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Abstract
Speed-robust scheduling is the following two-stage problem of scheduling n jobs on m uniformly
related machines. In the first stage, the algorithm receives the value of m and the processing times of
n jobs; it has to partition the jobs into b groups called bags. In the second stage, the machine speeds
are revealed and the bags are assigned to the machines, i.e., the algorithm produces a schedule where
all the jobs in the same bag are assigned to the same machine. The objective is to minimize the
makespan (the length of the schedule). The algorithm is compared to the optimal schedule and it is
called ρ-robust, if its makespan is always at most ρ times the optimal one.

Our main result is an improved bound for equal-size jobs for b = m. We give an upper bound of
1.6. This improves previous bound of 1.8 and it is almost tight in the light of previous lower bound
of 1.58. Second, for infinitesimally small jobs, we give tight upper and lower bounds for the case
when b ≥ m. This generalizes and simplifies the previous bounds for b = m. Finally, we introduce a
new special case with relatively small jobs for which we give an algorithm whose robustness is close
to that of infinitesimal jobs and thus gives better than 2-robust for a large class of inputs.
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1 Introduction

Speed-robust scheduling is a two-stage problem that was introduced by Eberle et al. [4]. The
eventual goal is to schedule on m uniformly related machines, however their speeds are not
known at the beginning. In the first stage, the algorithm receives the value of m and the
processing times of n jobs; it has to partition the jobs into b groups called bags. In the
second stage, the machine speeds are revealed and the bags are assigned to the machines,
i.e., the algorithm produces a schedule where all the jobs in the same bag are assigned to
the same machine. The objective is to minimize the makespan (the length of the schedule).
The algorithm is compared to the optimal schedule of the jobs on the machines with known
speeds; it is called ρ-robust, if its makespan is always at most ρ times the optimal one.

This problem is motivated by situations like the following one. Suppose that you have n

computational tasks that you want to solve. You have a computational cluster available, but
with unknown parameters. You only know that there will be (at most) m machines available
on the cluster. You do not know anything about the performance of the machines – some
of the machines might be faster than others; you only know that there will be (at most) m
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8:2 Speed-Robust Scheduling Revisited

machines available on the cluster. Furthermore, you can submit at most b different tasks
to the cluster. Hence you will have to partition your n tasks into at most b groups. One
such group will then have to be executed on one machine. The cluster will then schedule the
groups optimally, knowing the speeds of the machines, and minimize the makespan.

Studying uncertainty in scheduling has a long history. In the classical online scheduling [10],
the machine environment is usually fixed and the uncertainty stems from job arrivals.
Considering uncertainty in the machine environment is less frequent. One early example is
the work of Csanád and Noga [7], where additional machines can be bought for a certain
cost. A substantial body of research with changing machine speeds is the area of dynamic
speed scaling, in particular in the context of minimizing the power consumption, see [1, 9];
however, note that here the changing speeds are not a part of the adversarial environment
but used by the algorithm to its advantage. Another direction considers online scheduling
with unavailability periods [3]. One-machine scheduling with adversarially changing machine
speed was considered in [5] in the context of unreliable machines.

Completely reversing the scenario with all jobs known from the beginning but uncertain
machine environment is a recent new model introduced by Stein and Zhong [11] and Eberle
et al. [4], see Section 1.2.

1.1 Formal definitions

Formally, in the first stage, we receive three positive integers n, m, b and n non-negative
real numbers p1, . . . , pn representing the processing times of n jobs. The total processing
time is denoted P =

∑m
j=1 pj . The output of our first-stage algorithm is a mapping

B : {1, . . . , n} → {1, . . . , b}, where B(j) = i represents the fact that the job j was assigned
to the bag i. The sum of the processing times of all the jobs assigned to bag i the size of
bag i and denoted ai =

∑
j:B(j)=i pj . The exact mapping B is not important for the second

stage since the makespan depends only on the bag sizes.
In the second stage, we are given the bag sizes a1, . . . , ab and the previously unknown

machine speeds s1, . . . , sm ≥ 0, not all equal to 0. We partition the bag indices {1, . . . , b}
into m sets M1, . . . , Mm, representing the assignment to the m machines. Machine i then
has a completion time Ci = (

∑
j∈Mi

aj)/si; for si = 0 we require Mi = ∅ and set Ci = 0, i.e.,
machine of speed 0 does not accept any jobs. Finally, Cmax = maxm

i=1 Ci is the makespan,
i.e., the length of the schedule.

Let C∗
max denote the makespan of the adversary, who does not have to create bags and

can assign jobs directly to machines. Alternatively and equivalently, the adversary also
creates bags, but with the knowledge of the speeds already in the first stage.

We call a first stage algorithm ρ-robust if, for all possible inputs and for all possible
choices of machine speeds, there exists a second-stage assignment of bags to machines such
that Cmax ≤ ρ · C∗

max. Intuitively, an algorithm is ρ-robust if it performs at most ρ times
worse than the adversary.

The previous definition implicitly assumes that the second stage is solved optimally. This
is reasonable, as the scheduling on uniformly related machines allows PTAS, see [6, 12], so
the chosen (presumably optimal) second-stage solution can be replaced by an arbitrarily good
approximation. Also, our proofs show that the second-stage algorithm can be implemented
by efficient greedy algorithms without any loss of performance, once the optimal makespan
or its approximation is known.

We call the special cases of the problem sand, bricks, rocks and pebbles. Sand, bricks,
and rocks were introduced by Eberle et al. [4]. These words represent the types of jobs.
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Rocks can be any shape or size and represent jobs of arbitrary processing time. This is
the most general setting.
Bricks are all the same and represent jobs with equal processing times.
Sand grains are very small and represent infinitesimally small processing times.
Pebbles represent jobs that are relatively small compared to the average load of all
machines. We call an instance of speed-robust scheduling q-pebbles if pj ≤ q · P

m holds
for all jobs j.

1.2 Previous results
The two-stage scheduling problem with uncertainty in the machine environment was intro-
duced by Stein and Zhong [11]. They focused on the case of m identical machines where in
the second stage some machine might fail and then do not process any tasks. This amounts
to a special case of speed-robust scheduling where si ∈ {0, 1} for 1 ≤ i ≤ m. They gave
lower bounds of 4/3 for equal-size jobs (bricks) and (

√
2 + 1)/2 ≈ 1.207 for infinitesimal jobs

(sand). Their algorithms were later improved by Eberle et al. [4] to algorithms matching the
lower bounds in both cases.

