵ(

√
n). This has been later improved by Blocki,

Grigorescu, and Mukherjee [5] to 1 + ρ approximation in the same complexity. In that paper,
the authors also give differentially private sublinear algorithms for approximate maximum
matching and vertex cover. A sublinear time algorithm for estimating the median was
recently discovered [8].

7 An algorithm on an input stream is said to be pan-private if releasing the internal state of the algorithm
at any point in the computation is differentially private. It is a strictly stronger notation than differential
privacy of the output.

APPROX/RANDOM 2024
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Concurrent work
The problem of differentially private randomized approximation algorithms has been explored
independently of this work by Blocki, Grigorescu, Mukherjee, and Zhou [7]. The techniques
used in [7] differ significantly from those used in this paper. Specifically, in [7], the authors set
the failure probability of the algorithm to be ≤ δ (for example by probability amplification),
thus limiting the global sensitivity of the algorithm up to an event of probability ≤ δ. This
allows them to rely on the standard result for getting differential privacy based on global
sensitivity8. Specifically, if the algorithm has complexity T (n, ρ) and one uses probability
amplification, then the approach of [7] gives an (ϵ, δ)-differential privacy in complexity
O(T (n, ϵρ) log δ−1). They then show that one can post-process the output of the algorithm
to achieve pure differential privacy.

In this paper, instead of relying just on global sensitivity, we instead prove privacy from
first principles. At the cost of assuming that the error is sufficiently concentrated, we show
that the probability amplification step is not needed, allowing us to get ϵ-differential privacy
in the better complexity of T (n, ϵρ). Our approach allows us to give more efficient algorithms
than Blocki, Grigorescu, Mukherjee, and Zhou [7] for several problems: estimating the
average degree of a graph, estimating the size of a maximum matching, and estimating the
number of connected components.

2 Preliminaries

2.1 Differential privacy
Throughout the paper, we assume that we have a symmetric “neighbor” relation ∼ on the
set of all possible datasets. Intuitively speaking, in the case when we have a database of
users, this should correspond to two datasets being the same except for the data of one user
whose privacy we are trying to protect.

▶ Definition 1 ([12]). A randomized algorithm M with range S is ϵ-differentially private if
for any measurable T ⊆ S, it holds for any x ∼ x′ for a symmetric “neighbor” relation ∼,
that

e−ϵ ≤ P[M(x) ∈ T ]
P[M(x′) ∈ T ] ≤ eϵ

This definition is commonly relaxed to a notion called approximate differential privacy,
with the above notion then being called pure privacy. In this paper, we will focus only on
pure differential privacy.

If the output of M is a continuous random variable, then it is sufficient to prove that for
any y and x ∼ x′ it holds e−ϵ ≤ fM(x)(y)/fM(x′)(y) ≤ eϵ, where fX for X being a continuous
random variable is the probability density function of X.

The global sensitivity [13] of a function g is defined as

sup
x∼x′

|g(x) − g(x′)|.

The authors have shown that if g has global sensitivity ∆, then adding Laplace(∆/ϵ) provides
ϵ-differential privacy.

8 They also consider functions with low smoothed sensitivity instead of just low global sensitivity; we do
not consider that in this paper.
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In the context of graph problems, one often speaks of a mechanism being edge-differentially
private, or node-differentially private. These terms refer to the relation ∼ that is used. In
the case of node-differential privacy, we have G ∼ G′ iff one can get G from G′ by deleting
one vertex and the incident edges, or the other way around. In the case of edge-differential
privacy, we have G ∼ G′ iff one can get G from G′ by deleting one edge, or the other way
around.

2.2 Probability theory

If D is a distribution, we use D⊗k for k being a natural number, to denote the k-fold product
distribution of D. For a random variable Z, we denote by FZ its cumulative distribution
function. We denote by F −1

Z (p) = inf{x ∈ R : FZ(x) ≥ p} its generalized inverse. It holds
that F −1

Z (u) has the same distribution as Z for u ∼ Unif(0, 1) [23]. We will need the
following claim.

▶ Fact 2 ([16]). Let X, Y be independent random variables in Rk, and assume Y has a
probability density function (pdf) fY (z). Then the pdf of X + Y is fX+Y (z) = E[fY (z − X)].

