
Approximation, Randomization,
and Combinatorial Optimization.
Algorithms and Techniques

APPROX/RANDOM 2024, August 28–30, 2024,
London School of Economics, London, UK

Edited by

Amit Kumar
Noga Ron-Zewi

LIPIcs – Vo l . 317 – APPROX/RANDOM 2024 www.dagstuh l .de/ l ip i c s

Editors

Amit Kumar
Indian Institute of Technology Delhi, New Delhi, India
amit.kumar@cse.iitd.ac.in

Noga Ron-Zewi
University of Haifa, Israel
nronzewi@ds.haifa.ac.il

ACM Classification 2012
Theory of computation

ISBN 978-3-95977-348-5

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-348-5.

Publication date
September, 2024

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.APPROX/RANDOM.2024.0

ISBN 978-3-95977-348-5 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0002-3965-6627
mailto:amit.kumar@cse.iitd.ac.in
https://orcid.org/0000-0002-8416-893X
mailto:nronzewi@ds.haifa.ac.il
https://www.dagstuhl.de/dagpub/978-3-95977-348-5
https://www.dagstuhl.de/dagpub/978-3-95977-348-5
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.0
https://www.dagstuhl.de/dagpub/978-3-95977-348-5
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Roberto Di Cosmo (Inria and Université Paris Cité, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University, Brno, CZ)
Meena Mahajan (Chair, Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (Nanyang Technological University, SG)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)
Pierre Senellart (ENS, Université PSL, Paris, FR)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

APPROX/RANDOM 2024

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Amit Kumar and Noga Ron-Zewi . 0:xi

Program Committees
. 0:xiii

Subreviewers
. 0:xv

List of Authors
. 0:xix

APPROX

A (3/2 + 1/e)-Approximation Algorithm for Ordered TSP
Susanne Armbruster, Matthias Mnich, and Martin Nägele . 1:1–1:18

Online Time-Windows TSP with Predictions
Shuchi Chawla and Dimitris Christou . 2:1–2:21

Degrees and Network Design: New Problems and Approximations
Michael Dinitz, Guy Kortsarz, and Shi Li . 3:1–3:17

Hybrid k-Clustering: Blending k-Median and k-Center
Fedor V. Fomin, Petr A. Golovach, Tanmay Inamdar, Saket Saurabh, and
Meirav Zehavi . 4:1–4:19

Asynchronous Majority Dynamics on Binomial Random Graphs
Divyarthi Mohan and Paweł Prałat . 5:1–5:20

Bipartizing (Pseudo-)Disk Graphs: Approximation with a Ratio Better than 3
Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Jie Xue, and Meirav Zehavi . . 6:1–6:14

A Logarithmic Approximation of Linearly-Ordered Colourings
Johan Håstad, Björn Martinsson, Tamio-Vesa Nakajima, and Stanislav Živný 7:1–7:6

Speed-Robust Scheduling Revisited
Josef Minařík and Jiří Sgall . 8:1–8:20

On the Generalized Mean Densest Subgraph Problem: Complexity and Algorithms
Karthekeyan Chandrasekaran, Chandra Chekuri, Manuel R. Torres, and
Weihao Zhu . 9:1–9:21

Improved Online Load Balancing with Known Makespan
Martin Böhm, Matej Lieskovský, Sören Schmitt, Jiří Sgall, and Rob van Stee 10:1–10:21

On the NP-Hardness Approximation Curve for Max-2Lin(2)
Björn Martinsson . 11:1–11:38

Universal Optimization for Non-Clairvoyant Subadditive Joint Replenishment
Tomer Ezra, Stefano Leonardi, Michał Pawłowski, Matteo Russo, and
Seeun William Umboh . 12:1–12:24

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM
2024).
Editors: Amit Kumar and Noga Ron-Zewi

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

The Average-Value Allocation Problem
Kshipra Bhawalkar, Zhe Feng, Anupam Gupta, Aranyak Mehta, David Wajc,
and Di Wang . 13:1–13:23

Scheduling on a Stochastic Number of Machines
Moritz Buchem, Franziska Eberle, Hugo Kooki Kasuya Rosado, Kevin Schewior,
and Andreas Wiese . 14:1–14:15

Distributional Online Weighted Paging with Limited Horizon
Yaron Fairstein, Joseph (Seffi) Naor, and Tomer Tsachor . 15:1–15:15

Weighted Matching in the Random-Order Streaming and Robust Communication
Models

Diba Hashemi and Weronika Wrzos-Kaminska . 16:1–16:26

Competitive Query Minimization for Stable Matching with One-Sided Uncertainty
Evripidis Bampis, Konstantinos Dogeas, Thomas Erlebach, Nicole Megow,
Jens Schlöter, and Amitabh Trehan . 17:1–17:21

A Constant Factor Approximation for Directed Feedback Vertex Set in Graphs
of Bounded Genus

Hao Sun . 18:1–18:20

More Basis Reduction for Linear Codes: Backward Reduction, BKZ, Slide
Reduction, and More

Surendra Ghentiyala and Noah Stephens-Davidowitz . 19:1–19:22

Online k-Median with Consistent Clusters
Benjamin Moseley, Heather Newman, and Kirk Pruhs . 20:1–20:22

The Telephone k-Multicast Problem
Daniel Hathcock, Guy Kortsarz, and R. Ravi . 21:1–21:16

Scheduling Splittable Jobs on Configurable Machines
Matthew Casey, Rajmohan Rajaraman, David Stalfa, and Cheng Tan 22:1–22:20

On Instance-Optimal Algorithms for a Generalization of Nuts and Bolts and
Generalized Sorting

Mayank Goswami and Riko Jacob . 23:1–23:23

Learning-Augmented Maximum Independent Set
Vladimir Braverman, Prathamesh Dharangutte, Vihan Shah, and Chen Wang 24:1–24:18

Maximum Unique Coverage on Streams: Improved FPT Approximation Scheme
and Tighter Space Lower Bound

Philip Cervenjak, Junhao Gan, Seeun William Umboh, and Anthony Wirth 25:1–25:23

Improved Streaming Algorithm for the Klee’s Measure Problem and
Generalizations

Mridul Nandi, N. V. Vinodchandran, Arijit Ghosh, Kuldeep S. Meel,
Soumit Pal, and Sourav Chakraborty . 26:1–26:20

An EPTAS for Cardinality Constrained Multiple Knapsack via Iterative
Randomized Rounding

Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai . 27:1–27:17

Contents 0:vii

Rectangle Tiling Binary Arrays
Pratik Ghosal, Syed Mohammad Meesum, and Katarzyna Paluch 28:1–28:17

Approximation Algorithms for Correlated Knapsack Orienteering
David Alemán Espinosa and Chaitanya Swamy . 29:1–29:24

Greedy Heuristics and Linear Relaxations for the Random Hitting Set Problem
Gabriel Arpino, Daniil Dmitriev, and Nicolo Grometto . 30:1–30:22

RANDOM

The Expander Hitting Property When the Sets Are Arbitrarily Unbalanced
Amnon Ta-Shma and Ron Zadicario . 31:1–31:22

Near-Linear Time Samplers for Matroid Independent Sets with Applications
Xiaoyu Chen, Heng Guo, Xinyuan Zhang, and Zongrui Zou . 32:1–32:12

On the Amortized Complexity of Approximate Counting
Ishaq Aden-Ali, Yanjun Han, Jelani Nelson, and Huacheng Yu 33:1–33:17

Matrix Multiplication Reductions
Ashish Gola, Igor Shinkar, and Harsimran Singh . 34:1–34:15

Testing Intersectingness of Uniform Families
Ishay Haviv and Michal Parnas . 35:1–35:15

On the Houdré-Tetali Conjecture About an Isoperimetric Constant of Graphs
Lap Chi Lau and Dante Tjowasi . 36:1–36:18

Nearly Optimal Bounds for Sample-Based Testing and Learning of k-Monotone
Functions

Hadley Black . 37:1–37:23

Approximating the Number of Relevant Variables in a Parity Implies Proper
Learning

Nader H. Bshouty and George Haddad . 38:1–38:15

The Number of Random 2-SAT Solutions Is Asymptotically Log-Normal
Arnab Chatterjee, Amin Coja-Oghlan, Noela Müller, Connor Riddlesden, Maurice
Rolvien, Pavel Zakharov, and Haodong Zhu . 39:1–39:15

Private Counting of Distinct Elements in the Turnstile Model and Extensions
Monika Henzinger, A. R. Sricharan, and Teresa Anna Steiner 40:1–40:21

Hilbert Functions and Low-Degree Randomness Extractors
Alexander Golovnev, Zeyu Guo, Pooya Hatami, Satyajeet Nagargoje, and
Chao Yan . 41:1–41:24

Matrix Multiplication Verification Using Coding Theory
Huck Bennett, Karthik Gajulapalli, Alexander Golovnev, and Evelyn Warton 42:1–42:13

Interactive Coding with Unbounded Noise
Eden Fargion, Ran Gelles, and Meghal Gupta . 43:1–43:16

Optimal Pseudorandom Generators for Low-Degree Polynomials over Moderately
Large Fields

Ashish Dwivedi, Zeyu Guo, and Ben Lee Volk . 44:1–44:19

APPROX/RANDOM 2024

0:viii Contents

Refining the Adaptivity Notion in the Huge Object Model
Tomer Adar and Eldar Fischer . 45:1–45:16

Support Testing in the Huge Object Model
Tomer Adar, Eldar Fischer, and Amit Levi . 46:1–46:16

Upper Bounds on the 2-Colorability Threshold of Random d-Regular k-Uniform
Hypergraphs for k ≥ 3

Evan Chang, Neel Kolhe, and Youngtak Sohn . 47:1–47:23

Improved Bounds for High-Dimensional Equivalence and Product Testing Using
Subcube Queries

Tomer Adar, Eldar Fischer, and Amit Levi . 48:1–48:21

Parallelising Glauber Dynamics
Holden Lee . 49:1–49:24

Towards Simpler Sorting Networks and Monotone Circuits for Majority
Natalia Dobrokhotova-Maikova, Alexander Kozachinskiy, and
Vladimir Podolskii . 50:1–50:18

Consequences of Randomized Reductions from SAT to Time-Bounded
Kolmogorov Complexity

Halley Goldberg and Valentine Kabanets . 51:1–51:19

Trace Reconstruction from Local Statistical Queries
Xi Chen, Anindya De, Chin Ho Lee, and Rocco A. Servedio . 52:1–52:24

When Do Low-Rate Concatenated Codes Approach The Gilbert–Varshamov
Bound?

Dean Doron, Jonathan Mosheiff, and Mary Wootters . 53:1–53:12

Parallel Repetition of k-Player Projection Games
Amey Bhangale, Mark Braverman, Subhash Khot, Yang P. Liu, and
Dor Minzer . 54:1–54:16

Faster Algorithms for Schatten-p Low Rank Approximation
Praneeth Kacham and David P. Woodruff . 55:1–55:19

Fast and Slow Mixing of the Kawasaki Dynamics on Bounded-Degree Graphs
Aiya Kuchukova, Marcus Pappik, Will Perkins, and Corrine Yap 56:1–56:24

Stochastic Distance in Property Testing
Uri Meir, Gregory Schwartzman, and Yuichi Yoshida . 57:1–57:13

Expanderizing Higher Order Random Walks
Vedat Levi Alev and Shravas Rao . 58:1–58:24

Ramsey Properties of Randomly Perturbed Hypergraphs
Elad Aigner-Horev, Dan Hefetz, and Mathias Schacht . 59:1–59:18

Nearly Optimal Local Algorithms for Constructing Sparse Spanners of
Clusterable Graphs

Reut Levi, Moti Medina, and Omer Tubul . 60:1–60:21

When Can an Expander Code Correct Ω(n) Errors in O(n) Time?
Kuan Cheng, Minghui Ouyang, Chong Shangguan, and Yuanting Shen 61:1–61:23

Contents 0:ix

Coboundary and Cosystolic Expansion Without Dependence on Dimension or
Degree

Yotam Dikstein and Irit Dinur . 62:1–62:24

Rapid Mixing of the Down-Up Walk on Matchings of a Fixed Size
Vishesh Jain and Clayton Mizgerd . 63:1–63:13

On the Communication Complexity of Finding a King in a Tournament
Nikhil S. Mande, Manaswi Paraashar, Swagato Sanyal, and Nitin Saurabh 64:1–64:23

Capacity-Achieving Gray Codes
Venkatesan Guruswami and Hsin-Po Wang . 65:1–65:9

On Black-Box Meta Complexity and Function Inversion
Noam Mazor and Rafael Pass . 66:1–66:12

Explicit and Near-Optimal Construction of t-Rankwise Independent Permutations
Nicholas Harvey and Arvin Sahami . 67:1–67:12

Sparse High Dimensional Expanders via Local Lifts
Inbar Ben Yaacov, Yotam Dikstein, and Gal Maor . 68:1–68:24

Randomness Extractors in AC0 and NC1: Optimal up to Constant Factors
Kuan Cheng and Ruiyang Wu . 69:1–69:22

On Sampling from Ising Models with Spectral Constraints
Andreas Galanis, Alkis Kalavasis, and Anthimos Vardis Kandiros 70:1–70:14

Approximate Degree Composition for Recursive Functions
Sourav Chakraborty, Chandrima Kayal, Rajat Mittal, Manaswi Paraashar,
and Nitin Saurabh . 71:1–71:17

Public Coin Interactive Proofs for Label-Invariant Distribution Properties
Tal Herman . 72:1–72:23

Additive Noise Mechanisms for Making Randomized Approximation Algorithms
Differentially Private

Jakub Tětek . 73:1–73:20

Improved Bounds for Graph Distances in Scale Free Percolation and Related
Models

Kostas Lakis, Johannes Lengler, Kalina Petrova, and Leon Schiller 74:1–74:22

Derandomizing Multivariate Polynomial Factoring for Low Degree Factors
Pranjal Dutta, Amit Sinhababu, and Thomas Thierauf . 75:1–75:20

APPROX/RANDOM 2024

Preface
This volume contains the papers presented at the 27th International Conference on Ap-
proximation Algorithms for Combinatorial Optimization Problems (APPROX 2024) and
the 28th International Conference on Randomization and Computation (RANDOM 2024).
APPROX focuses on algorithmic and complexity issues surrounding the development of
efficient approximate solutions to computationally-difficult problems, and the 2024 edition
was the 27th in the series. RANDOM is concerned with applications of randomness to
computational and combinatorial problems, and the 2024 edition was the 28th in the series.
The two conferences were held in parallel at the London School of Economics and Political
Science (LSE), London, UK during August 28–30, 2024. This year, the plenary speaker
for APPROX was Anupam Gupta from New-York University, and the plenary speaker for
RANDOM was Mark Jerrum from Queen Mary University of London.

Topics of interest for APPROX include approximation algorithms, hardness of approxim-
ation, small space, sub-linear time and streaming algorithms, online algorithms, approaches
that go beyond worst case analysis, distributed and parallel approximation, embeddings and
metric-space methods, mathematical-programming methods, spectral methods, combinatorial
optimization, algorithmic game theory, mechanism design and economics, computational-
geometry problems, approximate learning. Those at RANDOM include the design and
analysis of randomized algorithms, randomized complexity theory, pseudorandomness and
derandomization, random combinatorial structures, random walks/Markov chains, expander
graphs and randomness extractors, probabilistic proof systems, random projections and
embeddings, error-correcting codes, average-case analysis, smoothed analysis, property test-
ing, sublinear-time and local algorithms, computational learning theory, and the role of
(pseudo)randomness in other areas of computer science such as cryptography, data privacy,
and quantum information.

Prior to 2003, APPROX took place in Aalborg (1998), Berkeley (1999), Saarbruücken
(2000), Berkeley (2001), and Rome (2002), while RANDOM took place in Bologna (1997),
Barcelona (1998), Berkeley (1999), Geneva (2000), Berkeley (2001), and Harvard (2002).
Since 2003, APPROX and RANDOM have been co-located, taking place in Princeton
(2003), Cambridge (2004), Berkeley (2005), Barcelona (2006), Princeton (2007), Boston
(2008), Berkeley (2009), Barcelona (2010), Princeton (2011), Boston (2012), Berkeley (2013),
Barcelona (2014), Princeton (2015), Paris (2016), Berkeley (2017), Princeton (2018), Boston
(2019) and Atlanta (2023). In 2020, 2021, and 2022, the conferences were held online.

The volume contains 30 contributed papers selected by the APPROX Program Committee
out of 58 submissions, and 45 contributed papers selected by the RANDOM Program
Committee out of 95 submissions. We would like to thank all the authors who submitted
papers, the members of the program committees, and the external reviewers. We are grateful
for the guidance of the steering committees: Jarosław Byrka, Samir Khuller, Monaldo
Mastrolili, Nicole Megow, Laura Sanità, Chaitanya Swamy, László Végh, Virginia Vassilevska
Williams, and David P. Williamson for APPROX, and Oded Goldreich, Raghu Meka, Cris
Moore, Anup Rao, Omer Reingold, Dana Ron, Ronitt Rubinfeld, Amit Sahai, Ronen Shaltiel,
Alistair Sinclair, and Paul Spirakis. for RANDOM. We would also like to thank the local
organizing committee at LSE Ahmad Abdi, Tugkan Batu, Neil Olver, and Gergory Sorkin,
and the Dagstuhl Publishing Team for their dedicated handling of the proceedings.

It was our pleasure to serve as chairs of the Approx/Random 2024 Program Committees,
and to edit this volume of the proceedings.

Amit Kumar and Noga Ron-Zewi
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM
2024).
Editors: Amit Kumar and Noga Ron-Zewi

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Program Committees

APPROX

Susanne Albers Technical University of Munich
Keerti Choudhary Indian Institute of Technology Delhi
Debarati Das Pennsylvania State University
Thomas Erlebach Durham University
Zhiyi Huang University of Hong Kong
Sanjeev Khanna University of Pennsylvania
Amit Kumar Indian Institute of Technology Delhi
Euiwoong Lee University of Michigan
Roie Levin Rutgers University
Anand Louis Indian Institute of Science Bangalore
Julián Mestre University of Sydney
Sahil Singla Georgia Institute of Technology
Thomas Rothvoss University of Washington
José Verschae Pontificia Universidad Católica de Chile
Erik Waingarten University of Pennsylvania
David Wajc Technion–Israel Institute of Technology

RANDOM

Ioana Bercea KTH Royal Institute of Technology
Andrej Bogdanov University of Ottawa
Sarah Cannon Claremont McKenna College
Lijie Chen UC Berkeley
Weiming Feng ETH Zurich
Sumegha Garg Rutgers University
Zeyu Guo Ohio State University
Tom Gur University of Cambridge
William Hoza University of Chicago
Valentine Kabanets Simon Fraser University
Reut Levi Reichman University
Ray Li Santa Clara University
Inbal Livni-Navon Stanford University
Dor Minzer MIT
Ilan Newman University of Haifa
Pan Peng University of Science and Technology of China
João Ribeiro Universidade Nova de Lisboa
Noga Ron-Zewi (PC Chair) University of Haifa
Piyush Srivastava Tata Institute of Fundamental Research
Emanuele Viola Northeastern University
Erik Waingarten University of Pennsylvania
Ronald de Wolf CWI and University of Amsterdam

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM
2024).
Editors: Amit Kumar and Noga Ron-Zewi

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Subreviewers

APPROX

Aditya Anand Haris Aziz
Aritra Banik Libor Barto
Anubhav Baweja Soheil Behnezhad
Petra Berenbrink Anup Bhattacharya
Hans-Joachim Böckenhauer Sander Borst
Katrin Casel Diptarka Chakraborty
Rajesh Chitnis Christian Coester
Minati De Christoph Dürr
Franziska Eberle Yuri Faenza
Guichen Gao Prantar Ghosh
Suprovat Ghoshal Rohan Ghuge
Jacob Gilbert Sander Gribling
Guru Guruganesh Ruben Hoeksma
Lunjia Hu Neng Huang
Tanmay Inamdar Peyman Jabbarzade
Rhea Jain Klaus Jansen
Rajesh Jayaram Rajesh Jayaram
Shaofeng H.-C. Jiang John Kallaugher
Arindam Khan Arindam Khan
Evangelos Kipouridis Kim-Manuel Klein
Yusuke Kobayashi Christian Konrad
Venkata Koppula Rajendra Kumar
Tomer Lange Thomas Lavastida
Shi Li Alexander Lindermayr
Andreas Maggiori Andrew McGregor
Arturo Merino Pranabendu Misra
Seffi Naor Meghana Nasre
Prajakta Nimbhorkar Kalen Patton
Rameesh Paul Marcin Pilipczuk
Madhusudhan Reddy Pittu Kirk Pruhs
Aaron Putterman Saladi Rahul
Malin Rau Arka Ray
Mirabel Reid Raghuvansh Saxena
Kevin Schewior Niklas Schlomberg
Amatya Sharma Sandeep Silwal
Apoorv Vikram Singh Enze Sun
Janani Sundaresan Vaishali Surianarayanan
Varun Suriyanarayana Noam Touitou
Victor Verdugo Pavel Veselý
Hao-Ting Wei Chenyang Xu
Zhiyang Xun Ilias Zadik
Ahad N. Zehmakan Qiankun Zhang
Ruilong Zhang Yuhao Zhang
Mingxian Zhong

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM
2024).
Editors: Amit Kumar and Noga Ron-Zewi

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xvi Subreviewers

RANDOM

Maryam Aliakbarpour Hugo Aaronson
Noga Alon Omar Alrabiah
Matthew Anderson Robert Andrews
Paul Bastide Ivona Bezakova
Siddharth Bhandari Amey Bhangale
Eric Blais Jaroslaw Blasiok
Avrim Blum Greg Bodwin
Jan van den Brand Vladimir Braverman
Karl Bringmann Nader Bshouty
Thach V. Bui Mark Bun
Clement Canonne Charlie Carlson
Anamay Chaturvedi Zongchen Chen
Mahdi Cheraghchi Tsun Ming Cheung
Gil Cohen Amin Coja-Oghlan
Graham Cormode Varsha Dani
Shagnik Das Chengyuan Deng
Prathamesh Dharangutte Yotam Dikstein
Michal Dori Dean Doron
Pranjal Dutta Charilaos Efthymiou
Asaf Ferber Eldar Fischer
Nick Fischer Andreas Galanis
Margalit Glasgow Andreas Göbel
Oded Goldreich Alexander Golovnev
Louis Golowich Subhajit Goswami
Peter Gracar Catherine Greenhill
Hermann Gruber Nathaniel Harms
Pooya Hatami Tal Herman
Markus Heydenreich Shuichi Hirahara
Max Hopkins Kaave Hosseini
Mark Huber Rahul Ilango
Vishesh Jain Fernando Granha Jeronimo
Ce Jin Ralph Keusch
Swastik Kopparty Evangelos Kosinas
Akash Kumar Vinayak Kumar
Dmitriy Kunisky Orna Kupferman
Matthew Kwan Jane Lange
Christian Janos Lebeda Chin Ho Lee
Troy Lee Anthony Leverrier
Amit Levi Vedat Levi Alev
Yi Li Jyun-Jie Liao
Hongyang Liu Kuikui Liu
Peihan Liu Yang Liu
Yanyi Liu David Rasmussen Lolck
Zhenjian Lu Xin Lyu
Peter Manohar Samuel McCauley
Moti Medina Parth Mittal
Sidhanth Mohanty Cristopher Moore

Subreviewers 0:xvii

Ben Morris Patrick Morris
Tamalika Mukherjee Shivam Nadimpalli
Ofer Neiman Sam Olesker-Taylor
Neil Olver Konstantinos Panagiotou
Pedro Paredes Phevos Paschalidis
Shyamal Patel Richard Peng
Will Perkins Huy Tuan Pham
Diogo Poças Aditya Potukuchi
Kršjanis Prusis Aaron Putterman
Edward Pyne Ninad Rajgopal
C Ramya Shravas Rao
Hanlin Ren Ramprasad Saptharishi
Raghuvansh Saxena Jonathan Scarlett
Rocco Servedio Chong Shangguan
Asaf Shapira Kshiteej Sheth
Nobutaka Shimizu Morgan Shirley
Mihir Singhal Makrand Sinha
Adam Smith Christian Sohler
Adarsh Srinivasan Srikanth Srinivasan
Teresa Anna Steiner Uri Stemmer
Madhu Sudan He Sun
Janani Sundaresan Xinyu Tan
Roei Tell Anamay Tengse
Salil Vadhan Eric Vigoda
Ben Lee Volk Thuy Duong Vuong
Chen Wang Dingyu Wang
Hsin-Po Wang Jiaheng Wang
Yuval Wigderson Karl Wimmer
Hongxun Wu Qiping Yang
Yuichi Yoshida Chen Yuan
Ahad N. Zehmakan Zihan Zhang
Kai Zhe Zheng Hong Zhou
Samson Zhou

APPROX/RANDOM 2024

List of Authors

Tomer Adar (45, 46, 48)
Technion – Israel Institute of Technology,
Haifa, Israel

Ishaq Aden-Ali (33)
University of California, Berkeley, CA, USA

Elad Aigner-Horev (59)
School of Computer Science,
Ariel University, Israel

David Alemán Espinosa (29)
Dept. of Combinatorics and Optimization, Univ.
Waterloo, Waterloo, ON N2L 3G1, Canada

Vedat Levi Alev (58)
Hebrew University of Jerusalem, Israel

Susanne Armbruster (1)
Research Institute for Discrete Mathematics and
Hausdorff Center for Mathematics, University of
Bonn, Germany

Gabriel Arpino (30)
University of Cambridge, UK

Evripidis Bampis (17)
Sorbonne Université, CNRS, LIP6, Paris, France

Inbar Ben Yaacov (68)
Weizmann Institute of Science, Rehovot, Israel

Huck Bennett (42)
University of Colorado Boulder, CO, USA

Amey Bhangale (54)
Department of Computer Science and
Engineering, University of California, Riverside,
CA, USA

Kshipra Bhawalkar (13)
Google Research, Mountain View, USA

Hadley Black (37)
University of California, San Diego, USA

Mark Braverman (54)
Department of Computer Science, Princeton
University, NJ, USA

Vladimir Braverman (24)
Rice University, Houston, TX, USA;
Google Research

Nader H. Bshouty (38)
Department of Computer Science,
Technion, Israel

Moritz Buchem (14)
Technische Universität München, Germany

Martin Böhm (10)
University of Wrocław, Poland

Matthew Casey (22)
Northeastern University, Boston MA 02115,
USA

Philip Cervenjak (25)
School of Computing and Information Systems,
The University of Melbourne, Australia

Sourav Chakraborty (26, 71)
Indian Statistical Institute, Kolkata, India

Karthekeyan Chandrasekaran (9)
University of Illinois, Urbana-Champaign, USA

Evan Chang (47)
Massachusetts Institute of Technology, USA

Arnab Chatterjee (39)
Department of Computer Science, TU
Dortmund, Germany

Shuchi Chawla (2)
University of Texas at Austin, United States

Chandra Chekuri (9)
University of Illinois, Urbana-Champaign, USA

Xi Chen (52)
Columbia University, New York, NY, USA

Xiaoyu Chen (32)
State Key Laboratory for Novel Software
Technology, New Cornerstone Science
Laboratory, Nanjing University, 163 Xianlin
Avenue, Nanjing, Jiangsu Province, China

Kuan Cheng (61, 69)
Center on Frontiers of Computing Studies,
School of Computer Science, Peking University,
China

Dimitris Christou (2)
University of Texas at Austin, United States

Amin Coja-Oghlan (39)
Department of Computer Science,
TU Dortmund, Germany

Anindya De (52)
University of Pennsylvania,
Philadelphia, PA, USA

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM
2024).
Editors: Amit Kumar and Noga Ron-Zewi

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0009-0004-2371-1339
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.45
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.46
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.48
https://orcid.org/0009-0001-5487-0883
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.33
https://orcid.org/0000-0002-9207-0596
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.59
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.29
https://orcid.org/0009-0008-0340-6029
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.58
https://orcid.org/0009-0003-0597-033X
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.1
https://orcid.org/0000-0001-5974-7035
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.30
https://orcid.org/0000-0002-4498-3040
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.17
https://orcid.org/0000-0002-0540-9302
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.68
https://orcid.org/0000-0002-5469-8841
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.42
https://orcid.org/0000-0002-3878-9241
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.54
https://orcid.org/0009-0000-1375-8054
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.13
https://orcid.org/0009-0008-9662-2870
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.37
https://orcid.org/0000-0003-1276-6081
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.54
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.24
https://orcid.org/0009-0007-7356-7824
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.38
https://orcid.org/0000-0002-1590-346X
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.14
https://orcid.org/0000-0003-4796-7422
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.10
https://orcid.org/0000-0003-2083-5470
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.22
https://orcid.org/0000-0002-8349-619X
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.25
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.26
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.71
https://orcid.org/0000-0002-3421-7238
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.9
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.47
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.39
https://orcid.org/0000-0001-5583-2320
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.2
https://orcid.org/0000-0003-3035-1699
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.9
https://orcid.org/0000-0001-5661-515X
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.52
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.32
https://orcid.org/0000-0002-8972-1749
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.61
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.69
https://orcid.org/0009-0007-6935-5677
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.2
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.39
https://orcid.org/0000-0001-6795-8211
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.52
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xx Authors

Prathamesh Dharangutte (24)
Rutgers University, NJ, USA

Yotam Dikstein (62, 68)
Institute for Advanced Study,
Princeton, NJ, USA

Michael Dinitz (3)
Johns Hopkins University, Baltimore, MD, USA

Irit Dinur (62)
Weizmann Institute of Science, Rehovot, Israel

Daniil Dmitriev (30)
ETH Zürich and ETH AI Center, Switzerland

Natalia Dobrokhotova-Maikova (50)
Yandex, Tel Aviv, Israel

Konstantinos Dogeas (17)
Department of Computer Science, Durham
University, Durham, United Kingdom

Dean Doron (53)
Ben-Gurion University of the Negev,
Beersheba, Israel

Ilan Doron-Arad (27)
Computer Science Department,
Technion, Haifa, Israel

Pranjal Dutta (75)
School of Computing, National University of
Singapore, Singapore

Ashish Dwivedi (44)
Department of Computer Science and
Engineering, The Ohio State University,
Columbus, OH, USA

Franziska Eberle (14)
Technische Universität Berlin, Germany

Thomas Erlebach (17)
Department of Computer Science, Durham
University, Durham, United Kingdom

Tomer Ezra (12)
Harvard University, Cambridge, MA, USA

Yaron Fairstein (15)
Amazon.com, Haifa, Israel

Eden Fargion (43)
Faculty of Engineering, Bar-Ilan University,
Ramat-Gan, Israel

Zhe Feng (13)
Google Research, Mountain View, USA

Eldar Fischer (45, 46, 48)
Technion – Israel Institute of Technology,
Haifa, Israel

Fedor V. Fomin (4)
University of Bergen, Norway

Karthik Gajulapalli (42)
Georgetown University, Washington DC, USA

Andreas Galanis (70)
University of Oxford, UK

Junhao Gan (25)
School of Computing and Information Systems,
The University of Melbourne, Australia

Ran Gelles (43)
Faculty of Engineering, Bar-Ilan University,
Ramat-Gan, Israel

Surendra Ghentiyala (19)
Cornell University, Ithaca, NY, USA

Pratik Ghosal (28)
Indian Institute of Technology, Palakkad, India

Arijit Ghosh (26)
Indian Statistical Institute, Kolkata, India

Ashish Gola (34)
Simon Fraser University, Burnaby, Canada

Halley Goldberg (51)
Simon Fraser University, Burnaby, Canada

Petr A. Golovach (4)
University of Bergen, Norway

Alexander Golovnev (41, 42)
Georgetown University, Washington, DC, USA

Mayank Goswami (23)
Queens College CUNY, Flushing, New York,
USA

Nicolo Grometto (30)
Princeton University, USA

Heng Guo (32)
School of Informatics, University of Edinburgh,
Informatics Forum, 10 Crichton Street,
Edinburgh, EH8 9AB, UK

Zeyu Guo (41, 44)
The Ohio State University, Columbus, OH,
United States of America

Anupam Gupta (13)
NYU & Google Research, New York City &
Mountain View, USA

Meghal Gupta (43)
University of California, Berkeley, CA, USA

Venkatesan Guruswami (65)
University of California, Berkeley, CA, USA

https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.24
https://orcid.org/0000-0002-6248-6574
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.62
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.68
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.3
https://orcid.org/0000-0002-4335-5237
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.62
https://orcid.org/0000-0002-3241-5599
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.30
https://orcid.org/0009-0006-9407-0481
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.50
https://orcid.org/0009-0001-1528-3221
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.17
https://orcid.org/0000-0003-1862-8341
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.53
https://orcid.org/0009-0007-9235-2175
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.27
https://orcid.org/0000-0001-9137-9025
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.75
https://orcid.org/0009-0003-2919-3010
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.44
https://orcid.org/0000-0001-8636-9711
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.14
https://orcid.org/0000-0002-4470-5868
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.17
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.12
https://orcid.org/0000-0002-9865-9510
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.15
https://orcid.org/0009-0006-2849-5887
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.43
https://orcid.org/0000-0001-6036-375X
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.13
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.45
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.46
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.48
https://orcid.org/0000-0003-1955-4612
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.4
https://orcid.org/0009-0000-1029-1882
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.42
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.70
https://orcid.org/0000-0001-9101-1503
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.25
https://orcid.org/0000-0003-3615-3239
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.43
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.19
https://orcid.org/0000-0002-4416-5160
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.28
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.26
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.34
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.51
https://orcid.org/0000-0002-2619-2990
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.4
https://orcid.org/0000-0002-7847-1027
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.41
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.42
https://orcid.org/0000-0002-2111-3210
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.23
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.30
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.32
https://orcid.org/0000-0001-7893-4346
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.41
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.44
https://orcid.org/0000-0001-5579-3405
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.13
https://orcid.org/0000-0001-7657-2847
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.43
https://orcid.org/0000-0001-7926-3396
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.65

Authors 0:xxi

George Haddad (38)
Department of Computer Science,
Technion, Israel

Yanjun Han (33)
New York University, NY, USA

Nicholas Harvey (67)
Department of Computer Science and
Department of Mathematics, University of
British Columbia, Vancouver, Canada

Diba Hashemi (16)
EPFL, Lausanne, Switzerland

Pooya Hatami (41)
The Ohio State University, Columbus, OH,
United States of America

Daniel Hathcock (21)
Carnegie Mellon University, United States

Ishay Haviv (35)
The Academic College of Tel Aviv-Yaffo,
Tel Aviv 61083, Israel

Dan Hefetz (59)
School of Computer Science,
Ariel University, Israel

Monika Henzinger (40)
Institute of Science and Technology,
Klosterneuburg, Austria

Tal Herman (72)
Weizmann Institute of Science, Rehovot, Israel

Johan Håstad (7)
KTH Royal Institute of Technology,
Stockholm, Sweden

Tanmay Inamdar (4)
Indian Institute of Technology Jodhpur,
Jodhpur, India

Riko Jacob (23)
IT University of Copenhagen,
København S, Denmark

Vishesh Jain (63)
Department of Mathematics, Statistics, and
Computer Science, University of Illinois Chicago,
Chicago, IL, USA

Valentine Kabanets (51)
Simon Fraser University, Burnaby, Canada

Praneeth Kacham (55)
Carnegie Mellon University,
Pittsburgh, PA, USA;
Google Research, New York, USA

Alkis Kalavasis (70)
Yale University, New Haven, CT, USA

Anthimos Vardis Kandiros (70)
Massachusetts Institute of Technology,
Cambridge, MA, USA

Hugo Kooki Kasuya Rosado (14)
Technische Universität München, Germany

Chandrima Kayal (71)
Indian Statistical Institute, Kolkata, India

Subhash Khot (54)
Department of Computer Science, Courant
Institute of Mathematical Sciences, New York
University, NY, USA

Neel Kolhe (47)
University of California, Berkeley, USA

Guy Kortsarz (3, 21)
Rutgers University, Camden, NJ, USA

Alexander Kozachinskiy (50)
IMFD & CENIA, Santiago, Chile

Aiya Kuchukova (56)
School of Mathematics, Georgia Institute of
Technology, Atlanta, GA, USA

Ariel Kulik (27)
Computer Science Department,
Technion, Haifa, Israel

Kostas Lakis (74)
ETH Zürich, Department of Computer Science,
Zürich, Switzerland

Lap Chi Lau (36)
Cheriton School of Computer Science,
University of Waterloo, Canada

Chin Ho Lee (52)
North Carolina State University,
Raleigh, NC, USA

Holden Lee (49)
Department of Applied Mathematics and
Statistics, The Johns Hopkins University,
Baltimore, MD, USA

Johannes Lengler (74)
ETH Zürich, Department of Computer Science,
Zürich, Switzerland

Stefano Leonardi (12)
Sapienza University of Rome, Italy

Amit Levi (46, 48)
University of Haifa, Israel

APPROX/RANDOM 2024

https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.38
https://orcid.org/0000-0002-8335-2364
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.33
https://orcid.org/0000-0001-5593-9785
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.67
https://orcid.org/0009-0007-5940-4084
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.16
https://orcid.org/0000-0001-7928-8008
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.41
https://orcid.org/0000-0002-2514-4735
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.21
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.35
https://orcid.org/0000-0001-8923-3879
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.59
https://orcid.org/0000-0002-5008-6530
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.40
https://orcid.org/0000-0001-7685-3569
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.72
https://orcid.org/0000-0002-5379-345X
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.7
https://orcid.org/0000-0002-0184-5932
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.4
https://orcid.org/0000-0001-9470-1809
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.23
https://orcid.org/0000-0002-7275-3218
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.63
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.51
https://orcid.org/0000-0002-2207-4882
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.55
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.70
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.70
https://orcid.org/0000-0002-8881-9699
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.14
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.71
https://orcid.org/0009-0007-9246-4011
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.54
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.47
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.3
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.21
https://orcid.org/0000-0002-9956-9023
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.50
https://orcid.org/0009-0007-0299-6322
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.56
https://orcid.org/0000-0002-0533-3926
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.27
https://orcid.org/0009-0004-5595-1839
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.74
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.36
https://orcid.org/0000-0001-5072-8110
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.52
https://orcid.org/0000-0003-3534-8739
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.49
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.74
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.12
https://orcid.org/0000-0002-8530-5182
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.46
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.48

0:xxii Authors

Reut Levi (60)
Efi Arazi School of Computer Science,
Reichman University, Herzliya, Israel

Shi Li (3)
Nanjing University, Jiangsu, China

Matej Lieskovský (10)
Computer Science Institute of Charles
University, Faculty of Mathematics and Physics,
Prague, Czechia

Yang P. Liu (54)
School of Mathematics, Institute for Advanced
Study, Princeton, NJ, USA

Daniel Lokshtanov (6)
University of California, Santa Barbara, USA

Nikhil S. Mande (64)
University of Liverpool, UK

Gal Maor (68)
Tel Aviv University, Tel Aviv, Israel

Björn Martinsson (7, 11)
KTH Royal Institute of Technology,
Stockholm, Sweden

Noam Mazor (66)
Tel Aviv University, Israel

Moti Medina (60)
Faculty of Engineering, Bar-Ilan University,
Ramat Gan, Israel

Kuldeep S. Meel (26)
University of Toronto, Canada

Syed Mohammad Meesum (28)
Krea University, India

Nicole Megow (17)
Faculty of Mathematics and Computer Science,
University of Bremen, Bremen, Germany

Aranyak Mehta (13)
Google Research, Mountain View, USA

Uri Meir (57)
Blavatnik School of Computer Science,
Tel Aviv University, Tel Aviv, Israel

Josef Minařík (8)
Computer Science Institute of Charles Univ.,
Faculty of Mathematics and Physics, Prague,
Czechia

Dor Minzer (54)
Department of Mathematics, Massachusetts
Institute of Technology, Cambridge, MA, USA

Rajat Mittal (71)
Indian Institute of Technology Kanpur, India

Clayton Mizgerd (63)
Department of Mathematics, Statistics, and
Computer Science, University of Illinois Chicago,
Chicago, IL, USA

Matthias Mnich (1)
Hamburg University of Technology, Institute for
Algorithms and Complexity, Hamburg, Germany

Divyarthi Mohan (5)
Blavatnik School of Computer Science,
Tel Aviv University, Israel

Benjamin Moseley (20)
Tepper School of Business, Carnegie Mellon
University, Pittsburgh, PA, USA

Jonathan Mosheiff (53)
Ben-Gurion University of the Negev,
Beersheba, Israel

Noela Müller (39)
Department of Mathematics and Computer
Science, Eindhoven University of Technology,
Netherlands

Satyajeet Nagargoje (41)
Georgetown University, Washington, DC,
United States of America

Tamio-Vesa Nakajima (7)
Department of Computer Science,
University of Oxford, UK

Mridul Nandi (26)
Indian Statistical Institute, Kolkata, India

Joseph (Seffi) Naor (15)
Computer Science Department,
Technion, Haifa, Israel

Jelani Nelson (33)
University of California, Berkeley, CA, USA

Heather Newman (20)
Department of Mathematical Sciences, Carnegie
Mellon University, Pittsburgh, PA, USA

Martin Nägele (1)
Department of Mathematics,
ETH Zurich, Zurich, Switzerland

Minghui Ouyang (61)
School of Mathematical Sciences,
Peking University, China

Soumit Pal (26)
Indian Statistical Institute, Kolkata, India

https://orcid.org/0000-0003-3167-1766
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.60
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.3
https://orcid.org/0000-0002-0058-3133
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.10
https://orcid.org/0000-0001-6717-0539
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.54
https://orcid.org/0000-0002-3166-9212
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.6
https://orcid.org/0000-0002-9520-7340
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.64
https://orcid.org/0009-0001-5011-0916
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.68
https://orcid.org/0009-0006-4903-1328
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.7
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.11
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.66
https://orcid.org/0000-0002-5572-3754
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.60
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.26
https://orcid.org/0000-0002-1771-403X
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.28
https://orcid.org/0000-0002-3531-7644
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.17
https://orcid.org/0000-0002-6132-4901
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.13
https://orcid.org/0009-0003-4274-346X
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.57
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.8
https://orcid.org/0000-0002-8093-1328
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.54
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.71
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.63
https://orcid.org/0000-0002-4721-5354
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.1
https://orcid.org/0000-0002-8671-5714
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.5
https://orcid.org/0000-0001-8162-017X
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.20
https://orcid.org/0000-0002-7947-1205
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.53
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.39
https://orcid.org/0009-0003-0452-7360
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.41
https://orcid.org/0000-0003-3684-9412
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.7
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.26
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.15
https://orcid.org/0000-0001-7370-3733
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.33
https://orcid.org/0009-0006-6393-3707
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.20
https://orcid.org/0000-0002-3059-6402
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.1
https://orcid.org/0000-0002-3439-3653
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.61
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.26

Authors 0:xxiii

Katarzyna Paluch (28)
University of Wrocław, Wrocław, Poland

Fahad Panolan (6)
University of Leeds, UK

Marcus Pappik (56)
Hasso Plattner Institute, University of Potsdam,
Germany

Manaswi Paraashar (64, 71)
University of Copenhagen, Denmark

Michal Parnas (35)
The Academic College of Tel Aviv-Yaffo,
Tel Aviv 61083, Israel

Rafael Pass (66)
Tel Aviv University, Israel;
Cornell Tech, New York, NY, USA

Michał Pawłowski (12)
MIMUW, University of Warsaw, Poland;
IDEAS NCBR, Warsaw, Poland

Will Perkins (56)
School of Computer Science, Georgia Institute of
Technology, Atlanta, GA, USA

Kalina Petrova (74)
ETH Zürich, Department of Computer Science,
Zürich, Switzerland

Vladimir Podolskii (50)
Tufts University, Medford, MA, USA

Paweł Prałat (5)
Department of Mathematics, Toronto
Metropolitan University, Canada

Kirk Pruhs (20)
Department of Computer Science, University of
Pittsburgh, Pittsburgh, PA, USA

Rajmohan Rajaraman (22)
Northeastern University,
Boston MA 02115, USA

Shravas Rao (58)
Portland State University, Portland,
OR, United States of America

R. Ravi (21)
Carnegie Mellon University, United States

Connor Riddlesden (39)
Department of Mathematics and Computer
Science, Eindhoven University of Technology,
Netherlands

Maurice Rolvien (39)
Department of Computer Science,
TU Dortmund, Germany

Matteo Russo (12)
Sapienza University of Rome, Italy

Arvin Sahami (67)
Department of Computer Science and
Department of Mathematics, University of
British Columbia, Vancouver, Canada

Swagato Sanyal (64)
Indian Institute of Technology Kharagpur, India

Nitin Saurabh (64, 71)
Indian Institute of Technology Hyderabad, India

Saket Saurabh (4, 6)
The Institute of Mathematical Sciences,
HBNI, Chennai, India;
University of Bergen, Norway

Mathias Schacht (59)
Fachbereich Mathematik, Universität Hamburg,
Germany

Kevin Schewior (14)
University of Southern Denmark, Odense,
Denmark

Leon Schiller (74)
ETH Zürich, Department of Computer Science,
Zürich, Switzerland

Jens Schlöter (17)
Faculty of Mathematics and Computer Science,
University of Bremen, Bremen, Germany

Sören Schmitt (10)
Department of Mathematics,
University of Siegen, Germany

Gregory Schwartzman (57)
JAIST, Nomi, Japan

Rocco A. Servedio (52)
Columbia University, New York, NY, USA

Jiří Sgall (8, 10)
Computer Science Institute of Charles Univ.,
Faculty of Mathematics and Physics, Prague,
Czechia

Hadas Shachnai (27)
Computer Science Department,
Technion, Haifa, Israel

Vihan Shah (24)
University of Waterloo, ON, Canada

APPROX/RANDOM 2024

https://orcid.org/0000-0002-7504-6340
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.28
https://orcid.org/0000-0001-6213-8687
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.6
https://orcid.org/0000-0002-2480-3073
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.56
https://orcid.org/0009-0005-3805-5095
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.64
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.71
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.35
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.66
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.12
https://orcid.org/0000-0002-7937-7016
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.56
https://orcid.org/0009-0006-1753-6962
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.74
https://orcid.org/0000-0001-7154-138X
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.50
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.5
https://orcid.org/0000-0001-5680-1753
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.20
https://orcid.org/0009-0005-3610-9918
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.22
https://orcid.org/0000-0001-7339-4360
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.58
https://orcid.org/0000-0001-7603-1207
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.21
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.39
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.39
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.12
https://orcid.org/0009-0008-6660-9886
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.67
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.64
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.64
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.71
https://orcid.org/0000-0001-7847-6402
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.4
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.6
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.59
https://orcid.org/0000-0003-2236-0210
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.14
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.74
https://orcid.org/0000-0003-0555-4806
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.17
https://orcid.org/0000-0002-7695-0163
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.10
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.57
https://orcid.org/0000-0003-2407-543X
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.52
https://orcid.org/0000-0003-3658-4848
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.8
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.10
https://orcid.org/0000-0002-6645-4350
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.27
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.24

0:xxiv Authors

Chong Shangguan (61)
Research Center for Mathematics and
Interdisciplinary Sciences, Shandong University,
China;
Frontiers Science Center for Nonlinear
Expectations, Ministry of Education, Qingdao,
China

Yuanting Shen (61)
Research Center for Mathematics and
Interdisciplinary Sciences, Shandong University,
China

Igor Shinkar (34)
Simon Fraser University, Burnaby, Canada

Harsimran Singh (34)
Simon Fraser University, Burnaby, Canada

Amit Sinhababu (75)
Chennai Mathematical Institute, Chennai, India

Youngtak Sohn (47)
Department of Mathematics, Massachusetts
Institute of Technology, USA

A. R. Sricharan (40)
Faculty of Computer Science, Doctoral School
Computer Science, University of Vienna, Austria

David Stalfa (22)
Northeastern University,
Boston MA 02115, USA

Teresa Anna Steiner (40)
Technical University of Denmark,
Lyngby, Denmark

Noah Stephens-Davidowitz (19)
Cornell University, Ithaca, NY, USA

Hao Sun (18)
University of Alberta, 116 St & 85 Ave,
Edmonton, AB T6G 2R3, Canada

Chaitanya Swamy (29)
Dept. of Combinatorics and Optimization, Univ.
Waterloo, Waterloo, ON N2L 3G1, Canada

Amnon Ta-Shma (31)
Department of Computer Science,
Tel Aviv University, Israel

Cheng Tan (22)
Northeastern University,
Boston MA 02115, USA

Thomas Thierauf (75)
Ulm University, Germany

Dante Tjowasi (36)
Cheriton School of Computer Science,
University of Waterloo, Canada

Manuel R. Torres (9)
University of Illinois, Urbana-Champaign, USA

Amitabh Trehan (17)
Department of Computer Science,
Durham University, Durham, United Kingdom

Tomer Tsachor (15)
Computer Science Department,
Technion, Haifa, Israel

Omer Tubul (60)
Faculty of Engineering, Bar-Ilan University,
Ramat Gan, Israel

Jakub Tětek (73)
INSAIT, Sofia, Bulgaria

Seeun William Umboh (12, 25)
School of Computing and Information Systems,
The University of Melbourne, Australia;
ARC Training Centre in Optimisation
Technologies, Integrated Methodologies, and
Applications (OPTIMA), Melbourne, Australia

Rob van Stee (10)
Department of Mathematics,
University of Siegen, Germany

N. V. Vinodchandran (26)
University of Nebraska, Lincoln, USA

Ben Lee Volk (44)
Efi Arazi School of Computer Science,
Reichman University, Israel

David Wajc (13)
Technion, Haifa, Israel

Chen Wang (24)
Rice University, Houston, TX, USA;
Texas A&M University, College Station,
TX, USA

Di Wang (13)
Google Research, Mountain View, USA

Hsin-Po Wang (65)
University of California, Berkeley, CA, USA

Evelyn Warton (42)
Oregon State University, Corvallis, OR, USA

Andreas Wiese (14)
Technische Universität München, Germany

https://orcid.org/0000-0002-3206-3968
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.61
https://orcid.org/0000-0002-1569-0580
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.61
https://orcid.org/0000-0001-5013-6422
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.34
https://orcid.org/0009-0006-8131-0263
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.34
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.75
https://orcid.org/0009-0009-0038-1417
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.47
https://orcid.org/0009-0008-1554-1965
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.40
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.22
https://orcid.org/0000-0003-1078-4075
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.40
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.19
https://orcid.org/0000-0002-2000-8080
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.18
https://orcid.org/0000-0003-1108-7941
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.29
https://orcid.org/0000-0001-8186-3622
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.31
https://orcid.org/0000-0002-1420-5125
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.22
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.75
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.36
https://orcid.org/0000-0002-0919-4062
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.9
https://orcid.org/0000-0002-2998-0933
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.17
https://orcid.org/0009-0000-1564-216X
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.15
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.60
https://orcid.org/0000-0002-2046-1627
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.73
https://orcid.org/0000-0001-6984-4007
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.12
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.25
https://orcid.org/0000-0002-3664-0865
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.10
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.26
https://orcid.org/0000-0002-7143-7280
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.44
https://orcid.org/0000-0003-1896-2948
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.13
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.24
https://orcid.org/0000-0003-0891-0255
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.13
https://orcid.org/0000-0003-2574-1510
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.65
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.42
https://orcid.org/0000-0003-3705-016X
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.14

Authors 0:xxv

Anthony Wirth (25)
School of Computer Science, The University of
Sydney, Australia;
School of Computing and Information Systems,
The University of Melbourne, Australia

David P. Woodruff (55)
Carnegie Mellon University,
Pittsburgh, PA, USA

Mary Wootters (53)
Stanford University, CA, USA

Weronika Wrzos-Kaminska (16)
EPFL, Lausanne, Switzerland

Ruiyang Wu (69)
CFCS, School of CS, Peking University, China

Jie Xue (6)
New York University Shanghai, China

Chao Yan (41)
Georgetown University, Washington, DC,
United States of America

Corrine Yap (56)
School of Mathematics, Georgia Institute of
Technology, Atlanta, GA, USA

Yuichi Yoshida (57)
Principles of Informatics Research Division,
National Institute of Informatics, Tokyo, Japan

Huacheng Yu (33)
Princeton University, NJ, USA

Ron Zadicario (31)
Department of Computer Science,
Tel Aviv University, Israel

Pavel Zakharov (39)
Department of Computer Science,
TU Dortmund, Germany

Meirav Zehavi (4, 6)
Ben-Gurion University of the Negev,
Beer-Sheva, Israel

Xinyuan Zhang (32)
State Key Laboratory for Novel Software
Technology, New Cornerstone Science
Laboratory, Nanjing University, 163 Xianlin
Avenue, Nanjing, Jiangsu Province, China

Haodong Zhu (39)
Department of Mathematics and Computer
Science, Eindhoven University of Technology,
Netherlands

Weihao Zhu (9)
University of Illinois, Urbana-Champaign, USA

Zongrui Zou (32)
State Key Laboratory for Novel Software
Technology, New Cornerstone Science
Laboratory, Nanjing University, 163 Xianlin
Avenue, Nanjing, Jiangsu Province, China

Stanislav Živný (7)
Department of Computer Science,
University of Oxford, UK

APPROX/RANDOM 2024

https://orcid.org/0000-0003-3746-6704
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.25
https://orcid.org/0000-0002-2158-1380
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.55
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.53
https://orcid.org/0009-0003-5281-8277
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.16
https://orcid.org/0009-0009-5613-3631
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.69
https://orcid.org/0000-0001-7015-1988
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.6
https://orcid.org/0000-0001-6482-6643
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.41
https://orcid.org/0000-0003-3762-8865
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.56
https://orcid.org/0000-0001-8919-8479
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.57
https://orcid.org/0000-0003-1450-1896
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.33
https://orcid.org/0000-0001-8968-4848
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.31
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.39
https://orcid.org/0000-0002-3636-5322
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.4
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.6
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.32
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.39
https://orcid.org/0009-0002-2809-3010
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.9
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.32
https://orcid.org/0000-0002-0263-159X
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.7

A (3/2 + 1/e)-Approximation Algorithm for Ordered
TSP
Susanne Armbruster #

Research Institute for Discrete Mathematics and Hausdorff Center for Mathematics,
University of Bonn, Germany

Matthias Mnich #

Hamburg University of Technology, Institute for Algorithms and Complexity, Hamburg, Germany

Martin Nägele #

Department of Mathematics, ETH Zurich, Zurich, Switzerland1

Abstract
We present a new (3/2 + 1/e)-approximation algorithm for the Ordered Traveling Salesperson Problem
(Ordered TSP). Ordered TSP is a variant of the classic metric Traveling Salesperson Problem (TSP)
where a specified subset of vertices needs to appear on the output Hamiltonian cycle in a given order,
and the task is to compute a cheapest such cycle. Our approximation guarantee of approximately
1.868 holds with respect to the value of a natural new linear programming (LP) relaxation for
Ordered TSP. Our result significantly improves upon the previously best known guarantee of 5/2 for
this problem and thereby considerably reduces the gap between approximability of Ordered TSP
and metric TSP. Our algorithm is based on a decomposition of the LP solution into weighted trees
that serve as building blocks in our tour construction.

2012 ACM Subject Classification Theory of computation → Discrete optimization; Theory of com-
putation → Routing and network design problems; Theory of computation → Rounding techniques

Keywords and phrases Travelling Salesperson Problem, precedence constraints, linear programming,
approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.1

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2405.06244 [1]

Funding Matthias Mnich: Partially supported by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation), project MN 59/4-1.
Martin Nägele: Partially supported by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy – EXZ-2047/1 – 390685813, and the Swiss National
Science Foundation (grant no. P500PT_206742).

1 Introduction

The classic metric Traveling Salesperson Problem (TSP) is one of the most fundamental and
well-studied problems in Combinatorial Optimization and has a large number of applications.
A metric TSP instance is given by a complete undirected graph G = (V, E) with metric edge
cost c : E → R≥0. The task is to find a cycle of minimum cost that visits each vertex exactly
once, where the cost of a cycle equals the sum of the edge costs over all edges it contains.
Metric TSP is highly relevant in many practical applications and thus, a lot of different

1 Most of this work was done while M. Nägele was employed at University of Bonn.

© Susanne Armbruster, Matthias Mnich, and Martin Nägele;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 1; pp. 1:1–1:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:armbruster@or.uni-bonn.de
https://orcid.org/0009-0003-0597-033X
mailto:matthias.mnich@tuhh.de
https://orcid.org/0000-0002-4721-5354
mailto:martinn@ethz.ch
https://orcid.org/0000-0002-3059-6402
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.1
https://arxiv.org/abs/2405.06244
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 A (3/2 + 1/e)-Approximation Algorithm for Ordered TSP

variants are studied (see, e.g., [34]). The problem is NP-hard and APX-hard [32]; concretely,
assuming P ̸= NP, it is known that no polynomial-time algorithm can guarantee to find a cycle
of cost at most 123/122 times the cost of a cheapest cycle [24]. For a long time, the best-known
approximation algorithm for metric TSP was the Christofides-Serdyukov 3/2-approximation
algorithm [10, 11, 35]. This was recently improved to a breakthrough (3/2 − ε)-approximation
algorithm, for some ε > 10−36, by Karlin, Klein, and Oveis Gharan [22,23].

In this work, we focus on a generalization of metric TSP known as Ordered TSP, in which
some of the vertices must be visited in a given order.

Ordered TSP (OTSP): Given a complete undirected graph G = (V, E) with metric
edge cost c : E → R≥0 and pairwise distinct vertices d1, . . . , dk ∈ V , the task is to
find a cheapest spanning cycle C in G that contains the vertices d1, . . . , dk in this
order.

We typically refer to an input of OTSP as an OTSP instance (G, c, (d1, . . . , dk)); solutions are
often called tours. Our goal in this paper is to further the understanding of the approximability
of OTSP, i.e., we aim to design α-approximation algorithms for OTSP with α as small as
possible.

Clearly, OTSP is at least as hard as metric TSP, and therefore APX-hard. Surprisingly,
not much more is known on the approximability of OTSP. Böckenhauer, Hromkovič, Kneis,
and Kupke [6] observed that a 5/2-approximate solution can be readily obtained by first
traversing d1, . . . , dk in this order and subsequently appending a tour on V \ {d1, . . . , dk}
constructed through the Christofides-Serdyukov algorithm. The black-box use of a metric TSP
approximation algorithm allows to reduce this guarantee by the same additive improvement
of ε > 10−36 as in the (3/2 − ε)-approximation by Karlin, Klein, and Oveis Gharan. Besides
that, Böckenhauer, Mömke, and Steinová [7] gave a (5/2 − 2/k)-approximation algorithm,
where k ≥ 2 is the number of ordered vertices in the OTSP input. Note that their result does
not directly inherit the improvement achieved for metric TSP, making its approximation ratio
asymptotically inferior to the earlier approach of Böckenhauer, Hromkovič, Kneis, and Kupke.
Finally, the intuition that OTSP should become easier once k approaches n is confirmed by
a dynamic programming approach of Dĕineko, Hoffmann, Okamoto, and Woeginger [14] that
runs in O(2rr2n) time and O(2rrn) space, i.e., in polynomial time and space if r := n − k,
the number of vertices that are not in the input order, is of magnitude O(log n).

OTSP is in fact a special case of a the following significantly more general TSP variation
termed TSP with Precedence Constraints.

TSP with Precedence Constraints (TSP-PC): Given a complete undirected
graph G = (V, E) with metric edge cost c : E → R≥0 and a partial order ≺ on V ,
the task is to find a cheapest spanning cycle C in G that respects ≺, i.e., C can be
traversed such that whenever u ≺ v for two vertices u, v ∈ V , then u appears earlier
on C than v.

Compared to the total order constraints in OTSP, general partial orders allow for modeling
a much wider range of problems. One among many applications of TSP-PC is, e.g., tour
planning for mixed pickup and delivery services, where one needs to make sure that a
pickup happens before a delivery (but apart from that, pickups and deliveries can be
intertwined arbitrarily). There is a considerable body of research on the structure of the

S. Armbruster, M. Mnich, and M. Nägele 1:3

TSP-PC polyhedron, different dynamic programming algorithms, enhanced branch-and-
bound methods, and various other exact and heuristic approaches, typically even for the
more general version of TSP-PC with asymmetric edge cost (see, e.g., [2, 18, 25, 33] and
references therein). Despite that, essentially no positive results on the approximability of
TSP-PC are known, which is possibly explained by an influential hardness result of Charikar,
Motwani, Raghavan, and Silverstein [9]: By relating the problem to the Shortest Common
Supersequence Problem, they are able to show that there is no (log n)δ-approximation for
the path version of TSP-PC for any constant δ, unless NP ⊆ DTIME(nO(log log n)), even if
the underlying metric space is a line. This motivates our study of the approximability of
TSP-PC on general metric spaces with special partial orders, i.e., OTSP.

1.1 Our results and techniques
Our main contribution is to significantly improve the state of the art for OTSP by giving an
LP-relative approximation guarantee of 3/2 + 1/e ≈ 1.868, as stated in the following theorem.

▶ Theorem 1. There is a polynomial-time (3/2 + 1/e)-approximation algorithm for OTSP.

This constitutes a significant improvement over the previous (5/2 − ε)-approximation
algorithm. We achieve this improvement by introducing a new linear programming (LP)
relaxation for OTSP and devising a suitable rounding procedure. The LP relaxation is
based on the Held-Karp relaxation that is typically leveraged in the context of TSP, but
allows for taking the prescribed order of the vertices d1, . . . , dk into account by using disjoint
sets of variables to represent the di-di+1 strolls2 that a solution is composed of. Our
rounding procedure crucially relies on a result on decomposing (fractional) s-t strolls into a
convex combination of trees. This decomposition resembles an existential result by Bang-
Jensen, Frank, and Jackson [3, Theorem 2.6] on packing branchings in a directed multigraph.
Variations thereof have recently been used for advances on another variant of TSP, namely
Prize-Collecting TSP [4, 5], and motivate the application here. (See Lemma 5 for the precise
statement of the decomposition result.) The trees obtained from stroll decompositions enable
the construction of a subgraph that spans a reasonably large part of V at cost no more than
the LP solution cost, and contains a walk with visits at d1, . . . , dk in this order. Our tour
construction is completed by connecting the remaining isolated vertices in a cheapest possible
way, and applying a parity correction step as typical for TSP-like problems.

Our approach crucially relies on being able to split a solution into di-di+1 strolls upfront,
hence it is not directly suitable for handling arbitrary precedence constraints other than total
orders. While one can always try to guess a suitable total order that is compatible with
the given partial order, and then apply Theorem 1, this is generally not efficient. We can,
though, obtain approximation algorithms for some special cases of precedence constraints, as
for example in the following result that is a direct generalization of Theorem 1.

▶ Theorem 2. Consider a TSP-PC instance (G, c, ≺) on a complete graph G = (V, E) with
a partial order ≺ that can be equivalently given as independent total orders on disjoint subsets
D1, . . . , Dℓ ⊆ V . There is a polynomial-time (ℓ + 1/2 + 1/eℓ)-approximation algorithm for this
class of TSP-PC problems.

2 We use the term s-t stroll instead of s-t path for a path from s to t in the underlying graph to emphasize
that we do not require all vertices to be covered. Also, for convenience of notation, we use dk+1 := d1
throughout the paper.

APPROX/RANDOM 2024

1:4 A (3/2 + 1/e)-Approximation Algorithm for Ordered TSP

The total orders on the sets Di are also called chains. We remark that losing a factor of ℓ

in Theorem 2 is intrinsic to our approach: We never merge the given chains, but traverse
them one after another. Still, the result of Theorem 2 is superior to a black-box algorithm
that independently applies the algorithm from Theorem 1 to the ℓ chains and concatenates
the resulting tours (while shortcutting to avoid repeated visits).

1.2 Related Work
Variations of OTSP and TSP-PC are also studied in the context of scheduling with precedence
constraints. In a classic setup, denoted by Pm|prec|Cmax in the scheduling literature, one
needs to find a schedule for a set J of n jobs on m identical machines subject to precedence
constraints between the jobs. Formally, each job j ∈ J is characterized by a processing
time pj ∈ Z≥0, and a schedule σ : J → Z≥0 × {1, . . . , m} assigns each job j ∈ J to a pair
(σ1(j), σ2(j)) consisting of an integer start time σ1(j) and a machine σ2(j) such that no other
job scheduled on that machine has their start time in the time interval [σ1(j), σ1(j) + pj],
and for any two jobs j, j′ ∈ J related as j ≺ j′ it holds that σ1(j) < σ2(j′). The makespan
objective Cmax of a schedule σ is the maximum completion time Cj = σ1(j) + pj over all jobs
j ∈ J . Generally, precedence constraints of this type are studied extensively in a wide range
of scheduling problems, including different settings and objectives (see, e.g., [13,19,28,36]).
The three-machine problem P 3|prec, pj ≡ 1|Cmax is one of the few famous open problems by
Garey and Johnson [17] whose computational complexity has not yet been resolved.

The complexity of many scheduling problems with precedence constraints that are chains
has been well-investigated. An influential paper of Lenstra and Rinnooy Kan [27] shows
strong NP-hardness for minimizing the number of chain-constrained unit-size jobs that
miss their deadline on a single machine. Several other works with chain constraints have
appeared [15,21,26,37].

Towards analogues of TSP-PC, we may consider the problem Pm|prec|Cmax on a single
machine, but add sequence-dependent setup times sij ∈ Z≥0 between any two jobs i and j,
which add to the makespan of the schedule. This problem, which is denoted as 1|prec, sij |Cmax,
was discussed by Liaee and Emmons [29, Section 3.1.2]. In case of TSP-PC, the setup times
are metric (i.e., sij ≤ sik + skj for any triple (i, j, k) of distinct jobs), and all jobs have equal
processing time pj ≡ 0. To be precise, the objective function for TSP-PC takes into account
the cost for returning to the origin city whereas no such cost occurs in the objective function
for 1|prec, sij |Cmax, hence the latter in fact models a path version of TSP-PC.

We remark that shortly after the first dissemination of this work [1], Böhm, Friggstad,
Mömke, and Spoerhase [8] provided an independent paper on TSP variants, including a
result matching the guarantee in Theorem 1. Albeit different at first sight, their approach is
very similar at its core to the one presented here: They use a directed analogue of the LP
relaxation that we also build our work on here, and thereby facilitate a direct application of
the original result by Bang-Jensen, Frank, and Jackson on packing branchings in a directed
multigraph.

1.3 Organization of the paper
In Section 2, we introduce our new linear programming formulation for OTSP (Section 2.1)
and analyze a randomized algorithm giving the guarantee of Theorem 1 in expectation
(Section 2.2). We show how this algorithm can be derandomized in Section 2.3. Finally,
Section 3 extends our framework to yield Theorem 2, and Section 4 shows how our main
technical lemma is implied by a closely related known result.

S. Armbruster, M. Mnich, and M. Nägele 1:5

2 Our algorithm

2.1 The LP relaxation and polyhedral basics
The most commonly used LP relaxation in approximation algorithms for classic TSP is
the so-called Held-Karp relaxation. It was first introduced by Dantzig, Fulkerson, and
Johnson [12] and is given by

PHK(G) :=
{

x ∈ RE
≥0 : x(δ(v)) = 2 ∀v ∈ V

x(δ(S)) ≥ 2 ∀S ⊊ V, S ̸= ∅

}
,

where G = (V, E) is the underlying complete graph.3 While TSP simply asks for a spanning
cycle, OTSP requires that the vertices d1, . . . , dk appear on the cycle in this order. Thus, a
solution is naturally composed of k strolls, namely a di-di+1 stroll for every i ∈ {1, . . . , k}.
For a polyhedral description of s-t strolls in a complete graph G = (V, E), we modify the
Held-Karp relaxation for s-t path TSP4 to allow partial coverage of vertices. Concretely,
the variables y ∈ RV

≥0 in the following formulation indicate the extent at which vertices are
covered:5

Ps-t stroll(G) :=

(x, y) ∈ RE
≥0 × RV

≥0 :

x(δ(v)) = 2yv ∀v ∈ V

x(δ(S)) ≥ 1 ∀S ⊆ V \ {t}, s ∈ S

x(δ(S)) ≥ 2yv ∀S ⊆ V \ {s, t}, v ∈ S

ys = yt = 1/2

 . (1)

Note that setting ys = yt = 1/2 corresponds to s and t having degree 1 in an s-t stroll, while
all interior vertices of an integral stroll have degree 2, which corresponds to a y-value of 1.
Using the above polyhedral relaxation (1) for all di-di+1 strolls, it remains to link the strolls
by requiring full joint coverage of every v ∈ V . This results in the following LP relaxation
for OTSP:

min
∑
e∈E

ce

k∑
i=1

xi
e

k∑
i=1

yi
v = 1 ∀v ∈ V

(xi, yi) ∈ Pdi-di+1 stroll(G) ∀i ∈ {1, . . . , k} .

(OTSP LP relaxation)

Here and throughout the paper, note that we use superscripts to distinguish different
strolls. It is clear that any OTSP solution can be turned into a feasible solution to the above
LP of the same objective value, hence the above LP is indeed a relaxation of OTSP. We first
observe that this OTSP LP relaxation strengthens the Held-Karp relaxation in the following
sense.

▶ Observation 3. Let (xi, yi)i∈{1,...,k} be feasible for the OTSP LP relaxation. Then x :=∑k
i=1 xi ∈ PHK(G).

3 For S ⊆ V we denote by δ(S) the set of edges with exactly one endpoint in S. For v ∈ V , we
abbreviate δ(v) := δ({v}).

4 Given a complete graph G = (V, E) with metric edge costs and vertices s, t ∈ V , s-t path TSP is the
variant of TSP that seeks a path of smallest total cost from s to t while visiting every vertex exactly
once.

5 The constraints of Ps-t stroll imply that for v ∈ V \ {s, t}, we have 2yv ≤ x(δ(V \ {s, t})) ≤ x(δ(s)) +
x(δ(t)) ≤ 2, and thus yv ≤ 1, legitimating the proposed interpretation.

APPROX/RANDOM 2024

1:6 A (3/2 + 1/e)-Approximation Algorithm for Ordered TSP

Proof. To see that x satisfies the degree constraints in PHK(G), note that for all v ∈ V , we
have

x(δ(v)) =
k∑

i=1
xi(δ(v)) = 2 ·

k∑
i=1

yi = 2 .

To verify the cut constraints, let S ⊊ V be a non-empty set of vertices. If both S ∩
{d1, . . . , dk} ̸= ∅ and (V \ S) ∩ {d1, . . . , dk} ̸= ∅, then there exist two distinct indices
i1, i2 ∈ {1, . . . , k} such that di1 ∈ S but di1+1 /∈ S, and di2 /∈ S but di2+1 ∈ S. This implies
that xi1(δ(S)) ≥ 1 and xi2(δ(V \ S)) ≥ 1, so we get

x(δ(S)) =
k∑

i=1
xi(δ(S)) ≥ xi1(δ(S)) + xi2(δ(S)) = xi1(δ(S)) + xi2(δ(V \ S)) ≥ 2 .

Otherwise, assume without loss of generality that S ∩ {d1, . . . , dk} is empty (if not, V \ S has
this property) and fix a vertex v ∈ S. We then know that xi(δ(S)) ≥ 2yv for all i ∈ {1, . . . , k},
hence

x(δ(S)) =
k∑

i=1
xi(δ(S)) ≥ 2 ·

k∑
i=1

yv = 2 . ◀

The point x ∈ PHK(G) constructed in Observation 3 has the property that its cost c⊤x

equals the objective value cLP of the feasible point of the OTSP LP relaxation that we
started with. Thus, following the arguments of Wolsey’s polyhedral analysis [38] of the
Christofides-Serdyukov algorithm, we immediately obtain the following.

▶ Corollary 4. Let cLP denote the optimal objective value of the OTSP LP relaxation. Then
in the underlying graph G with edge costs c, the following holds true.

(i) A shortest spanning tree T satisfies c(T) ≤ cLP.
(ii) For any even cardinality set Q ⊆ V , a shortest Q-join J satisfies c(J) ≤ 1

2 · cLP.

Proof. Let (xi, yi)i∈{1,...,k} be an optimal solution of the OTSP LP relaxation. By Obser-
vation 3, x :=

∑k
i=1 xi ∈ PHK(G). It is well-known due to Held and Karp [20] that then,

|V |−1
|V | · x is feasible for the spanning tree polytope, and due to Wolsey [38] that 1

2 x is feasible
for the dominant of the Q-join polytope, hence c(T) ≤ |V |−1

|V | · c⊤x < c⊤x and c(J) ≤ 1
2 c⊤x.

Using that c⊤x = cLP, the result follows. ◀

2.2 Rounding an LP solution
At its core, our algorithm for rounding a typically fractional solution (xi, yi)i∈{1,...,k} of the
OTSP LP relaxation is based on leveraging a decomposition result for each of the points
(xi, yi) ∈ Pdi-di+1 stroll. By scaling up (xi, yi) by a large enough factor M such that Mxi is
integral, this decomposition can be viewed as a result on packing trees into the multigraph
that has Mxi

e copies of every edge e ∈ E and such that every vertex v appears in Myi

many of the trees. While most results of this type deal with packing spanning trees (or,
in the directed case, arborescences), i.e., consider uniform packings, Bang-Jensen, Frank,
and Jackson [3] gave one of few results in a non-uniform setting as we are facing here.
Their splitting-off based construction was revised by Blauth and Nägele [5] to obtain more
fine-grained control over the output components of the decomposition when starting from a
solution of a Held-Karp-type relaxation that allows partial coverage of vertices (similar to
what we allow in Ps-t stroll). We observe that these findings can be immediately carried over
to solutions of Ps-t stroll, giving Lemma 5 below. We defer a formal proof to Section 4.

S. Armbruster, M. Mnich, and M. Nägele 1:7

▶ Lemma 5. Let G = (V, E) be an undirected graph, s, t ∈ V , and let (x, y) ∈ Ps-t stroll(G).
We can in polynomial time compute a family T of subtrees of G that each contain the vertices s

and t, and weights µ ∈ [0, 1]T with
∑

T ∈T µT = 1 such that 6

∑
T ∈T

µT χE[T] = x and
∑

T ∈T : v∈V [T]

µT = yv ∀v ∈ V \ {s, t} .

In other words, Lemma 5 allows to decompose a fractional s-t stroll into a convex
combination of trees in a family T that all connect s and t, and such that for every other
vertex v ∈ V \ {s, t}, the weighted number of trees that contain v equals the coverage yv of v

in the stroll. An example of a feasible solution (x, y) and a decomposition satisfying the
properties of Lemma 5 is given in Figure 1.

s t

3
4

1
2

1
4

1
4

3
4

1
2

1
4

1
2

1
4 3

4

1
4

1
4

1
4 1

4

1
4

(a) Solution (x, y) with xe = 1/4 for dotted edges, xe = 1/2 for dashed edges, and
xe = 3/4 for solid edges. Likewise, yv = 1/4 for blank vertices, yv = 1/2 for dashed
vertices, and yv = 3/4 for full vertices.

(b) A decomposition of the solution (x, y) given in (a) into four
trees with uniform weight µ ≡ 1/4 satisfying the properties of
Lemma 5.

Figure 1 A solution (x, y) ∈ Ps-t stroll along with a decomposition into trees, exemplifying
Lemma 5.

After applying Lemma 5 to all strolls (xi, yi) ∈ Pdi-di+1 stroll obtained from an optimal
solution of the OTSP LP relaxation, we choose one tree from each of the decompositions
and consider the (multi-)union of all edges obtained this way. This results in a graph that
already contains a closed walk with visits at d1, . . . , dk in this order, giving the basis for
our construction of an OTSP solution. Also, we can easily bound the expected cost of the
edge set obtained in this way by randomly choosing the trees with marginals given by the
weights µ from Lemma 5.

6 For a graph H we denote by V [H] the set of vertices and by E[H] the set of edges of H. Furthermore,
for an edge set F ⊆ E, we denote by χF ∈ {0, 1}E the characteristic vector of F , i.e., the {0, 1}-vector
with, for all e ∈ E, χF

e = 1 if and only if e ∈ F .

APPROX/RANDOM 2024

1:8 A (3/2 + 1/e)-Approximation Algorithm for Ordered TSP

To obtain an actual OTSP solution, the missing steps are to
(i) connect vertices that are not covered by any of the trees Ti,
(ii) perform parity correction to guarantee that there exists an Eulerian tour, and
(iii) shortcut appropriately to obtain an actual OTSP solution.

Altogether, this leads to the randomized Algorithm 1 as laid out below; also see Figure 2 for
an example illustration of the different edge sets that are constructed in Algorithm 1.

Algorithm 1 A randomized approximation algorithm for OTSP.

Input: OTSP instance (G, c, {d1, . . . , dk}) on graph G = (V, E).

1 Compute an optimal solution (xi, yi)i∈{1,...,k} to the OTSP LP relaxation.
2 foreach i ∈ {1, . . . , k} do
3 Apply Lemma 5 to decompose (xi, yi) into trees Ti with weights µi.
4 Sample one tree Ti from Ti with marginals given by µi.
5 Compute a minimum-cost edge set F ⊆ E such that the multigraph

H :=
(

V, F ∪
⋃̇

i∈{1,...,k}
E[Ti]

)
is connected.

6 Let Q = odd(H) and compute a minimum cost Q-join J in G.
7 return Spanning cycle C in G obtained from H ∪̇ J through Lemma 10.

We first show that Algorithm 1 gives the guarantees claimed by Theorem 1 in expectation
and – even stronger – with respect to the value cLP of the OTSP LP relaxation, as stated in
the subsequent theorem. In Section 2.3, we show that Algorithm 1 admits an immediate
derandomization using the method of conditional expectation, thereby completing the proof
of Theorem 1.

T3

T4

T1

T2

d3

d4

d1

d2

Figure 2 Exemplifying the construction of Eulerian graph H ∪̇ J from Algorithm 1: Trees
T1, T2, T3, T4 drawn as solid blueish edges, the edge set F connecting all vertices to the trees drawn
as curly red edges, and the odd(H)-join J drawn as dashed green edges.

S. Armbruster, M. Mnich, and M. Nägele 1:9

▶ Theorem 6. Let cLP be the cost of an optimal solution of the OTSP LP relaxation.
Algorithm 1 returns in polynomial time an OTSP solution C satisfying

E[c(E[C])] ≤
(

3
2 + 1

e

)
· cLP .

To prove Theorem 6, we first study the random graph H0 := (V,
⋃̇

i∈{1,...,k}E[Ti]) obtained
from taking the union of trees Ti ∈ Ti for all i ∈ {1, . . . , k} as sampled in Algorithm 1. In
order for the following statements to also be applicable in a proof of Theorem 2, we refer to
the tree distributions of the type generated in Algorithm 1 as connecting tree distributions.

▶ Definition 7 (Connecting tree distribution). Let G = (V, E) be a graph and let d1, . . . , dk ∈ V .
A connecting tree distribution (Ti, µi)i∈{1,...,k} consists of a family Ti of subtrees of G and
marginals µi : Ti → (0, 1] for every i ∈ {1, . . . , k} with the following properties.

(i)
∑

T ∈Ti
µi

T = 1 for all i ∈ {1, . . . , k}.
(ii) V [T] ∩ {d1, . . . , dk} = {di, di+1} for all T ∈ Ti and i ∈ {1, . . . , k}.
(iii)

∑k
i=1

∑
T ∈Ti : v∈V [T] µi

T = 1 for all v ∈ V \ {d1, . . . , dk}.

The distributions (Ti, µi) obtained in Algorithm 1 by applying Lemma 5 indeed satisfy
the constraints of the above definition; in particular, Item iii is fulfilled because

k∑
i=1

∑
T ∈Ti : v∈V [T]

µi
T =

k∑
i=1

yi
v = 1 ∀v ∈ V \ {d1, . . . , dk} ,

where the first equality follows from Lemma 5, and the second one is implied by constraints
of Pdi-di+1 stroll.

▶ Lemma 8. Let G = (V, E) be a graph, d1, . . . , dk ∈ V , and let (Ti, µi) be a connecting tree
distribution.

(i) For any choice of trees Ti ∈ Ti for i ∈ {1, . . . , k}, the multigraph H0 :=
(V,

⋃̇
i∈{1,...,k}E[Ti]) consists of one large connected component and potentially sev-

eral isolated vertices. The large connected component contains a walk with visits at
d1, . . . , dk in this order that can be constructed efficiently from the trees Ti.

(ii) If, in the above construction, the trees Ti are sampled with marginals µi, we have that
for all v ∈ V \ {d1, . . . , dk},

P[v is isolated in H0] ≤ 1
e .

Proof. For Item i observe that each tree Ti is connected within itself by definition and, as it
contains di and di+1, the union of all trees form one large connected component, while all
other components must be isolated vertices. Also, because each tree Ti contains a di-di+1
path, we may concatenate these paths to obtain the desired walk with visits at d1, . . . , dk in
this order.

To prove Item ii, we calculate the probability that a vertex v ∈ V \ {d1, . . . , dk} is isolated
in H0. First, note that for any such vertex v and any i ∈ {1, . . . , k}, we have

P [v /∈ V [Ti]] = 1 −
∑

T ∈Ti : v∈V [T]

µi
T .

APPROX/RANDOM 2024

1:10 A (3/2 + 1/e)-Approximation Algorithm for Ordered TSP

Thus, the probability that a vertex v ∈ V \ {d1, . . . , dk} is not contained in any tree Ti for
i ∈ {1, . . . , k}, and hence is isolated in H0, can be bounded as follows:

P

[
v /∈

k⋃
i=1

V [Ti]
]

=
k∏

i=1
P[v /∈ V [Ti]] =

k∏
i=1

1 −
∑

T ∈Ti : v∈V [T]

µi
T

≤ exp

−
k∑

i=1

∑
T ∈Ti : v∈V [T]

µi
T

 = 1
e ,

where we used that 1 − t ≤ exp(−t) for all t ∈ R, and
∑k

i=1
∑

T ∈Ti : v∈V [T] µi
T = 1 because

(Ti, µi) is a connecting tree distribution. ◀

Next, we bound the cost of the minimum-cost connector F computed in Line 1 of
Algorithm 1.

▶ Lemma 9. Let G = (V, E) be a graph with metric edge costs c, let d1, . . . , dk ∈ V , and
let T be a minimum-cost spanning tree of (G, c).

(i) For all v ∈ V \ {d1}, let ev denote the unique edge outgoing of v when orienting T

towards d1. For every graph H0 on the vertex set V with components that are – up to
possibly the component containing d1 – singleton vertices, the minimum-cost edge set F

that connects H0 satisfies

c(F) ≤
∑

v isolated in H0

c(ev) .

(ii) Let (Ti, µi) for i ∈ {1, . . . , k} be a connecting tree distribution. If the trees Ti ∈ Ti are
sampled with marginals µi and H0 := (V,

⋃̇
i∈{1,...,k}E[Ti]), we obtain

E[c(F)] ≤ 1
e c(T) .

Proof. In order to prove Item i, we construct a feasible connecting edge set F ′ as the set of
all edges ev for which v is an isolated vertex. Then H0 ∪ F ′ is indeed connected, because each
isolated vertex of H0 is connected to its predecessor in T by an edge of F ′, hence inductively,
the component of H0 containing d1 can be reached along edges of F ′. As the minimum-cost
connector F has cost at most c(F ′), we have

c(F) ≤ c(F ′) ≤
∑

v isolated in H0

c(ev) .

To prove Item ii, we note that in this case, H0 consists of one large connected component
and some isolated vertices by Item i of Lemma 8. Using Item ii of Lemma 8 on top of the
above, we get

E[c(F)] ≤ E[c(F ′)] =
∑

v∈V \{d1}

P[v isolated in H0] ·c(ev) ≤ 1
e

∑
v∈V \{d1}

c(ev) = 1
e c(E[T]) .◀

The cost of the odd(H)-join J constructed in Line 1 of Algorithm 1 can be bounded by
1
2 c⊤x by Item ii of Corollary 4. Hence, to complete the analysis of Algorithm 1, it is left
to show that from the Eulerian graph H ∪̇ J constructed in Line 1 of Algorithm 1, we can
obtain an OTSP solution of no larger cost. We remark that such a step has also been used
by Böckenhauer, Mömke, and Steinová [7]; we repeat it here explicitly and give a slightly

S. Armbruster, M. Mnich, and M. Nägele 1:11

different proof for completeness. In the proof, we repeatedly use the operation of shortcutting
a vertex v on a walk, which is the following: If the predecessor and successor of v on the walk
are u and w, respectively, we delete the edges {u, v} and {v, w} from the walk and add the
direct edge {u, w} instead. It is clear that this operation results in a walk again; furthermore,
by the triangle inequality, the costs of the walk do not increase under such operations.

▶ Lemma 10. Let G = (V, E) be a complete graph with metric edge costs c, and let
d1, . . . , dk ∈ V be distinct. Given an undirected connected Eulerian multigraph M = (V, EM)
together with a closed walk in M with visits at d1, . . . , dk in this order, we can in polynomial
time determine a spanning cycle C in G with visits at d1, . . . , dk in this order of cost at most
c(EM).

Proof. Let C be the given closed walk on which d1, . . . , dk appear in this order, delete C

from M and partition the remaining Eulerian graph into a set W of closed walks. Shortcut C

to a cycle while maintaining visits at d1, . . . , dk in this order. This can, for example, be done
by traversing C starting at d1, and shortcutting

(i) vertices that have already been visited, and
(ii) vertices di that are not yet to be visited due to the order constraint.

Afterwards, as long as W is non-empty, pick a closed walk W from W that intersects C, and
let v be a vertex in the intersection. Traversing W starting from v, shortcut W to a cycle by
skipping, except for v itself, all vertices that are already contained in C. Then, merge W

into C by first traversing C up to (and including) v, then completely traversing W until
(but not including) v before continuing on C, thereby including only one visit at v in the
updated C. It is immediate that C is still a cycle after any such operation, and the vertices
d1, . . . , dk still appear on C once and in this order. By connectivity of M , this procedure
only terminates once W is empty, and in that case, C is a spanning cycle of G. Also, all
steps can be implemented to run in polynomial time. Clearly, the final length of C with
respect to c is at most c (EM) because c is metric. ◀

From the above ingredients, we can readily prove Theorem 6.

Proof of Theorem 6. The solution returned by Algorithm 1 is a spanning cycle C in G

obtained from H ∪̇ J through Lemma 10, hence it is feasible and of cost at most c(E[H ∪̇ J]).
Note that the required closed walk in H ∪̇J with visits at d1, . . . , dk in this order is guaranteed
and can be constructed efficiently from the trees Ti by Item i of Lemma 8. Furthermore, by
Item ii of Lemma 9 and Corollary 4, we know that E[c(F)] ≤ 1/e · c(T) ≤ 1/e · cLP, where T is
a minimum-cost spanning tree. In addition, Corollary 4 also implies that c(E[J]) ≤ 1

2 · cLP.
Last but not least, we can express the expected cost of each Ti as

E[c(E[Ti])] =
∑

T ∈Ti

µi
T c(E[T]) =

∑
T ∈Ti

µi
T c⊤χE[T] = c⊤xi ∀i ∈ {1, . . . , k} .

Thus, by summing over all constructed trees, we obtain
∑k

i=1 E[c(E[Ti])] =
∑k

i=1 c⊤xi = cLP.
Together, this yields the proclaimed bound

E[c(C)] ≤ E [c(E[H ∪̇ J])] ≤
(

3
2 + 1

e

)
· cLP .

It remains to note that Algorithm 1 can be implemented to run in polynomial time. To
start with, an optimal solution of the OTSP LP relaxation can be found in polynomial
time because Ps-t stroll admits a polynomial-time separation oracle through polynomially
many calls to a minimum-cut algorithm. Next, the decomposition in Line 1 is obtained in

APPROX/RANDOM 2024

1:12 A (3/2 + 1/e)-Approximation Algorithm for Ordered TSP

polynomial time, finding an optimal edge set F in Line 1 can be implemented by Prim’s
algorithm, and the odd(H)-join is well-known to be computable in polynomial time. Finally,
also the computation of the cycle C in Line 1 is polynomial due to Lemma 10, concluding
the proof. ◀

2.3 Derandomizing Algorithm 1
To complete a proof of our main result, Theorem 1, we now show how to derandomize
Algorithm 1 using the method of conditional expectations, which results in the following
proof.

Proof of Theorem 1. By the construction of the solution C in Algorithm 1, using Item i of
Lemma 9 to bound the cost of F , and Item ii of Corollary 4 to bound the cost of J , we know
that

c(C) ≤
k∑

i=1
c(E[Ti]) + c(F) + c(E[J])

≤
k∑

i=1
c(E[Ti]) +

∑
v /∈

⋃k

i=1
V [Ti]

c(ev) + 1
2 · cLP

︸ ︷︷ ︸
=:g(T1,...,Tk)

, (2)

where we recall that ev, for v ∈ V \ {d1}, is the unique outgoing edge at v when ori-
enting a minimum-cost spanning tree of G towards d1. For Theorem 6, we showed that
E[g(T1, . . . , Tk)] ≤ (3/2 + 1/e) · cLP. Following the method of conditional expectations, in
order to derandomize the choices of the trees Ti in Line 1 of Algorithm 1 while maintaining
the upper bound on the solution cost, we sequentially choose trees Si for i ∈ {1, . . . , k} such
that

Si = arg min
S∈Ti

E [g(T1, . . . , Tk) | T1 = S1, . . . , Ti−1 = Si−1, Ti = S] . (3)

Note that feasibility of the cycle C and the bound of (2) on its cost are unaffected by fixing
Ti = Si. By definition of conditional expectation, we know that

E [g(T1, . . . , Tk) | T1 = S1, . . . , Ti−1 = Si−1]

=
∑

S∈Ti

µi
S · E [g(T1, . . . , Tk) | T1 = S1, . . . , Ti−1 = Si−1, Ti = S] ,

hence the sequence of conditional expectations

(E[g(T1, . . . , Tk) | T1 = S1, . . . , Ti = Si])i∈{1,...,k}

is non-increasing by the choice in (3), because
∑

S∈Ti
µS = 1. Thus, it remains to observe

that the conditional expectations in (3) can be computed. To this end, observe that

E [g(T1, . . . , Tk) | T1 = S1, . . . , Tℓ = Sℓ]

=
ℓ∑

i=1
c(E[Si]) +

k∑
i=ℓ+1

E[c(E[Ti])] +
∑

v /∈
⋃ℓ

i=1
V [Si]

P

[
v /∈

k⋃
i=ℓ+1

V [Ti]
]

c(ev) + 1
2 · cLP ,

and we can readily compute

E[c(E[Ti])] =
∑

T ∈Ti

µi
T c(E[T]) and P

[
v /∈

k⋃
i=ℓ+1

V [Ti]
]

=
k∏

i=ℓ+1
(1 − yi

v) . ◀

S. Armbruster, M. Mnich, and M. Nägele 1:13

3 Extending to several independent total orders: Proving Theorem 2

In this section, we show how our approach can be extended to TSP-PC with a specific
structure of precedence constraints that corresponds to having total orders on disjoint subsets
D1, . . . , Dℓ ⊆ V of the input graph G = (V, E).

As mentioned in the introduction, our approach is inherently tied to handle total orders
– which is why, in the aforementioned setup, our solutions will not interleave vertices from
different chains Dj , but rather treat the chains Dj one after another. Still, our approach
allows to do better than simply constructing OTSP solutions for all subinstances (G, c, Dj)
in a black-box way and concatenating them with appropriate shortcutting. The latter
would lead to an immediate (3/2 + 1/e)ℓ-approximate solution by using Algorithm 1 on each
subinstance. Instead, we observe that after solving the OTSP LP relaxation and sampling
trees for each subinstance as in Algorithm 1, we may join all edges obtained this way and
only once need to connect remaining singletons and do parity correction. This leads to
Algorithm 2 as stated below.

Note that, deviating from the above outline, Algorithm 2 starts by guessing a root node d0
among the minimal nodes in all sets Dj with respect to ≺; this node is used as a common
anchor of the given partial orders and results in connectivity of the multigraph containing
all sampled trees. To be able to compare the obtained solution to an optimal solution, we
need d0 to be, among the minimal nodes in all sets Dj , the first one to appear on an optimal
solution. We remark that for one j ∈ {1, . . . , ℓ}, we already have d0 ∈ Dj . For the sake of
uniform notation, we still add a copy of d0 to Dj in Line 2 of Algorithm 2.

Algorithm 2 Approximating a special case of TSP-PC.

Input: TSP-PC instance (G, c, ≺) on graph G = (V, E), where ≺ precisely induces
total orders on disjoint subsets D1, . . . , Dℓ ⊆ V .

1 Guess a root node d0 among the minimal nodes in Di with respect to ≺.
2 foreach j ∈ {1, . . . , ℓ} do
3 Compute an optimal solution (xji, yji)i∈{0,1,...,|Dj |} to the OTSP LP relaxation

for the OTSP instance (G, c, {d0} ∪̇ Dj) with an order given by ≺ extended by
d0 ≺ Dj .

4 foreach i ∈ {0, 1, . . . , |Dj |} do
5 Apply Lemma 5 to decompose (xji, yji) into trees Tji with weights µji.
6 Sample one tree Tji from Tji with marginals given by µji.

7 Compute a minimum-cost edge set F ⊆ E such that the multigraph

H :=
(

V, F ∪
⋃̇ℓ

j=1

⋃̇
i∈{1,...,|Dj |}

E[Tji]
)

is connected.
8 Let Q = odd(H) and compute a minimum cost Q-join J in G.
9 return Shortest spanning cycle C in G (over all guesses of d0) that visits d0,

D1 \ {d0}, . . . , Dℓ \ {d0} in this order (while respecting ≺ in each Di) and is
obtained from H ∪̇ J through Lemma 10.

APPROX/RANDOM 2024

1:14 A (3/2 + 1/e)-Approximation Algorithm for Ordered TSP

We show that this algorithm gives the guarantee claimed by Theorem 2 in expectation,
and that it can be derandomized using the method of conditional expectations in a way
analogous to the derandomization of Algorithm 1.

Proof of Theorem 2. Let cOPT denote the cost of an optimal solution of the given TSP-
PC instance. For every j ∈ {1, . . . , ℓ}, note that the value cj

LP of the optimal solution
(xji, yji)i∈{1,...,|Dj |} to the OTSP instance (G, c, {d0}∪̇Dj) generated in Line 2 of Algorithm 2
satisfies cj

LP ≤ cOPT. For every j ∈ {1, . . . , ℓ}, denote

Hj :=
(

V,
⋃̇|Dj |

i=0
E[Tji]

)
.

Every such graph is composed of trees from a connecting tree distribution. Hence, by Item i
of Lemma 8, Hj consists of a large connected component that contains a walk with visits
at d0 and all vertices of Dj in the desired order, and potentially isolated vertices. For all
v /∈ {d0} ∪ Dj , Item ii of Lemma 8 implies that

P[v is isolated in Hj] ≤ 1
e .

Also, observe that

E[c(E[Hj])] =
|Dj |∑
i=0

E[c(Tji)] =
|Dj |∑
i=0

∑
T ∈Tji

µji
T c(E[T]) =

|Dj |∑
i=0

c⊤xji = cj
LP ≤ cOPT .

Consequently, the multigraph H0 :=
⋃̇

j∈{1,...,ℓ}Hj has total edge cost at most ℓ · cOPT.
Furthermore, H0 has one large connected component that contains a walk with visits at d0,
D1 \ {d0}, . . . , Dj \ {d0} in this order (obtained by concatenating the walks obtained in
the graphs Hj above), i.e., a walk that respects ≺. Also, because the graphs H1, . . . , Hℓ are
independent,

P[v is isolated in H0] =
ℓ∏

j=1
P[v is isolated in Hj] ≤ 1

eℓ
.

Hence, by Item i of Lemma 9, the cost of the minimum-cost edge set F connecting H0, as
constructed in Line 2 of Algorithm 2, can be bounded as follows:

E[c(F)] ≤
∑

v isolated in H0

P[v is isolated in H0] · c(ev) ≤ 1
eℓ

· c(T) ≤ 1
eℓ

· cOPT .

Here, we used that for any j ∈ {1, . . . , ℓ}, we have c(T) ≤ cj
LP by Item i of Corollary 4,

and cj
LP ≤ cOPT as mentioned above. Similarly, by Item ii of Corollary 4, we know that

the cost of a cheapest odd(H)-join J in the multigraph H = H0 ∪ F can be bounded by
c(E[J]) ≤ 1

2 · cj
LP for any j ∈ {1, . . . , ℓ}, hence c(E[J]) ≤ 1

2 · cOPT.
Altogether, we obtain a connected Eulerian multigraph H ∪̇ J together with a walk that

has visits at d0, D1 \ {d0}, . . . , Dj \ {d0} in the order given by ≺, and

E[c(E[H ∪̇ J])] ≤
(

ℓ + 1
2 + 1

eℓ

)
· cOPT .

Thus, by Lemma 10, we can efficiently find a cycle with visits at d0, D1 \ {d0}, . . . , Dj \ {d0}
in the order given by ≺ of at most the above expected cost.

S. Armbruster, M. Mnich, and M. Nägele 1:15

Finally, to derandomize the random selection of trees Tji in Algorithm 2, we observe that
the present randomized analysis relies on a bound of the form

c(C) ≤
ℓ∑

j=1

|Dj |∑
i=0

c(Tji) +
∑

v /∈
⋃̇

j∈{1,...,ℓ}

⋃̇
i∈{1,...,|Dj |}

V [Tji]

c(ev) + 1
2 · cOPT .

The conditional expectations of this bound with respect to fixing any subset of the trees Tji

can be readily computed. Thus, the derandomization works analogously to Algorithm 1 by
the method of conditional expectations, in each iteration fixing one of the Tji. To complete
the proof of Theorem 6, we observe that all steps of Algorithm 2 can be implemented to run
in polynomial time. ◀

▶ Remark 11. We remark that the analysis of Algorithm 2 above is with respect to the actual
cost cOPT of an optimal TSP-PC solution. Alternatively, after guessing a root node d0,
one could also write an LP relaxation generalizing the OTSP LP relaxation by introducing
independent copies of the variables for each chain {d0} ∪ Dj and minimizing the cost of a
point x ∈ PHK(G) that dominates the edge usage within each of the copies. For the ease of
presentation, though, we decided to present the above analysis only.

4 Proof of Lemma 5

As mentioned earlier, we derive Lemma 5 from a closely related result used by Blauth and
Nägele [5, Lemma 4.2]. We restate their result here in a slightly simplified form that follows
immediately from the original formulation.

▶ Lemma 12 ([5, Lemma 4.2]). Let G = (V, E) be a graph with r ∈ V , let (x, y) ∈ RE
≥0 ×RV

≥0
be feasible for the system

x(δ(v)) = 2yv ∀v ∈ V

x(δ(S)) ≥ 2yv ∀S ⊆ V \ {r}, v ∈ S

yr = 1 ,

(4)

and assume that there is a vertex u ∈ V \ {r} such that yu = 1 and e0 = {u, r} satisfies
xe0 ≥ 1. We can in polynomial time construct a set T of trees that all contain the vertices r

and u, and weights µ ∈ [0, 1]T with
∑

T ∈T µT = 1 and the following properties.
(i) The point x ∈ RE

≥0 is a conic combination of the trees in T with weights µ and the edge
e0, i.e.,

x =
∑
T ∈T

µT χE[T] + χe0 .

(ii) For every v ∈ V \ U ,∑
T ∈T : v∈V [T]

µT = yv .

The proof of Lemma 12 relies on the well-known splitting-off technique (see, e.g., [16,30,31])
applied in the graph G with weights x. Indeed, the constraints in the system (4) can be
interpreted as r-v connectivity requirements for all v ∈ V \ {r}, hence splitting-off allows to
remove a vertex from the graph while preserving the connectivity properties of the remaining
graph. An inductive construction of the desired family of trees is then achieved by reverting
the splitting-off operations and extending trees appropriately. For a complete proof, we refer
to Blauth and Nägele [5].

APPROX/RANDOM 2024

1:16 A (3/2 + 1/e)-Approximation Algorithm for Ordered TSP

To deduce Lemma 5 from Lemma 12, we note that a point (x, y) ∈ Ps-t stroll can be easily
transformed into a point (x′, y′) satisfying the assumptions of Lemma 12 by adding one
unit to x{s,t} and adjusting ys and yt accordingly. Note that intuitively, this corresponds to
closing an s-t stroll to obtain a tour by adding a copy of the edge {s, t}.

Proof of Lemma 5. Given (x, y) ∈ Ps-t stroll, we assume without loss of generality that
e0 := {s, t} ∈ E and define x′ := x + χ{s,t} and y′ = y + 1

2 (χs + χt). We claim that (x′, y′)
with r = s and u = t satisfy the assumptions of Lemma 12. Indeed, y′

s = y′
t = 1, and

x′
e0

= xe0 + 1 ≥ 1. Moreover, for v /∈ {s, t}, we have x′(δ(v)) = x(δ(v)) = 2yv; for v ∈ {s, t},
we have x′(δ(v)) = x(δ(v)) + 1 = 2 = 2y′

v, hence the degree constraints in (4) are satisfied.
Finally, to verify that the cut constraints of (4) are satisfied, too, let S ⊆ V \ {r} and v ∈ S.
If t /∈ S, then x′(δ(S)) = x(δ(S)) ≥ 2yv = 2y′

v follows from the corresponding constraint of
Ps-t stroll. If otherwise t ∈ S, we know that x(δ(S)) ≥ 1, hence

x′(δ(S)) = x(δ(S)) + 1 ≥ 2 ≥ 2y′
v ,

where we use that y′
v = yv ≤ 1 is implied by the constraints of Ps-t stroll for v ∈ V \ {s, t}

(see Footnote 5), and y′
s = y′

t = 1.
Consequently, by applying Lemma 12 to (x′, y′), we obtain in polynomial time a set T of

trees that all contain s and t, and weights µ ∈ [0, 1]T with
∑

T ∈T µT = 1 such that

x + χe0 = x′ =
∑
T ∈T

µT χE[T] + χe0 ,

i.e., x =
∑

T ∈T µT χE[T], and, for every v ∈ V \ {s, t},∑
T ∈T : v∈V [T]

µT = y′
v = yv . ◀

References
1 Susanne Armbruster, Matthias Mnich, and Martin Nägele. A (3/2 + 1/e)-approximation

algorithm for Ordered TSP, 2024. arXiv:2405.06244v1.
2 Egon Balas, Matteo Fischetti, and William R. Pulleyblank. The precedence-constrained

asymmetric traveling salesman polytope. Mathematical Programming, 68(1):241–265, 1995.
doi:10.1007/BF01585767.

3 Jørgen Bang-Jensen, András Frank, and Bill Jackson. Preserving and increasing local edge
connectivity in mixed graphs. SIAM Journal on Discrete Mathematics, 8(2):155–178, 1995.
doi:10.1137/S0036142993226983.

4 Jannis Blauth, Nathan Klein, and Martin Nägele. A better-than-1.6-approximation for
prize-collecting TSP. In Proceedings of the 23rd Conference on Integer Programming and Com-
binatorial Optimization (IPCO ’24), pages 28–42, 2024. doi:10.1007/978-3-031-59835-7_3.

5 Jannis Blauth and Martin Nägele. An improved approximation guarantee for prize-collecting
TSP. In Proceedings of the 55th Annual ACM SIGACT Symposium on Theory of Computing
(STOC ’23), pages 1848–1861, 2023. doi:10.1145/3564246.3585159.

6 Hans-Joachim Böckenhauer, Juraj Hromkovič, Joachim Kneis, and Joachim Kupke. On the
approximation hardness of some generalizations of TSP. In Proceedings of the 10th Scandinavian
Workshop on Algorithm Theory (SWAT ’06), pages 184–195, 2006. doi:10.1007/11785293_19.

7 Hans-Joachim Böckenhauer, Tobias Mömke, and Monika Steinová. Improved approximations
for TSP with simple precedence constraints. Journal of Discrete Algorithms, 21:32–40, 2013.
doi:10.1016/j.jda.2013.04.002.

8 Martin Böhm, Zachary Friggstad, Tobias Mömke, and Joachim Spoerhase. Approximating
TSP variants using a bridge lemma, 2024. arXiv:2405.12876.

https://arxiv.org/abs/2405.06244v1
https://doi.org/10.1007/BF01585767
https://doi.org/10.1137/S0036142993226983
https://doi.org/10.1007/978-3-031-59835-7_3
https://doi.org/10.1145/3564246.3585159
https://doi.org/10.1007/11785293_19
https://doi.org/10.1016/j.jda.2013.04.002
https://arxiv.org/abs/2405.12876

S. Armbruster, M. Mnich, and M. Nägele 1:17

9 Moses Charikar, Rajeev Motwani, Prabhakar Raghavan, and Craig Silverstein. Constrained
TSP and low-power computing. In Proceedings of the 5th International Workshop on Algorithms
and Data Structures (WADS ’97), pages 104–115, 1997. doi:10.1007/3-540-63307-3_51.

10 N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman prob-
lem. Technical Report 388, Graduate School of Industrial Administration, Carnegie Mellon
University, 1976.

11 N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem.
Operations Research Forum, 3, 2022. doi:10.1007/s43069-021-00101-z.

12 G. Dantzig, R. Fulkerson, and S. Johnson. Solution of a large-scale traveling-salesman
problem. Journal of the Operations Research Society of America, 2(4):393–410, 1954. doi:
10.1287/opre.2.4.393.

13 Sami Davies, Janardhan Kulkarni, Thomas Rothvoss, Jakub Tarnawski, and Yihao Zhang.
Scheduling with communication delays via LP hierarchies and clustering. In Proceedings of
the 61st Annual IEEE Symposium on Foundations of Computer Science (FOCS ’20), pages
822–833, 2020. doi:10.1109/FOCS46700.2020.00081.

14 Vladimir G. Dĕineko, Michael Hoffmann, Yoshio Okamoto, and Gerhard J. Woeginger. The
traveling salesman problem with few inner points. Operations Research Letters, 34(1):106–110,
2006. doi:10.1016/j.orl.2005.01.002.

15 Jianzhong Du, Joseph Y-T. Leung, and Gilbert H. Young. Scheduling chain-structured tasks
to minimize makespan and mean flow time. Information and Computation, 92(2):219–236,
1991. doi:10.1016/0890-5401(91)90009-Q.

16 András Frank. On a theorem of Mader. Discrete Mathematics, 101(1):49–57, 1992. doi:
10.1016/0012-365X(92)90589-8.

17 M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, first edition edition, 1979.

18 L. Gouveia and P. Pesneau. On extended formulations for the precedence constrained asym-
metric traveling salesman problem. Networks, 48(2):77–89, 2006. doi:10.1002/net.20122.

19 R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on Applied
Mathematics, 17(2):416–429, 1969. doi:10.1137/0117039.

20 Michael Held and Richard M. Karp. The traveling-salesman problem and minimum spanning
trees. Operations Research, 18(6):1138–1162, 1970. doi:10.1287/opre.18.6.1138.

21 Klaus Jansen and Roberto Solis-Oba. Approximation schemes for scheduling jobs with
chain precedence constraints. International Journal of Foundations of Computer Science,
21(01):27–49, 2010. doi:10.1142/S0129054110007118.

22 Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan. A (slightly) improved approximation
algorithm for metric TSP. In Proceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing (STOC ’21), pages 32–45, 2021. doi:10.1145/3406325.3451009.

23 Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan. A deterministic better-than-
3/2 approximation algorithm for metric TSP. In Proceedings of the 22nd Conference on
Integer Programming and Combinatorial Optimization (IPCO ’23), pages 261–274, 2023.
doi:10.1007/978-3-031-32726-1_19.

24 Marek Karpinski, Michael Lampis, and Richard Schmied. New inapproximability bounds
for TSP. Journal of Computer and System Sciences, 81(8):1665–1677, 2015. doi:10.1016/j.
jcss.2015.06.003.

25 Daniil Khachai, Ruslan Sadykov, Olga Battaia, and Michael Khachay. Precedence constrained
generalized traveling salesman problem: Polyhedral study, formulations, and branch-and-cut
algorithm. European Journal of Operational Research, 309(2):488–505, 2023. doi:10.1016/j.
ejor.2023.01.039.

26 Manfred Kunde. Nonpreemptive LP-scheduling on homogeneous multiprocessor systems.
SIAM Journal on Computing, 10(1):151–173, 1981. doi:10.1137/0210012.

APPROX/RANDOM 2024

https://doi.org/10.1007/3-540-63307-3_51
https://doi.org/10.1007/s43069-021-00101-z
https://doi.org/10.1287/opre.2.4.393
https://doi.org/10.1287/opre.2.4.393
https://doi.org/10.1109/FOCS46700.2020.00081
https://doi.org/10.1016/j.orl.2005.01.002
https://doi.org/10.1016/0890-5401(91)90009-Q
https://doi.org/10.1016/0012-365X(92)90589-8
https://doi.org/10.1016/0012-365X(92)90589-8
https://doi.org/10.1002/net.20122
https://doi.org/10.1137/0117039
https://doi.org/10.1287/opre.18.6.1138
https://doi.org/10.1142/S0129054110007118
https://doi.org/10.1145/3406325.3451009
https://doi.org/10.1007/978-3-031-32726-1_19
https://doi.org/10.1016/j.jcss.2015.06.003
https://doi.org/10.1016/j.jcss.2015.06.003
https://doi.org/10.1016/j.ejor.2023.01.039
https://doi.org/10.1016/j.ejor.2023.01.039
https://doi.org/10.1137/0210012

1:18 A (3/2 + 1/e)-Approximation Algorithm for Ordered TSP

27 J.K. Lenstra and A.H.G. Rinnooy Kan. Complexity results for scheduling chains on a single
machine. European Journal of Operational Research, 4(4):270–275, 1980. doi:10.1016/
0377-2217(80)90111-3.

28 Elaine Levey and Thomas Rothvoss. A (1 + ε)-approximation for makespan scheduling
with precedence constraints using LP hierarchies. In Proceedings of the 48th Annual ACM
SIGACT Symposium on Theory of Computing (STOC ’16), pages 168–177, 2016. doi:
10.1145/2897518.2897532.

29 Mohammad Mehdi Liaee and Hamilton Emmons. Scheduling families of jobs with setup
times. International Journal of Production Economics, 51(3):165–176, 1997. doi:10.1016/
S0925-5273(96)00105-3.

30 L. Lovász. On some connectivity properties of Eulerian graphs. Acta Mathematica Academiae
Scientiarum Hungarica, 28(1):129–138, 1976. doi:10.1007/BF01902503.

31 W. Mader. A reduction method for edge-connectivity in graphs. Annals of Discrete Mathe-
matics, 3:145–164, 1978. doi:10.1016/S0167-5060(08)70504-1.

32 Christos H. Papadimitriou and Mihalis Yannakakis. The traveling salesman problem with
distances one and two. Mathematics of Operations Research, 18(1):1–11, 1993. doi:10.1287/
moor.18.1.1.

33 Yaroslav Salii. Revisiting dynamic programming for precedence-constrained traveling salesman
problem and its time-dependent generalization. European Journal of Operational Research,
272(1):32–42, 2019. doi:10.1016/j.ejor.2018.06.003.

34 Sophia Saller, Jana Koehler, and Andreas Karrenbauer. A systematic review of approximability
results for traveling salesman problems leveraging the TSP-T3CO definition scheme, 2023.
arXiv:2311.00604.

35 A. I. Serdyukov. O nekotorykh ekstremal’nykh obkhodakh v grafakh. Upravlyaemye sistemy,
17:76–79, 1987. URL: http://nas1.math.nsc.ru/aim/journals/us/us17/us17_007.pdf.

36 Ola Svensson. Conditional hardness of precedence constrained scheduling on identical machines.
In Proceedings of the 42nd Annual ACM SIGACT Symposium on Theory of Computing
(STOC ’10), pages 745–754, 2010. doi:10.1145/1806689.1806791.

37 Gerhard J. Woeginger. A comment on scheduling on uniform machines under chain-type
precedence constraints. Operations Research Letters, 26(3):107–109, 2000. doi:10.1016/
S0167-6377(99)00076-0.

38 Laurence A. Wolsey. Heuristic analysis, linear programming and branch and bound, pages
121–134. Springer Berlin Heidelberg, 1980. doi:10.1007/BFb0120913.

https://doi.org/10.1016/0377-2217(80)90111-3
https://doi.org/10.1016/0377-2217(80)90111-3
https://doi.org/10.1145/2897518.2897532
https://doi.org/10.1145/2897518.2897532
https://doi.org/10.1016/S0925-5273(96)00105-3
https://doi.org/10.1016/S0925-5273(96)00105-3
https://doi.org/10.1007/BF01902503
https://doi.org/10.1016/S0167-5060(08)70504-1
https://doi.org/10.1287/moor.18.1.1
https://doi.org/10.1287/moor.18.1.1
https://doi.org/10.1016/j.ejor.2018.06.003
https://arxiv.org/abs/2311.00604
http://nas1.math.nsc.ru/aim/journals/us/us17/us17_007.pdf
https://doi.org/10.1145/1806689.1806791
https://doi.org/10.1016/S0167-6377(99)00076-0
https://doi.org/10.1016/S0167-6377(99)00076-0
https://doi.org/10.1007/BFb0120913

Online Time-Windows TSP with Predictions
Shuchi Chawla #

University of Texas at Austin, United States

Dimitris Christou #

University of Texas at Austin, United States

Abstract
In the Time-Windows TSP (TW-TSP) we are given requests at different locations on a network;
each request is endowed with a reward and an interval of time; the goal is to find a tour that
visits as much reward as possible during the corresponding time window. For the online version of
this problem, where each request is revealed at the start of its time window, no finite competitive
ratio can be obtained. We consider a version of the problem where the algorithm is presented with
predictions of where and when the online requests will appear, without any knowledge of the quality
of this side information.

Vehicle routing problems such as the TW-TSP can be very sensitive to errors or changes in the
input due to the hard time-window constraints, and it is unclear whether imperfect predictions can
be used to obtain a finite competitive ratio. We show that good performance can be achieved by
explicitly building slack into the solution. Our main result is an online algorithm that achieves a
competitive ratio logarithmic in the diameter of the underlying network, matching the performance of
the best offline algorithm to within factors that depend on the quality of the provided predictions. The
competitive ratio degrades smoothly as a function of the quality and we show that this dependence
is tight within constant factors.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases Travelling Salesman Problem, Predictions, Learning-Augmented Algorithms,
Approximation

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.2

Category APPROX

Related Version Due to space limitations, some proofs are deferred to the full version of this paper.
Full Version: https://arxiv.org/abs/2304.01958 [13]

Funding Shuchi Chawla: This work was funded in part by NSF award CCF-2217069.

1 Introduction

Many optimization problems exhibit a large gap in how well they can be optimized offline
versus when their input arrives in online fashion. In order to obtain meaningful algorithmic
results in the online setting, a natural direction of investigation is to consider “beyond
worst case” models that either limit the power of the adversary or increase the power of the
algorithm. A recent line of work in this direction has considered the use of predictions in
bridging the offline versus online gap. Predictions in this context are simply side information
about the input that an online algorithm can use for its decision making; the true input is
still adversarially chosen and arrives online. The goal is to show that on the one hand, if
the predictions are aligned with the input, the algorithm performs nearly as well as in the
offline setting (a property known as consistency); and on the other hand, if the predictions
are completely unrelated to the input, the algorithm nevertheless performs nearly as well as
the best online algorithm (a.k.a. robustness). Put simply, good predictions should help, but
bad predictions should not hurt, and ideally we should reap the benefits without any upfront
knowledge about the quality of the predictions.

© Shuchi Chawla and Dimitris Christou;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 2; pp. 2:1–2:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shuchi@cs.utexas.edu
https://orcid.org/0000-0001-5583-2320
mailto:christou@cs.utexas.edu
https://orcid.org/0009-0007-6935-5677
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.2
https://arxiv.org/abs/2304.01958
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Online Time-Windows TSP with Predictions

Predictions have been shown to effectively bypass lower bounds for a variety of different
online decision-making problems including, for example, caching [30, 31, 25], scheduling [12,
24, 3], online graph algorithms [4], load balancing [27, 28], online set cover [6], matching
problems [17], k-means [19], secretary problems [1, 18], network design [20, 33, 9] and more.1

In this paper, we consider a problem whose objective function value is highly sensitive
to changes in the input, presenting a significant challenge for the predictions setting. In
the Traveling Salesman Problem with Time Windows (TW-TSP for short), we are given
a sequence of service requests at different locations on a weighted undirected graph. Each
request is endowed with a reward as well as a time window within which it should be serviced.
The goal of the algorithm is to produce a path that maximizes the total reward of the requests
visited within their respective time windows. In the online setting, the requests arrive one at
a time at the start of their respective time windows, and the algorithm must construct a
path incrementally without knowing the locations or time windows of future requests.

Vehicle routing problems such as the TW-TSP that involve hard constraints on the lengths
of subpaths (e.g. the time at which a location is visited) are generally more challenging than
their length-minimization counterparts. In particular, a small bad decision at the beginning
of the algorithm, such as taking a slightly suboptimal path to the first request, can completely
obliterate the performance of the algorithm by forcing it to miss out on all future reward.
In the offline setting, this means that the approximation algorithm has to carefully counter
any routing inefficiency in some segments by intentionally skipping reachable value in other
segments. In the online setting, this means that no sublinear competitive ratio is possible.

Given the sensitivity of the TW-TSP objective to small routing inefficiencies, is it possible
to design meaningful online algorithms for this problem using imperfect predictions?

We consider a model where the algorithm is provided with a predicted sequence of requests
at the beginning, each equipped with a predicted location and a predicted time window. The
true sequence of requests is revealed over time as before. Of course if the predicted sequence
is identical to the true request sequence, the algorithm can match the performance of the
best offline algorithm. But what if the predictions are slightly off? Could these small errors
cause large losses for the online algorithm? Can the algorithm tolerate large deviations?

Our main result is an online algorithm for the TW-TSP based on predictions whose
performance degrades smoothly as a function of the errors in prediction. We obtain this
result by explicitly building slack into our solution and benchmark. In a slight departure
from previous work on TW-TSP, we require the server to spend one unit of idle “service time”
at each served request. We show that this is necessary to obtain a sublinear approximation
even with predictions (Theorem 9). (However, in the absence of predictions, the setting
with service times continues to admit a linear lower bound on the competitive ratio; See
Theorem 8.) We then use service times judiciously in planning a route and accounting for
delays caused by prediction errors.

There are two primary sources of error in predictions: (1) the predicted locations of
requests may be far from the true locations; and, (2) the predicted time windows may be
different from the true time windows. The competitive ratio of our algorithm depends linearly
on each of these components, taking the maximum error over each predicted request and
normalizing appropriately.2 This dependence is tight to within constant factors. Besides this

1 A comprehensive compendium of literature on the topic can be found at [29].
2 Formally, the competitive ratio depends linearly on the ratio of the maximum location error of any

predicted request to the minimum service time, as well as the ratio of the maximum time window error
to the minimum time window length.

S. Chawla and D. Christou 2:3

dependence on the prediction error, the competitive ratio depends logarithmically on the
diameter of the underlying network, matching the performance of the best known offline
algorithm for TW-TSP.

Although our competitive ratio is stated in terms of the maximum location or time
window errors, where the maximum is taken over all requests in the instance, our algorithm
performs well even when some of the errors are large and most errors are small. In particular,
our algorithm’s performance is simultaneously competitive against the maximum achievable
reward over any subset of requests, scaled down by the maximum prediction error over
that subset. (See “Extensions” in Section 3 for a formal statement.) In this respect, our
guarantees fall within the framework of metric error with outliers proposed by [4]. On the
other hand, when all or most requests are predicted poorly, our algorithm also inevitably
performs poorly as it inherits lower bounds from fully online instances.

Importantly, our algorithm requires little to no information about how the predictions
match up against the true requests. For the purpose of analysis, we measure the error
in predictions with respect to some underlying matching between the predicted and true
requests – the error parameters are then defined in terms of the maximum mismatch between
any predicted request and its matched true request. This matching is never revealed to
the algorithm and in fact the performance of the algorithm depends on the quality of the
best possible matching between the predicted and true requests. The only information the
algorithm requires about the quality of the predictions is the location error – the maximum
distance between any prediction and its matched true request. Even for this parameter, an
upper bound suffices (and at a small further loss, a guess suffices).

Our overall approach has several components. The first of these is to construct an instance
of the TW-TSP over predicted requests that requires the server to spend some idle time at
each request as a “service delay”. We then extend offline TW-TSP algorithms to this service
delay setting, obtaining a logarithmic in diameter approximation. We then follow and adapt
this offline solution in the online setting. Every time the offline solution services a predicted
request, we match this request to a previously revealed true request, take a detour from the
computed path to visit and service the true request, and then resume the precomputed path.
Altogether this provides the desired competitive ratio.

Our results further generalize to a setting where predictions are coarse in that each single
predicted location captures multiple potential true requests that are nearby. We show that
with prediction errors defined appropriately, we can again achieve a competitive ratio for
this “many to one matching” setting that is logarithmic in the diameter of the graph and
polynomial in the prediction error.

Finally, our algorithm and analysis incorporates error in estimating rewards of requests
in a straightforward manner achieving the optimal dependence on this third source of error.

Further related work
Using predictions in the context of online algorithm design was first proposed by [30] for
the well-studied caching problem. Since that work, the literature on online algorithm design
with predictions has grown rapidly. We point the interested reader to a compendium at [29]
for further references.

Metric error with outliers

Azar et al. [4] initiated the study of predictions in the context of online graph optimization
problems, and proposed a framework for quantifying errors in predictions, called metric error
with outliers, that we adapt. The idea behind this framework is to capture two sources of

APPROX/RANDOM 2024

2:4 Online Time-Windows TSP with Predictions

error: (1) Some true requests may not be captured by predictions and some predictions may
not correspond to any true requests; (2) For requests that are captured by predictions, the
predictions may not be fully faithful or accurate. The key observation is that it is possible
to design algorithms with performance that depends on these two sources of error without
explicit upfront knowledge of the (partial) correspondence between predicted and true requests.

In this work, we focus mostly on the second source of error, which we further subdivided
into three kinds of error in order to obtain a finer understanding of the relationship between
the competitive ratio and different kinds of error. As in the work of Azar et al. [4], we assume
that the correspondence between predicted and true requests is never explicitly revealed to
the algorithm. The performance of the algorithm nevertheless depends on the error of the
best matching between predicted and true requests. In Section 3 we describe how the first
source of error in Azar et al.’s framework can also be incorporated into our bounds.

TSP with predictions

Recently a few papers [10, 23, 22] have considered the online TSP and related routing
problems with predictions. The input to the online TSP is similar to ours: requests arrive
over time in a graph, and a tour must visit each request after its arrival time. However,
the objective is different. In our setting, requests also have deadlines, and the algorithm
cannot necessarily visit all requests. The goal therefore is to visit as many as possible. In
the online TSP, there are no deadlines, and so the objective is to visit all requests as quickly
as possible, or in other words to minimize the makespan. This makespan minimization
objective is typically much easier than the deadline setting, as evidenced by constant factor
approximations for it in the offline, online, and predictions settings, as opposed to logarithmic
or worse approximations for the latter problem.

The algorithmic idea of precomputing an offline path based on the predictions and then
adapting it to the online input has also been used in [10, 23]. The main challenge in the
setting that our works considers, is that due to the existence of deadlines, our algorithm
needs to be careful on how it adapts its path, as taking a large detour could result in entirely
missing the time-windows of future (unrevealed) requests. We circumvent this issue by
introducing appropriately large idle times on the predicted requests that our offline solution
visits.

TW-TSP without predictions

The (offline) TW-TSP problem has a rich literature and has been studied for over 20 years.
The problem is known to be NP-hard even for special cases, e.g. on the line [32], and when
all requests have the same release times and deadlines (a.k.a. Orienteering) [11]. Orienteering
admits constant factor approximations [11, 7, 14], and even a PTAS when requests lie in
a fixed dimensional Euclidean space [2, 16]. For general time windows, constant factor
approximations are only known for certain special cases: e.g. constant number of distinct
time windows [15]; and on line graphs [32, 26, 8, 21]. For general graphs and time-windows,
the best approximations known are logarithmic in input parameters [7, 14].

To the best of our knowledge, the online setting for TW-TSP has only been considered
by Azar and Vardi [5]. Azar and Vardi assume that service times are non-zero and present
competitive algorithms under the assumption that the smallest time window length Lmin
is comparable to the diameter D of the graph, as no sublinear competitive ratio can be
achieved if Lmin < D/2. We are able to beat this lower bound by relying on predictions.

S. Chawla and D. Christou 2:5

Organization of the paper
We formally define the problem and our error model in Section 2. Section 3 describes our
results and provides an outline for our analysis. All of our main results are covered in that
section. Proofs of these results can be found in subsequent sections. In particular, Sections 4,
5, and 6 fill in the details of our upper bound, and Section 7 proves the stated lower bounds.
Proofs omitted from the main body of this paper can be found in the appendix of the full
version [13].

2 Definitions

2.1 The Traveling Salesman Problem with Time-Windows
An instance of the TW-TSP consists of a network G and a (finite) sequence of service requests
I. Here, G = (V, E, ℓ) is an undirected network with edge lengths {ℓe}e∈E . Extending the
notion of distance to all vertex pairs in G, we define ℓ(u, v) for u, v ∈ V to be the length of
the shortest path from u to v. We assume without loss of generality that G is connected
and that the edge lengths ℓe are integers. A service request σ = (vσ, rσ, dσ, πσ) consists of a
vertex vσ ∈ V at which the request arrives, a release time rσ ∈ Z+, a deadline dσ ∈ Z+ with
dσ > rσ, and a reward πσ ∈ Z+. We use Σ ⊆ V × Z+ × Z+ × Z+ to denote the set of all
possible client requests and I ⊂ Σ to denote the set of requests received by the algorithm.

The solution to TW-TSP is a continuous walk on G that is allowed to remain idle on the
vertices of the graph.3 Formally, the walk starts from some vertex at time t = 0; at every
time-step that it occupies a vertex u ∈ V , it can either remain idle on u for some number
of time-steps or it can move to some v ∈ V by spending time t = ℓ(u,v); we comment that
while the path is mid-transition, no more decisions can be made. Notice that this creates
a notion of a discrete time-horizon that will be important towards formalizing the online
variant of the problem.

We use W(G) to denote the set of all walks on G. Given a request σ ∈ Σ, we say that
a walk W covers it if W remains idle on vertex vσ for at least one time-step,4 starting on
some step τ ∈ [rσ, dσ − 1]. For a sequence of requests I ⊂ Σ, we use Cov(W, I) ⊆ I to denote
the set of requests in I that are covered by W . Then, the reward obtained by walk W is
denoted by Rew(W, I) :=

∑
σ∈Cov(W,I) πσ. The objective of TW-TSP is to compute a walk

W ∈ W(G) of maximum reward. We denote this by OPT(G, I) := maxW ∈W(G) [Rew(W, I)].

2.2 The offline, online, and predictions settings
We assume that the network G is known to the algorithm upfront in all of the settings we
consider. In the offline version of the problem, the sequence of requests I is given to the
algorithm in advance. In the online version, requests σ ∈ I arrive in an online fashion;
specifically, each request σ ∈ I is revealed to the algorithm at its release time rσ.

In the predictions setting, the true sequence of requests I arrives online, as in the online
setting. However, the algorithm is also provided with a predicted sequence I ′ ⊂ Σ in advance,
where every request σ′ ∈ I ′ is endowed with a location, a time window, and a reward. The

3 To keep our exposition simple, we do not specify a starting location for the walk. However, all of our
algorithms can be adapted without loss to the case where a starting location is fixed, as described
towards the end of Section 3.

4 As we mentioned in the introduction, this requirement of a minimal one-unit service time is necessary
in order to achieve any sublinear approximation for the online TW-TSP even with predictions. See
Theorem 9 in Section 7.

APPROX/RANDOM 2024

2:6 Online Time-Windows TSP with Predictions

quality of predictions is expressed in terms of their closeness to true requests. To this end,
we define three notions of mismatch or error. For a true request σ and predicted request σ′,
the location error, time windows error, and reward error are defined as:

LocErr(σ, σ′) := ℓ(vσ, vσ′)
TWErr(σ, σ′) := max{|rσ − rσ′ |, |dσ − dσ′ |}
RewErr(σ, σ′) := max{πσ/πσ′ , πσ′/πσ}

We extend these definitions to the entire sequences I and I ′ through an underlying (but
unknown to the algorithm) matching between the requests in the two lists:

▶ Definition 1. Given two request sequences I, I ′ ⊂ Σ with |I| = |I ′| and a perfect matching
M : I 7→ I ′, we define the location, time window, and reward errors for the matching M as:

ΛM := max
σ∈I

LocErr(σ, M(σ))

τM := max
σ∈I

TWErr(σ, M(σ))

ρM := max
σ∈I

RewErr(σ, M(σ))

We use n = |V | to denote the number of vertices in G, D to denote the diameter of
the graph, and Lmin and Lmax to denote the size of the smallest and largest time windows
respectively (of a true or predicted request) in the given instance; that is, we denote
Lmin = minσ∈I∪I′ |dσ − rσ| and Lmax = maxσ∈I∪I′ |dσ − rσ|. The competitive ratios of the
algorithms we develop depend on these parameters.

Knowns and unknowns

We denote an instance of the TW-TSP with predictions by (G, I, I ′, M). All components of
the instance are chosen adversarially. As mentioned earlier, the network G and the predicted
sequence I ′ are provided to the algorithm at the start. The sequence I arrives online. We
assume that the algorithm receives no direct information about the matching M , but is
provided with an upper bound on the error ΛM . We will also assume that the algorithm
knows the parameter Lmin, although this is without loss of generality as the parameter can
be inferred within constant factor accuracy from the predictions.5

2.3 The TW-TSP with service times
At a high level our algorithm has two components: an offline component that computes a
high-reward walk over the predicted locations of requests, and an online component that
largely follows this walk but takes “detours” to cover the arriving true sequence of requests.
In particular, as the algorithm follows the offline walk, for each predicted location it visits
where a “close by” true request is available, the algorithm takes a “detour” to this true
request, returns back to the predicted location, and resumes the remainder of the walk. In
order to incorporate the time spent taking these detours in our computation of the offline
walk, we require the walk to spend some “service time” at each predicted location it covers.
Accordingly, we define a generalization of the TW-TSP:

5 In particular, assuming τM ≤ Lmin/2, which is necessary for our results to hold, the time window of
any true request can be no shorter than half the smallest time window of any predicted request.

S. Chawla and D. Christou 2:7

▶ Definition 2. The TW-TSP with Service Times (TW-TSP-S) takes as input a network G,
a sequence of service requests I, and a service time S ∈ Z+, and returns a walk W ∈ W(G).
We say that W covers a request σ ∈ I, denoted σ ∈ Cov(W, I, S), if it remains idle on vertex
vσ for at least S time steps, starting at some step t ∈ [rσ, dσ − S]. We define the reward of
W as Rew(W, I, S) :=

∑
σ∈Cov(W,I,S) πσ. The optimal value of the instance is given by:

OPT(G, I, S) := max
W ∈W(G)

[Rew(W, I, S)].

Note that the original version of TW-TSP as defined previously simply corresponds
to the special case of TW-TSP-S with service time S = 1, and in particular, we have
Rew(W, I) = Rew(W, I, 1), and OPT(G, I) = OPT(G, I, 1).

3 Our results and an outline of our approach

Our main result is as follows.

▶ Theorem 3. Given any instance (G, I, I ′, M) of the TW-TSP with predictions whose errors
satisfy τM ≤ Lmin/2 and ΛM ≤ (Lmin− 1)/4, there exists a polynomial-time online algorithm
that takes the tuple (G, I ′, ΛM) as offline input and I as online input, and constructs a walk
W ∈ W(G) such that

E[Rew(W, I)] ≥ 1
O(ΛM · ρ2

M · log min(D, Lmax)) ·OPT(G, I).

As mentioned previously, our algorithm consists of two components. The offline component
constructs a potential walk in the network with the help of the predicted requests. Then an
online component adapts this walk to cover true requests that arrive one at a time. We break
up the design and analysis of our algorithm into four steps. The first two steps relate the
offline instance we solve to the hindsight optimal solution for the online instance. The third
step then applies an offline approximation to the predicted instance with appropriate service
times. The final step deals with the online adaptation of the walk to the arriving requests.

The following four lemmas capture the four steps. First, we show (Section 4) that
introducing a service time of S hurts the optimal value by at most a factor of 2S − 1. As
we prove in Lemma 14 of Section 4, this dependency on S is tight. Observe that we require
S ≤ Lmin, as for any tour to feasibly cover a request, the service time for that request must
fit within its time window.

▶ Lemma 4. For any instance (G, I) of the TW-TSP with service times, and any integer
S ≤ Lmin, we have

OPT(G, I, S) ≥ 1
2S − 1 ·OPT(G, I, 1).

Our second step (also in Section 4) relates the value of the optimal solution over the true
requests I to the optimum over the predicted sequence I ′. In both cases, we impose some
service time requirements. Note that this argument needs to account for the discrepancy in
locations, time windows, as well as the rewards of the true and predicted requests.

▶ Lemma 5. Let (G, I, I ′, M) be an instance of the TW-TSP with predictions, where ΛM ,
ρM , and τM denote the maximum location, reward, and time window errors of the instance
respectively. Define S := 4ΛM + 1 and S′ := 2ΛM + 1. Then, if τM ≤ Lmin/2 and
ΛM ≤ (Lmin − 1)/4, we have

OPT(G, I ′, S′) ≥ 1
3ρM

·OPT(G, I, S).

APPROX/RANDOM 2024

2:8 Online Time-Windows TSP with Predictions

Our third step (Section 5) captures the offline component of our algorithm: computing
an approximately optimal walk over the predicted requests with the specified service times.
For this we leverage previous work on the TW-TSP without service times and show how to
adapt it to capture the service time requirement.

▶ Lemma 6. Given any instance (G, I ′, S′) of the TW-TSP with service times, there exists
a polynomial time algorithm that returns a walk W ∈ W(G) with reward

Rew(W, I ′, S′) = 1
O (log min(D, Lmax)) ·OPT(G, I ′, S′).

Finally, the fourth component (Section 6) addresses the online part of our algorithm.
Given a walk computed over the predicted request sequence, it solves an appropriate online
matching problem to construct detours to capture true requests. As in Lemma 5, this part
again needs to account for the discrepancy in locations, time windows, as well as the rewards
of the true and predicted requests.

▶ Lemma 7. Given an instance (G, I, I ′, M) of the TW-TSP with predictions satisfying
τM ≤ Lmin/2 and ΛM ≤ (Lmin − 1)/4; a walk W ′ ∈ W(G); and any integer S′ ≥ 2ΛM + 1,
there exists an online algorithm (Algorithm 1) that returns a walk W ∈ W(G) with expected
reward

E [Rew(W, I, 1)] ≥ 1
6ρM

· Rew(W ′, I ′, S′).

Theorem 3 follows immediately by putting Lemmas 4, 5, 6 and 7 together.

Lower bounds and tightness of our results
We show that the online TW-TSP does not admit sublinear competitive algorithms in the
absence of predictions if Lmin < D, even with non-zero service times. Furthermore, if the
service times are all 0, no sublinear competitive ratio is possible even using predictions that
are accurate in all respects except the request location. Therefore, in order to achieve a
nontrivial competitive ratio, it is necessary to use predictions as well as to impose non-zero
service times on the optimum. The proofs are presented in Section 7.

▶ Theorem 8. The competitive ratio of any randomized online algorithm for Online TW-TSP
on instances with Lmin ≤ D and all service times equal to 1 is at most 1/n.

▶ Theorem 9. For any S > 0, there exists an instance (G, I, I ′, M) of the TW-TSP with
predictions and service times 0, satisfying τM = 0, ρM = 1, and ΛM = S, such that any
randomized online algorithm taking the tuple (G, I ′, ΛM) as offline input and I as online
input achieves a reward no larger than O(1/n) · OPT(G, I, 0). Here n is the number of
vertices in G.

As mentioned earlier, the best known approximation factor for the offline TW-TSP
is O(log Lmax) (which we show can be improved slightly to O(log min(D, Lmax))). We
inherit this logarithmic dependence on D and Lmax in the predictions setting. Furthermore,
any improvements to the offline approximation would immediately carry through into our
competitive ratio as well. In particular, given an offline TW-TSP algorithm that achieves a
competitive ratio of α(D, Lmax), we obtain an online algorithm that achieves a competitive
ratio of O(ΛM · ρ2

M · α(D, Lmax)).
The dependence of our bound on ρM can easily be seen to be tight – consider a star

graph with requests on leaves, and edge lengths and time windows defined in such a manner
that any feasible walk can cover at most one request. Then an uncertainty of a factor of

S. Chawla and D. Christou 2:9

ρM in the predicted rewards can force any online algorithm to obtain an Ω(ρ2
M) competitive

ratio even if the predictions are otherwise perfect. Finally, we show in Section 7.2 that the
dependence of our competitive ratio on ΛM is also tight:

▶ Theorem 10. For any S > 0, there exists an instance (G, I, I ′, M) of the TW-TSP with
predictions satisfying τM = 0, ρM = 1, and ΛM = S such that the competitive ratio of any
randomized online algorithm taking the tuple (G, I ′, ΛM) as offline input and I as online
input asymptotically approaches 1/(S + 1).

Extensions and generalizations

We now describe some ways in which we can weaken the assumptions in Theorem 3 while
maintaining its competitive ratio guarantee:

Lack of knowledge of ΛM . Our algorithm continues to work as intended if it is
provided with an upper bound on ΛM rather than the exact value of the parameter, with
the performance of the algorithm degrading linearly with the upper bound, as in the
theorem above. One such upper bound is simply Lmin/4. Moreover, by guessing ΛM

within a factor of 2 in the range [0, Lmin/4], we can obtain the claimed approximation
with a further loss of O(log Lmin). Thus, our algorithm can achieve non-trivial guarantees
that scale with the location error even in settings where no information is given about
any of the prediction errors ΛM , τM , ρM .

Assumptions on τM and ΛM . It is easy to see that it is necessary to assume
ΛM ≤ Lmin to obtain a nontrivial competitive ratio, as predictions with a location error
larger than the time window size are of no value to the online algorithm. On the other
hand, assuming τM ≤ Lmin is not necessary. We can accommodate larger time window
errors by following one out of roughly τM /Lmin different time shifts of the offline walk.
This worsens our approximation factor by an additional factor of τM /Lmin. In particular,
this algorithm achieves a competitive ratio of O(ΛM · ρ2

M · τM /Lmin · log min(D, Lmax)).

Random rewards. Our results also hold in the case of random rewards. Specifically,
consider a setting where the rewards {πσ}σ∈I are drawn from some joint (not necessarily
product) distribution D over RI

+. In that case, we define Rew(W, I) :=
∑

σ∈Cov(W,I) E[πσ],
and OPT(G, I) as the maximum reward obtained by any walk W ∈ W(G).6 Finally, we
define RewErr(σ, σ′) as the mismatch between π′

σ and E[πσ]. Our analysis provides the
same approximation as before in this setting. See the full version for a formal proof.

▶ Corollary 11. Given an instance (G, I, I ′, M) of the TW-TSP with predictions where
requests have randomly drawn rewards, and predictions errors satisfy that τM ≤ Lmin/2
and also ΛM ≤ (Lmin−1)/4, there exists a polynomial-time online algorithm that takes the
tuple (G, I ′, ΛM) as offline input and I as online input, and constructs a walk W ∈ W(G)
such that

E[Rew(W, I)] ≥ 1
O(ΛM · ρ2

M · log min(D, Lmax)) ·OPT(G, I)

6 Note that we do not allow the optimal walk to adapt to instantiations of rewards. Adaptive walks
cannot be competed against in an online setting even with predictions.

APPROX/RANDOM 2024

2:10 Online Time-Windows TSP with Predictions

Rooted instances. Next, we consider the case where a starting vertex v0 is also specified,
and the solution space W(G) includes all walks on G that start on vertex v0 at t = 0.
We can easily see that this setting is essentially equivalent to its unrooted counterpart,
under the extra assumption that each request σ = (vσ, rσ, dσ, πσ) satisfies the conditions
ℓ(v0, vσ) ≤ rσ. This is a reasonable assumption as no algorithm can visit a request σ

before time ℓ(v0, vσ) anyway. Clearly, for any rooted instance (G, I, v0), the unrooted
optimal OPT(G, I) is an upper bound on the rooted optimal OPT(G, I, v0). On the other
hand, the unrooted path computed by our algorithm can be transformed to a path of
same reward rooted at v0 by going directly from v0 to the predicted request serviced first,
as this distance is at most equal to the request’s release time.

Partial matching. Next we consider the case where not all true requests are captured
by the predicted requests and, on the flip side, where some predicted requests do not
correspond to true requests at all. Following the framework of [4], we consider partial
matchings between I and I ′, and define ∆M

1 to be the total reward of all true requests
that are unmatched, and ∆M

2 to be the total predicted reward of predicted requests that
are unmatched. Then, it is easy to see that our analysis goes through for the subsets of I

and I ′ that are matched to each other, costing us an additive amount of no more than
∆M

1 + ∆M
2 . See the full version for a formal proof.

▶ Corollary 12. Given an instance (G, I, I ′) of the TW-TSP with predictions, let M be any
(incomplete) matching between I and I ′, and let the error parameters ΛM , ρM , τM , ∆M

1 ,

and ∆M
2 be defined as above. Then, there exists an online algorithm that takes (G, I ′, ΛM)

as offline input and I as online input, and returns a walk W ∈ W(G) such that

E [Rew(W, I)] ≥ Ω
(

1
ΛM · ρ2

M · log min(D, Lmax)

)
·
(
OPT(G, I)−∆M

1
)
− ∆M

2
ρM

.

Many to one matching. Consider a setting where predictions are coarse in that each
single predicted location captures multiple potential true requests. We can model such a
setting within our predictions framework and obtain almost the same guarantee as in
Theorem 3. In particular, for this setting, let M be a many-to-one matching from I to I ′.
We define the location error of a predicted request σ′ ∈ I ′ as the length of the shortest
path that starts at σ′, visits all of the locations of the true requests that are preimages of
σ′ in M , spending one unit of time at each, and returns back to σ′. Observe that this
location error is the length of the optimal solution to an orienteering problem rooted at σ′.
Correspondingly, we want the reward associated with σ′ to capture the total reward of all
the true requests matched to σ′, and define its reward error accordingly. Finally, the time
window error is defined as before, as a maximum over all pairs σ and σ′ that are matched
to each other. Our algorithm for the setting of Theorem 3 constructs a matching between
I ′ and I in an online fashion. For this one to many setting, we solve instances of the
orienteering problem rooted at each predicted request we visit. The performance of the
algorithm accordingly worsens by a small constant factor and we achieve a competitive
ratio of O(ΛM ρ2

M log min(D, Lmax)) as before. Due to space limitations, the details of
the proof are omitted from this version. See Section 8 of the full version [13] for further
details.
▶ Theorem 13. Given an instance (G, I, I ′, M) of the TW-TSP with predictions where
M is a many-to-one matching with errors as defined above, and satisfying τM ≤ Lmin/2
and ΛM ≤ Lmin/2, there exists a polynomial-time online algorithm that takes the tuple
(G, I ′, ΛM) as offline input and I as online input, and constructs a walk W ∈ W(G) such
that

E[Rew(W, I)] ≥ 1
O(ΛM · ρ2

M · log min(D, Lmax)) ·OPT(G, I).

S. Chawla and D. Christou 2:11

4 Relating the Optima

In this section we provide the proofs of Lemmas 4 and 5 that relate the optima over the
true and the predicted request sequences, using service times as a mechanism to capture the
prediction errors. We begin by proving that a service time of S can hurt the optimal by at
most a factor of 2S − 1.

▶ Lemma 4. For any instance (G, I) of the TW-TSP with service times, and any integer
S ≤ Lmin, we have

OPT(G, I, S) ≥ 1
2S − 1 ·OPT(G, I, 1).

Proof. Let W ∈ W(G) be the walk that achieves the optimum OPT(G, I, 1), and let the
requests in I that are covered by W be denoted as σi = (vi, ri, di, πi) and ordered in the
sequence in which they are covered by W . The lemma follows directly from the simple
observation that if we don’t service the (S − 1)-requests prior and after some request σi,
then we can save enough time to service σi for S time-steps within its time window.

Formally, if ti ∈ [ri, di − 1] is the step at which W begins servicing request σi, then by
skipping the idle times on the (S − 1)-previous and next requests we can remain idle on vi

from step ti− (S − 1) until step ti + S (since W already remained idle on vi for 1 step) while
still being able to keep up with walk W . Since S ≤ Lmin, it is easy to verify that at least S

of these time-steps are going to fall in the time-window [ri, di].
We now partition the requests σi = (vi, ri, di, πi) into 2S− 1 sub-sequences, each of which

starts at some request i ∈ [S], and covers the requests σi, σi+(2S−1), σi+2(2S−1), and so forth.
Each such sequence can be covered with a walk, with idle times built in as above, so as to be
feasible for the instance (G, I, S). Clearly, one of these walks obtains a reward of at least
OPT(G, I, 1)/(2S − 1), completing the proof. ◀

In the appendix of the full version, we show that the above lemma obtains a tight gap
between the optima at different service times.

▶ Lemma 14. For any pair of integers (L, S) such that L ≥ 2S− 2 ≥ 1, there exists a rooted
instance (G, I) of the TW-TSP with service costs such that Lmin = L and

OPT(G, I, S) = 1
2S − 1 ·OPT(G, I, 1).

Next, we provide the proof of Lemma 5 that relates the optima between the predicted
and true request sequences, by appropriately addressing all three possible types of prediction
errors.

▶ Lemma 5. Let (G, I, I ′, M) be an instance of the TW-TSP with predictions, where ΛM ,
ρM , and τM denote the maximum location, reward, and time window errors of the instance
respectively. Define S := 4ΛM + 1 and S′ := 2ΛM + 1. Then, if τM ≤ Lmin/2 and
ΛM ≤ (Lmin − 1)/4, we have

OPT(G, I ′, S′) ≥ 1
3ρM

·OPT(G, I, S).

Proof. Let W be the walk that achieves the optimum OPT(G, I, S), and let the requests
in I covered by W be denoted as σi = (vi, ri, di, πi) and ordered in the sequence in which
they are visited by W . Let σ′

i = (v′
i, r′

i, d′
i, π′

i) denote the predicted request matched to σi,
that is, σ′

i = M(σi). Observe that the total reward of all requests {σ′
i} corresponding to

σi ∈ Cov(W, I, S) is at least Rew(W, I, S)/ρM .

APPROX/RANDOM 2024

2:12 Online Time-Windows TSP with Predictions

We will consider a walk W ′ in G defined as follows. The walk W ′ follows W , visiting
the requests σi in sequence. As soon as W starts servicing σi, W ′ takes a detour to
visit σ′

i; remains idle at σ′
i for S′ time steps; returns back to σi; remains idle at σi for

S−2ℓ(vi, v′
i)−S′ ≥ 0 time steps; and then resumes the walk W . Observe that W ′ is identical

to W outside of the detours it takes to visit the σ′
i’s.

Our goal is to feasibly capture all of the reward contained in the σ′
is. The problem is

that the walk W ′ may miss some of this reward due to the mismatch in the time windows of
the true and predicted requests. To this end, we will consider two variations of the walk W ′.
Let K := Lmin/2 ≥ τM . The walk W ′

1 is identical to W ′ except that it starts K steps after
W ′ starts, and accordingly visits every location exactly K steps after W ′ visits it. The walk
W ′

2 is identical to W ′ except that it starts K steps before W ′ starts,7 and accordingly visits
every location exactly K steps before W ′ visits it.

Now consider some σ′
i corresponding to a request σi covered by W in the instance (G, I, S).

We claim that at least one of the walks W ′, W ′
1, and W ′

2 covers σ′
i in (G, I ′, S′). Let t be

the time at which W ′ arrives at v′
i; recall that W ′ remains at the node until at least t + S′.

Note that t ≥ ri and t + S′ ≤ di due to σi ∈ Cov(W, I, S).
First, suppose that r′

i ≤ t and d′
i ≥ t + S′, then σ′ is covered by W ′ in (G, I ′, S′). Next

suppose that r′
i > t. Then, W ′

1 arrives at v′
i at time t + K ≥ ri + K ≥ ri + τM ≥ r′

i. On
the other hand, it remains at v′

i until time t + K + S′ < r′
i + K + S′ ≤ r′

i + Lmin ≤ d′
i.

Therefore, σ′
i is covered by W ′

1. Finally, suppose that d′
i < t + S′. Then, W ′

2 arrives at v′
i at

time t−K > d′
i − S′ −K ≥ d′

i − Lmin ≥ r′
i. On the other hand, it remains at v′

i until time
t−K + S′ ≤ di −K ≤ di − τM ≤ d′

i. Therefore, σ′
i is covered by W ′

2.
We get that at least one of W ′, W ′

1, or W ′
2 obtains at least a 1/3ρM fraction of

OPT(G, I, S), where the factor of ρM is lost due to the mismatch in the predicted rewards.
The lemma follows directly from this. ◀

5 The offline approximation

In this section, we design an O(log min(D, Lmax)) deterministic and polynomial-time ap-
proximation algorithm for the TW-TSP with service times, providing the proof of Lemma 6.
Our proof relies on a series of reductions between different offline problems, applications of
existing algorithms as well as the design of novel algorithmic components. We break up our
argument into a series of lemmas. Due to space limitations, all the proofs are moved to the
appendix of the full version [13].

1. First, we designing an O(log min(D, Lmax)) approximation algorithm for TW-TSP
(without service times). Since the work of [14] already provides a O(log Lmax) ap-
proximation for the setting with integer time-windows (see Lemma 5.3 of [14]), it suffices
to prove the following:
▶ Lemma 15. Given an instance of the TW-TSP (without service times) with Lmin ≥ 4D,
there exists a polynomial time algorithm that achieves an O(1) approximation.
Our proof relies on the observation that when time-windows are sufficiently large compared
to the diameter of the graph, the problem essentially reduces to an instance of the
well-studied Orienteering problem, for which constant approximation algorithms are

7 To be precise, this walk starts at the location where W ′ is at at step K.

S. Chawla and D. Christou 2:13

known. We comment that similar ideas have been used in [5]. Then, it is straight-
forward to combine this algorithm together with the algorithm of [14] to acquire an
O(log min(Lmax, D)) approximation of TW-TSP.
▶ Lemma 16. There exists an O(log min(D, Lmax)) approximation algorithm for the
TW-TSP problem.

2. Next, we design a simple approximation-preserving reduction from TW-TSP with service
times to TW-TSP (without service times). The main idea behind this reduction is to
treat service times as edge lengths in an augmented graph whose diameter is roughly
D + S. For instances with S ≤ D, this increase becomes negligible and thus by combining
our reduction with Lemma 16, we immediately get the following:
▶ Lemma 17. Given an instance (G, I, S) of the TW-TSP with service times such that
S ≤ D, there exists a polynomial time algorithm that achieves an O(log min(D, Lmax))
approximation.

3. Finally, we handle the case of large service times, specifically S ≥ D. In that case, it
turns out that we can reduce the instance to one over a uniform complete graph. Then,
the TW-TSP-S essentially becomes equivalent to the well-studied Job Scheduling problem,
for which constant approximations are known.
▶ Lemma 18. Given an instance (G, I, S) of the TW-TSP with service costs such that
S ≤ D, there exists a polynomial time algorithm that achieves an O(1) approximation.

The proof of Lemma 6 follows immediately from Lemma 17 and Lemma 18. We comment that
any improvement in the best known approximation algorithm for TW-TSP will immediately
imply an improvement for all the results that this work presents. Lemma 18 essentially
enables us to assume that in all instances of interest, S ≤ D. Under this assumption,
our reduction used in the proof of Lemma 17 essentially states that TW-TSP-S becomes
equivalent to TW-TSP in graphs of diameter O(D) and maximum window size O(Lmax).
As an immediate corollary, given an offline TW-TSP algorithm that achieves a competitive
ratio of α(D, Lmax), we immediately obtain an offline O(α(D, Lmax)) approximation for
TW-TSP-S, that can be used in order to substitute Lemma 6 in our analysis and improve
the competitive ratio of Theorem 3.

6 The online algorithm

In this section we present an online algorithm that takes as input a pre-computed walk over
the predicted request sequence and solves an appropriate online matching problem in order
to construct detours that capture true requests, while taking into account the possible errors
in the predictions. The formal guarantee of our algorithm is given in Lemma 7, which we
restate for the reader’s convenience:

▶ Lemma 7. Given an instance (G, I, I ′, M) of the TW-TSP with predictions satisfying
τM ≤ Lmin/2 and ΛM ≤ (Lmin − 1)/4; a walk W ′ ∈ W(G); and any integer S′ ≥ 2ΛM + 1,
there exists an online algorithm (Algorithm 1) that returns a walk W ∈ W(G) with expected
reward

E [Rew(W, I, 1)] ≥ 1
6ρM

· Rew(W ′, I ′, S′).

APPROX/RANDOM 2024

2:14 Online Time-Windows TSP with Predictions

We begin by establishing some notation. Let W ′ ∈ W(G) be any walk that services some
predicted requests in I ′ with a service time of S′. We use σ′

i = (v′
i, r′

i, d′
i, π′

i) to denote the
predicted requests in I ′ that are covered by W ′, ordered in the sequence in which they are
visited by W ′. Likewise, we use σi = (vi, ri, di, πi) ∈ I to denote the true request matched
to the prediction σ′

i, that is, σ′
i = M(σi).

At a high level, our algorithm follows the walk W ′, but when it reaches a predicted
request σ′

i, it considers taking a detour to service a true request that is available at that
point of time. To this end, we define the set of “reachable” true requests as follows.

▶ Definition 19. Given a partial walk W that is at request σ′
i ∈ I ′ at time t, we define the

set of reachable requests Ri(W, t) to be the set of all σ ∈ I such that:
1. rσ ≤ t ≤ dσ − ℓ(v′

i, vσ)− 1, and
2. 2ℓ(v′

i, vσ) + 1 ≤ S′.

Our algorithm considers all of the reachable requests that have not been covered by the
walk as yet, chooses the one with the highest reward, and takes a detour to visit and cover
the request, before returning to σ′

i and resuming the walk. In order to deal with time window
errors, our algorithm starts the walk a little early, or on time, or a little late, as in the proof
of Lemma 5. The algorithm is described below formally.

Algorithm 1 Online algorithm for TSP-TW with predictions.
Offline input: Graph G, predicted requests I ′, walk W ′ ∈ W(G), service times S′.
Online input: True requests I.
Output: Walk W ∈ W(G).

1: Let K = Lmin/2. Select ϵ uniformly at random from {−1, 0, 1}.
2: Define the set of covered requests C = ∅.
3: for i← 1 to |Cov(W ′, I ′, S′)| do
4: Let t′

i denote the time at which W ′ visits σ′
i.

5: Set ti ← t′
i + ϵK.

6: Visit v′
i at time ti.

7: Construct the set Ri(W, ti) of requests in I reachable at time ti.
8: if Ri(W, ti) \ C = ∅ then
9: Do nothing.

10: else
11: Let σ̂ be the highest reward request in Ri(W, ti) \ C.
12: Visit vσ̂; spend one unit of idle time at vσ̂; return to v′

i.
13: Set C ← C ∪ {σ̂}.

We begin our analysis by noting that the walk W constructed by the algorithm is always
able to visit the vertices v′

i corresponding to requests σ′
i ∈ Cov(W ′, I ′, S′) feasibly at the

desired times ti. This is because, by construction, the length of the detours that the walk
W takes in Step 12 is always at most S′ – the amount of idle time W ′ spends at v′

i – by
virtue of the fact that σ̂ ∈ Ri(W, ti) and therefore, 2ℓ(v′

i, vσ̂) + 1 ≤ S′. Therefore, all of the
requests σ̂ visited in Step 12 are indeed visited by the walk W .

We now relate the total reward covered by W to the reward contained in the true
requests σi corresponding to σ′

i ∈ Cov(W ′, I ′, S′). To do so, we first note that with constant
probability each such request is reachable by W .

▷ Claim 20. For each i, σi ∈ Ri(W, ti) with probability at least 1/3.

S. Chawla and D. Christou 2:15

Proof. Recall that by definition we have σ′
i = M(σi) and so, 2ℓ(v′

i, vi) + 1 ≤ 2ΛM + 1 ≤ S′.
So the request σ always satisfies the second requirement in the definition of the reachable
set Ri(W, ti). Let us now consider the first requirement and recall that ti = t′

i + ϵK where
ϵ ∈ {−1, 0, 1}. We will now argue that ti ∈ [ri, di − 1− ℓ(v′

i, vi)] for at least one of the three
choices of ϵ. The claim then follows from the uniformly random choice of ϵ.
1. If t′

i ∈ [ri, di − 1− ℓ(v′
i, vi)], then the claim holds for ϵ = 0 and ti = t′

i.

2. Suppose that t′
i < ri. Then, for ϵ = 1 we have that ti = t′

i + K ≥ r′
i + τM ≥ ri, and also

ti = t′
i + K < ri + K < di−Lmin + Lmin/2 and thus ti = t′

i + K ≤ di− 1− ℓ(v′
i, vi) since

ℓ(v′
i, vi) ≤ ΛM ≤ Lmin/2. Thus, in this case we have ti = t′

i + K ∈ [ri, di − 1− ℓ(v′
i, vi)]

with the choice of ϵ = 1.

3. Finally, suppose that t′
i > di − 1− ℓ(v′

i, vi). Then, for ϵ = −1 we have that ti = t′
i −K ≤

d′
i−S′−τM ≤ di−S′ and thus t′

i−K ≤ di−1−ℓ(v′
i, vi) since S′ ≥ 2ΛM +1 ≥ ℓ(v′

i, vi)+1.
Also, ti = t′

i −K > di − 1 − ℓ(vi, v′
i) − Lmin/2 > ri + Lmin/2 − ℓ(vi, v′

i) − 1 and thus
t′
i −K ≥ ri, since ℓ(vi, v′

i) ≤ ΛM ≤ Lmin/2. Thus, in this case we have obtained that
ti = t′

i −K ∈ [ri, di − 1− ℓ(v′
i, vi)] with the choice of ϵ = −1. ◁

We are now ready to prove Lemma 7 via a matching-type argument. To account for the
reward covered by the walk W constructed by the algorithm, we will employ a standard
charging scheme. Every time the algorithm takes a detour to cover some true request σ̂ from
a predicted request σ′

i in Step 12, we will credit half of the earned reward πσ̂ to σ̂ itself, and
half of the reward to the request σi. Formally, let Cr(σ) denote the total credit received by
σ ∈ I. Then during Step 12 we will increment both Cr(σ̂) and Cr(σi) by πσ̂/2.

Now consider some σi ∈ I corresponding to σ′
i ∈ Cov(W ′, I ′, S′). By Claim 20, this

request is in Ri(W, ti) with probability at least 1/3. If at time ti, the request has already
been covered by W , then we get Cr(σi) ≥ πi/2. Otherwise, we pick a σ̂ ∈ Ri(W, ti) with
πσ̂ ≥ πi, and therefore, once again we get Cr(σi) ≥ πi/2.

Putting everything together, we get

E[Rew(W, I, S)] = E
[∑

σ∈I

Cr(σ)
]
≥

∑
i:σ′

i
∈Cov(W ′,I′,S′)

E
[πi

2 1[σi ∈ Ri(W, ti)]
]

≥ 1
3 ·

∑
i:σ′

i
∈Cov(W ′,I′,S′)

πi

2

≥ 1
6 ·

1
ρM
·

∑
i:σ′

i
∈Cov(W ′,I′,S′)

π′
i

= 1
6ρM

· Rew(W ′, I ′, S′)

This completes the proof of the lemma.

7 Lower bounds

In this section, we present lower bounds that complement our results. First, we will motivate
the need for predictions in Section 7.1. Then, in Section 7.2 we will show that the competitive
ratio of TW-TSP with predictions must scale linearly with the error in locations. Finally, in
Section 7.3 we argue the need for non-zero service times in the definition of TW-TSP with
predictions.

APPROX/RANDOM 2024

2:16 Online Time-Windows TSP with Predictions

7.1 Lower bounds for online TW-TSP without predictions

We argue that Online TW-TSP does not admit any reasonable competitive ratio in the
absence of predictions. In the case of deterministic algorithms where their entire behavior
is predictable, simple instances with only 2 vertices and appropriately small time-windows
suffice to argue that no bounded guarantee for the approximation ratio is achievable.

▶ Lemma 21. The competitive ratio of any deterministic online algorithm for Online
TW-TSP on instances with Lmin ≤ D is unbounded.

Proof. Let Det be any deterministic algorithm and let G be the line graph with just two
vertices v1, v2 connected via an edge of length D. Since Det is deterministic, we can assume
knowledge of its position at any step t as soon as we have specified all requests with release
time ≤ t. We will now construct a request sequence I that uses the information.

For the first D time-steps, we don’t release any request. Then, at t = D, let vD ∈ {v1, v2}
be the position that Det’s walk is currently at and likewise let v′

D be the other vertex of
G. We construct the first request to be σ = (v′

D, D, D + L, 1) for any L ≤ D. Clearly, Det
cannot service this request as even for L = D it arrives on v′

D at deadline and cannot service
it for one step. Then, we don’t release any new request for the next 2D steps, and at t = 3D

we repeat the same process, by requesting the vertex that Det doesn’t currently occupy.
Likewise, we repeat the same process at t = 5D, t = 7D etc. Independently of the size of our
request sequence, the total reward collected by Det is 0.

On the other hand, it is not hard to see that if our request sequence I has N requests in
total, then OPT(G, I, 1) = N . This is due to the fact that requests are spaced 2D-steps from
each other, and thus an optimal offline algorithm that had knowledge of the entire sequence
in advance would always be able to arrive at each request on time, servicing it within its
respective time-window. ◀

For randomized algorithms, a slight improvement can be achieved. In particular, the
randomized algorithm that picks a vertex uniformly at random and then remains idle on it
for the entire sequence achieves a competitive ratio of 1/n. It turns out that this is actually
the best possible ratio that a randomized algorithm can achieve on Online TW-TSP:

▶ Theorem 8. The competitive ratio of any randomized online algorithm for Online TW-TSP
on instances with Lmin ≤ D is at most 1/n.

Proof. Let G(V, E, ℓ) be the uniform complete graph of n = |V | vertices, where all edges have
a length of D. Fix any integer N and let vertices v1, v2, . . . , vN ∈ V be drawn independently
and uniformly at random. Next, we fix any window length L ≤ D and consider the (random)
request sequence on these vertices I = {σi}N

i=1 for σi = (vi, (2i−1)D, (2i−1)D +L, 1). From
Yao’s mininmax principle, a lower bound on the (expected) competitive ratio of deterministic
algorithms on this randomized instance will imply the same lower bound for randomized
algorithms.

Since the time-windows are spaced 2D-away from each other, it is not hard to see that
for any realization of I, OPT(G, I, 1) = N . On the other hand, since D ≥ L, we get that the
only way to service a request is to be on its corresponding vertex on release time. Since the
vertices are random, for any deterministic algorithm this happens with probability precisely
1/n, and thus the expected reward of any deterministic algorithm on this instance is N/n,
proving the claim. ◀

S. Chawla and D. Christou 2:17

7.2 Tight dependence on location error

In this section we show that a linear dependency on the location error is unavoidable for any
randomized online algorithm for the TW-TSP with predictions, even assuming exponential
computational power. In other words, we formally prove Theorem 10, which we re-state for
the reader’s convenience:

▶ Theorem 10. For any S > 0, there exists an instance (G, I, I ′, M) of the TW-TSP with
predictions satisfying τM = 0, ρM = 1, and ΛM = S such that the competitive ratio of any
randomized online algorithm taking the tuple (G, I ′, ΛM) as offline input and I as online
input asymptotically approaches 1/(S + 1).

Proof. Fix any S > 0 and let K, C and N be integer parameters that will be specified later.
We construct a graph G = ∪N−1

i=0 Gi that consists of N copies G0, . . . , GN−1 of the complete
graph on C vertices with all edge lengths equal to S, arranged in a way so that each vertex
in Gi connects to each vertex in Gi+1 with an edge of length KS. A pictorial example for
small values of C and N is shown in Figure 1.

Figure 1 An example of G for C = 3 and N = 4. Black edges have a length of S and red edges
have a length of KS.

Next, we select independently and uniformly at random one vertex vi from each sub-
graph Gi and construct the (randomized) request sequence I = {σi}N−1

i=0 where we denote
σi = (vi, ri, ri + KS, 1) for ri = i · (KS + 1). As for the predictions, we simply construct a
second instance I ′ in the same manner and offer it as an offline prediction for I. Observe that
for all possible constructions of I and I ′ it holds that there exists a matching M between
them with τM = 0, ρM = 1 and ΛM = S, namely the matching that pairs together vertices
from the same sub-graphs. This prediction provides no information to the algorithm other
than the fact that the (true) instance I was constructed via the above randomized approach.
Also, notice that the location error ΛM can be arbitrarily small compared to the window
length L = KS by choosing appropriately large K.

It is easy to see that for all possible realizations of I it holds that OPT(G, I, 1) = N .
Indeed, consider the walk that starts from the (random) vertex v0, remains idle for 1 step and
then visits vertex v1, remains idle for one step, visits v2, etc. Such a walk would visit each
vertex vi at step t = i ·KS + i = ri and thus would service all the requests in I, achieving
a total reward of N . Next, we will show that the expected reward of any deterministic
algorithm on the random sequence I approaches N/S. Using Yao’s minimax principle, this
will immediately translate to a lower bound that approaches 1/S for randomized algorithms,
completing the proof of the theorem.

APPROX/RANDOM 2024

2:18 Online Time-Windows TSP with Predictions

Fix any deterministic algorithm for TW-TSP with predictions on instance (G, I, I ′, M).
Note that since the predictions I ′ supply zero information, it suffices to analyze the algorithm
as a deterministic online algorithm for Online TW-TSP on instance I. The key observation
is that due to the fact that both the time windows of the requests and the edges that connect
different sub-graphs have a length of KS, it is impossible for the algorithm to know on what
vertex vi of subgraph Gi the request is going to arrive before visiting some possibly different
vertex of the same subgraph. In particular, if the algorithm is in subgraph Gj for j < i at
time ri, then it cannot reach vertex vi before the time window of request i ends. Thus, in
order for any deterministic algorithm to serve the request on sub-graph Gi, it first has to
visit some vertex v′

i of Gi. If it so happens that v′
i = vi then it can immediately service the

request, otherwise it has to travel a distance of S in order to reach vi.
We partition the set of requests into two sets N+ and N− based on whether the determ-

inistic algorithm happens to arrive on the correct vertex of the sub-graph or not. All the
requests in N+ can be serviced without any extra delay, exactly as done by the optimal walk.
On the other hand, servicing a request in N− requires the algorithm to spend an extra time
of S in order to transition to the right vertex. Since the time-windows have a length of KS,
this can be done at most K times before the algorithm runs out of slack to spare. When this
happens, the algorithm would have to skip the next S requests in order to recover enough
slack to fix its next mistake.

Formally, consider the last request in N− that the algorithm feasibly serves, call it l.
Let A be the number of requests in N− the algorithm serves through extra delay prior to l,
and let B be the number of requests the algorithm skips in N+ or N− prior to l. Then in
order for the algorithm to have reached l before its time window ends, it must be the case
that the total extra delay incurred by the algorithm, namely AS −B, is no more than KS.
Rearranging we get:

A(S + 1)− (A + B) ≤ KS, or, A ≤ A + B

S + 1 + KS

S + 1 <
N

S + 1 + K

Thus, we get that the total expected reward gathered by the algorithm is at most

E[|N+|] + A + 1 ≤ E[|N+|] + N

S + 1 + K + 1

Finally, using the fact that E[|N+|] = N/C, we get that the competitive ratio of any
deterministic algorithm on the random instance I is at most

1
C

+ K + 1
N

+ 1
S + 1

Choosing N >> K and C sufficiently large, we can make this competitive ratio asymptotically
approach 1/(S + 1) as desired. ◀

7.3 Comparing the optimal with and without service times
As we saw in Lemma 4, the gap between OPT(G, I, 1) and OPT(G, I, S) depends linearly on
the service time S. In this section, we study the gap between OPT(G, I, 1) and OPT(G, I, 0),
showing that there exists a much sharper separation between them.

▶ Theorem 22. For any integers L and D, L ≤ D, there exists an offline instance (G, I) of
the TW-TSP where D is the diameter of the network and every request has a time window
length equal to L, such that OPT(G, I, 1) ≤ L

D+1 ·OPT(G, I, 0).

S. Chawla and D. Christou 2:19

Proof. Consider the line graph G with vertices v0 through vD connected sequentially via
edges of length 1. Clearly, the diameter of G is D. Next, consider the sequence of (D + 1)-
requests I = {σi}D

i=0 where σi = (vi, i, L + i, 1). Observe that OPT(G, I, 0) = D + 1 as
simply following the walk from v0 to vD will cover all the requests if the service costs are 0.

On the other hand, it is not very hard to see that OPT(G, I, 1) = L. First, observe that
without loss we can assume that the optimal walk starts on v0. If not, let σi be the first
request served by the optimal. Since σi cannot be served prior to step ri = i, we could
instead start at v0 and take i steps in order to reach vi and then follow the original walk,
achieving precisely the same reward.

Our argument is completed by the simple observation that any walk that starts from v0
and has served x requests with service cost 1 cannot visit vertex vj prior to step j + x. Thus,
as soon as x becomes L all the future time-windows will be missed. ◀

Theorem 22 states that OPT(G, I, 0) is a much stronger benchmark than OPT(G, I, 1).
However, it doesn’t exclude the possibility of designing an algorithm that is competitive
against this stronger benchmark OPT(G, I, 0). We will next show that no randomized online
algorithm with predictions can obtain a better than linear competitive ratio against this
benchmark. Intuitively, requiring the algorithm to spend non-zero time at each request
also allows the algorithm to recover from possible mistakes due to the prediction errors by
skipping requests that the optimum services with a delay of 1. A similar approach is not
possible in the 0 service time setting.

▶ Theorem 9. For any S > 0, there exists an instance (G, I, I ′, M) of the TW-TSP with
predictions and service times 0, satisfying τM = 0, ρM = 1, and ΛM = S, such that any
randomized online algorithm taking the tuple (G, I ′, ΛM) as offline input and I as online
input achieves a reward no larger than O(1/n) · OPT(G, I, 0). Here n is the number of
vertices in G.

Proof. We construct the same graph G = ∪N−1
i=0 Gi as in Theorem 10, that consists of N

copies of the complete graph with edge lengths S, connected sequentially with edges of length
KS (see Figure 1). As for the request sequence, we once again select independently and
uniformly at random one vertex vi from each sub-graph Gi and construct the (randomized)
request sequence I = {σi}N−1

i=0 where σi = (vi, iKS, (i + 1)KS − 1, 1); notice that release
times are slightly different from Theorem 10 to account for the absence of service costs.

For the predictions, we simply construct a second instance I ′ in the same manner and
offer it as an offline prediction for I. By matching the requests on the same sub-graph
together, we get τM = 0, ρM = 1 and ΛM = S. As it clearly holds that OPT(G, I, 0) = N

for any realization of I, to prove our theorem it suffices to argue that any deterministic
algorithm for TW-TSP with predictions on instance (G, I, I ′, M) gets an expected reward of
O(N/n) and apply Yao’s minimax principle. Furthermore, since the prediction I ′ does not
provide any information on I, it suffices to bound the reward of deterministic algorithms for
Online TW-TSP on (online) instance I.

Fix any deterministic algorithm for Online TW-TSP on instance I. Observe that since
edges between different sub-graphs have a length of KS and time-windows have a length of
KS − 1, it is impossible for the algorithm to service some request σi unless at t = ri it is
already in some vertex of sub-graph Gi. For the same reason, it is not possible to service any
request σj after servicing some other request σi with i > j. Finally, since all requests can
be reached by their release time if the algorithm starts from a vertex in G0, we can assume
without loss that this is indeed the case.

APPROX/RANDOM 2024

2:20 Online Time-Windows TSP with Predictions

We partition our set of N requests into two sets N+ and N− based on whether the
deterministic algorithm happens to arrive on the correct vertex of the sub-graph before the
request’s release time or not. From the random construction of our instance, we have that
E[|N+|] ≤ N/C. For requests in N−, if the algorithm wishes to service them it has to take
a detour of length S in order to reach the correct vertex. Our proof relies on the fact that
after servicing K requests in N−, the algorithm can no longer service any other request. To
see this, let vj be the K-th request in N− that was serviced by the deterministic algorithm.
As we can already established, any request vi with i < j can no longer be serviced. On
the other hand, since without loss the algorithm starts at a vertex of G0, just reaching a
vertex in Gi while taking K detours of length S requires at least iKS + K > di time-steps.
Putting everything together, we get that the expected reward of the algorithm is at most
N/C + K = O(N/n) by setting K = O(1) and N = 2K, since n = NC. ◀

References
1 Antonios Antoniadis, Themis Gouleakis, Pieter Kleer, and Pavel Kolev. Secretary and online

matching problems with machine learned advice. In Annual Conference on Neural Information
Processing Systems (NeurIPS), 2020.

2 Esther M. Arkin, Joseph B. M. Mitchell, and Giri Narasimhan. Resource-constrained geometric
network optimization. In Symposium on Computational Geometry (SoCG), 1998.

3 Yossi Azar, Stefano Leonardi, and Noam Touitou. Flow time scheduling with uncertain
processing time. In Symposium on the Theory of Computing (STOC), 2021.

4 Yossi Azar, Debmalya Panigrahi, and Noam Touitou. Online graph algorithms with predictions.
In ACM-SIAM Symposium on Discrete Algorithms (SODA), 2021.

5 Yossi Azar and Adi Vardi. TSP with time windows and service time. CoRR, abs/1501.06158,
2015. arXiv:1501.06158.

6 Étienne Bamas, Andreas Maggiori, and Ola Svensson. The primal-dual method for learning
augmented algorithms. In Annual Conference on Neural Information Processing Systems
(NeurIPS), 2020.

7 Nikhil Bansal, Avrim Blum, Shuchi Chawla, and Adam Meyerson. Approximation algorithms
for deadline-TSP and vehicle routing with time-windows. In Symposium on the Theory of
Computing (STOC), 2004.

8 Reuven Bar-Yehuda, Guy Even, and Shimon Shahar. On approximating a geometric prize-
collecting traveling salesman problem with time windows. J. Algorithms, 55:76–92, 2005.

9 Magnus Berg, Joan Boyar, Lene M. Favrholdt, and Kim S. Larsen. Online minimum spanning
trees with weight predictions. In Workshop on Algorithms and Data Structures, 2023.

10 Giulia Bernardini, Alexander Lindermayr, Alberto Marchetti-Spaccamela, Nicole Megow, Leen
Stougie, and Michelle Sweering. A universal error measure for input predictions applied to
online graph problems. In Annual Conference on Neural Information Processing Systems
(NeurIPS), 2022.

11 Avrim Blum, Shuchi Chawla, David Karger, Terran Lane, and Maria Minkoff. Approximation
algorithms for orienteering and discounted-reward TSP. In Foundations of Computer Science
(FOCS), 2003.

12 Niv Buchbinder, Yaron Fairstein, Konstantina Mellou, Ishai Menache, and Joseph (Seffi)
Naor. Online virtual machine allocation with lifetime and load predictions. In International
Conference on Measurement and Modeling of Computer Systems (SIGMETRICS), 2021.

13 Shuchi Chawla and Dimitris Christou. Online TSP with predictions. CoRR, abs/2304.01958,
2024. arXiv:2304.01958.

14 Chandra Chekuri, Nitish Korula, and Martin Pál. Improved algorithms for orienteering and
related problems. In ACM-SIAM Symposium on Discrete Algorithms (SODA), 2008.

https://arxiv.org/abs/1501.06158
https://arxiv.org/abs/2304.01958

S. Chawla and D. Christou 2:21

15 Chandra Chekuri and Amit Kumar. Maximum coverage problem with group budget con-
straints and applications. In International Workshop on Approximation, Randomization, and
Combinatorial Optimization (APPROX), 2004.

16 Ke Chen and Sariel Har-Peled. The orienteering problem in the plane revisited. In Symposium
on Computational Geometry (SoCG), 2006.

17 Michael Dinitz, Sungjin Im, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii.
Faster matchings via learned duals. In Annual Conference on Neural Information Processing
Systems (NeurIPS), 2021.

18 Paul Dütting, Silvio Lattanzi, Renato Paes Leme, and Sergei Vassilvitskii. Secretaries with
advice. In ACM Conference on Economics and Computation (EC), 2021. doi:10.1145/
3465456.3467623.

19 Jon C. Ergun, Zhili Feng, Sandeep Silwal, David Woodruff, and Samson Zhou. Learning-
augmented k-means clustering. In International Conference on Learning Representations
(ICLR), 2022.

20 Thomas Wilhelm Erlebach, Murilo Santos de Lima, Nicole Megow, and Jens Schloter. Learning-
augmented query policies for minimum spanning tree with uncertainty. In Embedded Systems
and Applications (ESA), 2022.

21 Jie Gao, Su Jia, Joseph S. B. Mitchell, and Lu Zhao. Approximation algorithms for time-
window TSP and prize collecting TSP problems. In Workshop on the Algorithmic Foundations
of Robotics (WAFR), 2016.

22 Themis Gouleakis, Konstantinos Lakis, and Golnoosh Shahkarami. Learning-augmented
algorithms for online TSP on the line. CoRR, abs/2206.00655, 2022. arXiv:2206.00655.

23 Hsiao-Yu Hu, Hao-Ting Wei, Meng-Hsi Li, Kai-Min Chung, and Chung-Shou Liao. Online
TSP with predictions. CoRR, abs/2206.15364, 2022. arXiv:2206.15364.

24 Sungjin Im, Ravi Kumar, Mahshid Montazer Qaem, and Manish Purohit. Non-clairvoyant
scheduling with predictions. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), 2021.

25 Zhihao Jiang, Debmalya Panigrahi, and Kevin Sun. Online algorithms for weighted paging
with predictions. In International Colloquium on Automata, Languages, and Programming
(ICALP), 2020.

26 Yoshiyuki Karuno and Hiroshi Nagamochi. 2-approximation algorithms for the multi-vehicle
scheduling problem on a path with release and handling times. Discret. Appl. Math., 129:433–
447, 2003.

27 Silvio Lattanzi, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. Online
scheduling via learned weights. In ACM-SIAM Symposium on Discrete Algorithms (SODA),
2020.

28 Thomas Lavastida, Benjamin Moseley, R. Ravi, and Chenyang Xu. Learnable and instance-
robust predictions for online matching, flows and load balancing. In European Symposium on
Algorithms (ESA), 2021.

29 Alexander Lindermayr and Nicole Megow. Algorithms with predictions. URL: https://
algorithms-with-predictions.github.io/.

30 Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned advice.
J. ACM, 68(4):24:1–24:25, 2021.

31 Dhruv Rohatgi. Near-optimal bounds for online caching with machine learned advice. In
ACM-SIAM Symposium on Discrete Algorithms (SODA), 2020.

32 John N. Tsitsiklis. Special cases of traveling salesman and repairman problems with time
windows. Networks, 22(3):263–282, 1992.

33 Chenyang Xu and Benjamin Moseley. Learning-augmented algorithms for online steiner tree.
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 36:8744–8752, 2022.

APPROX/RANDOM 2024

https://doi.org/10.1145/3465456.3467623
https://doi.org/10.1145/3465456.3467623
https://arxiv.org/abs/2206.00655
https://arxiv.org/abs/2206.15364
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/

Degrees and Network Design: New Problems and
Approximations
Michael Dinitz #

Johns Hopkins University, Baltimore, MD, USA

Guy Kortsarz #

Rutgers University, Camden, NJ, USA

Shi Li #

Nanjing University, Jiangsu, China

Abstract
While much of network design focuses mostly on cost (number or weight of edges), node degrees
have also played an important role. They have traditionally either appeared as an objective, to
minimize the maximum degree (e.g., the Minimum Degree Spanning Tree problem), or as constraints
that might be violated to give bicriteria approximations (e.g., the Minimum Cost Degree Bounded
Spanning Tree problem). We extend the study of degrees in network design in two ways. First, we
introduce and study a new variant of the Survivable Network Design Problem where in addition to
the traditional objective of minimizing the cost of the chosen edges, we add a constraint that the
ℓp-norm of the node degree vector is bounded by an input parameter. This interpolates between
the classical settings of maximum degree (the ℓ∞-norm) and the number of edges (the ℓ1-degree),
and has natural applications in distributed systems and VLSI design. We give a constant bicriteria
approximation in both measures using convex programming. Second, we provide a polylogarithmic
bicriteria approximation for the Degree Bounded Group Steiner problem on bounded treewidth
graphs, solving an open problem from [17] and [12].

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis;
Theory of computation → Routing and network design problems

Keywords and phrases Network Design, Degrees

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.3

Category APPROX

Funding Michael Dinitz : Supported in part by NSF awards CCF-1909111 and CCF-2228995.

1 Introduction

The overarching theme of network design problems is to find “inexpensive” subgraphs that
satisfy some type of connectivity constraints. The notion of “inexpensive” is often either the
number of edges (unweighted cost) or the sum of edge costs (weighted cost). However, it
has long been recognized that in many applications vertex degrees matter as much (or more)
than cost. This is particularly true in the context of networking and distributed systems,
where the degree of a node often corresponds to the “load” on that node, as well as in VLSI
design. So there has been a significant amount of work on handling degrees, either instead of
or in addition to cost, which has led to many seminal papers and results. With degrees as an
objective, these include the well known local search approach of Fürer and Raghavachari [8]
for the Minimum Degree Spanning Tree problem and the Minimum Degree Steiner Tree
problem. With degrees as a constraint, these include the iterative rounding [16] approach of
Singh and Lau [23] for the Minimum-Cost Bounded-Degree Spanning Tree problem, as well
as many extensions (most notably to Survivable Network Design with degree bounds [20],
but see [19] for many other examples).

© Michael Dinitz, Guy Kortsarz, and Shi Li;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 3; pp. 3:1–3:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mdinitz@cs.jhu.edu
mailto:guyk@camden.rutgers.edu
mailto:shili@nju.edu.cn
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Degrees and Network Design: New Problems and Approximations

In this paper we extend the study of degrees in network design in two ways. First, we
introduce what is (to the best of our knowledge) a new class of problems. Instead of bounding
the cost and individual degrees as in [23, 20], our objective is to obtain minimum cost while
satisfying a bound on the ℓp-norm of the node degree vector. This interpolates between
the maximum degree (the ℓ∞-norm) and the total number of edges or unweighted cost
(the ℓ1-degree). Second, we solve a well known open problem: We give a poly-logarithmic
bicriteria approximation for the Group Steiner Tree problem with degree bounds on bounded
treewidth graphs.