Our immediate predecessor, Eberle et al. [4], introduced the speed-robust scheduling for
general speeds, i.e., on uniformly related machines. They studied mainly the case b = m, i.e.,
the case when the number of bags is equal to the number of machines. For this case they
gave tight bounds for sand for every m, for large m the bound approaches e/(e− 1) ≈ 1.58.
For equal-size jobs (bricks), they have shown an upper bound of 1.8.

For the most general case of rocks, the strongest known result is the algorithm with the
robustness factor at most 1 + (m − 1)/b, which equals 2 − 1/m for b = m, given also by
Eberle et al. [4]. It remains an interesting open problem to improve this bound, in particular
to give an upper bound 2− ε for rocks and b = m.

1.3 Our results
We now describe our results and compare them to the previous ones in each of the scenarios.

Sand. For sand, we give matching lower and upper bounds for any b and m. Namely, for
b ≥ m we give an optimal algorithm which is ρ(m, b)-robust for

ρ(m, b) = mb

mb − (m− 1)b
= 1

1−
(
1− 1

m

)b
. (1.1)

This matches the results of Eberle et al. [4] who gave an algorithm with the robustness factor
equal to ρ(m, b) ≤ e/(e − 1) ≈ 1.58 for b = m, generalizes them to arbitrary b ≥ m and
significantly simplifies the proof.

An interesting case is when the number of bags is a constant multiple of m. For a fixed
α ≥ 1 and b = αm, our bound approaches 1/(1−e−α) from below for a large m. For example,
doubling the number of bags to b = 2m decreases the robustness factor from 1.58 to 1.16.

If b < m, the second-stage algorithm uses only the b fastest machines, so we can decrease
m to m′ = b and tight results with robustness factor ρ(m′, b) = ρ(b, b) follow already from [4].

Pebbles. For the new case of q-pebbles and b ≥ m, we give a (ρ(m, b) + q)-robust algorithm.
For p < 0.42, this gives an algorithm with the robustness factor below 2, i.e., below the
currently strongest known upper bound for rocks.

APPROX/RANDOM 2024
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Bricks. As our main result, we give a 1.6-robust algorithm for bricks for b = m. This
improves the bound of 1.8 from Eberle et al. [4].

Furthermore, as a direct application of our results for pebbles we give a (ρ(m, b) + m/n)-
robust algorithm for any n and b ≥ m. This improves and generalizes the ((1+m/n)ρ(m, m))-
robust algorithm for b = m given by Eberle et al. [4]. Namely, we improve the multiplicative
factor of (1 + m/n) to only an additive term of m/n.

Structure of the paper. We give some general preliminaries in Section 2. We give the
results for sand and pebbles in Sections 3 and 4. We focus on our main result for bricks in
Section 5. Some small cases need computer verification or tabulation of parameters, results
of these are given in the full version of the paper on arXiv [8].

2 Preliminaries

We assume that the processing times, the machine speeds, and the bag sizes are always listed
in a non-increasing order.

In the rest of this paper, we will make two assumptions below that restrict the speeds
to particular special cases. This is without loss of generality, leveraging the fact that the
algorithm must commit the bag sizes in the first phase without knowing the speeds.

The optimal makespan is equal to 1. This implies that the robustness factor is equal to
the makespan of the algorithm.
Scaling all the speeds does not change the ratio of the makespans of our algorithm and
the adversary. Thus for every instance of the problem, there exists another instance with
C∗

max = 1 that differs only in the speeds and the ratio of makespans of our algorithm and
the adversary remains the same. It follows that any first-stage algorithm that is ρ-robust
for instances with C∗

max = 1 is ρ-robust for general instances, too.
The sum of the processing times of all jobs equals to the sum of the speeds of all the
machines, i.e., P =

∑m
i=1 pi =

∑m
i=1 si. In other words, the adversary is fully utilizing all

the machines, and the completion time of all the machines with non-zero speed is equal
to 1, using the previous assumption.
If there is some machine i with si > 0 and completion time C∗

i < 1 in the optimal
schedule, we change its speed to s′

i = C∗
i si. This does not change the optimal makespan

of the adversary and the makespan of the algorithm can only increase. Once again, it
follows that any first-stage algorithm that is ρ-robust for these special instances is also
ρ-robust for general instances.

For the second stage, typically, we use a simple greedy algorithm for the second stage
instead of analyzing the optimal schedule. Technically, for an algorithm we need to know the
optimal makespan (to modify the speeds appropriately, according to the assumptions above).
However note that first we can approximate the makespan and second the algorithm is only
used as a tool in the analysis.

For sand and pebbles we use Algorithm GreedyAssignment (see below), a variant
of the well-known LPT algorithm. It is parameterized by ρ, the robustness factor to be
achieved. At the beginning, every machine is assigned a capacity equal to its speed multiplied
by ρ. The algorithm then goes through all the bags from large to small, assigns them on the
machine with the largest capacity remaining, and decreases the capacity appropriately. If
the capacities remain non-negative at the end, the makespan of the created assignment is at
most ρ since machine i has been assigned jobs of total processing times at most ρsi.

We use this to formulate the following sufficient condition for ρ-robustness of an algorithm
which is instrumental in proving the upper bounds for sand and pebbles.
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Algorithm GreedyAssignment.

Input: bag sizes a1 ≥ · · · ≥ ab; machine speeds s1 ≥ · · · ≥ sm; desired robustness factor ρ

for i← 1 to m do
ci ← ρsi ▷ Initialize the capacities of all machines
Mi = ∅ ▷ Initialize the assignment

for k ← 1 to b do
i← index of a machine with the largest ci

Mi ←Mi ∪ {k} ▷ Assign bag k to machine i

ci ← ci − ak ▷ Decrease the remaining capacity of the selected machine
return M1, . . . , Mm

▶ Theorem 2.1. If a first-stage algorithm always produces bag sizes satisfying inequalities

ak ≤
ρP −

∑k−1
j=1 aj

m
, for all k = 1, . . . , b, then the algorithm is ρ-robust.