Concentration of measure

The notions of subexponential random variables and subexponentialdiameter σse[X] are
central to concentration of measure. There are several different definitions for σse[X], that
differ by constant factors. See for example [32, Chapter 2] for an exposition of the various
definitions. In this paper, one of the definitions is especially suitable for the way we use it in
our proofs, and that is the definition that we use.

▶ Definition 3. Let X be a real random variable. We define the subexponential diameter of
X, denoted by σse[X] as the smallest values for which for any t > 0 holds

P[|X| ≥ t] ≤2 exp(−t/σse[X])

A random variable X is said to be subexponential if σse[X] < ∞.

It holds that σse[cX] = cσse[X]. It also holds that

▶ Fact 4. For X being a random variable and c ≥ 0, it holds that σse[X+c] ≤ σse[X]+c/ log 2.

Proof. We can bound P[X + c ≥ t] ≤ min(1, 2e−(t−c)/σse[X]) ≤ min(1, 2e−t/(σse[X]+c/ log 2)),
thus implying the claim. ◀

Finally, the following is a standard claim, but we need the constant factor, which is
specific to the definition of σse that we are using. We thus give a proof in the full version of
this paper, based on the standard proof of triangle inequality for Orlicz norms.

▶ Lemma 5. Let us have real random variables X1, · · · , Xk. It holds

σse[
k∑

i=1
Xi] ≤ 3

k∑
i=1

σse[Xi]
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3 Algorithms with subexponential error

In this section, we show how algorithms, whose error has a small subexponential diameter,
can be made differentially private. We start by proving a technical lemma. We will later
bound the ratios between probability densities of our mechanism’s answers by the exponential
expectations that we now bound and, finally, we will use that to prove privacy in Theorem 9,
which is the main theorem of this section.

Note that while the second of the two inequalities is standard, the first one is not. Our
proof does not follow the strategy of the standard proof of the second inequality, which
is based on a Taylor expansion and does not seem to straightforwardly apply to the first
inequality.

▶ Lemma 6. Suppose X is a random variable with subexponential diameter ∆ ≤ 1/2. It
holds E[e−|X|] ≥ 2−∆

1+∆ ≥ e−(1+log 2)∆ and E[e|X|] ≤ 2∆

1−∆ ≤ e3 log(2)∆.

Proof. Since X is subexponential with diameter ∆, it holds that P[|X| ≥ z] ≤ 2e−z/∆.
Therefore, F −1

|X|(u) ≤ −∆ log( 1−u
2 ). We use the fact that for u ∼ Unif(0, 1), the random

variable F −1
|X|(u) has the same distribution as |X|. We can now bound

E[e−|X|] =Eu[e−F −1
|X|(u)]

≥Eu[e∆ log( 1−u
2 )] (1)

=2−∆Eu[(1 − u)∆]

=2−∆
∫ 1

0
(1 − u)∆du

=2−∆
[
− (1 − u)∆+1

∆ + 1

]1

u=0

= 2−∆

1 + ∆ ≥ e−(1+log 2)∆

where the last inequality holds because we can equivalently write 2−∆/(∆ + 1) ≥ (2e)−∆,
which simplifies to e∆ ≥ 1 + ∆, which is a standard inequality. Similarly, we can bound
E[e|X|] as follows.

E[e|X|] =Eu[eF −1
|X|(u)]

≤Eu[e−∆ log( 1−u
2 )]

= 2∆

1 − ∆ ≤ e3 log(2)∆

where the second equality is by substituting ∆ with −∆ in (1) (since as we have shown, (1)
is equal to 2−∆/(1 + ∆)). We have here used that ∆ < 1 (otherwise the final expression may
not be defined). The last inequality can be shown as follows: we take the ratio of the two
sides resulting in h(∆) = 4∆(1 − ∆) and we show h(∆) ≥ 1 for 0 ≤ ∆ ≤ 1/2. The function h

is concave (the second derivative is −2 · 22∆ log 4 + 22∆ log2 4, which can be easily seen to be
negative), meaning that it is sufficient to check that the inequality holds at the endpoints of
the interval [0, 1/2]: that h(0) ≥ 1 and h(1/2) ≥ 1. One can easily check this holds. ◀

