
On the Generalized Mean Densest Subgraph
Problem: Complexity and Algorithms
Karthekeyan Chandrasekaran #

University of Illinois, Urbana-Champaign, USA

Chandra Chekuri #

University of Illinois, Urbana-Champaign, USA

Manuel R. Torres #

University of Illinois, Urbana-Champaign, USA

Weihao Zhu #

University of Illinois, Urbana-Champaign, USA

Abstract
Dense subgraph discovery is an important problem in graph mining and network analysis with
several applications. Two canonical polynomial-time solvable problems here are to find a maxcore
(subgraph of maximum min degree) and to find a densest subgraph (subgraph of maximum average
degree). Both of these problems can be solved in polynomial time. Veldt, Benson, and Kleinberg [47]
introduced the generalized p-mean densest subgraph problem which captures the maxcore problem
when p = −∞ and the densest subgraph problem when p = 1. They observed that for p ≥ 1, the
objective function is supermodular and hence the problem can be solved in polynomial time. In this
work, we focus on the p-mean densest subgraph problem for p ∈ (−∞, 1). We prove that for every
p ∈ (−∞, 1), the problem is NP-hard, thus resolving an open question from [47]. We also show that
for every p ∈ (0, 1), the weighted version of the problem is APX-hard. On the algorithmic front,
we describe two simple 1

2 -approximation algorithms for every p ∈ (−∞, 1). We complement the
approximation algorithms by exhibiting non-trivial instances on which the algorithms simultaneously
achieve an approximation factor of at most 1

2 .

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases Densest subgraph problem, Hardness of approximation, Approximation
algorithms

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.9

Category APPROX

Funding Karthekeyan Chandrasekaran: partially supported by NSF grant CCF-1907937 AND CCF-
2402667.
Chandra Chekuri: partially supported by NSF grants CCF-1907937 and CCF-2402667.
Manuel R. Torres: supported in part by fellowships from NSF and the Sloan Foundation, and NSF
grant CCF-1910149.
Weihao Zhu: supported by a graduate fellowship from the CS department.

Acknowledgements We thank Sanjeev Khanna and Euiwoong Lee for pointers to [23] and [26] on
the hardness of Exact ℓ-Cover. We thank Farouk Harb for helpful discussions. This work was done
when Manuel R. Torres was a student at University of Illinois, Urbana-Champaign.

1 Introduction

Dense subgraph discovery is an essential tool in graph mining and network analysis. The
aim here is to find clusters in a graph which are denser than the entire graph. There are a
number applications of dense subgraph discovery in biological settings [29, 20, 35, 4, 42], web
mining [24, 14], social network analysis [34], real-time story identification [2], and finance

© Karthekeyan Chandrasekaran, Chandra Chekuri, Manuel R. Torres, and Weihao Zhu;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 9; pp. 9:1–9:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:karthe@illinois.edu
https://orcid.org/0000-0002-3421-7238
mailto:chekuri@illinois.edu
https://orcid.org/0000-0003-3035-1699
mailto:manuel.r.torres0@gmail.com
https://orcid.org/0000-0002-0919-4062
mailto:weihaoz3@illinois.edu
https://orcid.org/0009-0002-2809-3010
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 On the Generalized Mean Densest Subgraph Problem: Complexity and Algorithms

and fraud detection [15, 48, 31]. Motivated by the needs of applications and theoretical
considerations, various density measures have been used and studied in the literature (see
[18, 25, 37, 45, 36] for some surveys). Each density definition leads to a corresponding
combinatorial optimization problem: given a graph G, find a subgraph of maximum density.
Two of the most popular density measures in the literature are (i) the minimum degree of the
subgraph and (ii) the average degree of the subgraph. These measures lead to the maxcore
problem and densest subgraph problem respectively. They are both polynomial-time solvable
and have been extensively studied. We briefly describe them before discussing a common
generalization that will be the focus of this work.

In the maxcore problem (maxcore), the goal is to find a subgraph with maximum
minimum degree. The optimum value of this problem is known as the degeneracy of the
graph and the subgraph achieving the optimum is known as a maxcore of the graph. A
k-core of a graph is a maximal connected subgraph in which all vertices have degree at least
k. Min-degree is a popular measure of density, commonly finding use in what is known as
the k-core decomposition, a nested sequence of subgraphs that captures k-cores for every
k. One nice feature of a k-core decomposition is that there is a simple linear-time peeling
algorithm to compute it. The peeling algorithm – denoted Greedy – produces an ordering of
the vertices by repeatedly removing the vertex with least degree in the current graph. This
ordering can in turn be used to solve maxcore. We refer the reader to [38] for a survey on
k-core decomposition and applications.

In the densest subgraph problem (DSG), the goal is to find a subgraph of maximum
average degree. DSG is widely used in graph mining applications. It is a well-studied problem
in combinatorial optimization and is polynomial time solvable via a variety of techniques
including network flow [40, 21], submodular function minimization (folklore), and linear
programming [9]. Even though DSG can be solved exactly, the algorithms are slow and this
has spurred the design of fast approximation algorithms [9, 5, 13, 8, 7, 10, 27]. Amongst these
approximation algorithms is a peeling algorithm introduced by Asahiro, Iwama, Tamaki,
and Tokuyama [3] which was shown to be a 1

2 -approximation by Charikar [9]. We note
that the peeling order of this algorithm is the same as the one for computing a maxcore,
namely Greedy; a second step of the algorithm returns the best subgraph induced by a suffix
of the peeling order (best in terms of average degree). The specific density measure for
DSG is used only in the second step. Charikar’s analysis has spurred the development and
analysis of a variety of peeling algorithms for several variants of DSG in both graphs and
hypergraphs [1, 46, 44, 30, 33, 47].

Veldt, Benson, and Kleinberg [47] introduced the generalized mean densest subgraph
problem that unifies maxcore and DSG. The input here is a real value p ∈ R ∪ {−∞,∞}
and an undirected graph G = (V, E). For a subset S ⊆ V of vertices, the density of the
subgraph G[S] induced by S is defined as:

Mp(S) :=
(

1
|S|
∑
v∈S

dS(v)p

)1/p

,

where dS(v) is the degree of vertex v in the subgraph G[S]. We note that M−∞(S) =
minv∈S dS(v) is the minimum degree in the induced subgraph G[S], while M∞(S) =
maxv∈S dS(v) is the maximum degree. For p = 0, the density of the subgraph G[S] is
M0(S) = (

∏
v∈S dS(v))1/|S| = exp(1

|S|
∑

v∈S ln dS(v)). The goal is to find a subset S of
vertices with maximum Mp(S). We refer to this problem as the p-mean densest subgraph
problem (p-mean DSG). As p varies from −∞ to ∞, Mp(S) prioritizes the smallest degree
in S to the largest degree in S and consequently, p-mean DSG provides a smooth way to
generate subgraphs with different density properties.

K. Chandrasekaran, C. Chekuri, M. R. Torres, and W. Zhu 9:3

p-mean DSG generalizes to weighted graphs in a natural manner. For a graph G = (V, E)
with positive edge weights w : E → R+, we define dS(v) as the sum of the weight of edges
that are incident to vertex v in G[S] . For a subset S ⊆ V of vertices, its p-mean density
Mp(S) is defined using dS(v) as it was for the unweighted case. The goal again is to find a
subset S of vertices with maximum Mp(S). We refer to this problem as weighted p-mean
DSG.

Veldt, Benson, and Kleinberg made several contributions to p-mean DSG. They observed
that 1-mean DSG is equivalent to DSG and that (−∞)-mean DSG is equivalent maxcore.
For p ≥ 1, they observed that the set function fp : 2V → R≥0 defined by fp(S) :=∑

v∈S dS(v)p is a supermodular set function1. This implies that one can solve p-mean
DSG in polynomial time for all p ≥ 1 via a standard reduction to submodular set function
minimization, a classical polynomial-time solvable problem in combinatorial optimization
[41]. Motivated by the fact that exact algorithms are very slow in practice, they described
a greedy peeling algorithm, denoted Greedy-p, that runs in O(mn) time and achieves an
approximation factor of 1/(p + 1)1/p for p ≥ 1 (here m and n are the number of edges and
nodes of the graph). The peeling order of their Greedy-p algorithm is not the same as that of
Greedy – in particular, the peeling order depends on p. They supplement these theoretical
results with empirical evaluation, showing that Greedy-p returns solutions with desirable
characteristics for values of p in the range [1, 2]. We note that the function fp(S) is not
supermodular if p < 1, which partially stems from the fact that the univariate function
g(x) := xp is not convex if p < 1.

1.1 Our Results
We study the complexity and algorithmic status of p-mean DSG for p ∈ (−∞, 1) which was
mentioned as a compelling direction for future work by Veldt et al. [47]. It is intriguing that
p-mean DSG is polynomial-time solvable for for p = −∞ and p ≥ 1 while the status for
p ∈ (−∞, 1) is non-trivial to understand. Our work fills this gap.