Proof. Recall that we assume
∑m

i=1 si = P . We claim that the second-stage algorithm
GreedyAssignment produces an assignment with makespan at most ρ. We only need to
show that there is a machine with capacity at least ak when assigning the kth bag. The
initial total capacity was ρP and was already decreased by

∑k−1
j=1 aj at the time of assigning

bag ak. It follows that the remaining capacity is equal to ρP −
∑k−1

j=1 aj and thus there exists
a machine with capacity at least (ρP −

∑k−1
j=1 aj)/m ≥ ak. ◀

3 Sand

Intuitively, the case of sand corresponds to the limit case where n is large and all the jobs
are small and have equal sizes. One can view this as an infinite number of infinitesimal jobs.

More formally, we are given just m, b, and P as an input of the first stage. The result of
the first stage are b non-negative reals a1, . . . , ab whose sum equals P . The formulation of
the second stage remains the same.

The model of infinitesimally small jobs resembles preemptive scheduling. In the optimal
algorithm for preemptive scheduling [2], one needs to maintain the loads of machines in a
geometric sequence with common ratio m/(m− 1) for m machines, roughly speaking. The
proofs for sand show that here the same geometric sequence is also crucial, in particular
it is used for the bag sizes in the algorithm. We now describe the sequence and state its
properties useful both for the upper and lower bounds.

We define U = mb, L = mb − (m− 1)b and tj = mb−j(m− 1)j−1 for j ∈ {1, . . . , b}.
Observe that equation (1.1) defines ρ as ρ(m, b) = U/L.

▶ Lemma 3.1. For all k = 1, . . . , b, it holds that
∑k

j=1 tj = U − (m− 1)tk. In particular,∑b
j=1 tj = U − (m− 1)b = L.

Proof. We proceed by induction on k. The lemma holds for k = 1 since U = mt1 and thus
t1 = U − (m− 1)t1. Now suppose it holds for k. We can derive

k+1∑
j=1

tj = U − (m− 1)tk + tk+1 = U −mb−k(m− 1)k + mb−k−1(m− 1)k = U − (m− 1)tk+1

which completes the induction step. ◀

APPROX/RANDOM 2024
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a2a1 a3 a4
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4

2
1

U = 16

L = 15

Figure 3.1 An example of bag sizes chosen for m = 2 and b = 4.

To get some intuition behind the algorithm for sand, it might be useful to consider the
case m = 2, see Figure 3.1. Suppose that P = L = 2b−1, choose the bag sizes ak = tk = 2b−k.
For m = 2 the sizes are powers of two, so it is easy to see that we can achieve the robustness
ratio of 1 + 1/(2b − 1) = 2b/(2b − 1) as follows: The adversary chooses any speeds s1, s2 such
that s1 + s2 = P = 2b− 1. The capacities of the machines (as in GreedyAssignment) then
satisfy c1 + c2 = 2b and thus ⌊c1⌋+ ⌊c2⌋ ≥ 2b − 1. We can express ⌊c1⌋ in binary, assign the
corresponding bags on the first machine and the remaining bags to the second machine.

3.1 Upper bound
We use a different approach than Eberle et al. [4] for the proof of the upper bound. We
choose the same bag sizes (for b = m) but we simplify the proof by use of Theorem 2.1.
Algorithm Sand describes the bag sizes. Note that the sum of bag sizes produced by Sand
is P , using Lemma 3.1.

Algorithm Sand.

Input: number of bags b; number of machines m; total amount of sand P

L← mb − (m− 1)b

for j ← 1 to b do aj ← tj
P
L

return a1, a2, . . . , ab

▶ Theorem 3.2. Algorithm Sand is ρ(m, b)-robust for sand, for ρ defined by (1.1).

Proof. We assume P = L since it does not change the ratio of our makespan and the
makespan of the adversary. Under this assumption, Sand produces bag sizes ak = tk.

It is sufficient to show that the bag sizes produced by Sand satisfy the condition of
Theorem 2.1. Let us prove the kth inequality in the assumption of the theorem. We have

ρ(m, b)P −
k−1∑
j=1

aj = U

L
L−

k−1∑
j=1

tj = U −
k∑

j=1
tj + tk .

According to Lemma 3.1, we can simplify the right-hand side as follows.

U −
k∑

j=1
tj + tk = U − (U − (m− 1)tk) + tk = mtk = mak .

The kth inequality in the assumption of Theorem 2.1 follows, in fact it holds with equality.
Theorem 2.1 now implies that there exists an assignment with makespan at most ρ(m, b).

◀
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3.2 Lower bound
The following proof is a slightly modified and generalized version of the proof by Eberle et
al. [4]. The main difference is that we do not require the number of bags and machines to be
the same.

▶ Theorem 3.3. No deterministic algorithm for sand may have a robustness factor smaller
than ρ(m, b), for ρ defined by (1.1).

Proof. Let us without loss of generality assume P = U (be aware that we assumed P = L

in the proof of the upper bound). Let us denote the chosen bag sizes by a1 ≥ · · · ≥ ab. We
will restrict the adversary to b different speed configurations indexed by k, where

Sk = {s1 = U − (m− 1)tk, s2 = tk, s3 = tk, . . . , sm = tk} .

See Figure 3.2 for an example. Note that the sum of machine speeds is equal to U in every
configuration and hence the makespan of the adversary is indeed 1 as we always assume. In
every speed configuration, there are m− 1 slow machines and one fast machine, since

s1 = U − (m− 1)tk =
k∑

j=1
tj ≥ tk .

s1 s2 s1 s2 s1 s2 s1 s2

15

1

14

12

2

4

8 8

Figure 3.2 An example of speed configurations considered by the adversary for m = 2 and b = 4.

Let kmax be the largest index such that akmax ≥ U
L tkmax . This index must exist since

b∑
j=1

aj = U = U

L
L = U

L

b∑
j=1

tj .

Now let the adversary choose the speed configuration Skmax . We distinguish two cases
depending on the bag assignment in the second stage.

Case 1. At least one of the bags a1, . . . , akmax is assigned to a slow machine. The makespan
is at least the completion time of this machine which is at least

aj

tkmax

≥ akmax

tkmax

≥ U

L
.

