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Abstract
Kaltofen [STOC 1986] gave a randomized algorithm to factor multivariate polynomials given by
algebraic circuits. We derandomize the algorithm in some special cases.

For an n-variate polynomial f of degree d from a class C of algebraic circuits, we design a
deterministic algorithm to find all its irreducible factors of degree ≤ δ, for constant δ. The running
time of this algorithm stems from a deterministic PIT algorithm for class C and a deterministic
algorithm that tests divisibility of f by a polynomial of degree ≤ δ.

By using the PIT algorithm for constant-depth circuits by Limaye, Srinivasan and Tavenas [FOCS
2021] and the divisibility results by Forbes [FOCS 2015], this generalizes and simplifies a recent
result by Kumar, Ramanathan and Saptharishi [SODA 2024]. They designed a subexponential-time
algorithm that, given a blackbox access to f computed by a constant-depth circuit, outputs its
irreducible factors of degree ≤ δ. When the input f is sparse, the time complexity of our algorithm
depends on a whitebox PIT algorithm for

∑
i
mig

di
i , where mi are monomials and deg(gi) ≤ δ. All

the previous algorithms required a blackbox PIT algorithm for the same class.
Our second main result considers polynomials f , where each irreducible factor has degree at

most δ. We show that all the irreducible factors with their multiplicities can be computed in
polynomial time with blackbox access to f .

Finally, we consider factorization of sparse polynomials. We show that in order to compute all
the sparse irreducible factors efficiently, it suffices to derandomize irreducibility preserving bivariate
projections for sparse polynomials.
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1 Introduction

The problem of multivariate polynomial factorization asks to find the unique factorization
of a given polynomial f ∈ F[x1, . . . , xn] as a product of distinct irreducible polynomials
over F. The problem reduces to univariate polynomial factorization over the same field,
for which a deterministic polynomial time algorithm is known over the field Q. The com-
plexity of multivariate factorization depends on the representation of input and output
polynomials. If we use dense representation (where all the coefficients are listed including
the zero coefficients), deterministic polynomial time algorithms for multivariate factoring

© Pranjal Dutta, Amit Sinhababu, and Thomas Thierauf;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 75; pp. 75:1–75:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:duttpranjal@gmail.com
https://sites.google.com/view/pduttashomepage/home
https://orcid.org/0000-0001-9137-9025
mailto:amitkumarsinhababu@gmail.com
mailto:thomas.thierauf@uni-ulm.de
https://image.informatik.htw-aalen.de/~thierauf/
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.75
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


75:2 Derandomizing Multivariate Polynomial Factoring for Low Degree Factors

are known [16]. If we use sparse representation (where only the nonzero coefficients are
listed), only randomized polynomial time (in the total sparsity of input polynomial and the
output factors) algorithms are known [41, 21]. There are other standard representations like
arithmetic circuits, and blackbox models (that gives the evaluations of the polynomial at any
point, but the internal structure of the computation is hidden). Randomized polynomial time
factorization algorithms are known in these models due to the classic results of Kaltofen [19]
and Kaltofen and Trager [21]. Randomization is naturally required for these models, as
the more basic question of polynomial identity testing (given a circuit/blackbox, test if it
computes the zero polynomial) is not yet derandomized.

Towards derandomization of special cases of multivariate factoring, we are motivated by
the following two questions.

▶ Question 1. Given a sparse polynomial f . Can we find all the sparse irreducible factors
of f by a deterministic algorithm in polynomial/quasipolynomial/subexponential time?

Note that the factors of a sparse polynomial f might be nonsparse. Bhargava, Saraf and
Volkovich [3] showed an upper bound on the sparsity of the factors of a sparse polynomial f .
However, the bound is exponential in the degree of f . Therefore, instead of finding all the
irreducible factors, we want to output only those factors that are sparse.

▶ Question 2 ([41, 3]). Given polynomial f =
∏m

i=1 gi
ei as a blackbox, where polynomials gi

are irreducible polynomials whose sparsities are bounded by s. Can we find the polynomials
gi in deterministic time poly(s, n, d) or time quasi-poly/sub-exponential in s, n, d?

The second question can be seen as a special case of polynomial factorization, where we
are promised that all the irreducible factors are sparse. To our surprise, we do not know a
deterministic subexponential-time algorithm even for the special case of Question 2, when
the given blackbox computes the product of just two irreducible sparse polynomials.

Derandomization of multivariate factoring (whitebox, or blackbox) reduces to (whitebox,
or correspondingly blackbox) derandomization of polynomial identity testing (PIT). Kopparty,
Saraf and Shpilka [27] showed this reduction in the model of arithmetic circuits. However,
we do not know if sparse factorization reduces to sparse PIT or constant-depth arithmetic
circuit PIT (the algorithms of [27] reduce to general arithmetic circuit PIT). Recently, there
has been some progress on these questions by [28, 29]. Earlier works of Volkovich [39, 40]
made progress on several special cases of sparse multivariate factoring.

Multivariate polynomial factoring has various applications, such as low-degree testing [1],
constructions of pseudorandom generators for low-degree polynomials [6, 8], computational
algebraic geometry [14] and many more. blackbox multivariate polynomial factorization is
extensively used in arithmetic circuit reconstruction [36, 37], and polynomial equivalence
testing [22, 23, 33]. Algebraic hardness vs randomness [15] results crucially use multivariate
factorization. Special cases of depth-4 polynomial identity testing are related to questions
about sparse polynomial factorization [12, 40, 4].

Divisibility testing. In a factorization algorithm, we may want to check if a candidate factor
is truly a factor via divisibility testing. It asks to test if a polynomial g(z) divides a polynomial
f(z). Forbes [9] showed that the divisibility testing question can be efficiently reduced to an
instance of a PIT question of a model that relates to both f and g; see Lemma 9. Currently,
we do not know any deterministic polynomial time algorithm even when g and f are both
sparse polynomials. When f is a sparse polynomial and g is a linear polynomial, the problem
reduces to polynomial identity testing of any-order read-once oblivious branching programs
(ROABPs), for which polynomial time whitebox PIT algorithm [34] and quasipolynomial
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time blackbox PIT algorithms are known [10, 13, 11]. We do not know a deterministic
polynomial time algorithm, even for testing if a quadratic polynomial g divides a sparse
polynomial.

1.1 Our results
We show a general result that exhibits properties of a class C of polynomials, such that we
can compute the constant-degree factors of polynomials f ∈ C. The following theorem is an
informal statement of Theorem 18.

▶ Theorem 1 (Low-degree factors via divisibility). Let δ ∈ N be a constant and C be a
class of polynomials such that there is an efficient PIT algorithm for C. For any n-variate
polynomial f ∈ C of degree d, finding all its irreducible factors of degree ≤ δ reduces to
solving polynomially many divisibility questions of whether a given polynomial of degree ≤ δ

divides f .

Arguably, Theorem 1 generalizes and simplifies a recent result by Kumar, Ramanathan
and Saptharishi [28] about the factorization of polynomials computed by constant-depth
circuits. Importantly, if f is represented in the whitebox setting, then both the required
algorithms (PIT and divisibility testing) in Theorem 1 are whitebox algorithms, whereas [28]
still requires blackbox algorithms. We compare the results in more detail in Section 1.2.