Hardness of p-mean DSG for p ∈ (−∞, 1)

We prove that p-mean DSG is NP-Hard for every p ∈ (−∞, 1). We also show that weighted
p-mean DSG is APX-hard for every fixed constant p ∈ (0, 1). The hardness results are the
main contribution of this work. They are technically involved for two reasons. First, the
objective function is non-linear and does not fall into a clean and known class of functions.
Second, the problem is effectively an unconstrained problem. The initial inspiration for our
reduction came from a high-level connection to submodularity due to the concavity of the
univariate function xp for p ∈ (0, 1); constrained versions of submodular optimization are
NP-hard. However, the objective function for p-mean DSG is not a submodular function
and there are no constraints. Nevertheless, we are able to model it via a gadget. Although
the reduction is quite simple to describe, the proof of the reduction requires careful parameter
setting and a detailed case analysis. The reduction/analysis for the weighted case is somewhat
easier, however, we prove NP-Hardness for the unweighted case since it is of particular
interest. We prove APX-hardness for the weighted case, and only for p ∈ (0, 1), to mitigate
the calculations. It may be possible to extend our APX-hardness proof to the unweighted
case and also to the full range (−∞, 1).

1 A real-valued set function f : 2V → R is supermodular if f(A) + f(B) ≤ f(A ∪ B) + f(A ∩ B) for all
A, B ⊆ V . We recall that f is supermodular iff −f is submodular.

APPROX/RANDOM 2024

9:4 On the Generalized Mean Densest Subgraph Problem: Complexity and Algorithms

Approximation algorithms for p ∈ (−∞, 1)

The NP-Hardness result for p-mean DSG motivates the search for approximation algorithms
for p ∈ (−∞, 1). We note that the peeling algorithm for p-mean DSG, namely Greedy-p,
given by Veldt, Benson, and Kleinberg [47] is well-defined only for p > 0. In the same paper,
the authors show empirical results for Greedy-p for p ∈ (0, 1) even though the corresponding
function fp is not supermodular; however, no approximation guarantee is known for Greedy-p
for p ∈ (0, 1). We describe two different and simple algorithms for p-mean DSG– one based
on simple greedy peeling and the other based on an exact solution to DSG. We show that
both algorithms achieve a 1

2 -approximation for all p ∈ (−∞, 1). These are the first algorithms
with approximation guarantees for p in the regime (−∞, 1). We complement the algorithms
by exhibiting tight instances on which both algorithms exhibit an approximation factor of at
most 1

2 , thus ruling out the possibility of improving the ratio by taking the best of the two
algorithms.

This paper builds upon and extends an earlier version [11] by two of the authors. The
previous version included results on faster algorithms for p-mean DSG for p > 1 and
empirical evaluation of several algorithms. A full version including those results will be made
available in the future.

Organization

We present the NP-hardness result in Section 2 and the APX-hardness result in Section 3.
We present our algorithmic results in Section 4. All proofs that are omitted from the main
body of the paper are given in the appendix.

Notation

Let G = (V, E) be a graph. For a subset S ⊆ V of vertices and a vertex v ∈ S, we recall
that dS(v) is the (weighted) degree of v in the induced subgraph G[S]. Let S be a subset of
vertices. We define fp(S) :=

∑
v∈S dS(v)p if p ∈ [−∞, 0)∪ (0,∞] and fp(S) :=

∑
v∈S ln dS(v)

if p = 0. We also define ρp(S) := fp(S)/|S| for all p. With these definitions, we have
Mp(S) = ρp(S)1/p for all p. Thus, finding a set S of vertices with maximum Mp(S) is
equivalent to finding a set S of vertices with maximum ρp(S) if p ≥ 0, and to finding a set S

of vertices with minimum ρp(S) if p < 0.

1.2 Other Related Work
DSG and the subfield of dense subgraph discovery is large. We point the reader to a recent
survey [36] and restrict our attention to discussing some closely related work, specifically on
sequential models and approximability.

As we remarked, DSG is poly-time solvable by several techniques including via maximum
flow. Although maximum flow now admits an almost-linear time algorithm [12], the existing
exact algorithms for DSG are slow in practice for large graphs. Thus approximation
algorithms have also been considered (especially before the recent developments on network
flow). In particular, there has been a line of work that obtained a (1 − ϵ)-approximation
in Õ(m · poly(1

ϵ))-time [5, 8, 10]; in particular, the algorithm in [10] runs in time Õ(m
ϵ).

These faster approximation algorithms also have some limitations in practice for large graphs.
Several simpler iterative algorithms based on continuous optimization methods have been
developed – these include algorithms based on the Frank-Wolfe method [13], an algorithm
based on iterating Greedy called Greedy++ [7], and the projected gradient descent method [27].

K. Chandrasekaran, C. Chekuri, M. R. Torres, and W. Zhu 9:5

They are simple to implement and have been shown to converge quickly to near-optimal
solutions on large graphs, both synthetic and real-world, even though the known worst-case
theoretical convergence rates are fairly large.

We discuss some other measures of density considered in the literature. Given a graph
G = (V, E) and a finite collection of pattern graphs F , one can consider the problem of finding
a set S that maximizes f(S)/|S| where f : 2V → Z+ counts the number of occurrences of the
patterns from F in the induced subgraph G[S]. If we consider a single edge as the pattern,
then we obtain DSG. [46] considered the special case where F is a single triangle graph
and [44] considered the special case where F is a clique on k vertices. The densest subgraph
problem under the general notion of patterns was considered in [17]. Densest subgraph
has also been studied for hypergraphs with density of a set S of vertices being defined as
|E(S)|/|S| where E(S) is the set of hyperedges with all vertices in S [30]. We can reduce
the densest subgraph problem with pattern based densities to the densest subgraph problem
in hypergraphs by introducing a hyperedge for each occurrence of the pattern in the input
graph. Charikar’s analysis of Greedy can be generalized to show an approximation factor of
at least 1

r in rank r-hypergraphs. Veldt, Benson, and Kleinberg [47] showed that Greedy is
not a good worst-case algorithm for p-mean DSG when p > 1, and as we mentioned earlier,
they developed a different peeling algorithm. Chekuri, Quanrud and Torres [10] unified
several results by considering density measures of the form f(S)/|S| where f : 2V → R+ is
an arbitrary non-negative supermodular set function over a vertex set V . They showed that
there is a natural peeling algorithm for each f and derived an approximation bound in terms
of certain properties of f ; Greedy-p from [47] and its approximation bound are derived as
special cases. They also generalized Greedy++ to supermodular densities and showed that
the resulting algorithm converges to an optimum solution, partially answering a conjecture
from [7] (the conjecture has a strong convergence rate). See [27, 28] for additional insights.
One can also consider density measures of the form f(S)/g(S) where g : 2V → R+ is another
set function such as a concave or convex function of |S|. We refer the reader to [36, 10] for
results and pointers on this aspect.

Constrained versions of DSG such as the k-densest-subgraph (find a densest subgraph
with at most k vertices) are well-studied in theoretical computer science. k-densest-subgraph
is of particular importance due to its connection to various other problems, and due to the
intriguing difficulty in understanding its approximability. Since there is a large literature on
this problem and since constrained versions are not the focus of this paper, we point the
reader to some relevant papers on algorithms and hardness [19, 6, 39].

2 NP-hardness

In this section, we prove the following theorem.

▶ Theorem 1. p-mean DSG is NP-hard for all p ∈ (−∞, 1).

We reduce from the Exact ℓ-Cover problem.

▶ Problem 1. exact ℓ-cover: the input is a finite ground set U = {e1, e2, . . . , eℓn} of
cardinality ℓn for some positive integers ℓ and n, and a family of subsets S ⊆ 2U , where
each X ∈ S has cardinality ℓ. The goal is to determine whether there exist n disjoint sets
Si1 , Si2 , . . . , Sin

∈ S whose union is U .

We will say that the input instance (U ,S) of exact ℓ-cover has an exact ℓ-cover if
there exist n disjoint sets whose union is U . exact 3-cover is a well-known NP-complete
problem [22]. A standard padding approach reduces exact 3-cover to exact ℓ-cover for
every ℓ ≥ 3.

APPROX/RANDOM 2024

9:6 On the Generalized Mean Densest Subgraph Problem: Complexity and Algorithms

▶ Theorem 2. exact ℓ-cover is NP-complete for every integer ℓ ≥ 3.

2.1 Reduction from exact ℓ-cover
We reduce exact ℓ-cover to p-mean DSG. Let U = {e1, e2, . . . , eℓn} and S =
{S1, S2, . . . , Sm} with Si ⊆ U for every i ∈ [m] be the input instance of exact ℓ-cover.
For a positive integer d (to be chosen later), we construct a graph Gd = (L ∪A, E), where
L := {vi : i ∈ [m]} and A := {uj : j ∈ [ℓ ·n]}. For every 1 ≤ i ≤ m and 1 ≤ j ≤ ℓ ·n, if the set
Si contains element ej , then we add an edge between vi and uj in graph Gd. Further, we add
edges between vertices in A to make Gd[A] to be a connected d-regular graph, where d will be
chosen appropriately (we may assume that n is even so that such a connected d-regular graph
always exists). See Figure 1. If p ̸= 0, then we set ρ∗ := ℓp+ℓ·(d+1)p

ℓ+1 and if p = 0, then we set
ρ∗ := ln ℓ+ℓ·ln(d+1)

ℓ+1 . We will show that there exist positive integers ℓ ≥ 3 and d such that the
input instance admits an exact ℓ-cover if and only if max{Mp(X) : X ⊆ V } ≥ (ρ∗)1/p.

Figure 1 Graph constructed in our reduction from exact ℓ-cover for ℓ = 3 and d = 5. The Exact
3-Cover instance consists of the ground set U := {e1, . . . , e3n} and the family S := {S1, . . . , Sm}.