APPROX/RANDOM 2024
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Case 2. All of the bags a1, . . . , akmax are assigned to the fast machine. Total size of the
bags assigned to the fast machine is at least

kmax∑
j=1

aj = U −
b∑

j=kmax+1
aj .

By definition of kmax it holds that aj < U
L tj for j > kmax and we can bound

U −
b∑

j=kmax+1
aj ≥ U − U

L

b∑
j=kmax+1

tj .

Since
∑b

j=1 tj = L, we can rearrange the right-hand side as follows

U − U

L

b∑
j=kmax+1

tj = U − U

L

L−
kmax∑
j=1

tj

 = U

L

kmax∑
j=1

tj .

By Lemma 3.1 it holds that

U

L

kmax∑
j=1

tj = U

L
(U − (m− 1)tkmax) = U

L
s1

due to the choice of s1 in the configuration Skmax . Thus the makespan would be at least
U/L = ρ(m, b).

The makespan was at least U/L in both cases, hence the robustness factor is at least
U/L = ρ(m, b) and the theorem follows. ◀

4 Pebbles

Recall that an instance of our problem is called q-pebbles if the processing times satisfy

pj ≤ q · P

m
= q ·

∑n
ℓ=1 pℓ

m
.

This definition might seem a bit unnatural at the first glance, but there is a very intuitive
formulation. The expression P

m represents the average load of a machine. The definition of
pebbles says that the processing times are relatively small compared to the average load of
all machines.

Without loss of generality we assume in this section that the sum of processing times is
P = m. This transforms the condition for q-pebbles from the definition into

pj ≤ q ,

which is easy to work with.
We use similar ideas as in the optimal algorithm for sand. Recall the condition of

Theorem 2.1

ak ≤
ρP −

∑k−1
j=1 aj

m
.

As we have already noticed in Section 3.1, the optimal bag sizes for sand not only satisfy the
above inequality, they actually have equality there. The bag sizes for sand are given by the
recurrence

ak =
ρ(m, b)P −

∑k−1
j=1 aj

m
.



J. Minařík and J. Sgall 8:9

When we in addition assume P = m, as in the case of pebbles, we get

ak = ρ(m, b)− 1
m

k−1∑
j=1

aj . (4.1)

Let a1, . . . , ab denote values given by the recurrence (4.1) for the rest of this section. Re-
member that the sum of a1, . . . , ab equals P . Let us denote the bag sizes we will be choosing
for pebbles d1, . . . , db. We again want to use Theorem 2.1. In other words, for the desired
robustness factor ρ, we want the bag sizes to satisfy

dk ≤ ρ− 1
m

k−1∑
j=1

dj . (4.2)

Consider the following algorithm. Place as many pebbles as you can into the first bag
while it satisfies the inequality (4.2). Then do the same for the second bag and so on until
the last bag (or until we run out of jobs). See Pebbles for pseudocode.

Algorithm Pebbles.

Input: processing times p1 ≥ · · · ≥ pm; number of machines m; number of bags b; desired
robustness factor ρ

B ← empty mapping
for k ← 1 to b do dk ← 0 ▷ dk represents the size of the kth bag
k ← 1 ▷ k represents index of currently considered bag
for j ← 1 to n do

while k ≤ b and dk + pj > ρ− 1
m

∑k−1
ℓ=1 dℓ do k ← k + 1

if k > b then break
B[j]← k

dk ← dk + pj

return B

▶ Theorem 4.1. There exists a (ρ(m, b) + q)-robust algorithm for q-pebbles, for ρ defined by
(1.1).

Proof. We show that Algorithm Pebbles puts every job in some bag for ρ = ρ(m, b) + q.
Suppose for a contradiction that the algorithm does not use all the jobs. Then the bag

sizes dk at the end of the algorithm must satisfy

dk + q > ρ− 1
m

k−1∑
j=1

dj .

Indeed, if for some k this inequality is not satisfied, adding one more job of size at most p to
bag k would not violate the inequality (4.2) and the algorithm would have done so.

Plugging in the expression for ρ gives us

dk > ρ(m, b)− 1
m

k−1∑
j=1

dj . (4.3)

We are going to show
k∑

j=1
dj ≥

k∑
j=1

aj , (4.4)

APPROX/RANDOM 2024
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for all k ∈ {0, . . . , b}. We prove this claim by induction. The case k = 0 is trivial since the
summations are empty and both sides are equal to 0. Let us now prove the induction step
for k using the equation (4.1) and the inequality (4.3).

dk − ak ≥

ρ(m, b)− 1
m

k−1∑
j=1

dj

−
ρ(m, b)− 1

m

k−1∑
j=1

aj

 = − 1
m

k−1∑
j=1

dj −
k−1∑
j=1

aj


We can now easily finish the induction step. We simplify

k∑
j=1

dj −
k∑

j=1
aj =

k−1∑
j=1

dj −
k−1∑
j=1

aj

 + (dk − ak)

≥

k−1∑
j=1

dj −
k−1∑
j=1

aj

− 1
m

k−1∑
j=1

dj −
k−1∑
j=1

aj

 = m− 1
m

k−1∑
j=1

dj −
k−1∑
j=1

aj

 ,

which is non-negative by the induction hypothesis for k − 1 and thus the claim (4.4) holds.
Using the claim (4.4) for k = b gives us

b∑
j=1

dj ≥
b∑

j=1
aj = P ,

which is a contradiction with the assumption that we did not use all jobs. ◀

It is interesting to take a look at the case b = m. Theorem 4.1 implies that there exists
an algorithm with robustness factor at most

e

e− 1 + q ≈ 1.58 + q .

The best know result for rocks gives robustness factor 2− 1/m. This gets arbitrarily close to
2 for large m. Hence we have obtained a stronger result for

q < 2− e

e− 1 ≈ 0.42 .

5 Bricks

In this section, we study the case of jobs with equal processing times. An important parameter
is the ratio of the number of jobs and the number of machines, which we denote λ = n/m.
We can scale the instance so that pj = 1 for all j, which we assume from now on. Note that
now P = n and the average load is P/m = n/m = λ.