We are now ready to prove a lemma about the ratio of the density function of a Laplace
and of Laplace shifted by a subexponential random variable. We will then use this to
prove differential privacy. Note that the random variables in the lemma do not have to be
independent.
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▶ Lemma 7. Let X1, · · · , Xk be random variables with subexponential diameter at most
∆ and let X = (X1, · · · , Xk). Let Y ∼ Lap⊗k(k∆/ϵ) for ϵ ≤ 1/6. Consider y ∈ Rk. It
holds e−3(1+log 2)ϵ ≤ fX+Y (y)/fY (y) ≤ e9 log(2)ϵ. Moreover, if k = 1 and ϵ ≤ 1/2, it holds
e−(1+log 2)ϵ ≤ fX+Y (y)/fY (x) ≤ e3 log(2)ϵ.

Proof. By Fact 2, we have

fX+Y (y) = E[fY (y − X)] =
( ϵ

2k∆

)k

E[exp(− ϵ

k∆∥X − y∥1)]

For the sake of brevity, we let γ =
(

ϵ
2k∆

)k. We may bound ∥X − y∥1 ≤ ∥X∥1 + ∥y∥1 and
∥X − y∥1 ≥ ∥y∥1 − ∥X∥1. This allows us to bound

fX+Y (y) =γE

[
exp

(
−ϵ∥X − y∥1

k∆

)]
≥γE

[
exp

(
−ϵ(∥X∥1 + ∥y∥1)

k∆

)]
=γ exp

(
−ϵ∥y∥1

k∆

)
E

[
exp

(
−ϵ∥X∥1

k∆

)]
(2)

≥γ exp
(

−ϵ∥y∥1

k∆

)
exp(−3(1 + log 2)ϵ)

where the last inequality is by Lemma 6; we used that ϵ∥X∥1
k∆ has subexponential diameter

≤ 3ϵ ≤ 1/2, since we have by Lemma 5 that σse[∥X∥] ≤ 3k∆. In the case k = 1, we simply
have that σse[ ϵ∥X∥1

k∆ ] ≤ ϵ, in which case the final bound on (2) is

≥ γ exp
(

−ϵ∥y∥1

k∆

)
exp(−(1 + log 2)ϵ)

At the same time, fY (y) = γ exp(− ϵ∥y∥1
k∆ ) and thus

fX+Y (y)
fY (y) ≥e−3(1+log 2)ϵ if k > 1

fX+Y (y)
fY (y) ≥e−(1+log 2)ϵ if k = 1

Similarly, we can bound

fX+Y (y) =γE

[
exp

(
−ϵ∥X − y∥1

k∆

)]
≤γE

[
exp

(
−ϵ(∥y∥1 − ∥X∥1)

k∆

)]
=γ exp

(
−ϵ∥y∥1

k∆

)
E

[
exp

(
ϵ∥X∥1

k∆

)]
≤γ exp

(
−ϵ∥y∥1

k∆

)
exp(9 log(2)ϵ)

in the case k > 1 and

fX+Y (y) ≤ γ exp
(

−ϵ∥y∥1

k∆

)
exp(3 log(2)ϵ)
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in the case k = 1. Thus, we have

fX+Y (y)
fY (y) ≤e9 log(2)ϵ if k > 1

fX+Y (y)
fY (y) ≤e3 log(2)ϵ if k = 1 ◀

We now state a useful technical lemma; the proof appears in the full version. This lemma
states that in general, if we have a countable number of mechanisms and releasing any
fixed k of them is differentially private, then picking the mechanisms adaptively will not
violate differential privacy. The proof roughly follows the outline of the proof of adaptive
composition [28]. In what follows, we again use the subscript · r to denote a random bitstring
used as the source of randomness of the mechanisms.

▶ Lemma 8. Let us have a countable number of mechanisms M1,r, · · · , such that releasing the
value (Mi1,r(D), · · · , Mik,r(D)) is ϵ-differentially private for any fixed i1, · · · , ik ∈ [n]. Then
the mechanism (Mj1,r(D), · · · , Mjk,r(D)) is ϵ-differentially private for j1, · · · , jk ∈ [n] such
that jℓ for ℓ ∈ [k] is drawn from a distribution which is a function of Mj1,r(D), · · · , Mjℓ−1,r(D).

