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Abstract
In this paper, we study graph distances in the geometric random graph models scale-free percolation
SFP, geometric inhomogeneous random graphs GIRG, and hyperbolic random graphs HRG. Despite
the wide success of the models, the parameter regime in which graph distances are polylogarithmic
is poorly understood. We provide new and improved lower bounds. In a certain portion of the
parameter regime, those match the known upper bounds.

Compared to the best previous lower bounds by Hao and Heydenreich [19], our result has several
advantages: it gives matching bounds for a larger range of parameters, thus settling the question
for a larger portion of the parameter space. It strictly improves the lower bounds of [19] for all
parameters settings in which those bounds were not tight. It gives tail bounds on the probability of
having short paths, which imply shape theorems for the k-neighbourhood of a vertex whenever our
lower bounds are tight, and tight bounds for the size of this k-neighbourhood. And last but not
least, our proof is much simpler and not much longer than two pages, and we demonstrate that it
generalizes well by showing that the same technique also works for first passage percolation.
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1 Introduction and Main results

In the last years, a family of random graph models including hyperbolic random graphs
(HRG) [26], scale-free percolation (SFP) [14], and geometric inhomogeneous random graphs
(GIRG) [11], has emerged as a model for large real-world networks. They combine an
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underlying geometric space with an inhomogeneous degree distribution. This combination
yields many properties that occur in real-world networks across a wide range of domains,
such as strong clustering, a rich community structure, ultra-small distance, small separators,
compressibility, and more [11]. The networks have been used empirically and theoretically to
study algorithms like local routing protocols [7, 9, 12], bidirectional search [6] or maximum
flow [8], spreading processes like bootstrap percolation [21] or SI models [22–25], and they
have been used to study the effectiveness of different interventions during the Covid19
pandemic [17,20,27].

Despite this widespread adoption, the fundamental question of graph distances has been
open for some parameter regimes. In general, the models come with two parameters: the
degrees follow a power-law distribution with exponent τ > 1, i.e., P (deg(v) ≥ x) ∼ x1−τ for
any fixed vertex v;1 and α > 1 determines the number of weak ties [18] in the network, i.e.
edges which are present although their geometric distance and degrees suggest otherwise.
The parameter α is also called inverse temperature. If τ < 3 then for two random vertices
x, y in the giant component, with high probability2 their graph distance dG(x, y) is at most
doubly logarithmic in their geometric distance, i.e., dG(x, y) = O(log log |x − y|). For τ ≤ 2
we even have dG(x, y) = O(1). These regimes are very precisely understood [1,10,14]. On
the other hand, if τ > 3 and α > 2, then it is known that the graph distance of two vertices
x, y grows linearly with their geometric distance, and this is again well understood [2, 15].

However, in the polylogarithmic regime τ > 3 and α ∈ (1, 2), the picture is incomplete. It
is understood in the limiting case τ = ∞, which is known as long-range percolation LRP, that
dG(x, y) = (log |x − y|)∆(α)±o(1) where ∆(α) = 1/ log2(2/α) > 1 [2, 3]. Since graph distances
can only increase with τ , the upper bound applies for any τ > 1, and this is the best known
upper bound.3 On the other hand, it is easy to see that for τ > 3 the k-neighbourhood can
grow at most exponentially, so distances are at least logarithmic, dG(x, y) = Ω(log |x−y|) [14].
Hence we know that distances are polylogarithmic for τ > 3 and α ∈ (1, 2). But the exponents
of the upper and lower bound (∆ and 1 respectively) did not match, and this gap remained
open for a long time.

Very recently, Hao and Heydenreich [19] could show an improved lower bound of dG(x, y) ≥
(log |x − y|)∆(min{α,(τ−1)/2})−o(1), where, as before, ∆(x) = 1/ log2(2/x). This closed the gap
in the case that α < (τ − 1)/2, since then min{α, (τ − 1)/2} = α. Their proof had 9 pages
and was a complicated application of Biskup’s hierarchy argument [3]. In this paper we give
a stronger lower bound with a much simpler inductive proof of only about two pages. It is
inspired by ideas of Biskup for the simpler case of LRP [4], which themselves are adaptations
of those in [29]. More precisely, we show that dG(x, y) = Ω

(
(log |x − y|)∆(min{α,τ−2−o(1)})).

This closes the gap between upper and lower bound whenever α < τ − 2, which comprises
a strictly larger portion of the polylogarithmic regime than the bound of [19]. Moreover,
throughout the polylogarithmic regime, since τ > 3 implies τ − 2 > (τ − 1)/2, our bound is
strictly stronger in all cases in which the bound of [19] is not tight.

1 The distribution is often allowed to vary by constant factors or slowly varying functions, but this will
not be relevant for this paper. Also, the traditional SFP parameterization uses two parameters τ and γ
instead of the one parameter τ . However, one of those parameters is internal to the graph generation
process and does not yield additional classes of graphs, which is why we omit the additional parameter.

2 We say an event occurs with high probability, or w.h.p., if it occurs with probability 1 − o(1).
3 An improved upper bound was claimed in [19], but the proof had an issue which we consider severe, see

Appendix A for details. At submission time of the camera-ready version of this paper, the problem has
not been fixed, so currently we must consider this result as unproven.



K. Lakis, J. Lengler, K. Petrova, and L. Schiller 74:3

Our result is also stronger in two other aspects: Firstly, we provide strong tail bounds
on the probability P (dG(x, y) ≤ k). These yield a shape theorem for the geometric shape
of the k-neighbourhood of a fixed vertex for growing k, in the case α < τ − 2 when our
lower bound matches the upper bound. The shape theorem also implies that the size of
the k-neighbourhood of a fixed vertex grows as ek1/∆±o(1) as k → ∞, which was not known
before. Secondly, due to its simplicity, we believe that our method is also potentially easier
to generalize. As demonstration, we show that a similar lower bound holds not only for
graph distances, but also for first passage percolation.

In the following, we will start by formally defining the graph models and stating our
precise results. The heart of the paper is Section 2, where we prove our result for the SFP
model. In Section 3, we extend the proof to first-passage percolation. Finally, in Appendix A
we explain why the proof of the upper bound claimed in [19] is incorrect.

1.1 Preliminaries and Random Graph Models
Our results hold for Scale Free Percolation (SFP), Geometric Inhomogeneous Random Graphs
(GIRG), and Hyperbolic Random Graphs (HRG). We will define LRP and GIRG formally in
this section. HRG has been shown to be a special case of GIRG [11], so all results proven
for GIRG automatically also hold for HRG, and we do not need to formally define HRG. A
formal definition of HRG together with its connection to GIRG can be found in [11].

1.1.1 Scale Free Percolation (SFP)
For SFP, we start with the infinite4 d-dimensional grid, which is our set of vertices. For two
points x, y ∈ Zd, we define their distance |x−y| via the usual Euclidean norm. Moreover, each
vertex draws a weight wx independently identically distributed from a power-law distribution.
For our purposes, this is a Pareto distribution satisfying

P (wx ≥ z) = z1−τ

for z ≥ 1, where the parameter τ > 1 is the power-law exponent.
We add edges in two different ways. First, we place the usual grid edges5 between points

that are adjacent in Zd, i.e., we place an edge between x = (x1, . . . , xd) and y = (y1, . . . , yd)
if there is some coordinate 1 ≤ i ≤ d such that |xi − yi| = 1 and xj = yj for all j ̸= i. Second,
we randomly create long-range edges, also called weak ties, by placing an edge between
x, y ∈ Zd, independently for different sets {x, y}, with probability pxy, which is defined as6

p(SFP)
xy := min

{
1, λ

(
wxwy

|x − y|d

)α}
, (1)

where λ > 0, α > 1 are constants. We write x ∼ y if there is an edge between x, y ∈ Zd and
x ≁ y otherwise.

4 Traditionally, LRP is defined on an infinite vertex set while GIRG is defined on a finite vertex set,
following the tradition of mathematics for LRP and of computer science for GIRG. However, both
models can be defined in either a finite or an infinite version, and this does not affect graph distances,
see [25] for details.