Thus the instance satisfies the definition of p-pebbles for p = 1/λ. Theorem 4.1 immedi-
ately implies our first improved bound for bricks:

▶ Theorem 5.1. There exists an algorithm with robustness factor at most ρ(b, m) + m/n

solving the problem for n bricks, m machines and b bags. ◀

In the rest of this section we focus on our main result, the 1.6-robust algorithm for bricks
in case b = m. This will have the following ingredients:

For λ ≥ 60 we have e/(e − 1) + 1/60 < 1.6, so by Theorem 5.1 we can use Algorithm
Pebbles.
For λ < 60 we design a new algorithm Bricks. We split the analysis into two cases.
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For m ≥ 144, we modify its solution into a certain fractional solution, which is easier
to analyze, and bound the difference between the two solutions.
For m < 144, we have a finite number of instances, which we verify using a computer.

We stress that the analysis of instances for m < 144 shows that Algorithm Bricks works
here without any changes, too, i.e., it does not lead to an algorithm with exploding
number of cases tailored to specific inputs.

5.1 First stage algorithm Bricks
Our assumptions on the optimal solution explained at the beginning of Section 2 imply that
we can also restrict ourselves to instances with

∑m
i=1 si = n and furthermore the values of

speeds si are integral, as in the optimal solution the machine loads are necessarily integral.
(Recall that this is due to the fact that we can modify the speeds independently of the
first-stage algorithm.)

The key ingredient of the improved algorithm is to observe that the integrality of speeds
allows us to use the pigeonhole principle to create larger bags. Furthermore, with appropriate
accounting we can use the pigeonhole principle iteratively.

Let us demonstrate this on an example. Let n = 13, m = 10 and ρ = 1.6. The total
speed of 10 machines is 13, so one machine has speed at least 2. This means that one of the
machines will have capacity 2ρ = 3.2 and we can create and assign a bag of size ⌊2ρ⌋ = 3.
Without integrality of the speeds, only a machine with speed 1.3 would be guaranteed, so
the capacity would be just above 2.

To continue iteratively, we cannot reason about the capacity as in Algorithm GreedyAs-
signment. Instead, for each bag we reserve some integral amount of speed on one of the
machines. For this accounting, we represent the remaining unreserved total speed by coins.

In the example above, we pay 2 coins for a bag of size 3. This seems like an overpayment
compared to Algorithm GreedyAssignment, as the 2 coins correspond to capacity 3.2,
so we waste a capacity of 0.2. However, after this step, we are left with 11 coins among
the 10 machines, and using the integrality and the pigeonhole principle once more, we are
guaranteed to have one machine with 2 coins (these coins may be on a different machine or
they may be the ones remaining on the same machine). Thus we can create another bag of
size 3. Now there are only 9 coins remaining and we can only create a bag of size 1 at cost 1.
See Figure 5.1 for an illustration. Overall, the effect of integrality is more significant than
the overpayment due to rounding, and thus we are able to obtain an improved algorithm.

m 2m

Figure 5.1 Graphical representation of the first three chosen bags for n = 13, m = 10. The dots
represent coins and the boxes represent chosen bags. The number of coins inside a box represent the
cost of the bag. Vertical lines emphasize the multiples of m, which determine the bag costs.

Formally, we start Algorithm Bricks with c = n coins. In each round we pay z = ⌈c/m⌉,
create a bag of size ⌊z · ρ⌋ and continue with remaining coins on m machines. The cost of a
bag is the number of coins we pay for it, i.e., z in the algorithm.

If Algorithm Bricks produces bags of total size at least n, we say it is successful. If the
total sum of bag sizes exceeds n, we decrease the sizes of some bags to make the sum equal
to n. E.g., we can remove some of the last small bags and then decrease size of the last
non-empty bag as needed.
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Algorithm Bricks.

Input: number of bricks n; number of machines m; number of bags b; desired robustness
factor ρ

c← n ▷ The initial number of coins is n
for j ← 1 to b do

z ← ⌈c/m⌉ ▷ max guaranteed coins on a machine
aj ← ⌊z · ρ⌋ ▷ max integer such that cost(aj) = z

c← c− z

return a1, a2, . . . , ab

In Section 5.3 we show that this algorithm is sound, namely, we give a modification of the
second stage algorithm algorithm GreedyAssignment for which we show that a machine
with unused speed z always exists and thus we can assign all bags.

For a general instance, there is always a machine of speed at least ⌈n/m⌉ = ⌈λ⌉, and thus
the cost of the first bag is chosen as ⌈λ⌉. The cost will then decrease by 1 every time the
number of coins decreases below a multiple of m. Figure 5.2 illustrates this.

(⌈λ⌉ − 1)m ⌈λ⌉m

⌈λ⌉⌈λ⌉ − 1

Figure 5.2 Graphical representation of the first chosen bag of size ⌈λ⌉.

Note that the costs of the bags chosen by Bricks do not depend on ρ. The sizes of the
bags, however, do depend on ρ. See Figure 5.3 below for an example execution of Bricks
for n = 45 and m = 9. This execution shows that Bricks fails for ρ < 1.6 but succeeds for
ρ = 1.6.

5.2 Fractional solutions
In general, the cost of the first bag chosen will be ⌈λ⌉. The cost will then decrease by 1
every time the number of coins decreases below a multiple of m. Roughly speaking, we use
approximately m coins for bags of each size.

We need to show that the created b bags have total size at least n. If we would use
exactly m/z bags for each cost z, the total size of bags is easy to compute. However, the
integral number of bags of each cost causes rounding issues when the bag cost decreases and
these complicate the calculations.

To structure our analysis, we first modify the solution obtained by Bricks into a solution
that uses possibly non-integral number of bags of each size. In such a solution, we can
use fractions of bags (such as 4

5 of a bag of size 8 as in the Figure 5.4). We arrange the
modification so that the total size of bags of cost z is exactly m, except for the smallest
and largest bag costs. In the main part of our proof, we bound the rounding error, i.e., the
difference between the sizes of the integral and fractional solution. To complete the proof, we
calculate the total size of bags in the modified fractional solution, which is easy, and show
that it is well above n.