ℓp-Objective. While the maximum degree is often a reasonable objective, as is minimizing
the total cost (either with or without degree bounds), there are many natural situations
where none of these approaches are fully satisfactory. If we simply ignore the degrees and
focus on cost (weighted or unweighted), then we might end up with a solution with highly
imbalanced degrees, leading to large load at particular nodes. If we ignore costs and simply
optimize the maximum degree, then we might return a solution with far more edges than
are needed: if the structure of the graph forces some node to have large degree, then if we
simply try to minimize the maximum degree we will not even try to make the degrees of
other nodes small. Finally, optimizing under individual degree bounds implicitly assumes
that nodes “really have” these degree bounds, i.e., they come from some external constraint.
But this is of course not always the case: often we do not have real bounds on individual
nodes, but rather a more vague desire to “keep degrees small”.

Hence we want some way of making sure that the maximum degree is small, but also
encouraging few edges. A natural function that simultaneously accomplishes both of these
goals is the ℓp-norm of the degree vector, i.e., the function

(∑
v∈V (degv)p

)1/p for p ≥ 1 (and
in particular for p = 2), where degv is the degree of v in the output subgraph. When p = 1
this is simply (twice) the number of edges (i.e., the unweighted cost), and when p =∞ this
is the maximum degree. But for intermediate values of p, it discourages very large degrees
(in particular the maximum degree) since p > 1 implies that large degrees have a larger effect
on the norm than smaller degrees, while still also being effected on a non-trivial way by the
smaller degrees. So we can either use the ℓp-norm as an objective function, or we can use it
as a constraint that is far more flexible than having simple degree constraints at every node.

This intuition, that the ℓp-norm takes into account both the maximum and the distribution
simultaneously, is one reason why the ℓp-norm has been an important objective function
for combinatorial problems. For example, the Set Cover problem was studied under the ℓp

norm of the vector of number of elements assigned to each set [10]. It was also extensively
studied in scheduling problems (see for example [1, 2, 18, 15]). To the best of our knowledge,
the ℓp norm has not been studied in the context of network design, with the notable recent
exception of graph spanners [6, 5], where the direct applications of spanners to distributed
systems led to exactly this motivation. Similarly, MST with ℓp norm is very important for
VLSI design, since in many such settings we are forced to use spanning trees and hence the
number of edges is fixed. So minimizing the ℓp norm will likely derive a balanced degree
vector which is of key importance for these VLSI application (see, for example, [24, 22]).

Motivated by the above discussion, we introduce and give the first approximation for
the Survivable Network design problem with low cost under a bound on the ℓp norm of the
degree vector.

Group Steiner Tree with Degree Bounds. In addition to the study of ℓp-norm problems,
we also make significant progress on a known open problem: approximating Group Steiner
Tree with degree bounds on bounded treewidth graphs. The Group Steiner Tree problem

M. Dinitz, G. Kortsarz, and S. Li 3:3

(without degree bounds) is a classical optimization problem [9] which has played a central
role in network design. In this problem there is a designated root node r, and a collection
of (not necessarily disjoint) groups of vertices. The goal is to find a subtree which connects
at least one vertex from each group to r, while minimizing the total cost of all edges in the
subtree. The Degree Bounded Group Steiner problem was first raised by Hajiaghayi in [13]
(in the 8th Workshop on Flexible Network Design), motivated by the online version of the
problem and applications to VLSI design. In particular, while low cost is highly desirable,
this cost is payed only once, while later the VLSI circuit is applied (evaluated) constantly.
Low degrees imply that the computation of the value of the circuit can be done faster. See a
discussion of why low degrees are important for Group Steiner in [17].

Unfortunately, despite significant recent interest in this problem [12, 17], progress has
been elusive. In particular, polylogarithmic bicriteria approximations were not even known
for simple classes such as series-parallel graphs, i.e., for graphs with treewidth 2. We go far
beyond series-parallel graphs, and give results for bounded treewidth graphs.

1.1 Our Results and Techniques
We begin in Section 2 with a study of the ℓp-Survivable Network Design problem. We
are given the input graph G = (V, E), with edge costs c ∈ RE

≥0. There is a connection

requirement vector r ∈ Z(V
2)

≥0 , a number p ≥ 1 and a bound A on the ℓp norm of the degree
vector of the output graph. The goal of the problem is to find the minimum-cost subgraph
H of G satisfying the following:

(connection requirements) for every u, v ∈ V with u ̸= v, there are at least ru,v edge
disjoint paths between u and v in H, and
(degree constraint)

(∑
v∈V dp

H(v)
)1/p ≤ A, where dH(v) is the degree of v in H.

We assume the input instance is feasible; that is, there is a valid sub-graph H satisfying
both requirements. Let opt be the minimum cost of a valid subgraph H. The main theorem
we prove for the problem is the following:

▶ Theorem 1. There is a (randomized) algorithm which, given an instance of ℓp-Survivable
Network Design, outputs a subgraph H satisfying the connection requirements and which
has the following properties.

The expected cost of H is at most 2 · opt.
The expectation of the ℓp-norm of the degree vector is at most 21/p51−1/p ·A.

For the special case of ℓp-Spanning Tree problem, where ruv = 1 for all u, v ∈ V , we
improve the expected cost to at most opt (rather than 2 · opt) and the expectation of the
ℓp-norm of the degree vector to at most 21−1/p ·A.

Our main approach is to leverage the fact that the ℓp-norm is convex. This allows us to
write a convex relaxation for the problem, which can then be solved efficiently using standard
convex programming techniques. We then round this solution using an iterative rounding
approach. Making this work requires overcoming a number of issues, possibly the trickiest
of which is handling fractional degrees that are less than 1. Note that a fractional solution
could have many nodes with very small fractional degree (e.g., 1/n). Due to the structure of
the ℓp-norm, such small values contribute far less to the ℓp-norm than they “should” (in an
integral solution). To get around this, we actually change the ℓp-constraint in a way that
acts differently for values less than 1, while still maintaining convexity. With this change in
place, we can solve the relaxation, interpret the fractional degrees “as if” they are true degree
bounds, and then round using existing results on iterative rounding for degree-bounded
network design.

APPROX/RANDOM 2024

3:4 Degrees and Network Design: New Problems and Approximations

We then move to our second problem, Group Steiner Tree with Degree Bounds on bounded
treewidth graphs. In the problem, we are given a graph G = (V, E) with treewidth tw, a
cost vector c ∈ RE

≥0, a root r, and k sets S1, S2, · · · , Sk. We are additionally given a degree
bound dbv ∈ Z>0 for every v ∈ V . The goal of the problem is to choose a minimum-cost
subgraph H of G such that for every t ∈ k, H contains a path from r to some vertex in St,
and dH(v) ≤ dbv for every v ∈ V . By minimality, the optimum H is always a tree. We solve
an open problem from [12] and [17] by giving a polylogarthmic bicriteria algorithm as long
as the treewidth is bounded. In particular, we prove the following theorem.

▶ Theorem 2. There is an nO(tw log tw)-time randomized algorithm for the Group Steiner Tree
with Degree Bounds problem on bounded treewidth graphs which has O(log2 n) approximation
ratio and O(log2 n)-degree violation.

In order to achieve this result, we reduce the problem to a “tree labeling” problem in
Section 3, which has been used in prior results [11, 12, 21]. There is a rooted full binary
tree, and we need to give a label ℓu for each node u in the tree from a subset Lu of potential
labels. For every internal node u with two children v and v′ there are some consistency
constraints on the labels, which say that the triple (ℓu, ℓv, ℓv′) must be from some given
subset Γu ∈ Lu × Lv × Lv′ . Then we have some covering constraints, each specified by a set
S of labels: the constraint requires that at least one node has its label in S. Finally, we have
many cost constraints. For each such constraint, a label is given a cost, and we require that
the total cost of all labels used is at most 1. For this problem we give a randomized algorithm
that outputs a labeling that satisfies all consistency constraints, and approximately satisfies
the covering and cost constraints with reasonable probability, assuming the given instance
is feasible. It runs in polynomial time when the depth of the tree is O(log n) and each Lu

has O(1)-size. The main techniques of the algorithm are adaptations of the LP-rounding
algorithm in [12] for their degree-bounded network design problem. We introduce the tree
labeling problem as a host for these techniques, and adapt them for the problem.

Due to space limitations, we leave the reduction of Group Steiner Tree with Degree
Bounds on bounded treewidth graphs to this tree labeling problem to Appendix B, and
give a high-level idea here. Let tw be the treewidth of the graph; it is known from [3] that
we can assume the decomposition tree of G is an O(log n)-depth binary tree, with bag size
O(tw). This decomposition tree will be the tree in the tree-labeling instance. For each bag
in the tree, a label will contain the set of edges we take from the bag, and some connectivity
information on the vertices in the bag. We define the consistency constraints so that if they
are satisfied, then the connectivity information is correct. A group being connected can be
captured by a covering constraint in the tree labeling instance, and the edge cost constraint
and degree constraints can be formulated as cost constraints in the instance. Using the
algorithm for the tree labeling instance, we obtain a tree with small cost that satisfies degree
bounds approximately, and connects a group with reasonable probability. The final output
then is obtained by running the procedure many times and taking the union.

1.2 Other Related Work
For the survivable network design problem without any degree constraints, the classic result
of Jain [16] gives a 2-approximation algorithm using the iterative rounding method. In [9]
an O(log2 n) approximation is given for the Group Steiner problem on tree inputs, and an
O(log3 n) for the Group Steiner problem (without degree constraints) for bounded treewidth
graphs. The approximation for trees is almost the best possible, unless NP problems can
be solved in quasi-polynomial time [14]. [12] gave a bicriteria approximation for the Group

M. Dinitz, G. Kortsarz, and S. Li 3:5

Steiner Tree Problem with degree bounds on tree inputs, with approximation ratio O(log2 n)
and degree violation O(log n)). Both bounds are nearly optimal [14, 7]. In [4] the authors
gave an O(log2 n)-approximation ratio for Group Steiner problem on bounded treewidth
graphs (without degree bounds). In [17] an O(log2 n) approximation is given for the Group
Steiner problem with minimum maximal degree, but without costs.

Notations. Given a graph H and a vertex v in H, we shall use δH(v) to denote the set
of edges in H incident to v, and dH(v) = |δH(v)| to denote its degree. Given a rooted tree
T and a vertex v in T , we use ΛT (v) to denote the set of children of v in T , and Λ∗

T (v) to
denote the set of descendants of v in T (including v itself). When H and T are clear from
the context, we shall omit them in the subscript. For example, this happens when H = G is
the input graph. For a real vector z over some domain, and a subset S of elements in the
domain, we define z(S) :=

∑
i∈S zi to denote the sum of z values of elements in S.

2 ℓp-Survivable Network Design

In this section, we give our iterative rounding algorithm for ℓp-survivable network design
problem. Recall that we are given a graph G = (V, E) with cost vector c ∈ RE

≥0, a connection

requirement vector r ∈ Z(V
2)

≥0 , and a bound A on the ℓp norm of the degree vector.

▶ Definition 3. We say a polytope P ∈ [0, 1]E is good if it is upward-closed 1 and the
following holds: For every vector x ∈ {0, 1}E, we have that x ∈ P if and only if the graph
(V, {e ∈ E : xe = 1}) satisfies the connection requirements.

Notice that the above definition does not capture the degree constraints. This is done using
the following definition. For a real vector B ∈ [1,∞]V , we define QB := {x ∈ [0, 1]E : ∀v ∈
V, x(δ(v)) ≤ Bv} to be the set of all vectors satisfying the degree bounds defined by B.

▶ Definition 4. Let α ≥ 1 and β ≥ 0 be two real numbers and P be a good polytope. We say
P is (α, β)-integral if for every B ∈ [1,∞]V , every non-integral extreme point x of P ∩QB

satisfies at least one of the following two properties:
(4a) there exists an edge e ∈ E with 1/α ≤ xe < 1,
(4b) there is a vertex v ∈ V such that x(δ(v)) = Bv and |{e ∈ δ(v) : xe > 0}| ≤ Bv + β.

It is well known that for Survivable Network Design there is a (2, 3)-integral polytope P
[20]. For the special case of spanning tree, i.e, r ≡ 1, there is a (1, 1)-integral polytope [23].

We will use these polytopes in our algorithm, and will show that that their existence
implies good approximation algorithms. More formally, we prove the following theorem.

▶ Theorem 5. Assuming the existence of an (α, β)-integral polytope, there is a randomized
algorithm which outputs a subgraph H of G satisfying the connection requirements. The
expected cost of H is at most α · opt and the expectation of the p-norm of degree vector is at
most α1/p(α + β)1−1/pA; recall that opt is the value of the instance.

Note that this theorem, together with the existence of a (2, 3)-integral polytope for the
general case and a (1, 1)-integral polytope for the spanning tree case, imply Theorem 1. So
we focus on proving Theorem 5.

1 This means for every x ∈ P and x′ ∈ [0, 1]E with x′ ≥ x, we have x′ ∈ P.

APPROX/RANDOM 2024

3:6 Degrees and Network Design: New Problems and Approximations

0 1 2 3

1

2

4

3

5

6

7

8

9

d

f (d)

(a) The function f for p = 2.

1: Solve LP(1) to obtain a solution x

2: let Bv ← max{x(δ(v)), 1} for every v ∈ V

3: while true do
4: randomly choose an extreme point x′ of P ∩QB

such that E[x′] = x

5: x← x′

6: if x is integral then return x

7: if case a happens for some e = (u, v) ∈ E then
8: xe ← 1, Bv ← x(δ(v)), Bu ← x(δ(u))
9: else ▷ case b happens for some v

10: Bv ←∞
(b) Iterative Rounding Algorithm for Network Design.

Figure 1 The function f and the iterative rounding algorithm.

2.1 The Convex Program

Define a function f : R≥0 → R≥0 as follows: f(x) =
{

x if x ∈ [0, 1]
xp if x > 1

. Figure (1a) shows

this function for p = 2. This is a convex function for p ≥ 1.
Let P be an (α, β)-integral polytope. The following is our convex programming relaxation

for the problem:

min
∑
e∈E

cexe s.t. x ∈ P ,
∑
v∈V

f(x(δ(v))) ≤ Ap. (1)

Recall that using our notation, x(δ(v)) is the sum of x values of edges incident to v in G. (1)
is a convex program and can be solved efficiently. Since the indicator vector of the optimum
subgraph H satisfies all the constraints, the value of the convex program is at most opt.

We note that if we instead used the function f(x) = xp (i.e., without handling the
0 ≤ x ≤ 1 case separately), we would still have a convex relaxation of our problem. However,
it is not hard to show that this relaxation has an extremely large integrality gap (even if we
are allowed to violate the ℓp-norm constrain by a polylogarithmic factor). Treating 0 ≤ x ≤ 1
differently from x > 1 is one of the key ideas in our approximation algorithm.

2.2 The Iterative Rounding Algorithm
Our iterative rounding algorithm is described in Figure (1b). In Step 1, we solve the convex
relaxation (1) to obtain an extreme solution x, which can be done in polynomial time using
standard techniques. Then in Step 2 we define Bv = max{x(δ(v)), 1} for every v to be the
upper bound on the degree of v. So, before Loop 3, we have x ∈ P ∩QB . We shall maintain
this property before and after each iteration of the loop.

In each iteration of Loop 3, we randomly choose a vertex point x′ of P ∩QB such that
E[x′] = x (Step 4) and then update x to be the x′ (Step 5). This is possible since at the
beginning of the iteration we have x ∈ P ∩QB . If x is integral, we then return x in Step 6.
If we did not return, by that P is (α, β)-integral, either a or b happens. In the former case,
we update xe to 1, and change Bv and Bu for the two end vertices u, v of e so that we still
have Bv′ = max{x(δ(v′)), 1} for every v′ ∈ V (Step 8). In the latter case, we change Bv to
∞ so that there will be no degree constraint for v from now on. Notice that in either case,
we maintain the invariant that x ∈ P ∩QB as P is upward-closed.

M. Dinitz, G. Kortsarz, and S. Li 3:7

Notice that once xe becomes 0 or 1 in some iteration, it will remain unchanged. This holds
since for E[x′

e] = xe ∈ {0, 1} to hold, we must always have x′
e = xe. When the algorithm

terminates, it returns an integral x which satisfies the connectivity requirements. This holds
since we have x ∈ P and P is good. The algorithm will terminate in O(|E|) iterations since
in every iteration, we either fixed the value of some xe to 1, or changed some Bv from a
finite number to ∞.

2.3 Analysis of the Algorithm
We now begin to analyze the algorithm. As discussed, the algorithm will terminate with a
subgraph which satisfies the connectivity requirements. To prove Theorem 5, we need to
analyze the total cost and the ℓp-norm of the degrees.

In Step 8, we say that we round the edge e. In Step 10, we say we relax the vertex v.
At any time of the algorithm, we define a vector x̄ ∈ [0, 1]E as follows. If e has not been
rounded yet, then let x̄e = xe. Otherwise, let x̄e be the value of xe right before Step 8 in
which we round e. Thus, from the moment, x̄e remains unchanged.

Let T be the number of iterations we run Loop 3; notice that this is a random variable.
For every integer t ∈ [0, T], we let xt, x̄t, Bt to be the values of x, x̄, B at the end of the t-th
iteration of the Loop 3. So xT is the output of the algorithm.

▶ Observation 6. The following statements are true.
(6a) During Loop 3, we always have x̄e ≤ xe ≤ αx̄e for every e ∈ E.
(6b) Assume x0(δ(v)) < 1 for a vertex v ∈ V . Then at the first moment when x(δ(v)) ≥ 1

holds, we have x̄(δ(v)) ≤ 1.
(6c) x̄(δ(v)) does not change from the first moment x(δ(v)) ≥ 1 holds, until the moment v

is relaxed, or the end of the algorithm if this does not happen.

Proof. x̄e ≤ xe by the definition of x̄e. Moreover, xe ≤ αx̄e as if xe > x̄e, then xe = 1 and
xe ≥ 1

α . So a holds.
To prove b, we consider two scenarios. In the first scenario, the moment is after Step 5 in

some iteration. In this scenario, x̄(δ(v)) = x(δ(v)) = 1 since Bv = 1 at the moment. In the
second scenario, the moment is after we round some edge e ∈ δ(v) in Step 8. In this case
x̄(δ(v)) is the same as x(δ(v)) before the step, which is strictly less than 1.

c holds since we maintained Bv = x(δ(v)) from the moment x(δ(v)) becomes at least 1.
If x̄e ̸= xe at some time, it must be the case that xe = 1. In this case, both xe and x̄e will
not change in the future. ◀

We can now analyze the expected cost of the algorithm. First, though, we will need a
structural result.

▶ Lemma 7. For every edge e ∈ E, the sequence x̄0
e, x̄1

e, · · · , x̄T
e is a martingale.

Proof. Focus on an iteration t ≥ 1 and edge e ∈ E, and we fix the sequence x̄0
e, x̄1

e, · · · , x̄t−1
e .

For simplicity we use E′[·] to denote E[·|x̄0
e, x̄1

e, · · · , x̄t−1
e]. We need to prove E′[x̄t

e] = x̄t−1
e .

If we rounded e in iteration t or before, then x̄t
e = x̄t−1

e happens with probability 1. So, we
can assume that e has not been rounded by the end of iteration t. In this case, x̄t−1

e = xt−1
e .

So, in iteration t, either a happens for some e′ ≠ e, or b happens. In either case, we
have E′[x̄t

e] = E′[xt
e] = xt−1

e = x̄t−1
e by the way we define the distribution for x′ in Step 4.

Therefore, x̄0
e, x̄1

e, · · · , x̄T
e is a martingale. ◀

▶ Corollary 8. E
[∑

e∈E cexT
e

]
≤ α

∑
e∈E cex0

e.

APPROX/RANDOM 2024

3:8 Degrees and Network Design: New Problems and Approximations

Proof.

E

[∑
e∈E

cexT
e

]
≤ αE

[∑
e∈E

cex̄T
e

]
= α

∑
e∈E

cex̄0
e = α

∑
e∈E

cex0
e.

The inequality is by a and the first equality used Lemma 7. ◀

Now that we understand the expected cost, it only remains to analyze the degree constraint.
From now on we fix a vertex v ∈ V . We upper bound xT (δ(v)), which will in turn give an
upper bound on E

[
(xT (δ(v)))p

]
. The main lemma we prove is

▶ Lemma 9. For every v ∈ V , we have E
[
(xT (δ(v)))p

]
≤ α(α + β)p−1 · f(x0(δ(v))).

Proof. We first consider the case x0(δ(v)) ≥ 1. Let t be the iteration in which v is relaxed,
or let t = T if v is not relaxed during the algorithm. By Property c, x̄(δ(v)) does not change
until the end of iteration t. Then, we have xT (δ(v)) ≤ xt(δ(v)) + β ≤ αx̄t(δ(v)) + β =
αx̄0(δ(v)) + β = αx0(δ(v)) + β. Notice that this happens with probability 1.

Notice that E[xT (δ(v))] ≤ αE[x̄T (δ(v))] = αx̄0(δ(v)) = αx0(δ(v)) by Lemma 7. We have:

E
[
(xT (δ(v)))p

]
≤ αx0(δ(v))

αx0(δ(v)) + β
(αx0(δ(v)) + β)p = αx0(δ(v))(αx0(δ(v)) + β)p−1,

E
[(

xT (δ(v))
)p]

f(x0(δ(v))) ≤ αx0(δ(v))(αx0(δ(v)) + β)p−1

(x0(δ(v)))p
= α

(
α + β

x0(δ(v))

)p−1

≤ α(α + β)p−1.

Now we consider the second case: x0(δ(v)) < 1. We prove that with probability 1, we have
xT (δ(v)) ≤ α + β. Assume x(δ(v)) ≥ 1 happens at some time of the algorithm. By b, at the
first moment when x(δ(v)) ≥ 1, we have x̄(δ(v)) ≤ 1. By c, from the moment until the moment
v becomes relaxed (or until the end of the algorithm if v is never relaxed), x̄(δ(v)) does not
change. Therefore, immediately after v becomes relaxed, we have x̄(δ(v)) ≤ 1. Thus xT (δ(v))
is at most the value of x(δ(v)) + β at this moment, which is at most αx̄(δ(v)) + β ≤ α + β.
If x(δ(v)) ≥ 1 never happens, then xT (δ(v)) < 1 ≤ α + β.

As in the first case, we have E[xT (δ(v))] ≤ αx0(δ(v)). So

E
[
(xT (δ(v)))p

]
≤ αx0(δ(v))

α + β
(α + β)p = αx0(δ(v))(α + β)p−1,

E
[
(xT (δ(v)))p

]
f(x0(δ(v))) ≤ αx0(δ(v))(α + β)p−1

x0(δ(v)) = α(α + β)p−1.

So, we always have E
[
(xT (δ(v)))p

]
≤ α(α + β)p−1f(x0(δ(v))). This implies

E[
∑

v(xT (δ(v)))p] ≤ α(α + β)p−1Ap. ◀

Corollary 8 and Lemma 9 imply Theorem 5, which in turn implies Theorem 1.

3 A Tree Labeling Problem

In this section, we describe the tree labeling problem to which we reduce the Group Steiner
Tree problem with degree bounds on bounded-treewidth graphs; the problem has served as a
building block in many prior results [11, 12, 21]. We are given a full binary tree T = (V, E)
rooted at r ∈ V.2 For every vertex u ∈ V, we are given a finite set Lu of labels for u; we

2 It is not important to require the binary tree to be full; our algorithm works when some internal nodes
have only one child. Assuming every internal node have 2 children is only for notational convenience.

M. Dinitz, G. Kortsarz, and S. Li 3:9

assume Lu’s are disjoint and let L :=
⋃

u∈V Lu. The output is a labeling ℓ⃗ = (ℓu ∈ Lu)u∈V
of the vertices V, that satisfies the constraints described below.

(consistency constraints) For every internal node u of T with two children v and v′,
we are given a set Γu ⊆ Lu × Lv × Lv′ . A valid labeling ℓ⃗ must satisfy (ℓu, ℓv, ℓv′) ∈ Γu.
(covering constraints) We are given k subsets S1, S2, · · · , Sk ⊆ L. A valid labeling ℓ⃗

needs to satisfy that for every t ∈ [k], ℓ(V)∩St ≠ ∅, where ℓ(V) is defined as {ℓu : u ∈ V}.
In words, ℓ(V) needs to intersect every St.
(cost constraints) We are given m ≥ 0 linear constraints defined by the costs (ci

ℓ ∈
[0, 1])i∈[m],ℓ∈L. For every i ∈ [m], a valid labeling ℓ⃗ needs to satisfy

∑
u∈V ci

ℓu
≤ 1. In

words, there are m types of resource, and we have 1 unit of each type. Setting the label
of u to ℓ will use ci

ℓ units of type i-resource.

We say a labeling ℓ⃗ = (ℓu ∈ Lu)u∈V is consistent if it satisfies the consistency constraints.
Given a consistent labeling ℓ⃗, we say it covers group St if ℓ(V)∩ St ̸= ∅. We define its type-i
cost to be costi(ℓ⃗) :=

∑
u∈V ci

ℓu
. So a valid labeling ℓ⃗ for the instance is a consistent one

that covers all groups, and has costi(ℓ⃗) ≤ 1 for every i ∈ [m].
Given a label tree instance, we let n = |V|, D be the height of T (the maximum number

of edges in a root-to-leaf path in T) and ∆ = maxu∈V |Lu| be the maximum size of any Lu.
The main theorem we prove is the following:

▶ Theorem 10. Assume we are given a feasible label tree instance (T = (V, E), r, (Lu)u,

(Γu)u, (St)t∈[k], A ∈ [0, 1]m×L), i.e., there is a valid labeling. There is a randomized algorithm
that in time poly(n) ·∆O(D) outputs a consistent labeling ℓ⃗ such that the following holds.
(10a) For every t ∈ [k], we have Pr[ℓ⃗ covers group St] ≥ 1

D .
(10b) For every i ∈ [m], we have E

[
exp

(
ln(1 + 1

2D) · costi(ℓ⃗)
)]
≤ 1 + 1

D .
Property b gives a tail concentration bound on costi(ℓ⃗). The remaining part of this section
is dedicated to the proof of Theorem 10.

3.1 Construction of a super-tree T ◦

In this section, we construct a rooted tree T ◦ = (V ◦, E◦) of size O(n)∆O(D) such that a
consistent labeling of T corresponds to what we call a consistent sub-tree. So we can reduce
the problem to finding the latter object. The root of T ◦ is r. Each internal node of T ◦ is
either a selector node, or a copier node; their meanings will be clear soon. Each node p ∈ V ◦

is associated with a node u in T . Each non-root selector node or leaf node is associated with
a label ℓ ∈ Lu. We shall use p and q and their variants to denote nodes in T ◦, and u and v

and their variants to denote nodes in T.
The algorithm for constructing T ◦ is described in Algorithm 1, which calls the procedure

construct-tree described in Algorithm 2. See Figure 2 for the illustration of the construction
of T ◦ from T. For a node p ∈ V ◦, we use Λ(p) denotes the set of children of p in T ◦, and
Λ∗(p) denotes the set of descendants of p in T ◦, including p itself.

Algorithm 1 Main algorithm for the construction of T ◦.

1: create a node r associated with r as the root of T ◦, and let r be a selector node
2: for every ℓ ∈ Lr do:
3: create a child p of r, associated with node r and label ℓ

4: call construct-tree(p, r, ℓ)

APPROX/RANDOM 2024

3:10 Degrees and Network Design: New Problems and Approximations

r

a

c

b

d

r selectors

copiers
Lr = {1, 2, 3}

1 2 3

La = {4, 5} Lb = {6, 7, 8}

Lc = {9, 10}
Ld = {11, 12}

4 6 5 6 5 7

9 11 9 12 10 11

associated with r

associated with a

T T◦

leaves

Figure 2 An example for the construction of T ◦. The tree on the left side is T, and the tree on
the right side is T◦. The labels of the nodes in T are shown besides them. In T ◦, selectors, copiers
and leaves are denoted as empty circles, solid circles and empty squares respectively. The nodes in
the two yellow polygons are associated with r and a respectively. The numbers in the circles and
squares indicate the labels associated with the nodes. In the example, the triples in Γr with the
first coordinate being 1 are (1, 4, 6), (1, 5, 6) and (1, 5, 7). The triples in Γa with the first coordinate
being 5 are (5, 9, 11), (5, 9, 12) and (5, 10, 11).

Algorithm 2 construct-tree(p, u, ℓ). ▷ p ∈ V ◦, u ∈ V, ℓ ∈ Lu

1: if u has no children then return ▷ p is a leaf node.
2: let p be a selector node, let v and v′ be the two children of u in T
3: for every ℓ′ ∈ Lv, ℓ′′ ∈ Lv′ such that (ℓ, ℓ′, ℓ′′) ∈ Γu do
4: create a child p′ of p, associated with u, let p′ be a copier node,
5: create two children q and q′ of p′, associate q with node v and label ℓ′, associate q′

with node v′ and label ℓ′′

6: call construct-tree(q, v, ℓ′) and construct-tree(q′, v′, ℓ′′)

Now we can define consistent sub-trees of T ◦:

▶ Definition 11 (Consistent sub-trees). Given a sub-tree T of T ◦ that contains r, we say T

is consistent if the following conditions hold.
Every selector node p in T has exactly one child in T .
If p is a copier node in T , then both of its children in T ◦ are in T .

The definition explains the names “selector” and “copier”: a selector node p in T needs to
select one of its children in T ◦ and add it to T , and the children of a copier node p will follow
the node p to enter T .

It is easy to see a one-to-one correspondence between consistent labelings ℓ⃗ = (ℓu ∈ Lu)u∈V
of T, and consistent sub-trees T of T ◦. Given the consistent labeling ℓ⃗, the correspondent
sub-tree T of T ◦ can be constructed as follows. First, we add r and its child p associated
with label ℓr to T . Then we grow the tree from p using a recursive procedure. Assume
p is associated with node u in T and label ℓ ∈ Lu. If u is a leaf, we stop the procedure.
Otherwise let v and v′ be the two children of u, then we add the copier child p′ of p that
corresponds to the tuple (ℓr, ℓv, ℓv′) to T . We also add its two children q and q′ to T . Then
we run the procedure recursively over q and q′. Conversely, given a consistent sub-tree T of
T ◦, we can recover a consistent labeling ℓ⃗ of T.

M. Dinitz, G. Kortsarz, and S. Li 3:11

For convenience, we extend the costs (ci
ℓ)i∈[m],ℓ∈L to vertices in V ◦: For every non-root

selector node or leaf node p ∈ V ◦ associated with a label ℓ, we define ci
p = ci

ℓ for every i ∈ [m].
For the root or a copier node p, we define ci

p = 0. For a consistent sub-tree T = (V, E) of T ◦,
and i ∈ [m], we define its type-i cost to be costi(T) =

∑
p∈V ci

p. This will be the same as
costi(ℓ⃗), for the labeling ℓ⃗ correspondent to T .

We also extend the groups S1, S2, · · · , Sk to node sets in T ◦: for every t ∈ [k], S′
t contains

the set of nodes p ∈ V ◦ whose associated label is in St. Then, a consistent labeling ℓ⃗ covers a
group St if and only if the correspondent sub-tree T = (V, E) covers S′

t, namely, V ∩ S′
t ̸= ∅.

Therefore, we are guaranteed that there is a consistent sub-tree T ∗ of T ◦ that covers
all groups S′

1, S′
2, · · · , S′

k, and has costi(T ∗) ≤ 1 for every i ∈ [m]. Our goal is to output a
random consistent sub-tree T satisfying the conditions correspondent to a and b. This is
done using an LP-based algorithm.

3.2 The LP relaxation for finding T = (V, E)

Now we describe the LP relaxation that we use to find T = (V, E). For every vertex p ∈ V ◦,
we use xp to indicate if p is in T , i.e., p ∈ V . For every t ∈ [k] and q ∈ S′

t, we use yt
q to

indicate if q is the node in T we choose to cover S′
t. There might be multiple nodes in V ∩S′

t,
and in this case, we only choose one node in the set to cover S′

t; the choice can be arbitrary.
The LP is as follows.

xr = 1 (2)∑
q∈Λ(p)

xq = xp,∀ selector p ∈ V ◦ (3)

xq = xp,∀ copier p ∈ V ◦, q ∈ Λ(p) (4)
xp ≥ 0, ∀p ∈ V ◦ (5)

∑
q∈Λ∗(p)∩S′

t

yt
q ≤ xp,∀p ∈ V ◦, t ∈ [k] (6)

∑
q∈S′

t

yt
q = 1, ∀t ∈ [k] (7)

∑
q∈Λ∗(p)

ci
qxq ≤ xp,∀p ∈ V ◦, i ∈ [m] (8)

Constraints (2)-(5) in the LP are for the consistency requirements. (2) says the root
is always in T . (3) says if a selector node p is in T , then exactly one of its children is in
T . (4) says if a copier node p is in T , and q is a child of p, then q is also in T . (5) is the
non-negativity condition. (6) and (7) deal with the covering requirements. (6) says if p is
in T , then we choose at most one descendant of p to cover the group S′

t; notice that the
constraint implies yt

p ≤ xp if p ∈ S′
t. (7) says we choose exactly one node in T to cover S′

t. (8)
handles the cost requirement: If p is included in T , then the type-i cost of the descendants
of p in T is at most 1.

3.3 The rounding algorithm

The rounding algorithm is based on [9]. We solve LP(2) to obtain a solution x ∈ [0, 1]V ◦ .
We add r to T and call recursive-rounding(r) to obtain a sub-tree T = (V, E). The procedure
is defined in Algorithm 3.

▶ Observation 12. T is always consistent. For every p ∈ V ◦, we have Pr[p ∈ V] = xp.

Proof. For a selector node p in T , we always choose exactly one child of p and add it to T .
For a copier node p added to T and one of its child q, q is added to T with probability 1. By
the probabilities we add nodes to T , we can see that Pr[p ∈ V] = xp for every p ∈ V ◦. ◀

APPROX/RANDOM 2024

3:12 Degrees and Network Design: New Problems and Approximations

Algorithm 3 recursive-rounding(p).

1: if p is a selector node then
2: choose one vertex q ∈ Λ(p) randomly, so that q is chosen with probability xq

xp

3: add q to T , and call recursive-rounding(q)
4: else ▷ p is a copier or leaf node
5: for every q ∈ Λ(p) do
6: with probability xq

xp
= 1: add q to T , and call recursive-rounding(q)

4 Analysis of probabilities of group coverage

We fix t ∈ [k] and analyze the probability that T coves the group S′
t; or equivalently, the

correspondent labeling covers the group St. This will prove Property a. For every vertex
p ∈ V ◦, we define zp :=

∑
q∈Λ∗(p)∩S′

t
yt

q, which indicates whether S′
t is covered by vertices in

the sub-tree rooted at p. By (6), we have zp ≤ xp. By (7), we have zr = 1 = xr.
We define the height of a node p ∈ V ◦ to be the maximum number of copier nodes in a

path from p to one of its descendant leaves. We prove in Appendix A the following lemma:

▶ Lemma 13. Assume p ∈ V ◦ has height h. Then Pr
[
Λ∗(p) ∩ V ∩ S′

t ̸= ∅
∣∣p ∈ V

]
≥ 1

h+1
zp

xp
.

Notice that the height of the root r of T ◦ is D− 1. Applying the above lemma with p = r,
we have that T covers group S′

t with probability at least 1
D ·

zr

xr
= 1

D . So, the correspondent
ℓ⃗ covers St with probability at least 1

D , proving Property a.

4.1 Concentration bound on costs
In this section, we prove Property b. We fix an index i ∈ [m] and analyze the type-i cost of
T = (V, E). For notation convenience, we use cp to denote ci

p, and cost for type-i cost.
For every vertex p ∈ V ◦, let wp =

∑
q∈Λ∗(p) cqxq be the fractional cost incurred by the

sub-tree of T ◦ rooted at p. By (8), we have wp ≤ xp. Let Wp =
∑

q∈Λ∗(p)∩V cq be the cost
of T incurred by descendants of p. So, we have E[Wp] = wp.

As is typical, we shall introduce a parameter s > 0 and consider the expectation of
the random exponential variables esWp . Later we shall set s = ln(1 + 1

2D), but the main
lemma holds for any s > 0. We define an αh for every integer h ≥ 0 as α0 = es and
αh = eαh−1−1, ∀h ≥ 1. Notice that α0, α1, . . . is an increasing sequence.

In this section, we count selector nodes in the definition of heights: the height of a node
p ∈ V ◦ is the maximum number of selector nodes in a path from p to its descendant leaf.

▶ Lemma 14. For any node p in T ◦ of height h, we have E
[
esWp

∣∣p ∈ V
]
≤ α

wp/xp

h .

Proof. We prove the lemma for nodes p from bottom to top of the tree T ◦. Focus on a node
p of height h. If p is a copier or leaf node, all children of p has height at most h. We have

E
[
esWp

∣∣p ∈ V
]

= escp

∏
q∈Λ(p)

E
[
esWq

∣∣q ∈ V
]

= α
cpxp/xp

0

∏
q∈Λ(p)

α
wq/xp

h ≤ α
cpxp/xp

h

∏
q∈Λ(p)

α
wq/xp

h = α
wp/xp

h .

The last inequality used that α0 ≤ αh, and the last equality used that wp = cpxp+
∑

q∈Λ(p) wq.

M. Dinitz, G. Kortsarz, and S. Li 3:13

Now suppose p is a selector. Then all children of p have height at most h−1. Conditioned
on p ∈ V , the rounding procedure adds exactly one child q of p to V . Then, we have

E
[
esWp

∣∣p ∈ V
]

= escp ·
∑

q∈Λ(p)

xq

xp
E

[
esWq

∣∣q ∈ V
]

= escp ·
∑

q∈Λ(p)

xq

xp
α

wq/xq

h−1

≤ escp

((
wp

xp
− cp

)
· αh−1 +

(
1− wp

xp
+ cp

))
= escp

(
1 +

(
wq

xq
− cp

)
(αh−1 − 1)

)
≤ escp · exp

((
wp

xp
− cp

)
(αh−1 − 1)

)
= escp · αwp/xp−cp

h ≤ α
wp/xp

h .

To see the inequality in the second line, we notice the following four facts: (i) αθ
h−1 is

a convex function of θ, (ii) wq/xq ∈ [0, 1] for every q ∈ Λ(p), (iii)
∑

q∈Λ(p)
xq

xp
= 1 and (iv)∑

q∈Λ(p)
xq

xp
· wq

xq
=

∑
q∈Λ(p)

wq

xp
= wp

xp
− cp. The equality in the last line is by the definition of

αh. The last inequality used that es = α0 ≤ αh. ◀

The height of the root r is D.3 Now, we set s = ln(1 + 1
2D).

▶ Lemma 15. For every h ∈ [0, D], we have αh ≤ 1 + 1
2D−h .

Proof. By definition, α0 = es = 1 + 1
2D and thus the statement holds for h = 0. Let

h ∈ [1, D] and assume the statement holds for h− 1. Then, we have

αh = eαh−1−1 ≤ e
1

2D−h+1 ≤ 1 + 1
2D − h + 1 +

(
1

2D − h + 1

)2

= 1 + 2D − h + 2
(2D − h + 1)2 ≤ 1 + 1

2D − h
.

The first inequality used the induction hypothesis and the second one used that for every
θ ∈ [0, 1], we have eθ ≤ 1 + θ + θ2. ◀

To wrap up, we apply Lemma 14 on p = r. Notice that r ∈ V always happens, at
Wr = costi(T). We have E

[
exp

(
ln

(
1 + 1

2D

)
· costi(T)

)]
≤ α

wr/xr

D ≤ 1 + 1
D by Lemma 15

and that wr ≤ xr = 1. Using the correspondence between sub-trees of T ◦ and labelings of T
proves Property b.

References
1 B. Awerbuch, Y. Azar, E. Grove, M. Kao, P. Krishnan, and J. Vitter. Load balancing in the

lp norm. In FOCS, pages 383–391, 1995.
2 Y. Azar and S. Taub. All-norm approximation for scheduling on identical machines. In

T. Hagerup and J. Katajainen, editors, SWAT, volume 3111, pages 298–310, 2004.
3 Hans L. Bodlaender. Nc-algorithms for graphs with small treewidth. In Jan van Leeuwen,

editor, Graph-Theoretic Concepts in Computer Science, 14th International Workshop, WG
’88, Amsterdam, The Netherlands, June 15-17, 1988, Proceedings, volume 344 of Lecture Notes
in Computer Science, pages 1–10. Springer, 1988. doi:10.1007/3-540-50728-0_32.

4 P. Chalermsook, S. Das, B. Laekhanukit, and D. Vaz. Beyond metric embedding: Approxim-
ating group steiner trees on bounded treewidth graphs. In SODA, pages 737–751, 2017.

3 The height of r is D + 1 by definition, but Lemma 14 holds when we define its height to be D, as one
can collapse the first two levels of T ◦ into one level.

APPROX/RANDOM 2024

https://doi.org/10.1007/3-540-50728-0_32

3:14 Degrees and Network Design: New Problems and Approximations

5 Eden Chlamtác, Michael Dinitz, and Thomas Robinson. Approximating the Norms of Graph
Spanners. In Dimitris Achlioptas and László A. Végh, editors, Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019),
volume 145 of Leibniz International Proceedings in Informatics (LIPIcs), pages 11:1–11:22,
Dagstuhl, Germany, 2019. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/
LIPIcs.APPROX-RANDOM.2019.11.

6 Eden Chlamtác, Michael Dinitz, and Thomas Robinson. The Norms of Graph Spanners. In
Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th
International Colloquium on Automata, Languages, and Programming (ICALP 2019), volume
132 of Leibniz International Proceedings in Informatics (LIPIcs), pages 40:1–40:15, Dagstuhl,
Germany, 2019. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.
ICALP.2019.40.

7 Irit Dinur and David Steurer. Analytical approach to parallel repetition. In STOC, pages
624–633, 2014.

8 M. Furer and B. Raghavachari. Approximating the minimum-degree steiner tree to within one
of optimal. Journal of Algorithms, 17(3):409–423, 1994.

9 N. Garg, G. Konjevod, and R. Ravi. A polylogarithmic approximation algorithm for the group
Steiner tree problem. J. Algorithms, 37(1):66–84, 2000.

10 D. Golovin, A. Gupta, A. Kumar, and K. Tangwongsan. All-norms and all-l_p-norms
approximation algorithms. In IACS, volume 2 of LIPIcs, pages 199–210, 2008.

11 Fabrizio Grandoni, Bundit Laekhanukit, and Shi Li. o(log2 k/ log log k)-approximation al-
gorithm for directed steiner tree: A tight quasi-polynomial time algorithm. SIAM Journal on
Computing, 52(2):STOC19–298–STOC19–322, 2023. doi:10.1137/20M1312988.

12 X. Guo, G. Kortsarz, B. Laekhanukit, S. Li, D. Vaz, and J. Xian. On approximating degree-
bounded network design problems. Algorithmica, 84(5):1252–1278, 2022.

13 Mohammad Taghi Hajiaghayi. A list of open problems in bounded degree network design.
The 8’th Workshop on Flexible Network Design, 2016.

14 E. Halperin and R. Krauthgamer. Polylogarithmic inapproximability. In STOC, pages 585–594,
2003.

15 Sungjin Im and Shi Li. Improved approximations for unrelated machine scheduling. In
Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 2917–2946, 2023. doi:10.1137/1.9781611977554.ch111.

16 K. Jain. A factor 2 approximation algorithm for the generalized steiner network problem.
Combinatorica, 21(1):39–60, 2001.

17 Guy Kortsarz and Zeev Nutov. The minimum degree group steiner problem. Discret. Appl.
Math., 309:229–239, 2022.

18 V. Kumar, M. Marathe, S. Parthasarathy, and A. Srinivasan. A unified approach to scheduling
on unrelated parallel machines. J. ACM, 56(5):28:1–28:31, 2009.

19 C. Lau L, R. Ravi, and M. Singh. Iterative Methods in Combinatorial Optimization. Cambridge
University Press, 2011.

20 L. C. Lau, J. Naor, M. R. Salavatipour, and M. Singh. Survivable network design with degree
or order constraints. SIAM J. Comput., 39(3):1062–1087, 2009.

21 Shi Li, Chenyang Xu, and Ruilong Zhang. Polylogarithmic Approximation for Robust s-t
Path. In 51st International Colloquium on Automata, Languages, and Programming (ICALP
2024), 2024.

22 Manmeet Kaur Nisha Sharma. A survey of vlsi techniques for power optimization and
estimation of optimization. International Journal of Emerging Technology and Advanced
Engineering, 4, 2014.

23 Mohit Singh and Lap Chi Lau. Approximating minimum bounded degree spanning trees to
within one of optimal. J. ACM, 62(1), March 2015. doi:10.1145/2629366.

24 Y. Wang, X. Hong, T. Jing, Y. Yang, X. Hu, and Guiying Yan. An efficient low-degree RMST
algorithm for VLSI/ULSI physical design. In PATMOS, pages 442–452, 2004.

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.11
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.11
https://doi.org/10.4230/LIPIcs.ICALP.2019.40
https://doi.org/10.4230/LIPIcs.ICALP.2019.40
https://doi.org/10.1137/20M1312988
https://doi.org/10.1137/1.9781611977554.ch111
https://doi.org/10.1145/2629366

M. Dinitz, G. Kortsarz, and S. Li 3:15

A Proof of Lemma 13

We repeat the lemma below:

▶ Lemma 13. Assume p ∈ V ◦ has height h. Then Pr
[
Λ∗(p) ∩ V ∩ S′

t ̸= ∅
∣∣p ∈ V

]
≥ 1

h+1
zp

xp
.

Proof. If p ∈ S′
t then Pr

[
Λ∗(p)∩V ∩S′

t ≠ ∅
∣∣p ∈ V

]
= 1 ≥ zp

xp
. The inequality holds trivially.

So, we can assume p /∈ S′
t, and we prove the lemma for nodes p from bottom to top in the

tree T ◦. Suppose p is a leaf; then h = 0, and zp = 0 as we assumed p /∈ S′
t. The inequality

trivially holds.
So we can assume p to be a non-leaf node of height h and assume the lemma holds for

every q ∈ Λ(p). First, assume p is a selector node. Then all children of p have height at
most h.

Pr
[
Λ∗(p) ∩ V ∩ S′

t ̸= ∅
∣∣p ∈ V

]
≥

∑
q∈Λ(p)

xq

xp
· 1

h + 1 · zq

xq
≥

∑
q∈Λ(p)

1
h + 1 · zq

xp
= 1

h + 1 · zp

xp
.

Then consider the case that p is a copier node. All children of p have height at most h− 1.
Even though p has exactly two children, our analysis works if it has any number of children.

Pr
[
Λ∗(p) ∩ V ∩ S′

t ̸= ∅
∣∣p ∈ V

]
≥ 1−

∏
q∈Λ(p)

(
1− 1

h
· zq

xq

)
= 1−

∏
q∈Λ(p)

exp
(
− 1

h
· zq

xp

)

= 1− exp
(
− 1

h
· zp

xp

)
≥ 1

h
· zp

xp
− 1

2

(
1
h
· zp

xp

)2
≥ 1

h
· zp

xp
− 1

2

(
1
h

)2
zp

xp

=
(

2h− 1
2h2

)
zp

xp
≥ 1

h + 1 ·
zp

xp
.

The first equality in the first line used that xq = xp for every q ∈ Λ(p). The second equality
used that zp =

∑
q∈Λ(p) zq as p /∈ S′

t. The first inequality in the second line used that
e−θ ≤ 1− θ + θ2

2 for every θ ≥ 0. The second inequality used that zp

xp
≤ 1. ◀

B Reduction of Degree-Bounded Group Steiner Tree on
Bounded-Treewidth Graphs to Tree-Labeling Problem

In this section, we prove Theorem 2, by reducing Group Steiner Tree with degree bounds on
bounded treewidth graphs to the tree labeling problem studied in Section 3. Recall the input
of the problem contains a graph G = (V, E) with edge costs c ∈ RE

≥0, a root r, k groups
S1, S2, · · · , Sk of vertices, and a degree bound dbv ∈ Z>0 for every v ∈ V . Without loss of
generality, we assume {r}, S1, S2, · · · , Sk are mutually disjoint. Again, we use opt to denote
the minimum cost of a valid subgraph H.

Let T = (B, E) be the tree decomposition of the graph G = (V, E). Every b ∈ B is called
a bag and let Xb ⊆ V be the set of vertices contained in the bag b. We can add the root r to
all the bags, which increases the maximum size of a bag by at most 1. It was shown in [3]
that we can assume T is a rooted binary tree of depth O(log n), by sacrificing the bag size
by an O(1) factor. We summarize the properties as follows:

T is a full binary tree rooted at r, with depth O(log n).
|Xb| ≤ O(1) · tw for every b ∈ B.
For every edge (u, v) ∈ E, there is some b ∈ B with {u, v} ⊆ Xb.
For every v ∈ V , the set of bags b with v ∈ Xb is connected in T.

APPROX/RANDOM 2024

3:16 Degrees and Network Design: New Problems and Approximations

For every e ∈ E, let be be the highest node b such that Xb contains both end vertices of
e. This is well-defined due to the last property in the above list. For every b ∈ B, we let
Eb = {e ∈ E : be = b}. So, (Eb)b∈B forms a partition of E.

Notations on Partitions. Given two partitions Π and Π′ of a common set X, we say Π′

refines Π if any two elements in X that are in the same set in Π′ are also in the same set
in Π. We use Π′ ≤ Π to denote that Π′ refines Π. Given two partitions Π and Π′ of X, we
use Π ∨Π′ to denote the join of Π and Π′ w.r.t the relation ≤. That is, we define a graph
where there is an edge between u and v if they are in the same set in Π or Π′. Then two
vertices u and v are in the same set in the partition Π ∨ Π′ if and only if they are in the
same connected component in the graph.

Abusing notations slightly, if an element v is not included in a partition Π, we treat {v}
as a singleton set in Π. This allows us to extend the operators ≤ and ∨ to two partitions
Π and Π′ with different ground sets. Given a partition Π and a set X, we let Π[X] be the
partition Π restricted to the ground set X: two elements u, v ∈ X are in the same set in
Π[X] if and only if they are in the same set in Π.

For any set F ⊆ E of edges, we define CC(F) to be the partition of the vertices incident
to F , such that u and v are in the same set in CC(F) if and only if they are in the same
connected component in (V, F).

Construction of Labels and Consistency Triples. The tree T for the tree-labeling instance
is the same as the decomposition tree T. (This is the reason we use the same notion T.)
So we have V = B. Now we fix a bag b ∈ B and define the set Lb of labels for b. To define
the labels, we let H = (VH , EH) be any sub-graph of G, which we should think of as the
output of the GST problem. Fix a bag b ∈ B, let Λ∗(b) be the set of descendants of b in T,
including b itself. We then make the following definitions:

Fb(H) := EH ∩ Eb is the set of edges from Eb that are included in H.
Π↓

b(H) is the partition of Xb so that two vertices u, v ∈ Xb is in the set in Π↓
b(H) if and

only if they are connected in the graph (VH , EH ∩
⋃

b′∈Λ∗(b) Eb′).
Π↑

b(H) is the partition of Xb so that two vertices u, v ∈ Xb is in the set in Π↓
b(H) if and

only if they are connected in the graph (VH , EH ∩
⋃

b′∈B\Λ∗(b)∪{b} Eb′).
In words, Π↓

b(H) and Π↓
b(H) respectively indicate the partition of Xb correspondent to the

edges of H in bags below and above b respectively.
Without knowing H , we can define the label set Lb for b to be all tuples (Fb, Π↓

b , Π↑
b) such

that (Fb, Π↓
b , Π↑

b) = (Fb(H), Π↓
b(H), Π↑

b(H)) for some valid output graph H. We then define
the consistency tuples Γb’s so that a consistent labeling gives a valid outputs sub-graph H.

Formally, let Lb be the set of all tuples (Fb, Π↓
b , Π↑

b) such that
Fb ⊆ Eb is a forest over Xb, CC(Fb) ≤ Π↓

b and CC(Fb) ≤ Π↑
b ,

if b = r, then Π↑
b = CC(Fb), and

if b is a leaf, then Π↓
b = CC(Fb).

Then we define the set Γb of triples, for an inner vertex b in T with two children b′ and
b′′. We have

(
(Fb, Π↓

b , Π↑
b), (Fb′ , Π↓

b′ , Π↑
b′), (Fb′′ , Π↓

b′′ , Π↑
b′′)

)
∈ Γb if and only if

Π↓
b =

(
Π↓

b′ ∨Π↓
b′′ ∨ CC(Fb)

)
[Xb],

Π↑
b′ =

(
Π↑

b ∨Π↓
b′′ ∨ CC(Fb′)

)
[Xb], and

Π↑
b′′ =

(
Π↑

b ∨Π↓
b′ ∨ CC(Fb′′)

)
[Xb′′].

M. Dinitz, G. Kortsarz, and S. Li 3:17

▷ Claim 16. Let {(Fb, Π↓
b , Π↑

b)}b∈B be a consistent labeling of the tree T. Let H =
(V,

⋃
b∈B Fb). Then we have Π↓

b [H] = Π↓
b and Π↑

b [H] = Π↑
b for every b ∈ B.

The claim says that if the labels are consistent, then Π↓
b and Π↑

b represent their true values.

Construction of Covering and Cost Constraints. The requirement that all groups are
connected to r can be captured by the covering constraint in the tree-labeling problem. For
every t ∈ [k], a label (Fb, Π↓

b , Π↑
b) ∈ Lb for some b ∈ B can satisfy the group St if for some

s ∈ St we have (s, r) are in the same set in the partition Π↓
b ∨Π↑

b .
The edge costs and degree constraints can be captured by the cost constraints in the

tree-labeling instance. Consider the costs first. Using binary search, we assume we know
the optimum cost C∗ for the instance. For every bag b ∈ B and every label (Fb, Π↓

b , Π↑
b), the

cost of the label is c(Fb) :=
∑

e∈Fb
ce. We disallow this label by removing it if c(Fb) > C∗.

Scaling all costs by C∗ so that all costs are in [0, 1]. So, the cost being at most C∗ in the
group Steiner tree instance is equivalent to that the cost of all labels is at most 1.

Finally, we consider the degree constraints dH(v) ≤ dbv for every v ∈ V . For every v ∈ V ,
we define a cost constraint in the tree-labeling instance. For every bag b ∈ B with v ∈ Xb,
and every label (Fb, Π↓

b , Π↑
b), the cost of the label is |δ(v) ∩ Fb|, where δ(v) is the incident

edges of v in G. Again, we disallow the label if |δ(v) ∩ Fb| > dbv, and we scale the costs by
dbv so that all costs are in [0, 1]. Then the degree constraint on v is reduced to this cost
requirement in the tree labeling instance.

Wrapping Up. We then run the algorithm in Theorem 10 on the constructed tree-labeling
instance. Let (Fb, Π↓

b , Π↑
b) be the label of a bag b, and let H = (V,

⋃
b∈B Fb). By Claim 16, the

consistency constraints guarantee that the Π↓
b and Π↑

b truthfully represent the connectivity
of the graph G. So, if the covering constraint for a group St is satisfied, then H indeed
connects r and St. Recall that D = O(log n) is the depth of the tree T. By Properties a and
b, we have

For every t ∈ [k], H connects r and St with probability at least 1
D .

E
[

exp(ln(1 + 1
2D) · c(H)

C∗)
]
≤ 1 + 1

D .
E

[
exp(ln(1 + 1

2D) · dH (v)
dbv

)
]
≤ 1 + 1

D for every v ∈ V .

We run the algorithm for M = Θ(D log n) = Θ(log2 n) times, with a large hidden constant
in the O(·) notation, and output the union H of all sub-graphs constructed by the M times.
With high probability, all groups are connected to r in H. E[exp(ln(1 + 1

2D) · dH (v)
dbv

)] ≤
(1 + 1

D)M = nO(1). Using Markov inequality, we have exp(ln(1 + 1
2D) · dh(v)

dbv
) ≤ nO(1) for

every v ∈ V with high probability. That is, dh(v) ≤ O(dbv log n ·D) = O(log2 n)dbv with
high probability. Similarly, with high probability, we have c(H) ≤ O(log2 n)C∗.

We then analyze the running time of the algorithm. The key parameter deciding the
running time is ∆, the maximum size of a label set Lb. As we assumed Fb is a forest over
Xb and |Xb| ≤ O(tw), there are twO(tw) different possibilities for Fb. There are also twO(tw)

possibilities for each of Π↓
b and Π↑

b . So, |Lb| ≤ twO(tw) for every b ∈ B. Therefore, the
running time of the algorithm is poly(n) ·∆O(D) = poly(n) · (twO(tw))O(log n) = nO(tw log tw).
This finishes the proof of Theorem 2.

APPROX/RANDOM 2024

Hybrid k-Clustering: Blending k-Median and
k-Center
Fedor V. Fomin #

University of Bergen, Norway

Petr A. Golovach #

University of Bergen, Norway

Tanmay Inamdar #

Indian Institute of Technology Jodhpur, Jodhpur, India

Saket Saurabh #

The Institute of Mathematical Sciences, HBNI, Chennai, India
University of Bergen, Norway

Meirav Zehavi #

Ben-Gurion University of the Negev, Beer-Sheva, Israel

Abstract
We propose a novel clustering model encompassing two well-known clustering models: k-center
clustering and k-median clustering. In the Hybrid k-Clustering problem, given a set P of points
in Rd, an integer k, and a non-negative real r, our objective is to position k closed balls of radius r to
minimize the sum of distances from points not covered by the balls to their closest balls. Equivalently,
we seek an optimal L1-fitting of a union of k balls of radius r to a set of points in the Euclidean
space. When r = 0, this corresponds to k-median; when the minimum sum is zero, indicating
complete coverage of all points, it is k-center.

Our primary result is a bicriteria approximation algorithm that, for a given ε > 0, produces a
hybrid k-clustering with balls of radius (1 + ε)r. This algorithm achieves a cost at most 1 + ε of
the optimum, and it operates in time 2(kd/ε)O(1)

· nO(1). Notably, considering the established lower
bounds on k-center and k-median, our bicriteria approximation stands as the best possible result for
Hybrid k-Clustering.

2012 ACM Subject Classification Theory of computation → Facility location and clustering; Theory
of computation → Fixed parameter tractability

Keywords and phrases clustering, k-center, k-median, Euclidean space, fpt approximation

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.4

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2407.08295 [17]

Funding Fedor V. Fomin: Supported by the Research Council of Norway via the project BWCA
(grant no. 314528).
Petr A. Golovach: Supported by the Research Council of Norway via the project BWCA (grant no.
314528).
Saket Saurabh: The author is supported by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No. 819416);
and he also acknowledges the support of Swarnajayanti Fellowship grant DST/SJF/MSA-01/2017-18.
Meirav Zehavi: The research was supported by the European Research Council (ERC) grant no.
101039913 (PARAPATH).

© Fedor V. Fomin, Petr A. Golovach, Tanmay Inamdar, Saket Saurabh, and Meirav Zehavi;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 4; pp. 4:1–4:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Fedor.Fomin@uib.no
https://orcid.org/0000-0003-1955-4612
mailto:Petr.Golovach@ii.uib.no
https://orcid.org/0000-0002-2619-2990
mailto:taninamdar@gmail.com
https://orcid.org/0000-0002-0184-5932
mailto:saket@imsc.res.in
https://orcid.org/0000-0001-7847-6402
mailto:meiravze@bgu.ac.il
https://orcid.org/0000-0002-3636-5322
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.4
https://arxiv.org/abs/2407.08295
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Hybrid k-Clustering: Blending k-Median and k-Center

x

y

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

Figure 1 Two disks of radius 2 cover all except four points that are colored red. The total sum
of distances from these points to the yellow disks is 2(1 +

√
8 − 2).

1 Introduction

Suppose we want to install a set of k access points (APs) at certain locations to provide
wireless internet (Wi-Fi) coverage to a group of people belonging to a certain area. Each AP
is capable of providing Wi-Fi within a circular-shaped region (i.e., a disk) of fixed radius r,
and it may not be possible to cover the entire region with k such disks. Thus, after placing
k APs, some people may be outliers, that lie outside any of the k disks and do not receive
Wi-Fi coverage. We can model this scenario as the classical k-Center with Outliers
problem, which is a crude model since it only cares about the number of outliers. However,
our scenario is more nuanced. All people that lie within any of the k disks of radius r already
receive Wi-Fi, whereas a person lying outside all of the k disks must travel to the boundary of
the nearest disk in order to receive coverage. Naturally, we would like to minimize the total
distance traveled by people. Motivated by this and several other problems in computational
geometry/clustering, we consider the following clustering problem, which encompasses two
fundamental variants of clustering: k-Center and k-Median. Given a set P of points in
some metric space and integer k and real r ≥ 0, our objective is to position k closed balls of
radius r in a way that minimizes the sum of distances from points uncovered by the balls to
their closest balls. In Figure 1, we provide an example of such clustering with k = 2 and
r = 2.

To define the new clustering formally, we need some definitions. We consider Euclidean
inputs, i.e., all points belong to Rd for some d ≥ 1 and the distance function dist(·, ·) is given
by the Euclidean (ℓ2) distance. For a point p ∈ P and a finite set of points Q ⊂ Rd, we
define dist(p, Q) := minq∈Q dist(p, q). Further, for x, y ∈ P , and a real r ≥ 0, we define the
shorthand distr(x, y) := max {dist(x, y)− r, 0}.

Hybrid k-Clustering

Input. A set P ⊂ Rd of n points, an integer k ≥ 1, and a real r ≥ 0.
Task. Find a set F ⊂ Rd of size at most k, that minimizes:

costr(P, F) :=
∑
p∈P

distr(p, F) (1)

F. V. Fomin, P. A. Golovach, T. Inamdar, S. Saurabh, and M. Zehavi 4:3

We denote an instance of Hybrid k-Clustering as I = (P, k, r, d), where d denotes the
dimension. When r = 0, the optimal cost of Hybrid k-Clustering equals the optimal
k-Median clustering cost of the instance. Thus in this case, Hybrid k-Clustering reduces
to k-Median. However, when r > 0, distr(·, ·) does not form a metric, and hence we cannot
simply reduce the problem to k-Median. On the other hand, the minimum value r that
guarantees the cost of Hybrid k-Clustering to be zero is equal to the optimal k-Center
value. In this sense, Hybrid k-Clustering reduces to k-Center.

r⋆

r

p

c

distr

Figure 2 Left: k-Center clustering, a special case of Hybrid k-Clustering with r = r⋆. All
points are covered by k balls of radius r⋆ and OPTr⋆ = 0. Right: k-Median clustering, a special
case of Hybrid k-Clustering with r = 0, and every point contributes its distance to the closest
center (some are shown as brown arrows). Middle: A general instance of Hybrid k-Clustering
lies somewhere in between the two cases, where points outside radius-r balls contribute the distance
to the boundary (shown in blue).

1.1 Our Result and Techniques
The main result of this paper is a bicriteria approximation algorithm for Hybrid k-
Clustering. An α-approximation to an instance I = (P, k, r, d) is a subset F ⊂ Rd

of size k with costr(P, F) ≤ α · OPTr, where OPTr := costr(P, F ∗) denotes the cost of an
optimal solution F ∗ ⊂ Rd of size at most k. Furthermore, an (α, β)-bicriteria approximation
is a solution F ⊂ Rd with costβr(P, F) ≤ α · OPTr. Here, costβr(P, F) =

∑
p∈P distβr(P, F).

Consider the special case of r = r∗, where r∗ is the optimal radius for k-Center. Then,
OPTr∗ = 0. Therefore, a (α, 1)-bicriteria approximation would return a solution of cost
α · OPTr∗ = 0 using radius 1 · r∗, i.e., an optimal solution for k-Center. On the other
hand, a (1, β)-bicriteria approximation, for the special case of r = 0, would return an
optimal-cost solution using the radius of βr = 0. That is, such an algorithm would optimally
solve k-Median. Combining these observations with the established lower bounds from the
literature for k-Median and k-Center in Euclidean spaces, implies the following bounds
for Hybrid k-Clustering.

▶ Proposition 1. The following holds for Hybrid k-Clustering even when the input is
from R2.

For any α ≥ 1, there exists no FPT in k algorithm that returns an (α, 1)-approximation,
unless FPT = W[1] [27].
For any finite β ≥ 1, there exists no polynomial-time algorithm that returns a (1, β)-
approximation unless P = NP [29].

Further, assuming the Exponential-Time Hypothesis (ETH), if the input is from Rd with
d ≥ 4, then there exists no no(k) time algorithm that returns a (1, β)-approximation, for any
finite β ≥ 1 [10].

APPROX/RANDOM 2024

4:4 Hybrid k-Clustering: Blending k-Median and k-Center

Given these results, a natural question arises: Can we achieve a (1+ε, 1+ε)-approximation
for Hybrid k-Clustering, running in time f(k, ε) · nO(1), particularly in low-dimensional
Euclidean spaces? Our main theorem answers this question.
▶ Theorem 2. Let 0 < ε < 1. There exists a randomized algorithm that, given an instance
of Hybrid k-Clustering in Rd, runs in time 2(kd

ε)O(1)
· nO(1), and returns a (1 + ε, 1 + ε)-

approximation with probability at least a positive constant.
This randomized algorithm and the proof of correctness are described in Section 2. Here

we discuss some of the main ideas. Recall that our objective, as the problem name suggests,
is a “hybrid” of k-Center and k-Median. In our preprocessing steps, we first handle the
inputs that behave almost like either of the two problems. Suppose we (approximately) know
the optimal value of Hybrid k-Clustering for the given set of points P , called OPTr.
First, in Lemma 4, if r > OPTr, then we show that an approximate solution can be found
using techniques used for approximating k-Center. Specifically, for each of the k centers in
the optimal solution, we find a “nearby” center within distance ϵr via overlaying a fine grid
in the space. Thus, we can assume that r ≤ OPTr. Next, we consider the case when r is too
small compared to OPTr, namely, when r < εOPTr

n , and show that in this case, the input
behaves like k-Median– an approximate k-Median solution is also an approximation for
Hybrid k-Clustering (Lemma 5). In this manner, we preprocess to handle inputs that
resemble k-Center and k-Median, we obtain a relation between r and OPTr, which can be
used to discretize the distances, which can be used to bound the aspect ratio (i.e., the ratio
of maximum to minimum positive distance) (Lemma 6).

After the preprocessing step, we obtain inputs that are not immediately reducible to
k-Center/Median. To handle such inputs, we design an intricate recursive algorithm that,
at each step, tries to simultaneously handle parts (i.e., clusters) of the input that can be
handled by either of the two techniques. This algorithm is inspired by the sampling approach
of Kumar, Sabharwal, and Sen [24, 25] (also Jaiswal, Kumar, and Sen [23]). In this approach,
one first takes a large enough sample that can be used to pin down the location of the largest
cluster center. Then, one removes enough points from the vicinity of this center, so that the
next largest cluster becomes dominant, and hence a subsequent sample contains sufficiently
many points from the second cluster, and so on.

However, our scenario is more intricate and challenging for several reasons due to the
peculiar nature of the objective. Nevertheless, in principle, one can classify each cluster as
either being more 1-center-like, or more 1-median like (see Figure 3 for an illustration). In a
1-center-like cluster, a large fraction of points lie within a ball of radius O(r/ε). On the other
hand, in a 1-median-like cluster, a vast majority of points lie outside the O(r/ε)-radius ball.
Note that any such point loses very little due to the “−r” term in the clustering cost, i.e., its
distr and dist values are approximately equal. Hypothetically, if we knew the partition of
the input points into k clusters, then we could use this classification to handle each type of
cluster separately – an almost-optimal center of a 1-center-like cluster can be found using
a grid, whereas one can use an approximation for 1-median (as a black box) to handle a
1-median-like cluster. However, the actual clusters are obviously unknown to the algorithm.
Hence, the algorithm has to carefully navigate between the two types of clusters based on the
random sample obtained, and must simultaneously handle both scenarios using branching
(i.e., recursion). The analysis of the algorithm is also much more involved due to the various
cases in which the distinction between two types of clusters is murkier. Nevertheless, we are
able to show that the algorithm returns a (1+ε, 1+ε)-approximation in time 2(kd/ε)O(1) ·nO(1)

with good probability. Note that we incur an exponential dependence on the dimension d

due to “grid-arguments” used to handle 1-center-like clusters, unlike the approach of [24].
However, such dependence seems unavoidable using our approach.

F. V. Fomin, P. A. Golovach, T. Inamdar, S. Saurabh, and M. Zehavi 4:5

dist dist≈

p

c

O(r/ε)

r

r

Figure 3 Example of two different types of clusters. In each figure, we show the cluster center in
red, a ball of radius r around the center in green, and a larger ball of radius O(r/ϵ) in cyan with
a dashed outline. Left: A 1-center-like cluster. Note that a large chunk of points lies within the
radius O(r/ε) ball around the center. Right: A 1-median-like cluster. Note that most of the points
lie outside the O(r/ϵ) radius ball around c, and for any such point, e.g., p that is outside the O(r/ε)
radius ball, distr(p, c) ≈ dist(p, c).

1.2 Related Problems

Euclidean Clustering. An extensive body of literature exists on approximation algorithms
for k-Center and k-Median in the Euclidean space. For k-Median in Rd, Polynomial-
Time Approximation Schemes (PTASes) with a running time of nf(ϵ,d) have been developed,
leveraging local search techniques [18, 12]. Additionally, various Fixed-Parameter Tractable
Approximation Schemes (FPT-AS) with a running time of f(k, d, ϵ) · nO(1) are known for
this problem [11, 13, 25, 23]. The dependence on dimension d can be eliminated through
dimensionality reduction techniques [26, 9].

For k-Center, an FPT-AS was introduced by Agarwal and Procopiuc in [4], with a
runtime of O(n log k) + (k/ε)O(dk1−1/d) in Rd. Subsequent work by Badoiu, Har-Peled, and
Indyk [5] improved the running time to 2O(k log k)/ϵ2 .

In [30], Tamir introduces a common generalization of the two clustering problems, namely,
ℓ-centrum. In this problem, one ignores ℓ closest points from the cost. Notably, k-Median
ignores 0 points, and k-Center ignores all but one point. While this problem is related to
Hybrid k-Clustering, their objectives differ. Ordered k-Median, a further generalization
of ℓ-Centrum, also does not align with our objective. Approximation algorithms for this
problem and some variants were developed in [2, 1, 6, 7].

k-center clustering with outliers. In k-Center clustering, we are given sets P (clients) and
F (facilities) of points. Given an integer k, the task is to identify k centers F ⊆ F minimizing
the maximum distance of any point in P from its closest center. A popular variant of k-center
is a formulation that considers outliers. For a selected parameter x, up to x points are
allowed not to be allocated to any center. A plethora of approximation algorithms for this
problem, and the related problems of covering points by disks and minimum enclosing balls

APPROX/RANDOM 2024

4:6 Hybrid k-Clustering: Blending k-Median and k-Center

with outliers, exist in the literature [5, 14, 8, 19, 15, 16, 21, 28]. Hybrid k-Clustering
could be seen as a variant of k-Center with outliers, where we focus on the sum of distances
to outliers rather than their numbers.

Shape fitting. A natural problem arising in machine learning, statistics, data-mining, and
many other fields is to fit a shape γ to a set of points P in Rd. Har-Peled in [20] introduces the
following formalization of this problem. For a family of shapes F (points, lines, hyperplanes,
spheres, etc.) we seek for a shape γ ∈ F with the best fit to P . The typical criteria for
measuring how well a shape γ fits a set of points P could be the maximum distance between
a point of P and its nearest point on γ (L∞-fitting), sum of the distances from P to γ

(L1-fitting) or the sum of the squares of the distances (L2-fitting). In this setting, Hybrid
k-Clustering is the problem of L1-fitting to a shape from F , where F is the family of
shapes defined by unions (not necessarily disjoint) of k balls in Rd. Some relevant work in
this direction includes [3, 20, 22, 31].

2 Bicriteria FPT Approximation Scheme in Euclidean Spaces

We first set up some notation and define an important subroutine. For Y ⊂ Rd, and y ∈ Y ,
let cl(y, Y) ⊆ P denote the subset of points of P , whose closest point in Y is y. Ties are
broken arbitrarily. Note that {cl(y, Y) : y ∈ Y } forms a partition of P .

Let p ∈ Rd be a point and λ ≥ 0, let B(p, λ) =
{

q ∈ Rd : d(p, q) ≤ λ
}

denote the ball
of radius λ centered at p. For 0 ≤ τ ≤ λ, let Grid(p, λ, τ) be the outcome of the following
procedure: we place a grid of sidelength τ/

√
d (of arbitrary offset). From each grid cell L

that (partially) intersects with B(p, λ) (i.e., L contains a point q with d(p, q) ≤ λ), we pick
an arbitrary point from L and add it to the set Grid(p, λ, τ). Note that Grid(p, λ, τ) can be
computed in time proportional to the size of the output. We have the following observations
that follow from simple geometric arguments.

▶ Observation 3.
1. |Grid(p, λ, τ)| ≤ O((

√
dλ/τ)d), where d is the dimension.

2. For any q ∈ B(p, λ), there exists some q′ ∈ Grid(p, λ, τ) such that d(q, q′) ≤ τ .

2.1 Preprocessing
Suppose we know an estimate of OPTr up to a constant factor – this can be done by an
exponential search or by first finding a bicriteria (constant) approximation. For simplicity of
exposition, we assume that we know OPTr exactly.

Step 1. Obtaining OPTr ≥ r ≥ εOPTr

2n .
First, in the following lemma, we handle k-center-like instances, which we can handle

using “grid arguments”. If this is not applicable, we obtain that r ≤ OPTr. 1

▶ Lemma 4 (♠). If r > OPTr, then in time
(

d
ε

)O(dk) · nO(1)one can find a set F ⊂ Rd of
size k, such that, cost(1+ε)r(P, F) ≤ (1 + ε)OPTr.

1 Due to space constraints, some proofs are omitted in this extended abstract. They can be found in the
full version of the paper [17]. The statements with missing proofs are marked by ♠.

F. V. Fomin, P. A. Golovach, T. Inamdar, S. Saurabh, and M. Zehavi 4:7

In the following lemma, we handle k-median-like instances, where r is very small compared
OPTr. We directly reduce such instances to k-Median (where r = 0). If this is not applicable,
then we obtain that r is not “too small” compared to OPTr.

▶ Lemma 5 (♠). Let 0 < ε < 1. Suppose for an instance I, OPTr ≥ 2nr
ε . Then,

OPT0 ≤ (1 + ε/2) · OPTr ≤ (1 + ε/2) · OPT0. Furthermore, if F ⊂ Rd satisfies that
cost0(P, F) ≤ (1 + ε/3) · OPT0. Then, costr(P, F) ≤ (1 + ε) · OPTr. Such a set F can be
found in time 2(k/ε)O(1) · nd.

For a given input P , we try the procedures from Lemma 4 and 5 and keep them as
candidate solutions. However, if P does not satisfy the conditions required to apply these
lemmas, then we must have that εOPTr

2n ≤ r ≤ OPTr. In this case, we use the next step
before proceeding to the main algorithm.

Step 2. Bounding the aspect ratio.
In this step, we suitably discretize the distances in order to bound the aspect ratio of the

metric (i.e., the maximum ratio of inter-point distances) by O(n2

ε). This procedure preserves
the cost of an optimal solution up to a factor of 1 + ε.

▶ Lemma 6 (♠). Let P be a set of points satisfying εOPTr

2n ≤ r ≤ OPTr. Then, in polynomial
time we can obtain another (multi)set of points P ′ such that, for any solution F ⊂ Rd,

costr(P ′, F) ∈ (1± ε) · costr(P, F), and maxp,q∈P ′ dist(p, q)
minp,q∈P ′:dist(p,q) ̸=0 dist(p, q) ≤

4n2

ε
.

Bounding the aspect ratio by O(n2

ε) means that an exponential search over distances
has at most log2

(
n2

ε

)
= O

(
log(n)

ε

)
levels, which will be useful in our main algorithm. By

slightly abusing the notation, we continue to use P for referring to the discretized (multi)set
P ′ returned by Lemma 6. If there are any co-located points in P , we will treat them as
separate points, and hence use set terminology instead of multiset terminology.

After the two preprocessing steps, we now proceed to the description of the main algorithm.

2.2 Main Algorithm
Our goal is to prove Theorem 2, that is, to design a randomized bicriteria FPT approximation
for Hybrid k-Clustering. We define some parameters. Let δ := ε

10k < 1
2 , δ′ := δ

3 and
r′ := (1 + δ′)r.

Algorithm 1 is a recursive algorithm, and is called HybridClustering. It takes three
parameters F ′, k, and m. F ′ ⊂ Rd is a subset of centers added to the solution so far and
has size k −m. Further, k is the total size of the solution, and m is an upper bound on the
remaining solution (since we have already added k −m centers). At a high (and imprecise)
level, the goal of each recursive step is to find an approximate replacement for each center in
an unknown optimal solution.

In line 2, we check whether m = 0, i.e., whether we have used our budget of k centers,
and if so, we return the same set F ′ of centers built through the recursive process. Otherwise
(line 4 onward), we assume that m > 0, i.e., we are yet to add a set of centers. Throughout
this process (line 4 to 13, we will build a set R consisting of candidate centers, at least one of
which will be an approximate replacement of an unseen center (i.e., one whose approximate
replacement has not already been found) from an optimal solution. Finally, in line 15, we
will make a recursive call by adding each candidate to the current solution F ′. Now we
discuss how we build the set R.

APPROX/RANDOM 2024

4:8 Hybrid k-Clustering: Blending k-Median and k-Center

Algorithm 1 HybridClustering(F ′, k, m).

F ′ ⊆ Rd is a subset of centers of size at most k −m added to the solution so far
β = 1

δc′ as required in Proposition 13 and β′ := β · 150k
δ3 .

1: if m = 0 then
2: return F ′

3: end if
4: R←

⋃
c′∈F ′ Grid(c′, 16r, δr)

5: for each q of the form 2j in the range [8r, distmax] do
6: Pq := P \

(⋃
c′∈F ′ B(c′, q)

)
7: Let Sq be a sample of size β′ chosen uniformly at random from Pq

8: R← R ∪
⋃

p∈Sq
Grid(p, 8r

δ , δr)
9: for each S ⊆ Sq of size β do

10: c′ ← ApproxSolutionOnSample(S, δ/8) ▷ Algorithm from Proposition 13
11: R← R ∪ {c′}
12: end for
13: end for
14: for each c ∈ R \ F ′ do
15: Call HybridClustering(F ′ ∪ {c} , k, m− 1)
16: end for
17: Call HybridClustering(F ′, k, m− 1)
18: return solution F̃ minimizing costr′(P, F̃) over recursive calls made in lines 15 and 17

First, in line 4, for each center c′ ∈ F ′ added so far, we add a set of “nearby” centers by
placing a grid. This handles the case when an unseen optimal center is close to one of the
already chosen centers in F ′. Next, in the outer for loop (line 5 to 13), we handle the case
when all new optimal centers are relatively far from the already chosen centers. In this for
loop, we iterate over a range of values for the parameter q via exponential search. Parameter
q tries to approximate half of the minimum distance between the already chosen and new
optimal centers. Thus, for the “correct” value of q, the set of points Cq lying “far” from the
centers of F ′ (line 6), leaves all of the m unseen optimal clusters untouched. At this point,
we aim to use a sample of faraway size (chosen in line 7), to find an approximate replacement
for one of these m unseen centers. We do this by using the sample in two different ways, to
handle two different situations. First, if our sample happens to contain a point “nearby” an
unseen center, say c⋆, then the points chosen from the fine grid in line 8 will find such an
approximate replacement for c⋆. Otherwise, the idea is that, if we have removed a significant
fraction of points from the “seen” clusters in line 6, by virtue of being close to F ′, then the
sample contains sufficiently many (i.e., at least β) points from the largest unseen cluster,
say C⋆, with reasonable probability, and these points can be used to find an approximate
replacement of the cluster center (using Proposition 13). However, a priori we do not know
which subset of the sample comes from C⋆. Therefore, we iterate over all subsets of size β in
the inner for loop (lines 9 to 12) to find such a subset of size β that comes entirely from
C⋆ and use a known subroutine, called ApproxSolutionOnSample, to find an approximate
replacement. Finally, in 15, we make a recursive call by adding each center from R \ F ′, and
in line 17, we make a recursive call by not adding any new center (to handle a particular
case). In line 18, we return the minimum-cost solution found over all recursive calls. This
completes the description of the algorithm.

F. V. Fomin, P. A. Golovach, T. Inamdar, S. Saurabh, and M. Zehavi 4:9

2.3 Analysis

The crux of the analysis is to establish that Algorithm 1 satisfies the following invariant.

Invariant

Let 0 ≤ m ≤ k and 0 < α < 1 be a constant. Suppose for the given F ′ of size at most k−m,
there exists some F = F ′ ⊎ Fo ⊂ Rd, such that
1. |Fo| ≤ m, and
2. ∑

c∈F ′

costr′(cl(c, F), c) +
∑
c∈Fo

costr(cl(c, F), c) ≤ (1 + δ)k−m · OPTr (2)

Then, with probability at least αm, the algorithm returns a solution F̃ ⊂ Rd, such that
1. |F̃ | ≤ k,
2. F ′ ⊆ F̃ , and
3. ∑

c∈F̃

costr′(cl(c, F), c) ≤ (1 + δ)k · OPTr. (3)

Proof of Correctness

The proof is by induction on m. For the base case, consider m = 0. In the base case
(Algorithm 1), we return the same F ′ = F with probability one. In this case, the invariant
tells us that costr′(P, F) ≤ (1 + δ)k ·OPTr, which is what we need to prove. Now we assume
that the claim is true for some m − 1 ≥ 0 and we prove it for m by considering different
cases.

Easy case: F = F ′. This is a much simpler case since we have already found the desired
set. In this case, any solution F̃ returned by a recursive call always contains F = F ′ as a
subset. Then, in this case, we have that:

costr′(P, F̃) ≤ costr′(P, F) ≤ (1 + δ)k−m · OPTr ≤ (1 + δ)k · OPTr

Here, the first inequality follows from the assumption that F̃ ⊇ F = F ′, and the second
inequality follows from (2) of the invariant. Note that we do not need to rely on the induction
here.

Main case: F ′ ⊊ F . This is the case where we are yet to discover some subset (namely,
F \ F ′) of centers. We will analyze this case by considering different scenarios based on the
inter-center distances, as well as their relative sizes.

First, since F ′ ⊊ F , there exists some c ∈ F \F ′. Now, let c ∈ F \F ′ and c′ ∈ F ′ be the pair
of centers with the smallest distance, i.e., (c, c′) is a pair realizing minc1∈F \F ′,c2∈F ′ dist(c1, c2).
Now we consider different cases depending on dist(c, c′), namely the closest distance between
an already chosen center c′ ∈ F ′, and an “unseen center” c ∈ F \ F ′.

APPROX/RANDOM 2024

4:10 Hybrid k-Clustering: Blending k-Median and k-Center

16r ⋆

c′

c

c̃

×
×

δr

×

Figure 4 Illustration for Case 1. Centers in F ′ are shown as red squares and unseen centers of
F \ F ′ are shown as purple crosses. c is the closest center to F ′ and dist(c, c′) ≤ 16r. Then, a nearby
center c̃′ can be found using a δr grid.

Case 1. Nearby center: dist(c, c′) ≤ 16r. In this case, via Observation 3, we conclude
that there exists some c̃ ∈ Grid(c′, 16r, δr) with dist(c̃, c) ≤ δr. Let F̃ = F ′ ∪ {c̃}. Then, the
proof follows from the following claim (see Figure 4).

▷ Claim 7. Let c1 ∈ Fo and let c̃1 ∈ Rd be such that dist(c1, c̃1) ≤ δ′r. Then, with
probability at least αm−1, HybridClustering(F ∪ c̃1, k, m − 1) returns a solution F̃ that
satisfies the required properties.

Proof. Consider c1, c̃1 as defined in the statement. Let A = cl(c1, F). For any point p ∈ A,
dist(p, c̃1) ≤ dist(p, c1) + dist(c1, c̃1) ≤ dist(p, c1) + δ′r. This implies that, distr′(p, c̃1) ≤
distr′(p, c1). Define Fnew := F ′

new ⊎ F ′
o, where F ′

new := F ′ ∪ {c̃1} and F ′
o := Fo \ {c1}. First,

we show the following inequality.∑
c∈F ′

new

costr′(cl(c, F), c)+
∑
c∈F ′

o

costr(cl(c, Fnew), c)

≤
∑
c∈F ′

costr′(cl(c, F), c) +
∑
c∈Fo

costr(cl(c, F), c) (4)

We construct an assignment of clients to the centers in Fnew, where we may not assign a
client to its closest center. To construct this assignment, we consider different cases. For
c ∈ F ′ ∪ Fo \ {c1}, we assign all points p ∈ cl(c, F) to c. The contribution of all such points
is the same as the right-hand side of (4). Finally, we assign all points in cl(c1, F) to c̃1. By
the choice of c̃1, costr′(cl(c1, F), c̃1) ≤ costr(cl(c1, F), c1), which is the contribution of such
points on the right-hand side. Since the cost on the left-hand side is no larger than the cost
of the assignment thus constructed, it shows (4).

F. V. Fomin, P. A. Golovach, T. Inamdar, S. Saurabh, and M. Zehavi 4:11

×

×

c′ t

c

×
q⋆

q⋆

q⋆

Figure 5 Illustration for Case 2. Centers of F ′ are shown as red squares and unseen centers of
F \ F ′ are shown as purple crosses. Balls of radius q⋆ around F ′ are shown in dashed orange. P ′

are the points lying outside these balls. Among the points of P ′, D is the set of points belonging
to clusters around F ′, and shown as green-orange filled dots. Finally, the cluster around c is the
largest unseen cluster (marked in dashed blue shape), L. We analyze different cases depending on
the relative sizes of L and D.

Note that the right-hand side of (4) is at most (1+ δ)k−m ·OPTr due to the invariant, and
hence Fnew satisfies the properties required to apply the inductive hypothesis for m− 1. This
implies that with probability at least αm−1 the recursive call Recursive(F ′ ∪ {c̃1} , k, m− 1)
returns a solution F̃ satisfying costr′(P, F̃) ≤ (1 + δ)k · OPTr. ◁

Case 2. Faraway center: 16r < dist(c, c′) ≤ distmax. Let t = dist(c, c′) and q⋆ be the
largest power of 2 that is at most t/2. Consider Pq⋆ = P \

(⋃
c1∈F ′ B(c1, q⋆)

)
. Let c⋆ ∈ F \F ′

denote the center of the maximum-size cluster, i.e., c⋆ = arg maxc1∈F \F ′ |cl(c1, F)|, and
L := cl(c⋆, F) denote the largest cluster. Finally, let D :=

⋃
cold∈F ′ cl(cold, F) ∩ Pq⋆ denote

the set of clients that are distant from the respective centers in F ′. Let us summarize some
consequences of these definitions in the following observation (its proof is essentially discussed
above). Also see Figure 5.

▶ Observation 8.
1. Pq⋆ = D ⊎

⊎
c1∈F \F ′

cl(c1, F) ∩ Pq⋆ .

2. In particular, cl(c, F), cl(c⋆, F) ⊆ Pq⋆ .
We consider different sub-cases based on the relative sizes of L and D.

Case 2.1. New cluster is tiny: |L| ≤ δ2/4 · |D|. Let N := cl(c, F). Note that the
definition of c⋆, combined with the case assumption, implies that |N | ≤ |L| ≤ δ2

4 · |D|. We
summarize a few technical consequences of these definitions in the following claim.

APPROX/RANDOM 2024

4:12 Hybrid k-Clustering: Blending k-Median and k-Center

▷ Claim 9.

costr(N, c′) ≤ δ · costr(D, F) + (1 + δ) · costr(N, c) (5)

Proof. Note that for each p ∈ D, dist(p, F) ≥ t
4 . Thus, distr(p, c′) ≥ t

4 − r ≥ 3t
16 , where the

last inequality follows from the case assumption, namely t > 16r. Thus, each point p ∈ D

contributes at least 3t
16 to costr′(P, F), and their total contribution to costr(P, F) is

costr(D, F) :=
∑
p∈D

distr(p, c′) ≥ |D| · 3t

16 (6)

Now we upper bound the cost of assigning points of N to c′. To this end, we
partition N = Nnear ⊎ Nfar, where Nnear := {p ∈ A : dist(p, c) ≤ 2r/δ} and Nfar :=
{p ∈ A : dist(p, c) > 2r/δ}. Note that, for each p ∈ Nfar, distr(p, c) = dist(p, c) − r ≥
dist(p, c)− δ

2 · dist(p, c), which implies that, for each p ∈ Nfar,

dist(p, c) ≤
(

1
1− δ

2

)
· distr(p, c) ≤ (1 + δ) · distr(p, c) (7)

Now consider,

costr(N, c′) ≤
∑
p∈N

dist(p, c′) (Since distr(·, ·) ≤ dist(·, ·))

≤
∑
p∈N

dist(p, c) + dist(c, c′) (Triangle inequality)

= |N | · dist(c, c′) +
∑

p∈Nnear

dist(p, c) +
∑

p∈Nfar

dist(p, c)

≤ δ2

8 · |D| · t +
∑

p∈Nnear

4r
δ +

∑
p∈Nfar

(1 + δ) · distr(p, c)

(From case assumption and (7))

= δ2

4 · |D| · t + 4r
δ · |Nnear|+ (1 + δ) · costr(N, c)

≤ δ2

4 · |D| · t + δ · |D| · t
16 + (1 + δ) · costr(N, c)

(|Nnear| ≤ |N | ≤ δ2

4 and t > 16r)
≤ |D| · 3t

16 · δ ·
(4δ

3 + 1
3
)

+ (1 + δ) · costr(N, c)
≤ δ · costr(D, F) + (1 + δ) · costr(N, c) (8)

Where the last inequality follows from (6) and δ < 1/2. ◁

Thus, consider the solution F \ {c}. To upper bound costr(P, F \ {c}), we assign all
points in N = cl(c, F) to c′. The cost of this solution can be upper bounded as follows

costr(P, F \ {c}) ≤ costr(P, F)− costr(N, c) + costr(N, c′)
≤ costr(P, F) + δ · costr(D, F) + δ · costr(N, c) (From (5))
≤ costr(P, F) + δ · costr(P, F) (Since D ⊎N ⊆ P)
≤ (1 + δ)k−m+1 · OPTr (9)

Where the last inequality follows from the invariant. Further, observe that c ∈ F \ F ′,
which implies that |(F \ {c}) \ F ′| ≤ m − 1. This, combined with (9), shows that the
solution F \ {c} = F ′ ⊎ (Fo \ {c}) satisfies the conditions of the invariant for m − 1.
Then, by using inductive hypothesis, HybridClustering(F, k, m − 1), with probability
at least αm−1 ≥ αm, returns a solution F̃ such that (a) |F̃ | ≤ k, (b) F ⊆ F̃ , and (c)
cost(1+δ)r′(F, F̃) ≤ (1 + δ)k · OPTr, completing the induction.

F. V. Fomin, P. A. Golovach, T. Inamdar, S. Saurabh, and M. Zehavi 4:13

Case 2.2. New cluster is large enough: |L| > δ2/4 · |D|. That is, the largest “untouched”
cluster is at least an δ fraction of the remaining points. Since L = cl(c⋆, F) is the largest
“untouched” cluster, |L| ≥ |cl(c1, F)| for all c1 ∈ F \ F ′. Then, by Observation 8, we have
that,

|Pq⋆ | = |D|+
∑

c1∈F \F ′

|cl(c1, F)| ≤ |D|+ |F \ F ′| · |L| ≤ 4
δ2 · |L|+ k · |L| ≤ 5k

δ2 · |L|

In other words, |L| ≥ δ2

5k · |Pq⋆ |.
In the next claim, we summarize some properties of the sample S chosen in line 7 of the

algorithm, in the current case, i.e., when |L| ≥ δ2

5k |Cq⋆ |.

▷ Claim 10. Consider the iteration of the for loop of Algorithm 1, when q = q⋆, and the
corresponding sample Sq obtained in Algorithm 1. The following statements hold.
1. With probability at least 1/2, Sq contains at least β points of L.
2. Sq ∩L has the same distribution as selecting |Sq ∩L| points uniformly at random from L.
3. Let L′ ⊆ L be an arbitrary subset of size at least δ

10 |L|. Then, with probability at least
1/2, Sq contains at least 1 point from L, i.e., Sq ∩ L′ ̸= ∅.

Proof. Recall that β′ = β · 150k
δ3 and |L| ≥ δ2

5k |Cq⋆ |. So, the first item follows, say, via Markov’s
inequality 2. The second item is an easy consequence of conditional distributions. The proof
of the third item is analogous to the first item, combined with the bound on |L′|. ◁

Now we condition on the event that |Sq⋆ ∩ L| ≥ β, which, by Claim 10 happens with
probability at least 1

2 . Then, let S′ ⊆ S ∩ L be such a subset of size β. Let L = Lnear ⊎ Lfar,
where Lnear =

{
p ∈ L : dist(p, c⋆) ≤ 8r

δ

}
and Lfar =

{
p ∈ L : dist(p, c⋆) > 8r

δ

}
. We consider

different cases depending on the relative sizes of Lnear and Lfar. In the first case below
(2.2.1), when |Lnear| is not very tiny compared to |Lfar|, we show that our sample contains
at least one point from Lnear with good probability, and hence an εr grid around that point
will contain an approximate center. In the complementary case (2.2.2), |Lnear| is very tiny
compared to |Lfar|, and in this case, we argue that, instead of finding an approximate Hybrid
1-Median, we can focus on finding an approximate 1-Median, which can be found using
the sample. Now we formally analyze each of these cases.

Case 2.2.1. |Lnear| > δ
8 · |Lfar|. In this case, letting L′ ← Lnear in Claim 10, we infer

that with at least probability 1/2, S′ ∩ Lnear ̸= ∅. We condition on this event. Then, since
dist(p, c⋆) ≤ 8r

δ , it follows that there exists a c̃⋆ ∈ Grid(p, 8r
δ , δr), such that dist(c̃⋆, c⋆) ≤ δr.

Since we branch on each point in
⋃

p′∈S Grid(p, 8r
δ , δr), we will branch on c̃⋆ in particular.

Then, by Claim 7, HybridClustering(F ′ ∪ {c̃⋆} , k, m − 1) returns a solution F̃ , with
probability at least 1/2 · αm−1 ≥ αm.

Case 2.2.2. |Lnear| ≤ δ
8 · |Lfar|. We prove two claims, namely Claim 11, and Claim 12.

The latter essentially reduces the problem to finding an approximate solution to 1-median on
L. Intuitively speaking, this follows from the following two reasons: (1) As we show in (10),
a similar statement holds for the points in Lfar. This essentially follows from the fact that,
since each point of Lfar has distance at least 8r

δ to c, the subtraction of r from their distances
has little effect on the cost, and (2) Due to the case assumption, the points of Lfar vastly
outnumber the points of Lnear. Hence, the preceding claim also translates to the points of
L = Lfar ∪ Lnear, at a further small approximation error.

2 In fact, a closer inspection reveals that the probability is much closer to 1, but “at least 1/2” suffices for
our purpose.

APPROX/RANDOM 2024

4:14 Hybrid k-Clustering: Blending k-Median and k-Center

▷ Claim 11.
∑
p∈L

distr(p, c⋆) ≤
∑
p∈L

dist(p, c⋆) ≤ (1 + 3δ
4) ·

∑
p∈L

distr(p, c⋆).

Proof. First, consider,∑
p∈Lfar

distr(p, c⋆) =
∑

p∈Lfar

dist(p, c⋆)− r ≥
∑

p∈Lfar

dist(p, c⋆)− δ
8 · dist(p, c⋆)

(Since dist(p, c⋆) ≥ 8r
δ > r)

Then, the inequality between the first and the last term can be rewritten as,∑
p∈Lfar

dist(p, c⋆) ≤ 1
1− δ/8 ·

∑
p∈Lfar

distr(p, c⋆) ≤ (1 + δ
4) ·

∑
p∈Lfar

distr(p, c⋆) (10)

The following inequality will be used later to show that the contribution of points of
Lnear is negligible to the overall cost.∑

p∈Lfar

dist(p, c⋆) ≥
∑

p∈Lfar

distr(p, c⋆) ≥
∑

p∈Lfar

(1− δ
8) · dist(p, c⋆) (From (10))

≥ (1− δ
8) · 8r

δ · |Lfar| (Definition of Lfar)
≥ 1

2 ·
8r
δ ·

8
δ · |Lnear|

(Case assumption: |Lfar| ≥ 8
δ · |Lfar|)

= 4
δ ·

8r
δ · |Lnear|

≥ 4
δ ·

∑
p∈Lnear

distr(p, c⋆) (11)

Where the last inequality follows from the definition of Lnear.
The next sequence of inequalities shows a bound similar to (10), but when the sum is

taken over all points of L (instead of only the points of Lfar, as in Equation (10)).∑
p∈L

distr(p, c⋆) ≤
∑
p∈L

dist(p, c⋆) =
∑

p∈Lnear

distr(p, c⋆) +
∑

p∈Lfar

distr(p, c⋆)

= (1 + δ
4) ·

∑
p∈Lfar

dist(p, c⋆) (From (11))

≤ (1 + δ
4) · (1 + δ

4) ·
∑

p∈Lfar

distr(p, c⋆) (From (10))

≤ (1 + 3δ
4) ·

∑
p∈L

distr(p, c⋆) (12)

Where the last inequality follows from (i) (1 + δ
4) · (1 + δ

4) ≤ 1 + 3δ
4 and (ii) Lfar ⊆ L. This

completes the proof of the claim. ◁

Using this claim, we prove the following claim, which shows that it is sufficient to find an
approximate 1-median solution for L, which will also be a good approximation for Hybrid
1-Median for L. To this end, let c̃⋆ ∈ Rd denote the optimal 1-median for L.

▷ Claim 12. Let c1 be an (1 + δ
8)-approximation for 1-Median for L, i.e.,

∑
p∈L dist(p, c1) ≤

(1 + δ
8) ·

∑
p∈L dist(p, c̃⋆). Then, it is also a (1 + δ)-approximation for Hybrid 1-Median for

L, i.e.,∑
p∈L

distr(p, c1) ≤ (1 + δ) ·
∑
p∈L

distr(p, c⋆) (13)

F. V. Fomin, P. A. Golovach, T. Inamdar, S. Saurabh, and M. Zehavi 4:15

Proof. Let c1, c̃⋆ ∈ Rd as defined above. Then,∑
p∈L

distr(p, c1) ≤
∑
p∈L

dist(p, c1) ≤ (1 + δ
8) ·

∑
p∈L

dist(p, c̃⋆) (By definition of c1)

≤ (1 + δ
8) ·

∑
p∈L

dist(p, c⋆)

(Since c1 ∈ Rd is an optimal 1-median and c⋆ ∈ Rd is a feasible median)

≤ (1 + δ
8) · (1 + 3δ

4) ·
∑
p∈L

distr(p, c⋆) (From Claim 11)

≤ (1 + δ) ·
∑
p∈L

distr(p, c⋆) ◁

Thus, now the task reduces to finding a 1 + δ
8 -approximate 1-Median solution for L. To this

end, we have the following result from [24, 25].

▶ Proposition 13 ([24, 25]). Let X ⊂ Rd be a set of n points and 0 < δ < 1. Let S ⊆ X be a
uniform sample chosen from X of size β =

(1
δ

)c′

. Then, there exists an algorithm that runs
in time 2O(1/δc)d, and with probability at least α′, returns an (1 + δ)-approximate 1-median
for X. Here, c, c′ are absolute constants independent of the dimension d.

We combine the properties of the sample Sq⋆ proved in Claim 10 along with the previous
proposition, to complete the proof. To this end, note that the first item of Claim 10
implies that, with probability at least 1/2, Sq⋆ contains at least β = 1

δc points from L.
Then, we use the algorithm of Proposition 13, that returns with probability at least α′, a
(1 + δ

8)-approximate 1-median c1 ∈ Rd for L. It follows that,∑
c∈F ′∪{c1}

costr′(cl(c, F), c) +
∑

c∈Fo\{c⋆}

costr(cl(c, F), c)

≤
∑
c∈F ′

costr′(cl(c, F), c) +
∑
c∈Fo

costr(cl(c, F), c)− costr(cl(c⋆, F), c⋆) +
∑
p∈L

distr(p, c1)

≤
∑
c∈F ′

costr′(cl(c, F), c) +
∑
c∈Fo

costr(cl(c, F), c)− costr(cl(c⋆, F), c⋆)

+ δ ·
∑
c∈Fo

costr(cl(c, F), c) (From Claim 12)

≤(1 + δ) ·
(∑

c∈F ′

costr′(cl(c, F), c) +
∑
c∈Fo

costr(cl(c, F), c)
)

≤(1 + δ)k−m+1 · OPTr (14)

Then, by induction hypothesis, HybridClustering(F ′ ∪ {c1} , k, m − 1), with probability
at least αm−1, returns a solution F̃ such that costr′(P, F̃) ≤ (1 + δ)k · OPTr. The overall
probability of this event is at least 1

2 · α
′ · αm−1 = αm, completing the induction.

This finishes the case analysis, and thus we have established the invariant using induction.
Using the invariant, we can show the following key lemma.

▶ Lemma 14. HybridClustering(∅, k, k) returns a (1 + ε, 1 + ε)-bicriteria approximation
solution to the given instance of Hybrid k-Clustering with probability at least αk for some
constant 0 < α < 1.

APPROX/RANDOM 2024

4:16 Hybrid k-Clustering: Blending k-Median and k-Center

Proof. We first show the following:

▷ Claim 15. |R| ≤
(

k
√

d
δ

)O(d)
+ k log n

δO(1) ·
((√

d
δ

)O(d)
+
(

β′

β

))
≤ (log n) · 2(kd/δ)O(1)

.

Proof. First, in Algorithm 1, we add the points returned by Grid(c′, 16r, δr) for each c′ ∈ F ′.

The number of such points is
(

16r
√

d
δr

)d

=
(√

d
δ

)O(d)
. Next, there are at most log n

δO(1) values
for q (this follows from the second preprocessing step, cf. Lemma 6), corresponding to each
iteration of the for loop. In each iteration, we take a sample S of size β′ = O

(
150kβ

δ3

)
. Then,

for each p ∈ S, we add to R the points of Grid(p, 8r/δ, δr), and the number of such points is

at most
(

8
√

d
δ2

)d

=
(√

d
δ2

)O(d)
. In addition, we iterate over each subset S′ ⊆ S of size β, and

the number of such subsets is
(

β′

β

)
≤
(

eβ′

β

)β

=
(

k
δ3·β

)β

=
(

k
δ3

)(1/δ)O(1)

= k1/δO(1) . Thus,

overall, the size of R is bounded by (log n) · 2(kd/δ)O(1) . ◁

To bound the running time of the algorithm, let T (m) denote an upper bound on
HybridClustering(F ′, k, m) for any F ′ ⊂ Rd. Note that we make a recursive call on each
point in R. Further by Proposition 13, the time taken to compute a center in Algorithm 1
is at most 2(1/δ)O(1) ; and this algorithm is used in each of the at most k log n

(1/δ)O(1) ·
(

β′

β

)
≤

(log n) · k(1/δ)O(1) . Thus, T (m) can be bounded by the following recurrence.

T (m) ≤ |R| · T (m− 1) + (log n) · k(1/δ)O(1)
· nO(1)

≤ (log n) · 2(kd
δ)O(1)

· T (m− 1) + k(1/δ)O(1)
· nO(1)

It can be shown that this recurrence solves to T (m) ≤ 2(kd
δ)O(1)

· nO(1) – here we use the
standard argument that (log n)k ≤ kO(k) · nO(1).

Finally, note that our first call to the recursive algorithm is HybridClustering(F ′ =
∅, k, k). At this point, the precondition of the invariant is satisfying setting Fo ← F ∗, an
optimal solution satisfying costr(P, F ∗) = OPTr. Then, the correctness of the invariant
implies that, with probability at least αk, the algorithm returns a solution F̃ of size at most
k, that is a (1 + ε, 1 + ε)-bicriteria approximation – here we use that δ = ε

10k , which implies
that (1 + δ)k ≤ (1 + ε). ◀

We now conclude with the following theorem, which is restated for convenience.

▶ Theorem 2. Let 0 < ε < 1. There exists a randomized algorithm that, given an instance
of Hybrid k-Clustering in Rd, runs in time 2(kd

ε)O(1)
· nO(1), and returns a (1 + ε, 1 + ε)-

approximation with probability at least a positive constant.

Proof. From Lemma 14, the success probability of the algorithm is αk for some constant
α > 0. Thus, we need to repeat the algorithm α−k times to boost the probability to at least
a positive constant, which gets absorbed in the 2(kd

ε)O(1)
factor. ◀

A Hybrid of k-Center and k-Means

We note that an almost identical algorithm also implies a (1+ε, 1+ε) bicriteria approximation
for an analogous generalization of k-Center and k-Means. In this problem, the objective
of (1) is replaced by the following: costr(C, F) :=

∑
p∈C distr(p, C)2. Let us refer to this

problem as Hybrid (k, 2)-Clustering – the “2” in the name refers to the squares of the

F. V. Fomin, P. A. Golovach, T. Inamdar, S. Saurabh, and M. Zehavi 4:17

distance-thresholds that feature in the objective. Most of the analysis can be adapted to deal
with the squares of the distances, by appropriately changing the sizes and distance-thresholds.
The only significant change is that instead of Proposition 13, one needs to use an algorithm
that computes an approximate 1-Means solution given a large enough uniform sample of
the cluster – such an algorithm can also be found in [25]. Then, one obtains the following
theorem.

▶ Theorem 16. Let 0 < ε < 1. There exists a randomized algorithm that, given an
instance of Hybrid (k, 2)-Clustering in Rd, runs in time 2(kd

ε)O(1) · nO(1) and returns a
(1 + ε, 1 + ε)-approximation with probability at least a positive constant.

More generally, one can also define Hybrid (k, z)-Clustering analogously, where the
threshold-distances feature the z-th power of distances. Again, our approach easily extends
to this problem, modulo a version of Proposition 13 for the vanilla (k, z)-Clustering in
Euclidean spaces. To the best of our knowledge, such an algorithm is not explicitly known in
the literature; however, it may be possible to obtain such an algorithm using the approach
of [23, 25].

3 Conclusion and Future Directions

In this paper, we proposed a novel clustering objective and defined a new problem, called
Hybrid k-Clustering, that generalizes both k-Median and k-Center. For d-dimensional
euclidean inputs, we designed a randomized (1 + ε, 1 + ε)-bicriteria approximation scheme
for Hybrid k-Clustering running in time 2(kd/ε)O(1) , for any ε > 0. Further, essentially
the same algorithm also generalizes for a hybrid objective of k-Center and k-Means. We
remind that improving either of the two (1 + ε) factors to 1 would imply an exact FPT
algorithm for k-Center/Median(/Means) in Euclidean spaces, which is unlikely to exist.

Our work opens up several interesting research directions. An immediate question
is whether improving or removing the FPT dependence on the dimension d is possible,
similar to the approach in [25] for k-Median/Means. One potential direction for achieving
this could be the recent result that imports the famous Johnson-Lindenstrauss dimension
reduction technique to k-clustering problems [26]. Another intriguing question is the design
of coresets for Hybrid k-Clustering, which could also have some implications for the
previous problem via the approach of [9]. However, at a high level, designing coresets for
Hybrid k-Clustering appears to be challenging, since a priori we do not know which
points belong inside the radius-r balls (and thus contribute 0 to the cost), and which ones lie
outside, and hence their cost needs to be approximately preserved.

Finally, considering Hybrid k-Clustering with inputs from arbitrary metric spaces, a
primal-dual algorithm from [7] can be adapted to obtain an (α, β)-bicriteria approximation
in polynomial time, for some constants α and β 3. Exploring the best possible constants in
the bicriteria approximation would be an interesting avenue for future research.

References
1 Fateme Abbasi, Sandip Banerjee, Jaroslaw Byrka, Parinya Chalermsook, Ameet Gadekar,

Kamyar Khodamoradi, Dániel Marx, Roohani Sharma, and Joachim Spoerhase. Parameterized
approximation for robust clustering in discrete geometric spaces. CoRR, abs/2305.07316, 2023.
doi:10.48550/arXiv.2305.07316.

3 A quick examination of the proof of [7] suggests that (18, 6)-bicrtieria approximation easily follows, with
further improvements possible with more careful analysis.

APPROX/RANDOM 2024

https://doi.org/10.48550/arXiv.2305.07316

4:18 Hybrid k-Clustering: Blending k-Median and k-Center

2 Fateme Abbasi, Sandip Banerjee, Jaroslaw Byrka, Parinya Chalermsook, Ameet Gadekar,
Kamyar Khodamoradi, Dániel Marx, Roohani Sharma, and Joachim Spoerhase. Parame-
terized approximation schemes for clustering with general norm objectives. In 64th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2023, Santa Cruz, CA, USA,
November 6-9, 2023, pages 1377–1399. IEEE, 2023. doi:10.1109/FOCS57990.2023.00085.

3 Pankaj K. Agarwal, Sariel Har-Peled, and Hai Yu. Robust shape fitting via peeling and grating
coresets. Discret. Comput. Geom., 39(1-3):38–58, 2008. doi:10.1007/S00454-007-9013-2.

4 Pankaj K. Agarwal and Cecilia Magdalena Procopiuc. Exact and approximation algorithms
for clustering. Algorithmica, 33(2):201–226, 2002. doi:10.1007/S00453-001-0110-Y.

5 Mihai Badoiu, Sariel Har-Peled, and Piotr Indyk. Approximate clustering via core-sets.
In Proceedings on 34th Annual ACM Symposium on Theory of Computing, (STOC), pages
250–257. ACM, 2002. doi:10.1145/509907.509947.

6 Jaroslaw Byrka, Krzysztof Sornat, and Joachim Spoerhase. Constant-factor approximation for
ordered k-median. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing (STOC), pages 620–631. ACM, 2018. doi:10.1145/3188745.3188930.

7 Deeparnab Chakrabarty and Chaitanya Swamy. Interpolating between k-median and k-center:
Approximation algorithms for ordered k-median. In Proceedings of the 45th International
Colloquium on Automata, Languages, and Programming (ICALP), volume 107 of LIPIcs, pages
29:1–29:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPICS.
ICALP.2018.29.

8 Moses Charikar, Samir Khuller, David M. Mount, and Giri Narasimhan. Algorithms for facility
location problems with outliers. In Proceedings of the Twelfth Annual Symposium on Discrete
Algorithms (SODA), pages 642–651. ACM/SIAM, 2001. URL: http://dl.acm.org/citation.
cfm?id=365411.365555.

9 Moses Charikar and Erik Waingarten. The johnson-lindenstrauss lemma for clustering and
subspace approximation: From coresets to dimension reduction. CoRR, abs/2205.00371, 2022.
doi:10.48550/arXiv.2205.00371.

10 Vincent Cohen-Addad, Arnaud de Mesmay, Eva Rotenberg, and Alan Roytman. The bane
of low-dimensionality clustering. In Artur Czumaj, editor, Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA,
January 7-10, 2018, pages 441–456. SIAM, 2018. doi:10.1137/1.9781611975031.30.

11 Vincent Cohen-Addad, Anupam Gupta, Amit Kumar, Euiwoong Lee, and Jason Li. Tight FPT
approximations for k-median and k-means. In 46th International Colloquium on Automata,
Languages, and Programming (ICALP), volume 132 of LIPIcs, pages 42:1–42:14. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ICALP.2019.42.

12 Vincent Cohen-Addad, Philip N. Klein, and Claire Mathieu. Local search yields approximation
schemes for k-means and k-median in euclidean and minor-free metrics. SIAM J. Comput.,
48(2):644–667, 2019. doi:10.1137/17M112717X.

13 Vincent Cohen-Addad, Kasper Green Larsen, David Saulpic, and Chris Schwiegelshohn.
Towards optimal lower bounds for k-median and k-means coresets. In Proceddings of the 54th
Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 1038–1051. ACM,
2022. doi:10.1145/3519935.3519946.

14 Mark de Berg, Leyla Biabani, and Morteza Monemizadeh. k-center clustering with outliers in
the MPC and streaming model. In IEEE International Parallel and Distributed Processing
Symposium, (IPDPS), pages 853–863. IEEE, 2023. doi:10.1109/IPDPS54959.2023.00090.

15 Hu Ding, Haikuo Yu, and Zixiu Wang. Greedy strategy works for k-center clustering with
outliers and coreset construction. In 27th Annual European Symposium on Algorithms (ESA),
volume 144 of LIPIcs, pages 40:1–40:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2019. doi:10.4230/LIPICS.ESA.2019.40.

16 Alon Efrat, Micha Sharir, and Alon Ziv. Computing the smallest k-enclosing circle and related
problems. Comput. Geom., 4:119–136, 1994. doi:10.1016/0925-7721(94)90003-5.

https://doi.org/10.1109/FOCS57990.2023.00085
https://doi.org/10.1007/S00454-007-9013-2
https://doi.org/10.1007/S00453-001-0110-Y
https://doi.org/10.1145/509907.509947
https://doi.org/10.1145/3188745.3188930
https://doi.org/10.4230/LIPICS.ICALP.2018.29
https://doi.org/10.4230/LIPICS.ICALP.2018.29
http://dl.acm.org/citation.cfm?id=365411.365555
http://dl.acm.org/citation.cfm?id=365411.365555
https://doi.org/10.48550/arXiv.2205.00371
https://doi.org/10.1137/1.9781611975031.30
https://doi.org/10.4230/LIPIcs.ICALP.2019.42
https://doi.org/10.1137/17M112717X
https://doi.org/10.1145/3519935.3519946
https://doi.org/10.1109/IPDPS54959.2023.00090
https://doi.org/10.4230/LIPICS.ESA.2019.40
https://doi.org/10.1016/0925-7721(94)90003-5

F. V. Fomin, P. A. Golovach, T. Inamdar, S. Saurabh, and M. Zehavi 4:19

17 Fedor V. Fomin, Petr A. Golovach, Tanmay Inamdar, Saket Saurabh, and Meirav Zehavi.
Hybrid k-clustering: Blending k-median and k-center, 2024. arXiv:2407.08295.

18 Zachary Friggstad, Mohsen Rezapour, and Mohammad R. Salavatipour. Local search yields
a PTAS for k-means in doubling metrics. SIAM J. Comput., 48(2):452–480, 2019. doi:
10.1137/17M1127181.

19 Rajiv Gandhi, Samir Khuller, and Aravind Srinivasan. Approximation algorithms for partial
covering problems. Journal of Algorithms, 53(1):55–84, 2004.

20 Sariel Har-Peled. How to get close to the median shape. Comput. Geom., 36(1):39–51, 2007.
doi:10.1016/J.COMGEO.2006.02.003.

21 Sariel Har-Peled and Soham Mazumdar. Fast algorithms for computing the smallest k-enclosing
circle. Algorithmica, 41(3):147–157, 2005. doi:10.1007/S00453-004-1123-0.

22 Sariel Har-Peled and Yusu Wang. Shape fitting with outliers. SIAM J. Comput., 33(2):269–285,
2004. doi:10.1137/S0097539703427963.

23 Ragesh Jaiswal, Amit Kumar, and Sandeep Sen. A simple D 2-sampling based PTAS for
k-means and other clustering problems. Algorithmica, 70(1):22–46, 2014. doi:10.1007/
S00453-013-9833-9.

24 Amit Kumar, Yogish Sabharwal, and Sandeep Sen. Linear time algorithms for clustering
problems in any dimensions. In 32nd International Colloquium on Automata, Languages and
Programming (ICALP), volume 3580 of Lecture Notes in Computer Science, pages 1374–1385.
Springer, 2005. doi:10.1007/11523468_111.

25 Amit Kumar, Yogish Sabharwal, and Sandeep Sen. Linear-time approximation schemes for
clustering problems in any dimensions. J. ACM, 57(2):5:1–5:32, 2010.

26 Konstantin Makarychev, Yury Makarychev, and Ilya P. Razenshteyn. Performance of Johnson-
Lindenstrauss transform for k-means and k-medians clustering. In Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 1027–1038. ACM,
2019. doi:10.1145/3313276.3316350.

27 Dániel Marx. Efficient approximation schemes for geometric problems? In 13th Annual
European Symposium on Algorithms (ESA), volume 3669 of Lecture Notes in Computer
Science, pages 448–459. Springer, 2005. doi:10.1007/11561071_41.

28 Jirí Matousek. On enclosing k points by a circle. Inf. Process. Lett., 53(4):217–221, 1995.
doi:10.1016/0020-0190(94)00190-A.

29 Nimrod Megiddo and Kenneth J Supowit. On the complexity of some common geometric
location problems. SIAM journal on computing, 13(1):182–196, 1984.

30 Arie Tamir. The k-centrum multi-facility location problem. Discret. Appl. Math., 109(3):293–
307, 2001. doi:10.1016/S0166-218X(00)00253-5.

31 Hai Yu, Pankaj K. Agarwal, Raghunath Poreddy, and Kasturi R. Varadarajan. Practical
methods for shape fitting and kinetic data structures using coresets. Algorithmica, 52(3):378–
402, 2008. doi:10.1007/S00453-007-9067-9.

APPROX/RANDOM 2024

https://arxiv.org/abs/2407.08295
https://doi.org/10.1137/17M1127181
https://doi.org/10.1137/17M1127181
https://doi.org/10.1016/J.COMGEO.2006.02.003
https://doi.org/10.1007/S00453-004-1123-0
https://doi.org/10.1137/S0097539703427963
https://doi.org/10.1007/S00453-013-9833-9
https://doi.org/10.1007/S00453-013-9833-9
https://doi.org/10.1007/11523468_111
https://doi.org/10.1145/3313276.3316350
https://doi.org/10.1007/11561071_41
https://doi.org/10.1016/0020-0190(94)00190-A
https://doi.org/10.1016/S0166-218X(00)00253-5
https://doi.org/10.1007/S00453-007-9067-9

Asynchronous Majority Dynamics on Binomial
Random Graphs
Divyarthi Mohan #

Blavatnik School of Computer Science, Tel Aviv University, Israel

Paweł Prałat #

Department of Mathematics, Toronto Metropolitan University, Canada

Abstract
We study information aggregation in networks when agents interact to learn a binary state of the
world. Initially each agent privately observes an independent signal which is correct with probability
1
2 + δ for some δ > 0. At each round, a node is selected uniformly at random to update their public
opinion to match the majority of their neighbours (breaking ties in favour of their initial private
signal). Our main result shows that for sparse and connected binomial random graphs G(n, p) the
process stabilizes in a correct consensus in O(n log2 n/ log log n) steps with high probability. In
fact, when log n/n ≪ p = o(1) the process terminates at time T̂ = (1 + o(1))n log n, where T̂ is
the first time when all nodes have been selected at least once. However, in dense binomial random
graphs with p = Ω(1), there is an information cascade where the process terminates in the incorrect
consensus with probability bounded away from zero.

2012 ACM Subject Classification Mathematics of computing → Stochastic processes; Mathematics
of computing → Discrete mathematics; Theory of computation → Social networks

Keywords and phrases Opinion dynamics, Social learning, Stochastic processes, Random Graphs,
Consensus

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.5

Category APPROX

Related Version Full Version: arXiv:2309.04691

Funding Divyarthi Mohan: This project was funded in part by the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement
no. 866132) and by the Israel Science Foundation (grant no. 317/17).

Acknowledgements This work was done while the authors were visiting the Simons Institute for the
Theory of Computing.

1 Introduction

Our opinions and actions we take as individuals are often influenced by both our private
knowledge of the world and the information we obtain through our interactions with others.
For example, a voter deciding which candidate’s economics policies would decrease inflation,
might have an initial belief based on her own past expenditure and later might be swayed
by her friends’ opinions. Now more than ever, with the advent of social media and online
platforms, our interactions have increased many folds and our social networks are massive.
Hence, an important research question is to understand if and how the structure of the social
network and the dynamics of the interactions impact the (mis)information propagated [35].
Do our social networks enable successful information aggregation and lead to social learning,
or do they amplify incorrect beliefs leading to an information cascade?

There has been extensive work modeling these opinion dynamics formally to study the
network effects on information aggregation; see Section 1.4. In this paper, we focus on the
model of asynchronous majority dynamics, where agents in a network (asynchronously) update

© Divyarthi Mohan and Paweł Prałat;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 5; pp. 5:1–5:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:divyarthim@tau.ac.il
https://orcid.org/0000-0002-8671-5714
mailto:pralat@torontomu.ca
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.5
https://arxiv.org/abs/2309.04691
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Asynchronous Majority Dynamics on Binomial Random Graphs

their opinions to match the majority opinion amongst their neighbours. In particular, each
agent initially has a private belief over a binary state of the world and no publicly announced
opinion. At each time step, an agent is chosen uniformly at random to announce/update
her opinion and she does so by simply copying the majority of the neighbours’ current
announced opinions, breaking ties with her initial belief. Majority dynamics is clearly a naïve
learning model, as the agents do not reason about potential information redundancy due to
interaction between one’s neighbours. Such naïve learning (non-Bayesian) models are a more
faithful abstraction of everyday interactions between agents with bounded rationality (e.g.,
voters and consumers), while Bayesian models are a better abstraction of rational agents
or interactions about high-stakes information (e.g., traders and scientists). We consider
asynchronous updates which are more suitable to capture human decision making. Moreover,
asynchronous emergence of announcements also captures an initial information diffusion
phase before conventional social learning starts.

In our model, there is a correct opinion (i.e., the true state of the world) and each
agent’s initial private belief is independently drawn and is biased towards being correct (with
probability 1/2 + δ). So initially, in a large network, there is enough information so that an
omniscient central planner can infer the true state (with very high probability). However,
agents in the network are updating their opinions based on local heuristics, so the network
structure can crucially alter the final outcome of the dynamics. For example, in a complete
graph, with a constant probability all the nodes converge to the wrong opinion. On the other
hand, in a star graph with high probability all the nodes converge to the correct opinion.
This brings us to the main question of interest:

“What network structures enable efficient social learning, where the dynamics stabilizes
with every agent in the network reaching the correct opinion?”

Feldman et al. [20], who initiated the study of asynchronous majority dynamics, showed
that when the network is sparse (has bounded degree) and expansive, a correct consensus is
reached with high probability. More recently, Bahrani et al. [4] studied networks that have
certain tree structures (like preferential attachment trees and balanced m-ary trees) and
showed that the dynamics stabilizes in a correct majority. Both results heavily rely on these
particular assumptions on the network. For example, to even establish that a majority of the
nodes have the correct opinion at some point in the process, it is crucial that the network is
either a bounded degree graph or is a tree. In this paper, our goal is to extend the guarantees
of asynchronous majority dynamics beyond these assumptions and to develop techniques
applicable to more general networks formed through random graph models.

1.1 The Model
Consider any undirected graph G = (V, E) on n = |V | nodes. Individuals initially have
one of two private beliefs which we will refer to as “Correct” (or 1) and “Incorrect” (or
0). Formally, each v ∈ V (G) receives an independent private signal X(v) ∈ {0, 1}, and
Pr(X(v) = 1) = 1/2 + δ, for some universal constant δ ∈ (0, 1/2). Individuals also have a
publicly announced opinion which we will simply refer to as an announcement or opinion.
We define Ct(v) ∈ {⊥, 0, 1} to be the public announcement of v ∈ V at time t. Initially, no
announcement have been made, that is, C0(v) =⊥ for all v ∈ V . In each subsequent step,
a single node vt is chosen uniformly at random from V , independently from the history of
the process. In particular, as in the classical coupon collector problem, some nodes will be
chosen many times before others will get lucky to get chosen for the first time. In step t, vt

updates her announcement using majority dynamics, while announcements of other nodes
stay the same. To be specific, for any i ∈ {⊥, 0, 1} and v ∈ V , let N t

i (v) denotes the number
of neighbours of v that have opinion i at time t. Then,

D. Mohan and P. Prałat 5:3

Ct(v) =

1 if N t−1

1 (v) > N t−1
0 (v) and v = vt,

0 if N t−1
1 (v) < N t−1

0 (v) and v = vt,

X(v) if N t−1
1 (v) = N t−1

0 (v) and v = vt,

Ct−1(v) if v ̸= vt.

Finally, for any i ∈ {⊥, 0, 1}, let Y t
i be the number of nodes that have opinion i at time t,

that is, Y t
i = |{v ∈ V : Ct(v) = i}|.

As shown in [20], it is easy to see that in any network this process stabilizes with high
probability in O(n2) steps. In fact, the process stabilizes in O(n log n + n · d(G)) where d(G)
is the diameter of the graph [4]. That is, the network reaches a state at some time T where
no node will want to change its announcement and thus the process terminates. Our goal
is to understand what fraction of nodes converges to the correct opinion, that is, what the
value of Y T

1 /n is.

1.2 Our Results
The main contribution of this paper is the proof that the asynchronous majority dynamics
on binomial random graph G(n, p) converges to the correct opinion, provided that the graph
is sparse (that is, the average degree np = o(n)) and connected (that is, np − log n ≫ 1). If
np ≫ log n, then the process converges to the correct opinion as quickly as it potentially
could.

▶ Theorem 1. Let δ ∈ (0, 1/10]. Let ω′ = ω′(n) = o(log n) be any function that tends
to infinity as n → ∞. Suppose that p = p(n) ≪ 1 and p ≫ log n/n, and consider the
asynchronous majority dynamics on G(n, p).

Then, asymptotically almost surely (a.a.s.) after n(log n + ω′) = (1 + o(1))n log n rounds
the process terminates with all nodes announcing the correct opinion. In fact, it happens
exactly at time T̂ , where T̂ is the first time when all nodes are selected at least once.

For sparser (but still connected) graphs, the process also converges to the correct opinion.
In this case, we do not aim to show that it happens at time T̂ and we only provide an upper
bound for the number of rounds. It remains an open problem to determine if the process
terminates at time T̂ or it needs more time to converge.

▶ Theorem 2. Let δ ∈ (0, 1/10]. Let ω′ = ω′(n) = o(log n) be any function that tends to
infinity as n → ∞. Suppose that p = p(n) ≤ ω′ log n/n and p ≥ (log n + ω′)/n, and consider
the asynchronous majority dynamics on G(n, p).

Then, a.a.s. after O(n(log n)2/(log log n)) rounds the process terminates with all nodes
announcing the correct opinion.

These results are best possible in the following sense. If p ≤ (log n − ω′)/n, then a.a.s.
G(n, p) is disconnected. In fact, a.a.s. there are at least ω′ isolated nodes which announce
their own private believes. As a result, a.a.s. some nodes announce the correct opinion but
some of them announce the incorrect one. Indeed, the probability that all isolated nodes
converge to the same opinion is at most o(1) + (1/2 + δ/2)ω′ + (1/2 − δ/2)ω′ = o(1). On the
other hand, if p ∈ (0, 1] is a constant separated from zero, then with positive probability the
process converges to the correct opinion and with positive probability it converges to the
incorrect opinion.

APPROX/RANDOM 2024

5:4 Asynchronous Majority Dynamics on Binomial Random Graphs

▶ Theorem 3. Let δ ∈ (0, 1/2). Let ω′ = ω′(n) = o(log n) be any function that tends to
infinity as n → ∞. Suppose that p ∈ (0, 1] is a constant, and consider the asynchronous
majority dynamics on G(n, p).

Then, the following is true for i ∈ {0, 1}: with probability at least pi, after n(log n + ω′) =
(1 + o(1))n log n rounds the process terminates with all nodes announcing opinion i, where

p1 = (1/2 + δ) exp
(

− log(1/p)(1/p)
)

> 0

p0 = (1/2 − δ) exp
(

− log(1/p)(1/p)
)

> 0.

Finally, let us mention that for some technical reason, in Theorems 1 and 2 it is assumed
that δ ≤ 1/10. However, it is easy to couple the process with δ ≤ 1/10 with the one with
δ ∈ (1/10, 1/2) to show that the result holds for any δ ∈ (0, 1/2) – see Subsection 2.3 for
more details.

1.3 Future Directions
Let us highlight a few potential directions one might want to consider.

As already mentioned above, for very sparse graphs (np − log n → ∞ and np = O(log n)),
it would be interesting to determine if the process terminates at time T̂ or it needs more
time to converge to the correct opinion – see Theorem 2.
Theorem 2 holds as long as pn = log n + ω for some ω = ω(n) → ∞ as n → ∞. It is
known that if pn = log n + c for some constant c ∈ R, then with probability bounded
away from one and from zero the graphs is disconnected. As a result, there is no hope to
extend the result for this range of p. But it is plausible that a.a.s. it holds right at the
time the random graph process creates a connected graph. This would be an optimal
“hitting time” result.
For disconnected graphs (np − log n → −∞), it would be interesting to investigate the
process run on the giant component of G(n, p).
For dense graphs, it is not true that a.a.s. all nodes converge to the correct opinion – see
Theorem 3. Having said that, it is reasonable to expect that a.a.s. all nodes converge to
the same opinion (for example, [21] show that a consensus is reached in this case in a
synchronous setting). Is is true in our asynchronous setting? In any case, what is the
asymptotic value of the probability that all nodes converge to the correct opinion?
It would be interesting to investigate other random graph models that are able to generate
graphs with power-law degree distributions as the Chung-Lu model [16] or the classical
configuration model. More challenging, but an important and interesting, direction would
be to understand the learning process on a network with a community structure such as
the ABCD (Artificial Benchmark for Community Detection) model [30] which produces a
random graph with community structure and power-law distribution for both degrees
and community sizes. In this model, small communities might create echo chambers,
environments in which participants encounter beliefs that amplify or reinforce their
preexisting beliefs inside a community and insulated from rebuttal.

1.4 Related Work
In this section, we briefly discuss prior work on social learning mainly focusing on the setting
with a binary state of the world and the agents initially have a correct opinion independently
with probability 1/2 + δ. We refer to some recent surveys on social learning and opinion
dynamics [37, 8, 11] for a more detailed literature review.

D. Mohan and P. Prałat 5:5

Majority dynamics falls under a wide class of naive or non-Bayesian models, where agents
use a simple local heuristic to update their opinions, to capture simple behaviours exhibited
by non-expert decision makers. Prior works have studied majority dynamics under a variety
of modeling assumptions, to understand when a consensus is possible and when there is
social learning – that is, the consensus (or the majority) is correct. These works study a
variety of networks such as k-regular trees [28, 32, 4], bounded degree graphs [20], random
regular graphs [23], “symmetric” graphs and expanders [39]. In [44], a different perspective
on social learning asks when is it possible to “recover the correct opinion” at the end of the
dynamics through any function (not just a consensus or majority vote). Prior work has also
considered models with different notions of bias towards correct opinion, for example, each
node updates to the correct opinion with some probability [3], or the initial configuration of
the network has some n/2 + δ correct opinions [45, 46].

Recently, there has been a series of work studying synchronous majority dynamics in
binomial random graphs [10, 21, 15], with a focus to showing that 99% of the nodes converge
to the same opinion (with high probability) for sparse random graphs, with p = Ω(log n/n3/5)
being the best known lower bound for the average degree. Moreover, [47] showed that a correct
consensus is reached with high probability for binomial random graphs with p = Ω(log n/n).
In contrast to these works, we focus on asynchronous dynamics and prove that a correct
consensus is reached with high probability for p = Ω(log n/n) and p = o(1). Binomial random
graphs are also studied under label propagation [34] which is a special case of synchronous
majority dynamics with non-binary opinion in [0, 1].

Many of the works mentioned above focus on synchronous updates, where all agents
update their opinions synchronously in each round. Majority dynamics with synchronous
updates leads to a correct consensus for all networks that are sufficiently connected [39],
whereas with asynchronous updates the network structure can have a huge impact on social
learning. This is best illustrated by the complete graph. With asynchronous updates, once
the first agent announces their opinion (which can be wrong with probability 1/2−δ) everyone
will copy this. Hence, with a probability bounded away from zero all the nodes converge to
the wrong opinion. In contrast, if all agents were to update synchronously, then the majority
of the round one updates will be correct with high probability, so there will be a correct
consensus in round two. Recent work [5], studies the DeGroot model with uninformed agents,
to capture the different phases of information diffusion and social learning, which is a key
phenomena that occurs in our asynchronous model.

Other non-Bayesian dynamics have also been extensively studied. In the Voter model,
agents choose a random neighbour and copy their opinion [17, 27]. A similar dynamics called
k-majority model are studied in the distributed computing literature, where agents choose
k-neighbours at random and copy their majority [9, 25, 24, 18, 1]. In the DeGroot Model, an
agent’s opinion lies in [0, 1] (as opposed to binary {0, 1}) and agents update to the average
of their neighbours [19, 26]. A key difference between these works and majority dynamics
is that in these models a consensus is reached with probability 1 for any connected graphs.
This is not the case in majority dynamics even with synchronous updates.

While our focus is in non-Bayesian dynamics, there has also been a long line of work
studying Bayesian models, where agents update their beliefs rationally given their (local)
observations exhibiting more sophisticated decision-making. Seminal works [7, 12] introduced
the study of Bayesian dynamics and identified conditions that lead to information cascades.
Here, the agents arrive sequentially and observe all the announcements (i.e., they form
a complete graph), and many other subsequent works consider Bayesian dynamics under
different assumptions and variations [43, 6, 14]. Bayesian dynamics in general social networks
were first studied in [2]. There is also a long line of work studying Bayesian learning with
repeated interactions [22, 42, 31, 41, 40, 38].

APPROX/RANDOM 2024

5:6 Asynchronous Majority Dynamics on Binomial Random Graphs

2 Preliminaries

2.1 Notation
Let us first precisely define the G(n, p) binomial random graph. G(n, p) is a distribution over
the class of graphs with the set of nodes [n] := {1, . . . , n} in which every pair {i, j} ∈

([n]
2
)

appears independently as an edge in G with probability p. Note that p = p(n) may (and
usually does) tend to zero as n tends to infinity. We say that G(n, p) has some property
asymptotically almost surely or a.a.s. if the probability that G(n, p) has this property tends
to 1 as n goes to infinity. For more about this model see, for example, [13, 29, 33].

Given two functions f = f(n) and g = g(n), we will write f(n) = O(g(n)) if there
exists an absolute constant c ∈ R+ such that |f(n)| ≤ c|g(n)| for all n, f(n) = Ω(g(n))
if g(n) = O(f(n)), f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)), and we
write f(n) = o(g(n)) or f(n) ≪ g(n) if limn→∞ f(n)/g(n) = 0. In addition, we write
f(n) ≫ g(n) if g(n) = o(f(n)) and we write f(n) ∼ g(n) if f(n) = (1 + o(1))g(n), that is,
limn→∞ f(n)/g(n) = 1.

2.2 Concentration Tools
In this section, we state a few specific instances of Chernoff’s bound that we will find useful.
Let (Z1, . . . , Zn) be a sequence of independent Bernoulli(p) random variables. For each
j ∈ [n], let Xj =

∑j
i=1 Zi. In particular, Xn ∈ Bin(n, p) is a random variable distributed

according to a Binomial distribution with parameters n and p. Then, a consequence of
Chernoff’s bound (see e.g. [29, Theorem 2.1]) is that for any t ≥ 0 we have

P(Xn − E[Xn] ≥ t) ≤ exp
(

− t2

2(E[Xn] + t/3)

)
(1)

P(E[Xn] − Xn ≥ t) ≤ exp
(

− t2

2E[Xn]

)
. (2)

Moreover, let us mention that the above bounds hold in a more general setting as well,
that is, for any sequence (Zj)1≤j≤n of independent random variables such that for every
j ∈ [n] we have Zj ∈ Bernoulli(pj) with (possibly) different pj-s (again, see e.g. [29] for more
details).

Finally, we note that Xn −E[Xn] in (1) can be replaced with max1≤j≤n(Xj −E[Xj]) and
E[Xn] − Xn in (2) can be replaced with max1≤j≤n(E[Xj] − Xj). That is, we have

P(max
1≤j≤n

(Xj − E[Xj]) ≥ t) ≤ exp
(

− t2

2(E[Xn] + t/3)

)
(3)

P(max
1≤j≤n

(E[Xj] − Xj) ≥ t) ≤ exp
(

− t2

2E[Xn]

)
. (4)

This is a consequence of a standard martingale bound (see e.g. [36] for more details).

2.3 Coupling
Suppose that at some point of the process, the public announcement is captured by Ct(v),
v ∈ V . Let Ĉt(v) be any sequence of opinions such that the following properties hold: (a) if
Ĉt(v) = 1, then Ct(v) = 1, (b) if Ĉt(v) = 0, then Ct(v) ∈ {0, 1, ⊥}, (c) if Ĉt(v) =⊥, then
Ct(v) =⊥. In other words, we get the auxiliary sequence Ĉt(v) by modifying some of the
opinions 1 and ⊥ in Ct(v) to 0. Hence, the process starting from Ct(v) can be coupled with
the auxiliary process starting from Ĉt(v) such that all the properties (a)–(c) are satisfied in

D. Mohan and P. Prałat 5:7

every step of the process. In particular, if the auxiliary process converges to all nodes having
opinion 1, then so does the original process. This easy observation will turn out to be useful
in analyzing the process.

Similarly, suppose private beliefs in the auxiliary process are dominated by private beliefs
in the original process: for any v ∈ V , X̂(v) ≤ X(v). If the two processes are coupled,
then properties (a)–(c) hold again. As before, if the auxiliary process converges to all nodes
having opinion 1, then so does the original process. In particular, as mentioned above, the
assumption that δ ∈ (0, 1/10] in Theorems 1 and 2 can be relaxed to δ ∈ (0, 1/2).

3 Sparse Random Graphs

In this section, we consider sparse random graphs, that is, we will assume that p = o(1).
Let ω = ω(n) be a function that tends to infinity as n → ∞, arbitrarily slowly. In
particular, each time we refer to ω, we will assume that ω ≪ pn and ω ≪ (1/p)1/2 so that
1/p ≫ 1/(pω) ≫ 1/(pω2) ≫ 1.

We will consider a few phases. During the first phase (Subsection 3.1), most of the nodes
that are chosen have not yet announced their opinions (Ct−1(vt) =⊥) and none of their
neighbours have announced (N t−1

1 (vt) = N t−1
0 (vt) = 0). Hence, the announcement of vt

will typically coincide with its private belief. Moreover, most of the nodes selected will not
be chosen again during this phase. During the second phase (Subsection 3.2), it is still the
case that most selected nodes are selected for the first time but this time they might have
neighbours that announced their opinions. As a result, the argument is more involved but
the conclusion is that at the end of the second phase more nodes have correct opinion than
not.

The analysis of the first two phases can be applied for all sparse graphs, even below the
threshold for connectivity. The analysis of the final steps of the process is slightly more
involved. We first present an easy argument for not very sparse graphs (Subsection 3.3), that
is, when the asymptotic expected degree degree satisfies pn ≫ log n. Very sparse graphs
for which pn = Θ(log n) (but, of course, above the connectivity threshold) are considered in
Subsection 3.4.

Overview

A key phenomena in asynchronous dynamics is that the process involves both information
diffusion and conventional social learning. Intuitively, the process initially produces some
independent beliefs/opinions pop up sporadically throughout the network. These opinions
then diffuses in the network during the process as more nodes are selected to announce/update
their opinion by learning from their neighbours. With this in mind, our analysis considers
multiple phases of the process. We provide a brief description of the different phases below.

Phase 1. In the first few time steps, most nodes that are selected to announce have
not been selected earlier and, more importantly, do not have neighbours who have been
selected before. So almost all of the opinions in the network at the end of phase one are
just the independent private beliefs of the selected nodes. Since the private signals are
biased towards being correct, a strict majority of the opinions are correct at the end of
the first phase. In particular, we show that at time T1 = δ/2p, the number of nodes with
opinion 1 is at least (1/2 + 3δ/5)T1 and opinion 0 is represented at most (1/2 − 3δ/5)T1
times. Moreover, T1(1 − o(1)) nodes have made some announcement in this phase, that
is, very few nodes were selected more than once.

APPROX/RANDOM 2024

5:8 Asynchronous Majority Dynamics on Binomial Random Graphs

Phase 2. In the second phase, again most nodes that are selected to announce have not
been selected earlier. In particular, we show that at any time t during the second phase
(i.e., after time T1 but before time T2 = n/ω), the number of nodes that were selected
twice before time t is o(t). Moreover, since a super majority of the opinions at the end of
the previous phase were correct, we prove that nodes that are selected to announce for
the first time are more likely to learn the correct opinion even if we pretend that the few
nodes that are selected again were to change their opinion to 0.
Phase 3 (a). For not very sparse graphs, we are able to show all nodes which were not
selected in the first two phases have more neighbours with opinion 1 than not. Again,
very few nodes who were selected before are selected again before time T3 = n/

√
ω, so

even if all of them announce 0 all nodes who make their first announcement between time
T2 and time T3 announce the correct opinion. Finally, even if all the nodes that were
selected before time T2 are to have opinion 0 and all nodes that were selected for the first
time between time T2 and time T3 have opinion 1, we show that a.a.s. all announcements
after time T3 are always correct.
Phase 3 (b). For very sparse graphs, the proof of the last phase is more involved as
there might be nodes whose degree is too small to guarantee that a majority of their
neighbours have opinion 1, even though there is a super majority of opinion 1 in the
network. However, we may bound the number of nodes with small degrees and show that
no large degree node has more than one small degree neighbour. With this in hand, we
show that after every batch of O(n log n) many time steps the number of large degree
nodes with opinion 0 shrinks by at least (log log n)1/4 factor. Hence, after o(log n) many
such batches all large nodes have opinion 1. Finally, we show that no two small degree
nodes are adjacent to each other, and hence all the small degree nodes will also switch to
opinion 1 by copying the opinions of their large degree neighbours.

We highlight a few simple techniques that help us in the analysis. Firstly, separating the
randomness of the graph, the node selection process and the opinion formation. For example,
we wait to reveal the edges adjacent to a node only when she is selected to announce for
the first time. Second, considering an auxiliary dynamics that is coupled with the actual
dynamics in order to ignore problematic but rare events such as the repeated nodes in the first
two phases. Finally, finding independent sequences of random variables that stochastically
dominate the opinion dynamics sequence in order to compute probability bounds more easily.

3.1 Phase 1: T1 = δ/(2p)

In the analysis of the process, it will be convenient to ignore opinions of a small fraction of
nodes, and consider the following auxiliary dynamics. We will use Dt(v) ∈ {⊥, ?, 0, 1} to
denote the auxiliary announcement of v ∈ V at time t. For any i ∈ {⊥, ?, 0, 1}, let Zt

i be the
number of nodes that have auxiliary opinion i at time t, that is, Zt

i = |{v ∈ V : Dt(v) = i}|.
We will explain how the values of Dt(v) are determined soon but the auxiliary dynamics
will be coupled with the original one and, in particular, we will make sure that the following
property holds.

▶ Property 4. If Dt(v) = i for some i ∈ {⊥, 0, 1} and time t, then Ct(v) = Dt(v). On
the other hand, if Dt(v) =?, then Ct(v) ∈ {0, 1}. As a result, for i ∈ {0, 1} and any time t

during the first phase, we have

Zt
i ≤ Y t

i ≤ Zt
i + Zt

?. (5)

D. Mohan and P. Prałat 5:9

The first phase takes T1 = δ/(2p) = Θ(1/p) ≫ ω2 ≫ 1 rounds. In order to keep the
analysis easy, we postpone exposing edges of G(n, p) for as long as possible, and keep the
following useful property.

▶ Property 5. At any time t, only edges of G(n, p) with both endpoints in the set {v :
Dt(v) ̸=⊥} are exposed.

The auxiliary dynamics, coupled with the original one, that we aim to understand is
defined as follows. Consider a node vt chosen at time t. For all other nodes v ̸= vt we have
Dt(v) = Dt−1(v). For vt we have,

Dt(vt) =

? if Dt−1(vt) ̸=⊥,

? if ∃ node v such that v ∈ N(vt) and Dt−1(v) ̸=⊥,

X(vt) otherwise.

That is, if vt had announced her opinion at least once before time t (Dt−1(vt), Ct−1(vt) ̸=⊥),
then we fix Dt(vt) =?. On the other had, if vt has not announced her opinion yet (that
is, Dt−1(vt) = Ct−1(vt) =⊥), then we expose edges of G(n, p) between vt and the set
{v : Dt−1(v) ̸=⊥}. If no edge between vt and the set {v : Dt−1(v) ̸=⊥} is present, then
no neighbour of vt has an announced opinion and so Dt(vt) = Ct(vt) = X(vt) is fixed to
the private belief of vt. Otherwise (that is, at least one edge is present), then we simply
fix Dt(vt) =?. Let us note that, an alternative approach would be to investigate the value
of Ct(vt) and then fix Dt(vt) = Ct(vt). However, we expect at most pt ≤ pT1 = δ/2 edges
between vt and {v : Dt−1(v) ̸=⊥}, and so there will not be many nodes vt of this type. As a
result, we may simply ignore the announcements of such nodes, thus simplifying our analysis.

Moreover, a useful implication of this approach is that in order to estimate the values
of Zt

⊥ and Zt
? in this process, we do not need to uncover nodes’ private believes (X(v)’s).

Hence, we may postpone exposing private beliefs of nodes with Dt(v) ̸∈ {⊥, ?} to the very
end of this phase, and only then expose this information to determine how many nodes
satisfy DT1(v) = 1 and how many of them satisfy DT1(v) = 0. Finally, it is easy to see that
Property 4 is satisfied at time T1 and Property 5 is satisfied in any point of the process.

Here is the main result of this subsection.

▶ Proposition 6. Suppose that p = p(n) ≪ 1 and p ≫ 1/n. Set T1 = δ/(2p). Let
ω = ω(n) ≪ min{pn, (1/p)1/2} be any function that tends to infinity as n → ∞. Then, a.a.s.
the following holds:

ZT1
? ≤ δT1

4 (1 + O(1/ω)) (6)

ZT1
1 ≥ (1/2 + 3δ/5) T1 (7)

ZT1
? + ZT1

1 + ZT1
0 = T1 (1 − O(1/ω)) . (8)

As a result, by Property 4,

Y T1
1 ≥ (1/2 + 3δ/5) T1

Y T1
0 ≤ (1/2 − 3δ/5) T1

Y T1
1 + Y T1

0 = T1 (1 − O(1/ω)) .

Proof. Let us start with investigating ZT1
? . Recall that in our auxiliary dynamics, there

are two ways node vt could change its state to Dt(vt) =? at time t. Let It be the indicator
random variable that this happens because Dt−1(vt) ̸=⊥, and let I =

∑T1
t=1 It. Similarly, let

Jt be the indicator random variable that Dt−1(vt) =⊥ but there is an edge between vt and
the set {v : Dt−1(v) ̸=⊥}. Let J =

∑T1
t=1 Jt.

APPROX/RANDOM 2024

5:10 Asynchronous Majority Dynamics on Binomial Random Graphs

Note that, at most t − 1 distinct nodes have made an announcement before round
t. In particular, at most one node can change its state from Dt−1(v) =⊥ to Dt(v) ̸=⊥,
deterministically, at any round t of the process. So, the number of nodes with Dt−1(v) ̸=⊥
is n − Zt−1

⊥ ≤ t − 1. We get that

Pr(It = 1) =
n − Zt−1

⊥
n

≤ t − 1
n

,

and so I can be stochastically upper bound by Î =
∑T1

t=1 Ît where (Ît)1≤t≤T1 are independent
variables and for every t ∈ [T1] we have Ît ∈ Bernoulli((t − 1)/n). Note that, since pn ≫ ω,

E[Î] =
T1∑

t=1

t − 1
n

= (T1 − 1)T1

2n
∼ δT1

4pn
≪ T1

ω
. (9)

It follows from Chernoff’s bound (Eq. (1)) (and the comment right after it) applied with
t = T1/ω = Θ(1/(pω)) ≫ ω ≫ 1 that

Pr(Î ≥ E[Î] + t) ≤ exp
(

− t2

(2/3 + o(1))t

)
= exp (−Θ(t)) = o(1).

So a.a.s. I ≤ Î = O(T1/ω). Similarly, since pt ≤ pT1 = δ/2 < 1/4,

Pr(Jt = 1) =
Zt−1

⊥
n

(
1 − (1 − p)n−Zt−1

⊥

)
≤ 1−(1−p)t = 1−

(
1 − pt + p2

(
t

2

)
− . . .

)
≤ pt.

As before, we stochastically upper bound J by Ĵ =
∑T1

t=1 Ĵt, where Ĵt ∈ Bernoulli(pt). We
get that

E[Ĵ] =
T1∑

t=1
pt = p(T1 + 1)T1

2 = pT 2
1

2 (1 + O(1/T1)) = δT1

4 (1 + O(1/ω)) ,

and Chernoff’s bound (Eq. (1)) (applied with t = E[Ĵ]/ω) implies that

Pr(Ĵ ≥ E[Ĵ]+t) ≤ exp
(

− E[Ĵ]
(2 + o(1))ω2

)
= exp

(
−Θ(T1/ω2)

)
= exp

(
−Θ(1/(pω2))

)
= o(1).

Hence, a.a.s. J ≤ Ĵ ≤ δT1
4 (1 + O(1/ω)) and so a.a.s. ZT1

? ≤ I + J ≤ δT1
4 (1 + O(1/ω)). This

proves (6).
It remains to investigate ZT1

0 and ZT1
1 . Let us summarize the situation at time T1. The

number of rounds when nodes were not chosen for the first time is at most I = O(T1/ω) a.a.s.
Hence, a.a.s. the number of nodes that were chosen at least once is equal to T1 − O(T1/ω).
This proves (8). Moreover, it implies that a.a.s. the number of nodes with DT1(v) ̸∈ {⊥, ?}
is equal to

ZT1
1 + ZT1

0 = T1 − O(T1/ω) − ZT1
? ≥ (1 − δ/4)T1 (1 + O(1/ω)) .

More importantly, as mentioned above, in the analysis so far we did not use their opinions
which are consistent with their private beliefs. We conveniently deferred this information up
to now. After exposing this information, we get that ZT1

1 is stochastically lower bounded by
the random variable Ẑ1 ∈ Bin((1 − δ/4)T1 − cT1/ω, 1/2 + δ), where c > 0 is a large enough
constant. After applying Chernoff’s bound (Eq. (2)) (with t = T1/ω) we get that

ZT1
1 ≥ Ẑ1 = (1/2 + δ)(1 − δ/4)T1(1 + O(1/ω))

≥ (1/2 + δ − δ/4)T1(1 + O(1/ω))
≥ (1/2 + 3δ/5)T1

D. Mohan and P. Prałat 5:11

with probability at least

1 − exp(−Θ(T1/ω2)) = 1 − exp(−Θ(1/(pω2))) = 1 − o(1).

This proves (7).
The conclusion for Y T1

1 follows immediately from Property 4, and the bound for Y T1
0

is a trivial implication of the fact that Y T1
1 + Y T1

0 ≤ T1. The proof of the proposition is
finished. ◀

3.2 Phase 2: T2 = T2(n) such that ω/p ≤ T2 ≤ n/ω

By Proposition 6, since we aim for a statement that holds a.a.s., we may assume that at the
beginning of Phase 2,

Y T1
1 ≥ (1/2 + 3δ/5) T1

Y T1
0 ≤ (1/2 − 3δ/5) T1

Y T1
1 + Y T1

0 = T1 (1 + O(1/ω)) .

As in the previous phase, it will be convenient to ignore opinions of some problematic nodes
and assign auxiliary announcements Dt(v) =? to such nodes. We will continue using Zt

i to
denote the number of nodes that have auxiliary opinion i at time t. We fix DT1(v) = CT1(v)
for all v so, initially, auxiliary announcements coincide with the truth announcements.
However, this time we assign Dt(vt) =? only if Dt−1(vt) ̸=⊥ (that is, the node chosen at time
t has made an announcement in the past); otherwise, the auxiliary announcement Dt(vt) is
determined immediately pretending that all neighbours v of vt with Dt−1(v) =? announced 0.
More formally, for each node v and i ∈ {0, 1, ⊥, ?} let N̂ t

i (v) denote the number of neighbours
v′ of v with auxiliary opinion Dt(v′) = i at time t. Then we have,

Dt(vt) =

? if Dt−1(vt) ̸=⊥,

1 if N̂ t−1
1 (vt) > N̂ t−1

0 (vt) + N̂ t−1
? (vt),

0 if N̂ t−1
1 (vt) < N̂ t−1

0 (vt) + N̂ t−1
? (vt),

X(vt) if N̂ t−1
1 (vt) = N̂ t−1

0 (vt) + N̂ t−1
? (vt).

As a consequence, Dt(v) and Ct(v) are coupled so that the following property is satisfied.

▶ Property 7. If Dt(v) = i for some i ∈ {⊥, 1} and time t, then Ct(v) = Dt(v). On the
other hand, if Dt(v) = i for some i ∈ {0, ?}, then Ct(v) ∈ {0, 1}. As a result, for any time t

during the second phase, we have Y t
1 ≥ Zt

1.

As before, it is easy to see that Property 5 is also satisfied during this phase. Here is the
main result of this subsection.

▶ Proposition 8. Suppose that p = p(n) ≪ 1 and p ≫ 1/n. Let ω = ω(n) ≪
min{pn, (1/p)1/2} be any function that tends to infinity as n → ∞. Set T2 = T2(n) such that
ω/p ≤ T2 ≤ n/ω. Then, a.a.s. the following holds:

ZT2
? = O(T2/ω)

ZT2
1 ≥ (1/2 + δ/2) T2

ZT2
? + ZT2

1 + ZT2
0 = T2 (1 − O(1/ω)) .

APPROX/RANDOM 2024

5:12 Asynchronous Majority Dynamics on Binomial Random Graphs

As a result, by Property 7,

Y T2
1 ≥ (1/2 + δ/2) T2

Y T2
0 ≤ (1/2 − δ/2) T2

Y T2
1 + Y T2

0 = T2 (1 − O(1/ω)) .

Before we move to the proof of this proposition, let us make some simple but useful
observations. First, note that only a negligible fraction of the nodes have opinion that we do
not control. The proof is deferred to the full version.

▶ Lemma 9. Suppose that p = p(n) ≪ 1 and p ≫ 1/n. Let ω = ω(n) ≪ min{pn, (1/p)1/2}
be any function that tends to infinity as n → ∞. Set T2 = T2(n) such that ω/p ≤ T2 ≤ n/ω.
Then, a.a.s., for any t such that T1 ≤ t ≤ T2, Zt

? ≤ 2t/ω.

Let us fix k ∈ N and consider random variable Xk ∈ Bin(k, 1/2 + δ/2). We will need to
understand the following sequence of constants (the connection to our problem will become
clear soon):

qk := P(Xk > k/2) + P(Xk = k/2) · (1/2 + δ). (10)

Clearly, q0 = 1/2 + δ and q1 = 1/2 + δ/2. For any other value of k ≥ 2, qk ≥ 1/2 + 51δ/100
as we show in the next technical lemma. The proof can be found in the full version.

▶ Lemma 10. Fix k ∈ N such that k ≥ 2, and δ ∈ (0, 1/10]. Then,

qk ≥ 1
2 + 51

100δ.

Now, we are ready to go back to analyzing the behaviour of the process during the second
phase.

Proof of Proposition 8. Our goal is to show that a.a.s. the following inequalities hold for
any t such that T1 ≤ t ≤ T2:

Zt
1

Zt
0 + Zt

?
≥ 1/2 + δ/2

1/2 − δ/2 (11)

Zt
? ≤ 2t/ω. (12)

Formally, we define the stopping time S to be the minimum value of t ≥ T1 such that
either (11) fails, (12) fails or t = T2. (A stopping time is any random variable S with
values in {T1, T1 + 1, . . . , T2} such that, for any time t̂, it is determined whether S = t̂ from
knowledge of the process up to and including time t̂.)

Property (12) is trivially satisfied at the beginning of the second phase as ZT1
? = 0. By

Proposition 6, since we aim for a statement that holds a.a.s., we may assume that (11) is
satisfied at the beginning of the second phase. In fact,

ZT1
1

ZT1
0 + ZT1

?
= Y T1

1

Y T1
0 + 0

≥ 1/2 + 101δ/200
1/2 − 101δ/200 ≥ 1/2 + δ/2

1/2 − δ/2 .

It will be convenient to define Zt = Zt
1 + Zt

0 + Zt
?; that is, Zt is the number of nodes that

announced their opinions by time t. If (12) is satisfied, then only a negligible fraction of
nodes were selected more than once and we get that Zt = t(1 − O(1/ω)) ∼ t.

Let us first show that if (11) and (12) are satisfied at time t and the node selected at
time t + 1 was not selected before (that is, Dt(vt+1) = Ct(vt+1) =⊥), then the probability
that vt+1 announces an auxiliary opinion 1 is at least 1/2 + 101/200δ.

D. Mohan and P. Prałat 5:13

We first expose edges from vt+1 to the set {v : Dt(v) ̸=⊥} (see Property 5) and let us
define pk to be the probability that vt+1 has precisely k neighbours in that set. In particular,
we have

p1 = Ztp(1 − p)Zt−1 = λ(1 − p)λ/p−1

≤ λe−λ/(1 − p)
≤ 1/e + o(1) < 1/2, (13)

where λ = pZt = pt(1 − O(1/ω)) and the second inequality follows because xe−x ≤ e−1 and
p = o(1).

Now, condition on vt having exactly k neighbours that already announced their opinion.
Note that we did not expose the neighbours yet (only the number of them) so neighbours form
a random set of cardinality k from the set {v : Dt−1(v) ̸=⊥}. Let rk to be the probability
that vt announces auxiliary opinion 1 in this conditional probability space. It happens if
more than k/2 neighbours of vt have Dt−1(v) = 1. Moreover, if exactly k/2 neighbours have
this property, then vt announces opinion 1 with probability 1/2 + δ, which is the probability
that its private belief is 1. Since (11) holds, rk can be lower bounded by qk which we defined
in (10). It follows that the probability that vt announces 1 is asymptotic to

∑
k≥0

rk · pk ≥
∑
k≥0

qk · pk = q1p1 +
∑

k≥0,k ̸=1
qk · pk

≥
(

1
2 + δ

2

)
p1 +

(
1
2 + 51

100δ

)
(1 − p1)

=
(

1
2 + 51

100δ

)
− p1

(
1

100δ

)
≥ 1

2 + 101
200δ, (14)

where the second inequality follows from Lemma 10 and the last one from (13).
Let s be the number of rounds t in the second phase in which vt was not selected before, i.e.,

Dt−1(vt) =⊥, and let t1, t2, . . . , ts denote such round. Clearly, s ≤ T2 − T1 = T2(1 − O(1/ω))
but, in fact, a.a.s. we have s = T2(1 − O(1/ω)) by Lemma 9. For i ∈ [s], let Li be the
indicator random variable for the event that vti announced an auxiliary opinion 1, that is,
Li = Zti

1 − Zti−1
1 . If both (11) and (12) hold at time ti − 1, then P(Li = 1) ≥ 1/2 + 101δ/200

but, of course, we cannot condition on these two properties to hold. Instead, we will use a
small trick and consider an auxiliary sequence of random variables after the stopping time S

when one of the properties fails.
Fix p̂ = 1/2 + 101δ/200 and let M1, . . . , Ms be a sequence of independent Bernoulli

variables with parameter p̂. For each i ∈ [s], we define L′
i = Li if both (11) and (12) hold at

times t < ti and otherwise L′
i = Mi. That is, the process “stops” at our stopping time S

which, in our context, means that it simply follows part of the sequence (Mi)s
i=1 (namely,

(Mi)s
i=S+1) from that point on, ignoring the behaviour of the original process. Thus, defining

L′
≤j =

∑j
i=1 L′

i and M≤j =
∑j

i=1 Mi, (14) implies that one can couple L′
≤j and M≤j such

that L′
≤j ≥ M≤j for all j ∈ [s].

Note that E[M≤j] = p̂j = (1/2 + 101δ/200)j for any j ∈ [s]. If follows from Chernoff’s
bound (4),

APPROX/RANDOM 2024

5:14 Asynchronous Majority Dynamics on Binomial Random Graphs

P
(

∃1≤j≤s E[M≤j] − M≤j ≥ δ

400(T1 + j)
)

≤
∑
a≥1

P
(

max
(2a−1−1)T1<j≤(2a−1)T1

(
E[M≤j] − M≤j

)
≥ 2a−1 δ

400T1

)
≤
∑
a≥1

exp (−Θ(2aT1)) = exp (−Θ(T1)) = o(1),

since T1 = Θ(1/p) → ∞. In other words, a.a.s. for any j ∈ [s],

L′
≤j ≥ M≤j ≥

(
1
2 + 101

200δ

)
j − δ

400(T1 + j).

Since L≤j = L′
≤j for any j ∈ [s] such that tj < S, and Zt

1 can decrease by at most one in a
single round, a.a.s.

ZS
1 ≥ ZS−1

1 − 1
≥ ZT1

1 + L≤S−T1−O(S/ω) − O(S/ω)

≥
(

1
2 + 101

200δ

)
T1 +

(
1
2 + 101

200δ

)
(S − T1 − O(S/ω)) − δ

400(S − O(S/ω))−O(S/ω)

≥
(

1
2 + 201

400δ

)
S − O(S/ω)

≥
(

1
2 + δ

2

)
S,

implying that (11) holds at time S. Indeed, there were ZT1
1 nodes with auxiliary opinion 1

at the beginning of the second phase. By Lemma 9, S − T1 − O(S/ω) nodes were selected for
the first time before the stopping time and L≤S−T1−O(S/ω) of them announced 1 at that time.
Finally, at most O(S/ω) nodes that already announced their opinion were selected again. It
implies that a.a.s. the process does not “stop” because of (11) failing. By Lemma 9, a.a.s. it
also does not stop because of (12). Hence, a.a.s. S = T2 and the proof of the proposition is
finished. ◀

3.3 Not Very Sparse Random Graphs
In this subsection, we provide a relatively easy argument that works for random graphs with
pn ≫ log n. In particular, we show that a.a.s. after round T2 but before round T3 = n/

√
ω

all nodes that are selected for the first time announce 1. Moreover, after round T3 every
node selected announces 1 a.a.s.

Proof of Theorem 1. Let ω = ω(n) ≪ min{(pn/ log n)1/2, pn, (1/p)1/2} be any function
that tends to infinity as n → ∞. In particular, pn ≥ ω2 log n. Fix T2 = T2(n) = n/ω.
It follows from Proposition 8 that a.a.s. at the end of the second phase, there are Y T2

1 ≥
(1/2 + δ/2)T2 nodes that announced opinion 1, and so Y T2

0 ≤ (1/2 − δ/2)T2 nodes announced
opinion 0; moreover, Y T2

1 + Y T2
0 = T2(1 + O(1/ω)).

Let Vi = {v : Ct(v) = i} be the set of nodes with opinion i ∈ {0, 1} at time T2. Note
that, by Property 5, we may assume that only edges within V0 ∪ V1 are exposed at that stage
of the process. We will first show that a.a.s. all nodes v /∈ V0 ∪ V1 have substantially more
neighbours in V1 than in V0. Indeed, this is a simple consequence of the Chernoff bounds (1)
and (2): for any v /∈ V0 ∪ V1:

D. Mohan and P. Prałat 5:15

P
(

|N(v) ∩ V1| ≤ |N(v) ∩ V0| + δT2p/2
)

≤ Pr
(

|N(v) ∩ V1| ≤ (1/2 − δ/4)T2p + δT2p/2 or |N(v) ∩ V0|≥(1/2−δ/4)T2p
)

≤ P
(

|N(v) ∩ V1| ≤ (1/2 + δ/4)T2p
)

+ P
(

|N(v) ∩ V0| ≥ (1/2 − δ/4)T2p
)

= P
(

Bin(|V1|, p) ≤ (1/2 + δ/4)T2p
)

+ P
(

Bin(|V0|, p) ≥ (1/2 − δ/4)T2p
)

≤ 2 exp
(

− Θ(T2p)
)

= 2 exp
(

−Ω
(

n

ω
· ω2 log n

n

))
= O(1/n2),

where the first inequality follows simply by observing that |N(v) ∩ V1| > c + δT2p/2 and
|N(v) ∩ V0| < c implies |N(v) ∩ V1| > |N(v) ∩ V0| + δT2p/2. The final inequality follows since
E[Bin(|V1|, p)] ≥ (1/2 + δ/2)T2p and E[Bin(|V0|, p)] ≤ (1/2 − δ/2)T2p. The desired property
holds by the union bound over all nodes v /∈ V0 ∪ V1.

Fix T3 = T3(n) = n/
√

ω. The third phase will last till time T3. Let V ′
1 ⊆ V1 be

the set of nodes from V1 that were selected during the third phase. Note that each node
from V1 is selected during the third phase with probability at most (T3 − T2)/n ≤ 1/

√
ω.

Hence, E[|V ′
1 |] ≤ |V1|/

√
ω and so a.a.s. |V ′

1 | ≤ |V1|/ω1/3 by Markov’s inequality. A simple
but important observation is that V ′

1 is determined exclusively by the selection process
(coupon collector process); in particular, it does not depend on the random graph nor the
opinion dynamics. Hence, we can use Chefnoff’s bound again to show that a.a.s. all nodes
v /∈ V0 ∪ V1 have very few neighbours in V ′

1 . Indeed, note that for any v /∈ V0 ∪ V1, the
number of neighbours of n in V ′

1 can be stochastically upper bounded by Bin(|V1|/ω1/3, p)
with expectation |V1|p/ω1/3 = Θ(np/ω4/3) = Ω(n2/3 log n) ≫ log n. Hence, |N(v) ∩ V ′

1 | =
O(|V1|p/ω1/3) = O(T2p/ω1/3) = o(T2p) with probability 1 − O(1/n2), and so a.a.s. all nodes
v /∈ V0 ∪ V1 satisfy this property.

Combining the two properties together, we get that a.a.s. for all nodes v /∈ V0 ∪ V1 we
have

|N(v) ∩ (V1 \ V ′
1)| > |N(v) ∩ (V0 ∪ V ′

1)|. (15)

Let W1 be the set of nodes outside of V0 ∪ V1 that were selected during the third phase
(possibly multiple times). If property (15) is satisfied, then (deterministically) all nodes in
W1 announce 1 in this phase. Indeed, even if all nodes from V ′

1 changed their opinion to 0 in
the meantime, nodes in V1 still have majority of their neighbours with opinion 1.

Let us summarize the situation at the beginning of the fourth (and the last) phase.
Recall that W1 consists of nodes that were selected for the first time during the third
phase. Let W0 = V0 ∪ V1 be the set of nodes that were selected before the third phase
(that is, during the first or the second phase). A.a.s. nodes in W1 have opinion 1 and
|W1| = (T3 − T2) + O(T 2

3 /n) ∼ T3. We may assume that nodes in W0 have opinion 0 and
a.a.s. |W0| = T2(1 + O(1/ω)) ∼ T2 = o(T3). Again, it is important to notice that W1 and W0
are determined exclusively by the selection process. (V1 and V0 do not posses this property
and that was the main reason we needed to consider the third phase.) We may then use
Chernoff’s bound again, on the number of neighbours in W1 and W0 of any given node, to
show that a.a.s. all nodes (not only outside of W1 ∪ W0!) have more neighbours in W1 than
in W0. It means that every node that is selected during this last phase announces opinion 1.

APPROX/RANDOM 2024

5:16 Asynchronous Majority Dynamics on Binomial Random Graphs

Since a.a.s. every node is selected at least once during the next n(log n + ω′/2) rounds,
the process is over after at most that many rounds with everyone converging to opinion 1.
Hence, a.a.s. the entire process takes at most T3 + n(log n + ω′/2) ≤ n(log n + ω′) rounds.
In fact, the expected number of nodes that were selected before the last phase but were not
selected in the first T ′

4 = n(log n − log ω/4) rounds of the last phase is equal to

T3

(
1 − 1

n

)T ′
4

≤ n√
ω

exp(− log n + 1
4 log ω) = ω−1/4 = o(1),

and so a.a.s. all nodes selected before the last phase are selected again during the first T ′
4

rounds of the last phase. On the other hand, a.a.s. there are still some nodes not selected
at all after T3 + T ′

4 rounds. Indeed, this follows immediately from the well studied coupon
collector concentration bound for T̂ : P(T̂ < n log n − cn) < e−c. The conclusion is that a.a.s.
all nodes are selected at least once between round T3 and T̂ , and the proof is finished. ◀

3.4 Very Sparse Random Graphs
In this subsection, we investigate random graphs that are close to the threshold for connectivity
but are still connected, that is, we assume that pn ≤ ω log n and pn ≥ log n + ω for some
ω = ω(n) → ∞ as n → ∞.

First, we will show that at time T3 = T3(n) = 2n log n, every node announced its opinion
at least once, and only at most nω/ log n = o(n) nodes have opinion 0. The proof is deferred
to the full version.

▶ Proposition 11. Let ω = ω(n) = o(log n) be any function that tends to infinity (sufficiently
slowly) as n → ∞. Suppose that p = p(n) ≤ ω log n/n and p ≥ (log n + ω)/n. Set
T3 = T3(n) = 2n log n and s = s(n) = nω/ log n. Then, a.a.s. all nodes announced their
opinion at time T3, and at most s of them have opinion 0.

We will call a node v to be of small degree, if its degree is at most k = 5 log n/(log log n)1/2.
Nodes of degree larger than k will be called of large degree. Before we continue investigating
the process, we need to show a well-known fact that small degree nodes are not too close to
each other.

▶ Lemma 12. Let ω = ω(n) = o(log n) be any function that tends to infinity (sufficiently
slowly) as n → ∞. Suppose that p = p(n) ≤ ω log n/n and p ≥ (log n + ω)/n. Then, the
following property holds a.a.s. in G(n, p): any two small degree nodes are at distance at least
2 from each other.

Proof. Since np > log n and k = o(log n),
(

n
i

)
pi is an increasing sequence for 0 ≤ i ≤ k and

hence we have

P(deg(v) ≤ k) ≤
k∑

i=0

(
n

i

)
pi(1 − p)n−i ≤ (k + 1)

(
n

k

)
pk(1 − p)n−k.

We obtain the following upper bound on the probability that a node v has small degree:

P(deg(v) ≤ k) ≤ (k + 1)
(

n

k

)
pk(1 − p)n−k

≤ (k + 1)
(

en

k
· ω log n

n

)k

exp
(

− pn + pk)
)

≤ (k + 1)
(

ω(log log n)1/2
)k

exp
(

− log n − ω + o(1)
)

≤ (k + 1) exp
(

5 log n

(log log n)1/2 · log log log n − log n

)
= n−1+o(1).

D. Mohan and P. Prałat 5:17

Hence, we expect no(1) small degree nodes and so a.a.s. we have only no(1) of them. More
importantly, using similar computations one can show that the expected number of small
degree nodes that are adjacent to each other is equal to(

n

2

)
· p ·

(
n−1+o(1)

)2
= n−1+o(1) = o(1).

Similarly, the expected number of small degree nodes that are at distance two from each
other is equal to(

n

2

)
· n · p2 ·

(
n−1+o(1)

)2
= n−1+o(1) = o(1).

Hence, a.a.s. any two nodes of small degree are at distance at least two from each other, and
the proof of the lemma is finished. ◀

Our next observation is that the number of large degree nodes that have opinion 0 is
decreasing. The proof is deferred to the full version.

▶ Proposition 13. Let ω = ω(n) = o(log n) be any function that tends to infinity (sufficiently
slowly) as n → ∞. Suppose that p = p(n) ≤ ω log n/n and p ≥ (log n + ω)/n. Then, the
following property holds a.a.s. for all phases.

Suppose that at the beginning of a phase, s = (nω/ log n) · (log log n)−(i−1)/4 large degree
nodes have opinion 0 for some i ∈ N. Then, after 2n log n rounds all nodes announced their
opinion at least once more, and at most u = s/(log log n)1/4 = (nω/ log n) · (log log n)−i/4

large degree nodes have opinion 0.

Finally, we are ready to show that all nodes eventually converge to opinion 1.

Proof of Theorem 2. The proof is an easy consequence of Propositions 11, 13, and Lemma 12.
Indeed, a.a.s. at time T3 = T3(n) = 2n log n, all but at most s = s(n) = nω/ log n nodes
have opinion 1 (Proposition 11). Most of them are of large degree but some of them may be
of small degree. By Proposition 13, the number of large degree nodes that have opinion 0
decreases: a.a.s. at time 2n log n · O(log n/ log log n) = O(n(log n)2/(log log n)) no large
degree node has opinion 0. There could possibly be still some nodes of small degree that have
opinion 0 but everyone converges to opinion 1 after additional O(n log n) rounds. Indeed,
every node is selected at least once during that time period a.a.s. Large degree nodes have
many neighbours but at most one neighbours of small degree (Lemma 12). So they will not
change their opinion and stay with opinion 1. On the other hand, by the same lemma, no
small degree node has a neighbour of small degree. Hence, such nodes will switch to opinion 1
once they are selected again. This finishes the proof of the theorem. ◀

4 Dense Random Graphs

In this section, we prove that for dense graphs (that is, when p ∈ (0, 1] is a constant) it is
not true that all nodes converge to the correct opinion a.a.s. On the contrary, there maybe
an information cascade where all the nodes converge to the wrong opinion with constant
probability.

Proof of Theorem 3. Fix any p ∈ (0, 1). We will consider the easy case p = 1 at the end.
Trivially, the first node announces its private belief, that is, it announces opinion 1 with

probability 1/2 + δ; otherwise, it announces 0. Since nodes are selected by the process
(“coupon collector”) independently of the graph, we may postpone exposing edges of the

APPROX/RANDOM 2024

5:18 Asynchronous Majority Dynamics on Binomial Random Graphs

random graph till the first time a node is selected. Each time this happens, we expose edges
from vt to all nodes that already announced their opinion. If every single time at least one
edge is present, then all nodes are going to announce the opinion of the very first node. It
follows that

p1 ≥ (1/2 + δ)
n∏

i=1

(
1 − (1 − p)i

)
.

It is easy to see that for any x ∈ [0, 1 − p],

f(x) = 1 − x ≥ exp
(

− log(1/p)
1 − p

x

)
= g(x).

(Note that f(0) = g(0), f(1 − p) = g(1 − p), and g(x) is convex.) Hence,

p1 ≥ (1/2 + δ) exp
(

− log(1/p)
1 − p

n∑
i=1

(1 − p)i
)

≥ (1/2 + δ) exp
(

− log(1/p)
∞∑

i=0
(1 − p)i

)
= (1/2 + δ) exp

(
− log(1/p)(1/p)

)
.

The same argument works for p0 with the only difference that the probability of the first node
announcing 1 (1/2 + δ) needs to be replaced with the probability of announcing 0 (1/2 − δ).

Finally, note that if p = 1, then the graph is (deterministically) the complete graph and
(again, deterministically) all nodes are going to adopt the opinion of the very first node.
Thus, we immediately get p1 = 1/2 + δ and p0 = 1/2 − δ (which matches the general formula
that works for p ∈ (0, 1]). This finishes the proof of the theorem. ◀

References
1 Mohammed Amin Abdullah and Moez Draief. Global majority consensus by local majority

polling on graphs of a given degree sequence. Discrete Applied Mathematics, 180:1–10, 2015.
2 Daron Acemoglu, Munther A. Dahleh, Ilan Lobel, and Asuman Ozdaglar. Bayesian learning

in social networks. Review of Economic Studies, 78(4):1201–1236, 2011.
3 Aris Anagnostopoulos, Luca Becchetti, Emilio Cruciani, Francesco Pasquale, and Sara Rizzo.

Biased opinion dynamics: when the devil is in the details. Information Sciences, 593:49–63,
2022.

4 Maryam Bahrani, Nicole Immorlica, Divyarthi Mohan, and S Matthew Weinberg. Asynchron-
ous majority dynamics in preferential attachment trees. 47th International Colloquium on
Automata, Languages, and Programming (ICALP 2020), 2020.

5 Abhijit Banerjee, Emily Breza, Arun G Chandrasekhar, and Markus Mobius. Naive learning
with uninformed agents. American Economic Review, 111(11):3540–3574, 2021.

6 Abhijit Banerjee and Drew Fudenberg. Word-of-mouth learning. Games and Eco-
nomic Behavior, 46(1):1–22, January 2004. URL: http://ideas.repec.org/a/eee/gamebe/
v46y2004i1p1-22.html.

7 Abhijit V. Banerjee. A simple model of herd behavior. The Quarterly Journal of Economics,
107(3):797–817, 1992.

8 Luca Becchetti, Andrea Clementi, and Emanuele Natale. Consensus dynamics: An overview.
SIGACT News, 51(1):58–104, March 2020. doi:10.1145/3388392.3388403.

9 Luca Bechetti, Andrea E.F. Clementi, Emanuele Natale, Francesco Pasquale, and Luca Trevisan.
Stabilizing consensus with many opinions. In ACM Symposium on Discrete Algorithms (SODA),
2016.

http://ideas.repec.org/a/eee/gamebe/v46y2004i1p1-22.html
http://ideas.repec.org/a/eee/gamebe/v46y2004i1p1-22.html
https://doi.org/10.1145/3388392.3388403

D. Mohan and P. Prałat 5:19

10 Itai Benjamini, Siu-On Chan, Ryan O’Donnell, Omer Tamuz, and Li-Yang Tan. Convergence,
unanimity and disagreement in majority dynamics on unimodular graphs and random graphs.
Stochastic Processes and their Applications, 126(9):2719–2733, 2016.

11 Sushil Bikhchandani, David Hirshleifer, Omer Tamuz, and Ivo Welch. Information cascades
and social learning. Technical report, National Bureau of Economic Research, 2021.

12 Sushil Bikhchandani, David Hirshleifer, and Ivo Welch. A theory of fads, fashion, custom, and
cultural change in informational cascades. Journal of Political Economy, 100(5):992–1026,
October 1992.

13 Béla Bollobás. Random graphs. Cambridge University Press, 2001.
14 Boğaçhan Çelen and Shachar Kariv. Observational learning under imperfect information.

Games and Economic behavior, 47(1):72–86, 2004.
15 Debsoumya Chakraborti, Jeong Han Kim, Joonkyung Lee, and Tuan Tran. Majority dynamics

on sparse random graphs. Random Structures & Algorithms, 63(1):171–191, 2023.
16 Fan RK Chung and Linyuan Lu. Complex graphs and networks. American Mathematical Soc.,

2006.
17 Peter Clifford and Aidan Sudbury. A model for spatial conflict. Biometrika, 60(3):581–588,

1973. URL: http://www.jstor.org/stable/2335008.
18 Emilio Cruciani, Hlafo Alfie Mimun, Matteo Quattropani, and Sara Rizzo. Phase transitions

of the k-majority dynamics in a biased communication model. In Proceedings of the 22nd
International Conference on Distributed Computing and Networking, pages 146–155, 2021.

19 Morris H. DeGroot. Reaching a consensus. Review of Economic Studies, 69(345):118–121,
1974.

20 Michal Feldman, Nicole Immorlica, Brendan Lucier, and S. Matthew Weinberg. Reach-
ing consensus via non-bayesian asynchronous learning in social networks. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RAN-
DOM 2014, 2014. doi:10.4230/LIPIcs.APPROX-RANDOM.2014.192.

21 Nikolaos Fountoulakis, Mihyun Kang, and Tamás Makai. Resolution of a conjecture on majority
dynamics: Rapid stabilization in dense random graphs. Random Structures & Algorithms,
57(4):1134–1156, 2020.

22 Douglas Gale and Shachar Kariv. Bayesian learning in social networks. Games and Economic
Behavior, 45(2):329–346, 2003. Special Issue in Honor of Robert W. Rosenthal. doi:10.1016/
S0899-8256(03)00144-1.

23 Bernd Gärtner and Ahad N Zehmakan. Majority model on random regular graphs. In LATIN
2018: Theoretical Informatics: 13th Latin American Symposium, Buenos Aires, Argentina,
April 16-19, 2018, Proceedings 13, pages 572–583. Springer, 2018.

24 Mohsen Ghaffari and Johannes Lengler. Nearly-tight analysis for 2-choice and 3-majority
consensus dynamics. In ACM Symposium on Principles of Distributed Computing (PODC),
2018.

25 Mohsen Ghaffari and Merav Parter. A polylogarithmic gossip algorithm for plurality consensus.
In ACM Symposium on Principles of Distributed Computing (PODC), 2016.

26 Benjamin Golub and Matthew O. Jackson. Naïve learning in social networks and the wisdom
of crowds. American Economic Journal: Microeconomics, 2(1):112–149, 2010.

27 Richard A. Holley and Thomas M. Liggett. Ergodic theorems for weakly interacting infinite
systems and the voter model. The Annals of Probability, 3(4):643–663, 1975. URL: http:
//www.jstor.org/stable/2959329.

28 C Douglas Howard. Zero-temperature ising spin dynamics on the homogeneous tree of degree
three. Journal of applied probability, 37(3):736–747, 2000.

29 Svante Janson, Tomasz Łuczak, and Andrzej Ruciński. Random graphs, volume 45. John
Wiley & Sons, 2011.

30 Bogumił Kamiński, Paweł Prałat, and François Théberge. Artificial benchmark for community
detection (abcd)—fast random graph model with community structure. Network Science,
9(2):153–178, 2021.

APPROX/RANDOM 2024

http://www.jstor.org/stable/2335008
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.192
https://doi.org/10.1016/S0899-8256(03)00144-1
https://doi.org/10.1016/S0899-8256(03)00144-1
http://www.jstor.org/stable/2959329
http://www.jstor.org/stable/2959329

5:20 Asynchronous Majority Dynamics on Binomial Random Graphs

31 Y. Kanoria and O. Tamuz. Tractable bayesian social learning on trees. IEEE Journal on
Selected Areas in Communications, 31(4):756–765, 2013.

32 Yashodhan Kanoria, Andrea Montanari, et al. Majority dynamics on trees and the dynamic
cavity method. The Annals of Applied Probability, 21(5):1694–1748, 2011.

33 Michal Karoński and Alan Frieze. Introduction to Random Graphs. Cambridge University
Press, 2016.

34 Marcos Kiwi, Lyuben Lichev, Dieter Mitsche, and Paweł Prałat. Label propagation on binomial
random graphs. arXiv preprint, 2023. arXiv:2302.03569.

35 S. Matwin, A. Milios, P. Prałat, A. Soares, and F. Théberge. Generative Methods for Social
Media Analysis. SpringerBriefs in Computer Science. Springer Nature Switzerland, 2023. URL:
https://books.google.ca/books?id=wPbJEAAAQBAJ.

36 Colin McDiarmid. Concentration. In Probabilistic methods for algorithmic discrete mathematics,
pages 195–248. Springer, 1998.

37 Markus Mobius and Tanya Rosenblat. Social learning in economics. Annual Review of
Economics, 6(1):827–847, 2014. doi:10.1146/annurev-economics-120213-012609.

38 E. Mossel, N. Olsman, and O. Tamuz. Efficient bayesian learning in social networks with
gaussian estimators. In 2016 54th Annual Allerton Conference on Communication, Control,
and Computing (Allerton), 2016.

39 Elchanan Mossel, Joe Neeman, and Omer Tamuz. Majority dynamics and aggregation of
information in social networks. In Autonomous Agents and Multi-Agent Systems (AAMAS),
2013.

40 Elchanan Mossel, Allan Sly, and Omer Tamuz. Asymptotic learning on bayesian social networks.
Probability Theory and Related Fields, 2014.