5 Some variants of SFP do not include grid edges. Since we prove lower bounds on graph distances, we
make our result stronger by including grid edges.

6 In the literature, the connection probability is often defined as 1 − exp(−λ|x − y|−αd). We remark that
this differs from our connection probability at most by a constant factor, which does not change the
model substantially.

APPROX/RANDOM 2024
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We remark that the parameterization is slightly different from the original one used
in [14] and also in [19]. Compared to our formulation, they used auxiliary weights w′

x := wα
x ,

which were then drawn from a power-law distribution with exponent τ ′ = 1 + d(τ − 1)/α.
These two parameterizations are equivalent, but our formulation has the advantage that
the weights correspond, up to constant factors, to the expected degree of the vertices,
E [deg(x) | wx] = Θ(wx). Our formulation also saves an internal parameter of the model.
Moreover, we rescaled α by a factor d to match it with the parameterization of GIRG.
When comparing our results with the lower bounds in [19], the following transformations
are needed, where the subscript “[19]” indicates notation from that paper, and parameters
without subscript are from our paper.

α[19] = αd and γ[19] = τ − 1. (2)

The internal parameter τ[19] is superfluous and does not have a correspondence in our paper.

1.1.2 Geometric Inhomogeneous Random Graphs (GIRG)
The GIRG model is sometimes also referred to as Continuum Scale Free Percolation [16].
The main difference between SFP and GIRG is that in GIRG, the positions of vertices are
randomly chosen. Namely, for some large enough n ∈ N, we consider a cube X of volume n

in Rd, where d is a constant. Our vertex set V then consists of n vertices, where the position
ξx of each vertex x is picked independently at random from the uniform distribution over X .
The distance between two vertices x, y ∈ V is defined as the Euclidean norm |ξx − ξy|, as
in SFP. Again similarly to SFP, each vertex x draws a weight wx independently from the
Pareto distribution satisfying

P (wx ≥ z) = z1−τ

for z ≥ 1, with τ > 1. Finally, two different vertices x and y are connected by an edge with
probability7

p(GIRG)
xy = Θ

(
min

{
1,

(
wxwy

|ξx − ξy|d

)α})
, (3)

where the hidden constants are uniform over all x, y. Formally, we require that there are two
absolute constants clow, cupp > 0 independent of n such that for all n and any two different
vertices x, y ∈ V , conditional on their weights wx, wy ≥ 1 and positions ξx, ξy ∈ X ,

clow min
{

1,

(
wxwy

|ξx − ξy|d

)α}
≤ p(GIRG)

xy ≤ cupp min
{

1,

(
wxwy

|ξx − ξy|d

)α}
.

The reason for allowing constant factor deviations is that then hyperbolic random graphs
(HRG) is a special case of GIRG with d = 1, where the Euclidean distance is replaced by the
angular distance in hyperbolic space [11]. Hence, any statement proven for this version of
GIRG also holds for HRG.

Note that the constants τ and α have an analogous role here as in SFP. A notable
difference to SFP is that in GIRG there are no grid edges (since positions are no longer on
the grid), but that does not significantly affect our results.

7 The original paper [11] used a geometry that was rescaled by a factor n1/d. I.e., they used a cube of
volume one and had an additional factor n in the denominator of (3). Both variants are equivalent, but
our scaling aligns better with the SFP scaling and allows GIRGs to be extended to infinite graphs if
desired [25].
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1.1.3 Long Range Percolation (LRP)

To put our results in an adequate context, we sometimes reference the model of Long Range
Percolation (LRP) which is a special case and predecessor of SFP, cf. e.g. [3, 5]. We define
LRP completely analogously to SFP with the only modification that every vertex has a
(deterministic) weight of 1.

1.1.4 First Passage Percolation (FPP)

Our lower bounds on graph distances are (in a similar form) also applicable to First Passage
Percolation (FPP) on the graph models SFP, GIRG, HRG, and also LRP. Here, each edge e

of the graph draws a random length or cost ce independently identically distributed (i.i.d.)
from a distribution over the non-negative reals. For two vertices x, y we are then interested
in the minimal/infimal cost of all paths from x to y. This can be done on an arbitrary finite
or infinite underlying graph. In this work we restrict our attention to the case where each
edge cost is sampled from an exponential distribution with rate 1. The formal definition is
as follows.

▶ Definition 1 (First Passage Percolation (FPP)). We call the following process First Passage
Percolation, in short FPP. Given a graph G = (V, E), assign to each edge e an i.i.d. cost ce

sampled from an exponential distribution with rate 1. For a finite path π, we define the cost
of that path as

c(π) =
∑
e∈π

ce

Then, the cost-distance or first passage time between two vertices x and y is the minimum
(or infimum) cost of any finite path connecting x and y, i.e.

d cost
G (x, y) := inf{c(π) : π ∈ Px,y} for x, y ∈ V,

where Px,y is the set of all finite paths between x and y.

Recently, FPP on SFP, GIRG, and HRG was studied [13,23–25]. In particular, it was
shown in [23, 25] that FPP on those graphs exhibits an explosive behaviour if the vertex
weights have infinite variance (i.e. if τ < 3). This means that the cost-distance between two
vertices x, y converges in distribution against a random variable that is finite almost surely.
In the infinite model SFP, this means that there are infinitely many vertices reachable within
finite cost from a given vertex; in the finite models GIRG and HRG, a constant fraction of
all vertices have cost-distance O(1). We emphasize that this is not true for graph distances
for τ ∈ (2, 3) since then degrees are finite almost surely, so the number of vertices in graph
distance C is finite/constant for any constant C > 0.

We remark that a model with a similar name, long-range first passage percolation was
introduced and studied in [13]. This is not FPP on LRP, but a different model with the
complete graph on Zd (all edges are present, degrees are infinite), where transmission times
are penalized for edges between vertices of large Euclidean distance. Despite the differences,
the models are related, and our analysis of FPP uses a coupling to a similar model and is
inspired by [13].

APPROX/RANDOM 2024
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1.1.5 Terminology
We are interested in the typical graph distance dG(x, y) between two vertices x, y in SFP, GIRG,
and HRG, and the cost-distance d cost

G (x, y) in FPP.8 We are interested in the asymptotic
behavior of dG(x, y) and d cost

G (x, y) in terms of the Euclidean distance |x − y|. That is, we
study how dG(x, y) and d cost

G (x, y) scale as functions of |x − y| when |x − y| → ∞. We
define the function ∆(β) := 1

log2(2/β) , which will appear in the exponent governing the
polylogarithmic behavior of graph distances. Throughout, we use ∆ = ∆(α) where α is the
long-range parameter of the relevant model.

Previous work showed that both LRP and SFP exhibit multiple phase transitions in
the asymptotic behavior of dG(x, y) depending on the model parameters, which were briefly
summarized in the introduction and are further summarized (together with our results) in
Table 1.

Table 1 Upper and lower bounds for graph distances and cost-distances in long-range percolation
(LRP), scale-free percolation (SFP) and first passage percolation (FPP) on SFP, with ∆(β) =
1/ log2(2/β). The results on graph distance for SFP also hold for geometric inhomogeneous random
graphs (GIRG) and hyperbolic random graphs (HRG). Our results are indicated in bold.

Model α ∈ (1, 2) α > 2

LRP Θ
(
log(|x − y|)∆(α)) [3, 5] Θ(|x − y|) [2]

τ ∈ (2, 3) τ > 3 τ ∈ (2, 3) τ > 3

SFP Θ(log log(|x − y|))
[14]

≤ log(|x − y|)∆(α)+o(1) [3, 5] 9

≥ log(|x − y|)∆(min{α,τ−2})−o(1)

Corollary 2

Θ(log log(|x − y|))
[14]

Θ(|x − y|)
[2]

FPP on SFP Θ(1) [23]
≤ log(|x − y|)∆(α)+o(1) [23]

≥ log(|x − y|)∆(min{α,
τ−1

2 })−o(1)

Corollary 3
Θ(1) [23] ?