For the fractional solutions, it is better to use an alternative representation of the bags
by a function F that for each z gives the number F (z) of bags of cost z. The size of F is
then defined as the total size of bags. Recall that a bag of cost z has size ⌊z · ρ⌋. Formally:



J. Minařík and J. Sgall 8:13

remaining coins c aj for ρ = 1.6 aj for ρ < 1.6
45 8 < 8
40 8 < 8
35 6 ≤ 6
31 6 ≤ 6
27 4 ≤ 4
24 4 ≤ 4
21 4 ≤ 4
18 3 ≤ 3
16 3 ≤ 3

46 ≤ 44

886644433

m 2m 3m 4m

Figure 5.3 Tabular and graphical representation of the execution of Bricks for n = 45, m = 9
and ρ = 1.6. The numbers above bags represent their sizes. The sum of bag sizes is actually
46 > n = 45, to solve this, we can for example replace one bag of size 3 with a bag of size 2.

8

4/5× 8

64443

19/20× 3

m 2m 3m 4m

6

1/4× 6

Figure 5.4 Fractional solution for n = 45, m = 9 and ρ = 1.6 produced by BricksFract. Notice
that we always use only one bag size (cost) between consecutive multiples of m. Compare this to
Figure 5.3 where bag cost 5 “overflows” the line at 4m coins.

▶ Definition 5.2. A fractional solution is a mapping F : N→ R+
0 satisfying

∑∞
z=1 F (z) = b.

The size of fractional solution F for robustness factor ρ is defined as

size(F, ρ) =
∞∑

z=1
F (z) · ⌊z · ρ⌋ .

We will sometimes use only size(F ) if ρ is clear from the context.

We start by reformulating Bricks so that it produces the solution directly in the
alternative representation, see Algorithm BricksAlt below. It is easy to see that Bricks
and BricksAlt are equivalent.

▶ Observation 5.3. Bricks and BricksAlt use each bag cost the same number of times.

Proof. One step of BricksAlt corresponds to several steps of Bricks. Bricks chooses
the bags one by one, and it may choose the same bag cost in several consecutive iterations.
BricksAlt in each step calculates how many bags of given cost would Bricks use. The key
observation is that the expression ⌈(c−m(z − 1))/z⌉ calculates how many bags of cost z are
needed to have at most m(z − 1) coins remaining. In other words, it calculates how many
bags of cost z Bricks uses before it starts using bags of cost z − 1 (or runs out of bags).
Hence both Bricks and BricksAlt use the same number of bags of cost z for each z. ◀

Algorithm BricksFract (see below) is obtained from BricksAlt by removing the
rounding in the calculation of the number of bags x.
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Algorithm BricksAlt.

Input: number of bricks n; number of machines m; number of bags b

Output: Fractional solution I

r ← b ▷ r is the remaining number of bags (integral)
c← n ▷ c is the remaining number of coins (integral)
I[z]← 0 for z ∈ N
while r > 0 and c > 0 do

z ← ⌈ c
m⌉ ▷ z is the bag cost

x← min
(

r, ⌈ c−m(z−1)
z ⌉

)
▷ x is the (integral) number of bags of cost z

r ← r − x

c← c− x · z
I[z]← x

return I

Algorithm BricksFract.

Input: number of bricks n; number of machines m; number of bags b

Output: Fractional solution F

r ← b ▷ r is the remaining number of bags (fractional)
c← n ▷ c is the remaining number of coins (fractional)
F [z]← 0 for z ∈ N
while r > 0 and c > 0 do

z ← ⌈ c
m⌉

x← min
(

r, c−m(z−1)
z

)
▷ x is the fractional amount of bags of cost z

r ← r − x

c← c− x · z
F [z]← x

return F

The following observation says that the algorithm follows our initial intuition, namely
that for bags of each cost we use exactly m coins, except for the first and last bag cost used.

▶ Definition 5.4. Let F be a fractional solution, then let zmin and zmax denote the smallest
and largest integers such that F (zmin) > 0 and F (zmax) > 0.

▶ Observation 5.5. Let F be a result BricksFract with input n and m. Then F (z) = m/z

for every z such that zmin < z < zmax.

Proof. Observe that in every step of the algorithm, except the last one, it holds that
x = (c−m(z − 1))/z and thus c− x · z = m(z − 1). It follows that in all the steps except for
the first and last ones x = (mz −m(z − 1))/z = m/z. ◀

Next we observe that the result of BricksFract scales, i.e., essentially it depends only
on λ. Note also that BricksFract is well defined even for non-integral m and n.

▶ Observation 5.6. Let α ∈ R+. Suppose BricksFract produces solution F with n and m

as an input and solution F̄ with inputs αn and αm. Then F̄ (z) = αF (z) for all z. It follows
that size(F̄ , ρ) = α · size(F, ρ).
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Proof. We go through the execution of BricksFract step by step. Suppose that we multiply
both m and n by α. Then in every iteration of the loop r is multiplied by α, c is multiplied
by α, z stays the same, and x is multiplied by α. ◀

Now we are ready to bound the difference between the solutions produced by Bricks-
Fract and BricksAlt, i.e., the rounding error.

▶ Lemma 5.7. Let F be the fractional solution produced by BricksFract and I the solution
produced by BricksAlt on the same input. Then

for λ ≤ 5 it holds that size(I, 1.6) ≥ size(F, 1.6) and
for λ ≤ 60 it holds that size(I, 1.6) ≥ size(F, 1.6)− 12.

Proof. We give an algorithm which transforms F into a solution F ′ that is almost integral
and very close to I. Set z̄ to be zmin of the solution F and note that zmax = ⌈λ⌉.

We go through the bag costs, denoted by z, from ⌈λ⌉ down to z̄ + 1. For each z, if F uses
non-integral amount of bags of cost z, round it up. This makes the number of bags of cost z

equal to their number in the solution I. Then decrease the number of bags of cost z − 1 so
that the total cost of all bags remains the same. Finally, increase the number of bags of cost
1 so that the total number of bags stays equal to b. See Figure 5.5 for an illustration.