We can apply Theorem 1 in the case of (any-order) ROABPs. There are polynomial
time (respectively, quasipolynomial time) whitebox (respectively, blackbox) PIT algorithms
for ROABPs. Moreover, using the divisibility techniques by Forbes [9] (see Lemma 9) and
the duality trick by Saxena [35], the divisibility testing question of whether a given linear
polynomial divides a ROABP can be reduced to a PIT instance of a polynomial-size ROABP.

▶ Corollary 2 (Linear factors of ROABPs). Let f be an n-variate polynomial of degree d,
computed by an any-order ROABP of width w. Then one can output all its linear factors, along
with the exponents in time poly(ndw) in the whitebox setting, and in time poly(ndwlog log w)
in the blackbox setting.

When the input f is s-sparse, this result is already known due to Volkovich [39, Theorem 4].
Note that a sparse polynomial has a trivial ROABP.

Finally, we remark that Theorem 1 can be further generalized to outputting factors from
a general class D (as black box) when in addition to assuming (informally speaking) efficient
PIT for C and the divisibility test for C by D, one has to assume efficient derandomization
of HIT for D (in the sense of finding a good bivariate projection preserving irreducibility,
see Assumption 1) and an inclusion property (i.e. given g ∈ D or not). For simplicity, in the
conference version, we only assume that D is the class of constant-degree polynomials.

Our second result considers the class of polynomials f , where all the irreducible factors of f

are promised to have degrees bounded by δ. For this class, there are blackbox PIT algorithms
with time complexity poly(d, nδ) for n-variate polynomials f of degree d, see [7, 5]. Hence,
by Theorem 1, the factoring problem reduces to a divisibility question. Using techniques of
Forbes [9] (see Lemma 9), this can be further reduced to designing a blackbox PIT algorithm
for polynomials of the form ΣiΠj fi,j , where deg(fi,j) ≤ δ. However, we do not know better
than subexponential-time PIT algorithms for this model. Thus, Theorem 1 does not yield
anything fruitful in this promise setting. We show how to completely avoid divisibility testing
and still find all the irreducible factors in polynomial time. The following theorem is an
informal statement of Theorem 19.

APPROX/RANDOM 2024
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▶ Theorem 3 (Promise low-degree factoring). Let δ ∈ N be a constant. Given a blackbox
access to an n-variate polynomial f of degree d such that all its irreducible factors have
degrees at most δ, one can deterministically output all its irreducible factors along with the
multiplicities in poly(nd) time.

The above theorem can be generalized to polynomials whose irreducible factors are from
a class D (and we will output them as blackbox), for which efficient PIT and derandomiz-
ation of HIT (in the sense of finding a good bivariate projection preserving irreducibility;
see Assumption 1) is known. For simplicity, in the conference version, we only focus on the
class of constant-degree polynomials.

Related work on Theorem 3. There have been some works when δ = 1. In this setting,
given a promise that f(z) =

∏
i∈[m] ℓei

i , where ℓi(z) are mutually co-prime linear polynomials,
we have to output ℓi. A randomized polynomial time algorithm for this problem follows
from the work of Kaltofen and Trager [21]. Recently, Koiran and Ressyare [25] gave three
different randomized algorithms for the non-promise problem that can test if a given f can
be completely factored into linear polynomials and output the factorization if it exists. The
first algorithm assumes that ℓ1, . . . , ℓm are linearly independent, while the last two do not
need that assumption. Later, Koiran and Skomra [26] derandomized the first algorithm when
ℓi are linearly independent. Using a different idea and linearly independence of ℓi, Medini
and Shpilka [32] gave an alternative deterministic polynomial time algorithm. All these works
exploited the linearity (and sometimes randomization/linear independence) of the factors,
while our algorithm neither requires linearity of the factors nor any linear independence.

Finally, we go back to Question 1 of outputting all the sparse irreducible factors of a given
sparse polynomial. Can efficient sparse irreducibility testing lead to an efficient algorithm?
For general multivariate factoring, an effective version of Hilbert’s Irreducibility Theorem
(HIT) by Kaltofen [17] (Theorem 10) says that with high probability, an irreducible n-variate
polynomial remains irreducible if we randomly project it to a bivariate polynomial. This
leads to an efficient factoring algorithm, since HIT helps to preserve the factorization pattern
(the number of distinct irreducible factors and corresponding multiplicities). The hardness
of Question 1 stems from the fact that a sparse polynomial may have both sparse and
non-sparse irreducible factors. Hence, preserving irreducibility for sparse polynomials will
not preserve the factorization pattern, and therefore, it may be hard to get back the actual
factor. However, we observe that a deterministic version of HIT for sparse polynomials can
indeed solve Question 1. The following theorem is an informal statement of Theorem 20.

▶ Theorem 4 (Conditional sparse factoring, Informal). Suppose there is an efficient algorithm
that finds a bivariate projection, making an s-sparse irreducible polynomial both monic (in
one variable) and irreducible. Then there is a subexponential-time algorithm that outputs all
its irreducible factors with sparsities ≤ s along with their multiplicities.

1.2 Comparison with Kumar, Ramanathan and Saptharishi [28]
Theorem 1 implies [28, Theorem 1.1–1.2]. Let ∆ ≥ 2 be an arbitrary positive integer.
Assume that we have a blackbox access to f , which can be computed by a ∆-depth algebraic
circuit of size s. The recent breakthrough result of Limaye, Srinivasan, and Tavenas [31]
gives a subexponential time identity testing algorithm for f . Moreover, using the techniques
from [9] (see Lemma 9), one can show that whether a given polynomial of degree ≤ δ

divides f can be efficiently reduced to PIT for an algebraic circuit of size poly(sd), of the
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form
∑

i gih
di
i , where the polynomials gi are computable by ∆-depth algebraic circuits and

deg(hi) ≤ δ. For a formal proof, see [28, Corollary 2.19]. The main time complexity of [28,
Theorem 1.1] is also dictated by the best-known blackbox PIT algorithm for the same model
as above, which runs in subexponential time [31]. This algorithm requires the underlying
field to have characteristic 0.

When ∆ = 2, Theorem 1 gives a quasipolynomial time algorithm to output irreducible
factors of degree ≤ δ, thus implying [28, Theorem 1.2]. We know a polynomial time identity
testing for sparse polynomials, due to Klivans and Spielman [24]. Further, [9, Corollary 7.16]
showed that whether a polynomial of degree ≤ δ divides a sparse polynomial, reduces to PIT
for Σm ∧ ΣΠ[δ]; this model computes polynomials of the form

∑poly(sd)
i=1 mih

di
i , where mi

are monomials, and deg(hi) ≤ δ. The best-known blackbox (and whitebox) PIT algorithm
for this model runs in quasipolynomial time [9, Corollary 6.7], and work over fields of
characteristics 0 or large.