41 Manuel Mueller-Frank. A general framework for rational learning in social networks. Theoretical
Economics, 8(1):1–40, 2013.

42 Dinah Rosenberg, Eilon Solan, and Nicolas Vieille. Informational externalities and emergence
of consensus. Games and Economic Behavior, 66(2):979–994, 2009.

43 Lones Smith and Peter Sorensen. Pathological outcomes of observational learning. Eco-
nometrica, 68(2):371–398, March 2000. URL: http://ideas.repec.org/a/ecm/emetrp/
v68y2000i2p371-398.html.

44 Omer Tamuz and Ran Tessler. Majority dynamics and the retention of information. In
Working paper, 2013.

45 Linh Tran and Van Vu. Reaching a consensus on random networks: The power of few. arXiv
preprint, 2019. arXiv:1911.10279.

46 Linh Tran and Van Vu. The “power of few” phenomenon: The sparse case. arXiv preprint,
2023. arXiv:2302.05605.

47 Ahad N Zehmakan. Opinion forming in Erdős–Rényi random graph and expanders. Discrete
Applied Mathematics, 277:280–290, 2020.

https://arxiv.org/abs/2302.03569
https://books.google.ca/books?id=wPbJEAAAQBAJ
https://doi.org/10.1146/annurev-economics-120213-012609
http://ideas.repec.org/a/ecm/emetrp/v68y2000i2p371-398.html
http://ideas.repec.org/a/ecm/emetrp/v68y2000i2p371-398.html
https://arxiv.org/abs/1911.10279
https://arxiv.org/abs/2302.05605

Bipartizing (Pseudo-)Disk Graphs:
Approximation with a Ratio Better than 3
Daniel Lokshtanov #

University of California, Santa Barbara, USA

Fahad Panolan #

University of Leeds, UK

Saket Saurabh #

Institute of Mathematical Sciences, India

Jie Xue #

New York University Shanghai, China

Meirav Zehavi #

Ben-Gurion University, Israel

Abstract
In a disk graph, every vertex corresponds to a disk in R2 and two vertices are connected by an
edge whenever the two corresponding disks intersect. Disk graphs form an important class of
geometric intersection graphs, which generalizes both planar graphs and unit-disk graphs. We study
a fundamental optimization problem in algorithmic graph theory, Bipartization (also known as
Odd Cycle Transversal), on the class of disk graphs. The goal of Bipartization is to delete
a minimum number of vertices from the input graph such that the resulting graph is bipartite. A
folklore (polynomial-time) 3-approximation algorithm for Bipartization on disk graphs follows from
the classical framework of Goemans and Williamson [Combinatorica’98] for cycle-hitting problems.
For over two decades, this result has remained the best known approximation for the problem (in
fact, even for Bipartization on unit-disk graphs). In this paper, we achieve the first improvement
upon this result, by giving a (3 − α)-approximation algorithm for Bipartization on disk graphs, for
some constant α > 0. Our algorithm directly generalizes to the broader class of pseudo-disk graphs.
Furthermore, our algorithm is robust in the sense that it does not require a geometric realization of
the input graph to be given.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases bipartization, geometric intersection graphs, approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.6

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2407.09356

1 Introduction

Disk graphs refer to intersection graphs of disks in the plane R2. Formally, in a disk graph,
every vertex corresponds to a disk in R2 and two vertices are connected by an edge whenever
the two corresponding disks intersect. As a rather general class of geometric intersection
graphs, disk graphs simultaneously generalize two important graph classes, unit-disk graphs
and planar graphs, both of which have been extensively studied over decades. Many central
problems in algorithmic graph theory have been considered on disk graphs, including Vertex
Cover [8, 28, 41], Independent Set [8], Maximum Clique [5], Feedback Vertex
Set [26, 28], Dominating Set [13], etc.

© Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Jie Xue, and Meirav Zehavi;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 6; pp. 6:1–6:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:daniello@ucsb.edu
https://orcid.org/0000-0002-3166-9212
mailto:F.panolan@leeds.ac.uk
https://orcid.org/0000-0001-6213-8687
mailto:saket@imsc.res.in
https://orcid.org/0000-0001-7847-6402
mailto:jiexue@nyu.edu
https://orcid.org/0000-0001-7015-1988
mailto:meiravze@bgu.ac.il
https://orcid.org/0000-0002-3636-5322
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.6
https://arxiv.org/abs/2407.09356
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Bipartizing (Pseudo-)Disk Graphs

In this paper, we investigate a fundamental optimization problem on the class of disk
graphs, called Bipartization. In this problem, the input is a graph G and the goal is
to delete a smallest number of vertices from G such that the resulting graph is bipartite.
There has been a long line of work studying Bipartization (e.g., see [10, 20, 34, 36, 37] and
citations therein). Observe that the edge counterpart of the Bipartization problem, Edge
Bipartization, where we need to find fewest edges whose deletion results in a bipartite graph,
is equivalent to the classical Maximum Cut problem (which has been studied for over five
decades [14, 39]). It is known that Edge Bipartization (and Maximum Cut) reduces to
Bipartization [42], and both problems find applications in computational biology [42, 38],
VLSI chip design [18], genome sequence assembly [32], and more. Bipartization is of
particular interest also due to the following observation: a graph is bipartite if and only if it
does not contain any odd cycle. As such, it can be formulated as hitting all odd cycles in the
graph (using fewest vertices). For this reason, the Bipartization problem is also known
as Odd Cycle Transversal, and belongs to the family of cycle-hitting problems, one of
the most well-studied topics in algorithmic graph theory. Besides Bipartization, other
important cycle-hitting problems that have been studied on disk graphs include Feedback
Vertex Set, Triangle Hitting, Short Cycle Hitting, etc.

There is no surprise that Bipartization is NP-complete. In fact, it is NP-complete even
on graphs of maximum degree 3 and planar graphs of maximum degree 4 [6]. As such, the
study of the problem is mainly in the context of approximation algorithms and parameterized
algorithms. On the parameterized front, it was known that Bipartization can be solved in
2O(k) · nO(1) time where k is the solution size [20, 25, 35]. On planar graphs and unit-disk
graphs, there exist improved algorithms with running time kO(

√
k) ·nO(1) [2, 3, 29, 31], which

are almost tight assuming the Exponential-Time Hypothesis (ETH). On disk graphs, it was
not known whether Bipartization admits a subexponential-time parameterized algorithm,
until very recently Lokshtanov et al. gave a kO(k27/28) · nO(1)-time algorithm [26].

From the perspective of approximation algorithms (which is the focus of this paper),
Bipartization is one of the trickiest problems in the sense that no polynomial-time ap-
proximation scheme (PTAS) was known on any (nontrivial) graph classes, but at the same
time no inapproximability results was known except for general graphs. On general graphs,
Bipartization cannot admit any (polynomial-time) constant-approximation algorithm
assuming the Unique Games Conjecture [4], and the best known approximation ratio is
O(
√

log opt) due to Kratsch and Wahlström [24], improving the earlier bounds of O(log n) [9]
and O(

√
log n) [1]. It has been a long-standing open question whether Bipartization

admits a PTAS on planar graphs or unit-disk graphs. On planar graphs, the currently best
approximation for Bipartization is still the 9

4 -approximation algorithm given in the seminal
work of Goemans and Williamson [15] more than two decades ago. This result immediately
gives a 3-approximation algorithm for Bipartization on disk graphs (and in particular,
unit-disk graphs) by the well-known fact that triangle-free disk graphs are planar [22].

▶ Theorem 1 (folklore). There exists a polynomial-time 3-approximation algorithm for
Bipartization on the class of disk graphs.

Proof. Let G be the input disk graph. We repeat the following step until G contains no
triangles: find a triangle in G, add its three vertices to the solution, and remove them
from G. Denote by S the set of vertices added to the solution and by G′ = G − S the
resulting triangle-free graph, which is planar [22]. Now apply the algorithm of Goemans
and Williamson [15] on G′ to obtain a 9

4 -approximation solution S′. Note that S ∪ S′ is
a 3-approximation solution (for G). Indeed, any solution of Bipartization must hit all
triangles in G and thus contains at least |S|/3 vertices in S. Also, it contains at least |S′|/ 9

4
vertices in V (G′). So its size is at least |S|/3 + |S′|/ 9

4 ≥ |S ∪ S′|/3. ◀

D. Lokshtanov, F. Panolan, S. Saurabh, J. Xue, and M. Zehavi 6:3

For over two decades, this has remained the best approximation algorithm for Biparti-
zation on disk graphs (in fact, even on unit-disk graphs). Thus, there is a natural question
to be asked: can we achieve an approximation ratio better than 3 for the problem? Note
that one cannot achieve this by improving the approximation ratio 9

4 for Bipartization
on planar graphs. Indeed, even if we had a PTAS on planar graphs, the above argument
still only gives us a 3-approximation algorithm on disk graphs. Therefore, the number 3
here is truly a bottleneck of the approximation ratio of the problem. In this paper, we break
this bottleneck and answer the above question affirmatively by giving the first algorithm for
Bipartization on disk graphs with an approximation ratio better than 3. Specifically, our
main result is the following.

▶ Theorem 2. There exists a polynomial-time (3− α)-approximation algorithm for Biparti-
zation on the class of disk graphs, for some constant α > 0.

We remark that Theorem 2 should be viewed as a proof of concept, rather than the
quantitative improvement. Our algorithm in Theorem 2 is robust in the sense that it does
not require the geometric realization of the input disk graph to be given. Furthermore,
our algorithm directly generalizes to the broader class of pseudo-disk graphs, which are
the intersection graphs of topological disks in which the boundaries of every two of them
intersect at most twice. (Note that the 3-approximation algorithm in Theorem 1 also works
for pseudo-disk graphs as triangle-free pseudo-disk graphs are planar [22].) Again, this
generalized algorithm is robust.

▶ Theorem 3. There exists a polynomial-time (3− α)-approximation algorithm for Biparti-
zation on the class of pseudo-disk graphs, for some constant α > 0.

Finally, we observe that our technique not only works for the Bipartization problem.
In fact, it can be applied to a large category of vertex-deletion problems on (pseudo-)disk
graphs, resulting in (3− α)-approximation algorithms. Although at this point it only yields
interesting results for Bipartization (mainly because most well-studied problems in the
category already have algorithms on disk graphs with approximation ratio better than 3),
this demonstrates that our technique could possibly have further applications in the future.
We shall briefly discuss this part in Section 4.

Other related work

NP-complete optimization problems on disk graphs and other geometric intersection graphs
have received considerable attention over years. Here we only summarize some recent
work on this topic. The work of de Berg et al. [7] gave a framework for designing ETH-
tight exact algorithms on (unit-)disk graphs or more generally (unit-)ball graphs, which
works for a variety of classical optimization problems. Bonamy et al. [5] presented the first
EPTAS and subexponential-time algorithm for Maximum Clique on disk graphs. Fomin
et al. [11] designed almost ETH-tight parameterized algorithms for various cycle-packing
and cycle-hitting problems on unit-disk graphs; in a follow-up paper [12], the same authors
improved some of their algorithms to be ETH-tight. Recently, Lokshtanov et al. [26, 28]
proposed frameworks for subexponential parameterized algorithms and EPTASes for various
vertex-deletion problems on disk graphs (the framework for EPTASes does not work for
Bipartization, while the one for subexponential parameterized algorithms works). A very
recent work by the same authors [27] gave a 1.9999-approximation for Vertex Cover on
string graphs (i.e., intersection graphs of arbitrary connected geometric objects in the plane),
which has the same flavor as this paper.

APPROX/RANDOM 2024

6:4 Bipartizing (Pseudo-)Disk Graphs

Besides the aforementioned algorithmic research on Bipartization, the problem was
also studied in the context of kernelization complexity. The seminal work by Kratsch and
Wahlström [23] showed that Bipartization admits a randomized polynomial kernel with
respect to k. Later, for planar graphs, it was shown to admit a deterministic polynomial
kernel by Jansen et al. [17]. Moreover, the kernelization complexity of Bipartization was
studied also with respect to some structural parameterizations [16].

On a related note, we remark that structural properties of odd cycles in a graph has also
received significant attention from various combinatorial points of view. While the survey of
these results is beyond the scope of this paper, as an illustrative example, let us mention the
study of Erdős–Pósa properties for odd cycles (see e.g., [10, 19, 33, 40]).

2 Preliminaries

Let G be a graph. We use V (G) and E(G) to denote the vertex set and edge set of G,
respectively. For a subset V ⊆ V (G), denote by G[V] the subgraph of G induced by V , and
by G− V the subgraph of G induced by V (G)\V . For a vertex v, we use NG(v) to denote
the set {x ∈ V (G) \ {v} : (x, v) ∈ E(G)}. For a vertex subset S, we use NG(S) and NG[S]
to denote the sets

⋃
z∈S NG(z) \ S and S ∪ NG(S), respectively. For a vertex v in G, we

use dG(v) to denote the degree of v (i.e., |NG(v)|) in G. A vertex subset I ⊆ V (G) is a
distance-d independent set in G, if for any two distinct vertices x and y in I, the distance
between x and y in G is strictly more than d. Here, the distance between two vertices is the
number of edges in a shortest path between those vertices. Let S be a collection of subsets
of V (G). A packing of S is a sub-collection S ′ such that S ∩ S′ = ∅ for all S, S′ ∈ S ′ with
S ̸= S′. We say a packing S ′ ⊆ S is maximal if any S ′′ ⊆ S satisfying S ′ ⊊ S ′′ is not a
packing of S, and is maximum if any subset S ′′ ⊆ S satisfying |S ′| < |S ′′| is not a packing of
S. Any maximum packing of S has the same size.

An odd cycle transversal (or OCT for short) of G is a subset S ⊆ V (G) such that G− S

is a bipartite graph. A triangle in G refers to a set T = {u, v, w} of three vertices of G such
that (u, v), (v, w), (w, u) ∈ E(G). We use ∆(G) to denote the family of all triangles in G.
For a set T of triangles in G, we denote by V (T) the set of vertices of all triangles in T , i.e.,
V (T) =

⋃
T ∈T T . The notation tri(T) denotes the size of a maximum packing of T .

3 Our algorithm

In this section, we present our approximation algorithm for Bipartization on disk graphs.
Our algorithm first takes a simple preprocessing step, which reduces the general problem
to the problem on K4-free disk graphs (i.e., disk graphs without cliques of size 4). Then
in the main part of our algorithm, we solve Bipartization on K4-free disk graphs. For a
cleaner exposition, we shall present a randomized version of our algorithm, as it is more
intuitive and yields a better approximation ratio. The derandomization can be found in the
full version of the paper.

3.1 Preprocessing: reducing to the K4-free case
For a graph G, let K4(G) be the set of all K4’s in G. The following lemma allows us to
reduce the problem to Bipartization on K4-free disk graphs.

▶ Lemma 4. Let G be a graph and C be a packing of K4(G). Let S be a ρ-approximation
solution for Bipartization on G − V (C). Then, S ∪ V (C) is a max{2, ρ}-approximation
solution for Bipartization on G.

D. Lokshtanov, F. Panolan, S. Saurabh, J. Xue, and M. Zehavi 6:5

Proof. First, it is clear that S ∪V (C) is an OCT of G, since G−S ∪V (C) = (G−V (C))−S

contains no odd cycles. Let S∗ be an optimal OCT of G. For every K4 in C, S∗ must contain
at least 2 vertices in the K4 (for otherwise G− S∗ contains a triangle). Since the K4’s in C
are disjoint, we have |S∗ ∩ V (C)| ≥ 2|C| = |V (C)|/2. Furthermore, S∗ ∩ (V (G)\V (C)) is an
OCT of G− V (C), which implies |S∗ ∩ (V (G)\V (C))| ≥ |S|/ρ. Therefore,

|S∗| = |S∗ ∩ V (C)|+ |S∗ ∩ (V (G)\V (C))| ≥ |V (C)|
2 + |S|

ρ
≥ |S|+ |V (C)|

max{2, ρ}
.

As |S ∪ V (C)| = |S|+ |V (C)|, we have |S ∪ V (C)| ≤ max{2, ρ} · |S∗|. ◀

One reason for why this reduction helps us is the degeneracy of a K4-free disk graph.
Recall that a graph G is c-degenerate if we can sort its vertices as v1, . . . , vn such that each
vi is neighboring to at most c vertices in {v1, . . . , vi−1}. A c-degenerate graph of n vertices
has at most cn edges and thus has average degree at most 2c. We prove that every K4-free
disk graph is 11-degenerate. To prove this we use the following known result.

▶ Lemma 5 ([30]). Let D be a disk of radius r. Let S be a set of pairwise non-overlapping
disks of radius r such that every disk in S intersects with D. Then, |S| ≤ 5.

▶ Lemma 6. Every K4-free disk graph is 11-degenerate.

Proof. To prove the lemma, it is enough to prove that for any K4-free disk graph, there is a
vertex of degree at most 11. Let G be a K4-free disk graph with a realization D, and let
Dv ∈ D be the disk representing the vertex v ∈ V (G). Let u be a vertex in G such that disk
Du has the smallest radius among the disks in D. We will prove that dG(u) ≤ 11. Let r be the
radius of Du. Notice that for each v ∈ NG(u), the radius of Dv is at least r. Now we construct
a graph H with vertex set NG[u] such that H is a unit disk graph, H is a subgraph of G (and
hence K4-free), and dG(u) = dH(u). The construction of H is as follows. For each v ∈ NG(u),
construct a disk D′

v of radius r which is fully contained in the disk Dv and intersects Du.
The graph H is the geometric intersection graph of D′ = {Du} ∪ {D′

v : v ∈ NG(u)}. It is
easy to see that H is a unit disk graph, H is a subgraph of G and dG(u) = dH(u). For
each v ∈ V (H) \ {u}, let Lv be the line segment between the centers of Du and D′

v. Let
{v1, . . . vt} = NG(u) such that the line segments Lv1 , Lv2 , . . . , Lvt

are in the clockwise order.
We claim that t ≤ 11. For the sake of contradiction assume that t ≥ 12. Suppose there
exists two distinct i, j ∈ {1, 3, 5, 7, 9, 11} such that D′

vi
intersects with D′

vj
. This implies that

D′
vi+1

or D′
vj+1

intersects both D′
vi

and D′
vj

. Let w ∈ {vi+1, vj+1} be the vertex such that
D′

w intersects both D′
vi

and D′
vj

. Then, H[{u, w, vi, vj}] is a complete graph on 4 vertices,
which is a contradiction because H is K4-free. Then, the disks D′

v1
, D′

v3
, D′

v5
, D′

v7
, D′

v9
, D′

v11

are pairwise non-overlapping, which is a contradiction to Lemma 5. Thus, we proved that
t ≤ 11 and hence dH(v) = dG(v) ≤ 11. That is, the degeneracy of G is at most 11. ◀

3.2 The main algorithm
Our main algorithm for Bipartization on K4-free disk graphs is presented in Algorithm 1.
At the beginning, it takes an arbitrary maximal triangle packing T of G (line 1) and defines
O as the triangles in G that have at least one vertex outside V (T). In a high-level, our
algorithm computes three different solutions S1, S2, S3 and returns the best one.

The first solution S1 is computed in exactly the same way as the 3-approximation
algorithm described in the introduction. Specifically, we include in S1 all vertices in the
triangle packing T , and an OCT X1 of G− V (T) computed by a sub-routine PlanarBip
(line 3), which is an algorithm for Bipartization on planar graphs.

APPROX/RANDOM 2024

6:6 Bipartizing (Pseudo-)Disk Graphs

The second solution S2 is constructed in a more involved way. First, in each triangle
T ∈ T , we randomly sample one vertex vT ∈ T (line 6); here the function random(T) returns
each vertex in T with probability 1

3 and different calls of random are independent. Let R

be the vertices in V (T) not sampled (line 7). Then we include in S2 all vertices in R, all
vertices in an arbitrary maximal triangle packing T ′ of G−R (line 8), and an OCT X2 of
G− (R ∪ V (T ′)) computed by PlanarBip.

If O is nonempty, we need to construct our third solution S3. We take a maximal packing
T ′′ of the triangles in O (line 12). Then we include in S3 all vertices in V (T ′′) ∩ V (T) and
an OCT X3 of G− (V (T ′′) ∩ V (T)) recursively computed by our algorithm (line 13).

Finally, we return the best one among S1, S2, S3 (line 15); here min{S1, S2, S3} returns
the set of smallest size among S1, S2, S3. If S3 is not computed, we simply return min{S1, S2}.
It is obvious that each of S1, S2, S3 is an OCT of G and thus the algorithm always returns a
correct solution. The quality of the solution obtained will be analyzed in the next section.
Also, one can easily see that Algorithm 1 runs in polynomial time. Indeed, except the
recursive call of OCT in line 13, all the other steps can be done in polynomial time. Line 13
will only be executed when O ≠ ∅. In this case, T ′′ ̸= ∅ and V (T ′′) ̸= ∅. Thus, the graph
G− (V (T ′′) ∩ V (T)) has at most n− 1 vertices where n = V (G), and the running time of
Algorithm 1 satisfies the recurrence T (n) ≤ T (n− 1) + nO(1) which solves to T (n) = nO(1).

Algorithm 1 Bipartization(G). ▷ G is a K4-free disk graph

1: T ← a maximal packing of ∆(G)
2: O ← {T ∈ ∆(G) : T ⊈ V (T)}

3: X1 ← PlanarBip(G− V (T)) ▷ construct the first solution S1
4: S1 ← V (T) ∪X1

5: for every T ∈ T do ▷ construct the second solution S2
6: vT ← random(T)
7: R←

⋃
T ∈T (T\{vT })

8: T ′ ← a maximal packing of ∆(G−R)
9: X2 ← PlanarBip(G− (R ∪ V (T ′)))

10: S2 ← R ∪ V (T ′) ∪X2

11: if O ̸= ∅ then ▷ construct the third solution S3
12: T ′′ ← a maximal packing of O
13: X3 ← Bipartization(G− (V (T ′′) ∩ V (T)))
14: S3 ← (V (T ′′) ∩ V (T)) ∪X3

15: return min{S1, S2, S3} ▷ if S3 is undefined, simply return min{S1, S2}

3.3 Analysis
In this section, we analyze the (expected) approximation ratio of Algorithm 1. We denote
by ρ this ratio and aim to establish an upper bound for ρ. Consider a given disk graph G

which is K4-free. Let opt be the minimum size of an odd cycle transversal of G, and T ,O
be the two sets of triangles as in Algorithm 1. The output of Algorithm 1 is the best one
among three OCT solutions S1, S2, S3. Therefore, to analyze the approximation ratio of our
algorithm, we have to consider the approximation ratios of S1, S2, S3. It turns out that each
solution Si individually may be of size 3opt or even larger in worst case. However, as we will
see, the best one among them always admits an approximation ratio strictly smaller than 3.

D. Lokshtanov, F. Panolan, S. Saurabh, J. Xue, and M. Zehavi 6:7

In order to analyze the three solutions, we define two important parameters: a = |T |/opt
and b = tri(O)/opt (recall that tri(O) is the size of a maximum packing of O). Note that
a, b ∈ [0, 1] because both |T | and tri(O) are at most the size of a maximum triangle packing
in G, which is smaller than or equal to opt. The analysis of S1, S2, S3 will be done in terms
of a and b, that is, we shall represent the approximation ratios of S1, S2, S3 as functions of a

and b. Roughly speaking, we shall show that S1 is good when a is small, S2 is good when b

is small, and S3 is good when both a and b are large. For convenience, we use the notation
ρ0 to denote the approximation ratio of the PlanarBip sub-routine used in Algorithm 1.

3.3.1 The quality of S1

The solution S1 is computed using exactly the 3-approximation algorithm described in the
introduction. A more careful analysis shows that its approximation ratio is related to the
parameter a: the smaller a is, the better S1 is.

▶ Lemma 7. |S1| ≤ (3a + ρ0(1− a)) · opt.

Proof. Since a = |T |/opt, and T is a triangle packing, we get that |V (T)| = 3|T | = 3a · opt.
Since T is a triangle packing, any odd cycle transversal contains at least |T | vertices from
V (T), the size of a minimum odd cycle transversal in G−V (T) is at most opt−|T | = (1−a)opt.
Therefore, |S1| = |V (T)|+ |X1| ≤ (3a + ρ0(1− a)) · opt. ◀

3.3.2 The quality of S2

Figuring out the quality of S2 is the most involved part in our analysis. Basically, what
we shall show is that whenever the parameter b is sufficiently small, S2 always gives us a
better-than-3 approximation no matter what the value of a is. The analysis in this section
shall explicitly use the fact that G is K4-free. Let vT , R, and T ′ be as in Algorithm 1. We
first need the following simple observation, which will allow us to bound the expected size of
S2 using the expected size of T ′.

▶ Observation 8. E[|R ∩ Sopt|] ≥ 1
3 |R| and |V (T ′) ∩ Sopt| ≥ |T ′|.

Proof. Since Sopt is an OCT of G, it contains at least one vertex in every triangle T ∈ T .
Thus, E[|(T\{vT }) ∩ Sopt|] ≥ 2

3 . By the linearity of expectation, we have

E[|R ∩ Sopt|] =
∑
T ∈T

E[|(T\{vT }) ∩ Sopt|] ≥
2
3 |T | =

1
3 |R|.

The fact |V (T ′) ∩ Sopt| ≥ |T ′| follows from the fact that T ′ is a triangle packing: Sopt
contains at least one vertex in every triangle T ∈ T ′. ◀

The above observation implies that E[|(R∪V (T ′))∩Sopt)|] ≥ 1
3 |R|+E[|T ′|]. Therefore, we

have E[|Sopt\(R∪V (T ′))|] ≤ opt− 1
3 |R|−E[|T ′|] and hence E[|X2|] ≤ ρ0 ·(opt− 1

3 |R|−E[|T ′|]).
It follows that

E[|S2|] = |R|+ E[|V (T ′)|] + E[|X2|]

≤ |R|+ 3 · E[|T ′|] + ρ0 ·
(

opt− 1
3 |R| − E[|T ′|]

)
=

(
1− ρ0

3

)
· |R|+ ρ0 · opt + (3− ρ0) · E[|T ′|]

(1)

APPROX/RANDOM 2024

6:8 Bipartizing (Pseudo-)Disk Graphs

We say a vertex v ∈ V (T) is dead if v /∈ R and v is not contained in any triangle in
G[V (T)\R]. Let D denote the set of all dead vertices, which is a random subset of V (T)
as it depends on the random vertices vT . For each v ∈ V (T), let deg(v) denote the degree
of v in G[V (T)]. Recall that a = |T |/opt and b = tri(O)/opt. It is easy to see the following
relation between |T ′| and |D|.

▶ Observation 9. |T ′| ≤ (a + b) · opt− |R|
3 −

|D|
3 .

Proof. Since T ′ is a triangle packing, we have |T ′ ∩ O| ≤ tri(O) = b · opt. On the other
hand, all elements in T ′\O are triangles in G[V (T)\R]. However, dead vertices cannot be
the vertex of any triangle in G[V (T)\R]. Thus, the vertices of the triangles in T ′\O must
lie in V (T)\(R ∪D). We have |V (T)\(R ∪D)| = 3 · |T | − |R| − |D| = 3a · opt− |R| − |D|,
which implies |T ′\O| ≤ a · opt− |R|

3 −
|D|
3 . Because |T ′| = |T ′ ∩ O|+ |T ′\O|, we have the

inequality in the observation. ◀

Combining the above observation with Equation 1, we have

E[|S2|] ≤
(

1− ρ0

3

)
· |R|+ ρ0 · opt + (3− ρ0) · E[|T ′|]

=
(

1− ρ0

3

)
· |R|+ ρ0 · opt + (3− ρ0) ·

(
(a + b) · opt− |R|3 −

E[D]
3

)
= (ρ0 + (3− ρ0)(a + b)) · opt− (3− ρ0) · E[|D|]

3 .

(2)

To show that S2 has an approximation ratio below 3 when b is small, the crucial observation
is that we have a large number of dead vertices in expectation.

▶ Observation 10. Pr[v is dead] ≥ (1
3) 3

8 deg(v)+ 1
4 for all v ∈ V (T). Thus, we have E[|D|] ≥

(1
3) 3

8 d+ 1
4 (3a · opt), where d is the average degree of G[V (T)].

Proof. Let v ∈ V (T) and T0 ∈ T be the triangle containing v. Denote by N(v) the
set of neighbors of v in V (T) (excluding v itself). We then have |N(v)| = deg(v) and
|N(v)\T0| = deg(v)− 2. Observe that the graph G[N(v)] is triangle-free. Indeed, if G[N(v)]
contains a triangle T , then T ∪ {v} forms a clique in G of size 4, which contradicts with the
fact that G is K4-free. As G[N(v)] is triangle-free, it is planar. In particular, G[N(v)\T0] is
planar. It was known that every n-vertex planar graph has a vertex cover of size at most 3

4 n

(indeed, a planar graph is 4-colorable, so it has an independent set of size at least n
4 and

thus a vertex cover of size at most 3
4 n). Thus, G[N(v)\T0] has a vertex cover C ⊆ N(v)\T0

with |C| ≤ 3
4 |N(v)\T0| = 3

4 (deg(v)− 2).
Next, we notice that if v /∈ R and C ⊆ R, then v is a dead vertex. Indeed, if v is contained

in a triangle {v, u, w} in G[V (T)\R], then at least one of u and w must be in C, since C is a
vertex cover of N(v)\T0 (note that u, w /∈ T0 for otherwise v ∈ R). Let T1 ⊆ T (resp., T2 ⊆ T)
consist of the triangles that contain one vertex (resp., two vertices) in C. Note that no triangle
in T can contain three vertices in C because G[C] is triangle-free. Therefore, C ⊆ R if and
only if vT /∈ C for all T ∈ T1 ∪ T2. The events vT /∈ C for all T ∈ T1 ∪ T2 are independent,
and happen with probability 2

3 if T ∈ T1 and with probability 1
3 if T ∈ T2. It follows that

Pr[C ⊆ R] = (2
3)|T1| · (1

3)|T2|. We have the inequality |T1| + 2|T2| = |C| ≤ 3
4 (deg(v) − 2).

Subject to |T1| ≥ 0, |T2| ≥ 0, and |T1|+ 2|T2| ≤ 3
4 (deg(v)− 2), the quantity (2

3)|T1| · (1
3)|T2|

is minimized when |T1| = 0 and |T2| = 3
8 (deg(v)− 2), and is equal to (1

3) 3
8 (deg(v)−2). Thus,

we have Pr[C ⊆ R] ≥ (1
3) 3

8 (deg(v)−2). Furthermore, the events v /∈ R and C ⊆ R are
independent because whether v /∈ R happens only depends on the choice of vT0 ∈ T0. We
have Pr[v /∈ R] = 1

3 and Pr[C ⊆ R] ≥ (1
3) 3

8 (deg(v)−2). Since v is a dead vertex if both
v /∈ R and C ⊆ R happen, we finally have Pr[v is dead] ≥ (1

3) 3
8 deg(v)+ 1

4 . By the linearity of
expectation and the fact |V (T)| = 3|T | = 3a · opt, we then have

D. Lokshtanov, F. Panolan, S. Saurabh, J. Xue, and M. Zehavi 6:9

E[|D|] =
∑

v∈V (T)

Pr[v is dead] ≥
∑

v∈V (T)

(
1
3

) 3
8 deg(v)+ 1

4

≥
(

1
3

) 3
8 d+ 1

4

(3a · opt).

where d =
∑

v∈V (T) deg(v)/|V (T)|. ◀

At the end, we can establish the bound for E[|S2|].

▶ Lemma 11. E[|S2|] ≤ (ρ0 + (1− (1
3) 3

8 d+ 1
4)(3− ρ0)a + (3− ρ0)b) · opt, where d denotes the

average degree of G[V (T)].

Proof. Combining Observation 10 with Equation 2 completes the proof. ◀

According to Lemma 6, we have d ≤ 22, and thus the above lemma gives us a good
bound for E[|S2|]: as long as b is sufficiently small, no matter what a is, we can have that
E[|S2|] ≤ (3− α) · opt for some constant α > 0.

3.3.3 The quality of S3

Finally, we analyze the quality of S3. Given S1 is good when a is small and S2 is good when
b is small, we clearly want S3 to be good when both a and b are large.

▶ Lemma 12. If ρ ≥ 2, then E[|S3|] ≤ (2b
3 + ρ(2− a− b

3)) · opt.

Proof. Let r = |T ′′|/opt. Since T ′′ is a maximal packing in O, V (T ′′) is a hitting set of O,
which implies 3|T ′′| = |V (T ′′)| ≥ tri(O) and thus r ≥ tri(O)

3·opt = b
3 .

▷ Claim 13. E[|X3|] ≤ ρ(2− a− r)opt.

Proof. Let S∗ be an optimal OCT of G. So |S∗| = opt. We call a triangle T ∈ T ′′ bad
if S∗ contains a vertex from V (T) \ V (T). Since T is a triangle packing, we also know
that |S∗ ∩ V (T)| ≥ |T | = a · opt. Thus, the number of bad triangles in T ′′ is at most
(1− a)opt, because S∗ contains at most (1− a)opt vertices outside of V (T), and any such
vertex can be part of at most one triangle in T ′′. That is, the number of good triangles
in T ′′ is at least (r − (1 − a))opt. For each good triangle T ∈ T ′′, S∗ contains a vertex
from V (T) ∩ V (T). This implies that |S∗ ∩ (V (T ′′) ∩ V (T))| ≥ (r − (1 − a))opt, and
hence |S∗ \ (V (T ′′) ∩ V (T))| ≤ opt − (r − (1 − a))opt = (2 − a − r)opt. Also, notice that
S∗ \ (V (T ′′) ∩ V (T)) is an OCT of G− (V (T ′′) ∩ V (T)). Thus, the size of an optimal OCT
of G− (V (T ′′) ∩ V (T)) is at most (2− a− r)opt, which implies E[|X3|] ≤ ρ(2− a− r)opt.

◁

Since each triangle T ∈ T ′′ is also in O, we have |V (T) ∩ V (T)| ≤ 2. This implies that
|V (T ′′) ∩ V (T)| ≤ 2r · opt. Now we are ready to deduce

E[|S3|] = E[|V (T ′′) ∩ V (T)|+ |X3|]
= |V (T ′′) ∩ V (T)|+ E[|X3|]
≤ (2r · opt) + ρ(2− a− r)opt (By Claim 13 and |V (T ′′) ∩ V (T)| ≤ 2r · opt)
= (2− ρ)r · opt + ρ(2− a)opt

≤ (2− ρ) b

3opt + ρ(2− a)opt (Because r ≥ b

3 , and 2− ρ < 0)

≤
(

2b

3 + ρ

(
2− a− b

3

))
· opt.

This completes the proof of the lemma. ◀

APPROX/RANDOM 2024

6:10 Bipartizing (Pseudo-)Disk Graphs

3.3.4 Putting everything together
Given the analyses for S1, S2, and S2 in the previous sections, we are ready to bound
the (expected) approximation ratio ρ of the entire algorithm. Let ρ1 = 3a + ρ0(1 − a),
ρ2 = ρ0 + (1− (1

3) 3
8 d+ 1

4)(3− ρ0)a + (3− ρ0)b, ρ3 = 2b
3 + ρ(2− a− b

3) be the approximation
ratios of S1, S2, S3 given in Lemmas 7, 11, 12, respectively1. As the output is the best one
among S1, S2, S3, we have

ρ ≤ E[min{|S1|, |S2|, |S3|}]
opt ≤ min{E[|S1|],E[|S2|],E[|S3|]}

opt ≤ min{ρ1, ρ2, ρ3}.

Note that ρ1, ρ2, ρ3 can be viewed as linear functions of a and b, when the other numbers d,
ρ0, ρ are all fixed. So we first figure out the values of a and b that maximizes min{ρ1, ρ2, ρ3}.
With calculation, we have

min{ρ1, ρ2, ρ3} ≤
(3− ρ0)(2ρ− ρ0)

(3− ρ0 + ρ) + (ρ− 2) · 3−(3
8 d+ 5

4) + ρ0, (3)

and the upper bound is achieved when

a = (2ρ− ρ0)
(3− ρ0 + ρ) + (ρ− 2) · 3−(3

8 d+ 5
4) and b = (2ρ− ρ0) · 3 3

8 d+ 1
4

(3− ρ0 + ρ) + (ρ− 2) · 3−(3
8 d+ 5

4) ,

in which case ρ1 = ρ2 = ρ3. Now combine Equation 3 with the inequality ρ ≤ min{ρ1, ρ2, ρ3}
and re-arrange the terms in the inequality, we deduce

(3−(3
8 d+ 5

4) + 1) · ρ2 − ((2 + ρ0) · 3−(3
8 d+ 5

4) + 3) · ρ + (2ρ0 · 3−(3
8 d+ 5

4)) ≤ 0.

The left-hand side of the above inequality is a quadratic function of ρ in which the coefficient
of the quadratic term is positive. Therefore, in order to make the quadratic function
non-positive, ρ must be smaller than its larger root, i.e.,

ρ ≤
((2 + ρ0) · 3−(3

8 d+ 5
4) + 3) +

√
((2 + ρ0) · 3−(3

8 d+ 5
4) + 3)2 − (3−(3

8 d+ 5
4) + 1)(8ρ0 · 3−(3

8 d+ 5
4))

2 · (3−(3
8 d+ 5

4) + 1)
.

By Lemma 6, G[V (T)] is 11-degenerate and thus d ≤ 22. Furthermore, using the 9
4 -

approximation algorithm [15] for planar bipartization, we can set ρ0 = 9
4 . Plugging in these

values to the above inequality, we have ρ ≤ 2.99993033741.
Our entire algorithm first applies Lemma 4 with a maximal packing C of K4(G) to reduce

the problem to G− V (C), which is a K4-free disk graph, and then applies Algorithm 1 on
G − V (C). By Lemma 4 and the above analysis, this algorithm solves Bipartization on
disk graphs with an expected approximation ratio at most 2.99993033741. By repeating the
algorithm polynomial number of times, we can also obtain a randomized algorithm that
achieves the same approximation ratio with high probability.

▶ Theorem 14. There exists a polynomial-time randomized algorithm for Bipartization
on the class of disk graphs that gives a (3− α)-approximation solution with high probability,
for some α > 10−5.

1 In Lemma 12, the bound for E[|S3|] has a condition ρ ≥ 2. But we can assume this is always the case,
for otherwise our algorithm is already a 2-approximation algorithm.

D. Lokshtanov, F. Panolan, S. Saurabh, J. Xue, and M. Zehavi 6:11

With some efforts, we can derandomize our algorithm to obtain a deterministic (3− α)-
approximation algorithm for Bipartization on disk graphs. In fact, in Algorithm 1, only
the construction of the set R is randomized. We show in the full version how to construct
R deterministically while still guaranteeing the nice properties of R (the key point is to
guarantee that there are many dead vertices). The approximation ratio of our deterministic
algorithm is slightly worse than the randomized one (while it is still smaller than 3).

▶ Theorem 2. There exists a polynomial-time (3− α)-approximation algorithm for Biparti-
zation on the class of disk graphs, for some constant α > 0.

4 Generalizations

In this section, we discuss some generalizations of our result. First, we observe that our
algorithm directly generalizes to pseudo-disk graphs. A set of geometric objects in the plane
are called pseudo-disks if each of them is homeomorphic to a disk and the boundaries of any
two objects intersect at most twice. A graph is a pseudo-disk graph if it can be represented
as the intersection graph of a set of pseudo-disks.

In our Bipartization algorithm, we only exploit two properties of disk graphs: (i)
triangle-free disk graphs are planar, and (ii) K4-free disk graphs are c-degenerate for some
constant c. In fact, pseudo-disk graphs also satisfy these two properties.

▶ Fact 15 ([22]). Triangle-free pseudo-disk graphs are planar.

▶ Fact 16. K4-free pseudo-disk graphs are c-degenerate for some constant c.

Proof. We show that any Kr-free pseudo-disk graph of n vertices only has O(rn) edges, which
implies the fact. Let G be a Kr-free pseudo-disk graph realized by a set S of pseudo-disks.
We say an edge (S, S′) of G is an inclusion edge if S ⊆ S′ or S′ ⊆ S. We first observe that
G has O(rn) inclusion edges. Indeed, a pseudo-disk S ∈ S cannot be contained in r − 1 (or
more) other pseudo-disks in S, for otherwise there is a copy of Kr in G. Thus, if we charge
every inclusion edge (S, S′) to the smaller one of S and S′, every pseudo-disk is charged at
most r− 2 times. This implies that G has O(rn) inclusion edges. Now we bound the number
of other edges in G. Note that if (S, S′) is a non-inclusion edge in G, then the boundaries
of S and S′ intersect. So it suffices to bound the total number of intersection points of the
boundaries of the pseudo-disks in S. The depth of an intersection point x is the number of
pseudo-disks in S containing x. It is well-known that in a set of n pseudo-disks, the number
of boundary intersection points of depth at most d is bounded by O(dn) [21]. Since G is
Kr-free, every intersection point is of depth at most r. Thus, the total number of boundary
intersection points is O(rn), implying that G has O(rn) edges. ◀

Therefore, our algorithm directly generalizes to pseudo-disk graphs.

▶ Theorem 3. There exists a polynomial-time (3− α)-approximation algorithm for Biparti-
zation on the class of pseudo-disk graphs, for some constant α > 0.

Next, we observe that our techniques apply to not only the specific problem of Biparti-
zation. In fact, it works for a wide class of vertex-deletion problems on (pseudo-)disk graphs.
Recall that in a vertex-deletion problem, the goal is to delete a minimum set S of vertices
from a graph G such that G− S satisfies some desired property P. In Bipartization, the
property P is “being bipartite”. Our technique applies to any vertex-deletion problem that is
(i) hereditary, i.e., if a graph satisfies P then all its induced subgraphs also satisfy P, and
(ii) triangle-conflicting, i.e., a graph satisfies P only if it is triangle-free.

APPROX/RANDOM 2024

6:12 Bipartizing (Pseudo-)Disk Graphs

▶ Theorem 17. If a hereditary and triangle-conflicting vertex-deletion problem admits a
(3− δ)-approximation algorithm on the class of planar graphs for some δ > 0, then it admits
a (3− α)-approximation algorithm on the class of (pseudo-)disk graphs for some α > 0.

Proof. We just replace the PlanarBip sub-routine in Algorithm 1 with the (3 − δ)-
approximation algorithm for the problem on planar graphs. As one can easily verify,
our analysis only depends on the fact that the vertex-deletion problem is hereditary and
triangle-conflicting. Thus, the same analysis shows that this is a (3 − α)-approximation
algorithm for the problem on (pseudo-)disk graphs. ◀

Well-studied instances of hereditary and triangle-conflicting vertex-deletion problems
(other than Bipartization) include Vertex Cover, Feedback Vertex Set, Triangle
Hitting, etc. Most of these problems already have (3 − δ)-approximation algorithms on
disk graphs, and some of them do not have known (3 − δ)-approximation algorithms on
planar graphs. Thus, at this point, we can only obtain interesting results for Bipartization.
However, we believe that this is not the full power of Theorem 17. To provide some evidences,
let us consider a vertex-deletion problem, Planarization&Bipartization, in which the
desired property P is “being planar and bipartite”. This problem is clearly hereditary and
triangle-conflicting. On planar graphs, it is equivalent to Bipartization and thus admits
a (3− δ)-approximation algorithm. Therefore, Theorem 17 gives a (3− α)-approximation
algorithm for Planarization&Bipartization on (pseudo-)disk graphs. Although this
problem itself is somehow artificial and not well-studied, it reveals that Theorem 17 could
possibly have further applications in the future.

References

1 Amit Agarwal, Moses Charikar, Konstantin Makarychev, and Yury Makarychev. O(
√

log n)
approximation algorithms for min uncut, min 2cnf deletion, and directed cut problems. In
Harold N. Gabow and Ronald Fagin, editors, Proceedings of the 37th Annual ACM Symposium
on Theory of Computing, Baltimore, MD, USA, May 22-24, 2005, pages 573–581. ACM, 2005.
doi:10.1145/1060590.1060675.

2 Sayan Bandyapadhyay, William Lochet, Daniel Lokshtanov, Saket Saurabh, and Jie Xue.
Subexponential parameterized algorithms for cut and cycle hitting problems on h-minor-free
graphs. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 2063–2084. SIAM, 2022.

3 Sayan Bandyapadhyay, William Lochet, Daniel Lokshtanov, Saket Saurabh, and Jie Xue.
True contraction decomposition and almost ETH-tight bipartization for unit-disk graphs. In
38th International Symposium on Computational Geometry (SoCG 2022). Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022.

4 Nikhil Bansal and Subhash Khot. Optimal long code test with one free bit. In 2009 50th
Annual IEEE Symposium on Foundations of Computer Science, pages 453–462. IEEE, 2009.

5 Marthe Bonamy, Édouard Bonnet, Nicolas Bousquet, Pierre Charbit, Panos Giannopoulos,
Eun Jung Kim, Pawel Rzazewski, Florian Sikora, and Stéphan Thomassé. EPTAS and
subexponential algorithm for maximum clique on disk and unit ball graphs. J. ACM, 68(2):9:1–
9:38, 2021. doi:10.1145/3433160.

6 Hyeong-Ah Choi, Kazuo Nakajima, and Chong S. Rim. Graph bipartization and via mini-
mization. SIAM J. Discret. Math., 2(1):38–47, 1989. doi:10.1137/0402004.

7 Mark de Berg, Hans L. Bodlaender, Sándor Kisfaludi-Bak, Dániel Marx, and Tom C. van der
Zanden. A framework for exponential-time-hypothesis-tight algorithms and lower bounds
in geometric intersection graphs. SIAM J. Comput., 49(6):1291–1331, 2020. doi:10.1137/
20M1320870.

https://doi.org/10.1145/1060590.1060675
https://doi.org/10.1145/3433160
https://doi.org/10.1137/0402004
https://doi.org/10.1137/20M1320870
https://doi.org/10.1137/20M1320870

D. Lokshtanov, F. Panolan, S. Saurabh, J. Xue, and M. Zehavi 6:13

8 Thomas Erlebach, Klaus Jansen, and Eike Seidel. Polynomial-time approximation schemes
for geometric intersection graphs. SIAM J. Comput., 34(6):1302–1323, 2005. doi:10.1137/
S0097539702402676.

9 Guy Even, Joseph Naor, Satish Rao, and Baruch Schieber. Divide-and-conquer approximation
algorithms via spreading metrics. J. ACM, 47(4):585–616, 2000. doi:10.1145/347476.347478.

10 Samuel Fiorini, Nadia Hardy, Bruce A. Reed, and Adrian Vetta. Approximate min-max
relations for odd cycles in planar graphs. Math. Program., 110(1):71–91, 2007. doi:10.1007/
s10107-006-0063-7.

11 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi.
Finding, hitting and packing cycles in subexponential time on unit disk graphs. Discret.
Comput. Geom., 62(4):879–911, 2019. doi:10.1007/s00454-018-00054-x.

12 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi. ETH-
tight algorithms for long path and cycle on unit disk graphs. J. Comput. Geom., 12(2):126–148,
2021. doi:10.20382/jocg.v12i2a6.

13 Matt Gibson and Imran A. Pirwani. Algorithms for dominating set in disk graphs: Breaking
the logn barrier – (extended abstract). In Mark de Berg and Ulrich Meyer, editors, Algorithms –
ESA 2010, 18th Annual European Symposium, Liverpool, UK, September 6-8, 2010. Proceedings,
Part I, volume 6346 of Lecture Notes in Computer Science, pages 243–254. Springer, 2010.
doi:10.1007/978-3-642-15775-2_21.

14 Michel X. Goemans and David P. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. J. ACM, 42(6):1115–
1145, 1995. doi:10.1145/227683.227684.

15 Michel X. Goemans and David P. Williamson. Primal-dual approximation algorithms for
feedback problems in planar graphs. Comb., 18(1):37–59, 1998. doi:10.1007/PL00009810.

16 Bart MP Jansen and Stefan Kratsch. On polynomial kernels for structural parameterizations of
odd cycle transversal. In International Symposium on Parameterized and Exact Computation,
pages 132–144. Springer, 2011.

17 Bart MP Jansen, Marcin L Pilipczuk, and Erik Jan Van Leeuwen. A deterministic polynomial
kernel for odd cycle transversal and vertex multiway cut in planar graphs. SIAM Journal on
Discrete Mathematics, 35(4):2387–2429, 2021.

18 Andrew B. Kahng, Shailesh Vaya, and Alexander Zelikovsky. New graph bipartizations for
double-exposure, bright field alternating phase-shift mask layout. In Satoshi Goto, editor,
Proceedings of ASP-DAC 2001, Asia and South Pacific Design Automation Conference 2001,
January 30-February 2, 2001, Yokohama, Japan, pages 133–138. ACM, 2001. doi:10.1145/
370155.370304.

19 Ken-Ichi Kawarabayashi and Atsuhiro Nakamoto. The Erdős–Pósa property for vertex-and
edge-disjoint odd cycles in graphs on orientable surfaces. Discrete Mathematics, 307(6):764–768,
2007.

20 Ken-ichi Kawarabayashi and Bruce A. Reed. Odd cycle packing. In Leonard J. Schulman,
editor, Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010,
Cambridge, Massachusetts, USA, 5-8 June 2010, pages 695–704. ACM, 2010. doi:10.1145/
1806689.1806785.

21 Klara Kedem, Ron Livne, János Pach, and Micha Sharir. On the union of Jordan regions
and collision-free translational motion amidst polygonal obstacles. Discrete & Computational
Geometry, 1(1):59–71, 1986.

22 Jan Kratochvíl. Intersection graphs of noncrossing arc-connected sets in the plane. In
International Symposium on Graph Drawing, pages 257–270. Springer, 1996.

23 Stefan Kratsch and Magnus Wahlström. Compression via matroids: a randomized polynomial
kernel for odd cycle transversal. ACM Transactions on Algorithms (TALG), 10(4):1–15, 2014.

24 Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New tools
for kernelization. J. ACM, 67(3):16:1–16:50, 2020. doi:10.1145/3390887.

APPROX/RANDOM 2024

https://doi.org/10.1137/S0097539702402676
https://doi.org/10.1137/S0097539702402676
https://doi.org/10.1145/347476.347478
https://doi.org/10.1007/s10107-006-0063-7
https://doi.org/10.1007/s10107-006-0063-7
https://doi.org/10.1007/s00454-018-00054-x
https://doi.org/10.20382/jocg.v12i2a6
https://doi.org/10.1007/978-3-642-15775-2_21
https://doi.org/10.1145/227683.227684
https://doi.org/10.1007/PL00009810
https://doi.org/10.1145/370155.370304
https://doi.org/10.1145/370155.370304
https://doi.org/10.1145/1806689.1806785
https://doi.org/10.1145/1806689.1806785
https://doi.org/10.1145/3390887

6:14 Bipartizing (Pseudo-)Disk Graphs

25 Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and Saket
Saurabh. Faster parameterized algorithms using linear programming. ACM Trans. Algorithms,
11(2):15:1–15:31, 2014. doi:10.1145/2566616.

26 Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Jie Xue, and Meirav Zehavi. Subexponen-
tial parameterized algorithms on disk graphs (extended abstract). In Proceedings of the 2022
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2005–2031. SIAM,
2022.

27 Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Jie Xue, and Meirav Zehavi. A 1.9999-
approximation algorithm for vertex cover on string graphs. In 40th International Symposium
on Computational Geometry (SoCG 2024). Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2024.

28 Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Jie Xue, and Meirav Zehavik. A framework
for approximation schemes on disk graphs. In 34rd Annual ACM-SIAM Symposium on Discrete
Algorithms. SIAM, 2023.

29 Daniel Lokshtanov, Saket Saurabh, and Magnus Wahlström. Subexponential parameterized
odd cycle transversal on planar graphs. In IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS 2012). Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2012.

30 Madhav V. Marathe, Heinz Breu, Harry B. Hunt, S. S. Ravi, and Daniel J. Rosenkrantz.
Simple heuristics for unit disk graphs. Networks, 25:59–68, 1995.

31 Dániel Marx, Pranabendu Misra, Daniel Neuen, and Prafullkumar Tale. A framework for
parameterized subexponential algorithms for generalized cycle hitting problems on planar
graphs. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 2085–2127. SIAM, 2022.

32 Mihai Pop, Daniel S Kosack, and Steven L Salzberg. Hierarchical scaffolding with bambus.
Genome research, 14(1):149–159, 2004.

33 Dieter Rautenbach and Bruce Reed. The Erdos-Pósa property for odd cycles in highly
connected graphs. Combinatorica, 21(2):267–278, 2001.

34 Dieter Rautenbach and Bruce A. Reed. The Erdos-Pósa property for odd cycles in highly
connected graphs. Comb., 21(2):267–278, 2001. doi:10.1007/s004930100024.

35 Bruce Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals. Operations
Research Letters, 32(4):299–301, 2004.

36 Bruce A. Reed. Mangoes and blueberries. Comb., 19(2):267–296, 1999. doi:10.1007/
s004930050056.

37 Bruce A. Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals. Oper. Res.
Lett., 32(4):299–301, 2004. doi:10.1016/j.orl.2003.10.009.

38 Romeo Rizzi, Vineet Bafna, Sorin Istrail, and Giuseppe Lancia. Practical algorithms and fixed-
parameter tractability for the single individual SNP haplotyping problem. In Roderic Guigó
and Dan Gusfield, editors, Algorithms in Bioinformatics, Second International Workshop,
WABI 2002, Rome, Italy, September 17-21, 2002, Proceedings, volume 2452 of Lecture Notes
in Computer Science, pages 29–43. Springer, 2002. doi:10.1007/3-540-45784-4_3.

39 Sartaj Sahni and Teofilo F. Gonzalez. P-complete approximation problems. J. ACM, 23(3):555–
565, 1976. doi:10.1145/321958.321975.

40 Carsten Thomassen. The Erdős–Pósa property for odd cycles in graphs of large connectivity.
Combinatorica, 21(2):321–333, 2001.

41 Erik Jan van Leeuwen. Better approximation schemes for disk graphs. In Lars Arge and
Rusins Freivalds, editors, Algorithm Theory – SWAT 2006, 10th ScandinavianWorkshop on
Algorithm Theory, Riga, Latvia, July 6-8, 2006, Proceedings, volume 4059 of Lecture Notes in
Computer Science, pages 316–327. Springer, 2006. doi:10.1007/11785293_30.

42 Sebastian Wernicke. On the algorithmic tractability of single nucleotide polymorphism (SNP)
analysis and related problems. diplom. de, 2014.

https://doi.org/10.1145/2566616
https://doi.org/10.1007/s004930100024
https://doi.org/10.1007/s004930050056
https://doi.org/10.1007/s004930050056
https://doi.org/10.1016/j.orl.2003.10.009
https://doi.org/10.1007/3-540-45784-4_3
https://doi.org/10.1145/321958.321975
https://doi.org/10.1007/11785293_30

A Logarithmic Approximation of Linearly-Ordered
Colourings
Johan Håstad # Ñ

KTH Royal Institute of Technology, Stockholm, Sweden

Björn Martinsson #

KTH Royal Institute of Technology, Stockholm, Sweden

Tamio-Vesa Nakajima # Ñ

Department of Computer Science, University of Oxford, UK

Stanislav Živný # Ñ

Department of Computer Science, University of Oxford, UK

Abstract
A linearly ordered (LO) k-colouring of a hypergraph assigns to each vertex a colour from the
set {0, 1, . . . , k − 1} in such a way that each hyperedge has a unique maximum element. Barto,
Batistelli, and Berg conjectured that it is NP-hard to find an LO k-colouring of an LO 2-colourable
3-uniform hypergraph for any constant k ≥ 2 [STACS’21] but even the case k = 3 is still open.
Nakajima and Živný gave polynomial-time algorithms for finding, given an LO 2-colourable 3-uniform
hypergraph, an LO colouring with O∗(

√
n) colours [ICALP’22] and an LO colouring with O∗(3√n)

colours [ACM ToCT’23]. Very recently, Louis, Newman, and Ray gave an SDP-based algorithm
with O∗(5√n) colours. We present two simple polynomial-time algorithms that find an LO colouring
with O(log2(n)) colours, which is an exponential improvement.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis;
Theory of computation → Constraint and logic programming

Keywords and phrases Linear ordered colouring, Hypergraph, Approximation, Promise Constraint
Satisfaction Problems

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.7

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2404.19556

Funding This work was supported by UKRI EP/X024431/1, by a Clarendon Fund Scholarship and
by the Knut and Alice Wallenberg Foundation. For the purpose of Open Access, the authors have
applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from
this submission. All data is provided in full in the results section of this paper.

Acknowledgements This paper is a merger of independent work by Håstad and Martinsson, and by
Nakajima and Živný respectively. We are grateful to Venkat Guruswami for noting and informing
the authors of the fact that we independently had found the same algorithm.

1 Introduction

Given a graph G, the graph k-colouring problem asks to find a colouring of the vertices of
G by colours from the set {0, 1, . . . , k − 1} in such a way that no edge is monochromatic.
The approximate graph colouring problem asks, given a k-colourable graph G, to find an
ℓ-colouring of G, where ℓ ≥ k. For k = 3, the state-of-the-art results are NP-hardness of the
case ℓ = 5 [2] and a polynomial-time algorithm for finding a colouring with ℓ = O(n0.19747)
colours, where n is the number of vertices of the input graph G [9]. For non-monochromatic

© Johan Håstad, Björn Martinsson, Tamio-Vesa Nakajima, and Stanislav Živný;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 7; pp. 7:1–7:6

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:johanh@kth.se
https://www.csc.kth.se/~johanh/
https://orcid.org/0000-0002-5379-345X
mailto:bmart@kth.se
https://orcid.org/0009-0006-4903-1328
mailto:tamio-vesa.nakajima@cs.ox.ac.uk
https://tamionv.ro
https://orcid.org/0000-0003-3684-9412
mailto:standa.zivny@cs.ox.ac.uk
https://www.cs.ox.ac.uk/standa.zivny/
https://orcid.org/0000-0002-0263-159X
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.7
https://arxiv.org/abs/2404.19556
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 A Logarithmic Approximation of Linearly-Ordered Colourings

colourings of hypergraphs, it is known that finding an ℓ-colouring of a k-colourable r-uniform
hypergraph is NP-hard for any constant ℓ ≥ k ≥ 2 and r ≥ 3 [7], and also some positive
results are known for colourings with super-constantly many colours, e.g. [11, 10, 6].

A new variant of hypergraph colourings was identified in [1]. Given a 3-uniform hypergraph
H, a colouring of the vertices of H with colours from the set {0, 1, . . . , k − 1} is called a
linearly ordered (LO) k-colouring if every edge e of H satisfies the following: if two vertices
of e have the same colour then the third colour is larger. More generally, a colouring of a
hypergraph H is an LO colouring if every edge of H has a unique maximum colour. (Note
that the two definitions coincide for 3-uniform hypergraphs.) Barto et al. conjectured
that finding an LO ℓ-colouring of a 3-uniform hypergraph that admits an LO k-colouring is
NP-hard for every constant ℓ ≥ k ≥ 2 [1] but even the case k = 2 and ℓ = 3 is open. Nakajima
and Živný established NP-hardness for some regimes of the parameters k, ℓ, r [13, 14] and,
very recently, Filakovký et al. [8] showed NP-hardness of the case k = 3, ℓ = 4, r = 3. More
importantly for this paper, Nakajima and Živný also considered finding an LO f(n)-colouring
of an LO 2-colourable 3-uniform hypergraph with n vertices and presented polynomial-time
algorithms with f(n) = O(

√
n log log n/ log n) [13] and f(n) = O(3

√
n log log n/ log n) [14].

Very recently, Louis, Newman, and Ray [12] have given a polynomial-time SDP-based
algorithm with f(n) = O∗(5

√
n) colours.

As our main result, we improve their results by an exponential factor.

▶ Theorem 1. There is an algorithm which, if given a 3-uniform hypergraph H with n ≥ 4
vertices and m edges that admits an LO 2-colouring, finds an LO log2(n)-colouring of H in
time O(n3 + nm).

In fact we present two different algorithms that return colourings using O(log n) colours.
Both are based on solving the natural system of linear equations implied by the existence of
an LO 2-colouring. In one case, the system is solved modulo 2, and in the other case, the
system is solved over the rationals.

While the H which we are given as input is 3-uniform, we will need the notion that follows
in greater generality; hence we define it for general hypergraphs. For each edge {x1, . . . , xr}
of H, we write an equation vx1 + · · · + vxr

= 1 where we initially use equality modulo 2 but
as stated above we later use the same system over the rational numbers. Let A be this set of
equations, written as a matrix with m rows and n columns. (Note that A is the incidence
matrix of H.) Thus v is a solution if and only if Av = 1m. Clearly a valid LO 2-colouring
gives one solution but in the general case, the system has a large dimensional affine space as
its set of solutions and the desired solution is hard to find.

2 Algorithm based on equations modulo 2

In this section all linear equations are taken modulo 2. For the following, given a set S of
positive integers, an S-uniform hypergraph is a hypergraph where all edges have sizes taken
from S. We first prove the following subprocedure of the main algorithm.

▶ Lemma 2. There is an algorithm which, if given a {2, 3}-uniform hypergraph H with n

vertices and m edges that admits an LO 2-colouring and such that the implied linear system
of equations Av = 1m does not fix the value of any variable, outputs a subset T of vertices
that intersects edges of size three in zero or two vertices and edges of size two in exactly one
vertex. Moreover, we have |T | ≥ n/2. The algorithm runs in O(n3 + nm) time.

J. Håstad, B. Martinsson, T.-V. Nakajima, and S. Živný 7:3

Proof. We first describe a randomised version of our algorithm, and then derandomise it.
The set of solutions to Av = 1m is an affine space and hence a generic solution can be
written as v = v0 +

∑r
i=1 aiv

i for a basic solution v0, linearly independent solutions to the
homogeneous system vi, and field elements (in this case bits) ai. The fact that no variable is
fixed implies that for each vertex x there is some positive i such that vi

x = 1.
For the randomised algorithm choose a1, . . . , ar to be independent identically distributed

uniformly random bits, and set T to be the set of variables x, such that vx = 0. Clearly T

satisfies the conclusion of the lemma as in each edge we have an odd number of ones. Since
for every vertex x there exists positive i such that vi

x, due to the influence of aiv
i
x we see

that x is included in T with probability 1/2. Thus, on average T contains half the vertices.
Now, we derandomise this algorithm using the method of conditional expectations. Go

through the variables ai in increasing order and fix its value once and for all. Fixing the
value of ai determines the value of some vx while other values remain undetermined. For
each value being determined vi

x = 1 and hence one value of ai gives the final value 0 and the
other gives final value 1. Set ai such that at least half the determined values are 0. After we
have fixed all ai this way, we have a final solution with at least n/2 zeroes.

The bottleneck of the running time of this algorithm is solving the linear system of
equations. This can be done in the advertised running time since every equation has O(1)
entries. ◀

Proof of Theorem 1. As a preliminary step, we eliminate any variable determined by the
system Av = 1m. Note that if the colour of a vertex is determined by the system Av = 1m,
then this vertex must have that same colour in all LO 2-colourings. Fix these variables once
and for all and eliminate them from the equation system. For all vertices that have been
given the colour 1, we set the colours of the two other vertices in all of its edges to be 0.
This process of identifying fixed variables and eliminating them is then repeated until the
system Av = 1m contains no variables fixed to a constant. At any fixed point of this process,
for every edge, either all vertices in that edge are fixed (and the edge has a unique maximum
as required), or exactly one vertex in it is fixed to 0.

Now, remove all coloured vertices from the hypergraph H, shrinking the edges they
belonged to. The remaining hypergraph will no longer be 3-uniform, but importantly it will
still be LO 2-colourable. Our goal is still to LO colour the remaining hypergraph, since any
edge partially coloured by the preliminary step above must have had exactly one vertex v

fixed to 0; and hence, if we LO colour the edge that resulted from removing v, this leads to
an LO colouring of the original hypergraph when v is assigned 0.

Consider the following algorithm, where i starts at 0.
1. If the hypergraph H has at most, say, 20 vertices, find an LO-colouring of H by brute

force using colours i and i + 1. (It exists since H is LO 2-colourable.)
2. Otherwise, find the subset T guaranteed by Lemma 2.
3. Colour the vertices in T by colour i. Remove the vertices in T from H . Remove all edges

that intersect T from H. Increment i by 1.
4. Repeat.
Note that |T | ≥ n/2 and thus within −4 + log2 n repetitions we reach the first case. Each
step adds one colour and we get two additional colours from the final brute-force colouring
for a total of at most log2 n colours. The output is correct as the first time some vertex in
an edge is coloured, for edges with three vertices exactly one more vertex in the same edge
is coloured at the same time, and for edges with two vertices only that vertex is coloured
at that time. The remaining vertex is given a higher colour and hence the edge is correctly
coloured. For the time complexity, we again note that it is dominated by the time needed to
solve the linear system of equations. ◀

APPROX/RANDOM 2024

7:4 A Logarithmic Approximation of Linearly-Ordered Colourings

Note that the number 20 selected above can be increased to any number that is O(log n)
and the algorithm remains polynomial time (since we must compute the colouring for a
subgraph of this size by brute force). If we stop the algorithm at B vertices, then we save
log B + Θ(1) colours, since this is how many colours the algorithm would have used to colour
the last B vertices. By setting B = Θ(log n), we can thus save Θ(1) + log log n colours while
keeping run time of the algorithm polynomial in n.

A slight variant can be obtained by instead counting the number of remaining edges with
no coloured vertex. Once we have no more such vertices, we colour all remaining vertices
with the next colour. For such edge, a random solution v gives the four sets of values (0, 0, 1),
(0, 1, 0), (1, 0, 0) and (1, 1, 1) with equal probabilities. Thus the number of edges decreases,
on average, by a factor 4 for each iteration. (Note that all the edges of size 2 are solved in the
first iteration, so there is no need to count them.) It is easy to achieve this deterministically
by conditional expectations. We state the conclusion as a theorem.

▶ Theorem 3. There is an algorithm which, if given a 3-uniform hypergraph H with n vertices
and m ≥ 1 edges that admits an LO 2-colouring, finds an LO (2 + 1

2 log2(m))-colouring of H

in time O(n3 + nm).

▶ Remark 4. Our algorithm has some similarity with algorithms for temporal CSPs [3]. Note
that an LO ω-colouring (which means an LO-colouring, but with no restriction on the number
of colours) is a temporal CSP; to solve it, one finds a subset that could be the smallest colour
(by solving mod-2 equations as above), sets that colour, then continues recursively. The
difference is that for an LO ω-colouring one does not care about the number of colours, so
one can find any nonempty set of vertices to set the lowest colour to, whereas in our problem
we are trying to find a large set of this kind. We note that the algorithm of [14] also uses
this approach when setting “small colours”.

▶ Remark 5. We remark that the subprocedure of our algorithm computes the exclusive or
of two vectors of bits. Thus the algorithm runs very fast in practice – on most architectures
hundreds of operations of this kind are done at one time by (i) packing the bits within a
larger word and (ii) using SIMD instructions.

3 Algorithm using Q

In this section we present a more complicated algorithm which uses more colours. This
might seem pointless, and indeed it might be. On the other hand the ideas used are slightly
different and hence there might be situations where the ideas of this section can turn out to
be useful. It is also curious to see that we can use the same system of linear equations, now
over the rationals, in a rather different way. The algorithm here is in fact essentially saying
that we can always use the unbalanced case of [12]. As this eliminates many complications
and in particular makes it possible to completely avoid any semi-definite programming, we
state all facts needed in the current section rather than refer to the very similar statements
in [12]. As already stated, all arithmetic in this section is over the rational numbers. In this
situation, no variables can be determined as we can set v0 to have all coordinates equal to
1/3.

We study the homogeneous system Av = 0 and by the assumption of LO 2-colourability
it has a solution, w, with coordinates either − 1

3 or 2
3 . Let us first show how solutions over

the rational numbers can be used to find LO-colourings. This is the same lemma used in the
unbalanced case of [12].

J. Håstad, B. Martinsson, T.-V. Nakajima, and S. Živný 7:5

▶ Lemma 6. Suppose we have a solution, u, to the homogeneous system where M is the
maximal value of the absolute value of a coordinate and m > 0 is the minimal absolute value.
Then we can LO-colour with 2 + log2 (M/m) colours.

Proof. For notational convenience let us instead require that the minimal colour in each
edge should be unique. We can simply reverse the order of the colours at the end. By scaling
we can assume M = 1. We use even colours for positive coordinates and we give x the colour
2ℓ if vx is at most 2−(2ℓ−1) and strictly larger than 2−(2ℓ+1). For negative coordinates we use
2ℓ + 1 as the colour if vx is between −2−2ℓ (inclusive) and −2−(2ℓ+2) (non-inclusive). Let us
verify that this gives a correct colouring.

Take an edge (x, y, z) and suppose both x and y get the same colour 2ℓ. Then by the
linear equation of the edge vz < −2−2ℓ and thus z has a colour below 2ℓ. The case of two
vertices of odd colour is similar and as the bound on the number of colours is immediate, the
lemma follows. ◀

Let us choose the vectors (vi)r
i=1 giving the solutions to the homogeneous system to be of

unit length and orthogonal. Define u =
∑r

i=1 yiv
i where yi are independent normal variables

with mean 0 and standard deviation 1. The length of u is very close to
√

r but to be crude
we use that E[∥u∥2] = r and hence with probability 3

4 the length of u is at most 2
√

r.
Let cj = (v1

j , v2
j , . . . vr

j) be the vector of dimension r given by the jth coordinates of each
vector vi. Using this notation we see that the jth coordinate of u is a normal variable with
standard deviation ∥cj∥. Recall that w is our assumed solution to Av = 0 with all coordinates
either − 1

3 or 2
3 . We can write w =

∑r
i=1 aiv

i for some numbers ai, and by orthonormality
∥a∥ = ∥w∥ which is at most 2

3
√

n. As

|wj | = |(cj , a)| ≤ ∥cj∥∥a∥,

using that |wj | is at least 1
3 we conclude that

∥cj∥ ≥ 1/(2
√

n).

The probability that a normal variable with standard deviation σ is of absolute value at
most δ is at most 2δ/(

√
2πσ). We conclude that for a suitable constant d the probability

that |uj | is below dn−3/2 is at most 1/(2n). Thus with probability at least 1/2 the absolute
value of any coordinate of u is at least dn−3/2. Thus with probability at least 1

4 , we can
apply Lemma 6 with M = 2n1/2 and m = dn−3/2 and we conclude.

▶ Theorem 7. Using the system of linear equations over the rational numbers we can find,
with probability at least 1

4 and in polynomial time, an LO-colouring with O(1) + 2 log2 n

colours.

This algorithm is less efficient compared to the algorithm of the previous section. The
main computational cost is still solving a linear system but this is more complicated over
the rational numbers as coefficients are likely to grow. Our bound for the number of colours
is also worse. Heuristically one could hope to have the ratio of the smallest and largest
coordinate of u to be Θ(n) but not better. Thus it is possible that we could eliminate the
multiplicative constant 2 in the theorem but to get substantially fewer than log n colours by
this method sounds unlikely.

As a final observation in this section let us note that defining a colouring by the sign of
the vector u we get a standard (non-monochromatic) 2-colouring of the hypergraph. This
gives an alternative algorithm to that of [5, 4].

APPROX/RANDOM 2024

7:6 A Logarithmic Approximation of Linearly-Ordered Colourings

4 Concluding remarks

Our algorithms indicate that LO 2-colouring is quite different from many other colouring
problems. The key property that we use in our algorithm is that the constraint implies a
linear constraint. The analysis of the algorithms also heavily relies on the fact that we study
3-uniform hypergraphs.

It is tempting to think that the proposed methods would extend to other constraint
satisfaction problems where we are guaranteed that a solution must satisfy a linear constraint.
We have so far been unable to find an interesting such example.

References
1 Libor Barto, Diego Battistelli, and Kevin M. Berg. Symmetric Promise Constraint Satisfaction

Problems: Beyond the Boolean Case. In Proc. 38th International Symposium on Theoretical
Aspects of Computer Science (STACS’21), volume 187 of LIPIcs, pages 10:1–10:16, 2021.
doi:10.4230/LIPIcs.STACS.2021.10.

2 Libor Barto, Jakub Bulín, Andrei A. Krokhin, and Jakub Opršal. Algebraic approach to
promise constraint satisfaction. J. ACM, 68(4):28:1–28:66, 2021. doi:10.1145/3457606.

3 Manuel Bodirsky and Jan Kára. The complexity of temporal constraint satisfaction problems.
J. ACM, 57(2):9:1–9:41, 2010. doi:10.1145/1667053.1667058.

4 Joshua Brakensiek and Venkatesan Guruswami. An algorithmic blend of LPs and ring equations
for promise CSPs. In Proc. 30th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’19), pages 436–455, 2019. doi:10.1137/1.9781611975482.28.

5 Joshua Brakensiek and Venkatesan Guruswami. Promise Constraint Satisfaction: Algebraic
Structure and a Symmetric Boolean Dichotomy. SIAM J. Comput., 50(6):1663–1700, 2021.
doi:10.1137/19M128212X.

6 Eden Chlamtac and Gyanit Singh. Improved approximation guarantees through higher levels
of SDP hierarchies. In Proc. 11th International Workshiop on Approximation, Randomization
and Combinatorial Optimization (APPROX’08), volume 5171 of Lecture Notes in Computer
Science, pages 49–62. Springer, 2008. doi:10.1007/978-3-540-85363-3_5.

7 Irit Dinur, Oded Regev, and Clifford Smyth. The hardness of 3-uniform hypergraph coloring.
Comb., 25(5):519–535, September 2005. doi:10.1007/s00493-005-0032-4.

8 Marek Filakovský, Tamio-Vesa Nakajima, Jakub Opršal, Gianluca Tasinato, and Uli Wagner.
Hardness of Linearly Ordered 4-Colouring of 3-Colourable 3-Uniform Hypergraphs. In Proc. 41st
International Symposium on Theoretical Aspects of Computer Science (STACS’24), volume
289 of Leibniz International Proceedings in Informatics (LIPIcs), pages 34:1–34:19, 2024.
doi:10.4230/LIPIcs.STACS.2024.34.

9 Ken-ichi Kawarabayashi, Mikkel Thorup, and Hirotaka Yoneda. Better coloring of 3-Colorable
graphs. In Proceedings of the 56th Annual ACM Symposium on Theory of Computing, STOC
2024, pages 331–339, New York, NY, USA, 2024. Association for Computing Machinery.
doi:10.1145/3618260.3649768.

10 Michael Krivelevich, Ram Nathaniel, and Benny Sudakov. Approximating coloring and
maximum independent sets in 3-uniform hypergraphs. J. Algorithms, 41(1):99–113, 2001.
doi:10.1006/jagm.2001.1173.

11 Michael Krivelevich and Benny Sudakov. Approximate coloring of uniform hypergraphs. J.
Algorithms, 49(1):2–12, 2003. doi:10.1016/S0196-6774(03)00077-4.

12 Anand Louis, Alantha Newman, and Arka Ray. Improved linearly ordered colorings of
hypergraphs via SDP rounding, 2024. doi:10.48550/arXiv.2405.00427.

13 Tamio-Vesa Nakajima and Stanislav Živný. Linearly Ordered Colourings of Hypergraphs. In
Proc. 49th International Colloquium on Automata, Languages, and Programming (ICALP’22),
volume 229 of LIPIcs, pages 128:1–128:18, 2022. doi:10.4230/LIPIcs.ICALP.2022.128.

14 Tamio-Vesa Nakajima and Stanislav Živný. Linearly Ordered Colourings of Hypergraphs.
ACM Trans. Comput. Theory, 13(3–4), 2023. doi:10.1145/3570909.

https://doi.org/10.4230/LIPIcs.STACS.2021.10
https://doi.org/10.1145/3457606
https://doi.org/10.1145/1667053.1667058
https://doi.org/10.1137/1.9781611975482.28
https://doi.org/10.1137/19M128212X
https://doi.org/10.1007/978-3-540-85363-3_5
https://doi.org/10.1007/s00493-005-0032-4
https://doi.org/10.4230/LIPIcs.STACS.2024.34
https://doi.org/10.1145/3618260.3649768
https://doi.org/10.1006/jagm.2001.1173
https://doi.org/10.1016/S0196-6774(03)00077-4
https://doi.org/10.48550/arXiv.2405.00427
https://doi.org/10.4230/LIPIcs.ICALP.2022.128
https://doi.org/10.1145/3570909

Speed-Robust Scheduling Revisited
Josef Minařík #

Computer Science Institute of Charles Univ., Faculty of Mathematics and Physics, Prague, Czechia

Jiří Sgall #

Computer Science Institute of Charles Univ., Faculty of Mathematics and Physics, Prague, Czechia

Abstract
Speed-robust scheduling is the following two-stage problem of scheduling n jobs on m uniformly
related machines. In the first stage, the algorithm receives the value of m and the processing times of
n jobs; it has to partition the jobs into b groups called bags. In the second stage, the machine speeds
are revealed and the bags are assigned to the machines, i.e., the algorithm produces a schedule where
all the jobs in the same bag are assigned to the same machine. The objective is to minimize the
makespan (the length of the schedule). The algorithm is compared to the optimal schedule and it is
called ρ-robust, if its makespan is always at most ρ times the optimal one.

Our main result is an improved bound for equal-size jobs for b = m. We give an upper bound of
1.6. This improves previous bound of 1.8 and it is almost tight in the light of previous lower bound
of 1.58. Second, for infinitesimally small jobs, we give tight upper and lower bounds for the case
when b ≥ m. This generalizes and simplifies the previous bounds for b = m. Finally, we introduce a
new special case with relatively small jobs for which we give an algorithm whose robustness is close
to that of infinitesimal jobs and thus gives better than 2-robust for a large class of inputs.

2012 ACM Subject Classification Theory of computation → Online algorithms; Theory of computa-
tion → Scheduling algorithms

Keywords and phrases scheduling, approximation algorithms, makespan, uniform speeds

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.8

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2407.11670 [8]

Funding Partially supported by grant 24-10306S of GA ČR.

Acknowledgements We are grateful to Franziska Eberle for insightful discussions and comments,
and to the anonymous referees for detailed and useful reviews.

1 Introduction

Speed-robust scheduling is a two-stage problem that was introduced by Eberle et al. [4]. The
eventual goal is to schedule on m uniformly related machines, however their speeds are not
known at the beginning. In the first stage, the algorithm receives the value of m and the
processing times of n jobs; it has to partition the jobs into b groups called bags. In the
second stage, the machine speeds are revealed and the bags are assigned to the machines,
i.e., the algorithm produces a schedule where all the jobs in the same bag are assigned to
the same machine. The objective is to minimize the makespan (the length of the schedule).
The algorithm is compared to the optimal schedule of the jobs on the machines with known
speeds; it is called ρ-robust, if its makespan is always at most ρ times the optimal one.

This problem is motivated by situations like the following one. Suppose that you have n

computational tasks that you want to solve. You have a computational cluster available, but
with unknown parameters. You only know that there will be (at most) m machines available
on the cluster. You do not know anything about the performance of the machines – some
of the machines might be faster than others; you only know that there will be (at most) m

© Josef Minařík and Jiří Sgall;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 8; pp. 8:1–8:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:minarjos00@gmail.com
mailto:sgall@iuuk.mff.cuni.cz
https://orcid.org/0000-0003-3658-4848
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.8
https://arxiv.org/abs/2407.11670
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Speed-Robust Scheduling Revisited

machines available on the cluster. Furthermore, you can submit at most b different tasks
to the cluster. Hence you will have to partition your n tasks into at most b groups. One
such group will then have to be executed on one machine. The cluster will then schedule the
groups optimally, knowing the speeds of the machines, and minimize the makespan.

Studying uncertainty in scheduling has a long history. In the classical online scheduling [10],
the machine environment is usually fixed and the uncertainty stems from job arrivals.
Considering uncertainty in the machine environment is less frequent. One early example is
the work of Csanád and Noga [7], where additional machines can be bought for a certain
cost. A substantial body of research with changing machine speeds is the area of dynamic
speed scaling, in particular in the context of minimizing the power consumption, see [1, 9];
however, note that here the changing speeds are not a part of the adversarial environment
but used by the algorithm to its advantage. Another direction considers online scheduling
with unavailability periods [3]. One-machine scheduling with adversarially changing machine
speed was considered in [5] in the context of unreliable machines.

Completely reversing the scenario with all jobs known from the beginning but uncertain
machine environment is a recent new model introduced by Stein and Zhong [11] and Eberle
et al. [4], see Section 1.2.

1.1 Formal definitions

Formally, in the first stage, we receive three positive integers n, m, b and n non-negative
real numbers p1, . . . , pn representing the processing times of n jobs. The total processing
time is denoted P =

∑m
j=1 pj . The output of our first-stage algorithm is a mapping

B : {1, . . . , n} → {1, . . . , b}, where B(j) = i represents the fact that the job j was assigned
to the bag i. The sum of the processing times of all the jobs assigned to bag i the size of
bag i and denoted ai =

∑
j:B(j)=i pj . The exact mapping B is not important for the second

stage since the makespan depends only on the bag sizes.
In the second stage, we are given the bag sizes a1, . . . , ab and the previously unknown

machine speeds s1, . . . , sm ≥ 0, not all equal to 0. We partition the bag indices {1, . . . , b}
into m sets M1, . . . , Mm, representing the assignment to the m machines. Machine i then
has a completion time Ci = (

∑
j∈Mi

aj)/si; for si = 0 we require Mi = ∅ and set Ci = 0, i.e.,
machine of speed 0 does not accept any jobs. Finally, Cmax = maxm

i=1 Ci is the makespan,
i.e., the length of the schedule.

Let C∗
max denote the makespan of the adversary, who does not have to create bags and

can assign jobs directly to machines. Alternatively and equivalently, the adversary also
creates bags, but with the knowledge of the speeds already in the first stage.

We call a first stage algorithm ρ-robust if, for all possible inputs and for all possible
choices of machine speeds, there exists a second-stage assignment of bags to machines such
that Cmax ≤ ρ · C∗

max. Intuitively, an algorithm is ρ-robust if it performs at most ρ times
worse than the adversary.

The previous definition implicitly assumes that the second stage is solved optimally. This
is reasonable, as the scheduling on uniformly related machines allows PTAS, see [6, 12], so
the chosen (presumably optimal) second-stage solution can be replaced by an arbitrarily good
approximation. Also, our proofs show that the second-stage algorithm can be implemented
by efficient greedy algorithms without any loss of performance, once the optimal makespan
or its approximation is known.

We call the special cases of the problem sand, bricks, rocks and pebbles. Sand, bricks,
and rocks were introduced by Eberle et al. [4]. These words represent the types of jobs.

J. Minařík and J. Sgall 8:3

Rocks can be any shape or size and represent jobs of arbitrary processing time. This is
the most general setting.
Bricks are all the same and represent jobs with equal processing times.
Sand grains are very small and represent infinitesimally small processing times.
Pebbles represent jobs that are relatively small compared to the average load of all
machines. We call an instance of speed-robust scheduling q-pebbles if pj ≤ q · P

m holds
for all jobs j.

1.2 Previous results
The two-stage scheduling problem with uncertainty in the machine environment was intro-
duced by Stein and Zhong [11]. They focused on the case of m identical machines where in
the second stage some machine might fail and then do not process any tasks. This amounts
to a special case of speed-robust scheduling where si ∈ {0, 1} for 1 ≤ i ≤ m. They gave
lower bounds of 4/3 for equal-size jobs (bricks) and (

√
2 + 1)/2 ≈ 1.207 for infinitesimal jobs

(sand). Their algorithms were later improved by Eberle et al. [4] to algorithms matching the
lower bounds in both cases.

Our immediate predecessor, Eberle et al. [4], introduced the speed-robust scheduling for
general speeds, i.e., on uniformly related machines. They studied mainly the case b = m, i.e.,
the case when the number of bags is equal to the number of machines. For this case they
gave tight bounds for sand for every m, for large m the bound approaches e/(e− 1) ≈ 1.58.
For equal-size jobs (bricks), they have shown an upper bound of 1.8.

For the most general case of rocks, the strongest known result is the algorithm with the
robustness factor at most 1 + (m − 1)/b, which equals 2 − 1/m for b = m, given also by
Eberle et al. [4]. It remains an interesting open problem to improve this bound, in particular
to give an upper bound 2− ε for rocks and b = m.

1.3 Our results
We now describe our results and compare them to the previous ones in each of the scenarios.

Sand. For sand, we give matching lower and upper bounds for any b and m. Namely, for
b ≥ m we give an optimal algorithm which is ρ(m, b)-robust for

ρ(m, b) = mb

mb − (m− 1)b
= 1

1−
(
1− 1

m

)b
. (1.1)

This matches the results of Eberle et al. [4] who gave an algorithm with the robustness factor
equal to ρ(m, b) ≤ e/(e − 1) ≈ 1.58 for b = m, generalizes them to arbitrary b ≥ m and
significantly simplifies the proof.

An interesting case is when the number of bags is a constant multiple of m. For a fixed
α ≥ 1 and b = αm, our bound approaches 1/(1−e−α) from below for a large m. For example,
doubling the number of bags to b = 2m decreases the robustness factor from 1.58 to 1.16.

If b < m, the second-stage algorithm uses only the b fastest machines, so we can decrease
m to m′ = b and tight results with robustness factor ρ(m′, b) = ρ(b, b) follow already from [4].

Pebbles. For the new case of q-pebbles and b ≥ m, we give a (ρ(m, b) + q)-robust algorithm.
For p < 0.42, this gives an algorithm with the robustness factor below 2, i.e., below the
currently strongest known upper bound for rocks.

APPROX/RANDOM 2024

8:4 Speed-Robust Scheduling Revisited

Bricks. As our main result, we give a 1.6-robust algorithm for bricks for b = m. This
improves the bound of 1.8 from Eberle et al. [4].

Furthermore, as a direct application of our results for pebbles we give a (ρ(m, b) + m/n)-
robust algorithm for any n and b ≥ m. This improves and generalizes the ((1+m/n)ρ(m, m))-
robust algorithm for b = m given by Eberle et al. [4]. Namely, we improve the multiplicative
factor of (1 + m/n) to only an additive term of m/n.

Structure of the paper. We give some general preliminaries in Section 2. We give the
results for sand and pebbles in Sections 3 and 4. We focus on our main result for bricks in
Section 5. Some small cases need computer verification or tabulation of parameters, results
of these are given in the full version of the paper on arXiv [8].

2 Preliminaries

We assume that the processing times, the machine speeds, and the bag sizes are always listed
in a non-increasing order.

In the rest of this paper, we will make two assumptions below that restrict the speeds
to particular special cases. This is without loss of generality, leveraging the fact that the
algorithm must commit the bag sizes in the first phase without knowing the speeds.

The optimal makespan is equal to 1. This implies that the robustness factor is equal to
the makespan of the algorithm.
Scaling all the speeds does not change the ratio of the makespans of our algorithm and
the adversary. Thus for every instance of the problem, there exists another instance with
C∗

max = 1 that differs only in the speeds and the ratio of makespans of our algorithm and
the adversary remains the same. It follows that any first-stage algorithm that is ρ-robust
for instances with C∗

max = 1 is ρ-robust for general instances, too.
The sum of the processing times of all jobs equals to the sum of the speeds of all the
machines, i.e., P =

∑m
i=1 pi =

∑m
i=1 si. In other words, the adversary is fully utilizing all

the machines, and the completion time of all the machines with non-zero speed is equal
to 1, using the previous assumption.
If there is some machine i with si > 0 and completion time C∗

i < 1 in the optimal
schedule, we change its speed to s′

i = C∗
i si. This does not change the optimal makespan

of the adversary and the makespan of the algorithm can only increase. Once again, it
follows that any first-stage algorithm that is ρ-robust for these special instances is also
ρ-robust for general instances.

For the second stage, typically, we use a simple greedy algorithm for the second stage
instead of analyzing the optimal schedule. Technically, for an algorithm we need to know the
optimal makespan (to modify the speeds appropriately, according to the assumptions above).
However note that first we can approximate the makespan and second the algorithm is only
used as a tool in the analysis.

For sand and pebbles we use Algorithm GreedyAssignment (see below), a variant
of the well-known LPT algorithm. It is parameterized by ρ, the robustness factor to be
achieved. At the beginning, every machine is assigned a capacity equal to its speed multiplied
by ρ. The algorithm then goes through all the bags from large to small, assigns them on the
machine with the largest capacity remaining, and decreases the capacity appropriately. If
the capacities remain non-negative at the end, the makespan of the created assignment is at
most ρ since machine i has been assigned jobs of total processing times at most ρsi.

We use this to formulate the following sufficient condition for ρ-robustness of an algorithm
which is instrumental in proving the upper bounds for sand and pebbles.

J. Minařík and J. Sgall 8:5

Algorithm GreedyAssignment.

Input: bag sizes a1 ≥ · · · ≥ ab; machine speeds s1 ≥ · · · ≥ sm; desired robustness factor ρ

for i← 1 to m do
ci ← ρsi ▷ Initialize the capacities of all machines
Mi = ∅ ▷ Initialize the assignment

for k ← 1 to b do
i← index of a machine with the largest ci

Mi ←Mi ∪ {k} ▷ Assign bag k to machine i

ci ← ci − ak ▷ Decrease the remaining capacity of the selected machine
return M1, . . . , Mm

▶ Theorem 2.1. If a first-stage algorithm always produces bag sizes satisfying inequalities

ak ≤
ρP −

∑k−1
j=1 aj

m
, for all k = 1, . . . , b, then the algorithm is ρ-robust.

Proof. Recall that we assume
∑m

i=1 si = P . We claim that the second-stage algorithm
GreedyAssignment produces an assignment with makespan at most ρ. We only need to
show that there is a machine with capacity at least ak when assigning the kth bag. The
initial total capacity was ρP and was already decreased by

∑k−1
j=1 aj at the time of assigning

bag ak. It follows that the remaining capacity is equal to ρP −
∑k−1

j=1 aj and thus there exists
a machine with capacity at least (ρP −

∑k−1
j=1 aj)/m ≥ ak. ◀

3 Sand

Intuitively, the case of sand corresponds to the limit case where n is large and all the jobs
are small and have equal sizes. One can view this as an infinite number of infinitesimal jobs.

More formally, we are given just m, b, and P as an input of the first stage. The result of
the first stage are b non-negative reals a1, . . . , ab whose sum equals P . The formulation of
the second stage remains the same.

The model of infinitesimally small jobs resembles preemptive scheduling. In the optimal
algorithm for preemptive scheduling [2], one needs to maintain the loads of machines in a
geometric sequence with common ratio m/(m− 1) for m machines, roughly speaking. The
proofs for sand show that here the same geometric sequence is also crucial, in particular
it is used for the bag sizes in the algorithm. We now describe the sequence and state its
properties useful both for the upper and lower bounds.

We define U = mb, L = mb − (m− 1)b and tj = mb−j(m− 1)j−1 for j ∈ {1, . . . , b}.
Observe that equation (1.1) defines ρ as ρ(m, b) = U/L.

▶ Lemma 3.1. For all k = 1, . . . , b, it holds that
∑k

j=1 tj = U − (m− 1)tk. In particular,∑b
j=1 tj = U − (m− 1)b = L.

Proof. We proceed by induction on k. The lemma holds for k = 1 since U = mt1 and thus
t1 = U − (m− 1)t1. Now suppose it holds for k. We can derive

k+1∑
j=1

tj = U − (m− 1)tk + tk+1 = U −mb−k(m− 1)k + mb−k−1(m− 1)k = U − (m− 1)tk+1

which completes the induction step. ◀

APPROX/RANDOM 2024

8:6 Speed-Robust Scheduling Revisited

a2a1 a3 a4

8

4

2
1

U = 16

L = 15

Figure 3.1 An example of bag sizes chosen for m = 2 and b = 4.

To get some intuition behind the algorithm for sand, it might be useful to consider the
case m = 2, see Figure 3.1. Suppose that P = L = 2b−1, choose the bag sizes ak = tk = 2b−k.
For m = 2 the sizes are powers of two, so it is easy to see that we can achieve the robustness
ratio of 1 + 1/(2b − 1) = 2b/(2b − 1) as follows: The adversary chooses any speeds s1, s2 such
that s1 + s2 = P = 2b− 1. The capacities of the machines (as in GreedyAssignment) then
satisfy c1 + c2 = 2b and thus ⌊c1⌋+ ⌊c2⌋ ≥ 2b − 1. We can express ⌊c1⌋ in binary, assign the
corresponding bags on the first machine and the remaining bags to the second machine.

3.1 Upper bound
We use a different approach than Eberle et al. [4] for the proof of the upper bound. We
choose the same bag sizes (for b = m) but we simplify the proof by use of Theorem 2.1.
Algorithm Sand describes the bag sizes. Note that the sum of bag sizes produced by Sand
is P , using Lemma 3.1.

Algorithm Sand.

Input: number of bags b; number of machines m; total amount of sand P

L← mb − (m− 1)b

for j ← 1 to b do aj ← tj
P
L

return a1, a2, . . . , ab

▶ Theorem 3.2. Algorithm Sand is ρ(m, b)-robust for sand, for ρ defined by (1.1).

Proof. We assume P = L since it does not change the ratio of our makespan and the
makespan of the adversary. Under this assumption, Sand produces bag sizes ak = tk.

It is sufficient to show that the bag sizes produced by Sand satisfy the condition of
Theorem 2.1. Let us prove the kth inequality in the assumption of the theorem. We have

ρ(m, b)P −
k−1∑
j=1

aj = U

L
L−

k−1∑
j=1

tj = U −
k∑

j=1
tj + tk .

According to Lemma 3.1, we can simplify the right-hand side as follows.

U −
k∑

j=1
tj + tk = U − (U − (m− 1)tk) + tk = mtk = mak .

The kth inequality in the assumption of Theorem 2.1 follows, in fact it holds with equality.
Theorem 2.1 now implies that there exists an assignment with makespan at most ρ(m, b).

◀

J. Minařík and J. Sgall 8:7

3.2 Lower bound
The following proof is a slightly modified and generalized version of the proof by Eberle et
al. [4]. The main difference is that we do not require the number of bags and machines to be
the same.

▶ Theorem 3.3. No deterministic algorithm for sand may have a robustness factor smaller
than ρ(m, b), for ρ defined by (1.1).

Proof. Let us without loss of generality assume P = U (be aware that we assumed P = L

in the proof of the upper bound). Let us denote the chosen bag sizes by a1 ≥ · · · ≥ ab. We
will restrict the adversary to b different speed configurations indexed by k, where

Sk = {s1 = U − (m− 1)tk, s2 = tk, s3 = tk, . . . , sm = tk} .

See Figure 3.2 for an example. Note that the sum of machine speeds is equal to U in every
configuration and hence the makespan of the adversary is indeed 1 as we always assume. In
every speed configuration, there are m− 1 slow machines and one fast machine, since

s1 = U − (m− 1)tk =
k∑

j=1
tj ≥ tk .

s1 s2 s1 s2 s1 s2 s1 s2

15

1

14

12

2

4

8 8

Figure 3.2 An example of speed configurations considered by the adversary for m = 2 and b = 4.

Let kmax be the largest index such that akmax ≥ U
L tkmax . This index must exist since

b∑
j=1

aj = U = U

L
L = U

L

b∑
j=1

tj .

Now let the adversary choose the speed configuration Skmax . We distinguish two cases
depending on the bag assignment in the second stage.

Case 1. At least one of the bags a1, . . . , akmax is assigned to a slow machine. The makespan
is at least the completion time of this machine which is at least

aj

tkmax

≥ akmax

tkmax

≥ U

L
.

APPROX/RANDOM 2024

8:8 Speed-Robust Scheduling Revisited

Case 2. All of the bags a1, . . . , akmax are assigned to the fast machine. Total size of the
bags assigned to the fast machine is at least

kmax∑
j=1

aj = U −
b∑

j=kmax+1
aj .

By definition of kmax it holds that aj < U
L tj for j > kmax and we can bound

U −
b∑

j=kmax+1
aj ≥ U − U

L

b∑
j=kmax+1

tj .

Since
∑b

j=1 tj = L, we can rearrange the right-hand side as follows

U − U

L

b∑
j=kmax+1

tj = U − U

L

L−
kmax∑
j=1

tj

 = U

L

kmax∑
j=1

tj .

By Lemma 3.1 it holds that

U

L

kmax∑
j=1

tj = U

L
(U − (m− 1)tkmax) = U

L
s1

due to the choice of s1 in the configuration Skmax . Thus the makespan would be at least
U/L = ρ(m, b).

The makespan was at least U/L in both cases, hence the robustness factor is at least
U/L = ρ(m, b) and the theorem follows. ◀

4 Pebbles

Recall that an instance of our problem is called q-pebbles if the processing times satisfy

pj ≤ q · P

m
= q ·

∑n
ℓ=1 pℓ

m
.

This definition might seem a bit unnatural at the first glance, but there is a very intuitive
formulation. The expression P

m represents the average load of a machine. The definition of
pebbles says that the processing times are relatively small compared to the average load of
all machines.

Without loss of generality we assume in this section that the sum of processing times is
P = m. This transforms the condition for q-pebbles from the definition into

pj ≤ q ,

which is easy to work with.
We use similar ideas as in the optimal algorithm for sand. Recall the condition of

Theorem 2.1

ak ≤
ρP −

∑k−1
j=1 aj

m
.

As we have already noticed in Section 3.1, the optimal bag sizes for sand not only satisfy the
above inequality, they actually have equality there. The bag sizes for sand are given by the
recurrence

ak =
ρ(m, b)P −

∑k−1
j=1 aj

m
.

J. Minařík and J. Sgall 8:9

When we in addition assume P = m, as in the case of pebbles, we get

ak = ρ(m, b)− 1
m

k−1∑
j=1

aj . (4.1)

Let a1, . . . , ab denote values given by the recurrence (4.1) for the rest of this section. Re-
member that the sum of a1, . . . , ab equals P . Let us denote the bag sizes we will be choosing
for pebbles d1, . . . , db. We again want to use Theorem 2.1. In other words, for the desired
robustness factor ρ, we want the bag sizes to satisfy

dk ≤ ρ− 1
m

k−1∑
j=1

dj . (4.2)

Consider the following algorithm. Place as many pebbles as you can into the first bag
while it satisfies the inequality (4.2). Then do the same for the second bag and so on until
the last bag (or until we run out of jobs). See Pebbles for pseudocode.

Algorithm Pebbles.

Input: processing times p1 ≥ · · · ≥ pm; number of machines m; number of bags b; desired
robustness factor ρ

B ← empty mapping
for k ← 1 to b do dk ← 0 ▷ dk represents the size of the kth bag
k ← 1 ▷ k represents index of currently considered bag
for j ← 1 to n do

while k ≤ b and dk + pj > ρ− 1
m

∑k−1
ℓ=1 dℓ do k ← k + 1

if k > b then break
B[j]← k

dk ← dk + pj

return B

▶ Theorem 4.1. There exists a (ρ(m, b) + q)-robust algorithm for q-pebbles, for ρ defined by
(1.1).

Proof. We show that Algorithm Pebbles puts every job in some bag for ρ = ρ(m, b) + q.
Suppose for a contradiction that the algorithm does not use all the jobs. Then the bag

sizes dk at the end of the algorithm must satisfy

dk + q > ρ− 1
m

k−1∑
j=1

dj .

Indeed, if for some k this inequality is not satisfied, adding one more job of size at most p to
bag k would not violate the inequality (4.2) and the algorithm would have done so.

Plugging in the expression for ρ gives us

dk > ρ(m, b)− 1
m

k−1∑
j=1

dj . (4.3)

We are going to show
k∑

j=1
dj ≥

k∑
j=1

aj , (4.4)

APPROX/RANDOM 2024

8:10 Speed-Robust Scheduling Revisited

for all k ∈ {0, . . . , b}. We prove this claim by induction. The case k = 0 is trivial since the
summations are empty and both sides are equal to 0. Let us now prove the induction step
for k using the equation (4.1) and the inequality (4.3).

dk − ak ≥

ρ(m, b)− 1
m

k−1∑
j=1

dj

−
ρ(m, b)− 1

m

k−1∑
j=1

aj

 = − 1
m

k−1∑
j=1

dj −
k−1∑
j=1

aj

We can now easily finish the induction step. We simplify

k∑
j=1

dj −
k∑

j=1
aj =

k−1∑
j=1

dj −
k−1∑
j=1

aj

 + (dk − ak)

≥

k−1∑
j=1

dj −
k−1∑
j=1

aj

− 1
m

k−1∑
j=1

dj −
k−1∑
j=1

aj

 = m− 1
m

k−1∑
j=1

dj −
k−1∑
j=1

aj

 ,

which is non-negative by the induction hypothesis for k − 1 and thus the claim (4.4) holds.
Using the claim (4.4) for k = b gives us

b∑
j=1

dj ≥
b∑

j=1
aj = P ,

which is a contradiction with the assumption that we did not use all jobs. ◀

It is interesting to take a look at the case b = m. Theorem 4.1 implies that there exists
an algorithm with robustness factor at most

e

e− 1 + q ≈ 1.58 + q .

The best know result for rocks gives robustness factor 2− 1/m. This gets arbitrarily close to
2 for large m. Hence we have obtained a stronger result for

q < 2− e

e− 1 ≈ 0.42 .

5 Bricks

In this section, we study the case of jobs with equal processing times. An important parameter
is the ratio of the number of jobs and the number of machines, which we denote λ = n/m.
We can scale the instance so that pj = 1 for all j, which we assume from now on. Note that
now P = n and the average load is P/m = n/m = λ.

Thus the instance satisfies the definition of p-pebbles for p = 1/λ. Theorem 4.1 immedi-
ately implies our first improved bound for bricks:

▶ Theorem 5.1. There exists an algorithm with robustness factor at most ρ(b, m) + m/n

solving the problem for n bricks, m machines and b bags. ◀

In the rest of this section we focus on our main result, the 1.6-robust algorithm for bricks
in case b = m. This will have the following ingredients:

For λ ≥ 60 we have e/(e − 1) + 1/60 < 1.6, so by Theorem 5.1 we can use Algorithm
Pebbles.
For λ < 60 we design a new algorithm Bricks. We split the analysis into two cases.

J. Minařík and J. Sgall 8:11

For m ≥ 144, we modify its solution into a certain fractional solution, which is easier
to analyze, and bound the difference between the two solutions.
For m < 144, we have a finite number of instances, which we verify using a computer.

We stress that the analysis of instances for m < 144 shows that Algorithm Bricks works
here without any changes, too, i.e., it does not lead to an algorithm with exploding
number of cases tailored to specific inputs.

5.1 First stage algorithm Bricks
Our assumptions on the optimal solution explained at the beginning of Section 2 imply that
we can also restrict ourselves to instances with

∑m
i=1 si = n and furthermore the values of

speeds si are integral, as in the optimal solution the machine loads are necessarily integral.
(Recall that this is due to the fact that we can modify the speeds independently of the
first-stage algorithm.)

The key ingredient of the improved algorithm is to observe that the integrality of speeds
allows us to use the pigeonhole principle to create larger bags. Furthermore, with appropriate
accounting we can use the pigeonhole principle iteratively.

Let us demonstrate this on an example. Let n = 13, m = 10 and ρ = 1.6. The total
speed of 10 machines is 13, so one machine has speed at least 2. This means that one of the
machines will have capacity 2ρ = 3.2 and we can create and assign a bag of size ⌊2ρ⌋ = 3.
Without integrality of the speeds, only a machine with speed 1.3 would be guaranteed, so
the capacity would be just above 2.

To continue iteratively, we cannot reason about the capacity as in Algorithm GreedyAs-
signment. Instead, for each bag we reserve some integral amount of speed on one of the
machines. For this accounting, we represent the remaining unreserved total speed by coins.

In the example above, we pay 2 coins for a bag of size 3. This seems like an overpayment
compared to Algorithm GreedyAssignment, as the 2 coins correspond to capacity 3.2,
so we waste a capacity of 0.2. However, after this step, we are left with 11 coins among
the 10 machines, and using the integrality and the pigeonhole principle once more, we are
guaranteed to have one machine with 2 coins (these coins may be on a different machine or
they may be the ones remaining on the same machine). Thus we can create another bag of
size 3. Now there are only 9 coins remaining and we can only create a bag of size 1 at cost 1.
See Figure 5.1 for an illustration. Overall, the effect of integrality is more significant than
the overpayment due to rounding, and thus we are able to obtain an improved algorithm.

m 2m

Figure 5.1 Graphical representation of the first three chosen bags for n = 13, m = 10. The dots
represent coins and the boxes represent chosen bags. The number of coins inside a box represent the
cost of the bag. Vertical lines emphasize the multiples of m, which determine the bag costs.

Formally, we start Algorithm Bricks with c = n coins. In each round we pay z = ⌈c/m⌉,
create a bag of size ⌊z · ρ⌋ and continue with remaining coins on m machines. The cost of a
bag is the number of coins we pay for it, i.e., z in the algorithm.

If Algorithm Bricks produces bags of total size at least n, we say it is successful. If the
total sum of bag sizes exceeds n, we decrease the sizes of some bags to make the sum equal
to n. E.g., we can remove some of the last small bags and then decrease size of the last
non-empty bag as needed.

APPROX/RANDOM 2024

8:12 Speed-Robust Scheduling Revisited

Algorithm Bricks.

Input: number of bricks n; number of machines m; number of bags b; desired robustness
factor ρ

c← n ▷ The initial number of coins is n
for j ← 1 to b do

z ← ⌈c/m⌉ ▷ max guaranteed coins on a machine
aj ← ⌊z · ρ⌋ ▷ max integer such that cost(aj) = z

c← c− z

return a1, a2, . . . , ab

In Section 5.3 we show that this algorithm is sound, namely, we give a modification of the
second stage algorithm algorithm GreedyAssignment for which we show that a machine
with unused speed z always exists and thus we can assign all bags.

For a general instance, there is always a machine of speed at least ⌈n/m⌉ = ⌈λ⌉, and thus
the cost of the first bag is chosen as ⌈λ⌉. The cost will then decrease by 1 every time the
number of coins decreases below a multiple of m. Figure 5.2 illustrates this.

(⌈λ⌉ − 1)m ⌈λ⌉m

⌈λ⌉⌈λ⌉ − 1

Figure 5.2 Graphical representation of the first chosen bag of size ⌈λ⌉.

Note that the costs of the bags chosen by Bricks do not depend on ρ. The sizes of the
bags, however, do depend on ρ. See Figure 5.3 below for an example execution of Bricks
for n = 45 and m = 9. This execution shows that Bricks fails for ρ < 1.6 but succeeds for
ρ = 1.6.

5.2 Fractional solutions
In general, the cost of the first bag chosen will be ⌈λ⌉. The cost will then decrease by 1
every time the number of coins decreases below a multiple of m. Roughly speaking, we use
approximately m coins for bags of each size.

We need to show that the created b bags have total size at least n. If we would use
exactly m/z bags for each cost z, the total size of bags is easy to compute. However, the
integral number of bags of each cost causes rounding issues when the bag cost decreases and
these complicate the calculations.

To structure our analysis, we first modify the solution obtained by Bricks into a solution
that uses possibly non-integral number of bags of each size. In such a solution, we can
use fractions of bags (such as 4

5 of a bag of size 8 as in the Figure 5.4). We arrange the
modification so that the total size of bags of cost z is exactly m, except for the smallest
and largest bag costs. In the main part of our proof, we bound the rounding error, i.e., the
difference between the sizes of the integral and fractional solution. To complete the proof, we
calculate the total size of bags in the modified fractional solution, which is easy, and show
that it is well above n.

For the fractional solutions, it is better to use an alternative representation of the bags
by a function F that for each z gives the number F (z) of bags of cost z. The size of F is
then defined as the total size of bags. Recall that a bag of cost z has size ⌊z · ρ⌋. Formally:

J. Minařík and J. Sgall 8:13

remaining coins c aj for ρ = 1.6 aj for ρ < 1.6
45 8 < 8
40 8 < 8
35 6 ≤ 6
31 6 ≤ 6
27 4 ≤ 4
24 4 ≤ 4
21 4 ≤ 4
18 3 ≤ 3
16 3 ≤ 3

46 ≤ 44

886644433

m 2m 3m 4m

Figure 5.3 Tabular and graphical representation of the execution of Bricks for n = 45, m = 9
and ρ = 1.6. The numbers above bags represent their sizes. The sum of bag sizes is actually
46 > n = 45, to solve this, we can for example replace one bag of size 3 with a bag of size 2.

8

4/5× 8

64443

19/20× 3

m 2m 3m 4m

6

1/4× 6

Figure 5.4 Fractional solution for n = 45, m = 9 and ρ = 1.6 produced by BricksFract. Notice
that we always use only one bag size (cost) between consecutive multiples of m. Compare this to
Figure 5.3 where bag cost 5 “overflows” the line at 4m coins.

▶ Definition 5.2. A fractional solution is a mapping F : N→ R+
0 satisfying

∑∞
z=1 F (z) = b.

The size of fractional solution F for robustness factor ρ is defined as

size(F, ρ) =
∞∑

z=1
F (z) · ⌊z · ρ⌋ .

We will sometimes use only size(F) if ρ is clear from the context.

We start by reformulating Bricks so that it produces the solution directly in the
alternative representation, see Algorithm BricksAlt below. It is easy to see that Bricks
and BricksAlt are equivalent.

▶ Observation 5.3. Bricks and BricksAlt use each bag cost the same number of times.

Proof. One step of BricksAlt corresponds to several steps of Bricks. Bricks chooses
the bags one by one, and it may choose the same bag cost in several consecutive iterations.
BricksAlt in each step calculates how many bags of given cost would Bricks use. The key
observation is that the expression ⌈(c−m(z − 1))/z⌉ calculates how many bags of cost z are
needed to have at most m(z − 1) coins remaining. In other words, it calculates how many
bags of cost z Bricks uses before it starts using bags of cost z − 1 (or runs out of bags).
Hence both Bricks and BricksAlt use the same number of bags of cost z for each z. ◀

Algorithm BricksFract (see below) is obtained from BricksAlt by removing the
rounding in the calculation of the number of bags x.

APPROX/RANDOM 2024

8:14 Speed-Robust Scheduling Revisited

Algorithm BricksAlt.

Input: number of bricks n; number of machines m; number of bags b

Output: Fractional solution I

r ← b ▷ r is the remaining number of bags (integral)
c← n ▷ c is the remaining number of coins (integral)
I[z]← 0 for z ∈ N
while r > 0 and c > 0 do

z ← ⌈ c
m⌉ ▷ z is the bag cost

x← min
(

r, ⌈ c−m(z−1)
z ⌉

)
▷ x is the (integral) number of bags of cost z

r ← r − x

c← c− x · z
I[z]← x

return I

Algorithm BricksFract.

Input: number of bricks n; number of machines m; number of bags b

Output: Fractional solution F

r ← b ▷ r is the remaining number of bags (fractional)
c← n ▷ c is the remaining number of coins (fractional)
F [z]← 0 for z ∈ N
while r > 0 and c > 0 do

z ← ⌈ c
m⌉

x← min
(

r, c−m(z−1)
z

)
▷ x is the fractional amount of bags of cost z

r ← r − x

c← c− x · z
F [z]← x

return F

The following observation says that the algorithm follows our initial intuition, namely
that for bags of each cost we use exactly m coins, except for the first and last bag cost used.

▶ Definition 5.4. Let F be a fractional solution, then let zmin and zmax denote the smallest
and largest integers such that F (zmin) > 0 and F (zmax) > 0.

▶ Observation 5.5. Let F be a result BricksFract with input n and m. Then F (z) = m/z

for every z such that zmin < z < zmax.

Proof. Observe that in every step of the algorithm, except the last one, it holds that
x = (c−m(z − 1))/z and thus c− x · z = m(z − 1). It follows that in all the steps except for
the first and last ones x = (mz −m(z − 1))/z = m/z. ◀

Next we observe that the result of BricksFract scales, i.e., essentially it depends only
on λ. Note also that BricksFract is well defined even for non-integral m and n.

▶ Observation 5.6. Let α ∈ R+. Suppose BricksFract produces solution F with n and m

as an input and solution F̄ with inputs αn and αm. Then F̄ (z) = αF (z) for all z. It follows
that size(F̄ , ρ) = α · size(F, ρ).

J. Minařík and J. Sgall 8:15

Proof. We go through the execution of BricksFract step by step. Suppose that we multiply
both m and n by α. Then in every iteration of the loop r is multiplied by α, c is multiplied
by α, z stays the same, and x is multiplied by α. ◀

Now we are ready to bound the difference between the solutions produced by Bricks-
Fract and BricksAlt, i.e., the rounding error.

▶ Lemma 5.7. Let F be the fractional solution produced by BricksFract and I the solution
produced by BricksAlt on the same input. Then

for λ ≤ 5 it holds that size(I, 1.6) ≥ size(F, 1.6) and
for λ ≤ 60 it holds that size(I, 1.6) ≥ size(F, 1.6)− 12.

Proof. We give an algorithm which transforms F into a solution F ′ that is almost integral
and very close to I. Set z̄ to be zmin of the solution F and note that zmax = ⌈λ⌉.

We go through the bag costs, denoted by z, from ⌈λ⌉ down to z̄ + 1. For each z, if F uses
non-integral amount of bags of cost z, round it up. This makes the number of bags of cost z

equal to their number in the solution I. Then decrease the number of bags of cost z − 1 so
that the total cost of all bags remains the same. Finally, increase the number of bags of cost
1 so that the total number of bags stays equal to b. See Figure 5.5 for an illustration.

864443

19/20× 3

m 2m 3m 4m

6 8

1/20× 1

8

4/5× 8

64443

19/20× 3

m 2m 3m 4m

6

1/4× 6

886644433

m 2m 3m 4m

F

F ′

I

Figure 5.5 Graphical representation of F , F ′ and I. In the first step of the transformation from
F to F ′, 9

5 is rounded up to 2 and the number of bags of cost 5 (and size 8) increases by 1
5 . In order

to keep the total cost the same, number of bags of cost 4 (and size 6) is decreased by 1
4 . As a result,

total number of bags decreased by 1
4 − 1

5 = 1
20 , hence we add 1

20 of a bag of cost 1 (and size 1). This
is actually the only step in which something happens since number of used bags of cost 4 and 3 is
already integral. We do not process the bags of cost 2, as z̄ = 2. Solution F ′ is almost identical to
the solution I, but has 1

20 of bag of cost 1 instead of 1
20 of bag of cost 2.

For z = z̄ + 1, the previous procedure could lead to a negative value of F ′(z̄). In this
special case we proceed slightly differently and instead of rounding G(z) up we only increase
it so that F ′(z̄) = 0.

We now describe one step of the process formally and analyze it. Let G denote the current
fractional solution and let H denote the result of one transformation step. Let z be the
current cost of bags.

We set H(z) = ⌈G(z)⌉, note that H(z)−G(z) < 1. We want the sum of costs of bags of
costs z − 1 and z to remain the same, hence we want

H(z) · z + H(z − 1) · (z − 1) = G(z) · z + G(z − 1) · (z − 1) (5.1)

APPROX/RANDOM 2024

8:16 Speed-Robust Scheduling Revisited

to hold. Rearranging (5.1) to an equivalent equation leads to (5.2), so we set

H(z − 1) = G(z − 1) + (G(z)−H(z)) · z

z − 1 . (5.2)

We claim that H(z − 1) > 0 for z − 1 > z̄. Indeed, as m > 144 and z ≤ ⌈λ⌉ ≤ 60 in the
considered case, we have G(z−1) = F (z−1) = m/(z−1) > 2 (using also z̄ = zmin < z−1 <

zmax). As H(z)−G(z) < 1, we get H(z − 1) > G(z − 1)− 1 > 0.
Now we describe the modification in the special case when H(z − 1) would become

negative. We have shown above that this can happen only for z = z̄ + 1, i.e., in the last step.
Then we set H(z − 1) = 0 and set

H(z) = G(z) + (G(z − 1)−H(z − 1))z − 1
z

.

This equation is equivalent to (5.1), which is in turn equivalent to (5.2), which thus also
holds. Furthermore, the fact that the previous procedure would lead to negative H(z − 1)
implies that now we have G(z) ≤ H(z) ≤ ⌈G(z)⌉ and thus H(z)−G(z) < 1 holds again.

In both cases, the total number of bags has decreased by

(G(z)−H(z)) + (G(z − 1)−H(z − 1)) = 1
z − 1(H(z)−G(z)) .

Thus we set

H(1) = G(1) + 1
z − 1(H(z)−G(z)) .

Note that in the transformation step, both the total number of bags and their total cost
remain constant.

Recall that the size of a bag of cost z is ⌊zρ⌋. It follows that

size(H)− size(G)
= (H(z)−G(z)) · ⌊zρ⌋+ (H(z − 1)−G(z − 1)) · ⌊(z − 1)ρ⌋+ (H(1)−G(1)) · ⌊ρ⌋

= (H(z)−G(z)) ·
(
⌊zρ⌋ − z

z − 1⌊(z − 1)ρ⌋+ 1
z − 1⌊ρ⌋

)
Note that the second factor in the expression above does not depend on the solution. We
call it the transformation factor and for z we denote it by

f(z) =
(
⌊zρ⌋ − z

z − 1⌊(z − 1)ρ⌋+ 1
z − 1⌊ρ⌋

)
.

If f(z) ≥ 0, the size of the solution could have only increased, as H(z) ≥ G(z), i.e., we
have size(H) ≥ size(G). If f(z) < 0, the size of the solution might have decreased – those
are the important (“bad”) cases we need to bound. We have H(z) − G(z) < 1, hence
size(H) ≥ size(G) + f(z) in case of negative f(z).

Now we sum these bounds over all steps for z from ⌈λ⌉ to 2 and get

size(F ′)− size(F) ≥
⌈λ⌉∑
z=2

min(0, f(z))

We give a list of values of f(z) for z from 2 to 60 and ρ = 1.6 in the full version of the
paper on arXiv [8]. For z ≤ 5 the values f(z) are non-negative, thus for λ ≤ 5 we get
size(F ′) − size(F) ≥ 0. It can be verified that the sum of all negative values of f(z) for
z ≤ 60 is larger than −12 and thus for λ ≤ 60 we get size(F ′)− size(F) > −12.

J. Minařík and J. Sgall 8:17

Examining the algorithms BricksAlt and BricksFract that generate the solutions I

and F , respectively, and the transformation process above shows that the solution F is step
by step transformed towards I. In particular, I(z) = F ′(z) for all values z ≥ z̄ (if the special
case does not apply) or (z ≥ z̄ + 1 if the special case applies). For the small values of z, the
only possible difference is that solution F ′ might have some amount of bags of size 1 instead
of some larger bags in solution I. (Note that the total number of bags does not change
during the transformation.) This implies size(I) ≥ size(F ′) and the lemma follows. ◀

To complete the proof we need to show that size(F) is sufficiently large so that size(I) ≥ n.
Actually, as the previous transformation possibly gives I with a slightly smaller size than F ,
we need to compensate for this difference which is at most 12. Precisely, we need to prove
that size(F, 1.6) ≥ n for λ ≤ 5 and size(F, 1.6) ≥ n + 12 for 5 < λ ≤ 60 and m ≥ 144.

Since the fractional solution F scales when m and n are scaled, see Observation 5.6, it is
convenient to normalize by m and consider (size(F, 1.6)− n)/m in the following lemma. Let
us call this crucial quantity normalized brick surplus, as it measures how many bricks we are
able to put in the bags in the fractional solution in addition to n bricks, normalized by m.

▶ Lemma 5.8. Let F be a fractional solution produced by BricksFract. Then
For λ ≤ 4 it holds that size(F, 1.6) ≥ n.
For 4 ≤ λ ≤ 60 it holds that size(F, 1.6) ≥ n + 1

12 m.

Proof. By Observation 5.6, the normalized brick surplus size(F, 1.6) − n)/m is uniquely
determined by λ, i.e., multiplying both n and m by the same constant does not change it.

This means that the normalized brick surplus is a function of λ. Furthermore, we claim
that the function is piece-wise linear. Suppose we slowly increase λ, for example fix m and
increase n by δ. Then F (z) remains constant for all z except zmin and zmax by Observation
5.5. The number of the largest bags F (zmax) increases by δ/⌈λ⌉ and F (zmin) decreases by
the same amount; this amount is proportional to δ. The function size(F) is linear in the
values of F (z). So the normalized brick surplus is piece-wise linear with possible breakpoints
between the segments at the values of λ when one of the values of zmin or zmax changes.

The value of zmax changes exactly when λ is an integer. The breakpoints where zmin
increases can be calculated in the following way: Execute BricksFract for all integer values
of λ ≤ 60. Let us denote one of such solutions F . Take a look at F (zmin), if we now slowly
increase λ, F (zmin) will decrease linearly as described above. Calculate at which point it
reaches 0; if it happens before λ increases above another integer, we found a point where
zmin changes. The first case of changing zmin is at λ = 11

3 when we stop using bags of cost 1,
see Figure 5.6.

m 2m 3m

1
2 × 6

43

1
2 × 3

Figure 5.6 Example of solution produced by BricksFract for n = 11, m = 3 and ρ = 1.6. Size
of this solution is 11.5 and normalized brick surplus is 1

6 . The solution does not use any bags of cost
1. However, if λ were smaller, the solution would use bags of size 1.

The computer-generated tables of values of the normalized brick surplus function are
given in the full version of the paper on arXiv [8]. The plot of the values is given in Figures 5.7
and 5.8 below.

APPROX/RANDOM 2024

8:18 Speed-Robust Scheduling Revisited

0 2 4 6 8 100

0.1

0.2

0.3

λ = n
m

no
rm

al
iz

ed
br

ic
k

su
rp

lu
s

Normalized brick surplus as a function of λ

Figure 5.7 Plot of normalized brick surplus for small λ.

0 10 20 30 40 50 600

0.2

0.4

0.6

0.8

λ = n
m

no
rm

al
iz

ed
br

ic
k

su
rp

lu
s

Normalized brick surplus as a function of λ

Figure 5.8 Plot of normalized brick surplus for large λ.

The lemma now follows, since the normalized brick surplus is always non-negative and it
is at least 1/12 for λ ≥ 5. (Note that it is a constant function equal to 1/12 for λ ∈ [4, 6].) ◀

▶ Theorem 5.9. For ρ = 1.6 and λ ≤ 60, Algorithm Bricks always succeeds, i.e., outputs
bags of total size at least n.

Proof. For λ ≤ 5, the first claims in Lemmata 5.8 and 5.7 together prove size(I, 1.6) ≥
size(F, 1.6) ≥ n.

For 5 ≤ λ ≤ 60 and m ≥ 144 the second claims in Lemmata 5.8 and 5.7 together prove
size(I, 1.6) ≥ size(F, 1.6)− 12 ≥ n + m/12− 12 ≥ n + 144/12− 12 = n.

For λ ≤ 60 and m ≤ 144 there are only a finitely many instances and we verify
size(I, 1.6) ≥ n for them by computer, see the full version of the paper on arXiv [8]. ◀

J. Minařík and J. Sgall 8:19

We note that our choice of the bounds in the previous two lemmata is somewhat arbitrary.
The plots of the normalized brick surplus suggest that we could bound it by an appropriate
linear function instead of a constant. Also, the bound on size(F) − size(I) can be made
smaller for intermediate values of λ. These changes would decrease the number of cases we
need to check by a computer program, but would not improve the robustness factor.

5.3 Second stage

We need to show that if Bricks succeeds, in the second stage we can indeed achieve makespan
ρ. To do this, we cannot use Algorithm GreedyAssignment and Theorem 2.1. Instead we
modify it to Algorithm IntegralAssignment below, which copies the coins accounting
scheme from Bricks and thus follows the intuition behind it.

Algorithm IntegralAssignment.

Input: bag sizes a1 ≥ · · · ≥ ab; machine speeds s1 ≥ · · · ≥ sm; desired robustness factor ρ

for i← 1 to m do
ci ← si ▷ Machine i gets si coins at the beginning.
Mi = ∅ ▷ Initialize the assignment

for k ← 1 to b do
i← index of the machine with the largest ci

Mi ←Mi ∪ {k} ▷ Assign bag k to machine i

ci ← ci − ⌈ak/ρ⌉ ▷ Machine i pays for the bag k

return M1, . . . , Mm

▶ Theorem 5.10. Suppose the first-stage algorithm Bricks succeeds, i.e., outputs bags
of total size of at least n. Then IntegralAssignment in the second stage produces an
assignment with makespan at most ρ.

Proof. Imagine that Bricks and IntegralAssignment are running in parallel. Bricks
chooses the size of one bag and IntegralAssignment assigns it to a machine. Note that
the values of ci remain integral during the entire execution.

We claim that during the execution the value c in Bricks is at most
∑m

i=1 ci for ci’s in
IntegralAssignment. At the beginning, the quantities are equal. Suppose that Bricks
creates a bag of cost z and thus decreases c by z. Then the bag has size a = ⌊z · ρ⌋ ≤ zρ.
Thus IntegralAssignment decreases ci by ⌈a/ρ⌉ ≤ ⌈zρ/ρ⌉ = z. Thus the sum of ci’s
decreases by at most z and the claim follows.

The claim implies that in each step before creating/assigning a bag of cost z, there exists
a machine with ci ≥ z in IntegralAssignment. Indeed, Bricks chooses z = ⌈c/m⌉,
thus m(z − 1) < c ≤

∑m
i=1 ci using the previous claim. Hence there exists a machine with

ci > z − 1 and together with integrality of ci we get ci ≥ z.
It follows that ci’s remain non-negative during the execution. Thus IntegralAssign-

ment assigned to machine i bags of the total size at most si · ρ. It follows that the makespan
is at most ρ. ◀

Theorems 5.1, 5.9, and 5.10 immediately imply our main result.

▶ Theorem 5.11. There exists 1.6-robust algorithm for the case of bricks and b = m. ◀

APPROX/RANDOM 2024

8:20 Speed-Robust Scheduling Revisited

Conclusions

Our main result still leaves a small gap in the bounds for bricks (equal-length jobs) and b = m

between the lower bound of e/(e − 1) ≈ 1.58 and our upper bound of 1.6. Our algorithm
Bricks does not admit a smaller robustness factor than 1.6, as is shown for n = 45 and
m = 9 in Figure 5.3. So a smaller upper bound would need some additional techniques or
special handling of some cases. Eberle et al. [4] give an example that shows a lower bound
for bricks that is larger than ρ(m, m) for m = 6. Although the value of the bound is below
the limit value e/(e − 1), this may be taken as a weak evidence that matching the lower
bound may be hard.

The main open problem in this model remains to find a (2− ε)-robust algorithm for the
general case and b = m.

References
1 Susanne Albers. Algorithms for dynamic speed scaling. In Proc. of the 28th Int. Symp. on

Theoretical Aspects of Computer Science, STACS 2011, volume 9 of LIPIcs, pages 1–11. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2011. doi:10.4230/LIPICS.STACS.2011.1.

2 Bo Chen, André van Vliet, and Gerhard J. Woeginger. An optimal algorithm for preemptive on-
line scheduling. Oper. Res. Lett., 18(3):127–131, 1995. doi:10.1016/0167-6377(95)00039-9.

3 Florian Diedrich, Klaus Jansen, Ulrich M. Schwarz, and Denis Trystram. A survey on approxi-
mation algorithms for scheduling with machine unavailability. In Jürgen Lerner, Dorothea
Wagner, and Katharina Anna Zweig, editors, Algorithmics of Large and Complex Networks –
Design, Analysis, and Simulation [DFG priority program 1126], volume 5515 of Lecture Notes
in Computer Science, pages 50–64. Springer, 2009. doi:10.1007/978-3-642-02094-0_3.

4 Franziska Eberle, Ruben Hoeksma, Nicole Megow, Lukas Nölke, Kevin Schewior, and Bertrand
Simon. Speed-robust scheduling: sand, bricks, and rocks. Math. Program., 197(2):1009–1048,
2023. A preliminary version appeared at 22nd IPCO, vol 12707 of LNCS, pages 283–296,
Springer, 2021. doi:10.1007/S10107-022-01829-0.

5 Leah Epstein, Asaf Levin, Alberto Marchetti-Spaccamela, Nicole Megow, Julián Mestre, Martin
Skutella, and Leen Stougie. Universal sequencing on an unreliable machine. SIAM J. Comput.,
41(3):565–586, 2012. doi:10.1137/110844210.

6 Dorit S. Hochbaum and David B. Shmoys. A polynomial approximation scheme for scheduling
on uniform processors: Using the dual approximation approach. SIAM J. Comput., 17(3):539–
551, 1988. doi:10.1137/0217033.

7 Csanád Imreh and John Noga. Scheduling with machine cost. In Proc. of the 3rd Int.
Workshop on Randomization and Approximation Techniques in Computer Science and 2nd Int.
Workshop on Approximation Algorithms for Combinatorial Optimization Problems, RANDOM-
APPROX’99, volume 1671 of Lecture Notes in Computer Science, pages 168–176. Springer,
1999. doi:10.1007/978-3-540-48413-4_18.

8 Josef Minařík and Jiřrí Sgall. Speed-robust scheduling revisited. arXiv e-prints, 2024.
arXiv:2407.11670.

9 Kirk Pruhs. Speed scaling. In Ming-Yang Kao, editor, Encyclopedia of Algorithms – 2016
Edition, pages 2045–2047. Springer, 2016. doi:10.1007/978-1-4939-2864-4_390.

10 Kirk Pruhs, Jirí Sgall, and Eric Torng. Online scheduling. In Joseph Y.-T. Leung, editor,
Handbook of Scheduling – Algorithms, Models, and Performance Analysis. Chapman and
Hall/CRC, 2004. doi:10.1201/9780203489802.CH15.

11 Clifford Stein and Mingxian Zhong. Scheduling when you do not know the number of machines.
ACM Trans. Algorithms, 16(1):9:1–9:20, 2020. A preliminary version appeared at 29th SODA,
pages 1261–1273, ACM, 2018. doi:10.1145/3340320.

12 David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, 2011. doi:10.1017/CBO9780511921735.

https://doi.org/10.4230/LIPICS.STACS.2011.1
https://doi.org/10.1016/0167-6377(95)00039-9
https://doi.org/10.1007/978-3-642-02094-0_3
https://doi.org/10.1007/S10107-022-01829-0
https://doi.org/10.1137/110844210
https://doi.org/10.1137/0217033
https://doi.org/10.1007/978-3-540-48413-4_18
https://arxiv.org/abs/2407.11670
https://doi.org/10.1007/978-1-4939-2864-4_390
https://doi.org/10.1201/9780203489802.CH15
https://doi.org/10.1145/3340320
https://doi.org/10.1017/CBO9780511921735

On the Generalized Mean Densest Subgraph
Problem: Complexity and Algorithms
Karthekeyan Chandrasekaran #

University of Illinois, Urbana-Champaign, USA

Chandra Chekuri #

University of Illinois, Urbana-Champaign, USA

Manuel R. Torres #

University of Illinois, Urbana-Champaign, USA

Weihao Zhu #

University of Illinois, Urbana-Champaign, USA

Abstract
Dense subgraph discovery is an important problem in graph mining and network analysis with
several applications. Two canonical polynomial-time solvable problems here are to find a maxcore
(subgraph of maximum min degree) and to find a densest subgraph (subgraph of maximum average
degree). Both of these problems can be solved in polynomial time. Veldt, Benson, and Kleinberg [47]
introduced the generalized p-mean densest subgraph problem which captures the maxcore problem
when p = −∞ and the densest subgraph problem when p = 1. They observed that for p ≥ 1, the
objective function is supermodular and hence the problem can be solved in polynomial time. In this
work, we focus on the p-mean densest subgraph problem for p ∈ (−∞, 1). We prove that for every
p ∈ (−∞, 1), the problem is NP-hard, thus resolving an open question from [47]. We also show that
for every p ∈ (0, 1), the weighted version of the problem is APX-hard. On the algorithmic front,
we describe two simple 1

2 -approximation algorithms for every p ∈ (−∞, 1). We complement the
approximation algorithms by exhibiting non-trivial instances on which the algorithms simultaneously
achieve an approximation factor of at most 1

2 .

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases Densest subgraph problem, Hardness of approximation, Approximation
algorithms

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.9

Category APPROX

Funding Karthekeyan Chandrasekaran: partially supported by NSF grant CCF-1907937 AND CCF-
2402667.
Chandra Chekuri: partially supported by NSF grants CCF-1907937 and CCF-2402667.
Manuel R. Torres: supported in part by fellowships from NSF and the Sloan Foundation, and NSF
grant CCF-1910149.
Weihao Zhu: supported by a graduate fellowship from the CS department.

Acknowledgements We thank Sanjeev Khanna and Euiwoong Lee for pointers to [23] and [26] on
the hardness of Exact ℓ-Cover. We thank Farouk Harb for helpful discussions. This work was done
when Manuel R. Torres was a student at University of Illinois, Urbana-Champaign.

1 Introduction

Dense subgraph discovery is an essential tool in graph mining and network analysis. The
aim here is to find clusters in a graph which are denser than the entire graph. There are a
number applications of dense subgraph discovery in biological settings [29, 20, 35, 4, 42], web
mining [24, 14], social network analysis [34], real-time story identification [2], and finance

© Karthekeyan Chandrasekaran, Chandra Chekuri, Manuel R. Torres, and Weihao Zhu;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 9; pp. 9:1–9:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:karthe@illinois.edu
https://orcid.org/0000-0002-3421-7238
mailto:chekuri@illinois.edu
https://orcid.org/0000-0003-3035-1699
mailto:manuel.r.torres0@gmail.com
https://orcid.org/0000-0002-0919-4062
mailto:weihaoz3@illinois.edu
https://orcid.org/0009-0002-2809-3010
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 On the Generalized Mean Densest Subgraph Problem: Complexity and Algorithms

and fraud detection [15, 48, 31]. Motivated by the needs of applications and theoretical
considerations, various density measures have been used and studied in the literature (see
[18, 25, 37, 45, 36] for some surveys). Each density definition leads to a corresponding
combinatorial optimization problem: given a graph G, find a subgraph of maximum density.
Two of the most popular density measures in the literature are (i) the minimum degree of the
subgraph and (ii) the average degree of the subgraph. These measures lead to the maxcore
problem and densest subgraph problem respectively. They are both polynomial-time solvable
and have been extensively studied. We briefly describe them before discussing a common
generalization that will be the focus of this work.

In the maxcore problem (maxcore), the goal is to find a subgraph with maximum
minimum degree. The optimum value of this problem is known as the degeneracy of the
graph and the subgraph achieving the optimum is known as a maxcore of the graph. A
k-core of a graph is a maximal connected subgraph in which all vertices have degree at least
k. Min-degree is a popular measure of density, commonly finding use in what is known as
the k-core decomposition, a nested sequence of subgraphs that captures k-cores for every
k. One nice feature of a k-core decomposition is that there is a simple linear-time peeling
algorithm to compute it. The peeling algorithm – denoted Greedy – produces an ordering of
the vertices by repeatedly removing the vertex with least degree in the current graph. This
ordering can in turn be used to solve maxcore. We refer the reader to [38] for a survey on
k-core decomposition and applications.

In the densest subgraph problem (DSG), the goal is to find a subgraph of maximum
average degree. DSG is widely used in graph mining applications. It is a well-studied problem
in combinatorial optimization and is polynomial time solvable via a variety of techniques
including network flow [40, 21], submodular function minimization (folklore), and linear
programming [9]. Even though DSG can be solved exactly, the algorithms are slow and this
has spurred the design of fast approximation algorithms [9, 5, 13, 8, 7, 10, 27]. Amongst these
approximation algorithms is a peeling algorithm introduced by Asahiro, Iwama, Tamaki,
and Tokuyama [3] which was shown to be a 1

2 -approximation by Charikar [9]. We note
that the peeling order of this algorithm is the same as the one for computing a maxcore,
namely Greedy; a second step of the algorithm returns the best subgraph induced by a suffix
of the peeling order (best in terms of average degree). The specific density measure for
DSG is used only in the second step. Charikar’s analysis has spurred the development and
analysis of a variety of peeling algorithms for several variants of DSG in both graphs and
hypergraphs [1, 46, 44, 30, 33, 47].

Veldt, Benson, and Kleinberg [47] introduced the generalized mean densest subgraph
problem that unifies maxcore and DSG. The input here is a real value p ∈ R ∪ {−∞,∞}
and an undirected graph G = (V, E). For a subset S ⊆ V of vertices, the density of the
subgraph G[S] induced by S is defined as:

Mp(S) :=
(

1
|S|
∑
v∈S

dS(v)p

)1/p

,

where dS(v) is the degree of vertex v in the subgraph G[S]. We note that M−∞(S) =
minv∈S dS(v) is the minimum degree in the induced subgraph G[S], while M∞(S) =
maxv∈S dS(v) is the maximum degree. For p = 0, the density of the subgraph G[S] is
M0(S) = (

∏
v∈S dS(v))1/|S| = exp(1

|S|
∑

v∈S ln dS(v)). The goal is to find a subset S of
vertices with maximum Mp(S). We refer to this problem as the p-mean densest subgraph
problem (p-mean DSG). As p varies from −∞ to ∞, Mp(S) prioritizes the smallest degree
in S to the largest degree in S and consequently, p-mean DSG provides a smooth way to
generate subgraphs with different density properties.

K. Chandrasekaran, C. Chekuri, M. R. Torres, and W. Zhu 9:3

p-mean DSG generalizes to weighted graphs in a natural manner. For a graph G = (V, E)
with positive edge weights w : E → R+, we define dS(v) as the sum of the weight of edges
that are incident to vertex v in G[S] . For a subset S ⊆ V of vertices, its p-mean density
Mp(S) is defined using dS(v) as it was for the unweighted case. The goal again is to find a
subset S of vertices with maximum Mp(S). We refer to this problem as weighted p-mean
DSG.

Veldt, Benson, and Kleinberg made several contributions to p-mean DSG. They observed
that 1-mean DSG is equivalent to DSG and that (−∞)-mean DSG is equivalent maxcore.
For p ≥ 1, they observed that the set function fp : 2V → R≥0 defined by fp(S) :=∑

v∈S dS(v)p is a supermodular set function1. This implies that one can solve p-mean
DSG in polynomial time for all p ≥ 1 via a standard reduction to submodular set function
minimization, a classical polynomial-time solvable problem in combinatorial optimization
[41]. Motivated by the fact that exact algorithms are very slow in practice, they described
a greedy peeling algorithm, denoted Greedy-p, that runs in O(mn) time and achieves an
approximation factor of 1/(p + 1)1/p for p ≥ 1 (here m and n are the number of edges and
nodes of the graph). The peeling order of their Greedy-p algorithm is not the same as that of
Greedy – in particular, the peeling order depends on p. They supplement these theoretical
results with empirical evaluation, showing that Greedy-p returns solutions with desirable
characteristics for values of p in the range [1, 2]. We note that the function fp(S) is not
supermodular if p < 1, which partially stems from the fact that the univariate function
g(x) := xp is not convex if p < 1.

1.1 Our Results
We study the complexity and algorithmic status of p-mean DSG for p ∈ (−∞, 1) which was
mentioned as a compelling direction for future work by Veldt et al. [47]. It is intriguing that
p-mean DSG is polynomial-time solvable for for p = −∞ and p ≥ 1 while the status for
p ∈ (−∞, 1) is non-trivial to understand. Our work fills this gap.

Hardness of p-mean DSG for p ∈ (−∞, 1)

We prove that p-mean DSG is NP-Hard for every p ∈ (−∞, 1). We also show that weighted
p-mean DSG is APX-hard for every fixed constant p ∈ (0, 1). The hardness results are the
main contribution of this work. They are technically involved for two reasons. First, the
objective function is non-linear and does not fall into a clean and known class of functions.
Second, the problem is effectively an unconstrained problem. The initial inspiration for our
reduction came from a high-level connection to submodularity due to the concavity of the
univariate function xp for p ∈ (0, 1); constrained versions of submodular optimization are
NP-hard. However, the objective function for p-mean DSG is not a submodular function
and there are no constraints. Nevertheless, we are able to model it via a gadget. Although
the reduction is quite simple to describe, the proof of the reduction requires careful parameter
setting and a detailed case analysis. The reduction/analysis for the weighted case is somewhat
easier, however, we prove NP-Hardness for the unweighted case since it is of particular
interest. We prove APX-hardness for the weighted case, and only for p ∈ (0, 1), to mitigate
the calculations. It may be possible to extend our APX-hardness proof to the unweighted
case and also to the full range (−∞, 1).

1 A real-valued set function f : 2V → R is supermodular if f(A) + f(B) ≤ f(A ∪ B) + f(A ∩ B) for all
A, B ⊆ V . We recall that f is supermodular iff −f is submodular.

APPROX/RANDOM 2024

9:4 On the Generalized Mean Densest Subgraph Problem: Complexity and Algorithms

Approximation algorithms for p ∈ (−∞, 1)

The NP-Hardness result for p-mean DSG motivates the search for approximation algorithms
for p ∈ (−∞, 1). We note that the peeling algorithm for p-mean DSG, namely Greedy-p,
given by Veldt, Benson, and Kleinberg [47] is well-defined only for p > 0. In the same paper,
the authors show empirical results for Greedy-p for p ∈ (0, 1) even though the corresponding
function fp is not supermodular; however, no approximation guarantee is known for Greedy-p
for p ∈ (0, 1). We describe two different and simple algorithms for p-mean DSG– one based
on simple greedy peeling and the other based on an exact solution to DSG. We show that
both algorithms achieve a 1

2 -approximation for all p ∈ (−∞, 1). These are the first algorithms
with approximation guarantees for p in the regime (−∞, 1). We complement the algorithms
by exhibiting tight instances on which both algorithms exhibit an approximation factor of at
most 1

2 , thus ruling out the possibility of improving the ratio by taking the best of the two
algorithms.

This paper builds upon and extends an earlier version [11] by two of the authors. The
previous version included results on faster algorithms for p-mean DSG for p > 1 and
empirical evaluation of several algorithms. A full version including those results will be made
available in the future.

Organization

We present the NP-hardness result in Section 2 and the APX-hardness result in Section 3.
We present our algorithmic results in Section 4. All proofs that are omitted from the main
body of the paper are given in the appendix.

Notation

Let G = (V, E) be a graph. For a subset S ⊆ V of vertices and a vertex v ∈ S, we recall
that dS(v) is the (weighted) degree of v in the induced subgraph G[S]. Let S be a subset of
vertices. We define fp(S) :=

∑
v∈S dS(v)p if p ∈ [−∞, 0)∪ (0,∞] and fp(S) :=

∑
v∈S ln dS(v)

if p = 0. We also define ρp(S) := fp(S)/|S| for all p. With these definitions, we have
Mp(S) = ρp(S)1/p for all p. Thus, finding a set S of vertices with maximum Mp(S) is
equivalent to finding a set S of vertices with maximum ρp(S) if p ≥ 0, and to finding a set S

of vertices with minimum ρp(S) if p < 0.

1.2 Other Related Work
DSG and the subfield of dense subgraph discovery is large. We point the reader to a recent
survey [36] and restrict our attention to discussing some closely related work, specifically on
sequential models and approximability.

As we remarked, DSG is poly-time solvable by several techniques including via maximum
flow. Although maximum flow now admits an almost-linear time algorithm [12], the existing
exact algorithms for DSG are slow in practice for large graphs. Thus approximation
algorithms have also been considered (especially before the recent developments on network
flow). In particular, there has been a line of work that obtained a (1 − ϵ)-approximation
in Õ(m · poly(1

ϵ))-time [5, 8, 10]; in particular, the algorithm in [10] runs in time Õ(m
ϵ).

These faster approximation algorithms also have some limitations in practice for large graphs.
Several simpler iterative algorithms based on continuous optimization methods have been
developed – these include algorithms based on the Frank-Wolfe method [13], an algorithm
based on iterating Greedy called Greedy++ [7], and the projected gradient descent method [27].

K. Chandrasekaran, C. Chekuri, M. R. Torres, and W. Zhu 9:5

They are simple to implement and have been shown to converge quickly to near-optimal
solutions on large graphs, both synthetic and real-world, even though the known worst-case
theoretical convergence rates are fairly large.

We discuss some other measures of density considered in the literature. Given a graph
G = (V, E) and a finite collection of pattern graphs F , one can consider the problem of finding
a set S that maximizes f(S)/|S| where f : 2V → Z+ counts the number of occurrences of the
patterns from F in the induced subgraph G[S]. If we consider a single edge as the pattern,
then we obtain DSG. [46] considered the special case where F is a single triangle graph
and [44] considered the special case where F is a clique on k vertices. The densest subgraph
problem under the general notion of patterns was considered in [17]. Densest subgraph
has also been studied for hypergraphs with density of a set S of vertices being defined as
|E(S)|/|S| where E(S) is the set of hyperedges with all vertices in S [30]. We can reduce
the densest subgraph problem with pattern based densities to the densest subgraph problem
in hypergraphs by introducing a hyperedge for each occurrence of the pattern in the input
graph. Charikar’s analysis of Greedy can be generalized to show an approximation factor of
at least 1

r in rank r-hypergraphs. Veldt, Benson, and Kleinberg [47] showed that Greedy is
not a good worst-case algorithm for p-mean DSG when p > 1, and as we mentioned earlier,
they developed a different peeling algorithm. Chekuri, Quanrud and Torres [10] unified
several results by considering density measures of the form f(S)/|S| where f : 2V → R+ is
an arbitrary non-negative supermodular set function over a vertex set V . They showed that
there is a natural peeling algorithm for each f and derived an approximation bound in terms
of certain properties of f ; Greedy-p from [47] and its approximation bound are derived as
special cases. They also generalized Greedy++ to supermodular densities and showed that
the resulting algorithm converges to an optimum solution, partially answering a conjecture
from [7] (the conjecture has a strong convergence rate). See [27, 28] for additional insights.
One can also consider density measures of the form f(S)/g(S) where g : 2V → R+ is another
set function such as a concave or convex function of |S|. We refer the reader to [36, 10] for
results and pointers on this aspect.

Constrained versions of DSG such as the k-densest-subgraph (find a densest subgraph
with at most k vertices) are well-studied in theoretical computer science. k-densest-subgraph
is of particular importance due to its connection to various other problems, and due to the
intriguing difficulty in understanding its approximability. Since there is a large literature on
this problem and since constrained versions are not the focus of this paper, we point the
reader to some relevant papers on algorithms and hardness [19, 6, 39].

2 NP-hardness

In this section, we prove the following theorem.

▶ Theorem 1. p-mean DSG is NP-hard for all p ∈ (−∞, 1).

We reduce from the Exact ℓ-Cover problem.

▶ Problem 1. exact ℓ-cover: the input is a finite ground set U = {e1, e2, . . . , eℓn} of
cardinality ℓn for some positive integers ℓ and n, and a family of subsets S ⊆ 2U , where
each X ∈ S has cardinality ℓ. The goal is to determine whether there exist n disjoint sets
Si1 , Si2 , . . . , Sin

∈ S whose union is U .

We will say that the input instance (U ,S) of exact ℓ-cover has an exact ℓ-cover if
there exist n disjoint sets whose union is U . exact 3-cover is a well-known NP-complete
problem [22]. A standard padding approach reduces exact 3-cover to exact ℓ-cover for
every ℓ ≥ 3.

APPROX/RANDOM 2024

9:6 On the Generalized Mean Densest Subgraph Problem: Complexity and Algorithms

▶ Theorem 2. exact ℓ-cover is NP-complete for every integer ℓ ≥ 3.

2.1 Reduction from exact ℓ-cover
We reduce exact ℓ-cover to p-mean DSG. Let U = {e1, e2, . . . , eℓn} and S =
{S1, S2, . . . , Sm} with Si ⊆ U for every i ∈ [m] be the input instance of exact ℓ-cover.
For a positive integer d (to be chosen later), we construct a graph Gd = (L ∪A, E), where
L := {vi : i ∈ [m]} and A := {uj : j ∈ [ℓ ·n]}. For every 1 ≤ i ≤ m and 1 ≤ j ≤ ℓ ·n, if the set
Si contains element ej , then we add an edge between vi and uj in graph Gd. Further, we add
edges between vertices in A to make Gd[A] to be a connected d-regular graph, where d will be
chosen appropriately (we may assume that n is even so that such a connected d-regular graph
always exists). See Figure 1. If p ̸= 0, then we set ρ∗ := ℓp+ℓ·(d+1)p

ℓ+1 and if p = 0, then we set
ρ∗ := ln ℓ+ℓ·ln(d+1)

ℓ+1 . We will show that there exist positive integers ℓ ≥ 3 and d such that the
input instance admits an exact ℓ-cover if and only if max{Mp(X) : X ⊆ V } ≥ (ρ∗)1/p.

Figure 1 Graph constructed in our reduction from exact ℓ-cover for ℓ = 3 and d = 5. The Exact
3-Cover instance consists of the ground set U := {e1, . . . , e3n} and the family S := {S1, . . . , Sm}.

Next, we prove the NP-hardness of p-mean DSG by casing on the value of p via the
above mentioned reduction. We prove NP-hardness for p ∈ (0, 1) in Section 2.2 (see Theorem
7). The missing proofs are given in the appendix. The proofs for p ∈ (−∞, 0] are given in
the full version owing to space limitations.

2.2 NP-hardness for p ∈ (0, 1)
We recall that ρp(X) = Mp(X)p for every subset X of vertices and hence, finding a set X of
vertices that maximizes Mp(X) reduces to finding a set X of vertices that maximizes ρp(X)
if p ∈ (0, 1). We define OPTGd

:= max
X⊆V

ρp(X). We observe that OPTGd
is a maximization

problem for p ≥ 0. Hence, in order to show correctness of our reduction, we will need an
upper bound on ρp(X) for p ≥ 0. The following lemma gives an upper bound.

▶ Lemma 3. Let Gd = (L ∪A, E) be the graph constructed in the reduction. Let S ⊆ L and
A′ ⊆ A. Then, for p > 0, we have that

ρp(S ∪A′) ≤
ℓp · |S|+

∑
v∈A′(d + dS+v(v))p

|S|+ |A′|
.

Moreover, the inequality above is strict if |A′| < |A|.

K. Chandrasekaran, C. Chekuri, M. R. Torres, and W. Zhu 9:7

Proof. For the case of p > 0, we note that

ρp(S ∪A′) = fp(S ∪A′)
|S ∪A′|

=
∑

u∈S dS∪A′(u)p +
∑

v∈A′ dS∪A′(v)p

|S|+ |A′|

≤
∑

u∈S dS∪A(u)p +
∑

v∈A′ dS∪A(v)p

|S|+ |A′|
(since p > 0)

=
ℓp · |S|+

∑
v∈A′ dS∪A(v)p

|S|+ |A′|
(since dS∪A(u) = ℓ)

=
ℓp · |S|+

∑
v∈A′(d + dS+v(v))p

|S|+ |A′|
. (since G[A] is a d-regular graph)

If |A′| < |A|, then there exists a vertex u ∈ A′ such that dA′(u) < dA(u) = d because
G[A] is connected, which implies that the inequality above is strict. ◀

We need the following technical lemma about the maximizer of a relevant function.

▶ Lemma 4. Let c ∈ R≥0. Let f : Rn
≥0 → R be defined as f(x) :=

∑n
i=1(c + xi)p. For

0 < p < 1, consider the following maximization problem parameterized by s ∈ N:

maximize
{

f(x) : x ∈ Zn, x ≥ 0,

n∑
i=1

xi ≤ s

}
.

Every maximizer for the above problem has µ coordinates set to ⌈s/n⌉−1 and n−µ coordinates
set to ⌈s/n⌉, where µ = n · ⌈s/n⌉ − s. If s is a multiple of n, then the maximizer has all
coordinates set to s/n.

Proof. Let x ∈ Zn and x ≥ 0 be a maximizer. If
∑n

i=1 xi < s, then by setting x′
n = xn + 1

and x′
k = xk for every k ∈ [n − 1], we have f(x′) > f(x), a contradiction to optimality of

f(x).
Suppose that

∑n
i=1 xi = s. We prove that all coordinates are in {⌈s/n⌉, ⌈s/n⌉ − 1}.

Assume that x has at least one entry not in {⌈s/n⌉, ⌈s/n⌉ − 1}. Then, there exists some
coordinate xi that is strictly larger than ⌈s/n⌉ or smaller than ⌈s/n⌉ − 1. Without loss of
generality, we assume that xi > ⌈s/n⌉. Consequently, there exists some index j ∈ [n] such
that xj < ⌈s/n⌉. Since xj < ⌈s/n⌉ < xi and xi, xj are both integers, we have xi − xj ≥ 2.
Because (c + x)p is a concave function of x, (c + xi)p + (c + xj)p < (c + xi−1)p + (c + xj + 1)p.
By setting x′

i = xi−1, x′
j = xj +1, and x′

k = xk for every k ∈ [n]\{i, j}, we have f(x′) > f(x),
a contradiction to optimality of f(x).

Hence, for every maximizer x ∈ Zn, we have
∑n

i=1 xi = s and xi ∈ {⌈s/n⌉, ⌈s/n⌉ − 1}
for every i ∈ [n]. This implies that (n − µ) coordinates are ⌈s/n⌉ and µ coordinates are
⌈s/n⌉ − 1, where µ = n · ⌈s/n⌉ − s. When s is a multiple of n, by Jensen’s inequality, we
have xi = s/n for every 1 ≤ i ≤ n. ◀

We will use the following lemma about the existence of an integer ℓ that satisfies two
inequalities simultaneously for every given p.

▶ Lemma 5. For every p ∈ (0, 1), there exists an integer ℓ ≥ 3 s.t the following two
inequalities hold:(

1− 1
2ℓ

)p

< 1− 1− 1/2p

ℓ + 1 and
(

1 + 1
2ℓ

)p

< 1 + 1− 1/2p

ℓ + 1 . (1)

APPROX/RANDOM 2024

9:8 On the Generalized Mean Densest Subgraph Problem: Complexity and Algorithms

We need the following lemma about NO-instances of exact ℓ-cover.

▶ Lemma 6. Let p ∈ (0, 1) and ℓ ≥ 3 be an integer that satisfies the two inequalities in
(1). Consider an instance of exact ℓ-cover with ground set U of size ℓn and family
S ⊆ 2U . Suppose that the instance has no exact ℓ-cover. Then, for every non-negative
integers s, a′ ∈ Z≥0 with s ≤ |S|, a′ ≤ ℓn, and s + a′ ≥ 1 and every non-negative integer
vector X ∈ Za′

≥0 with
∑a′

i=1 Xi ≤ ℓs, we have that

ℓp · s +
∑a′

i=1(2ℓ− 1 + Xi)p

s + a′ ≤ ℓp + ℓ · (2ℓ)p

ℓ + 1 . (2)

Moreover, if there exists i ∈ [a′] such that Xi ̸= ℓs/a′, then the above inequality is strict.

Proof. We case on the value of the ratio s/a′.
Case 1. Suppose ℓ · s = a′. Then, we have

ℓp · s +
∑a′

i=1(2ℓ− 1 + Xi)p

s + a′ ≤
ℓp · s + a′ · (2ℓ− 1 + ℓ·s

a′)p

s + a′ (by
a′∑

i=1
Xi ≤ ℓ · s and Lemma 4)

= ℓp · a′/ℓ + a′ · (2ℓ)p

a′/ℓ + a′ (since ℓ · s = a′)

= ℓp + ℓ · (2ℓ)p

ℓ + 1 .

By Lemma 4, if there exists i ∈ [a′] such that Xi ̸= ℓs/a′, then the above inequality is strict.
Case 2. Suppose ℓ · s = β · a′ for some 0 ≤ β < 1. Then, we have

ℓp · s +
∑a′

i=1(2ℓ− 1 + Xi)p

s + a′ ≤ ℓp · s + βa′ · (2ℓ)p + (1− β)a′ · (2ℓ− 1)p

s + a′

(by
a′∑

i=1
Xi ≤ ℓ · s and Lemma 4)

= ℓp · β + ℓβ · (2ℓ)p + ℓ(1− β) · (2ℓ− 1)p

β + ℓ
. (since ℓ · s = β · a′)

We define h : [0, 1]→ R as

h(β) := ℓp · β + ℓβ · (2ℓ)p + ℓ(1− β) · (2ℓ− 1)p

β + ℓ
,

which implies that the left hand side expression in the lemma is at most h(β). By differenti-
ating the function h with respect to β, we have

d

dβ
h(β) = (ℓp + ℓ · (2ℓ)p − ℓ · (2ℓ− 1)p)(β + ℓ)− (ℓp · β + ℓβ · (2ℓ)p + ℓ(1− β) · (2ℓ− 1)p)

(β + ℓ)2

= ℓp+1 + ℓ2 · (2ℓ)p − ℓ2 · (2ℓ− 1)p − ℓ · (2ℓ− 1)p

(β + ℓ)2

= ℓp+1 + ℓ2 · (2ℓ)p − (ℓ2 + ℓ) · (2ℓ− 1)p

(β + ℓ)2

>
ℓp+1 + ℓ2 · (2ℓ)p − (ℓ2 + ℓ) · (2ℓ)p · (1− 1−2−p

ℓ+1)
(β + ℓ)2 (by inequality (1))

= ℓp+1 + ℓ2 · (2ℓ)p − ℓ · (2ℓ)p · (ℓ + 2−p)
(β + ℓ)2 = 0.

K. Chandrasekaran, C. Chekuri, M. R. Torres, and W. Zhu 9:9

Hence, function h(β) is strictly increasing for β ∈ [0, 1]. Thus,

ℓp · s +
∑a′

i=1(2ℓ− 1 + Xi)p

s + a′ ≤ h(β) < h(1) = ℓp + ℓ · (2ℓ)p

ℓ + 1 .

Case 3. Suppose ℓ · s = α · a′ for some α > 1. Let α = t + β where t ≥ 1 is an integer and
0 < β ≤ 1. Then, we have

ℓp · s +
∑a′

i=1(2ℓ− 1 + Xi)p

s + a′ ≤ ℓp · s + βa′ · (2ℓ + t)p + (1− β)|A′| · (2ℓ− 1 + t)p

|S|+ |A′|

(by
a′∑

i=1
Xi ≤ ℓ · s and Lemma 4)

= ℓp · (t + β) + ℓβ · (2ℓ + t)p + ℓ(1− β) · (2ℓ− 1 + t)p

t + β + ℓ

(since ℓ · s = (t + β) · a′).

We define g : [0, +∞)× [0, 1]→ R as

g(t, β) := ℓp · (t + β) + ℓβ · (2ℓ + t)p + ℓ(1− β) · (2ℓ− 1 + t)p

t + β + ℓ
,

which implies that the left hand side expression in the lemma is at most g(t, β). We note
that g(t, 1) = g(t + 1, 0) for every t ≥ 0.

By differentiating the function g with respect to β, we have

d

dβ
g(t, β)

= (ℓp + ℓ·(2ℓ + t)p − ℓ·(2ℓ − 1 + t)p)(t + β + ℓ) − (ℓp ·(t + β) + ℓβ · (2ℓ + t)p + ℓ(1 − β)·(2ℓ − 1 + t)p)
(t + β + ℓ)2

= ℓp+1 + (ℓ2 + t · ℓ) · (2ℓ + t)p − (ℓ2 + (t + 1) · ℓ) · (2ℓ + t − 1)p

(t + β + ℓ)2 .

Now, we note that

d

dt

(
ℓp+1 + (ℓ2 + t · ℓ) · (2ℓ + t)p − (ℓ2 + (t + 1) · ℓ) · (2ℓ + t − 1)p

)
= p · (ℓ2 + t · ℓ) · (2ℓ + t)p−1 + ℓ · (2ℓ + t)p − p · (ℓ2 + (t + 1) · ℓ) · (2ℓ + t − 1)p−1 − ℓ·(2ℓ + t − 1)p

≤ p · (ℓ2 + t · ℓ) · (2ℓ + t)p−1 + ℓ · p · (2ℓ + t − 1)p−1 − p · (ℓ2 + (t + 1) · ℓ) · (2ℓ + t − 1)p−1

(since (x + 1)p − xp ≤ p · xp−1 for every x > 0)

= p · (ℓ2 + t · ℓ)((2ℓ + t)p−1 − (2ℓ + t − 1)p−1) < 0.

Thus,

d

dβ
g(t, β) = ℓp+1 + (ℓ2 + t · ℓ) · (2ℓ + t)p − (ℓ2 + (t + 1) · ℓ) · (2ℓ + t− 1)p

(t + β + ℓ)2

≤ ℓp+1 + (ℓ2 + ℓ) · (2ℓ + 1)p − (ℓ2 + 2ℓ) · (2ℓ)p

(1 + β + ℓ)2 (since t ≥ 1)

=
(2ℓ)p · (2−p · ℓ + (ℓ2 + ℓ) · (1 + 1

2ℓ)p − (ℓ2 + 2ℓ))
(1 + β + ℓ)2

<
(2ℓ)p · (2−p · ℓ + (ℓ2 + ℓ) · (1 + 1−2−p

ℓ+1)− (ℓ2 + 2ℓ))
(1 + β + ℓ)2 (by inequality (1))

= (2ℓ)p · (2−p · ℓ + (ℓ2 + ℓ) + (1− 2−p) · ℓ− (ℓ2 + 2ℓ))
(1 + β + ℓ)2 = 0.

APPROX/RANDOM 2024

9:10 On the Generalized Mean Densest Subgraph Problem: Complexity and Algorithms

Hence, function g(t, β) is strictly decreasing with respect to β for β ∈ [0, 1]. Thus,

ℓp · s +
∑a′

i=1(2ℓ− 1 + Xi)p

s + a′ ≤ g(t, β) < g(t, 0).

For every positive integer r > 1, we have g(r, 0) = g(r − 1, 1) < g(r − 1, 0). Thus,

ℓp · s +
∑a′

i=1(2ℓ− 1 + Xi)p

s + a′ < g(t, 0) < g(1, 0) = ℓp + ℓ · (2ℓ)p

ℓ + 1 . ◀

Now, we are ready to prove the NP-hardness of p-mean DSG for p ∈ (0, 1). We recall
that OPTG := max

X⊆V
ρp(X).

▶ Theorem 7. For every p ∈ (0, 1), there exist positive integers ℓ ≥ 3 and d such that for
an instance of exact ℓ-cover with ground set U and family S ⊆ 2U , there exists an exact
ℓ-cover iff OPTG ≥ ρ∗ = ℓp+ℓ·(d+1)p

ℓ+1 , where G = Gd is the graph constructed in the reduction
above.

Proof. By Corollary 5, we know that there exists a positive integer ℓ ≥ 3 satisfying the
two inequalities in (1). Fix such an ℓ. Let U be the ground set and S be the collection of
subsets of an instance of Exact ℓ-Cover. We set d = 2ℓ− 1 and consider the graph G = Gd

constructed in the reduction in Section 2.1. We show that there exists an exact ℓ-cover iff
OPTG ≥ ρ∗ = ℓp+ℓ·(d+1)p

ℓ+1 .
Suppose S contains an exact ℓ-cover Si1 , . . . , Sin

. Let S = {vi1 , vi2 , . . . , vin
}. We note

that |S| = n = |A|
ℓ . Thus, we have

OPTG ≥ ρp(S∪A) = fp(S ∪A)
|S ∪A|

= ℓp · |S|+ (d + 1)p · |A|
|S|+ |A| = ℓp · |A|/ℓ + (d + 1)p · |A|

|A|/ℓ + |A| = ρ∗.

Suppose S does not contain an exact ℓ-cover. Let S ⊆ L and A′ ⊆ A. We note that
ℓ · |S| =

∑
v∈A dS+v(v) ≥

∑
v∈A′ dS+v(v). Thus, we have

ρp(S ∪A′) = fp(S ∪A′)
|S ∪A′|

≤
ℓp · |S|+

∑
v∈A′(d + dS+v(v))p

|S|+ |A′|
(by Lemma 3)

≤ ρ∗. (by Lemma 6)

We note that since S is not an exact ℓ-cover, we have that either |A′| < |A| or there exists
u, v ∈ A with dS+u(u) ̸= dS+v(v). This implies that either the first inequality or the second
inequality above is strict according to the respective lemmas, that is, ρp(S ∪A′) < ρ∗. ◀

3 APX-hardness for p ∈ (0, 1)

In this section, we adapt the NP-hardness proof from Section 2 to show that weighted
p-mean DSG is APX-hard for every fixed constant p ∈ (0, 1).

▶ Theorem 8. For every fixed constant p ∈ (0, 1), there exists a constant δp > 0 that depends
only on p such that it is NP-hard to obtain a (1− δp)-approximation for weighted p-mean
DSG.

In order to prove Theorem 8, we will rely on the APX-hardness of exact ℓ-cover as
stated below.

K. Chandrasekaran, C. Chekuri, M. R. Torres, and W. Zhu 9:11

▶ Theorem 9. There exists a constant ε ∈ (0, 1) such that for every integer ℓ ≥ 3, it is
NP-hard to distinguish between the following two cases for a given finite ground set U of size
ℓn and a family S ⊆ 2U of subsets each of cardinality ℓ:

YES-instance: There exists a collection of n sets in S whose union is U .
NO-instance: The union of every collection of n · (1 + ε) sets in S has size at most
ℓ · n · (1− ε).
Exact ℓ-Cover is a special case of Set Cover. The hardness we seek requires a disjoint

set cover in the YES case, and we also need the hardness to hold for every fixed integer
ℓ ≥ 3. Related results have been proved in the literature [32, 43, 26, 23], however the precise
version we need requires a formal argument. We provide the proof in the full version and
also comment on the relation to previous work.

Reduction from Exact ℓ-Cover to weighted p-mean DSG

We reduce from the APX-hard variant of exact ℓ-cover, namely the problem mentioned
in Theorem 9. Consider an instance of the problem mentioned in Theorem 9: namely, let
U be a ground set of size ℓn and let S ⊆ 2U of subsets each of cardinality ℓ. For a positive
integer d (to be chosen later), we construct a graph Gd = (L ∪A, E) as follows: we define
L := {vi : i ∈ [m]} and A := {uj : j ∈ [ℓ · n]}. For every i ∈ [m] and j ∈ [ℓ · n], if set Si

contains element ej , then we add an edge with unit weight between vi and uj in graph G.
We add an edge between all pairs of vertices in A with weight d

|A|−1 , where d will be chosen
appropriately (instead of G[A] being a connected d-regular graph as used in the NP-hardness
reduction in Section 2). We note that for every vertex v ∈ A, the sum of weight of edges
incident to v in the induced subgraph G[A] is d. We define OPTGd

:= maxX⊆V ρp(X) and
set ρ∗ := ℓp+ℓ·(d+1)p

ℓ+1 . We will prove that if the instance is a YES instance, then OPTGd
≥ ρ∗

and if the instance is a NO instance, then OPTGd
< (1− δp) · ρ∗ for some constant δp > 0

that depends only on p. We now state the main theorem of the section below.

▶ Theorem 10. For every p ∈ (0, 1), there exist positive integers ℓ ≥ 3 and d such that for
an instance (U ,S) of the problem mentioned in Theorem 9, where the ground set U has size
ℓn and every set in S has size ℓ, the following two hold:

if the instance is a YES-instance, then OPTGd
≥ ρ∗, and

if the instance is a NO-instance, then OPTGd
< (1 − δp) · ρ∗ for some constant δp > 0

that depends only on p.
Here, Gd is the graph constructed in the reduction from Exact ℓ-Cover for Weighted Version.

Theorem 8 follows from Theorem 10. We briefly outline our proof of Theorem 10 and
refer to the full version for the full proof. It is easy to see that if the instance (U ,S) of
the problem mentioned in Theorem 9 is a YES-instance, then OPTGd

≥ ρ∗ (similar to the
proof of NP-hardness). We focus on showing that if the instance is a NO-instance, then
OPTGd

< (1− δ)ρ∗. Let S ⊆ L and A′ ⊆ A. We need to show that ρp(S ∪A′) < (1− δ)ρ∗.
For this, we recall the proof of NP-hardness in Section 2.2. There, we showed that if the
instance does not have an exact ℓ-cover, then ρp(S ∪ A′) < ρ∗. For this, we proved that
ρp(S ∪ A′) is maximized and is at most ρ∗ if ℓ|S|/|A′| = 1. That proof can be adapted
in a straightforward fashion to show that ρp(S ∪ A′) < (1 − δ)ρ∗ if ℓ|S|/|A′| ≥ 1 + ε or if
ℓ|S|/|A′| ≤ 1 − ε for some constants δ, ε > 0 (even for the graph Gd that appears in the
reduction to unweighted p-mean DSG) – see cases 1 and 2 in the proof of Theorem 10. Thus,
the non-trivial case to handle is if ℓ|S|/|A′| ∈ (1− ε, 1 + ε). In this situation, we consider two
cases: (i) Suppose that |A′| ≤ (1− ε)|A|. In this case, we exploit the clique in the weighted
graph constructed in the reduction above to conclude that ρp(S ∪A′) < (1− δ)ρ∗ for some
constant δ > 0 (see case 3 in the proof of Theorem 10). (ii) Suppose that |A′| > (1− ε)|A|.

APPROX/RANDOM 2024

9:12 On the Generalized Mean Densest Subgraph Problem: Complexity and Algorithms

In this case, we rely on the APX-hardness of exact ℓ-cover (i.e., the instance (U ,S) is a
NO-instance of the problem mentioned in Theorem 9) to conclude that ρp(S∪A′) < (1−δ)ρ∗

for some constant δ > 0 (see case 4 in the proof of Theorem 10). We emphasize that the
weighted clique over the set A of vertices in the reduction graph (as opposed to an unweighted
d-regular graph over the set A of vertices) is useful in the first case. We also mention that the
constant δp in Theorem 10 is very small. We give an estimation of δ1/2 in the full version.

4 Approximation Algorithms

We give two new approximation algorithms for p-MEAN DSG. Our algorithms achieve an
approximation factor of 1

2 for all p ∈ (−∞, 1). Our algorithms rely on the fact that maxcore
and DSG can be solved in polynomial time. First, we show that the peeling algorithm used to
compute maxcore can be adapted to obtain a 1

2 -approximate solutions to p-mean DSG for
every p ∈ (−∞, 1). Secondly, we show that an optimum solution to DSG is a 1

2 -approximate
solution to p-mean DSG for every p ∈ (−∞, 1). We complement these results with a family
of graphs for which both algorithms simultaneously achieve only a 1

2 -approximation.
Let G = (V, E) be the input graph. We let S∗

p := arg maxS⊆V Mp(S) and let M∗
p :=

Mp(S∗
p). We need the following fact about the monotonicity of the objective.

▶ Proposition 11. Let S ⊆ V . For every p ≤ q, we have Mp(S) ≤Mq(S).

We have the following statement connecting different values of M∗
p .

▶ Proposition 12. For every p ∈ [−∞, 1], we have M∗
−∞ ≤M∗

p ≤M∗
1 ≤ 2M∗

−∞.

The first two inequalities follow directly from Proposition 11 and the last inequality follows
via a simple known argument connecting degeneracy to the maximum average degree of a
subgraph (e.g., see [16]).

1
2 -approximation via maxcore approach

Our first algorithm leverages the standard greedy peeling algorithm for the maxcore. Our
algorithm, denoted Simple-Greedy-p, is given in Figure 2. The algorithm for p = −∞ is
the peeling algorithm used to compute maxcore and the algorithm for p = 1 is Charikar’s
greedy peeling algorithm. We recall that Charikar showed that the algorithm achieves a
1
2 -approximation for 1-mean DSG.

Simple-Greedy-p(G = (V, E))
1: S1 ← V

2: for i = 1 to n− 1 do
3: vi ← arg minv∈Si

dSi
(v)

4: Si+1 ← Si − vi

5: return arg maxSi
Mp(Si)

Figure 2 1
2 -approximation via greedy peeling for p-mean DSG where p < 1.

K. Chandrasekaran, C. Chekuri, M. R. Torres, and W. Zhu 9:13

▶ Theorem 13. Let p ∈ [−∞, 1] and let S be the output of Simple-Greedy-p(G). Then,
Mp(S) ≥ 1

2 M∗
p .

Proof. The algorithm for p = −∞ is the peeling algorithm used to compute maxcore.
In particular, it is well-known that there exists i ∈ [n] with M−∞(Si) = M∗

−∞. By
Proposition 11, M−∞(Si) ≤Mp(Si) and by choice of S, we have Mp(Si) ≤Mp(S). Therefore,
M∗

−∞ ≤ Mp(S). Finally, by Proposition 12, we have 1
2 M∗

p ≤ M∗
−∞. Combining these two

statements, we get 1
2 M∗

p ≤Mp(S). ◀

▶ Remark 14. Simple-Greedy-p returns an optimum solution for p = ∞. Our results show
that for p ∈ (−∞, 1], Simple-Greedy-p returns a 1

2 -approximation. However, for p > 1, [47]
showed that the approximation factor of Simple-Greedy-p can be arbitrarily small.

1
2 -approximation via 1-mean densest subgraph

Our second algorithm is to simply return a 1-mean densest subgraph. We recall that
S∗

1 = arg maxS⊆V M1(S) and it can be computed in polynomial time. We analyze its
approximation factor.

▶ Theorem 15. Let p ∈ [−∞, 1]. Then, Mp(S∗
1) ≥ 1

2 M∗
p .

Proof. We first prove that

M−∞(S∗
1) ≥ 1

2M∗
1 . (3)

It suffices to show that dS∗
1
(v) ≥ |E(S∗

1)|
|S∗

1 |
for every v ∈ S∗

1 . Suppose towards a contradiction

that there exists v ∈ S∗
1 such that dS∗

1
(v) <

|E(S∗
1)|

|S∗
1 |

. Using this and observing |E(S∗
1)| −

|E(S∗
1 − v)| = dS∗

1
(v), after rearranging, we have |E(S∗

1 −v)|
|S∗

1 −v| >
|E(S∗

1)|
|S∗

1 |
. Multiplying through

by 2, we obtain M1(S∗
1 − v) > M1(S∗

1), contradicting the optimality of S∗
1 .

Thus, we have

Mp(S∗
1) ≥M−∞(S∗

1) ≥ 1
2M∗

1 ≥
1
2M∗

p

where the first and last inequality are by Proposition 11 and the second inequality is
via (3). ◀

▶ Remark 16. We described two algorithms that achieve an approximation factor of 1
2 . Would

returning the best among the sets returned by the two algorithms achieve a factor that is
better than 1

2 ? In the full version, we construct a non-trivial family of instances on which
both algorithms have an approximation factor of at most 1

2 . We emphasize that we seek
non-trivial instances – in particular, instances in which the optimum value is arbitrary (i.e.,
grows) and is not a fixed constant.

5 Conclusion

maxcore and DSG are polynomial-time solvable densest subgraph problems with numerous
applications. p-mean DSG, introduced by Veldt, Benson, and Kleinberg [47], captures both
these special cases and provides a unified way to generate subgraphs with different density
properties. p-mean DSG is polynomial-time solvable for p = −∞ and for p ≥ 1. In this
work, we addressed the complexity and algorithmic aspects of the problem for p ∈ (−∞, 1).

APPROX/RANDOM 2024

9:14 On the Generalized Mean Densest Subgraph Problem: Complexity and Algorithms

We showed that p-mean DSG is NP-hard for p ∈ (−∞, 1) and weighted p-mean DSG is
APX-hard for every fixed constant p ∈ (0, 1). Our hardness results motivate the need for
approximation algorithms for p ∈ (−∞, 1). We gave a simple 1/2-approximation for p-mean
DSG for all p ∈ (−∞, 1). Our approximation algorithms also extend to weighted p-mean
DSG with the same approximation guarantee in a natural manner.

There are two interesting directions for future work. Firstly, is p-mean DSG (or
weighted p-mean DSG) APX-hard for every p ∈ (−∞, 1)? Our APX-hardness results
hold for every fixed constant p ∈ (0, 1). Extending our approach to show APX-hardness
for fixed constant p ∈ (−∞, 0) requires extending the proof of Theorem 10 to p < 0. The
technical barrier to extending is the third case in the proof. Secondly, can we improve the
approximability of p-mean DSG for p ∈ (−∞, 1)? In contrast to the densest subgraph
problem, the non-linearity of the objective function of p-mean DSG makes it difficult to
develop mathematical programming relaxations. We leave it here as an interesting open
problem.

References
1 Reid Andersen and Kumar Chellapilla. Finding dense subgraphs with size bounds. In

International Workshop on Algorithms and Models for the Web-Graph, pages 25–37. Springer,
2009.

2 Albert Angel, Nick Koudas, Nikos Sarkas, Divesh Srivastava, Michael Svendsen, and Srikanta
Tirthapura. Dense subgraph maintenance under streaming edge weight updates for real-time
story identification. The VLDB journal, 23:175–199, 2014.

3 Yuichi Asahiro, Kazuo Iwama, Hisao Tamaki, and Takeshi Tokuyama. Greedily finding a
dense subgraph. Journal of Algorithms, 34(2):203–221, 2000.

4 Gary D Bader and Christopher WV Hogue. An automated method for finding molecular
complexes in large protein interaction networks. BMC bioinformatics, 4(1):1–27, 2003.

5 Bahman Bahmani, Ashish Goel, and Kamesh Munagala. Efficient primal-dual graph algorithms
for MapReduce. In International Workshop on Algorithms and Models for the Web-Graph,
pages 59–78. Springer, 2014.

6 Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Uriel Feige, and Aravindan Vijayaraghavan.
Detecting high log-densities: an o(n1/4) approximation for densest k-subgraph. In Proceedings
of the forty-second ACM symposium on Theory of computing, pages 201–210, 2010.

7 Digvijay Boob, Yu Gao, Richard Peng, Saurabh Sawlani, Charalampos Tsourakakis, Di Wang,
and Junxing Wang. Flowless: Extracting densest subgraphs without flow computations. In
Proceedings of The Web Conference 2020, pages 573–583, 2020.

8 Digvijay Boob, Saurabh Sawlani, and Di Wang. Faster width-dependent algorithm for mixed
packing and covering LPs. Advances in Neural Information Processing Systems 32 (NIPS
2019), 2019.

9 Moses Charikar. Greedy approximation algorithms for finding dense components in a graph.
In International Workshop on Approximation Algorithms for Combinatorial Optimization,
pages 84–95. Springer, 2000.

10 Chandra Chekuri, Kent Quanrud, and Manuel R Torres. Densest subgraph: Supermodularity,
iterative peeling, and flow. In Proceedings of the 2022 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1531–1555. SIAM, 2022.

11 Chandra Chekuri and Manuel R. Torres. On the generalized mean densest subgraph problem:
Complexity and algorithms. CoRR, abs/2306.02172, 2023. doi:10.48550/arXiv.2306.02172.

12 Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and
Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. In 2022
IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pages 612–623,
2022.

https://doi.org/10.48550/arXiv.2306.02172

K. Chandrasekaran, C. Chekuri, M. R. Torres, and W. Zhu 9:15

13 Maximilien Danisch, T.-H. Hubert Chan, and Mauro Sozio. Large scale density-friendly graph
decomposition via convex programming. In Proceedings of the 26th International Conference
on World Wide Web, pages 233–242, 2017.

14 Yon Dourisboure, Filippo Geraci, and Marco Pellegrini. Extraction and classification of dense
communities in the web. In Proceedings of the 16th international conference on World Wide
Web, pages 461–470, 2007.

15 Xiaoxi Du, Ruoming Jin, Liang Ding, Victor E Lee, and John H Thornton Jr. Migration
motif: a spatial-temporal pattern mining approach for financial markets. In Proceedings of the
15th ACM SIGKDD international conference on knowledge discovery and data mining, pages
1135–1144, 2009.

16 Martin Farach-Colton and Meng-Tsung Tsai. Computing the degeneracy of large graphs. In
LATIN 2014: Theoretical Informatics: 11th Latin American Symposium, Montevideo, Uruguay,
March 31–April 4, 2014. Proceedings 11, pages 250–260. Springer, 2014.

17 András Faragó. A general tractable density concept for graphs. Mathematics in Computer
Science, 1(4):689–699, 2008.

18 András Faragó and Zohre R Mojaveri. In search of the densest subgraph. Algorithms, 12(8):157,
2019.

19 Uriel Feige, David Peleg, and Guy Kortsarz. The dense k-subgraph problem. Algorithmica,
29(3):410–421, 2001.

20 Eugene Fratkin, Brian T Naughton, Douglas L Brutlag, and Serafim Batzoglou. MotifCut:
regulatory motifs finding with maximum density subgraphs. Bioinformatics, 22(14):e150–e157,
2006.

21 Giorgio Gallo, Michael D Grigoriadis, and Robert E Tarjan. A fast parametric maximum flow
algorithm and applications. SIAM Journal on Computing, 18(1):30–55, 1989.

22 Michael R Garey and David S Johnson. Computers and intractability, volume 174. freeman
San Francisco, 1979.

23 Naveen Garg, Sanjeev Khanna, and Amit Kumar. Hardness of approximation for orienteering
with multiple time windows. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 2977–2990. SIAM, 2021.

24 David Gibson, Ravi Kumar, and Andrew Tomkins. Discovering large dense subgraphs in
massive graphs. In Proceedings of the 31st international conference on Very large data bases,
pages 721–732, 2005.

25 Aristides Gionis and Charalampos E Tsourakakis. Dense subgraph discovery: KDD 2015
tutorial. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 2313–2314, 2015.

26 Anupam Gupta, Euiwoong Lee, Jason Li, Pasin Manurangsi, and Michał Włodarczyk. Losing
treewidth by separating subsets. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1731–1749. SIAM, 2019.

27 Elfarouk Harb, Kent Quanrud, and Chandra Chekuri. Faster and scalable algorithms for
densest subgraph and decomposition. In Advances in Neural Information Processing Systems,
2022.

28 Elfarouk Harb, Kent Quanrud, and Chandra Chekuri. Convergence to lexicographically
optimal base in a (contra)polymatroid and applications to densest subgraph and tree packing.
In 31st Annual European Symposium on Algorithms, volume 274, pages 56:1–56:17, 2023.

29 Haiyan Hu, Xifeng Yan, Yu Huang, Jiawei Han, and Xianghong Jasmine Zhou. Mining coherent
dense subgraphs across massive biological networks for functional discovery. Bioinformatics,
21(suppl_1):i213–i221, 2005.

30 Shuguang Hu, Xiaowei Wu, and TH Hubert Chan. Maintaining densest subsets efficiently in
evolving hypergraphs. In Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management, pages 929–938, 2017.

APPROX/RANDOM 2024

9:16 On the Generalized Mean Densest Subgraph Problem: Complexity and Algorithms

31 Yingsheng Ji, Zheng Zhang, Xinlei Tang, Jiachen Shen, Xi Zhang, and Guangwen Yang.
Detecting cash-out users via dense subgraphs. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 687–697, 2022.

32 Viggo Kann. Maximum bounded 3-dimensional matching is max snp-complete. Information
Processing Letters, 37(1):27–35, 1991.

33 Yasushi Kawase and Atsushi Miyauchi. The densest subgraph problem with a convex/concave
size function. Algorithmica, 80(12):3461–3480, 2018.

34 Ravi Kumar, Jasmine Novak, and Andrew Tomkins. Structure and evolution of online social
networks. In Proceedings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 611–617, 2006.