We are now ready to prove the main theorem of this section. In what follows, we denote by
Ar(·) the algorithm A executed with randomness r. We formalize the multiple-query setting
as having one algorithm which takes as part of its input a query. This differs somewhat from
the presentation in the introduction which assumed we have a sequence of algorithms, which
we chose there as it required less notation. Note also that while we are not assuming that the
algorithm does not know which phase it is (the value of i), we may without loss of generality
assume this is passed as part of the query. Note that the condition on the queries x1, · · · , xk

below simply states that the queries can be chosen adaptively based on the released values,
and that they do not have to be deterministic. Note also that the randomness r must not be
released, as the privacy also relies on that randomness.

▶ Theorem 9. Let us have an algorithm A(D, x) for a database D and a query x ∈ U , where
U is a countable universe. Assume there exists a function g(D, x) with its global sensitivity
w.r.t. D being ≤ ∆1 for any x, and such that σse[A(D, x) − g(D, x)] ≤ ∆2 for any D, x.

Pick at random Yi ∼ Laplace(c(∆1 + ∆2)k/ϵ)) for c = 3 + 12 log 2 and for ϵ ≤ c/6 and
pick r independently uniformly on {0, 1}∞. Then for queries x1, · · · , xk ∈ U where the query
xi is drawn from a distribution that is a function of Ar(D, x1) + Y1, · · · , Ar(D, xi−1) + Yi−1,
releasing (Ar(D, x1) + Y1, · · · , Ar(D, xk) + Yk) is ϵ-differentially private, with the privacy
also being over the randomness of r.

If k = 1, then c = 1 + 4 log 2 and ϵ ≤ c/2 is sufficient.

Proof. Let us have two neighboring databases D1, D2. Let Y = (Y1, · · · , Yk), and for
x = (x1, · · · , xk), let A′(D, x) = (Ar(D, x1) + Y1, · · · , Ar(D, xk) + Yk) for r uniform on
{0, 1}∞. Similarly, let g(D, x) = (g(D, x1), · · · , g(D, xk)). We prove that for any fixed
(non-adaptive) queries x = (x1, · · · , xk) it holds fA′(D1,x)(y)/fA′(D2,x)(y) ≤ eϵ. If we prove
this, the theorem follows: the inequality fA′(D1,x)(y)/fA′(D2,x)(y) ≥ e−ϵ holds by symmetry
and these bounds together imply ϵ-differential privacy. Lemma 8 then imply that A′ is
differentially private even for adaptive queries.

Let R1 = A′(D1, x) − g(D1, x) and R2 = A′(D2, x) − g(D1, x) (note the asymmetry in
the definitions). We are assuming R1 has subexponential diameter ≤ ∆2. By Fact 4, it holds
that R2 has subexponential diameter ≤ ∆1/log(2) + ∆2. We now have from Lemma 7 the
following bounds
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fg(D1,x)+R1+Y (y)
fg(D1,x)+Y (y) = fR1+Y (y − g(D1, x))

fY (y − g(D1, x)) ≤e9 log(2)ϵ/c

fg(D2,x)+R2+Y (y)
fg(D1,x)+Y (y) = fR2+Y (y − g(D2, x))

fY (y − g(D1, x)) ≥e−3(1+log 2)ϵ/c

which in turn allows us to bound

fA′(D1,x)(y)/fA′(D2,x)(y) =
fg(D1,x)+R1+Y (x)

fg(D1,x)+Y
·

fg(D1)+Y

fg(D2)+R2+Y (x) ≤ e(3+12 log 2)ϵ/c = eϵ

If k = 1, the same computation gives the desired bound for c = 1 + 4 log 2, since Lemma 7
in that case gives gives

fg(D1,x)+R1+Y (y)
fg(D1,x)+Y (y) ≤e3 log(2)ϵ/c

fg(D2,x)+R2+Y (y)
fg(D1,x)+Y (y) ≥e−(1+log 2)ϵ/c

which again results in the bound fA′(D1,x)(y)/fA′(D2,x)(y) ≤ eϵ. ◀

4 Algorithms with bounded mean error

In this section, we show a weaker version of Theorem 9 that only requires that the error has
some number of bounded moments, instead of requiring that it is subexponential. We start
by defining the distribution that we will use in our additive noise mechanism.