1.2 Our results
In this section, we formally state our main results. To keep the exposition simple, we state
them only for SFP, not for GIRG and HRG. All results on graph distances in this section also
hold for GIRG and HRG, where all constants can be chosen independently of the number
n of vertices. We give details on that in the full version but omit them here due to space
constraints.

We prove stronger lower bounds for graph distances in the logarithmic regimes of SFP
with a much simpler proof than in [19]. Furthermore, we also obtain a shape theorem which
sandwiches the k-neighbourhood of a given vertex between two geometric balls of similar
size. The key result is a general upper bound on the probability that two vertices have
graph/cost-distance at most k. For the following claims, recall that ∆(β) = 1/ log2(2/β).

▶ Theorem 1.1 (Tail Bound for Graph Distances in SFP). Consider SFP with parameters
α ∈ (1, 2), τ > 3 and λ. Fix any sufficiently small ε > 0 and let ∆′ = ∆(min{α, τ − 2 − ε}).
Then, there exist constants c1, c2, β depending on the model parameters as well as ε such
that for any pair of vertices x, y ∈ Zd and any k ∈ N, we have

P (dG(x, y) ≤ k) ≤ c−1
2 |x − y|−αd(k + 1)−β exp

(
c1k1/∆′

)
.

8 Formally, the graph distance is also defined in Definition 1 by setting c(e) := 1 for all edges e.
9 In [19], the authors claim to prove an improved logarithmic upper bound with exponent ∆(min{α, τ −2}),

which would match our lower bounds. However, we show that their proof is wrong, see Appendix A.
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The above bound is proved by induction over k in Section 2. We express the probability
that a path of length ≤ k exists recursively by decomposing the path into two parts connected
by an edge which has the longest geometric distance on the original path. Applying the
inductive hypothesis and integrating over all possible endpoints and weights of the endpoints
of said edge then yields the desired bound. However, this actually only works if α < τ − 2,
which is needed to ensure convergence of some involved integrals. We remedy this and make
the theorem applicable also to the case α ≥ τ − 2 by using a coupling argument. Here (see
Lemma 5 for the exact statement), we argue that decreasing α only makes the model denser,
so graph distances can only become smaller. Thus, to prove the claim for some α ≥ τ − 2, we
can decrease α to some value α′ := τ − 2 − ε without increasing distances, and then apply
Theorem 1.1 for the already settled case α′. This is the reason why we use the exponent
∆(min{α, τ − 2 − ε}). Using the above tail bound then directly implies a bound on typical
graph distances.

▶ Corollary 2 (Typical Graph Distances in SFP). Consider SFP under the assumption α ∈ (1, 2)
and τ > 3. Then for every sufficiently small ε > 0, there is a constant c > 0 such that

lim
|x−y|→∞

P
(

dG(x, y) ≥ c log(|x − y|)∆(min{α,τ−2−ε})
)

= 1.

Note that in the case α < τ − 2, the exponent is exactly ∆(α) (if ε is chosen sufficiently
small), which is a slightly stronger result than the one we obtain if α ≥ τ −2 and matches the
known upper bounds in [5] up to only a constant factor in front of the log. The previously best
lower bounds by Hao and Heydenreich [19] only matched these upper bounds if 2α < τ −2 and
nonetheless were only tight if we ignore an additional additive constant of −ε in the exponent.
If α ≥ τ − 2, we also have to account for such an ε in the exponent, but even in this case,
our result strengthens the lower bounds in [19] and at the same time relies on a significantly
simpler proof. The original proof heavily relied on so-called hierarchies as introduced in [3]
and required complex combinatorial estimates for showing that certain structures w.h.p. do
not exist. We avoid this by using the inductive proof strategy as described above instead.
This not only simplifies and improves the existing lower bounds on graph distances, but the
tail bound in Theorem 1.1 further yields a so-called shape theorem precisely characterizing
the diameter and the cardinality of the k-neighbourhood of a vertex x, i.e., the set of vertices
in graph distance at most k from x. To this end, we define B(x, k) := {y ∈ V | dG(x, y) ≤ k}
as the set of all k-hop neighbors of a given vertex x.

▶ Theorem 1.2 (Shape Theorem for k-Balls in SFP). Consider SFP with α < τ − 2. Let
∆ = ∆(α), fix an ε > 0 and let Xlow, Xupp be the set of vertices at a geometric distance of at
most q(k) = ek1/∆−ε and at most r(k) = ek1/∆+ε from a fixed vertex x, respectively. Then,
we have

lim
k→∞

P (Xlow ⊆ B(x, k) ⊆ Xupp) = 1. (A)

In particular,

lim
k→∞

P
(

ek1/∆−ε

≤ |B(x, k)| ≤ ek1/∆+ε
)

= 1. (B)

The lower bound of the theorem comes from [4], while we contribute the upper bound,
which is a relatively straightforward corollary of our tail bound in Theorem 1.1. For this
reason, we defer the formal proof to the full version of this paper. Note that lower bounds
on graph distances correspond to upper bounds for B(x, k) and vice versa.

APPROX/RANDOM 2024
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We further note that while our upper bound in Theorem 1.2 also holds for GIRG and
HRG, the lower bound is not known for these models and can only hold with some caveats.
Firstly, due to the lacking grid edges those graphs are not connected, and require additional
constraints to ensure the existence of a giant (linear-size) connected component. Second,
even if the giant component exists, a constant fraction of vertices are not in the largest
component. Hence, the lower bounds in (A) and (B) can only hold conditioned on x being in
the largest component, and for (A) we must intersect Xlow with the giant component. We
conjecture that the lower bounds in Theorem 1.2 hold with these caveats, but this is not
known.

1.3 First passage percolation on SFP
Using similar techniques and inspired from those in [13], we can prove similar statements for
FPP on SFP. Analogous to Theorem 1.1, we obtain a tail bound on the probability that x, y

have cost-distance at most t. We remark that the same result could be obtained analogously
for GIRG (and thus HRG) as well, but we omit this for conciseness.

▶ Theorem 1.3 (Tail Bound for Cost-Distances for FPP on SFP). Consider FPP on SFP and
arbitrary vertices x, y. Fix any sufficiently small ε > 0. There exists a constant c depending
only on α, ε and τ such that for ∆′′ = ∆(min{α, τ−1

2 } − ε),

P
(
d cost

G (x, y) ≤ t
)

≤ |x − y|−αd exp
(

ct1/∆′′
)

.

The proof of this differs from Theorem 1.1 in some significant aspects which are formally
presented in Section 3. Intuitively, the main differences are as follows. Firstly, we now have
two sources of randomness: the existence of edges and the cost of an existing edge. The first
step towards proving Theorem 1.3 is therefore to combine these two sources into a single
one. This is achieved by coupling the model to a related model called Complete Scale Free
First Passage Percolation or CFFP for short. Here, all possible edges on the vertex set Zd

exist a priori but the cost of the edge between x, y ∈ Zd is now drawn from an exponential
distribution with rate wα

x wα
y |x − y|−αd instead of rate 1, i.e., in CFFP the rate of an edge

depends on the vertex weights and (geometric) distances of its endpoints.
The second main difference to the proof of Theorem 1.1 is that cost-distances are

continuous random variables, so we cannot union-bound over all possible cost-distances
before and after the longest edge of a potential path anymore like we did for SFP (in
Lemma 4). Instead, we establish a continuous analog, a so called self-bounding inequality
that relates the expected size of a k-ball to itself recursively. Another difficulty one has to
overcome is that, in principle, paths of low cost-distance do not necessarily have to correspond
to low graph distance as well. It could theoretically happen that many edges have very low
cost and we get a low cost path which uses many edges. In such cases, we cannot use the
existence of a geometrically long edge in the path, which is very central to our proof for
graph distances. However, we are able to show that paths with high graph distance are
actually very unlikely to have low cost-distance (see Lemma 8). Finally, a further obstacle
in adapting the proof is that we have to work with the probability that a path of a certain
cost exists conditioned on the weights of its endpoints at multiple points. This impacts the
probabilities of edges/paths existing and thus introduces complications. To overcome this, we
relate said probabilities conditional on the involved weights to their unconditional versions
by employing a coupling (Proposition 12).
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As a corollary of the above tail bound, we obtain lower bounds on the typical cost-distance
similar to the one established for SFP (Corollary 2).