Next, we prove the NP-hardness of p-mean DSG by casing on the value of p via the
above mentioned reduction. We prove NP-hardness for p ∈ (0, 1) in Section 2.2 (see Theorem
7). The missing proofs are given in the appendix. The proofs for p ∈ (−∞, 0] are given in
the full version owing to space limitations.

2.2 NP-hardness for p ∈ (0, 1)
We recall that ρp(X) = Mp(X)p for every subset X of vertices and hence, finding a set X of
vertices that maximizes Mp(X) reduces to finding a set X of vertices that maximizes ρp(X)
if p ∈ (0, 1). We define OPTGd

:= max
X⊆V

ρp(X). We observe that OPTGd
is a maximization

problem for p ≥ 0. Hence, in order to show correctness of our reduction, we will need an
upper bound on ρp(X) for p ≥ 0. The following lemma gives an upper bound.

▶ Lemma 3. Let Gd = (L ∪A, E) be the graph constructed in the reduction. Let S ⊆ L and
A′ ⊆ A. Then, for p > 0, we have that

ρp(S ∪A′) ≤
ℓp · |S|+

∑
v∈A′(d + dS+v(v))p

|S|+ |A′|
.

Moreover, the inequality above is strict if |A′| < |A|.

K. Chandrasekaran, C. Chekuri, M. R. Torres, and W. Zhu 9:7

Proof. For the case of p > 0, we note that

ρp(S ∪A′) = fp(S ∪A′)
|S ∪A′|

=
∑

u∈S dS∪A′(u)p +
∑

v∈A′ dS∪A′(v)p

|S|+ |A′|

≤
∑

u∈S dS∪A(u)p +
∑

v∈A′ dS∪A(v)p

|S|+ |A′|
(since p > 0)

=
ℓp · |S|+

∑
v∈A′ dS∪A(v)p

|S|+ |A′|
(since dS∪A(u) = ℓ)

=
ℓp · |S|+

∑
v∈A′(d + dS+v(v))p

|S|+ |A′|
. (since G[A] is a d-regular graph)

If |A′| < |A|, then there exists a vertex u ∈ A′ such that dA′(u) < dA(u) = d because
G[A] is connected, which implies that the inequality above is strict. ◀

We need the following technical lemma about the maximizer of a relevant function.

▶ Lemma 4. Let c ∈ R≥0. Let f : Rn
≥0 → R be defined as f(x) :=

∑n
i=1(c + xi)p. For

0 < p < 1, consider the following maximization problem parameterized by s ∈ N:

maximize
{

f(x) : x ∈ Zn, x ≥ 0,

n∑
i=1

xi ≤ s

}
.

Every maximizer for the above problem has µ coordinates set to ⌈s/n⌉−1 and n−µ coordinates
set to ⌈s/n⌉, where µ = n · ⌈s/n⌉ − s. If s is a multiple of n, then the maximizer has all
coordinates set to s/n.

Proof. Let x ∈ Zn and x ≥ 0 be a maximizer. If
∑n

i=1 xi < s, then by setting x′
n = xn + 1

and x′
k = xk for every k ∈ [n − 1], we have f(x′) > f(x), a contradiction to optimality of

f(x).
Suppose that

∑n
i=1 xi = s. We prove that all coordinates are in {⌈s/n⌉, ⌈s/n⌉ − 1}.

Assume that x has at least one entry not in {⌈s/n⌉, ⌈s/n⌉ − 1}. Then, there exists some
coordinate xi that is strictly larger than ⌈s/n⌉ or smaller than ⌈s/n⌉ − 1. Without loss of
generality, we assume that xi > ⌈s/n⌉. Consequently, there exists some index j ∈ [n] such
that xj < ⌈s/n⌉. Since xj < ⌈s/n⌉ < xi and xi, xj are both integers, we have xi − xj ≥ 2.
Because (c + x)p is a concave function of x, (c + xi)p + (c + xj)p < (c + xi−1)p + (c + xj + 1)p.
By setting x′

i = xi−1, x′
j = xj +1, and x′

k = xk for every k ∈ [n]\{i, j}, we have f(x′) > f(x),
a contradiction to optimality of f(x).

Hence, for every maximizer x ∈ Zn, we have
∑n

i=1 xi = s and xi ∈ {⌈s/n⌉, ⌈s/n⌉ − 1}
for every i ∈ [n]. This implies that (n − µ) coordinates are ⌈s/n⌉ and µ coordinates are
⌈s/n⌉ − 1, where µ = n · ⌈s/n⌉ − s. When s is a multiple of n, by Jensen’s inequality, we
have xi = s/n for every 1 ≤ i ≤ n. ◀

We will use the following lemma about the existence of an integer ℓ that satisfies two
inequalities simultaneously for every given p.

▶ Lemma 5. For every p ∈ (0, 1), there exists an integer ℓ ≥ 3 s.t the following two
inequalities hold:(

1− 1
2ℓ

)p

< 1− 1− 1/2p

ℓ + 1 and
(

1 + 1
2ℓ

)p

< 1 + 1− 1/2p

ℓ + 1 . (1)

APPROX/RANDOM 2024

9:8 On the Generalized Mean Densest Subgraph Problem: Complexity and Algorithms

We need the following lemma about NO-instances of exact ℓ-cover.

▶ Lemma 6. Let p ∈ (0, 1) and ℓ ≥ 3 be an integer that satisfies the two inequalities in
(1). Consider an instance of exact ℓ-cover with ground set U of size ℓn and family
S ⊆ 2U . Suppose that the instance has no exact ℓ-cover. Then, for every non-negative
integers s, a′ ∈ Z≥0 with s ≤ |S|, a′ ≤ ℓn, and s + a′ ≥ 1 and every non-negative integer
vector X ∈ Za′

≥0 with
∑a′

i=1 Xi ≤ ℓs, we have that

ℓp · s +
∑a′

i=1(2ℓ− 1 + Xi)p

s + a′ ≤ ℓp + ℓ · (2ℓ)p

ℓ + 1 . (2)

Moreover, if there exists i ∈ [a′] such that Xi ̸= ℓs/a′, then the above inequality is strict.

Proof. We case on the value of the ratio s/a′.
Case 1. Suppose ℓ · s = a′. Then, we have

ℓp · s +
∑a′

i=1(2ℓ− 1 + Xi)p

s + a′ ≤
ℓp · s + a′ · (2ℓ− 1 + ℓ·s

a′)p

s + a′ (by
a′∑

i=1
Xi ≤ ℓ · s and Lemma 4)

= ℓp · a′/ℓ + a′ · (2ℓ)p

a′/ℓ + a′ (since ℓ · s = a′)

= ℓp + ℓ · (2ℓ)p

ℓ + 1 .

By Lemma 4, if there exists i ∈ [a′] such that Xi ̸= ℓs/a′, then the above inequality is strict.
Case 2. Suppose ℓ · s = β · a′ for some 0 ≤ β < 1. Then, we have

ℓp · s +
∑a′

i=1(2ℓ− 1 + Xi)p

s + a′ ≤ ℓp · s + βa′ · (2ℓ)p + (1− β)a′ · (2ℓ− 1)p

s + a′

(by
a′∑

i=1
Xi ≤ ℓ · s and Lemma 4)

= ℓp · β + ℓβ · (2ℓ)p + ℓ(1− β) · (2ℓ− 1)p

β + ℓ
. (since ℓ · s = β · a′)

We define h : [0, 1]→ R as

h(β) := ℓp · β + ℓβ · (2ℓ)p + ℓ(1− β) · (2ℓ− 1)p

β + ℓ
,

which implies that the left hand side expression in the lemma is at most h(β). By differenti-
ating the function h with respect to β, we have

d

dβ
h(β) = (ℓp + ℓ · (2ℓ)p − ℓ · (2ℓ− 1)p)(β + ℓ)− (ℓp · β + ℓβ · (2ℓ)p + ℓ(1− β) · (2ℓ− 1)p)

(β + ℓ)2

= ℓp+1 + ℓ2 · (2ℓ)p − ℓ2 · (2ℓ− 1)p − ℓ · (2ℓ− 1)p

(β + ℓ)2

= ℓp+1 + ℓ2 · (2ℓ)p − (ℓ2 + ℓ) · (2ℓ− 1)p

(β + ℓ)2

>
ℓp+1 + ℓ2 · (2ℓ)p − (ℓ2 + ℓ) · (2ℓ)p · (1− 1−2−p

ℓ+1)
(β + ℓ)2 (by inequality (1))

= ℓp+1 + ℓ2 · (2ℓ)p − ℓ · (2ℓ)p · (ℓ + 2−p)
(β + ℓ)2 = 0.

K. Chandrasekaran, C. Chekuri, M. R. Torres, and W. Zhu 9:9

Hence, function h(β) is strictly increasing for β ∈ [0, 1]. Thus,

ℓp · s +
∑a′

i=1(2ℓ− 1 + Xi)p

s + a′ ≤ h(β) < h(1) = ℓp + ℓ · (2ℓ)p

ℓ + 1 .

Case 3. Suppose ℓ · s = α · a′ for some α > 1. Let α = t + β where t ≥ 1 is an integer and
0 < β ≤ 1. Then, we have

ℓp · s +
∑a′

i=1(2ℓ− 1 + Xi)p

s + a′ ≤ ℓp · s + βa′ · (2ℓ + t)p + (1− β)|A′| · (2ℓ− 1 + t)p

|S|+ |A′|

(by
a′∑

i=1
Xi ≤ ℓ · s and Lemma 4)

= ℓp · (t + β) + ℓβ · (2ℓ + t)p + ℓ(1− β) · (2ℓ− 1 + t)p

t + β + ℓ

(since ℓ · s = (t + β) · a′).