▶ Definition 10. Zero-symmetric Pareto distribution with shape parameter α > 1 and scale
parameter s > 0, denoted ZSParetoα(s), is defined by the PDF

1
2s

(α − 1)(|x|/s + 1)−α

Before we can prove the main theorem of this section, we need the following technical lemma.
The proof is rather technical and it appears in the full version of this paper.

▶ Lemma 11. Let us have any 0 ≤ ϵ ≤ 1, α > 1, and x ≥ 0. It holds

∫ 1

0
min

(
(1 + x)α,

∣∣∣∣1 − (1 − 2−1/α)ϵ
(1 + x)(1 − u)1/α

∣∣∣∣−α
)

du ≤ 1 + 2α − 1
α − 1 ϵ (3)

We are now ready to prove a lemma which bound the privacy loss of our mechanism. In
what follows, we use the notation ∥X∥p for a random variable X to denote the Lp norm

p
√
E[|X|p].

▶ Lemma 12. Let X be a real random variable such that ∥X∥α ≤ ∆ and let Y ∼
ZSParetoα(s) for s = (1 − 2−1/α)−1∆/ϵ for 0 ≤ ϵ ≤ 1 and α > 1. Consider y ∈ R.
It holds e−(1−2−1/α)αϵ ≤ fX+Y (y)/fY (y) ≤ e

2α−1
α−1 ϵ.
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Proof. Since ∥X∥α ≤ ∆, it holds by the higher-order Chebyshev inequality9 that P[|X| ≥
z] ≤ ∆α/zα. Therefore, F −1

|X|(u) ≤ ∆/ α
√

1 − u. We will use that |y − X| ≤ |y| + |X| and
later below also that |y − X| ≥ max(0, |y| − |X|). We start with the simpler case of proving
a lower bound.

fX+Y (y)
fY (y) =E[fY (y − X)]

(|y|/s + 1)−α
(4)

=E[(|y − X|/s + 1)−α]
(|y|/s + 1)−α

≥E

[(
|y|/s + |X|/s + 1

|y|/s + 1

)−α
]

=E

[(
1 + |X|/s

|y|/s + 1

)−α
]

≥E[(1 + |X|/s)−α]
≥E[1 − α|X|/s]
=1 − αE[|X|]/s

≥1 − α(1 − 2−1/α)∆
∆ ϵ ≥ e−(1−2−1/α)αϵ (5)

where (4) holds by Fact 2, and (5) uses that E[|X|] = ∥X∥1 ≤ ∥X∥α ≤ ∆. We now show
the upper bound part. We prove an upper bound in terms of the integral which we have
bounded in Lemma 11.

fX+Y (y)
fY (y) =E[(|y − X|/s + 1)−α]

(|y|/s + 1)−α

≤E

[
min

(
(1 + |y|/s)α,

∣∣∣∣ |y|/s − |X|/s + 1
|y|/s + 1

∣∣∣∣−α
)]

=E

[
min

(
(1 + |y|/s)α,

∣∣∣∣1 − |X|/s

|y|/s + 1

∣∣∣∣−α
)]

=Eu

min

(1 + |y|/s)α,

∣∣∣∣∣1 −
F −1

|X|(u)/s

|y|/s + 1

∣∣∣∣∣
−α


≤Eu

[
min

(
(1 + |y|/s)α,

∣∣∣∣1 − (1 − 2−1/α)−1ϵ

(|y|/s + 1)(1 − u)1/α

∣∣∣∣−α
)]

=
∫ 1

0
min

(
(1 + |y|/s)α,

∣∣∣∣1 − (1 − 2−1/α)−1ϵ

(|y|/s + 1)(1 − u)1/α

∣∣∣∣−α
)

du

≤1 + 2α − 1
α − 1 ϵ ≤ e

2α−1
α−1 ϵ

where we have proven the inequality second to last in Lemma 11. ◀

We are now ready to prove the main theorem of this section.