▶ Corollary 3 (Typical Graph Distances in FPP on SFP). Consider FPP on SFP under the
assumption α ∈ (1, 2) and τ > 3. Then, for every sufficiently small ε > 0

lim
|x−y|→∞

P
(

d cost
G (x, y) ≥ log(|x − y|)∆(min{α, τ−1

2 }−ε)
)

= 1.

1.3.1 Asymptotics and Probability Theory

We use standard Landau notation for indicating the asymptotic growth of a function. All
asymptotic statements refer to the asymptotic behavior of a function as the distance |x − y|
tends to infinity, unless explicitly noted otherwise (like for the shape theorem, where we
consider k → ∞.) We further require a version of the Van den Berg-Kesten inequality (or
BK-inequality) from [28], which allows us to bound the probability that there exist disjoint
subpaths connecting a vertex x to u and a vertex v to y by the product of the probabilities
of either path existing, as if they were independent. We refer the interested reader to the full
version of this paper for further details.

2 Lower Bounds for Graph Distances in SFP

In this section, we provide the proof of our main lower bound. Our proof generally follows
the structure of the proof of Theorem 3.1 in [4]. Our goal is to show that the logarithmic
exponent in the distances is at least roughly ∆(min{α, τ − 2}). When α < τ − 2, this is
the same as ∆ = ∆(α). We will first give the proof under this condition, so we first show
Lemma 4.

▶ Lemma 4 (Tail Bound for Graph Distances in SFP). Consider SFP with α ∈ (1, 2) such
that α < τ − 2 and ∆ = ∆(α). There exist constants c1, c2, β depending only on the model
parameters, such that for any pair x, y ∈ Zd and any k ∈ N,

P (dG(x, y) ≤ k | wx, wy) ≤ wx
αwy

αc−1
2 |x − y|−αd(k + 1)−βec1k1/∆

. (4)

Proof. First of all, note that for fixed β, c2, and λ, the base case (k = 1) is true for c1
large enough. That is because the RHS of 4 is 2−βec1wα

x wα
y c−1

2 |x − y|−αd and the actual
connection probability is at most λwα

x wα
y |x − y|−αd. For the inductive step, let h be the RHS

of our induction hypothesis, i.e.,

h(r, k, wx, wy) := wα
x wα

y c−1
2 r−αd(k + 1)−βec1k1/∆

.

Assume that the induction hypothesis is true up to k − 1. For x, y to be connected with
at most k steps, an edge must be used with geometric distance at least |x−y|

k . This could
either be the first or last edge on the path, or a so-called internal edge. Let us first bound
the probability corresponding to this edge being internal. For this, we union bound over all
possible endpoints u and v of said edge. Actually, we integrate, since constant factors are
essentially immaterial for the proof. At a given distance r, there are at most cdrd−1 vertices,
for some constant cd. Let wu, wv be the weights of u, v, respectively. By the BK inequality,
we have
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P (dG(x, y) ≤ k, longest edge is internal | wu, wv, wx, wy) ≤
k−2∑
i=1

P (dG(x, u) ≤ i | wx, wu) P (u ∼ v | wu, wv) P (dG(v, y) ≤ k − i | wv, wy) ≤ λw
α
u w

α
v

(
|x − y|

k

)−αd

×
k−2∑
i=1

(∫ ∞

1

cdru
d−1 min {1, h(ru, i, wx, wu)} dru

)
︸ ︷︷ ︸

I(u,i)

(∫ ∞

1

cdrv
d−1 min {1, h(rv, k − i, wv, wy)} drv

)
︸ ︷︷ ︸

I(v,k−i)

.

We will now argue that there exists a constant Cint (depending on the model parameters)
such that

I(u, i) ≤ Cint

(
(i + 1)− β

α e
c1
α i1/∆

wuwxc
− 1

α
2

)
,

I(v, k − i) ≤ Cint

(
(k − i + 1)− β

α e
c1
α (k−i)1/∆

wvwyc
− 1

α
2

)
.

To this end, note that that there exists a value

r̂u = (wxwu) 1
d c

− 1
αd

2 (i + 1)− β
αd e

c1
αd (i+1)1/∆

for ru below which the minimum inside the integral I(u, i) is 1. We can thus express
I(u, i) =

∫ r̂u

1 f1(ru)dru +
∫∞

r̂u
f2(ru)dru where f1(r) = cdrd−1

u and f2 is a polynomial in ru

with exponent smaller than −1. Therefore, the entire integral is dominated by the value
of the antiderivative of f1 and f2 at the splitting point r̂u. Since f1, f2 are polynomials,
the antiderivative of f1 is ≤ cruf1(ru) and the antiderivative of f2 is ≤ cruf2(ru) for some
constant c. Since the minimum is a continuous function, we have f1(r̂u) = f2(r̂u) and thus,
I(u, i) = Θ(r̂uf1(r̂u)) = Θ(r̂u

d) as claimed. A similar argument holds for I(v, k − i). 10

Plugging this in, we obtain

P (dG(x, y) ≤ k, longest edge is internal | wu, wv, wx, wy)

≤ Cint
2λ · w1+α

u w1+α
v wα

x wα
y |x − y|−αdc

− 2
α

2

× kαd
k−2∑
i=1

(
(i + 1)− β

α e
c1
α i1/∆

)(
(k − i + 1)− β

α e
c1
α (k−i)1/∆

)
︸ ︷︷ ︸

:=S

.

Our goal now is to show that the above term is at most h(r, k, wx, wy). To this end, we
show that

S ≤ (k + 1)−βec1k1/∆
(5)

for k and β large enough. For this, notice that for small or large i, the exponential terms in
S are still quite “tame”, due to the 1

α factor. When i is around k
2 , their product (which is

maximized for such i due to concavity) is practically

exp
(

2c1

α

(
k

2

)1/∆
)

= exp
(

2c1

α
2−1/∆k1/∆

)
= exp

(
c1k1/∆

)

10 This observation is helpful whenever we integrate a continuous and piecewise polynomial function.
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as 2−1/∆ = α/2 by definition of ∆. In fact, for i = k
2 , we have actual equality and for every

1 ≤ i ≤ k, we have

exp
(c1

α
i1/∆

)
exp

(c1

α
(k − i)1/∆

)
≤ exp

(
c1k1/∆

)
.

This is precisely the exponential term that appears in the statement we want to prove (5).
However, we also need to account for the sum and the terms polynomial in k that appear
in S. To this end, we use that – if i ≈ k/2 – we gain from the product of the polynomial
terms in the sum to compensate overheads. On the other hand, if i is large or small, the
product of the exponential terms is much smaller than what we need, so we can compensate
the other terms by using the arising gap. With this in mind, we split the sum in S into the
cases where |i − k

2 | ≤ k
4 and those where this is not true. This way, we obtain

S ≤ k1+αde(1−γ)c1k1/∆
+ k1+αd ((k + 1)/8)− 2

α β
ec1k1/∆

, (6)

where γ > 0 is a constant depending on ∆ (and therefore on α). The first term accounts for
cases where i is sufficiently far from k

2 , making the exponential terms merge in a tame way.
When i ∈

[
k
4 , 3k

4
]
, both i + 1 and k − i + 1 are at least k+1

8 , since k > 2 (recall that we are
analyzing the case where k edges allow for an internal edge), and this is how the other term
is obtained.

Now, notice that since α < 2, we can choose β large enough such that (αd+1)− 2β
α < −β.