35 Tommaso Lanciano, Francesco Bonchi, and Aristides Gionis. Explainable classification of brain
networks via contrast subgraphs. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 3308–3318, 2020.

36 Tommaso Lanciano, Atsushi Miyauchi, Adriano Fazzone, and Francesco Bonchi. A survey on
the densest subgraph problem and its variants. arXiv preprint arXiv:2303.14467, 2023.

37 Victor E Lee, Ning Ruan, Ruoming Jin, and Charu Aggarwal. A survey of algorithms for
dense subgraph discovery. In Managing and Mining Graph Data, pages 303–336. Springer,
2010.

38 Fragkiskos D Malliaros, Christos Giatsidis, Apostolos N Papadopoulos, and Michalis Vazirgi-
annis. The core decomposition of networks: Theory, algorithms and applications. The VLDB
Journal, 29:61–92, 2020.

39 Pasin Manurangsi. Almost-polynomial ratio ETH-hardness of approximating densest k-
subgraph. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, pages 954–961, 2017.

40 Jean-Claude Picard and Maurice Queyranne. A network flow solution to some nonlinear 0-1
programming problems, with applications to graph theory. Networks, 12(2):141–159, 1982.

41 Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer
Science & Business Media, 2003.

42 Victor Spirin and Leonid A Mirny. Protein complexes and functional modules in molecular
networks. Proceedings of the national Academy of sciences, 100(21):12123–12128, 2003.

43 Luca Trevisan. Non-approximability results for optimization problems on bounded degree
instances. In Proceedings of the thirty-third annual ACM symposium on Theory of computing,
pages 453–461, 2001.

44 Charalampos Tsourakakis. The k-clique densest subgraph problem. In Proceedings of the 24th
international conference on world wide web, pages 1122–1132, 2015.

45 Charalampos Tsourakakis and Tianyi Chen. Dense subgraph discovery: Theory
and application (Tutoral at SDM 2021), 2021. URL: https://tsourakakis.com/
dense-subgraph-discovery-theory-and-applications-tutorial-sdm-2021/.

46 Charalampos E Tsourakakis. A novel approach to finding near-cliques: The triangle-densest
subgraph problem. arXiv preprint arXiv:1405.1477, 2014.

47 Nate Veldt, Austin R Benson, and Jon Kleinberg. The generalized mean densest subgraph
problem. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &
Data Mining, pages 1604–1614, 2021.

48 Si Zhang, Dawei Zhou, Mehmet Yigit Yildirim, Scott Alcorn, Jingrui He, Hasan Davulcu, and
Hanghang Tong. Hidden: hierarchical dense subgraph detection with application to financial
fraud detection. In Proceedings of the 2017 SIAM International Conference on Data Mining,
pages 570–578. SIAM, 2017.

https://tsourakakis.com/dense-subgraph-discovery-theory-and-applications-tutorial-sdm-2021/
https://tsourakakis.com/dense-subgraph-discovery-theory-and-applications-tutorial-sdm-2021/

K. Chandrasekaran, C. Chekuri, M. R. Torres, and W. Zhu 9:17

A Missing proofs for NP-hardness

We include the missing proofs for p ∈ (0, 1) from Section 2 here.

A.1 Proof of Theorem 2
▶ Theorem 2. exact ℓ-cover is NP-complete for every integer ℓ ≥ 3.

Proof. We recall that exact 3-cover is NP-complete [22]. We reduce exact ℓ-cover to
exact (ℓ+1)-cover for ℓ ≥ 3. Consider an instance of exact ℓ-cover with ground set U of
cardinality ℓn and a family S ⊆ 2U of subsets each of which has cardinality ℓ. Let x1, . . . , xn

be n new elements that are not in U . We create an instance of exact (ℓ + 1)-cover as
follows:

Let U ′ := U ∪ {x1, . . . , xn} be the ground set. We have that |U ′| = |U|+ n = (ℓ + 1) · n.
Let S ′ := {S ∪ {xi} : S ∈ S, 1 ≤ i ≤ n}. Each set in S ′ has cardinality ℓ + 1.

If there exists an exact ℓ-cover {Si1 , Si2 , . . . , Sin
} of U , then {Si1 ∪ {x1}, Si2 ∪

{x2}, . . . , Sin ∪ {xn}} is an exact (ℓ + 1)-cover of U . If an exact ℓ-cover of U does not
exist, then an exact (ℓ + 1)-cover of U ′ does not exist. Hence, NP-completeness of exact
3-cover implies NP-completeness of exact ℓ-cover for every ℓ ≥ 3. ◀

A.2 Technical Lemmas for Hardness Results
The following inequalities will be used when proving the hardness results.

▶ Lemma 17. Let p, x ∈ (0, 1). Then,
1. (1− x)p < 1− px,
2. (1− x)p < 1− px− p(1−p)

2 x2,
3. (1 + x)p < 1 + px, and
4. (1 + x)p < 1 + px− p(1−p)

2 x2 + p(1−p)(2−p)
6 x3.

Proof. For the first inequality, let f1(x) := (1− x)p − (1− px). Then, f ′
1(x) = p · (1− (1−

x)p−1) < 0, which implies that f1(x) < f1(0) = 0.
For the second inequality, let f2(x) := (1 − x)p − (1 − px − p(1−p)

2 x2). Then, f ′
2(x) =

p · (1 + (1 − p)x − (1 − x)p−1) and f ′′
2 (x) = p · (1 − p) · (1 − (1 − x)p−2) < 0. Hence,

f ′
2(x) < f ′

2(0) = 0, which implies that f2(x) < f2(0) = 0.
For the third inequality, let f3(x) := (1+x)p−(1+px). Then, f ′

3(x) = p·((1+x)p−1−1) < 0,
which implies that f3(x) < f3(0) = 0.

For the fourth inequality, let f4(x) := (1 + x)p − (1 + px − p(1−p)
2 x2 + p(1−p)(2−p)

6 x3).
Then, f ′

4(x) = p · ((1 + x)p−1 − (1− (1− p)x + (1−p)(2−p)
2 x2)). Also, f ′′

4 (x) = p · (1− p) · (1−
(2− p)x− (1 + x)p−2) and f ′′′

4 (x) = p(1− p)(2− p) · ((1 + x)p−3 − 1) < 0, which implies that
f ′′

4 (x) < f ′′
4 (0) = 0. Thus, f ′

4(x) < f ′
4(0) = 0 and f4(x) < f4(0) = 0. ◀

A.3 Proof of Lemma 5
Lemma 5 follows from the following stronger lemma. The stronger version will be useful in
proving APX-hardness.

▶ Lemma 18. For every p ∈ (0, 1), there exists a positive value η > 0 and an integer ℓ ≥ 3,
both of which depend only on p, such that the following two inequalities hold:(

1− 1
2ℓ

)p

< 1− 1− 1/2p

ℓ + 1 − η and
(

1 + 1
2ℓ

)p

< 1 + 1− 1/2p

ℓ + 1 − η.

APPROX/RANDOM 2024

9:18 On the Generalized Mean Densest Subgraph Problem: Complexity and Algorithms

Proof. Set ℓ0 := p·2p−1

2p−p·2p−1−1 . Then, we have p
2ℓ0

= 1−1/2p

ℓ0+1 . We note that

ℓ0 − 5
2 = p · 2p−1

2p − p · 2p−1 − 1 − 5
2 =

21−p + 7
5 p − 2

2p − p · 2p−1 − 1 · 5
2 · 2p−1 =

21−p − 7
5 (1 − p) − 3

5
2p − p · 2p−1 − 1 · 5

2 · 2p−1 >0.

The last inequality holds since 2x − 7
5 x − 3

5 is a convex function and evaluates to zero at
x = 1 with negative derivative. This implies that 21−p − 7

5 (1− p)− 3
5 > 0. Consequently,

ℓ0 >
5
2 . (4)

We also note that

2− (1− p)ℓ0 = 2− (1− p) · p · 2p−1

2p − p · 2p−1 − 1 (since ℓ0 = p · 2p−1

2p − p · 2p−1 − 1)

=
2p · (2− 3

2 p + 1
2 p2 − 21−p)

2p − p · 2p−1 − 1

=
2p · (1 + (1− p) + 1

2 (−p)(1− p)− 21−p)
2p − p · 2p−1 − 1 < 0.

The last inequality above is because 2x > 1 + x + 1
2 x(x− 1) for all x ∈ (0, 1). This implies

that

(1− p)ℓ0 > 2. (5)

Hence, if we can prove that the two inequalities of the lemma hold for every ℓ ∈
[ℓ0 − 1

2 , ℓ0 + 1
2], then it implies the lemma. We define two functions f1 : (0, +∞)→ R and

f2 : (0, +∞)→ R as

f1(ℓ) = (1− 1
2ℓ

)p + 1− 1/2p

ℓ + 1 − 1 and f2(ℓ) = (1 + 1
2ℓ

)p − 1− 1/2p

ℓ + 1 − 1.

By setting

η := 1
2 ·min

{ 1
2 p · (2ℓ0 + 3)

ℓ0 · (2ℓ0 + 3) · (2ℓ0 + 1)2 · ((1− p)ℓ0 − 2), p

2ℓ0 − 1 ·
16ℓ0 − 16

6ℓ0(2ℓ0 + 1)(2ℓ0 − 1)2

}
,

which is larger than 0 by inequalities (4) and (5), we will prove that f1(ℓ) < −η and
f2(ℓ) < −η for every ℓ ∈ [ℓ0 − 1

2 , ℓ0 + 1
2]. We note that

η <
1
2 p · (2ℓ0 + 3)

ℓ0 · (2ℓ0 + 3) · (2ℓ0 + 1)2 · ((1− p)ℓ0 − 2) and (6)

η <
p

2ℓ0 − 1 ·
16ℓ0 − 16

6ℓ0(2ℓ0 + 1)(2ℓ0 − 1)2 . (7)

K. Chandrasekaran, C. Chekuri, M. R. Torres, and W. Zhu 9:19

By differentiating f1 with respect to ℓ, we have

d

dℓ
f1(ℓ) = p

2ℓ2 · (1− 1
2ℓ)1−p

− 1− 1/2p

(ℓ + 1)2

=
p · (ℓ + 1)2 − 2(1− 1/2p)ℓ2 · (1− 1

2ℓ)1−p

2ℓ2 · (1− 1
2ℓ)1−p · (ℓ + 1)2

= 2(1− 1/2p) · ℓ2

2ℓ2 · (1− 1
2ℓ)1−p · (ℓ + 1)2 ·

(
p

2(1− 1/2p) · (1 + 1
ℓ

)2 − (1− 1
2ℓ

)1−p

)
= 2(1− 1/2p) · ℓ2

2ℓ2 · (1− 1
2ℓ)1−p · (ℓ + 1)2 ·

(
ℓ0

ℓ0 + 1 · (1 + 1
ℓ

)2 − (1− 1
2ℓ

)1−p

)
(since p

2ℓ0
= 1− 1/2p

ℓ0 + 1)

>
2(1− 1/2p) · ℓ2

2ℓ2 · (1− 1
2ℓ)1−p · (ℓ + 1)2 ·

(
ℓ0

ℓ0 + 1 · (1 + 1
ℓ

)2 − (1− 1− p

2ℓ
)
)

(since (1− 1
2ℓ

)1−p < 1− 1− p

2ℓ
according to Lemma 17)

= 2(1− 1/2p) · ℓ2

2ℓ2 · (1− 1
2ℓ)1−p · (ℓ + 1)2 ·

ℓ0 · (ℓ + 1)2 − (ℓ0 + 1) · ℓ2 + 1−p
2 (ℓ0 + 1) · ℓ

(ℓ0 + 1) · ℓ2

>
2(1− 1/2p) · ℓ2

2ℓ2 · (1− 1
2ℓ)1−p · (ℓ + 1)2 ·

ℓ0 · (ℓ + 1)2 − (ℓ0 + 1) · ℓ2

(ℓ0 + 1) · ℓ2

= 2(1− 1/2p) · ℓ2

2ℓ2 · (1− 1
2ℓ)1−p · (ℓ + 1)2 ·

ℓ0(2ℓ + 1)− ℓ2

(ℓ0 + 1) · ℓ2

≥ 2(1− 1/2p) · ℓ2

2ℓ2 · (1− 1
2ℓ)1−p · (ℓ + 1)2 ·

(ℓ− 1
2)(2ℓ + 1)− ℓ2

(ℓ0 + 1) · ℓ2 (since ℓ0 ≥ ℓ− 1
2)

= 2(1− 1/2p) · ℓ2

2ℓ2 · (1− 1
2ℓ)1−p · (ℓ + 1)2 ·

ℓ2 − 1
2

(ℓ0 + 1) · ℓ2

> 0. (since ℓ ≥ ℓ0 −
1
2 > 2 according to inequality (4))

Hence, the function f1(ℓ) is strictly increasing for ℓ ∈ [ℓ0 − 1
2 , ℓ0 + 1

2]. This implies that

f1(ℓ) ≤ f1(ℓ0 + 1
2) = (1− 1

2ℓ0 + 1)p + 1− 1/2p

ℓ0 + 3
2
− 1

=
ℓ0+1
2ℓ0
· p

ℓ0 + 3
2

+ (1− 1
2ℓ0 + 1)p − 1 (since p

2ℓ0
= 1− 1/2p

ℓ0 + 1)

<
p · (ℓ0 + 1)

ℓ0 · (2ℓ0 + 3) −
p

2ℓ0 + 1 −
p(1− p)

2 · 1
(2ℓ0 + 1)2

(since (1− x)p < 1− px− p(1− p)
2 x2 according to Lemma 17)

= p ·
(ℓ0 + 1)(2ℓ0 + 1)2 − ℓ0(2ℓ0 + 3)(2ℓ0 + 1)− 1−p

2 ℓ0(2ℓ0 + 3)
ℓ0 · (2ℓ0 + 3) · (2ℓ0 + 1)2

= p ·
(2ℓ0 + 1)− 1−p

2 ℓ0(2ℓ0 + 3)
ℓ0 · (2ℓ0 + 3) · (2ℓ0 + 1)2

<
1
2 p · (2ℓ0 + 3)

ℓ0 · (2ℓ0 + 3) · (2ℓ0 + 1)2 · (2− (1− p)ℓ0)

< −η. (by inequality (6))

APPROX/RANDOM 2024

9:20 On the Generalized Mean Densest Subgraph Problem: Complexity and Algorithms

By differentiating f2 with respect to ℓ, we have

d

dℓ
f2(ℓ) = − p

2ℓ2 · (1 + 1
2ℓ)1−p

+ 1− 1/2p

(ℓ + 1)2

=
−p · (ℓ + 1)2 + 2(1− 1/2p)ℓ2 · (1 + 1

2ℓ)1−p

2ℓ2 · (1 + 1
2ℓ)1−p · (ℓ + 1)2

= 2(1− 1/2p) · ℓ2

2ℓ2 · (1 + 1
2ℓ)1−p · (ℓ + 1)2 ·

(
− p

2(1− 1/2p) · (1 + 1
ℓ

)2 + (1 + 1
2ℓ

)1−p

)
= 2(1− 1/2p) · ℓ2

2ℓ2 · (1 + 1
2ℓ)1−p · (ℓ + 1)2 ·

(
− ℓ0

ℓ0 + 1 · (1 + 1
ℓ

)2 + (1 + 1
2ℓ

)1−p

)
(since p

2ℓ0
= 1− 1/2p

ℓ0 + 1)

<
2(1− 1/2p) · ℓ2

2ℓ2 · (1 + 1
2ℓ)1−p · (ℓ + 1)2 ·

(
− ℓ0

ℓ0 + 1 · (1 + 1
ℓ

)2 + (1 + 1− p

2ℓ
)
)

(since (1 + 1
2ℓ

)1−p < 1 + 1− p

2ℓ
according to Lemma 17)

= 2(1− 1/2p) · ℓ2

2ℓ2 · (1 + 1
2ℓ)1−p · (ℓ + 1)2 ·

(ℓ0 + 1) · ℓ2 + 1−p
2 (ℓ0 + 1) · ℓ− ℓ0 · (ℓ + 1)2

(ℓ0 + 1) · ℓ2

<
2(1− 1/2p) · ℓ2

2ℓ2 · (1 + 1
2ℓ)1−p · (ℓ + 1)2 ·

(ℓ0 + 1) · ℓ2 + 1
2 (ℓ0 + 1) · ℓ− ℓ0 · (ℓ + 1)2

(ℓ0 + 1) · ℓ2

= 2(1− 1/2p) · ℓ2

2ℓ2 · (1 + 1
2ℓ)1−p · (ℓ + 1)2 ·

ℓ2 − 3
2 ℓ0ℓ + 1

2 ℓ− ℓ0

(ℓ0 + 1) · ℓ2

≤ 2(1− 1/2p) · ℓ2

2ℓ2 · (1 + 1
2ℓ)1−p · (ℓ + 1)2 ·

ℓ(ℓ0 + 1
2)− 3

2 ℓ0ℓ + 1
2 ℓ− ℓ0

(ℓ0 + 1) · ℓ2 (since ℓ ≤ ℓ0 + 1
2)

= 2(1− 1/2p) · ℓ2

2ℓ2 · (1 + 1
2ℓ)1−p · (ℓ + 1)2 ·

− 1
2 ℓ0ℓ + ℓ− ℓ0

(ℓ0 + 1) · ℓ2

≤ 2(1− 1/2p) · ℓ2

2ℓ2 · (1 + 1
2ℓ)1−p · (ℓ + 1)2 ·

− 1
2 ℓ0ℓ + 1

2
(ℓ0 + 1) · ℓ2 (since ℓ ≤ ℓ0 + 1

2)

< 0. (since ℓ0 >
5
2 and ℓ ≥ ℓ0 −

1
2 > 2 according to inequality (4))

Hence, function f2(ℓ) is strictly decreasing for ℓ ∈ [ℓ0 − 1
2 , ℓ0 + 1

2]. This implies that

f2(ℓ) ≤ f2(ℓ0 −
1
2) = (1 + 1

2ℓ0 − 1)p − 1− 1/2p

ℓ0 + 1
2
− 1

= −
ℓ0+1
2ℓ0
· p

ℓ0 + 1
2

+ (1 + 1
2ℓ0 − 1)p − 1 (since p

2ℓ0
= 1− 1/2p

ℓ0 + 1)

< −
ℓ0+1
2ℓ0
· p

ℓ0 + 1
2

+
(

1 + p

2ℓ0 − 1 −
p(1− p)

2(2ℓ0 − 1)2 + p(1− p)(2− p)
6(2ℓ0 − 1)3

)
− 1

(since (1 + x)p < 1 + px− p(1− p)
2 x2 + p(1− p)(2− p)

6 x3

according to Lemma 17)

= p

2ℓ0 − 1 ·
(

1
ℓ0(2ℓ0 + 1) −

1− p

2(2ℓ0 − 1) + (1− p)(2− p)
6(2ℓ0 − 1)2

)

K. Chandrasekaran, C. Chekuri, M. R. Torres, and W. Zhu 9:21

<
p

2ℓ0 − 1 ·
(

1
ℓ0(2ℓ0 + 1) −

1− p

2(2ℓ0 − 1) + 1− p

3(2ℓ0 − 1)2

)
= p

2ℓ0 − 1 ·
6(2ℓ0 − 1)2 − (1− p) · (3ℓ0(2ℓ0 + 1)(2ℓ0 − 1)− 2ℓ0(2ℓ0 + 1))

6ℓ0(2ℓ0 + 1)(2ℓ0 − 1)2

= p

2ℓ0 − 1 ·
6(2ℓ0 − 1)2 − (1− p)ℓ0 · (12ℓ2

0 − 4ℓ0 − 5)
6ℓ0(2ℓ0 + 1)(2ℓ0 − 1)2

<
p

2ℓ0 − 1 ·
6(2ℓ0 − 1)2 − 2 · (12ℓ2

0 − 4ℓ0 − 5)
6ℓ0(2ℓ0 + 1)(2ℓ0 − 1)2

(since (1− p)ℓ0 > 2 according to inequality (5)
and 12ℓ2

0 − 4ℓ0 − 5 = (6ℓ0 − 5)(2ℓ0 + 1) > 0)

= p

2ℓ0 − 1 ·
−16ℓ0 + 16

6ℓ0(2ℓ0 + 1)(2ℓ0 − 1)2

< −η. (by inequality (7))

Thus, for every ℓ ∈ [ℓ0 − 1
2 , ℓ0 + 1

2], we have f1(ℓ) < −η and f2(ℓ) < −η. ◀

APPROX/RANDOM 2024

Improved Online Load Balancing with Known
Makespan
Martin Böhm #

University of Wrocław, Poland

Matej Lieskovský #

Computer Science Institute of Charles University, Faculty of Mathematics and Physics,
Prague, Czechia

Sören Schmitt #

Department of Mathematics, University of Siegen, Germany

Jiří Sgall #

Computer Science Institute of Charles University, Faculty of Mathematics and Physics,
Prague, Czechia

Rob van Stee #

Department of Mathematics, University of Siegen, Germany

Abstract
We break the barrier of 3/2 for the problem of online load balancing with known makespan, also
known as bin stretching. In this problem, m identical machines and the optimal makespan are
given. The load of a machine is the total size of all the jobs assigned to it and the makespan is
the maximum load of all the machines. Jobs arrive online and the goal is to assign each job to a
machine while staying within a small factor (the competitive ratio) of the optimal makespan.

We present an algorithm that maintains a competitive ratio of 139/93 < 1.495 for sufficiently
large values of m, improving the previous bound of 3/2. The value 3/2 represents a natural bound
for this problem: as long as the online bins are of size at least 3/2 of the offline bin, all items that
fit at least two times in an offline bin have two nice properties. They fit three times in an online
bin and a single such item can be packed together with an item of any size in an online bin. These
properties are now both lost, which means that putting even one job on a wrong machine can leave
some job unassigned at the end. It also makes it harder to determine good thresholds for the item
types. This was one of the main technical issues in getting below 3/2.

The analysis consists of an intricate mixture of size and weight arguments.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases Online algorithms, bin stretching, bin packing

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.10

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2407.08376 [6]

Funding Martin Böhm: Research supported by National Science Centre in Poland under grant
SONATA 2022/47/D/ST6/02864.
Matej Lieskovský: Partially supported by GAUK project 234723, and GA ČR project 24-10306S.
Jiří Sgall: Partially supported by GA ČR project 24-10306S.

1 Introduction

Online Load Balancing with Known Makespan is an online problem defined as follows.
At the start of the input, the number m of machines is revealed, followed by a sequence of
jobs with sizes in [0, 1], arriving one by one. Each job needs to be assigned to a machine,

© Martin Böhm, Matej Lieskovský, Sören Schmitt, Jiří Sgall, and Rob van Stee;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 10; pp. 10:1–10:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:boehm@cs.uni.wroc.pl
https://orcid.org/0000-0003-4796-7422
mailto:ml@iuuk.mff.cuni.cz
https://orcid.org/0000-0002-0058-3133
mailto:soeren.schmitt@uni-siegen.de
https://orcid.org/0000-0002-7695-0163
mailto:sgall@iuuk.mff.cuni.cz
https://orcid.org/0000-0003-3658-4848
mailto:rob.vanstee@uni-siegen.de
https://orcid.org/0000-0002-3664-0865
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.10
https://arxiv.org/abs/2407.08376
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Improved Online Load Balancing with Known Makespan

and the load of a machine is the total size of the jobs assigned to it. The algorithm is
guaranteed a priori that the entire sequence of jobs can be scheduled on m machines so
that the makespan (the load of the most-loaded machine) is at most 1. The objective of the
algorithm is to schedule the jobs on the machines as they arrive, minimizing the makespan
R of the online schedule, which is allowed to be larger than 1. The value R is also known
under the name stretching factor.

The problem was first introduced in 1998 by Azar and Regev [3, 4] under the name
Online Bin Stretching, and studied intensively since [8, 9, 15, 17, 21]. Among its
given applications is container repacking [7] and reallocation during a server upgrade. This
scheduling problem shares its terminology and some algorithmic ideas with Online Bin
Packing. The overarching goal of the research of Online Bin Stretching and other
related problems over the last few decades is to learn how a small amount of additional
knowledge ahead of time (such as knowledge of the makespan) impacts the best possible
competitive ratio for the quintessential online problem Online Load Balancing [16].

To that end, another closely related problem is Online Load Balancing with Known
Sum of Processing Times, where we have a guarantee that the total volume of jobs is at
most m, but the optimum can be larger than 1. (e.g., if jobs larger than 1 appear in the
input sequence). For comparison in Online Bin Stretching we have a guarantee on the
makespan which is stronger, while in the classical Online Load Balancing problem we
have no guarantee. Having information on the total volume of jobs or the makespan could
be viewed as particular kinds of advice given to the online algorithm [10, 11, 24].

To answer the general question above quantitatively, the state of the art is the following.
For Online Load Balancing, Fleischer and Wahl [13] presented a deterministic algorithm
with competitive ratio approximately 1.92, and Rudin [25] showed that no deterministic
algorithm can be better than 1.88-competitive. Kellerer et al. [18] showed that having
a guarantee on the sum of processing times allows an approximately 1.585-competitive
algorithm as m goes to infinity, matching the lower bound of Albers and Hellwig [2]. Finally,
for Online Bin Stretching, Böhm et al. [8] presented an algorithm with stretching factor
3/2, and Azar and Regev [4] showed that no algorithm can have a stretching factor below 4/3.

Our contribution

We propose an online algorithm for Online Bin Stretching that is able to surpass the
3/2 threshold:

▶ Theorem 1.1. For m ≥ 60000 and for ε = 1/31, there exists an online algorithm for
Online Bin Stretching with stretching factor 3/2 − ε/6 = 139/93 < 1.495.

For ε = 1/62 the algorithm works already for m ≥ 3300. Our algorithm builds upon the
main concepts of its immediate predecessors [15, 8], by keeping a portion of the bins empty
until a later phase of the input, and by tracking combinatorial properties of the items using
a weight-based analysis. Any feasible algorithm must follow this general structure. However,
once the stretching factor is set below 3/2, new types of items appear which require great
care to pack efficiently. See Figure 1 and the full version. The level of complexity of our
algorithm as well as its analysis significantly surpasses the previously best-known results. For
instance, it now becomes necessary to use new item types when we start to fill up previously
used bins later in the algorithm, as most of the initial item types do not fit well in the
remaining space. Achieving a ratio below 3/2 for all values of m seems to be much harder
still, as we often have constantly many bins which are only half-full; only when m is large is
the number of such bins negligible.

M. Böhm, M. Lieskovský, S. Schmitt, J. Sgall, and R. van Stee 10:3

History and related work

The first results on Online Bin Stretching have appeared even before the introductory
paper of Azar and Regev in 1998; a year before, Kellerer et al. [19] already discovered the
matching lower and upper bound of 4/3 for the case m = 2. Since the beginning, some
research works focus on the stretching factor for general number of bins m, while others
focus on the special cases for m small and fixed. One interesting property of Online
Bin Stretching with fixed m is that both the best-known lower bounds [21] and some
algorithms [22] were designed using a computer-aided approach based on the Minimax
algorithm, as initially proposed by Gabay et al. [14].

For any value m ≥ 2 a general lower bound of 4/3 comes from Azar and Regev [4]. For
m = 3, the best-known algorithm is by Böhm et al. [7]. The remaining lower and upper
bounds for the range 3 ≤ m ≤ 8, listed in the table below, were designed by multiple variants
of computer-aided search; the results are by Böhm and Simon [9], Lhomme et al. [21] and
Lieskovský [23].

m 3 4 5 6 7 8 ≥ 9
Lower bound 1.365 [9] 1.357 [9] 1.357 [9] 1.363 [21] 1.363 [21] 1.363 [21] 1.3 [4]
Upper bound 1.375 [7] 1.393 [23] 1.410 [23] 1.429 [23] 1.455 [23] 1.462 [23] 1.5 [8]

For general m, Böhm et al. [8] presented the so far best algorithm in 2017 which achieves
stretching factor 3/2; this result was preceded by a long sequence of steady improvements
on the algorithmic front, among others by Kellerer and Kotov [17] and Gabay et al. [15].
Recently in [20], Lhomme et al. give first results for randomized algorithms. They show
that for m = 2 there exists a 5/4-competitive randomized algorithm that outperforms the
optimal deterministic algorithm. Furthermore, they provide lower bounds for 2 ≤ m ≤ 4 on
the competitive ratio of randomized algorithms.

For some small fixed values of m, especially m = 2, also specialized problems related
to Online Bin Stretching have been investigated previously; for example, Epstein [12]
considered online bin stretching with two machines (bins) of uniformly related speed and
Akaria and Epstein [1] considered online bin stretching on two bins with grade of service and
migration.

2 Structure of the algorithm

From now on, as is common in the literature on Online Bin Stretching and because
we are dealing with a packing problem, we refer to bins, levels of bins and items instead
of machines, loads of machines and jobs, respectively. Our initial setting is that the offline
optimum bins have size 1 and the bins usable by our algorithm have size R = 3/2 − ε/6.

We assume that the number of bins m is at least 60000. We scale the sizes of the bins
such that an offline bin has size 12 and an online bin has size 18 − 2ε. (We use 2ε here so
that half of the size of an online bin is a more convenient value.) Our goal is to construct an
algorithm which works for the largest possible value of ε. We will eventually set ε = 1/31, but
for an easier understanding of the relationships between the various values we will mostly use
symbolic calculations. Scaling the offline bin size to 12 allows us to work with near-integer
type thresholds, which is convenient. After scaling, the total size of the jobs on input is at
most 12m.

Our algorithm uses the algorithms Best Fit and First Fit as subroutines. These algorithms
work as follows. Both algorithms open a new bin if the item does not fit into any existing
bin. Otherwise, Best Fit places an item in a bin where the item can still fit and that, after

APPROX/RANDOM 2024

10:4 Improved Online Load Balancing with Known Makespan

placement, leaves the least amount of remaining empty space in the bin. This means it uses
the most-filled bin that can still accept the item. First Fit always places the item in the first
bin in which it will fit, using the order in which it opened the bins. In this paper, we will
sometimes fix the order in which the bins are to be used in advance, namely if these bins
already contain some items. This means that we are applying First Fit to variable-sized
“bins” (the empty spaces in the actual bins). We give a proof for the performance of First
Fit on variable-sized bins which may be of independent interest.

▶ Lemma 2.1. 1 Consider a set V of bins that is packed by First Fit of which at least the
last |V | − 2 bins contain at least k items. If |V | ≥ 3, the total level of the bins in V is more
than

k|V |
k + 1 .

▶ Lemma 2.2. For any set of v variable-sized bins that is packed using First Fit, the following
property holds. If at least k < v/2 items are packed into each bin, the total size of all the
items packed into these bins is at least

k

k + 1

v−k∑
j=k

s(j),

where the size of the j-th bin is denoted by s(j). This even holds if the number of bins
increases while First Fit is running (in this case v is the final number of bins).

Proof. Let the bins be sorted by the order of First-Fit.
We look at an (k + 1)-tuple (j, j + 1, . . . , j + k) with 1 ≤ j ≤ v − k. Let α be the largest

empty space of bins j, . . . , j + (k − 1). The items in bin j + k have size at least α. Bins
j, . . . , j+(k−1) on the other hand are filled to at least s(j)−α, . . . , s(j+(k−1))−α. We know
that at least k items of size at least α are packed in bin j +k, so in these k +1 bins we have an
overall load of at least

∑j+(k−1)
i=j s(i). Applying this bound for j = 1, 2, . . . we find guarantees

for First-Fit of at least
∑k

i=1 s(i) +
∑2k+1

i=k+2 s(i) + . . . ,
∑k+1

i=2 s(i) +
∑2k+2

i=k+3 s(i) + . . ., etc.
Adding all these bounds gives

(k + 1) · FF ≥
k−1∑
i=1

i · s(i) +
v−k∑
i=k

k · s(i) +
v−1∑

i=v−(k−1)

(v − i)s(i) > k
v−k∑
i=k

s(i). ◀

2.1 Item types

Our algorithm initially uses the following item types; once we start filling up the bins in the
fill-up phase, it will be necessary to use different types because of the amount of space that
will be left. We group some item types into supertypes. There are two intervals for small
items, as these items are packed the same way. The three weighting functions are related to
the three types of items that fit only once in an offline bin. Having three separate such types
is a consequence of the existence of quarter items (see Figure 1).

1 The simple proof of this lemma can be found, e.g., in [5].

M. Böhm, M. Lieskovský, S. Schmitt, J. Sgall, and R. van Stee 10:5

Supertype – middle dominant
Type small quarter small nice half large big top

Maximum size 3 − 3ε 4 − 4ε 5 + ε 6 − 2ε 6 + 2ε 9 − ε 10 + 6ε 12
Weight wtop 0 1 1 2 2 2 3 4
Weight wbig 0 0 0 2 2 2 4 4

Weight wlarge 0 0 0 0 2 4 4 4

We describe the ideas behind these type thresholds in detail in the full version of the
paper. Here we describe some fundamental properties of the various (super-)types. See also
Figure 1.

Dominant items fit only once in an online bin. Nice items fit twice in an offline bin and
can be placed in an online bin while still leaving room for another item of any size. (These
items are indeed in principle nice to pack, but we still need to be very careful with them.)
Half and large items fit twice in an online bin, but a large item cannot be packed together
with a half item in an offline bin (due to the thresholds 6 − 2ε and 6 + 2ε), whereas two half
items may fit together in an offline bin.

In our algorithm, we will pack small items only to a level of 6 − 6ε at the beginning to
leave room for one top item or two half items. As described above, using First Fit guarantees
that more than 4 − 4ε is packed in almost all bins that are packed like this. Of course we
get the same guarantee for small items of size more than 4 − 4ε, and this is what motivates
the upper bound 4 − 4ε for quarter items. It is also the same guarantee that we will achieve
on average for (a certain subset of) the bins with quarter items (some bins will contain two
quarter items). A big item fits in an online bin with two quarter items, and this is the reason
that the dominant items are divided into two types.

▶ Definition 2.3. For a partial input Ipartial, let the value TopThreat (resp., BigThreat,

LargeThreat) be the maximum number of top items (resp., big items, large items) in
Ifuture so that Ipartial ∪ Ifuture can be packed in m bins of size 12, and let TopBlock
(resp., BigBlock, LargeBlock) be the set of bins that contain more than 6 − 2ε (resp.,
18 − 2ε − (10 + 6ε) = 8 − 8ε, 9 − ε).

For any packing of a partial input, we have TopThreat ≤ BigThreat ≤
LargeThreat and LargeBlock ≤ BigBlock ≤ TopBlock.

▶ Lemma 2.4. For any feasible input I and weighting function w ∈ {wtop, wbig, wlarge}, we
have w(I) ≤ 4m. For any k ≥ 0 and any partial input Ipartial:

if wtop(Ipartial) ≥ 4k, then TopThreat ≤ m − k,
if wbig(Ipartial) ≥ 4k, then BigThreat ≤ m − k,
if wlarge(Ipartial) ≥ 4k, then LargeThreat ≤ m − k.

Proof. The bound wlarge(I) ≤ 4m follows from the type thresholds (a large and a half item
do not fit together in an offline bin). For the other two weighting functions, note that for
an item i of type j, the weight wtop(i) = ⌊ 5

12 sj⌋ and wbig(i) = 2(⌊ 3
12 sj⌋), where sj is the

infimum size of an item of type j (where the small items are split into two separate types for
this calculation, one for each range of small items). Intuitively, wtop counts the number of
items larger than 12

5 , that is, items that fit at most four times in an offline bin. Similarly,
wbig counts items larger than 12

3 , and multiplies the result by two. The bounds wtop(I) ≤ 4m

and wbig(I) ≤ 4m follow. ◀

The following invariant is a necessary property of any feasible algorithm and we will
maintain it and other invariants throughout the processing of the input.

APPROX/RANDOM 2024

10:6 Improved Online Load Balancing with Known Makespan

0 3 4 6 9

0

3− ε

3 6

6− 2ε 6 + 2ε 9− ε

9− ε6 + 2ε6− 2ε5 + ε4− 4ε3− 3ε

0

small quarter small nice half large

Figure 1 (Sketch, using ε = 1/6) A comparison of the important thresholds for an algorithm with
competitive ratio 3/2 (top) and an algorithm with competitive ratio strictly less than 3/2 (middle).
The thresholds our algorithm uses are displayed at the bottom. The offline bin size is scaled to
be 12, so all items in the input have size at most 12. The green box indicates (half) the difference
between the online and offline bin size. In the top figure, 6 is also a point where the amounts that
can be packed in a bin change, both online and offline.
We immediately see that in the middle figure items exist which did not exist before (red); for a
competitive ratio of 3/2, the online algorithm can pack more items per bin for all items smaller than
9. Moreover, items in the orange range can block some items of maximal size from being packed in
the same bin, if we pack two such items in one bin. Finally, the fact that the red range exists means
that items just larger than this (yellow) also need to be packed more carefully than before.

Starting phase Fill-up phase

Simple Fill-up Weight based packing Very Simple Fill-up Weight based packing
with Q2

Figure 2 An overview of the phases and states.

▶ Invariant 2.5. We have TopThreat ≤ m − TopBlock and BigThreat ≤ m −
BigBlock.

We will not be able to maintain LargeThreat ≤ m − LargeBlock throughout the
algorithm (not even in the starting phase). However, fortunately large items can be placed
twice in an online bin. Since these items can have size up to 9 − ε, a bin must be completely
empty in order to guarantee that two large items may be packed in it.

2.2 Phases and states

In the starting phase, we use bins one by one, while staying below a level of 6 − 2ε unless
there is a very good reason not to do so. If many relatively large items arrive, we may reach
a state where it is sufficient to use First Fit for all remaining items (Simple Fill-Up) or where
we know by weight that all items can be packed (Weight-based packing). Otherwise, we will
eventually go to the Fill-up phase, where we start filling up the bins that previously received
less than 6 − 2ε (or up to 8 − 8ε in the case of bins with two quarter items). In this phase
we will eventually also reach a state where we know that the remaining input can be packed,
either by size or by a weight argument.

M. Böhm, M. Lieskovský, S. Schmitt, J. Sgall, and R. van Stee 10:7

The starting phase

From the lens of a single bin, our algorithm typically either packs items until a bin is full –
which is typical for bins containing a single item type, such as the middle items – or it packs
them only up to a level of 6 − 6ε, particularly for items of size at most 6 − 6ε.

However, as we have already seen, quarter items do not fit in this framework. On the one
hand, we need to avoid packing many quarter items alone in bins (bad packing guarantee)
while on the other hand, we also cannot pack too many quarter items in pairs in bins that
do not yet contain anything else: that could block top items from being packed (Invariant
2.5 would be violated).

Ideally, we would like to pack items as follows:
top items or pairs of half items with small items
big items with quarter items
large items in pairs
nice items three per bin

In this way, all bins would have a weight of at least 4 in wtop and wbig and they would
also all be more than 12 full (except for bins that contain one big item and one quarter item
and bins that contain a top item/two half items smaller than 6 and not enough small items).
There are several problems in using these methods, however:

For bins that are planned to contain items of two different types, or two items of one
type, it is not known whether the second type or item will ever arrive.
Packing large items and smaller middle items into separate bins can easily lead to instances
that cannot be packed (if there are two bins with single middle items that fit together in
an offline bin, and then many top items arrive).

We can work around the first problem by changing our packing methods after a certain
number of bins have received items of only one type, in particular if many small or quarter
items arrive. Basically, our algorithm will first aim to reach the ideal packing described
above. When sufficient volume has been packed, we go back and start filling up the already
used bins. This is the fill-up phase of our algorithm.

The second problem requires us to be very careful with nice items in particular, since
some nice items fit with some large items in an offline bin. Packing nice items three per bin
in dedicated bins will be fine. However, we cannot afford to do this already starting from the
very first bin with nice items, as there could also be a bin with one half item and another
bin with one large item at the same time, blocking too many bins for top items so that the
algorithm fails. Fortunately, a bin with only a nice item can still receive an item of any other
type, so we will pack one nice item alone before starting to pack them three per bin from the
second bin onwards. We still need to be very careful if both half and nice items arrive.

Good situations and the fill-up phase

We may be fortunate and reach a situation where many bins are filled to (significantly) more
than 12. In this case it will be sufficient to pack the remaining items by essentially using
First Fit. This is one example of a good situation. This is our term for a configuration which
ensures that all remaining items can be packed, usually by using a very simple algorithm.
This one is called the First Fit case.

It may also happen that many relatively large items arrive early. In this case we may
reach a state where we know that a small or quarter item will never need to be packed into
an empty bin anymore, because they are packed in existing bins first and we would reach the

APPROX/RANDOM 2024

10:8 Improved Online Load Balancing with Known Makespan

First Fit case before using an empty bin. To ensure that the algorithm does succeed in all
cases, even if all bins receive items, we will always use Best Fit as last resort for any item
(after exhausting all other rules and all empty bins). We call this the Rule of last resort.

If many bins contain items but not enough of them contain a total size of more than 12
or sufficiently large items, it becomes important whether there exist bins that contain only
small items or only single quarter items. If that is the case, we will go to the fill-up phase, in
which we start filling up the nonempty bins using different item types. Otherwise, we will
remain in the starting phase and we will eventually reach a good situation or the input will
end.

The (9 − ε)-guarantee

We need to determine when exactly it is safe to start filling up bins in which we have already
packed some items, without failing for instance to the threat of top items. To be precise,
once we start filling up bins, we need a guarantee that this remains feasible no matter what
the remaining input is. This will certainly require us to pack a sufficient total size in each
bin that we fill up, as we always need to maintain Invariant 2.5.

Our cutoff for starting to fill up bins will be the point at which we know for certain that
the future number of big items is (and will remain!) strictly smaller than the number of bins
in which big items can still be packed (so, BigThreat < m − BigBlock). There are in
principle two ways by which we can know this: by considering weight and by considering
volume. The problem with using a weight-based guarantee is that for instance small items
can start arriving, which do not have weight. If we start filling up bins using small items, we
can soon reach a point where the weight-based bound for BigThreat has not changed, but
BigBlock has increased and we fail when many big items arrive.

We therefore use a volume-based bound. We need to be careful also here. Suppose
that already 2m/3 bins contain small items, and each such bin has a level in the range
(4 − 4ε, 6 − 6ε]. Now suppose that many big items start arriving one by one. These big
items do not bring us really closer to the point where we can safely start filling up the
nonempty bins, because every time that we pack a big item BigThreat decreases by 1 and
m − BigBlock decreases by 1. Similarly, top items bring us only slowly closer to this point
(since they are slightly larger than big items).

We will start the fill-up phase once we know the so-called (9 − ε)-guarantee holds:

Whenever new items of total size 9 − ε arrive, BigThreat decreases by at least 1.

Having the (9 − ε)-guarantee essentially ensures that packing 9 − ε per bin is sufficient to
maintain Invariant 2.5, although the problem of m large items arriving remains and needs to
be dealt with separately. Maintaining this average is not at all straightforward, since we also
have to make sure not to use too many empty bins too early, in order to pack as many pairs
of large items into them as possible.

We present a very careful method of filling the nonempty bins which takes care to use
the remaining space in those bins as efficiently as possible, using new item types which are
tailored to the remaining space. This method consists of several stages.

2.3 Bin types
During the execution of the algorithm, each bin in the instance will be assigned a specific
type. Sets of bins of a certain (sub)type are denoted typically by script letters (possibly with
an index). We define six main types of bins. We use the corresponding lower case letters to
refer to numbers of bins of a type: for instance, ℓ = |L| and δ = |∆|.

M. Böhm, M. Lieskovský, S. Schmitt, J. Sgall, and R. van Stee 10:9

E Empty bins.
L Large-complete bins. This is a set of bins that reduce LargeThreat; more generally,

they reduce the number of items with weight that can still arrive. Specifically, the number
of large items that can still arrive will always be at most m − ℓ, and the total weight
that can still arrive will be at most 4(m − ℓ). Since items without weight can still arrive
however, and bins in L do not necessarily contain at least 12, large-complete bins do still
accept items. A formal definition of these bins follows below.

S Bins with only small items. At most 6 − 6ε of small items is packed in each such bin.
∆ At most four bins that contain two nice items or a single middle item and maybe some

other items. See below for more details.
Q Bins that are not in ∆ in which the first item (or the second, if the bin was previously in

∆) is a quarter item and that are unmatched. (The algorithm sometimes matches some
bins in Q; these bins are then moved to a special subset Qmatch.)

N Bins in which the first two items are nice items and the third item is nice or half.

Bins started by nice items are filled to triples of nice items in the ideal packing and kept
separate to achieve this; these bins can become large-complete upon receiving a dominant
item. With this large-scale picture in mind, the large-complete bins are defined as follows.
These bins require a careful definition because nice items may exist.

▶ Definition 2.6. A bin is called large-complete if it satisfies all of the following conditions.
it has wbig ≥ 4,
it contains an item larger than 6 or two items larger than 6 − 2ε,
the bin was never in Q.

It can be seen that each bin with wbig ≥ 4 has a big item or wtop ≥ 4. A large-complete
bin does not necessarily contain a large item or a dominant item. The first condition ensures
that these bins contain as much weight as any offline bin. The second condition implies that
LargeThreat ≤ m − ℓ at all times. Note that this does not follow from the first condition
alone, as a bin could contain two nice items, and a nice and a large item may fit together in
an offline bin.

The set ∆ contains at most four exceptional bins used for careful handling of middle
items. Each of these bins will be created explicitly in our algorithm if they are needed. There
are the following four kinds of bins in ∆.
∆large one bin that contains a single large item, nothing else.
∆half one bin that contains a single half item and possibly small items of total size at most

6−6ε (notation ∆S
half) or a quarter item (notation ∆Q

half), nothing else. If the bin contains
only a half item we call it ∆half, else ∆+

half.
∆nice,1 at most two bins that contain one nice item and nothing else.
∆nice,2 one bin that contains two nice items and nothing else.
Our algorithm will use the so-called nice rule as long as possible: do not pack nice items
into ∆large ∪ ∆half and do not pack half or large items into ∆nice,1. This rule ensures that
nice items get packed into dedicated bins as much as possible (three per bin) so that we gain
on these items (both by weight and by packed size per bin) compared to the optimal packing.
This in turn ensures that nice items will hardly occur in inputs that are important for our
analysis; see the weighting function wlarge.

▶ Definition 2.7. A bin is in Q if it satisfies the following properties:
The first item is a quarter item,
The bin is not in ∆half,
The bin has not been matched (see algorithm).

APPROX/RANDOM 2024

10:10 Improved Online Load Balancing with Known Makespan

Additionally, a bin that was in ∆half and then received a quarter item and finally another
half or larger item is also in Q as long as it has not been matched.

We define the subset of Q of bins in which the first two items are quarter items by Q2,
and Q1 := Q \ Q2. A bin in Q1 may leave Q (and Q1) by receiving a half item (it enters
∆half); such a bin may later rejoin Q by receiving a half or larger item. Bins in Q may also
leave Q permanently by being matched (two bins in Q1 to one bin in Q2).

Instead of using the partition Q = Q1 ∪ Q2, we will also consider the useful partition of
Q in the table below. (Some of these subsets may be empty.)

Bin type Conditions on contents
Q1 A single quarter item, nothing else
Q2 Two quarter items, nothing else

Q1,big First item is a quarter item, second item is big
Q5 First item is a quarter item, wbig ≥ 4, bin is not in Q1,big

Or: The first three items are (in this order) half, quarter, half or larger

We let Q = Q1 ∪ Q2. Bins in Q5 can be in Q1 (for instance, bins with a top item) or in
Q2; we keep track of their membership via the sets Q1,5 := Q5 ∩ Q1 and Q2,5 := Q5 ∩ Q2.
All bins in Q5 will have wtop-weight 5 (or more), explaining the name Q5. For comparison,
bins in Q1 have wtop-weight at least 1 and bins in Q2 have wtop-weight at least 2.

Bins in Q1,big may get matched (pairwise) to bins in Q2,5; this is explained in the
algorithm (Step 3). The set of matched bins is denoted by Qmatch.

Since the first two items in each bin in Q2 are quarter items, we have Q2 ∩ Q1,big = ∅.
We use the membership of bins in Q1 and Q2 to keep track of the distribution of quarter
items in the non-large-complete bins. In our proofs, we will assign weight from the quarter
items in Q1 to bins in Q2 on the one hand (so we need sufficiently many bins in Q1) and
assign volume from bins in Q2 to bins in Q1 on the other hand (so we need sufficiently many
bins in Q2). The separation from large-complete bins and the separation of Q1,5 and Q2,5
will help us maintain an almost fixed ratio q1 : q2. Because of various half-full bins, we will
need some additional bins in Q1 (at most 15 in the fill-up phase) before starting to create
bins in Q2. A bin in Q1 that receives a half item leaves Q and enters ∆half (and ∆Q

half). If
it later receives another half item or a large, it returns to Q, namely Q1,5, or moves to L.
Summarizing, we have the following disjoint unions.

Q1 = Q1 ∪ Q1,big ∪ Q1,5 (1)
Q2 = Q2 ∪ Q2,5. (2)

We define the set of complete bins C as the set of bins that from the point of view of the
algorithm (and the analysis) do not need to receive any specific items, as follows:

C := L ∪ Q5 ∪ Qmatch ∪ N .

Into these bins, any item may be packed. Finally, the unmatched nonempty bins that are
not large-complete are called regular (set R). We have

R = S ∪ Q ∪ N ∪ ∆ = S ∪ Q1 ∪ Q2 ∪ Q1,big ∪ Q5 ∪ N ∪ ∆. (3)

At all times, each bin is in exactly one of the sets R, Qmatch, L, E .
We will show eventually that in the starting phase, some bins remain empty or we can

guarantee that all remaining items can be packed (possibly using different methods). However,
the partitioning of the sets shown here remains valid even after we run out of empty bins

M. Böhm, M. Lieskovský, S. Schmitt, J. Sgall, and R. van Stee 10:11

apart from the fact that some bins may contain some items that do not belong there; for
instance, there could be some small items packed into Q2. Also, after we run out of empty
bins the nice rule may be violated. We will maintain the following invariant.

▶ Invariant 2.8. There is never a bin in Q1 ∪ Q2 at the same time as a bin with a big item
as its only item with weight.

▶ Invariant 2.9. We have LargeThreat ≤ m − (c − n) as long as the nice rule is followed.

▶ Lemma 2.10. Invariant 2.9 holds for any packing of items.

Proof. As long as the nice rule is followed, all complete bins except for the ones in N contain
two half items or an item larger than 6 and have wbig ≥ 4. ◀

From this bound it can be seen that the possible existence of bins in N force us to keep bins
empty for pairs of large items, since we cannot ensure LargeThreat ≤ m − c.

2.4 Proof overview
The present version omits essentially all of the proofs. Here we merely give an overview.
The proof begins with some initial observations regarding how many bins there can be of
different types and how much they contain. We then focus on the set Q and prove that up
to an additive constant, 2q2 = q1 throughout the starting phase. The (almost) fixed ratio
q2 : q1 is used to help show Invariant 2.5 for top items and to show a packing guarantee for
Q. There will be constantly many bins that do not satisfy our packing guarantees, these
bins will be in a set X .

In the starting phase, either some bins remain empty, q2 > 0, or all items get packed. It
turns out that Invariant 2.5 is maintained as long as we do not use the rule of last resort
(essentially, as long as some bins are empty). There exist so-called good situations in which we
can guarantee that all remaining items can be packed (possibly using a different algorithm).
We show that Invariant 2.5 is maintained in the entire starting phase or we reach a good
situation. More generally, the algorithm does not fail in the starting phase. We find that
packing 9 − ε additionally in each non-complete bin in the fill-up phase is enough to maintain
Invariant 2.5 in the fill-up phase as well.

To analyze the fill-up phase, we first consider some simple cases (essentially, new good
situations). We then continue by showing that the algorithm does not fail in the first three
stages of the fill-up phase. Linear programs are used to show that the algorithm does not
fail in the fill-up phase.

3 Algorithm in the starting phase

Whenever the algorithm uses or attempts to use a set A to pack an item in the following
description, we use First Fit on the bins in A, unless otherwise stated. The notation A → B

means that a bin in the set A moves to B by receiving an item of the current type.

Step 1: Using and creating complete bins Try the following in this order.

for half and large items: ∆nice,2 → N ⊆ C,
for non-small items: Q1,big → Q1,5 ⊆ C
use a complete bin (a bin in C = L ∪ Q5 ∪ Qmatch ∪ N).

APPROX/RANDOM 2024

10:12 Improved Online Load Balancing with Known Makespan

create a complete bin if this does not violate the nice rule (page 9).
First try the bins Q2, Q1, ∆Q

half in this order. Among other bins, use Best Fit to create a
bin in L, but do not pack a half item into ∆large (yet).2

Step 2: Packing rules for each item type If an item is not packed yet, we apply the fol-
lowing rules depending on the item type.
Small: First Fit on bins in S ∪ ∆S

half while packing at most 6 − 6ε of small items in each
bin, ∆half → ∆S

half, E → S.
Quarter: If |Q1| + δQ

half ≥ 2|Q2| + 15 then Q1 → Q2, else ∆half → ∆Q
half, E → Q1.

Nice: ∆nice,2 → N , if δnice,1 = 2 then ∆nice,1 → ∆nice,2, E → ∆nice,1.
Half: Best Fit on bins in S ∪ Q1 → ∆half, ∆large → L, E → ∆half.
Large: E → ∆large.
Dominant: Always packed in Step 1.

Rule of last resort If some item cannot be packed according to these rules, which can
only happen after we run out of empty bins, we use Best Fit for this item, except
that we still follow the nice rule as long as possible. If the nice rule has already been
violated, we simply use Best Fit. For future items we still use the packing rules above
first.

Step 3: Matching rule This step minimizes the number of bins in Q1,big.
If |Q1,big| ≥ 2 and there is a bin in Q2,5, two bins in Q1,big are matched to a bin in Q2,5
and all three bins are moved from Q to Qmatch.

Step 4: Swapping rule Each time that a new bin b̄ in Q1 is created, if there exists a large-
complete bin b with a big item but no other items with weight (such a bin must contain
also other items, or we would not have created b̄), we virtually swap some items. That is,
the bin b̄ is treated as a bin in S from now on, and the bin b supposedly contains a big
item and a quarter item. The quarter item is not considered to be the first item in b, so b

is not in Q. This ensures that Invariant 2.8 is maintained.

The swapping rule ensures that big items can be packed together with small items without
violating Invariant 2.8 even if quarter items arrive later. Whenever the swapping rule is
applied on two bins b̄ ∈ Q1 and b ∈ L, the total size packed into these bins is more than
18 − 2ε at this point (else b̄ would not have been opened). If the bin b̄ contains less than
4 − 4ε we reassign volume such that the bin b̄ ends up with exactly 4 − 4ε. We see that more
than 18 − 2ε − (4 − 4ε) = 14 + 2ε remains for the bin b. This just means that b̄ possibly has
slightly more space for additional items than the algorithm calculates with (because it views
b̄ as containing the small items that were in b).

The large-complete bins used by the swapping rule differ from the other bins in L only in
that they are not used to pack any future item. That is, we ignore such bins in Step 1 (this
is not written explicitly in the algorithm; it seemed cleaner to explain this here).

Transitioning to the fill-up phase

In general, the transition from the starting phase to the fill-up phase happens once the
(9 − ε)-guarantee starts to hold. This is roughly speaking after packing an average of 3 + ε

on the (non-complete) regular and empty bins and 12 on the complete bins. More precisely

2 If S ∪ Q1 ̸= ∅, we prefer packing half items there rather than in ∆large, because this improves certain
packing guarantees. (If S ∪Q1 ̸= ∅, ∆half exists and a large item arrives, we will have that ∆half = ∆S

half
which already improves the guarantee.)

M. Böhm, M. Lieskovský, S. Schmitt, J. Sgall, and R. van Stee 10:13

after packing T1 := (3 + ε)m + (9 − ε)(c + q1,big + 14). We can guarantee that the algorithm
keeps at least roughly E0 := 1−5ε

4−4ε (m − ℓ − qmatch) + 2+8ε
4−4ε n + 1−5ε

4−4ε qmatch + 4ε
4−4ε ℓ − 48 bins

empty when reaching the packing threshold. For more details see the full version.

Q2,5Q2Q1,5 Q1 S ∆ N3

ER Qmatch L

12

6− 6ε

18− 2ε

small

quarter

nice
half

large

big

top

Figure 3 (Sketch) Overview of bins in the starting phase. The three bins in Qmatch were moved
there by the matching rule. The second quarter item in the rightmost bin in Qmatch arrived there
when the bins were already in Qmatch. The swapping rule was applied to the rightmost bin in S and
the rightmost bin in L. The small items on top of the big item in the rightmost bin arrived before
the swapping rule was applied. For visual clarity we have left out a number of bins in Q1.

4 The fill-up phase

4.1 Preliminaries
Once the fill-up phase is reached we refer to the bins by their type they had when the fill-up
phase was started and no longer update these sets. E.g., a bin in Q2 at the start of the
fill-up phase that receives a big item in the fill-up phase does not become a bin in Q2,5 but is
referred to as a bin in Q2 even after receiving the big item. We assume all bins in S contain
more than 4 − 4ε, overestimating its total content by at most 2 · (4 − 4ε). The bin in ∆large
is assumed to contain a large+ item once we enter this phase, overestimating its content by
at most 3 + ε. The bin ∆+

half contains an easy item which matches the packing rules in the
fill-up phase.

There are three possible states when entering the fill-up phase:
s + q1 > 0
s + q1 + q2 = 0
s + q1 = 0 and q2 > 0

The first case is what we will call the standard case where e ≥ E0 = Ω(m) holds, for which we
can guarantee that when using our packing rules we will eventually end in a good situation
or the input ends. For the second and third case we can guarantee that we are already in
good situations that do not have requirements on e or r. For more details we refer to the full
version.

▶ Definition 4.1. Let e0 be the number of empty bins at the start of the fill-up phase.

APPROX/RANDOM 2024

10:14 Improved Online Load Balancing with Known Makespan

For the fill-up phase, we introduce the set U of unused bins. These are mostly bins that have
not received items in the fill-up phase but that we do plan to use for items. At the start of the
fill-up phase, these are the bins that are not in L ∪ Qmatch, so |U| = m − ℓ − qmatch = r + e0.

Bins in N are also not used for items anymore, but are initially counted as part of U so
that LargeThreat ≤ u (see Invariant 2.9). Bins in Q5 are initially in U to maintain the
proper ratio q1 : q2. At the start of the fill-up phase, the bins in U are sorted from left to
right. We use the ordering3

N , Q2,5, Q2, S, Q1, E , ∆half ∪ ∆large

where the subsets S and Q1 are ordered by non-increasing levels and ∆+
half is placed among

them if it exists. Indeed, the entire set U is essentially sorted by the levels of small and
quarter items at the start of the fill-up phase, so for instance bins in Q1 (including bins in
Q1,5 and Q1,big) have level at most 4 − 4ε for the sorting. Throughout the fill-up phase, by
the level of a bin in Q we will always mean the total size of the quarter items in this bin at
the end of the starting phase. Regarding N , it is often convenient to divide the contents of
these bins in a part of size at least 6 − 6ε and a part of size exactly 9 − ε (and this is why
these bins are first in the ordering).

During the fill-up phase, we will maintain a set D such that TopThreat ≤ u − d will
hold throughout the fill-up phase. We define a specific initial set D below and we will update
this set throughout, using the following rules.

Rule 1 Each bin that is used (in particular bins in D) will receive at least 9 − ε (including
parts assigned to a bin but not packed in it) to ensure BigThreat ≤ m − BigBlock
continues to hold. We already note that for bins that are empty at the start of the fill-up
phase the bound of 9 − ε can be reached simply by using Next Fit (it will hold for all but
at most one bin at any time).

Rule 2 Whenever some item cannot be packed into some bin in D that already received
items of the same type in the fill-up phase (types are defined below), that bin will leave
D and U . Each time we pack and/or assign 10 + 6ε to D in the fill-up phase, a new bin
is added to D. (Sometimes we will assign parts of items packed into other bins to bins in
D.)

Rule 3 Each bin that is not in D will receive at least 10 + 6ε on average to maintain
TopThreat ≤ u − d.

Reducing the unused bins

We begin the fill-up phase by removing the bins in N and Q5 from the unused bins. The
contents of these bins were and remain counted. For some later calculations it will still be
important that these bins may exist, which is why we include them initially and gave a
specific ordering for them.

Recall that the initial value of u is m − ℓ − qmatch. By the transition of the starting phase
to the fill-up phase, TopThreat ≤ 9−ε

10+6ε (m − c − 14). So at least

m − 9 − ε

10 + 6ε
(m − c − 14) = 1 + 7ε

10 + 6ε
m + 9 − ε

10 + 6ε
· (14 + c)

= 1 + 7ε

10 + 6ε
(m − c) + 9 − ε

10 + 6ε
· 14 + c

3 The at most two bins in ∆nice,1 ∪ ∆nice,2 can be placed anywhere. However, they are ignored when
determining β0 later.

M. Böhm, M. Lieskovský, S. Schmitt, J. Sgall, and R. van Stee 10:15

bins will not receive top items in the fill-up phase (but c of those bins are unavailable for top
items anyway). Then after removing N and Q5 from the unused bins, we have u = m − c, so
at least

1 + 7ε

10 + 6ε
· u + 9 − ε

10 + 6ε
· 14

unused bins will not receive top items. We will initially set d = 1+7ε
10+6ε · u + 9−ε

10+6ε · 14.
Analogously, BigThreat ≤ m − c − 14, so at least c + 14 bins will not receive big items,

meaning that at least 14 unused bins will not receive big items in the fill-up phase. While
packing the input, at any time there will be half-full bins. These are bins which have received
some items during the fill-up phase but have not yet received (or been counted for) 9 − ε

or, in the case of non-D bins, 10 + 6ε. These half-full bins need to be taken into account to
ensure that Invariant 2.5 is maintained. Denote their number by h.

▶ Invariant 4.2. At any time, the number of bins in D that have not yet received any item
in the fill-up phase it at least 1+7ε

10+6ε · u + 9−ε
10+6ε · 14 − h, where u = m − c initially and u is

updated according to Rule 2.

▶ Lemma 4.3. As long as we pack items according to Rule 1 and update D and U according
to Rule 2 for all except at most 10 bins, or pack items according to Rule 3, and at most 13
bins are half-full at any time, TopThreat ≤ u − d, BigThreat ≤ m − BigBlock and
Invariant 4.2 are maintained.

Proof. If we pack items according to Rule 3, the claims follow from the fact that we pack
at least 10 + 6ε in every non-D bin, decreasing TopThreat and BigThreat by at least
1 while increasing BigBlock by at most 1 and removing exactly 1 bin from U when we
start using a new bin. Hence u − d and TopThreat both decrease by 1, and BigThreat
decreases by at least 1. In this case the ratio d : u increases.

Regarding items that get packed according to Rule 1, we pack at least 9 − ε in every
bin in D (and then remove such bins from D and U) and add a new bin to D after packing
10 + 6ε, which means that we add a bin on average after using 10+6ε

9−ε bins in D. The ratio
d : u remains constant during this process apart from at most one bin.

The ratio can be seen as follows. After packing a total size of x into D, we have removed
at most x/(9 − ε) bins from D (because we only remove a bin from D once we start using
the next one) and we have added ⌊x/(10 + 6ε)⌋ bins to D. Ignoring the rounding, overall d

has decreased by at most x(1
9−ε − 1

10+6ε) and u has decreased by at most x/(9 − ε). The
ratio is maintained. The rounding means that the set D may be 1 smaller during processing.
This together with the initial value d = 1+7ε

10+6ε · u + 9−ε
10+6ε · 14 leaves 10 bins for which the

rules do not need to be followed, since 9−ε
10+6ε · 14 > 11.

Finally, maintaining BigThreat ≤ m − BigBlock given that initially BigThreat ≤
m − c − 14 means that it is sufficient (due to the bin ∆nice,2) that at most 13 bins will be
half-full at any time during the fill-up phase. ◀

A consequence of Invariant 4.2 is that the set D does not become empty during the
packing if we indeed maintain h ≤ 13. Maintaining this invariant means that all remaining
big and top items can be packed at any point during the fill-up phase. Note that if at some
point indeed very many top items arrive, they can perhaps not all of them be packed outside
of D, as there can be various half-full bins outside of D. However, by Invariant 4.2, as long
as the total number of half-full bins is at most 13, all top items can indeed be packed.

APPROX/RANDOM 2024

10:16 Improved Online Load Balancing with Known Makespan

Item types

Naturally, as we start filling up bins in the fill-up phase, new thresholds become important.
Rather than leaving enough space for items that may arrive in the future as in the starting
phase, we now want to use the remaining space efficiently. Bins in S have at least (18 − 2ε) −
(6−6ε) = 12+4ε space remaining and bins in Q2 leave at least (18−2ε)−2(4−4ε) = 10+6ε

space. If some item type fits at least three times on top of bins in Q2, then First Fit gives a
stronger bound on the packing and Rule 1 is satisfied. As there is at least 10 + 6ε remaining
space, we define small items to be of size at most 10+6ε

3 . Items of size more than 9−ε
2 that

fit twice in this space are also small items. Apart from the range (5 + ε, 5 + 3ε], these size
ranges are a subset of what defined small items in the starting phase.

The next items are quarter items which may not fit three times on Q2 but at least three
times on S. For these we need to be slightly more careful; this is described below. Small
items fit at least four times in an empty bin and at least two times on S ∪ Q2. It can be seen
that two items that are larger than small items satisfy Rule 1. To fill the remaining space
well, the remaining items are split into quarter+ and quarter++ items. Analogously, easy
items fit twice on S and satisfy Rule 3, explaining the (unchanged) threshold 6 + 2ε. These
items have good sizes as well as large weights. To pack large items in the range (6 + 2ε, 9 − ε]
efficiently we introduce a new threshold at 18−2ε−β

2 separating large− and large+ items which
will be explained later.

0
10+6ε
3 5 + 3ε

6 + 2ε

18−2ε−β
3

18−2ε−β
2

4 + ε 9−ε
2

9− ε

small quarter small easy2 large+

quarter+

quarter++ large−

9− ε6 + 2ε

6− 2ε

5 + ε4− 4ε3− 3ε

0

small quarter small large

half

nice

Figure 4 (Sketch, using ε = 1/31, β = 5) A comparison of the important thresholds for our
algorithm in the starting phase (top) and in the fill-up phase (bottom). The small (green) items fit
at least three times (resp. twice) in the remaining empty space in a Q2 bin (10 + 6ε), the easy2

(yellow) items fit at least twice in the remaining empty space in a S bin (12 + 4ε) and the large−

(red) (resp. quarter+ (purple)) items fit at least twice (resp. three times) in the remaining empty
space in a bin filled to at most β (18 − 2ε − β).

The value β will be defined later and will change during the fill-up phase; we will have
β ∈ (3 − 3ε, 6 − 6ε]. There are ten size ranges, but the items in six ranges are straightforward
to pack (see below). We call the quarter+, quarter++, large− and large+ items hard items.

Type Max size
small 10+6ε

3
quarter 4 + ε

quarter+ 18−2ε−β
3

quarter++ 9−ε
2

small 5 + 3ε

Type Max size
easy 6 + 2ε

large− 18−2ε−β
2

large+ 9 − ε

big 10 + 6ε

top 12

We see that quarter items and small items may be slightly larger than in the starting
phase. This does not decrease their weight. From the starting phase, we will only use the
facts that bins in Q2 have level at most 8 − 8ε and bins in S have level at most 6 − 6ε; the
old size thresholds play no further part in the analysis.

M. Böhm, M. Lieskovský, S. Schmitt, J. Sgall, and R. van Stee 10:17

4.2 Packing methods for non-hard items
small and big These are items such that when packing them into Q2 using First Fit (which

are the fullest bins (ignoring X) that possibly still need to receive items in the fill-up
phase), each bin (apart from constantly many) will receive at least 9 − ε of items.
These items are always packed in the leftmost available bin that did not already receive
items from another type in the fill-up phase. That is, we essentially use First Fit, but
items of the three different size ranges are not packed together into bins. We only use
bins in D. This is feasible because new bins will enter the set D as we pack items in it
(Rule 2).

easy and top When packing easy or top items using First Fit into any bin that is not in
Q2 ∪ ∆large ∪ ∆nice,1, Rule 3 is automatically satisfied. (We have |∆large ∪ ∆nice,1| ≤ 2.)
These items are packed exactly like the small items except that we skip the bins in Q2.
We use First Fit for easy and top items (on the bins not in Q2) separately.

quarter The quarter items are packed by First Fit, alternating between bins in Q2 and bins
not in Q2. If we run out of bins in Q2 we use First Fit on dedicated bins not in Q2. If we
run out of nonempty bins not in Q2 we can always pack all remaining items as is shown
in the full version.

hard These are the quarter+, quarter++, large− and large+ items. These are the only types
of items that we will sometimes (have to) pack into empty bins although nonempty bins
that are not in Q2 are still available. When packing hard items of one type using First
Fit into empty bins, Rule 3 is satisfied and there is a surplus above the requirement of
10 + 6ε. We use this surplus to pack as many items as possible into nonempty bins, which
is necessary to succeed. See Section 4.3.

Once First Fit uses a new bin for an item, the bin previously considered (in which the item
did not fit anymore) is removed from U .

4.3 Hard (quarter+(+) and large) items
The above lemmas show that in the fill-up phase, all items except quarter+(+) and large
items can be packed while following the rules – as long of course as quarter+(+) and large
items are packed following the rules as well. We next consider quarter+(+) and large items
separately. For this we first need to define some important sets.

4.3.1 Sets considered for packing hard items
The set S−L and the parameter β0

At the beginning of the fill-up phase, if there are e empty bins, then if we pack two large
items in each empty bin, there will be e nonempty bins that will not be needed to pack large
items that have not arrived yet, even if u of them arrive in total. In principle, we let S−L be
the e rightmost nonempty bins. We only deviate from this if there are less than e nonempty
bins. In that case S−L consists of all nonempty unused bins (after the removal of N ∪ Q2,5).
We define β0 as the level of the leftmost bin in S−L unless all other nonempty bins are in
N ∪ Q2,5, in which case β0 is set to 6 − 6ε. Of course, due to other items arriving, it may
well be that some large items end up getting packed in S−L after all.

Since u = m − ℓ − qmatch at the start of the fill-up phase, it is not possible that more
than u − q5 large items arrive in the fill-up phase. This holds because each bin counted in
q5 + qmatch contains two items larger than 6 − 2ε or a dominant item, and each bin counted
in ℓ contains two items larger than 6 − 2ε or an item larger than 6. Moreover, as above,
Invariant 4.2 is maintained by the (9 − ε)-guarantee. As soon as u starts to decrease in the
fill-up phase, more than u − q5 large items may still arrive.

APPROX/RANDOM 2024

10:18 Improved Online Load Balancing with Known Makespan

Construction of the set D

We initially define D as the leftmost 1+7ε
10+6ε · u + 9−ε

10+6ε · 14 unused bins (where bins in Q5
and N have already been eliminated).

Definition of the set SL

We define SL as the set of the remaining nonempty bins in U (that is, all the unused bins
that are not in D ∪ S−L ∪ E). The set SL may be empty.

Note that the above construction is done only once. The sets SL and S−L do not increase
and a bin leaves such a set only if the bin leaves U or is added to D. While packing items in
the fill-up phase, bins will be added to D from left to right. Hence entering D will happen
first to bins in SL and then (possibly) to S−L and E . Such bins leave their original sets.

Bins in S are filled to at most 6 − 6ε and hence have at least 12 + 4ε empty space.
Easy2 items fit at least twice. Bins in S−L are filled to at most β0 and hence have at
least 18 − 2ε − β0 empty space. Large− items therefore fit at least twice (explaining that
threshold). Bins initially in D are loaded to at most 2(4 − 4ε) and hence have at least
18 − 2ε − 2(4 − 4ε) = 10 + 6ε space.

4.3.2 Packing methods for hard items: Five stages
Hard items are packed as follows. There are five possible stages; depending on what the
packing looks like when the fill-up phase starts, not all stages might be applicable. Generally,
we start by taking advantage of any Q1,5 bins that are available, then we start filling the
nonempty bins from right to left, always trying to avoid using empty bins as much as possible.

Hard items are always distributed among several types of bins (D, SL, S−L, E). One of
the used types will always be D. In several cases, we will specify that nonintegral numbers
of bins need to be used for some items. This can be implemented as follows. We always start
by using a bin that is not in D. Then, we keep using bins in D until we would exceed the
desired ratio. At that point we use a bin that is not in D again, and repeat the process. In
the long term we get closer and closer to the desired ratio.

Stage 1

In this stage, as mentioned above we first exploit any bins in Q1,5 that may exist. These bins
can be intermixed with Q1 in the sorted order, but we use them first. To be more precise,
these bins are not used to pack any new items (as they are already quite full) but rather to
pack additional items into D, as follows. Note that these bins are not in U . For this stage
we define the upper bound for quarter+ items as 9−ε

2 and the upper bound for large− items
as 9 − ε and hence neither quarter++ items nor large+ items exist. This also means that the
value of β (see table of item type thresholds for the fill-up phase) does not yet play a role.

Quarter+(+): As long as there exist bins in Q1,5 with partially uncounted contents, for
packing quarter+(+) items such bins are considered to contain quarter+(+) items (of
the size of the ignored items). Each such bin allows us to pack 1+7ε

1−3ε bins in D with
two quarter+(+) items each. In these 1+7ε

1−3ε bins we then pack (or count) more than
2 1+7ε

1−3ε (4 + ε) + (1 + 7ε) = 1+7ε
1−3ε · (9 − ε), which includes the so far uncounted part of the

bin in Q1,5.

M. Böhm, M. Lieskovský, S. Schmitt, J. Sgall, and R. van Stee 10:19

Large: As long as there exist bins in Q1,5 with partially uncounted contents, for packing
large items such bins are considered to contain large items (of the size of the ignored
items). Each such bin allows us to pack 1+7ε

3−3ε bins in D with one large item each. In these
1+7ε
3−3ε bins we then pack (or count) more than 1+7ε

3−3ε (6 + 2ε) + (1 + 7ε) = 1+7ε
3−3ε · (9 − ε),

which includes the so far uncounted part of the bin in Q1,5.

It can be seen that by packing quarter+(+) and large items this way, Rule 1 and Rule 3
are followed. Once we run out of bins in Q1,5, we start using the methods in the following
table. The value of β will change over time and is set at the start of each of the following
stages. Note here that for β ≤ 9−ε

2 the upper bound for quarter+ items is at least the upper
bound for quarter++ items and hence quarter++ items do not exist as long as β ≤ 9−ε

2 .

Item type Bin type Nr bins Per bin Counted Average
quarter+ D 3 2 2(4 + ε) 9 + 9

4 ε

Q1, S−L(, SL), E 1 3 3(4 + ε)

quarter++ E 1 4 4
3 (18 − 2ε − β) 9 − ε

D 45−4β−5ε
2β−(9−ε) 2 2

3 (18 − 2ε − β)

large− D 1 1 6 + 2ε 9 + 3ε

Q1, S−L(, SL), E 1 2 12 + 4ε

large+ D 18−2ε
β − 2 1 18−2ε−β

2 9 − ε

E 1 2 18 − 2ε − β

The third column indicates the number of bins used each time. The column “Average”
contains the average amount counted over all bin types used for this item.

This table is implemented as follows. Items from these four types are packed into separate
bins. For each type except quarter++ items, we first use a bin in D. For quarter++ items, we
use E first to ensure that the average packed in the bins with these items is always greater
than 9 − ε, apart from at most one bin: the bin currently being used. For all other types, we
have this guarantee for all used bins up to and including the most recently filled bin in E ,
which is all but at most four bins for each type.

For each bin used we pack items in it until we have packed the number of items in the
column Per bin. We first use bins in D until we have packed the number of items in the
column Per bin and until we have used the number of bins in the column Nr bins, followed
by one bin in E . (If the number of bins supposed to be used in D is not an integer, then the
number of bins used in D is always off by less than 1 compared to the desired ratio of D : E
usage.) This procedure keeps repeating. Whenever we start using a new bin, the previous
bin for this type is called closed. Once a bin is closed it is removed from U .

In the following we will always check if bins with level at most β exist. While this is true
we remain in the current stage. Else we update β to the next higher bound.

Stage 2

We set β := min(β0, 4 − 4ε). As long as there are bins with level at most β available, we use
these bins (including bins in SL if needed) for packing quarter+ and large− items. There are
no quarter++ items and only large+ items are packed into empty bins.

Stage 3

As Stage 2, but with β := min(β0, 9−ε
2). Bins in SL with level at most β will still be used for

quarter+ and large− items. There are no quarter++ items and only large+ items are packed
into empty bins.

APPROX/RANDOM 2024

10:20 Improved Online Load Balancing with Known Makespan

Stage 4

This stage only exists if β0 > 9−ε
2 . We set β := β0.

Quarter++ and large+ items are packed into empty bins. All items are packed according
to the table. Bins in SL are not used for quarter+ items; we would go to Stage 5 instead.
This is done to ensure that enough bins are left for large− items and that we do not waste
bins on quarter+ items.

Stage 5

Only bins in SL ∪ D ∪ E are left. At this point quarter+ and large− items are also packed
into empty bins.

Stage 6 would be the stage where all empty bins have been filled while some bins in
SL \ D remain. The case where all nonempty bins get filled first is discussed in the full
version. We will show that Stage 6 is not reached or we are in a good situation.

As is in the starting phase, if some item cannot be packed according to the packing rules
(including the case where we change the packing rules if we reach a good situation) we use
the rule of last resort.

References
1 Islam Akaria and Leah Epstein. Bin stretching with migration on two hierarchical machines.

Math. Methods Oper. Res., 98(1):111–153, 2023.
2 Susanne Albers and Matthias Hellwig. Semi-online scheduling revisited. Theoretical Computer

Science, 443:1–9, 2012.
3 Yossi Azar and Oded Regev. On-line bin-stretching. In RANDOM, volume 1518 of Lecture

Notes in Computer Science, pages 71–81. Springer, 1998.
4 Yossi Azar and Oded Regev. On-line bin-stretching. Theoretical Computer Science, 268(1):17–

41, 2001.
5 János Balogh, József Békési, György Dósa, Jiří Sgall, and Rob van Stee. The optimal absolute

ratio for online bin packing. J. Comput. Syst. Sci., 102:1–17, 2019. doi:10.1016/j.jcss.
2018.11.005.

6 Martin Böhm, Matej Lieskovský, Sören Schmitt, Jiří Sgall, and Rob van Stee. Improved
online load balancing with known makespan. arXiv e-prints, page arXiv:2407.08376, 2024.
doi:10.48550/arXiv.2407.08376.

7 Martin Böhm, Jiří Sgall, Rob van Stee, and Pavel Veselý. Online bin stretching with three
bins. Journal of Scheduling, 20(6):601–621, 2017.

8 Martin Böhm, Jiří Sgall, Rob Van Stee, and Pavel Veselỳ. A two-phase algorithm for bin
stretching with stretching factor 1.5. Journal of Combinatorial Optimization, 34(3):810–828,
2017.

9 Martin Böhm and Bertrand Simon. Discovering and certifying lower bounds for the online bin
stretching problem. Theor. Comput. Sci., 938:1–15, 2022.

10 Joan Boyar, Lene M. Favrholdt, Christian Kudahl, Kim S. Larsen, and Jesper W. Mikkelsen.
Online algorithms with advice: A survey. SIGACT News, 47(3):93–129, August 2016. doi:
10.1145/2993749.2993766.

11 Jérôme Dohrau. Online makespan scheduling with sublinear advice. In International Conference
on Current Trends in Theory and Practice of Informatics, pages 177–188. Springer, 2015.

12 Leah Epstein. Bin stretching revisited. Acta Informatica, 39(2):97–117, 2003.
13 Rudolf Fleischer and Michaela Wahl. On-line scheduling revisited. Journal of Scheduling,

3(6):343–353, 2000.
14 Michaël Gabay, Nadia Brauner, and Vladimir Kotov. Improved lower bounds for the online

bin stretching problem. 4OR, 15(2):183–199, 2017.

https://doi.org/10.1016/j.jcss.2018.11.005
https://doi.org/10.1016/j.jcss.2018.11.005
https://doi.org/10.48550/arXiv.2407.08376
https://doi.org/10.1145/2993749.2993766
https://doi.org/10.1145/2993749.2993766

M. Böhm, M. Lieskovský, S. Schmitt, J. Sgall, and R. van Stee 10:21

15 Michaël Gabay, Vladimir Kotov, and Nadia Brauner. Online bin stretching with bunch
techniques. Theoretical Computer Science, 602:103–113, 2015.

16 Ronald L Graham. Bounds for certain multiprocessing anomalies. Bell system technical
journal, 45(9):1563–1581, 1966.

17 Hans Kellerer and Vladimir Kotov. An efficient algorithm for bin stretching. Operations
Research Letters, 41(4):343–346, 2013.

18 Hans Kellerer, Vladimir Kotov, and Michaël Gabay. An efficient algorithm for semi-online
multiprocessor scheduling with given total processing time. J. Sched., 18(6):623–630, 2015.
doi:10.1007/s10951-015-0430-4.

19 Hans Kellerer, Vladimir Kotov, Maria Grazia Speranza, and Zsolt Tuza. Semi on-line algorithms
for the partition problem. Operations Research Letters, 21(5):235–242, 1997.

20 Antoine Lhomme, Nicolas Catusse, and Nadia Brauner. Computational bounds on randomized
algorithms for online bin stretching. CoRR, abs/2405.19071, 2024. doi:10.48550/arXiv.2405.
19071.

21 Antoine Lhomme, Olivier Romane, Nicolas Catusse, and Nadia Brauner. Online bin stretching
lower bounds: Improved search of computational proofs. CoRR, abs/2207.04931, 2022.

22 Matej Lieskovský. Better algorithms for online bin stretching via computer search. CoRR,
abs/2201.12393, 2022. arXiv:2201.12393.

23 Matej Lieskovský. Better algorithms for online bin stretching via computer search. In LATIN
(1), volume 14578 of Lecture Notes in Computer Science, pages 241–253. Springer, 2024.

24 Marc P Renault, Adi Rosén, and Rob van Stee. Online algorithms with advice for bin packing
and scheduling problems. Theoretical Computer Science, 600:155–170, 2015.

25 John F Rudin III. Improved bounds for the online scheduling problem. PhD thesis, The
University of Texas at Dallas, 2001.

APPROX/RANDOM 2024

https://doi.org/10.1007/s10951-015-0430-4
https://doi.org/10.48550/arXiv.2405.19071
https://doi.org/10.48550/arXiv.2405.19071
https://arxiv.org/abs/2201.12393

On the NP-Hardness Approximation Curve for
Max-2Lin(2)
Björn Martinsson #

KTH Royal Institute of Technology, Stockholm, Sweden

Abstract
In the Max-2Lin(2) problem you are given a system of equations on the form xi + xj ≡ b (mod 2),
and your objective is to find an assignment that satisfies as many equations as possible. Let
c ∈ [0.5, 1] denote the maximum fraction of satisfiable equations. In this paper we construct a curve
s(c) such that it is NP-hard to find a solution satisfying at least a fraction s of equations. This
curve either matches or improves all of the previously known inapproximability NP-hardness results
for Max-2Lin(2). In particular, we show that if c ⩾ 0.9232 then 1−s(c)

1−c
> 1.48969, which improves

the NP-hardness inapproximability constant for the min deletion version of Max-2Lin(2). Our work
complements the work of O’Donnell and Wu that studied the same question assuming the Unique
Games Conjecture.

Similar to earlier inapproximability results for Max-2Lin(2), we use a gadget reduction from the
(2k − 1)-ary Hadamard predicate. Previous works used k ranging from 2 to 4. Our main result is a
procedure for taking a gadget for some fixed k, and use it as a building block to construct better and
better gadgets as k tends to infinity. Our method can be used to boost the result of both smaller
gadgets created by hand (k = 3) or larger gadgets constructed using a computer (k = 4).

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis;
Theory of computation → Constraint and logic programming; Theory of computation → Graph
algorithms analysis

Keywords and phrases Inapproximability, NP-hardness, 2Lin(2), Max-Cut, Gadget

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.11

Category APPROX

Supplementary Material
Software (Source code): https://github.com/bjorn-martinsson/NP-hardness-of-Max-2Lin-2

archived at swh:1:dir:24803e393eb5826edd7af8e837b182cb24282691

1 Introduction

Maximum constraint satisfaction problems (Max-CSPs) form one of the most fundamental
classes of problems studied in computational complexity theory. A Max-CSP is a type of
problem where you are given a list of variables and a list of constraints, and your goal is
to find an assignment that satisfies as many of the constraints as possible. Some common
examples of Max-CSP are Max-Cut and Max-2Sat. Every Max-CSP also has a corresponding
Min-CSP-deletion problem where your objective is deleting as few constraints as possible
to make all of the remaining constraints satisfiable. The Min-CSP-deletion problem is
fundamentally the same optimisation problem as its corresponding Max-CSP, however their
objective values are different.

1.1 History of Max-Cut
The Max-Cut problem is arguably both the simplest Max-CSP as well as the simplest
NP-hard problem. In the Max-Cut problem you are given an undirected graph, and your
objective is to find a cut of the largest possible size. A cut of an undirected graph is a

© Björn Martinsson;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 11; pp. 11:1–11:38

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bmart@kth.se
https://orcid.org/0009-0006-4903-1328
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.11
https://github.com/bjorn-martinsson/NP-hardness-of-Max-2Lin-2
https://archive.softwareheritage.org/swh:1:dir:24803e393eb5826edd7af8e837b182cb24282691;origin=https://github.com/bjorn-martinsson/NP-hardness-of-Max-2Lin-2;visit=swh:1:snp:2ace3be933f6ebb19811cfcfe8c5a648d779fdd1;anchor=swh:1:rev:e0f7203a2cddc616c79c866e89055e7d3dd1671f
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 On the NP-Hardness Approximation Curve for Max-2Lin(2)

partition of the vertices into two sets and the size of a cut is the fraction of edges that connect
the two sets relative to the total number of edges. Solving Max-Cut exactly is difficult, but
there are trivial approximation algorithms that get within a factor of 1

2 of the optimum. One
such algorithm is randomly picking the cut by tossing one coin per vertex.

Knowing this, one natural question is, how close can a polynomial time algorithm get to
the optimum? Goemans and Williamson partly answered this in a huge breakthrough in
1995 [8] by applying semi-definite programming (SDP) to create a polynomial time algorithm
that finds a solution that is within a factor of αGW ≈ 0.87856 of the optimum. At the time,
there was hope that Goemans and Williamson’s algorithm could be improved further to
get even better approximation factors than 0.87856, but no such improvements were ever
found. Instead, in 2004 Khot et al [11] proved using the Unique Games Conjecture (UGC),
that approximating Max-Cut within a factor of αGW + ε is NP-hard for any ε > 0. This
conjecture had been introduced by Khot two years prior [12]. This was possibly the first
result establishing the close connection between UGC and SDP based algorithms.

To this day, UGC remains an open problem, and in particular no one has been able to
find an approximation algorithm for Max-Cut with a better approximation ratio than αGW.
In 2008 O’Donnell and Wu [14] were able to very precisely describe the tight connection
between SDP based approximation algorithms for Max-Cut and UGC. They constructed a
curve GapSDP(c) : [0.5, 1] → [0.5, 1] with the following two properties:
1. It is UGC-hard to find a cut of size GapSDP(c) + ε given that the optimal cut has size c

for any ε > 0. We here use UGC-hard as a short hand for “NP-hard under UGC”.
2. Within the RPR2-framework [7, 14], there are polynomial time algorithms that are

guaranteed to find a cut of size at least GapSDP(c) − ε if the optimal cut has size c. The
RPR2-framework is a generalisation of Goemans and Williamson’s algorithm.

This means that their work both describe the best known polynomial time approximation
algorithms for Max-Cut, and also show that under UGC these approximation algorithms
cannot be improved. It is important to note that their algorithmic results do not require
UGC. We emphasis that one implication of their result is that giving efficient algorithms
with a better performance would disprove UGC.

1.2 NP-hardness inapproximability of Max-2Lin(2)
Max-2Lin(2) is a Max-CSP that is very closely related to Max-Cut. An instance of Max-
2Lin(2) is a system of linear equations on the form xi + xj ≡ b (mod 2), and the objective is
to find an assignment that satisfies as many equations as possible. Max-Cut is the special
case where we only allow equations with right hand side equal to 1. This implies that any
hardness result for Max-Cut immediately yields the same hardness result for Max-2Lin(2).
One example of this is the UGC-hardness of Max-Cut described by the GapSDP(c) curve by
O’Donnell and Wu [14].

Furthermore, O’Donnell and Wu’s algorithmic results [14] also directly carries over to
Max-2Lin(2). This is because the RPR2-framework that they relied on uses odd rounding
functions, and therefore does not differentiate between Max-Cut and Max-2Lin(2).

The conclusion is that the GapSDP(c) describes a tight connection between the UGC-
hardness of Max-2Lin(2) as well as the best known polynomial time approximation algorithms
for Max-2Lin(2). On the other hand, the NP-hardness inapproximability of Max-2Lin(2)
is not well understood. The strongest NP-hardness inapproximability results known for
Max-2Lin(2) ([9], [16]) are still far off from the UGC-hardness described by the GapSDP(c)
curve.

B. Martinsson 11:3

The aim of this paper is to improve the state of the art NP-hardness inapproximability
of Max-2Lin(2) and also to give the full picture of the state of the art NP-hardness inap-
proximability of Max-2Lin(2). We do this by constructing a curve s(c) : [0.5, 1] → [0.5, 1]
such that it is NP-hard to distinguish between instances where the optimal assignment
satisfies a fraction of c of the equations, and instances where all assignments satisfy at most a
fraction of s(c) of the equations. Our curve either matches or improves all previously known
NP-hardness inapproximability results for Max-2Lin(2). We construct the curve by solving a
separate optimisation problem for each value of c, so our result covers the entire spectrum of
c ∈ [0.5, 1].

Our result complements the work by O’Donnell and Wu [14]. Our curve describes the
state of the art NP-hardness inapproximability of Max-2Lin(2) while O’Donnell and Wu’s
GapSDP(c) curve describes the UGC-hardness of Max-2Lin(2). It is worth noting that UGC
is still an open problem that over the years has been the subject of much debate. There
are results that indicate that UGC might be true, such as the proof of the closely related
2-to-2 Games Conjecture [13]. But on the other hand there are also results that indicate the
UGC might be false, such as the existence of subexponential algorithms for Unique Games
[2]. Currently there is no consensus for whether UGC is true or not. It is for this reason
that it is important to study NP-hardness independent of UGC, especially for fundamental
problems such as Max-2Lin(2).

1.3 Gadget reductions
Gadgets are the main tools used to create reductions from one Max-CSP Φ to another
Max-CSP Ψ. A gadget is a description of how to translate a specific constraint φ of Φ into
one or more constraints of Ψ. For example, if Φ is Max-3Lin(2) and Ψ is Max-Cut, then a
gadget from φ to Ψ is a graph. A gadget is allowed to use both the original variables in the
constraint φ, which are called primary variables, and new variables specific to the gadget,
which are called auxiliary variables.

The standard technique used to construct gadgets is to follow the “automated gadget”
framework of Trevisan et al [15]. This framework describes how to construct a gadget by
solving a linear program and also proves that the constructed gadget is optimal. This
framework is mainly used to construct gadgets for small and simple Max-CSPs. This
is because the number of variables in the gadget scales exponentially with the number
of satisfying assignments of φ. Furthermore, the number of constraints in the LP scales
exponentially with the number of variables, so it scales double exponentially with the number
of satisfying assignment of φ.

As an example let us take the gadget from Max-3Lin(2) to Max-2Lin(2) used by Håstad
[9], which was originally constructed by Trevisan et al [15]. A constraint in Max-3Lin(2)
has 4 satisfiable assignments. Having 4 satisfiable assignments means that the gadget uses
24 = 16 variables. Furthermore, since Max-2Lin(2) allow negations, half of these variables
can be removed because of negations. So the actual number of variables in the gadget is
24−1 = 8. This in turn implies that the number of constraints in the LP is 28 = 256. This
number is small enough that it is feasible for a computer to solve the LP. In this paper we are
interested in constructing gadgets from generalisations of Max-3Lin(2), called the Hadamard
Max-CSPs. These have significantly more satisfying assignments than Max-3Lin(2). It is
easy to see that a simple-minded application of the “automated gadget” framework leads to
an LP that is far too large to naively be solved by a computer. This means that we have to
deviate from the “automated gadget” framework in order to construct our gadgets.

APPROX/RANDOM 2024

11:4 On the NP-Hardness Approximation Curve for Max-2Lin(2)

Gadgets have two important properties, called soundness s and completeness c. If a
gadget is constructed using the “automated gadget” framework, then it is trivial to calculate
the completeness of the gadget. On the other hand, calculating the soundness of a gadget
from Φ to Ψ involves solving instances of Ψ. In practice, calculating the soundness of a large
gadget can be very difficult since Ψ is usually an NP-hard problem.

Gadgets can be constructed with different goals in mind. The case that we are interested
in is finding the gadget with the largest soundness for a fixed completeness. This is what
allows us to construct our curve s(c). In general there are also other objectives that could be
of interest when constructing gadgets. One such case is finding the gadget with the smallest
ratio of s

c . This corresponds to finding the best lower bound for the approximation ratio of
Max-2Lin(2). Another possibility is to maximise 1−s

1−c . This corresponds to finding the best
upper bound for the approximation ratio of Min-2Lin(2)-deletion. It is possible to use the
“automated gadget” framework by Trevisan et al [15] to find the optimal gadgets for all of
these scenarios.

1.4 The Hadamard Max-CSPs Max-Hadk

One of the earliest gadget reductions used to show NP-hardness inapproximability of Max-
2Lin(2) is a gadget reduction from Max-3Lin(2) used by Håstad in his classical paper
from 1997 [9], which was constructed by Trevisan et al [15]. More recently, NP-hardness
inapproximability results for Max-2Lin(2) have used gadget reductions from a generalisation
of Max-3Lin(2) called the Hadamard Max-CSPs [10, 16]. The (2k − 1)-ary Hadamard Max-
CSP, k ⩾ 2, is a constraint satisfaction problem where a clause is satisfied if and only if its
literals form the truth table of a linear k-bit Boolean function. The (2k − 1)-ary Hadamard
CSP is denoted by Max-Hadk. One special case is k = 2, where the number of literals of
a clause is 3. It turns out that this case coincides with Max-3Lin(2). This means that
Max-Hadk can be seen as a generalisation of Max-3Lin(2).

There are mainly two reasons as to why Max-Hadk is useful for gadget reductions. The
first reason is that Max-Hadk is a very sparse CSP. It being sparse refers to the number
of satisfiable assignments of a clause being few in relation to the total number of possible
assignments. The number of satisfying assignments of a clause is just 2k, one for each linear
k-bit Boolean function, while the total number of possible assignments is 2(2k−1).

The second reason is that Max-Hadk is a useless predicate for any k ⩾ 2, which is an even
stronger property than being approximation resistant. This was shown by Chan in 2013 [6].
Max-Hadk being a useless predicate means that if you are given a nearly satisfiable instance
of Max-Hadk, then it is NP-hard to find an assignment such that the distribution over the
(2k − 1) long bit strings given by the literals of the clauses is discernibly different from the
uniform distribution.

1.4.1 Historical overview of Hadk-to-2Lin(2) gadgets
In 1996, Trevisan et al [15] constructed the optimal gadget from Max-Had2 to Max-2Lin(2).
They showed that the Max-Had2 gadget that minimises s

c is the same gadget as the one that
maximises 1−s

1−c . Furthermore, since this gadget is very small, using only 8 variables, they
were able to construct it using the “automated gadget” framework.

In 2015, Håstad et al. [10] constructed gadgets from Max-Had3 to Max-2Lin(2). They
showed that the Max-Had3 gadget that minimises s

c is equivalent to the Max-Had2 gadget. So
using Max-Had3 over Max-Had2 does not give an improved hardness for the approximation
ratio of Max-2Lin(2). However, the Max-Had3 gadget that maximises 1−s

1−c is notably better

B. Martinsson 11:5

than the Max-Had2 gadget. This gadget is relatively small, only using 128 variables. This is
too many variables for it to be possible to naively apply the “automated gadget” framework.
However, Håstad et al. were still able to construct and analyse the optimal gadget by hand
based on ideas from the “automated gadget” framework.

In 2018, Wiman [16] constructed gadgets from Max-Had4 to Max-2Lin(2). Note that
Max-Had4 gadgets have 215 variables. Calculating the soundness of a such a gadget requires
solving an instance of Max-2Lin(2) with 215 variables, which is infeasible to do by hand
or even with a computer. Wiman initially followed the “automated gadget” framework.
However, in order to be able to calculate the soundness of the gadget, Wiman relaxed the
Max-2Lin(2) problem into a Max-Flow problem. This relaxed soundness rs is an upper bound
of the true soundness. This relaxation made it possible for Wiman to use a computer to
find the gadget that maximises 1−rs

1−c . Wiman’s relaxation was successful, since by using it
he was able to find a Max-Had4 gadget that was better than the optimal Max-Had3 gadget.
Note, however, that by using a relaxation, it is uncertain whether Wiman found the optimal
Max-Had4 gadget or not.

1.4.2 Our Hadk-to-2Lin(2) gadgets
In this paper, we construct gadgets from Max-Hadk to Max-2Lin(2) for k approaching infinity.
Recall that a gadget uses 22k−1 variables, so using a computer to construct gadgets for k > 5
is normally impossible. We get around this limitation by introducing a procedure for taking
Max-Hadk gadgets and transforming them to Max-Hadk′ gadgets, for k′ > k. We refer to
this procedure as the lifting of a Max-Hadk gadget into a Max-Hadk′ gadget. Two of the
properties of lifting is that the completeness stays the same and the soundness does not
decrease.

To show NP-hardness of approximating Max-2Lin(2), we start by constructing Max-Hadk

to Max-2Lin(2) gadgets for k = 4 using a computer. We then analytically prove an upper
bound of Wiman’s relaxed soundness of the lifting of these gadgets as k′ → ∞.

The method we use to construct our gadgets is by solving an LP. This LP is similar to
what Wiman could have used to construct his gadget. The difference is that the LP we use is
made to minimise the soundness of the lifted gadget, instead of minimising the soundness of
the gadget itself. If done naively, this LP would have roughly 23·(2k−1) = 245 variables. But
by making heavy use of symmetries of the LP, we are able to bring it down to a feasible size.

The main technical work of this paper is proving an upper bound on Wiman’s relaxed
soundness of a lifted gadget as k′ → ∞. Recall that calculating Wiman’s relaxed soundness
involves solving instances of Max-Flow. As k′ tends to infinity, the size of these instances
also tend to infinity. In order to lower bound the value of these Max-Flow problems, we
introduce the concept of a type of infeasible flows which we call leaky flows. A leaky flow
is a flow for which the conservation of flows constraint has been relaxed. This allows leaky
flows to attain higher values compared to feasible flows. We then show that by randomly
overlapping leaky flows onto the large Max-Flow instances, we are able to get closer and
closer to a feasible flow as the size of the instances tend to infinity.

1.5 Our results and comparison to previous results
Using a gadget reductions from Max-Hadk to Max-2Lin(2), we are able to construct a curve
s(c) : [0.5, 1] → [0.5, 1] such that it is NP-hardto distinguish between instances of Max-2Lin(2)
where the optimal assignment satisfies a fraction of c of the equations and instances where
all assignments satisfy at most a fraction of s(c) of the equations. This curve does not have
an explicit formula. Instead, each point on the curve is defined as the solution to an LP,
which we solve using a computer.

APPROX/RANDOM 2024

11:6 On the NP-Hardness Approximation Curve for Max-2Lin(2)

▶ Theorem 1.1. Let s(c) : [0.5, 1] → [0.5, 1] be the curve defined in Definition 4.1. Then for
every sufficiently small ε > 0, it is NP-hard to distinguish between instances of Max-2Lin(2)
such that
Completeness There exists an assignment that satisfies a fraction at least c − ε of the

constraints.
Soundness All assignments satisfy at most a fraction s(c) + ε of the constraints.

A notable point on the curve is c = 590174949
639271832 ≈ 0.9232 and s(c) = 141533171

159817958 ≈ 0.8856.
This is the point on the curve that gives the highest NP-hardness inapproximability factor
1−s
1−c of Min-2Lin(2)-deletion.

▶ Corollary 1.2. It is NP-hard to approximate Min-2Lin(2)-deletion within a factor of
73139148
49096883 + ε ≈ 1.48969 + ε.

In order to be able to compare our curve s(c) to prior results, we plot our curve together
with O’Donnell and Wu’s GapSDP(c) curve [14], which, as discussed earlier, describes both
the UGC-hardness of Max-2Lin(2), as well as the best known polynomial time approximation
algorithms of Max-2Lin(2). Additionally, we also include historical NP-hardness inapproxim-
ability results as points in the diagram. We have also marked the point (c, s) where Goemans
and Williamson’s algorithm achieves the approximation ratio of s

c = αGW ≈ 0.87856. This
point was shown to be UGC-hard by Khot et al. in 2004 [11].

The curve s(c) is plotted in three Figures. All three Figures contain the same exact same
data, but the data is plotted in different ways. In Figure 1 the soundness s(c) is on the
y-axis and the completeness c is on the x-axis. This plot has the disadvantage that to the
eye, it is difficult to distinguish the exact shape of the curve s(c). In the next plot, Figure 2,
s(c)

c is on the y-axis and c is on the x-axis. This plot describes the approximation ratio of
Max-2Lin(2). The third plot, in Figure 3, has 1−s(c)

1−c on the y axis and c on the x-axis. This
plot describes the approximation ratio of Min-2Lin(2)-deletion.

It is important to note that the curves in Figure 1 are convex functions since it is possible
to take the convex combination of two hard instances using disjoint sets of variables. One
implication from this is that it is possible to construct NP-hardness curves using any of the
points (c, s) by drawing two lines, one from (0.5, 0.5) to (c, s) and one from (c, s) to (1, 1).
This means that all of the historical inapproximability results can also be described using
convex curves.

In Figures 1-3 prior inapproximability results for Max-2Lin(2) are marked as dots. Bellare
et al [5] was first to give an explicit NP-hardness result, which had c = 0.72 and s = 0.71. In
2015, Håstad et al [10] used Chan’s result [6] to create a gadget reduction from Max-Had3
which had c = 7

8 and s = 53
64 . This result became the new record for the upper bound of the

approximation ratio of Min-2Lin(2)-deletion, as seen in Figure 3. Three years later, Wiman
[16] further improved on this result by using Max-Had4 instead of Max-Had3. Wiman’s
Max-Had4 gadget has c = 15

16 and s = 3308625759
3640066048 ≈ 0.9089. This further improved the upper

bound on the approximation ratio of Min-2Lin(2)-deletion.
Similar to earlier results, the technique we use to construct our curve is also a gadget

reduction from Max-Hadk to Max-2Lin(2). But instead of using a gadget reduction from
Max-Hadk for a fixed k, we instead let k tend to infinity. This improves the quality of our
gadget. One example of such an improvement is our upper bound on the approximation
ratio of Min-2Lin(2)-deletion, which can be seen in Figure 3. The ratio 1−s(c)

1−c is maximised
on our curve at c = 590174949

639271832 ≈ 0.9232 and s = 141533171
159817958 ≈ 0.8856, which is marked by a

blue cross in Figure 3.

B. Martinsson 11:7

10.950.90.850.80.750.70.650.60.550.5
c

0.5

0.6

0.7

0.8

0.9

1.0

s

[BGS98]
[Hås97]

[HHM+15]

[Wim18]

[GW95]

NP-Hardness of 2Lin(2) (Our result)
GapSDP curve [OW08]

Figure 1 The y-axis shows the soundness s and the x-axis the completeness c. The blue filled
curve is our NP-hardness curve s(c). The red dashed curve is the GapSDP(c) by O’Donnell and Wu’s
[14]. The points marked with arrows are prior inapproximability results of Max-2Lin(2). The blue
cross on the curve marks our best inapproximability result for Min-2Lin(2)-deletion, see Figure 3.
Note that both of the curves in this figure are convex functions.

10.950.90.850.80.750.70.650.60.550.5
c

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

s/
c

[BGS98]

[Hås97]

[HHM+15]

[Wim18]

[GW95]

NP-Hardness of 2Lin(2) (Our result)
GapSDP curve [OW08]

Figure 2 The y-axis shows s/c, which corresponds to the approximation ratio of Max-2Lin(2).
The point on the curve c(s) that minimises this ratio is c = 3/4 and s(c) = 11/16, which exactly
matches Håstad’s result from 1997 [9].

10.950.90.850.80.750.70.650.60.550.5
c

1.0

1.1

1.2

1.3

1.4

1.5

1
s

1
c

[BGS98]

[Hås97]

[HHM+15]

[Wim18]

NP-Hardness of 2Lin(2) (Our result)
GapSDP curve [OW08]

Figure 3 The y-axis shows (1 − s)/(1 − c), which corresponds to the approximation ratio of
Min-2Lin(2)-deletion. This ratio reaches its maximum 1−s(c)

1−c
= 73139148

49096883 ≈ 1.4896 at c = 590174949
639271832 ,

which is marked by a blue cross. The curve stays constant after this point.

APPROX/RANDOM 2024

11:8 On the NP-Hardness Approximation Curve for Max-2Lin(2)

1.6 The limitations of Hadk-to-2Lin(2) gadget reductions
In Figure 1, it is possible to see a clear gap between our s(c) curve and O’Donnell and Wu’s
GapSDP(c) curve [14]. The gap is especially noticeable in Figure 3, since the behaviour of
the two curves are completely different when c is close to 1. One natural question is, how
close can a Hadk-to-2Lin(2) gadget reduction get to the GapSDP(c) curve?

Håstad et al [10] showed that any gadget reduction from a Hadamard Max-CSP to
Max-2Lin(2) can never achieve an approximation ratio for Min-2Lin(2)-deletion better than

1
1−e−0.5 ≈ 2.54. In Appendix B we show that any gadget reduction from a Hadamard CSP
to Max-2Lin(2) that uses Wiman’s soundness relaxation can never achieve an approximation
ratio of Min-2Lin(2)-deletion better than 2. Both 2.54 and 2 are fairly large in comparison
to the current best value of 1.48969 shown in Figure 3. So it is potentially possible to still
improve our results in the future using a Hadk-to-2Lin(2) gadget reduction for some k ⩾ 4.
However, these limitations means that it is impossible to make s(c) match the behaviour of
GapSDP(c) when c is close to 1.

1.7 Outline of proof
Our result is based on Hadk-to-2Lin(2) gadget reduction for arbitrary large values of k. We
start from the “automated gadget” framework by Trevisan et al [15]. In this framework,
computing the soundness of of a Hadk-to-2Lin(2) gadget involves solving a Max-2Lin(2)
problem. Following the work of Wiman [16], we relax the soundness computation to a Max-
Flow problem on the 2k-dimensional hypercube. Using symmetries, it is computationally
feasible to construct Hadk-to-2Lin(2) gadgets that are optimal with respect to the relaxed
soundness for k ⩽ 4.

In order to be able harness the power of arbitrarily large k, we define a procedure of
embedding a Hadk-to-2Lin(2) gadget G inside a Hadk′-to-2Lin(2) gadget where k′ > k. By
overlapping multiple different embeddings of G, we construct a gadget G′ for an arbitrarily
large k′.

Recall that the relaxed soundness computation is a Max-Flow problem, which can be
expressed as an LP. By carefully relaxing this LP, we are able to create an infeasible flow
solution to rs(G), such that if we lift it, it becomes an almost feasible flow of rs(G′). The
underlying idea for this relaxation is based on leaky flows (flows where the flow entering a
node can be different than the flow exiting the node). The “leaks” of a leaky flow are signed,
so random overlap of leaky flows can result in a feasible flow. We show that this is actually
the case for the solution to our relaxed LP using a second order moment analysis.

The final step is to construct the Hadk-to-2Lin(2) gadget G and its corresponding leaky
flow for k = 4 used in the embedding. This construction is naturally done using a rational
LP solver to solve the relaxed LP.

1.8 Organisation of paper
Section 2 contain the preliminaries. It introduces Max-CSPs and the automated gadget
framework. Section 3 introduces Wiman’s relaxed soundness and the infinity relaxed sound-
ness in terms of an LP. This section also states our main Lemma, Lemma 3.11, relating the
infinity relaxed soundness to the relaxed soundness. Appendix A is about Max-Flow, and
it proves some general theorems about how symmetries can be used to simplify Max-Flow
problems. Appendix B contain an analysis of relaxed soundness, and how it relates to the
(true) soundness. Appendix C studies affine maps. These affine maps are used both to analyse
the infinity relaxed soundness, and to describe the symmetries of the LPs. Appendix D

B. Martinsson 11:9

contains the proof of Lemma 3.11 using the affine maps. Appendix E describes the procedure
we use for constructing and verifying the gadgets. Section 4 contains our numerical results.
This includes both plots and tables of various Hadk-to-2Lin(2) gadgets. Finally, Appendix F
contains a compact description of all gadgets that we construct.

2 Preliminaries

This section is split into three parts. In Subsection 2.1 we introduce some basic concepts
and notations for Boolean functions Fk

2 → {1,−1}. After that, in Subsection 2.2 we formally
define the (2k − 1)-ary Hadamard predicate. The last subsection, Subsection 2.3, introduces
the “automated gadget” framework by Trevisan et al [15], and explains the classical result of
how to construct reductions from the (2k − 1)-ary Hadamard predicate to Max-2Lin(2).

2.1 Boolean functions
A k-bit Boolean function is a function that takes in k bits and outputs one bit. The k input
bits should be thought of as a vector in a k-dimensional vector field over F2. On the other
hand, the output bit is a scalar. For convenience, we denote the vectors as being elements
in Fk

2 and the scalars as elements in R, where a scalar bit is represented as 1 (False) or −1
(True).

▶ Definition 2.1. The set of k-bit Boolean functions is denoted by Fk =
{
f : Fk

2 → {1,−1}
}

.

One special type of Boolean functions that is of great importance is the set of linear
Boolean functions. Each linear Boolean function in Fk

2 corresponds to an element α ∈ Fk
2 ,

and is denoted by χα.

▶ Definition 2.2. For α ∈ Fk
2 let χα ∈ Fk be denote the function

χα(x) = (−1)(α,x)

where (α, x) =
∑k

i=1 αixi (mod 2).

Any Boolean function can be represented as a sum of linear Boolean functions using the
Fourier transform.

▶ Proposition 2.3. Given f ∈ Fk, then

f(x) =
∑

α∈Fk
2

χα(x)f̂α,

where f̂α denotes the Fourier transform of f at α, defined as

f̂α = 1
2k

∑
x∈Fk

2

χα(x)f(x), α ∈ Fk
2 .

The Fourier transform is used to define the supporting affine subspace of a Boolean
function. This also gives a natural definition for the dimension of a Boolean function.

▶ Definition 2.4. Given f ∈ Fk, its supporting affine sub-space affine(f) is the affine span
of
{
α ∈ Fk

2 : f̂α ̸= 0
}

.

▶ Definition 2.5. Let dim(f), f ∈ Fk, denote the dimension of affine(f).

APPROX/RANDOM 2024

11:10 On the NP-Hardness Approximation Curve for Max-2Lin(2)

▶ Remark 2.6. Affine functions have dimension 0.
The distance between two Boolean function is given by the normalised Hamming distance.

▶ Definition 2.7. Let dist : Fk × Fk → R be the normalised Hamming distance between two
Boolean functions, i.e.

dist(f1, f2) = 1
2k

∑
x∈Fk

2

1 − f1(x)f2(x)
2 .

2.2 Max-CSP
This section introduces Constraint Satisfaction Problems (CSP) and Max-CSP. The frame-
work we use is that CSPs are defined by predicates, which describe which kind of constraints
that can appear in the CSP.

▶ Definition 2.8. An m-ary predicate is a function ϕ ∈ Fm. The predicate is said to be
satisfied by x ∈ Fm

2 if ϕ(x) = −1. Otherwise x is said to violate ϕ. The set of x ∈ Fm
2 that

satisfies ϕ is denoted by Sat(ϕ).

Given a set of Boolean variables V and a m-ary predicate ϕ, a ϕ-constraint C is a tuple
((x1, b1), . . . , (xm, bm)) where xi ∈ V, i = [m], and bi ∈ F2, i ∈ [m], where all of the xi’s are
distinct. The constraint C is said to be satisfied if

ϕ(b1 + x1, . . . , bn + xm) = −1,

where + denotes the xor-operation. In other words, if bi = 1 then xi is negated.

▶ Definition 2.9. Given a m-ary predicate ϕ, an instance I of the Max-ϕ-CSP is a variable
set V and a distribution of ϕ-constraints over V . The Max-ϕ-CSP optimisation problem is;
given an instance I, find the assignment A : V → F2 that maximises the fraction of satisfied
constraints in I. The optimum is called the value of I.

The main Max-CSPs of interest in this paper are the Hadamard Hadk Max-CSP, and
Max-2Lin(2) and Max-3Lin(2). These have the following predicates.

▶ Definition 2.10. The 2Lin(2) predicate is the function f(x, y) = (−1)x+y+1. Similarly,
the 3Lin(2) predicate is the function f(x, y, z) = (−1)x+y+z+1.

▶ Definition 2.11. The Hadamard Hadk predicate for k ⩾ 2 is a (2k − 1)-ary predicate.
There is one input variable per non-empty subset S ⊆ [k]. The Hadk predicate is satisfied by
a binary input string {xS}∅ ̸=S⊆[k] if and only if there exists some β ⊆ [k] such that

χβ(S) = (−1)xS

for all non-empty subset S ⊆ [k]. I.e. the Hadk predicate is satisfied if and only if the input
string forms the truth table of a linear function.

▶ Remark 2.12. The 3Lin(2) predicate and the Had2 predicate are in fact identical. Thus
the family of Hadamard Max-CSPs can be seen as a natural generalisation of Max-3Lin(2).
▶ Remark 2.13. The set Sat(Hadk predicate) can be expressed using a 2k dimensional
Hadamard matrix. Let Mk be a 2k × (2k − 1) matrix, where the rows are index by subsets
β ⊆ [k] and the columns are indexed by non-empty subsets S ⊆ [k]. Let

(Mk)β,S =
{

0 if χβ(S) = 1,
1 if χβ(S) = −1.

B. Martinsson 11:11

0 0 0 0 0 0 0
1 0 1 0 1 0 1
0 1 1 0 0 1 1
1 1 0 0 1 1 0
0 0 0 1 1 1 1
1 0 1 1 0 1 0
0 1 1 1 1 0 0
1 1 0 1 0 0 1

Figure 4 The matrix Mk for k = 3. It is an 8 × 7 matrix. Note that prepending a zero column

to Mk and switching 0/1 to 1/ − 1 would make it into a Hadamard matrix, which is symmetric.

The matrix Mk is the set Sat(Hadk predicate) expressed on the form of a matrix, with one
row per element. Note that Mk is almost the 2k-dimensional Hadamard matrix. Mk can be
made into the Hadamard matrix by prepending an all 0 column to it, and then switching
out 0/1 to 1/− 1. This connection between Sat(Hadk predicate) and Hadamard matrices is
one of the reasons as to why this Max-CSP is called the Hadamard Max-CSP. An example
of the matrix Mk can be found in Figure 4.

The Hadamard predicate has been shown to be a useless predicate. The concept of
useless predicates was first introduced in [3]. This property of Hadk was originally proven
by Austrin and Mossel using UGC [4], which relies on the fact that Sat(Hadk) admits a
balanced pairwise independent set. Later on Chan was able to show that Hadk is a useless
predicate without requiring UGC [6]. To state this result we first need two definitions.

▶ Definition 2.14. Given an instance I of an m-ary Max-CSP and an assignment A, let
D(A, I) denote the distribution of binary strings Fm

2 generated by sampling
((x1, b1), . . . , (xm, bm)) ∼ I and outputting the binary string ((A(x1)+b1), . . . , (A(xm)+bm)).

▶ Definition 2.15. The total variation distance dTV between two probability measures µ1
and µ2 over a finite set Ω is defined as

dTV(µ1, µ2) = 1
2
∑
ω∈Ω

|µ1(ω) − µ2(ω)|.

▶ Theorem 2.16 ([6]). For every ε > 0, it is NP-hard to distinguish between instances I of
the Hadk Max-CSP such that
Completeness There exists an assignment A such that

dTV(D(A, I), uniform({Sat}(Hadk predicate))) ⩽ ε.

Soundness For every assignment A,

dTV(D(A, I), uniform(F2k−1
2)) ⩽ ε.

Here uniform(Sat(Hadk predicate)) denotes the uniform distribution over binary strings that
satisfy the Hadk predicate. Similarly, uniform(F2k−1

2) denotes the uniform distribution over
all binary strings of length 2k − 1.

▶ Remark 2.17. The uniform distribution on satisfiable instances in the completeness case is
a subtle detail. The result by [6] is not formulated like this. However, it is trivial to take the
instances constructed by Chan and modify them to make the completeness case be uniformly

APPROX/RANDOM 2024

11:12 On the NP-Hardness Approximation Curve for Max-2Lin(2)

distributed over satisfied instances. The first time this was used was by [16]. However, this
detail turns out to not actually matter in the end since all of the gadgets that we construct
and all of the gadgets that Wiman construct are symmetric. So this uniform randomness
assumption is only there because of convenience, and is not actually used in the end.

2.3 The automated gadget framework

The “automated gadget” framework by Trevisan et al [15] describes how to construct optimal
gadgets when reducing from one predicate to another. Let us denote the starting predicate
as ϕ and the target predicate as ψ. A ϕ-to-ψ-gadget is a description for how to reduce a
ϕ-constraint to one or more ψ-constraints. As an example, let us take a gadget from 3SAT
to 2Lin(2). In this case the gadget describes a system of linear equations that both involve
the three original variables from the 3SAT constraint (called primary variables, denoted by
X) as well as new extra variables (called auxiliary variables, denoted by Y).

Gadgets have two important properties, called completeness and soundness. These
properties describe how closely the ψ-constraints are able to mimic the satisfiability of the
original ϕ-constraint. The completeness of a gadget is a value between 0 and 1 that describe
how many of the ψ-constraints that can be satisfied under the restriction that X satisfies the
original ϕ-constraint. In a similar fashion, the soundness of a gadget is a value between 0
and 1 that describes the case when X does not satisfy the original ϕ-constraint. When we
construct our gadgets, we fix the completeness of the gadget, and then we find the gadget
that minimises the soundness for this fixed completeness. A gadget that minimises the
soundness for a given completeness is referred to as an optimal gadget.

There is no a priori upper bound on how many auxiliary variables that a ϕ-to-ψ-gadget
can have. However, the “automated gadget” framework by Trevisan et al [15] proves that,
under some reasonable assumptions, the number of variables |X ∪ Y| in an optimal gadget
can be assumed to be at most 2| Sat(ϕ)|. Furthermore, if ψ allows the negations of variables,
then this number drops to 2| Sat(ϕ)|−1.

In the case of a Hadk-to-2Lin(2) gadget, the number of satisfying assignments of Hadk is
2k, and 2Lin(2) allow the negation of variables. This means that the total number of variables
in the gadget is 22k−1. Out of these, 2k − 1 variables are in X, and 22k−1 −

(
2k − 1

)
variables

are in Y. Furthermore, the “automated gadget” framework gives a natural way to index
these variables in terms of | Sat(Hadk)|-long bitstrings. According to the framework, each
primary variable should be indexed by a bitstring describing that variable’s assignment to
all of the satisfying assignments to Hadk, meaning a column in the matrix shown in Figure 4.
The auxiliary variables are indexed by the bitstrings that do not appear in the matrix.

Instead of using 2k-long bitstrings to index the variables, it is arguably more natural to
index the variables using functions in Fk

2 . These representations are equivalent since every
2k long bitstring can be interpreted as a truth table of a function in Fk, and vice versa. By
indexing the set of variables using functions in Fk, the set of primary variables are indexed
by linear functions {χα}∅⊂α⊆[k], and the negations of linear functions {−χα}∅⊂α⊆[k]. This
gives us the following description of a Hadk-to-2Lin(2) gadget.

▶ Definition 2.18. A Hadk-to-2Lin(2) gadget is given by a tuple (G,Xk,Yk), where G is a
probability distribution over

(Fk

2
)

where G(f1, f2) = 0 if f1 = −f2. Xk is the set of primary
variables and Yk is the set of auxiliary variables. The set of variables Xk ∪ Yk are indexed
by functions in Fk, meaning Xk ∪ Yk = {xf : f ∈ Fk}. A variable xf is a primary variable
if and only if f is a linear function or −f is a linear function.

B. Martinsson 11:13

The reduction from a Hadk constraint Hadk

(
b{1} + y{1}, . . . , b[k] + y[k]

)
to 2Lin(2) is

given by the distribution formed by
1. Sampling (f1, f2) ∼ G,
2. Outputting the constraint T (f1) = T (f2) where

T (f) =

xf if xf ∈ Yk,

bα + yα if f = χα for some α ∈ Fk
2 ,

bα + yα + 1 if f = −χα for some α ∈ Fk
2 .

Let us now precisely define the soundness and completeness of a Hadk-to-2Lin(2) gadget
(G,Xk,Yk). From Theorem 2.16 it follows that the natural definition of soundness is to
uniformly at random assign the primary variables Xk to F2, and then assign the rest of the
variables in order to satisfy as many of the equations as possible.

▶ Definition 2.19. Given a set of Boolean variables X. Let F(X) denote the set of assignments
X → F2. Let Ffold(X) the set of all folded assignments, i.e. functions P : X → F2 such that
P (1 + x) = 1 + P (x)∀x ∈ X. Here 1 + x denotes the negation of the variable x.

▶ Definition 2.20. The soundness of G is defined as

s(G) = E
P ∈ Ffold(Xk)

max
A ∈ Ffold(Xk ∪ Yk),
A(x) = P (x), x ∈ Xk

val(A,G),

where

val(A,G) =
∑

(f1, f2) ∈
(Fk

2
) G(f1, f2)[A(xf1) = A(xf2)].

The completeness of G is defined using dictator cuts. A dictator cut δy of y ∈ Fk
2 is

an assignment where (−1)δy(xf) = f(y). From Theorem 2.16 we see that that the natural
definition for completeness is the expectation over val(δy, G), where δy is a random dictator
cut.

▶ Definition 2.21. The completeness of G is defined as

c(G) = E
y ∈ Fk

2

val(δy, G) = 1 −
∑

(f1, f2) ∈
(Fk

2
) G(f1, f2) dist(f1, f2).

There is a result based on Theorem 2.16 that relates the soundness and completeness of
Hadk-to-2Lin(2) gadgets to NP-hardness results for Max-2Lin(2).

▶ Proposition 2.22 ([10, Proposition 2.17]). Given a Hadk-to-2Lin(2) gadget (G,Xk,Yk)
with s = s(G) and c = c(G), where c > s. Then for every sufficiently small ε > 0, it is
NP-hard to distinguish between instances I of Max-2Lin(2) such that

(Completeness) There exists an assignment that satisfies a fraction at least c− ε of the
constraints.

(Soundness) All assignments satisfy at most a fraction s+ ε of the constraints.

One particularly interesting case is the inapproximability of Min-2Lin(2)-deletion. From
UGC it follows that it is NP-hard to approximate Min-2Lin(2)-deletion within any constant
[14]. The following proposition from Håstad et al. [10] tells us that a Hadk-to-2Lin(2) gadget
reduction can never be used to show an inapproximability factor of Min-2Lin(2)-deletion
better than 2.54. This means that any NP-hardness result for Min-2Lin(2)-deletion shown
using a gadget reduction from Hadk-to-2Lin(2) cannot match results obtained by UGC.

APPROX/RANDOM 2024

11:14 On the NP-Hardness Approximation Curve for Max-2Lin(2)

▶ Proposition 2.23 ([10, Proposition 2.29 and Theorem 6.1]). For any given Hadk-to-2Lin(2)
gadget (G,Xk,Yk). There exists a Hadk-to-2Lin(2) gadget (G̃,Xk,Yk) with completeness
1 − 2−k such that

1 − s(G)
1 − c(G) ⩽

1 − s(G̃)
1 − c(G̃)

,

and

1 − s(G̃)
1 − c(G̃)

⩽
1

1 − e−0.5 ≈ 2.54.

▶ Remark 2.24. A Hadk-to-2Lin(2) gadget having completeness 1 − 2−k implies that the
gadget only have positive weight edges of length 2−k. So far fewer edges are used compared
to the total number of possible edges.
▶ Remark 2.25. The upper limit of 2.54 shown by [10] is much more general than what is
stated here. In fact, they show that the bound of 2.54 holds for any gadget reduction from a
useless predicate ϕ such that Sat(ϕ) has a balanced pairwise independent subset.

3 Relaxed soundness and infinity relaxed soundness

The main difficulty when designing and analysing gadgets is that the soundness is difficult
to compute. In the case of a gadget reduction from Max-Hadk to Max-2Lin(2), computing
the soundness of the gadget involves solving an instance of Max-2Lin(2). For k ⩽ 3 this is
computationally feasible, since the Max-2Lin(2) instance is rather small, but for k ⩾ 4 the
instances can become so large that, even using a computer, it is practically impossible to
solve them.

To get around this issue, Wiman [16] proposed to relax the definition of the soundness
by not requiring that the assignment A of the auxiliary variables Yk is folded. Note
that the assignment A is still required to be folded on the primary variables Xk, meaning
A(xf) = 1 +A(x−f)∀xf ∈ Xk. Removing the requirement that A is folded over Yk makes it
significantly easier to compute the soundness.

▶ Definition 3.1 ([16, Definition 3.3]). Wiman’s relaxed soundness

rs(G) = E
P ∈Ffold(Xk∪{x1,x−1})

max
A ∈ F(Xk ∪ Yk),
A(x) = P (x), x ∈ Xk ∪ {x1, x−1}

val(A,G),

where

val(A,G) =
∑

(f1, f2) ∈
(Fk

2
) G(f1, f2)[A(xf1) = A(xf2)].

This relaxation fundamentally changes the soundness computation from being a Max-2Lin(2)
problem to being an s-t Min-Cut problem. This is because the computation of 1 − rs(G)
for a fixed P is a minimisation problem where the goal is to minimise the number of times
that A(xf1) ̸= A(xf2), which makes it a s-t Min-Cut problem. According to the Max-Flow
Min-Cut Theorem, this also means that rs(G) can be computed by solving a Max-Flow
problem.

The conclusion from this is that 1 − rs(G) can be interpreted as the average max flow
on the fully connected 2k-dimensional hypercube, where the placement of sources and sinks
is randomly distributed over nodes labeled by affine functions. The sources correspond to

B. Martinsson 11:15

primary variables xf where P (xf) = 1 and the sink nodes correspond to primary variables
xf where P (xf) = 0. The capacity of an edge {xf1 , xf2} in the fully connected hypercube is
given by G(f1, f2). Note that the sum over capacities in the graph is equals to 1.

There are some significant benefits to using the relaxed soundness. Firstly, it is significantly
simpler to solve a Max-Flow problem compared to a Max-2Lin(2) problem. The implication
from this is that it is computationally simple to compute the relaxed soundness of Had4-to-
2Lin(2) gadgets and even possible to compute relaxed soundness of Had5-to-2Lin(2) gadgets
if given enough computational resources. Furthermore, the relaxed soundness allows us to
analyse Hadk-to-2Lin(2) gadgets even in the case where k is very large. The disadvantage to
using relaxed soundness is that it is not guaranteed to be close to the true soundness.

3.1 Relaxed soundness described as an LP
Recall that 1 − rs(G) can be expressed as the average max flow on a fully connected 2k-
dimensional hypercube with randomised source/sink placements. This means that rs(G) can
be stated as an LP. One reason for why it is preferable to express this Max-Flow problem
as an LP is because it is possible to move the capacities (i.e. the “gadget variables”) of
the Max-Flow problem to the variable side of the LP. So the same LP can be used both to
calculate the the relaxed soundness of a specific gadget and to construct new gadgets.

One additional step we use in the formulation of this LP is to use a function g ∈ Fk to
describe the source/sink placement instead of using the assignment P . A node vχα , α ∈ Fk

2
is a sink node if g(α) = 1, and a source node if g(α) = −1. These two representations of
the source/sink placement are equivalent, but using a Boolean function g is more helpful for
understanding the symmetries of the LP, as done in Appendix C. The following is the LP
reformulation of the relaxed soundness rs(G).

▶ Definition 3.2. A flow w of a Hadk-to-2Lin(2) gadget (G,Xk,Yk) is a function F3
k → R⩾0.

The flow w is said to be feasible if and only if

w(f1, f2, g) + w(f2, f1, g) ⩽G(f1, f2) ∀f1, f2, g ∈ Fk, (1)
outw(f, g) = inw(f, g) ∀f, g ∈ Fk, dim(f) ⩾ 1. (2)

where outw(f, g) =
∑

f2∈Fk
w(f, f2, g) and inw(f, g) =

∑
f2∈Fk

w(f2, f, g). The value of w
for at a source/sink placement g ∈ Fk is defined as

valg(w) =
∑

α∈Fk
2

outw(g(α)χα, g) − inw(g(α)χα, g).

▶ Definition 3.3. The relaxed soundness LP for a Hadk-to-2Lin(2) gadget (G,Xk,Yk),
denoted by rsLP(G), is the following LP

rs(G) = 1 − max
w

Eg∈Fk
valg(w),

where the maximum is taken over feasible flows w of G.

▶ Remark 3.4. Recall that 1 − rs(G) is the average of 22k independent Max-Flow problems.
The different Max-Flow problems are indexed by the function g ∈ Fk, which describes the
placements of sinks and sources. The nodes in each Max-Flow problem are indexed by
functions in Fk. The sink nodes in the g-th Max-Flow problem are the nodes vg(α)χα

, α ∈ Fk
2 ,

and the source nodes are the nodes v−g(α)·χα
, α ∈ Fk

2 . The flow from vf1 → vf2 is w(f1, f2, g),
and the capacity of the undirected edge {vf1 , vf2} is G(f1, f2).

APPROX/RANDOM 2024

11:16 On the NP-Hardness Approximation Curve for Max-2Lin(2)

▶ Remark 3.5. Note that it is possible to modify the rsLP(G) to include the capacities of
the graph (i.e. gadget G) as variables. The implications of this is that the optimisation
problem of finding a Hadk-to-2Lin(2) gadget with the maximum relaxed soundness for a
fixed completeness can also be expressed as an LP.
▶ Remark 3.6. Note that the rsLP(G) has roughly | Fk |3 = 23·2k variables. This is a very
large number, even for small values of k. So in order to be able to solve this LP, we have to
make use of the symmetries of the LP in order to reduce the number of variables.

3.2 Introduction of infinity relaxed soundness
One natural question is, how small can one make the relaxed soundness if we fix the
completeness of a Hadk-to-2Lin(2) gadget and let k → ∞? In practice, even just finding the
gadget minimising the relaxed soundness when k = 5 is a very daunting task, so cannot hope
to calculate this limit directly from the rsLP(G).

Our method to handle large values of k is to create a Hadk-to-2Lin(2) gadget for some
small value of k, for example k = 4, and then introduce the concept of embedding a Hadk-
to-2Lin(2) gadget G into a Hadk′-to-2Lin(2) gadget G′, where k′ > k. It is also possible to
embed the flow of the rsLP(G) onto the rsLP(G′). This embedding has the property that
the completeness and the soundness of both gadgets are the same.

The key insight is that by using multiple overlapping embeddings of G, we can improve
the soundness of G′ without affecting its completeness. Our argument for why multiple
overlapping embeddings improve the relaxed soundness is based on leaky flows. Note that the
leaks of a leaky flow have signs. This means that it is possible that overlapping embeddings
of leaky flows could become a feasible flow, since the overlap of the embeddings could cause
the signed leaks to sum to 0. We use this type of argument to show an upper bound on
rs(G′) based on a leaky flow solution to the rsLP(G).

The exact procedure for the embeddings is defined in Appendix C and analysed in detail
in Appendix D using second moment analysis. The conclusion from that analysis is that the
following relaxation of the rsLP(G), which we call the infinity relaxed soundness LP, denoted
by rs∞LP(G), has the following two important properties. Firstly, the solution of rs∞LP(G)
is a leaky flow of rsLP(G), and secondly, overlapping embeddings of this leaky flow tends to
a feasible flow of rsLP(G′) as k′ → ∞.

▶ Definition 3.7. A flow w̃ of a Hadk-to-2Lin(2) gadget (G,Xk,Yk) is said to be a infinity
relaxed flow if constraint (1) is satisfied and∑

g′

outw(f, g′) =
∑
g′

inw(f, g′) ∀g, f ∈ Fk : dim(f) ⩾ 1, (3)

where the sums are over functions g′ ∈ F ′
k such that g′|affine(f) = g|affine(f). The (signed)

leak at (f, g), where f, g ∈ Fk, dim(f) ⩾ 1, is defined as leakw̃(f, g) = inw(f, g) − outw(f, g).

▶ Definition 3.8. The infinity relaxed soundness of G, denoted by rs∞(G), is the solution to
the rs∞LP(G)

rs∞(G) = 1 − max
w̃

Eg∈Fk
valg(w̃),

where the maximum is taken over all infinity relaxed flows w̃ of G.

▶ Remark 3.9. The rs∞LP(G) is a constraint relaxation of the rsLP(G) where constraint
(2) has been relaxed to constraint (3). So a solution of the rs∞LP(G) is a leaky flow in the
rsLP(G).

B. Martinsson 11:17

▶ Remark 3.10. Constraint (3) is used for a proof in Appendix D of Lemma D.5, which is a
2nd order moment analysis of the overlap of leaks from random embeddings. In the proof,
constraint (3) is used to show that if w is an infinity relaxed flow then ∀g, f ∈ Fk, dim(f) ⩾ 1 :∑

g′ leakw(f, g′) = 0, where the sum is over g′ ∈ Fk such that g′|affine(f) = g|affine(f).

The following lemma describes a relationship between the rsLP(G) and the rs∞LP(G).
This is the key Lemma, which is proven in Appendix D.

▶ Lemma 3.11. Let (G,Xk,Yk) be a Hadk-to-2Lin(2) gadget. For any ε > 0 there exists
a Hadk′-to-2Lin(2) gadget (G′,Xk′ ,Yk′) for some k′ > k such that c(G) = c(G′) and
rs(G′) ⩽ rs∞(G) + ε.

From this Lemma, it follows that rs∞(G)+ε is the upper bound of rs(G′) for some gadget
G′, which in turn is an upper bound of s(G′). This means that the NP-hardness result of
Max-2Lin(2) stated in Proposition 2.22 for rs(G) also holds for rs∞(G).This gives us our
main result.

▶ Theorem 3.12. Let (G,Xk,Yk) be a Hadk-to-2Lin(2) gadget with s = rs∞(G) and c = c(G),
where c > s. Then for every sufficiently small ε > 0, it is NP-hard to distinguish between
instances of Max-2Lin(2) such that
Completeness There exists an assignment that satisfies a fraction at least c − ε of the

constraints.
Soundness All assignments satisfy at most a fraction s+ ε of the constraints.

4 Numerical results

This section contains a presentation of constructed Hadk-to-2Lin(2) gadgets. Recall that
there are three different ways to measure the soundness of a Hadk-to-2Lin(2) gadget. There
is the true soundness of a gadget, which can be used to show NP-hardness results for Max-
2Lin(2), see Proposition 2.22. Then there is the relaxed soundness, denoted by rs. This is an
upper bound of the true soundness, see Proposition B.1. Finally there is the infinity relaxed
soundness, denoted by rs∞, which according to our main result, Theorem 3.12, also imply
NP-hardness results for Max-2Lin(2).

We compute gadgets for k = 2, 3, 4, optimised either for rs or rs∞. The short rundown of
the process of constructing a gadget is to first decide on the completeness of the gadget, and
then call an LP-solver to find the gadget with that completeness that either minimises rs or
rs∞, depending on which measure of soundness we want to optimise the gadget for.

4.1 Edges used/unused in constructed gadgets

The capacity G of a Hadk-to-2Lin(2) gadget (G,Xk,Yk) is a probability distribution over
(undirected) edges. Every gadget that we construct is symmetrical under the mappings of
Mk→k, so edges from the same edge orbit share the same capacity. Tables 7–9 in Appendix
F list all edge orbits that have non-zero weight in at least one of our constructed gadgets
for k = 2, 3, 4. Note that as discussed in Appendix E.2.1, in the case of k = 4 it is possible
that the gadgets we construct are sub-optimal if c < 1 − 2−k. This means that it is possible
that the Table for k = 4, Table 9, could look slightly different had we constructed optimal
gadgets.

APPROX/RANDOM 2024

11:18 On the NP-Hardness Approximation Curve for Max-2Lin(2)

Table 1 The curve s(c) as shown in Figure 1. The values of s(c) in this table are rounded up to
4 decimals. This table has the same format as the table describing the GapSDP(c) curve, found in
Appendix E of [14].

c s(c) c s(c) c s(c) c s(c) c s(c)
0.500 0.5000 0.600 0.5750 0.700 0.6500 0.800 0.7343 0.900 0.8516
0.505 0.5038 0.605 0.5788 0.705 0.6538 0.805 0.7390 0.905 0.8586
0.510 0.5075 0.610 0.5825 0.710 0.6575 0.810 0.7437 0.910 0.8661
0.515 0.5113 0.615 0.5863 0.715 0.6613 0.815 0.7485 0.915 0.8735
0.520 0.5150 0.620 0.5900 0.720 0.6650 0.820 0.7535 0.920 0.8809
0.525 0.5188 0.625 0.5938 0.725 0.6688 0.825 0.7588 0.925 0.8884
0.530 0.5225 0.630 0.5975 0.730 0.6725 0.830 0.7642 0.930 0.8958
0.535 0.5263 0.635 0.6013 0.735 0.6763 0.835 0.7696 0.935 0.9032
0.540 0.5300 0.640 0.6050 0.740 0.6800 0.840 0.7752 0.940 0.9107
0.545 0.5338 0.645 0.6088 0.745 0.6838 0.845 0.7809 0.945 0.9181
0.550 0.5375 0.650 0.6125 0.750 0.6875 0.850 0.7868 0.950 0.9256
0.555 0.5413 0.655 0.6163 0.755 0.6922 0.855 0.7927 0.955 0.9330
0.560 0.5450 0.660 0.6200 0.760 0.6969 0.860 0.7988 0.960 0.9405
0.565 0.5488 0.665 0.6238 0.765 0.7016 0.865 0.8050 0.965 0.9479
0.570 0.5525 0.670 0.6275 0.770 0.7063 0.870 0.8115 0.970 0.9554
0.575 0.5563 0.675 0.6313 0.775 0.7109 0.875 0.8181 0.975 0.9628
0.580 0.5600 0.680 0.6350 0.780 0.7156 0.880 0.8247 0.980 0.9703
0.585 0.5638 0.685 0.6388 0.785 0.7203 0.885 0.8313 0.985 0.9777
0.590 0.5675 0.690 0.6425 0.790 0.7250 0.890 0.8380 0.990 0.9852
0.595 0.5713 0.695 0.6463 0.795 0.7297 0.895 0.8448 0.995 0.9926

4.2 Lists and plots of gadgets

Figures 5, 6 and 7 show Hadk-to-2Lin(2) gadgets with completeness on the x-axis, and either
maximal 1−rs(G)

1−c(G) or maximal 1−rs∞(G)
1−c(G) on the y-axis. To create this plot, we construct

one gadget for each completeness value from 0.5 to 1 − 2−k (inclusive), with a spacing of
2−9. The curve is constructed using interpolation by taking convex combinations of pairs of
neighbouring gadgets.

4.2.1 The curve s(c)

The curve s(c) describes the infinity relaxed soundness of Had4-to-2Lin(2) gadgets as a
function of completeness, shown as the upper curve in Figure 7, as well as in Figures 1, 2 and
3. The data for this curve can be found in Table 1. It has the following formal definition.

▶ Definition 4.1. The curve s(c) : [0.5, 1] → [0.5, 1], k = 4, is for c ∈ [0.5, 1 − 2−k] defined
as the solution to the restricted compressed rs∞LP. For c ⩾ 1 − 2−k the curve is defined as
s(c) = 1 + 2k(s(1 − 2−k) − 1)(1 − c), meaning 1−s(c)

1−c is constant for all c ⩾ 1 − 2−k.

Proof of Theorem 1.1. For c ∈ [0.5, 1 − 2−k], the NP-hardness result follows directly from
Theorem 3.12 since the solution of the restricted compressed rs∞LP(G) is an upper bound
of the (non-restricted) rs∞LP(G). For c ⩾ 1 − 2−k the NP-hardness result follows from
taking the convex combination of (c, s) = (1 − 2−k, s(1 − 2−k)) and (c, s) = (1, 1). Since it is
possible to create a hard instance by taking the convex combination of two hard instances
using separate variables. ◀

B. Martinsson 11:19

10.950.90.850.80.750.70.650.60.550.5
c

1.0

1.1

1.2

1.3

1.4

1.5

1
s

1
c

Infinity relaxed soundness
Relaxed soundness

Figure 5 This plot shows two types of Had2-to-2Lin(2) gadgets. The filled curve describes the
minimisation of rs and the striped curve describes the minimisation of rs∞. The completeness value
is on the x-axis, and either 1−rs(G)

1−c(G) or 1−rs∞(G)
1−c(G) on the y-axis. In this particular case, the case of

k = 2, it turns out that these two curves are identical.

10.950.90.850.80.750.70.650.60.550.5
c

1.0

1.1

1.2

1.3

1.4

1.5

1
s

1
c

Infinity relaxed soundness
Relaxed soundness

Figure 6 This plot shows two types of Had3-to-2Lin(2) gadgets. The filled curve describes the
minimisation of rs and the striped curve describes the minimisation of rs∞. The completeness value
is on the x-axis, and either 1−rs(G)

1−c(G) or 1−rs∞(G)
1−c(G) on the y-axis.

10.950.90.850.80.750.70.650.60.550.5
c

1.0

1.1

1.2

1.3

1.4

1.5

1
s

1
c

Infinity relaxed soundness
Relaxed soundness

Figure 7 This plot shows two types of Had4-to-2Lin(2) gadgets. The filled curve describes the
minimisation of rs and the striped curve describes the minimisation of rs∞. The completeness value
is on the x-axis, and either 1−rs(G)

1−c(G) or 1−rs∞(G)
1−c(G) on the y-axis. The top part of both of these curves

are perfectly flat, which is not the case in Figure 5 and Figure 6. The gadgets that mark the point
where the curves become flat can be found in Tables 2 and 3, and are marked by crosses in the plot.

APPROX/RANDOM 2024

11:20 On the NP-Hardness Approximation Curve for Max-2Lin(2)

Table 2 The Had4-to-2Lin(2) gadget G with minimal completeness among those that min-
imise 1−rs(G)

1−c(G) . The completeness of G is c(G) = 9939/10768 and relaxed soundness is rs(G) =
2623643487/2955083776. The right most column tells how much of the total capacity is contained in
each edge orbit. This column sums up to 100%.

f1 f2 length G(f1, f2) % of total
1100000000000000 1110000000000000 1 5461/969636864 30.3
1110000000000000 1111000000000000 1 17007/1616061440 18.9
1110000000000000 1110100000000000 1 437/404015360 23.2
1110100000000000 1110100010000000 1 19/92346368 4.4
0000000000000000 1100000000000000 2 13/215360 23.2

Table 3 The Had4-to-2Lin(2) gadget G with minimal completeness among those that minimise
1−rs∞(G)

1−c(G) . The completeness of G is c(G) = 590174949/639271832 and the infinity relaxed soundness
is rs∞(G) = 141533171/159817958. The right most column tells how much of the total capacity is
contained in each edge orbit. This column sums up to 100%.

f1 f2 length G(f1, f2) % of total
1100000000000000 1110000000000000 1 4899/799089790 33.0
1110000000000000 1111000000000000 1 11843/799089790 26.5
1110000000000000 1110100000000000 1 1427/1917815496 16.0
1110100000000000 1110100010000000 1 1427/19178154960 1.60
0000000000000000 1100000000000000 2 6094929/102283493120 22.9

4.3 Notable gadgets
There are two gadgets that are of particular interest. These are the gadgets with minimal
completeness among those that maximises either 1−rs(G)

1−c(G) or 1−rs∞(G)
1−c(G) . These gadgets are

marked by crosses in Figure 7. The gadget with minimal completeness that maximises
1−rs(G)
1−c(G) can be found in Table 2. The gadget with minimal completeness that maximises
1−rs∞(G)

1−c(G) can be found in Table 3, and is also marked by a cross on the curve s(c) in Figures
1-3. The method used to construct such minimal completeness gadgets is slightly different
compared to the construction of gadgets with fixed completeness. Propositions 2.23 and B.1
guarantees that gadgets with completeness 1 − 2−k can be used to maximise 1−rs(G)

1−c(G) and
1−rs∞(G)

1−c(G) . This means that the maximum values of 1−rs(G)
1−c(G) and 1−rs∞(G)

1−c(G) can be computed
by fixing the completeness to c(G) = 1 − 2−k. Using these maximums, it is possible to
slightly modify the objective of the LP such that its solution is the gadget with minimal
completeness that maximises either 1−rs(G)

1−c(G) or 1−rs∞(G)
1−c(G) .

5 Conclusions

In this work, we have introduced a procedure called lifting for taking a Hadk-to-2Lin(2)
gadget for a fixed k and using that gadget to construct better and better Hadk′-to-2Lin(2)
gadgets, as k′ tends to infinity. In order to be able to analyse this, both numerically and
analytically, we made use of a relaxation of the (true) soundness, first introduced by Wiman
[16] in their analysis of the Had4-to-2Lin(2) gadget. This procedure allowed us to show new
inapproximability results of Max-2Lin(2), and most notably using k = 4, we have shown that
Min-2Lin(2)-deletion has an inapproximability factor of 73139148

49096883 ≈ 1.48969.

B. Martinsson 11:21

Some open problems still remain. The most obvious one is that it is likely within reach
to carry out the analysis we did for k = 4 also for k = 5. The main bottleneck is to find
or write a very efficient LP solver that is able to handle large instances and give consistent
and stable results. The solvers available to us were not quite able to get trustworthy results.
This being said, without substantial new ideas we do not see how to attack the k = 6 case.

Another open problem is to understand the best possible gadget reduction from Hadk-
to-2Lin(2) as k → ∞. More specifically, which is the best possible inapproximability factor
of Min-2Lin(2)-deletion attainable using such a gadget reduction? We were able to show
an inapproximability factor of 73139148

49096883 ≈ 1.48969 using relaxed soundness. We have also
shown that by using relaxed soundness, it is impossible to go above 2 (see Proposition B.1).
Furthermore, it is known from a previous work [10, Theorem 6.1] that by using (non-relaxed)
soundness, 1

1−e−0.5 ≈ 2.54 is an upper bound. This leaves us with a fairly large gap. So it
would be of interest to close this gap.

In comparison, by assuming the Unique Games Conjecture (UGC), it is possible to show
that the inapproximability factor of Min-2Lin(2)-deletion can be made arbitrarily large. The
main open problem here is to show this without assuming UGC. This however, is not possible
to do using a gadget reduction from Hadk-to-2Lin(2), and would instead require a completely
new approach.

Finally, as a concluding remark, it would be interesting to see if our ideas of lifting small
gadgets and analysing them using a relaxed version of the (true) soundness, could be used in
other applications. Maybe there are other gadgets out there that could be improved using a
similar procedure?

References
1 David Applegate, William Cook, Sanjeeb Dash, and Daniel Espinoza. Qsopt_ex rational lp

solver. https://www.math.uwaterloo.ca/~bico/qsopt/ex/. Accessed: 2023-09-20.
2 Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential algorithms for unique games

and related problems. In 2010 IEEE 51st Annual Symposium on Foundations of Computer
Science, volume 62, pages 563–572, October 2010. doi:10.1109/FOCS.2010.59.

3 Per Austrin and Johan Håstad. On the usefulness of predicates. In 2012 IEEE 27th Conference
on Computational Complexity, pages 53–63, 2012. doi:10.1109/CCC.2012.18.

4 Per Austrin and Elchanan Mossel. Approximation resistant predicates from pairwise independ-
ence. CoRR, abs/0802.2300, 2008. arXiv:0802.2300.

5 Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free bits, pcps, and nonapproximability—
towards tight results. SIAM Journal on Computing, 27(3):804–915, 1998. doi:10.1137/
S0097539796302531.

6 Siu On Chan. Approximation resistance from pairwise independent subgroups. In Proceedings
of the Forty-Fifth Annual ACM Symposium on Theory of Computing, STOC ’13, pages 447–456,
New York, NY, USA, 2013. Association for Computing Machinery. doi:10.1145/2488608.
2488665.

7 Uriel Feige and Michael Langberg. The rpr2 rounding technique for semidefinite programs.
Journal of Algorithms, 60(1):1–23, 2006. doi:10.1016/j.jalgor.2004.11.003.

8 Michel X. Goemans and David P. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. J. ACM, 42(6):1115–
1145, November 1995. doi:10.1145/227683.227684.

9 Johan Håstad. Some optimal inapproximability results. In Proceedings of the Twenty-Ninth
Annual ACM Symposium on Theory of Computing, STOC ’97, pages 1–10, New York, NY,
USA, 1997. Association for Computing Machinery. doi:10.1145/258533.258536.

APPROX/RANDOM 2024

https://www.math.uwaterloo.ca/~bico/qsopt/ex/
https://doi.org/10.1109/FOCS.2010.59
https://doi.org/10.1109/CCC.2012.18
https://arxiv.org/abs/0802.2300
https://doi.org/10.1137/S0097539796302531
https://doi.org/10.1137/S0097539796302531
https://doi.org/10.1145/2488608.2488665
https://doi.org/10.1145/2488608.2488665
https://doi.org/10.1016/j.jalgor.2004.11.003
https://doi.org/10.1145/227683.227684
https://doi.org/10.1145/258533.258536

11:22 On the NP-Hardness Approximation Curve for Max-2Lin(2)

10 Johan Håstad, Sangxia Huang, Rajsekar Manokaran, Ryan O’Donnell, and John Wright.
Improved NP-Inapproximability for 2-Variable Linear Equations. In Naveen Garg, Klaus Jansen,
Anup Rao, and José D. P. Rolim, editors, Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques (APPROX/RANDOM 2015), volume 40 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 341–360, Dagstuhl, Germany, 2015.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.APPROX-RANDOM.
2015.341.

11 S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal inapproximability results for
max-cut and other 2-variable csps? In 45th Annual IEEE Symposium on Foundations of
Computer Science, pages 146–154, 2004. doi:10.1109/FOCS.2004.49.

12 Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the Thiry-
Fourth Annual ACM Symposium on Theory of Computing, STOC ’02, pages 767–775, New
York, NY, USA, 2002. Association for Computing Machinery. doi:10.1145/509907.510017.

13 Subhash Khot, Dor Minzer, and Muli Safra. Pseudorandom sets in grassmann graph have
near-perfect expansion. In 2018 IEEE 59th Annual Symposium on Foundations of Computer
Science (FOCS), pages 592–601, October 2018. doi:10.1109/FOCS.2018.00062.

14 Ryan O’Donnell and Yi Wu. An optimal sdp algorithm for max-cut, and equally optimal long
code tests. In Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing,
STOC ’08, pages 335–344, New York, NY, USA, 2008. Association for Computing Machinery.
doi:10.1145/1374376.1374425.

15 L. Trevisan, G.B. Sorkin, M. Sudan, and D.P. Williamson. Gadgets, approximation, and linear
programming. In Proceedings of 37th Conference on Foundations of Computer Science, pages
617–626, 1996. doi:10.1109/SFCS.1996.548521.

16 Mårten Wiman. Improved inapproximability of max-cut through min-cut. Master’s thesis,
KTH, School of Electrical Engineering and Computer Science (EECS), 2018.

A Max-Flow and symmetries

This section introduces the concepts of feasible flows and leaky flows, and show how to make
use symmetries in a graph to more efficiently solve the Max-Flow problem. These Max-Flow
techniques and concepts are used during the construction of gadgets. These techniques are
very general, and become easier to explain without involving the intricacies of gadgets. Let
us start by defining the Max-Flow problem as an LP.

▶ Definition A.1. A flow graph is a tuple G = (V,C, S, T), where C(u, v) = C(v, u) ⩾ 0 is
the capacity of edge (u, v) ∈ V × V , and S ⊂ V is a set of sources and T ⊂ V is a set of
sinks, and S ∩ T = ∅.

▶ Definition A.2. A flow w of a flow graph G = (V,C, S, T) is a function V × V → R⩾0.
The flow w is said to be feasible if and only if

w(v, u) + w(u, v) ⩽ C(u, v) ∀v, u ∈ V, (4)
outw(v) = inw(v) ∀v ∈ V \ (S ∪ T). (5)

where

outw(v) =
∑
u∈V

w(v, u),

inw(v) =
∑
u∈V

w(u, v).

The value of a flow is defined as

val(w) =
∑
s∈S

outw(s) − inw(s).

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.341
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.341
https://doi.org/10.1109/FOCS.2004.49
https://doi.org/10.1145/509907.510017
https://doi.org/10.1109/FOCS.2018.00062
https://doi.org/10.1145/1374376.1374425
https://doi.org/10.1109/SFCS.1996.548521

B. Martinsson 11:23

The value of the maximum flow of a flow graph G is denoted by max_flow(G).

A.1 Feasible flows and leaky flows
When solving a Max-Flow problem we normally require the flow to be conserved (constraint
(5) above), meaning that the incoming flow into a node is equal to the outgoing flow. This is
the definition of a feasible flow. However, to find an approximate solution to a Max-Flow
problem, it can be helpful to relax the conservation of flows constraint, allowing for “leaks”.
A flow that does not fulfil the conservation of flow constraint is called a leaky flow. This
section aims to analyse the relation between leaky flows and feasible flows, with the goal of
showing that if the leaks of a leaky flow are small, then there is a feasible flow with almost
the same value as the leaky flow.

▶ Definition A.3. A flow w̃ is said to be a leaky flow if constraint (4) is satisfied. The
(signed) leak at node v be defined as leakw̃(v) = inw̃(v) − outw̃(v) for v ∈ V \ (S ∪ T).

▶ Remark A.4. Note that a leaky flow w̃ is also a feasible flow if and only if leakw̃(v) = 0 for
all v ∈ V \ (S ∪ T).

The following theorem tells us that if the sum of absolute values of the leaks are small,
then there is a feasible flow having almost the same value as the leaky flow. The implications
from this is that we can use leaky flows to get an approximation of the true Max-Flow.

▶ Theorem A.5. Given a leaky flow w̃ of a flow graph G = (V,C, S, T), there exists a feasible
flow w of G such that

val(w) ⩾ val(w̃) −
∑

v∈V \(S∪T)

| leakw̃(v)|.

Proof. Create a new graph G̃ = (V ∪{s̃, t̃}, C̃, S∪{s̃}, T ∪{t̃}) with an additional new source
node s̃ and sink node t̃. We construct C̃ using C. Firstly let C̃(u, v) = C(u, v) for all nodes
u, v ∈ V . Secondly, for every v ∈ V \ (S∪T) such that leakw′(v) > 0, let C̃(u, t̃) = leakw′(v),
and for every v ∈ V \ (S ∪ T) such that leakw′(v) < 0 let C̃(u, s̃) = − leakw̃(v). Finally let
C̃ be 0 in all other cases.

Note that for this new graph G̃, the leaky flow w̃ can be extended into a feasible flow
since all of the leaks can be routed to either s̃ or t̃ depending on the sign of the leakage.
Furthermore, if we can show that

max_flow(G̃) ⩽ max_flow(G) +
∑

v∈V \(S∪T)

| leakw̃(v)|, (6)

then that would imply the the Theorem.
To show (6) we use the Max-Flow Min-Cut Theorem. Note that any S-T cut in G̃ has a

corresponding S-T cut in G and vice versa since G and G̃ share the same non-source/sink
nodes. Additionally, note that the value of a S-T cut in G̃ can be bounded from above by
the value of the corresponding cut in G plus the extra capacities in G̃. The conclusion from
this is that

max_flow(G̃) = min_cut(G̃)

⩽ min_cut(G) +
∑

v∈V \(S∪T)

| leakw̃(v)|

= max_flow(G) +
∑

v∈V \(S∪T)

| leakw̃(v)|. ◀

APPROX/RANDOM 2024

11:24 On the NP-Hardness Approximation Curve for Max-2Lin(2)

A.2 Symmetries of Max-Flow graphs
If a flow graph G = (V,C, S, T) has some kind of symmetry, then we can use them to more
efficiently solve the Max-Flow problem. In our setting, the symmetries are described by a
group H acting on V with the property that the capacities are invariant under the group
action, meaning C(u, v) = C(h · u, h · v) for all h ∈ H and u, v ∈ V . Here h · u denotes the
group action of h on u.

▶ Definition A.6. Given a flow graph G = (V,C, S, T) and a group H acting on V , then H

is said to be a symmetry group of G if and only if ∀h ∈ H:
1. h · s ∈ S ∀s ∈ S,
2. h · t ∈ T ∀t ∈ T ,
3. C(u, v) = C(h · u, h · v)∀h ∈ H and ∀u, v ∈ V .

Using G and the group H acting on V , we can create a new flow graph where the set of
vertices is the quotient space V/H . This “compresses” the graph G into one vertex per orbit.
Let the capacities between two orbits A,B ∈ V/H be the sum capacities over all pairs in
A×B.

▶ Definition A.7. Given a flow graph G = (V,C, S, T)and a symmetry group H of G. Let
the quotient flow graph G/H = (V/H,C/H, S/H, T/H) where V/H is the set of all orbits of
V under the action of H, and similarly S/H is the set of orbits of S and T/H is the set of
orbits of T . Let C/H be defined as a function V/H × V/H → R such that

(C/H)(A,B) =
∑
u∈A

∑
v∈B

C(u, v)

for all A,B ∈ V/H.

What remains to show is that the original graph G and the compressed graph G/H has
the same Max-Flow.

▶ Theorem A.8. Given a flow graph G = (V,C, S, T)and a symmetry group H of G. Then
max_flow(G) = max_flow(G/H).

Proof. First let us show that max_flow(G) ⩽ max_flow(G/H). Let w be the max-flow of
G. Now define w/H as a function from V/H × V/H → R such that

(w/H)(A,B) =
∑
a∈A

∑
b∈B

w(a, b).

What remains to show is that that w/H is a feasible flow of G/H and that val(w) = val(w/G)
since those two properties would imply that max_flow(G) ⩽ max_flow(G/H). Firstly, note
that w/H fulfills (4) and (5) from Definition A.2 for the graph G/H since the constraints
are linear. For example take constraint (4),

(w/H)(A,B) + (w/H)(B,A) =
∑
a∈A

∑
b∈B

w(a, b) + w(b, a)

⩽
∑
a∈A

∑
b∈B

C(a, b)

= (C/H)(A,B).

B. Martinsson 11:25

So w/H is a feasible flow of G/H . Secondly note that the value of w is the same as the value
of w/H since

val(w/H) =
∑

A∈S/H

outw/H(A) − inw/H(A)

=
∑

A∈S/H

∑
s∈A

outw(s) − inw(s)

=
∑
s∈S

outw(s) − inw(s)

= val(w).

It remains to show that max_flow(G) ⩾ max_flow(G/H). Let w′ be a max-flow of G/H.
Now define w : V × V → R such that

w(a, b) = w′(H · a,H · b) C(a, b)
(C/H)(H · a,H · b)

where a, b ∈ V and H · a is the orbit of a and H · b is the orbit of b. What remains to show
is that w(a, b) is a feasible flow of G and that the value of w is the same as the value of w′.
Firstly, note that w/H fulfill constraints (4) and (5) from Definition A.2 for the graph G

since the constraints are linear. For example take constraint (4),

w(a, b) + w(b, a) = (w′(H · a,H · b) + w′(H · b,H · a)) C(a, b)
(C/H)(H · a,H · b)

⩽ (C/H)(H · a,H · b) C(a, b)
(C/H)(H · a,H · b)

= C(a, b).

Secondly note that the value of w is the same as w′ since

val(w′) =
∑

A∈S/H

outw′(A) − inw′(A)

=
∑

A∈S/H

∑
B∈V/H

w′(A,B) − w′(B,A)

=
∑

A∈S/H

∑
B∈V/H

(w′(A,B) − w′(B,A))
(∑

a∈A

∑
b∈B

C(a, b)
(C/H)(A,B)

)

=
∑

A∈S/H

∑
B∈V/H

∑
a∈A

∑
b∈B

(w′(A,B) − w′(B,A)) C(a, b)
(C/H)(A,B)

=
∑

A∈S/H

∑
B∈V/H

∑
a∈A

∑
b∈B

w(a, b) − w(b, a)

=
∑
a∈S

∑
b∈V

w(a, b) − w(b, a)

=
∑
a∈S

outw(a) − inw(a)

= val(w).

So w is a feasible flow of G and val(w) = val(w′), so max_flow(G) ⩾ max_flow(G/H). ◀

APPROX/RANDOM 2024

11:26 On the NP-Hardness Approximation Curve for Max-2Lin(2)

B Properties of relaxed soundness

The relaxed soundness share many similarities with the (true) soundness. One example is the
following Proposition, which is an analogue to Proposition 2.23 but for relaxed soundness.

▶ Proposition B.1. For any Hadk-to-2Lin(2) gadget (G,Xk,Yk)

(a)

s(G) ⩽ rs(G).

(b) There exists a Hadk-to-2Lin(2) gadget (G̃,Xk,Yk) with completeness 1 − 2−k such that

1 − rs(G)
1 − c(G) ⩽

1 − rs(G̃)
1 − c(G̃)

,

(c) and for any Hadk-to-2Lin(2) gadget (G̃,Xk,Yk) with completeness 1 − 2−k

1 − rs(G̃)
1 − c(G̃)

⩽ 2.

Proof.
(a) Note that interpreting x1 and x−1 as being primary variables do not affect soundness,

i.e.

s(G) = E
P ∈Ffold (Xk∪{x1,x−1})

max
A ∈ Ffold (Xk ∪ Yk),
A(x) = P (x), x ∈ Xk ∪ {x1, x−1}

val(A,G). (7)

The reason for this is that there exists a degree of freedom in the choice of A since for
any A, val(A,G) = val(1 + A,G). This means for example that we can add one extra
constraint like A(x1) = 1 + A(x−1) = 1 to the definition of s(G) without affecting its
value.
Comparing (7) and the definition of relaxed soundness, we can clearly see that s(G) ⩽ rs(G)
since the relaxed soundness is a less constrained maximisation problem compared to the
right hand side of (7).

(b) This proof is analogous to the proof of [10, Proposition 2.29]. Note that by definition
1 − c(G̃) is the average length of edges (f1, f2) of the gadget G̃, weighted by G̃(f1, f2).
For G̃ to have completeness 1 − 2−k, the edges in G̃ need to have an average length of
2−k. Since there are no edges shorter than 2−k, G̃ can only put non-zero capacity on
edges of length exactly 2−k.
Construct G̃ using the following procedure. Start with G. Split up each edge (f1, f2) in
G into an arbitrary path starting at f1, ending at f2, with edges of length 2−k, where
the sum of lengths of edges in the path should be equal to the length of the original edge
(f1, f2). Remove the capacity of edge (f1, f2) and give each edge in the path the same
capacity as the capacity of the original edge (f1, f2). This will increase the total capacity
of the graph by a factor of (1 − c(G))/2k. As a final step, normalize the capacity by
dividing the capacity of all edges by (1 − c(G))/2k. Let the resulting graph be G̃. Note
that G̃ is a Hadk-to-2Lin(2) consisting only of edges of length 2−k, so its completeness is
1 − 2−k.

B. Martinsson 11:27

Recall that 1 − rs(G) can be interpreted as the expected value of a Max-Flow problem
on a fully connected 2k-dimensional hypercube, where the placements of sources and
sinks have been randomised. Note that any feasible flow ω of G, when scaled down
by a factor of (1 − c(G))/2−k, corresponds to a feasible flow of G̃. This implies that
(1 − rs(G)) ⩽ (1 − rs(G̃))(1 − c(G))/2−k.
The conclusion from this is that

1 − rs(G̃)
1 − c(G̃)

= 1 − rs(G̃)
2−k

⩾
1 − rs(G)
1 − c(G) .

(c) Let G̃ be the gadget from b). Recall that 1 − rs(G̃) can be interpreted as the expected
value of a Max-Flow problem on a fully connected 2k-dimensional hypercube, where the
placements of sources and sinks have been randomised. The capacities of this flow graph
sum to 1.
Note that the sources and sinks correspond to affine functions, which have a normalised
Hamming distance of at least 1/2. Furthermore, since all edges in G̃ has length 2−k, any
path in G̃ between a source and a sink must contain at least 2k−1 edges.
For any flow graph, if all paths between sources and sinks contain at least 2k−1 edges,
and the sum of capacity over all edges in the graph is 1, then the maximum flow is at
most 21−k. So 1 − rs(G̃) ⩽ 21−k, which implies that

1 − rs(G̃)
1 − c(G̃)

⩽
21−k

2−k
= 2. ◀

▶ Remark B.2. Since the relaxed soundness is an upper bound of the true soundness, it
follows that the NP-hardness result of Max-2Lin(2) as stated in Proposition 2.22 also holds
for s = rs(G).

C Affine maps and lifts

Recall that the rsLP(G) can be interpreted as the expected value of a Max-Flow problem
with a randomised source/sink placement over a fully connected 2k-dimensional hypercube,
where the nodes are indexed by Boolean functions f ∈ Fk. The source/sink nodes are
indexed by affine Boolean functions. In order to be able to describe the symmetries of these
graphs, we want to study mappings M : Fk → Fk with the following properties:
1. Source and sink nodes map to source and sink nodes, i.e. if f is an affine function then

M(f) is also an affine function.
2. The length of all edges {vf1 , vf2} are preserved by the mapping, i.e. dist(M(f1),M(f2)) =

dist(f1, f2).
There is a natural choice of mappings from Fk → Fk for which Property 1 and 2 hold.
Additionally as a bonus, the same natural choice of mappings can also be extended to
construct mappings from Fk → Fk′ , k ⩽ k′, and still have that both Property 1 and 2
hold. This can then be used to embed the 2k-dimensional hypercube in the 2k′ -dimensional
hypercube.

▶ Definition C.1. Let MA,b,β,c : Fk → Fk′ be defined as

MA,b,β,c(f)(y) = f(Ay + b)(−1)cχβ(y),

where k, k′ ∈ Z>0, k ⩽ k′, y ∈ F2
k′ , A ∈ F2

k×k′ is a full rank matrix, b ∈ Fk
2, c ∈ F2 and

β ∈ F2
k′ . Let Mk→k′ denote the set of all maps MA,b,β,c from Fk → Fk′ . For convenience,

we often denote MA,b,β,c by M , where the A, b, β, c are all implicit.

APPROX/RANDOM 2024

11:28 On the NP-Hardness Approximation Curve for Max-2Lin(2)

Since these mappings are reminiscent of affine maps from linear algebra, we call them
affine maps. However, they are not affine maps in the classical sense.

The function M(f) ∈ Fk′ is called the M -lift of f . It is not hard to see that the M -lift of
an affine function is an affine function. More generally, M -lifts always preserve the dimension
of Boolean functions.

▶ Proposition C.2. Given f ∈ Fk and M ∈ Mk→k′ , k ⩽ k′, then dim(M(f)) = dim(f).

Proof. It follows from a direct calculation that

MA,b,β,c(f)(y) = (−1)c
∑

α∈{0,1}k

χAT α+β(y)f̂αχb(α).

This shows that the affine mapping M moves affine(f) to affine(M(f)) = {ATα + β : α ∈
affine(f)}. Furthermore, since A is a full rank matrix, dim(f) = dim(M(f)). ◀

Affine maps also preserve the (normalised Hamming) distance of affine functions.

▶ Proposition C.3. Given f1, f2 ∈ Fk and M ∈ Mk→k′ , k ⩽ k′, then dist(M(f1),M(f2)) =
dist(f1, f2).

Proof. Let M = MA,b,β,c. Note that dist(M(f1),M(f2)) only depends on A and b since

dist(M(f1),M(f2)) = 1
2k′

∑
y∈F2k′

1 −M(f1)(y)M(f2)(y)
2

= 1
2k′

∑
y∈F2k′

1 − f1(Ay + b)f2(Ay + b)
2 .

Furthermore, since A is a full rank k × k′ Boolean matrix, the kernel of A has dimension
k′ − k and size 2k′−k, so∑

y∈{0,1}k′

f1(Ay + b)f2(Ay + b) = 2k′−k
∑

x∈{0,1}k

f1(x)f2(x).

This shows that dist(M(f1),M(f2)) = dist(f1, f2). ◀

The last notable property of the affine maps is that they form a group under composition.
This property is needed to be able to apply the techniques from Appendix A.2 to the rsLP(G)
and to the rs∞LP(G) in order to “compress” them.

▶ Proposition C.4. Mk→k under composition forms a group.

Proof. The composition of two affine maps MA′,b′,β′,c′◦MA,b,β,c, is an affine mapMA′′,b′′,β′′,c′′ ,
where

A′′ = AA′,

b′′ = Ab′ + b,

β′′ = (A′)Tβ + β′,

c′′ = (b′, β) + c′ + c.

B. Martinsson 11:29

Furthermore, the left and right inverse of an affine map MA,b,β,c is given by MA′,b′,β′,c′ where

A′ = A−1,

b′ = A−1b,

β′ = (A−1)Tβ,

c′ = c+ (A−1b, β).

This shows that Mk→k forms a group under composition. ◀

C.1 M -lifts of sink and sources
Recall that the source/sink placements of the rsLP(G) and the rs∞LP(G) are described
using a Boolean function g ∈ Fk,

g(α) =
{

1 iff vχα
is a sink,

−1 iff vχα is a source.

Note that M -lifts move the sink and source nodes. If k = k′, then the M -lift permutes the
sink and source nodes. If k < k′, then the M -lift “lifts” the sink and source nodes onto a
higher dimensional hypercube. This means that there exists multiple different source/sink
placements g′ ∈ Fk′ that all match the lifted positions of the sinks and sources. The condition
for when an M -lift of a source/sink placement g ∈ Fk is described by a source/sink placement
g′ ∈ Fk′ is given by the following proposition.

▶ Proposition C.5. An M -lift will map sink nodes in Fk onto sink nodes of Fk′ and source
nodes in Fk onto source nodes in Fk′ if and only if

MAT ,β,b,c(g′) = g.

Proof.
Note that the MA,b,β,c-lift of χα is MA,b,β,c(χα) = χAT α+β(x)(−1)cχb(α). Using the

source/sink placement g′ we can tell whether a node vχα
is lifted onto a sink node or a source

node,

g′(ATα+ β)(−1)cχb(α) =
{

1 iff vMA,b,β,c(χα) is a sink according to g′,

−1 iff vMA,b,β,c(χα) is a source according to g′.

This implies that the sufficient and necessary condition to make all sinks in Fk to be
MA,b,β,c-lifted to sinks in Fk′ and all sources in Fk to be MA,b,β,c-lifted to sources in Fk′ , is
that

g(α) = g′(ATα+ β)(−1)cχb(α)

for all α ∈ Fk
2 . This is identical to requiring that MAT ,β,b,c(g′) = g. ◀

▶ Definition C.6. The operator MAT ,β,b,c is denoted by M#
A,b,β,c.

C.2 Lifting gadgets and flows
It is possible to extend the definition of M -lifting to Hadk-to-2Lin(2) gadgets G by defining
M ·G as

(M ·G)(f ′
1, f

′
2) =

∑
f1 ∈ M−1(f ′

1),
f2 ∈ M−1(f ′

2)

G(f1, f2).

APPROX/RANDOM 2024

11:30 On the NP-Hardness Approximation Curve for Max-2Lin(2)

This moves the capacity G(f1, f2) of edge {vf1 , vf2} onto edge {vM(f1), vM(f2)}. Furthermore,
let the full k → k′ lift of G be defined as the average of all possible M -lifts, i.e.

liftk→k′(G) = 1
| Mk→k′ |

∑
M∈Mk→k′

(M ·G).

Completely analogue to the definition of M -lifts of gadgets, let the M -lift of a flow w of the
rs(G) LP be defined as

(M · w)(f ′
1, f

′
2, g

′) =
∑

f1 ∈ M−1(f ′
1),

f2 ∈ M−1(f ′
2)

w(f1, f2,M
#(g′)),

and let the full k → k′ lift of w be defined as

liftk→k′(w) = 1
| Mk→k′ |

∑
M∈Mk→k′

(M · w).

By connecting these two concepts of lifting gadgets and flows, we can show the following
proposition.

▶ Proposition C.7. The full lift of G is a Hadk-to-2Lin(2) gadget G′ where c(G′) = c(G)
and rs(G′) ⩽ rs(G).

Proof. Let w be a feasible flow of G and let w′ = liftk→k′(w). Note that w′ is a feasible flow
of G′ since the capacity of G is lifted together with the flow w. So constraints (1) and (2)
are satisfied by w′. Additionally,

Eg∈Fk
valg(w) = Eg′∈Fk′ valg′(w′).

since any lift preserves the amount of flow going in and out of sink nodes and source nodes. ◀

The final Proposition that we need for Appendix D is that the full lift of a leaky flow w

of the rsLP(G) is a leaky flow of the rsLP(G′), and that the full lift does not affect the value
of the flow. This is a fundamental property of lifts that is used in Appendix D to upper
bound rs(G′) when k′ → ∞.

▶ Proposition C.8. Let G′ be the full lift of G, and let w′ be the full lift of a leaky flow w of
the rsLP(G). Then w′ is a leaky flow of the rsLP(G′), and Eg∈Fk

valg(w) = Eg′∈Fk′ valg′(w′).

Proof. Let w be a leaky flow of G and let w′ = liftk→k′(w). Note that constraint (1) is
satisfied by w′ since the capacity of G is lifted together with the flow w. So w′ is a leaky
flow. Additionally,

Eg∈Fk
valg(w) = Eg′∈Fk′ valg′(w′).

since any lift preserves the amount of flow going in and out of sink nodes and source nodes. ◀

D Proving that rs∞(G) can be attained in the limit

The goal of this section is to prove Lemma 3.11, which relates the infinity relaxed soundness
to the relaxed soundness. Let G be the Hadk-to-2Lin(2) gadget in Lemma 3.11 and let w be
the optimal flow of the rs∞LP(G), which implies that rs∞(G) = 1 − Eg∈Fk

valg(w). Let k′

be some integer greater than k and define G′ = liftk→k′(G) and w′ = liftk→k′(w). According
to Proposition C.7 G′ is a Hadk-to-2Lin(2) with c(G′) = c(G) and according to Proposition
C.8 w′ is a leaky flow of the rsLP(G′) and Eg∈Fk

valg(w) = Eg′∈Fk′ valg′(w′). We prove that
as k′ tends to infinity the total leakage of G′ converges to 0. After we have established this,
Lemma 3.11 follows from Theorem A.5.

B. Martinsson 11:31

D.1 Total leakage approaches 0 as k′ → ∞
Let us start by formally defining the leaks of w and w′, where w is a leaky flow of the rsLP(G)
and w′ is a leaky flow of the rsLP(G′). Recall that the rsLP(G′) describe the expectation of
the maximum flow of a graph with a random source/sink placement g′ ∈ Fk′ . It is for this
reason that the total leakage of w′ is defined as an expectation over g′ ∈ Fk′ of the total
leakage of the graph with source/sink placement given by g′.

▶ Definition D.1. Let Lk′ denote the total leakage of w′,

Lk′ = Eg′∈Fk′

∑

f ′ ∈ Fk′

s.t. dim(f ′) > 0

| leakw′(f ′, g′)|

 ,

where

leakw′(f ′, g′) = outw′(f ′, g′) − inw′(f ′, g′)

= 1
| Mk→k′ |

∑
M∈Mk→k′

∑

f ∈ Fk

s.t.M(f) = f ′

leakw(f,M#(g′))

 .

The aim of this subsection is to prove that Lk′ → 0 as k′ → ∞. We do this by proving
the following upper bound on Lk′ through a second order moment analysis.

▶ Proposition D.2.

Lk′ ⩽
22k+k

√
2k′ − 2k

.

The proof of Proposition D.2 relies on the following Proposition describing the relationship
between random pairs of affine maps M1,M2 ∈ Mk→k′ such that M1(f) = M2(f) for some
fixed f ∈ Fk.

▶ Definition D.3. Given MA,b,β,c ∈ Mk→k′ , let TM : Fk
2 → F2

k′ denote the affine
map TM (x) = ATx + β. Furthermore, let affine(MA,b,β,c) denote the affine subspace{
TM (x) : x ∈ Fk

2
}

⊆ Rk′ .

▶ Proposition D.4. Given f ∈ Fk and f ′ ∈ Fk with dim(f) = dim(f ′) = d. Then

|{(M1,M2) ∈ N f→f ′ × N f→f ′ : dim(affine(M1)∩affine(M2)) > d}| ⩽ | N f→f ′ |2
(
2k − 2d

)2

2k′ − 2d
,

where N f→f ′ = {M ∈ Mk→k′ : M(f) = f ′} denotes the set of affine maps in Mk→k′ that
lifts f to f ′.

Proof. Note that for any M1,M2 ∈ N f→f ′ , the dimension of affine(M1) ∩ affine(M2) is at
least d, since according to the proof of Proposition C.2 both TM1 and TM2 must map affine(f)
onto affine(f ′), so dim(affine(M1) ∩ affine(M2) ∩ affine(f ′)) = d. However, the two maps TM1

and TM2 can map the complement of affine(f) in different ways since there is no restriction
to how they map the complement of affine(f).

APPROX/RANDOM 2024

11:32 On the NP-Hardness Approximation Curve for Max-2Lin(2)

Fix M1 and uniformly at random pick M2 from N f→f ′ . Given any fix x ̸∈ affine(f), the
probability that TM2(x) ∈ affine(M1) is (2k − 2d)/(2k′ − 2d) since | affine(M1) \ affine(f ′)| =
2k − 2d and TM2(x) is uniformly distributed over the complement of affine(f ′). Taking a
union bound over all x ̸∈ affine(f) shows that

PM2∈N f→f′ [dim(affine(M1) ∩ affine(M2)) > d] ⩽

(
2k − 2d

)2

2k′ − 2d
.

Proposition D.4 follows directly from this inequality. ◀

The takeaway from Proposition D.4 is that if M1 and M2 are two random affine maps
such that M1(f) = M2(f) for some fixed f ∈ Fk, then with high probability affine(M1) ∩
affine(M2) = affine(f). This allows us to create a bound on the second order moment of the
terms that define Lk′ .

▶ Lemma D.5. Given f ∈ Fk, f ′ ∈ Fk′ and g′ ∈ Fk′ , where dim(f) = dim(f ′) = d > 0,
then

Eg′∈Fk′

∣∣∣∣∣∣∣∣

∑
M ∈ N f→f ′

leakw(f,M#(g′))

∣∣∣∣∣∣∣∣
2 ⩽ | N f→f ′ |2

(
2k − 2d

)2

2k′ − 2d
.

Proof. Expanding the square we need to prove that,

∑
M1,M2 ∈ N f→f ′

Eg′∈Fk′ (leakw(f,M#
1 (g′)) leakw(f,M#

2 (g′))) ⩽ | N f→f ′ |2
(
2k − 2d

)2

2k′ − 2d
.

Split the terms up into two cases, either dim(affine(M1)∩affine(M2)) > d or dim(affine(M1)∩
affine(M2)) = d. By Proposition D.4 the number of terms of the first type is at most
| N f→f ′ |2

(
2k − 2d

)2
/(2k′ − 2d). Each term is bounded by one since the sum of capacities

in the rs(G) LP is equal to 1, so the absolute value of a leak is always smaller than or equal
to 1 at any node and for any source/sink placement.

In the other case, when dim(affine(M1) ∩ affine(M2)) = d, then the two random functions
M#

1 (g′) and M#
2 (g′) are equal on affine(f), and independently uniformly random {1,−1}

on the complement of affine(f). This allows us to rewrite the expectation over g′ as

Eg′∈Fk′ (leakw(f,M#
1 (g′)) leakw(f,M#

2 (g′)))

=Eg′∈Fk′

leakw(f,M#
1 (g′))E

g′
2 ∈ Fk′

s.t.M#
2 (g′

2)|affine(f) = M#
1 (g′)|affine(f)

leakw(f,M#
2 (g′

2))

=Eg∈Fk

leakw(f, g)E
g2 ∈ Fk

s.t.g2|affine(f) = g|affine(f)

leakw(f, g2)

 .

This is equal to 0, since for any infinity relaxed flow w (see Definition 3.7) the expectation
of leakw(f, g2) over g2 given g is 0. ◀

We are now at the point where we can prove Proposition D.2 using Lemma D.5.

B. Martinsson 11:33

Proof of Proposition D.2. A trivial upper bound of Lk′ using the triangle inequality is

Lk′ ⩽
1

| Mk→k′ |
∑

f∈Fk

∑
f ′ ∈ Fk′

s.t. dim(f ′) > 0

Eg′∈Fk′

∣∣∣∣∣∣
∑

M∈N f→f′

leakw(f,M#(g′))

∣∣∣∣∣∣
 .

Applying Jensen’s inequality to the expectation over g′ ∈ Fk′ gives

Eg′∈Fk′

∣∣∣∣∣∣
∑

M∈N f→f′

leakw(f,M#(g′))

∣∣∣∣∣∣
 ⩽

√√√√√√Eg′∈Fk′

∣∣∣∣∣∣
∑

M∈N f→f′

leakw(f,M#(g′))

∣∣∣∣∣∣
2
,

which according to to Lemma D.5 can be further upper bounded by√√√√√√Eg′∈Fk′

∣∣∣∣∣∣
∑

M∈N f→f′

leakw(f,M#(g′))

∣∣∣∣∣∣
2
 ⩽

2k − 2dim(f)
√

2k′ − 2dim(f)
| N f→f ′ |

⩽
2k

√
2k′ − 2k

| N f→f ′ |.

We have so far shown that

Lk′ ⩽
2k

√
2k′ − 2k

∑
f∈Fk

∑
f ′ ∈ Fk′

s.t. dim(f ′) > 0

| N f→f ′ |
| Mk→k′ |

.

Finally, note that
∑

f ′∈Fk′ | N f→f ′ | = | Mk→k′ | since N f→f ′ are disjoint subsets of Mk→k′

for different f ′ ∈ Fk′ and their union over f ′ ∈ Fk′ is equal to Mk→k′ . So

Lk′ ⩽
2k

√
2k′ − 2k

∑
f∈Fk

∑
f ′ ∈ Fk′

s.t. dim(f ′) > 0

| N f→f ′ |
| Mk→k′ |

⩽
2k

√
2k′ − 2k

∑
f∈Fk

1 ⩽
22k+k

√
2k′ − 2k

. ◀

D.2 The proof of Lemma 3.11
All that remains is to tie up the loose ends by proving Lemma 3.11 using Proposition D.2
combined with Theorem A.5.