9 The higher-order Chebyshev inequality states that for X being a real random variable, it holds
P[|X − E[X]| ≥ t] ≤ tα/E[|X − E[X]|α] for any α ≥ 0.
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▶ Theorem 13. Let us have an algorithm A(D) such that there exists a function g(D) with
global sensitivity ≤ ∆1 w.r.t. D for which for any input D, it holds E[|A(D) − g(D)|α] ≤ ∆α

2
for some α > 1. Let Y ∼ ZSParetoα(c(∆1 + ∆2)/ϵ) for c = α + 2 + 1/(α − 1) and ϵ ≤ c,
independent of the randomness of A; then A(D) + Y is ϵ-differentially private with respect
to D.

Proof. This proof follows the strategy of the proof of Theorem 9. Let us have two neighboring
databases D1, D2. We again prove that for any y, it holds fA(D1)(y)/fA(D2)(y) ≤ eϵ; this
implies the theorem. We also again set R1 = A(D1) − g(D1) and R2 = A(D2) − g(D1). We
are assuming ∥R1∥α ≤ ∆2 and by the triangle inequality, we have that ∥R2∥α ≤ ∆1 + ∆2.
Therefore, we have

fg(D1)+R1+Y (y)
fg(D1)+Y (y) = fR1+Y (y − g(D1))

fY (y − g(D1)) ≤ exp
(

2α − 1
(α − 1)cϵ

)
fg(D2)+R1+Y (y)

fg(D1)+Y (y) = fR1+Y (y − g(D2))
fY (y − g(D1)) ≥ exp

(
−(1 − 2−1/α)αϵ/c

)
which in turn allows us to bound

fA(D1)+Y (y)/fA(D2)+Y (y) =
fg(D1)+R1+Y (y)

fg(D1)+Y (y) ·
fg(D1)+Y (y)

fg(D2)+R1+Y (y)

≤ exp
((

(2α − 1)
(α − 1) + (1 − 2−1/α)α

)
ϵ/c

)
≤ eϵ

where we now argue the last inequality; that will conclude the proof. If we set c =
2 + 1/(α − 1) + α − 2−1/αα, the last inequality would be an equality. By monotonicity, it
is thus sufficient to prove that 2 + 1/(α − 1) + α − 2−1/αα ≤ 2 + log 2 + 1/(α − 1). This is
equivalent to 2−1/αα ≥ α − log 2, which in turn can be re-written as 2−1/α ≥ 1 − log(2)/α.
This follows from the inequality ex ≥ 1 + x for x = − log(2)/α. ◀

5 Implications of our results

In this section, we give several implications of Theorem 9 and Theorem 13. This list is by no
means meant to be exhaustive. We start with the more straightforward applications and
focus on the more involved ones later, with one part being deferred to the full version of this
paper.

Recall that, as we discussed, the goal in the sublinear setting is not to simply add small
amount of noise, but rather to achieve a given level of error as efficiently as possible while
guaranteeing differential privacy. This is so because in this setting, the amount of error
coming from the algorithm not being exact tends to be much greater than the amount of
noise needed to achieve privacy when not subject to having limited resources.

5.1 The general approach
In all applications, we take a known algorithm for a given problem, and use either Theorem 9
or Theorem 13 to argue that adding noise to the algorithm’s answer ensures privacy.

Assume the original algorithm had complexity T (n, ρ) and assume for example that the
error is of magnitude ρn, namely that for error R, it holds E[R2]1/2 ≤ O(ρn) (this can
be generalized to ≤ O(ρf(x)) for x being the input and f being any function). We run
the algorithm with parameter ρ′ = ϵρ and add noise of magnitude O(ρn) (more generally

APPROX/RANDOM 2024
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O(ρf(x))). By Theorem 13 with α = 2, as long as the approximated function’s sensitivity
is ∆ ≤ ϵρn, this is ϵ-differentially private10. At the same time, the error is ≤ O(ρn) with
arbitrarily high constant probability. The time complexity is T (n, ϵρ).