We define g : [0, +∞)× [0, 1]→ R as

g(t, β) := ℓp · (t + β) + ℓβ · (2ℓ + t)p + ℓ(1− β) · (2ℓ− 1 + t)p

t + β + ℓ
,

which implies that the left hand side expression in the lemma is at most g(t, β). We note
that g(t, 1) = g(t + 1, 0) for every t ≥ 0.

By differentiating the function g with respect to β, we have

d

dβ
g(t, β)

= (ℓp + ℓ·(2ℓ + t)p − ℓ·(2ℓ − 1 + t)p)(t + β + ℓ) − (ℓp ·(t + β) + ℓβ · (2ℓ + t)p + ℓ(1 − β)·(2ℓ − 1 + t)p)
(t + β + ℓ)2

= ℓp+1 + (ℓ2 + t · ℓ) · (2ℓ + t)p − (ℓ2 + (t + 1) · ℓ) · (2ℓ + t − 1)p

(t + β + ℓ)2 .

Now, we note that

d

dt

(
ℓp+1 + (ℓ2 + t · ℓ) · (2ℓ + t)p − (ℓ2 + (t + 1) · ℓ) · (2ℓ + t − 1)p

)
= p · (ℓ2 + t · ℓ) · (2ℓ + t)p−1 + ℓ · (2ℓ + t)p − p · (ℓ2 + (t + 1) · ℓ) · (2ℓ + t − 1)p−1 − ℓ·(2ℓ + t − 1)p

≤ p · (ℓ2 + t · ℓ) · (2ℓ + t)p−1 + ℓ · p · (2ℓ + t − 1)p−1 − p · (ℓ2 + (t + 1) · ℓ) · (2ℓ + t − 1)p−1

(since (x + 1)p − xp ≤ p · xp−1 for every x > 0)

= p · (ℓ2 + t · ℓ)((2ℓ + t)p−1 − (2ℓ + t − 1)p−1) < 0.

Thus,

d

dβ
g(t, β) = ℓp+1 + (ℓ2 + t · ℓ) · (2ℓ + t)p − (ℓ2 + (t + 1) · ℓ) · (2ℓ + t− 1)p

(t + β + ℓ)2

≤ ℓp+1 + (ℓ2 + ℓ) · (2ℓ + 1)p − (ℓ2 + 2ℓ) · (2ℓ)p

(1 + β + ℓ)2 (since t ≥ 1)

=
(2ℓ)p · (2−p · ℓ + (ℓ2 + ℓ) · (1 + 1

2ℓ)p − (ℓ2 + 2ℓ))
(1 + β + ℓ)2

<
(2ℓ)p · (2−p · ℓ + (ℓ2 + ℓ) · (1 + 1−2−p

ℓ+1)− (ℓ2 + 2ℓ))
(1 + β + ℓ)2 (by inequality (1))

= (2ℓ)p · (2−p · ℓ + (ℓ2 + ℓ) + (1− 2−p) · ℓ− (ℓ2 + 2ℓ))
(1 + β + ℓ)2 = 0.

APPROX/RANDOM 2024

9:10 On the Generalized Mean Densest Subgraph Problem: Complexity and Algorithms

Hence, function g(t, β) is strictly decreasing with respect to β for β ∈ [0, 1]. Thus,

ℓp · s +
∑a′

i=1(2ℓ− 1 + Xi)p

s + a′ ≤ g(t, β) < g(t, 0).

For every positive integer r > 1, we have g(r, 0) = g(r − 1, 1) < g(r − 1, 0). Thus,

ℓp · s +
∑a′

i=1(2ℓ− 1 + Xi)p

s + a′ < g(t, 0) < g(1, 0) = ℓp + ℓ · (2ℓ)p

ℓ + 1 . ◀

Now, we are ready to prove the NP-hardness of p-mean DSG for p ∈ (0, 1). We recall
that OPTG := max

X⊆V
ρp(X).

▶ Theorem 7. For every p ∈ (0, 1), there exist positive integers ℓ ≥ 3 and d such that for
an instance of exact ℓ-cover with ground set U and family S ⊆ 2U , there exists an exact
ℓ-cover iff OPTG ≥ ρ∗ = ℓp+ℓ·(d+1)p

ℓ+1 , where G = Gd is the graph constructed in the reduction
above.

Proof. By Corollary 5, we know that there exists a positive integer ℓ ≥ 3 satisfying the
two inequalities in (1). Fix such an ℓ. Let U be the ground set and S be the collection of
subsets of an instance of Exact ℓ-Cover. We set d = 2ℓ− 1 and consider the graph G = Gd

constructed in the reduction in Section 2.1. We show that there exists an exact ℓ-cover iff
OPTG ≥ ρ∗ = ℓp+ℓ·(d+1)p

ℓ+1 .
Suppose S contains an exact ℓ-cover Si1 , . . . , Sin

. Let S = {vi1 , vi2 , . . . , vin
}. We note

that |S| = n = |A|
ℓ . Thus, we have

OPTG ≥ ρp(S∪A) = fp(S ∪A)
|S ∪A|

= ℓp · |S|+ (d + 1)p · |A|
|S|+ |A| = ℓp · |A|/ℓ + (d + 1)p · |A|

|A|/ℓ + |A| = ρ∗.

Suppose S does not contain an exact ℓ-cover. Let S ⊆ L and A′ ⊆ A. We note that
ℓ · |S| =

∑
v∈A dS+v(v) ≥

∑
v∈A′ dS+v(v). Thus, we have

ρp(S ∪A′) = fp(S ∪A′)
|S ∪A′|

≤
ℓp · |S|+

∑
v∈A′(d + dS+v(v))p

|S|+ |A′|
(by Lemma 3)

≤ ρ∗. (by Lemma 6)

We note that since S is not an exact ℓ-cover, we have that either |A′| < |A| or there exists
u, v ∈ A with dS+u(u) ̸= dS+v(v). This implies that either the first inequality or the second
inequality above is strict according to the respective lemmas, that is, ρp(S ∪A′) < ρ∗. ◀

3 APX-hardness for p ∈ (0, 1)

In this section, we adapt the NP-hardness proof from Section 2 to show that weighted
p-mean DSG is APX-hard for every fixed constant p ∈ (0, 1).

▶ Theorem 8. For every fixed constant p ∈ (0, 1), there exists a constant δp > 0 that depends
only on p such that it is NP-hard to obtain a (1− δp)-approximation for weighted p-mean
DSG.

In order to prove Theorem 8, we will rely on the APX-hardness of exact ℓ-cover as
stated below.

K. Chandrasekaran, C. Chekuri, M. R. Torres, and W. Zhu 9:11

▶ Theorem 9. There exists a constant ε ∈ (0, 1) such that for every integer ℓ ≥ 3, it is
NP-hard to distinguish between the following two cases for a given finite ground set U of size
ℓn and a family S ⊆ 2U of subsets each of cardinality ℓ:

YES-instance: There exists a collection of n sets in S whose union is U .
NO-instance: The union of every collection of n · (1 + ε) sets in S has size at most
ℓ · n · (1− ε).
Exact ℓ-Cover is a special case of Set Cover. The hardness we seek requires a disjoint

set cover in the YES case, and we also need the hardness to hold for every fixed integer
ℓ ≥ 3. Related results have been proved in the literature [32, 43, 26, 23], however the precise
version we need requires a formal argument. We provide the proof in the full version and
also comment on the relation to previous work.

Reduction from Exact ℓ-Cover to weighted p-mean DSG

We reduce from the APX-hard variant of exact ℓ-cover, namely the problem mentioned
in Theorem 9. Consider an instance of the problem mentioned in Theorem 9: namely, let
U be a ground set of size ℓn and let S ⊆ 2U of subsets each of cardinality ℓ. For a positive
integer d (to be chosen later), we construct a graph Gd = (L ∪A, E) as follows: we define
L := {vi : i ∈ [m]} and A := {uj : j ∈ [ℓ · n]}. For every i ∈ [m] and j ∈ [ℓ · n], if set Si

contains element ej , then we add an edge with unit weight between vi and uj in graph G.
We add an edge between all pairs of vertices in A with weight d

|A|−1 , where d will be chosen
appropriately (instead of G[A] being a connected d-regular graph as used in the NP-hardness
reduction in Section 2). We note that for every vertex v ∈ A, the sum of weight of edges
incident to v in the induced subgraph G[A] is d. We define OPTGd

:= maxX⊆V ρp(X) and
set ρ∗ := ℓp+ℓ·(d+1)p

ℓ+1 . We will prove that if the instance is a YES instance, then OPTGd
≥ ρ∗

and if the instance is a NO instance, then OPTGd
< (1− δp) · ρ∗ for some constant δp > 0

that depends only on p. We now state the main theorem of the section below.

▶ Theorem 10. For every p ∈ (0, 1), there exist positive integers ℓ ≥ 3 and d such that for
an instance (U ,S) of the problem mentioned in Theorem 9, where the ground set U has size
ℓn and every set in S has size ℓ, the following two hold:

if the instance is a YES-instance, then OPTGd
≥ ρ∗, and

if the instance is a NO-instance, then OPTGd
< (1 − δp) · ρ∗ for some constant δp > 0

that depends only on p.
Here, Gd is the graph constructed in the reduction from Exact ℓ-Cover for Weighted Version.