Then, the second term in 6 is at most (k + 1)−βec1k1/∆ as desired. For the first term, we
notice that the same holds if k is large enough. Hence, for all k, S is at most some constant
C times (k + 1)−βec1k1/∆ . We use this to conclude that

P (dG(x, y) ≤ k, longest edge is internal | wu, wv, wx, wy)

≤ CC2
intλc

1− 2
α

2 wα+1
u wα+1

v wα
x wα

y |x − y|−αd(k + 1)−βec1k1/∆
c−1

2

= CC2
intλc

1− 2
α

2 wα+1
u wα+1

v · h(|x − y|, k, wx, wy).

Since we assume that α < τ − 2, we can integrate wu, wv out such that the corresponding
integrals over wu and wv converge and only obtain another constant factor overhead. Then,
we can choose c2 large enough to compensate these constant overheads. Notice that this
works since we have a factor of c

1− 2
α

2 where the exponent is negative because α < 2. In total,
we have shown that we can choose the constants β, c1 and c2 such that the above bound is
at most 1

3 h(|x − y|, k, wx, wy) for all k.
Now, let us also bound the probability of paths in which the longest edge is adjacent to

either x or y. To this end, we sum over all possible vertices z connected to x by an edge of
(geometric) length ≥ |x − y|/k. Again, by the BK inequality, we have

P (dG(x, y) ≤ k, longest edge incident to x | wx, wz, wy)

≤ λwα
x wα

z

(
|x − y|

k

)−αd(∫ ∞

1
cdrd−1 min {1, h(r, k − 1, wz, wy)} dr

)
≤ Cλwα

x wα
z

(
|x − y|

k

)−αd

k− β
α e

c1
α k1/∆

wzwyc
− 1

α
2

≤ Cλwα+1
z · (k + 1)βkαd− β

α ec1( 1
α −1)k1/∆

c
1− 1

α
2 · h(|x − y|, k, wx, wy).

Again, by integrating out wz, we get another constant factor. We can now choose c1 large
enough so that the term exponential in k (which has a negative exponent since 1

α − 1 < 0)
swallows the polynomial and constant terms for every k, ensuring that the factor in front
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of h(|x − y|, k, wx, wy) is at most 1
3 , as desired. Finally, summing the three possibilities

that the longest edge is internal, the first, or the last edge on the path yields that overall,
P (dG(x, y) ≤ k | wx, wy) ≤ h(|x − y|, k, wx, wy) and finishes the proof. ◀

As promised, we now deal with cases where α ≥ τ − 2 by coupling SFP to SFP with
larger α without decreasing distances using the following lemma.

▶ Lemma 5. Let α and λ be the long-range and percolation parameters of some instance of
SFP. Fix the weights of all vertices and let puv refer to the probability that two vertices u and
v are connected by an edge. Fix some α′ < α. Then, puv ≤ min{1, λα′/αwα′

u wα′

v |u − v|−dα′}.
In particular, this means that the original SFP graph (with parameter α) is a subgraph of the
one with parameters α′ and λ′ = λα′/α.

Proof. We have

puv ≤ min{1, λwα
u wα

v |u − v|−dα} =
(

min{1, λ
1
α wuwv|u − v|−d}

)α

≤
(

min{1, λ
1
α wuwv|u − v|−d}

)α′

= min{1, λ
α′
α wα′

u wα′

v |u − v|−dα′
}. ◀

The implication of Lemma 5 is that we can artificially ensure that α < τ − 2 by setting
α′ = τ − 2 − ε for an arbitrarily small ε and λ′ = λα′/α. This allows us to prove Theorem 1.1
by applying Lemma 4 to this model since here, graph distances only get shorter due to
Lemma 5. We defer the proof to the full version, since it is only technical and the ideas in it
are already presented.

3 First Passage Percolation (FPP)

In this section we study first passage percolation (FPP) on SFP. Recall that this means
that we assign a cost to every edge which is drawn independently from an exponential
distribution with rate 1. For conciseness, we restrict ourselves to SFP even though the same
technique would also work for GIRGs/HRGs. Note that we obtain the LRP model from SFP
by informally setting τ = ∞. Formally, since SFP is an increasing model in τ in terms of
stochastic domination, the edge set of SFP with any finite τ stochastically dominates the
edge set of LRP. Hence, all lower bounds on cost-distances from SFP also transfer to LRP.11

In the following, we assume for simplicity that λ = 1; this does not affect our results.
In contrast to plain SFP, in FPP we have an additional source of randomness since

not only the existence of an edge is random but also its cost. To prove lower bounds on
cost-distances, it is therefore simpler (and sufficient) to consider a model in which there is
only one source of randomness for the edges. We call this model Complete Scale Free First
Passage Percolation, or CFFP for short. Here, all edges exist a priori, i.e., the graph is fixed
to be the complete graph with vertex set Zd. However, we now draw the cost of each edge
by sampling from an exponential distribution with rate wα

u wα
v |u − v|−αd (i.e. a rate that

depends on the weights and geometric distance between the two endpoints) instead of rate 1.
We start by showing that FPP on SFP is dominated by CFFP, i.e., that cost-distances

in CFFP can only become shorter as compared to FPP on SFP. To that end, we need the
following lemma that will allow us to combine the randomness of two events occurring with
probability min{1, α} and (1 − e−b), respectively into an event occurring with probability
1 − e−ab.

11 The same is true for graph-distances, but here the results for LRP were already known.
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▶ Lemma 6. min{1, a}(1 − e−b) ≤ 1 − e−ab for all a, b ≥ 0.

Proof. If a ≥ 1, then the inequality is easy to see, as (1 − e−b) ≤ (1 − e−ab) in this case. So,
let us assume that a < 1 from now on. Consider the function

f(b) = a(1 − e−b) − (1 − e−ab).

Note that it suffices to show that f(b) ≤ 0 for all b ≥ 0. We can see that f(0) = 0 and also

f ′(b) = a(e−b − e−ab) ≤ 0.

This shows that the function f(b) is non-increasing and since f(0) = 0, we have f(b) ≤ 0 for
all b ≥ 0. ◀

With this, we establish a coupling between FPP on SFP and CFFP such that cost-distances
in CFFP are at most as large as cost-distances in FPP on SFP.

▶ Lemma 7. Let u, v be a pair of vertices in Zd. Let further X(u,v) be the cost of the edge
{u, v} in FPP on SFP if it exists, and X(u,v) = ∞ if the edge does not exist, and let Y(u,v)
be its cost in CFFP. Then for any t ≥ 0,

P
(
X(u,v) ≤ t

)
≤ P

(
Y(u,v) ≤ t

)
.

Proof. For the event on the LHS to be true, the edge {u, v} must exist and then inde-
pendently the cost must be drawn to be at most t. The probability for the first event is
min{1, (wuwv)α|u − v|−αd} and the probability of the latter is 1 − e−t. For the event on the
RHS, one simply needs that the cost sampled from an exponential distribution with rate
(wuwv)α|u − v|−αd is at most t and the probability of this is exactly 1 − e−(wuwv)α|u−v|−αdt.
Lemma 6 finishes the proof. ◀

Lemma 7 shows that any lower bound shown for cost-distances in CFFP will also be true
for FPP on SFP. To see more clearly why this is true, note that we can couple the models in
the following way. First, we sample the weights for the vertices in exactly the same way for
both models. Then, conditioned on these weights, the probability space is a product space
over independent one-dimensional random variables (technically, one of them can be infinite
in value, but this is not a problem for our purposes) for which the inequality in Lemma 7
holds. With this in mind, we continue by establishing the lower bound for cost-distances in
CFFP. We will generally follow similar arguments as the ones presented in [13], which studies
a model similar to CFFP but without vertex weights. To establish an upper bound on the
probability that the cost-distance between two vertices is at most t, we need a bound on the
probability that the sum of exponential random variables is at most t, which is provided in
the following lemma, which in turn is an adaptation of Lemma 2.1 in [13].