Proof of Lemma 3.11. Since w′ is a leaky flow of the rsLP(G′), it follows from Theorem
A.5 that there exists a feasible flow w̃′ of the rsLP(G′) such that

Eg′∈Fk′ valg′(w̃′) + Lk′ ⩾ Eg′∈Fk′ valg′(w′).

Note that rs(G′) ⩾ 1 − Eg′∈Fk′ valg′(w̃′) since w̃′ is a feasible flow of the rsLP(G′). Further-
more, recall that rs∞(G) = 1 − Eg′∈Fk′ valg′(w′). So

rs(G′) − Lk′ ⩽ rs∞(G).

Proposition D.2 implies that Lk′ → 0 as k′ → ∞, which proves that ∀ε > 0 there exists a
gadget G′ with c(G′) = c(G) such that rs(G′) − ε ⩽ rs∞(G). ◀

APPROX/RANDOM 2024

11:34 On the NP-Hardness Approximation Curve for Max-2Lin(2)

E Gadget construction and verification

This section contains the details for how to practically compute Hadk-to-2Lin(2) gadgets using
the rsLP(G) and the rs∞LP(G) . These LPs have far too many variables and constraints to
directly be solved by a computer when k ⩾ 4. The solution is to make use of the symmetries
of the LP:s to construct smaller LP:s with the same optimum. This is done in two steps.
Step 1 is to use Proposition C.7 to argue that best gadgets are the symmetrical gadgets.
This means that we only need to take into account symmetrical gadgets when solving the
rsLP(G) and the rs∞LP(G). Step 2 is to use the fact that if G is symmetrical, then Theorem
A.8 allows us to compress the LP, merging a huge number of variables into a single variable.

E.1 Symmetrical Hadk-to-2Lin(2) gadgets are optimal
The meaning of a Hadk-to-2Lin(2) gadget (G,X,Y) being optimal is that there exists no
Hadk-to-2Lin(2) gadget (G̃,X,Y) such that c(G) = c(G̃) and rs(G) > rs(G̃). The following
Proposition states that symmetric gadgets are optimal. By symmetric, we refer to the
property that the gadget G is invariant under M -lifts.

▶ Proposition E.1. Given any Hadk-to-2Lin(2) gadget (G,X,Y), there exists a symmetric
Hadk-to-2Lin(2) gadget (G̃,X,Y) such that c(G) = c(G̃) and rs(G) ⩾ rs(G̃).

Proof. Let G̃ = liftk→k(G). According to Proposition C.7, c(G) = c(G̃) and rs(G) ⩾ rs(G̃).
Furthermore, G̃ is a symmetric gadget since for any f1, f2 ∈ Fk and M ∈ Mk→k,

(M · G̃)(f1, f2) = 1
| Mk→k |

∑
M2∈Mk→k

((M ◦M2) · G̃)(f1, f2)

= 1
| Mk→k |

∑
M2∈M◦Mk→k

(M2 · G̃)(f1, f2).

According to Proposition C.4, Mk→k forms a group, so M ◦ Mk→k = Mk→k. We have
shown that M · G̃ = G̃ and thus G̃ is a symmetric gadget. ◀

E.2 Compressing the rsLP(G) and rs∞LP(G)
As discussed earlier, both the rsLP(G) and the rs∞LP(G) can be interpreted as Max-Flow
problems. Furthermore, if G is symmetric under M -lifts, then Mk→k is a symmetry group for
both of these Max-Flow problems. This means that we can apply Theorem A.8 to compress
the Max-Flow problems, giving us the compressed rsLP(G) and the compressed rs∞LP(G).

One of the symmetries that the compression is able to capture is that many different
source/sink placements are equivalent. In a sense, the source/sink placements of the com-
pressed LPs consist of one representative source/sink placement from each set of equivalent
source/sink placements. This symmetry turns out to be the main contributor as to why the
compressed LP is significantly smaller than the original LP.

Without the compression, the LPs each have 23·2k variables, which for k ⩾ 4 is compu-
tationally infeasible. However, even with the compression, for k = 4 the LPs are still large
enough that it is computationally challenging to solve them.

E.2.1 Further restricting the compressed LPs
To further restrict the size of the LPs in the case of k = 4, we heuristically identify a list
of beneficial gadget variables by solving the compressed LPs with floating point numbers

B. Martinsson 11:35

Table 4 Sizes of the rsLP(G) and rs∞LP(G) for Had2-to-2Lin(2) gadgets G. The three numbers
are the number of linear constraints, number of variables and number of non-zero entries in the
constraints. All variables have the implicit constraint of being non-negative.

rsLP(G) rs∞LP(G)
Original 163 343 534 163 343 534
Compressed 23 38 106 23 38 106

Table 5 Sizes of the rsLP(G) and rs∞LP(G) for Had3-to-2Lin(2) gadgets G. The three numbers
are the number of linear constraints, number of variables and number of non-zero entries in the
constraints. All variables have the implicit constraint of being non-negative.

rsLP(G) rs∞LP(G)
Original 8 · 106 2 · 107 5 · 107 8 · 106 2 · 107 5 · 107

Compressed 298 546 2330 243 462 1987

using Gurobi. Any gadget variable that is given non-zero weight in at least one floating
point solution is added to the list. Using this list, we define the restricted compressed LP
as the compressed LP but with all other gadget variables that are not on the list, removed.
The list we use can be found in Table 9 in Appendix F. Note that one possible drawback to
restricting the LPs like this is that the restriction could lead to construction of sub-optimal
gadgets.

Tables 4–6 show the sizes of the LPs depending on if compression or restriction is being
applied. Note that the restricted and compressed LP:s have significantly fewer variables than
the original LP:s.

There is a special case where we do not need the restrictions. If the completeness of a
gadget is 1 − 2−k, then the gadget only has non-zero weight on edges of length 2−k. There
are comparatively relatively few edges of length 2−k. This allows us to directly construct the
gadget by solving the non-restricted LP. So in the case of completeness 1 − 2−k, the gadgets
we construct are guaranteed to be optimal since we do not make use of any restrictions.

E.3 Implementation details
The compressed rsLP(G) and compressed rs∞LP(G) are constructed using a Python script
where all of the calculations are done using integer arithmetic. The script makes use of
affine maps to efficiently compute the symmetries of the two LPs, in order to compress them.
The time and memory complexities of the script are roughly O(22·2k), so the script is able
to handle k = 2, 3 and 4. In theory it would be possible to also make the script support
k = 5, but that would require both more powerful hardware, as well as improving the time
complexity to roughly O(22k) time.

Table 6 Sizes of the rsLP(G) and rs∞LP(G) for Had4-to-2Lin(2). The three numbers are the
number of linear constraints, number of variables and number of non-zero entries in the constraints.

rsLP(G) rs∞LP(G)
Original 1 · 1014 3 · 1014 4 · 1014 1 · 1014 3 · 1014 4·1014

Restricted 2 · 1011 4 · 1011 6 · 1011 2 · 1011 4 · 1011 6 · 1011

Compressed 4 · 105 7 · 105 1 · 107 3 · 105 6 · 105 9 · 106

Restricted & compressed 3 · 104 6 · 104 2 · 105 3 · 104 5 · 104 2 · 105

APPROX/RANDOM 2024

11:36 On the NP-Hardness Approximation Curve for Max-2Lin(2)

After having computed the compressed rsLP(G) and compressed rs∞LP(G), the list
of beneficial gadget variables found in Section 4.1 are used to construct the restricted
compressed LPs. In order to solve the compressed LP we use the exact rational number LP
solver QSopt_ex[1]. This results in a gadget described only using rational numbers, as well
as an accompanying compressed flow, also described only using rational numbers.

E.4 Verification of rs(G) and rs∞(G)

It is significantly simpler to verify the relaxed soundness and the infinity relaxed soundness
of a gadget than it is to construct the gadget. The verification can be done almost directly
on the original LPs, without needing the restricted compressed LPs or the compressed LPs.

The input to the verification program is a gadget G :
(Fk

2
)

→ [0, 1] together with a flow
wg : Fk × Fk → R, for each source/sink placement equivalence class representative g. The
flow acts as a witness for the relaxed soundness / infinity relaxed soundness of the gadget.
In order to avoid floating point errors, we require both G and the wg to be rational.

The verification process is done in five steps.

1. For each source/sink placement representative g, verify that the flow wg satisfies the
capacity constraints of the rs(G) LP / rs∞(G) LP, i.e. that wg(f1, f2) + wg(f2, f1) ⩽
G(f1, f2) for all f1, f2 ∈ Fk.

2. Verify that the gadget G is symmetric under action by M ∈ Mk→k, meaning that
for all functions f1, f2 ∈ Fk and affine maps M ∈ Mk→k, it holds that G(f1, f2) =
G(M(f1),M(f2)).

3. For each source/sink placement representative g and each function f ∈ Fk, compute
in(f, g) and out(f, g). Now extend in and out to be defined for all f and g in Fk. For any
source/sink placements g̃ ∈ Fk that is not a representative, pick a map M ∈ Mk→k and
representative g such that g = M#(g̃), and define in(f, g̃) as in(M−1(f), g) and out(f, g̃)
as out(M−1(f), g).

4. Verify the conservation of flow constraint in the rsLP(G) / rs∞LP(G′) by iterating
over all (f, g) ∈ Fk × Fk that are not sinks or sources. For the rsLP(G) this just
involves checking that in(f, g) = out(f, g). For the rs∞LP(G) this involves checking that∑

g′ in(f, g′) =
∑

g′ out(f, g′), where the sum is over all g′ such that g′|affine(f) = g|affine(f).

5. Compute and output the completeness and rs / rs∞ of the gadget using the extended
inflow and outflow as a witness.

Note that the first step verifies the capacity constraints only for representatives of equivalent
source/sink placements. The second step checks that the gadget G is symmetric, which
combined with the first step implies that any extension of the flow to an arbitrary source/sink
placement will fulfil the capacity constraints. The fourth step checks that the conservation of
flow constraint is fulfilled, which in the case of the rs∞LP(G) involves computing the affine
support of all possible source/sink placements.

The LP’s we use and the gadgets we present in this paper can be found at https:
//github.com/bjorn-martinsson/NP-hardness-of-Max-2Lin-2, as well as a stand alone
implementation of a verification script written in Python. As described in the verification
process above, the verification requires a flow wg as input. So on the Github, there is also a
script used to generate this witness flow. This is done by solving the restricted compressed
rsLP(G) / rs∞LP(G) using an integral Max-Flow solver, and then uncompressing the result.

https://github.com/bjorn-martinsson/NP-hardness-of-Max-2Lin-2
https://github.com/bjorn-martinsson/NP-hardness-of-Max-2Lin-2

B. Martinsson 11:37

F Edges used/unused in constructed gadgets

During the numerical analysis, we solve LPs to construct the gadgets. A gadget can be
interpreted as a probability distribution over (undirected) edges. Tables 7–9 list all edges
that have been given non-zero weight in at least one solution to an LP, for k = 2, 3, 4. Recall
that every gadget that we construct is symmetrical under the mappings of Mk→k, so edges
from the same edge orbit share the same capacity. More specifically, the tables contain a list
of all edge orbits that are used in at least one constructed gadget.

APPROX/RANDOM 2024

11:38 On the NP-Hardness Approximation Curve for Max-2Lin(2)

Table 7 The relevant edge orbits for Had2-to-2Lin(2) gadgets. The edges of a Had2-to-2Lin(2)
gadget has a total of 4 edge orbits, but only two are ever used in our constructed gadgets. The rest
of the edges were always given capacity 0 by the (rational) LP-solver.

f1 f2 Ham.dist. size
0000 1000 1 32
0000 1100 2 24

Table 8 The relevant edge orbits for Had3-to-2Lin(2) gadget. The edges of a Had3-to-2Lin(2)
gadget has a total of 26 edge orbits, but only four are ever used in our constructed gadgets. The
rest of the edges were always given capacity 0 by the (rational) LP-solver.

f1 f2 Ham.dist. Size
00000000 10000000 1 128
10000000 11000000 1 896
00000000 11000000 2 448
00000000 11110000 4 112

Table 9 The relevant edge orbits for Had4-to-2Lin(2) gadget. The edges of a Had4-to-2Lin(2)
gadget has a total of 1061 edge orbits, but only 21 are ever used in our constructed gadgets. Note
that as discussed in Appendix E.2.1, this list of edges was identified using the Gurobi LP-solver,
and not using a rational LP solver. See Appendix E.2.1 for more information.

f1 f2 Ham.dist. Size
0000000000000000 1000000000000000 1 512
1000000000000000 1100000000000000 1 7680
1100000000000000 1110000000000000 1 53760
1110000000000000 1111000000000000 1 17920
1110000000000000 1110100000000000 1 215040
1110100000000000 1110100010000000 1 215040
0000000000000000 1100000000000000 2 3840
1100000000000000 1111000000000000 2 26880
1100000000000000 1110100000000000 2 322560
1110000000000000 1111100000000000 2 107520
1110000000000000 1110110000000000 2 161280
1111000000000000 1110100000000000 2 107520
1110100000000000 1110100011000000 2 322560
0000000000000000 1110000000000000 3 17920
1100000000000000 1111100000000000 3 322560
1100000000000000 1110101000000000 3 215040
1110000000000000 1110100010001000 3 860160
0000000000000000 1111000000000000 4 4480
0000000000000000 1110100000000000 4 53760
0000000000000000 1111100000000000 5 53760
0000000000000000 1111111100000000 8 480

Universal Optimization for Non-Clairvoyant
Subadditive Joint Replenishment
Tomer Ezra #

Harvard University, Cambridge, MA, USA

Stefano Leonardi #

Sapienza University of Rome, Italy

Michał Pawłowski #

MIMUW, University of Warsaw, Poland
IDEAS NCBR, Warsaw, Poland

Matteo Russo #

Sapienza University of Rome, Italy

Seeun William Umboh #

School of Computing and Information Systems, The University of Melbourne, Australia
ARC Training Centre in Optimisation Technologies, Integrated Methodologies, and Applications
(OPTIMA), Melbourne, Australia

Abstract
The online joint replenishment problem (JRP) is a fundamental problem in the area of online
problems with delay. Over the last decade, several works have studied generalizations of JRP with
different cost functions for servicing requests. Most prior works on JRP and its generalizations have
focused on the clairvoyant setting. Recently, Touitou [44] developed a non-clairvoyant framework
that provided an O(

√
n log n) upper bound for a wide class of generalized JRP, where n is the

number of request types.
We advance the study of non-clairvoyant algorithms by providing a simpler, modular framework

that matches the competitive ratio established by Touitou for the same class of generalized JRP.
Our key insight is to leverage universal algorithms for Set Cover to approximate arbitrary monotone
subadditive functions using a simple class of functions termed disjoint. This allows us to reduce the
problem to several independent instances of the TCP Acknowledgement problem, for which a simple
2-competitive non-clairvoyant algorithm is known. The modularity of our framework is a major
advantage as it allows us to tailor the reduction to specific problems and obtain better competitive
ratios. In particular, we obtain tight O(

√
n)-competitive algorithms for two significant problems:

Multi-Level Aggregation and Weighted Symmetric Subadditive Joint Replenishment. We also show
that, in contrast, Touitou’s algorithm is Ω(

√
n log n)-competitive for both of these problems.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Set Cover, Joint Replenishment, TCP-Acknowledgment, Subadditive Function
Approximation, Multi-Level Aggregation

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.12

Category APPROX

Funding Tomer Ezra: Supported by the Harvard University Center of Mathematical Sciences and
Applications.
Stefano Leonardi: Supported by the ERC Advanced Grant 788893 AMDROMA and MIUR PRIN
project ALGADIMAR.
Matteo Russo: Supported by the ERC Advanced Grant 788893 AMDROMA and MIUR PRIN
project ALGADIMAR.
Seeun William Umboh: Part of this work was done when the author was visiting the Sapienza
University of Rome, and at the School of Computer Science, University of Sydney.

Acknowledgements We thank the anonymous reviewers for their valuable feedback.
© Tomer Ezra, Stefano Leonardi, Michał Pawłowski, Matteo Russo, and Seeun William Umboh;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 12; pp. 12:1–12:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tomer@cmsa.fas.harvard.edu
mailto:leonardi@diag.uniroma1.it
mailto:michal.pawlowski196@gmail.com
mailto:mrusso@diag.uniroma1.it
mailto:william.umboh@unimelb.edu.au
https://orcid.org/0000-0001-6984-4007
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Universal Optimization for Non-Clairvoyant Subadditive Joint Replenishment

1 Introduction

Online problems with delay have received much attention in the last few years. An important
family of online problems with delay consists of the Joint Replenishment Problem (JRP)
and its variants. A typical instance consists of a sequence of requests that arrive over time.
Each request can be one of n request types, and the cost of serving a set of requests is a
subadditive1 function of their types. We assume that the algorithm has oracle access to
the service cost function. Requests do not need to be served on arrival but each request
accumulates a delay cost while unserved. In particular, each request q has an associated delay
cost function dq and its delay cost is dq(t) if it is served at time t. The goal of the problem is
to serve all requests minimizing the total service cost and delay cost. An important special
case is the deadline case; this is when requests do not incur delay cost but instead must be
served by some given time. We call this family of problems Subadditive JRP.

These problems can be studied under the clairvoyant and non-clairvoyant settings. In
the clairvoyant setting, when a request q arrives, the algorithm is given the entire delay cost
function dq (or its deadline in the case of deadlines). In contrast, in the non-clairvoyant
setting, the algorithm only knows of the delay cost accumulated so far. In the case of
deadlines, the algorithm only knows whether the request’s deadline is now (and must be
served immediately) or later.

Most previous works on Subadditive JRP have focused on the clairvoyant setting. Key
problems within the family of Subadditive JRP include (in increasing order of generality):
TCP Acknowledgement [36, 27, 20], Joint Replenishment Problem [21, 18, 14, 23], and
Multi-Level Aggregation (MLA) [19, 7, 12, 11, 42]. For general subadditive service cost
functions, deterministic O(log N) (where N is the number of requests) and O(log n) upper
bounds are known ([22] and [8], respectively).

There is much less work in the non-clairvoyant setting. For a small number of problems,
such as TCP Acknowledgement and Set Cover with Delay [3], clairvoyance is not required
in the sense that the same competitive ratio can be attained in both the clairvoyant and
non-clairvoyant settings. However, Azar et al. [5]’s lower bound for Online Service with
Delay (a different family of online problems with delay) can be translated into an Ω(

√
n)

lower bound against deterministic algorithms for JRP, and thus, MLA and Subadditive JRP.
In contrast, clairvoyant Subadditive JRP has a O(log n) competitive ratio [8]. Recently, Le
et al. [39] showed that randomization does not help in breaking the Ω(

√
n) barrier and also

developed algorithms for JRP and MLA with matching and nearly-matching upper bounds.
Shortly after, Touitou [44] presented a general non-clairvoyant framework for Subadditive
JRP with a deterministic O(

√
n log n) competitive ratio.

1.1 Our Results

Our main contribution is a simple, modular framework for non-clairvoyant Subadditive JRP
that matches the current-best competitive ratio of O(

√
n log n), and yields tight O(

√
n)

competitive ratios for the key problems of Multi-Level Aggregation and Weighted Symmetric
Subadditive Joint Replenishment. We also show that the framework of Touitou [44] is
Ω(

√
n log n) for these problems. We now formally define these problems and state our results.

1 A set function over a ground set U is subadditive if f(A) + f(B) ≥ f(A ∪ B) for every A, B ⊆ U .

T. Ezra, S. Leonardi, M. Pawłowski, M. Russo, and S. W. Umboh 12:3

1.1.1 General Framework for Subadditive JRP

Subadditive JRP. We have a set U of n request types and a monotone non-decreasing,
subadditive service function f : 2U 7→ R≥0 that satisfies f(∅) = 0. Requests q arrive over
time. Each request q has a type hq ∈ U , an arrival time aq, and a non-decreasing, continuous
delay function dq. At any point in time, the algorithm can serve a subset Q of the requests
that have arrived and incur a service cost of f(SQ) where SQ = {hq : q ∈ Q} is the set of
types of Q. Let Cq be the time when request q was served. The delay cost of request q is
dq(Cq).2 The goal is to serve all requests while minimising the sum of the total service and
delay costs.

Approximating set functions. The core idea underlying our framework is the following
simple but powerful observation. Given two set functions f, g over the same ground set U of n

elements, we say that g is an α-approximation of f if f(S) ≤ g(S) ≤ αf(S) for every S ⊆ U .
Our observation is that for a given subadditive service function f , if we can α-approximate
f by a simpler service function g, then we can reduce any instance of Subadditive JRP with
service function f to one with g instead. In fact, this leads us to the following simplification
of the problem.

Disjoint TCP Acknowledgement. In Disjoint TCP Acknowledgement, we have a set U of
n request types. We also have a partition of U into subsets S1, . . . , Sk with costs c1, . . . , ck.
For a subset S ⊆ U , we have f(S) =

∑k
i=1 ci · 1 {Si ∩ S ̸= ∅}. In other words, we pay ci for

every part Si that intersects with S. Such a function is called a disjoint service function.
Observe that when k = 1, this is equivalent to the TCP Acknowledgement problem; when
k > 1, this corresponds to several independent instances of TCP Acknowledgement. The
2-competitive algorithm for TCP Acknowledgement of [27] can be easily extended to a
2-competitive algorithm for Disjoint TCP Acknowledgement (see Section 2.1).

We now state our main technical lemma.

▶ Lemma 1.1 (Reduction Lemma). If there exists a disjoint service function g that α-
approximates f , then there exists a non-clairvoyant algorithm that is 2α-competitive non-
clairvoyant algorithm for every Subadditive JRP instance with service cost function f .

A major advantage of our Reduction Lemma is that it reduces the task of designing and
analyzing an online algorithm for a Subadditive JRP problem to the much cleaner task of
showing that the corresponding service function f can be approximated by a disjoint service
function well. In particular, this boils down to finding a partition of the set of request types
U into subsets S1, . . . , Sk, for some k, such that the following quantity is small

max
S⊆U

∑k
i=1 f(Si) · 1 {Si ∩ S ̸= ∅}

f(S) .

For general Subadditive JRP, our key insight is that the problem of approximating an
arbitrary service function f by a disjoint service function can be reformulated as the Universal
Set Cover problem.

2 We assume W.L.O.G. that dq(aq) = 0, i.e., serving a request immediately on arrival incurs no delay
cost.

APPROX/RANDOM 2024

12:4 Universal Optimization for Non-Clairvoyant Subadditive Joint Replenishment

Universal Set Cover (USC). An instance of the Universal Set Cover (USC) problem consists
of a universe U of n elements, a collection C of subsets of U , and costs c(S) for each set S ∈ C.
A solution is an assignment a of each element e to a set a(e) ∈ C. For any subset X ⊆ U ,
define a(X) = {a(e) : e ∈ X}. The stretch of the assignment a is maxX⊆U c(a(X))/OPT(X)
where OPT(X) is the cost of the optimal set cover of X.

Jia et al. [35] introduced the Universal Set Cover problem and showed that a O(
√

n log n)-
stretch assignment can always be found efficiently. We show that this implies that any
subadditive service function f can be approximated by a disjoint service function to within a
factor of O(

√
n log n) (Lemma 2.2). Together with our Reduction Lemma, we get a determ-

inistic O(
√

n log n)-competitive algorithm for Non-Clairvoyant Subadditive JRP, matching
the current state-of-the-art [44].

1.1.2 MLA and Weighted Symmetric Subadditive JRP
One main technical contribution of the paper is to exploit the inherent structure of the
MLA and Weighted Symmetric Subadditive JRP functions to show that they can be O(

√
n)-

approximated by disjoint service functions. We then employ the Reduction Lemma to prove
tight O(

√
n)-competitive ratios for the two corresponding problems.

Multi-Level Aggregation. In the Multi-Level Aggregation (MLA) problem, the service
function f is defined by a rooted aggregation tree T , where each node corresponds to a
different request type. Let r be the root of T and let c(v) be the cost of node v for each
v ∈ T . For a subset V of nodes, f(V) is defined to be the total cost of the nodes in the
minimal subtree connecting V to r.

▶ Theorem 1.2. There exists an efficient deterministic O(
√

n)-competitive algorithm for the
Non-Clairvoyant Multi-Level Aggregation problem.

To show the above result, given Lemma 1.1, our goal is to find a good partition P of the
tree T ’s nodes into subtrees and subforests (that we refer to as clusters). More precisely,
let us use P to define a disjoint service function g where for each subset V of nodes of T ,
g(V) =

∑
C∈P :C∩V ̸=∅ f(C).

The crucial idea is to notice that since we aim for the gap of order at most
√

n between g

and f , we can see it as g being assigned a budget of roughly
√

nf(V) to serve V for each
subset V of T ’s nodes. Since the cost that f incured on a set V equals the cost of the minimal
subtree connecting all the nodes in V to the root r of T , the value of g(V) cannot exceed
β

√
n times this cost for some fixed β ∈ N. To achieve this, we generate a partition consisting

of two types of clusters. First are the subtrees rooted at “expensive” nodes. The intuition
is that their cost alone multiplied by α

√
n for some α ∈ N is enough to “cover” the cost of

both their subtree and the path to r. The second type is the clusters that contain more than√
n nodes, since there cannot be many of them.

Weighted Symmetric Subadditive JRP. In Weighted Symmetric Subadditive JRP, the
service function f is a function of the total weight w(S) =

∑
i∈S wi of the set of types

being served. In particular, f is a monotone non-decreasing subadditive function with
f(S) = f(w(S)) and f(0) = 0, that satisfies that for every weights x, y, f(x+y) ≤ f(x)+f(y).
We refer to these functions as weighted symmetric subadditive.

▶ Theorem 1.3. There exists an efficient deterministic O(
√

n)-competitive algorithm for the
Non-Clairvoyant Weighted Symmetric Subadditive Joint Replenishment problem.

T. Ezra, S. Leonardi, M. Pawłowski, M. Russo, and S. W. Umboh 12:5

As in the MLA case, given Lemma 1.1, our goal is to devise a partitioning algorithm
inducing a disjoint service function that O(

√
n)-approximates the corresponding weighted

symmetric subadditive service cost function. We first consider the special case where each
weight equals 1. In this scenario, the service function f is symmetric and becomes a function
of the cardinality of the set of types being served. Consequently, the partition of elements
should ideally reflect this symmetry by ensuring equal-sized parts.

Determining the optimal size for each part involves striking a delicate balance. Larger
sizes enable us to leverage the subadditivity of f but excessively large sizes incur higher
costs for smaller sets. We demonstrate that selecting sets of size O(

√
n) is the optimal

tradeoff in worst-case scenarios. Notably, this partition remains effective across all symmetric
subadditive functions simultaneously.

Extending this approach to the general case of weighted symmetric subadditive functions
involves categorizing elements into weight classes based on powers of 2, ensuring approximate
size equivalence, and then partitioning into sets of size

√
n. However, this approach risks

generating an excessive number of sets. To address this issue, we devise a partitioning
strategy that accommodates light-weight elements first. Then, for heavier-weight elements,
we further partition by a factor of 2, provided it is feasible, to achieve a refined division.

1.1.3 Running time of Algorithms and Reductions

Regarding the running time of our algorithms, we stress that, in the case of Multi-Level
Aggregation and Weighted Symmetric Subadditive JRP, the reductions are executed in
polynomial time. However, the reduction for general subadditive functions is executed in
exponential time, as we need to create a set for each subset of types.

1.1.4 Lower bounds on approximating subadditive service functions

Since Non-Clairvoyant MLA and Weighted Symmetric Subadditive JRP have a Ω(
√

n)
lower bound [5, 39], the Reduction Lemma implies that MLA and Weighted Symmetric
Subadditive JRP service functions do not admit o(

√
n)-approximation by disjoint service

functions. Nevertheless, we also give direct proofs in Sections 3 and 4, respectively. The latter
provides a simpler alternative proof for the Ω(

√
n) lower bound for unweighted Universal

Set Cover shown in [35]. We also show, in Proposition 5.1, that Jia et al.’s analysis of
their Universal Set Cover algorithm [35] is tight. Thus, we need a different approach to
o(

√
n log n)-approximate arbitrary subadditive service functions by disjoint service functions.

Finally, in Proposition 5.2, we exhibit an MLA and Weighted Symmetric Subadditive JRP
instance where Touitou’s algorithm [44] can only achieve an Ω(

√
n log n)-approximation to

the respective service cost functions.

1.2 Future Directions

Our work leaves several tantalizing open questions. The main open problem is whether
subadditive service functions admit better than O(

√
n log n)-approximation by disjoint service

functions. This would immediately improve the competitive ratio for general non-clairvoyant
Subadditive JRP. It would also be interesting to find better approximations of other interesting
subclasses such as XOS and submodular functions.

APPROX/RANDOM 2024

12:6 Universal Optimization for Non-Clairvoyant Subadditive Joint Replenishment

1.3 Further Related Work
Network Design with Delay. Network Design with Delay is very closely related to Subad-
ditive JRP. In Network Design with Delay, we are given a universe of n request types and m

items with costs. Each request type h has a corresponding upwards-closed collection Ch of
subsets of items that satisfy it. At any point in time, the algorithm can transmit a set of
items. A request of type h is served by a transmission that contains some subset in Ch. Some
specific problems are Set Cover with Delay [22, 3, 43], Facility Location [7, 8, 13] and other
network design problems [7, 8]. Network Design with Delay is equivalent to Subadditive JRP
as the optimal cost of satisfying a subset of request types is subadditive, and Subadditive
JRP can be formulated as Set Cover with Delay with exponentially many sets.

Online problems with delay. There has been a lot of work on other online problems with
delay as well. In Online Service with Delay, we are given one or multiple servers on a metric
space. Requests arrive on points of the metric space and are served when a server is moved
to their location. In Online Matching with Delay, we are given an underlying metric space.
Requests arrive on points of the metric space and are served when they are matched. Most
of the work on Online Service with Delay [5, 33, 34, 17, 38, 45] and Online Matching with
Delay [28, 2, 1, 16, 4, 15, 29, 6, 41, 24] has been in the clairvoyant setting. Nevertheless,
non-clairvoyant algorithms have been designed for Online Service with Delay [38] and Online
Matching with Delay [24].

Approximating subadditive functions. The approximation of subadditive functions has
been a focal point of research, at least since the introduction of the complement-free hierarchy
of functions introduced in [40]. This consists of the class of submodular function, which
is strictly contained into the XOS class, which in turn is strictly contained in the general
subadditive class.3 As for approximation, it is known that XOS approximates subadditive
within a factor of O(log(n)), which is tight [25, 10]. The approximability gap between
Submodular and XOS is Θ(

√
n) [9, 31]. In a similar vein, [26] prove that Gross-Substitute

functions (first introduced in [37]) cannot approximate submodular set functions within a
factor better than Ω

(
log(n)

log log(n)

)
. In the context of symmetric function approximation, [30]

show that symmetric subadditive, symmetric XOS and symmetric submodular4 functions
are all 2-close to each other, which is tight.

2 Subadditive Joint Replenishment

In this section, we prove our Reduction Lemma (Lemma 1.1) and apply it to Subadditive
JRP.

2.1 Reduction Lemma
We begin by showing that there is a simple deterministic 2-competitive algorithm for Disjoint
TCP Acknowledgement via a straightforward extension of the classic algorithm for TCP
Acknowledgement of [27].

3 Several other classes within the submodular class have been considered (e.g. additive, unit-demand,
Gross-Substitutes).

4 We use the term symmetric submodular to indicate functions that are (monotone) concave in the size of
the set.

T. Ezra, S. Leonardi, M. Pawłowski, M. Russo, and S. W. Umboh 12:7

In the following, we use λ to denote a service and Qλ to be the set of request types
transmitted by λ. We also use OPT to mean both the optimal solution and the cost of the
optimal solution.

▶ Lemma 2.1. There is a deterministic 2-competitive algorithm for Disjoint TCP Acknow-
ledgement.

Proof. Suppose there is a partition of H into subsets S1, . . . , Sk with costs c1, . . . , ck and
f(S) =

∑k
i=1 ci · 1 {Si ∩ S ̸= ∅}. Our algorithm works as follows: for each set Si, transmit

Si whenever the pending requests in Si have accumulated a total delay equal to ci.
It is clear that the total service cost of the algorithm is at most its total delay cost. We

now show that the latter is at most the cost of the optimal solution. To this end, let us
consider the cost of the optimal solution. Suppose that the optimal solution makes a set of
services Λ∗. Let Λ∗

i denote the subset of services that transmit a request type in Si. The
total service cost of the optimal solution is then

∑
λ∈Λ∗

f(Qλ) =
∑

λ∈Λ∗

k∑
i=1

ci · 1 {Si ∩ Qλ ̸= ∅} =
k∑

i=1
ci · |Λ∗

i |.

Define dOPT
q and dALG

q to be the delay cost of q in the optimal solution and algorithm’s
solution, respectively. Let OPTi = ci · |Λ∗

i | +
∑

q:hq∈Si
dOPT

q . This is the total cost that OPT
incurs on requests on Si. Observe that OPT =

∑k
i=1 OPTi.

We now show that
∑

q:hq∈Si
dALG

q ≤ OPTi for each set Si. Suppose that the algorithm
transmits Si at times t1, . . . , tℓ. Since every request must be served eventually, no request with
type in Si arrives after tℓ. Consider the intervals [0, t1], (t1, t2], . . . (tℓ−1, tℓ). By construction,
the delay cost of the algorithm is exactly ℓci. For each interval I, let Q(I) denote the requests
with types in Si that arrived during the interval. During I, the optimal solution either
transmits a type in Si or incurs a delay cost of ci on the requests in Q(I). Since the intervals
are disjoint, OPTi ≥ ℓci, as desired.

The lemma now follows from the fact that the total service cost of the algorithm is exactly
its delay cost, which in turn is at most OPT. ◀

We are now ready to prove the Reduction Lemma which we restate here.

▶ Lemma 1.1 (Reduction Lemma). If there exists a disjoint service function g that α-
approximates f , then there exists a non-clairvoyant algorithm that is 2α-competitive non-
clairvoyant algorithm for every Subadditive JRP instance with service cost function f .

Proof. Lemma 2.1 implies that it suffices to reduce the Subadditive JRP instance to an
instance of Disjoint TCP Acknowledgement losing at most a factor of α. Let Q be the set
of requests of the Subadditive JRP instance and let OPTf denote the cost of the optimal
solution. Our reduction creates an instance of Disjoint TCP Acknowledgement with the same
set of requests but with service cost function g. Let OPTg denote the cost of the optimal
solution to the instance of Disjoint TCP Acknowledgement. We now show that OPTf ≤
OPTg ≤ αOPTf . Let Λ be a feasible solution to Q, cf (Λ) be its cost in the Subadditive
JRP instance and cg(Λ) be its cost in the Disjoint TCP Acknowledgement instance. The
delay cost of Λ is the same in both instances. The service cost of Λ in the Subadditive JRP
instance has cost

∑
λ∈Λ f(Qλ) and in the Disjoint TCP Acknowledgement instance, it has

cost
∑

λ∈Λ g(Qλ). Since g α-approximates f , we get that cf (Λ) ≤ cg(Λ) ≤ αcf (Λ). This
implies that OPTf ≤ OPTg ≤ αOPTf , as desired. ◀

APPROX/RANDOM 2024

12:8 Universal Optimization for Non-Clairvoyant Subadditive Joint Replenishment

2.2 Applying the Reduction Lemma to Subadditive JRP
We use the Reduction Lemma proved earlier to give a simple deterministic O(

√
n log n)-

competitive algorithm for Non-Clairvoyant Subadditive JRP. The main insight is to reduce
the problem of showing that an arbitrary service function f can be approximated by a disjoint
service function to the Universal Set Cover problem.

▶ Lemma 2.2. Suppose every instance of USC admits a α-stretch assignment. Then every
subadditive service function f can be α-approximated by some disjoint service function g.

Proof. We will construct an instance of USC and use the α-stretch assignment to construct
g. Consider the instance of USC with universe U = H, C = 2H , and c(S) = f(S) for every
S ∈ C. Note that OPT(S) = f(S) since f is monotone non-decreasing and subadditive.

Let a be an α-stretch assignment for this USC instance. Suppose a(U) = {S1, . . . , Sk}.
Since a maps each element to a set containing it, we have that a−1(Si) ⊆ Si. Moreover,
f is monontone non-decreasing, so we can assume W.L.O.G. that a−1(Si) = Si;5 thus
S1, . . . , Sk are disjoint and partition H. Define the disjoint service function g with the
partition {S1, . . . , Sk} and costs c1, . . . , ck where ci = f(Si). Observe that g(S) = c(a(S)) ≥
OPT(S) = f(S). Since a has α-stretch, we get that for every S, f(S) ≤ g(S) ≤ αf(S). ◀

Jia et al. [35] showed that every instance of USC has a O(
√

n log n)-stretch assignment.
Together with the above lemma, we get the following theorem.

▶ Theorem 2.3. For every subadditive service function f , there is a disjoint service function
g that O(

√
n log n)-approximates f .

Combining this with the Reduction Lemma yields the desired theorem.

▶ Theorem 2.4. There is a deterministic O(
√

n log n)-competitive algorithm for Non-
Clairvoyant Subadditive JRP.

3 Multi-Level Aggregation

In this section, we consider the Multi-Level Aggregation (MLA) problem. Let T = (U, E)
be a rooted tree defined over the universe U of n request types and let c : U 7→ R≥0 be
a cost function assigning weights to the nodes. We recall that c determines the service
function f : 2U 7→ R≥0 for this problem as f assigns to each subset of nodes V ⊆ U

the cost of the minimal subtree that connects all the nodes in V to the root r. Here,
we prove that for every MLA service function f , there exists a disjoint service function
g : 2U 7→ R≥0 that O(

√
n)-approximates f . In other words, we show that for every MLA

instance (T, c), there exists a partition P1, . . . , Pk of nodes of T for some k (which defines
g(X) =

∑
i∈[k] f(Pi) · 1 {Pi ∩ X ̸= ∅} for all X ⊆ U), such that for all V ⊆ U , it holds that

g(V)/f(V) ≤ O(
√

n). Moreover, one can find such a partition in polynomial time.

3.1 Notation and Algorithm Overview
Throughout this section, we assume tree T is the current MLA instance that we work with
and thus is known from the context. In what follows, we refer to the maximal subtree of
T rooted at node v and to the path connecting v to the root r by simply writing T (v) and
R(v), respectively. Moreover, to denote these objects with node v excluded, we use To(v)
and Ro(v). Finally, we let C(v) be the set of v’s children in T .

5 Otherwise, we can assign the elements in the preimage of Si under a, i.e., a−1(Si), to the preimage
itself.

T. Ezra, S. Leonardi, M. Pawłowski, M. Russo, and S. W. Umboh 12:9

r r r r

v

r

rK

w

Figure 1 In the first three figures we show the costs of serving the orange nodes. The first figure
corresponds to the cost of f on these nodes. The following two figures show the cost of g on these
nodes, assuming that they belong to different clusters A and B. Fourth figure shows the set of active
nodes in the tree (colored in green) after T (v) gets clustered. Fifth figure presents the setting in
Proposition 3.7.

First, we present the idea behind our approach. Recall that our goal is to find a partition
P1, . . . , Pk of nodes of T such that the gap between the values f(V) and g(V) is at most of
order

√
n for all the sets V ⊆ U . Here, f(V) is the cost of minimal subtree TV of T that

connects all the nodes in V to the root, as stated before. On the other hand, g(V) needs
to cover the costs of all the parts in P that intersect with V . For instance, if V intersects
exactly two parts A and B in P , then g(V) = f(A) + f(B). Although these parts themselves
are disjoint by the definition of partition P , as we pay for each of them separately in g (by
paying for set A, we mean generating the cost of f(A)), we incur not only the costs of their
nodes c(A) and c(B) but also the costs of the paths that connect them to the root r (see
Figure 1).

Note that this process can cause us to incur two types of additional costs with respect to
the optimal value f(V). First, both parts A and B may contain not only the nodes in V

but also their neighbors, for which we need to pay as well. Second, as we pay for each part
separately, we may be forced to pay for some nodes on the paths to the root multiple times
(see Figure 1).

Since f(V) is equal to the cost of the nodes in TV and we aim for g to be
√

n-approximation
of f , the intuition is that g can afford to pay the cost of each node in TV roughly

√
n times

(as this gives the desired ratio). This observation provides the foundations for our algorithm.
Let us remark that at the beginning, all the nodes in T are unpartitioned, i.e., P = ∅. Our
algorithm revolves around two procedures. The first one can be seen as assigning each node
v in T a budget of α

√
n · c(v) for some α ∈ N. A vertex v may then use such a budget to

create a new part K in the partition. We allow v to generate only one form of a cluster, i.e.,
a part to be included in P , that consists of all the unpartitioned nodes in its subtree T (v).
Furthermore, for such a part K to be added to P , it needs to hold that the costs of (the
unpartitioned nodes in) T (v) and R(v) both fit into v’s budget. If we manage to add K to
P , we call both node v and cluster K heavy.

Whenever the first procedure cannot be applied, i.e., there are no vertices that can
generate heavy clusters from the unpartitioned nodes, we run the second procedure. The idea
then is to find a subtree (or a family of subtrees) of size roughly

√
n (details to be presented

later) and group them together into a new part in the partition. We call this part a light
cluster. In case there are nodes that become heavy after this action (as their descendants
got clustered), we go back to the first procedure, which starts a new iteration of the main
algorithm.

Notice that the idea behind the second procedure is to upper bound the number of times
we need to pay the cost of the paths connecting the clusters to the root r. Since T has
n nodes and each light cluster is of size close to

√
n, we can only create roughly

√
n such

clusters. Thus, even when V intersects all the light clusters, we pay for the nodes in TV

at most O(
√

n) times, which we can afford. It remains to estimate the cluster costs, which
follow in the next section.

APPROX/RANDOM 2024

12:10 Universal Optimization for Non-Clairvoyant Subadditive Joint Replenishment

3.2 MLA Partitioning Algorithm
Heavy clusters. Let us first present two definitions. Here, we assume that whenever we are
given a partially created partition P̃ of nodes of an MLA tree T , then the set of nodes it
already partitioned, i.e., V (P̃) =

⋃
P̃ , does not disconnect T , i.e., tree T ′ = T \

⋃
P̃ is a

subtree of T .

▶ Definition 3.1. Let T be a tree given in an MLA instance, denote the set of its nodes by
U , and let P̃ be a partially created partition of U (i.e., V (P̃) =

⋃
P̃ is a proper subset of U).

Then we call all the nodes that are not partitioned yet, i.e., belong to U \ V (P̃), active (see
Figure 1). We use the notation of V |act to restrict any subset V of nodes in T to the nodes
that are active.

▶ Definition 3.2. Let (T, c) be an MLA instance, and let P̃ be a partially created partition
of T ’s nodes. We say that an active node v is heavy if the costs of path R(v) and subtree
Tact(v) are at most 4

√
n · c(v) each. If we extend P̃ by adding Tact(v), we call this new part

a heavy cluster.

Now, we can prove a simple fact about heavy clusters.

▶ Proposition 3.3. Let (T, c) be an MLA instance. Take any partition P of nodes of
T and let Ph,1, . . ., Ph,s be a sublist of all heavy clusters in P . We denote their roots
by vh,1, . . ., vh,s, respectively, and the set containing them by Vh. Then, it holds that∑s

i=1 f(Ph,i) ≤ 8
√

n · f(Vh).

Proof. By Definition 3.2, we have that for each node vh,i the following is satisfied: c(Ph,i) ≤
4
√

n · c(vh,i) and c(R(vh,i)) ≤ 4
√

n · c(vh,i). The first inequality here comes from the fact
that cluster Ph,i was the set of all active nodes (Definition 3.1) contained in the subtree
T (vh,i) at the moment it was created (i.e., it was Tact(vh,i)). Hence, it holds that

f(Ph,i) = c(Ph,i) + c(Ro(v)) ≤ c(Ph,i) + c(R(v))

≤ 4
√

n · c(vh,i) + 4
√

n · c(vh,i) = 8
√

n · c(vh,i), (1)

where the first equality comes from the fact that Ph,i is a subtree, which means that the
minimal tree containing all its nodes and the root r is only missing the path from v to
r (with v excluded as we already counted it in the cluster). Moreover, let us notice that
f(Vh) ≥

∑s
i=1 c(vh,i), as it is the cost of the minimal tree containing all the nodes vh,i. Thus,

to obtain the desired inequality, we only need to sum (1) over all the heavy clusters and then
apply the inequality above. ◀

Light clusters. Here, we present a procedure that generates a light cluster.

▶ Definition 3.4. Let (T, c) be an MLA instance, and let P̃ be a partially created partition
of T ’s nodes. We say that a subset K of nodes of Tact is a light cluster if (1) its size fits
into the range I(n) := [

√
n, 2

√
n], (2) it is either a maximal subtree in Tact or a collection of

maximal subtrees having the same parent, and (3) Tact does not contain any heavy nodes.6
In case Tact is of size smaller than

√
n, and we set K = Tact, we drop the first condition and

still call K a light cluster.

Given the definition above, we present Algorithm 1 that shows how to find such a cluster.

6 This third condition is for analysis purposes only and the property giving the name to light clusters.

T. Ezra, S. Leonardi, M. Pawłowski, M. Russo, and S. W. Umboh 12:11

Algorithm 1 MLA Light Cluster Search.
Input: MLA tree T with some nodes marked active (Tact is a subtree of T containing its
root r)
Output: light cluster formed of the nodes in Tact

1: if |Tact| ≤ 2
√

n

2: return Tact

3: u := r

4: while there exist a node v ∈ Cact(u) such that |Tact(v)| > 2
√

n

5: u := v

6: if there exist a node v ∈ Cact(u) such that |Tact(v)| ≥
√

n then
7: return Tact(v)
8: else
9: denote all the elements in Cact(u) by v1, v2, . . . , vj for some j

10: set iterator i = 1 and initialize a new cluster V with an empty set
11: while |V | <

√
n

12: add Tact(vi) to V

13: increment i by 1
14: return V

▶ Proposition 3.5. If there are no heavy nodes in Tact (see condition (3) in Definition 3.4),
then Algorithm 1 finds a light cluster in Tact.

Proof. Notice that we start the search of a new cluster by checking whether the size of Tact

(the subtree containing all the active nodes in T) is smaller or equal to 2
√

n (line 1). If so,
we return the whole tree Tact since it fits into the description given in the last sentence of
Definition 3.4. Otherwise, we set r to be the current node we are at, which we denote by u

(line 3). Then, we go through the while loop from line 4 to 5, each time picking a child v of
the current node u such that the subtree Tact(v) is of size greater than 2

√
n. If such a node

exists, we move to it, setting u = v, and we leave the while loop otherwise.
In the second case, we know that, as we go to line 6, two conditions are satisfied. First,

the size of the subtree Tact(u) rooted at the current node u is at least 2
√

n. Indeed, we
either stayed at the root node, not satisfying the condition in the if statement in line 1, or
we further went from r through a sequence of its descendants, each having a subtree of size
greater than 2

√
n. Second, none of u’s children has a subtree of size greater than 2

√
n, as we

already left the while loop.
Now, in line 6, we check whether there exists a child v of the current node, which subtree

Tact(v) is of size at least
√

n. If so, we return Tact(v), as it satisfies the conditions to be a
light cluster. Otherwise (line 8), we iterate through u’s children vi (line 11) and add the
nodes contained in their subtrees Tact(vi) to a set V . We stop at the moment when the size
of V becomes at least

√
n and return V as a new cluster. It is easy to notice that in the

while loop, we indeed need to pass the
√

n size threshold, as |Tact(u)| > 2
√

n. Moreover, we
know that before we added the nodes of the last subtree T ′ to V , V had a size smaller than√

n. Since |T ′| <
√

n, we have that the whole group is of size smaller than 2
√

n. ◀

Main algorithm. Before we describe the partitioning algorithm, let us introduce a helper
function. We define method cluster(V) to group all the elements of V together and include
them as a new part in the partition. Let us also emphasize that after this call, all the
elements in V become inactive. With the above notation, we can formalize our approach as
presented in Algorithm 2.

APPROX/RANDOM 2024

12:12 Universal Optimization for Non-Clairvoyant Subadditive Joint Replenishment

Algorithm 2 MLA Partitioning Algorithm.
Input: MLA instance (T, c)
Output: partition P of the nodes of T

1: initialize an empty partition P

2: while Tact is not empty
3: while there exist a heavy node v ∈ Tact

4: cluster(Tact(v))
5: if Tact is empty
6: break
7: apply Algorithm 1 to find a light cluster V in Tact

8: cluster(V)
9: return P

As mentioned in the first part of this section, the main partitioning algorithm runs heavy
and light cluster searches in a loop. In the first step, it iteratively finds the heavy clusters in
the tree Tact determined by the already created partition (lines 3 to 4). Then, if tree T is
not yet partitioned (condition in line 5 does not hold), it goes to the second step that finds
one light cluster and adds it to the partition (lines 7 to 8). After this point, it goes to the
initial step and loops.

Let us emphasize that during the whole partitioning procedure, the set Tact of all active
elements in T forms a proper subtree containing the root r of T . Indeed, in the beginning,
Tact = T and all the cluster calls truncate one or more maximal subtrees from Tact. Now,
given Algorithm 2, we go back to proving the properties of light clusters.

▶ Proposition 3.6. Let T be an MLA tree rooted at some node r and let P be the partition of
nodes of T created by Algorithm 2. We denote all the light clusters in P by Pℓ,1, Pℓ,2, . . . , Pℓ,t

and require them to be listed in the creation order. Then, it holds that there are at most√
n + 1 parts Pℓ,i.

Proof. Notice that by the definition, the only light cluster that can have a size smaller than√
n is the one containing the root r. Thus, all the light clusters created before, i.e., at least

t − 1 of them, have the size at least
√

n. Since there are n nodes in tree T , we get that there
are at most n/

√
n =

√
n such clusters. Thus, t ≤

√
n + 1, which concludes the proof. ◀

In the remaining part of this section, we refer to the clusters created in lines 2, 7 of
Algorithm 2, i.e., the ones that consist of a single subtree, as the light clusters of type I. We
call the light clusters consisting of forests (created in line 14) the light clusters of type II. We
prove that the cost function c satisfies the following properties. Here, we overuse the notation
of c and extend it to the subsets as well, i.e., for any V ⊆ U we set c(V) =

∑
v∈V c(v).

▶ Proposition 3.7. Let (T, c) be an MLA instance and let P be the partition obtained on
it by Algorithm 2. Take any light cluster K in P and denote by rK the root of K if it is a
cluster of type I. Otherwise, if K is a cluster of type II, we use rK to denote the parent node
of the forest contained in K. Then it holds that c(P (rK)) ≥ c(K).

Proof. Without loss of generality, assume that K is of type I. Let w be the node in K

that has the highest cost. By Definition 3.4, we know that |K| ≤ 2
√

n. Hence, by an
averaging argument, we have c(w) ≥ c(K)/(2

√
n), which implies 2

√
n · c(w) ≥ c(K). Now,

assume by contradiction that c(P (r(K))) < c(K). Then, if we split the path from w to r

into two parts by cutting it on the node rK , we got c(P (w)) = c(P (w) ∩ K) + c(Po(rK).
Since c(P (w) ∩ K) ≤ c(K) and c(P (rK) ≤ c(K) by our assumption, we get that c(P (w)) ≤

T. Ezra, S. Leonardi, M. Pawłowski, M. Russo, and S. W. Umboh 12:13

2c(K) ≤ 2 · 2
√

n · c(w) = 4
√

n · c(w). However, this means that w is a heavy node, which
contradicts the initial assumption. Thus, it holds that c(P (rK)) ≥ c(K). The proof for type
II follows the same steps. ◀

▶ Corollary 3.8. Let us subsume the notation and the conditions of Proposition 3.7. Then,
it holds that f(K) ≤ 2f(rK).

Proof. Notice that for type I cluster K, f(K) consists of the cost of K and the cost of the
path connecting it to the root r of T (to be precise, excluding rK from this path, as we
already count its cost in the cluster). Thus, the following holds

f(K) = c(K) + c(Po(rK)) ≤ c(P (rK)) + c(Po(rK)) ≤ 2c(P (rK)) = 2f(rK),

where the first inequality is implied by Proposition 3.7, the second one from the fact that we
added the cost of rK to the right side, and the last inequality is by the definition of f . ◀

Given the above, we can prove the main theorem of this section.

▶ Theorem 3.9. For any MLA service function f , there exists a disjoint service function
g that O(

√
n)-approximates f . It can be found in time polynomial w.r.t. the MLA instance

defining f .

Proof. Let (T, c) be the MLA instance that defines f , and let U be the set of nodes in T .
The idea is to prove that the partition P = {P1, P2, . . . , Pk} generated on T by Algorithm 2
induces a set function g(V) =

∑
i∈[k] f(Pi)1 {Pi ∩ V ̸= ∅} on all subsets V ⊆ U that is an

O(
√

n)-approximation to f . The function g is a disjoint service function by design.
For this purpose, we need to show that maxV ⊆U g(V)/f(V) is of order at most

√
n. Let

us note that in our case, f(V) is just the cost of the minimal subtree connecting V to the
root. Thus, for any subset V ′ of V it holds that f(V ′) ≤ f(V).

Let V ⊆ U be any subset of nodes and let Ph,1, . . ., Ph,s and Pℓ,1, Pℓ,2, . . . , Pℓ,t be the
lists of all the heavy and light clusters that intersect V , respectively. We also denote the
roots of the heavy clusters by vh,1, . . ., vh,s, respectively, and the set containing them by Vh.
Similarly, we use the convention from Proposition 3.7 to define light cluster nodes. For Pℓ,i,
we denote its root by rℓ,i.

By Proposition 3.3, it holds that
∑s

i=1 f(Ph,i) ≤ 8
√

n·f(Vh). Moreover, since V intersects
all these heavy clusters, it either contains their roots or some nodes that are their descendants.
Thus, the minimal subtree connecting V to the root r contains the minimal subtree connecting
Vh to the root r. Hence,

s∑
i=1

f(Ph,i) ≤ 8
√

n · f(Vh) ≤ 8
√

n · f(V). (2)

Now, for each light cluster Pℓ,i, we notice that since V intersects it, the minimal tree
connecting V to r contains the path from rℓ,i to r. Thus, f(V) ≥ f(rℓ,i) and by Proposition
3.3, we get that

f(Pℓ,i) ≤ 2f(rK) ≤ 2f(V) (3)

for each ℓ ∈ [t]. Note that g(V) =
∑

K∈P :V ∩K ̸=∅ f(K). Combining inequalities 2 and 3, we
obtain that

g(V)
f(V) =

∑
K∈P :V ∩K ̸=∅ f(K)

f(V) =
∑s

i=1 f(Ph,i) +
∑t

i=1 f(Pℓ,i)
f(V) ≤

8
√

n · f(V) +
∑t

i=1 2f(V)
f(V)

≤ 8
√

n · f(V) + 2(
√

n + 1) · f(V)
f(V) = 10

√
n + 2,

with the last inequality implied by Proposition 3.6. This concludes the proof that g is an
O(

√
n)-approximation to f .

APPROX/RANDOM 2024

12:14 Universal Optimization for Non-Clairvoyant Subadditive Joint Replenishment

Finally, it is easy to notice that the algorithm runs in polynomial time. We can define a
dynamic structure over the tree T that, for each node v, stores its subtree and path costs
(c(T (v)), c(P (v)), together with the size |T (v)| of its subtree. Updates on such a structure
take at most polynomial time in n (as we create a cluster, we go from the cluster root to the
root of T , updating the data on all the nodes on the path, which is of length at most n).
With such a structure, checking whether a node is heavy or going through a path from r in
search of a light cluster also takes at most linear time in n. ◀

Thus, by Lemma 1.1, we get Theorem 1.2. The result of Theorem 3.9 is tight:

▶ Proposition 3.10. There exists a decreasing MLA instance T, c with n nodes, such that
for every partition P1, . . . , Pk of T for some k, there exists a non-empty set S ⊆ T such that∑

i∈[k] f(Pi)1 {S ∩ Pi ̸= ∅}
f(S) = Ω(

√
n).

Proof. Consider the tree T with a root r and n − 1 children of r denoted by v1, . . . , vn−1.
The cost c is such that c(r) =

√
n, while for all i ∈ [n − 1], c(vi) = 1. Now, consider any

partition P1, . . . , Pk. If k >
√

n, then consider a set S that intersects each Pi exactly once.
Thus, f(S) ≤

√
n + k ≤ 2k, while

∑
i∈[k] f(Pi)1 {S ∩ Pi ̸= ∅} ≥ k ·

√
n, which proves this

case. Else (k ≤
√

n), consider a set S that intersects Pi once if and only if |Pi| <
√

n/2
(otherwise does not intersect at all). It holds that f(S) ≤ 2

√
n because one has

√
n from r

and
√

n intersections with Pi’s in the worst case, while∑
i∈[k]

f(Pi)1 {S ∩ Pi ̸= ∅} ≥ n −
∑
i∈[k]

|Pi| · 1 {S ∩ Pi = ∅} ≥ n − k
√

n/2 ≥ n/2,

which concludes the proof. ◀

4 Weighted Symmetric Subadditive Joint Replenishment

In this section, we study Weighted Symmetric Subadditive JRP. We have a set U of n

request types with weights w({j}) = wj for each j ∈ U . Let f be the set function over U :
In this setting, we have that the service cost of a set S only depends on the total weight
of the elements belonging to S, as opposed to the identity of those elements. Formally,
f(S) = f(w(S)), where function f is now intended as a monotone non-decreasing subadditive
function of weights of a set with f(0) = 0, and for every two weights x, y, it holds that
f(x + y) ≤ f(x) + f(y). For brevity, we call these functions weighted symmetric subadditive.
Our goal is to show that for every weighted symmetric subadditive service function f on U ,
there exists a partition of U into sets S1, . . . , Sk for some k, such that the disjoint service
function g : U → R≥0 defined by this partition where g(S) =

∑k
i=1 f(Si) · 1[S ∩ Si ̸= ∅]

satisfies g(S) ≤ O(
√

n)f(S) for every S ⊆ U .
We begin, in Section 4.1, by analyzing a special case of unweighted symmetric subadditive

service costs. Namely, where the weight of each element is 1, and thus, w(S) = |S|: These
functions are simply referred to as symmetric subadditive. We achieve a tight Θ(

√
n)-stretch

with a simple partitioning algorithm (partition into
√

n sets of size
√

n each), and this serves
as a warm-up to the weighted symmetric subadditive case presented in Section 4.2, where we
also achieve a tight Θ(

√
n)-stretch.

T. Ezra, S. Leonardi, M. Pawłowski, M. Russo, and S. W. Umboh 12:15

4.1 Symmetric Subadditive JRP
We first consider symmetric subadditive service functions. Observe that these functions are
symmetric (i.e., f(S) = f(S′) for all sets S, S′ ⊆ U such that |S| = |S′|). For convenience,
for a cardinality 0 ≤ s ≤ |U |, we use f(s) as the value of sets of size s. We show that
for symmetric subadditive f , one can construct a disjoint service function g that O(

√
n)-

approximates f . We then show that O(
√

n) is tight even in the special case of f being a
symmetric unweighted set cover function. This provides an alternative, simpler proof for the
lower bound on USC of [35]. We first state the following simple but useful observation.

▶ Observation 4.1. For all symmetric subadditive functions f : R+ → R+, and all y ≥ x > 0,
it holds that f(y)/f(x) ≤ ⌈y/x⌉.

Proof. Let k = ⌈y/x⌉. Then, f(y) ≤ f(kx) ≤ f(x)+f((k−1)x) ≤ f(x)+. . .+f(x) = k ·f(x).
The first inequality is by monotonicity, and the second and third by subadditivity. ◀

▶ Lemma 4.2. For every symmetric subadditive service function f , there exists a disjoint
service function g that O(

√
n)-approximates it.

Proof. Let us consider an arbitrary symmetric subadditive service function f on request
types U . Let g be the disjoint service function that induces an arbitrary partition of the
elements of U into sets {X1, . . . , Xk}, where k = ⌈

√
n⌉, each of cardinality |Xi| ≤ ⌈

√
n⌉

(such a partition always exists). We now bound the following fraction for every S ⊆ U :∑
i∈[k] f(Xi) · 1 {S ∩ Xi ̸= ∅}

f(S) ≤
∑

i∈[k] f(⌈
√

n⌉) · 1 {S ∩ Xi ̸= ∅}

f
(∑

i∈[k] 1 {S ∩ Xi ̸= ∅}
)

≤

∑
i∈[k]

1 {S ∩ Xi ̸= ∅}

 ·

⌈
⌈
√

n⌉∑
i∈[k] 1 {S ∩ Xi ̸= ∅}

⌉
≤ 2⌈

√
n⌉.

The first inequality is because |Xi| ≤ ⌈
√

n⌉ and from the fact that, since Xi’s are disjoint,
the size of S is at least the number of non-empty intersections with sets Xi’s. The second
inequality follows from Observation 4.1, and the third inequality follows since ⌈ a

b ⌉ ≤ 2 · a
b ,

for every a
b ≥ 1

2 , and the denominator
∑

i∈[k] 1 {S ∩ Xi ̸= ∅} ≤
√

n + 1. ◀

Thus, by Lemma 1.1 and Lemma 4.2, the following holds:

▶ Theorem 4.3. There exists a deterministic O(
√

n)-competitive algorithm for the Non-
Clairvoyant Symmetric Subadditive Joint Replenishment problem.

We complement the above result by giving a tight instance:

▶ Theorem 4.4. There exists a symmetric subadditive service function such that every
disjoint service function is an Ω(

√
n)-approximation of it.

Proof. Let U be the set of request types. For simplicity of the proof, we assume that n = |U |
has an integer square root. Let us consider the service function f(S) =

⌈
|S|√

n

⌉
, which is

symmetric and subadditive, let g be any disjoint service function, let S be the collection of
disjoint sets Xi’s that g generates, and let k be the number of parts in the partition S.

APPROX/RANDOM 2024

12:16 Universal Optimization for Non-Clairvoyant Subadditive Joint Replenishment

Consider some X ⊆ U that intersects each Xi exactly once. We now analyze the cost of
this induced partition on X:∑k

i=1 f(Xi)
f(X) =

∑k
i=1

⌈
|Xi|√

n

⌉
⌈

k√
n

⌉ ≥ max{k,
√

n}⌈
k√
n

⌉ ,

where the inequality holds since the it is a sum of k terms where each is at least 1, and since
the sets X1, . . . , Xk cover U , thus

∑k
i=1 |Xi| = n.

Now, if k ≤
√

n then

max{k,
√

n}⌈
k√
n

⌉ =
√

n.

Otherwise, k√
n

> 1, thus
⌈

k√
n

⌉
≤ 2 k√

n
, which implies that

max{k,
√

n}⌈
k√
n

⌉ ≥ k

2k/
√

n
=

√
n

2 ,

which concludes the proof. ◀

4.2 Weighted Symmetric Subadditive JRP
We now relax the assumption of w(S) = |S| and provide a O(

√
n)-approximation for every

weighted subadditive function. We begin with some facts about weighted subadditive and
symmetric concave functions. Every symmetric concave function is the pointwise infimum of a
set of affine functions, and can be approximated by a set of affine functions with exponentially
decreasing slopes. The next lemma combines this fact with the fact that every weighted
subadditive function can be approximated by a symmetric concave function.

▶ Lemma 4.5. Let g : {0, 1 . . . , W } → R≥0 be a monotone non-decreasing subadditive
function. Then, there exists a finite set of affine functions {g1, . . . , gp} for some p ≤ log(W)
where gi(x) = σi + x · δi such that σi+1 > 2σi and δi+1 < δi/2 for every i < p, and the
function ĝ defined by ĝ(x) = mini gi(x) satisfies that for every x ∈ {0, . . . , W }, it holds that:

g(x) ≤ ĝ(x) ≤ 8g(x).

Proof. By [30], we know that there exists a concave function g′ : {0, . . . , W } → R≥0 that
approximates g within a factor of 2. Now, for every i = 2, . . . , ⌈log(W)⌉ consider the affine
function g′

i : {0, . . . , W } → R≥0 that interpolates between (2i−1, g′(2i−1)) and (2i, g′(2i)), and
g′

1(x) that interpolates between (0, g′(0)) and (1, g′(1)). It holds that for every x ∈ {0, . . . , W }
then

g′(x)
2 ≤ min

i=1,...,p
g′

i(x) ≤ g′(x),

where the first inequality holds since

g′(x) ≤ g′(2⌈log(x)⌉) ≤ 2g′(2⌊log(x)⌋)

≤ 2g′
2⌊log(x)⌋(2⌊log(x)⌋) = 2 min

i=1,...,p
g′

i(2⌊log(x)⌋) ≤ 2 min
i=1,...,p

g′
i(x),

and the second inequality holds by concavity of g′. In [32], they present an algorithm that
reduces the set of affine functions such that the coefficients and slopes satisfy the conditions
of the lemma while losing a factor of 2, which, if applied to the set of affine functions 2g′

i,
concludes the proof. ◀

T. Ezra, S. Leonardi, M. Pawłowski, M. Russo, and S. W. Umboh 12:17

Henceforth, we will denote by W = w(U), and assume that f is defined on {0, . . . , W },
and is a pointwise infimum of p affine functions g1, . . . , gp where gi(x) = σi +x ·δi and the σis
and δis satisfy the properties stated in the lemma. Proving the theorem for f that satisfies
the condition proves the same (with additional loss of a factor of 8) for general symmetric
subadditive functions.

The following lemma will be useful to lower bound f(w(S)) using the largest weight in S.

▶ Lemma 4.6. For every k ∈ {2, . . . , p}, if x ≥ σk

δk−1
, then f(x) ≥ σk.

Proof. Recall that f(x) = min1≤i≤p σi + xδi. For i < k, we have σi + xδi ≥ xδk−1 ≥ σk. For
i ≥ k, we have σi + xδi ≥ σk. Thus, f(x) ≥ σk. ◀

Henceforth, for brevity, we write f(S) to mean f(w(S)), for an arbitrary set S. In the
following, we frequently use the fact that for any set H, f(H) = min1≤i′≤p σi′ + w(S)δi′ ≤
σi + w(H)δi for every i.

High-Level Overview. Let S be a set chosen by an adversary, unknown to us. Suppose
that f(S) = min1≤i≤p σi + w(S)δi = σℓ + w(S)δℓ. The idea is to construct a partition such
that some of the parts that intersect S can be charged to σℓ, and the remaining parts that
intersect S can be charged to w(S)δℓ. Towards this end, we first classify each type j as
follows. We say that type j is eligible for class 2 ≤ k ≤ p if wj ≥ σk

δk−1
. All types are eligible

for class 1. Define the class of type j to be the largest class it is eligible for and Xk to be
the set of class-k types.

Next, we partition Xk into heavy and light types. The light part Zk contains all types
j ∈ Xk with wjδk ≤ σk/

√
n. Since Zk is light, f(Zk) ≤ σk + w(Zk)δk ≤ O(

√
n)σk. Also, if

S ∩ Xk ̸= ∅, then Lemma 4.6 implies that f(S) ≥ σk. We can then use the fact that σk’s are
geometric to show that the total value of the parts Zk that intersect S is at most O(

√
n)f(S).

Now, consider the heavy types in Xk, i.e. those types j with wjδk > σk/
√

n. We further
partition these types according to their weights in powers of 2. Let Rk,i = {j ∈ Xk \ Zk :
wj ∈ [2i, 2i+1)}. For each weight class i, we greedily partition Rk,i into as many parts of
size ⌈

√
n⌉ as we can. This produces a collection Fk,i of parts of size ⌈

√
n⌉ and at most one

leftover part Gk,i of size less than
√

n. We say that a part is nice if it belongs to Fk,i and
the part Gk,i a leftover part.

Observe that there are at most ⌈
√

n⌉ nice parts, each of size at most ⌈
√

n⌉ and contains
types of roughly the same weight. Thus, we can use a similar argument as in the unweighted
case to show that the total value of the nice parts that intersect S is at most O(

√
n)f(S).

For the leftover parts, we charge the parts Gk,i that intersect S with k < ℓ to w(S)δℓ and
those with k ≥ ℓ to σℓ.

Algorithm 3 Weighted Symmetric Subadditive Partitioning Algorithm.

1: for k = 1 to p do
2: Create a part Zk = {j ∈ Xk : wjδk ≤ σk/

√
n}

3: Let Rk,i = {j ∈ Xk \ Zk : wj ∈ [2i, 2i+1)}
4: for each i do
5: Greedily partition Rk,i into as many sets of size exactly ⌈

√
n⌉ as possible

6: Let Fk,i denote the sets of size of size ⌈
√

n⌉
7: Let Gk,i denote the remaining set of size less than

√
n, if it exists

8: Create a part for each set in Fk,i and a part for the set Gk,i

APPROX/RANDOM 2024

12:18 Universal Optimization for Non-Clairvoyant Subadditive Joint Replenishment

We now give the detailed analysis below.

▶ Theorem 4.7. For any weighted symmetric subadditive service function f , there exists a
disjoint service function g that O(

√
n)-approximates f . It can be found in time polynomial

w.r.t. the weights defining f .

Proof. Let S be an arbitrary set and suppose f(S) = min1≤i≤p σi + w(S)δi = σℓ + w(S)δℓ.
We now decompose w(S) using the partition produced by our algorithm. In particular, we
have

f(S) = σℓ +

∑
k

w(Zk ∩ S) +
∑
k,i

∑
T ∈F ′

k,i

w(T ∩ S) +
∑
k,i

w(Gk,i ∩ S)

 · δℓ.

Define F ′
k,i as the subset of parts in Fk,i that intersects with S. We now show that the

algorithm pays at most O(
√

n)f(S). In other words, we will prove that the total value of the
parts that intersect S are upper bounded as follows:∑

k:Zk∩S ̸=∅

f(Zk) +
∑
k,i

∑
T ∈F ′

k,i

f(T) +
∑

k,i:Gk,i∩S ̸=∅

f(Gk,i) ≤ O(
√

n)f(S).

We begin by bounding
∑

k:Zk∩S ̸=∅ f(Zk). Let kmax be the largest k such that Zk ∩ S ̸= ∅.
(If none exists, then we do not need to bound this term.) We have that w(S) · δkmax−1 ≥
w(Zk ∩ S) · δkmax−1 ≥ σkmax . Thus, Lemma 4.6 implies that f(S) ≥ σkmax . On the other
hand, ∑

k:Zk∩S ̸=∅

f(Zk) ≤
∑

k:Zk∩S ̸=∅

O(
√

n)σk ≤ O(
√

n)σkmax ≤ O(
√

n)f(S).

where the first inequality follows directly from the definition of Zk in line 2 of Algorithm 3
and since there are at most n elements in Zk, the second inequality is since the σk’s are
geometrically increasing.

Next, we bound
∑

k,i

∑
T ∈F ′

k,i
f(T). Since every set T ∈ F ′

k,i has size ⌈
√

n⌉, we have∑
k,i |F ′

k,i| ≤
√

n. Moreover, every j ∈ T has wj ∈ [2i, 2i+1), so w(T) ≤ O(
√

n)w(T ∩ S).
Thus, we have∑

k,i

∑
T ∈F ′

k,i

f(T) ≤
∑
k,i

∑
T ∈F ′

k,i

σℓ + w(T)δℓ

≤
∑
k,i

|F ′
k,i|σℓ + O(

√
n)

∑
k,i

∑
T ∈F ′

k,i

w(T ∩ S)δℓ

≤ O(
√

n)

σℓ +
∑
k,i

∑
T ∈F ′

k,i

w(T ∩ S)δℓ

 ≤ O(
√

n)f(S).

where the last inequality follows from the fact that all T ∈ F ′
k,i are disjoint so we have that

w(S) ≥
∑

k,i

∑
T ∈F ′

k,i
w(T ∩ S).

We now turn to bounding
∑

k,i:Gk,i∩S ̸=∅ f(Gk,i). Consider a set Gk,i that intersects S

for ℓ ≤ k ≤ p. Since Gk,i is a subset of Xk \ Zk and is at most of size
√

n, we have that

f(Gk,i) ≤ σk + w(Gk,i)δk ≤ O(
√

n)w(Gk,i ∩ S)δk.

T. Ezra, S. Leonardi, M. Pawłowski, M. Russo, and S. W. Umboh 12:19

Since δk ≤ δℓ, we get that∑
k≥ℓ

∑
i:Gk,i∩S ̸=∅

f(Gk,i) ≤
∑
k≥ℓ

∑
i:Gk,i∩S ̸=∅

O(
√

n)w(Gk,i ∩ S)δℓ ≤ O(
√

n)f(S).

Finally, when ℓ = 1, the argument is complete. Let us now consider the case when ℓ > 1.
Consider a set Gk,i that intersects S for 1 ≤ k < ℓ. We have that f(Gk,i) ≤ σk +w(Gk,i)δk ≤
O(

√
n)2i+1δk. Moreover, since every j ∈ Xk has wjδk < σk+1, we have that∑

k<ℓ

∑
i:Gk,i∩S ̸=∅

f(Gk,i) ≤ O(
√

n)
∑
k<ℓ

σk+1 ≤ O(
√

n)σℓ ≤ O(
√

n)f(S).

Finally, it is not hard to see that, by design, Algorithm 3 can be implemented in polynomial
time in the logarithm of the total weight, log(w(U)). This concludes the proof. ◀

Thus, by Lemma 1.1, we get Theorem 1.3.

5 Tight Instances against Previous Algorithms

5.1 An Ω(
√

n log n) Tight Instance for the Algorithm of [35]
▶ Proposition 5.1. There exists a weighted set cover instance for which the Universal Set
Cover algorithm of [35] has stretch Ω(

√
n log n).

Proof. The algorithm of [35] works as follows: while the set U of elements e for which f(e)
is undefined is non-empty, pick the set S that minimizes c(S)√

|S∩U |
and for all e ∈ S ∩ U , define

f(e) = S.
The high-level idea is that [35]’s analysis uses the Cauchy-Schwarz inequality and the

tight instance is created by looking at when the Cauchy-Schwarz inequality is tight.
Consider the following set system where we have sets S, S1, . . . , Sk for some k that we

will choose later. The set S contains k elements and set Si contains
⌊

k
k−(i−1)

⌋
elements. The

sets also satisfy that |S ∩ Si| = 1 and Si ∩ Sj = ∅ for 1 ≤ i < j ≤ k. Moreover, the sets Si

form a partition of all the n elements. The costs of the sets are: c(S) = 1, c(Si) =
√

|Si|√
k−(i−1)

.
We now claim that in the i-th iteration, the algorithm chooses Si. First observe that for

1 ≤ i < j ≤ k, we have

c(Si)√
|Si|

<
c(Sj)√

|Sj |
.

Thus, it suffices to show that in each iteration i, the algorithm chooses Si over S. We do
this by induction on i. When i = 1, we have that

c(S1)√
|S1|

= 1√
k

= c(S)√
|S|

.

Now consider i > 1. By induction, we have that |S ∩ U | = k − (i − 1) and Si ∩ U = Si (the
latter is because the only set that intersects Si is S). Thus, we also have

c(Si)√
|Si|

= 1√
k − (i − 1)

= c(S)√
|S ∩ U |

.

We conclude that in each iteration i, the algorithm chooses Si.

APPROX/RANDOM 2024

12:20 Universal Optimization for Non-Clairvoyant Subadditive Joint Replenishment

.
ww

1

v2 vn

v0

v1

Figure 2 Tight instance for [44], where w =
√

n log n−1
n−1 .

Thus, the competitive ratio of the algorithm is at least (
∑k

i=1 c(Si))/c(S) =
∑k

i=1 c(Si)
since c(S) = 1. We have that

k∑
i=1

c(Si) =
k∑

i=1

√⌊
k

k−(i−1)

⌋
√

k − (i − 1)
= Ω(

√
k log k). (4)

It now remains to maximize k. The constraint on k is that
∑k

i=1 |Si| = n since Sis
are disjoint. Now,

∑k
i=1 |Si| =

∑k
i=1

⌊
k

k−(i−1)

⌋
= Θ(k log k). Thus, setting k = Θ(n/ log n)

satisfies the constraint on k. Plugging this into (4) yields the claim. ◀

5.2 An Ω(
√

n log n) Tight Instance for the Algorithm of [44]
We complement the O(

√
n)-stretch achieved by Algorithm 2 and Algorithm 3 with a JRP

instance such that the algorithm of [44] (Algorithm 2) must suffer a stretch of at least
Ω(

√
n log n). Note that the instance we present in Figure 2 is both an MLA instance and a

weighted concave one. This shows that for the specific case of MLA and weighted concave
functions, not only is our algorithm optimal, but also that Touitou’s algorithm cannot achieve
the same guarantee. At a high level, whenever Touitou’s algorithm decides to serve some
requests, it issues up to two services (lines 9 and 12). One of them serves a subset of requests
R for which delay and service costs are the same. At the same time, a second service with
a budget of up to

√
n log n · c(R) can be issued to serve some pending requests in advance.

The following example is one where the optimal algorithm rarely issues this second service.

▶ Proposition 5.2. There exists an instance for which the algorithm of [44] has stretch
Ω(

√
n log n). Moreover, this is an MLA and a weighted concave instance.

Proof. Let us consider the JRP tree T in Figure 2, where w =
√

n log n−1
n−1 and the delay cost

functions on the nodes read

di(t) =
{

2t, if i = 1
εt, if i ≥ 2

,

for ε ≪ w to be set later. In particular, at each time step, there are n requests arriving on
tree T , one per node.

Let us first observe that the optimum algorithm only serves the requests at v1, paying a
service cost of 1 at each time step. Moreover, it serves requests arriving at any vi with i ≥ 2
once εt = w, i.e., every w/ε time steps, and pays (n − 1)w + 1 =

√
n log n. Thus, letting τ be

the length of the requests sequence, the overall optimal cost is OPT(τ) = τ + ετ
w

√
n log n ≤ 2τ ,

by setting ε = w/n.

T. Ezra, S. Leonardi, M. Pawłowski, M. Russo, and S. W. Umboh 12:21

Algorithm 2 in [44] (whose cost is referred to as ALG from now on) serves a request
arriving at v1 (line 9) as soon as its accumulated delay equals its service cost (this is
when the UponCritical event occurs). Once a request at v1 arrives, the algorithm waits
until the time elapsed t is such that 2t = 1 to serve it. That is, when the j-th request
located at v1 arrives, the algorithm serves it at time tj = j + 1

2 . Right after, it issues a
second service (line 12) to serve all other requests at v2, . . . , vn. Overall, the algorithm pays
ALG(τ) = τ · (1 + (n − 1)w) = τ

√
n log n.

Hence,

ALG(τ)
OPT(τ) ≥

√
n log n

2 ,

for all τ ≥ 1. To conclude, the fact that the instance in Figure 2 is an MLA one comes
directly from the fact that it is a depth 2 tree. Moreover, observe that no matter how we
choose S ⊆ V , f(S) = f(w(S)), and thus the instance in Figure 2 is also a weighted concave
instance. ◀

References
1 Itai Ashlagi, Yossi Azar, Moses Charikar, Ashish Chiplunkar, Ofir Geri, Haim Kaplan, Rahul

Makhijani, Yuyi Wang, and Roger Wattenhofer. Min-cost bipartite perfect matching with
delays. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2017, volume 81 of LIPIcs, pages 1:1–1:20. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.APPROX-RANDOM.2017.1.

2 Yossi Azar, Ashish Chiplunkar, and Haim Kaplan. Polylogarithmic bounds on the com-
petitiveness of min-cost perfect matching with delays. In Proceedings of the 28th Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, pages 1051–1061. SIAM, 2017.
doi:10.1137/1.9781611974782.67.

3 Yossi Azar, Ashish Chiplunkar, Shay Kutten, and Noam Touitou. Set cover with delay –
Clairvoyance is not required. In Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders,
editors, 28th Annual European Symposium on Algorithms, ESA 2020, September 7-9, 2020,
Pisa, Italy (Virtual Conference), volume 173 of LIPIcs, pages 8:1–8:21. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ESA.2020.8.

4 Yossi Azar and Amit Jacob Fanani. Deterministic min-cost matching with delays. Theory
Comput. Syst., 64(4):572–592, 2020. doi:10.1007/s00224-019-09963-7.

5 Yossi Azar, Arun Ganesh, Rong Ge, and Debmalya Panigrahi. Online service with delay. ACM
Trans. Algorithms, 17(3):23:1–23:31, 2021. doi:10.1145/3459925.

6 Yossi Azar, Runtian Ren, and Danny Vainstein. The min-cost matching with concave delays
problem. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA
2021, pages 301–320. SIAM, 2021. doi:10.1137/1.9781611976465.20.

7 Yossi Azar and Noam Touitou. General framework for metric optimization problems with delay
or with deadlines. In David Zuckerman, editor, 60th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages
60–71. IEEE Computer Society, 2019. doi:10.1109/FOCS.2019.00013.

8 Yossi Azar and Noam Touitou. Beyond tree embeddings – a deterministic framework for
network design with deadlines or delay. In 61st IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 1368–1379.
IEEE, 2020. doi:10.1109/FOCS46700.2020.00129.

9 Ashwinkumar Badanidiyuru, Shahar Dobzinski, Hu Fu, Robert Kleinberg, Noam Nisan, and
Tim Roughgarden. Sketching valuation functions. In SODA, pages 1025–1035. SIAM, 2012.

10 Kshipra Bhawalkar and Tim Roughgarden. Welfare guarantees for combinatorial auctions
with item bidding. In SODA, pages 700–709. SIAM, 2011.

APPROX/RANDOM 2024

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.1
https://doi.org/10.1137/1.9781611974782.67
https://doi.org/10.4230/LIPIcs.ESA.2020.8
https://doi.org/10.1007/s00224-019-09963-7
https://doi.org/10.1145/3459925
https://doi.org/10.1137/1.9781611976465.20
https://doi.org/10.1109/FOCS.2019.00013
https://doi.org/10.1109/FOCS46700.2020.00129

12:22 Universal Optimization for Non-Clairvoyant Subadditive Joint Replenishment

11 Marcin Bienkowski, Martin Böhm, Jaroslaw Byrka, Marek Chrobak, Christoph Dürr, Lukáš
Folwarczný, Lukasz Jez, Jirí Sgall, Kim Thang Nguyen, and Pavel Veselý. Online algorithms
for multilevel aggregation. Oper. Res., 68(1):214–232, 2020. doi:10.1287/opre.2019.1847.

12 Marcin Bienkowski, Martin Böhm, Jaroslaw Byrka, Marek Chrobak, Christoph Dürr, Lukáš
Folwarczný, Lukasz Jez, Jirí Sgall, Kim Thang Nguyen, and Pavel Veselý. New results on multi-
level aggregation. Theor. Comput. Sci., 861:133–143, 2021. doi:10.1016/j.tcs.2021.02.016.

13 Marcin Bienkowski, Martin Böhm, Jaroslaw Byrka, and Jan Marcinkowski. Online facility
location with linear delay. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2022, September 19-21, 2022, University
of Illinois, Urbana-Champaign, USA (Virtual Conference), volume 245 of LIPIcs, pages
45:1–45:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.
APPROX/RANDOM.2022.45.

14 Marcin Bienkowski, Jaroslaw Byrka, Marek Chrobak, Lukasz Jez, Dorian Nogneng, and
Jirí Sgall. Better approximation bounds for the joint replenishment problem. In Chandra
Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 42–54. SIAM,
2014. doi:10.1137/1.9781611973402.4.

15 Marcin Bienkowski, Artur Kraska, Hsiang-Hsuan Liu, and Pawel Schmidt. A primal-dual online
deterministic algorithm for matching with delays. In Approximation and Online Algorithms –
Proceedings of the 16th International Workshop, WAOA 2018, Helsinki, Finland, August 23-24,
2018, Revised Selected Papers, volume 11312 of Lecture Notes in Computer Science, pages
51–68. Springer, 2018. doi:10.1007/978-3-030-04693-4_4.

16 Marcin Bienkowski, Artur Kraska, and Pawel Schmidt. A match in time saves nine: Determ-
inistic online matching with delays. In Approximation and Online Algorithms – Proceedings of
the 15th International Workshop, WAOA 2017, volume 10787 of Lecture Notes in Computer
Science, pages 132–146. Springer, 2017. doi:10.1007/978-3-319-89441-6_11.

17 Marcin Bienkowski, Artur Kraska, and Pawel Schmidt. Online service with delay on a line.
In Zvi Lotker and Boaz Patt-Shamir, editors, Structural Information and Communication
Complexity – 25th International Colloquium, SIROCCO 2018, Ma’ale HaHamisha, Israel, June
18-21, 2018, Revised Selected Papers, volume 11085 of Lecture Notes in Computer Science,
pages 237–248. Springer, 2018. doi:10.1007/978-3-030-01325-7_22.

18 Carlos Fisch Brito, Elias Koutsoupias, and Shailesh Vaya. Competitive analysis of organization
networks or multicast acknowledgment: How much to wait? Algorithmica, 64(4):584–605,
2012. doi:10.1007/s00453-011-9567-5.

19 Niv Buchbinder, Moran Feldman, Joseph (Seffi) Naor, and Ohad Talmon. O(depth)-competitive
algorithm for online multi-level aggregation. In Philip N. Klein, editor, Proceedings of
the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017,
Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 1235–1244. SIAM, 2017. doi:
10.1137/1.9781611974782.80.

20 Niv Buchbinder, Kamal Jain, and Joseph Naor. Online primal-dual algorithms for maximizing
ad-auctions revenue. In Lars Arge, Michael Hoffmann, and Emo Welzl, editors, Algorithms –
ESA 2007, 15th Annual European Symposium, Eilat, Israel, October 8-10, 2007, Proceedings,
volume 4698 of Lecture Notes in Computer Science, pages 253–264. Springer, 2007. doi:
10.1007/978-3-540-75520-3_24.

21 Niv Buchbinder, Tracy Kimbrel, Retsef Levi, Konstantin Makarychev, and Maxim Sviridenko.
Online make-to-order joint replenishment model: primal dual competitive algorithms. In
Shang-Hua Teng, editor, Proceedings of the Nineteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2008, San Francisco, California, USA, January 20-22, 2008, pages
952–961. SIAM, 2008. URL: http://dl.acm.org/citation.cfm?id=1347082.1347186.

22 Rodrigo A. Carrasco, Kirk Pruhs, Cliff Stein, and José Verschae. The online set aggregation
problem. In Michael A. Bender, Martin Farach-Colton, and Miguel A. Mosteiro, editors,
LATIN 2018: Theoretical Informatics – 13th Latin American Symposium, Buenos Aires,
Argentina, April 16-19, 2018, Proceedings, volume 10807 of Lecture Notes in Computer Science,
pages 245–259. Springer, 2018. doi:10.1007/978-3-319-77404-6_19.

https://doi.org/10.1287/opre.2019.1847
https://doi.org/10.1016/j.tcs.2021.02.016
https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2022.45
https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2022.45
https://doi.org/10.1137/1.9781611973402.4
https://doi.org/10.1007/978-3-030-04693-4_4
https://doi.org/10.1007/978-3-319-89441-6_11
https://doi.org/10.1007/978-3-030-01325-7_22
https://doi.org/10.1007/s00453-011-9567-5
https://doi.org/10.1137/1.9781611974782.80
https://doi.org/10.1137/1.9781611974782.80
https://doi.org/10.1007/978-3-540-75520-3_24
https://doi.org/10.1007/978-3-540-75520-3_24
http://dl.acm.org/citation.cfm?id=1347082.1347186
https://doi.org/10.1007/978-3-319-77404-6_19

T. Ezra, S. Leonardi, M. Pawłowski, M. Russo, and S. W. Umboh 12:23

23 Ryder Chen, Jahanvi Khatkar, and Seeun William Umboh. Online weighted cardinality joint
replenishment problem with delay. In Mikolaj Bojanczyk, Emanuela Merelli, and David P.
Woodruff, editors, 49th International Colloquium on Automata, Languages, and Programming,
ICALP 2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 40:1–40:18. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ICALP.2022.40.

24 Lindsey Deryckere and Seeun William Umboh. Online matching with set and concave delays. In
Nicole Megow and Adam D. Smith, editors, Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, APPROX/RANDOM 2023, September 11-13, 2023,
Atlanta, Georgia, USA, volume 275 of LIPIcs, pages 17:1–17:17. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2023. doi:10.4230/LIPICS.APPROX/RANDOM.2023.17.

25 Shahar Dobzinski. Two randomized mechanisms for combinatorial auctions. In APPROX-
RANDOM, volume 4627 of Lecture Notes in Computer Science, pages 89–103. Springer,
2007.

26 Shahar Dobzinski, Uriel Feige, and Michal Feldman. Are gross substitutes a substitute for
submodular valuations? In EC, pages 390–408. ACM, 2021.

27 Daniel R. Dooly, Sally A. Goldman, and Stephen D. Scott. On-line analysis of the TCP
acknowledgment delay problem. J. ACM, 48(2):243–273, 2001. doi:10.1145/375827.375843.

28 Yuval Emek, Shay Kutten, and Roger Wattenhofer. Online matching: haste makes waste! In
Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2016, pages 333–344. ACM, 2016. doi:10.1145/2897518.2897557.

29 Yuval Emek, Yaacov Shapiro, and Yuyi Wang. Minimum cost perfect matching with delays
for two sources. Theor. Comput. Sci., 754:122–129, 2019. doi:10.1016/j.tcs.2018.07.004.

30 Tomer Ezra, Michal Feldman, Tim Roughgarden, and Warut Suksompong. Pricing multi-unit
markets. ACM Trans. Economics and Comput., 7(4):20:1–20:29, 2020.

31 Michel X. Goemans, Nicholas J. A. Harvey, Satoru Iwata, and Vahab S. Mirrokni. Approxim-
ating submodular functions everywhere. In SODA, pages 535–544. SIAM, 2009.

32 Sudipto Guha, Adam Meyerson, and Kamesh Munagala. A constant factor approximation
for the single sink edge installation problem. SIAM J. Comput., 38(6):2426–2442, 2009.
doi:10.1137/050643635.

33 Anupam Gupta, Amit Kumar, and Debmalya Panigrahi. Caching with time windows. In
Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia
Chuzhoy, editors, Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 1125–1138. ACM, 2020.
doi:10.1145/3357713.3384277.

34 Anupam Gupta, Amit Kumar, and Debmalya Panigrahi. A hitting set relaxation for k-server
and an extension to time-windows. In 62nd IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 504–515. IEEE,
2021. doi:10.1109/FOCS52979.2021.00057.

35 Lujun Jia, Guolong Lin, Guevara Noubir, Rajmohan Rajaraman, and Ravi Sundaram. Universal
approximations for tsp, steiner tree, and set cover. In Harold N. Gabow and Ronald Fagin,
editors, Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore,
MD, USA, May 22-24, 2005, pages 386–395. ACM, 2005. doi:10.1145/1060590.1060649.

36 Anna R. Karlin, Claire Kenyon, and Dana Randall. Dynamic TCP acknowledgement and
other stories about e/(e-1). In Jeffrey Scott Vitter, Paul G. Spirakis, and Mihalis Yannakakis,
editors, Proceedings on 33rd Annual ACM Symposium on Theory of Computing, July 6-8,
2001, Heraklion, Crete, Greece, pages 502–509. ACM, 2001. doi:10.1145/380752.380845.

37 Alexander S. Kelso and Vincent P. Crawford. Job matching, coalition formation, and gross
substitutes. Econometrica, 50(6):1483–1504, 1982.

38 Predrag Krnetic, Darya Melnyk, Yuyi Wang, and Roger Wattenhofer. The k-server problem
with delays on the uniform metric space. In Yixin Cao, Siu-Wing Cheng, and Minming
Li, editors, 31st International Symposium on Algorithms and Computation, ISAAC 2020,
December 14-18, 2020, Hong Kong, China (Virtual Conference), volume 181 of LIPIcs, pages
61:1–61:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.
ISAAC.2020.61.

APPROX/RANDOM 2024

https://doi.org/10.4230/LIPIcs.ICALP.2022.40
https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2023.17
https://doi.org/10.1145/375827.375843
https://doi.org/10.1145/2897518.2897557
https://doi.org/10.1016/j.tcs.2018.07.004
https://doi.org/10.1137/050643635
https://doi.org/10.1145/3357713.3384277
https://doi.org/10.1109/FOCS52979.2021.00057
https://doi.org/10.1145/1060590.1060649
https://doi.org/10.1145/380752.380845
https://doi.org/10.4230/LIPIcs.ISAAC.2020.61
https://doi.org/10.4230/LIPIcs.ISAAC.2020.61

12:24 Universal Optimization for Non-Clairvoyant Subadditive Joint Replenishment

39 Ngoc Mai Le, Seeun William Umboh, and Ningyuan Xie. The power of clairvoyance for multi-
level aggregation and set cover with delay. In Nikhil Bansal and Viswanath Nagarajan, editors,
Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence,
Italy, January 22-25, 2023, pages 1594–1610. SIAM, 2023. doi:10.1137/1.9781611977554.
ch59.

40 Benny Lehmann, Daniel Lehmann, and Noam Nisan. Combinatorial auctions with decreasing
marginal utilities. Games Econ. Behav., 55(2):270–296, 2006.

41 Xingwu Liu, Zhida Pan, Yuyi Wang, and Roger Wattenhofer. Impatient online matching. In
Proceedings of the 29th International Symposium on Algorithms and Computation, ISAAC 2018,
volume 123 of LIPIcs, pages 62:1–62:12. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2018. doi:10.4230/LIPIcs.ISAAC.2018.62.

42 Jeremy McMahan. A d-competitive algorithm for the multilevel aggregation problem with
deadlines. CoRR, abs/2108.04422, 2021. arXiv:2108.04422.

43 Noam Touitou. Nearly-tight lower bounds for set cover and network design with deadlines/delay.
In Hee-Kap Ahn and Kunihiko Sadakane, editors, 32nd International Symposium on Algorithms
and Computation, ISAAC 2021, December 6-8, 2021, Fukuoka, Japan, volume 212 of LIPIcs,
pages 53:1–53:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/
LIPIcs.ISAAC.2021.53.

44 Noam Touitou. Frameworks for nonclairvoyant network design with deadlines or delay. In 50th
International Colloquium on Automata, Languages, and Programming, ICALP 2023, page to
appear, 2023.

45 Noam Touitou. Improved and deterministic online service with deadlines or delay. In Barna
Saha and Rocco A. Servedio, editors, Proceedings of the 55th Annual ACM Symposium on
Theory of Computing, STOC 2023, Orlando, FL, USA, June 20-23, 2023, pages 761–774.
ACM, 2023. doi:10.1145/3564246.3585107.

https://doi.org/10.1137/1.9781611977554.ch59
https://doi.org/10.1137/1.9781611977554.ch59
https://doi.org/10.4230/LIPIcs.ISAAC.2018.62
https://arxiv.org/abs/2108.04422
https://doi.org/10.4230/LIPIcs.ISAAC.2021.53
https://doi.org/10.4230/LIPIcs.ISAAC.2021.53
https://doi.org/10.1145/3564246.3585107

The Average-Value Allocation Problem
Kshipra Bhawalkar #

Google Research, Mountain View, USA

Zhe Feng #

Google Research, Mountain View, USA

Anupam Gupta #

NYU & Google Research, New York City & Mountain View, USA

Aranyak Mehta #

Google Research, Mountain View, USA

David Wajc1 #

Technion, Haifa, Israel

Di Wang #

Google Research, Mountain View, USA

Abstract
We initiate the study of centralized algorithms for welfare-maximizing allocation of goods to buyers
subject to average-value constraints. We show that this problem is NP-hard to approximate beyond
a factor of e

e−1 , and provide a 4e
e−1 -approximate offline algorithm. For the online setting, we show

that no non-trivial approximations are achievable under adversarial arrivals. Under i.i.d. arrivals,
we present a polytime online algorithm that provides a constant approximation of the optimal
(computationally-unbounded) online algorithm. In contrast, we show that no constant approximation
of the ex-post optimum is achievable by an online algorithm.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis;
Theory of computation → Online algorithms

Keywords and phrases Resource allocation, return-on-spend constraint, approximation algorithm,
online algorithm

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.13

Category APPROX

Related Version Full Version: http://arxiv.org/abs/2407.10401 [9]

Funding Anupam Gupta: Supported in part by NSF awards CCF-1955785 and CCF-2006953.
David Wajc: Supported in part by a Taub Family Foundation “Leader in Science and Technology”
fellowship. Work done while the author was visiting Google Research.

1 Introduction

Allocating goods to buyers so as to maximize social welfare is one of the most central problems
in economics. This problem, even under linear utilities, is complicated by buyers’ various
constraints and the manner in which items are revealed.

In this work we introduce the average-value allocation problem (AVA). Here, we wish to
maximize social welfare (total value of allocated items), while guaranteeing for each buyer j

an average value of allocated items of at least ρj . Formally, if the value of item i for buyer j

is vij , and xij ∈ {0, 1} indicates whether item i is allocated to buyer j, we wish to maximize
the social welfare

∑
ij vij xij , subject to each item being allocated to at most one buyer (i.e.,∑

j xij ≤ 1), and to the “average value” constraint:

1 corresponding author

© Kshipra Bhawalkar, Zhe Feng, Anupam Gupta, Aranyak Mehta, David Wajc, and Di Wang;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 13; pp. 13:1–13:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kshipra@google.com
https://orcid.org/0009-0000-1375-8054
mailto:zhef@google.com
https://orcid.org/0000-0001-6036-375X
mailto:anupam.g@nyu.edu
https://orcid.org/0000-0001-5579-3405
mailto:aranyak@google.com
https://orcid.org/0000-0002-6132-4901
mailto:davidwajc@gmail.com
https://orcid.org/0000-0003-1896-2948
mailto:wadi@google.com
https://orcid.org/0000-0003-0891-0255
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.13
http://arxiv.org/abs/2407.10401
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 The Average-Value Allocation Problem

∀j,
∑

i

vij xij ≥ ρj ·
(∑

i

xij

)
. (1.1)

Average-value constraints arise naturally in numerous situations. E.g., consider settings
when goods are to be distributed among “buyers”, and the (fixed) cost of distributing,
receiving, or deploying each such good allocated is borne by the recipient. Each buyer wants
their average value for their goods to be at least some parameter ρj . This parameter ρj

allows to convert between units, and so this fixed cost for each buyer can be in money, time,
labor, or any other unit. So, for example, for allocation and distribution of donations to a
charitable organization, a certain value-per-item is required to justify the time contributed
by volunteers, or the money spent by government in the form of subsidies. In other words,
the amount of “benefit” per task allocated to an individual j should be above the threshold
ρj , so that even if some of the tasks are individually less rewarding (i.e., they have benefit
less than ρj , the total amount of happiness they get overall justifies their workload.

In addition to this average-value constraint on the allocation, we may also consider
side-constraints (such as the well-studied budget constraints), but for now we defer their
discussion and focus on on the novel constraint (1.1). At first glance, the AVA problem may
seem similar to other packing problems in the literature, but there is a salient difference – it
is not a packing problem at all! Indeed, if buyer i gets some subset Si = {j | xij = 1} of items
in some feasible allocation, it is possible that a subset S′ ⊆ Si of this allocation is no longer
feasible, since its average value may be lower. Given that this packing (subset-closedness)
property is crucial to many previous results on allocation problems, their techniques do
not apply. Hence, we have to examine this problem afresh, and we ask: how well can the
average-value allocation be approximated? We investigate this question, both in the offline
and online settings.

1.1 Our Results and Techniques
Recall that the AVA problem seeks to maximize the social welfare

∑
ij vijxij subject to each

item going to at most one buyer, and also the novel average-value constraint (1.1) above.
Our first result rules out polynomial-time exact algorithms for AVA in an offline setting, or
even a PTAS, showing that this problem is as hard to approximate as the Max-Coverage
problem:

▶ Theorem 1 (Hardness of AVA). For any constant ε > 0, the AVA problem is NP-hard to
(e

e−1 − ε)-approximate.

We then turn our attention to positive results, and give the following positive result for
the problem:

▶ Theorem 2 (Offline AVA). There exists a randomized polynomial-time algorithm for the
AVA problem which achieves an approximation factor of 4e

e−1 .

To prove Theorem 2, we would like to draw on techniques used for traditional packing
problems, but the non-traditional nature of this problem means we need to investigate
its structure carefully. A key property we prove and leverage throughout is the existence
of approximately-optimal solutions of a very special kind: each buyer gets a collection of
“bundles”, where a bundle for buyer j consists of a single item i with positive vij − ρj (i.e.,
contributing positively to the average-value constraint (1.1)) and some number of items i with

K. Bhawalkar, Z. Feng, A. Gupta, A. Mehta, D. Wajc, and D. Wang 13:3

negative vij − ρj , such that they together satisfy the AVA constraint. Given this structure
we can focus on partitioning items among bundles, and allocating bundles to buyers. Note
that this partitioning and allocation have to happen simultaneously, since the values (i.e.,
vij) and whether it contributes positively or negatively (i.e., vij − ρj) depend on the buyer
and bundle under consideration. We show how algorithms for GAP (generalized assignment
problem) with matroid constraints [13] can be used.

Relax-and-Round. In order to extend our results from the offline to the online settings, and
to add in side-constraints, we then consider linear programming (LP) based relax-and-round
algorithms for the AVA problem. The LP relaxations take advantage of the structural
properties above, as they try to capture the best bundling-based algorithms (and hence to
approximate the optimal solution of any kind). Once we have fractional solutions to the LP,
we can then round these in both offline and online settings to get our feasible allocations.

Our first rounding-based algorithm, given in §4, is in the offline setting, and yields another
O(1)-approximate algorithm for AVA, qualitatively matching the result from Theorem 2.
While the constants are weaker, the result illustrates our ideas, and allows us to support
additional side-constraints (more on this in §1.1.1).

Online Algorithms. We then turn to online AVA, where items arrive over T timesteps,
and must be allocated to buyers as soon as they arrive. We want to maintain feasible
solutions to the AVA at all times. We show that under adversarial arrivals, only trivial O(T)
approximations are possible. This forces us to focus our attention on i.i.d. arrivals. Our first
result is a time-efficient approximation of the optimum (computationally-unbounded) online
algorithm:

▶ Theorem 3 (Online AVA: Approximating the Optimal Online IID Algorithm). There exists a
randomized polynomial-time online algorithm for the AVA problem which achieves a constant
factor of the value achieved by the optimal (computationally-unbounded) online algorithm.

To approximate the optimum online algorithm, we provide an LP capturing a constraint
only applicable to online algorithms, inspired by such constraints from the secretary problem
and prophet inequality literatures [12, 34]. We then provide a two-phase online algorithm
achieving a constant approximation of this LP, analyzed via a coupling with an imaginary
algorithm that may violate AVA constraints and allocate items to several buyers.

We then turn our attention to approximating the ex-post optimum (a.k.a., getting a
competitive ratio for the observed sequence). In contrast, we show that when comparing
with the ex-post optimum, no such constant approximation ratio is possible, but we give
matching upper and lower bounds. (Due to lack of space, this is deferred to Appendix A.)

▶ Theorem 4 (Online AVA: Ex-post Guarantees (Informal)). There exist families of online
i.i.d. AVA instances on which any online algorithm is Ω

(log T
log log T

)
-competitive. In contrast,

there exists an online algorithm matching this bound asymptotically (on all instances).

The lower bound is proved by giving an example using a balls-and-bins process (and its
anti-concentration). Then we formulate an LP capturing this kind of anti-concentration,
using which we match the lower bound, under some mild technical conditions (see Appendix A
for details).

APPROX/RANDOM 2024

13:4 The Average-Value Allocation Problem

1.1.1 Generalizations
There are many interesting generalizations of the basic problem. For example, there might
exist “budgets” which limit the number of items any buyer can receive; or more generally we
may have costs on items which must sum to at most the buyer’s budgets. These costs could
be different for different buyers, and in different units than those captured by constraint
(1.1). These constraints are the natural ones considered in packing problems; in general,
we can consider the AVA constraint as being a non-packing constraint on the allocation
that can supplemented with other conventional packing constraints. As we show in §4.3,
our relax-and-round algorithm extends seamlessly to accommodate such side constraints,
provided any individual item has small cost compared to the relevant budgets.

Another natural generalization is return-on-spend (RoS) constraints, which have been
central to much recent work on advertisement allocation (see [25, 20]) and §1.2). We call the
problem generalized AVA (GenAVA) and define it as follows: the objective is to maximize
social welfare, but now the average value is measured in a more general way. Indeed, the
allocation of item i to buyer j can incur a different “cost” cij , and the average-value constraint
becomes the following ROS constraint:

∀j,
∑

i

vij xij ≥ ρj ·
(∑

i

cij xij

)
. (1.2)

In contrast to AVA, we show that allowing general costs cij in the generalized AVA problem
in (1.2) makes it as hard as one of the hardest combinatorial problems – computing a
maximum clique in a graph. In particular, we show that it is NP-hard to n1−ε-approximate
GenAVA with n buyers, for any constant ε > 0. In Appendix B we show that similar hardness
persists even for stochastically generated inputs, and the problem remains hard even if we
allow for bicriteria approximation.

1.2 Related Work
Resource allocation is one of the most widely-studied topics in theoretical computer science.
Here we briefly discuss some relevant lines of work.

Packing/Covering Allocation Problems. The budgeted allocation problem or AdWords
of [32] is NP-hard to approximate within some constant [14], and constant approximations
are known even online [32, 11, 28]. The generalized assignment problem (GAP) [22] and its
extension, the separable assignment problem, have constant approximations in both offline [23,
13] and (stochatic) online settings [30]. In both cases, arbitrarily-good approximations are
impossible under adversarial online arrivals, even under structural assumptions allowing for an
offline PTAS (e.g., “small” bids) [32]. However, assuming both small bids and random-order
(or i.i.d.) arrivals allows us to achieve (1− ε)-competitiveness [16, 18, 30, 26, 2]. Some such
allocation problems are also considered with concave or convex utilities [17, 7]. As noted
above, many results and techniques for (offline and online) packing and covering constraints
are not applicable to our problem, which is neither a packing nor covering problem in the
conventional sense.

RoS constraints in online advertising. Return-on-spend constraints as defined in (1.2) have
received much attention in recent years in the context of online advertising. Several popular
autobidding products allow advertisers to provide campaign-level RoS constraints with a goal
to maximize their volume or value of conversions (sales) [25, 20]). Fittingly, there has been

K. Bhawalkar, Z. Feng, A. Gupta, A. Mehta, D. Wajc, and D. Wang 13:5

much interest in understanding the RoS setting along various directions, including optimal
bidding [1], mechanism design [8, 24], and on welfare properties at equilibrium [1, 15, 31]. In
these results, distributed bidding based algorithms are shown to achieve a constant fraction
of the optimal welfare. However, note that the per-item costs in the autobidding setting are
endogenous (set via auction dynamics) whereas in our allocation problem there is no pricing
mechanism and the costs are exogenous. Our results about the hardness of the generalized
AVA show that under exogenous prices, such allocation problems do not admit constant (or
even sublinear) approximation guarantees.

Approximating the optimum online algorithm. Our online i.i.d. results relate to a recent
burgeoning line of work on approximation of the optimum online algorithm via restricted
online algorithms. This includes restriction to polynomial-time algorithms (as in our case)
[34, 33, 10, 3, 29], fair algorithms [5], order-unaware algorithms [19] and inflexible algorithms
[4, 35], and more. These works drive home the message that approximating the optimum online
algorithm using restricted algorithms is hard, but can often lead to better approximation than
possible when comparing to the (unattainable) benchmark of the ex-post optimum. We echo
this message, showing that for our problem under i.i.d. arrivals, a constant-approximation
of the optimum online algorithm (using polytime algorithms) is possible, but is impossible
when comparing to the optimum offline solution.

1.3 Problem Formulation
In the average-value-constrainted allocation problem (AVA), allocating item i to buyer j

yields a value of vij . Each buyer j requires that the average value they obtain from allocated
items be at least ρj . We wish to (approximately) maximize the total social welfare, or sum
of values obtained by the buyers, captured by the following integer LP:

max
∑

(i,j)∈E

vij xij (AVA-ILP)

s.t.
∑

i

vij xij ≥ ρj ·
∑

i

xij ∀ buyers j∑
j

xij ≤ 1 ∀ items i

xij ∈ {0, 1} ∀ items i, buyers j.

An instance I of AVA can be captured by a bipartite graph (I, J, E), with a set I of items
and set J of buyers, and edges E ⊆ I × J , capturing all buyer-item pairs with non-zero value.
For i ∈ I and j ∈ J , edge (i, j) has value vij . We say edge (i, j) is a P -edge (positive edge) if
it has non-negative excess vij − ρj ≥ 0, and an N -edge otherwise, in which case we refer to
vij − ρj < 0 as its deficit. An item i is a P -item if all its edges in E are P -edges, and an
N -item if all its edges in E are N -edges: naturally, some items may be neither P -items or
N -items. We will call an instance unit-ρ if ρj = 1 for all buyers.2

In the online setting, the n buyers and their ρj values are known a priori, but items i

are revealed one at a time, together with their value vij for each buyer j, and an algorithm
must decide what buyer to allocate an item to (if any), immediately and irrevocably on

2 Such instances capture the core difficulty of the AVA problem, and our examples (except those for
GenAVA in Section B) are unit-ρ instances, so one can WLOG take ρj = 1 in the first read.

APPROX/RANDOM 2024

13:6 The Average-Value Allocation Problem

arrival. In the online i.i.d. setting, T items are drawn (one after another) i.i.d. from a known
distribution over m known item types, with type i drawn with probability qi. We say an edge
type (i, j) is an N -edge type or a P -edge type if vij − ρj < 0 or vij − ρj ≥ 0, respectively.

1.4 Paper Outline
We begin in §2 by proving some structural lemmas regarding AVA, including an unintuitive
non-linear dependence of the welfare on the amount of supply. In §3 we present the improved
algorithm for the offline setting giving Theorem 2. In §4 we present our LP-rounding
algorithm for AVA in an offline setting. We also discuss the approach’s extendability, allowing
to incorporate additional constraints, in §4.3. Building on this offline rounding-based
algorithm, in §5 we present a constant-approximation of the optimum online algorithm. In
the interest of space, we defer the discussion of competitive ratio bounds to Appendix A,
and our hardness results to Appendix B.

2 The Structure of Near-optimal Solutions for AVA

In this section, we show how to partition any feasible allocation of AVA instances into
structured subsets (which we call permissible bundles). This bundling-based structure will
prove useful for all of our algorithms.

▶ Definition 5 (Bundling). A set S of edges incident on buyer j is a permissible bundle if
nolistsep S consists of a single P -edge (i⋆, j) and zero or more N -edges (i, j), and
noliistsep the edges in S satisfy the average-value constraint, i.e.,

∑
(i,j)∈S vij ≥ ρj · |S|.

A bundling-based solution is one that can be partitioned into a collection of permissible
bundles.

Clearly, no bundling-based solution can be better than the best unconstrained solution,
but in the following lemma we show a converse, up to constant factors. (Throughout, we use
the shorthand notation v · x :=

∑
ij vijxij for any vector x ∈ RE .)

▶ Lemma 6 (Good Bundling-Based Solution). Let x∗ be a solution to an instance of AVA.
Then, there exists a bundling-based solution x̂ of value at least v · x̂ ≥ 1

2 v · x∗.

As a corollary, the best bundling-based solution is a 2-approximation, and so we will strive
to approximate such bundling-based solutions.

We prove a strengthening of Lemma 6 which also addresses online settings.

▶ Definition 7 (Committed Bundling). An online algorithm is a committed bundling-based
algorithm if its solution consists of permissible bundles, and items can only be added to
bundles; in particular, it commits to the allocation of each item to a particular bundle, and
does not move items between permissible bundles.

▶ Lemma 8 (Online Bundling-Based Solution). Let x∗ be a solution to an instance of
AVA, with x∗ revealed online and (all interim partial solutions) satisfying the average-value
constraints throughout. Then there exists a solution x̂ that is the output of a committed
online bundling-based algorithm, of value at least v · x̂ ≥ 1

2 v · x∗.

Proof. For each buyer j, consider the edges S := {(i, j) | x∗
ij = 1} corresponding to

items assigned to buyer j in solution x∗, in order of addition to the solution x∗, namely
e1, e2, . . . , e|S|, with ek = (ik, j). We now show how a committed online algorithm can output
a collection of permissible bundles of at least half the value from among the edges in S; doing
this for each buyer proves the result.

K. Bhawalkar, Z. Feng, A. Gupta, A. Mehta, D. Wajc, and D. Wang 13:7

Consider ik, i.e., the k-th item allocated to j by x∗, if ek is a P -edge (i.e. vik,j ≥ ρj), we
denote p = ik, open (create) a bundle Bp = {(j, p)} and allocate appropriately in the new
solution x̂. When ek = (ik, j) is an N -edge, if ek can be added to some open bundle Bp of j

while keeping it permissible, we add (ik, j) to Bp in solution x̂; otherwise, we pick some open
bundle Bp of j and mark it as closed (and never add more edges to this bundle). Since x∗ is
feasible throughout the online arrival, for any k ∈ [1, |S|] we have that

∑
ℓ≤k viℓ,j ≥ k · ρj ,

and since we allocate all P -edges of x∗ in x̂ and only allocate a subset of the N -edges, we find
that there must always be some open bundle of j when considering an N -edge ek. Therefore,
the above (committed) bundling-based online algorithm is well-defined. Now, each bundle
is closed by at most one N -edge (i, j), and so we can charge the N -edges (i, j) allocated in
x∗ but not in x̂ to the P -edge (p, j) in the bundle Bp that they closed. But by definition of
the P -edge and N -edge, we know vpj ≥ ρj ≥ vij . Therefore, denoting by x∗

D the part of the
solution x∗ that is discarded in x̂ and by x∗

p and x∗
n the value of the P -edges and N -edges

allocated by both x∗ and the new solution x̂, we have that v · x∗
D ≤ v · x∗

p. Hence,

v · x∗ = v · x∗
D + v · (x∗ − x∗

D) ≤ 2 v · x∗
p + x∗

n ≤ 2 v · (x∗
p + x∗

n). (2.3)

That is, the obtained bundles of the solution x̂ = x∗
p + x∗

n constitute a 2-approximation. ◀

▶ Remark 9. This loss of a factor of two in the value is tight. To see this, consider a
single-buyer unit-ρ AVA instance. There are 1

ε N -edges each with value 1 − ε and 1
ε(1−ε)

P -edges each with value 1 + ε(1− ε). It is feasible to allocate all items to the buyer, and
(arbitrarily close to) half the value of this solution is given by N -edges, but any permissible
bundle contains no N -edges as any single P -edge doesn’t have enough excess to cover the
deficit of any N -edge.

For our algorithms it will be convenient if each item is incident only on P -edges, or only
on N -edges, thus removing the ambiguity about whether to use these as the single P -edge in
a permissible bundle. Fittingly, we call such instances unambiguous. For example, when all
buyers have the same average-value constraint (i.e. ∀j : ρj = ρ), for any item i incident on
a P -edge (i.e., ∃j : vij ≥ ρ), we can trivially drop all N -edges of the item (i.e., drop (i, j′)
where vij′ < ρ) since there is no reason to allocate any N -edge instead of a P -edge of i, and
so making such instances unambiguous comes with no cost. As we now show, any instance of
AVA in general can be made unambiguous while still preserving a bundling-based allocation
that is constant-approximate for the original instance.

▶ Lemma 10 (Bundling Unambiguous Sub-Instances). Given an AVA instance I = (I, J, E),
dropping all of the P -edges or all the N -edges of each item i ∈ I independently with probability
1/2 results in an unambiguous sub-instance I ′ = (I, J, E′) (where E′ ⊆ E), admitting a
bundling-based solution x′ which is 4-approximate for I.

Proof. Let x∗ be an optimal solution for I. If we denote by x∗
p and x∗

n the characteristic vector
for P -edges and N -edges allocated by both x∗ and x̂ = x∗

p + x∗
n as in the proof of Lemma 8,

then, by the penultimate inequality of Equation (2.3), we have that v · x∗ ≤ 2 v · x∗
p + v · x∗

n.
Now, consider the solution x′ consisting of all P -edges allocated in x̂ that were not dropped
and all non-dropped N -edges allocated in bundle S whose P -edge was also not dropped.
We therefore have that this new solution has value precisely 1

2 v · x∗
p + 1

4 v · x∗
n, and so, by

Equation (2.3), we have that x′ is a 4-approximation, since

v · x∗ ≤ 4 ·
(

1
2 v · x∗

p + 1
4 v · x∗

n

)
= 4 v · x′. ◀

APPROX/RANDOM 2024

13:8 The Average-Value Allocation Problem

We also provide an alternative, deterministic method to find such an unambiguous sub-
instance. However, since our algorithms are randomized, we defer discussion of this method
to the full version.Note in unambiguous instances, every item is either a P -item or an N -item.

2.1 Welfare is non-linear in supply
In this section we provide a bound on the multiplicative gain in welfare in terms of increased
supply. This will prove useful later. For now, it illustrates non-linearity of the AVA problem
in its supply. (This is in contrast to other allocation problems where the welfare is at best
linear in the supply.)

To motivate this bound, consider the outcome of creating k copies of each item in an
AVA instance. Clearly, the welfare increases by a factor of at least k, as we can just repeat
the optimal allocation for the original instance k times. However, as the following example
illustrates, welfare can be super-linear in the supply size increase for AVA.

▶ Example 11. Consider a unit-ρ instance of k-buyer AVA with a single P -item of value
1 + kε for all buyers and k many N -items, with the i-th N -items having value zero for all
buyers except for one distinct buyer i, to whom it has value 1− ε. In this instance OPT ≈ 2,
since the P -item can only be allocated to a single buyer, who can then only be allocated one
N -item, while in the instance obtained by creating k copies of each item we can allocate a
P -item to each buyer together with k many N -items, and so for this instance OPT ≈ k2, i.e.,
increasing supply k-fold increases the welfare (k2/2)-fold.

The following lemma shows that the above example is an extreme case, and for a k-fold
increase in supply, an O(k2)-fold increase in welfare is best possible.

▶ Lemma 12 (Supply Lemma). Let I = (I, J, E) be an AVA instance, and let I ′ = (I ′, J, E′)
be an instance with the same buyer set and underlying costs and values obtained by copying
each item in I some k times.

OPT(I ′) ≤ O(k2) · OPT(I).

Proof. Since bundling-based solutions are nearly optimal up to a constant factor of 2, we can
start with an optimal bundling-based allocation A′ for I ′ and randomly (and independently)
associate the items of I with one of their k copies in I ′, allocating them as in A′. Finally,
we remove all non-permissible obtained bundles to obtain allocation A for I. For each copy
i′ of an item i, if i′ is allocated in a P -edge in A′, the probability that i is associated with i′

(and thus assigned to the same buyer by A) is precisely 1/k. In contrast, if i′ is allocated
in an N -edge by A′, the probability that A allocates i the same way as i′ is precisely 1/k2,
as this requires both i to be assigned to the same bundle (associated with the same copy)
and the P -edge of this bundle to similarly be assigned to the same bundle. The lemma then
follows by linearity of expectation. ◀

3 Offline Algorithm via Reduction to Matroid-Constrained GAP

In this section we provide an improved constant-approximation for AVA in the offline setting;
we will show in Appendix B.1 that the problem is hard to approximate to better than e

e−1 .

▶ Theorem 13. There exists a (4e
e−1 + o(1))-approximate randomized algorithm for AVA.

The algorithm proceeds by reducing AVA to GAP with matroid constraints. Recall that
an instance of the generalized assignment problem (GAP) consists of n elements that can be
packed into m bins. Packing an element e into a bin b gives a value veb and uses up seb space
in that bin. If we let yeb ∈ {0, 1} denote the indicator for whether element e is assigned to

K. Bhawalkar, Z. Feng, A. Gupta, A. Mehta, D. Wajc, and D. Wang 13:9

bin b, then naturally
∑

b yeb ≤ 1. Each bin has unit size, and so the size of elements assigned
to bin b is at most 1: in other words,

∑
e seb yeb ≤ 1. The goal is to maximize the total value

of the assignment
∑

eb veb yeb. [23] gave a (1 − 1/e)-approximation for this problem. [13]
gave the same approximation for an extension of the problem, where the opened subset of
bins must be an independent set in some given matroid M.

▶ Theorem 14. There exists a randomized polynomial-time algorithm that, for any unam-
biguous AVA instance, outputs a solution with expected value at least

(
1− 1/e− o(1)

)
times

the optimal bundling-based solution.

Proof. Given an unambiguous AVA instance (i.e., one where each item is incident on only
P -edges or only N -edges), we construct an instance of Matroid-Bin GAP as follows:
1. Elements and bins: For each P -item p and buyer j, construct a bin (p, j) in the GAP

instance. The elements of the GAP instance are exactly the items of the AVA instance.
2. Values/sizes of P -items: Assigning a P -item p to bin (p, j) yields value vpj and uses zero

space; Assigning P -item p to a bin (p′, j) with p ̸= p′ yields value zero and uses 1 + ε

space.
3. Values/sizes of N -items: Assigning N -item i to bin (p, j) yields value vij and uses

ρj−vij

vpj−ρj
space.

4. Matroid on the bins: Finally, the matroid M on the bins is a partition matroid, requiring
that we choose at most one bin from {(p, j) | j ∈ B}, for each P -item p.

The construction above results in a value-preserving one-to-one correspondence between
feasible GAP solutions which are maximal, i.e., where each P -item p is assigned to some
bin, and permissible bundling-based solutions to the AVA instance. Indeed, for any feasible
bundling-based solution to the AVA instance, fix a bundle (p, j) containing the item set S.
The value of placing the items in S in the bin (p, j) is precisely

∑
i∈S vij . Summing over all

bins, we find that both solutions (to the AVA and GAP instance) have the same value. On
the other hand, the GAP solution is feasible since for each P -item p we open up at most one
bin (p, j) (thus respecting the matroid constraint) and moreover each bin’s size constraint
is respected due to the per-bundle average-value constraint and the zero size of p in bin
(p, j), implying that

∑
i∈S si,(p,j) =

∑
i∈S\{p}

ρj−vij

vpj−ρj
≤ 1. Similarly, starting with a maximal

solution to the GAP instance, the single bin (p, j) into which p is placed has its average-value
constraint satisfied (note that p cannot be placed in a bin (p′, j) for p′ ≠ p, where its size is
1 + ε), and the value of the bundles obtained this way is the same as the GAP solution’s
value. Now the (1− 1/e− o(1))-approximation algorithm for GAP with matroid constraints
[13] gives the same approximation for AVA on unambiguous instances. ◀

Theorem 14 combined with Lemma 10 completes the proof of Theorem 13.

4 An Offline Algorithm via Relax-and-Round

Let us now present an LP-rounding based algorithm for AVA. This more sophisticated
algorithm yields another constant-approximate offline algorithm, which also allows to incor-
porate additional side constraints, see Section 4.3). Moreover, this section’s algorithm also
provides a template for our main online algorithms.

The natural starting point for an LP-rounding based algorithm, the LP relaxation obtained
by dropping the integrality constraints of (AVA-ILP), turns out to be a dead end. This
relaxation has an integrality gap of Ω(n) on n-buyer instances,3 even for unit-ρ, as shown by
the reinspecting the instance of Example 11.

3 Recall that an LP relaxation’s integrality gap is the difference in objective between its best fractional
and integral solutions.

APPROX/RANDOM 2024

13:10 The Average-Value Allocation Problem

▶ Example 15. Consider an n-buyer unit-ρ instance with a single P -item p of value 1 + nε

for all buyers, and n N -items, with the i-th N -item having zero value for all buyers except
for buyer ji, for whom its value is 1− ε. An assignment xpj = 1

n for all buyers j and xiji
= 1

for every N -item i gives value n + 1 for the LP relaxation of (AVA-ILP), while clearly the
optimal integral solution has value ≈ 2.

Therefore, to obtain any constant approximation via LP rounding, we need a tighter relaxation.
To this end, we rely on Lemmas 6 and 10, and provide the following relaxation for bundling-
based solutions for unambiguous AVA instances. This LP has decision variables xijp for
(P or N)-item i, buyer j and P -item p. Informally, these correspond to the probability
that i is allocated to j in the bundle with P -item p, which we denote by jp. (Note: this
polynomially-sized LP is clearly poly-time solvable.)

max
∑
i,j,p

vij xijp (Bundle-LP)

s.t.
∑

i

(ρj − vij) xijp ≤ 0 ∀j, p (4.4)∑
j,p

xijp ≤ 1 ∀i (4.5)

xijp ≤ xpjp ∀i, j, p (4.6)
xp′jp = 0 ∀j, P -item p′ ̸= p (4.7)
xijp ≥ 0 ∀i, j, p

Intuitively, the bundling, and in particular Equation (4.6), will allow us to overcome the
integrality gap example above. We formalize this intuition later by approximately rounding
this LP, but first we show that (Bundle-LP) is a relaxation of bundling-based allocations for
unambiguous AVA instances.

▶ Lemma 16. For any unambiguous AVA instance, the value of (Bundle-LP) is at least as
high as that of the optimal bundling-based allocation.

Proof. Fix a (randomized) bundling-based allocation algorithm A. Let Yijp be the indicator
for A having allocated item i in bundle jp. We argue that Yijp satisfy the constraints of
(Bundle-LP), realization by realization. Consequently, by linearity of expectation, so do their
marginals, E[Yijp]. Constraint (4.4) holds since A satisfies the average-value constraint for
each bundle. Constraint (4.5) holds since each item is allocated at most once. Constraint
(4.6) holds because bundle jp must be opened for i to be allocated in it. Constraint (4.7)
holds since permissible bundles have a single P -item in them. Finally, non-negativity of Y is
trivial. We conclude that E [Y] is a feasible solution to the above LP, with objective precisely∑

ijp vij E[Yijp]. The lemma follows. ◀

We now turn to rounding this LP. To this end, we consider a two-phase algorithm, whose
pseudo-code is given in Algorithm 1. In Phase I we open bundles, letting each P -item p pick
a single buyer j with probability xpjp,4 and opening the bundle jp. In Phase II we enrich
the bundles, by adding N -items to them. Specifically, for each N -item i, we create a set Si

containing each open bundle jp independently with probability α · xijp

xpjp
, where α ∈ [0, 1]

4 Since Constraint (4.5) is tight for every P -item in any optimal LP solution, {xpjp}j is a distribution
over buyers.

K. Bhawalkar, Z. Feng, A. Gupta, A. Mehta, D. Wajc, and D. Wang 13:11

is a parameter to be specified later. Then, if this set Si contains a single bundle jp and
adding i to this bundle would not violate the average-value constraint restricted to the bundle
(denoted by BundleAVjp), i.e., this bundle would remain permissible, then we allocate i to
the bundle jp. Otherwise, we leave i unallocated.

Algorithm 1 Offline rounding of Bundle-LP.
1: Make the instance unambiguous as in Lemma 10
2: Let x be an optimal solution to (Bundle-LP) for the obtained unambiguous instance
3: for each P -item p do ▷ Phase I
4: Pick j according to distribution {xpjp}j=1,...,n and open bundle jp

5: for each N -item i do ▷ Phase II
6: Si ← ∅
7: for each bundle jp, with probability α · xijp

xpjp
do

8: if jp was opened in Phase I then
9: Si ← Si ∪ {jp}

10: if |Si| = 1 then
11: if the only bundle jp ∈ Si remains permissible after adding i to it then
12: Allocate i to jp

Algorithm 1 clearly outputs a feasible allocation, since it only allocates N -items i to a
bundle jp if this would not violate the average-value constraint of the bundle, and hence by
linearity the average-value constraint of the buyer remains satisfied. Moreover, the algorithm
is well-defined; in particular, the probability spaces defined in lines 4 and 7 are valid, by
constraints (4.5) for P -item p, and (4.6) for triple i, j, p, respectively. We turn to analyzing
this algorithm’s approximation ratio. For this, we will lower bound the probability of each
item i to be allocated in bundle jp in terms of xijp.

By Section 4, each P -item p is assigned in bundle jp precisely with probability xpjp.
Consequently, the expected value Algorithm 1 obtains from P -items is precisely their
contribution to the LP solution’s value. It remains to understand what value we get
from N -items.

4.1 Allocation of N -items

To bound the contribution of N -items, we consider any tuple of N -item i, buyer j and P -item
p. Note that N -item i is assigned to bundle jp if and only if all the four following events
occur:
1. E1: the event that bundle jp is open, which happens with probability xpjp.
2. E2: the event that the Bernoulli(α · xijp

xpjp
) in Section 4 comes up heads for jp.

3. E3: the event that Si \
⋃

j′=1,...,n{j′p} = ∅.
4. E4: the event that jp would remain permissible if we were to add i to bundle jp.
We note that events E1, E2, E3 are all independent, as they depend on distinct (and independ-
ent) coin tosses. So, for example, Pr [Si ∋ jp] = Pr [E1 ∧ E2] = Pr [E1] · Pr [E2] = α · xijp.
Moreover, we have the following simple bound on Pr [E3].

▶ Lemma 17. Pr
[∧3

ℓ=1 Eℓ

]
=

∏3
ℓ=1 Pr [Eℓ] ≥ (1− α) · α · xijp.

APPROX/RANDOM 2024

13:12 The Average-Value Allocation Problem

Proof. The first equality follows from independence of E1, E2, E3. We therefore turn to lower
bounding Pr [E3]. Since Pr[X > 0] ≤ E[X] for any integer random variable X ≥ 0, we know

Pr[E3] ≤ E

∣∣∣∣∣∣Si \
⋃
j′

{j′p}

∣∣∣∣∣∣
 =

∑
p′ ̸=p

∑
j′

α · xij′p′ ≤ α,

where the equality follows from Pr[Si ∋ j′p′] = α ·xij′p′ by the above, and the last inequality
follows from Constraint (4.5). Since Pr [E1] · Pr [E2] = α · xijp, the lemma follows. ◀

A challenge. As noted above, E1, E2, E3 are independent, resulting in a simple analysis for the
probability Pr

[∧3
ℓ=1 Eℓ

]
=

∏3
ℓ=1 Pr [Eℓ]. Unfortunately, lower bounding Pr[E4 | E1 ∧E2 ∧E3]

is more challenging, due to possible negative correlations between E4 and E3. To see this, note
that E3 ∧ E1 implies Si = {jp}, and this event can be positively correlated with previous N -
items i′ having Si′ = {jp}, thus making it more likely that jp won’t be able to accommodate
i under BundleAVjp.

We can overcome this challenge of negative correlations, provided (i, j) has small deficit
compared to (p, j)’s excess. (We address the large deficit case separately later.) Specifically,
by coupling our algorithm with an algorithm that allocates more often and does not suffer
from such correlations, we can lower bound this conditional probability as follows.

▶ Lemma 18. Let β ∈ [0, 1]. If i, j, p are such that ρj − vij ≤ β · (vpj − ρj), then

Pr[E4 | E1 ∧ E2 ∧ E3] ≥ 1− α

1− β
.

Proof. Consider an imaginary algorithm A′ that allocates every N -item i′ into every bundle
j′p′ ∈ Si′ , even when |Si′ | > 1 (so we may over-allocate) and even if this violates the
BundleAVj′p′ constraint. Coupling A′ with Algorithm 1 by using the same randomness for
both algorithms, we have that item i′ is allocated to bin j′p′ by A′ with probability precisely
Pr [Si′ ∋ j′p′] = α · xi′j′p′ . In particular, A′ only allocates more items than Algorithm 1.

We denote by N ′
jp the set of N -items allocated to bundle jp by A′. Now, let E ′

4 be the
event that

∑
i′∈N ′

jp
\{i}(ρj − vi′j) ≤ (1− β) · (vpj − ρj), that is, the deficit of N -items other

than i that A′ allocated to the bundle jp together only consumes at most a (1−β) fraction of
p’s excess for j. By the small deficit assumption on i, j, p, we know that event E ′

4 is sufficient
for BundleAVjp to be satisfied if Algorithm 1 were to add i to jp. Thus, E ′

4 implies E4 in
any realization (of the randomness), since A′ only allocates more items to each bin than
Algorithm 1. On the other hand, we also have that both E ′

4 and E1 are independent of both
E2 ∧ E3, since the latter combined event depends on an independent random coin toss (E2)
and events concerning other bundles jp′, which are both independent of the randomness
concerning bundle jp. (Here we use that A′ allocates i to jp whenever Si ∋ jp, regardles of
other bundles j′p′ belonging to Si.) Consequently, by standard applications of Bayes’ Law,
we obtain the following.

Pr[E ′
4 | E1 ∧ E2 ∧ E3] = Pr[E ′

4 | E1].

As the imaginary algorithm A′ assigns i′ to jp (i.e. i′ ∈ N ′
jp) iff Si′ ∋ jp, we know that

E

 ∑
i′∈N ′

jp

(ρj − vi′j)

∣∣∣∣∣∣ E1

 =
∑
i′ ̸=p

(ρj − vi′j) · Pr [Si′ ∋ jp | E1]

= α ·
∑
i′ ̸=p

(ρj − vi′j) xi′jp

xpjp
≤ α · (vpj − ρj).

K. Bhawalkar, Z. Feng, A. Gupta, A. Mehta, D. Wajc, and D. Wang 13:13

Above, the second equality follows from linearity and Pr[Si′ ∋ jp | E1] = α · xij′p′

xpjp
, and the

inequality follows from the average-value constraint for bundle jp (i.e. Equation (4.4)) in
our LP. Therefore, by Markov’s inequality

Pr

 ∑
i′∈N ′

jp
\{i}

(ρj − vi′j) > (1− β) · (vpj − ρj)

∣∣∣∣∣∣ E1

 ≤ E
[∑

i′∈N ′
jp

\{i}(ρj − vi′j)
∣∣∣ E1

]
(1− β) · (vpj − ρj)

≤ α

1− β
,

and thus Pr [E ′
4 | E1] ≥ 1− α

1−β . Recalling that E ′
4 implies E4 in any realization, we conclude

with the desired bound, as follows.

Pr[E4 | E1 ∧ E2 ∧ E3] ≥ Pr[E ′
4 | E1 ∧ E2 ∧ E3] = Pr[E ′

4 | E1] ≥ 1− α

1− β
. ◀

Lemma 18 and the preceding discussion yield a lower bound on the probability of an
N -item i being successfully allocated to a bundle jp when i’s deficit is small relative to the
excess of the P -item p. For the large deficit case, no such bound holds. However, as we
now observe (with proof deferred to the full version), large-deficit edges contribute a relative
small portion of the allocation’s value in the optimal LP solution.

▶ Lemma 19. Let β ∈ [0, 1]. For any bundle jp, let Lβ
jp denote the set of β-large deficit

N -items for bundle jp, i.e., N -item i with ρj − vij > β · (vpj − ρj). Then,∑
j,p

∑
i∈Lβ

jp

vij xijp ≤
1
β

∑
j,p

vpj xpjp.

4.2 Completing the analysis
We are now ready to bound the approximation ratio of Algorithm 1.

▶ Theorem 20. Algorithm 1 with α = 0.3 is a 32-approximation for AVA.

Proof. Let β ∈ [0, 1] be some constant to be determined and let γ = γ(α, β) := α · (1− α) ·(
1− α

1−β

)
. Denote Njp by the set of N -items allocated to bundle jp by the algorithm. By

Lemmas 17 and 18 we have for bundle jp and N -item i /∈ Lβ
jp that

Pr[i ∈ Njp] = Pr

[
E4

∣∣∣∣∣
3∧

ℓ=1
Eℓ

]
Pr

[3∧
ℓ=1
Eℓ

]
≥

(
1− α

1− β

)
· α · (1− α) · xijp = γ · xijp.

Therefore, by linearity of expectation and Lemma 19, the expected value of the (feasible)
random allocation of Algorithm 1 is at least∑

j,p

vpj xpjp + γ
∑

i,j,p:i̸=p

vij xijp − γ
∑
j,p

∑
i∈Lβ

jp

vij xijp

≥
(

1− γ

β

) ∑
j,p

vpj xpjp + γ
∑

i,j,p:i̸=p

vij xijp.

So, this algorithm’s output has value at least a min{1− γ
β , γ} fraction of the optimal LP

value; i.e., it is a 1/ min{1− γ
β , γ}-approximation. Taking α ≈ 0.3 and β ≈ 0.156 (optimized

by an off-the-shelf numerical solver) yields a ratio of 1/0.13 < 8. The theorem then follows
from Lemma 16 and Lemma 10. ◀

APPROX/RANDOM 2024

13:14 The Average-Value Allocation Problem

4.3 Extension: adding side constraints
Before moving on to our online algorithms, we note that the LP-based approach allows us
to incorporate additional constraints seamlessly. For example, our LP and algorithm, with
minor modifications, allow to approximate allocation problems with both the average-value
constraint and O(1) many budget constraints (for every buyer), corresponding to different
resources. More formally, for a cost function ℓ (e.g., corresponding to storage, time, or other
costs), each buyer j has some budget B

(ℓ)
j , and the ℓ-cost of allocation to buyer j must not

exceed this budget. That is, for xij ∈ {0, 1} an indicator for item i being allocated to buyer
j, we have

∀j, ℓ-costj =
∑

i

ℓij xij ≤ B
(ℓ)
j . (4.8)

The small-cost assumption (a.k.a. the small-bids assumption for online AdWords [32])
stipulates that no particular item has high cost compared to the budget, i.e. maxij ℓij/B

(ℓ)
j ≤

ε→ 0.

▶ Theorem 21. There exists a constant-approximate algorithm for AVA and any constant
number of budget constraints (for every buyer) subject to the small-bids assumption.

We defer the proof of the above result to the full version. The same arguments in this
section extend to our online algorithms, but are omitted for brevity.

5 Online Algorithms: Approximating the Online Optimum

In this section and the next we study AVA in the online i.i.d. setting (see Section 1.3 for
definition and notation). Specifically, in this section we provide a polynomial-time online
algorithm which provides a constant approximation of the optimal online algorithm.

First, by Lemma 6, we have that the optimal online algorithm is approximated within a
factor two by a bundling-based online algorithm which is committed. As we will show, the
following LP provides a relaxation for the value of the best such online algorithm. Our LP
consists of variables xijp for each item type i ∈ [m], buyer j ∈ [n] and item type p such that
(p, j) is a P -edge.

max
∑
i,j,p

vij xijp (OPTon-Bundle-LP)

s.t.
∑

i

(ρj − vij) xijp ≤ 0 ∀ P -edge type (p, j) (5.9)∑
j,p

xijp ≤ qi · T ∀ item type i (5.10)

xijp ≤ xpjp · qi · T ∀ N -edge type (i, j), P -edge type (p, j) (5.11)
xp′jp = 0 ∀ P -edge types (p, j) ̸= (p′, j) (5.12)
xijp ≥ 0 ∀ item type i, P -edge type (p, j)

▶ Lemma 22. (OPTon-Bundle-LP) has value which is at least half the expected value of
any online AVA algorithm under i.i.d. arrivals (from the same distribution used in the LP),
where item type i is drawn with probability qi.

K. Bhawalkar, Z. Feng, A. Gupta, A. Mehta, D. Wajc, and D. Wang 13:15

Proof. First, by the Online Bundling Lemma (Lemma 8), the best committed online bundling-
based algorithm 2-approximates the best online algorithm. We therefore turn to showing
that (OPTon-Bundle-LP) is a relaxation of the value of the best committed bundling-based
online algorithm, A. Let xijp be the average number of times a copy of item type i is
allocated in a copy of bundle jp by A. Constraint (5.9) follows by linearity of expectation,
together with the fact that each opened copy of bundle jp must satisfy the average-value
constraint. Constraint (5.10) simply asserts that i is allocated at most as many times as it
arrives. Constraint (5.11) holds for a committed online algorithm (that guarantees feasibility
with probability 1), for the following reason: for every copy of bundle jp opened, no items
can be placed in that bundle before it is opened. But the expected number of copies of i to
be assigned after any bundle jp is opened is at most the number of arrivals of i after this
bundle is opened and is at most qi · T , which upper-bounds the ratio between xijp and xpjp.
All other constraints hold similarly to their counterparts in the proof of Lemma 16. ◀

Note. Constraint (5.11) is reminiscent of constraints bounding the optimal online algorithm
in the secretary problem literature [12] and prophet inequality literature [34].

The outline of our algorithm is similar to that of Algorithm 1, though as it does not have
random access to the different items throughout, it first allocates P -edges in the first T/2
arrivals, and only then allocates N -edges in the last T/2 arrivals. To distinguish between
bundles opened at different times, we now label copies of bundle type jp (i.e., items allocated
to buyer j with single P -edge of type (p, j)) opened at time t by jpt. The algorithm’s
pseudocode is given in Algorithm 2.

Note that in our online algorithms (here and in Appendix A), the LPs are based on
distributions that can be ambiguous in the sense that each item type in the distribution can
have both P -edges and N -edges, and we don’t explicitly modify the distribution to make it
unambiguous. However, our algorithm effectively makes each realized instance (of T sampled
items) unambiguous, as we ignore all N -edges incident to the first T/2 items and vice versa
for the last T/2 items.

Algorithm 2 Online rounding of bundling-based LP.
1: Let x be an optimal solution to Equation (OPTon-Bundle-LP)
2: for all arrivals t = 1, . . . , T/2, of type p do
3: Pick a j according to the distribution { xpjp

qp·T }j=1,...,n and open bundle jpt

4: for all arrival t⋆ = T/2 + 1, . . . , T of type i do
5: Sit⋆ ← ∅
6: for all bundles jpt, with probability α·xijp

xpjp·qi·T do
7: if bundle jpt is open then
8: Sit⋆ ← Sit⋆ ∪ {jpt}
9: if |Sit⋆ | = 1 then

10: if jpt ∈ Sit⋆ remains permissible after adding it⋆ to it then
11: Allocate it⋆ to jpt

5.1 Analysis

In what follows we provide a brief overview of the relevant events in the analysis of Algorithm 2,
deferring proofs reminiscent of the analysis of Algorithm 1 to the full version.

APPROX/RANDOM 2024

13:16 The Average-Value Allocation Problem

First, the value obtained from P -edges by Algorithm 2 is clearly half that of the LP, by
linearity of expectation. In particular, we create xpjp/2 copies of bundle jp in expectation.
The crux of the analysis is in bounding our gain from N -edges.

To bound the contribution of N -edges, we note that a copy of item i at time t⋆ > T/2,
which we denote by it⋆, is assigned to bundle jpt if and only if all the five following events
(overloading notation from Section 4) occur:
1. E0: the event that it⋆ is the realized item at time t⋆, which happens with probability qi

2. E1: the event that bundle jpt is open, which happens with probability qp · xpjp

qp·T = xpjp

T .
3. E2: the event that the Bernoulli(α·xijp

xpjp·qi·T) in Section 5 comes up heads for jpt.
4. E3: the event that Sit⋆ \

⋃
j′p′

⋃
t′ ̸=t{j′p′t′} = ∅.

5. E4: the event that jpt would remain permissible if we were to add it⋆ to bundle jpt.

Similarly to the events we studied when anlyzing our offline Algorithm 1, the events
E0, E1, E2 are independent, as are the events E1, E2, E3. However, E3 is not independent of E0

(in particular, it occurs trivially if E0 does not). Nonetheless, bounding Pr
[∧3

ℓ=0 Eℓ

]
is not

too hard. The following lemma, whose proof essentially mirrors that of Lemma 17, and is
thus deferred to the full version, provides a bound on the probability of all first four events
occurring.

▶ Lemma 23. Pr[E0 ∧ E1 ∧ E2 ∧ E3] ≥ α · (1− α/2) · xijp

T 2 .

As with our offline Algorithm 1, the challenge in the analysis is due to possible negative
correlations between E4 and E3. Similarly, we overcome this challenge of negative correlations,
provided (i, j) has small deficit compared to (p, j)’s excess, by coupling with an algorithm
with no such correlations. (We address large-deficit (i, j) later.) The obtained syntactic
generalization of Lemma 18, whose proof is deferred to the full version, is the following.

▶ Lemma 24. Let β ∈ [0, 1]. If i, j, p are such that ρj − vij ≤ β · (vpj − ρj), then

Pr[E4 | E0 ∧ E1 ∧ E2 ∧ E3] ≥ 1− α

2(1− β) .

Lemma 24 and the preceding discussion yield a lower bound on the probability of a
copy of item i be allocated to a bundle jpt at time t⋆ if i, j, p is in the small deficit case
as the above lemma. For large-deficit items, no such bound holds. However, large-deficit
edges contribute a small portion of the allocation’s value. Specifically, Lemma 19, holds for
(OPTon-Bundle-LP) as well, since the only constraint that this lemma’s proof relied on was
Constraint (4.4), which is identical to Constraint (5.9) in (OPTon-Bundle-LP).

We are now ready to bound the approximation ratio of Algorithm 1.

▶ Theorem 25. Algorithm 1 with α = 0.64 is a polynomial-time algorithm achieving a
57-approximation of the optimal online algorithm for AVA under known i.i.d. arrivals.

Proof. That the algorithm runs in polynomial time follows from its description, together
with the LP (OPTon-Bundle-LP) having polynomial size (in the distribution size). The
analysis is essentially identical to that of Theorem 20, with the following differences. First,
we recall that the expected number of copies of bundle jp opened is T

2 · qp · xpjp

qp·T = 1
2 xpjp.

Next, by Lemmas 23 and 24, the probability that copy it⋆ of small-deficit item i for bundle
jpt is allocated to it is at least γ · xijp

T 2 , for γ = γ(α, β) := α
2 ·

(
1− α

2
)
·
(

1− α
2(1−β)

)
. Again,

linearity of expectation and summation over all (t, t⋆) ∈ [T/2] × (T/2, T] in combination
with Lemma 19 implies that for any β ∈ [0, 1], the gain of Algorithm 2 is at least

K. Bhawalkar, Z. Feng, A. Gupta, A. Mehta, D. Wajc, and D. Wang 13:17

1
2

∑
j,p

vpj xpjp + γ

4
∑

i,j,p:i̸=p

vij xijp −
γ

4
∑
j,p

∑
i∈Lβ

jp

vij xijp

≥

(
1
2 −

γ

4β

) ∑
j,p

vpj xpjp + γ

4
∑

i,j,p:i̸=p

vij xijp

 .

Therefore, by Lemma 22, Algorithm 2 yields a 2/ min{ 1
2 −

γ
4β , γ

4 }-approximation. This
expression is optimized by α ≈ 0.64 and β ≈ 0.0766, yielding a ratio of ≈ 2

0.0355 < 57, as
claimed. ◀

References
1 Gagan Aggarwal, Ashwinkumar Badanidiyuru, and Aranyak Mehta. Autobidding with

constraints. In International Conference on Web and Internet Economics, pages 17–30.
Springer, 2019.

2 Shipra Agrawal and Nikhil R Devanur. Fast algorithms for online stochastic convex pro-
gramming. In Proceedings of the twenty-sixth annual ACM-SIAM symposium on Discrete
algorithms, pages 1405–1424, 2014.

3 Nima Anari, Rad Niazadeh, Amin Saberi, and Ali Shameli. Nearly optimal pricing algorithms
for production constrained and laminar bayesian selection. In Proceedings of the 2019 ACM
Conference on Economics and Computation, pages 91–92, 2019.

4 Nick Arnosti and Will Ma. Tight guarantees for static threshold policies in the prophet
secretary problem. Operations Research, 2022.

5 Makis Arsenis and Robert Kleinberg. Individual fairness in prophet inequalities. In Proceedings
of the 23rd ACM Conference on Economics and Computation, page 245, 2022.

6 Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. Balanced allocations. SIAM J.
Comput., 29(1):180–200, 1999.

7 Yossi Azar, Niv Buchbinder, TH Hubert Chan, Shahar Chen, Ilan Reuven Cohen, Anupam
Gupta, Zhiyi Huang, Ning Kang, Viswanath Nagarajan, Joseph Naor, et al. Online algorithms
for covering and packing problems with convex objectives. In 2016 IEEE 57th Annual
Symposium on Foundations of Computer Science (FOCS), pages 148–157. IEEE, 2016.

8 Santiago Balseiro, Yuan Deng, Jieming Mao, Vahab Mirrokni, and Song Zuo. Robust auction
design in the auto-bidding world. Advances in Neural Information Processing Systems,
34:17777–17788, 2021.

9 Kshipra Bhawalkar, Zhe Feng, Anupam Gupta, Aranyak Mehta, David Wajc, and Di Wang.
The average-value allocation problem, 2024. arXiv:2407.10401.

10 Mark Braverman, Mahsa Derakhshan, and Antonio Molina Lovett. Max-weight online
stochastic matching: Improved approximations against the online benchmark. In 23rd ACM
Conference on economics and Computation, pages 967–985, 2022.

11 Niv Buchbinder, Kamal Jain, and Joseph Seffi Naor. Online primal-dual algorithms for
maximizing ad-auctions revenue. In European Symposium on Algorithms, pages 253–264, 2007.

12 Niv Buchbinder, Kamal Jain, and Mohit Singh. Secretary problems via linear programming.
Mathematics of Operations Research, 39(1):190–206, 2014.

13 Gruia Calinescu, Chandra Chekuri, Martin Pal, and Jan Vondrák. Maximizing a monotone
submodular function subject to a matroid constraint. SIAM Journal on Computing, 40(6):1740–
1766, 2011.

14 Deeparnab Chakrabarty and Gagan Goel. On the approximability of budgeted allocations
and improved lower bounds for submodular welfare maximization and gap. SIAM Journal on
Computing (SICOMP), 39(6):2189–2211, 2010.

APPROX/RANDOM 2024

https://arxiv.org/abs/2407.10401

13:18 The Average-Value Allocation Problem

15 Yuan Deng, Jieming Mao, Vahab Mirrokni, and Song Zuo. Towards efficient auctions in an
auto-bidding world. In Proceedings of the Web Conference 2021, WWW ’21, pages 3965–3973.
Association for Computing Machinery, 2021.

16 Nikhil R. Devanur and Thomas P. Hayes. The adwords problem: online keyword matching with
budgeted bidders under random permutations. In ACM Conference on Electronic Commerce,
pages 71–78, 2009. doi:10.1145/1566374.1566384.

17 Nikhil R. Devanur and Kamal Jain. Online matching with concave returns. In Howard J. Karloff
and Toniann Pitassi, editors, Proceedings of the 44th Symposium on Theory of Computing
Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages 137–144. ACM, 2012.
doi:10.1145/2213977.2213992.

18 Nikhil R. Devanur, Kamal Jain, Balasubramanian Sivan, and Christopher A. Wilkens. Near
optimal online algorithms and fast approximation algorithms for resource allocation problems.
In ACM Conference on Electronic Commerce, pages 29–38, 2011. doi:10.1145/1993574.
1993581.

19 Tomer Ezra, Michal Feldman, Nick Gravin, and Zhihao Gavin Tang. “who is next in line?” on
the significance of knowing the arrival order in bayesian online settings. In Proceedings of the
2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 3759–3776, 2023.

20 Auto-bidding products support page. https://www.facebook.com/business/help/
1619591734742116, 2022. Accessed: 2023-07-12.

21 Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM (JACM),
45(4):634–652, 1998.

22 Jon Feldman, Monika Henzinger, Nitish Korula, Vahab S. Mirrokni, and Clifford Stein.
Online stochastic packing applied to display ad allocation. In ESA (1), pages 182–194, 2010.
doi:10.1007/978-3-642-15775-2_16.

23 Lisa Fleischer, Michel X Goemans, Vahab S Mirrokni, and Maxim Sviridenko. Tight approx-
imation algorithms for maximum separable assignment problems. Mathematics of Operations
Research, 36(3):416–431, 2011.

24 Negin Golrezaei, Ilan Lobel, and Renato Paes Leme. Auction design for roi-constrained buyers.
In Proceedings of the Web Conference 2021, WWW ’21, pages 3941–3952, 2021.

25 Auto-bidding products support page. https://support.google.com/google-ads/answer/
2979071, 2022. Accessed: 2023-07-12.

26 Anupam Gupta and Marco Molinaro. How the experts algorithm can help solve LPs online.
Math. Oper. Res., 41(4):1404–1431, 2016.

27 Johan Håstad. Clique is hard to approximate within n1−ϵ. In Proceedings of 37th Conference
on Foundations of Computer Science, pages 627–636, 1996.

28 Zhiyi Huang, Qiankun Zhang, and Yuhao Zhang. Adwords in a panorama. In 2020 IEEE 61st
Annual Symposium on Foundations of Computer Science (FOCS), pages 1416–1426, 2020.

29 Kristen Kessel, Ali Shameli, Amin Saberi, and David Wajc. The stationary prophet inequality
problem. In Proceedings of the 23rd ACM Conference on Economics and Computation, pages
243–244, 2022.

30 Thomas Kesselheim, Klaus Radke, Andreas Tönnis, and Berthold Vöcking. Primal beats dual
on online packing lps in the random-order model. SIAM J. Comput., 47(5):1939–1964, 2018.

31 Aranyak Mehta. Auction design in an auto-bidding setting: Randomization improves efficiency
beyond VCG. In Proceedings of the ACM Web Conference 2022, pages 173–181, 2022.

32 Aranyak Mehta, Amin Saberi, Umesh Vazirani, and Vijay Vazirani. Adwords and generalized
online matching. Journal of the ACM (J.ACM), 54(5):22, 2007.

33 Joseph (Seffi) Naor, Aravind Srinivasan, and David Wajc. Online dependent rounding schemes.
arXiv preprint arXiv:2301.08680, 2023.

34 Christos Papadimitriou, Tristan Pollner, Amin Saberi, and David Wajc. Online stochastic
max-weight bipartite matching: Beyond prophet inequalities. In Proceedings of the 22nd ACM
Conference on Economics and Computation, pages 763–764, 2021.

https://doi.org/10.1145/1566374.1566384
https://doi.org/10.1145/2213977.2213992
https://doi.org/10.1145/1993574.1993581
https://doi.org/10.1145/1993574.1993581
https://www.facebook.com/business/help/1619591734742116
https://www.facebook.com/business/help/1619591734742116
https://doi.org/10.1007/978-3-642-15775-2_16
https://support.google.com/google-ads/answer/2979071
https://support.google.com/google-ads/answer/2979071

K. Bhawalkar, Z. Feng, A. Gupta, A. Mehta, D. Wajc, and D. Wang 13:19

35 Sebastian Perez-Salazar, Mohit Singh, and Alejandro Toriello. The iid prophet inequality with
limited flexibility. arXiv preprint arXiv:2210.05634, 2022.

36 David Zuckerman. Linear degree extractors and the inapproximability of max clique and
chromatic number. In Proceedings of the thirty-eighth annual ACM symposium on Theory of
computing, pages 681–690, 2006.

A Online Algorithms: Approximating the Offline Optimum

In this section we look at the lower and upper bounds of the competitive ratio for online
algorithms, i.e. the approximation of the ex-post optimum allocation’s value, and we consider
both the adversarial and i.i.d. cases.

Adversarial arrival. In this setting, we note that no online algorithm can be o(T)-competitive.
To see this, consider the unit-ρ instance where the first T − 1 arriving items have value 1− ε

for all n = T buyers, followed by a single item at the end with value 1 + εT for a single
adversarially chosen buyer and value 0 for all other buyers. Any online algorithm cannot
allocate any of the first T − 1 items due to the average-value constraint, and thus can only
get value 1 + εT from the last item. In contrast, the ex-post optimum can allocate all items
to one buyer and collect value T + 1 − ε. On the other hand, a competitive ratio of T is
trivial to achieve for online AVA, by simply allocating any item i with a P -edge (i, j) greedily
to the buyer j yielding the highest value. This is a feasible allocation and has value equal to
the highest-valued edge in the T -item instance, which is obviously at least a 1/T fraction of
the optimal allocation’s value.

The rest of this section will therefore be dedicated to AVA with i.i.d. arrivals, as in Section 5,
but now focusing on approximating the ex-post optimum. We start with the following result
lower bounding the competitive ratio.

▶ Lemma 26. There exists a family of uniform online i.i.d. unambiguous unit-ρ AVA
instances with n = m = T ≥ 2 growing, on which every online algorithm’s approximation
ratio of the ex-post optimum is at least Ω

(ln n
ln ln n

)
= Ω

(ln m
ln ln m

)
= Ω

(ln T
ln ln T

)
.

Proof. Let ε = 1
T . Consider an instance with T buyers j1, . . . , jT , where all buyers have

ρ = 1, and T item types. Each item type i ∈ [T − 1] is an N -item, with value 1− ε for buyer
ji and value zero for all others. (So, buyer jT has zero value for all N -items.) The single
P -item type T has value 1 + εT for all buyers. The T arrival types are drawn uniformly from
these T types, and consequently there is a single arrival of each type in expectation. Now,
an online algorithm (that guarantees average-value constraints in any outcome) can only
allocate N -items to a buyer after the buyer was allocated a P -item. But since each N -item
appears only once in expectation (and hence at most once after the arrival of a P -item
type), each allocation of a P -item (and N -items) to a buyer yields expected value at most
1 + εT + 1− ε = 3− ε to an online algorithm. Since only one P -item arrives in expectation,
an online algorithm accrues value at most 3− ε in expectation on this instance family.

In contrast, the event E that a single P -item arrived satisfies Pr[E] = T · 1
T · (1−

1
T)T −1 ≥

(1 − 1
T)T ≥ 1

4 . Conditioned on E , we have a multi-nomial distribution for the number of
arrivals Ai’s of the N -item types. Therefore, by standard anti-concentration arguments for
the classic balls and bins process [6], we have

Pr

[
max

i
Ai ≥

ln T

ln ln T
− 1

∣∣∣∣ E]
= 1− o(1).

APPROX/RANDOM 2024

13:20 The Average-Value Allocation Problem

Consequently, the offline algorithm which, if event E occurs, allocates the single P -item and
all copies of i⋆ := arg maxi Ai to ji⋆ yields expected value at least E[maxi Ai | E] · Pr[E] =
Ω

(ln T
ln ln T

)
. Consequently, this asymptotic ratio also lower bounds any online algorithm’s

approximation ratio of the ex-post optimum. The full lemma statement follows, since
n = m = T . ◀

A.1 A matching algorithm assuming constant expected arrivals
Lemma 26 relied on anti-concentration. If the expected number of arrivals Ai of each item
type i is at least some constant Γ > 0, namely E [Ai] = qi · T ≥ Γ (e.g., in Lemma 26 we
had qi · T = 1 for every i), then this anti-concentration is tight. In particular, we have the
following, by standard Chernoff bounds and union bound (see the full version for proof).

▶ Observation 27. If E [Ai] ≥ Γ for all i ∈ [m] and κ := 6
min(1, Γ) ·

ln T
ln ln T , then

Pr
[
max

i
Ai ≥ κ · qi · T

]
≤ 1

T 2 .

We will show that if the distribution satisfies the assumption on all E [Ai] ≥ Γ = Θ(1),
we can show an asymptotically matching upper-bound O(ln T

ln ln T) of the competitive ratio.
Our first ingredient towards this proof will, naturally, be another LP, this time capturing

possible anti-concentration of arrivals. Similar to (OPTon-Bundle-LP), the LP has one
variable xijp for each item type i ∈ [m], buyer j ∈ [n] and item type p such that (p, j) is a
P -edge.

max
∑
i,j,p

vij xijp (OPToff-Bundle-LP)

s.t.
∑

i

(ρj − vij) xijp ≤ 0 ∀ P -edge type (p, j) (A.13)∑
jp

xijp ≤ 2 · ⌈qi · T ⌉ ∀ item type i (A.14)

xijp ≤ xpjp · ⌈qi · T · κ⌉ ∀ N -edge type (i, j), P -edge type (p, j) (A.15)
xp′jp = 0 ∀ P -edge types (p, j) ̸= (p′, j) (A.16)
xijp ≥ 0 ∀ item type i, P -edge type (p, j)

▶ Lemma 28. Fix an AVA instance with i.i.d. arrivals satisfying qi · T ≥ Γ = Θ(1)
for all i ∈ [m]. Let OPT be the ex-post optimal value and let V [OFF] be the value of
(OPToff-Bundle-LP). Then,

E [OPT] ≤ O(V [OFF]).

Proof. By Lemma 16, we can restrict to the optimal ex-post bundling-based solution and
just lose a factor of 2 in the approximation ratio. We start with a trivial upper-bound on
the value of OPT in any outcome of the i.i.d. arrivals. Consider the instance with exactly
one copy of each item type from the support of the distribution. The best bundling-based
offline solution for this instance is upper-bounded by (Bundle-LP) (Lemma 16), and this
value is clearly upper bounded by V [OFF] since the constraints for (Bundle-LP) are tighter
than those of (OPToff-Bundle-LP). Under T i.i.d. arrivals, each item can appear at most
T times, and thus by the Supply Lemma (Lemma 12) applied to the instance with a single
occurrence per item type, we find that the following bound holds deterministically.

OPT ≤ O(T 2) · V [OFF].

K. Bhawalkar, Z. Feng, A. Gupta, A. Mehta, D. Wajc, and D. Wang 13:21

Next, let E be the event that no item type i has more than ⌈qi · T · κ⌉ arrivals. By
Observation 27, Pr [E] ≥ 1− 1

T 2 . Conditioned on E , consider the expected number of times
(over the randomness of the i.i.d. arrivals) that the ex-post optimal bundling-based solutions
allocate an item of type i to a copy of bundle jp, and denote this value by xijp. We will argue
that such xijp’s form a feasible solution for (OPToff-Bundle-LP). Since the expected value
of the ex-post optimal bundling-based solution conditioned on E is simply

∑
i,j,p vij xijp,

this immediately gives that E [OPT | E] ≤ 2 · V [OFF].
The proof that xijp constructed above is feasible follows essentially the same argument

as Lemma 22. The average-value constraint (A.13) holds by linearity of expectation because
the ex-post (bundling-based) optimum for any outcome satisfies the average-value constraint.
Constraint (A.14) holds since the expected times we allocate items of type i cannot exceed
i’s expected number of occurrences, which is bounded by E [Ai | E] ≤ E[Ai]

Pr[E] ≤
qi·T

1−1/T 2 ≤
2 · qi · T ≤ 2 · ⌈qi · T ⌉. Constraint (A.15) holds since whenever a bundle jp is opened in the
ex-post optimum for any outcome, conditioned on E we have at most qi · T · κ items of type
i, which is a trivial upperbound on how many items of type i can be allocated to bundle jp,
and thus cap the ratio between xijp and xpjp.

Combining the above arguments together with linearity of expectation, the lemma follows.

E [OPT] = E [OPT|E] · Pr [E] + E
[
OPT|E

]
· Pr

[
E

]
≤ O(V [OFF]). ◀

We make the simple observation that (OPTon-Bundle-LP) and (OPToff-Bundle-LP) only
differ at the RHS of the constraints, with the most crucial difference being in the constraints
upper bounding xijp/xpjp, where they differ by a factor of ⌈qi·T ·κ⌉

qi·T = O(κ) (using that
Γ = Ω(1)). As we prove in the full version, scaling down any feasible solution of the latter
LP by O(κ) yields a feasible solution to the former LP, leading to the following observation.

▶ Observation 29. Fix an AVA instance with i.i.d. arrivals, satisfying qi · T ≥ Γ = Θ(1)
for all item type i. Then, V [OFF] and V [ON], the values of (OPToff-Bundle-LP) and
(OPTon-Bundle-LP) (respectively) satisfy V [OFF] ≤ O

(ln T
ln ln T

)
· V [ON]

In our proof of Theorem 25, we showed that Algorithm 2 achieves value at least Ω(V [ON]).
Consequently, Lemma 28 and Observation 29 imply the following result.

▶ Theorem 30. Algorithm 2 is an O
(ln T

ln ln T

)
-competitive online algorithm for AVA under T

known i.i.d. arrivals with each item type arriving an expected constant number of times.

▶ Remark 31. Under the stronger assumption that E [Ai] = qi ·T = Ω(ln(mT)/ε2) for each of
the m item types i (e.g., if T grows while the distribution {qi} remains fixed), the number of
arrivals of each item is more concentrated: it is E [Ai] · (1± ε) w.h.p. Consequently, natural
extensions of the arguments above, with a smaller blow-up of the RHS of the constraints
in (OPTon-Bundle-LP), imply that Algorithm 2’s competitive ratio improves to O(1) in this
case.

B Hardness Results

In this section we provide hardness of approximation results for AVA and stark impossibility
results for the generalization to GenAVA.

B.1 Max-Coverage hardness of AVA
Here we prove that AVA is as hard as the Max-Coverage problem, even if restricted to the
unit-ρ case.

APPROX/RANDOM 2024

13:22 The Average-Value Allocation Problem

▶ Theorem 32 (Hardness of AVA). For any constant ε > 0, it is NP-hard to approximate
AVA to a factor better than

(
e

e−1 + ε
)

even for unit-ρ instances.

Proof. We give a reduction from “balanced” instances of the Max-Coverage problem.
Such an instance consists of a set system with n elements and m sets, with each set containing
n/k elements. A classic result of [21] shows that for each δ > 0, there exist n and k ≤ nδ,
such that it is NP-hard to distinguish between the following two cases: (a) there exists a
perfect partition, i.e., k sets in the set system that cover all n elements (YES-instances),
and (b) no collection of k sets from the set system cover more than n(1− 1/e + δ) elements
(NO-instances). We now define a unit-ρ AVA instance consisting of:
1. m buyers, where each buyer iS corresponds to a set S in the set system,
2. k identical choice items, which have value 1 + (ε/2) · n/k for every buyer, and
3. n distinct element items, one for each element e, which has value 1− (ε/2) for the buyers

iS such that set S contains element e, and value zero for the other buyers.

For a YES-instance of Max-Coverage, there is a solution with value k + n: we can
assign both the choice and element items to the buyers corresponding to the k sets in
the perfect partition, thereby getting us value n + k. (The excess for each choice item
can subsidize the deficit for the n/k element items assigned to that buyer.) On the other
hand, for a NO-instance, the k buyers/sets selected by the choice items can give value
k and also subsidize at most n(1 − 1/e + δ) element items with deficit. (No other items
with deficit can be chosen.) Setting δ = ε/2 means the NO-instances have value at most
k + n(1− 1/e + δ) + nε/2 ≤ n(1− 1/e + ε). This gives a gap between instances with value at
least n and at most n(1− 1/e + ε), proving the theorem. ◀

B.2 Clique hardness of GenAVA
Next, we prove that approximating GenAVA defined in (1.2) is as hard as approximating the
maximum independent set number in a graph. Recall that the objective in GenAVA is to
maximize welfare

∑
ij vijxij subject to the more general return-on-spend (ROS) constraints:

∀j,
∑

i

vij xij ≥ ρj ·
(∑

i

cij xij

)
. (B.17)

Without loss of generality, we scale cij and ensure that all ρj = 1. We show the hardness even
for the case where costs depend only on the items, i.e., cij = ci for each item i. (The case
where cij = cj for each buyer j is much easier – equivalent to the AVA problem – because we
can just fold the cj term into the ρj threshold.)

▶ Theorem 33 (Hardness of GenAVA). For any constant ε > 0, it is NP-hard to approximate
GenAVA for n-buyer instances with Ω(n2) items to better than a factor of n1−ε.

The proof uses a reduction from the Maximum Independent Set problem. The reduction
proceeds as follows: given a graph G = (V, E) with |V | = n, define M := 2|E|/nε, and
construct the following GenAVA instance.
1. For each vertex v ∈ V , there is a buyer jv with ρjv

= 1.
2. For each vertex v ∈ V , there is a vertex item iv with item cost ci := M + deg(v), where

deg(v) is v’s degree in G; it has value M for the buyer jv, and zero value for all other
buyers.

3. For each edge e = (u, v) ∈ E, there is an edge item ie having zero cost; it has value 1 for
buyers ju and jv, and zero value for all others.

K. Bhawalkar, Z. Feng, A. Gupta, A. Mehta, D. Wajc, and D. Wang 13:23

Proof of Theorem 33. If vertex item iv is allocated to buyer jv, then by the constraints
above, all edge items je with e ∋ v must be allocated to iv. Thus, the set of vertices U ⊆ V

whose buyers are sold their respective vertex item is an independent set in G. Conversely, U

can be taken to be any independent set. Thus, the maximum value obtained by allocating
vertex items is precisely M · α(G). On the other hand, any optimal allocation must allocate
all edge items, as this does not violate any of the ROS constraints. Combining the above, we
have that OPT = α(G) ·M + |E|, where α(G) is the independence number of G, i.e., the
size of the maximum independent set of G.

Finally, we use the result that for any constant ε > 0, it is NP-hard to distinguish
between the following two scenarios for an n-node graph G: (a) G contains a clique on
n1−ε nodes (YES instances), and (b) G contains no clique on nε/2 nodes (NO instances)
[27, 36]. This means that it is NP-hard to distinguish between instances of GenAVA with
value at least n1−ε ·M (corresponding to YES instances) from those with value at most
(nε/2) ·M + |E| = nε ·M corresponding to the NO instances, and hence proves the claim. ◀

The above hardness construction can, with small changes, show the following hardness
results. We defer these additional results’ proofs, as well as algorithms showing the (near)
tightness of our lower bounds for general GenAVA, to the full version.

▶ Theorem 34 (Hardness of i.i.d. GenAVA). For any constant ε > 0, it is NP-hard to n1−ε-
approximate GenAVA in n-buyer instances with poly(n) items drawn i.i.d. from a known
distribution.

▶ Theorem 35 (Hardness of Bicriteria GenAVA). For any ε > 0, it is NP-hard to obtain a
solution (which can even be infeasible) to GenAVA that achieves an objective value at least
Ω̃(
√

ε) times the optimal value (i.e. an Õ(1/
√

ε)-approximation), while guaranteeing the cost
for each buyer is at most 1 + ε times their total value, assuming the UGC.5

5 As usual, the soft-Oh notation hides polylogarithmic factors in its argument: i.e., Õ(f) = f · poly log(f).

APPROX/RANDOM 2024

Scheduling on a Stochastic Number of Machines
Moritz Buchem #

Technische Universität München, Germany

Franziska Eberle #

Technische Universität Berlin, Germany

Hugo Kooki Kasuya Rosado #

Technische Universität München, Germany

Kevin Schewior #

University of Southern Denmark, Odense, Denmark

Andreas Wiese #

Technische Universität München, Germany

Abstract
We consider a new scheduling problem on parallel identical machines in which the number of
machines is initially not known, but it follows a given probability distribution. Only after all jobs
are assigned to a given number of bags, the actual number of machines is revealed. Subsequently,
the jobs need to be assigned to the machines without splitting the bags. This is the stochastic
version of a related problem introduced by Stein and Zhong [SODA 2018, TALG 2020] and it is, for
example, motivated by bundling jobs that need to be scheduled by data centers. We present two
PTASs for the stochastic setting, computing job-to-bag assignments that (i) minimize the expected
maximum machine load and (ii) maximize the expected minimum machine load (like in the Santa
Claus problem), respectively. The former result follows by careful enumeration combined with known
PTASs. For the latter result, we introduce an intricate dynamic program that we apply to a suitably
rounded instance.

2012 ACM Subject Classification Theory of computation → Scheduling algorithms

Keywords and phrases scheduling, approximation algorithms, stochastic machines, makespan,
max-min fair allocation, dynamic programming

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.14

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2407.15737

Funding Franziska Eberle: Supported by the Dutch Research Council (NWO), Netherlands Vidi
grant 016.Vidi.189.087.
Kevin Schewior : Supported by the Independent Research Fund Denmark, Natural Sciences, grant
DFF-0135-00018B.

1 Introduction

Stein and Zhong [20] recently introduced scheduling problems in which the number of the
given (identical) machines is initially unknown. Specifically, all jobs must be assigned to a
given number of bags before the actual number of machines is revealed. When that happens,
the bags cannot be split anymore and they have to be assigned to the machines as whole
bags, optimizing some objective function. Such problems arise, e.g., when “bundling” jobs to
be scheduled in data centers, where the number of available machines depends on external
factors such as momentary demand [4, 20].

The aforementioned work (as well as follow-up works [1, 5]) focused on the robustness of
a job-to-bag assignment. Specifically, they assumed a worst-case number of machines and
compared their solution with the in-hindsight optimum for the respective objective function,

© Moritz Buchem, Franziska Eberle, Hugo Kooki Kasuya Rosado, Kevin Schewior, and Andreas Wiese;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 14; pp. 14:1–14:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:m.buchem@tum.de
https://orcid.org/0000-0002-1590-346X
mailto:f.eberle@tu-berlin.de
https://orcid.org/0000-0001-8636-9711
mailto:hugo.rosado@tum.de
https://orcid.org/0000-0002-8881-9699
mailto:kevs@sdu.dk
https://orcid.org/0000-0003-2236-0210
mailto:andreas.wiese@tum.de
https://orcid.org/0000-0003-3705-016X
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.14
https://arxiv.org/abs/2407.15737
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Scheduling on a Stochastic Number of Machines

i.e., a direct job-to-machine assignment without bags. In contrast to this information-
theoretic question, we assume that a distribution of the number of machines is known (e.g.,
from historical data) and aim to efficiently compute a job-to-bag assignment that optimizes
the objective function in expectation – a common formulation of the objective function for
stochastic (scheduling) problems [4, 9, 10, 14, 15, 17, 18]. In other words, we use a “fairer”
benchmark for our algorithms, allowing us to sidestep the strong lower bounds by [20]. We
are the first to study this novel type of scheduling problem, already proposed in [20].

We consider two classic objective functions: minimizing the maximum machine load
(makespan) and maximizing the minimum machine load (Santa Claus). Both objectives
are well-studied in the deterministic setting, the special case of our problem with one-point
distributions, i.e., the distributions in which only one event happens with positive probability.
These problems are well understood from a classic approximation perspective: both are
known to be strongly NP-hard [7] and both admit Polynomial-Time Approximation Schemes
(PTASs) [11, 21], i.e., polynomial-time (1 + ε)-approximation algorithms for any ε > 0. In
this paper, surprisingly, we recover the same state for the stochastic versions by designing a
PTAS in both cases. In contrast to the deterministic setting, we require different techniques
tailored to each objective function. For the makespan minimization objective, our main
technical contribution is the application and analysis of techniques that have previously been
used in approximation schemes for deterministic scheduling and packing problems. Our
approach for the Santa Claus objective is technically much more intriguing and requires the
careful set-up of a novel dynamic program (DP) in order to control its size.

Our results are in stark contrast to classic stochastic scheduling problems, where in some
cases the currently best known approximation algorithms have distribution-dependent or even
linear guarantees [14, 18]. Even for better-understood problems such as load balancing of
stochastic jobs on deterministic machines, previous approaches [4, 9, 15] rely on concentration
bounds which inherently prohibit approximation ratios of 1 + ε for arbitrarily small ε > 0.
Moreover, PTASs for stochastic load balancing on deterministic machines are only known for
identical machines and Poisson distributed jobs [2, 13]. We hope that our positive results
inspire research for other scheduling problems with a stochastic number of machines, even for
(in the classic model with jobs with stochastic processing times) notoriously hard objective
functions such as expected weighted sum of completion times.

1.1 Our Contribution and Techniques
Our first result is the following.

▶ Theorem 1. There is a PTAS for the problem of computing the job-to-bag assignment that
minimizes the expected maximum machine load.

We first guess the bag sizes of the optimal solution up to a factor of 1 + ε. For each
guess, we check whether there is a corresponding assignment of the jobs to the bags (up to a
factor of 1 + ε), using the PTAS for bin packing with variable sizes [12]. Among the guesses
that fulfill this condition, we can select the (approximately) best guess using the PTAS for
makespan minimization [11].

For this approach to yield a PTAS, we need to bound the number of guesses by a
polynomial (in the input length). First note that it is straightforward to get down to a
quasi-polynomial number of guesses (and thus a QPTAS). The approach is to disregard jobs
of size (ε/n) · pmax where pmax is the largest processing time; indeed, for any solution, such
jobs make up at most an ε-fraction of the objective-function value. The resulting number of
possible guesses for a single bag size is then logarithmic in n, leading to a quasi-polynomial

M. Buchem, F. Eberle, H. K. Kasuya Rosado, K. Schewior, and A. Wiese 14:3

number of guesses for the (multi-)set of bag sizes. To get a polynomial bound (and thus
a PTAS), we make the following crucial observation. Let C be an estimate for the largest
bag size, up to a constant factor. While bags of size O(εC) cannot be disregarded, it is
enough to know their number rather than approximate size. Intuitively, when computing a
bag-to-machine assignment, these bags are treated like “sand”, i.e., as infinitesimal jobs of
total volume equal to the total volume of those bags. The number of possible (rounded) bag
sizes is hence constant, leading to a polynomial number of guesses for the (multi-)set of bag
sizes.

Our second result is significantly harder to achieve.

▶ Theorem 2. There is a PTAS for the problem of computing the job-to-bag assignment that
maximizes the expected minimum machine load.

One may be tempted to try a similar approach as for our first result. Even getting a
QPTAS is, however, not possible in the same way as one cannot simply disregard jobs of
size (ε/n) · pmax. Consider an instance in which the number of machines is deterministically
M and in which there are one job of size 1 and M − 1 jobs of size ε/(2M). Here, ignoring
the jobs of size ε/(2M) leads to M − 1 empty bags, yielding an objective function value of 0
instead of the optimal value ε/(2M).

Also, it is no longer true either that for bags of size O(εC) (where C is the size of a largest
bag) it is enough to know their total number: Consider an instance with optimal objective-
function value Opt and add one huge job of size Opt/ε2 to the set of jobs and one machine
to each scenario. Clearly, this new instance has maximum bag size C ≥ Opt/ε2 while the
optimal objective-function value does not change since this huge job can safely be packed
in its private bag and scheduled on its private machine. (However, crucially for the PTAS
for makespan minimization, adding this huge job there would change the objective-function
value.) In this example, the probability that scenarios with optimal objective-function value
much smaller than εC occur is 1. To obtain a (1 + ε)-approximation, however, one still has
to compute a (1 + ε)-approximation for the original instance, for which the sizes of bags of
size O(εC) are relevant. Of course, the issue with this particular instance could be avoided
by removing the huge job in a pre-processing step. However, by concatenating the above
original instance at super-constantly many different scales, one can create a new instance
where one essentially has to identify the “relevant scales” in a preprocessing step.

In some sense, the first step of proving Theorem 2 is addressing precisely the problem
of identifying the correct scales: We show that, at a loss of 1 + O(ε) in the approximation
guarantee, the problem can be reduced to the case of polynomially bounded processing times
that are all powers of 1 + ε. To do so, we define suitable (non-trivial) subproblems and
assemble them to a global solution with a dynamic program (DP). This approach can be
seen as a simpler version of our approach for polynomially bounded processing times, which
we focus on in the following.

Our general approach is to divide the range of possible bag sizes into intervals that contain
Oε(1) possible approximate bag sizes each. For each such interval, it is then possible to guess
the set of bags of the respective size in polynomial time. Considering the same range for sizes
of jobs, rather than bags, we would also be able to guess the assignment of these jobs to these
bags. Observe that a job may, of course, be assigned to a bag whose size lies in a different
interval than the job’s size. However, we argue that the precise assignment is only relevant
when these intervals are neighboring intervals and, hence, can be guessed in polynomial
time. If this is not the case, i.e., if jobs are assigned to a bag whose size lies in a much
larger interval, then such jobs are sufficiently small for us to only consider their total volume.
The resulting parameters, such as number of bags created so far and the assignment of

APPROX/RANDOM 2024

14:4 Scheduling on a Stochastic Number of Machines

smaller jobs to larger intervals, through which the subproblems corresponding to the intervals
interact, are kept track of by a DP. While it is straightforward to keep track of all bags from
larger intervals as well as the assignment of jobs from these intervals to the bags, it is not
clear how to do this with a polynomial-time DP. In particular, when we consider bag sizes of
one interval, we still need to remember previously defined bags of much larger sizes with a
super-constant number of possibilities for these sizes. In fact, we show that it is sufficient to
keep track of a constant number of parameters that capture all necessary information about
larger intervals. Using that the processing times are polynomially bounded, we can bound
the size of the DP table by a polynomial in the encoding of the input.

When considering a DP cell corresponding to some interval and guessing bag sizes along
with the other parameters implied by the discussion above, we need to evaluate the quality
of this guess. To do so, we guess additional parameters (also kept track of by the DP). The
main observation is as follows. Suppose that, in addition to the aforementioned parameters,
we know the relevant range of the number of machines and the bag sizes from the next-lower
interval. For each number of machines in the aforementioned range, we assign each bag

(i) from a higher interval to one machine each,
(ii) from the two currently relevant intervals optimally, and
(iii) from the lower intervals fractionally (the total volume of these bags can be approxim-

ated).
The reason we may do so is that the bags assigned in (i) are large enough to assign enough load
to an entire machine and the bags assigned in (iii) are small enough to be considered fractional.

We remark that for both problems considered, a PTAS is the best possible approximation
algorithm achievable when the number of bags (and machines) is part of the input, unless
P = NP: Since their strongly NP-hard deterministic counterparts [8] are special cases of the
stochastic problems, neither makespan minimization nor Santa Claus on stochastic machines
admits fully polynomial time approximation schemes (FPTASs) unless P = NP. If, however,
the number of bags (and machines) is not part of the input, i.e., a constant, a FPTAS can
be designed by directly guessing the bag sizes approximately, i.e., up to a factor of 1 + ε, in
polynomial time and using known FPTASs to compute a job-to-bag assignment based on
these bag sizes [6, 16].

Stein and Zhong [20] also considered a third objective function, minimizing the difference
between the maximum and the minimum machine load. Any polynomial-time approximation
algorithm (in the multiplicative sense) is, however, impossible here unless P = NP. Indeed,
already in the deterministic case, it is strongly NP-hard to decide whether the optimal
objective-function value is 0 (as can be seen, e.g., by a straightforward reduction from
3-Partition).

1.2 Further Related Work

We first review the literature on the aforementioned information-theoretic question in which
one compares with the in-hindsight optimum. Since this benchmark is stronger than ours and
the upper bounds are obtained through polynomial-time algorithms, the upper bounds carry
over to our setting as guarantees of polynomial-time approximation algorithms. Specifically,
for makespan, Stein and Zhong [20] showed how to compute for any ε > 0 a job-to-bag
assignment whose cost is guaranteed to be a factor of at most 5/3 + ε away from the cost of
the in-hindsight optimum. They also showed an impossibility of 4/3. When all jobs have
infinitesimal size, the best-possible guarantee is (1 +

√
2)/2 ≈ 1.207 [5, 20]. For Santa Claus

and infinitesimal jobs, the best-possible guarantee is 2 ln 2 ≈ 1.386 [20].

M. Buchem, F. Eberle, H. K. Kasuya Rosado, K. Schewior, and A. Wiese 14:5

This model has been generalized in two directions. First, Eberle et al. [5] considered
arbitrary machine speeds (rather than just 0 or 1) that are revealed after the bags have been
created. They gave a guarantee of 2 − 1/m with respect to the in-hindsight optimum and
improved guarantees for special cases. Second, Balkanski et al. [1] considered the problem
with arbitrary speeds in the algorithms-with-predictions framework.

In the majority of the scheduling literature, stochastic uncertainty refers to uncertainty
in the processing times of the jobs (see [17] for a survey and [4, 9, 10] for some recent works).
The literature on stochastic uncertainty, even uncertainty in general, in the machines is much
more scattered. Stadje considered the unrecoverable breakdown on a single machine caused
by stochastic jobs [19]. Temporary machine unavailability has also been studied in [3].