Theorem 8 follows from Theorem 10. We briefly outline our proof of Theorem 10 and
refer to the full version for the full proof. It is easy to see that if the instance (U ,S) of
the problem mentioned in Theorem 9 is a YES-instance, then OPTGd

≥ ρ∗ (similar to the
proof of NP-hardness). We focus on showing that if the instance is a NO-instance, then
OPTGd

< (1− δ)ρ∗. Let S ⊆ L and A′ ⊆ A. We need to show that ρp(S ∪A′) < (1− δ)ρ∗.
For this, we recall the proof of NP-hardness in Section 2.2. There, we showed that if the
instance does not have an exact ℓ-cover, then ρp(S ∪ A′) < ρ∗. For this, we proved that
ρp(S ∪ A′) is maximized and is at most ρ∗ if ℓ|S|/|A′| = 1. That proof can be adapted
in a straightforward fashion to show that ρp(S ∪ A′) < (1 − δ)ρ∗ if ℓ|S|/|A′| ≥ 1 + ε or if
ℓ|S|/|A′| ≤ 1 − ε for some constants δ, ε > 0 (even for the graph Gd that appears in the
reduction to unweighted p-mean DSG) – see cases 1 and 2 in the proof of Theorem 10. Thus,
the non-trivial case to handle is if ℓ|S|/|A′| ∈ (1− ε, 1 + ε). In this situation, we consider two
cases: (i) Suppose that |A′| ≤ (1− ε)|A|. In this case, we exploit the clique in the weighted
graph constructed in the reduction above to conclude that ρp(S ∪A′) < (1− δ)ρ∗ for some
constant δ > 0 (see case 3 in the proof of Theorem 10). (ii) Suppose that |A′| > (1− ε)|A|.

APPROX/RANDOM 2024

9:12 On the Generalized Mean Densest Subgraph Problem: Complexity and Algorithms

In this case, we rely on the APX-hardness of exact ℓ-cover (i.e., the instance (U ,S) is a
NO-instance of the problem mentioned in Theorem 9) to conclude that ρp(S∪A′) < (1−δ)ρ∗

for some constant δ > 0 (see case 4 in the proof of Theorem 10). We emphasize that the
weighted clique over the set A of vertices in the reduction graph (as opposed to an unweighted
d-regular graph over the set A of vertices) is useful in the first case. We also mention that the
constant δp in Theorem 10 is very small. We give an estimation of δ1/2 in the full version.

4 Approximation Algorithms

We give two new approximation algorithms for p-MEAN DSG. Our algorithms achieve an
approximation factor of 1

2 for all p ∈ (−∞, 1). Our algorithms rely on the fact that maxcore
and DSG can be solved in polynomial time. First, we show that the peeling algorithm used to
compute maxcore can be adapted to obtain a 1

2 -approximate solutions to p-mean DSG for
every p ∈ (−∞, 1). Secondly, we show that an optimum solution to DSG is a 1

2 -approximate
solution to p-mean DSG for every p ∈ (−∞, 1). We complement these results with a family
of graphs for which both algorithms simultaneously achieve only a 1

2 -approximation.
Let G = (V, E) be the input graph. We let S∗

p := arg maxS⊆V Mp(S) and let M∗
p :=

Mp(S∗
p). We need the following fact about the monotonicity of the objective.

▶ Proposition 11. Let S ⊆ V . For every p ≤ q, we have Mp(S) ≤Mq(S).

We have the following statement connecting different values of M∗
p .

▶ Proposition 12. For every p ∈ [−∞, 1], we have M∗
−∞ ≤M∗

p ≤M∗
1 ≤ 2M∗

−∞.

The first two inequalities follow directly from Proposition 11 and the last inequality follows
via a simple known argument connecting degeneracy to the maximum average degree of a
subgraph (e.g., see [16]).

1
2 -approximation via maxcore approach

Our first algorithm leverages the standard greedy peeling algorithm for the maxcore. Our
algorithm, denoted Simple-Greedy-p, is given in Figure 2. The algorithm for p = −∞ is
the peeling algorithm used to compute maxcore and the algorithm for p = 1 is Charikar’s
greedy peeling algorithm. We recall that Charikar showed that the algorithm achieves a
1
2 -approximation for 1-mean DSG.

Simple-Greedy-p(G = (V, E))
1: S1 ← V

2: for i = 1 to n− 1 do
3: vi ← arg minv∈Si

dSi
(v)

4: Si+1 ← Si − vi

5: return arg maxSi
Mp(Si)

Figure 2 1
2 -approximation via greedy peeling for p-mean DSG where p < 1.

K. Chandrasekaran, C. Chekuri, M. R. Torres, and W. Zhu 9:13

▶ Theorem 13. Let p ∈ [−∞, 1] and let S be the output of Simple-Greedy-p(G). Then,
Mp(S) ≥ 1

2 M∗
p .

Proof. The algorithm for p = −∞ is the peeling algorithm used to compute maxcore.
In particular, it is well-known that there exists i ∈ [n] with M−∞(Si) = M∗

−∞. By
Proposition 11, M−∞(Si) ≤Mp(Si) and by choice of S, we have Mp(Si) ≤Mp(S). Therefore,
M∗

−∞ ≤ Mp(S). Finally, by Proposition 12, we have 1
2 M∗

p ≤ M∗
−∞. Combining these two

statements, we get 1
2 M∗

p ≤Mp(S). ◀

▶ Remark 14. Simple-Greedy-p returns an optimum solution for p = ∞. Our results show
that for p ∈ (−∞, 1], Simple-Greedy-p returns a 1

2 -approximation. However, for p > 1, [47]
showed that the approximation factor of Simple-Greedy-p can be arbitrarily small.

1
2 -approximation via 1-mean densest subgraph

Our second algorithm is to simply return a 1-mean densest subgraph. We recall that
S∗

1 = arg maxS⊆V M1(S) and it can be computed in polynomial time. We analyze its
approximation factor.

▶ Theorem 15. Let p ∈ [−∞, 1]. Then, Mp(S∗
1) ≥ 1

2 M∗
p .

Proof. We first prove that

M−∞(S∗
1) ≥ 1

2M∗
1 . (3)

It suffices to show that dS∗
1
(v) ≥ |E(S∗

1)|
|S∗

1 |
for every v ∈ S∗

1 . Suppose towards a contradiction

that there exists v ∈ S∗
1 such that dS∗

1
(v) <

|E(S∗
1)|

|S∗
1 |

. Using this and observing |E(S∗
1)| −

|E(S∗
1 − v)| = dS∗

1
(v), after rearranging, we have |E(S∗

1 −v)|
|S∗

1 −v| >
|E(S∗

1)|
|S∗

1 |
. Multiplying through

by 2, we obtain M1(S∗
1 − v) > M1(S∗

1), contradicting the optimality of S∗
1 .

Thus, we have

Mp(S∗
1) ≥M−∞(S∗

1) ≥ 1
2M∗

1 ≥
1
2M∗

p

where the first and last inequality are by Proposition 11 and the second inequality is
via (3). ◀

▶ Remark 16. We described two algorithms that achieve an approximation factor of 1
2 . Would

returning the best among the sets returned by the two algorithms achieve a factor that is
better than 1

2? In the full version, we construct a non-trivial family of instances on which
both algorithms have an approximation factor of at most 1

2 . We emphasize that we seek
non-trivial instances – in particular, instances in which the optimum value is arbitrary (i.e.,
grows) and is not a fixed constant.

5 Conclusion

maxcore and DSG are polynomial-time solvable densest subgraph problems with numerous
applications. p-mean DSG, introduced by Veldt, Benson, and Kleinberg [47], captures both
these special cases and provides a unified way to generate subgraphs with different density
properties. p-mean DSG is polynomial-time solvable for p = −∞ and for p ≥ 1. In this
work, we addressed the complexity and algorithmic aspects of the problem for p ∈ (−∞, 1).

APPROX/RANDOM 2024

9:14 On the Generalized Mean Densest Subgraph Problem: Complexity and Algorithms

We showed that p-mean DSG is NP-hard for p ∈ (−∞, 1) and weighted p-mean DSG is
APX-hard for every fixed constant p ∈ (0, 1). Our hardness results motivate the need for
approximation algorithms for p ∈ (−∞, 1). We gave a simple 1/2-approximation for p-mean
DSG for all p ∈ (−∞, 1). Our approximation algorithms also extend to weighted p-mean
DSG with the same approximation guarantee in a natural manner.

There are two interesting directions for future work. Firstly, is p-mean DSG (or
weighted p-mean DSG) APX-hard for every p ∈ (−∞, 1)? Our APX-hardness results
hold for every fixed constant p ∈ (0, 1). Extending our approach to show APX-hardness
for fixed constant p ∈ (−∞, 0) requires extending the proof of Theorem 10 to p < 0. The
technical barrier to extending is the third case in the proof. Secondly, can we improve the
approximability of p-mean DSG for p ∈ (−∞, 1)? In contrast to the densest subgraph
problem, the non-linearity of the objective function of p-mean DSG makes it difficult to
develop mathematical programming relaxations. We leave it here as an interesting open
problem.

References
1 Reid Andersen and Kumar Chellapilla. Finding dense subgraphs with size bounds. In

International Workshop on Algorithms and Models for the Web-Graph, pages 25–37. Springer,
2009.