864443

19/20× 3

m 2m 3m 4m

6 8

1/20× 1

8

4/5× 8

64443

19/20× 3

m 2m 3m 4m

6

1/4× 6

886644433

m 2m 3m 4m

F

F ′

I

Figure 5.5 Graphical representation of F , F ′ and I. In the first step of the transformation from
F to F ′, 9

5 is rounded up to 2 and the number of bags of cost 5 (and size 8) increases by 1
5 . In order

to keep the total cost the same, number of bags of cost 4 (and size 6) is decreased by 1
4 . As a result,

total number of bags decreased by 1
4 − 1

5 = 1
20 , hence we add 1

20 of a bag of cost 1 (and size 1). This
is actually the only step in which something happens since number of used bags of cost 4 and 3 is
already integral. We do not process the bags of cost 2, as z̄ = 2. Solution F ′ is almost identical to
the solution I, but has 1

20 of bag of cost 1 instead of 1
20 of bag of cost 2.

For z = z̄ + 1, the previous procedure could lead to a negative value of F ′(z̄). In this
special case we proceed slightly differently and instead of rounding G(z) up we only increase
it so that F ′(z̄) = 0.

We now describe one step of the process formally and analyze it. Let G denote the current
fractional solution and let H denote the result of one transformation step. Let z be the
current cost of bags.

We set H(z) = ⌈G(z)⌉, note that H(z)−G(z) < 1. We want the sum of costs of bags of
costs z − 1 and z to remain the same, hence we want

H(z) · z + H(z − 1) · (z − 1) = G(z) · z + G(z − 1) · (z − 1) (5.1)
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to hold. Rearranging (5.1) to an equivalent equation leads to (5.2), so we set

H(z − 1) = G(z − 1) + (G(z)−H(z)) · z

z − 1 . (5.2)

We claim that H(z − 1) > 0 for z − 1 > z̄. Indeed, as m > 144 and z ≤ ⌈λ⌉ ≤ 60 in the
considered case, we have G(z−1) = F (z−1) = m/(z−1) > 2 (using also z̄ = zmin < z−1 <

zmax). As H(z)−G(z) < 1, we get H(z − 1) > G(z − 1)− 1 > 0.
Now we describe the modification in the special case when H(z − 1) would become

negative. We have shown above that this can happen only for z = z̄ + 1, i.e., in the last step.
Then we set H(z − 1) = 0 and set

H(z) = G(z) + (G(z − 1)−H(z − 1))z − 1
z

.

This equation is equivalent to (5.1), which is in turn equivalent to (5.2), which thus also
holds. Furthermore, the fact that the previous procedure would lead to negative H(z − 1)
implies that now we have G(z) ≤ H(z) ≤ ⌈G(z)⌉ and thus H(z)−G(z) < 1 holds again.

In both cases, the total number of bags has decreased by

(G(z)−H(z)) + (G(z − 1)−H(z − 1)) = 1
z − 1(H(z)−G(z)) .

Thus we set

H(1) = G(1) + 1
z − 1(H(z)−G(z)) .

Note that in the transformation step, both the total number of bags and their total cost
remain constant.

Recall that the size of a bag of cost z is ⌊zρ⌋. It follows that

size(H)− size(G)
= (H(z)−G(z)) · ⌊zρ⌋+ (H(z − 1)−G(z − 1)) · ⌊(z − 1)ρ⌋+ (H(1)−G(1)) · ⌊ρ⌋

= (H(z)−G(z)) ·
(
⌊zρ⌋ − z

z − 1⌊(z − 1)ρ⌋+ 1
z − 1⌊ρ⌋

)
Note that the second factor in the expression above does not depend on the solution. We
call it the transformation factor and for z we denote it by

f(z) =
(
⌊zρ⌋ − z

z − 1⌊(z − 1)ρ⌋+ 1
z − 1⌊ρ⌋

)
.

If f(z) ≥ 0, the size of the solution could have only increased, as H(z) ≥ G(z), i.e., we
have size(H) ≥ size(G). If f(z) < 0, the size of the solution might have decreased – those
are the important (“bad”) cases we need to bound. We have H(z) − G(z) < 1, hence
size(H) ≥ size(G) + f(z) in case of negative f(z).

Now we sum these bounds over all steps for z from ⌈λ⌉ to 2 and get

size(F ′)− size(F ) ≥
⌈λ⌉∑
z=2

min(0, f(z))

We give a list of values of f(z) for z from 2 to 60 and ρ = 1.6 in the full version of the
paper on arXiv [8]. For z ≤ 5 the values f(z) are non-negative, thus for λ ≤ 5 we get
size(F ′) − size(F ) ≥ 0. It can be verified that the sum of all negative values of f(z) for
z ≤ 60 is larger than −12 and thus for λ ≤ 60 we get size(F ′)− size(F ) > −12.
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Examining the algorithms BricksAlt and BricksFract that generate the solutions I

and F , respectively, and the transformation process above shows that the solution F is step
by step transformed towards I. In particular, I(z) = F ′(z) for all values z ≥ z̄ (if the special
case does not apply) or (z ≥ z̄ + 1 if the special case applies). For the small values of z, the
only possible difference is that solution F ′ might have some amount of bags of size 1 instead
of some larger bags in solution I. (Note that the total number of bags does not change
during the transformation.) This implies size(I) ≥ size(F ′) and the lemma follows. ◀

To complete the proof we need to show that size(F ) is sufficiently large so that size(I) ≥ n.
Actually, as the previous transformation possibly gives I with a slightly smaller size than F ,
we need to compensate for this difference which is at most 12. Precisely, we need to prove
that size(F, 1.6) ≥ n for λ ≤ 5 and size(F, 1.6) ≥ n + 12 for 5 < λ ≤ 60 and m ≥ 144.

Since the fractional solution F scales when m and n are scaled, see Observation 5.6, it is
convenient to normalize by m and consider (size(F, 1.6)− n)/m in the following lemma. Let
us call this crucial quantity normalized brick surplus, as it measures how many bricks we are
able to put in the bags in the fractional solution in addition to n bricks, normalized by m.

▶ Lemma 5.8. Let F be a fractional solution produced by BricksFract. Then
For λ ≤ 4 it holds that size(F, 1.6) ≥ n.
For 4 ≤ λ ≤ 60 it holds that size(F, 1.6) ≥ n + 1

12 m.

Proof. By Observation 5.6, the normalized brick surplus size(F, 1.6) − n)/m is uniquely
determined by λ, i.e., multiplying both n and m by the same constant does not change it.