2 Preliminaries

Formally, we are given a job set J = [n] := {1, . . . , n}, where each job has a processing
time pj , and a maximum number of machines M . For each 1 ≤ m ≤ M , we are given its
probability qm, where

∑M
m=1 qm = 1. We want to find a partition of the job set J into M

sets, called bags. We denote the set of bags by B. For a bag B ∈ B, let p(B) =
∑

j∈B pj

denote its size. We typically say for j ∈ B that j is packed in bag B.
Clearly, if M ≥ n, we can pack every job in its own private bag, and the problem becomes

trivial. Hence, we assume from now on that M < n.
We denote by Opt(B, m) the optimal objective function value for a given set of bags B and

a scenario with m machines, that is, Opt(B, m) denotes the maximum or minimum machine
load of an optimal bag-to-machine assignment, or schedule, respectively. The objective is
to find a partition or set of bags B that optimizes

∑M
m=1 qmOpt(B, m). We denote a fixed

optimal set of bags by B∗ and its objective function value by Opt :=
∑M

m=1 qmOpt(B∗, m).
As discussed above, the problems we consider are generalizations of strongly NP-hard

problems. Thus, unless P = NP, we cannot expect to find B∗ in polynomial time. Hence,
we are interested in polynomial-time approximation schemes (PTASs), i.e., for each ε > 0, a
polynomial-time (1 + ε)-approximation algorithm. Such an algorithm is required to return a
partition of the job set J into M bags, denoted by B, that satisfies

∑M
m=1 qmOpt(B, m) ≤

(1 + ε)Opt for makespan, and
∑M

m=1 qmOpt(B, m) ≥ 1
1+ε Opt for Santa Claus.

3 Minimizing the maximum machine load

In this section we design and analyze our polynomial-time approximation scheme for the
setting of makespan minimization: For a given number of machines m and a set B of bags,
we want to find an assignment of bags to machines that minimizes the maximum total size
of bags assigned to any machine.

3.1 Algorithm

Let ε > 0; we will give a polynomial-time algorithm that achieves an approximation ratio of
1 + O(ε). This algorithm finds a good estimate of the optimal bag sizes in B∗. To this end,
we show later that the maximum size of a bag in B∗ is at most 4C, where

C :=
M∑

m=1
qm max

{
max
j∈J

pj ,
1
m

∑
j∈J

pj

}
.

APPROX/RANDOM 2024

14:6 Scheduling on a Stochastic Number of Machines

We say a bag B in B∗ is regular if its size is at least εC or if there is at least one job of size at
least ε2C packed in B. For ℓ ∈ L := {⌊log1+ε(ε2C)⌋, ⌊log1+ε(ε2C)⌋ + 1, . . . , ⌈log1+ε(4C)⌉},
the algorithm guesses the number Mℓ of optimal bags with p(B) ∈

[
(1 + ε)ℓ, (1 + ε)ℓ+1)

.
Further, it enumerates all possible numbers Msand of bags of size at most (1 + ε)εC,

called sand bags. These sand bags do not directly correspond to optimal bags, but instead
can pack all jobs not packed in regular bags in Opt.

Clearly, a guess (Mℓ)ℓ∈L combined with Msand sand bags does not necessarily guarantee
that it is feasible, i.e., that Msand +

∑
ℓ∈L Mℓ ≤ M and that there is a partition of J into bags

such that there are at most Mℓ bags with sizes in
[
(1 + ε)ℓ, (1 + ε)ℓ+1)

and Msand bags of size
at most (1 + ε)εC. Thus, the algorithm ignores all combinations of (Mℓ)ℓ∈L and Msand with
more than M bags. If the total number of bags is at most M , the algorithm uses the PTAS
by Hochbaum and Shmoys [12] for bin packing with variable bin sizes to check if there is a
feasible packing of jobs into the bags as follows: The input is ε as approximation parameter,
an item of size pj for each job j ∈ J , Mℓ bins of size (1 + ε)ℓ+1 for any ℓ ∈ L, and Msand bins
of size (1 + ε)εC. If the guess is feasible, the PTAS is guaranteed to return an item-to-bin
(here a job-to-bag) assignment that violates the bin sizes by at most a factor (1 + ε).

If all jobs can be packed by the above PTAS, the algorithm evaluates the current guess by
computing a (1 + ε)-approximation of Opt((Mℓ)ℓ∈L∪{sand}, m), where we overload notation
and let Opt((Mℓ)ℓ∈L∪{sand}, m) denote the minimum makespan for a set of bags consisting
of Mℓ bags of size (1 + ε)ℓ+1, for any ℓ ∈ L, and Msand bags of size (1 + ε)εC. We denote the
makespan of this (1 + ε)-approximation by z((Mℓ)ℓ∈L∪{sand}, m) and compute it by running
the PTAS by Hochbaum and Shmoys [11] for makespan minimization on identical machines
with approximation parameter ε, Mℓ jobs with processing time (1 + ε)ℓ+1, Msand jobs with
processing time (1 + ε)εC, and m machines.

The algorithm returns a feasible minimizer of
∑M

m=1 qmz((Mℓ)ℓ∈L∪{sand}, m).

3.2 Analysis
In this section, we analyze the algorithm designed in the previous section. We start by
justifying our bound on the maximum bag size before we argue that there exists a guess that
is similar to the optimal set B∗ in terms of the bag size and objective-function value. Last,
we evaluate the running time of the algorithm and conclude with the proof of Theorem 1.
For formal proofs we refer to the full version.

We begin by justifying our assumption to only consider bags of size at most 4C =
4

∑M
m=1 qm max

{
maxj∈J pj , 1

m

∑
j∈J pj

}
: By [20], 4C is an upper bound on Opt. As the

largest bag size lower bounds Opt(B, m) in scenario m, this implies the next lemma.

▶ Lemma 3. No optimal solution uses bags of size greater than 4C.

Fix a set of bags B∗ with objective-function value Opt. By Lemma 3, the maximum bag
size is at most 4C. The algorithm guesses a set of bag sizes similar to the bag sizes in B∗.

Based on B∗ we define a “good” guess (M̂ℓ)ℓ∈L∪{sand}, i.e., a set of possible bag sizes, as
follows: Let B∗

R denote the set of regular bags, i.e., the set of bags in B∗ that pack at least
one job of size at least ε2C or have size at least εC.

For ℓ ∈ L, let M̂ℓ be the number of regular bags in B∗
R with p(B) ∈

[
(1 + ε)ℓ, (1 + ε)ℓ+1)

.

Set M̂sand =
⌈∑

B∈B∗\B∗
R

p(B)

εC

⌉
; recall that sand bags have size at most (1 + ε)εC.

Since the sizes of regular bags are only rounded up, the bags in (M̂ℓ)ℓ∈L can pack the
same subset of jobs as B∗

R. Since the volume of any sand bag has been increased by a
(1 + ε)-factor as opposed to εC and the size of any job not packed in a regular bag is at most
ε2C, we show that the bag-size vector M̂ := (M̂ℓ)ℓ∈L∪{sand} is a possible and feasible guess.

M. Buchem, F. Eberle, H. K. Kasuya Rosado, K. Schewior, and A. Wiese 14:7

▶ Lemma 4. The above defined vector M̂ is a feasible guess of the algorithm. The jobs can
be packed into a set of bags consisting of M̂ℓ bags with size (1 + ε)ℓ+1 for ℓ ∈ L and M̂sand
bags with size (1 + ε)εC.

Combining this lemma with Theorem 2 of [12], we get the next corollary.

▶ Corollary 5. The PTAS by [12] returns a packing of all jobs into a set of bags with Mℓ

bags of size (1 + ε)ℓ+2 for ℓ ∈ L and Msand bags of size (1 + ε)2εC.

To prove the next lemma, we first assign the regular bags in the same way as in the
optimal solution and assign the sand bags one by one to the currently least loaded machine.
For bounding the makespan in a given scenario m, we distinguish whether a regular bag
determines the makespan (which increases the makespan by at most a factor (1+ε) compared
to Opt(B∗, m)) or whether a sand bag determines the makespan. In the latter case, we use a
volume bound to upper bound this sand bag’s starting time (losing at most a factor (1 + ε))
and amortize its maximum size, i.e., (1 + ε)εC, over all scenarios, using that

∑M
m=1 qm = 1.

▶ Lemma 6. M̂ = (M̂ℓ)ℓ∈L∪{sand} satisfies
∑M

m=1 qmOpt(M̂, m) ≤ (1 + 5ε)Opt.

Proof of Theorem 1. Using that we return the cheapest guess and that the number of
distinct rounded sizes of regular bags is bounded by O

(1
ε2

)
, we can show the following two

lemmas. Combined, they complete the proof of Theorem 1.

▶ Lemma 7. The set of bags returned by the algorithm guarantees an objective function
value of at most (1 + O(ε))Opt.

▶ Lemma 8. For ε ∈
(
0, 1

2
)
, the algorithm runs in time O

((
n
ε

)O(1/ε2)
)

.

4 Maximizing the minimum machine load

In this section, we present our polynomial-time (1 + ε)-approximation algorithm for the
setting in which we want to maximize the minimum machine load. We refer to the full
version for the formal proofs for the results presented in this section.

Polynomially bounded processing times

First, we show that we can reduce our problem to the case of polynomially bounded job
processing times that are all essentially powers of 1 + ε, while losing at most a factor of
1 + O(ε) in our approximation guarantee. The main concepts of the reduction can be
summarized by the following three ideas.

The first idea is to disregard scenarios whose contribution to the expected objective
function value is very small. W.l.o.g., assume that pj ∈ N and let d be an integer such
that Opt(B∗, m) falls in the interval

[
1,

(
n
ε

)d]
for every scenario m. Then, for some offset

a ∈
{

0, 1, . . . , 1
ε + 3

}
we “split” the interval

[
1,

(
n
ε

)d]
into a polynomial number of pair-

wise disjoint intervals Ĩi =
[(

n
ε

)3i+ i−1
ε +a

,
(

n
ε

)3i+ i
ε +a

)
. Observe that any two consecutive

intervals have a multiplicative gap of
(

n
ε

)3. Using probabilistic arguments, we show that
there is an offset a such that the scenarios with Opt(B∗, m) in the gaps contribute very little
to the expected objective function value. Hence, such scenarios can be neglected by losing a
factor of at most 1 + O(ε) in the approximation ratio. As there is only a polynomial number
of possible offsets a, we may assume that we correctly choose such a by enumeration.

APPROX/RANDOM 2024

14:8 Scheduling on a Stochastic Number of Machines

The second idea is to observe that the gaps enable us to actually ignore a carefully
chosen subset of jobs. Let Ĩ+

i =
[(

n
ε

)3i+ i−1
ε +a−3

,
(

n
ε

)3i+ i−1
ε +a

)
∪ Ĩi denote the extended

interval obtained by the union of the interval Ĩi and the smaller of its adjacent gaps, and
let m be a scenario such that Opt(B∗, m) ∈ Ĩi. We show that, by losing a factor of at most
1 + O(ε) in the approximation ratio, we may assume that a machine with minimum load in
the schedule that achieves Opt(B∗, m) is assigned only bags with jobs whose processing time
is in Ĩ+

i . Then, based on this assumption, we show that we may assume that there are no jobs
whose processing times fall in the gaps by losing at most another factor of 1 + O(ε) in the
approximation ratio. Observe that we are now facing an instance where neither Opt(B∗, m)
nor pj belong to the just created gaps in the interval

[
1,

(
n
ε

)d]
.

The third idea is then to solve the problem restricted to the intervals Ĩi individually by
using the fact that within each interval Ĩi the processing times are polynomially bounded
and combine the obtained solutions into a single one with a dynamic program. We show that
rounding up the processing times and solving each subproblem that arises in the dynamic
program costs a factor of at most 1 + O(ε) in the approximation ratio. Formalizing this
proof sketch proves Lemma 9.

▶ Lemma 9. By losing a factor of at most 1 + O(ε) in the approximation ratio, we can
assume for each job j ∈ J that pj = ⌈(1 + ε)kj ⌉ for some kj ∈ N0 and pj ∈ [1, nc(ε)] where
c(ε) is some global constant.

Algorithmic overview. Based on Lemma 9, we assume that each job j ∈ J satisfies pj ∈
[1, nc(ε)]. The high-level idea of our algorithm is to partition [1, nc(ε)] into intervals of the form
Ik :=

[(1
ε

)3k
,
(1

ε

)3k+3)
for k ∈ N and only consider bags, jobs, and scenarios relevant for a

single interval. More precisely, we use these intervals to partition the processing times {pj}j∈J ,
the bag sizes in B∗ and in our solution as well as the values {Opt(B∗, m)}m. Let K such that∑

j∈J pj ∈ IK ; we ignore intervals Ik with k > K. For k ∈ [K], let Jk := {j ∈ J : pj ∈ Ik},
let Lk :=

{
ℓ ∈ N :

⌈
(1 + ε)ℓ

⌉
∈ Ik

}
, and let B∗

k := {B ∈ B∗ : p(B) ∈ Ik}.
Our algorithm recursively considers the intervals in the order IK , IK−1, ..., I1 and, step

by step, defines bags that correspond to B∗
K , B∗

K−1, ..., B∗
1 . When considering interval Ik,

the algorithm enumerates all possible bag sizes of bags in B∗
k and all possible assignments

of a subset of the jobs in Jk ∪ Jk−1 to those bags; the remaining jobs in Jk are implicitly
assigned to bags in

⋃K
k′=k+1 B∗

k′ . Here, we use the fact that by definition of our intervals
only a constant number of jobs in Jk ∪ Jk−1 can be assigned to any bag in B∗

k while jobs
in Jk are tiny compared to bags in

⋃K
k′=k+2 B∗

k′ (see Figure 1 for visualization) and, hence,
the assignment of jobs Jk to bags

⋃K
k′=k+2 B∗

k′ cannot be guessed in polynomial time. The
remaining jobs in Jk−1 will be assigned when interval Ik−1 is considered. We embed this
recursion into a polynomial-time dynamic program (DP). Since our DP is quite technical, we
first describe the algorithmic steps that correspond to the root subproblem of the recursion,
i.e., IK , before we define the DP cells and argue about their solution. Defining the DP
cells and solving their corresponding subproblem involves enumerating all possible values
of several quantities and storing an approximation of the objective-function value of the
(approximately) best combination in the DP cell. When arguing about the correctness of our
DP, we show that there is a chain of DP cells that represent some (fixed) optimal solution.
Hence, we use X∗ for some parameter X when referring to the correct value, i.e., the value of
this parameter in this optimal solution. We refer to this process as guessing X∗. In general,
we use X̂ to refer to an arbitrary guess.

M. Buchem, F. Eberle, H. K. Kasuya Rosado, K. Schewior, and A. Wiese 14:9

pj p(B1) p(B2) p(B3)

Ik Ik+1 Ik+2

B1

B2

B3

j

j

j

≪ ε p(B3)

{

Figure 1 Visualization of relation between jobs in Jk and bags in B∗
k, B∗

k+1 and
⋃K

k′=k+2 B∗
k′ .

4.1 Guessing initial quantities
In the following, we describe how to guess and evaluate initial parameters corresponding to a
(partial) solution of our root subproblem. Intuitively, we construct a partial assignment of
jobs to bags B∗

K and the parameters representing this partial assignment define the DP cell
corresponding to the remaining problem.

4.1.1 Algorithm
The algorithm to compute a partial solution to a root subproblem can be essentially split
into two phases: (1) guessing key quantities and (2) evaluating these guesses.

Guessing phase. We start by guessing |B∗
K | and |B∗

K−1|, the number of bags in B∗
K and in

B∗
K−1, before we guess (1 + ε)-approximations for the bags sizes in B∗

K ∪ B∗
K−1. Formally, for

each bag B ∈ B∗
K∪B∗

K−1 we guess a value ℓ(B) ∈ N such that p(B) ∈ [(1+ε)ℓ(B), (1+ε)ℓ(B)+1);
we say that such a value ℓ(B) is the size-estimate for B. Next, we guess an assignment of
all jobs in JK and a subset of the jobs in JK−1 to the bags B∗

K and an assignment of the
remaining jobs in JK−1 and of a subset of the jobs in JK−2 to the bags B∗

K−1. Finally, we
guess m

(K)
max which we define to be the largest value m ∈ M for which Opt(B∗, m) ∈ IK .

Evaluation phase. In contrast to the previous section, maximizing the minimum machine
load asks for “covering” a machine or, in our case, a bag. To this end, we potentially
have to assign jobs from

⋃K−2
k′=1 Jk′ to the bags in B∗

K . Formally, for B ∈ B∗
K let p+(B)

be the total size of the jobs from JK and JK−1 already assigned to B. We define S :=∑
B∈B∗

K
max{

⌈
(1 + ε)ℓ(B)⌉ − p+(B), 0}. Our DP also stores this value in order to guarantee

that, in the remainder, jobs from
⋃K−2

k′=1 Jk′ with total size S are assigned to bags in B∗
K . Let

JK−1(B∗
K−1) and JK−2(B∗

K−1) be the subsets of JK−1 and JK−2 already assigned to bags
in B∗

K−1. Then, S̄ :=
∑

B∈B∗
K−1

⌈
(1 + ε)ℓ(B)⌉ − p

(
JK−1(B∗

K−1) ∪ JK−2(B∗
K−1)

)
is the total

volume of bags in B∗
K−1 that needs to be covered with jobs from

⋃K−3
k′=1 Jk′ .

For evaluating our current guess, we fix some m ≤ m
(K)
max and create a set JT of dummy

jobs, each with processing time 1 and total size T :=
∑K−2

k=1
∑

j∈Jk
pj − S − S̄. Now, we

guess the assignment of the bags B∗
K ∪ B∗

K−1 to the machines. Based on the load guaranteed
by these bags, we now greedily distribute these dummy jobs as follows. Assume w.l.o.g.
that the machines are sorted non-decreasingly by their loads and consider the prefix of the
machines which all have the smallest load. We assign to each of these machines the same

APPROX/RANDOM 2024

14:10 Scheduling on a Stochastic Number of Machines

number of dummy jobs such that their new load is equal to the load of the machines with
the second smallest load. We repeat this procedure until all dummy jobs in JT are assigned.
At the end, among all possibilities to assign the bags B∗

K ∪ B∗
K−1, we choose the one which

maximizes the minimum machine load after the distribution of JT . We define Alg(m) as
the load of the least loaded machine for this fixed candidate solution.

Among all guesses with the same set of bag sizes for bags in B∗
K ∪ B∗

K−1, the same
value m

(K)
max and the same values S and S̄, we keep the guess which maximizes our proxy for

the (partial) objective function,
∑m(K)

max
m=1 qm · Alg(m).

4.1.2 Analysis
Observing that |B∗

K | ≤ M ≤ n and |B∗
K−1| ≤ M ≤ n implies that we can enumerate all

possible combinations in time O(n2). Since the relative length, i.e., the ratio of the left
interval border to the right interval border, of IK ∪IK−1 is bounded by

(1
ε

)6, there are at most
Oε(1) possibilities for each size-estimate ℓ(B). By guessing the number of bags with a given
size estimate, we can guess the size-estimates of all bags in B∗

K ∪B∗
K−1 in time nOε(1). Further,

each bag in B∗
K can be assigned at most Oε(1) many jobs from JK ∪ JK−1 and, similarly,

each bag in B∗
K−1 can be assigned at most Oε(1) many jobs from JK−1 ∪ JK−2. Hence, there

is only a constant number of possible assignments for each bag, up to permutations of jobs
with the same size. We formalize these observations in the next lemma.1

▶ Lemma 10. In time nOε(1), we can guess the size-estimate ℓ(B) for each bag B ∈ B∗
K∪B∗

K−1
as well as the assignment of the jobs in JK to the bags B∗

K , of the jobs in JK−1 to the bags
B∗

K ∪ B∗
K−1 and of a subset of jobs in JK−2 to the bags in B∗

K−1, up to a permutation of bags.

First, observe that for each bag B ∈ B∗
K , the value max{⌈(1 + ε)ℓ(B)⌉ − p+(B), 0} ∈ N0

since pj ∈ N for each j ∈ J by Lemma 9. Hence, S accurately captures the total volume
missing to ensure that each B ∈ B∗

K packs jobs with a total size of at least (1 + ε)ℓ(B) ≥ p(B)
1+ε .

Using that each job in
⋃K−2

k=1 Jk is very small compared to a bag in B∗
K , we can argue that

knowing S is actually sufficient to cover B ∈ B∗
K with jobs of total size of at least p(B)

(1+ε)2 .
Similarly, for a bag in B∗

K−1, each job in
⋃K−3

k=1 Jk is very small compared to its size.
Hence, we can again argue that knowing S̄ ∈ N0 is sufficient to pack jobs of total size at least

p(B)
(1+ε)2 into bag B ∈ B∗

K−1.
Observing that no bag in

⋃K−2
k=1 B∗

k can pack a job from JK ∪ JK−1 by definition of their
sizes, we conclude that T indeed represents the total volume of bags in

⋃K−2
k=1 B∗

k. In fact,
we can show that for scenarios with m ≤ m

(K)
max machines any assignment of the remaining

jobs in
⋃K−2

k′=1 Jk′ of total volume at most T
1+ε to at most M − |B∗

K | − |B∗
K−1| bags of size at

most ε
(1

ε

)3K yields the same objective function value (up to a factor of 1 + O(ε)). These
observations are formalized in the next lemma where some jobs are set aside in bags BS and
BS̄ , corresponding to the values S and S̄.

Recall that we use X̂ to denote a possible guess for parameter X considered by our
algorithm.

▶ Lemma 11. Let the guessed quantities be as defined above. Let B′ ∪{BS , BS̄} be a partition
of the jobs

⋃K−2
k′=1 Jk′ into M − |B̂K | − |B̂K−1| + 2 bags such that

for each bag B ∈ B′, p(B) ≤ ε · (1
ε)3K ,

1 For the initial guesses, one could give tighter bounds by observing that |B∗
K | + |B∗

K − 1| = Oε(1).
However, we give polynomial bounds which are sufficient and of the same kind as the bounds we will
use later in the DP.

M. Buchem, F. Eberle, H. K. Kasuya Rosado, K. Schewior, and A. Wiese 14:11

p(BS) ≥ S,
p(BS̄) ≥ S̄, and
p(B′) :=

∑
B∈B′ p(B) ≥ (1 + ε)−1T .

Suppose that B ∈ B̂K ∪B̂K−1 has size in [(1 + ε)ℓ(B), (1 + ε)ℓ(B)+1). We can compute the vec-
tor (Alg(m))m(K)

max
m=1 in polynomial time and Opt(B′ ∪B̂K ∪B̂K−1, m) ∈ [(1+ε)−5Alg(m), (1+

ε)Alg(m)) for each m ≤ m
(K)
max.

Note that the lemma does not state anything about the relationship of Opt(B∗, m) and
Opt(B′ ∪B̂K ∪B̂K−1, m); it relates our proxy function Alg(m) and Opt(B′ ∪B̂K ∪B̂K−1, m),
the best possible assignment for B′ ∪ B̂K ∪ B̂K−1.

In the remaining problem it suffices to focus on scenarios in which we have m > m
(K)
max

machines and which hence satisfy Opt(B∗, m) < (1
ε)3K . Note that for each bag B ∈ B∗

K we
have that p(B) ≥ (1

ε)3K . Therefore, if we are given m > m
(K)
max machines, it is optimal to

assign each bag B ∈ B∗
K to a separate machine without any further bags assigned to that

machine. Hence, if m > m
(K)
max, then the bags in B∗

1 , ..., B∗
K−1 need to ensure only that the

remaining m − |B∗
K | machines get enough load. This insight and the above lemma allow

us to decouple our decisions for scenarios with m ≤ m
(K)
max machines from scenarios with

m > m
(K)
max machines. This is the key idea for our DP.

4.2 Dynamic program
After our initial guesses above, it remains to

pack the jobs in
⋃K−1

k′=1 Jk′ into the bags in B∗
K−1,

compute the bag sizes in B∗
1 , ..., B∗

K−2, and
select jobs from

⋃K−2
k=1 Jk with total size at least S for filling B∗

K .

For each m ≥ m
(K−1)
min := m

(K)
max + 1, our goal is to obtain a value close enough to

Opt(B∗, m) so that, overall, we achieve a value of (1 − O(ε))Opt.
To this end, we design a dynamic program (DP) that solves the remaining problem from

above. Each DP cell corresponds to some subproblem. We show that for each possible guess
of the initial quantities in Section 4.1 there is a DP cell corresponding to the remaining
subproblem. In order to solve each subproblem, we guess similar quantities as in the previous
section and reduce the resulting remaining problem to the subproblem of another DP cell.

4.2.1 Algorithm
Following the same idea as for the root subproblem, our dynamic program proceeds as
follows: for each DP cell we first guess key quantities defining a partial solution as well as
the transition to the next DP cell and then we evaluate this guessed partial solution.

DP cell and its subproblem. Formally, each DP cell C is specified by
k ∈ N with k < K specifying that we still need to define B1, ..., Bk,
Mk+1,...,K ∈ N counting the previously defined (large) bags Bk+1, ..., BK ,
Mk ∈ N representing our decision |Bk| = Mk,
m

(k)
min ∈ N indicating the minimal number of machines we consider,

sℓ ∈ N for ℓ ∈ Lk counting B ∈ Bk with ℓ(B) = ℓ,
aℓ ∈ N for ℓ ∈ Lk counting the jobs j with pj = ⌈(1 + ε)ℓ⌉ that are assigned to bags
in Bk+1,

APPROX/RANDOM 2024

14:12 Scheduling on a Stochastic Number of Machines

S ∈ N, defining the total size of jobs in
⋃k

k′=1 Jk′ that must not be assigned to bags⋃k
k′=1 Bk′ and that are neither assigned to bags in Bk+1 via the values aℓ; instead they

will be assigned to
⋃K

k′=k+1 Bk′ . (Note that we will make sure that even though jobs from
Jk might contribute to S, such jobs will not be used to cover bags in Bk+1.)

The goal of the subproblem of C is to pack a subset of the jobs
⋃k

k′=1 Jk′ into the bags⋃k
k′=1 Bk′ and define a size-estimate ℓ(B) for B ∈

⋃k
k′=1 Bk such that

|Bk| = Mk,
p(B) ∈ Ik′ for each k′ ∈ [k] and each B ∈ Bk′ ,
p(B) ∈ [(1 + ε)ℓ(B), (1 + ε)ℓ(B)+1) for each B ∈

⋃k
k′=1 Bk,

there are sℓ bags B ∈ Bk with ℓ(B) = ℓ for each ℓ ∈ Lk,
each job j ∈ Jk′ for k′ ∈ [k] is either assigned to some bag in Bk′ ∪ ... ∪ Bk or not at all,
there are aℓ jobs j with pj = ⌈(1 + ε)ℓ⌉ that are not assigned to any bag for each ℓ ∈ Lk,
the jobs in

⋃k
k′=1 Jk′ not packed in any bag have total size at least S.

For each DP cell C, we compute a solution and a corresponding objective function value
which we denote by profit(C). This objective function corresponds to the expected profit
from scenarios in {m

(k)
min, ..., M} that we achieve with the solution stored in the DP cell and

Mk+1,...,K “large” bags, i.e., bags B with p(B) ∈
⋃K

k′=k+1 Ik′ .

Guessing phase. By definition of the DP cell, |B∗
k| = Mk. For each ℓ ∈ Lk, there are sℓ

many bags B ∈ B∗
k with ℓ(B) = ℓ (and hence with p(B) ∈ [(1 + ε)ℓ, (1 + ε)ℓ+1)). We start by

guessing the assignment of the jobs Jk−1 ∪ Jk to the bags in B∗
k. We only consider guesses

satisfying the values aℓ and S of our current DP cell, i.e., for every possible processing time in
Ik enough jobs are left to be assigned to B∗

k+1 and enough total volume of jobs in
⋃k

k′=1 Jk′

is left to be assigned to bags in
⋃K

k′=k+1 B∗
k′ . Finally, we guess m

(k)
max which is the largest

value m for which Opt(B∗, m) ∈ Ik.

Evaluation phase. In order to calculate the proxy objective function value profit(C), we
need to combine C with a cell Ĉ corresponding to a DP cell for the remaining problem. To this
end, let us define the parameters of this cell Ĉ. Clearly, we only need to define B1, . . . , Bk−1.
Hence, the first parameter of Ĉ is k − 1. Further, the total number of previously defined
bags is given by M̂k,...,K = Mk + Mk+1,...,K . As we do not ignore scenarios, we choose
m

(k−1)
min := m

(k)
max + 1. Since we have already guessed the assignment of jobs in Jk−1 to bags

in B∗
k, we can simply calculate the values âℓ for ℓ ∈ Lk−1 that indicate the number of jobs j

with pj = ⌈(1 + ε)ℓ⌉ to be assigned to bags in B∗
k.

It remains to calculate the value S̄ ∈ N, the total size of jobs in
⋃k−1

k′=1 Jk′ assigned as very
small jobs to bags in

⋃K
k′=k B∗

k′ . To this end, we calculate the total size of jobs from
⋃k−2

k′=1 Jk′

that need to be packed in B∗
k. For each B ∈ B∗

k, let p+(B) be the total size of the jobs from
Jk−1 ∪ Jk that B already packs. We define Sk :=

∑
B∈B∗

k
max

{⌈
(1 + ε)ℓ(B)⌉ − p+(B), 0

}
.

Denote by Jk(B∗
k ∪ B∗

k+1) the set of jobs from Jk assigned to bags B∗
k and B∗

k+1. Then, S̄ is
defined as S̄ := S −

∑
j∈Jk\Jk(B∗

k
∪B∗

k+1) pj + Sk, where S is defined by the current DP cell C.
(Note that S̄ does not contain jobs from Jk−1 to be assigned to B∗

k as they are accounted for
by âℓ.)

Hence, the remaining problem corresponds to some DP cell Ĉ satisfying

Ĉ =
(

k − 1, Mk+1,...,K + Mk, M̂k−1, m(k)
max + 1, Ŝ ≥ S̄, (ŝℓ)ℓ∈Lk−1 , (âℓ)ℓ∈Lk−1

)
, (1)

where ŝℓ is a possible number of bags with size-estimate ℓ ∈ Lk−1, i.e., with size (1 + ε)ℓ, the
number of bags |B∗

k−1| is given by M̂k−1 =
∑

ℓ∈Lk−1
ŝℓ, and we require that Ŝ is at least S̄.

M. Buchem, F. Eberle, H. K. Kasuya Rosado, K. Schewior, and A. Wiese 14:13

Given profit(Ĉ) for some Ĉ, we can now calculate profit(C) as follows: For each value
m ∈ {m

(k)
min, ..., m

(k)
max}, we compute an estimate Alg(m) of the objective value of an optimal

bag-to-machines assignment of
⋃k

k′=1 B̂k′ and Mk+1,...,K large bags to m machines. To this
end, we use a variant of Lemma 11, which is explained in detail in the full version. Then, the
profit of the candidate combination of C with Ĉ is given by

∑m(k)
max

m=m
(k)
min

qmAlg(m) + profit(Ĉ).
Among all these candidate combinations, we choose the one with the largest profit and set
profit(C) =

∑m(k)
max

m=m
(k)
min

qmAlg(m) + profit(Ĉ).

4.2.2 Analysis
Observe that there are at most Oε(1) many distinct processing times of jobs Jk−1 ∪ Jk and
each bag B ∈ B∗

k contains at most Oε(1) many jobs from each of these processing times
because of the definition of B∗

k, Jk−1, and Jk.
We guess all possible assignments of jobs to a single bag of size at most

(1
ε

)3k+3; typically
such an assignment is called a configuration. There are at most Oε(1) such configurations.
Then, for each configuration and each ℓ with

⌈
(1 + ε)ℓ

⌉
∈ Ik, we guess how often the

configuration is assigned to a bag B with ℓ(B) = ℓ. Following this sketch, the next lemma
proves that we can in fact guess the job-to-bag assignment in polynomial time.

▶ Lemma 12. In time nOε(1) we can guess the assignment of jobs from Jk−1 and Jk to the
bags B∗

k up to permuting jobs and bags.

During the evaluation phase, we try all possible combinations of the current DP cell C
with Ĉ satisfying (1), i.e., DP cells corresponding to the remaining subproblems matching
the parameters of C. We now give a proof sketch of why our guesses combined C indeed
give a feasible solution to the subproblem for k. Let B̂1, . . . , B̂k−1 be the bags given by the
solution to Ĉ and B̂k be the bags corresponding to our guess. (We do not change

⋃k−1
k′=1 B̂k′ .)

We need to assign jobs from
⋃k−1

k′=1 Jk′ to B̂k satisfying
(i) for every bag B ∈ B̂k, p(B) ≥ (1 + ε)ℓ(B)−1 and
(ii) the total processing time of

all jobs in
⋃k−1

k′=1 Jk′ not assigned to bags in
⋃k

k′=1 B̂k′ and
all jobs in Jk neither assigned to B̂k nor reserved by the values aℓ for the bags with
size in Ik+1

is at least S.

Each B ∈ B̂k has already jobs from Jk and Jk−1 of total size p+(B) assigned to it. Let
p−(B) := max

{ ⌈
(1 + ε)ℓ(B)⌉ − p+(B), 0

}
be the missing volume in B to cover B to the

desired level of
⌈
(1 + ε)ℓ(B)⌉. If p−(B) = 0, no additional job from

⋃k−2
k′=1 Jk′ needs to be

assigned to B. Otherwise, we greedily add jobs from
⋃k−2

k′=1 Jk′ not packed in
⋃k−1

k′=1 B̂k′ until
assigning the next job would exceed p−(B). Hence, the total size of jobs

⋃k−2
k′=1 Jk′ assigned

to B by this routine is at least p−(B) −
(1

ε

)3k−6. Thus,

p(B) ≥ p+(B) + p−(B) −
(

1
ε

)3k−6
= (1 + ε)ℓ(B) −

(
1
ε

)3k−6
≥ (1 + ε)−1(1 + ε)ℓ(B)

since by definition (1 + ε)ℓ ≥ 1
ε ·

(1
ε

)3k−6 for all ℓ ∈ Lk.
By choice of Ĉ, the total size Ŝ of jobs in

⋃k−1
k′=1 Jk′ neither assigned to bags in

⋃k−1
k′=1 B̂k′

nor reserved for Bk via the values (âℓ)ℓ∈Lk−1 is at least S̄. With the definition of S̄, we get

Ŝ ≥ S̄ = S −
∑

j∈Jk\Jk(B̂k∪B̂k+1)

pj + Sk = S −
∑

j∈Jk\Jk(B̂k∪B̂k+1)

pj +
∑

B∈B̂k

p−(B) .

APPROX/RANDOM 2024

14:14 Scheduling on a Stochastic Number of Machines

We remark that the second term indeed corresponds to the contribution of jobs from Jk

to filling bags with sizes in
⋃K

k′=k+1 Ik′ since such jobs cannot be packed into
⋃k−1

k′=1 B̂k

by definition of the corresponding sizes. Observe that the greedy procedure described
above assigns jobs from

⋃k−2
k′=1 Jk′ with total volume at most p−(B) to B ∈ B̂k. Hence, the

combination of our guess B̂k (and the guessed partial assignment of Jk−1 ∪ Jk to B̂k) and
the solution for Ĉ is indeed a feasible solution for C.

Similar to the proof of Lemma 11, we show that for any candidate solution (consisting of
a guess B̂k, a partial assignment of Jk ∪ Jk−1, and any solution for Ĉ as defined in (1)), we
can calculate the values Alg(m) for m ∈ {m

(k)
min, . . . , m

(k)
max} in polynomial time such that

Alg(m) is within a factor (1 + O(ε)) of the optimal assignment given the same set of bags.
This is formalized in the next lemma.

▶ Lemma 13. Let B̂k, m
(k)
max and the job-to-bag assignment of Jk ∪ Jk−1 to B̂k be guesses

as defined. Further, let Ĉ satisfy (1) and suppose that the bag sizes in B̂k−1 are given by
(ŝℓ)ℓ∈Lk−1 . Let B′ ∪ {BŜ} be a partition of the jobs

⋃k−2
k′=1 Jk′ into M − Mk+1,...,K − |B̂k| −

|B̂k−1| + 1 bags such that
for each bag B ∈ B′ we have that p(B) ≤ ε ·

(1
ε

)3k,
p(BŜ) ≥ Ŝ,
p(B′) :=

∑
B∈B′ p(B) ≥ (1 + ε)−1T .

Suppose that each bag B ∈ B̂k ∪ B̂k−1 satisfies p(B) ∈ [(1 + ε)ℓ(B), (1 + ε)ℓ(B)+1) and let
B̂L contain Mk+1,...,K many large bags of size at least

(1
ε

)3k+3. There is a polynomial-
time algorithm that either asserts that our guess is incorrect and cannot be combined with
Ĉ or that computes a vector (Alg(m))m(k)

max

m=m
(k)
min

such that Opt(BL ∪ B̂k ∪ B̂k−1 ∪ B′, m) ∈

[(1+ε)−5Alg(m), (1+ε)Alg(m)) holds for each m ∈ {m
(k)
min, ..., m

(k)
max} for which Opt(BL ∪

B̂k ∪ B̂k−1 ∪ B′, m) ≥ (1 + ε)−1(1
ε)3k.

Further, we can find the best Ĉ that satisfies (1) and can be combined with our guess in
polynomial time.

To compute the final solution, we combine the correct initial guesses with the solution
stored in the DP cell corresponding to the remaining subproblem. This yields a global
solution to the original problem. In order to prove the correctness of our DP, we observe
that for each k ∈ [K − 1] there is a special DP cell for which k is the first parameter and
whose other parameters correspond to the optimal solution (e.g., the assignment of jobs in
Jk to bags in B∗

k+1). We then prove by induction that, for each k ∈ [K − 1], the solution
stored in the corresponding special DP cell yields a profit that is similar to the optimal profit
restricted to scenarios with m ∈ {1, ..., m

(k)
max} machines, using Lemma 13.

5 Conclusion

In this paper, we continue the recent line of research on scheduling with uncertainty in
the machine environment [1, 5, 20] by considering a stochastic machine environment in
which the number of identical parallel machines is only known in terms of a distribution
and the actual number is revealed once the jobs are assigned to bags which cannot be split
anymore. Interestingly, we present polynomial time approximation schemes for minimizing the
makespan as well as maximizing the minimum machine load, which matches their respective
deterministic counterparts from the perspective of approximation algorithms. We believe
that our insights open up many interesting questions for future research such as extending
the current model to the setting with uniformly related machines in which the uncertainty is
modeled in terms of machine speeds as done in [5] from a robustness point-of-view or to the
setting with different (job-based) objectives such as sum of weighted completion times.

M. Buchem, F. Eberle, H. K. Kasuya Rosado, K. Schewior, and A. Wiese 14:15

References
1 Eric Balkanski, Tingting Ou, Clifford Stein, and Hao-Ting Wei. Scheduling with speed

predictions. In International Workshop on Approximation and Online Algorithms (WAOA),
pages 74–89, 2023.

2 Anindya De, Sanjeev Khanna, Huan Li, and Hesam Nikpey. An efficient PTAS for stochastic
load balancing with poisson jobs. In International Colloquium on Automata, Languages, and
Programming (ICALP), pages 37:1–37:18, 2020.

3 Florian Diedrich, Klaus Jansen, Ulrich M. Schwarz, and Denis Trystram. A survey on
approximation algorithms for scheduling with machine unavailability. In Algorithmics of Large
and Complex Networks, pages 50–64, 2009.

4 Franziska Eberle, Anupam Gupta, Nicole Megow, Benjamin Moseley, and Rudy Zhou. Con-
figuration balancing for stochastic requests. In Integer Programming and Combinatorial
Optimization (IPCO), pages 127–141, 2023.

5 Franziska Eberle, Ruben Hoeksma, Nicole Megow, Lukas Nölke, Kevin Schewior, and Bertrand
Simon. Speed-robust scheduling: sand, bricks, and rocks. Math. Program., 197(2):1009–1048,
2023.

6 Leah Epstein and Rob van Stee. Maximizing the minimum load for selfish agents. Theor.
Comput. Sci., 411(1):44–57, 2010.

7 Michael R. Garey and David S. Johnson. Complexity results for multiprocessor scheduling
under resource constraints. SIAM J. Comput., 4(4):397–411, 1975.

8 Michael R. Garey and David S. Johnson. “Strong” NP-completeness results: Motivation,
examples, and implications. J. ACM, 25(3):499–508, 1978.

9 Anupam Gupta, Amit Kumar, Viswanath Nagarajan, and Xiangkun Shen. Stochastic load
balancing on unrelated machines. Math. Oper. Res., 46(1):115–133, 2021.

10 Anupam Gupta, Benjamin Moseley, and Rudy Zhou. Minimizing completion times for
stochastic jobs via batched free times. In ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1905–1930, 2023.

11 Dorit S. Hochbaum and David B. Shmoys. Using dual approximation algorithms for scheduling
problems theoretical and practical results. J. ACM, 34(1):144–162, 1987.

12 Dorit S. Hochbaum and David B. Shmoys. A polynomial approximation scheme for scheduling
on uniform processors: Using the dual approximation approach. SIAM J. Comput., 17(3):539–
551, 1988. doi:10.1137/0217033.

13 Sharat Ibrahimpur and Chaitanya Swamy. Minimum-norm load balancing is (almost) as
easy as minimizing makespan. In International Colloquium on Automata, Languages, and
Programming (ICALP), pages 81:1–81:20, 2021.

14 Sungjin Im, Benjamin Moseley, and Kirk Pruhs. Stochastic scheduling of heavy-tailed jobs. In
Symposium on Theoretical Aspects of Computer Science (STACS), pages 474–486, 2015.

15 Jon M. Kleinberg, Yuval Rabani, and Éva Tardos. Allocating bandwidth for bursty connections.
SIAM J. Comput., 30(1):191–217, 2000.

16 Sartaj K. Sahni. Algorithms for scheduling independent tasks. J. ACM, 23(1):116–127, 1976.
17 Jay Sethuraman. Stochastic scheduling. In Encyclopedia of Algorithms, pages 2110–2113.

Springer, 2016.
18 Martin Skutella, Maxim Sviridenko, and Marc Uetz. Unrelated machine scheduling with

stochastic processing times. Math. Oper. Res., 41(3):851–864, 2016.
19 Wolfgang Stadje. Selecting jobs for scheduling on a machine subject to failure. Discret. Appl.

Math., 63(3):257–265, 1995.
20 Clifford Stein and Mingxian Zhong. Scheduling when you do not know the number of machines.

ACM Trans. Algorithms, 16(1):9:1–9:20, 2020.
21 Gerhard J. Woeginger. A polynomial-time approximation scheme for maximizing the minimum

machine completion time. Oper. Res. Lett., 20(4):149–154, 1997.

APPROX/RANDOM 2024

https://doi.org/10.1137/0217033

Distributional Online Weighted Paging with
Limited Horizon
Yaron Fairstein #

Amazon.com, Haifa, Israel1

Joseph (Seffi) Naor #

Computer Science Department, Technion, Haifa, Israel

Tomer Tsachor #

Computer Science Department, Technion, Haifa, Israel

Abstract
In this work we study the classic problem of online weighted paging with a probabilistic prediction
model, in which we are given additional information about the input in the form of distributions
over page requests, known as distributional online paging (DOP). This work continues a recent line
of research on learning-augmented algorithms that incorporates machine-learning predictions in
online algorithms, so as to go beyond traditional worst-case competitive analysis, thus circumventing
known lower bounds for online paging. We first provide an efficient online algorithm that achieves a
constant factor competitive ratio with respect to the best online algorithm (policy) for weighted
DOP that follows from earlier work on the stochastic k-server problem.

Our main contribution concerns the question of whether distributional information over a limited
horizon suffices for obtaining a constant competitive factor. To this end, we define in a natural
way a new predictive model with limited horizon, which we call Per-Request Stochastic Prediction
(PRSP). We show that we can obtain a constant factor competitive algorithm with respect to the
optimal online algorithm for this model.

2012 ACM Subject Classification Theory of computation → Caching and paging algorithms; Theory
of computation → Probabilistic computation; Theory of computation → Linear programming

Keywords and phrases Online algorithms, Caching, Stochastic analysis, Predictions

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.15

Category APPROX

Funding Joseph (Seffi) Naor : Supported in part by Israel Science Foundation grant 2233/19 and
United States – Israel Binational Science Foundation (BSF) grant 2033185.

1 Introduction

In the weighted paging problem there is a universe of n pages, where each page has a weight2,
and there is a cache that can hold up to k pages. At each time step a page is requested, and
if the requested page is already in the cache then no cost is incurred, otherwise, the page
must be loaded into the cache, incurring a cost equal to its weight. The goal is to minimize
the total cost incurred.

Paging is one of the earliest and most extensively studied problems in online computation
and competitive analysis [38, 22, 40, 42, 36, 7, 6, 1, 4, 11, 10, 27, 28, 29], including works on
non-standard caching models, e.g., elastic caches [25], caching with time windows [26], caching
with dynamic weights [21], and caching with machine learning predictions [35]. In fact, online
paging has become a focal point for many of the recent developments in competitive analysis,
e.g., the online primal-dual method, projections, and mirror descent [17, 16, 15].

1 Work done while at the Technion before joining Amazon.
2 In the unweighted version of the problem, all weights are equal (unit weights).

© Yaron Fairstein, Joseph Naor, and Tomer Tsachor;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 15; pp. 15:1–15:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yyfairstein@gmail.com
https://orcid.org/0000-0002-9865-9510
mailto:naor@cs.technion.ac.il
mailto:tomer.ts@cs.technion.ac.il
https://orcid.org/0009-0000-1564-216X
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Distributional Online Weighted Paging with Limited Horizon

In their seminal paper, Sleator and Tarjan [38] showed that any deterministic online
algorithm is at least k-competitive and that the LRU policy (Least Recently Used) is exactly
k-competitive for unweighted paging. The k-competitive bound was later generalized to
weighted paging as well [19, 41]. When randomization is allowed, Fiat et al. [22] gave the
elegant randomized marking algorithm for unweighted paging, which is Θ(log k)-competitive
against an oblivious adversary. Bansal et al. [7] gave a Θ(log k)-competitive randomized
algorithm for weighted paging based on the online primal-dual framework [17].

Algorithms with predictions, or learning-augmented algorithms, is an emerging field
of research lying at the intersection of machine learning and foundations of algorithms
(e.g. [5]). The goal is to use machine-generated predictions, that can be either deterministic
or probabilistic, so as to go beyond traditional worst-case competitive analysis, and relax the
overly pessimistic assumption of not having any prior knowledge of the future. This is in line
with recent momentum in deploying machine learning techniques for various applications,
e.g., search, business processes, and health.

The study of online paging with predictions has been a catalyst for the development of
this new field. In an influential paper, Lykouris et al. [35] studied a simple predictor that
provides for each requested page the next time step in which it is requested again, called PRP
(Per-Request Prediction). Clearly, for unweighted paging, PRP suffices for implementing
Belady’s algorithm. Lykouris et al. [35] analyzed the robustness of PRP.

Computationally, weighted paging is a very different problem from unweighted paging,
since it requires more global information about the request sequence to obtain (near) optimal
algorithms. For example, Belady’s local rule suffices to define an optimal offline algorithm
in the unweighted case, while a minimum cost flow procedure is needed for computing an
optimal solution in the weighted case. This is also manifested in the online setting, where
PRP does not improve on the competitive factor in the weighted case [31]. Even with precise
PRP, any deterministic online algorithm remains Ω(k)-competitive, and any randomized
algorithm is Ω(log k)-competitive.

Distributional Online Paging

We focus on probabilistic prediction models for online weighted paging. Suppose that an
online algorithm is given in advance, for each time step t ∈ {1, 2, . . . , T }, a distribution
over page requests at t. Thus, the request at time t is drawn according to Dt. The given
distributions are assumed to be independent between different time steps and the distributions
are not necessarily identical. This model is known in the literature as distributional online
paging, or DOP [34], and it can be viewed as the probabilistic counterpart of PRP. DOP
is also a special case of the stochastic uber problem studied by [20]. (See more about this
problem in the sequel.)

Define the cost of an online algorithm (or policy) for DOP to be the expected cost taken
over all possible request sequences, where the probability of a request sequence is determined
by the distributions D1, . . . DT . An optimal online algorithm minimizes the expected cost and
is defined by a Markov Decision Process. It can be computed by either a dynamic program
or a linear program. Unfortunately, the state space of the dynamic program, or the size of
the linear program, is of exponential size in k, rendering it computationally impractical. The
computational hardness of finding an optimal algorithm for DOP is still open to the best of
our knowledge3.

3 It is stated as an open problem in [13]. For general metrics (i.e., the k-server problem), [20] gives a
simple reduction to prove hardness: the uniform distribution over the points in the metric is given at all
times; thus, a solution to the k-median problem on the metric defines the placement of the servers in an
optimal online algorithm.

Y. Fairstein, J. Naor, and T. Tsachor 15:3

For unweighted DOP, the work of Lund et al. [34] is seminal. They show that full
information about the distributions in each time step is actually not needed in order to get a
near-optimal online algorithm. Specifically, for general distributions over page requests, if
the probability that p is requested before q is available for any pair of pages p and q, then
this information can be leveraged to get an efficient and simple 4-competitive algorithm with
respect to the best online algorithm. However, these ideas do not seem to generalize to the
weighted setting, due to the more global nature of weighted paging, as indicated before.

1.1 Our Results
We study the weighted DOP problem. Our goal is to provide an efficient online algorithm
that achieves a constant competitive factor with respect to the best online algorithm (policy)
for weighted DOP. Our starting point is a linear program for DOP which is based on the
work of [20] for the stochastic k-server problem. In the case of the paging problem, this
linear program specifies to which cache slot a page is loaded. The linear program provides a
lower bound on the cost of any non-adaptive algorithm for DOP. However, [20] show that
an optimal non-adaptive algorithm can cost at most thrice the cost of an optimal online
algorithm for DOP. In Section 3 we provide the details for rounding the k-server linear
program, yielding a constant competitive algorithm for the weighted DOP problem.4 This is
summarized in the following theorem.

▶ Theorem 1. There exists an efficient algorithm for weighted DOP with O(1)-competitive
ratio.

The constant competitive factor obtained in Theorem 1 strongly utilizes information
about the page distributions over the entire time horizon. However, such distributional
information may not always be available. Thus, a natural question is whether distributional
information over a limited horizon suffices for obtaining a constant competitive factor. This
is the main focus of our paper.

In [31], a new deterministic predictive model for online weighted paging is suggested, due
to the weakness of PRP in the weighted setting, as indicated earlier. This model, called
SPRP, assumes that when a page p is requested, the full request sequence up to the next
request for p is revealed. It turns out that the SPRP predictive model is strong enough to
obtain a 2-competitive algorithm for online weighted paging in the adversarial setting [31].

Our first contribution is a novel limited horizon distributional model which we call the
Per-Request Stochastic Prediction (PRSP) model. In this model, at any point of time, the
known horizon of (future) distributions guarantees that for each page p in the cache, the sum
of the probabilities of requesting p (in the known horizon) is at least one. Interestingly, this
model captures the property needed from a limited horizon distributional model in order to
design a near-optimal online algorithm.

Note that in a deterministic setting, Dt is equal to zero for all pages, except for one page,
for which it is equal to one. Thus, when PRSP is restricted to a deterministic setting, it is
equivalent to the SPRP model of [31].

We show that any algorithm for (full horizon) weighted DOP can be used in a black-box
manner in the PRSP model, while increasing the competitive factor only by a constant. We
thus obtain the next theorem.

4 It is interesting to note that a natural linear programming formulation for the weighted DOP problem
that provides a lower bound on the best online algorithm has a large integrality gap which depends
on the maximum page weight. Thus, the work of [20] manages to circumvent this gap by utilizing a
stronger LP.

APPROX/RANDOM 2024

15:4 Distributional Online Weighted Paging with Limited Horizon

▶ Theorem 2. If there exists an α-competitive algorithm for weighted DOP, then there exists
an O(α)-competitive algorithm for weighted DOP under the PRSP model. I.e., there exists
an efficient O(1)-competitive algorithm for weighted DOP under the PRSP model.

To prove Theorem 2, we design an algorithm called Split-and-Solve. The algorithm is
very natural and it splits the time horizon into phases, solving each one separately. Using
the properties of the PRSP model, the phases are chosen such that at the beginning of the
phase the distributions are known for all times in the phase. Therefore, each phase can be
regarded as a weighted DOP instance. As the analysis of Split-and-Solve does not make any
assumptions regarding the solutions of the phases, any algorithm for weighted DOP can be
employed in a black-box manner (e.g., Theorem 1). However, as each phase commences, the
cache is reset to be the final cache state of the optimal offline solution of the realization of
the request sequence of the previous phase.

The difficulty with analyzing the Split-and-Solve algorithm is in stitching together the
performance of the different phases. Even though the policy employed in each phase by itself
may be optimal, note that the initial cache states (in each phase) may be very different
from the corresponding cache states of the optimal online algorithm (which is familiar with
the full horizon). In particular, since our caching problem is weighted, the gap (in terms
of weight) between cache states can be arbitrarily large, and may also further lead to poor
performance within the phase. However, the crucial ingredient for bounding the performance
of each phase is the property of the PRSP model that guarantees that for each page in the
cache the sum of the probabilities in the known horizon adds up to at least 1. Thus, the
performance of each phase can be related to the performance of the optimal online algorithm
in the phase with a multiplicative constant factor (together with an additive term). Using a
global analysis that considers all phases, the loss incurred by the sum of the additive terms
can be charged to the cost of the optimal online algorithm, yielding Theorem 2.

1.2 Related Work
The k-server problem generalizes the paging problem to arbitrary metric spaces. (In paging
the underlying metric is a weighted star.) A natural generalization of DOP is distributional
k-server, where in every time step there is a given distribution over the possible request point.
This problem was studied by [20], who also introduced the stochastic Uber problem, where
each request is defined by two points in the metric. The server satisfying a request must
travel to the start point of the request and then to its end point, incurring a cost equal to
the total distance traveled. [20] gave a constant competitive factor algorithm for the case
where the metric is a line. For general metrics, they gave an O(log n)-competitive algorithm,
where n is the number of points in the metric.

Work on distributional paging goes back more than fifty years. Franaszek and Wagner [24]
compared FIFO and LRU in a model where every request is drawn from a fixed probability
distribution over time. Shedler and Tung [37] suggested a Markov model for generating
requests. This model and its extensions were analyzed in [32]. They also showed a gap of
Ω(log k) between optimal online and offline algorithms in the case of a uniform distribution.

Besides stochastic models, several paging models assuming partial knowledge of future
requests have been studied. For example, [8] studied the PRP model of Lykouris et al. [35]
(mentioned earlier) in the weighted setting. A very sophisticated algorithm is given in [8] for
this model whose competitive factor is at most a logarithm of the number of weight classes.
Other examples for models with predictions are paging with locality of reference [12, 23, 30],
paging with lookahead [3, 14, 39] and interleaved paging [9, 18, 33].

Y. Fairstein, J. Naor, and T. Tsachor 15:5

2 Preliminaries

2.1 Distributional Online Paging
In the weighted paging problem there is a universe of n pages, denoted by P = {p1, p2, ..., pn},
and a cache of size k. The initial cache state is C0 ⊆ P . Each page p is associated
with a weight wp, the cost of loading or evicting page p to the cache. For a sequence of
requests σ1, σ2, ..., σT , an algorithm A determines a series of cache states C1, ..., CT , such
that ∀t : σt ∈ Ct. The cost of serving the request sequence by A is

∑T
t=1

∑
p∈Ct△Ct−1

wp,
which is equal to the sum of the loading costs and the eviction costs. Note that the sum of
the eviction costs and the loading costs can differ by at most an additive constant depending
only on the initial and final cache contents. For simplicity, we assume the initial cache and
final cache are identical, i.e., C0 = CT . This means that the loading costs are equal to the
eviction costs.

We focus on distributational prediction models in this paper. Suppose that we are given
in advance at time t = 0, for each (future) time step t ∈ {1, 2, . . . , T }, a distribution over
page requests at t. The given distributions are not necessarily identical, yet assumed to be
independent between different time steps. More formally, for every t ∈ [T], a probability
distribution Dt is given from which request σt is drawn at time t. This model is called
distributional online paging, or DOP.

▶ Definition 3. For an algorithm A, let E(A) denote the expected cost of A over all
realizations of input sequences generated according to distributions D1, . . . , DT .

Denote by O the best online algorithm (in expectation) for DOP, i.e., it minimizes E(O).
We emphasize that algorithm O is only familiar with the distributions D1, . . . , Dt, but does
not have prior knowledge of the actual realization of the requests. Let E(O) = OPT .

2.2 Limited Horizon
So far we have assumed that all distributions D1, ..., DT are given as input at the beginning.
This is, of course, unreasonable in many cases as T may be very large. We aspire to bound the
horizon that an online algorithm needs to “see”, i.e., at any time t, how many distributions
into the future are available to the algorithm.

In [31] it was shown that the per-request-prediction (PRP) model and the lookahead
model are not sufficient to circumvent the known lower bounds for online paging. In [31] a
constant competitive factor for deterministic online weighted paging is achieved only through
a combination of two models which they call SPRP. Specifically, upon arrival of a page, the
time of its next request t is given, as in PRP, as well as the full sequence of page requests up
to t.

Here, we propose an extension of the above model for our stochastic setting called
Per-Request Stochastic Prediction (PRSP). The PRSP model requires that at any time t a
sequence of future distributions is revealed such that sufficient information is revealed for
each page in the current cache, as follows.

▶ Definition 4. Given a cache C ⊆ P and time t, let N(C, t) be the earliest time t′ that
satisfies:

∀p ∈ C :
t′∑

τ=t

Dτ (p) ≥ 1.

APPROX/RANDOM 2024

15:6 Distributional Online Weighted Paging with Limited Horizon

Note that in the deterministic setting, Dt is equal to zero for all pages, except for one page,
for which it is equal to one. Assuming all pages in C are there because they were previously
requested, Definition 4, restricted to a deterministic setting, is equivalent to the SPRP model
of [31].

Using the definition of N(C, t) we can now give a formal definition of the PRSP model.

▶ Definition 5. In the PRSP model at each time step t, where the cache is Ct, the sequence
of distributions (Dt, ..., DN(Ct,t)) is revealed to the algorithm.

In a deterministic setting, at each time t it holds that there exists a single page p such
that Dt(p) = 1 and it is equal to zero for all other pages. Thus, in the PRSP model, when
restricted to a deterministic setting, at any time t, N(Ct, t) is equal to the latest time over
the next arrivals of all pages in Ct. In reality, the distributions up to time N(Ct, t) were
revealed earlier when the pages in Ct were requested and they were loaded to the cache.
Thus, in the deterministic setting, we can interpret PRSP as SPRP since it reveals upon a
request to a page the whole sequence of pages up to its next request.

3 Full Horizon

In this section we consider the weighted DOP problem when all the distributions are given
in advance and provide a proof for Theorem 1. The proof essentially follows from the work
of [20] on the stochastic k-server problem. Recall that weighted paging is the special case of
k-server when the underlying metric is a weighted star. We show here that when applying
the linear program for stochastic k-server to the special case of DOP, it can be rounded
yielding a constant competitive algorithm. It is interesting to note that a natural linear
programming formulation for the weighted DOP problem has a large gap compared to the
best online algorithm, where the gap depends on the maximum page weight. Thus, the work
of [20] manages to circumvent this gap by utilizing a stronger LP.

In [20], an algorithm A for DOP is defined to be non-adaptive if it satisfies the following.
First, algorithm A pre-computes a sequence of cache configurations C1, ..., CT ; then it serves
the request sequence as follows. Upon arrival of request σt at time t: (i) A changes the cache
contents to configuration Ct; (ii) A replaces the lightest page in Ct with σt; (iii) A changes
the cache contents back to the configuration that preceded the arrival of σt. The linear
program for stochastic k-server suggested in [20] provides a lower bound on the cost of any
non-adaptive algorithm. However, an online algorithm for the stochastic k-server problem
does not necessarily imply a feasible solution for the latter linear program. It is shown in
[20, Theorem 1.3] that an optimal non-adaptive online algorithm is a 3-approximation with
respect to an optimal online algorithm for stochastic k-server. Thus, non-adaptive algorithms
provide a useful tool for obtaining a competitive algorithm for stochastic k-server.

In what follows we describe the specialization of the linear program for the stochastic
k-server problem [20] to DOP. Essentially, this means specifying to which cache slot is a page
loaded. Thus, for each page p, there is a variable bt,p that indicates the fraction of p that is
not in the cache. For each page p and possible request q, variable xt,p,q indicates whether q

is served by replacing p.

Y. Fairstein, J. Naor, and T. Tsachor 15:7

Serving requests using A

Retrieving
Dfi+1, ..., Dfi+1

.

Find the offline solution of
the phase: Hfi+1, ..., Hfi+1

and set Cfi+1
= Hfi+1

.

f0 = 0 f1 = N(C0, 0)
...

fi = N(Ci−1, fi−1) fi+1 = N(Ci, fi)

Figure 1 Algorithm Split-and-Solve splits the timeline into phases and separately solves each
phase as DOP. As phase i begins at fi the distributions t ill N(Cfi , fi) are revealed. The DOP black
box A serves the requests during the phase. As the phase terminates at N(Cfi , fi), the optimal
offline solution Hfi+1, ..., Hfi+1 is computed with the realization of the phase and Hfi+1 is loaded
into Cfi+1 .

min
∑

p,q,t≥1
(wp + wq) · Dt(q) · xt,p,q +

∑
p,t≥1

wp · |bt,p − bt−1,p| s.t.

∀t, q :
∑
p ̸=q

xt,p,q ≥ bt,q

∀t, p, q : xt,p,q ≤ 1 − bt,p

∀t :
∑

p

bt,p ≥ n − k

(31)

The cost function accounts for the weight of the pages that make two switches when serving
a request. By doing so it forces the solution to be non-adaptive. Note that (31) gives us a
lower bound only on the optimal non-adaptive algorithm. Thus, not every paging algorithm
can be mapped into a solution for (31), only a non-adaptive one.

The details for rounding the LP solution so as to yield a 60-competitive algorithm are
given in Appendix A.

4 The Split-and-Solve Algorithm

Section 3 provides us with a constant competitive factor algorithm, but requires that at
time 0 all distributions D1, ..., DT are known. In this section we present the Split-and-
Solve algorithm that provides a constant-competitive factor for DOP in the PRSP model.
The algorithm is very natural. It first splits the time horizon into phases: if a phase
begins at time t, then it ends at time N(Ct, t). As the horizon of the algorithm is at most
max{N(Ct′ , t′)|t′ <= t} for every time step t, the distributions Dt+1, ..., DN(Ct,t) can be
retrieved by the properties of the PRSP model.

Each phase is solved independently using a (full horizon) DOP algorithm in a black-box
manner. However, as each phase commences, the cache is reset to be the final cache state of
the optimal offline solution of the realization of the request sequence of the previous phase.
This cache state can be computed by running a min cost flow algorithm. This guarantees
that the definition of phases is independent of the algorithm A. The steps of the algorithm
are depicted in Figure 1. We are now ready to give a formal definition of the Split-and-Solve
algorithm.

APPROX/RANDOM 2024

15:8 Distributional Online Weighted Paging with Limited Horizon

Algorithm 1 Split-and-Solve (SaS).

Input: Instance I of DOP and Algorithm A for DOP.
1: Initialize i = 0, f0 = 0, H0 = C0.
2: while fi < T do
3: Let fi+1 = N(Cfi , fi).
4: Retrieve Dfi+1, ..., Dfi+1 .
5: Set Cfi+1, ..., Cfi+1 as the solution returned by A for serving requests in time range

[fi, fi+1] with initial cache Hfi
.

6: Let Hfi+1, ..., Hfi+1 be the optimal offline solution for time range [fi, fi+1] with initial
cache Cfi .

7: After serving σfi+1 , set Cfi+1 = Hfi+1 as the initial cache of the next phase.
8: Update i := i + 1.

Before analyzing the algorithm, we need the following notation. We denote by F + 1
the number of phases into which the time horizon is split. The optimal online algorithm is
denoted by Oon and its caches are denoted by {Ot}t∈[T].

In the sequel we will show that given an α-competitive algorithm for DOP, the Split-
and-Solve (SaS) algorithm has an O(α) competitive ratio, losing only an additional constant
factor. To do so, we first bound in Lemma 7 the cost of our algorithm by the cost of the
online algorithm when we also reset its cache at the beginning of each phase (i.e., similarly
to Step 6, where at the beginning of each phase the cache is set to Hfi). Then, Lemma 8
bounds the cost of the online algorithm (with the cache reset) at phase i by the sum of three
components:
1. The expected cost of Oon during the phase.
2. The total weight of Hfi \ Ofi .
3. The sum over pages in Ofi

\ Hfi
of the page weight times the probability it is requested

in phase i.
Lemmas 9, 11 and 12 bound the last two components by a constant factor of the cost of Oon.

In the following definition we provide a notation for a partial solution.

▶ Definition 6. Let t1, t2 ∈ [T] such that t1 < t2 and C ⊆ P . We denote the expected cost
of an algorithm A on the sub-range [t1, t2] with Ct1 = C as its initial cache by A(C, t1, t2).

From the definition of the optimal offline and online algorithms it is easy to see that for
any t1 < t2 and cache C it holds that Ooff (C, t1, t2) ≤ Oon(C, t1, t2). The following lemma
bounds the expected cost of phase i by 2α + 1 times the expected cost of O during the phase
when O begins the phase with the same cache.

▶ Lemma 7. Given an α-competitive algorithm A for DOP it holds that for every phase i:

SaS(Hfi
, fi, fi+1) ≤ (2α + 1) · Oon(Hfi

, fi, fi+1).

Proof. At the beginning of each phase i we set the initial cache passed to algorithm A in
Step 5 to be the cache of the optimal offline solution Hfi

. For simplicity, we associate this
cost with phase i − 1 (note that for i = 0 the cost is zero as H0 = C0). Thus, in phase i we
need to bound the cost of serving requests as well as the cost of loading cache Hfi+1 at the
end of the phase.

The expected cost of serving requests in phase i is at most α · Oon(Hfi , fi, fi+1) due to
the competitive ratio of A. Next, loading Hfi+1 can be bounded by the cost of loading Hfi

and only then loading Hfi+1 . Loading Hfi
must cost less then the cost of SaS at this phase

(as eviction and loading costs are symmetric). Afterwards, loading Hfi+1 is bounded by the
cost of the optimal offline algorithm, but

Y. Fairstein, J. Naor, and T. Tsachor 15:9

Ooff (Hfi
, fi, fi+1) ≤ Oon(Hfi

, fi, fi+1).

Summarizing over the three cost components produces the desired bound. ◀

The following lemma bounds Oon(Hfi
, fi, fi+1) with the total cost of evicting Hfi

\ Ofi
,

loading the requested pages from Ofi
\ Hfi

and then serving the requests as on.

▶ Lemma 8. Let γi,p be the event that page p is requested in phase i, i.e.,
γi,p = 1p is requested in [fi,fi+1]. Then, it holds that:

Oon(Hfi
, fi, fi+1) ≤ Oon(Ofi

, fi, fi+1) +
∑

p∈Hfi
\Ofi

wp + E

 ∑
p∈Ofi

\Hfi

wp · γi,p

 .

Proof. Consider the following online algorithm for serving phase i. First, evict the pages
in Hfi

\ Ofi
, incurring a cost of

∑
p∈Hfi

\Ofi
wp. Next, run the optimal online algorithm. A

feasible solution for the online algorithm would be to act as if Ofi \ Hfi are in the cache,
incurring a cost of Oon(Ofi

, fi, fi+1). Nonetheless, it might be that a page p ∈ Ofi
\ Hfi

is requested, incurring an additional cost of wp, though this only happens with probability
E[γi,p]. Summing over the three terms produces the desired bound. ◀

After bounding the cost at each phase, we will now evaluate the cost of all phases,
bounding the cost of splitting the time horizon. To do so we must bound

∑
i

∑
p∈Hfi

\Ofi
wp

and
∑

i E
[∑

p∈Ofi
\Hfi

wp · γi,p

]
. The following lemma bounds the former term. It strongly

uses the property of the PRSP model that for every page in cache the sum of the probabilities
of requesting this page in the known horizon is at least 1.

▶ Lemma 9. In each phase i ∈ [F] it holds that
∑

p∈Hfi
\Ofi

wp ≤ e
e−1 · Oon(Ofi

, fi, fi+1).

Proof. At the beginning of each phase we set fi+1 = N(Hfi , fi). Thus from Definition 4 if
holds that

∑fi+1−1
t=fi

Dt(p) ≥ 1 for each page p ∈ Hfi
. Using the inequality 1 − x ≤ e−x for

x ∈ [0, 1] we get that for p ∈ Hfi
:

E[γi,p] = 1 −
fi+1−1∏

t=fi

(1 − Dt(p)) ≥ 1 −
fi+1−1∏

t=fi

e−Dt(p) = 1 − e

∑fi+1−1
t=fi

−Dt(p) ≥ 1 − e−1. (42)

Each page p ∈ Hfi \ Ofi must be loaded by Oon at phase i if it is requested. Thus from
Equation (42) it follows that,

Oon(Ofi , fi, fi+1) ≥
∑

p∈Hfi
\Ofi

E [γi,p] · wp ≥
∑

p∈Hfi
\Ofi

(1 − e−1) · wp.

Dividing by 1 − e−1 completes the proof of the lemma. ◀

The next corollary follows from lemmas 8 and 9.

▶ Corollary 10.

Oon(Hfi , fi, fi+1) ≤ 2e − 1
e − 1 Oon(Ofi , fi, fi+1) + E

 ∑
p∈Ofi

\Hfi

Wp · γi,p

 .

APPROX/RANDOM 2024

15:10 Distributional Online Weighted Paging with Limited Horizon

Next, we bound
∑

i E
[∑

p∈Ofi
\Hfi

wp · γi,p

]
. To do so we need the following auxiliary

lemma which bounds the expected eviction costs of Ooff .

▶ Lemma 11. Let Evoff (Hfi , fi, fi+1) be the expected eviction costs of the optimal offline
algorithm at phase i when initialized with cache Hfi

. It holds that,

Evoff (Hfi
, fi, fi+1) ≤ 2e − 1

e − 1 Oon(Ofi
, fi, fi+1).

Proof. Due to the optimallity of the offline algorithm,
Ooff (Hfi

, fi, fi+1) ≤ Oon(Hfi
, fi, fi+1). So from Corollary 10 it follows that,

Ooff (Hfi
, fi, fi+1) ≤ 2e − 1

e − 1 Oon(Ofi
, fi, fi+1) + E

 ∑
p∈Ofi

\Hfi

Wp · γi,p

 . (43)

In addition, the offline optimal algorithm must load any page p /∈ Hfi in phase i if it is
requested. Thus, the expected loading costs of the offline optimal algorithm are at least
E

[∑
p∈Ofi

\Hfi
Wp · γi,p

]
. By combining the bound on the loading costs and Equation (43)

we get that,

Evoff (Hfi , fi, fi+1) + E

 ∑
p∈Ofi

\Hfi

Wp · γi,p

 ≤ Ooff (Hfi , fi, fi+1)

≤ 2e − 1
e − 1 Oon(Ofi

, fi, fi+1) + E

 ∑
p∈Ofi

\Hfi

Wp · γi,p

 .

Subtracting the last term from both sides proves the lemma. ◀

▶ Lemma 12.

E

 ∑
i∈[F]

∑
p∈Ofi

\Hfi

wp · γi,p

 ≤
∑

i∈[F]

2e − 1
e − 1 Oon(Ofi

, fi, fi+1).

Proof. In Section 2.1 it is stated that we assume C0 = CT . If this was not the case, we can
simply load CT with only a constant additional cost. From this assumption it follows that
the total eviction costs are equal to the total expected loading costs.

At each phase i, Ooff must load pages in Ofi
\ Hfi

if they are requested. Thus, in the
event γi,p it will incur a loading cost of wp. As the total expected eviction costs are equal to
total expected loading costs we get that,

E

 ∑
i∈[F]

∑
p∈Ofi

\Hfi

wp · γi,p

 ≤
∑

i∈[F]

Evoff (Hfi , fi, fi+1).

Due to Lemma 11 it holds that

E

 ∑
i∈[F]

∑
p∈Ofi

\Hfi

wp · γi,p

 ≤
∑

i∈[F]

2e − 1
e − 1 Oon(Ofi

, fi, fi+1). ◀

The following lemma combines the above results to produce a bound on the competitive
ratio of SaS.

Y. Fairstein, J. Naor, and T. Tsachor 15:11

▶ Lemma 13. Given an α-competitive algorithm A for DOP, the Split-and-Solve algorithm
is (2α + 1) · 4e−2

e−1 -competitive.

Proof. From Lemma 7 the cost of the Split-and-Solve algorithm is at most∑
i∈[F]

(2α + 1) · Oon(Hfi , fi, fi+1).

Combining with Corollary 10 and Lemma 12 which provides a bound on∑
i∈[F] Oon(Hfi

, fi, fi+1), we can bound the competitive ratio of the Split-and-Save algorithm
by (2α + 1) · 4e−2

e−1 . ◀

Theorem 2 follows immediately from Lemma 13.

References
1 Dimitris Achlioptas, Marek Chrobak, and John Noga. Competitive analysis of randomized pa-

ging algorithms. Theor. Comput. Sci., 234(1-2):203–218, 2000. doi:10.1016/S0304-3975(98)
00116-9.

2 Anna Adamaszek, Artur Czumaj, Matthias Englert, and Harald Räcke. An o(log k)-competitive
algorithm for generalized caching. ACM Trans. Algorithms, 15(1), November 2018. doi:
10.1145/3280826.

3 Susanne Albers. On the influence of lookahead in competitive paging algorithms. Algorithmica,
18(3):283–305, 1997. doi:10.1007/PL00009158.

4 Susanne Albers, Sanjeev Arora, and Sanjeev Khanna. Page replacement for general caching
problems. In Robert Endre Tarjan and Tandy J. Warnow, editors, Proceedings of the Tenth
Annual ACM-SIAM Symposium on Discrete Algorithms, 17-19 January 1999, Baltimore,
Maryland, USA, pages 31–40. ACM/SIAM, 1999. URL: http://dl.acm.org/citation.cfm?
id=314500.314528.

5 Algorithms with predictions (ALPS). https://algorithms-with-predictions.github.io/.
Accessed: 2022-11-07.

6 Nikhil Bansal, Niv Buchbinder, and Joseph Naor. Randomized competitive algorithms for
generalized caching. SIAM J. Comput., 41(2):391–414, 2012. doi:10.1137/090779000.

7 Nikhil Bansal, Niv Buchbinder, and Joseph Seffi Naor. A primal-dual randomized algorithm
for weighted paging. Journal of the ACM (JACM), 59(4):19, 2012.

8 Nikhil Bansal, Christian Coester, Ravi Kumar, Manish Purohit, and Erik Vee. Scale-free
allocation, amortized convexity, and myopic weighted paging. CoRR, abs/2011.09076, 2020.
arXiv:2011.09076.

9 Rakesh D. Barve, Edward F. Grove, and Jeffrey Scott Vitter. Application-controlled paging
for a shared cache. SIAM Journal on Computing, 29(4):1290–1303, 2000. doi:10.1137/
S0097539797324278.

10 A. Blum, M. Furst, and A. Tomkins. What to do with your free time: algorithms for infrequent
requests and randomized weighted caching, 1996.

11 Avrim Blum, Carl Burch, and Adam Kalai. Finely-competitive paging. In 40th Annual
Symposium on Foundations of Computer Science, FOCS ’99, 17-18 October, 1999, New York,
NY, USA, pages 450–458. IEEE Computer Society, 1999. doi:10.1109/SFFCS.1999.814617.

12 A. Borodin, S. Irani, P. Raghavan, and B. Schieber. Competitive paging with locality of
reference. Journal of Computer and System Sciences, 50(2):244–258, 1995. doi:10.1006/jcss.
1995.1021.

13 Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. Cambridge
University Press, 1998.

14 Dany Breslauer. On competitive on-line paging with lookahead. Theor. Comput. Sci., 209(1-
2):365–375, 1998. doi:10.1016/S0304-3975(98)00118-2.

APPROX/RANDOM 2024

https://doi.org/10.1016/S0304-3975(98)00116-9
https://doi.org/10.1016/S0304-3975(98)00116-9
https://doi.org/10.1145/3280826
https://doi.org/10.1145/3280826
https://doi.org/10.1007/PL00009158
http://dl.acm.org/citation.cfm?id=314500.314528
http://dl.acm.org/citation.cfm?id=314500.314528
https://algorithms-with-predictions.github.io/
https://doi.org/10.1137/090779000
https://arxiv.org/abs/2011.09076
https://doi.org/10.1137/S0097539797324278
https://doi.org/10.1137/S0097539797324278
https://doi.org/10.1109/SFFCS.1999.814617
https://doi.org/10.1006/jcss.1995.1021
https://doi.org/10.1006/jcss.1995.1021
https://doi.org/10.1016/S0304-3975(98)00118-2

15:12 Distributional Online Weighted Paging with Limited Horizon

15 Sébastien Bubeck, Michael B. Cohen, Yin Tat Lee, James R. Lee, and Aleksander Madry.
k-server via multiscale entropic regularization. In Ilias Diakonikolas, David Kempe, and
Monika Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 3–16.
ACM, 2018. doi:10.1145/3188745.3188798.

16 Niv Buchbinder, Shahar Chen, and Joseph Naor. Competitive analysis via regularization. In
Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 436–444.
SIAM, 2014. doi:10.1137/1.9781611973402.32.

17 Niv Buchbinder, Joseph Seffi Naor, et al. The design of competitive online algorithms
via a primal–dual approach. Foundations and Trends® in Theoretical Computer Science,
3(2–3):93–263, 2009.

18 Pei Cao, Edward W. Felten, and Kai Li. Application-Controlled file caching
policies. In USENIX Summer 1994 Technical Conference (USENIX Summer
1994 Technical Conference), Boston, MA, June 1994. USENIX Association. URL:
https://www.usenix.org/conference/usenix-summer-1994-technical-conference/
application-controlled-file-caching-policies.

19 Marek Chrobak and Lawrence L. Larmore. An optimal on-line algorithm for k-servers on trees.
SIAM J. Comput., 20(1):144–148, 1991. doi:10.1137/0220008.

20 Sina Dehghani, Soheil Ehsani, MohammadTaghi Hajiaghayi, Vahid Liaghat, and Saeed
Seddighin. Stochastic k-server: How should uber work? In Ioannis Chatzigiannakis, Piotr
Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International Colloquium on Automata,
Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80
of LIPIcs, pages 126:1–126:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017.
doi:10.4230/LIPIcs.ICALP.2017.126.

21 Guy Even, Moti Medina, and Dror Rawitz. Online generalized caching with varying weights
and costs. In Christian Scheideler and Jeremy T. Fineman, editors, Proceedings of the 30th
on Symposium on Parallelism in Algorithms and Architectures, SPAA 2018, Vienna, Austria,
July 16-18, 2018, pages 205–212. ACM, 2018. doi:10.1145/3210377.3210404.

22 Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel Dominic Sleator,
and Neal E. Young. Competitive paging algorithms. J. Algorithms, 12(4):685–699, 1991.
doi:10.1016/0196-6774(91)90041-V.

23 Amos Fiat and Manor Mendel. Truly online paging with locality of reference. CoRR,
abs/cs/0601127, 2006. arXiv:cs/0601127.

24 Peter A. Franaszek and T. J. Wagner. Some distribution-free aspects of paging algorithm
performance. J. ACM, 21(1):31–39, 1974.

25 Anupam Gupta, Ravishankar Krishnaswamy, Amit Kumar, and Debmalya Panigrahi. Elastic
caching. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9,
2019, pages 143–156. SIAM, 2019. doi:10.1137/1.9781611975482.10.

26 Anupam Gupta, Amit Kumar, and Debmalya Panigrahi. Caching with time windows. In
Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia
Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 1125–1138. ACM, 2020.
doi:10.1145/3357713.3384277.

27 Sandy Irani. Competitive analysis of paging. In Amos Fiat and Gerhard J. Woeginger,
editors, Online Algorithms, The State of the Art (the book grow out of a Dagstuhl Seminar,
June 1996), volume 1442 of Lecture Notes in Computer Science, pages 52–73. Springer, 1996.
doi:10.1007/BFb0029564.

28 Sandy Irani. Page replacement with multi-size pages and applications to web caching. In
Frank Thomson Leighton and Peter W. Shor, editors, Proceedings of the Twenty-Ninth Annual
ACM Symposium on the Theory of Computing, El Paso, Texas, USA, May 4-6, 1997, pages
701–710. ACM, 1997. doi:10.1145/258533.258666.

https://doi.org/10.1145/3188745.3188798
https://doi.org/10.1137/1.9781611973402.32
https://www.usenix.org/conference/usenix-summer-1994-technical-conference/application-controlled-file-caching-policies
https://www.usenix.org/conference/usenix-summer-1994-technical-conference/application-controlled-file-caching-policies
https://doi.org/10.1137/0220008
https://doi.org/10.4230/LIPIcs.ICALP.2017.126
https://doi.org/10.1145/3210377.3210404
https://doi.org/10.1016/0196-6774(91)90041-V
https://arxiv.org/abs/cs/0601127
https://doi.org/10.1137/1.9781611975482.10
https://doi.org/10.1145/3357713.3384277
https://doi.org/10.1007/BFb0029564
https://doi.org/10.1145/258533.258666

Y. Fairstein, J. Naor, and T. Tsachor 15:13

29 Sandy Irani. Randomized weighted caching with two page weights. Algorithmica, 32(4):624–640,
2002. doi:10.1007/s00453-001-0095-6.

30 Sandy Irani, Anna R. Karlin, and Steven Phillips. Strongly competitive algorithms for
paging with locality of reference. SIAM Journal on Computing, 25(3):477–497, 1996. doi:
10.1137/S0097539792236353.

31 Zhihao Jiang, Debmalya Panigrahi, and Kevin Sun. Online algorithms for weighted paging with
predictions. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th International
Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020,
Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages 69:1–69:18. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ICALP.2020.69.

32 Anna R. Karlin, Steven J. Phillips, and Prabhakar Raghavan. Markov paging (extended
abstract). In 33rd Annual Symposium on Foundations of Computer Science, Pittsburgh,
Pennsylvania, USA, 24-27 October 1992, pages 208–217. IEEE Computer Society, 1992.
doi:10.1109/SFCS.1992.267771.

33 Ravi Kumar, Manish Purohit, Zoya Svitkina, and Erik Vee. Interleaved caching with access
graphs. In Proceedings of the Thirty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’20, pages 1846–1858, USA, 2020. Society for Industrial and Applied
Mathematics.

34 Carsten Lund, Steven J. Phillips, and Nick Reingold. Paging against a distribution and IP
networking. J. Comput. Syst. Sci., 58(1):222–232, 1999. doi:10.1006/jcss.1997.1498.

35 Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned advice.
In Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
volume 80 of Proceedings of Machine Learning Research, pages 3302–3311. PMLR, 2018. URL:
http://proceedings.mlr.press/v80/lykouris18a.html.

36 Lyle A. McGeoch and Daniel Dominic Sleator. A strongly competitive randomized paging
algorithm. Algorithmica, 6(6):816–825, 1991. doi:10.1007/BF01759073.

37 Gerald S. Shedler and C. Tung. Locality in page reference strings. SIAM J. Comput.,
1(3):218–241, 1972.

38 Daniel Dominic Sleator and Robert Endre Tarjan. Amortized efficiency of list update and
paging rules. Commun. ACM, 28(2):202–208, 1985. doi:10.1145/2786.2793.

39 Neal Young. Competitive paging and dual-guided on-line weighted caching and matching
algorithms. Princeton University, 1991.

40 Neal E. Young. On-line caching as cache size varies. In Alok Aggarwal, editor, Proceedings of
the Second Annual ACM/SIGACT-SIAM Symposium on Discrete Algorithms, 28-30 January
1991, San Francisco, California, USA, pages 241–250. ACM/SIAM, 1991. URL: http://dl.
acm.org/citation.cfm?id=127787.127832.

41 Neal E. Young. The k-server dual and loose competitiveness for paging. Algorithmica,
11(6):525–541, 1994. doi:10.1007/BF01189992.

42 Neal E. Young. On-line file caching. In Symposium on Discrete algorithms, pages 82–86, 1998.

A Rounding the LP

We show how to discretize to multiples of 1/k a solution to the LP. We use techniques from
[2] and transform each xt,p to a multiple of 1

8k . First, We set b′
t,p := min {1, 2 · bt,p}. Assume

at,p ∈ [8k] denote ⌈8k·b′
t,p⌉

8k = at,p

8k . For every p ∈ P , we do the following iterative process for
t = 1 ... T :
1. If at,p is even, set yt,p := at,p

8k .
2. Else, if yt−1,p >

at,p

8k , set yt,p := at,p+1
8k .

3. Otherwise, set yt,p := at,p−1
8k .

▶ Lemma 14. The following statements hold:

APPROX/RANDOM 2024

https://doi.org/10.1007/s00453-001-0095-6
https://doi.org/10.1137/S0097539792236353
https://doi.org/10.1137/S0097539792236353
https://doi.org/10.4230/LIPIcs.ICALP.2020.69
https://doi.org/10.1109/SFCS.1992.267771
https://doi.org/10.1006/jcss.1997.1498
http://proceedings.mlr.press/v80/lykouris18a.html
https://doi.org/10.1007/BF01759073
https://doi.org/10.1145/2786.2793
http://dl.acm.org/citation.cfm?id=127787.127832
http://dl.acm.org/citation.cfm?id=127787.127832
https://doi.org/10.1007/BF01189992

15:14 Distributional Online Weighted Paging with Limited Horizon

1. ∀t, p : if bt,p = 0 then yt,p = 0.
2. ∀t, p : if bt,p = 1 then yt,p = 1.
3. ∀t, p : yt,p ≤ 4 · bt,p.
4. ∀p :

∑
t∈[1,T] |yt,p − yt−1,p| ≤ 4 ·

∑
t∈[1,T] |bt,p − bt−1,p|.

5. ∀t :
∑

p∈P yt,p ≥ n − k.

Proof.
1. bt,p = 0 → at,p = 0 → yt,p = 0.
2. bt,p = 1 → at,p = 8k → yt,p = 1.
3. If bt,p < 1

16k , then at,p = 0 implying yt,p = 0. Otherwise, yt,p ≤ 2bt,p + 1
8k ≤ 4bt,p.

4. For a page p ∈ P , we prove the claim by induction on T .
Basis: for t = 0 the claim holds trivially.
Inductive step: Assume the claim holds for every τ ′ < t. We assume w.l.o.g that
at,p ≤ at−1,p We split to cases:
a. If at,p = at−1,p then also yt,p = yt−1,p.
b. If at,p = at−1,p − 2 then

∣∣b′
t,p − b′

t−1,p

∣∣ ≥ 1
8k , in addition note that |yt,p − yt−1,p| = 1

4k .
Overall, |yt,p − yt−1,p| = 1

4k ≤ 2
∣∣b′

t,p − b′
t−1,p

∣∣ ≤ 4 |bt,p − bt−1,p|.
c. If at,p ≤ at−1,p−3 then

∣∣b′
t,p − b′

t−1,p

∣∣ ≥ 1
4k , in addition |yt,p − yt−1,p| ≤

∣∣b′
t,p − b′

t−1,p

∣∣−
1

4k . Overall, |yt,p − yt−1,p| ≤
∣∣b′

t,p − b′
t−1,p

∣∣ − 1
4k ≤ 2

∣∣b′
t,p − b′

t−1,p

∣∣ ≤ 4 |bt,p − bt−1,p|.
d. Else, at,p = at−1,p − 1. In case that at,p is odd we that yt,p = yt−1,p. Otherwise, let t′

be the last time before t−1 such that at′,p ̸= at−1,p. It holds that at′,p ≤ at,p −2 and we
get, similar to Cases 4b and 4c,

∑t
i=t′+1 |yi,p − yi−1,p| = |yt,p − yt′,p| ≤ 2 |bt,p − bt′,p|.

We show that we can find t′ < t such that:∑
τ∈[t′,t] |yτ,p − yτ−1,p| ≤ 4 ·

∑
τ∈[t′,t] |bτ,p − bτ−1,p|. Finally, we apply the inductive

assumption for t′.
5. For time t we note A = {p|bt,p < 0.5}. It holds for every p that if p ∈ A then yt,p ≥

2 · bt,p − 1
8k , else yt,p = 1. Therefore, if |A| ≤ k we are done. Else,

∑
p∈P yt,p =∑

p∈A yt,p +
∑

p∈P \A yt,p ≥
∑

p∈A(2 · bt,p − 1
8k)+ |P |− |A| ≥ 2(|A|−k)− |A|

8k + |P |− |A| =
|P | + |A| − |A|

8k − 2k. Now, note that if k + 1 ≤ |A| ≤ 2k, then |A| ≥ k + |A|
8k so

|P | + |A| − |A|
8k − 2k ≥ n − k. Else, |A| > 2k and |P | + |A| − |A|

8k − 2k ≥ n − k. ◀

A similar process is required for discretizing the value of the x variables. For simplicity
we assume there is an additional page z with weight 0 such that
yz = max

{
0,

∑
p yt,p − (n + 1 − k)

}
. For time t and pages p, q ̸= z in P : if xt,p,q ≥ 0.5 then

vt,p,q = 1 − yt,p, else vt,p,q = min {1 − yt,p, xt,p,q}. For z, vt,z,q = max
{

0, yt,z −
∑

p vt,p,q

}
.

▶ Lemma 15. The following statements hold:
1. ∀t, p, q : vt,p,q ≤ 1 − yt,p.
2. ∀t, q :

∑
p vt,p,q = yt,q.

3.
∑

p,q,t≥1 (wp + wq) · vt,p,q ≤ 2 ·
∑

p,q,t≥1 (wp + wq) · xt,p,q.

Proof.
1. For every page p ̸= z the statement holds by definition. For z, since (1−bt,q)+

∑
p xt,p,q ≥

1, we can view it as a rounding of a cache with (at least) one slot. The value of vt,p,z is
the empty space in the cache, which is at most the empty space in the fractional cache Y ,
i.e. 1 − yt,z.

2. Holds immediately following definition of vt,z,q.

Y. Fairstein, J. Naor, and T. Tsachor 15:15

3. We can rewrite the sum:
∑

p,q,t≥1 wp · vt,p,q +
∑

p,q,t≥1 wq · vt,p,q. Since
∑

q vt,p,q = yt,p

and yt,p ≤ 2bt,p, implying
∑

p,q,t≥1 wp · vt,p,q ≤ 2 ·
∑

p,q,t≥1 wp · xt,p,q. In addition, for
every page q, vt,p,q ≤ 2 · xt,p,q. ◀

We use Lemma 7.3 from [17] that provides a method for transforming distributions over
pages into distributions over cache states. It is immediate from the proof of this lemma that
if every distribution over the pages is a multiple of 1

L , for some L ∈ N, then the size of the
distribution is polynomial in L, n and T .

▶ Definition 16. For a page p and a cache C, W (C, p) = 0 if p ∈ C, otherwise W (C, p) =
min {wq|w ∈ C}.

We state here a lemma that summarizes the desired construction and its properties.

▶ Lemma 17. Given a solution (B, X) to the LP, a collection of random integral cache
states R(B, X) = {R1, ..., RT } can be constructed in polynomial time (in n, k, and T) such
that:
1. ∀t, p: if bt,p = 0, then p ∈ Rt; if bt,p = 1, then p /∈ Rt.
2. ∀t, p : Pr[p /∈ Rt] ≤ 4 · bt,p.
3. E

[∑
t∈[1,T],p∈Rt△Rt−1

wp

]
≤ 20 ·

∑
t∈[1,T] |bt,p − bt−1,p| · wp.

4. ∀t, p : E [W (R(t), p] ≤ 8
∑

p,q,t≥1 wp · xt,p,q.
We use the construction in the above lemma as a black box. When X is obvious from the
context, we replace R(X) with R. Thus, we get the following algorithm:

Algorithm 2 DOP Algorithm.

Input: Fractional solution B to LP (31).
1: Initialize: let R(B) = {R1, ..., RT } (see Lemma 17).
2: for time t and request σt do
3: Set Ct = Rt.
4: if σt /∈ Rt then
5: Evicts the lightest page in Rt and loads σt instead.
6: Set Ct = Rt.

▶ Lemma 18. Algorithm 2 is 60-competitive.

Proof. The expected cost of Step 3 is 20 ·
∑

p,t≥1 wp · |Bt,p − Bt−1,p|. In Step 5 the cost is 0
if σt ∈ Rt and wσt

otherwise. Therefore the expected cost of Step 5 at time t is
∑

t,p yt,p · wp.
Now let us assume for time t that σt /∈ Rt. In this case, the cost of Step 6 is equal to
min {wq|q ∈ Rt} = W (σt, Ct). Therefore the expected cost of this step is E [= W (σt, R(t))].
From the construction of Rt in [17], this value is at most 8 ·

∑
q wq · vt,σt,q. In total, the

expected cost of the algorithm is at most 20 times the optimal value of the linear program (31),
hence at most 20 times the cost of the best non-adaptive algorithm. With [20, Theorem 1.3]
we get that the expected cost is at most 60 · OPT . ◀

Note that all the cache configurations during the execution of the algorithm contain at
most k pages. In addition, for every time t, the request σt is loaded in case it is not part
of Ct.

APPROX/RANDOM 2024

Weighted Matching in the Random-Order
Streaming and Robust Communication Models
Diba Hashemi #

EPFL, Lausanne, Switzerland

Weronika Wrzos-Kaminska1 #

EPFL, Lausanne, Switzerland

Abstract
We study the maximum weight matching problem in the random-order semi-streaming model and in
the robust communication model. Unlike many other sublinear models, in these two frameworks,
there is a large gap between the guarantees of the best known algorithms for the unweighted and
weighted versions of the problem.

In the random-order semi-streaming setting, the edges of an n-vertex graph arrive in a stream
in a random order. The goal is to compute an approximate maximum weight matching with a
single pass over the stream using O(n polylog n) space. Our main result is a (2/3 − ϵ)-approximation
algorithm for maximum weight matching in random-order streams, using space O(n log n log R),
where R is the ratio between the heaviest and the lightest edge in the graph. Our result nearly
matches the best known unweighted (2/3 + ϵ0)-approximation (where ϵ0 ∼ 10−14 is a small constant)
achieved by Assadi and Behnezhad [6], and significantly improves upon previous weighted results.
Our techniques also extend to the related robust communication model, in which the edges of
a graph are partitioned randomly between Alice and Bob. Alice sends a single message of size
O(n polylog n) to Bob, who must compute an approximate maximum weight matching. We achieve
a (5/6 − ϵ)-approximation using O(n log n log R) words of communication, matching the results of
Azarmehr and Behnezhad [20] for unweighted graphs.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Streaming, sublinear and near linear time algorithms

Keywords and phrases Maximum Weight Matching, Streaming, Random-Order Streaming, Robust
Communication Complexity

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.16

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2408.15434

Acknowledgements We thank Ola Svensson and Michael Kapralov for helpful discussions. We
additionally thank Michael Kapralov for useful comments on the manuscript.

1 Introduction

The maximum matching problem is a fundamental problem in graph algorithms. In the
unweighted version of the problem, we are interested in computing a maximum cardinality
matching, i.e. to maximize the total number of edges in the matching. In the weighted
version, we are interested in computing a maximum weight matching, i.e. to maximize the
sum of the edge weights in the matching.

In this paper, we study matchings in the semi-streaming model. The semi-streaming
model, originally introduced in [42], is motivated by the rise of massive graphs where the data
is too large to be stored in memory, and has received extensive attention (see among others

1 Corresponding author
© Diba Hashemi and Weronika Wrzos-Kaminska;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 16; pp. 16:1–16:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:diba.hashemi@epfl.ch
https://orcid.org/0009-0007-5940-4084
mailto:weronika.wrzos-kaminska@epfl.ch
https://orcid.org/0009-0003-5281-8277
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.16
https://arxiv.org/abs/2408.15434
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Weighted Matching in Random-Order Streams

[69, 38, 48, 78, 58, 35, 73, 47, 59]). In this model, the edges of a graph arrive sequentially
as a stream. The algorithm typically makes a single pass over the stream using space
O(n polylog n), and must output an approximate maximum matching at the end of the
stream. If the graph is unweighted, the greedy algorithm trivially gives a 1/2-approximation,
which is the best known for adversarially ordered streams. On the hardness side, it is known
that a 0.59-approximation is not possible [59] (see also [48, 58]). Closing the gap between these
upper and lower bounds is one of the major open problems in the graph streaming literature.
There has also been a long line of work on the weighted problem [42, 69, 38, 78, 35, 73, 47],
culminating in a (1/2− ϵ)-approximation using space O(n) [73, 47].

Recently, there has been a wide interest in the random-order version of this problem,
in which the arrival order of the edges is chosen uniformly at random. This problem has
been extensively studied in the unweighted setting [64, 63, 5, 45, 41, 22, 6, 18]. Notably,
Bernstein [22] gave a 2/3-approximation, and Assadi and Behnezhad [6] improved it to
(2/3 + ϵ0) for a small constant ϵ0 ∼ 10−14.

Progress on the weighted version of the problem lags behind. Gamlath et al. [45] broke
the barrier of 1/2 in weighted graphs by obtaining a (1/2 + δ)-approximation for a small
constant δ ∼ 10−17. More recently, Huang and Sellier [54] gave a 1

2−1/(2W) -approximation
under the assumption that the weights take integral values in [W]. This leaves a considerable
gap between the best known results for the unweighted and weighted versions of the problem.
In contrast, in other sublinear contexts, such as adversarially ordered streams or the dynamic
graph setting, the weighted/unweighted gap has largely been closed [23]. The challenge of
closing the gap in random-order streams remains an open problem, and has been highlighted
explicitly in [22] and [23].

In this paper, we give a (2
3 − ϵ)-approximation algorithm for the weighted setting. Our

result almost matches the best known (2
3 + ϵ0)-guarantee for the unweighted setting, and

improves significantly upon the previous results for the weighted setting.

▶ Theorem 1.1. Given any constant ϵ > 0, there exists a deterministic single-pass streaming
algorithm that with high probability computes a (2

3−ϵ)-approximate maximum weight matching
if the edges arrive in a uniformly random order. The space usage of the algorithm is
O(n log n log R), where R is the ratio between the heaviest and the lightest edge weight in the
graph.

We also consider the two-player communication complexity model [77], and in particular
the one-way communication complexity of matching, which was first studied in [48]. Here,
the edge-set is partitioned between two parties Alice and Bob. Alice sends a single message
to Bob, who must output an approximate maximum matching. Typically, we are interested
in protocols with communication complexity O(n polylog n).

If the edges are partitioned adversarially between Alice and Bob, the right answer turns
out to be 2/3. A 2/3-approximation can be achieved using O(n) communication for both
bipartite unweighted [48], general unweighted [9] and general weighted [23] graphs. Going
beyond a 2/3-approximation requires n1+1/(log log n) ≫ n polylog n communication even for
unweighted bipartite graphs [48].

If instead the edges are partitioned randomly between the two parties, the answer is
less clear. Recently, Azarmehr and Behnezhad [20] gave a 5/6-approximation algorithm
for unweighted graphs, improving upon a previous result of Assadi and Behnezhad [7]. To
the best of our knowledge, prior to our work there were no results for weighted graphs
(besides the 2/3-approximation implied by adversarial protocols). We match the unweighted
guarantees of Azarmehr and Behnezhad [20], thus closing weighted/unweighted gap in the
robust communication complexity model.

D. Hashemi and W. Wrzos-Kaminska 16:3

▶ Theorem 1.2. Given any constant ϵ > 0, there exists a protocol that with high probability
computes a (5

6 − ϵ)-approximate maximum weight matching in the two-party robust commu-
nication model using O(n log n log R) words of communication, where R is the ratio between
the heaviest and the lightest edge weight in the graph.

More generally, we match the results of Azarmehr and Behnezhad [20] for unweighted k-party
robust communication, thus closing the unweighted/weighted gap also in this model.

▶ Theorem 1.3. Given any k ≥ 2 and any constant ϵ > 0, there exists a protocol that
with high probability computes a (2

3 + 1
3k − ϵ)-approximate maximum weight matching in the

k-party one-way robust communication model using O(n log n log R) words of communication,
where R is the ratio between the heaviest and the lightest edge weight in the graph.

1.1 Related Work
The maximum matching problem is one of the most studied problems in the streaming
setting, with numerous lines of work. This includes among others single-pass algorithms
[42, 69, 38, 48, 78, 73, 47, 58, 35, 59, 8], multi-pass algorithms using 2 or 3 passes [64,
40, 56, 63, 65, 43, 3, 67, 66], and (1 − ϵ)-approximation using a higher number of passes
[69, 37, 1, 53, 2, 75, 45, 14, 10, 44, 18, 55, 4]. Garg et al. considered matching in a robust
random-order streaming model with adversarial noise [46]. There are many results on
dynamic streams, where edges can be deleted [33, 62, 12, 32, 11, 36, 17]. A different line of
work considers estimating matching size, either in random-order streams [60, 28, 72, 61, 19]
or in adversarially ordered streams [28, 70, 11, 34, 39, 71, 27, 13, 15]. Finally, there have
also been several works on exact matching [42, 32, 53, 16, 30, 10].

2 Technical Overview

In this paper, we are interested in the random-order streaming model. The maximum
cardinality matching problem has gained significant attention within this framework [64, 63,
45, 5, 41, 22, 6]. Bernstein [22] gave a 2/3-approximation algorithm by adapting the “matching
sparsifier” Edge-Degree Constrained Subgraph (EDCS) to the streaming context. Subsequent
work by Assadi and Behnezhad [6] improved upon this, achieving a (2/3 + ϵ0)-approximation
by simultaneously running Bernstein’s algorithm while identifying short augmenting paths.
One of the motivations for studying the random-order setting, is that real-world data is rarely
ordered adversarially. Rather, in most practical applications, it is reasonable to assume that
the data is drawn from some distribution. However, assuming uniform randomness is often
too strong of an assumption, since data correlations are prevalent in many real-world settings.
This raises the question:

How robust are random-order streaming algorithms to correlations in the arrival order?

The robustness of random-order streaming algorithms to various types of adversarial distor-
tions has already been studied previously, among others in the context of maximum matching
and submodular maximization [46], rank selection [49, 50, 51], clustering problems [68] and
component collection and counting [31]. In this paper, we focus on matchings. Our first
contribution, is showing that existing algorithms for unweighted matching in random-order
streams are in fact robust to correlations in the arrival order.

Bernstein’s
(2

3 − ϵ
)
-approximation algorithm is resilient to (limited) adversarial

correlations in the arrival order.

APPROX/RANDOM 2024

16:4 Weighted Matching in Random-Order Streams

Surprisingly, this immediately gives a reduction from weighted matching in random-order
streams.

In adversarially ordered streams, Bernstein, Dudeja and Langley [23] gave a reduction
from maximum weight matching to maximum cardinality matching. Progress in random-
order streams has been comparatively limited. Gamlath et al. [45] achieved a (1/2 + δ)-
approximation, where δ ∼ 10−17 is a small constant. More recently, Huang and Sellier [54]
gave a 1

2−1/(2W) -approximation under the assumption that the weights take integral values in
[W], improving upon the result of Gamlath et al. [45] for small weights. They generalized the
definition of EDCS to weighted graphs, which enabled them to adapt Bernstein’s algorithm [22]
to weighted graphs. However, their generalized notion of EDCS has weaker guarantees
compared to the unweighted version, resulting in a significant loss in the approximation ratio.

Our second contribution is to nearly close the gap between weighted and unweighted
maximum matching in random-order streams. We show that the reduction of Bernstein,
Dudeja and Langley can be applied to random-order streaming algorithms which are resilient
to specific correlations in the arrival order. This, together with the fact that Bernstein’s
algorithm [22] is robust to the appropriate correlations, gives a 2/3-approximation algorithm
for weighted bipartite graphs. We are also able to extend the guarantees to non-bipartite
graphs.

2.1 Reduction in Adversarial Streams
First, we review the reduction of Bernstein, Dudeja and Langley [23] for adversarial streams.
It is based on a technique called graph unfolding by Kao, Lam, Sung and Ting [57].

▶ Definition 2.1 (Graph Unfolding [57]). Let G = (V, E, w) be a graph with non-negative
integral edge weights. The unfolded graph ϕ(G) is an unweighted graph created as follows.
For each vertex u ∈ V , let Wu = maxe∋uwe be the maximum edge weight incident on u.
There are Wu copies of u in ϕ(G), denoted by u1, ..., uWu . For each edge e = (u, v) in G,
there are we edges {(ui, vwe−i+1)}i∈[we] in ϕ(G). See Figure 1 for an illustration.

G

x

y z

2 3 ϕ

ϕ(G)

x1 x2 x3

y1 y2 z1 z2 z3

Figure 1 An example of a weighted graph G and its unfolding ϕ(G).

One can also do a reverse operation of unfolding to bring a subgraph back to G.

▶ Definition 2.2 (Refolding [23]). Let G = (V, E) be a weighted graph and let H ⊆ ϕ(G).
The refolded graph R(H) has vertex set V and edge set E(R(H)) := {e = (u, v) ∈ G :
(ui, vwe−i+1) ∈ H for some i ∈ [we]}. See Figure 2 for an illustration.

Figure 1 illustrates the unfolding operation and Figure 2 illustrates the refolding operation.
The key property of refolding is that it preserves the matching size in bipartite graphs.

▶ Lemma 2.3 (Refolding preserves matching size in bipartite graphs [23]). Let G be a weighted
bipartite graph, and let H ⊆ ϕ(G) be a subgraph of its unfolding. Then µw(R(H)) ≥ µ(H).

D. Hashemi and W. Wrzos-Kaminska 16:5

G

x

y z

2 3
R(H)

R

ϕ(G)

x1 x2 x3

y1 y2 z1 z2 z3

H

Figure 2 An example of a subgraph H ⊆ ϕ(G) and its refolding R(H) ⊆ G. In this example,
H = {(u1, v2)}. Then R(H) = {(u, v)}.

This leads to a reduction from maximum weight bipartite matching to maximum cardinality
bipartite matching in adversarially ordered streams: Upon arrival of each weighted edge
e ∈ G, unfold e and pass the corresponding unweighted edges ϕ(e) into an unweighted
streaming algorithm. At the end of the stream we obtain an unweighted matching in ϕ(G),
which we can refold to obtain a weighted matching in G.

In random-order streams, this reduction breaks for the following reason: For each weighted
edge e ∈ G, the unweighted edges ϕ(e) will necessarily arrive together. This introduces
correlations in the arrival order of the edges, so the guarantees of random-order streaming
algorithms do not apply. To address this, we consider a new streaming model, the b-batch
random-order stream model, which is similar to the hidden-batch model introduced in [31].
This model allows us to capture the edge-correlations that arise from graph unfolding.

▶ Definition 2.4 (b-batch random-order stream model). In the b-batch random-order stream
model the edge set of the input graph G = (V, E) is presented as follows: An adversary
partitions the edge set E into batches B = {B1, ..., Bq} with |Bi| ≤ b for all i. The arrival order
of the batches (Bi1 , ..., Biq

) is then chosen uniformly at random among all the permutations
of B. The edges in each batch arrive simultaneously.

Graph unfolding gives a reduction from weighted bipartite random-order streams to
unweighted bipartite b-batch random-order streams. Each batch corresponds to one weighted
edge, so given a weighted graph G, we can simply run a b-batch random-order stream
algorithm on ϕ(G) with batches B = {ϕ(e) : e ∈ G}.

2.2 Bernstein’s Algorithm for Unweighted Random-Order Streams
We now review Bernstein’s algorithm for unweighted random-order streams [22]. The
algorithm proceeds in two Phases. Let β = O(poly(ϵ−1)) be a parameter. Phase 1 constructs
a subgraph H such that for all (u, v) ∈ H,

degH(u) + degH(v) ≤ β. (1)

Given a subgraph H , we will say that an edge (u, v) ∈ G is underfull if degH(u) + degH(v) ≤
β − 2, otherwise say that (u, v) is non-underfull.

The algorithm constructs H by adding underfull edges in a greedy manner, and then
removing any edges that violate Equation 1. Phase 1 terminates when ≈ poly(ϵ) m

n non-
underfull edges arrive in a row, and the algorithm then moves on to Phase 2. Bernstein [22]
showed that it is only possible to make at most nβ2 modifications to H. Since Phase 1
terminates when we see ≈ poly(ϵ) m

n edges in a row without modifying H, the Phase must
terminate within the first ≈ nβ2 · poly(ϵ) m

n ≈ ϵm edges. This argument also holds in the
b-batch random-order stream model.

APPROX/RANDOM 2024

16:6 Weighted Matching in Random-Order Streams

Then, in Phase 2, the algorithm simply collects all underfull edges into a separate set
U (without modifying the graph H). Let Glate denote the edges that arrive in Phase 2.
Bernstein [22] proved the following structural result about H ∪ U , which holds regardless of
the assumptions on the arrival order:

µ(H ∪ U) ≥
(

2
3 − ϵ

)
µ(Glate). (2)

Since Phase 2 contains at least a (1−ϵ) fraction of the edges, and since the stream is uniformly
at random, it follows from the Chernoff bound that µ(Glate) ≥ (1− 2ϵ)µ(G). Consequently,
by Equation 2, it holds that

µ(H ∪ U) ≥
(

2
3 − 3ϵ

)
µ(G).

For the space analysis, observe that H contains at most nβ = O(n) edges. Let us now
consider U . Recall that U is the set of all underfull edges that arrive after the termination of
Phase 1, and that Phase 1 terminates when we see ≈ m

n non-underfull edges in a row. So the
only way for U to become too large, is if we draw ≈ m

n non-underfull edges in a row when
there are more than C · n log n underfull edges left in the stream, for some constant C. The
probability of this event can be upper-bounded by(

1− C · n log n

m

)m/n

≤ n−C ,

so with high probability, the algorithm stores at most O(n log n) edges. Note that the space
analysis breaks down in the b-batch random-order stream model, due to the correlated arrival
orders.

2.3 Applying the Algorithm to Batch Arrivals
We now sketch why Bernstein’s algorithm can be adapted to work under batch arrivals. Let b

denote the upper-bound on the batch-size, and let q denote the total number of batches in the
stream. Recall that in the reduction from weighted random-order streams, b corresponds to
the maximum weight in the graph and q corresponds to the number of edges in the weighted
graph. We will now describe how to obtain an algorithm with a polynomial space dependence
on b. We will later discuss how to remove this dependence in the reduction from weighted
random-order streams.

We will say that a batch is underfull if it contains at least one underfull edge. Otherwise,
if it does not contain any underfull edges, say that it is non-underfull.

We terminate Phase 1 when ≈ poly(ϵ) q
bn non-underfull batches arrive in a row. This

ensures that Phase 1 terminates within the first ≈ nβ2 · poly(ϵ) q
bn ≈

ϵ
b q batches. Since each

batch contains at most b edges, and since the arrival order of the batches is uniformly at
random, it follows from Chernoff bounds that

µ(Glate) ≥ (1− 2ϵ)µ(G).

Combining with Equation 2 we obtain

µ(H ∪ U) ≥
(

2
3 − 3ϵ

)
µ(G).

D. Hashemi and W. Wrzos-Kaminska 16:7

The only way for the space usage to become too large, is if ≈ poly(ϵ) q
b·n non-underfull

batches arrive in a row when there are more than C · n log n poly(b
ϵ) underfull batches left in

the stream, for some large constant C. The probability of this event can be upper-bounded
by (

1− C · n log n

q
poly

(
b

ϵ

))poly(ϵ/b)q/n

≤ n−C ,

so with high probability, the algorithm stores at most O(n log n poly(b)) edges.
In our reduction, the parameter b corresponds to the maximum edge weight W in the

graph. This means that we would incur a polynomial dependence on W in the space usage.
However, a reduction due to Gupta and Peng [52] allows us to offset this space dependence.
Gupta and Peng [52] devised a scheme for bucketing together edges according to their weight,
which gives a reduction from general (possibly non-integral) weights, to integral bounded
weights. Combining with this reduction, our algorithm uses space O(n log n log R), where R

is the ratio between the heaviest and the lightest edge in the graph, and it can handle any
(possibly non-integral) edge weights. In particular, the space usage is O(n polylog n) as long
as the weights are polynomial in n.

2.4 Non-bipartite graphs
In general, the reduction of Bernstein, Dudeja and Langley only holds for bipartite graphs.
For non-bipartite graphs, it is no longer true that refolding preserves the matching size, since
refolding a matching in ϕ(G) can incur an additional 2/3 loss in the approximation ratio.
Indeed, consider for example a weighted triangle with all edges of weight 2 (see Figure 3).

ϕ

R

G

x

y z

2
2

2

R(H)

ϕ(G)

x1x2

y1

y2 z1

z2

H

Figure 3 Refolding does not in general preserve matching size in non-bipartite graphs. Consider
for example the blue subgraph H = {(x1, z2), (z1, y2), (y1, x2)} ⊆ ϕ(G) shown in the diagram. Then
µ(H) = 3, but µw(R(H)) = 2.

We prove that the subgraph H ∪ U computed by Bernstein’s algorithm still satisfies
µw(R(H ∪ U)) ≥ (2/3 − ϵ)µw(G), even for non-bipartite graphs. This allows us to apply
the unfolding reduction without any loss in the approximation ratio. We achieve this by
reducing to the bipartite case: We show that for every weighted graph G, there exists a
bipartite subgraph G̃ ⊆ G such that µ((H ∪ U) ∩ ϕ(G̃)) ≥ (2/3 − ϵ)µw(G). We can then
apply Lemma 2.3 to the bipartite graph G̃ to get the result.

In order to “bipartify” the graph, we use the following lemma from [23], which says that
there exists a bipartite subgraph in which the degrees to H concentrate well (See Lemma
4.10 for the formal statement).

▶ Lemma 2.5 (Informal version of Lemma 5.7 in [23]). Let G be a weighted graph and let M∗

be a maximum weight matching in G. Suppose that H ⊆ ϕ(G) satisfies Equation 1. Then
there exists a bipartite subgraph G̃ ⊆ G such that G̃ contains M∗, and, setting H̃ := H ∩ G̃,
it holds that

deg
H̃

(v) ≈ degH(v)
2 ∀v ∈ V.

APPROX/RANDOM 2024

16:8 Weighted Matching in Random-Order Streams

Using this, we will show that (H ∪ U) ∩ ϕ(G̃) contains an EDCS, and therefore also contains
a large matching.

▶ Definition 2.6 (EDCS [24]). Let G = (V, E) be an unweighted graph, and H = (V, EH) a
subgraph of G. Given parameters β ≥ 2 and λ < 1, we say that H is a (β, λ)-EDCS of G if
H satisfies the following properties:

(Property P1:) For all edges (u, v) ∈ H, it holds that degH(u) + degH(v) ≤ β.

(Property P2:) For all edges (u, v) ∈ G \H, it holds that degH(u) + degH(v) ≥ β(1− λ).
The crucial property of EDCS is that it contains a 2/3-approximate maximum cardinality
matching. This was first proved in [24] for bipartite graphs and in [25] for general graphs.
See also Lemma 3.2 in [9] for a simpler proof with improved parameters.

▶ Theorem 2.7 (EDCS contain a 2/3-approximate matching [9]). Let G be an unweighted
graph and let ϵ < 1/2 be a parameter. Let λ, β be parameters with λ ≤ ϵ

64 , β ≥ 8λ−2 log(1/λ).
Then, for any (β, λ)-EDCS H of G, we have that µ(H) ≥ (2

3 − ϵ)µ(G).

Now consider the weighted input graph G. Fix a maximum weight matching M∗ in G and let
H be the graph computed by Phase 1 of Bernstein’s algorithm on input ϕ(G). Let G̃ ⊆ G be
the bipartite subgraph from Lemma 2.5. Ideally, we would like to show that (H ∪ U) ∩ ϕ(G̃)
is an EDCS. However, this is not true in general, since the degrees to U can be arbitrarily
large (consider for example the case when U is a star, see Figure 4 for an illustration), so
deg(H∪U)∩ϕ(G̃) cannot be upper-bound by a constant. Instead, we will sparsify U , so that its
contribution to the degrees becomes insignificant. Let H̃ = H ∩ϕ(G̃) and let Ũ = U ∩ϕ(M∗)
(see Figure 4). This idea is similar to Bernstein’s original analysis [22], except that now we
perform this sparsification in the unfolded and “bipartified” graph.

Weighted

Non-bipartite

G

High-degree vertex affecting the edge-degrees

M∗

Bipartite

Bipartify

G̃

M∗

Unweighted

Unfold and run
Bernstein’s algorithm

ϕ(G)
Underfull edges are marked blue

ϕ(M∗)

U

Bipartify and
Sparsify

Unfold and
Sparsify

H̃ ∪ ϕ(M∗) ⊆ ϕ(G̃)
Restrict U in order to reduce edge-degrees

ϕ(M∗)

Ũ = U ∩ ϕ(M∗)

Figure 4 Illustration of the reduction to the bipartite case. We show that H̃ ∪ Ũ contains a
matching of size at least

(
2
3 − ϵ

)
µw(G). Since G̃ is bipartite, we can refold H̃ ∪ Ũ without reducing

the matching size.

Now Ũ is a matching, so for all v ∈ V , we have deg
H̃∪Ũ

(v) ∈ {deg
H̃

(v), deg
H̃

(v) + 1}. So

deg
H̃∪Ũ

(v) ≈ deg
H̃

(v) ≈ 1
2 degH(v).

In particular,

∀(u, v) ∈ H̃ ∪ Ũ , deg
H̃∪Ũ

(u) + deg
H̃∪Ũ

(v) ≈ 1
2 degH(u) + 1

2 degH(v) ≤ β

2 ,

D. Hashemi and W. Wrzos-Kaminska 16:9

and

∀(u, v) ∈ ϕ(M∗)\(H̃∪Ũ), deg
H̃∪Ũ

(u)+deg
H̃∪Ũ

(v) ≈ 1
2 degH(u)+ 1

2 degH(v) ≥ β

2 −1.

Setting X = H̃ ∪ Ũ , β′ ≈ β
2 , and λ′ to be a sufficiently small constant, we can now apply

Theorem 2.7 to the graph H̃ ∪ ϕ(M∗), and obtain

µ(H̃ ∪ Ũ) ≥ (2/3− ϵ) µ(H̃ ∪ ϕ(M∗)) ≥ (2/3− ϵ) µ(ϕ(M∗)).

Since H̃ ∪ Ũ ⊆ ϕ(G̃) and since G̃ is bipartite, we can apply Lemma 2.3 to get the required
result

µw(R(H ∪ U)) ≥ µw(R(H̃ ∪ Ũ)) = µ(H̃ ∪ Ũ) ≥ (2/3− ϵ) µ(ϕ(M∗)) = (2/3− ϵ) µw(G).

In the rest of the paper, we will present the full analysis. In Section 4, we formally present
the algorithm and analysis for random-order streams. In Section 5, we prove Theorem 1.2
and Theorem 1.3.

3 Notation and Preliminaries

Given a graph G = (V, E), we will use n := |V | to denote the number of vertices and m := |E|
to denote the number of edges in G. If G is weighted, then we will use w : E → R+ to denote
the edge weights, and R := maxe∈E we/ mine∈E we to denote the ratio between the heaviest
and the lightest edge in G. We use µ(G) to denote the size of the maximum cardinality
matching in G, and µw(G) to denote the weight of the maximum weight matching in G.

Given ϵ > 0, define γϵ := (4/ϵ)⌈1/ϵ⌉, a large constant which will be incurred in the space
usage of our algorithms (instead of a dependence on the maximum weight of the graph).
Note that for any fixed ϵ, we have γϵ = O(1).

3.1 Models
Random-order streams In the random-order stream model, the weighted edges of the input

graph arrive one-by-one in an order chosen uniformly at random from all possible orderings.
The algorithm makes a single pass over the stream and must output an approximate
maximum weight matching at the end of the stream.

Robust communication model In the k-party one-way robust communication model, each
weighted edge of the input graph is assigned independently and uniformly at random to
one of the k parties. The ith party is supplied with its assigned edges and a message
mi−1 from the (i− 1)st party, and must send a message mi to the (i + 1)st party. The
kth party must output a valid weighted matching of the input graph. The communication
complexity of a protocol is defined to be max1≤i≤k |mi|, where |mi| is the number of
words in message mi.
In the case of k = 2, we refer to the first party as Alice and to the second party as Bob.

3.2 Graph Unfolding
In addition to the facts already stated in Section 2, we will need the following:

▶ Theorem 3.1 (Unfolding preserves matching size in bipartite graphs [57]). If G is a weighted
bipartite graph, then µw(G) = µ(ϕ(G)).

▶ Definition 3.2 (Refolding approximate [23]). Let G be a weighted graph. A subgraph
H ⊆ ϕ(G) is α-refolding-approximate if µw(R(H)) ≥ α · µw(G).

APPROX/RANDOM 2024

16:10 Weighted Matching in Random-Order Streams

3.3 EDCS
We will use the following guarantee which holds for a relaxed notion of EDCS.

▶ Definition 3.3 (Bounded edge-degree [22]). We say that a graph H has bounded edge-degree
β if for every edge (u, v) ∈ H, it holds that degH(u) + degH(v) ≤ β.

▶ Definition 3.4 (Underfull edge [22]). Let G be any unweighted graph, and let H be a
subgraph of G with bounded edge-degree β. For any parameter λ < 1, we say that an edge
(u, v) ∈ G \H is (G, H, β, λ)-underfull if degH(u) + degH(v) < β(1− λ).

▶ Lemma 3.5 (Relaxed EDCS contain a 2/3-approximate matching [22]). Let ϵ < 1
2 be a

parameter, and let λ, β be parameters with λ ≤ ϵ
128 , β ≥ 16λ−2 log(1/λ). Consider any

unweighted graph G and any subgraph H with bounded edge-degree β. Let U contain all edges
in G \H that are (G, H, β, λ)-underfull. Then µ(H ∪ U) ≥ (2/3− ϵ)µ(G).

3.4 Concentration Inequality
We will use the Chernoff bound for negatively associated random variables (see e.g. the
primer in [76]).

▶ Theorem 3.6. Let X1, . . . Xn be negatively associated random variables taking values in
[0, 1]. Let X :=

∑
Xi and let µ := E[X]. Then, for any 0 < δ < 1, we have

Pr[X ≤ µ(1− δ)] ≤ exp
(
−µδ2

2

)
.

4 2/3-Approximation in Random-Order Streams

In this section we prove Theorem 1.1. In Section 4.1, we formally describe the reduction from
weighted random-order streams to unweighted b-batch random-order streams, and we prove
its correctness. In Section 4.2, we show that Bernstein’s 2/3-approximation algorithm [22]
for random-order streams still works under batch-arrivals. Finally, in Section 4.3, we show
that the obtained weighted random-order streaming algorithm still works for non-bipartite
graphs, and we complete the proof of Theorem 1.1.

4.1 Reduction to Unweighted b-batch Random-Order Streams
Gupta and Peng [52] gave a reduction which allows us to assume that the edge weights are
integral and bounded above by a large constant.They originally proved the reduction for the
dynamic graph model, however it also applies to the streaming and one-way communication
models (See Theorem 6.1 and Theorem 6.2 in [23]).

▶ Theorem 4.1 (Reduction to bounded integral weights [52, 23]). If there is a random-order
streaming algorithm A to compute an α-approximate maximum weight matching in graphs
with edge weights in [W] and using space S(n, m, W, α), then there exists a random-order
streaming algorithm A′ to compute a (1− ϵ)α-approximate maximum weight matching with
weights in graph with weights R+ using space O(S(n, m, γϵ, α) log R).

Similarly, if there is a one-way robust communication complexity protocol to com-
pute an α-approximate maximum weight matching for graphs with edge weights in [W]
using C(n, m, W, α) words of communication, then there exists a protocol to compute
a (1 − ϵ)α-approximate maximum weight matching in graphs with weights in R+ using
O(C(n, m, γϵ, α) log R) words of communication.

D. Hashemi and W. Wrzos-Kaminska 16:11

We would like to use the unfolding technique to reduce to the unweighted problem. As
Bernstein, Dudeja and Langley [23] showed, in adversarially ordered streams, unfolding
immediately gives a reduction for bipartite graphs: Whenever a weighted edge e ∈ G arrives,
we can unfold it and pass the unweighted edges ϕ(e) sequentially into an unweighted streaming
algorithm while tracking the updates in the weighted stream. In random-order streams,
there is a subtle issue with this approach. If the edges arrive uniformly at random in G, then
the arrival order in ϕ(G) will not be uniformly at random, but rather there will be batches
of edges which necessarily arrive together. To overcome this issue, we consider the b-batch
random-order stream model, restated below.

▶ Definition 2.4 (b-batch random-order stream model). In the b-batch random-order stream
model the edge set of the input graph G = (V, E) is presented as follows: An adversary
partitions the edge set E into batches B = {B1, ..., Bq} with |Bi| ≤ b for all i. The arrival order
of the batches (Bi1 , ..., Biq) is then chosen uniformly at random among all the permutations
of B. The edges in each batch arrive simultaneously.

Graph unfolding naturally gives a reduction from weighted random-order streams to
unweighted b-batch random-order streams.

▶ Theorem 4.2 (Reduction to the b-batch model). If there exists an algorithm AB for
the unweighted b-batch random-order stream model that computes an α-approximate max-
imum cardinality matching in bipartite graphs using space S(n, m, b, α), then there ex-
ists an algorithm Aw for weighted random-order streams (with weights in R+) that com-
putes a (1 − ϵ)α-approximate maximum weight matching in bipartite graphs using space
O(S(nγϵ, mγϵ, γϵ, α) log R).

Moreover, suppose that AB computes an α-refolding approximate subgraph whenever the
input graph is of the form ϕ(G) for some weighted graph G with batches B = {ϕ(e) : e ∈ G}.
Then the guarantees of Aw also hold for non-bipartite graphs.

Proof. Let AB be the unweighted b-batch random-order streaming algorithm using space
S(n, m, b, α). By Theorem 4.1, it suffices to construct an algorithm AW that computes an
α-approximate maximum weight matching using space S(Wn, Wm, W, α) when the edge
weights are in [W]. We can obtain the required algorithm AW as follows:

Whenever an edge e arrives in the weighted stream, define a batch Be := ϕ(e) consisting
of the unfolded edges of e. Feed the batch Be as an update to the batch algorithm AB . In
other words, AB is applied to the graph ϕ(G) with batches B = {ϕ(e) : e ∈ G}. At the end
of the stream, AB outputs an α-approximate maximum cardinality matching M of ϕ(G).
The algorithm AW outputs the maximum weight matching in R(M) (which can easily be
computed from M). We have

µw(R(M)) ≥ µ(M), by Lemma 2.3
≥ α · µ(ϕ(G)), by the assumption on M

= α · µw(G), by Theorem 3.1

so AW outputs an α-approximate maximum weight matching. Since the graph ϕ(G) has at
most Wn vertices and Wm edges, the space usage of AW is at most S(Wn, Wm, W, α), as
required.

APPROX/RANDOM 2024

16:12 Weighted Matching in Random-Order Streams

For the “Moreover”-part, suppose that AB computes an α-refolding approximate subgraph
H. Define AW as before, except that now AW should output the maximum weight matching
in R(H). Then

µw(R(H)) ≥ α · µw(G), by Definition 3.2,

so the approximation ratio achieved by AW is still α, even for non-bipartite graphs, as
required. ◀

▶ Remark 4.3. The argument can easily be adapted to the robust communication model.
Consider a b-batch robust communication model, in which an adversary partitions the edges
into batches of size at most b, and each batch gets assigned uniformly at random to each of
the parties. Then any protocol for the b-batch robust communication model gives a protocol
for the weighted robust communication model.

4.2 2/3-Approximation in b-batch Random-Order Streams
In this section, we prove the following proposition.

▶ Proposition 4.4. Given any unweighted graph G and any approximation parameter
0 < ϵ < 1, Bernstein’s algorithm (Algorithm 1) with high probability computes a (2/3− ϵ)-
approximate maximum cardinality matching in the b-batch random-order stream model. The
space complexity of the algorithm is O(nb2 log n log b poly(ϵ−1)), where b is the upper bound
on batch-size.

▶ Definition 4.5 (Parameters). Let ϵ < 1
2 be the final approximation parameter we are aiming

for, λ = ϵ
512 , β = 144λ−2 log(2b/λ); note that β = O(poly(ϵ−1) log b). Set α = ϵq

b(nβ2+1) and
γ = 7 log n q

α = O(nb log n log b poly(ϵ−1)).

We now describe Bernstein’s algorithm [22] adapted to the b-batch model. The algorithm
has two Phases. In Phase 1, it computes a subgraph H that is bounded edge-degree β

(Definition 3.3). In Phase 2, it stores all the (G, H, β, λ)-underfull edges (Definition 3.4).
That way, the algorithm computes a “relaxed” EDCS, which by Lemma 3.5 contains a
(2/3− ϵ)-approximate maximum cardinality matching.

More concretely, the algorithm proceeds as follows: Initialize an empty subgraph H and
start Phase 1. Phase 1 is split into epochs, each of which contains exactly α batches. In
each epoch, the algorithm processes the batches sequentially. For each edge (u, v) in the
batch, if degH(u) + degH(v) < β(1− λ), then (u, v) is added to the subgraph H (note that
the algorithm changes H over time, so degH always refers to the degree of H at the time
when the edge is examined). After adding an edge to H, the algorithm runs procedure
RemoveOverfullEdges(H) to ensure that H is always bounded edge-degree β. In each
epoch, the algorithm also has a boolean FoundUnderfull, which tracks whether at least
one underfull edge arrived in the epoch. If FoundUnderfull is FALSE at the end of
an epoch, then the algorithm terminates Phase 1 and moves on to Phase 2. Once Phase
1 terminates, the subgraph H becomes fixed and does not change anymore. Then, in
Phase 2, the algorithm simply picks up all the underfull edges into a separate set U . For a
formal description, see Algorithm 1. Note that the only difference between Algorithm 1 and
Bernstein’s original algorithm (Algorithm 1 in [22]) is that the length of each epoch is now
determined by the number of batches, rather than the number of edges.

▶ Definition 4.6. Let Bearly denote the first ϵ
b q batches in the stream and let Blate denote

the remaining batches. Let Elate := {e ∈ E : e ∈ B for some B ∈ Blate} be the set of edges
that arrive as part of the late batches. More generally, let E>i denote the the set of edges
that arrive after the first i batches.

D. Hashemi and W. Wrzos-Kaminska 16:13

Algorithm 1 Bernstein’s Algorithm [22] adapted to the b-batch model.

1 H ← ∅, U ← ∅
2 Procedure Phase 1
3 Do until termination
4 FoundUnderfull ← FALSE
5 for i = 1, . . . , α do // Each epoch has α batches
6 Let Bi denote the ith batch in the epoch
7 for (u, v) ∈ Bi do
8 if degH(u) + degH(v) < β(1− λ) then
9 H ← H ∪ {(u, v)}

10 FoundUnderfull ← TRUE
11 RemoveUnderfullEdges(H)
12 if FoundUnderfull = FALSE then
13 Go to Phase 2
14 Procedure RemoveOverfullEdges(H)
15 while there exists (u, v) ∈ H such that degH(u) + degH(v) > β do
16 Remove (u, v) from H

17 Procedure Phase 2
18 foreach remaining edge (u, v) in the stream do
19 if degH(u) + degH(v) < β(1− λ) then
20 U ← U ∪ {(u, v)}
21 return the maximum matching in H ∪ U

First, we show that we don’t loose too many matching edges in the early part of the stream.
To this end, we need to assume that the maximum cardinality matching is sufficiently large.

▷ Claim 4.7. We can assume that µ(G) ≥ 20b2 log nϵ−2.

Proof. It is well known that every graph G satisfies m ≤ 2nµ(G). Hence, if µ(G) <

20b2 log nϵ−2, then m = O(nb2 log nϵ−2), so we can simply store all the edges. ◁

▶ Lemma 4.8. For ϵ < b/2, it holds that Pr[µ(Elate) ≥ (1− 2ϵ)µ(G)] ≥ 1− n−5.

Proof. Fix a maximum cardinality matching in M∗ in G, and let B1, . . . , Bk be the set of
batches containing at least one matching edge from M∗. Each batch Bi contains at most
b edges from M∗, so it suffices to show that at most 2ϵµ(G)

b of these batches arrive in the
early part of the stream. For 1 ≤ i ≤ k, let Xi be the indicator that Bi ∈ Blate, and let
X =

∑k
i=1 Xi. We will show that with high probability, X ≥ k − 2ϵµ(G)

b . For 1 ≤ i ≤ k, we
have E[Xi] = (1− ϵ

b), and so E[X] = k(1− ϵ
b).

The Xis are negatively associated, since these variables correspond to sampling (1− ϵ)q
batches uniformly at random without replacement, which is known to be negatively associated
(see the primer [76]). Applying Theorem 3.6 gives

Pr
[
X ≥ k − 2ϵµ(G)

b

]
= 1− Pr

[
X − E[X] < −

(
2ϵµ(G)

b
− ϵk

b

)]
≥ 1− exp

(
−ϵ2(2µ− k)2

4b2k

)
≥ 1− n−5.

The last inequality follows because µ(G) ≥ k and µ(G) ≥ 20b2ϵ−2 log n, by Claim 4.7. ◀

APPROX/RANDOM 2024

16:14 Weighted Matching in Random-Order Streams

▶ Lemma 4.9. Phase 1 satisfies the following properties:
1. Phase 1 terminates within the first ϵq

b batches of the stream.
2. Phase 1 constructs a subgraph H ⊆ G with bounded edge-degree β. As a corollary, H has

at most O(nβ) edges.
3. When Phase 1 terminates after processing some batch Bl, with probability at least 1−n−5,

the total number of (E>l, H, β, λ)-underfull edges in E>l \H is at most bγ.
The proof of Lemma 4.9 proceeds similarly to the proof of Lemma 4.1 in [22]. We will use
the following result from the original analysis.

▶ Lemma 4.10 ([22]). Fix any parameter β > 2. Let H = (V, EH) be a graph, with EH

initially empty. Say that an adversary adds and removes edges from H using an arbitrary
sequence of two possible moves.

(Deletion move) Remove an edge (u, v) from H for which degH(u) + degH(v) > β.
(Insertion move) Add an edge (u, v) to H for some pair u, v ∈ V for which degH(u) +
degH(v) < β − 1.

Then, after nβ2 moves, no legal move remains.

Proof of Lemma 4.9. Property 1: By Lemma 4.10, the algorithm can make at most nβ2

changes to H. Since each epoch that does not terminate Phase 1 must make at least one
change to H, there can be at most nβ2 + 1 epochs in Phase 1. So overall, Phase 1 goes
through at most α(nβ2 + 1) = ϵq

b batches in Phase 1.
Property 2: Holds by construction of the algorithm, since the RemoveOverfull procedure
ensures that H is always bounded edge-degree β.
Property 3: Let l be the last batch processed in Phase 1. We will say that a batch Bj with
j > l is underfull if it contains at least one (E>l, H, β, λ)-underfull edge. We will show that
with probability at least 1− n−5, the number of underfull batches is at most γ. Since each
underfull batch contains at most b underfull edges, this will give the result. The intuition
is as follows: Phase 1 terminates only if there is an epoch without a single underfull batch.
Since the stream is random, this means that there are relatively few underfull batches left
in the stream. More formally, for each epoch 0 ≤ i ≤ ϵq

b , say that a batch is underfull if it
contains at least one (G, Hi, β, λ)-underfull edge, where Hi is the subgraph H constructed
by the algorithm at the beginning of epoch i. Let Ei be the event that no underfull batches
appear in epoch i, and let Fi be the event that there are more than γ underfull batches left
in the stream when epoch i begins. Property 3 fails only if Ei ∧Fi happens for some i, so we
need to upper bound Pr[∪ϵq/b

i=1 Ei ∧ Fi]. Let Br
i denote the set of batches that have not yet

appeared at the beginning of epoch i (r for remaining), let Be
i denote the set of batches that

appear in epoch i (e for epoch) and let Bu
i denote the set of underfull batches that remain

in the stream (u for underfull). With these definitions, we can write Ei ∧ Fi as the event
(Bu

i ∩ Be
i = ∅) ∧ (|Bu

i | > γ), since the event Bu
i ∩ Be

i = ∅ ensures that the graph H does not
change throughout the epoch. We have

Pr [Ei ∧ Fi] = Pr [(Bu
i ∩ Be

i = ∅) ∧ (|Bu
i | > γ)]

≤ Pr
[
Bu

i ∩ Be
i = ∅

∣∣|Bu
i | > γ

]
<

(
1− γ

q

)α

=
(

1− 7 log n

α

)α

≤ n−7.

D. Hashemi and W. Wrzos-Kaminska 16:15

Here the second inequality follows because Be
i is obtained by sampling α batches from Br

i

uniformly at random without replacement, and since |Bu
i | > γ and |Br

i | ≤ q. There are at
most n2 epochs in total, so taking the union bound over all epochs gives the result. ◀

Finally, we complete the proof of Proposition 4.4.

Proof of Proposition 4.4. Let us first show the approximation guarantee. By Part 2 of
Proposition 4.9, Phase 1 computes a subgraph H which has bounded edge-degree β. Moreover,
by Part 1 of Proposition 4.9, it holds that H ⊆ Elate. Phase 2 finds the set U of all
(Elate, H, β, λ)-underfull edges. So by Lemma 3.5 applied to the graph Elate, the algorithm
returns a matching of size at least

µ(H ∪ U) ≥ (2/3− ϵ)µ(Elate) by Lemma 3.5
≥ (2/3− ϵ)(1− 2ϵ)µ(G), by Lemma 4.8,

where the last inequality holds with probability at least 1 − n−5. Re-scaling ϵ gives the
approximation ratio.

For the space analysis: By Part 2 of Lemma 4.9, the space usage of Phase 1 is O(nβ) =
O(n log b poly(ϵ−1)). By Part 3 of Lemma 4.9, with probability at least 1− n−5, the space
usage of Phase 2 is at most O(bγ) = O(nb2 log n log b poly(ϵ−1)). So with probability at least
1− n−5, the total space usage is at most O(nb2 log n log b poly(ϵ−1)). By a union bound, the
overall success probability of the algorithm is at least 1− 2n−5. ◀

4.3 Extension to Non-Bipartite Graphs
In this section, we show that the computed graph H ∪ U is (2/3− ϵ)-refolding approximate.
This, together with Proposition 4.4 and Theorem 4.2 will complete the proof of Theorem 1.1.

In [23], it was shown that EDCS are (almost) 2/3-refolding approximate. However, since
H ∪ U is not actually an EDCS, but rather a relaxed version of an EDCS, this result cannot
be applied directly. Instead, we need a more careful argument. We need the following lemma
which was proved in [23].

▶ Lemma 4.11 (Lemma 5.7 in [23]). Let G be a weighted graph with weights in [W]. Let
δ ∈ (0, 1/2), and let d ≥ 36δ−2log(W/δ). For any matching M in G and any subgraph H of
ϕ(G) with maximum degree at most d, there exists a bipartite subgraph G̃ = G̃(M, H) of G

such that, setting H̃ := H ∩ ϕ(G̃), it holds that
1. M ⊆ G̃ and
2. | deg

H̃
(v)− degH(v)/2| ≤ δd for all vertices v ∈ V (H).

▶ Remark 4.12. Bernstein, Dudeja and Langley [23] state the lemma for the special case
when M is a maximum weight matching in G, however, without changing their argument,
the same is true for any arbitrary matching M.
We now prove the main technical lemma, which shows that H ∪ U is (2/3 − ϵ)-refolding
approximate.

▶ Lemma 4.13. Let G be a (possibly non-bipartite) weighted graph with weights in [W].
Let ϵ > 0, λ ≤ ϵ

512 , β ≥ 144
λ2 log(2W/λ). Let GS ⊆ G be any subgraph of G. Consider the

unfolded graph ϕ(G). Let H be a subgraph of ϕ(G) with bounded edge-degree β, and let U be
the set of all edges in ϕ(GS) \H that are (ϕ(GS), H, β, λ)-underfull. Then µw(R(H ∪ U)) ≥
(2/3− ϵ)µw(GS).

APPROX/RANDOM 2024

16:16 Weighted Matching in Random-Order Streams

Proof. Let δ = λ
2 . Fix a maximum-weight matching M∗ of GS , and let G̃ = G̃(M∗, H) be

the bipartite subgraph obtained from Lemma 4.11. Consider the subgraph ϕ(G̃) ⊆ ϕ(G). Let
H̃ := H∩ϕ(G̃) be the restriction of H to ϕ(G̃), and let Ũ := U∩ϕ(M∗) be the restriction of U

to the matching ϕ(M∗). Note that Ũ is a matching. By Lemma 4.11, we have ϕ(M∗) ⊆ ϕ(G̃),
and therefore H̃ ∪ Ũ ⊆ ϕ(G̃). Therefore, we may now apply Lemma 2.3 to the bipartite
graph G̃ and the subgraph H̃ ∪ Ũ of ϕ(G̃).

µw(R(H ∪ U)) ≥ µw(R(H̃ ∪ Ũ)), since H ∪ U ⊇ H̃ ∪ Ũ

≥ µ(H̃ ∪ Ũ), by Lemma 2.3.
(3)

Furthermore, recalling that M∗ is a maximum weight matching in GS , we have

µw(GS) = w(M∗) = |ϕ(M∗)| ≤ µ(H̃ ∪ ϕ(M∗)). (4)

We will show that µ(H̃ ∪ Ũ) ≥ (2
3 − ϵ)µ(H̃ ∪ ϕ(M∗)). To this end, we will show that H̃ ∪ Ũ

is an EDCS of H̃ ∪ ϕ(M∗).

▷ Claim 4.14. H̃ ∪ Ũ is a (β′, λ′)-EDCS of H̃ ∪ ϕ(M∗) for β′ = β
2 + βλ + 2, λ′ = 8λ.

Proof. Let us start by showing property P1 in Definition 2.6. First note that for all
(u, v) ∈ H̃ ∪ Ũ , it holds that degH(u) + degH(v) ≤ β. Indeed, if (u, v) ∈ H̃, then (u, v) ∈ H,
so degH(u) + degH(v) ≤ β since H is bounded edge-degree β. If instead (u, v) ∈ Ũ , then
(u, v) ∈ U , so degH(u) + degH(v) ≤ (1 − λ)β, since all elements of U are (ϕ(G), H, β, λ)-
underfull. Therefore, for all (u, v) ∈ H̃ ∪ Ũ , it holds that

deg
H̃∪Ũ

(u) + deg
H̃∪Ũ

(v) ≤ deg
H̃

(u) + deg
H̃

(v) + deg
Ũ

(u) + deg
Ũ

(v)

≤ degH(u) + degH(v)
2 + 2δβ + deg

Ũ
(u) + deg

Ũ
(v)

≤ β

2 + βλ + deg
Ũ

(u) + deg
Ũ

(v)

≤ β

2 + βλ + 2

= β′.

The second inequality follows by Lemma 4.11, and the third inequality follows since δ = λ
2 .

We now show property P2 in Definition 2.6: If (u, v) ∈ (H̃ ∪ ϕ(M∗)) \ (H̃ ∪ Ũ), then
(u, v) ∈ ϕ(M∗) \ U , and in particular degH(u) + degH(v) > (1 − λ)β (by definition of U).
Thus,

deg
H̃∪Ũ

(u) + deg
H̃∪Ũ

(v) ≥ deg
H̃

(u) + deg
H̃

(v)

≥ degH(u) + degH(v)
2 − 2δβ, by Lemma 4.11

≥ β(1− λ)
2 − βλ, since δ = λ

2

≥
(

β

2 + λβ + 2
)

(1− 8λ)

= β′(1− λ′).

The last inequality follows from simple algebraic manipulations, using the fact that λβ ≥ 2.
◁

D. Hashemi and W. Wrzos-Kaminska 16:17

By the choice of parameters, we have λ′ ≤ ϵ
64 and β′ ≥ 8λ′−2 log(1/λ′), so Claim 4.14

together with Theorem 2.7 yields µ(H̃ ∪ Ũ) ≥ (2/3− ϵ)µ(H̃ ∪ϕ(M∗)). Combining everything,
we get

µw(R(H ∪ U)) ≥ µ(H̃ ∪ Ũ), by Equation 3

≥ (2/3− ϵ)µ(H̃ ∪ ϕ(M∗))
≥ (2/3− ϵ)µw(GS), by Equation 4. ◀

Finally, we complete the proof of Theorem 1.1.

Proof of Theorem 1.1. We apply the reduction in Theorem 4.2 to Algorithm 1. By Propos-
ition 4.4, Algorithm 1 computes a (2/3 − ϵ)-approximate maximum cardinality matching
using space O(n log n poly(b/ϵ)) in the b-batch random-order stream model. It remains to
show that if the input graph is of the form ϕ(G) for some weighted graph G with batches
B = {ϕ(e) : e ∈ G}, then H ∪U is (2/3− ϵ)-refolding approximate. Let Glate ⊆ G denote the
weighted edges corresponding to Blate. An application of the Chernoff bound for negatively as-
sociated random variables (Theorem 3.6) shows that Pr[µw(Glate) ≥ (1−2ϵ)µw(G)] ≥ 1−n−5

(the argument is similar to Lemma 4.8). Applying Lemma 4.13 to the graph G and the
subgraph GS := Glate yields

µw(R(H ∪ U)) ≥ (2/3− ϵ)µw(Glate), by Lemma 4.13
≥ (1− 2ϵ)(2/3− ϵ)µw(G)
≥ (2/3− 3ϵ)µw(G),

as required. Re-scaling ϵ and applying Theorem 4.2 yields the result. ◀

5 5/6-Approximation in the Robust Communication Model

In this section, we prove Theorem 1.2 and Theorem 1.3. By applying the results from the
previous section, we can generalize the protocol of Azarmehr and Behnezhad [20] to the
weighted case. By the reduction in Theorem 4.1, we can assume that the edge weights take
integral values in [W], for a large constant W . We will now describe the protocol for the
two-party model.

Let ϵ > 0 be the final parameter we are aiming for, and let

λ = ϵ

2048 , β = 144λ−4 log(2W/λ).

Let EA denote the set of edges assigned to Alice and EB the set of edges assigned to
Bob. Alice simulates a random-order stream. She unfolds the edges and runs Algorithm
1 on the corresponding unweighted W -batch random-order stream. That way, she obtains
a set H ⊆ ϕ(EA) with bounded edge degree β and a set UA ⊆ ϕ(EA) consisting of all
(ϕ(EA \ Eearly), H, β, λ)-underfull edges, where Eearly ⊆ EA denotes the first ϵ

W m weighted
edges in her simulated stream. She communicates R(H ∪ UA) to Bob. Bob outputs the
maximum weight matching in R(H ∪ UA) ∪ EB . See Algorithm 2 for a formal description.

The protocol for k parties is similar, only that now all of the first k − 1 parties should
simulate a random-order stream (we describe the protocol more formally in the proof of
Theorem 1.3).

Assume that each edge is assigned to Bob with probability p ≤ 1
2 (this will make the

analysis applicable to the k-party setting). Let UB be the set of all (ϕ(EB), H, β, λ)-underfull
edges, i.e. the set of underfull edges assigned to Bob. Let U := UA ∪UB denote the set of all

APPROX/RANDOM 2024

16:18 Weighted Matching in Random-Order Streams

Algorithm 2 Robust Communication Protocol for Weighted Graphs.

1. Alice simulates a random-order stream
by ordering the edges in EA uniformly at random.

2. Alice obtains H ∪ UA ⊆ ϕ(EA) by running Algorithm 1
on input ϕ(EA) with batches B = {ϕ(e) : e ∈ EA}.
She communicates R(H ∪ UA) to Bob.

3. Bob outputs the maximum weight matching in R(H ∪ UA) ∪ EB .

underfull edges. We will define an auxiliary fractional matching x on R(H ∪ U) of weight at
least (2/3− ϵ)µw(G). We will then extend it to a fractional matching y on EB ∪R(H ∪UA),
and show that due to the additional edges in EB, the fractional matching y has weight at
least (5/6− ϵ)µw(G).

Let Elate := E \Eearly. Fix a maximum weight matching M∗ in Elate. Define a fractional
matching x on R(H ∪ U) as follows:

Start with H1 = H and U1 = U .
For i = 1, . . . , λβ :

Let Mi be a maximum weight matching in R(Hi ∪ Ui).
Let Hi+1 = Hi \ ϕ(Mi \M∗) and Ui+1 = Ui \ ϕ(Mi \M∗).

For every edge e, let xe = |{i:e∈Mi}|
λβ .

In other words, we start with H ∪ U , and then in each iteration, we find a maximum weight
matching Mi in the refolding, and remove the edges in ϕ(Mi \M∗) from H ∪ U .

▶ Remark 5.1. Note that this is a valid fractional matching, since

xu =
∑
e∋u

xe =
∑
e∋u

|{i : e ∈Mi}|
λβ

=
∑

i

|{e ∋ u : e ∈Mi}|
λβ

≤ 1.

Furthermore, note that xe ≤ 1
λβ whenever e /∈M∗. This is because, if e ∈Mi \M∗ for

some i, then e /∈ R(Hj ∪ Uj) for all j > i.

▶ Lemma 5.2. It holds that
∑

e wexe ≥ (2
3 − ϵ)µw(Elate).

Proof. For each i, let Gi := Elate \ (∪j<iMj \M∗). We will apply Lemma 4.13 to the graph
G\ (∪j<iMj \M∗) and subgraph GS = Gi. Recall that we obtain Hi+1 from Hi by removing
the edges in ϕ(Mi \M∗). Since ϕ(Mi \M∗) is a matching, the degree of each edge in ϕ(G)
will decrease by at most two in each iteration. Therefore, Ui contains all the edges in Gi \Hi

that have Hi degree less than (1− λ)β − 2(i− 1) ≥ (1− 3λ)β. By Lemma 4.13, we get

w(Mi) = µw (R(Hi ∪ Ui)) ≥
(

2
3 − ϵ

)
µw(Gi). (5)

Also, Gi is constructed so that it always contains M∗, so

µw(Gi) ≥ w(M∗) = µw(Elate). (6)

D. Hashemi and W. Wrzos-Kaminska 16:19

Combining, we obtain∑
e∈R(H∪U)

wexe =
∑

e∈R(H∪U)

we
|{i : e ∈Mi}|

λβ

= 1
λβ

∑
i

∑
e∈R(H∪U)

we1{e ∈Mi}

= 1
λβ

∑
i

w(Mi)

≥ 1
λβ

∑
i

(
2
3 − ϵ

)
µw(Gi). by Equation 5

≥
(

2
3 − ϵ

)
µw(Elate), by Equation 6. ◀

Recall that the set of edges that Bob has access to is EB ∪R(H ∪ U). We need to show
that µw(EB ∪ R(H ∪ U)) ≥ (5

6 − ϵ)µw(G). We will do this by extending the fractional
matching x on R(H ∪U) to a fractional matching y on EB ∪R(H ∪U). In order to describe
y, we will condition on the set of early edges Eearly, thereby fixing R(H ∪ U) and x. For
each edge e ∈ Elate, we have

Pr[e ∈ EB |e ∈ Elate] = Pr[e ∈ EB ∧ e ∈ Elate]
Pr[e ∈ Elate] = p

1− ϵ/W
.

and

Pr[e ∈ EA|e ∈ Elate] = 1− p

1− ϵ/W
.

Recall that M∗ is a fixed maximum weight matching in Elate. Let Min := M∗ ∩R(H ∪ U)
and let Mout := M∗ \ R(H ∪ U). After drawing EB , define a random matching M ′ ⊆M∗ as
follows:

Include each edge e ∈Min independently with probability p.
Include each edge e ∈Mout ∩ EB independently with probability 1− ϵ/W.

Conditioned on Eearly, each edge in Mout ends up in M ′ independently with probability
(1− ϵ/W) · p

1−ϵ/W = p. Each edge in Min also ends up in M ′ independently with probability
p, so overall each edge in M∗ ends up in M ′ independently with probability p.

For any edge e /∈M∗, let pe denote the probability that e is not adjacent to any edge in
M ′. In other words,

pe =
{

(1− p) if e has exactly one endpoint matched by M∗,
(1− p)2 if both of the endpoints of e are matched by M∗.

We can now define ŷ on EB ∪R(H ∪ U).

ŷe =

1 if e ∈M ′,

xe if e ∈M∗ \M ′,

0 if e /∈M∗ and e is adjacent to at least one edge of M ′

(1− p) xe

pe
if e /∈M∗ and e is not adjacent to M ′.

Finally, we scale down ŷ and zero out some of the entries in order to obtain a valid fractional
matching y.

y(u,v) =
{

0 if ŷu/(1 + ϵ) > 1 or ŷv/(1 + ϵ) > 1
ŷ(u,v)
1+ϵ otherwise.

APPROX/RANDOM 2024

16:20 Weighted Matching in Random-Order Streams

▶ Lemma 5.3. It holds that

E

[∑
e∈E

weye

]
≥

(
2
3 + p

3 − 4ϵ

)
µw(G).

The proof is similar to Lemma 4.6 in [20], and is included in the full version of the paper.
Next, we round y to an integral matching.

▶ Lemma 5.4. There exists a matching of weight at least (1−3ϵ)
∑

e∈E weye in EB ∪R(H ∪
UA).

The proof is similar to Lemma 4.7 in [20] and is included in the full version of the paper.
Finally, we show that we have a large matching with high probability, and not just in
expectation.

▶ Lemma 5.5. With probability at least 1− n−5, there exists a matching of weight at least(2
3 + p

3 −O(ϵ)
)

µw(G) in EB ∪R(H ∪ UA).

The proof is similar to Lemma 5.2 in [20], and is included in the full version of the paper.
We now complete the proofs of Theorem 1.2 and Theorem 1.3.

Proof of Theorem 1.2. Suppose that the edge weights are in [W]. By Proposition 4.4,
Protocol 2 uses O(n log n poly(W/ϵ)) words of communication with high probability. By
Lemma 5.5, the protocol achieves a (2

3 + p
3 −O(ϵ))-approximation with high probability. So

by Theorem 4.1, there exists a protocol that achieves a (2
3 + p

3 −O(ϵ))(1− ϵ)-approximation
using space O(n log n log R) when the edge weights are in R+. Letting p = 1

2 and re-scaling
ϵ proves the theorem. ◀

Proof of Theorem 1.3. Suppose that the edge weights are in [W]. We need to adjust the
protocol to the k-party model. The first party simulates the start of a random-order stream
by selecting an ordering of their edges uniformly at random. They unfold the edges and run
Algorithm 1 on the corresponding unweighted W -batch random-order stream. They pass
the memory state of the algorithm to the next party. Each of the next k − 2 parties will
continue to simulate the random-order stream that way. The (k − 1)st party communicates
R(H ∪ U) to the last party, where H ∪ U is the unweighted graph computed by Algorithm 1
on the unfolded W -batch stream. Finally, the last party will output the maximum weight
matching in the graph consisting of all edges to which they have access. That way, we can set
p = 1

k and treat the first k− 1 parties as Alice and the last party as Bob. By Proposition 4.4,
the protocol uses O(n log n poly(W/ϵ)) words of communication with high probability. By
Lemma 5.5, the protocol achieves a (2

3 + p
3 −O(ϵ))-approximation with high probability. So

by Theorem 4.1, there exists a protocol that achieves a (2
3 + p

3 −O(ϵ))(1− ϵ)-approximation
using space O(n log n log R) when the weights are in R+. Re-scaling ϵ proves the theorem. ◀

References
1 Kook Jin Ahn and Sudipto Guha. Linear programming in the semi-streaming model with

application to the maximum matching problem. Inf. Comput., 222:59–79, 2013.
2 Kook Jin Ahn and Sudipto Guha. Access to data and number of iterations: Dual primal

algorithms for maximum matching under resource constraints. ACM Trans. Parallel Comput.,
4(4):17:1–17:40, 2018.

3 Sepehr Assadi. A two-pass (conditional) lower bound for semi-streaming maximum matching.
In Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022,
Virtual Conference / Alexandria, VA, USA, January 9 – 12, 2022, pages 708–742. SIAM, 2022.

D. Hashemi and W. Wrzos-Kaminska 16:21

4 Sepehr Assadi. A simple (1 – ϵ)-approximation semi-streaming algorithm for maximum
(weighted) matching. In 2024 Symposium on Simplicity in Algorithms, SOSA 2024, Alexandria,
VA, USA, January 8-10, 2024, pages 337–354. SIAM, 2024.

5 Sepehr Assadi, MohammadHossein Bateni, Aaron Bernstein, Vahab S. Mirrokni, and Cliff
Stein. Coresets meet EDCS: algorithms for matching and vertex cover on massive graphs. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2019, San Diego, CA, USA, January 6-9, 2019, pages 1616–1635, 2019.

6 Sepehr Assadi and Soheil Behnezhad. Beating Two-Thirds For Random-Order Streaming
Matching. In 48th International Colloquium on Automata, Languages, and Programming,
ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs,
pages 19:1–19:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

7 Sepehr Assadi and Soheil Behnezhad. On the Robust Communication Complexity of Bipartite
Matching. In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, APPROX/RANDOM 2021, August 16-18, 2021, University of Washington,
Seattle, Washington, USA (Virtual Conference), volume 207 of LIPIcs, pages 48:1–48:17.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

8 Sepehr Assadi, Soheil Behnezhad, Sanjeev Khanna, and Huan Li. On regularity lemma
and barriers in streaming and dynamic matching. In Proceedings of the 55th Annual ACM
Symposium on Theory of Computing, STOC 2023, Orlando, FL, USA, June 20-23, 2023,
pages 131–144. ACM, 2023.

9 Sepehr Assadi and Aaron Bernstein. Towards a unified theory of sparsification for matching
problems. In 2nd Symposium on Simplicity in Algorithms, SOSA 2019, January 8-9, 2019,
San Diego, CA, USA, pages 11:1–11:20, 2019.

10 Sepehr Assadi, Arun Jambulapati, Yujia Jin, Aaron Sidford, and Kevin Tian. Semi-streaming
bipartite matching in fewer passes and optimal space. In Proceedings of the 2022 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA,
January 9 – 12, 2022, pages 627–669. SIAM, 2022.

11 Sepehr Assadi, Sanjeev Khanna, and Yang Li. On estimating maximum matching size in graph
streams. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 1723–1742.
SIAM, 2017.

12 Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. Maximum matchings
in dynamic graph streams and the simultaneous communication model. In Proceedings of
the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016,
Arlington, VA, USA, January 10-12, 2016, pages 1345–1364. SIAM, 2016.

13 Sepehr Assadi, Gillat Kol, Raghuvansh R. Saxena, and Huacheng Yu. Multi-pass graph
streaming lower bounds for cycle counting, max-cut, matching size, and other problems. In
61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham,
NC, USA, November 16-19, 2020, pages 354–364. IEEE, 2020.

14 Sepehr Assadi, S. Cliff Liu, and Robert E. Tarjan. An auction algorithm for bipartite matching
in streaming and massively parallel computation models. In 4th Symposium on Simplicity
in Algorithms, SOSA 2021, Virtual Conference, January 11-12, 2021, pages 165–171. SIAM,
2021.

15 Sepehr Assadi and Vishvajeet N. Graph streaming lower bounds for parameter estimation
and property testing via a streaming XOR lemma. In STOC ’21: 53rd Annual ACM SIGACT
Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 612–625.
ACM, 2021.

16 Sepehr Assadi and Ran Raz. Near-quadratic lower bounds for two-pass graph streaming
algorithms. In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS
2020, Durham, NC, USA, November 16-19, 2020, pages 342–353. IEEE, 2020.

APPROX/RANDOM 2024

16:22 Weighted Matching in Random-Order Streams

17 Sepehr Assadi and Vihan Shah. An asymptotically optimal algorithm for maximum matching
in dynamic streams. In 13th Innovations in Theoretical Computer Science Conference, ITCS
2022, January 31 – February 3, 2022, Berkeley, CA, USA, volume 215 of LIPIcs, pages
9:1–9:23. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

18 Sepehr Assadi and Janani Sundaresan. Hidden permutations to the rescue: Multi-pass
streaming lower bounds for approximate matchings. In 64th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023,
pages 909–932. IEEE, 2023.

19 Sepehr Assadi and Janani Sundaresan. (Noisy) gap cycle counting strikes back: Random order
streaming lower bounds for connected components and beyond. In Proceedings of the 55th
Annual ACM Symposium on Theory of Computing, STOC 2023, Orlando, FL, USA, June
20-23, 2023, pages 183–195. ACM, 2023.

20 Amir Azarmehr and Soheil Behnezhad. Robust communication complexity of matching: EDCS
achieves 5/6 approximation. In 50th International Colloquium on Automata, Languages, and
Programming, ICALP 2023, July 10-14, 2023, Paderborn, Germany, volume 261 of LIPIcs,
pages 14:1–14:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.

21 Soheil Behnezhad, Alireza Farhadi, MohammadTaghi Hajiaghayi, and Nima Reyhani.
Stochastic matching with few queries: New algorithms and tools. In Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego,
CA, USA, January 6-9, 2019, pages 2855–2874. SIAM, 2019.

22 Aaron Bernstein. Improved bounds for matching in random-order streams. In 47th International
Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020,
Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages 12:1–12:13. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2020.

23 Aaron Bernstein, Aditi Dudeja, and Zachary Langley. A framework for dynamic matching
in weighted graphs. In STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of
Computing, Virtual Event, Italy, June 21-25, 2021, pages 668–681. ACM, 2021.

24 Aaron Bernstein and Cliff Stein. Fully Dynamic Matching in Bipartite Graphs. In Automata,
Languages, and Programming – 42nd International Colloquium, ICALP 2015, Kyoto, Japan,
July 6-10, 2015, Proceedings, Part I, volume 9134 of Lecture Notes in Computer Science, pages
167–179. Springer, 2015.

25 Aaron Bernstein and Cliff Stein. Faster fully dynamic matchings with small approximation
ratios. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 692–711. SIAM,
2016.

26 Stéphane Boucheron, Gábor Lugosi, and Pacal Massart. On concentration of self-bounding
functions. Electronic Journal of Probability, 14:1884–1899, 2009.

27 Marc Bury, Elena Grigorescu, Andrew McGregor, Morteza Monemizadeh, Chris Schwiegel-
shohn, Sofya Vorotnikova, and Samson Zhou. Structural results on matching estimation with
applications to streaming. Algorithmica, 81(1):367–392, 2019.

28 Marc Bury and Chris Schwiegelshohn. Sublinear estimation of weighted matchings in dynamic
data streams. In Algorithms – ESA 2015 – 23rd Annual European Symposium, Patras, Greece,
September 14-16, 2015, Proceedings, volume 9294 of Lecture Notes in Computer Science, pages
263–274. Springer, 2015.

29 Amit Chakrabarti, Graham Cormode, and Andrew McGregor. Robust lower bounds for
communication and stream computation. In Proceedings of the 40th Annual ACM Symposium
on Theory of Computing, Victoria, British Columbia, Canada, May 17-20, 2008, STOC ’08,
pages 641–650. ACM, 2008.

30 Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R. Saxena, Zhao Song, and Huacheng
Yu. Almost optimal super-constant-pass streaming lower bounds for reachability. In STOC
’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy,
June 21-25, 2021, pages 570–583. ACM, 2021.

D. Hashemi and W. Wrzos-Kaminska 16:23

31 Ashish Chiplunkar, John Kallaugher, Michael Kapralov, and Eric Price. Factorial lower
bounds for (almost) random order streams. In 63rd IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2022, Denver, CO, USA, October 31 – November 3, 2022, pages
486–497. IEEE, 2022.

32 Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Hajiaghayi, Andrew
McGregor, Morteza Monemizadeh, and Sofya Vorotnikova. Kernelization via sampling with
applications to finding matchings and related problems in dynamic graph streams. In Proceed-
ings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2016, Arlington, VA, USA, January 10-12, 2016, pages 1326–1344. SIAM, 2016.

33 Rajesh Hemant Chitnis, Graham Cormode, MohammadTaghi Hajiaghayi, and Morteza Monem-
izadeh. Parameterized streaming: Maximal matching and vertex cover. In Proceedings of the
Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego,
CA, USA, January 4-6, 2015, pages 1234–1251. SIAM, 2015.

34 Graham Cormode, Hossein Jowhari, Morteza Monemizadeh, and S. Muthukrishnan. The
sparse awakens: Streaming algorithms for matching size estimation in sparse graphs. In 25th
Annual European Symposium on Algorithms, ESA 2017, September 4-6, 2017, Vienna, Austria,
volume 87 of LIPIcs, pages 29:1–29:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2017.

35 Michael S. Crouch and Daniel M. Stubbs. Improved streaming algorithms for weighted
matching, via unweighted matching. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, APPROX/RANDOM 2014, September 4-6, 2014,
Barcelona, Spain, volume 28 of LIPIcs, pages 96–104. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2014.

36 Jacques Dark and Christian Konrad. Optimal lower bounds for matching and vertex cover in
dynamic graph streams. In 35th Computational Complexity Conference, CCC 2020, July 28-31,
2020, Saarbrücken, Germany (Virtual Conference), volume 169 of LIPIcs, pages 30:1–30:14.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.

37 Sebastian Eggert, Lasse Kliemann, Peter Munstermann, and Anand Srivastav. Bipartite
matching in the semi-streaming model. Algorithmica, 63(1-2):490–508, 2012.

38 Leah Epstein, Asaf Levin, Julián Mestre, and Danny Segev. Improved approximation guarantees
for weighted matching in the semi-streaming model. SIAM J. Discret. Math., 25(3):1251–1265,
2011.

39 Hossein Esfandiari, MohammadTaghi Hajiaghayi, Vahid Liaghat, Morteza Monemizadeh, and
Krzysztof Onak. Streaming algorithms for estimating the matching size in planar graphs and
beyond. ACM Trans. Algorithms, 14(4):48:1–48:23, 2018.

40 Hossein Esfandiari, MohammadTaghi Hajiaghayi, and Morteza Monemizadeh. Finding large
matchings in semi-streaming. In IEEE International Conference on Data Mining Workshops,
ICDM Workshops 2016, December 12-15, 2016, Barcelona, Spain, pages 608–614. IEEE
Computer Society, 2016.

41 Alireza Farhadi, MohammadTaghi Hajiaghayi, Tung Mah, Anup Rao, and Ryan A. Rossi.
Approximate maximum matching in random streams. In Proceedings of the 2020 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020,
pages 1773–1785. SIAM, 2020.

42 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang. On
graph problems in a semi-streaming model. Theoretical Computer Science, 348(2-3):207–216,
2005.

43 Moran Feldman and Ariel Szarf. Maximum matching sans maximal matching: A new approach
for finding maximum matchings in the data stream model. In Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2022,
September 19-21, 2022, University of Illinois, Urbana-Champaign, USA (Virtual Conference),
volume 245 of LIPIcs, pages 33:1–33:24. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2022.

APPROX/RANDOM 2024

16:24 Weighted Matching in Random-Order Streams

44 Manuela Fischer, Slobodan Mitrovic, and Jara Uitto. Deterministic (1+ϵ)-approximate
maximum matching with poly(1/ϵ) passes in the semi-streaming model and beyond. In STOC
’22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 –
24, 2022, pages 248–260. ACM, 2022.

45 Buddhima Gamlath, Sagar Kale, Slobodan Mitrovic, and Ola Svensson. Weighted matchings
via unweighted augmentations. In Proceedings of the 2019 ACM Symposium on Principles of
Distributed Computing, PODC 2019, Toronto, ON, Canada, July 29 – August 2, 2019, pages
491–500. ACM, 2019.

46 Paritosh Garg, Sagar Kale, Lars Rohwedder, and Ola Svensson. Robust Algorithms Under
Adversarial Injections. In 47th International Colloquium on Automata, Languages, and
Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference),
volume 168 of LIPIcs, pages 56:1–56:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2020.

47 Mohsen Ghaffari and David Wajc. Simplified and Space-Optimal Semi-Streaming (2+ϵ)-
Approximate Matching. In 2nd Symposium on Simplicity in Algorithms, SOSA 2019, January
8-9, 2019, San Diego, CA, USA, volume 69 of OASIcs, pages 13:1–13:8. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2019.

48 Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication and streaming
complexity of maximum bipartite matching. In Proceedings of the Twenty-Third Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19,
2012, pages 468–485. SIAM, 2012.

49 Sudipto Guha and Andrew McGregor. Approximate quantiles and the order of the stream. In
Proceedings of the Twenty-Fifth ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, June 26-28, 2006, Chicago, Illinois, USA, pages 273–279. ACM, 2006.

50 Sudipto Guha and Andrew McGregor. Lower bounds for quantile estimation in random-order
and multi-pass streaming. In Automata, Languages and Programming, 34th International
Colloquium, ICALP 2007, Wroclaw, Poland, July 9-13, 2007, Proceedings, volume 4596 of
Lecture Notes in Computer Science, pages 704–715. Springer, 2007.

51 Sudipto Guha and Andrew McGregor. Stream order and order statistics: Quantile estimation
in random-order streams. SIAM J. Comput., 38(5):2044–2059, 2009.

52 Manoj Gupta and Richard Peng. Fully dynamic (1+ ϵ)-approximate matchings. In 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October,
2013, Berkeley, CA, USA, pages 548–557. IEEE Computer Society, October 2013.

53 Venkatesan Guruswami and Krzysztof Onak. Superlinear lower bounds for multipass graph
processing. Algorithmica, 76(3):654–683, 2016.

54 Chien-Chung Huang and François Sellier. Maximum Weight b-Matchings in Random-Order
Streams. In 30th Annual European Symposium on Algorithms, ESA 2022, September 5-9,
2022, Berlin/Potsdam, Germany, volume 244 of LIPIcs, pages 68:1–68:14. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022.

55 Shang-En Huang and Hsin-Hao Su. (1-ϵ)-approximate maximum weighted matching in poly(1/ϵ,
log n) time in the distributed and parallel settings. In Proceedings of the 2023 ACM Symposium
on Principles of Distributed Computing, PODC 2023, Orlando, FL, USA, June 19-23, 2023,
pages 44–54. ACM, 2023.

56 Sagar Kale and Sumedh Tirodkar. Maximum matching in two, three, and a few more passes
over graph streams. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA,
USA, volume 81 of LIPIcs, pages 15:1–15:21. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2017.

57 Ming-Yang Kao, Tak-Wah Lam, Wing-Kin Sung, and Hing-Fung Ting. A decomposition
theorem for maximum weight bipartite matchings. SIAM Journal on Computing, 31(1):18–26,
2001.

D. Hashemi and W. Wrzos-Kaminska 16:25

58 Michael Kapralov. Better bounds for matchings in the streaming model. In Proceedings of
the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New
Orleans, Louisiana, USA, January 6-8, 2013, pages 1679–1697. SIAM, 2013.

59 Michael Kapralov. Space lower bounds for approximating maximum matching in the edge
arrival model. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2021, Virtual Conference, January 10 – 13, 2021, pages 1874–1893. SIAM, 2021.

60 Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Approximating matching size from
random streams. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 734–751.
SIAM, 2014.

61 Michael Kapralov, Slobodan Mitrovic, Ashkan Norouzi-Fard, and Jakab Tardos. Space efficient
approximation to maximum matching size from uniform edge samples. In Proceedings of the
2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA,
January 5-8, 2020, pages 1753–1772. SIAM, 2020.

62 Christian Konrad. Maximum matching in turnstile streams. In Algorithms – ESA 2015 – 23rd
Annual European Symposium, Patras, Greece, September 14-16, 2015, Proceedings, volume
9294 of Lecture Notes in Computer Science, pages 840–852. Springer, 2015.

63 Christian Konrad. A Simple Augmentation Method for Matchings with Applications to
Streaming Algorithms. In 43rd International Symposium on Mathematical Foundations of
Computer Science, MFCS 2018, August 27-31, 2018, Liverpool, UK, volume 117 of LIPIcs,
pages 74:1–74:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.

64 Christian Konrad, Frédéric Magniez, and Claire Mathieu. Maximum matching in semi-
streaming with few passes. In Approximation, Randomization, and Combinatorial Optim-
ization. Algorithms and Techniques – 15th International Workshop, APPROX 2012, and
16th International Workshop, RANDOM 2012, Cambridge, MA, USA, August 15-17, 2012.
Proceedings, volume 7408 of Lecture Notes in Computer Science, pages 231–242. Springer,
2012.

65 Christian Konrad and Kheeran K. Naidu. On two-pass streaming algorithms for maximum
bipartite matching. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2021, August 16-18, 2021, University of
Washington, Seattle, Washington, USA (Virtual Conference), volume 207 of LIPIcs, pages
19:1–19:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

66 Christian Konrad and Kheeran K. Naidu. An unconditional lower bound for two-pass streaming
algorithms for maximum matching approximation. In Proceedings of the 2024 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2024, Alexandria, VA, USA, January 7-10, 2024,
pages 2881–2899. SIAM, 2024.

67 Christian Konrad, Kheeran K. Naidu, and Arun Steward. Maximum matching via maximal
matching queries. In 40th International Symposium on Theoretical Aspects of Computer
Science, STACS 2023, March 7-9, 2023, Hamburg, Germany, volume 254 of LIPIcs, pages
41:1–41:22. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.

68 Harry Lang. Online facility location on semi-random streams. CoRR, abs/1711.09384, 2017.
arXiv:1711.09384.

69 Andrew McGregor. Finding graph matchings in data streams. In Approximation, Randomiza-
tion and Combinatorial Optimization, Algorithms and Techniques, 8th International Workshop
on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2005 and
9th InternationalWorkshop on Randomization and Computation, RANDOM 2005, Berkeley,
CA, USA, August 22-24, 2005, Proceedings, volume 3624 of Lecture Notes in Computer Science,
pages 170–181. Springer, 2005.

70 Andrew McGregor and Sofya Vorotnikova. Planar matching in streams revisited. In Ap-
proximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM 2016, September 7-9, 2016, Paris, France, volume 60 of LIPIcs, pages
17:1–17:12. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016.

APPROX/RANDOM 2024

https://arxiv.org/abs/1711.09384

16:26 Weighted Matching in Random-Order Streams

71 Andrew McGregor and Sofya Vorotnikova. A simple, space-efficient, streaming algorithm for
matchings in low arboricity graphs. In 1st Symposium on Simplicity in Algorithms, SOSA
2018, January 7-10, 2018, New Orleans, LA, USA, volume 61 of OASIcs, pages 14:1–14:4.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.

72 Morteza Monemizadeh, S. Muthukrishnan, Pan Peng, and Christian Sohler. Testable bounded
degree graph properties are random order streamable. In 44th International Colloquium on
Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland,
volume 80 of LIPIcs, pages 131:1–131:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2017.

73 Ami Paz and Gregory Schwartzman. A (2 + ϵ)-approximation for maximum weight matching
in the semi-streaming model. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, January 16-19, pages
2153–2161. SIAM, 2017.

74 Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer,
2003.

75 Sumedh Tirodkar. Deterministic algorithms for maximum matching on general graphs in the
semi-streaming model. In 38th IARCS Annual Conference on Foundations of Software Tech-
nology and Theoretical Computer Science, FSTTCS 2018, December 11-13, 2018, Ahmedabad,
India, volume 122 of LIPIcs, pages 39:1–39:16. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2018.

76 David Wajc. Negative association-definition, properties, and applications, 2017.
77 Andrew Chi-Chih Yao. Some complexity questions related to distributive computing (prelim-

inary report). In Proceedings of the 11h Annual ACM Symposium on Theory of Computing,
April 30 – May 2, 1979, Atlanta, Georgia, USA, pages 209–213. ACM, 1979.

78 Mariano Zelke. Weighted matching in the semi-streaming model. Algorithmica, 62(1-2):1–20,
2012.

Competitive Query Minimization for Stable
Matching with One-Sided Uncertainty
Evripidis Bampis #

Sorbonne Université, CNRS, LIP6, Paris, France

Konstantinos Dogeas
Department of Computer Science, Durham University, Durham, United Kingdom

Thomas Erlebach #

Department of Computer Science, Durham University, Durham, United Kingdom

Nicole Megow #

Faculty of Mathematics and Computer Science, University of Bremen, Bremen, Germany

Jens Schlöter #

Faculty of Mathematics and Computer Science, University of Bremen, Bremen, Germany

Amitabh Trehan #

Department of Computer Science, Durham University, Durham, United Kingdom

Abstract
We study the two-sided stable matching problem with one-sided uncertainty for two sets of agents A

and B, with equal cardinality. Initially, the preference lists of the agents in A are given but the
preferences of the agents in B are unknown. An algorithm can make queries to reveal information
about the preferences of the agents in B. We examine three query models: comparison queries,
interviews, and set queries. Using competitive analysis, our aim is to design algorithms that minimize
the number of queries required to solve the problem of finding a stable matching or verifying that a
given matching is stable (or stable and optimal for the agents of one side). We present various upper
and lower bounds on the best possible competitive ratio as well as results regarding the complexity
of the offline problem of determining the optimal query set given full information.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Matching under Preferences, Stable Marriage, Query-Competitive Algorithms,
Uncertainty

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.17

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2407.10170 [3]

Funding This research was supported by EPSRC grant EP/S033483/2.
Evripidis Bampis: Partially funded by the grant ANR-19-CE48-0016 from the French National
Research Agency (ANR).
Nicole Megow: Supported by DFG grant no. 517912373.

1 Introduction

In the classical two-sided stable matching problem, we are given two disjoint sets A and B

of agents (often referred to as men and women) of equal cardinality n. Each agent has
a complete preference list over the agents of the other set. The task is to find a stable
matching, i.e., a one-to-one allocation in which no two agents prefer to be matched to
each other rather than to their current matching partners. This problem has applications
in numerous allocation markets, e.g., university admission, residency markets, distributed

© Evripidis Bampis, Konstantinos Dogeas, Thomas Erlebach, Nicole Megow, Jens Schlöter, and
Amitabh Trehan;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 17; pp. 17:1–17:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:evripidis.bampis@lip6.fr
https://orcid.org/0000-0002-4498-3040
https://orcid.org/0009-0001-1528-3221
mailto:thomas.erlebach@durham.ac.uk
https://orcid.org/0000-0002-4470-5868
mailto:nicole.megow@uni-bremen.de
https://orcid.org/0000-0002-3531-7644
mailto:jschloet@uni-bremen.de
https://orcid.org/0000-0003-0555-4806
mailto:amitabh.trehan@durham.ac.uk
https://orcid.org/0000-0002-2998-0933
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.17
https://arxiv.org/abs/2407.10170
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Competitive Query Minimization for Stable Matching with One-Sided Uncertainty

internet services, etc. Since its introduction by Gale and Shapley [13] this problem has been
widely studied in different variants from both practical and theoretical perspectives; we refer
to the books [15, 31, 25].

While the majority of the literature assumes full information about the preference lists,
this may not be realistic in large matching markets. It might be impractical or too costly and
not even necessary to gather the complete preferences. Hence, different models for uncertainty
in the preferences have received attention in the past decade [1, 2, 6, 7, 9, 17, 16, 29, 30]. Many
of these works rely on probabilistic models and guarantees. This may not be appropriate for
applications in which no (correct) distributional information is available, e.g. in one-time
markets. Further, one might ask for guaranteed properties such as stability and optimality
instead of probabilistic ones.

A different way of handling uncertainty in the preferences is to allow an algorithm to make
queries to learn about the unknown preferences. Various types of queries (in terms of both
input and output) are conceivable, with one example being interview queries [6, 7, 29, 30].
Here one asks for a query sequence where a query corresponds to an interview between two
potential matching partners and the outcome is the placement of the interview partners in
each other’s preference list among all other candidates that she has interviewed so far. Hence,
if an agent has several such interviews then she finds out her preference order over all these
candidates.

In this paper we investigate various query models for stable matching problems with
one-sided uncertainty in the preferences. We assume that initially only the preference lists of
one side, A, are known but the preference lists of the other side, B, are unknown. Applications
include allocations between groups of different seniority or when preferences shall be kept
private; see also [17, 16, 18]. For illustration consider, e.g., pairing new staff with mentors or
new PhD students with supervisors as part of the onboarding. New staff can be asked to
provide a full preference list of mentors based on information about the available mentors
that can be made accessible with little effort, while requiring mentors to rank potential
mentees might be considered too burdensome for senior staff due to other significant time
commitments.

We consider three types of queries to gain information about the preferences, namely
(i) comparison queries that reveal for an agent b ∈ B and a pair of agents from A which
one b prefers, (ii) set queries that reveal for an agent b ∈ B and a subset S ⊆ A the agent
in S that b prefers most, and (iii) interview queries.

We study basic problems regarding stability and optimality of matchings using these query
models. A stable matching is called A-optimal (resp. B-optimal) if no agent in A (resp. B)
prefers a different stable matching over the current one. To our knowledge, most existing
related work considers worst-case bounds on the absolute number of queries necessary to solve
the respective problem; see Further Related Work below for a discussion. For many instances,
however, executing such a worst-case number of queries might not be necessary. To also
optimize the number of queries on these instances, we analyze our algorithms using competitive
analysis. We say that an algorithm that makes queries until it can output a provably correct
answer, e.g., a stable and A-optimal matching, is ρ-competitive (or ρ-query-competitive) if it
makes at most ρ times as many queries as the minimum possible number of queries that also
output a provably correct answer for the given instance. Note that this answer may differ
from that of the algorithm, e.g., a different stable matching. In this paper, we design upper
and lower bounds on the competitive ratios for the above mentioned problems and query
models. Our results illustrate that worst-case instances regarding the competitive ratio are
very different from the worst-case instances regarding the absolute number of queries. Thus,

E. Bampis, K. Dogeas, T. Erlebach, N. Megow, J. Schlöter, and A. Trehan 17:3

our lower bounds on the competitive ratio use different instances and our algorithms are
designed to optimize on different instances. Indeed, worst-case instances for the absolute
number of queries turn out to be “easy” for competitive analysis as the optimal solution we
compare against is very large.

Query-competitive algorithms are often associated with the field of “explorable uncer-
tainty”. Most previous work considers queries revealing an originally uncertain value [4, 8,
10, 19, 20, 22, 26, 11], while in this work we query a preference.

Our Contribution. We study the stable matching problem with one-sided uncertainty in the
preference lists and give the following main results. Note that we assume that the preferences
of the B side are unknown, and |A| = |B| = n. We remark that our technically most involved
main results are lower bounds on the competitive ratio and hardness results, so the results
only get stronger by making these assumptions.

In Section 3 we focus on comparison queries. Firstly, we ask the question of how to verify
that a given matching is stable. We show that the problem can be solved with a 1-competitive
algorithm. Then we ask how to find a stable matching under one-sided uncertainty. We
give a 1-competitive algorithm that finds a stable matching and, moreover, the solution is
provably A-optimal. Essentially, we employ the well-known deferred acceptance algorithm,
first analyzed by Gale and Shapley [13], and compare its number of queries carefully with
the number of queries that any algorithm needs to verify a stable matching.