Whitebox vs. blackbox. Interestingly, if the input f has a whitebox access to it (for example
when f is sparse, we can use [24]), then the required PIT algorithms in Theorem 1 are also
in the whitebox setting. On the other hand, the factoring algorithm in [28] requires blackbox
PIT algorithms. To explain it further, let f(x, z) be a monic polynomial (in x) and computed
by a constant-depth circuit. Further, f = g · h, where deg(g) ≤ δ and gcd(g, h) = 1. In the
usual factoring algorithm via Hensel lifting/Newton iteration, it is important to find a good
starting point a ∈ Fn such that gcd(g(x, a), h(x, a)) = 1. This step is usually ensured by
finding a hitting set for the Resultant polynomial Resx(g(x, z), h(x, z)). Once such a point
is found, one can project to the univariate f(x, a), factorize it and then do the lifting. [28]
observed that Res(g, h) = Res(g, f/g). Further, they showed that the polynomials f/g as
well as Res(g, f/g) can be computed by small-size constant-depth algebraic circuits. This was
enough to find a good projection using [31], and then find the true factor g via lifting. Since
we do not know the factor g apirori, the polynomials f/g and Res(g, f/g) can be viewed
as polynomials computable by small-size constant-depth algebraic circuits without having
explicit access to them.

1.3 Proof idea
In this section, we give an overview of our algorithms. The overall idea is to project the
input polynomial to a trivariate polynomial, factorize it, and recover the original factors via
efficient sparse interpolation [24].

Proof ideas of Theorem 1 and Theorem 3. Suppose f(x, z) is an (n + 1)-variate degree d

homogeneous polynomial computed by an s-size circuit, which is monic in x. The monicness
property can be assumed otherwise it is well-known that a random shift can make f monic,
and this step can be derandomized assuming PIT for f ; see Lemma 7. We start with the
simplest scenario of δ = 1, i.e., given f , we want to output its linear factors.

Suppose f = ℓe · g, with e ≥ 1, where gcd(ℓ, g) = 1 and ℓ is a linear polynomial. Consider
the substitution ϕ : zi 7→ yi, where y is a new variable. Observe that ϕ(f) ∈ F[x, y] is
a nonzero monic polynomial (in x) of total degree at most nd. Further, ϕ(ℓ), remains
an irreducible factor of ϕ(f) and it is easy to identify ℓ from ϕ(ℓ), since the monomials
{z1, · · · , zn} are assigned yi uniquely. One can factorize the bivariate polynomial ϕ(f) in
deterministic poly(nd) time (see Lemma 11). We can apply the inverse of ϕ to each factor
having degree 1 in x, and there could be nd many candidates of linear factors. The actual
factor ℓ must be one of them. The divisibility testing makes sure that it always outputs the
true linear factors.

APPROX/RANDOM 2024
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When δ ≥ 2, we can still find small weights wi, such that any monomial ze of degree ≤ δ

gets uniquely mapped to yi, via ϕ : zi 7→ ywi ; see Lemma 14. Unfortunately, this map may
not preserve irreducibility. On the other hand, an effective version of Hilbert’s Irreducibility
Theorem [20] shows that a monic irreducible polynomial g(x, z) remains irreducible under the
substitution zi 7→ βit+γi, where βi, γi are randomly chosen from F; see Theorem 10. Further,
this step can be derandomized when g is a low-degree polynomial. We combine these two
ideas to get small weights wi and w′

i such that the projection Ψ : zi 7→ ywit + yw′
i preserves

the irreducibility of any polynomial of degree ≤ δ, and further it is uniquely recoverable from
the projected trivariate polynomial; see Corollary 16. Therefore, it suffices to factor the
trivariate polynomial, find all its irreducible factors, and recover the original factors.

The proof of Theorem 3 uses the same trivariate projection as above. In this case, we
can avoid divisibility because the trivariate projection preserves the factorization pattern,
and one can recover the original factors uniquely from the projected ones.

Proof idea of Theorem 4. Kaltofen and Trager [21] gave an efficient blackbox factoring
algorithm, that given a blackbox access to a polynomial f , and an arbitrary point, outputs
evaluations at that point of all its irreducible factors. For simplicity, consider a monic
polynomial f(x, z). To get the evaluations at (α, c) ∈ Fn+1, consider a trivariate projection η :
z 7→ βt1 + (c − γ)t2 + γ and x 7→ x, for new variables t1 and t2. Here β, γ ∈ Fn was chosen
such that z 7→ βt + γ preserves the irreducibility all the irreducible factors of f ; such a
projection exists using Theorem 10. The map η preserves the factorization patter, and hence
one can find the evaluations by factoring η(f), and evaluating the irreducible factors at
x = α, t1 = 0, t2 = 1.

Our algorithm is a simple adaptation of their algorithm, with the following observation.
Let g(x, z) be an irreducible sparse factor of f(x, z) and let β, γ ∈ Fn be such that g(x, βt+γ)
remains irreducible. Although the map η does not preserve the factorization pattern, η(g)
remains an irreducible factor of η(f). Therefore, g(α, c) can be efficiently found, via evaluating
the right trivariate factor. For finding the right factor, one can observe that there is a unique
correspondence between the bivariate g(x, βt + γ) and trivariate η(g). Since, g is sparse,
one can use sparse interpolation [24] to explicitly reconstruct the polynomial g, from its
evaluations. Finally, whether a sparse polynomial g divides the input sparse polynomial f

can be solved in deterministic subexponential time, via divisibility-to-PIT reduction of [9]
(see Lemma 9) and the blackbox PIT algorithm for constant-depth circuits of [31].

2 Preliminaries

We take F = Q as the underlying field throughout the paper, although the results hold over
large characteristics.

Let P(n, d) be the set of n-variate polynomials of degree at most d, with variables
z = (z1, z2, . . . , zn). For an exponent vector e = (e1, e2, . . . , en), we denote the monomial
ze = (ze1

1 , ze2
2 , . . . , zen

n ). Its degree is ||e||1 =
∑n

i=1 ei.
For a ∈ Fn, we also denote ||a||0 = |{i | ai ̸= 0}|.
sp(f) denotes the sparsity, i.e., the number of monomials with nonzero coefficients in f .
Homk[f ] denotes the homogeneous component of f of degree equal to k.
A polynomial f is called irreducible, if it cannot be factored into the product of two

non-constant polynomials. Polynomial f is called square-free, if for any non-constant factor g,
the polynomial g2 is not a factor of f .
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By deg(f) we denote the total degree of f . Let x and z = (z1, . . . , zn) be variables
and f(x, z) be a (n + 1)-variate polynomial. Then we can view f as a univariate polynomial
f =

∑
i ai(z) xi over K[x], where K = F[z]. The x-degree of f is denoted by degx(f). It is

the highest degree of x in f . Polynomial f is called monic in x, if the coefficient adx(z) is
the constant 1 polynomial, i.e. adx

(z) = 1, where dx = degx(f).
An algorithm runs in subexponential time, if its running time on inputs of length n is

bounded by 2nϵ , for any ϵ > 0.

2.1 Computational problems, complexity measures and closure
properties

For classes P, Q of multivariate polynomials, we define the following computational problems.
PIT(P): given p ∈ P, decide whether p ≡ 0.
Factor(P|Q): given p ∈ P , compute all its irreducible factors in Q with their multiplicities.
Div(P/Q): given p ∈ P and q ∈ Q, decide whether q|p.