2 Albert Angel, Nick Koudas, Nikos Sarkas, Divesh Srivastava, Michael Svendsen, and Srikanta
Tirthapura. Dense subgraph maintenance under streaming edge weight updates for real-time
story identification. The VLDB journal, 23:175–199, 2014.

3 Yuichi Asahiro, Kazuo Iwama, Hisao Tamaki, and Takeshi Tokuyama. Greedily finding a
dense subgraph. Journal of Algorithms, 34(2):203–221, 2000.

4 Gary D Bader and Christopher WV Hogue. An automated method for finding molecular
complexes in large protein interaction networks. BMC bioinformatics, 4(1):1–27, 2003.

5 Bahman Bahmani, Ashish Goel, and Kamesh Munagala. Efficient primal-dual graph algorithms
for MapReduce. In International Workshop on Algorithms and Models for the Web-Graph,
pages 59–78. Springer, 2014.

6 Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Uriel Feige, and Aravindan Vijayaraghavan.
Detecting high log-densities: an o(n1/4) approximation for densest k-subgraph. In Proceedings
of the forty-second ACM symposium on Theory of computing, pages 201–210, 2010.

7 Digvijay Boob, Yu Gao, Richard Peng, Saurabh Sawlani, Charalampos Tsourakakis, Di Wang,
and Junxing Wang. Flowless: Extracting densest subgraphs without flow computations. In
Proceedings of The Web Conference 2020, pages 573–583, 2020.

8 Digvijay Boob, Saurabh Sawlani, and Di Wang. Faster width-dependent algorithm for mixed
packing and covering LPs. Advances in Neural Information Processing Systems 32 (NIPS
2019), 2019.

9 Moses Charikar. Greedy approximation algorithms for finding dense components in a graph.
In International Workshop on Approximation Algorithms for Combinatorial Optimization,
pages 84–95. Springer, 2000.

10 Chandra Chekuri, Kent Quanrud, and Manuel R Torres. Densest subgraph: Supermodularity,
iterative peeling, and flow. In Proceedings of the 2022 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1531–1555. SIAM, 2022.

11 Chandra Chekuri and Manuel R. Torres. On the generalized mean densest subgraph problem:
Complexity and algorithms. CoRR, abs/2306.02172, 2023. doi:10.48550/arXiv.2306.02172.

12 Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and
Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. In 2022
IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pages 612–623,
2022.

https://doi.org/10.48550/arXiv.2306.02172

K. Chandrasekaran, C. Chekuri, M. R. Torres, and W. Zhu 9:15

13 Maximilien Danisch, T.-H. Hubert Chan, and Mauro Sozio. Large scale density-friendly graph
decomposition via convex programming. In Proceedings of the 26th International Conference
on World Wide Web, pages 233–242, 2017.

14 Yon Dourisboure, Filippo Geraci, and Marco Pellegrini. Extraction and classification of dense
communities in the web. In Proceedings of the 16th international conference on World Wide
Web, pages 461–470, 2007.

15 Xiaoxi Du, Ruoming Jin, Liang Ding, Victor E Lee, and John H Thornton Jr. Migration
motif: a spatial-temporal pattern mining approach for financial markets. In Proceedings of the
15th ACM SIGKDD international conference on knowledge discovery and data mining, pages
1135–1144, 2009.

16 Martin Farach-Colton and Meng-Tsung Tsai. Computing the degeneracy of large graphs. In
LATIN 2014: Theoretical Informatics: 11th Latin American Symposium, Montevideo, Uruguay,
March 31–April 4, 2014. Proceedings 11, pages 250–260. Springer, 2014.

17 András Faragó. A general tractable density concept for graphs. Mathematics in Computer
Science, 1(4):689–699, 2008.

18 András Faragó and Zohre R Mojaveri. In search of the densest subgraph. Algorithms, 12(8):157,
2019.

19 Uriel Feige, David Peleg, and Guy Kortsarz. The dense k-subgraph problem. Algorithmica,
29(3):410–421, 2001.

20 Eugene Fratkin, Brian T Naughton, Douglas L Brutlag, and Serafim Batzoglou. MotifCut:
regulatory motifs finding with maximum density subgraphs. Bioinformatics, 22(14):e150–e157,
2006.

21 Giorgio Gallo, Michael D Grigoriadis, and Robert E Tarjan. A fast parametric maximum flow
algorithm and applications. SIAM Journal on Computing, 18(1):30–55, 1989.

22 Michael R Garey and David S Johnson. Computers and intractability, volume 174. freeman
San Francisco, 1979.

23 Naveen Garg, Sanjeev Khanna, and Amit Kumar. Hardness of approximation for orienteering
with multiple time windows. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 2977–2990. SIAM, 2021.

24 David Gibson, Ravi Kumar, and Andrew Tomkins. Discovering large dense subgraphs in
massive graphs. In Proceedings of the 31st international conference on Very large data bases,
pages 721–732, 2005.

25 Aristides Gionis and Charalampos E Tsourakakis. Dense subgraph discovery: KDD 2015
tutorial. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 2313–2314, 2015.

26 Anupam Gupta, Euiwoong Lee, Jason Li, Pasin Manurangsi, and Michał Włodarczyk. Losing
treewidth by separating subsets. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1731–1749. SIAM, 2019.

27 Elfarouk Harb, Kent Quanrud, and Chandra Chekuri. Faster and scalable algorithms for
densest subgraph and decomposition. In Advances in Neural Information Processing Systems,
2022.

28 Elfarouk Harb, Kent Quanrud, and Chandra Chekuri. Convergence to lexicographically
optimal base in a (contra)polymatroid and applications to densest subgraph and tree packing.
In 31st Annual European Symposium on Algorithms, volume 274, pages 56:1–56:17, 2023.

29 Haiyan Hu, Xifeng Yan, Yu Huang, Jiawei Han, and Xianghong Jasmine Zhou. Mining coherent
dense subgraphs across massive biological networks for functional discovery. Bioinformatics,
21(suppl_1):i213–i221, 2005.

30 Shuguang Hu, Xiaowei Wu, and TH Hubert Chan. Maintaining densest subsets efficiently in
evolving hypergraphs. In Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management, pages 929–938, 2017.

APPROX/RANDOM 2024

9:16 On the Generalized Mean Densest Subgraph Problem: Complexity and Algorithms

31 Yingsheng Ji, Zheng Zhang, Xinlei Tang, Jiachen Shen, Xi Zhang, and Guangwen Yang.
Detecting cash-out users via dense subgraphs. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 687–697, 2022.

32 Viggo Kann. Maximum bounded 3-dimensional matching is max snp-complete. Information
Processing Letters, 37(1):27–35, 1991.

33 Yasushi Kawase and Atsushi Miyauchi. The densest subgraph problem with a convex/concave
size function. Algorithmica, 80(12):3461–3480, 2018.

34 Ravi Kumar, Jasmine Novak, and Andrew Tomkins. Structure and evolution of online social
networks. In Proceedings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 611–617, 2006.

35 Tommaso Lanciano, Francesco Bonchi, and Aristides Gionis. Explainable classification of brain
networks via contrast subgraphs. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 3308–3318, 2020.

36 Tommaso Lanciano, Atsushi Miyauchi, Adriano Fazzone, and Francesco Bonchi. A survey on
the densest subgraph problem and its variants. arXiv preprint arXiv:2303.14467, 2023.

37 Victor E Lee, Ning Ruan, Ruoming Jin, and Charu Aggarwal. A survey of algorithms for
dense subgraph discovery. In Managing and Mining Graph Data, pages 303–336. Springer,
2010.

38 Fragkiskos D Malliaros, Christos Giatsidis, Apostolos N Papadopoulos, and Michalis Vazirgi-
annis. The core decomposition of networks: Theory, algorithms and applications. The VLDB
Journal, 29:61–92, 2020.

39 Pasin Manurangsi. Almost-polynomial ratio ETH-hardness of approximating densest k-
subgraph. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, pages 954–961, 2017.

40 Jean-Claude Picard and Maurice Queyranne. A network flow solution to some nonlinear 0-1
programming problems, with applications to graph theory. Networks, 12(2):141–159, 1982.

41 Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer
Science & Business Media, 2003.

42 Victor Spirin and Leonid A Mirny. Protein complexes and functional modules in molecular
networks. Proceedings of the national Academy of sciences, 100(21):12123–12128, 2003.

43 Luca Trevisan. Non-approximability results for optimization problems on bounded degree
instances. In Proceedings of the thirty-third annual ACM symposium on Theory of computing,
pages 453–461, 2001.

44 Charalampos Tsourakakis. The k-clique densest subgraph problem. In Proceedings of the 24th
international conference on world wide web, pages 1122–1132, 2015.

45 Charalampos Tsourakakis and Tianyi Chen. Dense subgraph discovery: Theory
and application (Tutoral at SDM 2021), 2021. URL: https://tsourakakis.com/
dense-subgraph-discovery-theory-and-applications-tutorial-sdm-2021/.

46 Charalampos E Tsourakakis. A novel approach to finding near-cliques: The triangle-densest
subgraph problem. arXiv preprint arXiv:1405.1477, 2014.

47 Nate Veldt, Austin R Benson, and Jon Kleinberg. The generalized mean densest subgraph
problem. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &
Data Mining, pages 1604–1614, 2021.