▶ Lemma 8. Let X1, X2, . . . , Xk be i.i.d. exponential random variables such that the rate of
Xi is (wiwi+1)α|ui − ui+1|−αd, for some sequence of vertices uj with corresponding weight
wj, with 1 ≤ j ≤ k + 1. The wi are drawn from a power law with exponent τ . Assume that
2α < τ − 1. Then, there exists a c > 0 depending only on α, τ such that for all t ≥ 0,

P

(
k∑

i=1
Xi ≤ t

)
≤
(

ect

k

)k k∏
i=1

|ui − ui+1|−αd,

where the above probability is taken over the randomness of the weights and the Xi values.
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Proof. Note that each Xi = Yi

(wiwi+1)α|ui−ui+1|−αd , where Yi is an exponential random variable
with rate 1. Let us use λi = (wiwi+1)α|ui − ui+1|−αd from now on. By Markov’s inequality,
we have

P

(
k∑

i=1
Xi ≤ t

)
= P

(
exp

(
−θ

k∑
i=1

Xi

)
≥ e−θt

)
≤ eθtE

[
exp

(
−θ

k∑
i=1

Xi

)]
.

Now, let us bound the expectation above. Once one fixes the weights wj , each Xi is
independent from each other. Moreover, for Yi with rate one, it holds that E [exp(−θYi)] =

1
1+θ ≤ 1

θ for θ > 0. So, for a fixed realization w1, w2, . . . , wk+1 of the weights, we have:

E

[
exp

(
−θ

k∑
i=1

Xi

)
| w1, w2, . . . , wk+1

]
=

k∏
i=1

E
[
exp

(
− θ

λi
Yi

)]

≤
k∏

i=1

λi

θ

≤ θ−k
k+1∏
i=1

(wi)2α
k∏

i=1
|ui − ui+1|−αd.

The weight terms are raised to 2α, since each weight wi enters in (at most) two λj as wα
i .

Integrating the weights out, we see that since they are independent, one has

E

[
exp

(
−θ

k∑
i=1

Xi

)]
≤

[
θ−k

k∏
i=1

|ui − ui+1|−αd

]
k+1∏
i=1

E
[
(wi)2α

]
.

Now, since 2α − τ < −1, the expectations inside the rightmost product are all at most
some constant c′. Let c be e.g. equal to (c′)2 such that ck ≥ (c′)k+1. Collecting the above
bounds, we have

P

(
k∑

i=1
Xi ≤ t

)
≤ eθt

[
θ−k

k∏
i=1

|ui − ui+1|−αd

]
ck.

Setting θ = k
t shows the desired bound. ◀

With Lemma 8 at hand, we show that the expected size of the t-ball around the origin
grows at most exponentially with t. We define this ball B(x, t) as the set of vertices reachable
from vertex x with a path of cost-distance at most t. Exponential growth is not enough by
itself for our goal of showing a polylogarithmic lower bound on the distances but is a crucial
step in doing so. To do this, we modify the proof of Lemma 2.6 and Theorem 1.2 (ii) in [13].
In the following, we only consider the growth of B(0, t), i.e., the t-ball around the origin, but
it is easy to see that (by translation invariance) the same statements hold if we replace the
origin by any vertex x.

▶ Theorem 9 (Exponential Ball Growth). Let B(0, t) denote the set of vertices reachable
with a path of cost at most t from the origin in CFFP. If 2α < τ − 1, we have for some C

depending only on α and τ ,

E [|B(0, t)|] ≤ eCt.
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Proof. We compute

E [|B(0, t)|] =
∑

u∈Zd

P
(
d cost

G (0, u) ≤ t
)

≤ 1 +
∑

u∈Zd

u̸=0

∞∑
k=1

∑
(0,u)−path π

of length k

P (π has cost distance at most t)

Lemma 8
≤ 1 +

∑
u∈Zd

u̸=0

∞∑
k=1

(
ect

k

)k ∑
(0,u)−path

(0=u1,u2,...,uk+1=u)

[
k∏

i=1
|ui − ui+1|−αd

]
.

The constant c above is as in Lemma 8. The rightmost sum above can be bounded by
bk|u|−αd for some b depending only on α. This is done by Lemma 2.5 (c) in [13] (the quantity
bounded there is the above sum and is defined in equation (2.3) in the page previous to that
of Lemma 2.5). With that in mind, we have

E [|B(0, t)|] ≤ 1 +

 ∑
u∈Zd,u ̸=0

|u|−αd

( ∞∑
k=1

(
ecbt

k

)k
)

.

Since α > 1, the first sum above is bounded by a constant c1. Moreover, note that
∞∑

k=1

(
ecbt

k

)k

≤
∞∑

k=0

(ecbt)k

k! − 1 = eecbt − 1.

One can choose C large enough so that E [|B(0, t)|] ≤ eCt. To see why, note that we can
freely assume c1 ≥ 1. Then, setting C = ecbc1 suffices. That is because of the following. Let
f(x) = xc1 + c1(1 − x) − 1. This function is decreasing from 0 to 1 and increasing afterwards.
Moreover, both f(0) and f(1) are non-negative, hence it is non-negative for all x ≥ 0. Setting
x = eecbt shows that for all t ≥ 0,

E [|B(0, t)|] ≤ 1 + c1(eecbt − 1) ≤ (eecbt)c1 = eCt. ◀

In the following, we define

g(t) := E [|B(0, t)|]

and note that we have already shown that g(t) grows at most exponentially. But we can do
better and show that in fact it grows at most stretched exponentially, in particular roughly
as exp(t 1

∆ ). This intuitively corresponds to the cost-distances between two vertices u and v

growing roughly as (log |u − v|)∆, and is then also used in proving the corresponding lower
bound later.

To show this improved bound, we bound the crucial quantity

f(r, t) = sup
|u|=r

P
(
d cost

G (0, u) ≤ t
)

∈ [0, 1],

that is, the highest possible probability with which a vertex connects to the origin with cost
at most t, given that it has geometric distance r. We only consider r, t > 0. One can show
the following bound for f(r, t).

▶ Lemma 10 (Towards a Self-Bounding Inequality for g(t)). Consider CFFP with 2α < τ − 1.
There exist constants cf , δ > 0 depending only on α and τ such that

f(r, t) ≤ cf r−αdh(t), where h(t) := tαd

∫ t

0
g(t − y)(g(y) − 1)dy + e−δt.
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This lemma can be seen as a generalization of the technique we use to prove Lemma 4:
We bound the probability that two vertices at distance r are connected by a path of cost at
most t by a term that is essentially r−αd (which is roughly the probability that the longest
edge in such a path exists) times h(t) which integrates over all possible y such that said edge
connects the (t − y)-ball around 0 and the y-ball around u. Using this, we can then derive a
self-bounding inequality for g(t), which relates g recursively to itself such that we can derive
an upper bound on g by solving said recursive relation using Theorem 13 which is identical
to [13, Theorem 5.3]. We derive the self-bounding inequality by summing f(r, t) over all
vertices and thus express g(t) as a function of h(t), which – in turn – depends on g. We
capture this in the following lemma.

▶ Lemma 11 (Self-Bounding Inequality for g(t)). Consider CFFP with 2α ≤ τ − 1. There
are constants c, δ such that for all t ≥ 0

g(t)α ≤ c

(
tαd

∫ t

0
g(t − y)g(y)dy + 1

)
.

Proof. To derive the self-bounding inequality for g using Lemma 10, we upper bound g by
an expression involving f(r, t) and then upper bound f(r, t) using Lemma 10. Specifically,
we estimate the expected size of a t-ball by integrating over all vertices times the respective
probability f(r, t).

E [B(0, t)] = g(t) ≤ 1 +
∫ ∞

1
cdrd−1 min{1, f(r, t)}dr

= 1 +
∫ (cf h(t))

1
αd

1
cdrd−1dr +

∫ ∞

(cf h(t))
1

αd

cdcf rd−1−αdh(t)dr

since for r > (cf h(t)) 1
αd , the minimum is smaller than 1 by definition of f(r, t) from Lemma 10.