The time complexity to solve these problems we denote by TPIT(P), TFactor(P|Q),
and TDiv(P/Q), respectively.
▶ Remark. Note that a decision algorithm for PIT(P) also yields an algorithm that computes
a point a ∈ (F\{0})n such that p(a) ̸= 0, in case when p ̸≡ 0. In the blackbox case, the
queries of the decision algorithm on the input of the zero-polynomial yield a hitting set 1

for the whole class P. In the whitebox case, one can search for a by by assigning values
successively to the variables and do kind of a self-reduction. For each variable, one tries at
most d values from {1, 2, . . . , d} for a polynomial of degree d. If they all give 0, definitely
d + 1 works because it cannot be zero at (d + 1) many values. With n variables, this amounts
to nd calls to the PIT-decision algorithm. The final desired point a ∈ {1, · · · , d + 1}n, which
is very explicit. The running time to compute a is therefore bounded by nd · TPIT(P).

For time complexity, we assume that the polynomials are given in some model of compu-
tation, such as circuits, branching programs, or formulas. With each model, we associate a
complexity measure µ : F[z] → N. For example, let f ∈ F[z], some of the commonly used
measures in the literature are:

µ(f) = sp(f), the number of monomials with nonzero coefficients,
µ(f) = size∆(f), the size of the smallest depth-∆ algebraic circuit computing f ,
µ(f) = sizeROABP(f), the width of the smallest any-order read read-once oblivious
branching program (ROABP) computing f .

We define classes of polynomials of bounded measure,

Cµ(s, n, d) := { f ∈ P(n, d) | µ(f) ≤ s } . (1)

We generally assume that all polynomials we deal with can be efficiently evaluated at
any point a ∈ Fn within the respective measure, where we consider the unit-cost model for
operations over F. This holds for all the computational models usually considered in the
literature.

▶ Definition 5 (Closure under derivatives). Class Cµ(s, n, d) is closed under derivatives, if
for any f ∈ Cµ(s, n, d), a variable z ∈ {z1, · · · , zn}, and e ∈ N, the size of the derivative
µ(∂ef/∂ze) = poly(snd), and further it can be computed in poly(snd) time from f .

1 H ⊆ Fn is a hitting set for a class P, if for every nonzero f ∈ P, there exists a ∈ H, such that f(a) ̸= 0.

APPROX/RANDOM 2024
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▶ Definition 6 (Closure under highest degree). Let f =
∑d

k=0 fk(z) ∈ Cµ(s, n, d),
where fk(z) = Homk[f ], the homogeneous component of f of degree k. We say that Cµ(s, n, d)
is closed under highest degree component if in the above, µ(fd) ≤ poly(snd), and further it
can be computed in poly(snd) time from f .

For example, if the class contains polynomials where each is a product of constant-degree
polynomials, then it is not closed under homogenization (i.e. µ(fk) ≤ poly(snd) and it can
be computed in polynomial time). However, the highest-degree component is still a product
of constant-degree polynomials. Other classes that are closed under the highest degree are
sparse polynomials, polynomials computed by polynomial size any-order ROABPs, or by
constant-depth circuits.

Finally, we define Hom[Cµ(s, n, d)], as follows:

Hom[Cµ(s, n, d)] := { f ∈ P(n, d) | g ∈ Cµ(s, n, d) and f = Homd[g] } . (2)

When the context and the parameters are clear, we will simply denote the classes as C and
Hom[C], without explicitly writing the parameters.

2.2 Transformation to a monic polynomial
Algorithms for factoring polynomials often assume that the given polynomial is monic. If
this is not the case for the given polynomial f , we apply a transformation τ to f that yields
a monic polynomial τ(f) that we can factor. From the factors of τ(f) we can then reveal the
factors of f . Although this is standard in the literature, we state it in terms of the symbols
that we introduced above.

▶ Lemma 7 (Transformation to monic). Let C be a class of polynomials that is closed under
highest degree component. Let f(z) ∈ C be n-variate of degree d and size s. For a new
variable x, and α = (α1, . . . , αn) ∈ (F\{0})n, define a linear transformation τα on the
variables zi:

τα : zi 7→ αix + zi,

where αi ̸= 0, for i = 1, 2, . . . , n. Let fα(x, z) be the resulting polynomial.
Then we can compute α such that 1

fd(α) fα(x, z) is monic in x in time nd · TPIT(Hom[C]) +
poly(snd), where fd = Homd[f ].

Proof. Let f(z) ∈ C be a polynomial of degree d with n variables z = (z1, . . . , zn) .
To see what the transformation does, let

f = f0 + f1 + · · · + fd,

where fk = Homk[f ], the homogeneous degree-k component of f . Consider the degree-d
component,

fd(z) =
∑

|β|1=d

cβzβ.

Then, for fα, we have degx(fα) = d and the coefficient of the leading x-term xd in fα is
fd(α) =

∑
|β|1=d cβαβ.

Hence, the PIT algorithm for the homogeneous component fd of f yields an α ∈ (F\{0})n

such that fd(α) ̸= 0. Then the polynomial 1
fd(α) fα(x, z) is monic in x. For simplicity of

notation, assume in the following that fd(α) = 1, so that fα(x, z) is monic in x. ◀
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Since we work with the shifted polynomial, we need to ensure that the shift of variables
does not affect the irreducibility of the factors; this is guaranteed by the following lemma.
This is quite standard in the literature; for a nice proof, see [29, Lemma B7].

▶ Lemma 8. Let f(z) ∈ F[z] be an n-variate irreducible polynomial. Then, for every a ∈ Fn,
the polynomial f(ax + z) is also irreducible.

2.3 Divisibility testing reduces to PIT
Strassen [38] showed that if g | f , where both f and g can be computed by size s circuits, then
h := f/g can also be computed by a circuit of size poly(sd), where d = deg(h). Forbes [9]
observed that this procedure can still be done, even when g ∤ f , and we will get a small size
circuit computing a polynomial h̃. We can then argue that g divides f if and only if f = g · h̃.
The latter question is a PIT question.

▶ Lemma 9 (Divisibility reduces to PIT, [9, Corollary 7.10]). Let g(z) and f(z) be two
polynomials of degree at most d. Let S ⊆ F be a poly(d)-explicit set such that |S| =
2d2 + 1. Further let α ∈ Fn such that g(α) ̸= 0. Then there are poly(d)-explicit constants
{cβ,i}β∈S,0≤i≤d, such that

g(z) | f(z) ⇐⇒ f(z + α) − g(z + α) ·
∑
β∈S

f(βz + α)
∑

0≤i≤d

cβ,i · g(βz + α)i = 0

2.4 Effective Hilbert’s Irreducibility Theorem
An effective version of Hilbert’s Irreducibility Theorem due to Kaltofen and von zur Gathen
shows how to project a multivariate irreducible polynomial down to two variables, such that
the projected bivariate polynomial stays irreducible. The proof shows the existence of an
irreducibility certifying polynomial G(a, b) in 2n variables corresponding to the irreducible
polynomial g(x, z). The nonzeroness of G proves the irreducibility of g(x, z) and also gives a
way to find an irreducibility-preserving projection to bivariate (see [17, 20, 27]).

▶ Theorem 10. Let g(x, z) be an irreducible polynomial of total degree δ with n + 1 variables
that is monic in x. There exists a nonzero polynomial G(a, b) of degree 2δ5 in 2n variables
such that for α, β ∈ Fn,

G(α, β) ̸= 0 =⇒ ĝ(x, t) = g(x, α1t + β1, . . . , αnt + βn) is irreducible.