A substantially more challenging task is to find a B-optimal stable matching. Note that
a trivial competitive ratio is O(n2 log n), as it is possible to obtain the full preferences of
each of the n elements in B using O(n log n) queries, and the optimum total number of
queries is at least 1. One of our main contributions is a tight bound of O(n). To that end,
we first show that every algorithm for verifying that a given matching is B-optimal and
stable requires Ω(n) queries. Then we give an O(n)-competitive algorithm for the problem
of finding one. This is best possible up to constant factors, which we prove with a matching
lower bound that also holds for verifying that a given matching is stable and B-optimal, even
for randomized algorithms.

We complement these results by showing that the offline problem of determining the
optimal number of queries for finding the B-optimal stable matching is NP-hard, and we give
an O(log n log log n)-approximation algorithm. Here, the offline version of a problem is to
compute, given full information about the preferences of all agents, a smallest set of queries
with the property that an algorithm making exactly those queries has sufficient information
to solve the problem with one-sided uncertainty.

Section 4 discusses interview queries. We show that the bounds on the competitive
ratio and hardness results for comparison queries translate to interview queries. We remark
that some of these results for interview queries, e.g., a 1-competitive algorithm for finding
an A-optimal stable matching, were already proven by Rastegari et al. [30] and discuss
differences to their results in the corresponding section. Interestingly, we can use essentially
the same techniques as for the comparison model. This may seem surprising, especially for
the lower bounds, as interview queries seem to be more powerful. For instance, n interviews
are sufficient to determine the precise preference order of an agent b ∈ B, while we need
Ω(n log n) comparison queries to determine b’s preference order. On the other hand, an
instance that can be solved with a single comparison query requires two interviews. In
general, we can simulate a comparison query by using two interview queries.

In Section 5 we discuss the set query model. While some bounds remain the same as in
the other models, e.g., 1-competitiveness for verifying the stability of a given matching, we
show that some bounds change drastically. For example, we give an O(log n)-competitive

APPROX/RANDOM 2024

17:4 Competitive Query Minimization for Stable Matching with One-Sided Uncertainty

algorithm for verifying that a given matching is B-optimal, which is in contrast to the
lower bound of Ω(n) in the other query models. It remains open whether O(1)-competitive
algorithms exist for the problems of finding a stable matching or verifying a B-optimal
matching with set queries.

Further Related Work. In classical work on stable matching with queries, the preferences on
both sides can only be accessed via queries, with a query usually either asking for the ith entry
in a preference list or for the rank of a specific element within a preference list (cf. e.g. [27]).
Note that two rank queries are sufficient to simulate a comparison query, but up to n− 1
comparison queries are needed to obtain the information of a single rank query. Thus, existing
lower bounds on the necessary number of rank queries in these query models translate to
our setting (up to a constant factor), but upper bounds do not necessarily translate. Ng
and Hirschberg [27] showed that Θ(n2) such queries are necessary to find or verify a stable
matching in the worst case. The lower bound of Ω(n2) translates to any type of queries
with boolean answers, including comparison queries [14]. Further work on interview queries
includes empirical results [6, 7] and complexity results [29] on several decision problems
under partial uncertainty. We discuss the latter in Section 4.

Our setting of one-sided uncertainty and querying uncertain preferences is also related to
existing work on online algorithms for eliciting partial preferences [21, 28, 24]. These works
also consider a setting where the preferences of agents in one of the sets are uncertain but can
be determined by using different types of queries. In particular, [28] also considers the set
query model. The main difference to our work is that these papers assume that the elements
of one set do not have any preferences at all. As a consequence, they do not consider stability
at all and instead aim at computing pareto-optimal or rank-maximal matchings.

2 Preliminaries

An instance of the two-sided stable matching problem consists of two disjoint sets A and B of
size |A| = |B| = n and complete preference lists: The preference list for each agent a ∈ A

is a total order ≺a of B, the preference list of each agent b ∈ B is a total order ≺b of A.
Here, a1 ≺b a2 means that b prefers a1 to a2. A matching is a bijection from A to B. For
a matching M , we denote the element of B that is matched to a ∈ A by M(a), and the
element of A that is matched to b ∈ B by M(b).

Given a matching M , a pair (a, b) ∈ A×B is a blocking pair in M if a is not matched
to b in M , a prefers b to M(a), and b prefers a to M(b). A matching M is called a stable
matching if there is no blocking pair in M .

In their influential paper, Gale and Shapley [13] showed that a stable matching always
exists, and the deferred acceptance algorithm computes one in O(n2) time. In this algorithm,
one group (A or B) proposes matches and the other decides whether to accept or reject each
proposal. The algorithm produces a stable matching that is best possible for the group X

that proposes (we say X-optimal) and worst possible for the other group: Each element of
the group that proposes gets matched to the highest-preference element to which it can be
matched in any stable matching, and each element of the other group gets matched to the
lowest-preference element to which it can be matched in any stable matching.

In this paper, we consider the setting of one-sided uncertainty, where initially only the
preference lists of all agents in A are known, but the preference lists of b ∈ B are unknown.
An algorithm can make queries to learn about the preferences of b ∈ B. We distinguish the
following types of queries:

E. Bampis, K. Dogeas, T. Erlebach, N. Megow, J. Schlöter, and A. Trehan 17:5

Comparison queries: For agents b ∈ B and a1, a2 ∈ A, the query prefer(b, a1, a2) returns a1
if b prefers a1 to a2 and a2 otherwise. These queries can also be seen as Boolean queries
that return true iff b prefers a1 to a2.
Set queries: For agents b ∈ B and any subset S ⊆ A, the query top(b, S) returns b’s most
preferred element of S.
Interview queries: For agents b ∈ B and a ∈ A, an interview query intq(b, a) reveals the
total order of the subset {a}∪Pb defined by ≺b, where Pb is the set of all elements a′ ∈ A

for which a query intq(b, a′) has already been executed before the query intq(b, a).

A stable matching instance with one-sided uncertainty is given by two sets A and B of
size n and, for each agent a ∈ A, a total order ≺a of the agents in B. The preferences
of the agents in B are initially unknown. For a given stable matching instance with one-
sided uncertainty, we consider the following problems: finding a stable matching, finding
an A-optimal stable matching, and finding a B-optimal stable matching. For a given stable
matching instance with one-sided uncertainty and a matching M , we consider the following
problems: verifying that M is stable, verifying that M is stable and A-optimal, and verifying
that M is stable and B-optimal. All problems can be considered for each query model. For
the verification problems, we consider the competitive ratio only for inputs where M is
indeed a stable (and A- or B-optimal) matching. If this is not the case, the algorithm must
detect this, but we do not compare the number of queries it makes to the optimum. This is
because any algorithm may be required to make up to Ω(n2) comparison or interview queries
to detect a blocking pair, while the optimum can prove its existence with a constant number
of queries.

It is easy to see that for the optimum, the problem of verifying that a given matching M

is stable and A-optimal (B-optimal) is the same as that of finding the A-optimal (B-optimal)
stable matching. This implies that any lower bound on the number of queries required to
verify that M is stable and A-optimal (B-optimal) also applies to the problem of finding the
A-optimal (B-optimal) stable matching.

An important concept is the notion of rotations, which can be defined as follows (cf. [25]):
Let a stable matching M be given. For an agent ai ∈ A, let sA(ai) denote the most-preferred
element bj on ai’s preference list such that bj prefers ai to her current partner M(bj). Note
that sA(ai) must be lower than M(ai) in ai’s preference list as otherwise (ai, sA(ai)) would be
a blocking pair. Let nextA(ai) = M(sA(ai)). Then a rotation (exposed) in M is a sequence
(ai0 , bj0), . . . , (air−1 , bjr−1) of pairs such that, for each k (0 ≤ k ≤ r − 1), (aik

, bjk
) ∈M and

aik+1 = nextA(aik
), where addition is modulo r. The rotation can be viewed as an alternating

cycle consisting of the matched edges (aik
, bik

) and the unmatched edges (aik
, bik+1) (for

0 ≤ k ≤ r−1). We refer to an edge (a, sA(a)) as a rotation edge or r-edge as it can potentially
be part of a rotation. Note that every vertex a ∈ A is incident with at most one r-edge.

Given a rotation R in a stable matching M , we can construct a stable matching M ′

from M by removing all edges that are part of R and M and adding all r-edges that are
part of R. We refer to this as applying a rotation. Observe that no agent in B is worse off in
M ′ than in M , and some agents in B prefer M ′ to M . The following has been shown.

▶ Lemma 1 (Lemma 2.5.3 in Gusfield and Irving [15]). If M is any stable matching other
than the B-optimal stable matching, then there is at least one rotation exposed in M .

3 Stable Matching with Comparison Queries

In this section, we consider the comparison query model. We first discuss our results on the
problems of verifying that a given matching is stable and finding an A-optimal matching,
before moving on to our main results regarding the competitive ratio for finding/verifying a
B-optimal matching.

APPROX/RANDOM 2024

17:6 Competitive Query Minimization for Stable Matching with One-Sided Uncertainty

3.1 Verifying That a Given Matching Is Stable

We consider the verification problem where we are given a matching M and our task is to
verify that M is indeed stable. As argued in the previous section, we only care about the
competitive ratio if the given matching M is indeed stable.

The following auxiliary lemma shows that exploiting transitivity cannot reduce the number
of comparison queries to an agent b ∈ B if one needs to find out the preference relationship
of k agents from A to one particular agent from A in b’s preference list.

▶ Lemma 2. Consider two agents a ∈ A, b ∈ B and assume that there are k agents
a1, . . . , ak ∈ A\{a} for each of which we want to know whether b prefers that agent to a or not.
Then exactly k comparison queries to b are necessary and sufficient to obtain this knowledge.

Proof. The k queries prefer(b, a, ai) for i = 1, . . . , k are clearly sufficient. Assume that k′

queries to b, for some k′ < k, are sufficient to obtain the desired information. Consider the
auxiliary graph H with vertex set VH = A and an edge {a′, a′′} for each of those k′ queries
prefer(b, a′, a′′). As the set A′ = {a, a1, a2, . . . , ak} has k + 1 vertices and H has fewer than k

edges, the set A′ intersects at least two different connected components of H . Let aj , for some
1 ≤ j ≤ k, be a vertex that does not lie in the same component as a. Then the k′ queries do
not show whether b prefers aj to a or not, which contradicts k′ queries being sufficient. ◀

If an algorithm obtains for agents x and y with y ̸= M(x) the information that M(x) ≺x y

(either via a direct query or via transitivity), we say that the algorithm relates y to M(x)
for x. By Lemma 2, if the optimum relates k different elements to M(x) for x, it needs to
make k queries to x. A pair (x, y) with y ̸= M(x) such that the optimum relates y to M(x)
for x is called a relationship pair (for x). Lemma 2 implies the following.

▶ Corollary 3. The total number of relationship pairs (for all agents x) is a lower bound on
the number of comparison queries the optimum makes.

▶ Theorem 4. Given a stable matching instance with one-sided uncertainty and a stable
matching M , there is a 1-competitive algorithm that uses

∑
a∈A |{b ∈ B | b ≺a M(a)}|

queries for verifying that M is stable in the comparison query model.

Proof. Since the preferences of agents on the A-side are not uncertain, for each (a, b) /∈M ,
we already know whether M(a) ≺a b. If M(a) ≺a b, then we do not have to execute any
queries to show that (a, b) /∈M is not a blocking pair. Otherwise, every feasible query set
has to prove M(b) ≺b a. Therefore, for each element b ∈ B, there is a uniquely determined
number nb of elements of A that any solution (including the optimum) must relate to M(b)
for b. Let K =

∑
b∈B nb be the resulting number of relationship pairs.

Our algorithm simply queries prefer(b, M(b), a) for every pair (a, b) /∈ M for which
b ≺a M(a). These are exactly K queries. As the total number of relationship pairs is K, the
optimum must also make K queries (Corollary 3). Hence, our algorithm is 1-competitive. ◀

The proof of Theorem 4 implies that the stable matching that maximizes the number of
queries that are required to prove stability is the B-optimal matching.

▶ Corollary 5. The number of comparison queries needed to verify that the B-optimal
matching is stable is maxM stable

∑
a∈A |{b ∈ B | b ≺a M(a)}|.

E. Bampis, K. Dogeas, T. Erlebach, N. Megow, J. Schlöter, and A. Trehan 17:7

3.2 Finding an A-Optimal Stable Matching
We obtain the following positive result by adapting the classical deferred acceptance algo-
rithm [13] with A making the proposals.

▶ Theorem 6. For a given stable matching instance with one-sided uncertainty, there is a
1-competitive algorithm for finding a stable matching in the comparison query model. The
algorithm actually finds an A-optimal stable matching.

Proof. We utilize the classical deferred acceptance algorithm [13] where A makes the pro-
posals, and we assume the reader’s familiarity with it. An unmatched agent a ∈ A makes
a proposal to their preferred agent b ∈ B by whom it has never been rejected. If b is
unmatched, then b accepts the proposal and a and b get matched. If b is currently matched
to some a′ ∈ A, the algorithm makes a query prefer(b, a, a′). If the query result is that b

prefers a to a′, then b accepts a’s proposal and becomes matched to a while a′ becomes
unmatched. Otherwise, b rejects the proposal and remains matched to a′. The algorithm
terminates if all agents in A are matched or if every unmatched agent in A has been declined
by all agents in B.

We show that this algorithm makes the minimum possible number of comparison queries.
We execute the deferred acceptance algorithm with A as the proposers, so it produces an

A-optimal stable matching. Consider an arbitrary agent b ∈ B. Assume that b gets matched
to a ∈ A in the stable matching. Let Ab = {a, a1, a2, . . . , akb

} (for some 0 ≤ kb < n) be
the set of agents of A that proposed to b during the execution of the algorithm. Note that
|Ab| = kb + 1 and the algorithm has executed kb queries to b, each for two agents of Ab (the
first agent of A that proposed to b did not require a query). Observe that each of a1, . . . , akb

gets matched with an agent of B that they rank strictly lower than b in the final matching.
We claim that no stable matching can be identified without making at least kb queries

to b. Let M ′ be an arbitrary stable matching. Note that b rates M ′(b) at least as highly as a,
because M is the worst possible matching for B. Furthermore, for each ai with 1 ≤ i ≤ kb,
we have that ai rates b strictly higher than M ′(ai) because M is A-optimal and ai rates
M(ai) strictly lower than b. Thus, for none of the pairs (ai, b) for 1 ≤ i ≤ kb to be a blocking
pair, the queries of any optimal query set must establish that b rates M ′(b) more highly than
every ai for 1 ≤ i ≤ kb. This can only be achieved with at least kb queries.

The same argument applies to each b ∈ B, so we have that both the optimal number of
queries and the number of queries made by the algorithm are equal to

∑
b∈B kb. ◀

The proof of Theorem 6 implies that, for the A-optimal stable matching M , the optimal
number of queries to prove that M is stable equals the optimal number of queries to prove
that M is stable and A-optimal. Hence, proving optimality comes in this case for free.

3.3 Finding a B-Optimal Stable Matching
The problem of finding a B-optimal stable matching is substantially more challenging. While
there still exists a 1-competitive algorithm in special cases, e.g., when all A-side preference
lists are equivalent (see the full version [3]), this is not the case for arbitrary instances.

We first describe an algorithm that is O(n)-competitive. Complementing this result, we
then show that every (randomized) online algorithm has competitive ratio at least Ω(n) for
finding a B-optimal stable matching. Finally, we show that the offline problem of determining
the optimal number of queries for computing a B-optimal stable matching is NP-hard and
give an O(log n log log n)-approximation.

APPROX/RANDOM 2024

17:8 Competitive Query Minimization for Stable Matching with One-Sided Uncertainty

3.3.1 Algorithm for Computing a B-Optimal Stable Matching
We first consider the problem of verifying that a given stable B-optimal matching is indeed
stable and B-optimal. An algorithm for this problem needs to prove that M has no blocking
pair and that no alternating cycle with respect to M is a rotation. For each potential blocking
pair (a, b) that cannot be ruled out because of a’s preferences, such an algorithm has to prove
that it is not a blocking pair using a suitable query to b as discussed in Section 3.1.

The more involved part is proving that M is B-optimal. By Lemma 1, M is B-optimal
if and only if it does not expose a rotation. Based on the known A-side preferences, each
edge (a, b) with M(a) ≺a b could potentially be an r-edge. Thus, each cycle that alternates
between such edges and edges in M could potentially be a rotation. An algorithm that proves
B-optimality has to prove for each such alternating cycle that at least one non-matching
edge (a, b) on that cycle is not an r-edge. By definition, there are two possible ways to prove
that an edge (a, b) with M(a) ≺a b is not an r-edge:
1. Query b and find out that b prefers M(b) to a. Then, b cannot be sA(a) as b does not

prefer a to M(b).
2. Query one b′ with M(a) ≺a b′ ≺a b and find out that b′ prefers a to M(b′). Then, b

cannot be the most-preferred element in a’s list that prefers a to her current partner, as
b′ has that property and is preferred over b.

Corollary 5 gives the optimal number of queries to prove that the matching M is stable,
which is a lower bound on the optimal number of queries necessary to prove that M is
stable and B-optimal. Let Q(M) denote this number. However, there exist instances where
Q(M) = 0 and QB(M) > 0 for the optimal number QB(M) of queries to prove that M

is stable and B-optimal. Consider an instance where all elements of A have distinct first
choices and let M denote the matching that matches all elements of A to their respective
first choice. Then, there is a realization of B-side preference lists such that the matching
M is also B-optimal. For this realization we have Q(M) = 0 and QB(M) > 0. This implies
that the lower bound of Corollary 5 is not strong enough for analyzing algorithms that verify
B-optimality as we cannot prove that such an algorithm makes at most c ·Q(M) queries.
We give another lower bound on the optimal number of queries.

▶ Lemma 7. The optimal number of queries for verifying (and thus also for finding) the
B-optimal stable matching is at least n− 1 for every instance of the stable matching problem
with one-sided uncertainty.

Proof. Let M be the B-optimal stable matching for the given instance. For a ∈ A, call a
query an a-query if it reveals for some b ∈ B with b ̸= M(a) whether b prefers a to her current
partner or not. We claim that an optimal algorithm needs to make at least one a-query for
every a ∈ A with at most a single exception. Assume for a contradiction that the optimal
algorithm makes neither an a-query nor an a′-query for two distinct elements a, a′ ∈ A. If a

prefers M(a) over M(a′) and a′ prefers M(a′) over M(a), then it is impossible to exclude
the possibility that (a, M(a)), (a′, M(a′)) is a rotation exposed in M , because the only way
to prove that (a, M(a′)) is not an r-edge is via an a-query, and similarly for (a′, M(a)). If a

prefers M(a′) over M(a), then an a-query to M(a′) is necessary to exclude that (a, M(a′)) is
a blocking pair. If a′ prefers M(a) over M(a′), then an a′-query to M(a) is necessary for the
analogous reason. Hence, the claim holds. We note that the n− 1 queries whose existence is
asserted by the claim are distinct: A query to some b ∈ B cannot be an a-query and at the
same time an a′-query for some a′ ̸= a, as the query prefer(b, a, a′) cannot yield previously
unknown information about how both a and a′ compare to M(b) in b’s preference list. ◀

E. Bampis, K. Dogeas, T. Erlebach, N. Megow, J. Schlöter, and A. Trehan 17:9

Algorithm 1 Algorithm to find the B-optimal stable matching using comparison queries.

Input: Instance of the stable matching problem with one-sided uncertainty.
1 M ← A-optimal matching computed using Theorem 6 ;
2 N ← {a ∈ A |M(a) is last in ≺a} ; /* Elements without r-edge */
3 ∀a ∈ A \N : p(a)← first element in ≺a after M(a);
4 ∀a ∈ A \N : r(a)← ⊤ ; /* known r-edges or ⊤ if r-edge still unknown */
5 foreach a ∈ A \N do
6 repeat
7 t← prefer(p(a), a, M(p(a))) ;
8 if t = M(p(a)) then
9 if p(a) is the last element of ≺a then N ← N ∪ {a} ;

10 else p(a)← direct successor of p(a) in ≺a ;
11 else
12 r(a)← p(a); /* r(a) and a form an r-edge */

13 until r(a) ̸= ⊤ or a ∈ N ;
14 if M exposes a rotation R then
15 M ← stable matching constructed from M by applying R;
16 N ← N ∪ {a ∈ A ∩R |M(a) is last in ≺a};
17 ∀a ∈ (A ∩R) \N : r(a)← ⊤ and p(a)← first element in ≺a after M(a);
18 ∀a ∈ (A \R) \N : p(a)← r(a) and r(a)← ⊤;
19 Jump to Line 5;
20 return M ;

Next, we give an O(n)-competitive algorithm for finding a B-optimal matching and
analyze it by exploiting the lower bounds on the optimal number of queries of Corollary 5
and Lemma 7. For pseudocode see Algorithm 1.

1. Find an A-optimal matching using the 1-competitive algorithm for A-optimal matchings.
2. Search for a rotation by asking, for every a ∈ A, the elements of B that are below M(a)

in a’s preference list in order of ≺a whether they prefer a to their current partner, until
either an r-edge is found or we know that a has no r-edge.

3. If a rotation R is found, apply that rotation. The agents a ∈ A ∩R then no longer have
a known r-edge as their previous r-edge is now their matching edge. However, the new
r-edge partner of such an agent must be further down the preference list of a than the
old one. The elements a ∈ A \ R that had an r-edge to an element b ∈ B ∩ R can no
longer be sure that their edge to b is an r-edge since b has a new matching partner M(b),
so b must be asked again whether it prefers the new partner over a when searching for
the new r-edge of a. The algorithm then repeats Step 2 but starts the search for the new
rotation edge of an agent a ∈ A at either the previous rotation edge (if a ∈ A \R) or at
the direct successor of the new M(a) in ≺a (if a ∈ A ∩R).

4. When a state is reached where it is known for every a ∈ A what its r-edge is (or that
it has no r-edge) but the r-edges do not form a rotation, the algorithm terminates and
outputs M .

▶ Theorem 8. Given a stable matching instance with one-sided uncertainty, the algorithm is
O(n)-competitive for finding a B-optimal stable matching using comparison queries.

APPROX/RANDOM 2024

17:10 Competitive Query Minimization for Stable Matching with One-Sided Uncertainty

Proof. Let OPT denote the number of queries made by an optimal algorithm. Since finding
any stable matching can never require more queries than finding a B-optimal stable matching,
Theorem 6 implies that the algorithm makes at most OPT queries in the first step.

We analyze the queries executed after the first algorithm step. Call a query good if it is
the first query involving a specific combination of an agent a ∈ A and an agent p(a) ∈ B, i.e.,
the first query of form prefer(p(a), a, M(p(a))) for that specific combination of p(a) and a.
All other queries are bad. By definition of good queries, the algorithm makes at most n2 such
queries since this is the maximum number of good queries that can exist. Since OPT ≥ n− 1
(Lemma 7), the number of good queries is O(n) ·OPT.

Consider the bad queries and a fixed a ∈ A. In the second step of the algorithm, it
repeatedly executes queries of the form prefer(p(a), a, M(p(a))) with p(a) ∈ B to find out if
(a, p(a)) is an r-edge, starting with the direct successor p(a) of M(a) in ≺a. If (a, p(a)) is not
an r-edge, then the next query partner p(a) for a moves one spot down in the list ≺a. This
is repeated until the r-edge (a, r(a)) of a is found or we know that a does not have an r-edge.
Here, r(a) refers to the element that forms an r-edge with a.

If a does not have an r-edge, there will be no more queries for a again as all b ∈ B that
are lower than M(a) in the preference list of a prefer their current partner M(b) over a and
this partner will only improve during the execution of the algorithm. Otherwise, a will be
considered again in the second step of the algorithm only if a rotation was found in the third
step. If a is part of the rotation, then r(a) = p(a) will be the new matching partner of a and
p(a) will be moved one spot down in ≺a. Only if a is not part of the rotation, p(a) = r(a)
remains unchanged by definition of the third step. In conclusion, the next query partner
p(a) of a moves down one spot in ≺a after each query for a unless a rotation is found that
does not contain a. This means that a bad query for a can only occur as the first query for a

after a new rotation that does not involve a is found. Thus, each rotation can cause at most
|A| − 2 bad queries (at least two members of A must be involved in the rotation). Thus, the
number of bad queries is at most (n− 2) · nr for the number of applied rotations nr.

For each applied rotation, at least two agents of A get re-matched to agents of B that
are lower down on their preference lists than their previous matching partner. This increases
the lower bound on the optimal number of queries to show stability (cf. Corollary 5) by at
least 2. Thus, Corollary 5 implies OPT ≥ 2 · nr. We can conclude that the number of bad
queries is at most (n− 2) · nr ≤ O(n) ·OPT. ◀

3.3.2 Lower Bound for Computing a B-Optimal Matching
We give a lower bound of Ω(n) on the competitive ratio for finding a B-optimal stable matching
with comparison queries. This implies that the result of Theorem 8 is, asymptotically, best-
possible. Further, the lower bound also holds for verifying that a given matching is B-optimal.

▶ Theorem 9. In the comparison query model, every deterministic or randomized online
algorithm for finding a B-optimal stable matching in a stable matching instance with one-sided
uncertainty has competitive ratio Ω(n).

Proof. We show the statement for deterministic algorithms and refer to the full version [3]
for the extension to randomized ones. The proof of the randomized lower bound exploits
Yao’s principle [5, 32] and uses a randomized version of the instance we describe here to
show the statement. Consider the following instance (cf. Fig. 1) with two sets of agents
A = {a0, . . . , an−1} and B = {b0, . . . , bn−1}, and assume n/2 to be even. If this is not the
case, then the constant factor in the lower bound will be slightly worse.

E. Bampis, K. Dogeas, T. Erlebach, N. Megow, J. Schlöter, and A. Trehan 17:11

a0 b0

a1 b1

a2 b2

a3 b3

a4 b4

a5 b5

a6 b6

a7 b7

a8 b8

a9 b9

a10 b10

a11 b11

(b0, b6, b7, b8, b9, b10, b11, ∗)
(b1, b6, b7, b8, b9, b10, b11, ∗)
(b2, b6, b7, b8, b9, b10, b11, ∗)
(b3, b6, b7, b8, b9, b10, b11, ∗)
(b4, b6, b7, b8, b9, b10, b11, ∗)
(b5, b6, b7, b8, b9, b10, b11, ∗)
(b6, b11, ∗)
(b7, b11, ∗)
(b8, b11, ∗)
(b9, b11, ∗)
(b10, b11, ∗)
(b11, ∗)

(a1, a0, ∗)
(a0, a1, ∗)
(a3, a2, ∗)
(a2, a3, ∗)
(a5, a4, ∗)
(a4, a5, ∗)
(⋄, a6, a7, a8, a9, a10, a11, ⋄)
(⋄, a7, a8, a9, a10, a11, a6, ⋄)
(⋄, a8, a9, a10, a11, a6, a7, ⋄)
(⋄, a9, a10, a11, a6, a7, a8, ⋄)
(⋄, a10, a11, a6, a7, a8, a9, ⋄)
(⋄, a6, a7, a8, a9, a10, a11, ⋄)

Figure 1 Example of the lower bound construction for finding B-optimal matchings. The solid
edges represent the A-optimal matching M that needs to be shown to be also B-optimal using
queries. The dashed edges represent rotation edges. Each of the agents in {a0, a1, . . . , a5} also has a
rotation edge to some agent in {b6, b7, b8, b9, b10, b11} that is not shown. An asterisk (∗) indicates
that the remaining agents are placed in arbitrary order in the preference list. A diamond (⋄) indicates
that the adversary decides in response to the queries made by the algorithm which of the agents in
{a0, a1, . . . , a5} are placed at the front of the preference list and which at the back.

We partition A into three subsets A1 = {a0, . . . , a n
2 −1}, A2 = {a n

2
, . . . , an−2} and

A3 = {an−1}, and B into two subsets, B1 = {b0, . . . , b n
2 −1} and B2 = B \B1.

In the following, we first define the known A-side preferences and the adversarial strategy.
Then we give bounds on the optimal number of queries and the number of queries made by
any deterministic algorithm.

A-side preferences. Consider the following preference lists for A. For an agent ai ∈ A1,
the preference list consists of three parts, P (ai) = P1(ai)P2(ai)P3(ai). The first part of the
list is the corresponding ith agent of B, i.e., P1(ai) = (bi). The second part consists of the n

2
agents of set B2 in increasing order, i.e., P2(ai) = (b n

2
, b n

2 +1, . . . , bn−2, bn−1). The last part
P3(ai) consists of the agents of B1 \ {bi} in an arbitrary order.

For an agent ai ∈ A2, the preference list starts with agent bi, followed by the last agent
bn−1 and finally an arbitrary order of the remaining agents in group B. For the single agent
an−1 in set A3, the preference list starts with agent bn−1 followed by an arbitrary order of
the remaining agents of set B.

Adversarial strategy. The preference lists of the agents in set B are unknown. The instance
has the A-optimal matching M = {(ai, bi) | 0 ≤ i < n}. The adversary will ensure that this
matching is also B-optimal. Since each ai is matched with its top choice, proving stability
does not require any queries. To prove B-optimality of M , the executed queries must prove
that there is no rotation.

The adversary will ensure that M can be shown to be a B-optimal matching with O(n)
queries while any deterministic algorithm is forced to make Ω(n2) queries.

To achieve this, the adversary sets the preferences of the agents of B1 independent of the
algorithm’s actions as follows. For each odd i ∈ {1, 3, 5, . . . , (n/2)− 1}, we let the preference
list of bi start with ai−1 followed by ai and finally all remaining agents in A in an arbitrary
order. The preference list of bi−1 starts with ai followed by ai−1 and then the remaining

APPROX/RANDOM 2024

17:12 Competitive Query Minimization for Stable Matching with One-Sided Uncertainty

agents in A in an arbitrary order. Using these preferences, the sequences (ai−1, bi−1), (ai, bi)
are potential rotations. To prove that such a sequence is not a rotation, an algorithm has to
show that either (ai−1, bi) or (ai, bi−1) is not an r-edge. The only way of showing this is to
prove that either ai−1 or ai instead has an r-edge to some agent of B2.

Consider any deterministic algorithm. The adversary selects the preferences of the agents
in B2 in such a way that the following properties hold:
(P1) Agent an−1 has no r-edge. Note that, by the definition of the preferences of B1 above,

an−1 already cannot have a rotation edge to an agent of B1.
(P2) Each agent in A2 has an r-edge to bn−1.
(P3) Each agent ai in A1 has an r-edge to some agent bt(i) of B2. The choice of that agent

bt(i) depends on the queries made by the algorithm.

The properties (P1)–(P3) ensure that there is no rotation, as the alternating path starting
at any a ∈ A \ {an−1} with the r-edge of that agent ends at an−1, which has no r-edge.

Let t(i) denote the index of the agent bt(i) of B2 to which ai ∈ A1 has an r-edge. This
index is determined by the adversary in response to the queries made by the algorithm.
Concretely, the adversary lets t(i) be the index of the last agent bj ∈ B2 for which the
algorithm makes a query of the form prefer(bj , ai, ∗), where we use prefer(bj , ai, ∗) as a short-
hand to refer to queries prefer(bj , ai, ai′) or prefer(bj , ai′ , ai) for some i′. If the algorithm
doesn’t make queries of this form for all bj ∈ B2, then let t(i) be an arbitrary j such that the
algorithm does not make a query of this form for bj ∈ B2. The adversary sets the preferences
of the agents in B2 in such a way that bt(i) prefers ai to her partner at(i) in the A-optimal
matching M while all other bj ∈ B2 prefer their partner in the A-optimal matching aj to ai.
For example, if the algorithm was to make queries prefer(bj , ai, aj) for all bj ∈ B2 (which it
might do in order to check whether ai has an r-edge to one of these agents), the adversary
would answer false to the first n

2 − 1 such queries and true to the final one.
To achieve the properties (P1)–(P3), the adversary sets the preferences of each agent bj

of B2 as follows:
bj prefers ai ∈ A1 to aj if and only if j = t(i).
If j ̸= n− 1, bj prefers aj to aj′ for all j′ ̸= j, aj′ ∈ A2.
If j = n− 1, bj prefers aj′ to aj for all j′ ̸= j, aj′ ∈ A2.

This can be done by letting the preference list of bj contain first the agents ai ∈ A1 with
j = t(i) in some order, then the agents of A2 in some order (only ensuring for bj that aj

comes first among the agents of A2 if j ̸= n− 1 and that aj comes last among the agents of
A2 if j = n− 1), and finally the agents ai ∈ A1 with j ̸= t(i) in some order.

Upper bound on the optimal query cost. An optimal solution for the instance can prove
that matching M is B-optimal by verifying that the properties (P1)–(P3) indeed hold by
using at most n− 1 + n

2 − 1 + n
2 = 2n− 2 queries as follows:

The n− 1 queries prefer(bi, an−1, ai) = false for i ≤ n− 2 show that an−1 has no r-edge.
Each of the n

2 − 1 queries prefer(bn−1, a n
2 +i, an−1) = true for 0 ≤ i ≤ n

2 − 2 shows that
a n

2 +i has an r-edge to bn−1. This is because each agent of A2 has bn−1 in its preference
list directly after its current matching partner. So if bn−1 prefers an agent of A2 over its
current partner an−1, then this directly gives us an r-edge.
Each of the n

2 queries prefer(bt(i), ai, at(i)) = true for 0 ≤ i ≤ n
2 − 1 shows that ai has a

rotation edge to some agent in B2. Based on the result of such a query, ai must have an
r-edge to either bt(i) or to some other agent of B2 that is higher up in ai’s preference list.

E. Bampis, K. Dogeas, T. Erlebach, N. Megow, J. Schlöter, and A. Trehan 17:13

Lower bound on the algorithm’s query cost. We provide to the algorithm the information
that an−1 has no r-edge, that each agent of A2 has an r-edge to bn−1, and we reveal the full
preference lists of all agents in B1. Clearly, this extra information can only reduce the number
of queries a deterministic algorithm may need as it could simply ignore the information.

For each agent ai ∈ A1, the algorithm will either make queries of the form prefer(bj , ai, ∗)
for all bj ∈ B2 or not. Call ai resolved in the former case and unresolved otherwise. For any
resolved agent, the algorithm may have determined that it has an r-edge to an agent of B2
and hence cannot be part of a rotation. For the unresolved agents, the algorithm cannot
know whether they have an r-edge to an agent in B2.

As argued above, for each odd i ∈ {1, 3, 5, . . . , n
2 −1}, the algorithm has to resolve either ai

or ai−1 to prove that (ai, bi), (ai−1, bi−1) is not a rotation. Thus, it must resolve at least n/4
agents. For each resolved agent, the algorithm has made queries of the form prefer(bj , ai, ∗)
for each bj ∈ B2. This totals to at least n

4 ·
n
2 ·

1
2 = n2

16 ∈ Ω(n2) queries. Note that we
divide n

4 ·
n
2 by two as a single query prefer(bj , ai, ai′) is of the form prefer(bj , ai, ∗) and also

prefer(bj , ai′ , ∗). ◀

3.3.3 Offline Results for Computing B-Optimal Stable Matchings
We show NP-hardness for the offline problem of verifying a given matching M to be stable
and B-optimal. Recall that in the offline problem we assume full knowledge of the B-side
preferences but still want to compute a query set of minimum size that a third party without
knowledge of the B-side preferences could use to verify the B-optimality of M .

▶ Theorem 10. The offline problem of computing an optimal set of comparison queries
for finding (or verifying) the B-optimal stable matching in a stable matching instance with
one-sided uncertainty is NP-hard.

Proof. We give a reduction from the NP-hard Minimum Feedback Arc Set (FAS) problem.
Given a directed graph G = (V, E), a feedback arc set is a subset of edges E′ ⊆ E which, if
removed from G, leaves the remaining graph acyclic. The FAS problem is to decide for a
given directed graph and some k ∈ Z+, whether there is a feedback arc set E′ with |E′| ≤ k.

Given an instance of FAS with G = (V, E) and some k, we construct a stable matching
instance with one-sided uncertainty as follows. For each node v of G, introduce an agent
v in A and an agent v′ in B. Let N+(v) denote the set of out-neighbors of v in G, and
d+(v) = |N+(v)|. The preference list of v is such that it ends with v′ followed by all u′ for
u ∈ N+(v). All other w′ in B come before v′. Thus, the elements of B \{u′ | u ∈ N+(v)} are
the most preferred partners of v, followed by v′ and finally the elements of {u′ | u ∈ N+(v)}.
Let M be the matching that matches v to v′, for all v. The preference lists of b ∈ B are
such that M is the B-optimal stable matching: Every v′ has v as top preference, and the
remaining agents of A follow in arbitrary order. By selecting the matching M this way, we
have that, for every v ∈ A, all edges to elements of {u′ | u ∈ N+(v)} are potential r-edges.
To prove that such an edge (v, u′) is not an r-edge, an algorithm has to compare u and v

from the perspective of u′ to prove that u′ prefers M(u′) = u over v.
The number of queries Q(M) needed to verify the stability of M is determined by M

and is polynomial-time computable by using Theorem 4. To prove B-optimality of M , we
need to show that there is no rotation (Lemma 1). Indeed, there is a query strategy with k

queries for verifying that there is no rotation if and only if there is a feedback arc set in G of
size k. To see this, observe that every directed cycle in G corresponds to a potential rotation
in the matching instance, and every query that excludes one of the edges of the potential
rotation from being an r-edge corresponds to the removal of the corresponding arc in G.

APPROX/RANDOM 2024

17:14 Competitive Query Minimization for Stable Matching with One-Sided Uncertainty

Note that, for the constructed instance, all queries to verify the stability of M obtain
information of the form M(b) ≺b a for a ∈ A and b ∈ B with b ≺a M(a). On the other
hand, all queries that help to verify the absence of a rotation obtain information of the form
M(b) ≺b a for a ∈ A and b ∈ B with M(a) ≺a b. As these are disjoint query sets, we can
conclude that there is a query strategy that proves M to be stable and B-optimal with at
most Q(M) + k queries if and only if there is a feedback arc set in G of size at most k. ◀

We also prove the following approximation for the offline problem by exploiting an
O(log n log log n)-approximation for weighted feedback arc set by Even et al. [12].

▶ Theorem 11. The offline problem of computing an optimal set of comparison queries for
finding the B-optimal stable matching in a stable matching instance with one-sided uncertainty
can be approximated within ratio O(log n log log n).

Proof. Let M be the B-optimal matching. We give an algorithm that verifies M to be
stable and B-optimal by executing at most O(log n log log n) ·OPT queries, where OPT is
the optimal number of queries for the same instance. First, the algorithm proves that M is
stable using Theorem 4. This leads to at most OPT queries.

After that, the algorithm has to prove B-optimality. First, for every a ∈ A that has an
r-edge to an agent r(a) ∈ B, the algorithm queries prefer(r(a), a, M(r(a))). Since (a, r(a))
is an r-edge, this query must return that r(a) prefers a over M(r(a)). This leads to at most
n ≤ OPT + 1 queries (n ≤ OPT + 1 holds by Lemma 7). Note that, for an a ∈ A with an
r-edge, the query prefer(r(a), a, M(r(a))) proves that a has an r-edge but is not necessarily
sufficient to prove that (a, r(a)) is indeed the r-edge of a. If there is an agent b ∈ B with
M(a) ≺a b ≺a r(a) for which we have not yet verified whether b prefers a over M(b), then
(a, b) could also still be the r-edge of a. We call such pairs (a, b) potential r-edges and let P

denote the set of these edges.
It remains to consider the graph G defined by the matching edges, the r-edges R, and all

potential r-edges P . If G has no cycle alternating between edges in M and edges in P ∪R,
then we have shown that M does not expose a rotation and, thus, is B-optimal. Otherwise,
the algorithm has to execute queries prefer(b, a, M(b)) for edges (a, b) ∈ P to prove that they
are not actually r-edges until it becomes clear that M has no rotation.

To select the edges (a, b) ∈ P for which the algorithm executes such queries, we exploit
the O(log n log log n)-approximation for weighted feedback arc set by Even et al. [12]. To
this end, we create an instance of the weighted feedback arc set problem by considering the
vertices A ∪B, adding the edges M ∪R with weight ∞ each and adding the edges P with
weight 1 each. We orient all edges in M from the B-side vertex to the A-side vertex and all
edges in R ∪ P from the A-side vertex to the B-side vertex. The orientation ensures that
all cycles in the graph alternate between M -edges and R ∪ P -edges. Since the matching
M is B-optimal by assumption, there cannot be an alternating cycle using only edges in
M ∪R, so there must be a feedback arc set that only uses edges in P . The choice of the edge
weights ensures that every approximation algorithm for weighted feedback arc set finds such a
solution. We use the O(log n log log n)-approximation to find such a feedback arc set F ⊆ P .
Since removing F from the instance yields an acyclic graph, querying prefer(b, a, M(b))
for each (a, b) ∈ F proves that M does not expose a rotation. As the minimum weight
feedback arc set is the cheapest way to prove that M does not have a rotation, we have
|F | ≤ O(log n log log n) ·OPT, which implies the theorem. ◀

E. Bampis, K. Dogeas, T. Erlebach, N. Megow, J. Schlöter, and A. Trehan 17:15

4 Stable Matching with Interview Queries

In this section, we summarize our results for the interview query model. We refer to the
full version [3] for formal proofs. Most of our results and proofs are quite similar to their
counterparts for comparison queries. This might be surprising as interview and comparison
queries are, in a sense, incomparable: While interview queries allow us to more efficiently
determine full preference lists, a comparison between two agents can be done more efficiently
via a single comparison query. As we show the same (asymptotic) bounds on the competitive
ratio, the latter seems to be the deciding factor.

▶ Theorem 12. In the interview query model, the best possible (randomized) competitive ratio
for finding the B-optimal stable matching in an instance of stable matching with one-sided
uncertainty is in Θ(n).

For the offline problem of verifying a given B-optimal stable matching with interview
queries, Rastegari et al. [30] show NP-hardness in a setting with partial uncertainty on both
sides. As their proof exploits the possibility of giving partial information as part of the input,
it does not directly translate to our setting with one-sided uncertainty.

▶ Theorem 13. The offline problem of computing an optimal set of interview queries for
finding the B-optimal stable matching in a stable matching instance with one-sided uncertainty
is NP-hard.

A 1-competitive algorithm for finding a stable matching and veryfing a given stable
matching with interview queries is implied by the results and arguments from [30] for a more
general uncertainty setting.

5 Stable Matching with Set Queries

We consider the stable matching problem with one-sided uncertainty and set queries. Note
that set queries are a natural generalization of comparison queries. For verifying any B-
optimal matching, we show that the optimal number of set queries is at least n− 1. We also
observe that there is an algorithm that makes at most n2 queries for finding the B-optimal
matching (or an A-optimal matching if we want to), as one can sort all preference lists
using n2 set queries. This implies an O(n)-competitive algorithm for finding the B-optimal
matching. For the subproblem of verifying that a given matching is B-optimal, we give
an O(log n)-competitive algorithm by exploiting the additional power of set queries in an
involved binary search algorithm. If we only have to verify stability for a given matching, we
give a 1-competitive algorithm. Furthermore, we show that the offline problem of verifying
that a given matching does not have a rotation is NP-hard.

5.1 Verifying That a Given Matching Is Stable
We start by characterizing the optimal number of queries (and query strategy) to verify that
a given matching M is stable. The main difference to the comparison model is that, for a
fixed b ∈ B, a single query top(b, {a | b ≺a M(a)} ∪ {M(b)}) is sufficient to prove that b is
not part of any blocking pair.

▶ Theorem 14. Consider a stable matching instance with one-sided uncertainty and a
stable matching M . The minimum number of set queries to verify that M is stable is
|{b ∈ B | ∃a ∈ A : b ≺a M(a)}| ≤ n. Further, there is a 1-competitive algorithm to verify
that M is stable.

APPROX/RANDOM 2024

17:16 Competitive Query Minimization for Stable Matching with One-Sided Uncertainty

Proof. Consider an arbitrary b ∈ B. Let Z(b) = {a ∈ A | b ≺a M(a)}, i.e., Z(b) contains
all a ∈ A that could potentially form a blocking pair with b. Thus, M can only be stable if
M(b) ≺b a holds for all b ∈ B and a ∈ Z(b). If Z(b) ̸= ∅, at least one query to b is necessary,
and the query top(b, Z(b) ∪ {M(b)}) with answer M(b) reveals all the required information
to prove that b is not part of any blocking pair. Thus, the minimum number of queries to
confirm that M is stable is |{b ∈ B | ∃a ∈ A : b ≺a M(a)}| as claimed. Furthermore, the
algorithm that queries top(b, Z(b)∪{M(b)}) for all b ∈ B with Z(b) ̸= ∅ is 1-competitive. ◀

5.2 Verifying That a Given Matching Is Stable and B-Optimal
For the problem of confirming that a given matching is B-optimal by using set queries, we
show that every algorithm needs to execute at least n− 1 queries. This is analogous to the
setting with comparison queries and uses a similar proof as Lemma 7. It implies that finding
a B-optimal matching also requires at least n− 1 queries.

▶ Lemma 15. Consider an arbitrary stable matching instance with one-sided uncertainty
and the B-optimal matching M . Every algorithm needs at least n− 1 set queries to verify
that M is indeed stable and B-optimal.

Proof. For each b ∈ B, let Z(b) = {a ∈ A | b ≺a M(a)} and let S = {b ∈ B | Z(b) ̸= ∅}. By
the proof of Theorem 14, every algorithm needs to execute at least one query of the form
top(b, X) with X ⊆ A for all b ∈ S and this query has to return M(b) as the top choice.
Since verifying B-optimality includes proving stability, this leads to at least |S| queries.

Consider an arbitrary algorithm that verifies M to be B-optimal and let A1 ⊆ A denote
the agents of A that are returned as the top choice by some query of the algorithm. Then
|S| ≤ |A1| and {a ∈ A | ∃b ∈ S : M(b) = a} ⊆ A1 by the argumentation above.

If |A1| ≥ n − 1, then the statement follows immediately, so assume |A1| < n − 1 and
let A2 = A \ A1. Since |A1| < n− 1, the set A2 has at least two distinct members a1 and
a2. Furthermore, we must have M(a1), M(a2) /∈ S as observed above. By definition of
S, we have M(a1) ≺a1 M(a2) and M(a2) ≺a2 M(a1). This means that (a1, M(a2)) and
(a2, M(a1)), based on the initially given information, could potentially be rotation edges.
Thus, (a1, M(a1)), (a2, M(a2)) could potentially be a rotation and the algorithm has to
prove that this is not the case by showing that one of (a1, M(a2)) and (a2, M(a1)) is not an
r-edge. To prove that (a1, M(a2)) is not an r-edge, one has to either verify a2 ≺M(a2) a1 or
a1 ≺b M(b) for some b ∈ B with M(a1) ≺a1 b ≺a1 M(a2). However, this requires at least
one query that returns either a1 or a2 as the top choice, and there is a symmetric argument
for proving that (a2, M(a1)) is not an r-edge. Since a1 and a2 are never returned as the
top choice by a query of the algorithm, this is a contradiction to the assumption that the
algorithm verifies that M is B-optimal. ◀

In contrast to the comparison model, there exists an offline algorithm that asymptotically
matches the lower bound of Lemma 15.

▶ Theorem 16. There exists a polynomial-time offline algorithm that, given an instance of
stable matching with one-sided uncertainty and the B-optimal matching M , verifies that M

is indeed stable and B-optimal by executing O(n) set queries.

Proof. By the proof of Theorem 14, an algorithm can prove M to be stable by executing at
most n set queries, so it remains to prove that M is B-optimal by executing at most O(n)
set queries.

E. Bampis, K. Dogeas, T. Erlebach, N. Megow, J. Schlöter, and A. Trehan 17:17

We do so by proving that M does not contain a rotation. First, for each b ∈ B, we
compute the set P (b) = {a ∈ A |M(a) ≺a b and M(b) ≺b a}. Each tuple (b, a) with b ∈ B

and a ∈ P (b) could be a rotation edge based on ≺a but is not a rotation edge as M(b) ≺b a.
An algorithm can prove that none of these edge are actually rotation edges by executing a
query top(b, P (b) ∪ {M(b)}) for each b ∈ B. This leads to n additional queries.

If an a ∈ A does not have a rotation edge, then the previous queries prove that this is the
case. Consider an a ∈ A that has a rotation edge. Then the second endpoint of that edge
is the agent b ∈ B of highest preference according to ≺a among those agents that satisfy
M(a) ≺a b and a ≺b M(b). Let b be that endpoint. To prove that (a, b) is indeed a rotation
edge, an algorithm has to verify a ≺b M(b) and M(b′) ≺b′ a for all b′ with M(a) ≺a b′ ≺a b.
The latter has already been verified by the previous n queries and the former can be proven
by an additional query top(b, {a, M(b)}). Doing this for every a ∈ A that has a rotation edge
leads to at most n further queries.

Executing these queries yields, for each a ∈ A, either the rotation edge of a or a proof
that a does not have a rotation edge. Thus, it gives sufficient information to show that M

does not have a rotation and is B-optimal. ◀

Next, we give an online algorithm that decides whether a given matching M is B-optimal
by executing at most O(n log n) set queries. In combination with Lemma 15, this yields an
O(log n)-competitive algorithm for verifying that a given matching is B-optimal with set
queries.

▶ Theorem 17. There is an algorithm that decides if a given matching M in a stable matching
instance with one-sided uncertainty is stable and B-optimal with O(n log n) set queries.

Proof. First, we can use Theorem 14 and execute O(n) queries to decide whether M is
stable. If M turns out not to be stable, then we are done. Otherwise, we have to decide
whether M is B-optimal by using at most O(n log n) set queries. We do so by giving an
algorithm that, for each a ∈ A, either finds the rotation edge of a or proves that a does not
have a rotation edge. After executing that algorithm we clearly have sufficient information
to decide whether M exposes a rotation and, thus, whether it is B-optimal.

For each a ∈ A, we use R(a) to refer to the set of agents that could potentially form a
rotation edge with a. Initially, we set R(a) = {b ∈ B |M(a) ≺a b} as all agents with a lower
priority than M(a) can potentially form a rotation edge with a based on the initially given
information. During the course of our algorithm, we will update the set R(a) such that it
always only contains the agents of B that, based on the information obtained by all previous
queries, could still form a rotation edge with a. In particular, if we obtain the information
that M(b) ≺b a for some b ∈ R(a), then (a, b) clearly cannot be a rotation edge and we
can update R(a) = R(a) \ {b}. Similarly, if we obtain the information that a ≺b M(b) for
some b ∈ R(a), then the agents b′ ∈ R(a) with b ≺a b′ cannot form a rotation edge with a

anymore and we can update R(a) = R(a) \ {b′ ∈ R(a) | b ≺a b′}. Given the current list R(a)
of potential rotation edge partners, we use R̄(a) to refer to the

⌈
|R(a)|

2

⌉
agents of R(a) with

the highest priority in R(a) according to ≺a.
Our algorithm, cf. Algorithm 2, proceeds in iterations that each execute at most O(n)

set queries. Let Ri(a), a ∈ A, denote the current sets of potential rotation edges at the
beginning of iteration i and let R̄i(a) be as defined above. We define our algorithm in a way
such that each iteration i decides for each a ∈ A whether it has a rotation edge to an agent of
R̄i(a) or not. Then, |Ri+1(a)| ≤ |Ri(a)|+1

2 holds for each a ∈ A with |Ri(a)| > 1 as we either
get Ri+1(a) ⊆ R̄i(a) or Ri+1 ⊆ Ri(a) \ R̄i(a). Furthermore, if |Ri(a)| = 1, then iteration i

either identifies the rotation edge of a or proves that it does not have one. This means that

APPROX/RANDOM 2024

17:18 Competitive Query Minimization for Stable Matching with One-Sided Uncertainty

Algorithm 2 Algorithm to decide whether a given matching is B-optimal using set queries.

Input: Stable matching instance with one-sided uncertainty and a matching M .
1 Decide whether M is stable using Theorem 14. If M is not stable, terminate;
2 R(a)← {b ∈ B |M(a) ≺a b} for all a ∈ A;
3 while We did not decide yet whether M is B-optimal do
4 U ← {a ∈ A | |R̄(a)| ≥ 1};
5 for b ∈ B do
6 Ub ← {a ∈ U | b ∈ R̄(a)};
7 repeat
8 t← top(b, Ub ∪ {M(b)});
9 if t = M(b) then R(a)← R(a) \ b for all a ∈ Ub; Ub ← ∅; ;

10 else
11 U ← U \ {t}; Ub ← Ub \ {t};
12 R(t)← R(t) \ {b′ ∈ R(t) | b ≺t b′};

13 until Ub = ∅;

after at most O(log n) such iterations, for each a ∈ A, we either found the rotation edge of a

or verified that it does not have one. Since each iteration executes O(n) set queries, we get
an algorithm that executes O(n log n) set queries and decides whether M is B-optimal.

It remains to show that each iteration i indeed executes O(n) set queries and decides,
for each a ∈ A, whether a has a rotation edge to some agent of R̄i(a). Lines 4 to 13 of
Algorithm 2 show the pseudocode for such an iteration. In each iteration i, the algorithm
considers the set U = {a ∈ A | |Ri(a)| ≥ 1}, i.e., the subset of A for which we do not yet
know whether it has a rotation edge to some agent of R̄i(a). Then, the algorithm iterates
through the agents b of B and considers the set Ub = {a ∈ U | b ∈ R̄i(a)}. Note that, for
each a ∈ Ub, it holds that if a ≺b M(b), then a has a rotation edge to some agent of R̄i(a)
(not necessarily to b). The algorithm executes the query top(b, Ub ∪ {M(b)}). If this query
returns M(b), then we know for sure that b does not have a rotation edge to any agent of Ub

and we can discard b for the rest of the iteration and also remove b from the current R(a) of
all a ∈ Ub. On the other hand, if the query returns a ̸= M(b), then we know that a has a
rotation edge to some agent of R̄i(a) and we do not need to consider a for the rest of the
iteration anymore. Thus, after each query within the iteration we discard an agent of either
A or B, which means that the iteration terminates after at most 2n queries. At the end of
the iteration, we know for each a ∈ A whether it has a rotation edge to some b ∈ R̄i(a). ◀

For the offline problem, we show that computing the query set of minimum size that
verifies that a given matching does not have a rotation is NP-hard. However, in the instances
constructed by the reduction, verifying that the given matching does not have a rotation
and is stable is trivial as we will discuss after the proof. This means that the following result
does not imply NP-hardness for the offline variant of finding the B-optimal matching with
set queries.

▶ Theorem 18. In the set query model, the offline problem of computing an optimal set of
queries for verifying that a given B-optimal stable matching M for a stable matching instance
with one-sided uncertainty does not have a rotation is NP-hard.

Proof. We show the statement by reduction from the NP-hard feedback vertex set problem [23].
In this problem, we are given a directed graph G = (V, E) and a parameter k ∈ N. The goal
is to decide whether there exists a subset F ⊆ V with |F | ≤ k such that deleting F from G

yields an acyclic graph.

E. Bampis, K. Dogeas, T. Erlebach, N. Megow, J. Schlöter, and A. Trehan 17:19

We construct an instance of the stable matching problem with one-sided uncertainty and
a matching M as follows:
1. For each v ∈ V , we add an agent av to set A and a matching partner M(av) to set B.
2. For each v ∈ V and u ∈ V \ {v}, we set M(av) ≺av M(au) if (v, u) ∈ E and M(au) ≺av

M(av) otherwise.
3. For each v ∈ V and u ∈ V \ {v}, we set av ≺M(v) au.

Based on the A-side preferences, each (av, M(au)) with (v, u) ∈ E could be an r-edge
and each (av, M(au)) with (v, u) /∈ E is not an r-edge. Consider the directed graph
G′ = (A ∪ B, E′) with E′ = {(M(av), av) | v ∈ V } ∪ {(av, M(au)) | (v, u) ∈ E)}. Then,
based on the A-side preferences, each cycle in G′ could be a rotation. Furthermore, if we
contract the edges {(M(av), av) | v ∈ V }, we arrive at the given graph G.

Assume that there is a set F ⊆ V with |F | ≤ k such that deleting F from G yields an
acyclic graph. Consider the queries top(M(av), A) for all v ∈ F . By the third step of the
reduction, these queries prove that the agents M(av) with v ∈ F are not part of any rotation.
This also means that the agents av with v ∈ F cannot be part of a rotation. Thus, the only
edges that can still be part of a rotation are the matching edges (M(av), av) with v /∈ F and
the edges (av, M(au)) with (v, u) ∈ E but v, u /∈ F . If we consider the graph induced by
these remaining edges and contract the matching edges, we arrive at the subgraph G[V \ F]
of the given feedback vertex set instance. Since this graph by assumption does not contain a
cycle, this implies that executing the queries proves that the constructed instance has no
rotation.

Consider a query strategy that proves the constructed instance to not have a rotation
by using at most k queries. Let A′ ⊆ A denote the set of all agents that are returned as
the top choice by at least one of those queries. Then, by construction, the alternative query
strategy that queries top(M(av), A) for each av ∈ A′ must also be feasible and uses at most
k queries. This alternative strategy proves that there exists no rotation by proving that no
av ∈ A′ is part of any rotation. Thus, removing all vertices av and M(av) with av ∈ A′ from
the graph G′ as defined above yields a graph without cycles. This also implies that removing
F = {v ∈ V | av ∈ A′} from G yields a graph without cycles. Thus, F with |F | ≤ k is
feasible for the given feedback vertex set instance. ◀

In the instances constructed within the proof, querying top(M(av), A) for between n− 1
and n agents av ∈ A proves that the given matching is stable and B-optimal. If n− 1 queries
suffice, then this is optimal by Lemma 15. Otherwise, n queries are optimal. We can decide
whether n − 1 queries suffice via enumeration over which agent M(av) does not receive a
query top(M(av), A). Thus, the NP-hardness for proving that no rotation exists does not
directly translate to the offline problem of proving that a given matching has no rotation
and is stable.

6 Open Problems

While we understand the comparison model quite rigorously, it remains open in the set query
model what best possible competitive ratio can be achieved for finding a (A- or B-optimal)
stable matching. Further, it would be interesting to investigate the two-sided stable matching
problem with uncertainty in the preference lists on both sides. For verifying the stability
of a given matching in this case, we give a best possible 2-competitive algorithm in the full
version [3]. All other questions regarding finding a stable or stable and optimal matching
remain open under two-sided uncertainty. It would also be interesting to investigate a
generalized set query model in which a query to a set S ⊆ A for a b ∈ B reveals the top-k
partners of b, that is, the k partners in S that b prefers most.

APPROX/RANDOM 2024

17:20 Competitive Query Minimization for Stable Matching with One-Sided Uncertainty

References
1 Haris Aziz, Péter Biró, Ronald de Haan, and Baharak Rastegari. Pareto optimal allocation

under uncertain preferences: uncertainty models, algorithms, and complexity. Artif. Intell.,
276:57–78, 2019.

2 Haris Aziz, Péter Biró, Serge Gaspers, Ronald de Haan, Nicholas Mattei, and Baharak
Rastegari. Stable matching with uncertain linear preferences. Algorithmica, 82(5):1410–1433,
2020.

3 Evripidis Bampis, Konstantinos Dogeas, Thomas Erlebach, Nicole Megow, Jens Schlöter,
and Amitabh Trehan. Competitive query minimization for stable matching with one-sided
uncertainty, 2024. arXiv:2407.10170.

4 Evripidis Bampis, Christoph Dürr, Thomas Erlebach, Murilo Santos de Lima, Nicole Megow,
and Jens Schlöter. Orienting (hyper)graphs under explorable stochastic uncertainty. In ESA,
volume 204 of LIPIcs, pages 10:1–10:18, 2021. doi:10.4230/LIPIcs.ESA.2021.10.

5 Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. Cambridge
University Press, 1998.

6 Joanna Drummond and Craig Boutilier. Elicitation and approximately stable matching with
partial preferences. In IJCAI, pages 97–105. IJCAI/AAAI, 2013.

7 Joanna Drummond and Craig Boutilier. Preference elicitation and interview minimization in
stable matchings. In AAAI, pages 645–653. AAAI Press, 2014.

8 Christoph Dürr, Thomas Erlebach, Nicole Megow, and Julie Meißner. An adversarial model
for scheduling with testing. Algorithmica, 82(12):3630–3675, 2020.

9 Lars Ehlers and Jordi Massó. Matching markets under (in)complete information. J. Econ.
Theory, 157:295–314, 2015.

10 T. Erlebach and M. Hoffmann. Query-competitive algorithms for computing with uncertainty.
Bulletin of the EATCS, 116:22–39, 2015. URL: http://bulletin.eatcs.org/index.php/
beatcs/article/view/335.

11 Thomas Erlebach, Murilo S. de Lima, Nicole Megow, and Jens Schlöter. Sorting and hypergraph
orientation under uncertainty with predictions. In IJCAI, pages 5577–5585. ijcai.org, 2023.

12 Guy Even, Joseph Naor, Baruch Schieber, and Madhu Sudan. Approximating minimum
feedback sets and multicuts in directed graphs. Algorithmica, 20(2):151–174, 1998.

13 D. Gale and L. S. Shapley. College admissions and the stability of marriage. The American
Mathematical Monthly, 69(1):9–15, 1962. doi:10.1080/00029890.1962.11989827.

14 Yannai A. Gonczarowski, Noam Nisan, Rafail Ostrovsky, and Will Rosenbaum. A stable
marriage requires communication. Games Econ. Behav., 118:626–647, 2019. doi:10.1016/j.
geb.2018.10.013.

15 Dan Gusfield and Robert W. Irving. The Stable Marriage Problem – Structure and Algorithms.
Foundations of computing series. MIT Press, 1989.

16 Guillaume Haeringer and Vincent Iehlé. Two-sided matching with one-sided preferences. In
EC, page 353. ACM, 2014.

17 Guillaume Haeringer and Vincent Iehlé. Two-sided matching with (almost) one-sided prefer-
ences. American Economic Journal: Microeconomics, 11(3):155–190, 2019.

18 Guillaume Haeringer and Vincent Iehlé. Enjeux stratégiques du concours de recrutement des
enseignants chercheurs. Revue Economique, 61(4):697–721, 2010.

19 M. M. Halldórsson and M. S. de Lima. Query-competitive sorting with uncertainty. In MFCS,
volume 138 of LIPIcs, pages 7:1–7:15, 2019. doi:10.4230/LIPIcs.MFCS.2019.7.

20 Michael Hoffmann, Thomas Erlebach, Danny Krizanc, Matús Mihalák, and Rajeev Raman.
Computing minimum spanning trees with uncertainty. In STACS, volume 1 of LIPIcs, pages
277–288. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Germany, 2008.

21 Hadi Hosseini, Vijay Menon, Nisarg Shah, and Sujoy Sikdar. Necessarily optimal one-sided
matchings. In AAAI, pages 5481–5488. AAAI Press, 2021.

22 S. Kahan. A model for data in motion. In STOC’91: 23rd Annual ACM Symposium on Theory
of Computing, pages 265–277, 1991. doi:10.1145/103418.103449.

https://arxiv.org/abs/2407.10170
https://doi.org/10.4230/LIPIcs.ESA.2021.10
http://bulletin.eatcs.org/index.php/beatcs/article/view/335
http://bulletin.eatcs.org/index.php/beatcs/article/view/335
https://doi.org/10.1080/00029890.1962.11989827
https://doi.org/10.1016/j.geb.2018.10.013
https://doi.org/10.1016/j.geb.2018.10.013
https://doi.org/10.4230/LIPIcs.MFCS.2019.7
https://doi.org/10.1145/103418.103449

E. Bampis, K. Dogeas, T. Erlebach, N. Megow, J. Schlöter, and A. Trehan 17:21

23 Richard M. Karp. Reducibility among combinatorial problems. In 50 Years of Integer
Programming, pages 219–241. Springer, 2010.

24 Thomas Ma, Vijay Menon, and Kate Larson. Improving welfare in one-sided matchings using
simple threshold queries. In IJCAI, pages 321–327. ijcai.org, 2021.

25 David F. Manlove. Algorithmics of Matching Under Preferences, volume 2 of Series on
Theoretical Computer Science. WorldScientific, 2013. doi:10.1142/8591.

26 N. Megow, J. Meißner, and M. Skutella. Randomization helps computing a minimum spanning
tree under uncertainty. SIAM Journal on Computing, 46(4):1217–1240, 2017. doi:10.1137/
16M1088375.

27 Cheng Ng and Daniel S. Hirschberg. Lower bounds for the stable marriage problem and its
variants. SIAM J. Comput., 19(1):71–77, 1990. doi:10.1137/0219004.

28 Jannik Peters. Online elicitation of necessarily optimal matchings. In AAAI, pages 5164–5172.
AAAI Press, 2022.

29 Baharak Rastegari, Anne Condon, Nicole Immorlica, Robert W. Irving, and Kevin Leyton-
Brown. Reasoning about optimal stable matchings under partial information. In EC, pages
431–448. ACM, 2014.

30 Baharak Rastegari, Anne Condon, Nicole Immorlica, and Kevin Leyton-Brown. Two-sided
matching with partial information. In EC, pages 733–750. ACM, 2013.

31 Alvin E. Roth and Marilda A. Oliveira Sotomayor. Two-Sided Matching: A Study in Game-
Theoretic Modeling and Analysis. Econometric Society Monographs. Cambridge University
Press, 1990. doi:10.1017/CCOL052139015X.

32 Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of complexity.
In FOCS, pages 222–227. IEEE Computer Society, 1977.

APPROX/RANDOM 2024

https://doi.org/10.1142/8591
https://doi.org/10.1137/16M1088375
https://doi.org/10.1137/16M1088375
https://doi.org/10.1137/0219004
https://doi.org/10.1017/CCOL052139015X

A Constant Factor Approximation for Directed
Feedback Vertex Set in Graphs of Bounded Genus
Hao Sun # Ñ

University of Alberta, 116 St & 85 Ave, Edmonton, AB T6G 2R3, Canada

Abstract
The minimum directed feedback vertex set problem consists in finding the minimum set of vertices
that should be removed in order to make a directed graph acyclic. This is a well-known NP-hard
optimization problem with applications in various fields, such as VLSI chip design, bioinformatics
and transaction processing deadlock prevention and node-weighted network design. We show a
constant factor approximation for the directed feedback vertex set problem in graphs of bounded
genus.

2012 ACM Subject Classification Mathematics of computing → Graphs and surfaces; Mathematics
of computing → Approximation algorithms; Mathematics of computing → Graph algorithms; Theory
of computation → Rounding techniques; Theory of computation → Packing and covering problems

Keywords and phrases Feedback Vertex Set, Combinatorial Optimization, Approximation Al-
gorithms, min-max relation, linear programming

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.18

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2311.01026

Acknowledgements The author would like to thank Zachary Friggstad for invaluable guidance in
the writing process and Jochen Koenemann for suggesting the problem.

1 Introduction

In the directed feedback vertex set problem (DFVS), we are given a (node-weighted) directed
graph G = (V,E) with costs cv ∀v ∈ V and wish to find a minimum cost set X for which
G\X is acyclic. DFVS is one of Karp’s original 21 NP-hard problems [16]. The DFVS
problem has many applications including deadlock resolution [10], VLSI chip design [19] and
program verification [20].

A 2-approximation for (undirected) FVS is given in [2]. DFVS has a 2-approximation in
tournaments [21] and bipartite tournaments [24], is polynomial-time solvable on graphs of
bounded treewidth, has a 2.4-approximation in planar graphs [3] and has an O(log n log log n)-
approximation in general graphs [7]. DFVS does not have an O(1)-approximation under the
unique games conjecture [13]. The genus of a graph is the minimal integer g such that the
graph can be drawn without crossing itself on a sphere with g handles.

The following is the natural LP for DFVS and its dual, where C is the set of directed
cycles of our graph.

min cTx (PDFVS)
s.t. x(C) ≥ 1 ∀ C ∈ C (1)

x ≥ 0

max 1T y (DDF V S)

s.t.
∑

C∈C,v∈C

yC ≤ cv ∀v ∈ V (G)

y ≥ 0 .

© Hao Sun;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 18; pp. 18:1–18:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hsun14@ualberta.ca
https://apps.ualberta.ca/directory/person/hsun14
https://orcid.org/0000-0002-2000-8080
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.18
https://arxiv.org/abs/2311.01026
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 A Constant Factor Approximation for Directed Feedback Vertex Set

Given that constant approximations for DFVS exist for planar graphs, one naturally
wonders if DFVS admits constant approximations in bounded genus graphs. We answer this
question positively.

▶ Theorem 1. For any fixed genus g, there is a polynomial-time O(g)-approximation for
DFVS for graphs of genus g. Moreover, the algorithm returns a DFVS with cost O(g) times
the optimum solution to (PDFVS).

From the proof of Theorem 1, it is clear that the algorithm in Theorem 1 runs in time
O(g)poly(|V (G)|).

For uniform costs, the dual LP (DDF V S) is the natural LP of the dicycle packing problem.
The dicycle packing problem is the problem of finding the maximum number of vertex disjoint
dicycles of a graph. Schlomberg et al. [23] show that the LP gap of the natural LP for dicycle
packing is at most Ω(1

g2 log g) on any graph of genus g. Our result then also implies that the
minimum size of a DFVS is at most O(g3 log g) the size of a maximum dicycle packing.

1.1 Our techniques
Informally speaking, for a (directed) graph embedded on a surface where each directed cycle
bounds a region homeomorphic to the plane, one can apply the same primal-dual techniques
in [12, 3] to obtain a constant factor primal-dual approximation.

In the other case, our algorithm will use the natural LP for DFVS to look for a “separator”
[5, 8, 9] S ⊂ V of cost at most a constant times the optimal DFVS such that G\S is of
smaller genus. We obtain a directed cycle C, the removal of which results in a surface of one
smaller genus. Traversing along the dicycle, we may define a “left” and “right” side of the
dicycle. Like in [7], we solve the DFVS LP and use the LP values as distances.

If there is no short path leaving C from the left and entering C from the right and vice
versa then there is a small separator S such that each dicycle of G\S either does not use any
“left arc” that is, an arc coming in or leaving C from the left, or does not use any “right arc”
that is, an arc coming in or leaving C from the right. G with all left (resp. right) arcs deleted
is of genus at least one less so inductively we can solve within a constant factor DFVS on G

with all left (resp. right) arcs deleted. These two solutions together with S form a DFVS of
constant times more than the optimum. If such short paths exist but all starting points of
such paths and ending points of such paths are far apart the analysis is similar.

The final case is where there are short paths P1, P2 leaving C from the left and entering C
from the right (or vice versa) and the starting point of P2 is close to the endpoint of P1. We
show that P1 is “far” from P2 so to speak (we are using directed distances so this is not the
same as P2 being far from P1) and compute a suitable separator. We show that the resulting
strongly connected components are of smaller genus. We then combine approximations for
different components to give an approximation for the original graph.

The presentation in this paper is focused on demonstrating linear dependence on the
genus rather than optimizing the constant in Theorem 1.

2 Preliminaries

In our figures, we will use the representation of the torus by taking the unit square [0, 1]×[0, 1]
and identifying the two pairs of edges {0} × [0, 1], {1} × [0, 1] and [0, 1]× {0}, [0, 1]× {1},
that is, the point (0, p) is identified with (1, p) and the point (q, 0) is identified with the point
(q, 1).

H. Sun 18:3

Throughout this paper, all surfaces are orientable and smooth and all curves are piece-
wise smooth. Distances on surfaces will refer to the geodesic (shortest path on the surface)
distance. It is well known (see for instance [22]) that a smooth orientable surface Q is
diffeomorphic to the g-genus torus for some g. For X ⊂ Q, denote cl(X) as the closure of X
in Q. We henceforth assume our surface is a g-genus torus for some g.

Let us call a cycle of G, or a closed curve C embedded on a surface Q facial if it bounds a
region inside(C) of the surface homeomorphic to the plane. If the genus of Q is greater than
0, call inside(C) the inside region of Q\C. For any set F ⊂ V , define GF to be the residual
graph, that is, the subgraph of G induced by those vertices that lie in a dicycle of G\F .

3 Hitting the facial cycles of a digraph

In general, given a (node-weighted) directed graph G = (V,E) with costs cv ∀v ∈ V a set
C of cycles of a digraph G, we define the C-hitting set problem as the problem of finding a
minimum cost set X such that X ∩ C ̸= ∅ ∀C ∈ C. In this section, we are concerned with
when C is the set of facial cycles of our graph.

Given a digraph G embedded on a surface Q, we show how to obtain an O(g)-
approximation for the problem of finding a minimal hitting set for the set of facial dicycles
of a graph embedded on any surface Q of genus g.

▶ Theorem 2. For a graph G embedded on a surface Q of genus g, there is a polynomial-time
O(g)-approximation for the problem of hitting facial dicycles of G. Moreover, the algorithm
returns a DFVS with cost O(g) times the optimum solution to (PDFVS) where C is the set of
facial dicycles.

Further, if G is embedded in a way such that there exist regions R1, R2 of Q homeomorphic
to the open disk, such that the inside region of any facial dicycle contains at least one of
R1, R2, then there is an algorithm that returns the optimum solution to (PDFVS) where C is
the set of facial dicycles.

Proof. We first show that DFVS has an O(g)-approximation. If C is a facial cycle bounding
a face of G, call C face minimal. Note that if G contains a facial cycle, then it must contain
a face minimal cycle by the following argument. Let C be a dicycle such that inside(C) is a
minimal (by containment) region of Q. Recall that we removed all vertices of G not lying
on a dicycle. In particular, any vertex w inside the region inside(C) must lie on a facial
dicycle Aw. Aw cannot be contained entirely in cl(inside(C)), as then the region Aw would
be strictly contained in inside(C). Thus, inside(Aw) intersects C and there is a dipath P

between two nodes u, v of C. If C is not a face, then either there is a vertex w inside the
region RC or there is an edge uv between two nodes u, v of C such that g(uv)\(g(v) ∪ g(u))
lies in RC . In either case, there is a dipath P between two nodes u, v of C then P together
with either the u-v or v-u dipath in C forms a cycle bounding a smaller region of Q, which
is a contradiction.

Our algorithm proceeds as follows. This is a primal-dual algorithm analogous to the
technique of [12] for DFVS in planar graphs. Given a feasible dual solution y to (DDF V S),
let the residual cost of node v ∈ V be cv −

∑
C∈C,v∈C yC . For Ŝ ⊂ V (G), recall GŜ denotes

the subgraph of G induced by those vertices which are in a dicycle of G\Ŝ.
Our primal-dual method begins with a trivial feasible dual solution y = 0, and the empty,

infeasible hitting set Ŝ = ∅.
While GŜ contains a facial cycle, increment the dual variables yC in PDFVS of face minimal

cycles C of G. When a node of G becomes tight add it to Ŝ. When GŜ contains no facial
cycles apply reverse deletion to Ŝ with respect to the facial cycles of GŜ , that is, we consider

APPROX/RANDOM 2024

18:4 A Constant Factor Approximation for Directed Feedback Vertex Set

Algorithm 3.1 MinWeightDirectedFVS (G, c).

Input : A digraph G = (V,E) with non-negative node-costs cv, for each v ∈ V .
Output : A Directed FVS S of G.

1 S = ∅
2 while GS contains a facial cycle do
3 Increment all dual variables yC for face minimal cycles of GS . Add all nodes that

became tight to S.
4 end while
5 Reverse-Deletion:
6 Let s1, s2, .., sl be nodes of S in the order they were added.
7 for t = l downto 1 do
8 if GS\{st} contains no facial cycle then
9 S ← S\{st}

10 end if
11 end for
12

13 return S

each node v of Ŝ in the order it was added and if G\(Ŝ\{v}) contains no facial cycles, delete
v from Ŝ. Denote by S̄ the set Ŝ at the end of the algorithm. In other words, we apply the
primal-dual method to solve the problem of hitting all facial dicycles of G.

Clearly, S̄ is a feasible hitting set for the set of facial dicycles of G, we claim it has cost
O(g)OPTLP . To do so we apply that standard analysis of primal-dual methods in [11, 12].

▶ Theorem 3 ([11]). Suppose S ⊂ V (G) and y is a solution to (DDF V S) output by our
primal-dual algorithm such that the following holds.
1. y is obtained starting with the initial feasible solution y := 0 and incrementing some set

of dual variables {yC : v ∈ Ct} uniformly and maintaining feasibility of y for iterations
t = 1, 2, .., l for some l ∈ N.

2. For each iteration t ∈ {1, 2, 3, .., l}, the set {yC : C ∈ Ct} of incremented dual variables
satisfies

∑
C∈Ct

|S ∩ C| ≤ β|Ct|.
3. ∀v ∈ S,

∑
C∈C v∈C yC = cv.

Then S has cost at most β
∑

C∈C yC , that is at most β times the LP value.

Using Theorem 3, it suffices to prove that during any iteration t, the face minimal cycles
Ct of GSt , where St is our current hitting set satisfies∑

C∈Ct

|S̄ ∩ C| ≤ O(g)|Ct|. (2)

Again we remove nodes of G that do not lie on any dicycle. Denote S̄t to be the nodes of
S̄ that intersect a cycle of Ct. So it suffices to show

∑
C∈Ct

|S̄t ∩ C| ≤ O(g)|Ct|.
The following definition of crossing cycles was elementary to the approach by Goemans

and Williamson [12].

▶ Definition 4. Fix an embedding of a planar graph. Two cycles C1, C2 cross if Ci contains
an edge intersecting the interior of the region bounded by C3−i, for i = 1, 2. That is, the
plane curve corresponding to the embedding of the edge in the plane intersects the interior of
the region of the plane bounded by C3−i. A set of cycles C is laminar if no two elements of C
cross.

H. Sun 18:5

Denote C′ the set of facial cycles of C. For a node v ∈ S̄, call a cycle C ∈ C′ with
C ∩ S̄ = {v} a witness for v. Since we applied reverse deletion to S̄ at the end of the
algorithm, each node of S̄ has a witness in C′ which is a cycle of GS .

The following result about the structure of witness cycles was vital to the 3 and 2.4
approximations for DFVS in planar graphs by [12] and [3]. We observe that the proof in [12]
which involves iteratively applying an “uncrossing” procedure to two witness cycles that
cross yields the same result for facial cycles of graphs on surfaces.

▶ Lemma 5 ([12]). There exists a laminar family A ⊂ C′ of witness cycles in GSt̄ for S̄t.

The laminar family A can be represented by a forest where A1 is an ancestor of A2 if the
inside region of A1 contains the inside region of A2. Add a root node r to this forest, make
it the parent of every maximal node of the forest and call the resulting tree T .

We assign each cycle C of Ct to the smallest node of T containing C. Call the set of cycles
assigned to w ∈ T , Cw. We assign the nodes that w and the children of w are witnesses of to
w and call this set S̄w.

To bound
∑

C∈Ct
|S̄t ∩ C|, we define the following bipartite graph.

▶ Definition 6 ([12]). The debit graph for Ct and S is the bipartite graph DG = (R∪ S,E)
with edges ECt

= {(C, s) ∈ Ct × S | s ∈ C}.

Since each C ∈ Ct is incident to the vertices of S̄t on C, |S̄t ∩ C| is the degree of C in DG.
Summing this equality over each C ∈ Ct yields

∑
C∈Ct

|S̄ ∩ C| = E(DG). By placing the
node of the debit graph corresponding to C inside the inside region of C we can see that the
debit graph is also embedded on Q.

▶ Proposition 7 (Corollary of Euler’s formula for graphs of genus g). A (simple) bipartite
graph Ḡ with at least three vertices embedded on a surface of genus g satisfies

E(Ḡ) ≤ (2 + g)|V (Ḡ)| − 4

if G has two vertices then

E(Ḡ) ≤ (2 + g)|V (Ḡ)| − 3

Proof. Euler’s formula (for instance see [17]) for graphs embedded on a surface of genus
g yields 2 − 2g = |V (Ḡ)| − |E(Ḡ)| + |F (Ḡ)|. Following the same method as the proof of
Euler’s formula for bipartite planar graphs with at least 3 vertices, (for instance see Corollary
4.2.10 of [6]) we observe that each face of Ḡ having at least 4 edges means |F (Ḡ)| ≤ 1

2 ||.
Thus, for |V (Ḡ)| ≥ 3, |E(Ḡ)| ≤ 2|V (Ḡ)| − 4 + 4g ≤ (2 + g)|V (Ḡ)| − 4. If |V (Ḡ)| ≤ 2 then
|E(Ḡ)| ≤ 1 ≤ (2 + g)|V (Ḡ)| − 3. ◀

For a node w of T that is not a leaf or the root, the subgraph of DG induced by Cw ∪ S̄w is
embedded on Q and further |Cw ∪ S̄w| ≥ 3, thus by Proposition 7,

|E(DG(Cw∪ S̄w))| ≤ (2+g)|Cw|+(2+g)|S̄w|−4 = (2+g)|Cw|+(2+g)(degT (w)−1)−4. (3)

For a leaf v of T

|E(DG(Cv ∪ S̄v))| ≤ (2 + g)|Cv|+ 2|S̄v| − 3 = (2 + g)|Cv|+ 2(degT (v)− 1)− 3. (4)

For the root r of T

|E(DG(Cr ∪ S̄r))| ≤ (2 + g)|Cr|+ 2|S̄r| = (2 + g)|Cr|+ 2(degT (r)− 1). (5)

APPROX/RANDOM 2024

18:6 A Constant Factor Approximation for Directed Feedback Vertex Set

Summing these up we get

|E(DG)| =
∑

v∈T |E(DG(Cv ∪ S̄v))|
≤ (2 + g)|C|+

∑
v∈T (2 + g) degT (v)− 4|T |+ l + 4

≤ (2 + g)|C|+ 2((2 + g)|T | − 2)− 4|T |+ l + 4
≤ (2 + g)|C|+ 2g|T |+ l

≤ (3 + 3g)|C|

where l is the number of (non-root) leaves of T . Thus,
∑

C∈Ct
|S̄∩C| = |E(DG)| ≤ (3+3g)|C|.

This shows that S̄ has cost O(g)OPTLP and hence our algorithm returns a solution of
cost O(g)OPTLP .

Now let us show that in the case G is embedded in a way such that there exist regions
R1, R2 of Q homeomorphic to the open disk, such that the inside region of any facial dicycle
contains at least one of R1, R2, then Algorithm 3.1 is an 8- approximation.

The proof works exactly the same as the general case. The key here is to note that the
inside regions of face minimal dicycles do not intersect. Thus, R1 lies in the inside region
of at most one cycle in Ct. Likewise, R2 lies in the inside region of at most one cycle in
Ct. Since inside region of any facial dicycle contains at least one of R1, R2, |Ct| ≤ 2. Again
Lemma 5 holds. For a facial dicycle A, denote insideCt

(A) the set of cycles of Ct that lie in
the closure of the inside region of A.

▶ Lemma 8. There do not exist distinct A1, A2, A3 ∈ A such that insideCt
(A1) =

insideCt(A2) = insideCt(A3).

Proof. Suppose such A1, A2, A3 existed. Since they are laminar we may assume w.l.o.g that
A1 is contained in the closure of the inside region of A2 and A2 is contained in the closure of
the inside region of A3. Let vi be the hit node that Ai is the witness of. Note that v2 does
not lie on A1. Thus, as v2 lies outside inside(A1), it lies outside the closure cl(inside(A1)) of
inside(A1). So v2 lies in Q\ inside(A3). Thus, v2 does not lie on any cycle of insideCt

(A3).
Also v2 does not lie on A3. Thus, as v2 lies inside cl(inside(A3)), it lies inside inside(A3).
Thus, v2 does not lie on any cycle of Ct\ insideCt

(A3).
This implies that v2 does not lie on any cycle of Ct, which is a contradiction. ◀

This implies that |S̄t| = |A| ≤ 2(2|Ct|) ≤ 8. Thus,
∑

C∈Ct
|S̄t ∩ C| ≤ |S̄t||Ct| ≤ 8|Ct|. This

shows Algorithm 3.1 is an 8-approximation. ◀

4 Solving the case of no facial cycles

We now show the LP gap of the natural LP (PDFVS) for G has integrality gap O(g) in the
case G contains no facial cycles. This will allow us to derive an O(g)-approximation for the
general case by first using Theorem 2 to obtain a hitting set S for the set of facial cycles of
cost at most O(g)OPT and then obtaining a hitting set S̄ for the remaining dicycles.

▶ Lemma 9. Suppose G is a digraph embedded on a surface Q of some fixed genus g and
there is no facial dicycle of G. Then the LP gap of the natural LP (PDFVS) for G has
integrality gap O(g).

Proof. We prove the statement by induction on the genus g. The case g = 0 is trivial because
all cycles in planar graphs are facial. Suppose the statement is true for g = g′. Let Q be a
surface of genus g, Let G be a digraph embedded on Q.

H. Sun 18:7

First, while the optimal solution x̄ to (PDFVS) has a vertex v with value x̄v ≥ 1
24 add v

to our temporary hitting set F . Formally initialize F = ∅. While the optimal solution x̄ to
(PDFVS) for GF contains a value x̄v which is 1

24 or more add v to F .
Let F denote the final set obtained. Let x̂ be an optimal extreme point solution for the

DFVS LP (PDFVS) for GF , so x̂v <
1

24 ∀v ∈ V (GF). Standard results in iterative rounding,
see for instance page 14 of [18], show F has cost at most 24 times the optimal value of our LP.

We now seek to define (integral) distances on GF . By standard LP theory, x̂ has rational
coordinates. Let N ∈ Z>0 be such that Nx̂ and 1

12N are integral, call Nx̂v, the weight of v.
Define the weighted distance of path P = v0, v1, .., vl, ω(P) to be ω(P) :=

∑l−1
i=0 Nx̂vi

. For
a subgraph H of GF define the weighted distance d{ω,H}(u, v) from u to v the minimum
weight of a u-v path in H. Define dω := d{ω,G}. For U,W ⊂ V (G), define dω,H(U,W) :=
minu∈U,w∈W dω(u,w). Define dω(U,W) = dω,G(U,W). Define the weighted distance of a
closed walk P ′ = v0, v1, .., vlv0, ω(P ′) to be ω(P ′) :=

∑l
i=0 Nx̂vi

. The results in this paper
could also be shown by instead defining the weight of each vertex to be x̂v and instead
defining the layers (see later) to be the vertices at distance a multiple of 1/N from a given
set of vertices. Since x̂ is feasible the following result holds.

▶ Proposition 10. The weighted distance of any (directed) closed walk P ′ is at least N .

Since x̂ is optimal, there exists a dicycle C1 := v1, v2, .., vl′ such that
∑

v∈C1 x̂v = 1. The
motivation of our definition of weighted distance comes from [7]. In [7], they also scale the
LP values of (PDFVS) so that the resulting values are integer. For any vertex v with x̂v = 0,
they “bypass” the vertex, that is, for each out neighbour u of v and in neighbour w of v,
they add the edge wu to the graph and when they have done this for all neighbours, they
delete v from the graph. For any vertex v with Nx̂v > 1‘ they replace v by a “chain” of
Nx̂v > 1‘ vertices v1 → v2 → .. → vNx̂v

, that is, for i = 1, 2, .., Nx̂v − 1, vivi+1 is an edge.
wv1 and vNx̂v

u are edges for each in neighbour w and out neighbour u. Call this graph H.
For any W ⊂ V (H) they define “layers” Li = {v ∈ H : dH(W, v) = i} the nodes at

distance i from W . They show that the cost of all layers L0, L1, ... is
∑

v∈V (G) Nx̂v. This is
very useful for us as we will use this to show that one layer in L1, ...Lm has cost at most
1
m

∑
v∈V Nx̂v. However, the bypassing operation and replacing a node with a chain operation

of [7] do not preserve the genus of the graph. We instead define the notion of weighted
distance dω. Denote the i-th layer from W as Li := {v ∈ V : i ≥ dω(W, v) > i− ω(v)} the
set of nodes for which the distance from W to v is at most i, but for which the distance
plus the weight of v is more than i. One can see that v lies in Nx̂v different Li, which is
analogous to how H defined in [7] contains Nx̂v copies of v each lying in different layers as
well. In particular, a node of weight 0 does not lie in any Li, which is analogous to how a
vertex of weight 0 is bypassed in [7].

Consider the embedding of C1 on our surface. Given a subgraph W of G, denote by g(W)
the subset of our surface occupied by a vertex or edge of W . We want to define a “small”
neighbourhood around g(C1), not containing any vertices outside C1, which we divide up
into “left” of g(C1) and “right” of g(C1), which we do using the following propositions. These
are slightly informal statements of the exact propositions we require, the precise statements
appear in Section 5.

▶ Proposition 11 (Informal statement of Proposition 23 and Proposition 24). Given a closed
continuous non-self-intersecting curve C ′ embedded on an orientable surface Q, we may
partition a small open neighbourhood about C into a “left” L and “right” R. For any curve
f : [0, 1]→ Q disjoint from C ′ except at f(1) the partition allows us to say that f “reaches”
C ′ from either the left or right.

APPROX/RANDOM 2024

18:8 A Constant Factor Approximation for Directed Feedback Vertex Set

h(0)

h(1)

Figure 1 L and R from Proposition 11 in yellow and red respectively curve C′ depicted in black.
The curve h leaving C′ from the left and entering from the right is depicted in dark green. The
closed curve formed by h and the subcurve of C′ between h(0) and h(1) depicted in light green
forms a non-facial closed curve.

▶ Proposition 12 (Informal statement of corollary of Proposition 26). Let C ′ be a non-facial
closed curve. If a curve h : [0, 1] → Q “leaves” C ′ at a point h(0) ∈ C ′ from the left and
reaches C ′ at a point h(1) ∈ C ′ from the right, then h([0, 1]) together with a subcurve of C ′

from h(0) to h(1) is a non-facial closed curve.

We defer the proofs of Proposition 11 and Proposition 12 for now. We apply Proposition 11
to g(C1). Let L,R be as in Proposition 11 so that each g(e) for e ∈ E(G)\E(C1) is disjoint
from at least one of L,R and for each e ∈ E(G\C1), g(e) is disjoint from both L,R. For
each arc uv of GF with exactly one endpoint v on C1, g(uv) can be parameterized by a
(continuous) curve f : [0, 1]→ g(uv) with f(0) = g(u), f(1) = g(v). If f reaches g(C1) from
the left we say that uv reaches C1 from the left, otherwise, we say uv reaches C1 from the
right.

Let u′
i,1, u

′
i,2, .., u

′
i,li

be the out neighbours of vi such that the edges u′
i,t′vi reach vi from

the left, that is, the arc obtained from reversing the arc viu
′
i,t′ of our graph reaches vi from the

left. Let w′
i,1, w

′
i,2, .., w

′
i,zi

be the in neighbours of vi such that the edges w′
i,t′vi reach vi from

the right. Subdivide each edge viu
′
i,t into a path viui,tu

′
i,t and each edge w′

j,t′vj into a path
w′

j,t′wj,t′vj and give the new vertices wj,t′ , ui,t infinite cost. There is a natural embedding
of our new graph on our surface by placing each ui,t where the midpoint of the curve
g(viu

′
i,t) was embedded and likewise for wj,t′ . By abuse of notation, we continue to call our

graph G and define x̂ui,t = x̂wj,t′ = 0 for all ui,t, wj,t′ . Denote U := ∪l′

i=1{ui,1, ui,2, .., ui,li}
and W := ∪l′

i=1{wi,1, wi,2, .., wi,zi
}. For X ⊂ [l′], denote UX := ∪i∈X{ui,1, ui,2, .., ui,li

},
VX = {vi : i ∈ X} and WX := ∪i∈X{wi,1, wi,2, .., wi,zi}.

Let τ− := {i ∈ [l′] : ∃wi,t′ ∈ W, ∃uj,t ∈ U : dω,GF \C1(uj,t, wi,t′) < 1
12N} the first

indices of the set of vertices of W of weighted distance at most 1
12N from U in GF \C1. Let

τ+ := {j ∈ [l′] : ∃uj,t ∈ U, ∃wi,t′ ∈W : dω,GF \C1(uj,t, wi,t′) < 1
12N} the first indices of the

set of vertices of U that can reach W in GF \C1 with a path of weighted distance at most
1

12N .

▷ Claim 13. If dω(Vτ− , Vτ+) > 1
12N , then we can find S ⊂ V , c(S) = O(1)OPTLP , where

OPTLP :=
∑

v∈V cvxv is the value of the optimal fractional solution, such that any strongly
connected component of GF \S does not contain a directed path from U to W in G\C1.

H. Sun 18:9

Figure 2 Nodes of Uτ+ and Vτ− shown in blue.

If dω(Vτ− , Vτ+) ≤ 1
12N , then the LP gap of the natural LP (PDFVS) for GF has integrality

gap O(g).

Proof. Suppose dω,G\C1(Vτ− , Vτ+) > 1
12N . For i = 0, .., 1

12N let Si := {v ∈ V : i ≥
dω,GF \C1(U\Uτ+ , v) > i−ω(v)} denote the set of vertices of V that are at weighted distance
i from U\Uτ+ inGF \C1. (see Figure 2). Since dω,GF \C1(U\Uτ+ ,W) > 1

12N , for i = 0, .., 1
12N ,

W ∩ Si = ∅ and W is not reachable from U\Uτ+ in (GF \C1)\Si for any i.
Since each v can lie in at most ω(v) Si,

∑ 1
12 N
i=0 c(Si) ≤ N · OPTLP . Let S′ be the

Si of minimum cost. For i = 0, .., 1
12N let Ti := {v ∈ V : i > dω,GF \C1(v,W\Wτ−) −

ω(v), dω,GF \C1(v,W\Wτ−) ≥ i}. Since for v ∈ U , dω,GF \C1(v,W\Wτ−) − ω(v) =
dω(v,W\Wτ−) > 1

12N , U ∩ Ti = ∅ for i = 0, .., 1
12N . Hence W\Wτ− is not reachable

from U in (GF \C1)\Ti for any i. Let T ′ be the Ti of minimum cost.
Finally, let Yi := {v ∈ V : i ≥ dω(Vτ− , v) > i − ω(v)} the set of vertices of weighted

distance i from Vτ− . By assumption dω(Vτ− , Vτ+) > 1
12N and hence Vτ+ is not reachable

from Vτ− in GF \Yi for any i = 1, 2, .., 1
12N . Let Y ′ be the Yi of minimum cost.

Let S := S′ ∪ T ′ ∪ Y ′. We claim no strongly connected component K ′ of GF \S contains
a directed path from U to W in GF \C1. Suppose for a contradiction that some strongly
connected component K ′ of GF \S contains a directed path from some ui,t ∈ U to some
wj,t′ ∈W .

If j /∈ τ−, then wj,t′ is not reachable from U in GF \S. If i /∈ τ+, then W is not reachable
from ui,t in GF \S. Thus, if either j /∈ τ− or i /∈ τ+ then there is no path from ui,t to wj,t′

in GF \S. Thus, j ∈ τ− and i ∈ τ+. As K ′ is strongly connected, this implies that GF \S
contains a path from Vτ− to Vτ+ , which is not possible.

Now suppose that dω(Vτ− , Vτ+) ≤ 1
12N . Let i ∈ τ− and j ∈ τ+ be such that dω(vi, vj) ≤

1
12N . Let P1, P2, P3 be ua,t-vi, uj,t′-vb and vi-vj paths of weight at most 1

12N , with the
second last vertices of P1, P2 being in W , for some a, b. Such paths exist as i ∈ τ− and j ∈ τ+.
If a = i, then P1viua,t is a cycle for which

∑
v∈P1viua,t

x̂v < 1 which is a contradiction. So
a ̸= i, likewise b ̸= j.

For i′, j′ ∈ {1, 2, .., l′}, let C1
(vi′ ,vj′) := vi′ , vi′+1, vi′+2, .., vj′−1vj′ (where vt = vt (mod l′))

denote the directed path in C1 from vi to vj . Note that dω(vi′ , vj′) = ω(C1
(vi′ ,vj′)), for

otherwise there is a vi′-vj′ path P ′ of weight less than dω(vi′ , vj′). Then C1
(vj′ ,vi′) ∪ P

′ is
a directed closed walk of weight ω(C1) − ω(C1

(vi′ ,vj′)) + dω(vi′ , vj′) < ω(C1). Noting that

APPROX/RANDOM 2024

18:10 A Constant Factor Approximation for Directed Feedback Vertex Set

the weighted distance of a cycle is equal to N
∑

v∈C1 x̂v, we obtain N
∑

v∈C1
(v

j′ ,v
i′)∪P ′ x̂v <

ω(C1) = N , from which it follows the sum of the x̂v values along the closed walk C1
(vj′ ,vi′)∪P

′,∑
v∈C1

(v
j′ ,v

i′)∪P ′ x̂v is strictly less than 1, which contradicts the feasibility of x̂.

We claim ω(C1
(va,vi)), ω(C1

(vj ,vb)) ≤
1

12N . Suppose for a contradiction that ω(C1
(va,vi)) >

1
12N . Since ω(C1) = N , this implies that ω(C1

(vi+1,va−1)) < N − 1
12N . Then the cycle

P1C
1
(vi,va)vaua,t satisfies

∑
v∈V (P1C1

(vi,va)vaua,t) x̂v < 1− 1
12 + 1

12 = 1 which is a contradiction.
Likewise, ω(vj , vb) ≤ 1

12N .
Let us show C1

(va,vi) ∩ C
1
(vj ,vb) = {vi} ∩ {vj}, that is the paths C1

(va,vi) and C1
(vj ,vb) are

disjoint except in the case i = j when their intersection is vi. First, let us address the case
i ≠ j. Suppose for a contradiction that C1

(va,vi) ∩ C
1
(vj ,vb) ̸= ∅. Let v ∈ C1

(va,vi) ∩ C
1
(vj ,vb).

Note v ̸= vi, vj for otherwise C1
(vj ,vi)P3 is a closed walk of weight less than N . Let Q1 be

a path from v to vi in C1
(va,vi) and Q2 a path from vj to v in C1

(vj ,vb). Then Q2Q1P3 is a
closed walk of weighted distance at most 1

4N which is a contradiction.
Now suppose that i = j. Suppose for a contradiction that C1

(va,vi) ∩ C
1
(vj ,vb) ̸= {vi}. Let

v ∈ (C1
(va,vi) ∩ C

1
(vj ,vb))\vi. Let Q1 be a path from v to vi in C1

(va,vi) and Q2 a path from vi

to v in C1
(vi,vb). Then Q1Q2 is a closed walk of weighted distance at most 1

6N , which is a
contradiction.

▷ Claim 14. dω(P2 ∪ C1
(vj+1,vb), P1 ∪ C1

(va,vi)) ≥
1
6N .

Proof. Suppose for a contradiction that dω(P2 ∪ C1
(vj+1,vb), P1 ∪ C1

(va,vi)) <
1
6N . Let s ∈

P2 ∪ C1
(vj+1,vb) and q ∈ P1 ∪ C1

(va,vi) be such that dω(s, q) < 1
6N . Let P ′

1 be the directed
path in P1 ∪C1

(va,vi) from q to vi. P ′
2 the directed path in P2 ∪C1

(vj ,vb) from vj to s and Q a
path of weight at most 1

6N from s to q. Then C̄ := vjP
′
2QP

′
1P3 is a closed walk such that∑

v∈C̄ x̂v < 1 which is a contradiction (see Figure 3).
Thus, dω(P2 ∪ C1

(vi,vb), P1 ∪ C1
(va,vi)) ≥

1
6N . Since dω(u, vi) ≤ 1

12N for any u ∈ C1
(va,vi),

dω(P2, C
1
(va,vi)) ≥

1
12N ◁

For i = 0, 1, .., 1
12N , define Ri := {v ∈ V : i ≥ dω(P2 ∪ C1

(vj+1,vb), v) > i − ω(v)}. Each
vertex v ∈ V lies in at most ω(v) Ri. Let R′ be the Ri of the smallest cost, so c(R′) ≤
12OPTLP . Since dω(P2 ∪ C1

(vj+1,vb), P1 ∪ C1
(va,vi)) ≥

1
12N , it follows that (P1 ∪ C1

(va,vi))\Ri

is not reachable from (P2 ∪ C1
(vj+1,vb))\Ri in G\Ri for any i. Thus, (P1 ∪ C1

(va,vi))\R′ is not
reachable from (P2 ∪ C1

(vj+1,vb))\R′ in G\R′.
Thus, any strongly connected component of G\R′ is either contained in GF \(P1∪C1

(va,vi))
or GF \(P2 ∪ C1

(vj+1,vb)). For i = 1, 2, .., 1
12N let K+

i := {v ∈ V : i ≥ dω(vj , v) > i− ω(v)}
be the vertices of weighted distance i from vj . Let K ′+ denote the K+

i of minimum cost.

▷ Claim 15. vj is not contained in a cycle in GF \(R′ ∪K ′+).

Proof. Suppose that there is a cycle a1, a2, .., apvja1 in GF \(R′ ∪K ′+). If dω(vj , ap) > 1
12N ,

then ap is not reachable from vj in GF \(R′ ∪K ′+). Thus, there is a path Pa of weighted
distance at most 1

12N from vj to ap. Then the closed walk vjpaapvj has weighted distance
at most ω(Pa) + ω(ap) ≤ 1

12N + 1
12N < N which is a contradiction. ◁

Recall that any dicycle of GF \R′ is contained in either GF \(P1 ∪ C1
(va,vi)) or GF \(P2 ∪

C1
(vj+1,vb)). Since vj is not contained in any dicycle of GF \(R′ ∪K ′+) it follows that any

dicycle of GF \(R′ ∪K ′+) is either contained in G\(P1 ∪C1
(va,vi)) or in G\(P2 ∪C1

(vj ,vb)). By
Proposition 12, g(P1 ∪ C1

(va,vi)) and g(P2 ∪ C1
(vj ,vb)) are nonfacial.

H. Sun 18:11

Figure 3 On the left, there are u1,1-v2 and u2,1-v3 paths (green and blue vertices respectively) of
weight at most 1

12 N and s-q path of length at most 1
12 N . The red cycle would then have weight

at most N , which is a contradiction. On the right are the sets Ri, vertices at distance i from
P2 ∪ C1

(vj+1,vb).

▶ Definition 16 ([1, 14]). Given a simple closed curve f on a surface without boundary Q,
not dividing the surface into 2 regions, we say Q′ is obtained by doing surgery along f if Q′

is obtained as follows. “Thicken” f to obtain a cylinder and remove this cylinder from Q,
call this resulting surface Q′′. The boundary of Q′′ consists of 2 circles we “glue” two cones
N1, N2 along these circles and call this final surface Q′.

▶ Theorem 17 ([1] p.162). For a surface without boundary Q of genus g′, Q′ obtained by
Definition 16 is a surface without boundary of genus at most g′ − 1.

We apply the surgery of Definition 16 to g(P1 ∪ C1
(va,vi)) to obtain a surface Q′ of genus

one less than Q. Let N ′
1, N

′
2 denote the two cones glued to Q′. We also apply the surgery of

Definition 16 to g(P2 ∪ C1
(vj ,vb)) to obtain a surface Q̂ of genus one less than Q. Let N̂1, N̂2

denote the two cones glued to Q̂.

▶ Lemma 18. Let G be a graph embedded on a surface Q with no dicycles. Let h be a non-
facial curve of Q\G. Let Q′ be the surface obtained by applying the surgery of Definition 16
to with respect to the curve h and surface Q. There is a natural embedding of G on Q′ (by
leaving each node of G where it was in Q). Let N1, N2 denote the two cones glued to Q′

during the surgery process. Then each facial cycle of G with respect to its embedding in Q′

contains either N1 or N2 in its inside region.

APPROX/RANDOM 2024

18:12 A Constant Factor Approximation for Directed Feedback Vertex Set

Proof. Let C be a facial cycle of GF \(P1 ∪ C1
(va,vi)) with respect to its embedding in Q′. If

neither of the cones N1, N2 are contained in the inside region of C, then C is a facial cycle
of G with respect to its embedding in Q, which is a contradiction. ◀

Thus, any facial cycle of GF \(P1 ∪ C1
(va,vi)) contains either N ′

1 or N ′
2 in its inside region.

Now let G1, G2, .., Gl be the strongly connected components of GF \(R′ ∪K ′+). Since any
closed walk of of GF \(R′∪K ′+) is either contained in G\(P1∪C1

(va,vi)) or in G\(P2∪C1
(vj ,vb))

each strongly connected component is either contained in G\(P1 ∪ C1
(va,vi)) or in G\(P2 ∪

C1
(vj ,vb)). If Gi is contained in G\(P1 ∪ C1

(va,vi)), then there is a natural embedding of Gi in
Q′ (obtained by leaving all nodes and edges where they are in the surgery for Definition 16).
Likewise, if Gi is contained in G\(P1∪C1

(va,vi)), then there is a natural embedding of Gi in Q̂.
Thus, for any Gi contained in G\(P1 ∪ C1

(va,vi)) by Theorem 2, there is an 8-approximation
for the problem of hitting the facial cycles of Gi (with respect to the natural embedding in
Q′). Likewise, for any Gi contained in G\(P2 ∪ C1

(vj ,vb)) there is an 8-approximation for the
problem of hitting the facial cycles of Gi. Let Zi be a solution for the problem of hitting
facial cycles of Gi of cost at most 8OPTLP (Gi) as guaranteed by Theorem 2.

Then each Gi\Zi is embedded in a surface of smaller genus with no facial cycles.
By induction, there are solutions Ai to Gi\Zi of cost cg−1OPTLP (Gi\Zi), where cg is the

integrality gap of the DFVS LP for graphs of genus g.
Define x̂Gi\Zi ∈ RV (Gi\Zi) as x̂Gi(v) = x̂v, where x̂ is as in the proof of Lemma 9.

Since graphs Gi are vertex disjoint, Gi\Zi are vertex disjoint, so
∑l

i=1 OPTLP (Gi) ≤∑l
i=1

∑
v∈V (Gi) x̂

G
i (v) ≤

∑
v∈V (G) x̂ = OPTLP (G). Now F ∪R′ ∪K ′+ ∪ (∪l

i=1Ai)∪ (∪l
i=1Zi)

is a DFVS of cost (O(1)+cg−1)OPTLP (G) = (O(1)+O(g−1))OPTLP (G) = (O(g))OPTLP (G).
◁

Note that the argument in Claim 13 is symmetric with respect to left and right and we
may swap right and left to get the following result. Let b′

i,1, b
′
i,2, .., b

′
i,l′

i
be the in neighbours of

vi such that each edge b′
i,tvi reaches vi from the left and d′

i,1, d
′
i,2, .., d

′
i,t′

i
be the out neighbours

of vi such that the edge d′
i,t′vi reaches vi from the right. Subdivide each edge b′

j,t′vj into a
path b′

j,t′bj,t′vj and each edge vid
′
i,t into a path vidi,td

′
i,t and give the new vertices dj,t′ , bi,t

infinite cost. There is a natural embedding of our new graph on our surface by placing each
bi,t where the midpoint of the curve g(vib

′
j,t′) was embedded and likewise for dj,t′ . By abuse

of notation, we continue to call our graph G and define x̂bi,t = x̂dj,t′ = 0 for all bi,t, dj,t′ .
Denote B := ∪l′

i=1{bi,1, bi,2, .., bi,l′
i
}, D = ∪l′

i=1{d′
i,1, d

′
i,2, .., d

′
i,t′

i
}. Let κ− : {i ∈ [l′] :

∃bi,t′ ∈ D, ∃dj,t ∈ U : dω,GF \C1(dj,t, bi,t′) < 1
12N} the first indices of the set of vertices

of B of weighted distance at most 1
12N from D in GF \C1. Let κ+ := {j ∈ [l′] : ∃dj,t ∈

U, ∃bi,t′ ∈W : dω,GF \C1(dj,t, bi,t′) < 1
12N} the first indices of the set of vertices of D that

can reach B with a path of weighted distance at most 1
12N in GF \C1. Similarly to how we

proved Claim 13, we can show the following:

▷ Claim 19. If dω(Vκ− , Vκ+) > 1
12N , then we can find T ⊂ V , c(T) = O(1)OPTLP , (recall

OPTLP :=
∑

v∈V cvxv is the value of the optimal fractional solution), such that any strongly
connected component of GF \T does not contain a directed path from D to B in G\C1.

If dω(Vκ− , Vκ+) ≤ 1
12N , then the LP gap of the natural LP (PDFVS) for G has integrality

gap O(1).

We now construct a DFVS of cost at most O(g)OPTLP . If either dω(Vκ− , Vκ+) ≤ 1
12N

or dω(Vτ− , Vτ+) ≤ 1
12N . Then Claim 13 or Claim 19 respectively shows that that the LP

gap of the natural LP (PDFVS) for G has integrality gap O(g).

H. Sun 18:13

Now assume both dω(Vτ− , Vτ+), dω(Vκ− , Vκ+) > 1
12N . Then by Claim 13 and Claim 19,

there are sets S, T such that any strongly connected component of GF \(S ∪ T) does not
contain a path from U to W or a path from D to B in GF \C1.

For any digraph H define un(H) to be the underlying (undirected) graph of H. Let K
be any strongly connected component of GF \(S ∪ T). We will prove un(K) does not contain
any path from U ∪B to W ∪D in un(K)\C1.

▶ Proposition 20. If there is a (undirected) path P = ui,tq1, q2, .., qt from some ui,t ∈ U (resp
ui,t ∈ D) in un(K)\C1, then there is a directed path from U (resp D) to qj in GF \(S∪T ∪C1)
for any j = 1, 2, .., t.

If there is a (undirected) path P = q1, q2, .., qtwi,t from some wi,t ∈W (resp bi,t ∈ B) in
un(K)\C1, then there is a directed path from qj to W (resp B) in GF \(S ∪ T ∪C1) for any
j = 1, 2, .., t.

Proof. Let P = ui,rq1, q2, .., qt be a path in un(K)\C1 from some ui,r ∈ U (resp ui,r ∈ D).
We prove by induction t′ on that there is a directed path from U to qj in GF \(S ∪ T ∪ C1)
for any j = 1, 2, .., t′. The case t′ = 1 is clear as each ui,r ∈ U (resp ui,r ∈ D) only has out
neighbours so the undirected edge {ui,r, q1} in un(K) is directed from ui,r to q1.

Now assume the statement true for t′ = t′′. For t′ = t′′ + 1, if the undirected edge
{qt′ , qt′+1} is directed from qt′ to qt′+1, then there is a directed path from ui,r to qt′+1 in
GF \(S ∪ T ∪ C1).

Otherwise {qt′ , qt′+1} is directed from qt′+1 to qt′ . By strong connectedness of K, there
is a directed path P ′ from qt′ to qt′+1 in K\(S ∪ T). If P ′ does not intersect C then there is
a directed path from ui,r to qt′+1 in GF \(S ∪T ∪C1). So, assume P ′ intersects W or B. Let
P ′′ denote the subpath of P ′ from qt′ to when P ′ first intersects U or B. By construction
P ′′ lies in GF \(S ∪ T ∪ C1). As ui,r lies in U (resp D) P ′′ does not intersect W (resp. B),
as then we would have a U -W (resp. D-B) path in GF \(S ∪ T ∪ C1). Thus, P ′′ is a qt′-B
(resp. qt′-W) path. Consider the subpath Q of the reversal of P ′ starting from qt′+1 to
when the reversal of P ′ first intersects D or U . Let rev(Q) denote the reversal of Q. Note
rev(Q) lies in GF \(S ∪ T ∪ C1). If the starting vertex of rev(Q) is in D (resp. U), then
rev(Q) ∪ {qt′+1qt′} ∪ P ′′ is a D-B (resp. U -W) path in GF \(S ∪ T ∪ C1). This contradicts
Claim 19. Thus, the starting vertex of of rev(Q) is in U (resp. D). This implies there is a
path from U (resp. D) to qt′+1 completing the induction. The proof of the second part is
similar. ◀

▶ Proposition 21. There is no (undirected) path from W ∪D to U ∪B in un(K)\C1.

Proof. If we have a U -W path P = ui,tq1, q2, .., qtwj,t′ in un(K)\C1, then by Proposition 20,
there are directed U -q1 and q1-W paths P1 and P2 in un(K)\C1. Then P1 ∪ P2 is a directed
U -W path in K\C1 which contradicts Claim 19. Thus, we do not have a U -W path P =
ui,tq1, q2, .., qtwj,t′ in K\C1. Likewise, we do not have a D-B path P = ui,tq1, q2, .., qtwj,t′

in K\C1.
Suppose we have a U -D path P = ui,tq1, q2, .., qtdj,t′ in un(K)\C1. By Proposition 20,

there are directed U -q1 and D-q1 paths P1 and P2 in K\C1. Recall U has no in-neighbours
of in G\C1, so the edge {ui,t, q1} in K is directed from ui,t to q1. By 2 connectedness of K,
there is a path P3 from q1 to ui,t. The only in-neighbours of ui,t are in C1, thus P3 intersects
W ∪B. Let P ′

3 be the subpath of P3 from q1 to when it the path first intersects W ∪B. If the
endpoint of P ′

3 is in W , then P1 ∪ P ′
3 is a U -W path in K\C1. Otherwise, if the endpoint of

P ′
3 is in B, then P2 ∪ P ′

3 is a D-B path in K\C1. Either way this contradicts Claim 19. ◀

APPROX/RANDOM 2024

18:14 A Constant Factor Approximation for Directed Feedback Vertex Set

▶ Proposition 22 ([15, 25]). Suppose G is a graph embedded on a surface Q. Let C be a
cycle of G that does not divide Q into two separate regions such that there is no edge between
vertices of C that is not part of C. Define a “left” and “right” as in Proposition 11. Let
L̂, R̂ denote the neighbours of C that are “left” or “right” of C. Suppose each connected
component of G\C only contains nodes of L̂ or R̂ but not both. There is a non-facial closed
curve h in Q\G.

Applying Proposition 21, we get that GF satisfies Proposition 22 with respect to C1.
Thus, there is a non-facial closed curve h in Q\GF . We apply the surgery of Definition 16
with respect to the closed curve h and surface Q to obtain a surface Q′ of lower genus. Let
G1, G2, ., Gl be the strongly connected components of GF \(S ∪ T), so each Gi is embeddable
on Q′. By Lemma 18 each facial dicycle of Gi contains one of the cones of Q′. Hence there
is an algorithm that returns a hitting set Zi to the set of facial cycles of Gi of cost at most
8OPTLP (Gi). By induction, there are solutions Ai to Gi\Zi of cost cg−1OPTLP (Gi), where cg

is the integrality gap of the DFVS LP for graphs of genus g. Define x̂G
i ∈ RV (Gi) as x̂G

i (v) = x̂v,
where x̂ is as in the proof of Lemma 9. Since graphs Gi are vertex disjoint,

∑l
i=1 OPTLP (Gi) ≤∑l

i=1
∑

v∈V (Gi) x̂
G
i (v) ≤

∑
v∈V (G) x̂ = OPTLP (G). Then S∪T ∪F ∪ (∪l

i=1Ai)∪ (∪l
i=1Zi) is a

DFVS of cost (O(1)+cg−1)OPTLP (G) = (O(1)+O(g−1))OPTLP (G) = (O(g))OPTLP (G). ◀

As observed in [7], (PDFVS) can be solved in polynomial-time via the ellipsoid method.
Hence Lemma 9 yields a polynomial time O(g)-approximation algorithm for DFVS in graphs
of genus g with no facial cycle.

5 Statement and proofs of topological results we use

First let us prove Proposition 22.

Proof. Suppose each connected component of G\C only contains nodes of L̂ or R̂ but not
both. Let GL and GR be the unions of the components of G− C that only contain nodes
fromL̂ and R̂ respectively. Assume that Q\G contains no non-facial curve h.

Case 1: At least one of GL or GR is empty.
Suppose, without loss of generality, that GL is empty. Consider the face of G that contains

C and intersects the left of C. But, C is not contractible (else it would separate the surface
Q into two components). Hence, a small leftward shift of C which will lie in the face f will
produce a non-facial curve h.

Case 2: Both GL and GR are nonempty.
We claim that if a face contains vertices of GL, GR and of C then there is a non-facial

curve in Q\G. Let f be such a face of degree d. Let ∂f = v0 · · · vd−1 be the boundary
cycle of f , where i ∈ Z/dZ. Without loss of generality, assume that v0 ∈ L̂ and for some q
v1, v2, .., vq ∈ C, and vq+1 ∈ R̂. There is are points pl on the edge v0v1 in the interior of L
and pR on the edge vqvq+r in the interior of R. Let h : [0, 1]→ Q be a non-self-intersecting
curve in f from pR to pL. Let rL, rR > 0 be such that BQ(pl, rL) ⊂ L, BQ(pR, rR) ⊂ R. Let
hL, hR be non-self-intersecting curves in BQ(pl, rL) and BQ(pR, rR) from pl to v1 and pR to
vq respectively not intersecting h. Then h∪hL ∪hR satisfies the conditions of Proposition 12.
Thus, h ∪ hL ∪ hR ∪ g(plv0, v1, ..., vq+1pR) does not bound a region of the closure of f . As
this curve lies in the closure of f , this implies that f is not homeomorphic to an open disk.
By the classification theorem for orientable surfaces (see for instance page 87 of [17]), cl(f)
is homeomorphic to a m-torus Tm with a finite number of open disks removed. Since f is
not homeomorphic to an open disk, f contains a non-facial closed curve h in its interior.

H. Sun 18:15

If there is a face f of G whose boundary contains vertices of GL and of GR (but not of
C), then as there is no edge between GL and GR, the boundary of f is not connected and so
f is not homeomorphic to an open disk. Just as before this implies f contains a non-facial
closed curve h.

Now, consider the subsets QL and QR of Q obtained by taking the union of all the
vertices, edges and faces induced by GL ∪ C and GR ∪ C, respectively. By assumption 3,
every component of G− C is in GL or GR, so every vertex and edge of G belongs to QL or
QR. By the subcases eliminated above under Case 2, every face of G also belongs to QL or
QR (but not both). Then, Q = QL ∪QR = (QL − C) ⊔ (QR − C) ⊔ C. This means that C
separates Q into two components, which contradicts assumption 1. ◀

It is well known (see for instance [1] page 15) that smooth surfaces Q have the property
that for each v ∈ Q there is an open ball BQ(v, r0) of some small radius r0 > 0 in Q and a
diffeomorphism ψ from BQ(v, r0) to the open disk BR2(0, r0) of radius r0 about the origin in
the two-dimensional plane such that ψ(v) = (0, 0) and ψ preserves distances from v, that is
distQ(v, x) = ∥ψ(v)−ψ(x)∥, where distQ(v, x) is the geodesic distance from v to x in Q. For
p ∈ Q, r > 0, denote by B(p, r) the open ball of radius r about p. We now formally state
and prove what Proposition 11 and Proposition 12 informally say.

▶ Proposition 23. Given a closed continuous non-self-intersecting curve C ′ embedded on an
orientable surface Q. There exist some radius r > 0 and disjoint subsets L,R “on each side”
of C ′ such that the set {B(v, r) : v ∈ C ′} (where B(v, r) is the open ball around v of radius
r in Q) is contained in the union L ∪R ∪ C ′, and for each v ∈ C ′, r′ ≤ r, L ∩B(v, r′) and
R ∩B(v, r′) are the two connected components of B(v, r′)\C ′. There is a diffeomorphism ϕ

from L∪C ′∪R to a connected open neighbourhood of C ′×{0} in C ′×R and small q > 0 with
C ′× (−q, 0) ⊂ ϕ(L) ⊂ C ′× (−∞, 0), C ′× (0, q) ⊂ ϕ(R) ⊂ C ′× (0,∞) and ϕ(C ′) = C ′×{0}.
Further for any (piecewise smooth) curve f : [0, 1]→ Q such that f(x) /∈ C ′ for any x ∈ [0, 1),
f(1) ∈ C ′ satisfies that for some β ∈ (0, 1), either f((β, 1)) ∈ L, that is the curve “reaches C
from the left” L or f((β, 1)) ∈ R, that is the curve “reaches C ′ from the right” R.

▶ Proposition 24. For a finite set of curves f1, f2, f3, ..fl′ , h1, h2, .., ht′ : [0, 1] → Q such
that for each i, fi(x) /∈ C ′ for any x ∈ [0, 1) and hi(x) /∈ C ′ for any x ∈ [0, 1] we may
choose L,R, r above so that each curve fi([0, 1)) is disjoint from at least one of L,R and
each curve hi([0, 1]) is disjoint from both L,R. We refer to L and R as the left and right of
C ′ respectively.

Further, there are curves fL : [0, 1] → L, fR : [0, 1] → R which are homotopic to C ′.
Informally speaking, these are obtained by “slightly shifting” f “left” and “right” respectively.

▶ Proposition 25. Lastly let h : [0, 1]→ Q be any curve that reaches C ′ from the right at a
point c2 = h(1) on C ′, leaves C ′ from the left at c1 = h(0), that is the curve ψ̄(t) = h(1− t)
reaches C ′ at c1 from the left and h is otherwise disjoint from C ′. Assume c1 ̸= c2 and let
C ′

c1,c2
be a subcurve of C ′ with endpoints c1 and c2. Then there is a curve ĥ : [0, 2] → Q

that reaches C ′ from the right at c1 = ĥ(1) and leaves C ′ at a point c1 = ĥ(0) ĥ is otherwise
disjoint from C ′, and a there is a homeomorphism of Q that maps ĥ to the concatenation of
h and C ′

c1,c2
.

▶ Proposition 26. Let Q be an orientable surface and ϕ : [0, 1] → Q a closed curve not
dividing Q into 2 regions with disjoint subsets L,R “on each side” of ϕ as in Proposition 23.
Let c1, c2 ∈ [0, 1), with c2 ≥ c1. Suppose that ϕ1 : [0, 1] → Q is a curve with ϕ1(0) =
ϕ(c1) ϕ1(1) = ϕ(c2), ϕ1((0, 1)) is disjoint from ϕ([0, 1]) and the curve ϕ1([0, 0.5]) approaches
ϕ([0, 1]) from the left L and ϕ1([0.5, 1]) approaches ϕ([0, 1]) from the right R.

APPROX/RANDOM 2024

18:16 A Constant Factor Approximation for Directed Feedback Vertex Set

Then the curve ϕ2 : [0, 1]→ Q, ϕ2(x) = ϕ(c2−x) if x ≤ c2−c1 and ϕ2(x) = ϕ1(1
c2−c1

(x−
c2 + c1)) for x > c2 − c1, that is the curve obtained by joining the portion of ϕ from c1 to c2
to ϕ1([0, 1]) does not divide Q into 2 regions.

Proof. We prove Proposition 23, Proposition 24, and Proposition 25. We use the following
corollary of the tubular neighbourhood theorem (see for instance [4]).

▶ Proposition 27 (corollary of tubular neighbourhood theorem [4]). Given a curve C ′ embedded
in a surface Q there is an open neighbourhood U of C and an open set V in C ′ ×R such that
there is a diffeomorphism ϕ : U → V with ϕ(C ′) = C ′ × {0}.

Let w : [0, 1] → C ′ with w(0) = w(1), w(0.5) = c2 be a parameterization of C ′. We
define distance on C ′ × R by dist((a1, b1), (a2, b2)) := (distQ(a1, a2)2 + |b1 − b2|2) 1

2 , where
distQ(a1, a2) is the geodesic distance between a1 and a2 in Q. For each v ∈ C ′ let qv be the
minimum of 1 and sup{q′ : B(v, q′) ⊂ V }. qv is continuous in v and qv > 0 ∀v ∈ C ′. By
compactness of C ′, q := minv∈C′ qv exists and is positive. Now define L′ = ϕ−1(C ′× (−q, 0)),
R′ = ϕ−1(C ′ × (0, q).

Define U ′ = L′ ∪ C ′ ∪ R′. Let f : [0, 1] → Q be a curve with f(x) /∈ C ′ for any
x ∈ [0, 1). By continuity of f there is some β ∈ (0, 1) for which f((β, 1]) ⊂ U ′. We claim
f((β, 1)) ⊂ L′ or f((β, 1]) ⊂ R′. If ϕ(f((β, 1))) contains a point in C ′×(−∞, 0) and a point in
ϕ−1(C ′×(0,∞) then by continuity ϕ(f((β, 1))) contains a point in C ′×{0} and hence f((β, 1))
contains a point in C ′ which is a contradiction. Thus, either ϕ(f((β, 1))) ⊂ C ′ × (−∞, 0)
or ϕ(f((β, 1))) ⊂ C ′ × (0,∞). If ϕ(f((β, 1))) ⊂ C ′ × (−∞, 0), then f((β, 1)) ⊂ L′. If
ϕ(f((β, 1))) ⊂ C ′ × (0,∞), then f((β, 1)) ⊂ R′.

For each fi there exists βi for which f((βi, 1]) ∈ L′ or f((βi, 1]) ∈ R′. For
each x ∈ C ′ define r′

x to be the supremum of all radius r′′
x for which the ball

B(x, r′′
x) of radius r′′

x is entirely contained in U ′ and for which B(x, r′′
x) is disjoint from

f1([0, β1)), f2([0, βs)), f3([0, β3)), ..fl′([0, βl)), h1([0, 1]), h2([0, 1]), .., ht′([0, 1]). If the su-
premum does not exist, set r′

x =∞. Define rx = min{1, r′
x}. Again rx > 0 for all x ∈ C ′ and

is continuous in x. Since C ′ is a compact set, r := minx∈C′ rx exists and is positive. Note each
curve fi([0, 1)) is disjoint from at least one of L′ ∩ {B(x, r) : x ∈ C}, R′ ∩ {B(x, r) : x ∈ C}
and each curve hi([0, 1]) is disjoint from both L′ ∩ {B(x, r) : x ∈ C}, R′ ∩ {B(x, r) : x ∈ C}.

Let us show that by making r smaller if necessary B(v, r)\C ′ contains two connected
components.

▶ Proposition 28. Given a (piece-wise smooth non-self-intersecting) curve f : [0, 1]→ R2 with
t0 ∈ (0, 1) there exists r > 0 for which B(f(t0), r)\f([0, 1]) contains exactly two components.

Proof. Let [t0, t1] be an interval in which f is smooth.
Let f(t) = f(t0)+(t−t0)∇f(t0)+g(t−t0). By smoothness of f , ∇g(t−t0) is bounded for

t ∈ [t0, t1] and g(t−t0) = o(t−t0). Differentiating ∥f(t)−f(t0)∥2 = ∥(t−t0)∇f(t0)+g(t−t0)∥2

we obtain

d

dt
∥f(t)− f(t0)∥2 = 2(∇f(t0) +∇g(t− t0))t((t− t0)∇f(t0) + g(t− t0))

= 2(∇f(t0) + o(1))t((t− t0)∇f(t0) + o(t− t0))
= 2(∇f(t0) + o(1))t(t− t0)∇f(t0) + o(t− t0)

For t close enough to t0 the last line is positive. This implies that for some t2 > t0,
∥f(t) − f(t0)∥2 is increasing on [t0, t2]. Likewise, for some t3 < t0, ∥f(t) − f(t0)∥2 is
decreasing on [t3, t0].

H. Sun 18:17

Let r > 0 be such that ∥f(t0)− f(t)∥ ≥ 2r for all t ∈ [0, 1]\ frac([t3, t2]), where frac(x) is
the fractional part of x. Then ∥f(t0)−f(t2)∥, ∥f(t0)−f(t3)∥ ≥ 2r. Then since ∥f(t0)−f(t)∥
is increasing on [t0, t2] there is exactly one t4 ∈ [t0, t2] with ∥f(t0)− f(t4)∥ = r. Likewise,
there is exactly one t5 ∈ [t3, t0] with ∥f(t0)−f(t5)∥ = r. So f([t5, t4]) forms a simple curve in
the closed ball B̄(f(t0), r) with endpoints on the boundary and f((t5, t4)) lying in the interior.
It follows from the Jordan curve theorem that B(f(t0), r)\f([0, 1]) = B(f(t0), r)\f((t5, t4))
contains exactly two connected components. ◀

Let v ∈ C ′. For small enough r0, B(v, r0) is diffeomorphic to the open disk B(0, r0) in R2 via
some diffeomorphism ψ with ψ(v) = (0, 0). Let w be a paramaterization of C ′ with w(0.5) = v.
Let t1 := inf{t : w([t, 0.5]) ⊂ B(v, r0)} and t2 := sup{t : w([0.5, t]) ⊂ B(v, r0)} that is [t1, t2]
is a maximal interval for which w([t1, t2]) ⊂ B(v, r0) by continuity t1 < 0.5 < t2. Choose
r1 > 0 less than the distance from v to C ′\w((t1, t2)) and r1 < distQ(v, w(t1)), distQ(v, w(t2)).
From the previous proposition there exists r2 > 0 such that BR2(ψ(v), r2)\ψ(w([t1, t2]))
contains exactly two connected components. By making r smaller than r1 and r2 if necessary
we get that for any 0 < r̂ ≤ r, BR2(ψ(v), r̂)\ψ(C ′) contains exactly two connected components.
Thus, B(v, r̂)\C ′ contains exactly two connected components.

Define L = L′∩{B(x, r) : x ∈ C}, R = R′∩{B(x, r) : x ∈ C}. Each curve f : [0, 1]→ Q

with f(x) /∈ C ′ for any x ∈ [0, 1) satisfies f((β, 1)) ⊂ L or f((β, 1]) ⊂ R. Each curve fi([0, 1))
is disjoint from at least one of L,R and each curve hi([0, 1]) is disjoint from both L,R.

Since ϕ(v) = {v}×{0}, ϕ(B(v, r̂)) intersects both {v}× (−∞, 0) and {v}× (0,∞). Recall
B(v, r̂) ⊂ L∪R∪C ′, so B(v, r̂) intersects both L and R. Since there is no path from L to R
in L∪R∪C ′ one component of B(v, r̂)\C ′ is contained in L and the other is contained in R.

For each v ∈ C ′ let yv be the supremum of {y′
v ≥ 0 : {v} × (−y′

v, y
′
v) ⊂ ϕ(B(v, r))}.

Again yv is positive and continuous in v so y := minv∈C′ yv exists and is positive. Then
C ′× (−y, 0) ⊂ ϕ(L) and C ′× (0, y) ⊂ ϕ(R). Define the curves fL, fR to be parameterizations
of ϕ−1(C ′ × {−y

2 }) and ϕ−1(C ′ × {y
2}) respectively.

Lastly given a curve h : [0, 1] → Q be any curve that reaches C ′ from the right at a
point c2 = h(1) on C ′, leaves C ′ from the left at c1 = h(0) and C ′

c1,c2
be a subcurve of C ′

with endpoints c1 and c2. Let j : [0, 1]→ C ′
c1,c2

be a parameterization of C ′
c1,c2

and denote
j̄ : [0, 2]→ Q by j̄(t) = h(t) for t ∈ [0, 1] and j̄(t) = j(t− 1) for t > 1. Informally speaking,
we “slightly shift” all points in L ∪ C ′ ∪R to the right while keeping h([0, 1]) ∩ L to the left
of C ′. Let ϕ(x) = (ϕ1(x), ϕ2(x)), ϕ−1(x) = (ϕ−1

1 (x), ϕ−1
2 (x)).

Let γ : C ′ → (−y, 0) be any continuous function such that γ(c2) = 0 and for any t ∈ [0, 1]
for which ϕ(h(t)) ∈ C ′ × (−y, 0), (ϕ(h(t))2) < γ(ϕ(h(t))1) < 0. Informally γ is a curve lying
to the right of ϕ(h([0, 1])) ∩ C ′ × (−y, 0) and to the left of [0, 1] × {0}. Such γ exists for
instance define −γ(t) to be half of the minimum of the distance from the point (t, 0) to
ϕ(h([0, 1])) ∩ C ′ × (−y, 0) and y.

Define γ̄ : C ′ × (−y, y) → C ′ × (−y, y) as follows. For (a, b) ∈ C ′ × (−y, y) if b < γ(a)
4

define γ̄(a, b) = (a, b). If γ(a)
4 ≤ b < 0, define γ̄(a, b) = (a, γ(a)

4 +2(b− γ(a)
4)). If 0 ≤ b ≤ −γ(a)

2 ,
define γ̄(a, b) = (a, −γ(a)

4 + b
2). If b ≥ −γ(a)

2 γ̄(a, b) = (a, b). Informally, γ̄ shifts C ′ × (−y, y)
to the right while keeping ϕ(h([0, 1])) ∩ C ′ × (−y, 0) left of C ′ × {0}.

Define γ̂ : Q → Q by γ by γ̂(v) = v if v /∈ ϕ−1(C ′ × (−y, y)) and γ̂(v) = ϕ−1γ̄(ϕ(v)) if
v ∈ ϕ−1(C ′×(−y, y)). Note γ̂ is a homeomorphism from ϕ−1(C ′×(−y, y)) to ϕ−1(C ′×(−y, y))
and from Q\ϕ−1(C ′ × (−y, y)) to Q\ϕ−1(C ′ × (−y, y)). Further, γ̂ agrees on the boundary
of ϕ−1(C ′ × (−y, y)) and Q\ϕ−1(C ′ × (−y, y)), that is for sequence {ai}∞

i=1 converging to a
boundary point a of ϕ−1(C ′ × (−y, y)) (resp Q\ϕ−1(C ′ × (−y, y))) the sequence {γ̂(ai)}∞

i=1
converges to γ̂(a). Thus, γ̂ is a homeomorphism on Q, in fact, it turns out to be a continuous
deformation.

APPROX/RANDOM 2024

18:18 A Constant Factor Approximation for Directed Feedback Vertex Set

Define ĥ : [0, 2]→ Q by ĥ(t) = γ̂(j̄(t)). Then γ̂ is a homeomorphism mapping ĥ([0, 2]) to
j̄([0, 2]). ◀

The actual statement of the tubular neighbourhood theorem involves first defining the
normal fibre Nx as the quotient TxQ/TxC where TxQ and TxC are the tangent plane and
tangent to the curve C at x and the normal bundle NX as {(x, v) : x ∈ C v ∈ Nx}.

▶ Theorem 29 (tubular neighbourhood theorem). There are open sets U in Q containing C
and V in NX such that there is a diffeomorphism γ : U → V .

Let us quickly show how the version of the tubular neighbourhood theorem in Proposition 27
follows from the tubular neighbourhood theorem.

By orientability each point x ∈ Q has a normal vector n(x) and n is continuous. We
may parameterize C ′ with a function ψ : [0, β]→ C ′ with derivative ψ′(x) = 1 for some β.
Define v(x) to be of unit norm and positively orthogonal to n(x), ϕ′(x) that is n(x)tv(x) =
(ϕ′(x))tv(x) = 0 and

[
n(x) ψ′(x) v(x)

]
has determinant 1. By the inverse function

theorem, v(x) is continuous. n(x), ψ′(x), v(x) is a basis for R3 known as the Darboux
frame. Since v(x) is orthogonal to n(x) it lies in the tangent plant TxQ since v(x) is
orthogonal to ϕ′(x), v(x), ϕ′(x) is a basis for TxQ. Thus, Nx = TxQ/TxC is diffeomorphic
to {av(x) : a ∈ R} which is diffeomorphic to R. Thus, NX is diffeomorphic to C ′ × R.

To prove Proposition 26, we first prove the following special case.

▶ Proposition 30. Let Q be an orientable surface and ϕ : [0, 1] → Q a closed curve not
dividing Q into 2 regions with disjoint subsets L,R “on each side” of ϕ as in Proposition 23.
Let c ∈ [0, 1), with c2 ≥ c1. Suppose that ϕ1 : [0, 1]→ Q is a curve with ϕ1(0) = ϕ(c) ϕ1(1) =
ϕ(c), ϕ((0, 1)) is disjoint from ϕ([0, 1]) and the curve ϕ1([0, 0.5]) approaches ϕ([0, 1]) from
the left L and ϕ1([0.5, 1]) approaches ϕ([0, 1]) from the right R.

Then ϕ1 does not divide Q into 2 regions.

Proof. Suppose for a contradiction that ϕ1 divides Q into 2 regions. It’s a well-known result
that one of the regions Q1 must be homeomorphic to an open disk. Let Q2 be the other
region.

There exists a small radius r1 for which the ball B(ϕ(c), r) of radius r1 about ϕ(c) such
that B(ϕ(c), r1) is homeomorphic to an open disk. Let r be as in Proposition 23 and define
r2 = min{r, r1}.

▶ Definition 31. Given 2 curves f1, f2 : [0, 1]→ Q on a surface Q, with f1(0.5) = f2(0.5)
and f1(x) ̸= f2(y) ∀x, y ∈ ([0, 1]\{0.5}), that is they intersect only at f1(0, 5), we say that
f1 crosses f2 at f1(0.5) if there exists r0 > 0 such that for all r ≤ r0 such that f2 intersects
both regions of B(f1(0.5), r)\f1([0, 1]), where B(p, r) is the open ball around p of radius r.

▶ Lemma 32. For two curves f1, f2 on a surface Q and p a point on both curves, f1 crosses
f2 at p if and only if f2 crosses f1 at p.

Proof. Let f1(b1) = p = f2(b2). Let L1, R1 and r1 (resp L2, R2 and r2) be the left, right and
radius respectively for f1 (resp. f2) as guaranteed by Proposition 23. Define r = min{r1, r2}.

▷ Claim 33. f1 crosses f2 at p if and only if for all r ≥ r0 > 0 none of L1 ∩ B(p, r0),
R1 ∩B(p, r0), L2 ∩B(p, r0), R2 ∩B(p, r0) is contained in another.

H. Sun 18:19

Proof. Suppose that f1 crosses f2. Let r ≥ r0 > 0. Let tL, tR ∈ R be such that f2(tL) ∈
L1∩B(p, r0), f2(tR) ∈ R1∩B(p, r0). Since R1∩B(p, r0), L1∩B(p, r0) are open, there exists
rL, rR be such that B(f2(tL), rL) ⊂ L1 ∩B(p, r0) and B(f2(tR), rR) ⊂ R1 ∩B(p, r0). Since
B(f2(tL), rL) ∩ L2, B(f2(tL), rL) ∩ R2, B(f2(tR), rR) ∩ L2, B(f2(tR), rR) ∩ R2 ̸= ∅, none of
L1 ∩B(p, r0), R1 ∩B(p, r0), L2 ∩B(p, r0), R2 ∩B(p, r0) is contained in another.

Conversely, suppose that for any 0 < r0 ≤ r none of L1 ∩ B(p, r0), R1 ∩ B(p, r0),
L2 ∩B(p, r0), R2 ∩B(p, r0) is contained in another. Then for any 0 < r0 ≤ r, if f2 does not
intersect L1 ∩B(p, r0), then L1 ∩B(p, r0) is connected in B(p, r0)\f2, that is L1 ∩B(p, r0)
is contained in one of the two components L2 ∩B(p, r0), R2 ∩B(p, r0) of B(p, r0)\f2. Hence
f2 intersects L1 ∩B(p, r0), likewise f2 intersects R1 ∩B(p, r0). Hence f2 crosses f1. ◁

From the previous claim it’s clear that crossing is a symmetric relation. ◀

Define ϕ2(x) = ϕ(frac(x− 0.5 + c)), where frac(x) = x− ⌊x⌋ is the fractional value of x
and ϕ3(x) = ϕ1(frac(x− 0.5)), that is, ϕ2, ϕ3 are reparameterized versions of ϕ and ϕ1. For
some 0 < β1 < β2 < 1 ϕ1(x) ∈ L for x ∈ (0, β1) and ϕ1(x) ∈ R for x ∈ (β2, 1).

Define β′
1 = min{β1, 0.5} + 0.5 β′

2 = max{β2, 0.5}. Then ϕ3((0.5, β′
1)) ⊂ L and

ϕ3((β′
2, 0.5)) ⊂ R. Since L ∪ R covers B̄(ϕ(c), r)\ϕ([0, 1]), this implies that ϕ3 crosses

ϕ2.
By Lemma 32 ϕ2 crosses ϕ3. Let Lϕ3 , Rϕ3 be the left and right of ϕ3 as in Proposition 23.

Since Lϕ3 , Rϕ3 are connected, Lϕ3 , Rϕ3 belong to different regions of Q\ϕ3. Since ϕ2 crosses
ϕ3, there exists t0 for which ϕ(t0) ∈ Q1 and t1 for which ϕ(t1) ∈ Q2. Let t2 = inf{a ∈ [0, 1] :
∃b ∈ (a, 1] s.t. ϕ((a, b)) ⊂ Q1}, t3 = sup{b ∈ [t2, 1] : s.t.ϕ((t2, b)) ⊂ Q1}, that is [t2, t3] is a
maximal interval for which ϕ([t2, t3]) ⊂ Q1. It follows ϕ(t2), ϕ(t3) lie on the boundary of Q1,
that is on ϕ1. This implies t2, t3 ∈ {0, 1}. Since t2 < t3 t2 = 0 and t3 = 1. This implies that
ϕ([0, 1])) lies in Q1 ∪ {ϕ(0)} contradicting that there exists t1 for which ϕ(t1) ∈ Q2. ◀

Proof. (of Proposition 26) Let f : [0, 1]→ C ′ be a parameterization of C ′ and let c = f−1(c1).
Note that by Proposition 25 the curve ϕ2 is homeomorphic to a curve ϕ3 that enters ϕ from
the right and leaves ϕ from the left at the same point f(c). By Proposition 30, ϕ3 does not
divide Q into 2 regions. Thus, ϕ2 does not divide Q into 2 regions. ◀

References
1 M.A. Armstrong. Basic Topology. Undergraduate Texts in Mathematics. Springer New York,

2013. URL: https://books.google.ca/books?id=NJbuBwAAQBAJ.
2 Vineet Bafna, Piotr Berman, and Toshihiro Fujito. A 2-approximation algorithm for the

undirected feedback vertex set problem. SIAM J. Discrete Math., 12:289–297, 1999.
3 Piotr Berman and Grigory Yaroslavtsev. Primal-dual approximation algorithms for node-

weighted network design in planar graphs. In Anupam Gupta, Klaus Jansen, José Rolim, and
Rocco Servedio, editors, Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, pages 50–60, Berlin, Heidelberg, 2012.

4 A.C. da Silva and LINK (Online service). Lectures on Symplectic Geometry. Number no. 1764
in Lecture Notes in Mathematics. Springer, 2001. URL: https://books.google.ca/books?
id=r9i6pXc7GEQC.

5 E. D. Demaine and M. Hajiaghayi. The bidimensionality theory and its algorithmic applications.
The Computer Journal, 51(3):292–302, 2008.

6 Reinhard Diestel. Graph Theory. Springer Publishing Company, Incorporated, 5th edition,
2017.

7 G. Even, J. (Seffi) Naor, B. Schieber, and M. Sudan. Approximating minimum feedback sets
and multicuts in directed graphs. Algorithmica, 20(2):151–174, 1998.

APPROX/RANDOM 2024

https://books.google.ca/books?id=NJbuBwAAQBAJ
https://books.google.ca/books?id=r9i6pXc7GEQC
https://books.google.ca/books?id=r9i6pXc7GEQC

18:20 A Constant Factor Approximation for Directed Feedback Vertex Set

8 Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket Saurabh. Bidimensionality
and eptas. In Proceedings of the Twenty-second Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’11, pages 748–759, Philadelphia, PA, USA, 2011. Society for Industrial
and Applied Mathematics. URL: http://dl.acm.org/citation.cfm?id=2133036.2133095.

9 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Bidimension-
ality and kernels. CoRR, 2016.

10 Georges Gardarin and Stefano Spaccapietra. Integrity of data bases: A general lockout al-
gorithm with deadlock avoidance. In G. M. Nijssen, editor, Modelling in Data Base Management
Systems, Proceeding of the IFIP Working Conference on Modelling in Data Base Management
Systems, Freudenstadt, Germany, January 5-8, 1976, pages 395–412. North-Holland, 1976.

11 Michel X. Goemans and David P. Williamson. The Primal-Dual Method for Approximation
Algorithms and Its Application to Network Design Problems, pages 144–191. PWS Publishing
Co., USA, 1996.

12 Michel X. Goemans and David P. Williamson. Primal-dual approximation algorithms for
feedback problems in planar graphs. Combinatorica, 18(1):37–59, 1998.

13 Venkatesan Guruswami and Euiwoong Lee. Simple proof of hardness of feedback vertex set.
Theory of Computing, 12(6):1–11, 2016. doi:10.4086/toc.2016.v012a006.

14 Allen Hatcher. Notes on basic 3-manifold topology, 2007. URL: https://pi.math.cornell.
edu/~hatcher/3M/3M.pdf.

15 The Amplitwist (https://mathoverflow.net/users/183188/the amplitwist). If a graph embedded
on a surface is divided by a curve into a right and left that do not intersect can it be
embedded on a surface of smaller genus? MathOverflow. (version: 2023-11-19). URL:
https://mathoverflow.net/q/458733.

16 Richard M. Karp. Reducibility among Combinatorial Problems, pages 85–103. Springer US,
Boston, MA, 1972. doi:10.1007/978-1-4684-2001-2_9.

17 L.C. Kinsey. Topology of Surfaces. Undergraduate Texts in Mathematics. Springer New York,
1997. URL: https://books.google.gl/books?id=AKghdMm5W-YC.

18 Lap Chi Lau, R. Ravi, and Mohit Singh. Iterative Methods in Combinatorial Optimization.
Cambridge Texts in Applied Mathematics. Cambridge University Press, 2011. doi:10.1017/
CBO9780511977152.

19 Charles E. Leiserson and James B. Saxe. Retiming synchronous circuitry. Algorithmica,
6(1):5–35, 1991. doi:10.1007/BF01759032.

20 Orna Lichtenstein and Amir Pnueli. Checking that finite state concurrent programs satisfy
their linear specification. In Proceedings of the 12th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, POPL ’85, pages 97–107, New York, NY, USA, 1985.
Association for Computing Machinery. doi:10.1145/318593.318622.

21 Daniel Lokshtanov, Pranabendu Misra, Joydeep Mukherjee, Fahad Panolan, Geevarghese
Philip, and Saket Saurabh. 2-approximating feedback vertex set in tournaments. ACM Trans.
Algorithms, 17(2), April 2021. doi:10.1145/3446969.

22 J. Rydholm. Classification of compact orientable surfaces using morse theory, 2016.
23 Niklas Schlomberg, Hanjo Thiele, and Jens Vygen. Packing cycles in planar and bounded-genus

graphs, 2023. arXiv:2207.00450.
24 Anke van Zuylen. Linear programming based approximation algorithms for feedback set

problems in bipartite tournaments. In TAMC, 2009.
25 J. W. T. Youngs. Minimal imbeddings and the genus of a graph. J. Math. Mech., 12:303–315,

1963.

http://dl.acm.org/citation.cfm?id=2133036.2133095
https://doi.org/10.4086/toc.2016.v012a006
https://pi.math.cornell.edu/~hatcher/3M/3M.pdf
https://pi.math.cornell.edu/~hatcher/3M/3M.pdf
https://mathoverflow.net/q/458733
https://doi.org/10.1007/978-1-4684-2001-2_9
https://books.google.gl/books?id=AKghdMm5W-YC
https://doi.org/10.1017/CBO9780511977152
https://doi.org/10.1017/CBO9780511977152
https://doi.org/10.1007/BF01759032
https://doi.org/10.1145/318593.318622
https://doi.org/10.1145/3446969
https://arxiv.org/abs/2207.00450

More Basis Reduction for Linear Codes: Backward
Reduction, BKZ, Slide Reduction, and More
Surendra Ghentiyala #

Cornell University, Ithaca, NY, USA

Noah Stephens-Davidowitz #

Cornell University, Ithaca, NY, USA

Abstract
We expand on recent exciting work of Debris-Alazard, Ducas, and van Woerden [Transactions on
Information Theory, 2022], which introduced the notion of basis reduction for codes, in analogy
with the extremely successful paradigm of basis reduction for lattices. We generalize DDvW’s LLL
algorithm and size-reduction algorithm from codes over F2 to codes over Fq, and we further develop
the theory of proper bases. We then show how to instantiate for codes the BKZ and slide-reduction
algorithms, which are the two most important generalizations of the LLL algorithm for lattices.

Perhaps most importantly, we show a new and very efficient basis-reduction algorithm for codes,
called full backward reduction. This algorithm is quite specific to codes and seems to have no
analogue in the lattice setting. We prove that this algorithm finds vectors as short as LLL does in
the worst case (i.e., within the Griesmer bound) and does so in less time. We also provide both
heuristic and empirical evidence that it outperforms LLL in practice, and we give a variant of the
algorithm that provably outperforms LLL (in some sense) for random codes.

Finally, we explore the promise and limitations of basis reduction for codes. In particular, we
show upper and lower bounds on how “good” of a basis a code can have, and we show two additional
illustrative algorithms that demonstrate some of the promise and the limitations of basis reduction
for codes.

2012 ACM Subject Classification Theory of computation → Error-correcting codes

Keywords and phrases Linear Codes, Basis Reduction

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.19

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2408.08507 [21]

Funding Surendra Ghentiyala: This work is supported in part by the NSF under Grants Nos. CCF-
2122230 and CCF-2312296, a Packard Foundation Fellowship, and a generous gift from Google.
Noah Stephens-Davidowitz : This work is supported in part by the NSF under Grants Nos. CCF-
2122230 and CCF-2312296, a Packard Foundation Fellowship, and a generous gift from Google.
Some of this work was completed while the author was visiting the National University of Singapore
and the Centre for Quantum Technologies

1 Introduction

1.1 Codes and lattices
A linear code C ⊆ Fn

q is a subspace of the vector space Fn
q over the finite field Fq, i.e., it is the

set of all Fq-linear combinations of a linearly independent list of vectors B := (b1; . . . ; bk),

C := C(B) := {z1b1 + · · ·+ zkbk : zi ∈ Fq} .

We call b1, . . . , bk a basis for the code and k the dimension of the code. We are interested in
the geometry of the code induced by the Hamming weight |c| for c ∈ Fn

q , which is simply
the number of coordinates of c that are non-zero. For example, it is natural to ask about a

© Surendra Ghentiyala and Noah Stephens-Davidowitz;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 19; pp. 19:1–19:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sg974@cornell.edu
mailto:noahsd@gmail.com
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.19
https://arxiv.org/abs/2408.08507
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 More Basis Reduction for Linear Codes

code’s minimum distance, which is the minimal Hamming weight of a non-zero codeword,
i.e.,

dmin(C) := min
c∈C ̸=0

|c| .

At a high level, there are two fundamental computational problems associated with linear
codes. In the first, the goal is to find a short non-zero codeword – i.e., given a basis for
a code C, the goal is to find a non-zero codeword c ∈ C ̸=0 with relatively small Hamming
weight |c|. In the second, the goal is to find a codeword that is close to some target vector
t ∈ Fn

q – i.e., given a basis for a code C and a target vector t ∈ Fn
q , the goal is to find a

codeword c ∈ C such that |c− t| is relatively small. (Here, we are being deliberately vague
about what we mean by “relatively small.”)

We now describe another class of mathematical objects, which are also ubiquitous in
computer science. Notice the striking similarity between the two descriptions.

A lattice L ⊂ Qn is the set of all integer linear combinations of linearly independent basis
vectors A := (a1; . . . ; ak) ∈ Qn, i.e.,

L := L(A) := {z1a1 + · · ·+ zkak : zi ∈ Z} .

We are interested in the geometry of the lattice induced by the Euclidean norm ∥a∥ :=
(a2

1 + · · · + a2
n)1/2. In particular, it is natural to ask about a lattice’s minimum distance,

which is simply the minimal Euclidean norm of a non-zero lattice vector, i.e.,

λ1(L) := min
y∈L ̸=0

∥y∥ .

At a high level, there are two fundamental computational problems associated with
lattices. In the first, the goal is to find a short non-zero lattice vector – i.e., given a basis
for a lattice L, the goal is to find a non-zero lattice vector y ∈ L ̸=0 with relatively small
Euclidean norm ∥y∥. In the second, the goal is to find a lattice vector that is close to some
target vector t ∈ Qn – i.e., given a basis for a lattice L and a target vector t ∈ Zn, the goal
is to find a lattice vector y ∈ L such that ∥y − t∥ is relatively small. (Again, we are being
deliberately vague here.)

Clearly, there is a strong analogy between linear codes and lattices, where to move from
codes to lattices, one more-or-less just replaces a finite field Fq with the integers Z and the
Hamming weight | · | with the Euclidean norm ∥·∥. It is therefore no surprise that this analogy
extends to many applications. For example, lattices and codes are both used for decoding
noisy channels. They are both used for cryptography (see, e.g., [26, 3, 5, 23, 7, 30]; in fact,
both are used specifically for post-quantum cryptography). And, many complexity-theoretic
hardness results were proven simultaneously or nearly simultaneously for coding problems
and for lattice problems, often with similar or even identical techniques.1

1.2 Basis reduction for lattices
However, the analogy between lattices and codes has been much less fruitful for algorithms.
Of course, there are many algorithmic techniques for finding short or close codewords and
many algorithmic techniques for finding short or close lattice vectors. But, in many parameter
regimes of interest, the best algorithms for lattices are quite different from the best algorithms
for codes.

1 For example, similar results that came in separate works in the two settings include [15] and [14], [4]
and [33], [27] and [19], [13, 2] and [32], etc. Works that simultaneously published the same results in
the two settings include [9] and [18].

S. Ghentiyala and N. Stephens-Davidowitz 19:3

In the present work, we are interested in basis reduction, a ubiquitous algorithmic
framework in the lattice literature. At a very high level, given a basis A := (a1; . . . ; ak)
for a lattice L, basis reduction algorithms work by attempting to find a “good” basis
of L (and in particular, a basis whose first vector a1 is short) by repeatedly making
“local changes” to the basis. Specifically, such algorithms manipulate the Gram-Schmidt
vectors ã1 := a1, ã2 := π⊥

{a1}(a2), . . . , ãk := π⊥
{a1,...,ak−1}(ak). Here, π⊥

{a1,...,ai−1} represents
orthogonal projection onto the subspace orthogonal to a1, . . . , ai−1. Notice that we can view
the Gram-Schmidt vector ãi as a lattice vector in the lower-dimensional lattice generated
by the projected block A[i,j] := π⊥

{a1,...,ai−1}(ai; . . . ; aj). Basis reduction algorithms work by
making many “local changes” to A, i.e., changes to the block A[i,j] that leave the lattice
L(A[i,j]) unchanged. The goal is to use such local changes to make earlier Gram-Schmidt
vectors shorter. (In particular, ã1 = a1 is a non-zero lattice vector. So, if we can make the
first Gram-Schmidt vector short, then we will have found a short non-zero lattice vector.)
One accomplishes this, e.g., by finding a short non-zero vector y in L(A[i,j]) and essentially
replacing the first vector in the block with this vector y. (Here, we are ignoring how exactly
one does this replacement.)

This paradigm was introduced in the celebrated work of Lenstra, Lenstra, and Lovász [25],
which described the polynomial-time LLL algorithm. Specifically, (ignoring important details
that are not relevant to the present work) the LLL algorithm works by repeatedly replacing
Gram-Schmidt vectors ãi with a shortest non-zero vector in the lattice generated by the
dimension-two block A[i,i+1]. The LLL algorithm itself has innumerable applications. (See,
e.g., [29].) Furthermore, generalizations of LLL yield the most efficient algorithms for finding
short non-zero lattice vectors in a wide range of parameter regimes, including those relevant
to cryptography.

Specifically, the Block-Korkine-Zolotarev basis-reduction algorithm (BKZ), originally
due to Schnorr [31], is a generalization of the LLL algorithm that works with larger blocks.
It works by repeatedly modifying blocks A[i,i+β−1] of a lattice basis A := (a1; . . . ; ak) in
order to ensure that the Gram-Schmidt vector ãi is a shortest non-zero vector in the lattice
generated by the block. Here, the parameter β ≥ 2 is called the block size, and the case
β = 2 corresponds to the LLL algorithm (ignoring some technical details). Larger block size
β yields better bases consisting of shorter lattice vectors. But, to run the algorithm with
block size β, we must find shortest non-zero vectors in a β-dimensional lattice, which requires
running time 2O(β) with the best-known algorithms [6, 1, 12]. So, BKZ yields a tradeoff
between the quality of the output basis and the running time of the algorithm. (Alternatively,
one can view BKZ as a reduction from an approximate lattice problem in high dimensions to
an exact lattice problem in lower dimensions, with the approximation factor depending on
how much lower the resulting dimension is.)

BKZ is the fastest known algorithm in practice for the problems relevant to cryptography.
However, BKZ is notoriously difficult to understand. Indeed, we still do not have a proof
that the BKZ algorithm makes at most polynomially many calls to its β-dimensional oracle,
nor do we have a tight bound on the quality of the bases output by BKZ, despite much effort.
(See, e.g., [34]. However, for both the running time and the output quality of the basis, we
now have a very good heuristic understanding [16, 11].)

Gama and Nguyen’s slide-reduction algorithm is an elegant alternative to BKZ that is
far easier to analyze [20]. In particular, it outputs a basis whose quality (e.g., the length
of the first vector) essentially matches our heuristic understanding of the behavior of BKZ,
and it provably does so with polynomially many calls to a β-dimensional oracle for finding
a shortest non-zero lattice vector. Indeed, for a wide range of parameters (including those
relevant to cryptography), [20] yields the fastest algorithm with proven correctness for finding
short non-zero lattice vectors.

APPROX/RANDOM 2024

19:4 More Basis Reduction for Linear Codes

Dual reduction, and some foreshadowing

One of the key ideas used in Gama and Nguyen’s slide-reduction algorithm (as well as in
other work, such as [28]) is the notion of a dual-reduced block A[i,j]. The motivation behind
dual-reduced blocks starts with the observation that the product ∥ãi∥ · · · ∥ãj∥ does not
change if the lattice L(A[i,j]) is not changed. Formally, this quantity is the determinant of
the lattice L(A[i,j]), which is a lattice invariant. So, while it is perhaps more natural to
think of basis reduction in terms of making earlier Gram-Schmidt vectors in a block shorter,
with the ultimate goal of making a1 short, one can more-or-less equivalently think of basis
reduction in terms of making later Gram-Schmidt vectors longer.

One therefore defines a dual-reduced block as a block A[i,j] such that the last Gram-
Schmidt vector ãj is as long as it can be without changing the associated lattice L(A[i,j]).
When β := j − i + 1 > 2, a dual-reduced block is not the same as a block whose first
Gram-Schmidt vector is as short as possible. However, there is still some pleasing symmetry
here. In particular, it is not hard to show that the last Gram-Schmidt vector ãj corresponds
precisely to a non-zero (primitive) vector in the dual lattice of L(A[i,j]) with length 1/∥ãj∥.
This of course explains the terminology. It also means that making the last Gram-Schmidt
vector ãj as long as possible corresponds to finding a shortest non-zero vector in the dual
of L(A[i,j]), while making the first Gram-Schmidt vector ãi as short as possible of course
corresponds to finding a shortest non-zero vector in L(A[i,j]) itself. Either way, this amounts
to finding a shortest non-zero vector in a β-dimensional lattice, which takes time that is
exponential in the block size β.

1.3 Basis reduction for codes!
As far as the authors are aware, until very recently there was no work attempting to use
the ideas from basis reduction in the setting of linear codes. This changed with the recent
exciting work of Debris-Alazard, Ducas, and van Woerden, who in particular showed a simple
and elegant analogue of the LLL algorithm for codes [17].

Debris-Alazard, Ducas, and van Woerden provide a “dictionary” ([17, Table 1]) for
translating important concepts in basis reduction from the setting of lattices to the setting
of codes, and it is the starting point of our work. Below, we describe some of the dictionary
from [17], as well as some of the barriers that one encounters when attempting to make basis
reduction work for codes.

1.3.1 Projection, epipodal vectors, and proper bases
Recall that when one performs basis reduction on lattices, one works with the Gram-Schmidt
vectors ãi := π⊥

{a1,...,ai−1}(ai) and the projected blocks A[i,j] := π⊥
{a1,...,ai−1}(ai; . . . ; aj),

i.e., the orthogonal projection of ai, . . . , aj onto the subspace {a1, . . . , ai−1}⊥ orthogonal to
a1, . . . , ai−1.

So, if we wish to adapt basis reduction to the setting of linear codes (and we do!), it is
natural to first ask what the analogue of projection is in the setting of codes. [17] gave a
very nice answer to this question.2 In particular, for a vector x = (x1, . . . , xn) ∈ Fn

q we call
the set of indices i such that xi is non-zero the support of x, i.e.,

2 [17] formally worked with the case q = 2 everywhere. Rather than specialize our discussion here to
F2, we will largely ignore this distinction in this part of the introduction. While the more general
definitions that we provide here for arbitrary Fq are new to the present work, when generalizing to Fq is
straightforward, we will not emphasize this in the introduction.

S. Ghentiyala and N. Stephens-Davidowitz 19:5

Supp(x) := {i ∈ [n] : xi ̸= 0} .

Then, [17] define z := π⊥
{x1,...,xℓ}(y) as follows. If i ∈

⋃
j Supp(xj), then zi = 0. Otherwise,

zi = yi. In other words, the projection simply “zeros out the coordinates in the supports
of the xj .” This notion of projection shares many (but certainly not all) of the features of
orthogonal projection in Rn, e.g., it is a linear contraction mapping that is idempotent.

Armed with this notion of projection, [17] then defined the epipodal vectors associated
with a basis b1, . . . , bn as b+

1 := b1, b+
2 := π⊥

{b1}(b2), . . . , b+
n := π⊥

{b1,...,bn−1}(bn), in analogy
with the Gram-Schmidt vectors. In this work, we go a bit further and define

B[i,j] := π⊥
{b1,...,bi−1}(bi; . . . ; bj) ,

in analogy with the notation in the literature on lattice basis reduction.
Here, [17] already encounters a bit of a roadblock. Namely, the epipodal vectors b+

i can
be zero! E.g., if b1 = (1, 1, . . . , 1) is the all-ones vector, then b+

i will be zero for all i > 1!3
This is rather troublesome and could lead to many issues down the road. For example, we
might even encounter entire blocks B[i,j] that are zero! Fortunately, [17] shows how to get
around this issue by defining proper bases, which are simply bases for which all the epipodal
vectors are non-zero. They then observe that proper bases exist and are easy to compute.
(In Section 4, we further develop the theory of proper bases.) So, this particular roadblock
is manageable, but it already illustrates that the analogy between projection over Fn

q and
projection over Rn is rather brittle.

The LLL algorithm for codes then follows elegantly from these definitions. In particular, a
basis B = (b1; . . . ; bk) is LLL-reduced if it is proper and if b+

i is a shortest non-zero codeword
in the dimension-two code generated by B[i,i+1] for all i = 1, . . . , k − 1. [17] then show
a simple algorithm that computes an LLL-reduced basis in polynomial time. Specifically,
the algorithm repeatedly makes simple local changes to any block B[i,i+1] for which this
condition is not satisfied until the basis is reduced.

In some ways, this new coding-theoretic algorithm is even more natural and elegant than
the original LLL algorithm for lattices. For example, the original LLL algorithm had to
worry about numerical blowup of the basis entries. And, the original LLL algorithm seems
to require an additional slack factor δ in order to avoid the situation in which the algorithm
makes a large number of minuscule changes to the basis. Both of these issues do not arise
over finite fields, where all vectors considered by the algorithm have entries in Fq and integer
lengths between 1 and n.

1.3.2 What’s a good basis and what is it good for?
Given the incredible importance of the LLL algorithm for lattices, it is a major achievement
just to show that one can make sense of the notion of “LLL for codes.” But, once [17] have
defined an LLL-reduced basis for codes and shown how to compute one efficiently, an obvious
next question emerges: what can one do with such a basis?

In the case of lattices, the LLL algorithm is useful for many things, but primarily for the
two most important computational lattice problems: finding short non-zero lattice vectors and
finding close lattice vectors to a target. In particular, the first vector a1 of an LLL-reduced
basis is guaranteed to ∥a1∥ ≤ 2k−1λ1(L). This has proven to be incredibly useful, despite
the apparently large approximation factor.

3 Of course, similar issues do not occur over Rn, because if a1, . . . , ak ∈ Rn are linearly independent,
then π⊥

a1,...,ak−1 (ak) cannot be zero.

APPROX/RANDOM 2024

19:6 More Basis Reduction for Linear Codes

For codes over F2, [17] show that the same is true, namely that if B = (b1; . . . ; bk) is an
LLL-reduced basis for C ⊆ Fn

2 , then |b1| ≤ 2k−1dmin(C). They prove this by showing that
if b+

i has minimal length among the non-zero codewords in C(B[i,i+1]), then |b+
i | ≤ 2|b+

i+1|.
It follows in particular that |b1| = |b+

1 | ≤ 2i−1|b+
i | for all i. One can easily see that

dmin(C) ≥ mini |b+
i |, from which one immediately concludes that |b+

1 | ≤ 2k−1dmin(C). A
simple generalization of this argument shows that over Fq, we have |b+

1 | ≤ qk−1dmin(C). (We
prove something more general and slightly stronger in the full version [21].)

However, notice that all codewords have length at most n and dmin(C) is always at least
1. Therefore, an approximation factor of qk−1 is non-trivial only if n > qk−1. Otherwise,
literally any non-zero codeword has length less than qk−1dmin(C)! On the other hand, if
n > qk−1, then we can anyway find an exact shortest vector in time roughly qkn ≲ n2

by simply enumerating all codewords. (The typical parameter regime of interest is when
n = O(k).)

In some sense, the issue here is that the space Fn
q that codes live in is too “cramped.”

While lattices are infinite sets that live in a space Qn with arbitrarily long and arbitrarily
short non-zero vectors, codes are finite sets that live in a space Fn

q in which all non-zero
vectors have integer lengths between 1 and n. So, while for lattices, any approximation factor
between one and, say, 2k is very interesting, for codes the region of interest is simply more
narrow.

[17] go on to observe that because |b+
i+1| is an integer, for codes over F2 an LLL-reduced

basis must actually satisfy

|b+
i+1| ≥

⌈
|b+

i |
2

⌉
.

With this slightly stronger inequality together with the fact that
∑
|b+

i | ≤ n, they are able
to show that b1 of an LLL-reduced basis will meet the Griesmer bound [22],

k∑
i=1

⌈
|b1|
2i−1

⌉
≤ n , (1)

which is non-trivial. E.g., as long as k ≥ log n, it follows that

|b1| −
⌈log |b1|⌉

2 ≤ n− k

2 + 1 (2)

(We generalize this in the full version [21]to show that the appropriate generalization of
LLL-reduced bases to codes over Fq also meet the q-ary Griesmer bound.)

1.3.2.1 Finding close codewords and size reduction

For lattices, Babai also showed how to use an LLL-reduced basis to efficiently find close
lattice vectors to a given target vector [10], and like the LLL algorithm itself, Babai’s
algorithm too has innumerable applications. More generally, Babai’s algorithm tends to
obtain closer lattice vectors if given a “better” basis, in a certain precise sense. [17] showed
an analogous “size-reduction” algorithm that finds close codewords to a given target vector,
with better performance given a “better” basis. Here, the notion of “better” is a bit subtle,
but essentially a basis is “better” if the epipodal vectors tend to have similar lengths. (Notice
that

∑
i |b

+
i | = |Supp(C)|, so we cannot hope for all of the epipodal vectors to be short.)

The resulting size-reduction algorithm finds relatively close codewords remarkably quickly.
(Indeed, in nearly linear time.) Furthermore, [17] showed how to use their size-reduction
algorithm combined with techniques from information set decoding to speed up some

S. Ghentiyala and N. Stephens-Davidowitz 19:7

information set decoding algorithms for finding short codewords or close codewords to a
target, without significantly affecting the quality of the output. For this, their key observation
was the fact that typically most epipodal vectors actually have length one (particularly the
later epipodal vectors, as one would expect given that later epipodal vectors by definition
have more coordinates “zeroed out” by projection orthogonal to the earlier basis vectors)
and that their size-reduction algorithm derives most of its advantage from how it treats the
epipodal vectors with length greater than one. They therefore essentially run information set
decoding on the code projected onto the support of the epipodal vectors with length one and
then “lift” the result to a close codeword using their size-reduction algorithm.

They call the resulting algorithm Lee-Brickell-Babai because it is a hybrid of Babai-style
size reduction and the Lee-Brickell algorithm [24]. The running time of this hybrid algorithm
is dominated by the cost of running information set decoding on a code with dimension
k − k1, where

k1 := |{i : |b+
i | > 1}|

is the number of epipodal vectors that do not have length 1. Indeed, the (heuristic) running
time of this algorithm is better than Lee-Brickell by a factor that is exponential in k1, so
that even a small difference in k1 can make a large difference in the running time. They
then show that LLL-reduced bases have k1 ≳ log n (for random codes) and show that this
reduction in dimension can offer significant savings in the running time of information set
decoding.

Indeed, though the details are not yet public, the current record in the coding problem
challenges [8] was obtained by Ducas and Stevens, apparently using such techniques.

1.4 Our contribution
In this work, we continue the study of basis reduction for codes, expanding on and generalizing
the results of [17] in many ways, and beginning to uncover a rich landscape of algorithms.

1.4.1 Expanding on the work of [17]
1.4.1.1 Generalization to Fq

Our first set of (perhaps relatively minor) contributions are generalizations of many of the
ideas in [17] from F2 to Fq, a direction proposed in that work. In fact, they quite accurately
anticipated this direction. So, we quote directly from [17, Section 1.3]:

In principle, the definitions, theorems and algorithms of this article should be gen-
eralizable to codes over Fq endowed with the Hamming metric. . . Some algorithms
may see their complexity grow by a factor Θ(q), meaning that the algorithms remains
polynomial-time only for q = nO(1). It is natural to hope that such a generalised
LLL would still match [the] Griesmer bound for q > 2. However, we expect that
the analysis of the fundamental domain [which is necessary for understanding size
reduction]. . . would become significantly harder to carry out.

In Section 3, we generalize from F2 to Fq the definitions of projection, epipodal vectors,
and proper bases; the definition of an LLL-reduced bases and the LLL algorithm;4 and the
size-reduction algorithm and its associated fundamental domain. Some of this is admittedly

4 We actually describe the LLL algorithm as a special case of the more general algorithms that we describe
below. See the full version [21].

APPROX/RANDOM 2024

19:8 More Basis Reduction for Linear Codes

quite straightforward – e.g., given the definitions in [17] of projection, epipodal vectors,
and proper bases for codes over F2, the corresponding definitions for codes over Fq are
immediate (and we have already presented them in this introduction). And, the definition
of an LLL-reduced basis and of size reduction follow more-or-less immediately from these
definitions. In particular, we do in fact confirm that LLL over Fq achieves the Griesmer
bound.

As [17] anticipated, the most difficult challenge that we encounter here is in the analysis
of the fundamental domain that one obtains when one runs size reduction with a particular
basis B. We refer the reader to the full version [21]for the details.

(We do not encounter the running time issue described in the quote above – except for our
algorithm computing the number of vectors of a given length in F(B+). In particular, our
versions of the LLL algorithm and the size-reduction algorithm – and even our generalizations
like slide reduction – run in time that is proportional to a small polynomial in log q.)

Along the way, we make some modest improvements to the work of [17], even in the case
of F2. In particular, using more careful analysis, we shave a factor of roughly n from the
proven running time of LLL. (See the full version [21].)

1.4.1.2 More on the theory of proper bases

In order to develop the basis-reduction algorithms that we will describe next, we found that
it was first necessary to develop (in Section 4) some additional tools for understanding and
working with proper bases, which might be of independent interest. Specifically, we define the
concept of a primitive codeword, which is a non-zero codeword c such that Supp(c) does not
strictly contain the support of any other non-zero codeword. We then show that primitive
codewords are closely related to proper bases. For example, we show that c is the first vector
in some proper basis if and only if c is primitive, and that a basis is proper if and only if the
epipodal vectors are primitive vectors in their respective projections.

We find this perspective to be quite useful for thinking about proper bases and basis
reduction in general. In particular, we use this perspective to develop algorithms that perform
basic operations on proper bases, such as inserting a primitive codeword into the first entry
of a basis without affecting properness. The resulting algorithmic tools seems to be necessary
for the larger-block-size versions of basis reduction that we describe below, in which our
algorithms must make more complicated changes to a basis.

1.4.2 Backward reduction and redundant sets
Our next contribution is the notion of backward reduction, described in Section 5. Recall
that in the context of lattices, a key idea is the notion of a dual-reduced block A[i,j], in which
the last Gram-Schmidt vector ãj is as long possible, while keeping L(A[i,j]) fixed.

Backward-reduced blocks are what we call the analogous notion for codes. Specifically,
we say that a block B[i,j] is backward reduced if the last epipodal vector b+

j is as long as
possible, while keeping C(B[i,j]) fixed. Just like in the case of lattices, this idea is motivated
by an invariant. Here, the invariant is |b+

i |+ · · ·+ |b
+
j |, which is precisely the support of the

code C(B[i,j]). So, if one wishes to make earlier epipodal vectors shorter (and we do!), then
one will necessarily make later epipodal vectors longer, and vice versa. In particular, in the
case of LLL, when the block size β := j − i + 1 is equal to 2, there is no difference between
minimizing the length of the first epipodal vector and maximizing the length of the second
epipodal vector. So, if one wishes, one can describe the LLL algorithm in [17] as working by
repeatedly backward reducing blocks B[i,i+1].

S. Ghentiyala and N. Stephens-Davidowitz 19:9

The above definition of course leads naturally to two questions. First of all, how do we
produce a backward-reduced block (for block size larger than 2)? And, second, what can we
say about them? Specifically, what can we say about the length |b+

j | of the last epipodal
vector in a backward-reduced block B[i,j]?

One might get discouraged here, as one quickly discovers that long last epipodal vectors do
not correspond to short non-zero codewords in the dual code. So, the beautiful duality that
arises in the setting of lattices simply fails in our new context. (The only exception is that
last epipodal vectors with length exactly two correspond to dual vectors with length exactly
two.) This is why we use the terminology “backward reduced” rather than “dual reduced.”
One might fear that the absence of this correspondence would make backward-reduced blocks
very difficult to work with.

Instead, we show that long last epipodal vectors b+
j in a block B[i,j] have a simple

interpretation. They correspond precisely to large redundant sets of coordinates of the code
C(B[i,j]). In the special case when q = 2, a redundant set S ⊆ [n] of coordinates is simply a
set of coordinates in the support of the code such that for every a, b ∈ S and every codeword
c, ca = cb. For larger q, we instead have the guarantee that ca = zcb for fixed non-zero
scalar z ∈ F∗

q depending only on a and b. In particular, maximal redundant sets correspond
precisely to the non-zero coordinates in a last epipodal vector. (See Lemma 8.)

This characterization immediately yields an algorithm for backward reducing a block.
(See Algorithm 2.) In fact, finding a backward-reduced block boils down to finding a set of
most common elements in a list of at most n non-zero columns, each consisting of β := j−i+1
elements from Fq. One quite surprising consequence of this is that one can actually find
backward-reduced blocks efficiently, even for large β! (Compare this to the case of lattices,
where finding a dual-reduced block for large β is equivalent to the NP-hard problem of finding
a shortest non-zero vector in a lattice of dimension β.)

Furthermore, this simple combinatorial characterization of backward-reduced blocks
makes it quite easy to prove a simple tight lower bound on the length of b+

j in a backward-
reduced block B[i,j]. (See the full version [21].) Indeed, such a proof follows immediately
from the pigeonhole principle. This makes backward-reduced blocks quite easy to analyze.
In contrast, as we will see below, forward-reduced blocks, in which the first epipodal vector
b+

i is as short as possible, are rather difficult to analyze for β > 2.

1.4.3 Fully backward-reduced bases

With this new characterization of backward-reduced blocks and the realization that we can
backward reduce a block quite efficiently, we go on to define the notion of a fully backward-
reduced basis. We say that a basis is fully backward reduced if all of the prefixes B[1,j] are
backward reduced for all 1 ≤ j ≤ k.5 In fact, we are slightly more general than this, and
consider bases that satisfy this requirement for all j up to some threshold τ ≤ k.

We show that a fully backward-reduced basis achieves the Griesmer bound (Equation (1)
for q = 2), just like an LLL-reduced basis. This is actually unsurprising, since it is not
difficult to see that when the threshold τ = k is maximal, a fully backward-reduced basis is
also LLL reduced. However, even when τ = logq n, we still show that a backward-reduced
basis achieves the Griesmer bound. (See Theorem 16.)

5 Notice that this implies that B[i,j] is also backward reduced for any 1 ≤ i < j. So, such bases really are
fully backward reduced.

APPROX/RANDOM 2024

19:10 More Basis Reduction for Linear Codes

We then show a very simple and very efficient algorithm for computing fully backward-
reduced bases. In particular, if the algorithm is given as input a proper basis, then it will
convert it into a fully backward-reduced basis up to threshold τ in time O(τ2n polylog(n, q)).
Notice that this is extremely efficient when τ ≤ poly(logq n).6 Indeed, for most parameters
of interest, this running time is in fact less than the time O(nk log q) needed simply to read
the input basis B ∈ Fk×n

q . (Of course, this is possible because the algorithm only looks at
the first τ rows of the input basis.) So, if one already has a proper basis, one can convert it
into a fully backward-reduced basis nearly for free.7

In contrast, the LLL algorithm runs in time O(kn2 log2 q). One can perform a similar
“threshold” trick and run the LLL algorithm only on the first τ basis vectors for τ = ⌈logq n⌉
(which would still imply that |b1| must be bounded by the Griesmer bound). But, this would
still yield a running time of Ω(τn2 log2 q) in the worst case. The speedup that we achieve
from fully backward reduction comes from the combination of this threshold trick together
with the fact that fully backward reduction runs in time proportional to τ2n, rather than
τn2.

Furthermore, we show empirically that the resulting algorithm tends to produce better
bases than LLL in practice. (See the full version [21].)

(It seems unlikely that any similar algorithm exists for lattices for two reasons. First, in
the setting of lattices, computing a dual-reduced basis for large block sizes is computationally
infeasible. Second, while for codes it is not unreasonable to look for a short non-zero codeword
in the subcode generated by the first τ basis vectors, for lattices the lattice generated by the
first k − 1 basis vectors often contains no shorter non-zero vectors than the basis vectors
themselves, even when the full lattice contains much shorter vectors.)

1.4.3.1 Heuristic analysis of full backward reduction

We also provide heuristic analysis of full backward reduction, providing a compelling heuristic
explanation for why its performance in practice seems to be much better than what worst-case
analysis suggests. In particular, recall that we essentially characterize the length of the last
epipodal vector of a backward-reduced block B[i,j] in terms of the maximal number of times
that a column in B[i,j] repeats. We then naturally use the pigeonhole principle to argue that
for suitable parameters there must be a column that repeats many times.

E.g., for q = 2, there must be at least one repeated non-zero column if the number of
non-zero columns s is larger than the number of possible non-zero columns 2β − 1, where
β := j − i + 1 is the length of a column. This analysis is of course tight in the worst case.
However, in the average case, we know from the birthday paradox that we should expect to
see a repeated column even if s is roughly 2β/2, rather than 2β .

So, under the (mild but unproven) heuristic that the blocks B[1,j] in a fully backward-
reduced basis behave like a random matrices for all j (in terms of the number of redundant
coordinates), it is easy to see that k1 ≳ 2 logq n, which is significantly better than what LLL
achieves (both in the worst case and empirically).

This heuristic argument is backed up by experiments. (See the full version [21].) We
also show (in the full the version [21]) a less natural variant of this algorithm that provably
achieves k1 ≳ 2 logq n when its input is a random matrix. This variant works by carefully

6 We argue (in the full version [21]) that there is not much point in taking τ significantly greater than
log2

q(n).
7 Computing a proper basis seems to require time O(nk2 log2 q) (without using fast matrix multiplication

algorithms), but in many contexts the input basis is in systematic form and is therefore proper.

S. Ghentiyala and N. Stephens-Davidowitz 19:11

“choosing which coordinates to look at” for each block, in order to maintain independence.
We view this as an additional heuristic explanation for full backward reduction’s practical
performance, since one expects an algorithm that “looks at all coordinates” to do better
than one that does not.

This result about k1 for backward-reduced bases also compares favorably with the study
of the LLL algorithm in [17]. In particular, in [17], they proved that LLL achieves k1 ≳ log n

for a random code for q = 2, but in their experiments they observed that LLL combined with
a preprocessing step called EpiSort actually seems to achieve k1 ≈ c log n for some constant
1 < c ≤ 2. However, the behavior of LLL and EpiSort seems to be much more subtle than
the behavior of full backwards reduction. We therefore still have no decent explanation (even
a heuristic one) for why LLL and EpiSort seem to achieve k1 ≈ c log n or for what the value
of this constant c actually is.

1.4.4 BKZ and slide reduction for codes
Our next set of contributions are adaptations of the celebrated BKZ and slide-reduction
algorithms to the setting of codes.

1.4.4.1 BKZ for codes

Our analogue of the BKZ algorithm for codes is quite natural.8 Specifically, our algorithm
works by repeatedly checking whether the epipodal vector b+

i is a shortest non-zero codeword
in the code generated by the block B[i,i+β−1]. If not, it updates the basis so that this is the
case (using the tools that we have developed to maintain properness). The algorithm does
this repeatedly until no further updates are possible. At least intuitively, a larger choice of β

here requires a slower algorithm because the resulting algorithm will have to find shortest
non-zero codewords in β-dimensional codes. But, larger β will result in a better basis.

As we mentioned above, in the setting of lattices, the BKZ algorithm is considered to be
the best performing basis-reduction algorithm in most parameter regimes, but it is notoriously
difficult to analyze. We encounter a roughly similar phenomenon in the setting of linear
codes. In particular, we run experiments that show that the algorithm performs quite well in
practice. (Though it requires significantly more running time than full backward reduction
to achieve a similar profile. See the full version [21].) However, we are unable to prove that
it terminates efficiently, except in the special case of β = 2, in which case we recover the LLL
algorithm of [17]. For β > 2, we offer only an extremely weak bound on the running time.
As in the case of lattices, the fundamental issue is that it is difficult to control the effect that
changing b+

i can have on the other epipodal vectors b+
i+1, . . . , b+

i+β−1 in the block.
Here, we encounter an additional issue as well. In the case of lattices, there is a relatively

simple tight bound on the minimum distance of the lattice generated by the block A[i,i+β−1]
to the lengths of the Gram-Schmidt vectors ∥ãi∥, . . . , ∥ãi+β−1∥ in the block. In particular,
Minkowski’s celebrated theorem tells us that λ1(L(A[i,i+β−1])) ≤ C

√
β(∥ãi∥ · · · ∥ãi+β−1∥)1/β

for some constant C > 0, and one applies this inequality repeatedly with different i to
understand the behavior of basis reduction for lattices.

8 We note that the name “BKZ algorithm for codes” is perhaps a bit misleading. In the case of lattices, the
BKZ algorithm is named after Korkine and Zolotarev due to their work on Korkine-Zolotarev-reduced
bases (which can be thought of as BKZ-reduced bases with maximal block size β = k, and is sometimes
also called a Hermite-Korkine-Zolotarev-reduced basis). A Block-Korkine-Zolotarev-reduced basis is
(unsurprisingly) a basis in which each block B[i,i+β−1] is a Korkine-Zolotarev-reduced basis. For codes,
the analogous notion of a Korkine-Zolotarev-reduced basis was called a Griesmer-reduced basis in [17].
So, we should perhaps call our notion “Block-Griesmer-reduced bases” and the associated algorithm
“the block-Griesmer algorithm.” However, the authors decided to use the term “BKZ” here in an attempt
to keep terminology more consistent between lattices and codes.