Integrating out then yields,

g(t) ≤ 1 + c′
(

h(t) 1
α + h(t) 1

α −1h(t)
)

≤ 1 + ((c′′h(t)) 1
α

for some constants c′, c′′ that depend on α, d and τ . Therefore, we infer that

(g(t) − 1)α ≤ c′′h(t). (7)

It can be shown that12 g(t)α ≤ 2α−1(1 + (g(t) − 1)α). Chaining this inequality with (7) and
replacing h(t) above by its definition in Lemma 10 we get the claimed recursive inequality
for g(t). In more detail, we have

g(t)α ≤ 2α−1(1 + (g(t) − 1)α) ≤ 2α−1(1 + c′′h(t))

Since h(t) is bounded away from zero and since e−δt ≤ 1, it follows that there exists a c such
that the inequality claimed in the lemma statement holds for all t. ◀

It is through this inequality that a stronger bound on g(t) can be derived. For this,
we use Theorem 5.3 from [13] directly which we restate as Theorem 13. It claims (among
more general things) that for a given function g(t), if 1 ≤ g(t) ≤ eCt for some constant C

(which we have already shown) and an inequality similar to 7 holds, then one roughly has
g(t) ≤ et1/∆ . Now that we have motivated Lemma 10, let us prove it.

12 One simply needs to consider the function f(x) = 2α−1(1 + (x − 1)α) − xα restricted to x ≥ 1, which
has a global minimum of 0 at x = 2.
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Proof of Lemma 10. Fix a “target” vertex u. Let us first focus on paths from 0 to u which
contain at least ρt edges (we assume that this is an integer for simplicity) for some constant ρ

that will be determined later. If Plong is the probability that some such path has cost-distance
less than t, then by a simple union bound we have

Plong ≤
∞∑

k=ρt

∑
(0,u)−path π

of length k

P (π has cost-distance at most t)

Lemma 8
≤ eθt

∞∑
k=ρt

θ−kck
∑

(0,u)−path (u1,u2,...,uk+1)
with u1=0 and uk+1=u

k∏
i=1

|ui − ui+1|−αd

Lemma 2.5 (c) in [13]
≤ eθt|u|−αd

∞∑
k=ρt

(
cb

θ

)k

.

In the second line above, we used Lemma 8 but the final step where θ is set to some value
is not carried out. Furthermore, the constant b that emerges in the third line is as in Lemma
2.5 (c) of [13]. Now, setting θ = ρ > ecb, we have

Plong ≤ |u|−αdeρt

(
cb
ρ

)ρt

1 − cb
ρ

≤ |u|−αd e

e − 1e−ρt log ρ
ecb . (8)

Now, let us turn our attention to paths that use at most ρt edges instead and let Pshort
denote the probability that such a path has cost-distance at most t. The idea here is to
notice that a geometrically long edge (u1, u2) must be used (similarly as in the proof of
Lemma 4). In particular, this edge has to cover a distance of at least |u|

ρt , as there are at
most ρt edges used to cover a distance of |u|. We adapt the argumentation of the proof of
Lemma 5.1 in [13], which is essentially a union bound over all the possible intermediate pairs
(u1, u2). More precisely, we get that

Pshort ≤∑
u1,u2∈Zd

|u1−u2|≥ |u|
ρt

∫∫
P
(
d cost

G (0, u1) + c(u1,u2) + d cost
G (u2, u) ≤ t | wu1 , wu2

)
dµ(wu1)dµ(wu2)

(9)

where µ(w) = w1−τ is the probability measure of the weight distribution and

P
(
d cost

G (0, u1) + c(u1,u2) + d cost
G (u2, u) ≤ t | wu1 , wu2

)
≤
∫ t

0
dP
(
d cost

G (0, u1) ≤ s | wu1

) ∫ t−s

0
P
(
d cost

G (u2, u) ≤ y | wu2

)
wα

u1
wα

u2
|u|−dα(ρt)αddy.

(10)

where we use a convolution over the cost of the left and right path segment and that the
density of c(u1,u2) is at most wα

u1
wα

u2
|u|−dα(ρt)dα. Had there not been weights involved, the

proof of Lemma 5.1 in [13] would show immediately that

Pshort ≤ cshort|u|−αdh(t)

for some constant cshort depending on α. In our case we first need to get rid of the weights.
To this end, we use the following simple proposition whose proof we defer for now.
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▶ Proposition 12. For any u1 ∈ Zd and any t > 0, we have

P
(
d cost

G (0, u1) ≤ t | w1
)

≤ 2wα
1 P
(
d cost

G (0, u1) ≤ t
)

.

Applying this proposition to (10) yields

P
(
d cost

G (0, u1) + c(u1,u2) + d cost
G (u2, u) ≤ t | wu1 , wu2

)
≤ 4w2α

u1
w2α

u2
|u|−dα(ρt)αd

∫ t

0
dP
(
d cost

G (0, u1) ≤ s
) ∫ t−s

0
P
(
d cost

G (u2, u) ≤ y
)

dy.

Then, applying this to (9) and taking the sum into the integrals, we get

Pshort ≤
∑

u1,u2∈Zd

|u1−u2|≥|u|/(ρt)

(∫∫
4w2α

u1 w2α
u2 dµ(wu1 )dµ(wu2 )

)

×
(

|u|−dα(ρt)αd

∫ t

0
dP
(
d cost

G (0, u1) ≤ s
)∫ t−s

0
P
(
d cost

G (u2, u) ≤ y
)

dy

)
≤
(∫ ∞

1

∫ ∞

1
4(τ − 1)2w2α−τ

u1 w2α−τ
u2 dwu1 dwu2

)

×

|u|−dα(ρt)αd
∑

u1∈Zd

∑
u2∈Zd

∫ t

0
dP
(
d cost

G (0, u1) ≤ s
)∫ t−s

0
P
(
d cost

G (u2, u) ≤ y
)

dy


where we took the sum into the second set of parentheses and omitted the condition
|u1 − u2| ≥ |u|/(ρt) from the sum and then split it into two sums. We also replaced
µ(w) = 1 − w1−τ so dµ(w) = (τ − 1)w−τ dw. Now, taking these sums into the integrals and
recalling that g(x) =

∑
v∈Zd P (d cost

G (0, v) ≤ x) yields that

Pshort ≤
(∫ ∞

1

∫ ∞

1
4w2α−τ

u1
w2α−τ

u2
dwu1dwu2

)(
|u|−dα(ρt)αd

∫ t

0
dg(s)

∫ t−s

0
g(y)dy

)
.

Here, it is easy to see that the term in the second set of parentheses is at most cshort|u|−αdh(t)
for some constant cshort as was formally shown in [13, Lemma 5.1]. The term in the first set
of parentheses is some constant that only depends on α, τ since the condition 2α < τ − 1
ensures that the integrals converge. This constant enters into cshort.

If we now choose ρ > ecb and δ = ρ log ρ
ecb , then summing Plong from (8) and Pshort as

above yields

f(r, t) ≤ cf r−αdh(t)

for some constant cf as desired. ◀

We now give the proof of the proposition deferred above.

Proof of Proposition 12. Recall that the statement of the proposition is that

P
(
d cost

G (0, u1) ≤ t | w1
)

≤ 2wα
1 P
(
d cost

G (0, u1) ≤ t
)

We show this using a coupling argument. To this end, we consider a model M that
resembles CFFP where instead of having the vertex u1 with weight w1, we set the weight
of u1 deterministically equal to 1. However, to decide the costs of edges adjacent to u1, we
take the minimum of ⌈wα

1 ⌉ many independent samples, i.e., for the edge (u1, v) we set its
cost to the minimum of ⌈wα

1 ⌉ independent samples from an exponential distribution with
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rate wα
v |u − v|−αd. Alternatively, this can be seen as having ⌈wα

1 ⌉ copies of u1 (with weight
1) and then studying the minimal cost-distance from 0 to one of the copies u1 where the
minimum is taken over all copies. Note that this description diverges from the one in the
previous sentence if we are interested in paths between two arbitrary vertices, but since we
are only concerned with paths from 0 to u1, the two are equivalent.