The certifying polynomial G immediately yields a randomized algorithm to construct the
irreducible projection ĝ via PIT. The derandomization of Hilbert’s Irreducibility Theorem is
a challenging open problem in general. We observe that it can be derandomized for constant
degree polynomials.

2.5 Basics of factoring and interpolation
Berlekamp [2] and Lenstra, Lenstra and Lovász [30] gave efficient factorization algorithms
for univariate polynomials over finite fields and Q, respectively. Kaltofen [18] showed how
to reduce the factorization of bivariate polynomials to univariate polynomials. In fact, the
reduction works for k-variate polynomials, for any constant k. In our case, we use it for the
case k = 3.

Via standard interpolation, one can assume that the input is given as a dense representa-
tion.
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▶ Lemma 11 (Trivariate Factorization). Let f(x, y, z) be a trivariate polynomial of degree d.
Then there exists an algorithm that outputs all its irreducible factors and their multiplicities
in time poly(d).

The following lemma shows how to find the multiplicity of an irreducible factor g of a
polynomial f . It holds when char(F) = 0, or, large. For a concise proof, see [28, Lemma 4.1].

▶ Lemma 12 (Factor multiplicity). Let f(z), g(z) ∈ F[z] be non-zero polynomials and let
z ∈ {z1, · · · , zn} be such that ∂z(g) ̸= 0 and g is irreducible. Then the multiplicity of g in f

is the smallest non-negative integer e such that g ∤ ∂ef
∂ze .

Klivans and Spielman [24] derandomized the isolation lemma for PIT of sparse polynomials.
Their algorithm works over fields of 0 or large characteristics.

▶ Lemma 13 (Sparse PIT and interpolation). Given an n-variate s-sparse polynomial f of
degree d via blackbox access, PIT for f works in time poly(snd). Furthermore, if f is nonzero,
one can find the monomials in f with nonzero coefficients in time poly(snd).

▶ Remark. Let F = Q, for the simplicity. The interpolation algorithm in [24] works by
projecting f to a univariate polynomial in y via the map zi 7→ piy

wi , for pi are distinct
primes, and weights wi. They used univariate interpolation, to find the coefficients and
the exponents. If the input polynomial f is not s-sparse, one can still run the algorithm.
If at any moment while doing the univariate interpolation, it detects more than s many
nonzero coefficients, it stops, otherwise it will continue, and indeed at the end, output a
wrong s-sparse polynomial f̂ , such that (unfortunately) it matches at all the interpolating
values. Given s, n, d, the evaluation points on which the interpolation algorithm can be
thought as coming from a fixed set.

2.6 Isolation
Let Mδ be the set of monomials in n variables z = (z1, z2, . . . , zn) of degree bounded by δ,

Mδ = { ze | ||e||1 ≤ δ } . (3)

Note that Mδ is polynomially bounded, for constant δ,

|Mδ| ≤
(

n + δ

δ

)
≤ (n + δ)δ ≤ (δ + 1) nδ = O(nδ). (4)

There is a standard way to map the multivariate monomials in Mδ in a injective way to
univariate monomials of polynomial degree. For completeness, we describe the details.

Consider the standard Kronecker substitution on Mδ. Define

φ : zi 7→ y(δ+1)i−1
. (5)

By extending φ linearly to monomials ze ∈ Mδ, we get

φ : ze 7→ y
∑n

i=1
ei(δ+1)i−1

, (6)

Clearly, φ is injective on Mδ. However, the degree of y can be exponentially large, up
to (δ + 1)n. A way around is to take the exponents modulo some small prime number p. We
have to determine p in a way to keep the mapping injective on Mδ. Hence, for any two terms
ye, ye′ we get from φ, we have to ensure that e ̸≡ e′ (mod p). Equivalently p ̸ | (e − e′).
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We have |e − e′| ≤ (δ + 1)n and, by (4), there are (δ + 1)2n2δ many pairs e, e′ we get
from Mδ via φ. Prime p should not divide any of these differences, and hence, p should not
divide their product P . The product P is bounded by

P ≤ ((δ + 1)n)(δ+1)2n2δ

= (δ + 1)(δ+1)2n2δ+1
. (7)

Hence, P has at most log P ≤ R = (δ + 1)3 n2δ+1 many prime factors. By the Prime Number
Theorem, there are more than log P primes in the set [R2]. Hence, we can find an appropriate
prime p ≤ R2 = nO(δ).

▶ Lemma 14. There is a prime p = nO(δ) such that the linear extension of

φp : zi 7→ ywi , where wi = (δ + 1)i−1 mod p , for i = 1, 2, . . . , n, (8)

to monomials is injective on Mδ. Moreover, we can find such a p in time nO(δ) and compute
and invert φp in time nO(δ).

Proof. We already argued about the existence of prime p. For the running time, recall that
|Mδ| = O(nδ). Therefore we can search for p and check whether it works on Mδ in time nO(δ).
At the same time we can compute pairs of exponents (e, k) such that φp(ze) = yk. These
pairs can be used to invert φp. ◀

The mapping φp in Lemma 14 maintains factors of degree δ of a polynomial in the
following sense.

▶ Lemma 15. Let polynomial f(z) factor as f = gh, where g(z) has degree δ. Let φp be the
map from Lemma 14. Then we have φp(f) = φp(g)φp(h), and g can be recovered from φp(g)
in time nO(δ).

Note that in Lemma 15, we do not claim that irreducibility is maintained: when g is
irreducible, still φp(g) might be reducible. Consider the example n = δ = 2. The weights
{1, 3} make sure that each monomial z2

1 , z1z2, z2
2 gets mapped to a distinct power in y. Let

g(x, z) = x2 − z1z2. Observe that g is irreducible, however g(x, y, y3) = (x − y2)(x + y2) is
reducible.

We combine Lemma 14 and Theorem 10 to obtain a projection of a multivariate polynomial
to a 3-variate polynomial that maintains irreducibility of polynomials up to degree δ.

▶ Corollary 16. Let g(x, z) be an irreducible polynomial of constant degree δ with n + 1
variables that is monic in x. There exists w, w′ ∈ Fn with wi, w′

i = npoly(δ) such that

Ψ(g) = g(x, yw1t + yw′
1 , . . . , ywnt + yw′

n) ∈ F[x, y, t] (9)

is irreducible. Moreover, we can compute and invert Ψ(g) in time npoly(δ).

Proof. Let G(a, b) be the polynomial of degree 2δ5 in 2n variables provided by Theorem 10
for g. Let w, w′ ∈ Fn with wi, w′

i = npoly(δ) be the exponents we get from Lemma 14 for G.
That is,

Ĝ(y) = G(yw1 , . . . , ywn , yw′
1 , . . . , yw′

n) ̸= 0 .

Now, suppose that Ψ(g) is reducible. Then it would also be reducible at a point y = α,
where Ĝ(α) ̸= 0. But then ĝ(x, t) = Ψ(g)(x, α, t) would be reducible too, and this would
contradict Theorem 10. We conclude that Ψ(g) is irreducible.
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For the complexity, we first determine prime p from Lemma 14 and then get the
weights w, w′ from above. For a given g(x, z) =

∑
k,e ck,exkze, we can compute Ψ(g)

in time npoly(δ). For a monomial of g, the mapping looks as follows:

ck,e xk ze 7→ ck,e xk
n∏

i=1
(ywit + yw′

i)ei . (10)

To compute g from Ψ(g), set t = 0, i.e. consider Ψ(g)(x, y, 0). From (10) we see that
monomials then have the form

ck,e xk y
∑n

i=1
eiw′

i .