If we want to achieve a failure probability of β, we run this algorithm Θ(log β−1) times and
take the median. By a standard probability amplification argument, the success probability
will be as desired. To achieve ϵ-differential privacy by composition, we have to divide the
privacy budget between the runs, resulting in complexity O(T (n, ϵρ/ log β−1) log β−1). This
can be summarized (and generalized with the general function f(x)) as follows:

▶ Lemma 14. Suppose there is an algorithm approximating a function g with global sensitivity
∆ such that E[(A(x) − g(x))2]1/2 ≤ ρf(x) for some function f with time/space/query
complexity T (n, ρ). Then for ϵ ≤ O(1) there exists an ϵ-differentially private algorithm
A′ such that when ϵρ ≥ Ω(∆/f(x)), it holds P [|A′(x) − g(x)| > ρf(x)] ≤ β and that has
complexity O(T (n, ϵρ/ log β−1) log β−1).

A more efficient approach for decreasing failure probability exists in the case of subex-
ponential error. Assume the same setting as above, except that the error’s subexponential
diameter is ρn instead having only moment bounds (like above, we can generalize to ρf(x)
instead of ρn). We run the algorithm with parameter ρ′ = ϵρ/ log β−1 and add noise of
magnitude Θ(ρn/ log β−1). This algorithm is ϵ-differentially private by Theorem 9, as long
as ∆ ≤ ϵρn. The noise has subexponential diameter O(ρ′n) and by Lemma 5, the total
error will up to a constant have the same subexponential diameter. By the definition of
subexponential diameter, the probability that the error is ≥ Θ(ρn) is ≤ β as desired. This
results in complexity O(T (n, ϵρ/ log β−1)) saving us one log β−1 factor. We can summarize
this as

▶ Lemma 15. Suppose there is an algorithm approximating a function g with global sensitivity
∆ such that σse[A(x) − g(x)] ≤ ρf(x) for some function f with time/space/query complexity
T (n, ρ). Then for ϵ ≤ O(1), there exists an ϵ-differentially private algorithm A′ such that
when ϵρ ≥ Ω(∆/f(x)), it holds P [|A′(x) − g(x)| > ρf(x)] ≤ β and that has complexity
O(T (n, ϵρ/ log β−1)).

We are now ready to give private algorithms for specific problems.

5.2 Frequency moment F2

In their seminal paper, Alon, Matias, and Szegedy [2] show a sketch that allows one to
estimate the F2 frequency moment, defined as F2(x1, · · · , xn) =

∑n
i=1 x2

i . In the streaming
setting, the vector x1, · · · , xn is given through a stream of updates y1, · · · , yk of the form
yj = (ℓj , Dj) where D can be negative and we define xi =

∑k
j=1 I[ℓj = i]Dj . Two inputs are

then adjacent if they differ in one value yj for some j. The algorithm from [2] uses space
O( 1

ρ2 ) and has mean squared error of ≤ ρ2F 2
2 ≤ ρ2n4. The sensitivity of the F2 moment is n.

This implies the following

▶ Corollary 16. For ϵ ≤ O(1) and ρ ≤ 1/(ϵn), there is an ϵ-differentially private algorithm
that returns an additive ±ρn2 approximation of the frequency moment F2 with probability
1 − β, and has space complexity O( log3 β−1

ρ2ϵ2 ).

10 This upper bound on the sensitivity ensures that ∆2 in Theorem 13 dominates.
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This improves upon the concurrent work [7] which gives an algorithm with complexity
O( log4 n

ρ2ϵ2 ). Shortly after releasing this paper, an approach also appeared with the incomparable
complexity of O(log(n) log3 β−1/ρ2) was shown (for ϵ being not too small) that also has
multiplicative approximation guarantees and works (with some loss in the complexity) in the
continual release setting [15]. The setting of Fp for p ∈ [0, 1] has been considered in [33].

5.3 Connected components
An algorithm is known [4] that returns an estimate ĉ of the number of connected components
c of a simple graph in time O( 1

ρ2 log 1
ρ ) and has mean squared error E[(ĉ − c)2] ≤ ρ2n2. At

the same time, the number of connected components has global sensitivity 1 with respect to
edge additions/deletions. This gives us the following

▶ Corollary 17. For ϵ ≤ O(1) and ρ ≤ 1/(ϵn), there is an ϵ-edge-differentially private
algorithm that returns an additive ±ρn approximation of the number connected components
with probability 1 − β, and has complexity O( log3 β−1

ρ2ϵ2 log log β−1

ρϵ ).