We continue by showing that cost distances in CFFP (from 0 to u1) stochastically
dominate those in M , i.e., that

P
(
d cost

G (u1, 0) ≤ t in CFFP | w1
)

≤ P
(
d cost

G (u′
1, 0) ≤ t in M

)
.

To this end, we first show that this is the case for the cost of all edges incident to u1. Let
e = (u1, v) be an arbitrary such edge and note that

P
(
c(u1,v) ≥ x in M

)
=
(

e−xwα
v |u1−v|−αd

)⌈wα
1 ⌉

≤ e−xwα
1 wα

v |u1−v|−αd

= P
(
c(u1,v) ≥ x in CFFP

)
.

Now, let R be a fixed realization of all weights and edge costs in CFFP not associated with
u1 and denote by [d cost

G (0, v)]R. the cost distance from 0 to v in this realization when u1 is
removed from the underlying graph. With this, we note that – conditional on R – we have

d cost
G (u1, 0) ≤ t ⇐⇒ ∃ v such that c(u1,v) ≤ t −

[
d cost

G (0, v)
]

R .

Since P
(
c(v,u1) ≥ x in M

)
≤ P

(
c(v,u1) ≥ x in CFFP

)
as shown above, the probability that

this occurs in M is as least as large as the corresponding probability in CFFP, and since
this holds conditional on any realization R, it also holds unconditionally by the law of total
probability. Hence, we have shown the desired stochastic domination.

It remains to be shown that

P
(
d cost

G (u1, 0)) ≤ t′ in M
)

≤ 2wα
1 P
(
d cost

G (u1, 0) ≤ t in CFFP
)

.

To to prove this, we again consider an arbitrary but fixed realization R as in the previous
paragraph and recall that d cost

G (u1, 0) ≤ t if and only if there is some v such that c(u1,v) ≤
t − [d cost

G (0, v)]R. Note that by the definition of M , this occurs if and only if it happens
for at least one of the ⌈wα

1 ⌉ ≤ 2wα
1 copies of u1. Since for each copy, the probability that

this happens for said copy is P (d cost
G (u1, 0) ≤ t in CFFP | wu1 = 1, R), we get from a union

bound and from the law of total probability that

P
(
d cost

G (u1, 0) ≤ t in M
)

≤ 2wα
1 P
(
d cost

G (u1, 0) ≤ t in CFFP | wu1 = 1
)

≤ 2wα
1 P
(
d cost

G (u1, 0) ≤ t in CFFP
)

◀

Finally, we will use Lemma 10 in conjunction with Theorem 5.3 from [13] to show the
desired lower bound on cost-distances. We restate that theorem here, simplified for our use
case.

▶ Theorem 13 (Theorem 5.3 from [13]). Let g(t) : [0, ∞) → R be a function satisfying

1 ≤ g(t) ≤ eCt

and

g(t)1/θ ≤ ch

(
1 + tβ−1

∫ t

0
g(y)g(t − y) dy

)
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for all t ≥ 0 for some constants C > 0, θ ∈
( 1

2 , 1
)
, β ≥ 0, and ch ≥ 1. Then, there exists a

constant cθ > 1 such that g(t) ≤ G(t) for all t ≥ 0 where G(t) is defined such that

log G(t) = cθ(2λt)log2(2θ)(log(1 + tβ))log2(1/θ)(1 + o(1)).

We use the above theorem to prove our main lemma for FPP, which we restate here.

▶ Lemma 14 (Tail Bound for Cost-Distances in FPP). Consider FPP on SFP with 2α < τ − 1
and arbitrary vertices x, y. There exists a constant c depending only on α and τ such that
for ∆ = ∆(α) = 1/log2 (2/α),

logP
(
d cost

G (x, y) ≤ t
)

≤ c(log(1 + t))1−1/∆t1/∆(1 + o(1)) − αd log |x − y| + c.

Proof. As discussed, it suffices to show the claim for CFFP. Moreover, by translation
invariance, we can replace x with the origin 0 and y by u = y − x. By Lemma 11 we have

g(t)α ≤ c1

(
tαd

∫ t

0
g(t − y)g(y) dy + 1

)
(11)

for some c1, δ > 0 depending only on parameters of the model. We also know that g(t) ≤ eCt

from Theorem 9 for a C with the same dependencies. Therefore, using Theorem 5.3
from [13] (stated above the current theorem) with θ = 1

α , β = αd + 1 and with the inequality
1 + tβ ≤ (1 + t)β , we have g(t) ≤ G(t), where

log G(t) = c(log(1 + t))1− 1
∆ t

1
∆ (1 + o(1)),

where c depends only on parameters of the model. Now, by Lemma 10, we have

logP
(
d cost

G (0, u) ≤ t
)

≤ log f(|u|, t)

≤ c′ − αd log |u| + log
(

tαd

∫ t

0
g(t − y)(g(y) − 1) dy + e−δt

)
The constant c′ above comes from Lemma 10. The final step is to notice that inequality (11)
is satisfied as equality for G(t), as in [13]. Then, substituting the expression for it in the
resulting inequality gives the desired bound. ◀

We can use the coupling employed in Theorem 1.1 to establish the above tail bound even
if 2α ≥ τ − 1 but with ∆ replaced by ∆′′ = ∆(min{α, τ−1

2 } − ε) for arbitrarily small ε. We
then have obtained Theorem 1.3. Since the proof is almost verbatim the same as that of
Theorem 1.1, we omit it. Note that one minor technical step that is required additionally
to get the bound claimed in Theorem 1.3 using the one obtained from Lemma 14 is to
introduce an auxiliary constant ε′ in addition to the ε from the statement of the theorem.
This swallows the (log(1 + t))1− 1

∆ factor.
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A On the upper bound claim in [19]

In this section, we briefly explain the mistake in the upper bound proof for graph distances
in [19]. There, the authors add edges for some paths of length 2 in SFP, thus cutting graph
distances at most in half. Let us call the resulting graph 2-SFP. Then they compare 2-SFP
to LRP with different parameters. The 2-SFP graph does not dominate an LRP because the
edges are correlated, but for every edge e, P (e open in 2-SFP) ≥ P (e open in LRP).

Then they make the argument that the correlations are positive, so that for every fixed
x-y-path π, by the FKG inequality:

P (π open in 2-SFP) ≥ P (π open in LRP) . (12)

That is correct, but it does not imply the statement that we would want for a suitable k:

P (∃ x-y-path π of length ≤ k: π open in 2-SFP)
≥ P (∃ x-y-path π of length ≤ k: π open in LRP) . (13)

Instead, (12) only implies by summing over all x-y-paths of length at most k:

E [# of open x-y-paths of length ≤ k in 2-SFP] (14)
≥ E [# of open x-y-paths of length ≤ k in LRP] . (15)

However, it is not hard to see that due to the correlations the left hand side of (14) is
dominated by low-probability events where the number of paths is very large. In particular,
the upper bound proof for LRP is centered around the concept of hierarchies, and the first
step of a hierarchy is to find an edge of length Θ(|x − y|), where the two endpoints lie
respectively close to x and y. It is easy to see that for some parameters considered in [19],
with high probability such edges do exist in LRP but do not exist in 2-SFP. However, the
expected number of such edges in 2-SFP (corresponding to the left hand side of (14)) is still
large because the unlikely event of a vertex of weight Θ(|x − y|) at distance |x − y| from x

induces a very large number of 2-paths in SFP, which become edges in 2-SFP.
Hence, the argument in [19] shows (14) but not (13), and this is not a minor omission

but a major gap. In fact, we conjecture that the upper bound statements in [19] are false,
and that the exponent ∆(α) = 1/ log2(2/α) is tight throughout the polylogarithmic regime,
i.e. for all τ > 3 and α ∈ (1, 2). The reason for this intuition is that for τ > 3 there exists a
constant C > 0 such that the induced graph of vertices of weight larger than C does not
percolate. However, we do not see an obvious way to leverage this property into lower bounds
for graph distances.
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