From these we get the exponents k and e similar as in the proof of Lemma 14. ◀

▶ Remark. In Corollary 16, when we say that we invert Ψ, it means that for a given h ∈
F[x, y, t] which is monic in x with x-degree ≤ δ, we either detect that h is not in the codomain
of Ψ, or we compute g ∈ F[x, z] such that Ψ(g) = h in time npoly(δ).

The inversion can be done similarly as described in the proof of Corollary 16. One can
evaluate t = 0, and then for every monomial xkyj , try to find xkze that would map to such
a monomial at t = 0. By the property of the map, while mapping the y-degrees, z-degree
could be at most δ, i.e. deg(xkze) ≤ 2δ. We will, of course, return empty if the degree of
any such monomial, after inverting, becomes > δ. Finally, once we have got a candidate g of
degree δ, we still have to check whether Ψ(g) = h, because the inversion procedure ignores
the variable t. The last step can also be efficiently checked.

The polynomial g of degree δ we considered so far can be thought to be a constant-degree
factor of a given polynomial f of degree d. Our goal would be to compute g. It is now easy
to extend the above results to hold for all degree-δ factors of f simultaneously.

▶ Corollary 17. Let f(x, z) be a polynomial of degree d with n + 1 variables that is monic
in x, and let δ be a constant. There exists w, w′ ∈ Fn with wi, w′

i = dnpoly(δ) such that for
any irreducible factor g of degree δ of f , we have that Ψ(g) is an irreducible factor of Ψ(f).

Proof. The proof goes along the lines of Corollary 16, but we choose the weights slightly larger
so that the Ĝ(y) polynomials for all the degree-δ factors g of f are non-zero simultaneously.
That is, we choose prime p in Lemma 14 as p = dnpoly(δ). ◀

Finally, we conclude this subsection by a general remark that whenever n and δ are fixed,
these weights are fixed and can be found efficiently.

3 Computing the low-degree factors

For a size measure µ, we consider a class of polynomials C = Cµ(s, n, d) ⊆ P(n, d) such that
C is closed under derivatives. Many classes C in the literature fulfill this condition. Useful
for us are in particular sparse polynomials, polynomials computed by poly-size any-order
ROABPs or by constant-depth circuits. For a constant δ ∈ N, let D = P(n, δ).

Our first theorem shows that for any polynomial f ∈ C, all the factors of f that are
in D can be computed in polynomial time with oracles for PIT for Hom[C] and divisibility
testing C by D.

▶ Theorem 18. Factor(C|D) can be solved deterministically in time

nd · TPIT(Hom[C]) + d2npoly(δ) · TDiv(C/D) + poly(s, npoly(δ), d).

Proof. Let f(z) ∈ C. To compute the factors of degree δ of f , we first do some transformations.
The first step is to make f monic in a new variable x via Lemma 7. Let fα(x, z) be monic.
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Then we apply Corollary 17 to fα(x, z). That is we compute the weights w, w′ ∈ Fn

bounded by dnpoly(δ) and explicitly compute Ψ(fα) ∈ F[x, y, t] of degree at most d̃ = d2 npoly(δ).
Note that the x-degree of fα has not changed by mapping Ψ. In the blackbox case, we can
interpolate and reconstruct the polynomial in time poly(sd̃)

The next step is to factor 3-variate Ψ(fα). This can be done efficiently Lemma 11.
Finding and listing all the irreducible factors takes time poly(d̃).

Having the factors of Ψ(fα) in hand, we invert transformations Ψ and τα on the factors.
Let g̃ be a factor of Ψ(fα). By Corollary 17, if g indeed corresponds to a δ-degree factor of f ,
then τα(g) corresponds to a δ-degree factor of τα(f). Therefore, the inverse transformations
will yield g. Formally, the factor is g = τ−1

α (Ψ−1(g̃)).
However g̃ might also not correspond to a degree-δ factor of f . In this case, either the

inverse transformation does not go through properly, or the degree we get is larger than δ.
In these cases, we can immediately throw away g̃; see the remark after Corollary 16. But
it could also be that we actually obtain a polynomial g of degree δ, just that it is not a
factor of f . For that reason, we finally do a divisibility check whether g|f . That way we will
compute all factors of f of degree δ.

For the time complexity of the factoring algorithm, we have nd · TPIT(Hom[C]) for trans-
forming f to to monic fα by Lemma 7. Time poly(d npoly(δ)) is used for map Ψ and the
factoring of Ψ(fα). Similar time is taken to invert and get the candidate factors. Finally, we
have at most d2npoly(δ) candidate polynomials g for which we test divisibility of g|f . ◀

▶ Remark. Theorem 18 can be applied in different algebraic models. Furthermore, if a class
is closed under highest degree, one can simply assume PIT for C. In particular, if we work
with algebraic formulas, or algebraic branching programs (ABPs), then the above theorem
along with the divisibility lemma Lemma 9 implies that we need PIT for the same class, to
deterministically find the constant-degree factors.

The following pseudo-code summarizes the algorithm given in the proof of Theorem 18.

Algorithm 1 Computing factors of degree ≤ δ.
Input : f(z), s, and δ, where f is an n-variate polynomial of degree d such that µ(f) ≤ s,

and δ is a constant.
Output : A list of irreducible polynomials of degree ≤ δ, which are factors of f , along with

the factor-multiplicities.
1 Set the output list L = ∅. Set the intermediate candidates list L′ = ∅.
2 Make a monic transformation τα : zi 7→ αix + zi, according to Lemma 7. Let

fα(x, z) := τα(f).
3 Find weights w, w′ bounded by dnpoly(δ) according to Corollary 17 and compute

Ψ(fα) ∈ F[x, y] in dense representation.
4 Factorize the trivariate polynomial Ψ(fα) according to Lemma 11. Let S be the set of all

≤ δ degree factors in x of Ψ(fα) in dense representation.
5 for g̃ ∈ S do

/* Computing candidate factors via divisibility */
6 Compute ĝ = Ψ−1(g̃) (if the inverse exists) of degree ≤ δ by Corollary 16.
7 Compute g = τ−1

α (ĝ).
8 If g | f then add g to L′.
9 for g ∈ L′ do

/* Computing multiplicities via Lemma 12 */
10 Let z ∈ {z1, . . . , zn} be any variable that g depends on, so that ∂z(g) ̸= 0.
11 Find the smallest e ≥ 0 such that g ∤ ∂ef

∂ze .
12 if e > 1 then add (g, e) to the list L.
13 return L
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4 Computing the factors of a constant degree product

Now, we want to output the constant-degree irreducible factors in the promise case.
It is still an open question to test in deterministic polynomial time if a quadratic

polynomial (or any non-linear polynomial whose total degree is upper bounded by a constant)
divides another polynomial f , even when f is a sparse polynomial. In the above theorem f

may not be sparse and we have only blackbox access to it. Thus, the proof for Theorem 2 is
a bit different from Theorem 1.