48 Si Zhang, Dawei Zhou, Mehmet Yigit Yildirim, Scott Alcorn, Jingrui He, Hasan Davulcu, and
Hanghang Tong. Hidden: hierarchical dense subgraph detection with application to financial
fraud detection. In Proceedings of the 2017 SIAM International Conference on Data Mining,
pages 570–578. SIAM, 2017.

https://tsourakakis.com/dense-subgraph-discovery-theory-and-applications-tutorial-sdm-2021/
https://tsourakakis.com/dense-subgraph-discovery-theory-and-applications-tutorial-sdm-2021/

K. Chandrasekaran, C. Chekuri, M. R. Torres, and W. Zhu 9:17

A Missing proofs for NP-hardness

We include the missing proofs for p ∈ (0, 1) from Section 2 here.

A.1 Proof of Theorem 2
▶ Theorem 2. exact ℓ-cover is NP-complete for every integer ℓ ≥ 3.

Proof. We recall that exact 3-cover is NP-complete [22]. We reduce exact ℓ-cover to
exact (ℓ+1)-cover for ℓ ≥ 3. Consider an instance of exact ℓ-cover with ground set U of
cardinality ℓn and a family S ⊆ 2U of subsets each of which has cardinality ℓ. Let x1, . . . , xn

be n new elements that are not in U . We create an instance of exact (ℓ + 1)-cover as
follows:

Let U ′ := U ∪ {x1, . . . , xn} be the ground set. We have that |U ′| = |U|+ n = (ℓ + 1) · n.
Let S ′ := {S ∪ {xi} : S ∈ S, 1 ≤ i ≤ n}. Each set in S ′ has cardinality ℓ + 1.

If there exists an exact ℓ-cover {Si1 , Si2 , . . . , Sin
} of U , then {Si1 ∪ {x1}, Si2 ∪

{x2}, . . . , Sin ∪ {xn}} is an exact (ℓ + 1)-cover of U . If an exact ℓ-cover of U does not
exist, then an exact (ℓ + 1)-cover of U ′ does not exist. Hence, NP-completeness of exact
3-cover implies NP-completeness of exact ℓ-cover for every ℓ ≥ 3. ◀

A.2 Technical Lemmas for Hardness Results
The following inequalities will be used when proving the hardness results.

▶ Lemma 17. Let p, x ∈ (0, 1). Then,
1. (1− x)p < 1− px,
2. (1− x)p < 1− px− p(1−p)

2 x2,
3. (1 + x)p < 1 + px, and
4. (1 + x)p < 1 + px− p(1−p)

2 x2 + p(1−p)(2−p)
6 x3.

Proof. For the first inequality, let f1(x) := (1− x)p − (1− px). Then, f ′
1(x) = p · (1− (1−

x)p−1) < 0, which implies that f1(x) < f1(0) = 0.
For the second inequality, let f2(x) := (1 − x)p − (1 − px − p(1−p)

2 x2). Then, f ′
2(x) =

p · (1 + (1 − p)x − (1 − x)p−1) and f ′′
2 (x) = p · (1 − p) · (1 − (1 − x)p−2) < 0. Hence,

f ′
2(x) < f ′

2(0) = 0, which implies that f2(x) < f2(0) = 0.
For the third inequality, let f3(x) := (1+x)p−(1+px). Then, f ′

3(x) = p·((1+x)p−1−1) < 0,
which implies that f3(x) < f3(0) = 0.

For the fourth inequality, let f4(x) := (1 + x)p − (1 + px − p(1−p)
2 x2 + p(1−p)(2−p)

6 x3).
Then, f ′

4(x) = p · ((1 + x)p−1 − (1− (1− p)x + (1−p)(2−p)
2 x2)). Also, f ′′

4 (x) = p · (1− p) · (1−
(2− p)x− (1 + x)p−2) and f ′′′

4 (x) = p(1− p)(2− p) · ((1 + x)p−3 − 1) < 0, which implies that
f ′′

4 (x) < f ′′
4 (0) = 0. Thus, f ′

4(x) < f ′
4(0) = 0 and f4(x) < f4(0) = 0. ◀

A.3 Proof of Lemma 5
Lemma 5 follows from the following stronger lemma. The stronger version will be useful in
proving APX-hardness.

▶ Lemma 18. For every p ∈ (0, 1), there exists a positive value η > 0 and an integer ℓ ≥ 3,
both of which depend only on p, such that the following two inequalities hold:(

1− 1
2ℓ

)p

< 1− 1− 1/2p

ℓ + 1 − η and
(

1 + 1
2ℓ

)p

< 1 + 1− 1/2p

ℓ + 1 − η.

APPROX/RANDOM 2024

9:18 On the Generalized Mean Densest Subgraph Problem: Complexity and Algorithms

Proof. Set ℓ0 := p·2p−1

2p−p·2p−1−1 . Then, we have p
2ℓ0

= 1−1/2p

ℓ0+1 . We note that

ℓ0 − 5
2 = p · 2p−1

2p − p · 2p−1 − 1 − 5
2 =

21−p + 7
5 p − 2

2p − p · 2p−1 − 1 · 5
2 · 2p−1 =

21−p − 7
5 (1 − p) − 3

5
2p − p · 2p−1 − 1 · 5

2 · 2p−1 >0.

The last inequality holds since 2x − 7
5 x − 3

5 is a convex function and evaluates to zero at
x = 1 with negative derivative. This implies that 21−p − 7

5 (1− p)− 3
5 > 0. Consequently,

ℓ0 >
5
2 . (4)

We also note that

2− (1− p)ℓ0 = 2− (1− p) · p · 2p−1

2p − p · 2p−1 − 1 (since ℓ0 = p · 2p−1

2p − p · 2p−1 − 1)

=
2p · (2− 3

2 p + 1
2 p2 − 21−p)

2p − p · 2p−1 − 1

=
2p · (1 + (1− p) + 1

2 (−p)(1− p)− 21−p)
2p − p · 2p−1 − 1 < 0.

The last inequality above is because 2x > 1 + x + 1
2 x(x− 1) for all x ∈ (0, 1). This implies

that

(1− p)ℓ0 > 2. (5)

Hence, if we can prove that the two inequalities of the lemma hold for every ℓ ∈
[ℓ0 − 1

2 , ℓ0 + 1
2], then it implies the lemma. We define two functions f1 : (0, +∞)→ R and

f2 : (0, +∞)→ R as

f1(ℓ) = (1− 1
2ℓ

)p + 1− 1/2p

ℓ + 1 − 1 and f2(ℓ) = (1 + 1
2ℓ

)p − 1− 1/2p

ℓ + 1 − 1.

By setting

η := 1
2 ·min

{ 1
2 p · (2ℓ0 + 3)

ℓ0 · (2ℓ0 + 3) · (2ℓ0 + 1)2 · ((1− p)ℓ0 − 2), p

2ℓ0 − 1 ·
16ℓ0 − 16

6ℓ0(2ℓ0 + 1)(2ℓ0 − 1)2

}
,

which is larger than 0 by inequalities (4) and (5), we will prove that f1(ℓ) < −η and
f2(ℓ) < −η for every ℓ ∈ [ℓ0 − 1

2 , ℓ0 + 1
2]. We note that

η <
1
2 p · (2ℓ0 + 3)

ℓ0 · (2ℓ0 + 3) · (2ℓ0 + 1)2 · ((1− p)ℓ0 − 2) and (6)

η <
p

2ℓ0 − 1 ·
16ℓ0 − 16

6ℓ0(2ℓ0 + 1)(2ℓ0 − 1)2 . (7)

K. Chandrasekaran, C. Chekuri, M. R. Torres, and W. Zhu 9:19

By differentiating f1 with respect to ℓ, we have

d

dℓ
f1(ℓ) = p

2ℓ2 · (1− 1
2ℓ)1−p

− 1− 1/2p

(ℓ + 1)2

=
p · (ℓ + 1)2 − 2(1− 1/2p)ℓ2 · (1− 1

2ℓ)1−p

2ℓ2 · (1− 1
2ℓ)1−p · (ℓ + 1)2

= 2(1− 1/2p) · ℓ2

2ℓ2 · (1− 1
2ℓ)1−p · (ℓ + 1)2 ·

(
p

2(1− 1/2p) · (1 + 1
ℓ

)2 − (1− 1
2ℓ

)1−p

)
= 2(1− 1/2p) · ℓ2

2ℓ2 · (1− 1
2ℓ)1−p · (ℓ + 1)2 ·

(
ℓ0

ℓ0 + 1 · (1 + 1
ℓ

)2 − (1− 1
2ℓ

)1−p

)
(since p

2ℓ0
= 1− 1/2p

ℓ0 + 1)

>
2(1− 1/2p) · ℓ2

2ℓ2 · (1− 1
2ℓ)1−p · (ℓ + 1)2 ·

(
ℓ0

ℓ0 + 1 · (1 + 1
ℓ

)2 − (1− 1− p

2ℓ
)
)

(since (1− 1
2ℓ

)1−p < 1− 1− p

2ℓ
according to Lemma 17)