No private sublinear-complexity algorithm for estimating the number of connected components
was previously known.

5.4 Maximum matching
Yoshida, Yamamoto, and Ito [34] show an algorithm that can approximate the size of the
maximum matching to within multiplicative 1 + ρ in time dO(1/ρ2)(1/ρ)O(1/ρ) for d being
the maximum degree of the input graph. It works by implementing an oracle for a matching
of size within factor 1 + ρ/2 of the maximum matching; for a specified vertex, this oracle
answers whether the vertex is matched in the oracle’s matching. The algorithm then samples
Θ(1/ρ2) vertices and checks the fraction that is matched in the oracle’s matching. The error
coming from the oracle is ≤ ρn/2 in the worst case and thus has subexponential diameter
O(ρn). The error coming from the sampling has subexponential diameter O(ρn) by the
Hoeffding inequality. By Lemma 5, the subexponential diameter of the error is thus O(ρn).
At the same time, the global sensitivity of the maximum matching size is ≤ 1 with respect
to the removal of one vertex. This gives us the following

▶ Corollary 18. For ϵ ≤ O(1) and ρ ≤ 1/(ϵn), there is an ϵ-node-differentially-private
algorithm that returns an additive ±ρn approximation of the maximum matching size with
probability 1 − β in time dO(log2(β−1)/(ρ2ϵ2))/(ρϵ)O(log(β−1)/(ρϵ)).

Together with the concurrent [7], this solves the open problem posed in [5] where the authors
show a hybrid (2, ρn) approximation, while we give a purely additive ±ρn approximation.

5.5 Rank queries
Karnin, Lang, and Liberty [20] develop a sketch of size O( 1

ρ ) that allows one to answer rank
queries with error with subexponential diameter ρn. We show how to use their sketch to
answer range queries over an ordered universe. For small number of queries, this improves
upon the work of [19] which has a logarithmic dependency on the universe size. This gives
us the following corollary.

▶ Corollary 19. There is a sketch that allows ϵ-differentially private algorithm that returns k

rank queries (potentially adaptive) for ϵ ≤ O(1) with an additive ±ρn error with probability
1 − β, and has complexity O( k log2(k/β)

ρϵ ).
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Proof. We use the KLL sketch with error parameter ρ′ = ρϵ/(k log(k/β)). This means that
the error has a subexponential diameter of ≤ ρϵn/(k log(k/β)). Therefore, by Theorem 9, it
holds that using for each query a Laplace mechanism with error magnitude Θ(ρn/ log(k/β))
will result in ϵ-differential privacy.

By Lemma 5, the overall subexponential diameter of the error of each answer is
O(ρn/ log(k/β)) and therefore the probability of error O(ρn) is 1−β/k. By the union bound,
the overall success probability is ≥ 1 − β. ◀

This is in comparison to the approach of Kaplan and Stemmer [19] which results in space
complexity O( log |U | log(k/β)

ρϵ ), improving by a factor of log |U | for constant k, β, where U is
the universe.

5.6 Relative approximation sublinear-time algorithms
In the full version of this paper, we show a general theorem that implies that many sublinear-
time algorithms that have relative error guarantees can be made differentially private.
Specifically, it applies to many algorithms that rely on a commonly used “advice removal”
technique [14]. Among other things, this theorem implies the following algorithm. This
improves upon the work of Blocki, Grigorescu, and Mukherjee [5] who give an algorithm
with complexity Õϵ,ρ(

√
n) under the assumption m ≥ Ω(n).

▶ Corollary 20. For ϵ ≤ O(1) and ρ ≤ 1/(ϵn), there exists an ϵ-edge-differentially private
algorithm that returns a 1 + ρ-approximation of the average degree of a graph with probability
1 − β and has complexity O( n log3 β−1

ϵ2ρ2√
m

).

6 Open problems and conjectures

We are convinced that our results are only the beginning of the story and that there are many
interesting related open problems. These include using normal noise with approximate/zero-
concentrated differential privacy, generalizing our method to input-dependent error mag-
nitudes, improving the constants, lower bounds for answering multiple queries when we have
polynomial tails. For a more detailed discussion, see the full version of this paper.
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