▶ Theorem 19. Given blackbox access to an n-variate degree-d polynomial f =
∏s

i=1 gei
i ,

where gi are irreducible polynomials with deg(gi) ≤ δ, one can deterministically output all
(gi, ei) in time poly(dnpoly(δ)).

Proof. The first step of the algorithm is to make f(z) monic in a new variable x via Lemma 7.
One can find an α ∈ (F\{0})n in poly(d, nδ) time by using the hitting set for polynomials of
degree ≤ δ; see [7, 5].

Next step is to apply Corollary 16 to fα(x, z). Find the weights w, w′ ∈ Fn, each bounded
by dnpoly(δ). Observe that Ψ(fα) ∈ F[x, y, t], of degree at most d̃ := d2npoly(δ). By the same
lemma, we know that for any irreducible factor g of f , we have that Ψ(g) is an irreducible
factor of Ψ(f)

The next step is to explicitly compute the trivariate polynomial Ψ(fα). Since, the degree
of the polynomial is at most d̃, one can interpolate and reconstruct the polynomial, from its
blackbox access, in time poly(sd̃). Note that s ≤ d.

The next step is to factorize Ψ(fα). This can be done efficiently using Lemma 11. Finding
and listing all the irreducible factors takes time poly(d̃).

The next step is to invert the transformation Ψ−1 on the factors computed in the previous
step. This can be done efficiently in time poly(dnpoly(δ)); see Corollary 16 and its remark.
Let g̃ be a factor of φ(fα). Output g = τ−1

α (Ψ−1(g̃)).

Algorithm 2 Promise factors of degree ≤ δ.

Input : An n-variate, degree d polynomial f(z), and a constant δ, and a promise
that all its irreducible factors have degree ≤ δ.

Output : All the irreducible factors of f , along with the multiplicities.

1 Set the output list L = ∅.
2 Make a monic transformation τα : zi 7→ αix + zi, according to Lemma 7. Let

fα(x, z) := τα(f).
3 Find weights w, w′ bounded by dnpoly(δ) according to Corollary 17 and compute

Ψ(fα) ∈ F[x, y] in dense representation.
4 Factorize the trivariate polynomial Ψ(fα) according to Lemma 11. Let S be the set

of irreducible factors of Ψ(fα) along with its multiplicities as a tupple.
5 for (g̃, e) ∈ S do

/* Computing the irreducible factors via inversion */
6 Compute ĝ = Ψ−1(g̃), by Corollary 16 and its remark.
7 Compute g = τ−1

α (ĝ), and add (g, e) to L.
8 return L
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Now, we discuss the correctness of the output. By assumption, f = ge1
1 · · · ges

s where
gi ∈ D. Therefore, Ψ(τα(f)) = Ψ(τα(g1))e1 · · · Ψ(τα(gs))es . Furthermore, by choice of w, w′,
we know the following facts.

1. The polynomials Ψ(τα(gi)) ∈ F[x, y, t] are irreducible over F, for all i = 1, . . . , s.

2. Ψ(τα(gi)) ̸= Ψ(τα(gj)), for i ̸= j.

3. One can uniquely recover gi from Ψ(τα(gi)), using Corollary 16 and its remark.

This implies that the factoring pattern of f and Ψ(τα(f)) remain the same, and can be
recovered by simply looking at the factorization of Ψ(τα(f)).

Time complexity. To make f monic, we find vector α in time poly(dnδ). Interpolation
and trivariate factorization of a degree-d̃ polynomial takes time poly(d̃) = poly(dnpoly(δ)),
see Lemma 11. Inverting each of them to get the original factor also takes time poly(dnpoly(δ)).

◀

5 Finding sparse factors reduces to sparse irreducibility

Let f be an n-variate irreducible polynomial of degree d. Let α ∈ (F\{0})n, such that

fd(α) ̸= 0, where fd = Homd[f ] is the homogeneous degree − d component of f .

Using Lemma 7 and Lemma 8, one can conclude that f̂(x, z) := f(αx + z) is a monic
irreducible (n + 1)-variate polynomial of degree d.

On the other hand Theorem 10 shows that for a random β, γ ∈ Fn, the bivariate
polynomial

f(αx + βt + γ) = f̂(x, βt + γ) ∈ F[x, t] ,

remains irreducible. When the degree of f is a constant, such an irreducibility preserving
reduction can be efficiently derandomized; see Corollary 16. Formally, we should think of it
as a derandomization for the class of constant degree polynomials. In Corollary 16, one can
think of evaluating y at polynomially many points to find the right β, γ, while the point α

comes from an efficient PIT algorithm for fd. Note that any α ∈ (F\{0})n suffices as long as
fd(α) ̸= 0.

Let α ∈ (F\{0})n. We define a set Sα(s, n, d) as follows.

Sα(s, n, d) := {f ∈ P(n, d) | f is irreducible, sp(f) ≤ s, and Homdeg(f)[f ](α) ̸= 0} . (11)

Motivated by the efficient derandomization of irreducibility preserving bivariate projections
for constant degree polynomials, we assume the following.
▶ Assumption 1 (Sparse irreducible projection). Let α ∈ (F\{0})n, and Sα(s, n, d) ⊆ P(n, d)
as defined in Equation (11). Then, there is a deterministic subexponential time algorithm to
find an explicit set Hα ⊆ F2n of size subexponential, such that for any f ∈ Sα(s, n, d), there
exists (β, γ) ∈ Hα such that f(αx + βt + γ) remains irreducible.
▶ Remark. Assuming the above, one can decide whether an s-sparse degree-d polynomial
f is irreducible or not in subexponential time. To do this, one can find α ∈ (F\{0})n such
that Homd[f ](α) ̸= 0, in time poly(snd), using [24]. Hence, one can find a set Hα such that
f(z) is reducible if and only if f(αx + βt + γ) is reducible, for every (β, γ) ∈ Hα. Whether
a bivariate polynomial is reducible can be checked in time poly(d) (Lemma 11).
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Using Assumption 1, one can design an efficient deterministic algorithm to output sparse
irreducible factors of a sparse polynomial.

▶ Theorem 20 (Efficient sparse factoring). Let f ∈ F[z] be an s-sparse polynomial of degree
d. If Assumption 1 holds, then there is a deterministic subexponential time algorithm that
outputs all its irreducible factors with sparsities ≤ s, along with the multiplicities.

Proof. Assume that g is a s-sparse irreducible factor of f with multiplicity e, i.e., f = ge · R,
where gcd(g, R) = 1. Assume that deg(g) = d1, and deg(R) = d2. We will argue that
Algorithm 3 correctly outputs (g, e). Let α ∈ (F\{0})n, such that Homd[f ](α) ̸= 0. Observe
that Homd[f ] = (Homd1 [g])e · Homd2 [R]. Therefore, it must hold that Homd1 [g](α) ̸= 0,
implying g ∈ Sα(s, n, d).

By Assumption 1, we know that there exists a subexponential time algorithm to find a
set Hα such that g(αx + βt + γ) remains irreducible for some (β, γ) ∈ F2n. We call (β, γ) a
“good” point for g.

For such a good point, the set S in Line 6 of Algorithm 3 must contain g(αx + βt + γ).
Pick any c ∈ Fn. Observe that g̃(x, t1, t2) := ϕc(g) = g(αx + βt1 + (c − γ)t2 + γ) is a
monic polynomial in x. Further, g̃ remains irreducible, since g̃(x, t, 0) = g(αx + βt + γ)
is irreducible by the choice of a good point (β, γ). Hence, S′ in Line 10 must contain the
polynomial g̃.