= 2(1− 1/2p) · ℓ2

2ℓ2 · (1− 1
2ℓ)1−p · (ℓ + 1)2 ·

ℓ0 · (ℓ + 1)2 − (ℓ0 + 1) · ℓ2 + 1−p
2 (ℓ0 + 1) · ℓ

(ℓ0 + 1) · ℓ2

>
2(1− 1/2p) · ℓ2

2ℓ2 · (1− 1
2ℓ)1−p · (ℓ + 1)2 ·

ℓ0 · (ℓ + 1)2 − (ℓ0 + 1) · ℓ2

(ℓ0 + 1) · ℓ2

= 2(1− 1/2p) · ℓ2

2ℓ2 · (1− 1
2ℓ)1−p · (ℓ + 1)2 ·

ℓ0(2ℓ + 1)− ℓ2

(ℓ0 + 1) · ℓ2

≥ 2(1− 1/2p) · ℓ2

2ℓ2 · (1− 1
2ℓ)1−p · (ℓ + 1)2 ·

(ℓ− 1
2)(2ℓ + 1)− ℓ2

(ℓ0 + 1) · ℓ2 (since ℓ0 ≥ ℓ− 1
2)

= 2(1− 1/2p) · ℓ2

2ℓ2 · (1− 1
2ℓ)1−p · (ℓ + 1)2 ·

ℓ2 − 1
2

(ℓ0 + 1) · ℓ2

> 0. (since ℓ ≥ ℓ0 −
1
2 > 2 according to inequality (4))

Hence, the function f1(ℓ) is strictly increasing for ℓ ∈ [ℓ0 − 1
2 , ℓ0 + 1

2]. This implies that

f1(ℓ) ≤ f1(ℓ0 + 1
2) = (1− 1

2ℓ0 + 1)p + 1− 1/2p

ℓ0 + 3
2
− 1

=
ℓ0+1
2ℓ0
· p

ℓ0 + 3
2

+ (1− 1
2ℓ0 + 1)p − 1 (since p

2ℓ0
= 1− 1/2p

ℓ0 + 1)

<
p · (ℓ0 + 1)

ℓ0 · (2ℓ0 + 3) −
p

2ℓ0 + 1 −
p(1− p)

2 · 1
(2ℓ0 + 1)2

(since (1− x)p < 1− px− p(1− p)
2 x2 according to Lemma 17)

= p ·
(ℓ0 + 1)(2ℓ0 + 1)2 − ℓ0(2ℓ0 + 3)(2ℓ0 + 1)− 1−p

2 ℓ0(2ℓ0 + 3)
ℓ0 · (2ℓ0 + 3) · (2ℓ0 + 1)2

= p ·
(2ℓ0 + 1)− 1−p

2 ℓ0(2ℓ0 + 3)
ℓ0 · (2ℓ0 + 3) · (2ℓ0 + 1)2

<
1
2 p · (2ℓ0 + 3)

ℓ0 · (2ℓ0 + 3) · (2ℓ0 + 1)2 · (2− (1− p)ℓ0)

< −η. (by inequality (6))

APPROX/RANDOM 2024

9:20 On the Generalized Mean Densest Subgraph Problem: Complexity and Algorithms

By differentiating f2 with respect to ℓ, we have

d

dℓ
f2(ℓ) = − p

2ℓ2 · (1 + 1
2ℓ)1−p

+ 1− 1/2p

(ℓ + 1)2

=
−p · (ℓ + 1)2 + 2(1− 1/2p)ℓ2 · (1 + 1

2ℓ)1−p

2ℓ2 · (1 + 1
2ℓ)1−p · (ℓ + 1)2

= 2(1− 1/2p) · ℓ2

2ℓ2 · (1 + 1
2ℓ)1−p · (ℓ + 1)2 ·

(
− p

2(1− 1/2p) · (1 + 1
ℓ

)2 + (1 + 1
2ℓ

)1−p

)
= 2(1− 1/2p) · ℓ2

2ℓ2 · (1 + 1
2ℓ)1−p · (ℓ + 1)2 ·

(
− ℓ0

ℓ0 + 1 · (1 + 1
ℓ

)2 + (1 + 1
2ℓ

)1−p

)
(since p

2ℓ0
= 1− 1/2p

ℓ0 + 1)

<
2(1− 1/2p) · ℓ2

2ℓ2 · (1 + 1
2ℓ)1−p · (ℓ + 1)2 ·

(
− ℓ0

ℓ0 + 1 · (1 + 1
ℓ

)2 + (1 + 1− p

2ℓ
)
)

(since (1 + 1
2ℓ

)1−p < 1 + 1− p

2ℓ
according to Lemma 17)

= 2(1− 1/2p) · ℓ2

2ℓ2 · (1 + 1
2ℓ)1−p · (ℓ + 1)2 ·

(ℓ0 + 1) · ℓ2 + 1−p
2 (ℓ0 + 1) · ℓ− ℓ0 · (ℓ + 1)2

(ℓ0 + 1) · ℓ2

<
2(1− 1/2p) · ℓ2

2ℓ2 · (1 + 1
2ℓ)1−p · (ℓ + 1)2 ·

(ℓ0 + 1) · ℓ2 + 1
2 (ℓ0 + 1) · ℓ− ℓ0 · (ℓ + 1)2

(ℓ0 + 1) · ℓ2

= 2(1− 1/2p) · ℓ2

2ℓ2 · (1 + 1
2ℓ)1−p · (ℓ + 1)2 ·

ℓ2 − 3
2 ℓ0ℓ + 1

2 ℓ− ℓ0

(ℓ0 + 1) · ℓ2

≤ 2(1− 1/2p) · ℓ2

2ℓ2 · (1 + 1
2ℓ)1−p · (ℓ + 1)2 ·

ℓ(ℓ0 + 1
2)− 3

2 ℓ0ℓ + 1
2 ℓ− ℓ0

(ℓ0 + 1) · ℓ2 (since ℓ ≤ ℓ0 + 1
2)

= 2(1− 1/2p) · ℓ2

2ℓ2 · (1 + 1
2ℓ)1−p · (ℓ + 1)2 ·

− 1
2 ℓ0ℓ + ℓ− ℓ0

(ℓ0 + 1) · ℓ2

≤ 2(1− 1/2p) · ℓ2

2ℓ2 · (1 + 1
2ℓ)1−p · (ℓ + 1)2 ·

− 1
2 ℓ0ℓ + 1

2
(ℓ0 + 1) · ℓ2 (since ℓ ≤ ℓ0 + 1

2)

< 0. (since ℓ0 >
5
2 and ℓ ≥ ℓ0 −

1
2 > 2 according to inequality (4))

Hence, function f2(ℓ) is strictly decreasing for ℓ ∈ [ℓ0 − 1
2 , ℓ0 + 1

2]. This implies that

f2(ℓ) ≤ f2(ℓ0 −
1
2) = (1 + 1

2ℓ0 − 1)p − 1− 1/2p

ℓ0 + 1
2
− 1

= −
ℓ0+1
2ℓ0
· p

ℓ0 + 1
2

+ (1 + 1
2ℓ0 − 1)p − 1 (since p

2ℓ0
= 1− 1/2p

ℓ0 + 1)

< −
ℓ0+1
2ℓ0
· p

ℓ0 + 1
2

+
(

1 + p

2ℓ0 − 1 −
p(1− p)

2(2ℓ0 − 1)2 + p(1− p)(2− p)
6(2ℓ0 − 1)3

)
− 1

(since (1 + x)p < 1 + px− p(1− p)
2 x2 + p(1− p)(2− p)

6 x3

according to Lemma 17)

= p

2ℓ0 − 1 ·
(

1
ℓ0(2ℓ0 + 1) −

1− p

2(2ℓ0 − 1) + (1− p)(2− p)
6(2ℓ0 − 1)2

)

K. Chandrasekaran, C. Chekuri, M. R. Torres, and W. Zhu 9:21

<
p

2ℓ0 − 1 ·
(

1
ℓ0(2ℓ0 + 1) −

1− p

2(2ℓ0 − 1) + 1− p

3(2ℓ0 − 1)2

)
= p

2ℓ0 − 1 ·
6(2ℓ0 − 1)2 − (1− p) · (3ℓ0(2ℓ0 + 1)(2ℓ0 − 1)− 2ℓ0(2ℓ0 + 1))

6ℓ0(2ℓ0 + 1)(2ℓ0 − 1)2

= p

2ℓ0 − 1 ·
6(2ℓ0 − 1)2 − (1− p)ℓ0 · (12ℓ2

0 − 4ℓ0 − 5)
6ℓ0(2ℓ0 + 1)(2ℓ0 − 1)2

<
p

2ℓ0 − 1 ·
6(2ℓ0 − 1)2 − 2 · (12ℓ2

0 − 4ℓ0 − 5)
6ℓ0(2ℓ0 + 1)(2ℓ0 − 1)2

(since (1− p)ℓ0 > 2 according to inequality (5)
and 12ℓ2

0 − 4ℓ0 − 5 = (6ℓ0 − 5)(2ℓ0 + 1) > 0)

= p

2ℓ0 − 1 ·
−16ℓ0 + 16

6ℓ0(2ℓ0 + 1)(2ℓ0 − 1)2

< −η. (by inequality (7))

Thus, for every ℓ ∈ [ℓ0 − 1
2 , ℓ0 + 1

2], we have f1(ℓ) < −η and f2(ℓ) < −η. ◀

APPROX/RANDOM 2024

	1 Introduction
	1.1 Our Results
	1.2 Other Related Work

	2 NP-hardness
	2.1 Reduction from exact ell-cover
	2.2 NP-hardness for pin (0,1)

	3 APX-hardness for pin (0,1)
	4 Approximation Algorithms
	5 Conclusion
	A Missing proofs for NP-hardness
	A.1 Proof of Theorem 2
	A.2 Technical Lemmas for Hardness Results
	A.3 Proof of Lemma 5