This means that the normalized brick surplus is a function of λ. Furthermore, we claim
that the function is piece-wise linear. Suppose we slowly increase λ, for example fix m and
increase n by δ. Then F (z) remains constant for all z except zmin and zmax by Observation
5.5. The number of the largest bags F (zmax) increases by δ/⌈λ⌉ and F (zmin) decreases by
the same amount; this amount is proportional to δ. The function size(F ) is linear in the
values of F (z). So the normalized brick surplus is piece-wise linear with possible breakpoints
between the segments at the values of λ when one of the values of zmin or zmax changes.

The value of zmax changes exactly when λ is an integer. The breakpoints where zmin
increases can be calculated in the following way: Execute BricksFract for all integer values
of λ ≤ 60. Let us denote one of such solutions F . Take a look at F (zmin), if we now slowly
increase λ, F (zmin) will decrease linearly as described above. Calculate at which point it
reaches 0; if it happens before λ increases above another integer, we found a point where
zmin changes. The first case of changing zmin is at λ = 11

3 when we stop using bags of cost 1,
see Figure 5.6.

m 2m 3m

1
2 × 6

43

1
2 × 3

Figure 5.6 Example of solution produced by BricksFract for n = 11, m = 3 and ρ = 1.6. Size
of this solution is 11.5 and normalized brick surplus is 1

6 . The solution does not use any bags of cost
1. However, if λ were smaller, the solution would use bags of size 1.

The computer-generated tables of values of the normalized brick surplus function are
given in the full version of the paper on arXiv [8]. The plot of the values is given in Figures 5.7
and 5.8 below.
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Figure 5.7 Plot of normalized brick surplus for small λ.
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Figure 5.8 Plot of normalized brick surplus for large λ.

The lemma now follows, since the normalized brick surplus is always non-negative and it
is at least 1/12 for λ ≥ 5. (Note that it is a constant function equal to 1/12 for λ ∈ [4, 6].) ◀

▶ Theorem 5.9. For ρ = 1.6 and λ ≤ 60, Algorithm Bricks always succeeds, i.e., outputs
bags of total size at least n.

Proof. For λ ≤ 5, the first claims in Lemmata 5.8 and 5.7 together prove size(I, 1.6) ≥
size(F, 1.6) ≥ n.

For 5 ≤ λ ≤ 60 and m ≥ 144 the second claims in Lemmata 5.8 and 5.7 together prove
size(I, 1.6) ≥ size(F, 1.6)− 12 ≥ n + m/12− 12 ≥ n + 144/12− 12 = n.

For λ ≤ 60 and m ≤ 144 there are only a finitely many instances and we verify
size(I, 1.6) ≥ n for them by computer, see the full version of the paper on arXiv [8]. ◀
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We note that our choice of the bounds in the previous two lemmata is somewhat arbitrary.
The plots of the normalized brick surplus suggest that we could bound it by an appropriate
linear function instead of a constant. Also, the bound on size(F ) − size(I) can be made
smaller for intermediate values of λ. These changes would decrease the number of cases we
need to check by a computer program, but would not improve the robustness factor.

5.3 Second stage

We need to show that if Bricks succeeds, in the second stage we can indeed achieve makespan
ρ. To do this, we cannot use Algorithm GreedyAssignment and Theorem 2.1. Instead we
modify it to Algorithm IntegralAssignment below, which copies the coins accounting
scheme from Bricks and thus follows the intuition behind it.

Algorithm IntegralAssignment.

Input: bag sizes a1 ≥ · · · ≥ ab; machine speeds s1 ≥ · · · ≥ sm; desired robustness factor ρ

for i← 1 to m do
ci ← si ▷ Machine i gets si coins at the beginning.
Mi = ∅ ▷ Initialize the assignment

for k ← 1 to b do
i← index of the machine with the largest ci

Mi ←Mi ∪ {k} ▷ Assign bag k to machine i

ci ← ci − ⌈ak/ρ⌉ ▷ Machine i pays for the bag k

return M1, . . . , Mm

▶ Theorem 5.10. Suppose the first-stage algorithm Bricks succeeds, i.e., outputs bags
of total size of at least n. Then IntegralAssignment in the second stage produces an
assignment with makespan at most ρ.

Proof. Imagine that Bricks and IntegralAssignment are running in parallel. Bricks
chooses the size of one bag and IntegralAssignment assigns it to a machine. Note that
the values of ci remain integral during the entire execution.

We claim that during the execution the value c in Bricks is at most
∑m

i=1 ci for ci’s in
IntegralAssignment. At the beginning, the quantities are equal. Suppose that Bricks
creates a bag of cost z and thus decreases c by z. Then the bag has size a = ⌊z · ρ⌋ ≤ zρ.
Thus IntegralAssignment decreases ci by ⌈a/ρ⌉ ≤ ⌈zρ/ρ⌉ = z. Thus the sum of ci’s
decreases by at most z and the claim follows.

The claim implies that in each step before creating/assigning a bag of cost z, there exists
a machine with ci ≥ z in IntegralAssignment. Indeed, Bricks chooses z = ⌈c/m⌉,
thus m(z − 1) < c ≤

∑m
i=1 ci using the previous claim. Hence there exists a machine with

ci > z − 1 and together with integrality of ci we get ci ≥ z.
It follows that ci’s remain non-negative during the execution. Thus IntegralAssign-

ment assigned to machine i bags of the total size at most si · ρ. It follows that the makespan
is at most ρ. ◀

Theorems 5.1, 5.9, and 5.10 immediately imply our main result.

▶ Theorem 5.11. There exists 1.6-robust algorithm for the case of bricks and b = m. ◀
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Conclusions

Our main result still leaves a small gap in the bounds for bricks (equal-length jobs) and b = m

between the lower bound of e/(e − 1) ≈ 1.58 and our upper bound of 1.6. Our algorithm
Bricks does not admit a smaller robustness factor than 1.6, as is shown for n = 45 and
m = 9 in Figure 5.3. So a smaller upper bound would need some additional techniques or
special handling of some cases. Eberle et al. [4] give an example that shows a lower bound
for bricks that is larger than ρ(m, m) for m = 6. Although the value of the bound is below
the limit value e/(e − 1), this may be taken as a weak evidence that matching the lower
bound may be hard.

The main open problem in this model remains to find a (2− ε)-robust algorithm for the
general case and b = m.
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