One can find the corresponding factor in Line 12, and suppose the corresponding index is
j. Note that g̃(0, 0, 1) = g(c).

From the above, one can conclude that the L′
j contains (j, c, g(c)). One can now do the

sparse interpolation using [24], to reconstruct g; see Lemma 13. Since g | f , this is correctly
detected and added to the list L′. This is being discussed in Line 15-16.

Further, by our choice of a good point (β, γ) ∈ Hα, the bivariate g(αx + βt + γ) remains
irreducible, and hence it successfully passes Line 19. Since g is a nontrivial polynomial, one
can find a variable z ∈ {z1, . . . , zn} such that ∂z(g) ̸= 0 in Line 20. Using Lemma 12, one
can conclude that indeed Line 22 adds (g, e) to the list L.

From the above analysis, we know that Algorithm 3 always outputs g with the corres-
ponding multiplicity. On the other hand, Line 15 makes sure that the candidate polynomial
is indeed at most s-sparse (see Lemma 13) and Line 16, by the divisibility testing, makes
sure it detects a wrong sparse factor. What could have happened is L′ contains factors which
are s-sparse reducible polynomials dividing f .

Line 19 again uses Assumption 1 to check if it is indeed irreducible or not. Finally, Line
20-22 make sure that the Algorithm 3 never outputs the correct multiplicity. This finishes
the correctness of the algorithm.

Running time analysis. Since f is s-sparse, one can find an α ∈ Fn, such that Homd[f ](α) ̸=
0, in poly(snd) time [24].

Line 6-10 take poly(d) time, since bivariate/trivariate interpolation and factorization can
be done efficiently Lemma 11.

Line 15 can be done using the sparse interpolation algorithm in poly(snd) time [24]. Line
16 requires whether a given s-sparse polynomial Pj divides another s-sparse polynomial f

or not. Using the techniques from [9] (Lemma 9), this divisibility question can be reduced
to a PIT instance of a constant-depth circuit, for which there is a subexponential time
algorithm [31].

Line 19 is again bivariate factorization Lemma 11 which can be done in poly(d) time.
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Further, ∂ef
∂ze is at most s-sparse. Hence, the divisibility question of whether P | ∂ef

∂ze in
Line 21, can be similarly done in subexponential time. Finally, since |Hα| is subexponentially
large, the overall running time remains subexponential. ◀

Algorithm 3 Computing s-sparse factors.

Input : An n-variate, degree d polynomial s-sparse polynomial f(z).
Output : A list of irreducible s-sparse polynomials which are factors of f , along with

the factor-multiplicities.

1 Set the output list L = ∅. Set the intermediate candidate list L′ = ∅.
2 Use Lemma 13 to find an α ∈ (F\{0})n such that Homd[f ](α) ̸= 0.
3 Use Assumption 1 to find a set Hα.
4 for each (β, γ) ∈ Hα do
5 Let ϕ : zi 7→ αix + βit + γi. Compute f̂ := ϕ(f) ∈ F[x, t], as a dense

representation.
6 Factorize the bivariate polynomial f̂ over F. Let S = {g1(x, t), . . . , gm(x, t)} be

the set of its irreducible factors.
7 Set m many interpolating lists L′

j = ∅, for j ∈ [m].
8 Fix c = (c1, . . . , cn) ∈ Fn. /* These points are the evaluation points

for which s-sparse interpolation succeeds */
9 For new variables t1 and t2, define a new map

ϕc : zi 7→ αix + βit1 + (ci − γi)t2 + γi. Compute f̃c := ϕc(f) ∈ F[x, t1, t2], as a
dense representation.

10 Factorize the trivariate f̃c over F. Let S′ = {h1(x, t1, t2), . . . , hr(x, t1, t2)} be the
set of its irreducible factors.

11 for hi ∈ S do
/* Computing the unique correspondence between bivariate and

trivariate factors, and the evaluations */
12 Find the unique j ∈ [m] such that hi(x, t, 0) = gj(x, t), if exists, otherwise go

to the next factor in S.
13 Evaluate hi(0, 0, 1), and add (j, c, hi(0, 0, 1)) to L′

j .
14 for j ∈ [m] do

/* Computing candidate sparse factors via interpolation and
divisibility */

15 Use sparse interpolation algorithm (Lemma 13) to find an s-sparse polynomial
Pj , if exists, such that Pj(c) = θ where (j, c, θ) ∈ L′

j .
16 Check if Pj | f , or not. If yes, then update L′ = {Pj} ∪ L′.
17 return L′

18 for each P ∈ L′ do
/* Deciding irreducibility and computing multiplicities via

Lemma 12 */
19 Check if P is irreducible, using Assumption 1 and its remark. If it is not

irreducible, STOP, and go to the next polynomial in L′.
20 Otherwise, let z ∈ {z1, . . . , zn} be any variable that P depends on, so that

∂z(P ) ̸= 0.
21 Find the smallest e ≥ 1 such that P ∤ ∂ef

∂ze and add (P, e) to the list L.
22 return L
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▶ Remarks.
1. Assumption 1 is true for constant degree polynomials and can be solved in polynomial

time Corollary 16. Therefore, Algorithm 3 can be used to give an alternative proof
of Theorem 18. This is because for f ∈ C, we need to find α, such that Homd[f ](α) ̸=
0, which is given by the PIT oracle for C. Once the α is found, Hα can be found
for the constant-degree polynomials, that preserves irreducibility; see Corollary 16.
Additionally, the algorithm requires some divisibility testing by the candidate constant-
degree polynomials, which is done using the divisibility testing Div(C/D).

2. Theorem 20 can be generalized to the input and output polynomials being computed by
constant-depth circuits, by analogously changing the Assumption 1 for constant-depth
circuits. In this case, we will only be able to output the factors as blackbox (because
efficient reconstruction for constant-depth circuits is still unknown). Note that whether a
constant-depth circuit divides another constant-depth circuit can be deterministically
decided in subexponential time.

6 Conclusion

We conclude with some open questions.
1. Can we decide whether a given sparse polynomial is irreducible in deterministic subex-

ponential time? The proof may already give a good bivariate projection that preserves
irreducibility. Then Theorem 20 would give us a deterministic subexponential-time
algorithm to find irreducible sparse factors of a sparse polynomial.

2. Can we find bounded individual degree sparse factors of a sparse polynomial (without any
bound on the individual degree) in deterministic quasipolynomial time? Volkovich asked
if multilinear factors of a sparse polynomial can be found in deterministic polynomial
time [39].

3. Can one compute all the factors of a sparse polynomial/constant depth circuit by constant
depth circuits of small size? At least, can one find all the factors that are computable
in constant depth? The recent result in [29] gives a deterministic subexponential-time
algorithm that outputs a list of circuits (of unbounded depth and possibly with division
gates) that includes all such factors.

4. Given a blackbox computing the product of sparse irreducible polynomials fi with bounded
individual degree, find fi’s in deterministic polynomial time. [3] gives a quasipolynomial
time algorithm, when the input is sparse with constant individual degree and the factors
are all sparse (polynomially upper bounded with respect to input polynomial’s sparsity).
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