APPROX/RANDOM 2024

19:12 More Basis Reduction for Linear Codes

However, in the case of codes, there is no analogous simple tight bound on
dmin(C(B[i,i+β−1])) in terms of the lengths of the epipodal vectors |b+

i |, . . . , |b+
i+β−1|, except

in the special case when β = 2. Instead, there are many known incomparable upper bounds
on dmin in terms of the dimension β and the support size s := |b+

i |+ · · ·+ |bi+β−1| (and, of
course, the alphabet size q). Each of these bounds is tight or nearly tight for some support
sizes s (for fixed β) but rather loose in other regimes. The nature of our basis-reduction
algorithms is such that different blocks have very different support sizes s, so that we cannot
use a single simple bound that will be useful in all regimes. And, due to the relatively
“cramped” nature of Fn

q , applying loose bounds on dmin can easily yield trivial results, or
results that do offer no improvement over the β = 2 case. As a result, the bound that we
obtain on the length of b1 for a BKZ-reduced basis does not have a simple closed form.
(Since the special case of β = 2 yields a very simple tight bound dmin ≤ (1− 1/q)s, this is
not an issue in the analysis of the LLL algorithm in [17].)

In fact, we do not even know if the worst-case bound on |b1| for a BKZ-reduced basis is
efficiently computable, even if one knows the optimal minimum distance of β-dimensional
codes for all support sizes. However, we do show an efficiently computable bound that is
nearly as good. And, we show empirically that in practice it produces quite a good basis.
(See the full version [21].)

1.4.4.2 Slide reduction for codes

Given our difficulties analyzing the BKZ algorithm, it is natural to try to adapt Gama and
Nguyen’s slide-reduction algorithm [20] from lattices to codes. In particular, recall that in
the case of lattices, the slide-reduction algorithm has the benefit that (unlike BKZ) it is
relatively easy to prove that it terminates efficiently.

In fact, recall that the idea for backward-reduced bases was inspired by dual-reduced bases
for lattices, which are a key component of slide reduction. We therefore define slide-reduced
bases for codes by essentially just substituting backward-reduced blocks for dual-reduced
blocks in Gama and Nguyen’s definition for lattices. Our slide-reduction algorithm (i.e., an
algorithm that produces slide-reduced bases) follows similarly.

We then give a quite simple proof that this algorithm terminates efficiently. Indeed, our
proof is a direct translation of Gama and Nguyen’s elegant potential-based argument from
the case of lattices to the case of codes. (Gama and Nguyen’s proof is itself a clever variant
of the beautiful original proof for the case when β = 2 in [25].)

Finally, we give an efficiently computable upper bound on |b1| for a slide-reduced basis
in a similar spirit to our upper bound on BKZ. Here, we again benefit from our analysis of
backward-reduced blocks described above. Indeed, the behavior of the epipodal vectors in
our backward-reduced blocks is quite easy to analyze. However, our bound does not have a
simple closed form because the behavior of the forward-reduced blocks still depends on the
subtle relationship between the minimal distance of a code and the parameters n and k, as
we described in the context of BKZ above.

In our experiments (in the full version [21]), slide reduction is far faster than BKZ but
does not find bases that are as good.

1.4.5 Two illustrative algorithms
In the full version [21], we show yet two more basis-reduction algorithms for codes. We think
of the importance of these algorithms as being less about their actual usefulness and more
about what they show about the potential and limitations of basis reduction for codes. We
explain below.

S. Ghentiyala and N. Stephens-Davidowitz 19:13

1.4.5.1 One-block reduction

The one-block-reduction algorithm is quite simple. It finds a short non-zero codeword
in a code C generated by some basis B by first ensuring that B is proper, and then by
simply finding a shortest non-zero codeword in the subcode C(B[1,β]) generated by the
prefix basis B[1,β]. Notice that if β ≤ O(logq n), then this algorithm runs in polynomial
time. In particular, enumerating all codewords in the subcode can be done in time roughly
O(nqβ log q).

Furthermore, it is not hard to see that when β = ⌈logq n⌉, this simple algorithm actually
meets the Griesmer bound! (See the full version [21].) At a high level, this is because (1) the
worst case in the Griesmer bound has |b+

i | = 1 for all i ≥ β; and (2) the resulting bound is
certainly not better than the minimum distance of a code with dimension β and support size
n−(k−β). Here, the k−β term comes from the fact that Supp(B[1,β]) = n−|b+

β+1|−· · ·−|b
+
k |.

(Similar logic explains why full backward reduction achieves the Griesmer bound with
τ ≈ logq n.)

More generally, it seems unlikely that a basis-reduction algorithm will be able to find b1
that is shorter than what is achieved by this simple approach if we take β ≥ max{k∗

1 , β′},
where β′ is the size of the largest block in the basis reduction algorithm and k∗

1 is the maximal
index of an epipodal vector that has length larger than one. (In practice, k∗

1 is almost never
much larger than k1.) In particular, for a basis reduction algorithm to do better than this,
it must manage to produce a block B[1,β] that has minimum distance less than what one
would expect given its support size.

We therefore think of this algorithm as illustrating two points.
First, the existence of this algorithm further emphasizes the importance of the parameter

k∗
1 (and the closely related parameter k1) as a sort of “measure of non-triviality.” If an

algorithm achieves large k∗
1 , then the above argument becomes weaker, since we must take

β ≥ k∗
1 . Indeed, if β is significantly larger than 2 logq k, then the running time of one-block

reduction (if implemented by simple enumeration) becomes significantly slower.
Second, the existence of the one-block-reduction algorithm illustrates that we should be

careful not to judge basis-reduction algorithms entirely based on |b1|. We certainly think
that |b1| is an important measure of study, and indeed it is the main way that we analyze
the quality of our bases in this work. However, the fact that one-block-reduction exists shows
that this should not be viewed as the only purpose of a basis-reduction algorithm.

Of course, the algorithms that we have discussed thus far are in fact non-trivial, because
they (1) find short non-zero codewords faster than one-block reduction; and (2) find whole
reduced bases and not just a single short non-zero codeword. Such reduced bases have
already found exciting applications in [17] and [8], and we expect them to find more.

1.4.5.2 Approximate Griesmer reduction

Recall that [17] calls a basis B ∈ Fk×n
q Griesmer reduced if b+

i is a shortest non-zero
codeword in C(B[i,k]) for all i. And, notice that, if one is willing to spend the time to find
shortest non-zero codewords in codes with dimension at most k, then one can compute a
Griesmer-reduced basis iteratively, by first setting b1 to be a shortest non-zero codeword in
the whole code, then projecting orthogonal to b1 and building the rest of the basis recursively.
(Griesmer-reduced bases are the analogue of Korkine-Zolotarev bases for lattices. We discuss
Griesmer-reduced bases more below.)

Our approximate-Griesmer-reduction algorithm is a simple variant of this idea. In
particular, it is really a family of algorithms parameterized by a subprocedure that finds short
(but not necessarily shortest) non-zero codewords in a code. Given such a subprocedure, the

APPROX/RANDOM 2024

19:14 More Basis Reduction for Linear Codes

algorithm first finds a short non-zero codeword b1 in the input code C. It then projects the
code orthogonally to b1 and builds the rest of the basis recursively. (To make sure that we
end up with a proper basis, care must be taken to assure that b1 is primitive. We ignore this
in the introduction. See the full version [21].)

The running time of this algorithm and the quality of the basis produced of course depends
on the choice of subprocedure. Given the large number of algorithms for finding short non-
zero codewords with a large variety of performance guarantees for different parameters
(some heuristic and some proven), we do not attempt here to study this algorithm in full
generality. We instead simply instantiate it with the Lee-Brickell-Babai algorithm from [17]
(an algorithm which itself uses [17]’s LLL algorithm as a subroutine). Perhaps unsurprisingly,
we find that this produces significantly better basis profiles (e.g., smaller |b1| and larger k1
and k∗

1) than all of the algorithms that we designed here. The price for this is, of course,
that the subprocedure itself must run in enough time to find non-zero short codewords in
dimension k codes.

We view this algorithm as a proof of concept, showing that at least in principle one can
combine basis-reduction techniques with other algorithms for finding short codewords to
obtain bases with very good parameters. This meshes naturally with the Lee-Brickell-Babai
algorithm in [17], which shows how good bases can be combined with other algorithmic
techniques to find short non-zero codewords. Perhaps one can merge these techniques more
in order to show a way to use a good basis to find a better basis, which itself can be used to
find a better basis, etc?

1.4.6 On “the best possible bases”
Finally, in the full version [21], we prove bounds on “the best possible bases” in terms of
the parameters k1 and k∗

1 . Indeed, recall that the (heuristic) running time of [17]’s Lee-
Brickell-Babai algorithm beats Lee-Brickell by a factor that is exponential in k1. And, we
argued above that k∗

1 can be viewed as a measure of the “non-triviality” of a basis reduction
algorithm. So, it is natural to ask how large k1 and k∗

1 can be in principle.
In the full version [21], we show that any code over F2 has a basis with k∗

1 ≥ Ω(log k2),
even if the support size is as small as n = k +

√
k. For this, we use Griesmer-reduced

bases (not to be confused with the approximate-Griesmer-reduced bases described above;
note in particular that it is NP-hard to compute a Griesmer-reduced basis). Notice that
this is a factor of Ω(log k) better than the logarithmic k∗

1 achieved by all known efficient
basis-reduction algorithms.

Here, we use the parameter k∗
1 and not k1 because it is easy to see that in the worst

case a code can have arbitrarily large support but still have no proper basis with k1 > 1.9
Typically, of course, one expects k∗

1 and k1 to be very closely related, so that one can view
this as heuristic evidence that typical codes have bases with k1 ≥ Ω(log2 k).

In the full version [21], we argue under a mild heuristic assumption that any basis for a
random code over F2 has k1 ≤ k∗

1 ≤ O(log2 k), even if the support size n is a large polynomial
in the dimension k.

Taken together, these results suggest that the best possible bases that we should expect
to find in practice should have k1 ≈ k∗

1 = Θ(log2 k) for typical settings of parameters. Such
a basis would (heuristically) yield a savings of kΘ(log k) in [17]’s Lee-Brickell-Babai algorithm.
So, it would be very exciting to find an efficient algorithm that found such a basis.

9 For example, take that code Fk−1
2 ∪ (Fk−1

2 + c) where c := (1, 1, . . . , 1) ∈ Fn
2 . Any proper basis of this

code must have k − 1 vectors with length one and therefore must have k1 = 1.

S. Ghentiyala and N. Stephens-Davidowitz 19:15

On the other hand, our (heuristic) upper bound on k1 suggests a limitation of basis
reduction for codes. In particular, we should not expect any improvement better than kΘ(log k)

in Lee-Brickell-Babai. And, the upper bound also suggests that basis-reduction algorithms
are unlikely to outperform the simple one-block-reduction algorithm for block sizes larger
than Ω(log2 k).

2 Preliminaries

2.1 Some notation

Logarithms are base two unless otherwise specified, i.e., log(2x) = x. We write Im for the
m×m identity matrix.

If b1, . . . , bk ∈ Fn
q , then (b1, . . . , bk) ∈ Fn×k

q denotes the matrix where each bi is a column
and (b1; . . . ; bk) ∈ Fk×n

q denotes the matrix where each bi is row i of B.
We say that a matrix B ∈ Fk×n

q is in systematic form if A = (Ik, X)P , where P is a
permutation matrix (i.e., if k contains the columns eT

1 , . . . , eT
k).

For any basis B ∈ Fk×n
q and any subset S ⊆ [n] with |S| = k such that BS has full rank,

we call the process of replacing B by (B|S)−1 systematizing B with respect to S. When the
set S is not important, we simply call this systematizing B. This procedure is useful at least
in part because it results in a proper basis.

We define two notions of the support of a vector. Specifically, we write

Supp(x) := {i ∈ J1, nK : xi ̸= 0} ,

and similarly

»Supp(x)i :=
{

0 xi = 0
1 xi ̸= 0 .

We can also define the support of an [n, k]q code C by extending the definitions of Supp and
»Supp,

Supp(C) ≜
⋃
c∈C

Supp(c) # »Supp(C) =
∨
c∈C

»Supp(c) ,

and we define the support of a matrix B ∈ Fk×n
q as the support of the code generated by

the matrix.
If A ∈ Fm×n

q , B ∈ Fr×s
q , then the direct sum of A and B, denoted A⊕B ∈ F(m+r)×(n+s)

q ,
is

A⊕B =
(

A 0m×s

0n×r B

)
We will often use the following important property regarding matrix direct sums. If A ∈ Fm×n

q ,
B ∈ Fr×s

q , x ∈ Fn
q , y ∈ Fs

q, then

(A⊕B)
(

x

y

)
=

(
Ax

By

)
.

APPROX/RANDOM 2024

19:16 More Basis Reduction for Linear Codes

3 Generalizing epipodal vectors, size reduction, and the fundamental
domain to Fq

In this section, we generalize many of the fundamental concepts in [17] from codes over F2
to codes over Fq. Specifically, we generalize the notions of projection, epipodal matrices, and
the size-reduction algorithm. We then study the geometry of the fundamental domain that
one obtains by running the size-reduction algorithm on a given input basis.

Much of this generalization is straightforward (once one knows the theory developed
for F2 in [17]). So, one might read much of this section as essentially an extension of
the preliminaries. The most difficult part, in the full version [21], is the analysis of the
fundamental domain (which is not used in the rest of the paper).

3.1 Projection and epipodal vectors
The notions of projection and epipodal vectors extend naturally to Fq from the notions
outlined in [17]. However, to ensure that this work is as self-contained as possible, we will
now explicitly outline how some of those notions extend to Fq. Notice that these operations
are roughly analogous to orthogonal projection maps over Rn.

▶ Definition 1. If x1 = (x1,1, . . . , x1,n), . . . , xk = (xk,1, . . . , xk,n) ∈ Fn
q , the function

π{x1,...,xk} : Fn
q → Fn

q is defined as follows:

π{x1,...,xk}(y)i =
{

yi x1,i ̸= 0 ∨ · · · ∨ xk,i ̸= 0
0 otherwise.

We call this “projection onto the support of x1, . . . , xk.”

▶ Definition 2. If x1 = (x1,1, . . . , x1,n), . . . , xk = (xk,1, . . . , xk,n) ∈ Fn
q , the function

π⊥
{x1,...,xk} : Fn

q → Fn
q is defined as follows:

π⊥
{x1,...,xk}(y)i =

{
yi x1,i = 0 ∧ · · · ∧ xk,i = 0
0 otherwise.

We call this “projection orthogonal to x1, . . . , xk.”

We will often simply write πx to denote π{x} and π⊥
x to denote π⊥

{x}
We now define the epipodal matrix of a basis for a code, which is the analogue of the

Gram–Schmidt matrix.

▶ Definition 3. Let B = (b1; . . . ; bk) ∈ Fk×n
q be a matrix with elements from Fq. The ith

projection associated to the matrix B is defined as πi := π⊥
{b1,...,bi−1}, where π1 denotes the

identity.
The ith epipodal vector is defined as b+

i := πi(bi). The matrix B+ := (b+
1 ; . . . ; b+

k) ∈
Fk×n

q is called the epipodal matrix of B.

The following notation for a projected block will be helpful in defining our reduction
algorithms. (The same notation is used in the lattice literature.)

▶ Definition 4. For a basis B = (b1; . . . ; bk) ∈ Fk×n
q and i, j ∈ [1, k] where i ≤ j, we use the

notation B[i,j] as shorthand for (πi(bi); . . . ; πi(bj)). Furthermore, for i ∈ [1, k] and j > k,
we define B[i,j] = B[i,k] for all j > k.

We will often write ℓi to denote |b+
i | when the basis B = (b1; . . . ; bk) is clear from context.

S. Ghentiyala and N. Stephens-Davidowitz 19:17

3.1.1 Basic operations on blocks
See the full version [21].

3.2 Size reduction and its fundamental domain
See the full version [21].

4 Proper bases and primitivity

We will primarily be interested in bases that are proper in the sense that the epipodal vectors
should all be non-zero.

▶ Definition 5. A basis is said to be proper if all its epipodal vectors b+
i are non-zero.

[17] observed that, given an arbitrary basis B ∈ Fk×n
q for a code, we can efficiently compute

a proper basis B′ for the same code by systematizing B. In particular, let A ∈ Fk×k
q be an

invertible matrix formed from k columns of B (which must exist because B is a full-rank
matrix). Then, B′ := A−1B is a proper basis for the code generated by B. In particular,
every code has a proper basis. From this, we derive the following simple but useful fact.

See the full version [21].

5 Redundant sets of coordinates, the last epipodal vector, and
backward reduction

We are now ready to develop the theory behind backward-reduced bases. A backward-reduced
basis is one in which the last epipodal vector b+

k is as long as possible. In the context of
lattices, such bases are called dual-reduced bases and the maximal length of the last Gram-
Schmidt vector has a simple characterization in terms of λ1 of the dual lattice. For codes,
the maximal length of the last epipodal vector behaves rather differently, as we will explain
below. In particular, we will see how to find a backward-reduced basis quite efficiently. In
contrast, finding a dual-reduced basis is equivalent to finding a shortest non-zero vector in a
lattice and is therefore NP-hard.

On our way to defining backward reduction, we first define the notion of redundant
coordinates. Notice that we only consider coordinates in the support of C.

▶ Definition 6. For a code C ⊆ Fn
q , we say that a set S ⊆ [n] of coordinates is redundant

for C if S ⊆ Supp(C) and for every c ∈ C and all i, j ∈ S, ci = 0 if and only if cj = 0.

The following simple claim explains the name “redundant.” In particular, for any codeword
c ∈ C, if we know ci for some i ∈ S, then we also know cj for any j ∈ S.

▷ Claim 7. For a code C ⊆ Fn
q , a set S ⊆ Supp(C) is redundant for C if and only if for every

i, j ∈ S, there exists a non-zero scalar a ∈ F∗
q such that for all c ∈ C, cj = aci.

Furthermore, to determine whether S is a set of redundant coordinates, it suffices to
check whether the latter property holds for all c := bi in a basis (b1; . . . ; bk) of C.

Proof. See the full version [21]. ◁

Next, we show that redundancy is closely connected with the last epipodal vector in a
basis.

APPROX/RANDOM 2024

19:18 More Basis Reduction for Linear Codes

▶ Lemma 8. For a code C ⊆ Fn
q with dimension k and S ⊆ [n], there exists a basis

B := (b1; . . . ; bk) of C with S ⊆ Supp(b+
k) if and only if S is redundant.

Furthermore, if S is redundant, then there exists a proper basis with this property.

Proof. See the full version [21]. ◀

The above motivates the following definition.

▶ Definition 9. For a code C ⊆ Fn
q , the repetition number of C, written η(C), is the maximal

size of a redundant set S ⊆ Supp(C).

In particular, notice that by Lemma 8, η(C) is also the maximum of |b+
k | over all bases

(b1; . . . ; bk) and this maximum is achieved by a proper basis. The next lemma gives a lower
bound on η(C), therefore showing that codes with sufficiently large support and sufficiently
low rank must have bases whose last epipodal vector is long.

▶ Lemma 10. For any code C ⊆ Fn
q with dimension k,

η(C) ≥
⌈

q − 1
qk − 1 · |Supp(C)|

⌉
.

Proof. See the full version [21]. ◀

We present in Algorithm 1 a simple algorithm that finds the largest redundant set of
a code C. (The algorithm itself can be viewed as a constructive version of the proof of
Lemma 10.)

Algorithm 1 Max Redundant Set.

Input: A basis B = (b1; . . . ; bk) ∈ Fk×n
q for C

Output: A redundant set S for C with |S| = η(C)
for j ∈ [n] do

aj ← B−1
i,j , where i ∈ [k] is minimal such that Bi,j ̸= 0.

end
Find S ⊆ Supp(C) with maximal size such that for all j1, j2 ∈ S and all i,
aj1Bi,j1 = aj2Bi,j2 .

return S

▷ Claim 11. Algorithm 1 outputs a redundant set S for C with |S| = η(C). Furthermore,
Algorithm 1 runs in time O(kn log(q) log(qn)) (when implemented appropriately).

Proof. See the full version [21]. ◁

5.1 Backward reduction
We are now ready to present our definition of backward-reduced bases.

▶ Definition 12. Let B = (b1; . . . ; bk) ∈ Fk×n
q be a basis of a code C. We say that B is

backward reduced if it is proper and |b+
k | = η(C(B)).

Finally, we give an algorithm that finds a backward-reduced basis. See Algorithm 2.

▷ Claim 13. On input a proper basis B, Algorithm 2 correctly outputs an invertible
matrix A such that AB is backward reduced. Furthermore, Algorithm 2 runs in time
O(nk log(q) log(qn)).

Proof. See the full version [21]. ◁

S. Ghentiyala and N. Stephens-Davidowitz 19:19

Algorithm 2 Backward Reduction.

Input: A proper basis B = (b1; . . . ; bk) ∈ Fk×n
q for C

Output: An invertible matrix A ∈ Fk×k
q such that AB is backward reduced.

{j1, . . . , jt} ← MaxRedundantSet(B)
Let m be minimal such that Bm,j1 ̸= 0.
for i ∈ [m + 1, k] do

bi ← bi −B−1
m,j1

Bi,j1bm

end
(b1; . . . ; bk)← (b1; . . . ; bm−1; bm+1; . . . ; bk; bm)
return the matrix corresponding to the linear transformation done to B.

5.2 Full backward reduction
Since backward reduction can be done efficiently, it is natural to ask what happens when
we backward reduce many prefixes B[1,i] of a basis. We could simply do this for all i ∈ [k],
but it is natural to be slightly more fine-grained and instead only do this for i ≤ τ for some
threshold τ . In particular, since the last k− poly(log n) epipodal vectors tend to have length
one even in very good bases (see the full version [21]to understand why), it is natural to take
τ ≤ poly(log n) to be quite small, which leads to very efficient algorithms. This suggests the
following definition.

▶ Definition 14. For some threshold τ ≤ k, a basis B ∈ Fk×n
q is fully backward reduced up

to τ if it is proper and B[1,i] is backward reduced for all 1 ≤ i ≤ τ .

We now show how to easily and efficiently compute a fully backward-reduced basis, using
the backward-reduction algorithm (Algorithm 2) that we developed above. We present the
algorithm in Algorithm 3 and then prove its correctness and efficiency. Notice in particular
that the algorithm only changes each prefix B[1,i] (at most) once.

Algorithm 3 Full Backward Reduction.

Input: A proper basis B := (b1; . . . ; bk) ∈ Fk×n
q for a code C and a threshold

τ ∈ [1, k]
Output: A basis for C that is totally backward reduced up to τ .
for i = τ, . . . , 1 do

A← BackwardReduction(B[1,i])
B ← (A⊕ Ik−i)B

end
return B

▶ Theorem 15. On input a proper basis B := (b1; . . . ; bk) ∈ Fk×n
q for a code C and a

threshold τ ∈ [1, k], Algorithm 3 correctly outputs a basis B′ ∈ Fk×n
q for C that is fully

backward reduced up to τ . Furthermore, the algorithm runs in time O(τ2n log(q) log(qn)).

Proof. See the full version [21]. ◀

We next bound |b1| of a fully backward-reduced basis. In fact, when τ ≥ ⌈logq n⌉, this
bound matches the Griesmer bound. In fact, it is not hard to see that with τ = k, a fully
backward-reduced basis is in fact LLL-reduced as well. But, the below theorem shows that
we do not need to go all the way to τ = k to achieve the Griesmer bound. This is because in
the worst case, |b+

i | = 1 for all i ≥ logq n anyway.

APPROX/RANDOM 2024

19:20 More Basis Reduction for Linear Codes

▶ Theorem 16. For any positive integers k, n ≥ k, and τ ≤ k, a basis B ∈ Fk×n
q of a code

C that is fully backward reduced up to τ satisfies

τ∑
i=1

⌈
|b1|
qi−1

⌉
≤ n− k + τ .

Proof. See the full version [21]. ◀

5.3 Heuristic analysis suggesting better performance in practice
Recall that our analysis of backward-reduced bases in Section 5 relied crucially on the
repitition number η(C), which is the maximum over all bases of C of the last epipodal
vector. We showed that η(C) can be equivalently thought of as the maximal set of redundant
coordinates. E.g., when q = 2, η(C) is precisely the number of repeated columns in the basis
B for C.

Our analysis of fully backward-reduced bases then relies on the lower bound on η(C) in
Lemma 10. The proof of Lemma 10 simply applies the pigeonhole principle to the (normalized,
non-zero) columns of a basis B for C to argue that, if there are enough columns, then one of
them must be repeated many times. Of course, the pigeonhole principle is tight in general
and it is therefore easy to see that this argument is tight in the worst case.

However, in the average case, this argument is not tight. For example, if the number n of
(non-zero) columns in our basis B ∈ Fk×n

2 is smaller than the number of possible (non-zero)
columns 2k − 1, then it is certainly possible that no two columns will be identical. But, the
birthday paradox tells us that even with just n ≈ 2k/2, a random matrix B ∈ Fk×n

2 will
typically have a repeated column. More generally, if a code C is generated by a random
basis B ∈ Fk×n

q , then we expect to have η(C) > 1 with probability at least 1− 1/ poly(n),
provided that, say, n ≥ 10 log(n)qk/2, or equivalently, provided that

k ≤ 2(logq n− logq(10 log(n))) .

We could now make a heuristic assumption that amounts to saying that the prefixes
B[1,i] behave like random matrices with suitable parameters (in terms of the presence of
repeated non-zero columns). We could then use such a heuristic to show that we expect the
output of Algorithm 3 to achieve

k1 > (2− o(1)) logq n .

We choose instead to present in the full version [21]a variant of Algorithm 3 that provably
achieves the above. This variant is identical to Algorithm 3 except that instead of looking at all
of B[1,i] and choosing the largest set of redundant coordinates in order to properly backward
reduce B[1,i], the modified algorithm chooses the largest set of redundant coordinates from
some small subset of all of the coordinates. In other words, the modified algorithm ignores
information. Because the algorithm ignores this information, we are able to rigorously prove
that the algorithm achieves k1 ≳ 2 logq n when its input is a random matrix (by arguing that
at each step the algorithm has sufficiently many fresh independent random coordinates to
work with).

We think it is quite likely that Algorithm 3 performs better (and certainly not much
worse) than this information-ignoring variant. We therefore view this as strong heuristic
evidence that Algorithm 3 itself achieves k1 ≳ 2 logq n. (This heuristic is also confirmed by
experiment. See the full version [21].)

S. Ghentiyala and N. Stephens-Davidowitz 19:21

5.3.1 Backward reducing without all of the columns
See the full version [21].

References
1 Divesh Aggarwal, Daniel Dadush, Oded Regev, and Noah Stephens-Davidowitz. Solving the

shortest vector problem in 2n time using discrete Gaussian sampling. In STOC, 2015.
2 Divesh Aggarwal and Noah Stephens-Davidowitz. (Gap/S)ETH hardness of SVP. In STOC,

2018.
3 Miklós Ajtai. Generating hard instances of lattice problems. In STOC, 1996.
4 Miklós Ajtai. The Shortest Vector Problem in L2 is NP-hard for randomized reductions. In

STOC, 1998.
5 Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-case/average-case

equivalence. In STOC, 1997.
6 Miklós Ajtai, Ravi Kumar, and D. Sivakumar. A sieve algorithm for the Shortest Lattice

Vector Problem. In STOC, pages 601–610, 2001.
7 Michael Alekhnovich. More on average case vs approximation complexity. In FOCS, pages

298–307, 2003.
8 Nicolas Aragon, Julien Lavauzelle, and Matthieu Lequesne. decodingchallenge.org, 2019. URL:

http://decodingchallenge.org.
9 Sanjeev Arora, László Babai, Jacques Stern, and Z. Sweedyk. The Hardness of Approximate

Optima in Lattices, Codes, and Systems of Linear Equations. J. Comput. Syst. Sci., 54(2):317–
331, 1997.

10 L. Babai. On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica,
6(1):1–13, 1986.

11 Shi Bai, Damien Stehlé, and Weiqiang Wen. Measuring, simulating and exploiting the head
concavity phenomenon in BKZ. In Asiacrypt, 2018.

12 Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in nearest
neighbor searching with applications to lattice sieving. In SODA, 2016.

13 Huck Bennett, Alexander Golovnev, and Noah Stephens-Davidowitz. On the quantitative
hardness of CVP. In FOCS, 2017.

14 E. Berlekamp, R. McEliece, and H. van Tilborg. On the inherent intractability of certain
coding problems. IEEE Transactions on Information Theory, 24(3):384–386, 1978.

15 Peter van Emde Boas. Another NP-complete problem and the complexity of computing short
vectors in a lattice. Technical report, University of Amsterdam, 1981.

16 Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates. In Asiacrypt,
2011.

17 Thomas Debris-Alazard, Léo Ducas, and Wessel P. J. van Woerden. An algorithmic reduction
theory for binary codes: LLL and more. IEEE Transactions on Information Theory, 68(5):3426–
3444, 2022. URL: https://eprint.iacr.org/2020/869.

18 Irit Dinur, Guy Kindler, Ran Raz, and Shmuel Safra. Approximating CVP to within almost-
polynomial factors is NP-hard. Combinatorica, 23(2):205–243, 2003.

19 I. Dumer, D. Micciancio, and M. Sudan. Hardness of approximating the minimum distance of
a linear code. IEEE Transactions on Information Theory, 49(1):22–37, 2003.

20 Nicolas Gama and Phong Q. Nguyen. Finding short lattice vectors within Mordell’s inequality.
In STOC, 2008.

21 Surendra Ghentiyala and Noah Stephens-Davidowitz. More basis reduction for linear codes:
backward reduction, BKZ, slide reduction, and more, 2024.

22 J. H. Griesmer. A bound for error-correcting codes. IBM Journal of Research and Development,
4(5):532–542, 1960.

23 Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public key
cryptosystem. In ANTS, pages 267–288, 1998.

APPROX/RANDOM 2024

http://decodingchallenge.org
https://eprint.iacr.org/2020/869

19:22 More Basis Reduction for Linear Codes

24 P. J. Lee and E. F. Brickell. An observation on the security of McEliece’s public-key cryptosys-
tem. In Eurocrypt, 1988.

25 Arjen K. Lenstra, Hendrik W. Lenstra, Jr., and László Lovász. Factoring polynomials with
rational coefficients. Mathematische Annalen, 261(4):515–534, December 1982.

26 Robert J. McEliece. A public-key cryptosystem based on algebraic coding theory. DSN
Progress Report, Jet Propulsion Laboratory, 1978.

27 Daniele Micciancio. The Shortest Vector Problem is NP-hard to approximate to within some
constant. SIAM Journal on Computing, 30(6):2008–2035, 2001.

28 Daniele Micciancio and Michael Walter. Practical, predictable lattice basis reduction. In
Eurocrypt, 2016. URL: http://eprint.iacr.org/2015/1123.

29 Phong Q. Nguyen and Brigitte Vallée, editors. The LLL Algorithm: Survey and Applications.
Springer-Verlag, 2010.

30 Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. J.
ACM, 56(6):Art. 34, 40, 2009. doi:10.1145/1568318.1568324.

31 Claus-Peter Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. Theor.
Comput. Sci., 53(23):201–224, 1987.

32 Noah Stephens-Davidowitz and Vinod Vaikuntanathan. SETH-hardness of coding problems.
In FOCS, 2019.

33 Alexander Vardy. Algorithmic complexity in coding theory and the Minimum Distance
Problem. In STOC, 1997.

34 Michael Walter. Lattice blog reduction: The Simons Institute blog. https://blog.simons.
berkeley.edu/2020/04/lattice-blog-reduction-part-i-bkz/, 2020.

http://eprint.iacr.org/2015/1123
https://doi.org/10.1145/1568318.1568324
https://blog.simons.berkeley.edu/2020/04/lattice-blog-reduction-part-i-bkz/
https://blog.simons.berkeley.edu/2020/04/lattice-blog-reduction-part-i-bkz/

Online k-Median with Consistent Clusters
Benjamin Moseley #

Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA, USA

Heather Newman #

Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA, USA

Kirk Pruhs #

Department of Computer Science, University of Pittsburgh, Pittsburgh, PA, USA

Abstract
We consider the problem in which n points arrive online over time, and upon arrival must be
irrevocably assigned to one of k clusters where the objective is the standard k-median objective.
Lower-bound instances show that for this problem no online algorithm can achieve a competitive
ratio bounded by any function of n. Thus we turn to a beyond worst-case analysis approach, namely
we assume that the online algorithm is a priori provided with a predicted budget B that is an upper
bound to the optimal objective value (e.g., obtained from past instances). Our main result is an
online algorithm whose competitive ratio (measured against B) is solely a function of k. We also
give a lower bound showing that the competitive ratio of every algorithm must depend on k.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases k-median, online algorithms, learning-augmented algorithms, beyond worst-
case analysis

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.20

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2303.15379 [20]

Funding Benjamin Moseley: Supported in part by a Google Research Award, an Inform Research
Award, a Carnegie Bosch Junior Faculty Chair, and NSF grants CCF-2121744 and CCF-1845146.
Heather Newman: Supported in part by a Google Research Award, an Inform Research Award, a
Carnegie Bosch Junior Faculty Chair, and NSF grants CCF-2121744 and CCF-1845146.
Kirk Pruhs: Supported by NSF grants CCF-1907673, CCF-2036077, CCF-2209654 and an IBM
Faculty Award.

1 Introduction

Clustering problems, such as k-means clustering and k-median clustering, are a classic
genre of learning / data mining problems [5]. Typically the input consists of a collec-
tion X = {x1, . . . , xn} of points in some metric space M (typically ℜd with the 1-norm
or 2-norm) and a positive integer k. Typically k is a small constant [2, 5]. The out-
put for a center-based clustering problem is a collection c1, . . . , ck of k points from
X, called centers, that succinctly summarize the data points. The implicit cluster Ci

corresponding to the center ci is the collection of points in X whose closest center is ci,
that is Ci = {xj | arg minh∈[k] d(xj , ch) = i}, where d(·, ·) is the distance function for
the metric space. The output for a cluster-based clustering problem is a partition
C1, . . . Ck of X into k parts, called clusters. The implicit center of each cluster Ci is then
ci = arg minxh∈Ci

∑
xj∈Ci

d(xh, xj). For both center-based clustering and cluster-based
clustering, the objective is to minimize the cost of the clustering. This paper considers the
k-median objective which is the aggregate distance from each point to the center of its cluster,
that is

∑k
i=1

∑
xj∈Ci

d(xj , ci).
© Benjamin Moseley, Heather Newman, and Kirk Pruhs;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 20; pp. 20:1–20:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:moseleyb@andrew.cmu.edu
https://orcid.org/0000-0001-8162-017X
mailto:hanewman@andrew.cmu.edu
https://orcid.org/0009-0006-6393-3707
mailto:kirk@cs.pitt.edu
https://orcid.org/0000-0001-5680-1753
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.20
https://arxiv.org/abs/2303.15379
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Online k-Median with Consistent Clusters

Here we consider applications where the data points in X arrive online over time. In an
online center-based clustering problem, the online algorithm maintains a collection
of centers. In a online cluster-based clustering problem, the online algorithm needs
to assign the data points to a cluster when they arrive, that is each point xj needs to be
assigned a label ℓj ∈ [k] when xj arrives. In either case, these choices should (ideally) be
irrevocable.

An application of online clustering given by [16] is the task of clustering news articles
that arrive online, e.g., at Yahoo news or Google news. We refer to these outlets as the
news providers. The news provider selects some (approximately) fixed number k of articles
to feature on the news homepage, and has a “view complete coverage” link next to each
article to see all the news stories on this topic. The problem of selecting the best k articles
that summarize all current news articles is better modeled as a center-based clustering. The
problem of partitioning all news articles into clusters of similar articles is better modeled as
a cluster-based clustering. Other applications can be found in [17, 14], but we will the news
story clustering application as our running canonical example.

A line of research [12, 11, 14, 17] within online clustering goes by moniker of consistent
clustering. Research on consistent clustering studies the tradeoffs between the following
objectives:

Maximizing the Quality of the Clustering: One seeks a clustering of small cost.
The most common metric to measure the quality of a solution is the ratio of the cost of
this solution to cost of the optimal solution. The most common metric to measure the
quality of an online algorithm is the competitive ratio, which is the maximum (over all
inputs) of the ratio of the cost of the online algorithm’s solution to the optimal cost.
Maximizing Consistency: Ideally one would like the centers in a center-based problem,
or the clusters (labels of points) in a cluster-based problem, to be consistent over time.
That is, they should change as little as possible. E.g., the news provider does not want
the clusters to completely change every time a new news article is written.

1.1 Prior Work on Consistent Clustering

k-median clustering is NP-hard, but constant-factor approximation algorithms are known [9,
13, 1, 15, 6].

All prior algorithmic research on consistent clustering that we are aware of [12, 11, 14, 17, 4]
is center-based. That is, the online algorithm explicitly maintains a collection of centers, and
the clustering is implicit; each point is associated with the closest center, but there are no
restrictions on how often points’ associated centers can change.

In the first paper in this line of research, Liberty et al. [17] gave a lower bound that
showed that one cannot simultaneously have both high quality and maximum consistency.
That is, they showed that if a center cannot be changed once it is established, then there is no
algorithm whose competitive ratio can be bounded by any function of n and k. Thus various
“beyond worst-case analysis” (see [21]) approaches have been used in the literature to attempt
to circumvent the obstacle presented by this lower bound. One approach is to use bi-criteria
analysis or resource augmentation analysis. This analysis allows the online algorithm to use
more than k centers, and then compares the cost of the algorithm’s clustering to the optimal
one using k centers [17]. A second approach is to allow the algorithm recourse, which in this
setting means allowing the algorithm to change the centers (or clusters) a small number of
times [14, 11, 12].

B. Moseley, H. Newman, and K. Pruhs 20:3

Resource Augmentation. Liberty et al. [17] give a randomized algorithm for k-means
clustering and analyzes this algorithm using resource augmentation analysis. They show that
the expected number of clusters/centers used by their algorithm is O(k log n log(n∆)) and at
all times the expected cost of the clustering using these centers is at most O(log n) times the
optimal cost using k clusters. Here ∆ is the aspect ratio of the data points, which is the ratio
between the distance between the furthest pair of points and the distance between the closest
pair of points. The algorithm leverages a randomized online algorithm for facility location
of Meyerson [18] to decide whether to create a new center at a newly arriving data point.
Once a center is established, it is maintained throughout the course of the algorithm. Finally,
they give a randomized algorithm that requires a priori knowledge of n and a lower bound
on the optimal with k centers, and that maintains a collection of O(k log n log α) centers in
expectation that has expected cost O(1) times the optimal cost with k centers. Here α is the
ratio between the actual optimal cost with k centers and the lower bound provided a priori
to the algorithm.

Recourse. Lattanzi and Vassilvitskii [14] give a randomized algorithm for k-median cluster-
ing that uses recourse. It maintains the invariant that the cost of the current centers is always
O(1)-competitive with the optimal clustering of the data points seen to date. To maintain this
invariant, the expected number of cluster center changes used is O(k2 log4(n∆)). They show
a similar lower bound, that is they show that every algorithm requires Ω(k logc

∆
k) center

changes to maintain O(c)-competitiveness. Further, they show that it possible to maintain
O(1)-competitiveness with O(k log2(n∆)) center changes, but this is given as an existential
result. In a follow-up paper, Fichtenberger et al. [11] gave a randomized algorithm that is
O(1)-competitive with O(k polylog(n∆)) cluster center changes. In both papers, the result
of Meyerson [18] is again a key subroutine. The results of Lattanzi and Vassilvitskii [14] were
extended to k-median clustering with outliers (so one could opt to not cluster a pre-specified
number of points) by Guo et al. [12]. Lattanzi and Vassilvitskii [14] also observe that for
k-center clustering an algorithm of Charikar et al. [8] yields an O(1)-competitive clustering
with O(k log(n∆)) center changes.

While not directly germane to the work in this paper, there is also research on online
clustering in the streaming setting, where the emphasis is more on the algorithm using a
small amount of memory, or quickly responding to the arrival of a new data point (e.g.
[7, 10, 3]).

1.2 Our Contribution

Our research investigates consistent clustering for cluster-based problems (recall that all the
past algorithmic consistent clustering publications that we are aware of focus on center-based
clustering). We are interested in applications where the focus is on explicitly maintaining
consistent clusters (and not necessarily on maintaining consistent centers). The application
where Google or Yahoo news is trying to maintain collections of similar news articles is an
example of such an application. Note that even the algorithms from [17] that are perfectly
consistent from a center perspective, in that once a center is established it persists until
the end of the algorithm, are not necessarily consistent from a cluster perspective in that a
data point could change clusters every time a new center is established. All one can say (at
least naively) about the cluster consistency of the algorithms from [17] is that no data point
changes clusters more than O(k log n log(n∆)) times.

APPROX/RANDOM 2024

20:4 Online k-Median with Consistent Clusters

▶ Problem 1 ((Online) cluster-based clustering). The points X = {x1, . . . , xn} from a metric
space arrive online in this (adversarial) order. Each point must be given an irrevocable label
from {1, . . . , k} (i.e., irrevocably assigned a cluster) upon arrival. (The number of points n

is not known.) The goal is to minimize the k-median objective.

Beyond Worst-Case Model. We first observe that the lower bound from [17] extends to
the cluster-based setting, so no online algorithm can achieve a competitive ratio bounded
by any function of n. Thus we turn to a learning-augmented approach, namely we assume
that the algorithm is provided a priori with an estimated upper bound B on the cost OPT
of the final optimal clustering; recourse and resource augmentation are not allowed. This
approach is both natural and appealing, as the a priori information provided to the algorithm
is minimal. Moreover, it finds motivation in the Google/Yahoo news application, where
presumably the final objective values for prior instances could be used as a basis to obtain a
reasonable estimate for B. Thus we then seek algorithms that will maintain a clustering of
low cost relative to B (not the current optimal cost for the points that have arrived to date).
We say an algorithm is c-competitive with respect to B if the algorithm’s cost is at most
c · B on instances where the optimal cost is at most B (after all points have arrived).

We first show that any deterministic algorithm must have dependence on k in the
competitive ratio. The proof is deferred to the full version.

▶ Proposition 1. Any deterministic algorithm for cluster-based clustering is Ω(k)-competitive
with respect to B.

In almost all applications, k is a small constant [2, 5]. Thus, we ask if an algorithm can
have performance only depending on k and not on the large parameters ∆ and n.

Does there exist an online algorithm for Problem 1 that, given a priori knowledge of an
upper bound B on OPT, achieves competitiveness independent of n and ∆?

1.3 Results
Our main question is whether there exists an algorithm with competitiveness depending only
on k (and not n or ∆). We answer this constructively:

▶ Theorem 2. There is a poly-time algorithm for cluster-based clustering that is O(k53k)-
competitive with respect to B.

Intuitively, our algorithm uses the value of B to determine a scale for which costs are
cheap (namely that are small relative to B) and which are expensive (namely that are large
relative to B). Thus, one upshot of our results is that this minimal scaling information is
all that the online algorithm needs to overcome the strong lower bound. Moreover, existing
algorithms/subroutines in the recourse and resource augmentation settings do not seem
to translate to guarantees in our setting. Thus, our setting requires novel techniques and
structural insights, which we turn to next.

2 Technical Overview

As our algorithm is fairly detailed, we begin with a technical overview to build the case for
our design decisions.

To understand the motivation for the learning-augmented approach, let us consider the
lower bound instance from [17]. It is sufficient to assume k = 2. The first point x1 arrives
and is assigned some irrevocable label. Then assume the second data point x2 arrives a unit

B. Moseley, H. Newman, and K. Pruhs 20:5

distance from x1. If the online algorithm assigns x2 the same label as x1, then the cost of
the algorithm’s clustering is 1, and the optimal cost is 0 (which is the cost if each of these
data points were given a different label). This results in the algorithm having unbounded
competitiveness. In contrast, if the algorithm gave x2 a different label from x1 then the third
data point x3 could arrive very far away. In which case, the algorithm’s clustering would
necessarily have very high cost (as x3’s label would have to be either the same as x1’s or the
same as x2’s). However, the optimal clustering would have cost 1 (by giving x1 and x2 the
same label and giving x3 the remaining label). Again, this results in competitiveness that
can only be bounded by ∆ (which may be much larger than n or k).

Intuitively, the dilemma faced by the algorithm when x2 arrives is that it does not know
whether the distance between x1 and x2 is small or large. Equipped with an estimate of the
optimal cost B, the algorithm could resolve the dilemma in this case by giving x2 a different
label than x1 if their distance is larger than B and the same label otherwise.

2.1 Properties of competitive algorithms

To better understand our algorithm design it is useful to understand some instances that
illustrate some properties that a competitive algorithm must have.

A simple first observation is that any reasonably competitive algorithm can never use
t + 1 labels if it is the case that the points to date could be clustered with cost at most B

using at most t labels. If the algorithm ever allowed this to happen, it could be that the next
k − t data points could arrive very far from the previous data points, and very far from each
other. Thus after these data points arrive, the algorithm’s cost would increase by an amount
depending on the diameter of the metric space, while there would still be a clustering of cost
at most B, since the clustering that used t labels could be extended with no additional cost
by giving each of the new k − t data points a new label.

Natural greedy algorithm fails. In light of this last observation, a natural greedy algorithm
would maintain the invariant that the number of labels it uses is always equal to the minimum
number of labels necessary for a clustering of cost at most B, and then give each new data
point the label that minimizes the increase in cost. To see why such an algorithm (and other
similar algorithms) can have unbounded cost even when k = 2, and the metric space is the
real line, consider the following instance (see Figure 1). Let α be an arbitrarily large positive
integer. We construct an example in which the budget B = 2. The first point arrives at
location −2. Say the algorithm gives this point the label blue. The next point arrives at
location 1. Now, we know that any offline clustering with cost at most 2 must use at least 2
clusters. So the greedy algorithm would give this new point a second label, say green, as
that would minimize the increase in the objective. Then a total of α additional points arrive
at location 1. The algorithm labels these points green. Then α points arrive at the origin 0.
It is still the case that only 2 clusters are required in order to have cost at most 2, since we
may place the points at location −2 and the origin in one cluster, and the points at location
1 in the other cluster. However the algorithm would assign each point arriving at the origin
the label green, since this increases the objective by at most 1 while assigning such a point
the label blue increases the objective by 2. Yet, this results in a solution for the algorithm in
which the contribution of green points towards the objective is α.

APPROX/RANDOM 2024

20:6 Online k-Median with Consistent Clusters

Figure 1 An example in which the natural greedy algorithm fails.

Upon reflection of this lower bound instance for the natural greedy algorithm, there
appear to us to be two natural hypotheses as to the “mistake” that this algorithm is making,
and correspondingly two natural paths towards a remedy:

One hypothesis is that greedy assignment is a mistake, and then the natural remedy is
some label assignment rule more sophisticated than greedy.
Another is that the algorithm was too hasty in using a new label. Thus the natural
remedy would be to delay using a new label until it is more clear as to a region where
arriving data points should be given this new label. Note in the example in Figure 1 that
if the algorithm had waited until some reasonable number of data points had arrived at
the origin before using the second label, then the algorithm might have been able to see
that the right choice was to give the remaining points arriving at the origin the second
label of green.

2.2 Techniques
Here we primarily adopt the second remedy/approach (while also considering an alternate
greedy assignment policy). To apply this remedy we must address the following:

Under what conditions can the algorithm justify the use of an additional label, increasing
from t − 1 labels to t labels?
When this can be justified, how should we modify our prior partition of space into t − 1
parts to a partition into t parts? We would like to greedily assign each point to its
“closest” part.

Well-separated points. At a high level our answer to the first question is that we do not use
t labels until there exist t well-separated points xα(1), . . . , xα(t). We will say that a collection
of points xα(1), . . . , xα(t) from a collection S of points is β-well-separated with respect
to wS (for some β > 0) if for all i, j ∈ [t], i ̸= j

min{wS(xα(i)), wS(xα(j))} · d(xα(i), xα(j)) ≥ β · B (⋆)

Here wS(xh) is what we call the natural weight of point xh in S, which is the maximum
number of points in S whose distances to xh sum to at most 2B:

wS(xh) := max{|S′| : S′ ⊆ S,
∑
s∈S′

d(s, xh) ≤ 2B}.

The condition (⋆) states that every pair of these t points is far apart – according to a weighted
notion of distance. In turn, the weights used in this notion of distance are the so-called
natural weight of each point, which captures the density of its nearby points. Intuitively, if
we have t well-separated points, then not only must any near-optimal solution use t labels,
but such a solution cannot combine the points near xα(i) and the points near xα(j) into a
single cluster.

Pivots. The algorithm is divided into at most k phases. For each phase t, the algorithm
maintains a collection of points p1, . . . , pt from the online stream X which we call pivots. The
pivots p1, . . . , pt stay fixed during phase t. The key property they should satisfy is that they

B. Moseley, H. Newman, and K. Pruhs 20:7

are well-separated with respect to the points seen so far. Between phases, we increase the
number of pivots, thus allowing the algorithm to use more labels. The pivot pi is associated
with the label i. Thus, during phase t, there are t clusters (i.e., t labels in use). When a new
point arrives, it is assigned the label i of the pivot pi nearest to it (so we maintain a greedy
labelling rule). Importantly, though, the location of the pivot pi for label i may change over
time. Roughly speaking, this occurs when there is a better representative for cluster i.

Pivots vs. centers. While one might reasonably think that the pivots are intuitively
(low-cost) centers for the clusters, this intuition is only partially correct. Part of the subtlety
of the algorithm design is that there are in fact scenarios where some pivots are poor centers
for the corresponding clusters, but still good representatives for making cluster assignment
decisions. What is critical is that the pivots are located so as to guarantee that using
greedy assignment in the future results in a relatively low cost assignment; so pivots serve
to recruit points to the right clusters. Our algorithm evinces a distinction between a good
representative for a cluster in the long-term (a pivot) and a good center at a single moment.

Invariants. In order for our cost analysis to be tractable, the algorithm should maintain
the following invariants:

Each pivot pi is located in a region where it would not be too costly to assign points
arriving there the label i.
The pivots p1, . . . , pt for phase t are well-separated (for some appropriate choice of β)
during phase t.1

There is no other point that is well-separated from the pivots during a phase. (Otherwise,
this indicates that another label can and should be in use.)
The locations of the pivots should not move very often.

Note that some of these invariants can intuitively be in opposition to each other, which
requires that the algorithm design be a bit detailed, as there are several different cases where
maintaining this invariant requires different updates to the pivots. We now give an overview
of how the algorithm maintains these invariants, highlighting representative cases.

2.3 Preliminaries

Assumptions. We state our results assuming B = OPT, but all still hold by replacing OPT
with B.

Terminology. Recall from above the natural weights wS(·). We will always take S to be
some prefix of the online stream X. Note wS(p) can only increase over time as S enlarges.

Other terms related to well-separation are: A pair of points xi, xj are β-attached with
respect to wS if min{wS(xi), wS(xj)} · d(xi, xj) < β · B, i.e., the well-separated condition
does not hold for this pair. A useful way of viewing attachment is that we may move a
certain number of points lying near xαj

to xαi
at bounded cost (but perhaps not in the

reverse direction). We say p is β-well-separated from a set of points {xα(1), . . . , xα(m)}
with respect to wS if min{wS(p), wS(xα(i))} · d(p, xα(i)) ≥ β · B, ∀i ∈ [m].

1 β must be initialized sufficiently large and also decrease as the number of pivots increases.

APPROX/RANDOM 2024

20:8 Online k-Median with Consistent Clusters

Figure notation. In all figures below, dashed lines indicate well-separation. Solid lines
indicate attachment; where included, arrows on solid lines specify the direction of attachment,
i.e., point from smaller to larger natural weights (see previous paragraph). Colors except
black correspond to cluster labels. Small circles drawn near a larger circle indicate the points
attaining the natural weight of the larger point (the maximizing set S′ in the definition of
wS).

2.4 Subroutines
There are two subroutines used to enlarge the set of pivots from phase t to phase t + 1, the
Add Operation and the Exchange Operation. There are subtleties to the execution of
these operations that require we also keep track of good centers for the clusters built so far,
called estimated centers.

Estimated Centers. As the pivots are not necessarily good centers (for example, pivot p1
at location −2 as the points arrive at location 1 in Figure 1), the algorithm also maintains a
collection c1, . . . , cT of estimated centers for the T labels2 that have been used to date. The
estimated centers are updated at the end of some phases, and satisfy the invariant that cj

is a center for label j’s current cluster with bounded cost. Consider Figure 2. At the start
of phase T , cold

j is the estimated center for points in cluster j. Points arriving in phase T

that are closer to pj than to other pivots are given label j (by our greedy assignment rule).
However, these new points may be concentrated around, for instance, y2, so that pj is not
actually a good center for cluster j at the end of phase T (even though it is fine for labelling
purposes).

Figure 2 Updating the estimated centers at the end of a phase.

Thus, when it comes time to reset the pivots at the end of phase T , we might need to
move pj to the new estimated center y2 = cnew

j or to a nearby point. So, estimated centers
are not only used in the cost analysis, but critically are used algorithmically to update the
locations of pivots. The computation of the estimated centers will involve running an offline
approximation algorithm on the points seen to date.

Add Operation. An Add Operation is applicable when there is a point xα that is well-
separated from the current pivots. Intuitively, this means a new label (cluster) can be
justified, but the implementation requires the consideration of several possible scenarios. In
the simplest scenario xα is near a cluster of new points that are all far from previous points,
and the pivot pt+1 for the new label (t + 1) is set to xα. In some scenarios an old pivot pi

(i ≤ t) is set to xα and pt+1 is set to pi (so the new pivot location inherits the old label i and
an old pivot location gets the new label t + 1). Intuitively, this occurs when the estimated

2 We use T instead of t here to distinguish that this subroutine is only executed at the end of certain
phases; see Section 3.

B. Moseley, H. Newman, and K. Pruhs 20:9

center ci for cluster i is at or near the location of xα. See Figure 3 (left); take i = 2, t = 4,
and xα = c2. Finally, there are scenarios where xα is close to two different clusters; in this
case xα is never made a pivot and instead two pivots are added at the estimated centers of
these clusters (so we skip straight to phase t + 2). See Figure 3 (right). One must show that
this move maintains the well-separation invariant.

Figure 3 Two cases of the Add Operation.

Exchange Operation. An Exchange Operation is applicable when there are two points xα

and xγ near a pivot pj that are well-separated from each other and the other pivots (besides
pj). See Figure 4 (left); take j = 3. So intuitively the cluster of points labeled j appear to
be splitting into two clusters. In the simplest scenario the location of pivot pj is set to the
location of one of xα or xγ , and the location of the new pivot pt+1 is set to the other. See
Figure 4 (right); set j = 3, t = 4.

Figure 4 A case of the Exchange Operation.

This scenario occurs in the instance depicted in Figure 1. The first pivot p1 is initially
set to location −2. The points arriving at location 1 would all be assigned the label 1 (blue)
as there is no point well-separated from p1 (the points located at 1 are not separated from p1
because the points at p1 can be cheaply moved to location 1). When enough points have
arrived at the origin, then the points xα = 0 and at xγ = 1 are near p1 (because the point at
p1 can be cheaply moved to either xα or xγ), but are well-separated from each other and the
pivots other than p1. Thus our algorithm would locate p1 at 1 and p2 at the origin. While
this gives intuition, there are other more subtle scenarios.

3 Algorithm Description

The algorithm sees an online sequence X = {x1, x2, . . . xn} of points. Let Xi = {x1, x2, . . . xi}.
Let wi be shorthand for wXi . During any phase t, the algorithm maintains:

a collection of previously arriving points p1, . . . , pt that have been designated as pivots,
where t is the number of labels used by the algorithm to date and pivot pj is associated
with label j,
a separation parameter βt = 8 · 3k−t+2, and
a collection of previously arriving points c1, . . . , cs (s ≤ t) that have been designated as
estimated centers.

Phase t is the set of time steps when there are t pivots. Phase 1 is initialized as follows:
the first point x1 is given the label 1, the first pivot p1 is set to x1, and the collection of
estimated centers is empty. Let T be the current phase. The algorithm handles the arrival

APPROX/RANDOM 2024

20:10 Online k-Median with Consistent Clusters

of each subsequent point xi as follows. It checks whether there is an applicable Add or
Exchange Operation, both of which will increase the number of pivots. If so, phase T ends.
First estimated centers c1, . . . , cT are computed, and then, using these, the algorithm carries
out consecutive Add and Exchange Operations (giving preference to Add Operations for
technical reasons) until there are none left. With each operation, the phase increases and
the pivots are reset. Call the last phase in this sequence of consecutive operations T +. (Note
that T + ≥ T + 1.) The point xi is the first point labelled during phase T + (it is not labelled
during phase T). In summary:
1. If there is an applicable Add or Exchange Operation upon the arrival of xi then compute

new Estimated Centers c1, . . . cT .
a. Repeat while there is an applicable Add Operation or Exchange Operation.

i. If there is an applicable Add Operation then apply an arbitrary applicable one.
ii. Else apply an arbitrary applicable Exchange Operation.

2. Give xi label j, where pj is the nearest pivot (among p1, . . . , pT +) to xi

We then repeat the above steps upon the arrival of xi+1. Note that if there is t such that
T < t < T +, then no points are labelled during phase t. We call such phases t during which
no points are labelled intermediate. During each other phase, at least one point is labelled,
and we call such phases non-intermediate. So for a non-intermediate phase T , T + is the
first non-intermediate phase after T , and we will also use T − to refer to the last intermediate
phase before T . We now describe the three subroutines.

3.1 The Estimated Center Subroutine
This subroutine computes T new estimated centers c1, . . . , cT from pivots p1, . . . pT , the
points Xi−1 that have arrived before xi, and estimated centers c1, . . . cT − .

Choose y1, . . . , yk ∈ Xi−1 to be an (offline) optimal collection of k centers3 for the points
in Xi−1. For each offline optimal center yh, h ∈ [k], define p(yh) to be the pivot with the
minimum weighted distance to yh, that is,

p(yh) = arg min
pj

(min{wi−1(pj), wi−1(yh)} · d(pj , yh)) (†)

Say that yh is assigned to pj if p(yh) = pj . For each pivot pj , we define the set δ(pj) to
contain a subset of the offline optimal centers that are assigned to pj , and possibly cj as well;
the points in δ(pj) are “close” to pj in some sense. In particular, yh ∈ δ(pj) if p(yh) = pj and
wi−1(yh) > wi−1(p(yh)). Also, cj is in δ(pj) if wi−1(cj) > wi−1(pj) and cj is βt+1-attached
to pj w.r.t. wi−1.

As an example, see Figure 2. Here, δ(pj) = {y1, y2}, so cj (denoted cold
j) is not in δ(pj),

because the arrow from cold
j to pj (representing attachment) points in the wrong direction.

For each j ∈ [T], we now define the new estimated center cj : If wi−1(pj) ≥
maxp∈δ(pj) wi−1(p) then cj = pj , else

cj = arg max
p∈δ(pj)

wi−1(p) (‡)

So in Figure 2, cj is updated to y2 (denoted cnew
j), because y2 has the largest weight in δ(pj).

Intuitively, this means that cnew
j is now a better center for cluster j than, say, cold

j .

3 To run in poly-time, replace with any constant approximation algorithm. This algorithm’s cost will
change by a constant factor.

B. Moseley, H. Newman, and K. Pruhs 20:11

3.2 The Add Operation Subroutine
Let t ≥ T be the number of pivots when an Add Operation is called (during an execution
of (i) above). The Add Operation applies if there is a point xα ∈ Xi such that xα is
βt+1-well-separated from the current pivots p1, . . . , pt with respect to the weights wi. (E.g.,
Figure 3, left, with t = 4.) The Add Operation depends on xα, Xi, the current pivots
p1, . . . , pt, and estimated centers c1, . . . , cT . In most cases, the Add Operation adds xα to
the set of pivots, and changes the location of up to two previous pivots (Figure 3).

Define wt := wi−1 if t = T and wt := wi if t > T .4
1. If there is an estimated center cj that is βt+1-well-separated from p1, . . . , pt w.r.t. wi

then set pt+1 = pj and set pj = cj . (Figure 3, left)
2. Else if it is the case that for every estimated center cj that is βt+2-attached to xα w.r.t.

wi it is also the case that wt(cj) < wt(pj), then set pt+1 = xα.
3. Else if there exists a unique estimated center cj is βt+2-attached to xα w.r.t. wi and

wt(cj) ≥ wt(pj) then set pt+1 = pj and pj = xα.
4. Else Let cf and cg be estimated centers such that each is βt+2-attached to xα w.r.t. wi,

wt(cf) ≥ wt(pf), and wt(cg) ≥ wt(pg). Set pt+1 = pf , pt+2 = pg, pf = cf , and pg = cg.
(Figure 3, right)

Note in the last case that we skip to phase t + 2.

3.3 The Exchange Operation Subroutine
The Exchange Operation subroutine is applicable if there exists two points xα and xγ in Xi,
and a pivot pj such that:

xα and xγ are each βt+1-attached to pj w.r.t. wi,
wi(pj) ≤ wi(xα),
wi(pj) ≤ wi(xγ), and
The collection of the t + 1 points, consisting of xα, xγ , and the pivots other than pj , are
βt+1-well-separated w.r.t. wi. (E.g., Figure 4, left, with t = 4.)

The Exchange Operation depends on xα, xγ , Xi, the current pivots p1, . . . , pt, and estimated
centers c1, . . . , cT . In most cases, the Exchange Operation adds xα and xγ to and deletes pj

from the set of pivots, and possibly changes the location of one previous pivot.

1. If j > T then set pj = xα and pt+1 = xγ .
2. Else if wi(cj) < wi(pj) then set pj = xα and pt+1 = xγ .
3. Else if cj is βt+2-attached to xα w.r.t. wi then set pj = xα and pt+1 = xγ . (Figure 4,

right)
4. Else if cj is βt+2-attached to xγ w.r.t. wi then set pj = xγ and pt+1 = xα.
5. Else set pt+1 = xα, pt+2 = xγ , and pj = cj .

4 Algorithm Invariants and Analysis

In this section, we state the key technical lemmas. We defer full proofs to the Appendix.

▶ Theorem 3. The algorithm uses at most k labels.

▶ Theorem 4. The algorithm’s cost is O(k5 · 3k · OPT).

4 We are overloading subscripts here for ease. We could instead write vt, but we retain w to recall weights.

APPROX/RANDOM 2024

20:12 Online k-Median with Consistent Clusters

4.1 Notation
pt

1, . . . , pt
t denote the pivots for labels 1 through t, respectively, during phase t.

wt are the natural weights at the end of phase t.
X(t) is the set of points assigned a label before or during phase t.
For j ∈ [t], Ct

j is the set of points labelled j in phases 1 through t.
For j ∈ [T], cT

j is the estimated center (‡) computed at end of non-intermediate phase T .
yT

1 , . . . , yT
k are the offline optimal centers computed at the end of phase T in The Estimated

Center Subroutine.
PT = {pT

1 , . . . , pT
T , yT

1 , . . . , yT
k }

cost(S; c) =
∑

p∈S d(p, c) for S ⊆ X and c ∈ X.

4.2 Invariants
In the next two lemmas, we show that our algorithm maintains two key invariants. The full
proofs are deferred to the full version, although we give a proof sketch of Lemma 5 in the
appendix.

▶ Lemma 5. Let t ∈ [k]. The algorithm maintains the invariant that pt
1, . . . , pt

t are βt-well-
separated w.r.t. the natural weights at the start of phase t (and after).

Lemma 5 directly implies Theorem 3 once we show that there can be no more than k

well-separated points in X and note that we have set β1 sufficiently large.
Next is a key technical lemma. It states that the estimated center cT −

j for the points
given label j before phase T is close, in a weighted sense, to the pivot for label j in phase
T . This is key to showing that points in cluster j that are labelled before phase T can be
combined with those that are labelled during phase T at bounded cost. This lemma is in
tension with the prior one because a pivot must be placed in a location where it is both
well-separated from other pivots and is close to previously arriving points in its cluster.

▶ Lemma 6. Let T be a non-intermediate phase and let j ∈ [T]. If T > 1, at least one of
the following holds:
(a) wT −(cT −

j) ≤ wT (pT
j) and wT −(cT −

j) · d(cT −

j , pT
j) ≤ βT −(T − T −) · OPT.

(b) cT −

j is βT +1-attached to pT
j w.r.t. wT .

5 Bounding Cost

We show by induction that the estimated center cT
j is good for all points given label j by

the end of phase T . Taking T to be the last phase gives our main result. We follow Figure
5. By definition of attached, a certain number of points sitting at the head (equal to the
head’s natural weight) of an arc can be moved to the tail at bounded cost. First we address
the cost of CT −

1 , the points given label 1 before phase T . We inductively assume these can
be moved to cT −

1 at bounded cost. From there, we need to move them to cT
1 at bounded

cost. This can be done by showing that (1)|CT −

1 | is a bounded factor away from the natural
weight of cT −

1 (Lemma 8), and (2) cT
1 is “close” to pT

1 (Lemma 8). Together these imply that
we can move the points in CT −

1 along the arc from cT −

1 to pT
1 at bounded cost.

Next we show that the points given label 1 during phase T , call them C1, can also
be moved to cT

1 at bounded cost. This is where we use the set of offline optimal centers
yT

1 , . . . , yT
k computed during the Estimated Centers Subroutine. Importantly, since during a

phase every point is attached to at least one pivot (otherwise we execute an Add Operation

B. Moseley, H. Newman, and K. Pruhs 20:13

and leave the phase), each offline center yT
i is attached to a pivot. We partition the points in

C1 based on which center yT
i they are assigned to in the offline optimal solution. The set

of points in C1 that are assigned to centers attached to the pivot for label 1, pT
1 , is called

Snear,1. In Figure 5, these are points assigned to yT
1 and yT

2 . One can show, using that
during a phase no Exchange Operation occurs, that these can be moved to cT

1 at bounded
cost. The set of points that are assigned to centers that are attached to a pivot for a different
label, say label 2, is called Sfar,1. These points are misclassified in the sense that the online
and offline algorithms classify them differently. However, we show their cost is still controlled.
Specifically, the well-separated invariant implies that (1) these points can be moved to pT

1 at
bounded cost, and (2) the number of them is a bounded factor away from the natural weight
of pT

1 (Lemma 7). These two properties imply we can move the points in Sfar,1 to pT
1 , and

then to cT
1 , at bounded cost.

Figure 5 The points given label 1 (blue) before or during phase T are partitioned as in the text.

▶ Lemma 7. Let T be a non-intermediate phase. For any j ∈ [T], let Cj be the points
given label j during phase T , i.e., Cj = CT

j \ CT −

j . Define Sji to be be the set of elements
in Cj assigned to yi in the clustering of X(T) \ X(T −) induced by PT . Define Sfar,j =⋃

i:p(yi)̸=pT
j

Sji. Then
1. cost(Sfar,j ; pT

j) ≤ k · (βT +1 + 2) · OPT, and
2. |Sfar,j | ≤ k · wT (pT

j), where wT denotes the natural weights at the end of phase T .

▶ Lemma 8. Let T be a non-intermediate phase and j ∈ [T]. Let wT (cT
j) be the natural

weight of cT
j at the end of phase T and CT

j be the set of points in cluster j by the end of
phase T . Then |CT

j | ≤ (2k + 1) · T · wT (cT
j).

The final lemma below shows that the cost of our algorithm’s solution at the end of phase
T is bounded against OPT. Taking T to be the last phase gives Theorem 4.

▶ Lemma 9. Let T be a non-intermediate phase and j ∈ [T]. Then cost(CT
j) is bounded

against center cT
j , i.e.,

∑
x∈CT

j
d(x, cT

j) ≤ g(T, k) · OPT, where

g(T, k) = T · g(k) and g(k) = β1(2k3 + 3k2 + 5k + 1) + 2k + 4.

6 Conclusion

This paper gives the first online algorithm for cluster-based k-median clustering, with
competitive ratio independent of n and ∆, that does not recluster or use additional centers.
We take a learning-augmented approach, assuming minimal a priori information in the form
of an upper bound B on the optimal cost. Prior to this work, it was not known that any
algorithm could have bounded worst-case guarantees. Interestingly, we remark that if the
algorithm does not know B and reclustering is allowed, our results imply an algorithm that
maintains a solution competitive against the optimal solution on the points that have arrived
so far. Reclustering an O(log(n∆)) number of times, the algorithm is always O(1)-competitive
when k is a constant at each point in time. This matches the number of reclusterings used in
prior work for the consistent center case.

APPROX/RANDOM 2024

20:14 Online k-Median with Consistent Clusters

References
1 Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and

Vinayaka Pandit. Local search heuristics for k-median and facility location problems. SIAM
Journal of Computing, 33(3):544–562, 2004.

2 Bahman Bahmani, Benjamin Moseley, Andrea Vattani, Ravi Kumar, and Sergei Vassilvitskii.
Scalable k-means++. Proc. VLDB Endow., 5(7):622–633, 2012.

3 Robi Bhattacharjee, Jacob Imola, Michal Moshkovitz, and Sanjoy Dasgupta. Online k-means
clustering on arbitrary data streams. In International Conference on Algorithmic Learning
Theory, pages 204–236. PMLR, 2023.

4 Robi Bhattacharjee and Michal Moshkovitz. No-substitution k-means clustering with ad-
versarial order. In Algorithmic Learning Theory, pages 345–366. PMLR, 2021.

5 Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag, Berlin,
Heidelberg, 2006.

6 Jaroslaw Byrka, Thomas W. Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh.
An improved approximation for k-median and positive correlation in budgeted optimization.
ACM Transactions on Algorithms, 13(2):23:1–23:31, 2017.

7 T-H. Hubert Chan, Arnaud Guerqin, and Mauro Sozio. Fully dynamic k-center clustering. In
World Wide Web Conference, pages 579–587, 2018.

8 Moses Charikar, Chandra Chekuri, Tomás Feder, and Rajeev Motwani. Incremental clustering
and dynamic information retrieval. SIAM Journal of Computing, 33(6):1417–1440, 2004.

9 Moses Charikar, Sudipto Guha, Éva Tardos, and David B. Shmoys. A constant-factor
approximation algorithm for the k-median problem. Journal of Computer and Systems
Sciences, 65(1):129–149, 2002.

10 Vincent Cohen-Addad, Niklas Hjuler, Nikos Parotsidis, David Saulpic, and Chris Schwiegel-
shohn. Fully dynamic consistent facility location. In Conference on Neural Information
Processing Systems, pages 3250–3260, 2019.

11 Hendrik Fichtenberger, Silvio Lattanzi, Ashkan Norouzi-Fard, and Ola Svensson. Consistent
k-clustering for general metrics. In ACM-SIAM Symposium on Discrete Algorithms, 2021.

12 Xiangyu Guo, Janardhan Kulkarni, Shi Li, and Jiayi Xian. Consistent k-median: Simpler,
better and robust. In International Conference on Artificial Intelligence and Statistics, volume
130, pages 1135–1143, 2021.

13 K. Jain and V. V. Vazirani. Approximation algorithms for metric facility location and k-
median problems using the primal-dual schema and lagrangian relaxation. Journal of the
ACM, 48(2):274–296, 2001.

14 Silvio Lattanzi and Sergei Vassilvitskii. Consistent k-clustering. In Doina Precup and Yee Whye
Teh, editors, International Conference on Machine Learning, pages 1975–1984, 2017.

15 Shi Li and Ola Svensson. Approximating k-median via pseudo-approximation. SIAM Journal
of Computing, 45(2):530–547, 2016.

16 Edo Liberty, Ram Sriharsha, and Maxim Sviridenko. k-means clustering. talk slides.
17 Edo Liberty, Ram Sriharsha, and Maxim Sviridenko. An algorithm for online k-means

clustering. In Workshop on Algorithm Engineering and Experiments, pages 81–89, 2016.
18 A. Meyerson. Online facility location. In IEEE Symposium on Foundations of Computer

Science, pages 426–431, 2001.
19 Adam Meyerson, Liadan O’Callaghan, and Serge Plotkin. A k-median algorithm with running

time independent of data size. Machine Learning, 56(1):61–87, 2004.
20 Benjamin Moseley, Heather Newman, and Kirk Pruhs. Online k-median with consistent

clusters. arXiv preprint, 2023. arXiv:2303.15379.
21 Tim Roughgarden. Beyond the Worst-Case Analysis of Algorithms. Cambridge University

Press, 2021.

https://arxiv.org/abs/2303.15379

B. Moseley, H. Newman, and K. Pruhs 20:15

The Appendix is organized as follows. In Appendix A, we introduce some additional
terminology and notation. In Appendix B, we introduce a few propositions that will be
useful for proving the main lemmas. In Appendix C, we prove Lemma 5, the well-separation
invariant; this is a rather involved proof, so we include both a proof sketch with the high-level
ideas, and defer the full proof to the full version. Then, in Appendix D, we show how Lemma
5 swiftly implies Theorem 3. In the remaining appendices, we prove the lemmas in Section 5.
The last lemma, Lemma 9, directly implies Theorem 4.

A Terminology

Throughout this appendix, we take B = OPT for simplicity. Our results still hold as long as
B ≥ OPT. Below is some additional terminology used in the proofs.

Let yT
1 , . . . , yT

k be the optimal collection of k centers computed at the end of phase T in
The Estimated Center Subroutine. Let PT = {pT

1 , . . . , pT
T , yT

1 , . . . , yT
k } and call this set

the offline centers for phase T . When the context is clear, we may omit the superscript
T in yT

i .
The attachment digraph D(T) is a bipartite digraph with vertex set PT , plus {cT −

j |
j ≤ T −} if T > 1, partitioned as ({pT

1 , . . . , pT
T }, {y1, . . . , yk, cT −

1 , . . . , cT −

T −}). There is a
directed arc (yi, p(yi)) if wT (yi) ≤ wT (p(yi)) and a directed arc (yi, p(yi)) otherwise. If
cT −

j and pT
j are βT +1-attached w.r.t. wT , add the arc (cT −

j , pT
j) if wT (cT −

j) ≤ w(pT
j) and

the arc (pT
j , cT −

j) otherwise. δ+(pT
j) and δ−(pT

j) denote the out- and in-degree of pT
j . See

Figure 6.

Figure 6 The attachment digraph D(T). Arrows represent attached pairs, and arrows point from
smaller to larger natural weights. So we may move a certain number of points near the head, to the
tail at bounded cost.

B Helper Propositions

In this section, we present a few short propositions that will be useful in the remaining proofs.
All excluded proofs are deferred to the full version.

The following fact justifies that the offline optimal centers yT
1 , . . . , yT

k have cost at most
2OPT on the points that arrive during phase T . This is used at various points in the analysis.

▶ Fact 10 (Fact 2.1 in [19]). Let N be a set of points, with S ⊆ N . Let k be an integer with
0 ≤ k ≤ n. Let K ⊆ S be the k-element subset of S minimizing

∑
x∈S d(x, K) where d(·, ·) is

the distance function on N , and d(x, K) denotes minm∈K d(x, m). Then if K ′ is a k-element
subset of N ,

∑
x∈S d(x, K) ≤ 2

∑
x∈S d(x, K ′).

The following proposition is a weighted version of the triangle inequality.

▶ Proposition 11. Let x, y, p be three points in some set S, and let w : S → Z+ be a weight
function on S. Assume that β, βx, βy, B > 0. Suppose that w(x) ≤ w(p) and that x and y are
β-well-separated w.r.t. w. If x and p are βx-attached w.r.t. w, and y and p are βy-attached
w.r.t. w, then β < βx + βy.

APPROX/RANDOM 2024

20:16 Online k-Median with Consistent Clusters

Next, we show that a point set cannot contain more than k pairwise β-well-separated
points for β a sufficiently large constant. This allows us to bound the number of labels used.

▶ Proposition 12. Let X be a set of points whose optimal k-median cost using k centers is
OPT. Let {x1, . . . , xl} be a set of points in X, and let wX denote their natural weights in X.
Let β > 8. If {x1, . . . , xl} is β-well-separated w.r.t. wX , then l ≤ k.

The next two propositions will be used to aid the proofs of Lemmas 5 and 6. Recall that
for each non-intermediate phase T , we defined a set of offline centers PT that has cost at
most 2OPT on X(T) (Appendix A and Fact 10). In order to compare the (low-cost) offline
clustering induced by PT to our online algorithm’s clustering, we relate the offline set of
centers PT (which we know have bounded cost on X(T)) to the pivots in phase T (which are
used to make the greedy online choices) in the next proposition.

▶ Proposition 13. Let PT = {pT
1 , . . . , pT

T , y1, . . . , yk} be as in Appendix A. Then yi and p(yi)
are βT +1-attached w.r.t. the natural weights wT at the end of phase T .

Each attached pair in Proposition 13 is encoded in the digraph D(T) by a directed arc.
So, we can now think of this directed arc as representing the direction in which we could
move a certain number of points sitting near one endpoint to the other at bounded cost.

Next we show that the estimated center for a cluster at the end of a phase is attached
to the pivot for that cluster in that phase. Thus, while the pivot itself may not be a good
center for the cluster, the pivot is close to the estimated center (in at least one direction, in
a weighted sense).

▶ Proposition 14. The estimated center cT
j is βT +1-attached to pT

j w.r.t. the natural weights
wT at the end of phase T . Further, wT (cT

j) ≥ wT (pT
j), with equality if and only if cT

j = pT
j .

C Proof of Lemma 5

As the proof of Lemma 5 is a rather involved double induction, we provide a proof sketch
which pulls out the hard cases. In the full version, we give the full proof.

Proof sketch of Lemma 5. The proof is by induction. However, we need to couple the
induction with a statement about the relative position of the estimated center for a cluster
(which stays fixed between intermediate phases) to that cluster’s pivot, which may change
often as we consecutively reset the pivots between intermediate phases. Roughly, we prove
below that if the estimated center for cluster j has not separated entirely from the present
set of pivots, then it must be close (in a weighted sense) to the present pivot for label j.

▷ Claim 1. Let wi−1, wi, and wt be as Section 3.2. For each j ∈ [T] and t ∈ [T, T +] such
that pt

1, · · · , pt
t are defined,5

pt
1, . . . , pt

t are βt-well-separated w.r.t. wt. (♢)

Moreover, at least one of the following properties holds:
(a) cT

j is βt+1-well-separated from pt
1, . . . , pt

t w.r.t. wi.
(b) cT

j is βt+1-attached to pt
j w.r.t. wt.

(c) cT
j is f(t, T)-attached to pt

j w.r.t. wt and wt(cT
j) < wt(pt

j), where f(t, T) = βT · (t − T).

5 Recall in Case 4 of the Add Operation and Case 5 of the Exchange Operation, we go directly from t to
t + 2 pivots, skipping phase t + 1.

B. Moseley, H. Newman, and K. Pruhs 20:17

Figure 7 Cases (i) –(iii) in the proof sketch of Lemma 5. Dashed lines indicate well-separation
and solid lines indicate attachment, labelled with the appropriate parameters. Arrows go from
smaller to larger natural weights.

For the proof sketch we focus on Case 4 of the Add Operation, which will give a flavor
of the arguments. This is a concerning case a priori; for, if we were to add xα to the set of
pivots as in Cases 2 and 3, it is ambiguous as to whether xα should be associated with label
f or g, as both cT

f and cT
g are close to xα. We maneuver around the issue by making cT

f and
cT

g new pivots and excluding xα. However, it is not immediately clear that such a step will
preserve the desired invariants. To give intuition, we suppress the separation parameters and
the precise weights used, though emphasize both are brittle (e.g., the arguments rely heavily
on βt decreasing with t. The directions of attachment between points (arrows in Figure 7)
are also crucial. We will also see why we need to couple the induction with (a) –(c).

To prove the inductive step for (♢) when Case 4 of the Add Operation is performed, we
need to show (i) cT

f and cT
g are well-separated, (ii), WLOG, cT

f is well-separated from pt
f , and

(iii), WLOG, cf is well-separated from pt
l , l ̸= f . See Figure 7. When we say “close” or “far”

below, we always mean in a weighted sense. For (i), because pT
f is close to cT

f (Proposition
14) and likewise for pT

g , cT
g , then cT

f and cT
g cannot be close, since this would violate that pT

f

and pT
g are (inductively) far. To prove (ii), note xα is far from pt

f by assumption of the Add
Operation, and cT

f is close to xα by assumption of Case 4, so pt
f and cT

f must be far. Finally
for (iii), one can (inductively) deduce that (b) must hold when j = f , so cT

f and pt
f are close;

but, since pt
f and pt

l are (inductively) far, ct
f and pt

l must be far.
Proving the inductive step for (a) –(c) involves detailed casework. The Add and Exchange

Operations are engineered so that, loosely speaking, an estimated center is either attached
to the corresponding present pivot, or else breaks off to form its own pivot. A main subtlety
is the direction and strength of attachment, e.g., property (c). Another is the sequence of
operations, specifically, the Add Operation taking precedence over the Exchange Operation.

◀

D Proof of Theorem 3

Proof of Theorem 3. The number of labels used by the algorithm is the number of pivots
in the last phase. By Lemma 5, we maintain the invariant that pivots pt

1, . . . , pt
t are βt-well-

separated w.r.t. the natural weights at every time step in phase t. Suppose to the contrary
that the final number of pivots is strictly more than k. Then at some point there are t = k +1
or t = k + 2 pivots6 that are βt-well-separated w.r.t. the natural weights throughout phase t.
But βk+2 = 8, and it is impossible for k + 2 points to be 8-well-separated, by Proposition 12.
We conclude the final number of pivots is at most k. ◀

6 The algorithm may skip a phase, hence we consider both cases.

APPROX/RANDOM 2024

20:18 Online k-Median with Consistent Clusters

E Proof of Lemma 7

Proof of Lemma 7. WLOG, let j = T . For c ∈ PT , let m(c) be the number of points
assigned to c in the clustering of X(T) \ X(T −) induced by the centers PT , i.e., in this
clustering every point is assigned to the nearest point in PT . For shorthand, let w denote
the natural weights wT of points at the end of phase T .

▶ Observation 2. For c ∈ PT , w(c) ≥ m(c).

This follows from the definition of w(c) and the fact that there are m(c) points whose
movement cost to c is at most 2OPT, by construction of PT .

▶ Observation 3. If (p(yi), yi) is a directed edge in D(T), then w(p(yi)) ·d(p(yi), yi) < βT +1 ·
OPT. Likewise, if (yi, p(yi)) is a directed edge in D(T), then w(yi) ·d(p(yi), yi) < βT +1 ·OPT.

This follows from the definition of D(T) and Proposition 13.
Call the points in Sfar,T far points. In the claims below, we show that the far points

can be moved to pT
T at bounded cost (Claims 1 and 2), and that there are not too many far

points relative to the weight of pT
T (Claim 3). In turn, we will be able to charge the cost of

the far points to pT
T .

▷ Claim 1. Let p(yi) ̸= pT
T . Suppose w(yi) > w(p(yi)). Then cost(ST i; pT

T) ≤
(βT +1 + 2)OPT.

Proof. WLOG, let p(yi) = pT
1 . We consider two cases.

▶ Case 1. |ST i| ≥ w(pT
1). We will show this case cannot happen.

We know that w(yi) ≥ m(yi) ≥ |ST i| ≥ w(pT
1), and by Observation 3, that

w(pT
1) · d(pT

1 , yi) < βT +1 · OPT. By Proposition 11, this implies w(pT
1) · d(yi, pT

T) ≥ 2βT +1 ·
OPT.

Since |ST i| ≥ w(pT
1), there exists S′

T i ⊆ ST i such that |S′
T i| = w(pT

1). In turn,
cost(S′

T i; pT
1) ≤ cost(S′

T i; yi) + w(pT
1) · d(yi, pT

1) < (βT +1 + 2) · OPT, since PT is a clus-
tering with cost at most 2OPT. On the other hand,

cost(S′
T i; pT

T) ≥
∑

p∈S′
T i

d(yi, pT
T)−

∑
p∈S′

T i

d(p, yi) = w(pT
1)·d(yi, pT

T)−
∑

p∈S′
T i

d(p, yi) ≥ (2βT +1−2)OPT.

Since βT +1 ≥ 4, βT +1 + 2 ≤ 2βT +1 − 2, so cost(S′
T i; pT

1) < cost(S′
T i; pT

T), which violates
that T = arg minj∈[T] d(p, pT

j) for all p ∈ S′
T i ⊆ CT .

▶ Case 2. |ST i| ≤ wt(pT
1).

In this case, we know that since w(pT
1) ·d(yi, pT

1) < βT +1 ·OPT, we also have |ST i| ·d(yi, pT
1) <

βT +1 · OPT. By the triangle inequality,

cost(ST i; pT
1) ≤ cost(ST i; yi) + |ST i| · d(yi, pT

1) ≤ 2OPT + βT +1 · OPT.

Since cost(ST i; pT
T) ≤ cost(ST i; pT

1) by the greedy procedure, this proves Claim 1. ◁

▷ Claim 2. Let p(yi) ̸= pT
T . Suppose that w(yi) ≤ w(p(yi)). Then cost(ST i; pT

T) ≤
(βT +1 + 1)OPT.

Proof. WLOG, let p(yi) = pT
1 . By Observation 3, w(yi) · d(yi, pT

1) < βT +1 · OPT. Further,
|ST i| ≤ m(yi) ≤ w(yi), so |ST i| · d(yi, pT

1) < βT +1 · OPT. So:

cost(ST i; pT
T) ≤ cost(ST i; pT

1) ≤ cost(ST i; yi) + |ST i| · d(yi, pT
1) ≤ 2OPT + βT +1 · OPT. ◁

B. Moseley, H. Newman, and K. Pruhs 20:19

▷ Claim 3. Let p(yi) ̸= pT
T . Then |ST i| ≤ w(pT

T).

Proof. As before, assume WLOG that p(yi) = pT
1 .

▶ Case 1. w(yi) > w(pT
1).

We know from the proof of Claim 1, Case 1 that this implies |ST i| < w(pT
1). We have

|ST i| · d(pT
T , yi) =

∑
p∈ST i

d(yi, pT
T) ≤

∑
p∈ST i

d(p, pT
T) +

∑
p∈ST i

d(p, yi)

≤ (βT +1 + 2)OPT + 2OPT (Claim 1)
≤ 2βT +1 · OPT ≤ w(pT

T) · d(pT
T , yi)

where in the last line we have applied Proposition 11, using that w(yi) > w(pT
1), Observation

3, and pT
1 and pT

T are βT -well-separated w.r.t. w. Finally, dividing both ends of the chain of
inequalities by d(pT

T , yj) gives |ST j | ≤ w(pT
T), as desired.

▶ Case 2. w(yi) ≤ w(pT
1).

Consider when w(pT
T) ≥ w(yi). Then w(pT

T) ≥ w(yi) ≥ m(yi) ≥ |ST i|, so the claim follows.
So the last case to consider is when w(pT

T) < w(yi). It suffices to show that w(pT
T) ·

d(pT
T , yi) ≥ 2βT +1 · OPT; then, we can just apply the argument in Case 1. Suppose to the

contrary that w(pT
T) · d(pT

T , yi) < 2βT +1 · OPT. Then

βT · OPT ≤ w(pT
T) · d(pT

T , pT
1) ≤ w(pT

T) · d(pT
T , yi) + w(pT

T) · d(yi, pT
1)

≤ 2βT +1 · OPT + w(pT
T) · d(yi, pT

1)
< 2βt+1 · OPT + w(yi) · d(yi, pT

1)
< 2βT +1 · OPT + βT +1 · OPT = βT · OPT

where the second-to-last line follows from Observation 3. The left-hand and right-hand sides
give a contradiction, concluding the proof of the case and the claim. ◁

▷ Claim 4. cost(Sfar,T ; pT
T) ≤ k · (βT +1 + 2)OPT and |Sfar,T | ≤ k · w(pT

T).

Proof. By Claims 1 and 2,

cost(Sfar,T ; pT
T) =

∑
i:p(yi)̸=pT

T

cost(ST i; pT
T) ≤ k · (βT +1 + 2)OPT

By Claim 3,

|Sfar,T | =
∑

i:p(yi)̸=pT
T

|ST i| ≤ k · w(pT
T). ◁

This concludes the proof of the claim, thus also of the lemma. ◀

F Proof of Lemma 8

Proof of Lemma 8. As in Lemma 7, let Cj = CT
j \ CT −

j and let Sji be the set of elements
in Cj assigned to yi in the clustering of X(T) \ X(T −) induced by PT . Let Sfar,j =⋃

i:p(yi)̸=pT
j

Sji, Snear,j =
⋃

i:p(yi)=pT
j

Sji, and Sj be the elements in Cj that are assigned to
pT

j in the clustering of X(T) \ X(T −) induced by PT .

APPROX/RANDOM 2024

20:20 Online k-Median with Consistent Clusters

The proof is by induction. We have that

|CT
j | = |CT −

j | + |Cj | = |CT −

j | + |Sfar,j | + |Snear,j | + |Sj | (1)

(Note we use that there are no points in Cj that are assigned to pT
j′ , j′ ̸= j, in the offline

clustering induced by PT , due to the greedy labelling rule. This is true as long as in the
offline clustering induced by PT we break ties consistent with how the online algorithm
breaks ties.)

First, we bound the last three terms. Let wt denote the natural weights at the end of
phase t.

|Sfar,j | ≤ k · wT (pT
j) ≤ k · wT (cT

j) (2)

where the first inequality follows from Lemma 7 and the second inequality follows from the
definition (‡) of estimated center. Next,

|Snear,j | =
∑

i:p(yi)=pT
j

|Sji| ≤
∑

i:p(yi)=pT
j

wT (yi) ≤ k · wT (cT
j) (3)

where the second inequality follows from the definition of wT . The third inequality follows
from the definitions of attachment digraph and estimated center: If yi ∈ δ−(pT

j), then
wT (yi) ≤ wT (pT

j) by construction of the attachment digraph D(T). Otherwise, yi ∈ δ+(pT
j),

so by (‡), wT (cT
j) ≥ wT (yi). Finally,

|Sj | ≤ wT (pT
j) ≤ wT (cT

j) (4)

where the first inequality is by the definition of wT and the second inequality from (‡).
For simplicity, let h(t, k) = (2k + 1)t. Now we need to bound |CT −

j | in terms of wT (cT
j).

If j ̸∈ [T −], then |CT −

j | = 0. So assume j ∈ [T −]. Inductively, we have that

|CT −

j | ≤ h(T −, k) · wT −
(cT −

j).

We will prove that

|CT −

j | ≤ h(T −, k) · wT (cT
j). (5)

There are two cases to consider.

▶ Case 1. (a) holds in Lemma 6.

|CT −

j | ≤ h(T −, k) · wT −
(cT −

j) ≤ h(T −, k) · wT (pT
j) ≤ h(T −, k) · wT (cT

j).

▶ Case 2. (b) holds in Lemma 6.

This means that cT −

j is βT +1-attached to pT
j w.r.t. wT . If wT (cT −

j) ≤ wT (pT
j), then

wT (cT −

j) ≤ wT (cT
j). Otherwise, wT (cT −

j) > wT (pT
j), so cT −

j ∈ δ+(pT
j). By (‡), wT (cT −

j) ≤
wT (cT

j). In both cases we have wT (cT −

j) ≤ wT (cT
j), so building from the inductive assumption,

|CT −

j | ≤ h(T −, k) · wT −
(cT −

j) ≤ h(T −, k) · wT (cT −

j) ≤ h(T −, k) · wT (cT
j)

which concludes the case. Putting equations (1), (2), (3), (4), (5) together gives

|CT
j | ≤

(
h(T −, k) + 2k + 1

)
· wT (cT

j) ≤ h(T, k) · wT (cT
j) = (2k + 1) · T · wT (cT

j)

as desired. ◀

B. Moseley, H. Newman, and K. Pruhs 20:21

G Proof of Lemma 9

Proof of Lemma 9. The proof is by induction. Let Cj , Sji, and Sfar,j be as in Lemma 7.
Define Snear,j =

⋃
i:p(yi)=pT

j
Sji and Sj to be the elements in Cj that are assigned to pT

j in
the clustering of X(T) \ X(T −) induced by PT . Let wt denote the natural weights at the
end of phase t. First we need the following key claim.

▷ Claim 1. For any x, y ∈ δ+(pT
j) ∪ δ−(pT

j) ∪ {pT
j }, x and y are 2βT +1-attached w.r.t. wT .

Proof of Claim 1. If x or y is pT
j , then the claim automatically holds by Proposition 13. There

are two other cases. The first case is, WLOG, x ∈ δ−(pT
j). Regardless of whether y is

in δ−(pT
j) or δ+(pT

j), the claim holds by Propositions 13 and 11. The second case is that
x, y ∈ δ+(pT

j). We prove the stronger statement that x and y are βT +1-attached w.r.t. wT .
Suppose to the contrary that x and y are βT +1-well-separated. We claim that this implies

{pT
1 , . . . , pT

T } ∪ {x, y} \ {pT
j } (6)

is βT +1-well-separated w.r.t. wT ; this would give a contradiction, since if an Exchange
Operation were available, it would have been executed. Now suppose that (6) does not hold.
Then WLOG pT

j′ and x are βT +1-attached w.r.t. wT , for some j′ ≠ j. Since x ∈ δ+(pT
j)

and since x and pT
j are βT +1-attached w.r.t. wT , by Proposition 11, pT

j and pT
j′ are 2βT +1-

attached w.r.t. wT . This contradicts that pT
j and pT

j′ are βT -well-separated w.r.t. wT , since
2βT +1 < βT . This concludes the proof of the case and the claim. ◁

To bound the cost contribution of CT −

j , we case on which statement holds in Lemma 6.

▶ Case 1. cT −

j is βT +1-attached to pT
j w.r.t. wT (i.e., (b) holds in Lemma 6).

Since in Case 1, cT −

j is βT +1-attached to pT
j w.r.t. wT , cT −

j ∈ δ+(pT
j) ∪ δ−(pT

j). Also, cT
j

by definition is in δ+(pT
j) ∪ {pT

j }. So by Claim 1, cT −

j is 2βT +1-attached to cT
j w.r.t. wT .

Using this, we bound cost(CT −

j ; cT
j):

cost(CT −

j ; cT
j) ≤ cost(CT −

j ; cT −

j) + |CT −

j | · d(cT −

j , cT
j)

≤ g(T −, k) · OPT + |CT −

j | · d(cT −

j , cT
j)

≤ g(T −, k) · OPT + (2k + 1) · T − · wT −
(cT −

j) · d(cT −

j , cT
j)

≤ g(T −, k) · OPT + (2k + 1) · T − · wT (cT −

j) · d(cT −

j , cT
j)

≤ g(T −, k) · OPT + (2k + 1) · T − · 2βT +1 · OPT (7)

where the third inequality is due to Lemma 8.

▶ Case 2. (b) does not hold in Lemma 6, so (a) holds, i.e., wT −(cT −

j) ≤ wT (pT
j) and

wT −(cT −

j) · d(cT −

j , pT
j) ≤ βT −(T − T −) · OPT.

We bound cost(CT −

j ; cT
j):

cost(CT −

j ; cT
j) ≤ cost(CT −

j ; cT −

j) + |CT −

j | · d(cT −

j , cT
j)

≤ g(T −, k) · OPT + |CT −

j | · d(cT −

j , pT
j) + |CT −

j | · d(pT
j , cT

j) (8)

and now we use the assumptions of the case to continue bounding from (8):

|CT −

j | · d(cT −

j , pT
j) ≤ (2k + 1) · T − · wT −

(cT −

j) · d(cT −

j , pT
j)

≤ (2k + 1) · T − · βT −(T − T −) · OPT (9)

APPROX/RANDOM 2024

20:22 Online k-Median with Consistent Clusters

where the first inequality is due to Lemma 8. Next,

|CT −

j | · d(pT
j , cT

j) ≤ (2k + 1)T − · wT −
(cT −

j) · d(pT
j , cT

j) ≤ (2k + 1)T − · wT (pT
j) · d(pT

j , cT
j)

≤ (2k + 1)T − · βT +1 · OPT (10)

where the first inequality is due to Lemma 8 and the last inequality is due to Proposition 14.
So combining (8), (9), (10) gives

cost(CT −

j ; cT
j) ≤ g(T −, k) · OPT + (2k + 1) · T − · (βT −(T − T −) + βT +1) · OPT. (11)

Now we have bounds (7) and (11) for cost(CT −

j ; cT
j). Recall that CT

j = CT −

j ∪ Sfar,j ∪
Snear,j ∪ Sj . The following bounds will hold regardless of whether we are in Case 1 or 2. We
have

cost(Sj ; cT
j) ≤ cost(Sj ; pT

j)+ |Sj | ·d(pT
j , cT

j) ≤ 2OPT+wT (pT
j) ·d(pT

j , cT
j) ≤ (2+βT +1)OPT

(12)

cost(Snear,j ; cT
j) =

∑
i:p(yi)=pT

j

cost(Sji; cT
j) ≤

∑
i:p(yi)=pT

j

∑
p∈Sji

d(p, cT
j)

≤ 2OPT +
∑

i:p(yi)=pT
j

wT (yi) · d(yi, cT
j) ≤ (2kβT +1 + 2)OPT (13)

where we have used Claim 1 and that |Sji| ≤ wT (yi). Finally, by Lemma 7,

cost(Sfar,j ; cT
j) ≤ cost(Sfar,j ; pT

j) + |Sfar,j | · d(pT
j , cT

j) ≤ k(2βT +1 + 2)OPT (14)

Combining (12), (13), (14) with (7) or (11) gives the sought bound:

cost(CT
j ; cT

j) ≤ [g(T −, k) + g(k)]OPT ≤ g(T, k) · OPT. ◀

The Telephone k-Multicast Problem
Daniel Hathcock # Ñ

Carnegie Mellon University, United States

Guy Kortsarz #

Rutgers University, Camden, United States

R. Ravi #

Carnegie Mellon University, United States

Abstract
We consider minimum time multicasting problems in directed and undirected graphs: given a root
node and a subset of t terminal nodes, multicasting seeks to find the minimum number of rounds
within which all terminals can be informed with a message originating at the root. In each round,
the telephone model we study allows the information to move via a matching from the informed
nodes to the uninformed nodes.

Since minimum time multicasting in digraphs is poorly understood compared to the undirected
variant, we study an intermediate problem in undirected graphs that specifies a target k < t, and
requires the only k of the terminals be informed in the minimum number of rounds. For this problem,
we improve implications of prior results and obtain an Õ(t1/3) multiplicative approximation. For the
directed version, we obtain an additive Õ(k1/2) approximation algorithm (with a poly-logarithmic
multiplicative factor). Our algorithms are based on reductions to the related problems of finding
k-trees of minimum poise (sum of maximum degree and diameter) and applying a combination of
greedy network decomposition techniques and set covering under partition matroid constraints.

2012 ACM Subject Classification Theory of computation → Routing and network design problems

Keywords and phrases Network Design, Multicast, Steiner Poise

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.21

Category APPROX

Funding Daniel Hathcock: Supported by the NSF Graduate Research Fellowship grant DGE-2140739
R. Ravi: This material is based upon work supported in part by the Air Force Office of Scientific
Research under award number FA9550-23-1-0031 to RR.

1 Introduction

We study an information spreading problem that captures applications in distributed com-
puting [16] and keeping distributed copies of databases synchronized [2]. A given graph
models a synchronous network of processors that exchange information in rounds. There
are several models describing how information may be exchanged between processors in the
graph. In this work, we focus on the classic Telephone Model [8]: during a round, each vertex
that knows the message can send the message to at most one of its neighbors.

In the Minimum Time Telephone Multicast (MTM) problem, we are given a network,
modeled by a directed or undirected graph G(V, E), a root vertex r that knows a message, and
a set S of terminals. The message must be transmitted from r to S under the telephone model.
In every round, there is a set of vertices K ⊆ V that know the message (initially K = {r}),
and the communication in a given round is described by a matching {(k1, v1), . . . , (kℓ, vℓ)}
between some pairs of vertices ki ∈ K and vi ̸∈ K for which kivi ∈ E. In the directed setting,
edge kivi must be directed from ki to vi. Following this round, all of the matched vertices
{vi} are added to K. When S = V this problem is called The Minimum Time Broadcast
(MTB) problem.

© Daniel Hathcock, Guy Kortsarz, and R. Ravi;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 21; pp. 21:1–21:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dhathcoc@andrew.cmu.edu
https://danielhathcock.github.io/
https://orcid.org/0000-0002-2514-4735
mailto:guyk@camden.rutgers.edu
mailto:ravi@andrew.cmu.edu
https://orcid.org/0000-0001-7603-1207
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.21
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 The Telephone k-Multicast Problem

The best-known approximation ratio for the MTM problem on an undirected graph is
O(log t/ log log t) [5], where t = |S|. In [4], it is shown that unless P = NP , the MTB
problem admits no 3−ϵ approximation for any constant ϵ. For directed graphs, the Minimum
Time Broadcast problem admits an O(log n) approximation [4] in an n-node graph. The
same paper shows that unless P = Quasi(P) the problem admits no better than Ω(

√
log n)

approximation.
However, for the directed case the multicast problem seems harder to approximate. The

best-known approximation ratio for this problem is an additive O(
√

t) guarantee (with
poly-logarithmic multiplicative factor) [3]. This leaves a wide gap between the current best
approximation algorithms for undirected versus directed multicast problems. In this work, we
make progress toward closing that gap by studying an intermediate problem, the Minimum
Time Telephone k-Multicast problem (k-MTM), defined below.

Input: A directed or undirected graph G(V, E) with root r, a collection of terminals
S ⊆ V and a number k ≤ |S|.
Required: Send the message originating at r to any k terminals of S in the telephone
model in a minimum number of rounds.

In terms of approximability, the undirected k-MTM problem lies between the undirected and
directed MTM problems. Specifically, in [11] it is shown1 that a ρ-approximation for directed
MTM implies an O(polylog k)-approximation for undirected k-MTM, while it is immediate
that any approximation for undirected k-MTM gives the same factor approximation for
undirected MTM.

On the other hand, the directed version of the k-MTM problem generalizes all of the
aforementioned problems.

Applications. Broadcast and multicast problems find numerous applications in distributed
settings. For example, in the Network Aggregation problem, each user sends its data to a
chosen central vertex r. This is equivalent to broadcasting in the local model for distributed
computation (see [9]). Broadcasting is also crucial in Sensor Networks [13]. Another
application is ensuring that the maximum information delay in vector clocks problems is
minimized [12, 17].

One application of multicasting is to keep information across copies of replicated databases
consistent, by broadcasting from the changed copy to the others [7, 14, 15]. If we are given a
large set of t terminals of which we only want to keep replicated copies in some k of them,
finding the best k to minimize the maximum synchronization time among these termiunals
corresponds to the k-MTM problem.

Minimum Poise Trees. Any telephone multicast schedule defines a tree rooted at r, spanning
all terminals. The parent of a vertex u ̸= r is defined to be the unique vertex that sends the
message to u. Let T ∗ be the tree defined by the optimal schedule. The height of T ∗ (the
largest distance in T ∗ from the root) is denoted by D∗. The largest out-degree2 in T ∗ is
denoted by B∗. The poise of T ∗ is defined as p∗ = B∗ + D∗ [18]. Denote by OPT the number
of rounds used by the optimal schedule. Since at every round, each informed vertex can send

1 [11] deals with the degree-bounded versions of these problems, but their proof works as well for poise
problems. See below for the connection between poise and k-MTM.

2 For simplicity, we say degree instead of out-degree for the rest of the paper when discussing directed
graphs.

D. Hathcock, G. Kortsarz, and R. Ravi 21:3

the message to at most one neighbor, OPT ≥ B∗ and OPT ≥ D∗. Hence, in general we
have OPT ≥ p∗

/2. A partial converse is shown in [18]. A ρ approximation for the Minimum
Poise Steiner Tree implies an O(log t) · ρ/ log log t approximation for the MTM problem.

Following [18], approximating the k-MTM problem is equivalent (up to logarithmic factors
in k) to approximating the following Minimum Poise Steiner k-Tree problem:

Input: A directed or undirected graph G(V, E) with root r, a collection S ⊆ V of
terminals, and a number k.
Required: A k-tree rooted at r, namely a tree T ′(V, E) containing paths from r to k of
the terminals, with minimum poise.

In [11], they show that the approximability of minimum degree Steiner k-tree reduces to
minimum degree group Steiner tree (which is a special case of minimum degree directed Steiner
tree). Their reduction immediately extends to the minimum poise versions of these problems.
Hence, the approximability of the undirected Minimum Poise Steiner k-Tree problem lies
between the undirected Minimum Poise Steiner Tree problem and the directed Minimum
Poise Steiner Tree problem (up to log k factors). This implies the aforementioned analogous
statement about the relationship between undirected k-MTM and the undirected/directed
MTM problems.

We focus on approximating these poise problems.

▶ Definition 1.1. A O(f(k))-additive approximation for the Minimum Poise Steiner k-Tree
problem returns a tree T with k terminals, with maximum degree3 Õ(B∗) + O(f(k)) and
height O(D∗).

1.1 Our results
We give an O(

√
k)-additive approximation for the directed versions.

▶ Theorem 1.2. Minimum Poise Steiner k-tree problem on directed graphs admits a poly-
nomial time Õ(k1/2)-additive approximation. This implies the same approximation for the
Minimum Time Telephone k-multicast problem.

The second part of the statement follows from [18].
In [10], a multiplicative O(

√
k)-approximation is given for the directed Min-Max Degree

k-Tree problem, which asks to find a tree spanning k terminals while minimizing the maximum
degree. Their algorithm iteratively finds trees containing

√
k ·B∗ terminals, and uses flows

to connect them to the root. Our directed result is more general than that of [10] in that it
can handle both degree bounds and height bounds. Moreover, our approximation for degree
is stronger, since we get an additive O(

√
k) approximation. Therefore, it may be better

than the approximation of [10] in the case that B∗ is large. Our approximation ratio for the
diameter is constant.

Our result is also more general than the O(
√

t)-additive approximation for directed MTM
of [3], as it handles the k-tree version of the problem, and recovers the same O(

√
t)-additive

approximation in the case k = t (up to logarithmic factors). In [3], the so-called multiple
set-cover problem is used, a variant of set cover, while our result uses max coverage subject
to a matroid constraint.

3 The Õ notation hides poly-logarithmic factors in k

APPROX/RANDOM 2024

21:4 The Telephone k-Multicast Problem

For undirected graphs, we give an Õ(t1/3) approximation, which is a better ratio in the
worst case if k is close to t. This represents progress toward closing the gap between the
approximability of undirected and directed MTM, since in [11] it is shown that the undirected
k-MTM problem lies between undirected and directed MTM in terms of approximability.

▶ Theorem 1.3. The Minimum Poise Steiner k-tree problem on undirected graphs admits
a polynomial time Õ(t1/3) approximation, and therefore the Minimum Time Telephone
k-multicast problem admits the same approximation.

The O(
√

k) additive ratio can be as bad as Ω(
√

t) multiplicative ratio, if B∗ is constant
and k = Ω(t). Therefore, in the worst case, an Õ(t1/3) approximation is a better ratio. In
addition, if B∗ = o(t1/6) and k = Ω(t), the multiplicative ratio gives a better additive ratio.

1.2 Technical Overview
For the directed case, our techniques are based on [3]. However, our problem is harder
since it is not clear which k terminals to choose. An important difference is that we use
an approximation algorithm for maximizing set coverage (a submodular function) under
matroid constraints [1]. The multiplicative approximation for the undirected case builds on
this, and requires several graph decomposition techniques to be carefully combined.

For both results, we denote the maximum degree as B∗ and height as D∗ of an optimal
minimum poise tree T ∗. It can be assumed that D∗ and B∗ are known by trying all
possibilities, as there are only polynomially many. Moreover, since D∗ is known, all vertices
of distance greater than D∗ from the root may be removed.

Directed Min-Poise Steiner k-Tree. In order to get an O(
√

k) additive approximation for
the directed min-poise Steiner k-tree problem, we employ a greedy strategy. We iteratively
find a collection of vertex-disjoint trees, each covering (i.e., containing) exactly

√
k terminals

and of height at most D∗, until no more can be found. We call these good trees.
In the case that at least

√
k many good trees are found, an additive O(

√
k)-approximation

follows by taking any
√

k of the good trees along with shortest paths from the root r to the
roots of each of these trees. This yields a subgraph (not necessarily a tree, since the shortest
paths may not be disjoint from the good trees) with maximum out-degree at most 2

√
k,

and radius (maximum distance from r) at most 2 ·D∗. Moreover, the subgraph contains
k terminals. Now the non-disjointness may be overcome by returning a shortest path tree
spanning this subgraph. This gives the desired approximation.

In the other case that fewer than
√

k good trees are found, we may still connect them to
the root via shortest paths. This gives a subgraph of low poise, but does not yet cover k

terminals. If k1 < k terminals are covered, we must determine how to cover k− k1 additional
terminals without inducing high degree or height.

This is the main technical contribution of the directed result: we can recast the covering
of k − k1 additional terminals as a set cover instance, and the desired poise guarantees can
be obtained by imposing a partition matroid constraint on the sets in the instance. Then,
an algorithm for approximating submodular function maximization subject to a matroid
constraint [1] is applied. To the authors’ knowledge, partition matroid constrained set
coverage has not previously been used for multicasting problems.

Partition Matroid Set Coverage Procedure. Suppose we are given a partition of the graph
into A ∪ C = V with r ∈ A, such that all of A is reachable with low poise and contains k1
terminals. We want to cover at least k− k1 terminals in C with low poise, and we know that
there exists a tree T ∗ rooted at r which does so.

D. Hathcock, G. Kortsarz, and R. Ravi 21:5

Say that a node c ∈ C covers all the terminals in C that it can reach within distance D∗.
In this way, we define a set cover instance over the ground set of terminals in C in which
each set is identified by an edge (a, c) between a node a ∈ A and a node c ∈ C. The set
corresponding to (a, c) contains all terminals covered by c. Defining the sets this way allows
us to enforce degree constraints on the nodes in A, since the sets can be partitioned by their
member in A. That is, we form a partition with the parts X(a) = {(a, c) : c ∈ C, ac ∈ E} for
each a ∈ A. We now impose the constraint that at most B∗ sets may be chosen from any
part X(a), reflecting the desired degree constraint. A partition matroid captures choosing
at most a certain number of elements from each part of a partitioned set. Hence we have
described a set cover instance with a partition matroid constraint and a coverage requirement
of k − k1.

The problem of selecting sets to maximize the number of terminals covered subject to
the matroid constraint is a special case of submodular function maximization subject to a
matroid constraint. Moreover, T ∗ provides a certificate that there exists a collection of sets
satisfying the matroid constraint and covering at least k− k1 terminals in C. Hence, we may
apply the (1− 1

e)-approximation for this problem [1] (the simple greedy strategy giving a
1
2 -approximation [6] would also suffice here) to find a collection of sets satisfying the matroid
constraint and covering at least (1− 1

e) · (k − k1) terminals in C.
Given the choice of sets (a, c) by the algorithm, we identify a set of edges that may be

added to extend our subgraph to cover these terminals. These newly covered terminals are
then removed, and the process repeated. In each round, we can cover a constant fraction
of the desired number of terminals, so we need only O(log k) rounds. Moreover, any given
round induces additional degree of only B∗ on nodes in A. The degree induced on nodes in
C depends on the size of the parts X(a), and this can be bounded in our applications (e.g.,
by
√

k in the directed setting described above, since the greedy strategy ensures that all
nodes in c can reach at most

√
k terminals within distance D∗). Finally, the distance from

the root of any node added is O(D∗), so in total the poise of the subgraph remains low. In
the end, we again output a shortest path tree spanning this subgraph.

Improvement in Undirected Graphs. In the undirected setting, the result can be improved
by taking advantage of the fact that if a good (low-poise) tree covering many terminals is
found, then we need only cover any node in that tree in order to cover all of those terminals
with low poise (as opposed to the directed case where we would have to cover the root of
that tree). Essentially, we may contract the tree and treat the contracted node as containing
many terminals.

Specifically, we will maintain a set R of nodes that we have covered so far with low poise
(by contracting, we can think of this simply as the root r). We first group the terminals
in the remaining graph C = V \R as before by greedily finding disjoint trees of low poise,
now each containing t1/3 terminals, called small trees. Note that some terminals may not
lie in any small tree. If the algorithm finds fewer than t1/3 small trees, then the same
matroid-constrained covering procedure from above can be applied to immediately get an
additive O(t1/3)-approximation.

On the other hand, if there are many small trees, we show that progress can be made by
either covering or discarding a large number of terminals at once. If we are able to aggregate
t1/3 small trees into a single tree within a distance D∗, we have covered t2/3 terminals
and hence made sufficient progress in coverage: we can repeat this at most t1/3 times to
finish, inducing at most t1/3 degree at the root to reach these trees. However, we may have
the additional complexity of the optimal tree containing terminals that are not in one of

APPROX/RANDOM 2024

21:6 The Telephone k-Multicast Problem

these small trees we computed in C. We handle this case by using the matroid-constrained
coverage procedure to extract as many terminals as any optimal solution might cover from
the small trees while staying within the degree and height bounds, and then discarding all
the terminals from all of the unused small trees. Since the number of small trees (each with
t1/3 terminals) is Ω(t1/3), this allows us to bound the number of such discarding iterations
by O(t1/3). In summary, we employ O(t1/3) iterations of either covering or discarding t2/3

terminals in the algorithm leading to the claimed O(t1/3) multiplicative guarantee. Over
the course of these iterations, the total degree accumulated by any node will be at most
Õ(t1/3) ·B∗ (Note this guarantee is now multiplicative, since a node can gain Õ(B∗) degree
in each of the t1/3 covering iterations).

Finally, we remark that the improved guarantee in this setting is in terms of t, the total
number of terminals, rather than k. This is because our algorithm relies on removing a large
number of terminals from the entire set of t terminals, without necessarily covering all of
them.

2 Preliminaries

Let dist(u, v) denote the number of edges in the shortest path from u to v in G. We denote
by G[U] the graph induced by U , and by distG[U](u, v) the distance from u to v in the graph
G[U]. Recall that we denote the minimum poise tree by T ∗, its maximum degree by B∗, and
its height by D∗.

▶ Assumption 2.1. Removing vertices of distance more than D∗ from the root r in G does
not change the optimal solution. Hence, we will assume for the rest of the paper that G only
contains vertices of distance at most D∗ from r.

▶ Remark 2.2. For the rest of the paper, we assume that quantities such as
√

k are integral.
Making the algorithm precise requires using ⌈

√
k⌉. However, the changes are minimal and

elementary.

For simplicity, we assume that every terminal has in-degree 1 and out-degree 0, by
attaching new terminal vertices to every terminal (this only increases the poise by at most
an additive constant). For undirected graphs, we assume that terminals have degree 1.
Therefore, removing terminals can’t turn a connected graph into a disconnected graph.

The input for the Set Cover problem is a universe U and a collection S of sets Si ⊆ U .
We say that a set Si covers all the elements that belong to this set. The goal is to find a a
sub-collection of sets S ′ ⊆ S of minimum size that covers all elements, namely,

⋃
Si∈S′ Si = U .

The Set Coverage problem under matroid constraints has the input of Set Cover, and in
addition, a matroid M defined over the sets S. The goal is to select an independent set
I in the Matroid so that |

⋃
Si∈I Si| is maximum. A partition matroid instance divides S

into pairwise disjoint collections of sets Si, whose union is all of S. For every collection
Si, there is a bound pi on the number of sets that can be selected from Si. A collection of
sets containing at most pi sets from each Si is precisely an independent set in the partition
matroid. The goal is to find an independent set in the partition matroid that covers the
largest number of elements. This problem is a special case of maximizing a submodular
function under matroid constraints. The greedy algorithm achieves a 1/2-approximation for
this problem [6], and is sufficient for our purposes. It is also known that the problem admits
a polynomial time 1 − 1/e-approximation [1], which may be used for improved constants.
The procedure of [1] is one of the main tools in our algorithm. We called this procedure the
Matroid procedure.

D. Hathcock, G. Kortsarz, and R. Ravi 21:7

3 The Partition Matroid Cover Algorithm

In the next two sections, our algorithms for both the directed and undirected cases define a
disjoint partition of the graph vertices into A ∪C = V . The root r always belongs to A, and
we will ensure that all of A can be covered by a low poise tree rooted at r. In this section,
we discuss how to cover sufficiently many terminals from C with low poise by connecting
them to the root through A. We do this by defining an instance of the Set Coverage problem
under a partition matroid constraint4.

▶ Definition 3.1. Define a Set Coverage instance as follows.
The items are S ∩ C (the terminals in C).
The sets (also called pairs) are S = {(a, c) | a ∈ A, c ∈ C, and ac ∈ E} where (a, c)
covers a terminal t ∈ S ∩ C if distG[C](c, t) ≤ D∗.

The partition matroid is defined as follows.

▶ Definition 3.2. S is partitioned into collections

X(a) = {(a, c) | c ∈ C and ac ∈ E}

for every a ∈ A. The bound on the number of sets to be chosen from X(a) is B∗.

By definition, the partition is disjoint and therefore, we have a valid partition matroid. Recall
that r ∈ A. See Algorithm 1 for a description of the Procedure PMCover.

Algorithm 1 PMCover.

input : Graph G(V, E) with terminals S and V partitioned into A ∪ C, and a
number k.

output : A collection of pairs of the form (a, c) with a ∈ A and c ∈ C.

1 E ′ ← ∅, S′ ← S ∩ C.
2 while k > 0 do
3 Define the partition matroid Set Coverage instance from A, C, S′ as above with

sets S ′ and apply Procedure Matroid of [1] to find an independent set of
approximately maximum coverage. Let I be the independent set it returns.

4 E ′ ← E ′ ∪ I.
5 Decrease k by the number of terminals covered by I.
6 Remove the terminals covered by I from S′.
7 return E ′.

Analysis
We will show that for every a ∈ A,

∣∣X(a) ∩ E ′∣∣ ≤ O(log k) ·B∗. This will be used to argue
that if (a, c) ∈ E ′, we later may make a the parent of c in the tree we build without incurring
high degree.

4 Note that the parameter k represents the remaining number of terminals we need to cover. Given a
partition A, C we will assume that all terminals in A have been spanned, and thus we need to cover k
terminals in C. That is, if A has k1 terminals for some k1 < k, we will set k ← k − k1. Note that we
are guaranteed that C ∩ T ∗ contains at least k − k1 terminals supplying a feasible solution.

APPROX/RANDOM 2024

21:8 The Telephone k-Multicast Problem

▶ Definition 3.3. Define a mapping from terminals in T ∗ ∩ C to S ′ as follows. For a
terminal t, let a = at be the vertex a ∈ A that is an ancestor of t in T ∗ and among them
distT ∗(a, t) is minimum. This vertex is well defined since r ∈ A is the root of T ∗. Let c = ct

be the child of a in T ∗ that is an ancestor of t. Define f(t) = (a, c).

▷ Claim 3.4. There exists an independent set I∗ in the partition matroid that covers at
least k terminals in C ∩ S.

Proof. We show that every terminal in t ∈ T ∗ ∩ C is covered by some set. Let a = at and
let c = ct. Since a has minimum distance to t from all vertices in A, the path from c to t

belongs to G[C]. The number of edges in the path between c and t is at most D∗ − 1. This
implies that the set (a, c) covers t. Create a set I∗ = {f(t) | t ∈ T ∗ ∩ S ∩ C}. We note that
f(t) = f(t′) = (a, c) may hold for two different terminals, but I∗ includes every such pair
(a, c) once (namely, I∗ is a set and not a multiset). For any a ∈ A, the number of different
pairs of the form (a, c1), (a, c2), . . . in I∗ can’t be more than B∗, because every such pair
increases a’s degree in T ∗ by 1. Thus, I∗ is independent in the partition matroid. Since all
terminals in T ∗ ∩ C are covered, k terminals are covered. ◁

▷ Claim 3.5. Procedure PMCover returns a collection of pairs E ′ so that for every a ∈ A,
X(a) ∩ E ′ = O(log k) ·B∗ and E ′ covers k terminals. Thus if in some tree, vertex a ∈ A is
made the parent of all c for which (a, c) ∈ E ′, the degree of a will be bounded by O(log k) ·B∗.

Proof. Since Procedure Matroid returns an independent set in the partition matroid, at
every iteration we have |X(a)∩I| ≤ B∗. Claim 3.4 and the guarantee of Procedure Matroid
by [1] imply that (1 − 1/e)k terminals are covered. Let kor ≤ k be the original number of
terminals to be covered and knew the number of terminals to be covered in a given iteration.
Then in the next iteration,

knew ← knew − (1− 1/e)knew = knew

e
.

Therefore, after i iterations, kor/ei terminals remain to be covered. Hence, the number of
iterations is O(log k). The claim follows. ◁

4 Approximating the poise for directed graphs

Our algorithm maintains a set A (initialized with the root r) containing the terminals covered
with low poise so far, and C = V \A. Consider a set C and the graph G[C] induced by C.

▶ Definition 4.1. Denote by T (c) the coverage tree of c in G[C] formed by taking a shortest
path from c to every terminal within distance D∗. A vertex c ∈ C is called ρ-good (with
respect to C) if there are at least ρ terminals in T (c). A ρ-good tree is a tree rooted at some
c (not necessarily T (c)) with exactly ρ terminals and height at most D∗.

By assumption, the out-degree of terminals is 0. Therefore all terminals are leaves. Since we
may discard non-terminal leaves, a ρ-good trees contains exactly

√
k leaf terminals.

▶ Definition 4.2. A set C of vertices, is a ρ-packing if there is no ρ-good vertex in C.

▶ Definition 4.3. Let {Ti} be a collection of vertex disjoint trees and let A be the set of
vertices in

⋃
i Ti. Let C = V −A. Then A, C is a ρ-additive partition if:

1. The trees Ti are ρ-good with respect to V , and are all vertex-disjoint.
2. There are at most ρ trees Ti.
3. C is a ρ-packing.

D. Hathcock, G. Kortsarz, and R. Ravi 21:9

Let qi be the root of Ti. Intuitively, since there are at most ρ trees Ti, we can add a
shortest path Pi from the root r to each qi, giving a tree rooted at r with low poise covering
terminals in A. In addition, since C is a ρ-packing, at least k (meaning the number of
remaining terminals to cover after covering those in A) of C’s terminals can be covered with
some collection of low poise trees. In particular, since every c ∈ C is not ρ-good, all of the
coverage trees T (c) have max degree at most ρ.

The algorithm attempts to find a ρ-additive partition. It greedily finds ρ-good trees, and
removes them until the set C that remains is a ρ-packing. Then the procedure PMCover can
be used to connect the low poise trees covering A and C. However, there may be too many
ρ-good trees in A for (A, C) to be a ρ-additive partition. In this case, it simply connects
the root to any ρ of the trees Ti. By choosing ρ =

√
k, this ensures enough terminals are

covered. See Algorithm 2 for a precise description of the Procedure Directed.

Algorithm 2 Directed.

input : Graph G(V, E) with terminals S, and a number k.
output : A Steiner k-tree of G.

1 Set ρ =
√

k.
/* Greedy Packing */

2 Let A = {r}, and C = V − {r}.
3 while C is not a ρ-packing do
4 Find a ρ-good tree T in G[C].
5 Remove the vertices of T from C and add them to A.
6 Let {Ti} denote the set of ρ-good trees found.

/* Many Trees */

7 if the number of ρ-good trees found is at least ρ, then
8 Choose any ρ of the trees {Ti} in A, and form the subgraph H ⊆ G by including

the root r, the chosen trees, and a shortest path from r to the root qi of each
chosen tree Ti.

9 return a shortest path tree of H rooted at r.
/* Few Trees */

10 else
11 The number of ρ-good trees found is at most ρ, so (A, C) is a ρ-additive partition.

Apply the Procedure Complete on (A, C), and return the resulting tree.

In the case that a ρ-additive partition (A, C) is found, we use the Procedure Complete,
described in Algorithm 3. See Figure 1 for a depiction of the algorithm at this step.

Analysis

For a directed tree, T , let degT (v) be the (out-)degree of the vertex in T . Now say that we
run step Greedy Packing of Directed with ρ =

√
k.

▷ Claim 4.4. If Procedure Directed finds at least ρ ρ-good trees, then step Many Trees of
Procedure Directed returns a tree with at least k terminals, maximum degree O(

√
k), and

height O(D∗)

Proof. Since each tree Ti is
√

k-good, it contains
√

k terminals. Hence, the graph H contains
at least k terminals, each of which can be reached by a path from the root. So the returned
shortest path tree of H has at least k terminals, as desired

APPROX/RANDOM 2024

21:10 The Telephone k-Multicast Problem

Algorithm 3 Complete.

input : Graph G(V, E) with terminals S, a ρ-additive partition (A, C), and a
number k.

output : A Steiner k-tree of G.

1 Apply the procedure PMCover with partition (A, C) to get E ′.
2 Let E = {ac : (a, c) ∈ E ′}, the set of arcs corresponding to sets in E ′

3 Form the graph HC on vertex set C ∪ {r′}, where r′ is a new node. For each c ∈ C

appearing in some ac ∈ E , include in HC the arc (r′, c) and the coverage tree T (c).
Take a shortest path tree on HC rooted at r′, and let TC be all of the edges from
this tree in G[C].

4 Form the subgraph H ⊆ G by including the root r, each ρ-good tree Ti from A and a
shortest path from r to its root qi, the edges from E , and the edges from TC .

5 return a shortest path tree of H rooted at r.

rA

C

<

≤ B*
a

c

Figure 1 A depiction of the algorithm in the case that a ρ-additive partition is found. The set A

includes the root r and all
√

k-good trees found, while C contains the remaining vertices. Terminals
are depicted in blue. Short paths from r to the roots of the good trees are added (in red). Since C

is a
√

k-packing, each vertex c ∈ C can reach less than
√

k terminals within distance D∗. Hence,
we can run the PMCover procedure, with each iteration enforcing a degree constraint of B∗ on each
node in A, as shown.

To bound the degrees in the returned tree, we just bound the degrees in H. The good
trees Ti are disjoint, and each have maximum degree at most

√
k. Moreover, there are

√
k of

them, so there are only
√

k shortest paths to their roots. Therefore, the degree contributed
to any node v ∈ H is at most

√
k from the Ti, and at most 1 for each shortest path, for

a total of degH(v) ≤ 2
√

k. Finally, each tree Ti in H has height at most D∗, while each
shortest path from the root to some qi has length at most D∗ (by Assumption 2.1), so the
returned shortest path tree has height at most 2 ·D∗. ◁

D. Hathcock, G. Kortsarz, and R. Ravi 21:11

▷ Claim 4.5. If Procedure Directed finds less than ρ ρ-good trees, then Procedure Complete
finds a tree rooted at r with maximum degree O(log k) ·B∗ + O(

√
k), and height O(D∗) that

that contains at least k terminals of C ∩ S.

Proof. First, observe that H contains all terminals in A, as well as those terminals in C

covered by procedure PMCover. In particular, by Claim 3.5, H contains at least k terminals,
so the returned shortest path tree does as well.

Now we bound the degrees of nodes in the returned tree. The Ti making up A are disjoint√
k-good trees each having maximum degree at most

√
k. And there are less than

√
k of

them, so we add at most
√

k shortest paths to their roots qi. Hence, for each node v ∈ A, the
contribution to the degree degH(v) is at most

√
k from the Ti, at most 1 for each shortest

path, plus the contribution from E. By Claim 3.5, the edges of E increase the degree of
vertices in A by O(log k) ·B∗, so in total degH(v) ≤ O(log k) ·B∗ + 2

√
k for each v ∈ A.

All other vertices in H lie in C, and so their degree comes only from the
√

k shortest paths
(contributing at most 1 each), and the edges from TC . Every coverage tree T (c) has depth at
most D∗ by definition. In particular, for any vertex c ∈ C, we must have degTC

(c) ≤
√

k,
since otherwise the subtree of TC rooted at c has more than

√
k leaves, which can all be

assumed to be terminals. But this means that c has more than ρ =
√

k terminals in C of
distance at most D∗, contradicting that c is not ρ-good. Hence, degH(c) ≤ 2

√
k for every

c ∈ C.
Finally, the height of the output tree is at most 3 ·D∗ + 1, because we get height D∗,

from the trees Ti, height D∗ from the shortest paths, height D∗ from TC , and an additional
edge from E . ◁

Therefore, in either case we return a tree with at least k terminals with maximum degree
O(log k) ·B∗ + O(

√
k) and height O(D∗). This implies Theorem 1.2.

The following corollary is useful as it applies in case that the Greedy Packing step of
Procedure Directed finds a ρ-additive partition (i.e., step Few Trees is executed) with some
ρ that may be smaller than

√
k.

▶ Corollary 4.6. If Procedure Directed finds a ρ-additive partition A, C, then there exists
polynomial time ρ-additive approximation for the corresponding min poise k-tree problem.

5 The undirected case

In this section, we provide our Õ(t1/3)-approximation algorithm for the Minimum Time
Telephone k-multicast problem on undirected graphs with t terminals, proving Theorem 1.3.

Preliminaries. We assume (for convenience) that the root r is a non-leaf node in T ∗. Recall
that we assume that all terminals have degree 1. We can now assume that after rooting T ∗

at r, the set of leaves in T ∗ and the set of terminals in T ∗ is the same set. Also recall that
the height of the tree T ∗ rooted at r is at most D∗, since the diameter of T ∗ is at most D∗.

Algorithm outline. The idea in the undirected case is that if a low-poise tree covering many
terminals is found, then we need only cover any node in that tree in order to cover all of
those terminals with low poise (as opposed to the directed case where we would have to cover
the root of that tree). Essentially, we may contract the tree and treat the contracted node as
containing many terminals.

Specifically, we will maintain a set R of nodes we have covered with low poise (by
contracting, we can think of this simply as the root r). We first partition the remaining
graph C = V \R as before by greedily finding small trees.

APPROX/RANDOM 2024

21:12 The Telephone k-Multicast Problem

▶ Definition 5.1. We say that a tree is small size if it contains exactly t1/3 terminals. We
say that a tree is large if it contains exactly t2/3 terminals

If this procedure succeeds in finding a t1/3-additive partition, then we are done by
Corollary 4.6. On the other hand, if we fail, we contract these small trees and show how to
cover a sufficiently large number of them by either finding a single large tree reaching t1/3 of
these small trees, or by applying the procedure PMCover. In either case, we may then remove
all of the terminals from these small trees, contract the newly covered nodes into R, and
iterate the entire process to cover the remaining terminals. In each iteration, we show the
total number of terminals discarded is large, so there cannot be too many iterations, and
hence not too much additional degree is incurred.

We first give a simple algorithm, Procedure Small, that finds trees {Ti} each with exactly
t1/3 terminals (leaves).

Algorithm 4 Small.

input : Graph G(V, E) with t terminals S, and a number k.
output : A collection of subtrees {Ti}, each with exactly t1/3 terminals, or a Steiner

k-tree.

1 Apply step Greedy Packing from Procedure Directed on G with ρ = t1/3. Denote
the resulting trees as {Ti}.

2 If the procedure succeeds in finding a t1/3-additive partition, apply Procedure
Complete on A, C, and return the resulting tree.

3 Else, return {Ti}

In case that step Greedy Packing from Procedure Directed finds a t1/3-additive partition
A, C, we are guaranteed a t1/3-additive ratio from Corollary 4.6. Hence, from now on we
assume that step Greedy Packing from Procedure Directed gives more than t1/3 small
trees Ti.

We will proceed to contract each of these small trees into super-terminals. The trees Ti

that we compute, are built by step Greedy Packing from Procedure Directed with ρ = t1/3.
Hence, they have exactly t1/3 terminals/leaves. We contract the terminals of every Ti

into a single super-terminal qi. Denote by S(Ti) the terminals contained in Ti (i.e., those
corresponding to qi). As mentioned in the outline, we have the possibility that the terminals
of an optimal tree may only intersect with a few of these super-terminals. We capture this in
the following definitions.

▶ Definition 5.2. We say that qi is a true terminal if S(Ti) ∩ T ∗ ̸= ∅.

▶ Definition 5.3. Denote by k′ the number of terminals in (
⋃

i Ti) ∩ T ∗. Let µ = ⌈k′/t1/3⌉.

From the definitions, we can see that T ∗ overlaps with at least µ true terminals.
In the graph where the small trees have been contracted to super-terminals, we will

attempt to find a t1/3-packing of these super-terminals. For this, we generalize the definition
of a t1/3-packing in the set C with respect to the super-terminals.

▶ Definition 5.4. We say that c ∈ C is a t1/3-good vertex with respect to the super-terminals
{qi} if there are at least t1/3 terminals qi of distance at most D∗ from c, in G[C]. If there
are no t1/3-good vertices in C, C is called a t1/3-packing with respect to {qi}. If C is a
t1/3-packing, then R, C is called a t1/3-additive partition with respect to {qi}.

D. Hathcock, G. Kortsarz, and R. Ravi 21:13

We can now describe the details of the rest of the undirected algorithm. Specifically, if
Procedure Small fails to find a t1/3-additive partition, then there are two possibilities. Either
C = V \R is a t1/3 packing with respect to the qi, or otherwise there is a t1/3-good vertex
in C.

If C is a t1/3-packing we apply Procedure PMCover on R, C with terminals {qi} since
R, C is a t1/3-additive partition. The goal is covering µ super-terminals. We know that T ∗

covers at least µ true terminals qi, so these can be reached with height D∗ and maximum
degree B∗. Therefore, our Procedure PMCover covers at least µ super-terminals. Note that
the number of original terminals we actually cover is µ · t1/3 ≥ k′. This follows because each
qi represents a tree Ti that contains t1/3 terminals. We now discard all the terminals of

⋃
i Ti.

Since the number of Ti is at least t1/3, the total number of discarded terminals is t2/3.
The other case is that C is not a t1/3-packing with respect to {qi}. Let v ∈ C be a

t1/3-good vertex and let Qv be the corresponding tree. Note that Qv is a large tree since
it spans t1/3 of the qi, each representing t1/3 terminals. We connect r to Qv via a shortest
path P from r to Qv, and contract r ∪ P ∪Qv into r. Then we discard the terminals of Qv.
Since Qv is a large tree, the number of terminals discarded is t2/3.

In summary, in both cases t2/3 terminals are discarded. Therefore the number of iterations
in our algorithm is at most t1/3.

The degree of vertices in R increases by O(log k) · B∗ every time PMCover is applied.
Alternatively, a large tree Qv is created and we only need a path P from r to Qv. This
increases the degree of some vertices in R by exactly 2. This gives a total degree of 2 · t1/3

because of the bound on the number of iterations.

The main procedure
Here we describe the precise algorithm for the undirected problem, Procedure Undirected
in Algorithm 5.

Analysis
▷ Claim 5.5. T ∗ contains at least µ true terminals.

Proof. If the number of true terminals is at most µ− 1, the number of terminals in
⋃

i Ti is
at most (µ− 1) · t1/3 < k′ and this is a contradiction. ◁

▷ Claim 5.6. The number of iterations in Procedure Undirected is at most t1/3.

Proof. If a tree Qv is found, then it is a large tree hence it contains at least t2/3 terminals.
These terminals are discarded in the iteration. Else, the terminals of S ∩

⋃
i Ti are discarded

and this, again, this removes t2/3 terminals, since we have at least t1/3 different small Ti’s
(because procedure Small failed). Since in either case t2/3 terminals are discarded and the
total number of terminals is t, the number of iterations is at most t1/3. ◁

▷ Claim 5.7. Let v be a vertex so that v ̸∈ R. A single iteration of Procedure Undirected
increases v’s degree by at most 2 · t1/3 + 2. Moreover, if v’s degree increases, v is contracted
into r in that iteration.

Proof. The degree of a vertex increases only if it belongs to a large tree Qv (or its path P

from r), or it belongs to the subgraph Q computed by Procedure PMCover. In the first case,
the degree increases by at most t1/3 from any one of the Ti’s in Qv, at most t1/3 more for the
paths from v to these Ti’s, and at most 2 more for the path P from r to Qv, for a total of at

APPROX/RANDOM 2024

21:14 The Telephone k-Multicast Problem

Algorithm 5 Undirected.

input : Graph G(V, E) with t terminals S, and a number k.
output : A Steiner k-tree

1 R← {r}, S′ ← S.
2 while k > 0 do
3 Apply Procedure Small with ρ = t1/3 on C = V \R. If it succeeds, return the

resulting tree.
4 If Small fails, contract the terminals from each Ti in the resulting packing into a

corresponding super-terminal qi.
5 if C = V \R is not a t1/3-packing with respect to {qi} then
6 Find a large tree Qv inside G[C].
7 Compute a shortest path P from r to Qv.
8 R← R ∪ P ∪Qv.
9 Remove from S′ all the terminals of Qv and update k.

10 else // C = V \R is a t1/3-packing.

11

12 Apply Procedure PMCover with A = R and C = V −R with the goal of
covering super-terminals.

13 Let E be the edges corresponding to the returned sets (a, c) ∈ E ′, and TC the
shortest path tree on the corresponding trees T (c) (as in line 3 of Complete).
Write Q = E ∪ TC .

14 R← R ∪Q.
15 Remove from S′ all the terminals

⋃
i Ti and update k.

16 return the tree induced by R

most 2 · t1/3 + 2. In the second case, the degree increases by at most t1/3 from TC and 1 from
E , by an identical argument to Claim 4.5 (the proof of correctness of Procedure Complete).

In both cases, the vertex is immediately contracted into r. ◁

▷ Claim 5.8. At every iteration, the degree of vertices in R is increased by at most
O(log k) ·B∗.

Proof. If a large tree Qv is found, a shortest path from r to Qv is computed. This increases
the degree of any vertex by at most 2. Otherwise, Procedure PMCover is applied. This
increases the degree of vertices of R by O(log k) ·B∗. The claim follows. ◁

▷ Claim 5.9. The returned tree contains k terminals, has maximum degree Õ(t1/3) ·B∗ and
diameter O(D∗)

Proof. By Claim 5.7, an iteration of Procedure Undirected increases the degree of a vertex
v ̸∈ R by at most O(t1/3), any v whose degree increases immediately joins R. Now we bound
the degree added to a vertex in R. By Claim 5.8 at every iteration the degree of v ∈ R can
increase by O(log k) ·B∗. By Claim 5.6, the number of iterations of Procedure Undirected
is is bounded by t1/3. Therefore the total degree of a vertex is at most

O(t1/3) + O(log k) ·B∗ · t1/3 = O(log k) · t1/3 ·B∗.

In addition, the diameter of every Qv or Q found, is O(D∗). The distance of r to any Q or
Qv is at most D∗ as well. This assures that the diameter is O(D∗).

D. Hathcock, G. Kortsarz, and R. Ravi 21:15

Finally, we argue that k terminals are covered. Fix a particular iteration of the algorithm.
If Procedure Small succeeds in finding a t1/3-additive partition, then we immediately cover
the remaining number of terminals necessary by applying the Procedure Complete. Otherwise,
we argue that among the terminals discarded in this iteration, the algorithm covers at least
as many as T ∗ covers. Indeed, if C is not a t1/3-packing with respect to {qi}, then all
terminals discarded are covered. On the other hand, if C is a t1/3-packing, then by applying
Procedure PMCover, Claim 5.5 ensures that at least µ super-terminals are covered. Hence at
least µ · t1/3 ≥ k′ terminals are covered, which is precisely the number of terminals covered
by T ∗ among those discarded. ◁

Using [18] we get the following corollary that proves Theorem 1.3.

▶ Corollary 5.10. The Minimum Time Telephone k-Multicast problem on undirected graphs
admits a polynomial time, Õ(t1/3)-approximation algorithm.

References
1 Gruia Călinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a monotone

submodular function subject to a matroid constraint. SIAM J. Comput., 40(6):1740–1766,
2011. doi:10.1137/080733991.

2 Alan J. Demers, Daniel H. Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker,
Howard E. Sturgis, Daniel C. Swinehart, and Douglas B. Terry. Epidemic algorithms for
replicated database maintenance. In Fred B. Schneider, editor, Proceedings of the Sixth Annual
ACM Symposium on Principles of Distributed Computing, Vancouver, British Columbia,
Canada, August 10-12, 1987, pages 1–12. ACM, 1987. doi:10.1145/41840.41841.

3 M. Elkin and G. Kortsarz. An approximation algorithm for the directed telephone multicast
problem. Algorithmica, 45(4):569–583, 2006. doi:10.1007/s00453-005-1196-4.

4 Michael Elkin and Guy Kortsarz. A combinatorial logarithmic approximation algorithm for
the directed telephone broadcast problem. SIAM J. Comput., 35(3):672–689, 2005. doi:
10.1137/S0097539704440740.

5 Michael Elkin and Guy Kortsarz. Sublogarithmic approximation for telephone multicast. J.
Comput. Syst. Sci., 72(4):648–659, 2006. doi:10.1016/j.jcss.2005.12.002.

6 M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey. An analysis of approximations for maximizing
submodular set functions – II, pages 73–87. Springer Berlin Heidelberg, Berlin, Heidelberg,
1978. doi:10.1007/BFb0121195.

7 D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and S. Wicker. Complex
behavior at scale: An experimental study of low-power wireless sensor networks. Technical
report, UCLA/CSD-TR 02, 2002.

8 Sandra M. Hedetniemi, Stephen T. Hedetniemi, and Arthur L. Liestman. A survey of
gossiping and broadcasting in communication networks. Networks, pages 319–349, 1988.
doi:10.1002/net.3230180406.

9 R. Impagliazzo and R. Paturi. On the complexity of k-sat. J. Comput. Syst. Sci., 62(2):367–375,
2001. doi:10.1006/jcss.2000.1727.

10 Rohit Khandekar, Guy Kortsarz, and Zeev Nutov. On some network design problems with
degree constraints. J. Comput. Syst. Sci., 79(5):725–736, 2013. doi:10.1016/j.jcss.2013.
01.019.

11 Guy Kortsarz and Zeev Nutov. The minimum degree group steiner problem. Discret. Appl.
Math., 309:229–239, 2022. doi:10.1016/j.dam.2021.12.003.

12 Gueorgi Kossinets, Jon Kleinberg, and Duncan Watts. The structure of information pathways
in a social communication network. In Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 435–443, 2008. doi:10.1145/
1401890.1401945.

APPROX/RANDOM 2024

https://doi.org/10.1137/080733991
https://doi.org/10.1145/41840.41841
https://doi.org/10.1007/s00453-005-1196-4
https://doi.org/10.1137/S0097539704440740
https://doi.org/10.1137/S0097539704440740
https://doi.org/10.1016/j.jcss.2005.12.002
https://doi.org/10.1007/BFb0121195
https://doi.org/10.1002/net.3230180406
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1016/j.jcss.2013.01.019
https://doi.org/10.1016/j.jcss.2013.01.019
https://doi.org/10.1016/j.dam.2021.12.003
https://doi.org/10.1145/1401890.1401945
https://doi.org/10.1145/1401890.1401945

21:16 The Telephone k-Multicast Problem

13 D. R. Kowalski and A. Pelc. Optimal deterministic broadcasting in known topology radio
networks. Distributed Comput., 19(3):185–195, 2007. doi:10.1007/s00446-006-0007-8.

14 Afshin Nikzad and R. Ravi. Sending secrets swiftly: Approximation algorithms for generalized
multicast problems. In ICALP, pages 568–607, 2014. doi:10.1007/978-3-662-43951-7_48.

15 Melih Onus and Andréa W. Richa. Minimum maximum-degree publish-subscribe overlay
network design. IEEE/ACM Trans. Netw., 19(5):1331–1343, 2011. doi:10.1109/TNET.2011.
2144999.

16 David Peleg. Distributed Computing: A Locality-Sensitive Approach. Society for Industrial
and Applied Mathematics, 2000. doi:10.1137/1.9780898719772.

17 Da Qi Chen, Lin An, Aidin Niaparast, R Ravi, and Oleksandr Rudenko. Timeliness through
telephones: Approximating information freshness in vector clock models. In Proceedings of
the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2411–2428.
SIAM, 2023. doi:10.1137/1.9781611977554.ch93.

18 R. Ravi. Rapid rumor ramification: Approximating the minimum broadcast time (extended
abstract). In 35th Annual Symposium on Foundations of Computer Science, Santa Fe,
New Mexico, USA, 20-22 November 1994, pages 202–213. IEEE Computer Society, 1994.
doi:10.1109/SFCS.1994.365693.

https://doi.org/10.1007/s00446-006-0007-8
https://doi.org/10.1007/978-3-662-43951-7_48
https://doi.org/10.1109/TNET.2011.2144999
https://doi.org/10.1109/TNET.2011.2144999
https://doi.org/10.1137/1.9780898719772
https://doi.org/10.1137/1.9781611977554.ch93
https://doi.org/10.1109/SFCS.1994.365693

Scheduling Splittable Jobs on Configurable
Machines
Matthew Casey #

Northeastern University, Boston MA 02115, USA

Rajmohan Rajaraman #

Northeastern University, Boston MA 02115, USA

David Stalfa #

Northeastern University, Boston MA 02115, USA

Cheng Tan #

Northeastern University, Boston MA 02115, USA

Abstract
Motivated by modern architectures allowing for the partitioning of a GPU into hardware separated
instances, we initiate the study of scheduling splittable jobs on configurable machines. We consider
machines that can be configured into smaller instances, which we call blocks, in multiple ways, each
of which is referred to as a configuration. We introduce the Configurable Machine Scheduling (cms)
problem, where we are given n jobs and a set C of configurations. A schedule consists of a set of
machines, each assigned some configuration in C with each block in the configuration assigned to
process one job. The amount of a job’s demand that is satisfied by a block is given by an arbitrary
function of the job and block. The objective is to construct a schedule using as few machines as
possible. We provide a tight logarithmic factor approximation algorithm for this problem in the
general setting, a factor (3 + ε) approximation algorithm for arbitrary ε > 0 when there are O(1)
input configurations, and a polynomial time approximation scheme when both the number and size
of configurations are O(1). Finally, we utilize a technique for finding conic integer combinations in
fixed dimension to develop an optimal polynomial time algorithm in the case with O(1) jobs, O(1)
blocks, and every configuration up to a given size.

2012 ACM Subject Classification Theory of computation → Scheduling algorithms

Keywords and phrases Scheduling algorithms, Approximation algorithms, Configurable machines,
Splittable jobs, Linear programming

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.22

Category APPROX

Related Version Previous Version: https://doi.org/10.48550/arXiv.2312.05416

Funding Matthew Casey: Partially supported by NSF grant CCF-1909363.
Rajmohan Rajaraman: Partially supported by NSF grants CCF-1909363 and CCF-2335187.
David Stalfa: Partially supported by NSF grant CCF-1909363.
Cheng Tan: Partially supported by NSF CAREER Award #2237295

1 Introduction

As the size of Deep Neural Network (DNN) models (particularly Large Language Models)
continue to increase, there is a growing need to more efficiently allocate computational
resources to these models at inference time. One challenge in efficiently allocating resources
is that certain large models may require powerful GPUs, while other smaller models would
greatly underutilize the power of such GPUs. To combat this issue, modern GPUs (e.g.,

© Matthew Casey, Rajmohan Rajaraman, David Stalfa, and Cheng Tan;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 22; pp. 22:1–22:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:casey.ma@northeastern.edu
https://orcid.org/0000-0003-2083-5470
mailto:r.rajaraman@northeastern.edu
https://orcid.org/0009-0005-3610-9918
mailto:stalfa.d@northeastern.edu
mailto:c.tan@northeastern.edu
https://orcid.org/0000-0002-1420-5125
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.22
https://doi.org/10.48550/arXiv.2312.05416
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Scheduling Splittable Jobs on Configurable Machines

NVIDIA A30, A100, H100) include a new hardware feature called Multi-Instance GPU
(MIG). MIG enables a GPU to be partitioned into smaller hardware isolated GPU instances,
each with their own processors, memory, L2 cache, and bus bandwith.

While MIG theoretically allows GPUs to avoid wasting resources, the feature raises the
problem of efficiently scheduling on MIG-enabled GPUs. The problem presents two main
challenges which must be considered simultaneously, and so compound the complexity of
finding a solution. The first challenge is to partition the GPU into a configuration of smaller,
variably sized GPU instances that can be used to execute DNN models. The second challenge
is to assign models to these instances based on their resource demands. The problem is
further complicated by the facts that (a) different configurations of GPU instances may have
varying levels of computational and memory resources, (b) the resources are non-fungible
for DNN models in the sense that increasing the size of a GPU instance may not linearly
increase its performance [17], and (c) due to hardware constraints, some partitions of the
GPU may not be available [13].

No prior work has provided algorithms with provable performance guarantees in the
presence of (a-c), and currently deployed scheduling algorithms ignore either (b) [14], or
(c) [16], or all three [19]. While this problem has gained much attention [17, 10, 11], these
investigations primarily rely on heuristics with no formal guarantees. This paper is the first
to establish theoretical bounds for scheduling on MIG-enabled GPUs.

We provide a natural formalization of the above problem, initiating a systematic theoretical
study of scheduling splittable jobs in configurable machines. We call this problem Configurable
Machine Scheduling or cms. We consider machines that can be partitioned into multiple
configurations of smaller instances, which we call blocks. We consider jobs that have certain
demands that need to be satisfied by allocating blocks to it. Each job also has a corresponding
table that specifies how much of the job’s demand is satisfied by a given block type. A
schedule specifies each machine’s configuration and which job each of the machine’s blocks is
to execute. Our goal is to construct a schedule that satisfies all job demands using as few
machines as possible.

Configurable Machine Scheduling (cms). A cms instance is defined by a set C of machine
configurations and a set J of jobs, as well as an integer k indicating the number of available
block types.

Each machine configuration σ ∈ C is a multiset of blocks represented as a length k vector.
For i ∈ [k] = {1, . . . , k}, we let σi ∈ Z≥0 indicate the number of blocks of type i in σ.
For each job j ∈ J , there is an associated demand dj as well as a length k throughput
table fj . For a job j ∈ J and block type i ∈ [k], the value of fj(i) denotes the amount of
j’s demand satisfied when it is executed on a single block of type i.

The goal is to satisfy all job demands on as few machines as possible. A machine µ

specifies how each block is allocated for each job. Specifically, µ(i, j) represents the number
of blocks of type i on which machine µ executes job j, with the constraint that, there exists
a configuration σ such that

∑
j µ(i, j) ≤ σi, for each i ∈ [k]. That is, each machine has an

implicit configuration, and the total number of blocks of type i used by machine µ cannot
exceed the number of blocks of type i included in µ’s configuration.

A schedule consists of a multiset M of machines, with Mµ indicating the number of
instances of machine µ in M . In any schedule, all job demands must be completely satisfied,
i.e. for any schedule M , we require

∑
µ∈M

∑
i∈[k] Mµ · µ(i, j) · fj(i) ≥ dj for each job j. The

formal objective is, then, to construct a schedule M that minimizes the total number of
machine instances, given by

∑
µ Mµ. (See Figure 1 for an example.)

M. Casey, R. Rajaraman, D. Stalfa, and C. Tan 22:3

k = 3

σ :

τ :

j1 :

j2 :

j3 :

8
C :

,

dj1 = 11

dj2 = 14

dj3 = 29

J :

µ : j1 j1 j1 j3

µ′ : j2 j3 j3 j2

µ∗ : j2 j3

[2]

[3]

,

,
[1]

2

5

4

1

3

5

3

5

(a) (b)

Figure 1 Example cms instance (a) with schedule (b). The instance has k = 3 block types,
|C| = 2 configurations, and |J | = 3 jobs. Configuration σ has three type 1 blocks, and one type 3
block. Configuration τ has two type 2 blocks. Job j1 had demand 11, with throughput fj1 (1) = 2,
fj1 (2) = 4, and fj1 (3) = 5. Job j2 had demand 14, with throughput fj2 (1) = 8, fj2 (2) = 1, and
fj2 (3) = 3. Job j3 had demand 29, with throughput fj3 (1) = 5, fj3 (2) = 3, and fj3 (3) = 5. The
schedule uses six machines: two instances of µ, one instance of µ′, and three instances of µ∗. µ

and µ′ have configuration σ. µ executes j1 on three type 1 blocks and j3 on one type 3 block. µ′

executes j2 on one type 1 block and one type 3 block, and j3 on two type 1 blocks. Machine µ∗ has
configuration τ and executes j2 on one type 2 block and j3 on the other. Summing the throughput
over all machines is sufficient to satisfy all job demands.

In any cms instance, we assume that, for all j, fj maps to {ℓ ∈ N : ℓ ≤ dj}, which we
can ensure with only a polynomial increase in the length of the input, and no loss in the
value of the optimal solution. The size of a configuration σ, denoted |σ|, is the number of
blocks in the configuration, i.e. |σ| =

∑
i∈[k] σi. Furthermore, for convenience, some of our

algorithms output the schedule as a multiset of configurations, one for each machine in the
output schedule, and a multiset of blocks for each job. In the appendix, we prove that this
format of the output is without loss of generality, since it can be efficiently transformed to a
schedule as formally defined above.

1.1 Our results

Our cms problem formulation yields a rich landscape of optimization problems, which vary
depending on the properties of block types, configurations, and the job demand tables. In
this paper, we explore the general cms problem and three restricted versions of the problem.
We obtain near-tight approximations or optimal results for the associated problems (see
Table 1).

Table 1 Results for Configurable Machine Scheduling. n is the number of jobs, k is the number
of block types, and c = maxσ∈C{|σ|} is the maximum size of any configuration. All results are
proved in this paper. The hardness of cms with O(1) jobs and O(1) configuration size is unknown.

-
Problem Algorithm Approximation Hardness

General LP+ Greedy O(log cnk) Ω(log nk)

O(1) configurations
Extreme-Point
LP Rounding

(2 + ε)OPT + |C|
3 + ε

2

O(1) configurations
of O(1) size Small/Large Job LP 1 + ε ?

O(1) number of jobs and blocks,
with all configurations up to a given size

Conic Integer Combinations
in Fixed Dimension 1 -

-

APPROX/RANDOM 2024

22:4 Scheduling Splittable Jobs on Configurable Machines

General cms (Section 2). Using a reduction from minimum multiset multicover [15],
we first observe that cms is hard to approximate to within a factor of Ω(log nk), where n

is the number of jobs and k the number of blocks. We then present a factor O(log(cnk))
approximation algorithm, where n is the number of jobs, k the number of blocks, and c

is the size of the largest configuration, which is essentially tight given the above hardness
result. Our algorithm constructs a schedule by greedily selecting the highest throughput
configuration on the basis of a linear programming relaxation.

The logarithmic-hardness result for the general problem motivates us to consider restricted
versions with a constant number of configurations, which are also of practical interest.

cms with a constant number of configurations (Section 3). Using a reduction from
Partition, we observe that cms, even with one configuration and two jobs, is hard to
approximate to within a factor of 2. Our main result is an algorithm that, for any instance
of cms with a constant number of configurations C and arbitrary ε > 0, uses at most
(2 + ε)opt + |C| machines where opt is the number of machines needed in the optimal
solution, asymptotically almost matching the hardness result for a constant number of
configurations. We also show that our algorithm always returns a 3 + ε approximation.
Our algorithm builds on the seminal LP rounding technique of [9] and exploits the
structure of extreme-point solutions to iteratively and carefully round the LP variables.

To find more tractable cases, we study a further restriction of the problem that bounds
the size of configurations.

cms with a constant number of configurations of constant size (Section 4). We next
consider cms with a constant number of configurations, each of constant size (i.e., having
a constant number of blocks). We show that the problem is solvable in pseudo-polynomial
time; our main result here is a PTAS based on rounding a novel LP relaxation for the
problem.

Our LP based approximations require the number of configurations given in the input to
be constant. Our final result explores nontrivial tractable models where the number of jobs
is constant while the number and size of configurations are not constant.

cms with a constant number of jobs and blocks, with all configurations up to a given
size (Section 5). We consider cms with a constant number of jobs, a constant number
of block types, and where every configuration up to a given size is available. We give an
algorithm that solves this problem optimally in polynomial time. Our algorithm uses a
technique for finding conic integer combinations in fixed dimension, which was developed
by Goemans and Rothvoss in their study of bin packing with constant number of job
types [5]. We also show that this technique extends to a more general setting where
configurations are defined by a constant number of rational polytopes.

1.2 Our Techniques
General cms. The logarithmic factor approximation algorithm for the most general case
uses two algorithmic approaches, each of which faces challenges on its own. The first approach
uses the natural heuristic of greedily allocating machines to execute as much total throughput
as possible. When each job can be fully executed on at most one block of each type, we

M. Casey, R. Rajaraman, D. Stalfa, and C. Tan 22:5

show that this algorithm achieves a logarithmic approximation ratio. However, in general the
algorithm’s approximation ratio is Ω(n). The second approach is based on an LP relaxation
that uses job-block variables to indicate how many blocks of a given type are used to execute
a job. When the job-block variables are large enough (greater than 1) they can be rounded
and scheduled using a multi-set multi-cover algorithm to achieve a logarithmic approximation
ratio. On the other hand, variables with low values cannot be rounded up without a large
loss in the approximation ratio, and cannot be rounded down because even a small fractional
block allocation may represent a significant amount of throughput. Our solution is to marry
these approaches. We first solve the LP relaxation and use a multi-set multi-cover algorithm
to schedule those job-block pairs with large variable values. For any jobs with remaining
demand, we show that they can be fully executed on at most one block of each type, and
ensure that the maximum ratio of execution function values is at most the number of block
types k. Executing the greedy algorithm on these remaining jobs yields an algorithm with a
logarithmic approximation ratio.

Constant number of configurations. In this case, we use essentially the same LP as for
the general problem, simplifying it to use only variables that represent how many of each
block type are allocated to a job. We then build a graph with nodes representing the block
types and jobs, and insert an edge between a job and block type if the corresponding variable
in the LP is nonzero. We leverage extreme point properties to prove that the graph is a
pseudo-forest; i.e., each component is either a tree or a tree with a cycle. Our key technical
contribution is to carefully round the LP solution by exploiting this tree structure and the
constraints on the possible LP values mandated by the fact that, by our construction, no block
can satisfy more demand than the job requires. This algorithm returns a (2 + ε)opt + |C|
approximation. We extend this result to a (3 + ε)opt approximation (which is better for
opt < |C|) by running the above algorithm on each subset of the input configurations, and
then returning the best solution.

Constant number of configurations of constant size. The LP used in the preceding two
variants of the problem has an integrality gap of 2. This holds even for simple instances with
one configuration of constant size and two jobs. To obtain a PTAS for a constant number of
configurations of constant size, we first divide the jobs into small and large jobs based on
whether the number of machines needed to serve their demand exceeds a constant threshold
(based on a parameter ε). We then formulate a new LP that imposes different constraints
for the small jobs taking into account that there is a bounded number of ways their demands
can be allocated. Through a careful rounding of the LP, we derive a (1 + ε)-approximation
algorithm for the problem.

Constant number of jobs and blocks, and all configurations up to a given size. In this
setting neither the number or configurations nor the size of any configuration is constant,
and so any approach based on our LP relaxations faces the obstacle that either the program
has an integrality gap of at least 2, or is intractable. Therefore, in order to solve this problem
optimally, more sophisticated techniques are required. The approach we develop is based on
a technique for finding conic integer combinations in fixed dimension which was developed
by Goemans and Rothvoss in their study of bin packing with constant job types [5]. The
challenges of this approach lie in formulating the problem to appropriately leverage the
power of the apparatus. In our case, this involves providing a rational representation of the
problem on an individual machine that yields a complete solution when combined with the

APPROX/RANDOM 2024

22:6 Scheduling Splittable Jobs on Configurable Machines

representations of other machines. In the general case, the nonlinear relationship of blocks
to job throughput and to configuration size renders the problem extremely difficult, even
when jobs and blocks are constant. However, when all configurations up to a given size are
available, a configuration can be represented as a linear combination of block allocations,
making the problem tractable. In fact, as long as the number of jobs and blocks types is
constant, the general technique for finding conic integer combinations allows us to devise an
optimal polynomial time algorithm whenever the set of configurations can be represented
using a constant number of rational polytopes.

1.3 Related work
Configurable machine scheduling has connections to many well-studied problems in combin-
atorial optimization, including bin-packing, knapsack, multiset multicover, and max-min fair
allocation. General cms generalizes the multiset multicover problem [8, 6, 15], for which the
best approximation factor achievable in polynomial time is O(log m) where m is the sum of
the sizes of the multisets [15, 18]. The hardness of approximating the problem to within an
O(log n) factor follows from the result for set cover [4].

As we note above, cms is NP-complete even for the case of one configuration and two
jobs. The single configuration version can be viewed as a fair allocation problem with each
block representing an item and each job representing a player that has a value for each
item (given by the demand table) and a desired total demand. The objective is to minimize
the maximum number of copies we need of each block so that they can be distributed
among the players satisfying their demands. In contrast, the Santa Claus problem in fair
allocation [1] (also studied under a different name in algorithmic game theory [12]) aims
to maximize the minimum demand that can be satisfied with the available set of blocks.
The best result for the Santa Claus problem is a quasi-polynomial O(nε)-approximation
algorithm, where ε = O(log log n/ log n) [2], though factor O(1) approximation algorithms
are known for special cases (e.g., see [3]).

1.4 Discussion and Open Problems
Our study has focused on a combinatorial version of cms in which each machine can be
configured as a collection of abstract blocks. It is also natural to consider a numerical version
of cms in which each block type is an item of a certain size, and each configuration has a
certain capacity and can only fit blocks whose sizes add up exactly to its capacity. Note
that instances of numerical cms can be presented more compactly than general instances
of cmssince the allowable configurations can be captured by configuration capacities and
block sizes. The approximation ratios established for cms apply to numerical cms as well;
however, it is not certain that there is also a logarithmic hardness for numerical cms. Thus,
an intriguing open problem is whether numerical cms admits an approximation factor
significantly better than the logarithmic factor established in Section 2. Also of interest is a
numerical cms variant where all capacity-bounded configurations are allowed, for which we
believe techniques from unbounded knapsack [7] and polytope structure results of the kind
we show in Section 5 would be useful.

Our results indicate several directions for future research. One open problem is to
devise approximation algorithms that leverage structure in the set of available configurations.
In practice, the configuration sets associated with multi-instancing GPUs might not be
arbitrary sets, e.g. the blocks of Nvidia’s A100 GPU are structured as a tree and every valid
configuration is a set of blocks with no ancestor-descendant relations [17]. Showing improved
bounds for such cases seems to be a challenging, but potentially fruitful area of research.

M. Casey, R. Rajaraman, D. Stalfa, and C. Tan 22:7

Another open problem lies in shrinking the gap between our upper and lower bounds.
The hard instance for cms with a constant number of configurations has a constant-size
solution, showing for instance that it is NP-hard to distinguish a problem with solution
size 1 from one with solution size 2. These lower bounds are sufficient to show hardness
of approximation, but do not rule out the possibility of asymptotic PTAS (even additive
constant approximations). Furthermore, we have not been able to show any hardness for
cms with a constant number of configurations of constant size, and this is an important and
interesting open problem.

Finally, our focus has been on the objective of minimizing the number of machines,
which aims to meet all demands using minimum resources. Our results can be extended to
minimizing makespan, given a constant number of machines. However, approximations for
other objectives such as completion time or flow time, in both offline and online settings, are
important directions for further research.

2 General cms logarithmic approximation

In this section, we consider the most general model of cms with an arbitrary configuration set
C over k block types, and n jobs in J . Our first lemma presents an approximation-preserving
reduction from multiset multicover to cms. We thus obtain that no polynomial time algorithm
can achieve an approximation ratio better than Ω(log nk) (assuming p ≠ np). The lemma
also implies that an improvement to our approximation ratio would yield an improvement to
the best known approximation for multiset multicover.

▶ Lemma 1. There is an approximation-preserving reduction from the multiset multicover
problem to cms.

Proof. Consider an arbitrary instance I of multiset multicover. Let U denote the set of
elements and C the collection of multisets in the set cover instance. Let re denote the coverage
requirement for element e. We can assume without loss of generality that there do not
exist two multisets S and S′ with S ⊆ S′, since we can eliminate S from the set collection
otherwise. We construct an instance of cms where each multiset S is a configuration and
each element e is both a block type and a job. The job e has demand re, which can only be
satisfied by re blocks of type e.

Any multiset multicover solution, given by a collection M of multisets, corresponds to a
solution for cms: each multiset S in M is a machine configured according to S. Therefore,
the number of multisets in M is the same as the number of machines in the cms solution.
Furthermore, since each element e is covered re times in M , it follows that each job e has
re occurrences of block type e included in cms solution, thus satisfying the demand for e.
Similarly, every cms solution with m machines is a collection of m multisets, with each multiset
corresponding to the configuration of a machine. Since the objective function value achieved
by each of the two solutions is identical, the reduction is approximation-preserving. ◀

The main result of this section is Algorithm 1, an O(log(maxσ∈C{|σ|} · n · k)-approximation
algorithm for cms. The first step of Algorithm 1 solves a linear relaxation of cms, which
minimizes

∑
σ yσ subject to:∑

j xi,j ≤
∑

σ∈C yσ · σii ∈ [k] (1)∑
i fj(i) · xi,j ≥ dj j ∈ J (2)

xi,j ≥ 0 i ∈ [k] and j ∈ J (3)
yσ ≥ 0 σ ∈ C (4)

APPROX/RANDOM 2024

22:8 Scheduling Splittable Jobs on Configurable Machines

Algorithm 1 Logarithmic Approximation for cms.

1 Formulate and Solve a Linear Relaxation (Constraints 1-4)
Round variables down if their fractional component is less than (1/2k)

2 Solve Problem over the Integer Components of Variables (Algorithm 2)
Construct partial schedule S via multiset-multicover defined over variable integer
components

3 Greedily Schedule any Jobs with Remaining Demand (Algorithm 3)
Construct a partial schedule S′ to satisfy any remaining demand by greedily
configuring each machine to maximize throughput

4 Output the schedule formed by the additive union (S ⊕ S)⊕ (S′ ⊕ S′)

Terms and Constraints. Each variable xi,j indicates the number of blocks of type i that
are assigned to execute job j. Each variable yσ indicates the number of machines that use
configuration σ. Constraint 1 ensures a schedule cannot use more blocks of a given type than
appear across all allocated machines. Constraint 2 states that the total number of blocks
executing a job must be sufficient to satisfy its demand. It is easy to verify that this program
relaxes cms and is solvable in polynomial time.

Let (x∗, y∗) be variable assignments that yield an optimal solution to (1-4). For the second
step of Algorithm 1, we separate the integer from the fractional components of the x-variables.
We define x̄i,j =

⌊
x∗

i,j

⌋
.

We define x̂i,j = 0 if either (i) (x∗
i,j −

⌊
x∗

i,j

⌋
) < 1

2k or (ii) fj(i) · (x∗
i,j −

⌊
x∗

i,j

⌋
) <

maxi′{fj(i′) · (x∗
i,j−

⌊
x∗

i,j

⌋
)}/k, otherwise x̂i,j = x∗

i,j−
⌊
x∗

i,j

⌋
. The second step of Algorithm 1

then calls Algorithm 2 to provide a schedule for the problem (C, J̄, k) with modified demands
d̄j = min{dj ,

∑
i fj(i) · x̄i,j}.

Algorithm 2. We define the set A =
{

(
∑

j ⌊xi,j⌋ , i) : i ∈ [k]
}

. We construct schedule S by
using the greedy multiset multicover algorithm given in [15] on the instance (A, C).

Step three of Algorithm 1 then constructs a schedule S′ to satisfy any remaining demand
given by the fractional components x̂ via Algorithm 3, which greedily allocates the highest
throughput machines until all demands are met. Finally, Algorithm 1 outputs the schedule
S∗ such that, S∗

µ = 2(Sµ + S′
µ) for each µ.

Algorithm 3. For each j ∈ J and i ∈ [k], we initialize f̂j(i) = fj(i). While there is some
job that hasn’t been fully executed, do the following. Compute a machine µmax by iterating
over all configurations σ and greedily allocating each block of σ to the job with the highest
throughput for that block (accounting for demand already satisfied). Of these machines,
greedily set µmax to be the one with highest total throughput. Allocate enough instances of
µ such that some job’s remaining demand becomes less than f̂j(i) for some i. Then, for each
j, i, update f̂j(i)← min{f̂j(i), Dj} where Dj is the job’s remaining demand. Then repeat.

In the remainder of the section, we provide analysis of Algorithm 1. The following lemmas
establish bounds on the lengths of the schedules produced by Algorithm 3. We note that
there exist instances for which Algorithm 3 produces schedules with length Ω(n), and so
it cannot be used to solve cms without some additional processing (which, for us, involves
reducing the instance via Algorithm 2).

M. Casey, R. Rajaraman, D. Stalfa, and C. Tan 22:9

▶ Lemma 2. If dj ≤
∑

i fj(i) for all i (i.e. each job can be executed on at most one block
of each type) then Algorithm 3 returns an O(log(maxσ∈C{|σ|} · nkρ)) approximation, where
ρ = maxi,i′,j{fj(i)/fj(i′)}.

Proof. Consider the following integer program formulation of cms, which minimizes
∑

t,σ wt,σ

subject to:
∑

t,σ,i zt,i,j · fj(i) ≥ dj , j ∈ J and
∑

j zt,i,j ≤ wt,σ · σi, t ∈ N, σ ∈ C, i ∈ [k]
and

∑
σ wt,σ ≤ 1, t ∈ N and wt,σ, zt,σ,i,j ∈ N, t ∈ N, σ ∈ C, i ∈ [k], j ∈ J . In this program,

wt,σ = 1 if the tth machine instance has configuration σ (0 otherwise), zt,i,j = the number of
blocks of type i that the tth machine uses to execute job j. It is easy to see that the program
relaxes cms.

Let (w∗, z∗) be a variable assignment that minimizes the objective with value η. Then∑
j

dj ≤
∑
µ∈S

µ(i, j) · fµ(i)(i) ≤ η · k ·max
σ∈C
{|σ|} ·max

i,j
{fj(i)}

The fact that dj ≤
∑

i fj(i) for all j implies that η ≤ nk since, in the worst case, each block
is executed on its own machine. So we can infer that log(

∑
j dj) ≤ 2 · log(nk ·maxσ∈C{|σ|} ·

maxi,j{fj(i)}). In the remainder of the proof, we show that the greedy algorithm has an
approximation ratio of log(

∑
j dj).

Let (w̄, z̄) be the variable assignment given by schedule produced by Algorithm 3. Let
ūt =

∑
σ,i,j z̄t,σ,i,j for every t. We define u∗

t and v∗
t to be any values that satisfy the following

equalities: u∗
t + v∗

t =
∑

σ,i,j fj(i)z∗
tσ,i,j , t ∈ N and

∑
t v∗

t =
∑

j dj −
∑

t≤η

∑
σ,i,j fj(i)z̄t,σ,i,j

and
∑

t u∗
t =

∑
j dj −

∑
t v∗

t . Informally, ūt is amount of throughput achieved by machine
instance t of (w̄, z̄). u∗

t is the amount of throughput achieved by machine instance t of (w∗, t∗)
that is also satisfied by one of the first η machines in (w̄, z̄). v∗

t is the remaining demand
satisfied by machine instance t of (w∗, z∗). It is easy to see that,

∑
t≤η ūt =

∑
t u∗

t . We
show that 2

∑
t≤η ūt ≥

∑
t≤η v∗

t . Suppose, for the sake of contradiction, that the claim is
false. Then for some t, 2z̄τ+1,σ,i,j < v∗

t . However, since v∗ represents demand not satisfied
by (w̄, z̄) in the first η machines, and since the machine µmax in Algorithm 3 has throughput
at least half of the maximum (proved below), in this case the throughput of µmax would be
at least v∗

t . This is a contradiction.
We now show that, when Algorithm 3 constructs µmax, its throughput is at least half the

throughput of the highest throughput machine possible. Let σ be the configuration used
by µmax. We show that the maximum throughput machine µ∗ over σ has throughput no
more than twice that of µmax. We consider an integer program formulation of the problem
of finding the maximum throughput machine: wj ≤ dj , j ∈ J and wj ≤

∑
i zi,jfj(i), j ∈ J

and
∑

j zi,j ≤ σi, i ∈ B.
The set B includes all block instances in σ. Let (w∗, z∗) represent the solution to

this program given by the optimal machine µ∗. Let (w̄, z̄) represent the solution to this
program given by µmax. For each block i, we set ui and vi to be any values that satisfy the
following equations. ui + vi =

∑
j z∗

i,jfj(i), i ∈ [k] and
∑

i vi =
∑

j w∗
j −

∑
i,j z̄i,jfj(i) and∑

i ui =
∑

j w∗
j −

∑
i vi. Informally, ui is the amount of demand satisfied by block i of µ∗

that is also satisfied by µmax, and vi ui is the amount of demand satisfied by block i of µ∗

that is not satisfied by µmax. For any block i, it is easy to see that
∑

j z̄i,j ≥ ui. We can
also infer that

∑
j z̄i,j ≥ vi because, otherwise, the greedy algorithm would have chosen to

execute the same job as µ on block i. This proves the result.
Since

∑
t≤η ūt =

∑
t u∗

t and 4
∑

t≤η ūt ≥
∑

t v∗
t , the total demand satisfied by (w̄, z̄) is at

least 1/4 the total demand. It is straightforward to generalize this reasoning to show that
every η machine instances of (w̄, z̄), reduce the total demand by a factor of 1/4, which proves
our claim. ◀

APPROX/RANDOM 2024

22:10 Scheduling Splittable Jobs on Configurable Machines

▶ Theorem 3. Algorithm 1 returns an O(log(maxσ∈C{|σ|} ·n · k)) approximation to the cms
problem.

Proof. Let S and S′ represent the schedules produced by Algorithm 2 and Algorithm 3,
respectively. We first argue that S has length O(log(maxσ{|σ|} · n)) · opt. Algorithm 2
reduces scheduling the integer components of the variables to an instance of multi-set multi-
cover in which there are n elements and the largest covering multi-set has size maxσ{|σ|}.
The claim follows directly from Theorem 5.1 in [15].

We now show that S′ has length O(log(maxσ{|σ|} · nk)) · opt. By Lemma 2, we need
only to show that dj ≤

∑
i fj(i) and that maxj,i,i′{fj(i)/fj(i′)} = O(k). We can infer

dj ≤
∑

i fj(i) because (C, J, k) with modified demand tables and demands f̂ , d̂ is defined
over x̂, so each job can be completely executed by one block of each type. Also, the definition
of x̂ entails that for each j, every nonzero value of x̂i,j (resp. f̂j(i) · x̂i,j) is within a factor of
2k (resp. k) of every other.

Finally, in defining x̂, we rounded down x∗
i,j if (i) z∗

i,j < 1/2k or if (ii) z∗
i,j · fj(i) <

maxi′{z∗
i′,j ·fj(i′)}/k. Job j’s total reduction in demand from (i) is no more than dj

∑
i x∗

i,j−
x̄i,j ≤ dj/2, which is accounted for by doubling S1 and S2 in the output. Job j’s total
reduction in demand due to (ii) is at most maxi′{z∗

i′,j · fj(i′)} which is accounted for in
setting x̂i,j = 2z∗

i,j for all remaining i’s. Each doubles our approximation ratio. ◀

3 cms with a constant number of configurations

We consider cms with n jobs and a set C of O(1) configurations, each of arbitrary size. We
first observe that the problem is NP-hard to approximate to within a factor of two.

▶ Lemma 4. cms with a constant number of configurations is hard to approximate to within
a factor of 2.

Proof. We present a reduction from Partition to combinatorial cms. Given an instance of
Partition with a set S of n elements 0 < a1 < a2 < · · · < an, we construct the following
instance. We consider one configuration that contains n blocks all of a different type, labeled
1, ..., n. We have two jobs j1, j2, both with the demand function given by f(i) = ai. The
demand for each job is 1

2
∑

i ai.
We claim that the number of machines needed for scheduling the job is one if and only

if the Partition instance has a yes answer. If the Partition instance has a yes answer, then
there exists a way to split the n blocks into two parts so that each part’s value adds up to∑

i ai/2. We use one machine, and assign the blocks to each job according to the Partition
solution. The demand function ensures that the demand of the job is satisfied. Conversely, if
the demand of the two jobs is satisfied by one machine, then each job has at least

∑
i ai/2

demand satisfied. According to the demand function f ,
∑

i ai is the maximum amount
of demand that can be satisfied by this configuration. Thus each job has exactly

∑
i ai/2

demand satisfied, and so there is some partition of S into two parts such that each part sums
to

∑
i ai/2. ◀

Our main result in this section is a polynomial time algorithm that returns a solution
with cost the minimum of (2 + ϵ)opt + |C| and (3 + ε)opt, for arbitrary ε > 0, where
opt is optimal cost. Our algorithm, detailed in Algorithm 4, guesses the number of each
configuration used in an optimal solution, to within a factor of 1 + ε (see line 3), and then
builds on the paradigm of [9] by carefully rounding an extreme-point optimal solution for a
suitable instantiation of lp(1-4) (given in line 5).

M. Casey, R. Rajaraman, D. Stalfa, and C. Tan 22:11

Algorithm 4 Schedule for cms with O(1) configurations.

Input: A cms instance (C, J, k)
1 L← {⌊(1 + ε)i⌋ | 0 ≤ i ≤ log1+ε(

∑
j dj) }, Sol← {}

2 foreach C∗ ∈ P (C), the powerset of C do
3 foreach m ∈ L|C∗|, where mσ is the number of copies of σ do
4 B∗ ← {i ∈ [k] | ∃σ ∈ C∗ s.t. i ∈ σ} is the set of blocks present in C∗

5 Construct the feasibility LP, LPf with constraints from equations (1′), (2),
and (3).∑

j

xi,j ≤
∑

σ∈C∗

mσ · σi block types i ∈ B∗ (1′)

6 if LPf is feasible with extreme-point solution x then
7 Graph G← (J ∪B∗, E) with E = { (i, j) | xi,j > 0 }
8 foreach Component S ∈ G that has a cycle K do
9 Pick some job j in the cycle K, and let b1, b2 be its neighbors in the

cycle
10 if xb1,j · fj(b1) ≥ xb2,j · fj(b2) then E ← E \ {(b2, j)} else

E ← E \ {(b1, j)}
11 Make j the root of the remaining tree S

12 foreach Job j ∈ J do
13 for the parent block p of j, do x∗

p,j ← ⌊2xp,j⌋
14 foreach child block c of j do x∗

c,j ← ⌈2xc,j⌉
15 foreach Configuration σ ∈ C∗ do y∗

σ ← 2mσ + 1
16 if fewer configurations are used in y∗ than in Sol then Sol← (x∗, y∗)
17 break out of iteration

18 return Sol transformed from (x∗, y∗) format to a machine schedule according to
Algorithm 6

Using extreme-point properties, we establish Lemma 5, the proof of which closely fol-
lows [9].

▶ Lemma 5. Every component in graph G of line 7 has at most one cycle.

Proof. This proof follows a similar structure as the proof of Lemma 17.6 in [18]. We will
use a proof by contradiction. First, consider a component in G, called Gc. Then consider
the restriction of the LP, LPc, to only the jobs and block types present in the component.
Also let xc be the restriction of x to those jobs and blocks present in the component. Let xc̄

be the rest of x. Note that xc is a feasible solution to LPc since all the blocks that satisfy
demand for jobs in Gc are connected to those jobs in the original graph G and thus are also
included in Gc, so we continue to satisfy all the demand for these jobs. Now assume for
contradiction that xc is not an extreme point in LPc. Then ∃x1, x2, λ where x1 and x2 are
feasible solutions to LPc and λ ∈ (0, 1) such that we have xc = λ · x1 + (1− λ) · x2.

Now we show that x1 +xc̄ and x2 +xc̄ are feasible solutions to the LP . First, consider that
x1, x2 have disjoint jobs and block types from xc̄. Thus, we can consider their corresponding
constraints separately. Furthermore, together, x1, x2, and xc cover all the constraints (since
they cover all jobs and block types). Thus we need only verify that x1, x2 satisfy their

APPROX/RANDOM 2024

22:12 Scheduling Splittable Jobs on Configurable Machines

constraints, and xc̄ satisfies its constraints. Since x1, x2 are feasible solutions to LPc we
know they satisfy the constraints in LP relevant to them. And since xc̄ is part of the feasible
solution x, it must also satisfy the constraints relevant to it. Between the two, all the
constraints of the LP are satisfied, since together they cover all jobs and blocks.

But then since x = λ · (x1 + xc̄) + (1 − λ) · (x2 + xc̄) we can say that x is a convex
combination of two other solutions. Thus, x is not an extreme point solution. But, since x is
an extreme point solution, we reach a contradiction.

Therefore, xc must be an extreme point solution in LPc. We know that the number of
tight constraints in an extreme point solution is at least as many as the number of variables.
Thus at most |B∗

c | + |Jc| constraints can be not tight (coming from constraints 1′ and 2).
Since we create an edge only if an x variable is nonzero, or equivalently, its nonzero constraint
is not tight, we know that the number of edges in Gc must be at most the number of blocks
+ jobs in Gc. In other words, the number of edges is at most the number of nodes. Since C

was chosen arbitrarily, we conclude that every component in G has at most one cycle. ◀

▶ Lemma 6. Algorithm 4 returns a feasible integer solution to lp(1-4).

Proof. Since the algorithm returns the least cost rounded solution over all iterations, we
need to show that (x∗, y∗) is a feasible integer solution to lp(1-4). By our rounding, x∗

i,j

and y∗
σ are integers for each i, j, σ. It remains to show that (x∗, y∗) is feasible in lp(1-4).

Constraints 3 and 4 are true by definition of x∗, y∗.
We now consider constraint 1. If a block type i is not in B∗, then this constraint is

satisfied because xi,j = 0 for all j, and thus x∗
i,j = 0 for all j. Now we consider blocks that

are in B∗. By Lemma 5, each component of G has at most one cycle. In the algorithm
we remove an edge from each of these cycles, so the resulting graph is a forest. Thus each
block type i has one parent and so is a child of one job. This means that all xi,j variables
associated with block i are rounded as ⌊2xi,j⌋, except for the parent of i, pi. So∑

j

x∗
i,j =

∑
j ̸=pi

⌊2xi,j⌋+ ⌈2xi,pi
⌉ ≤

∑
j

2xi,j + 1 ≤
∑

σ∈C∗

2mσ · σi + 1

≤
∑

σ∈C∗

(2mσ + 1) · σi ≤
∑
σ∈C

y∗
σ · σi

The third inequality follows from constraint 1′ since x satisfies LPf , and the fourth
inequality holds since i ∈ B∗ implying that there is at least one σ ∈ C∗ with σi ≥ 1. Thus,
constraint 1 is satisfied.

Now, we consider constraint 2. First, we consider some job j whose edge was not removed.
Then, since G becomes a forest after pruning edges we obtain that either the children or
the parent of j satisfy at least half of its demand. If its children satisfy at least half of its
demand then we have

∑
children of j fj(i) · xi,j ≥ 1

2 dj and thus we obtain∑
i

fj(i) · x∗
i,j ≥

∑
children of j

fj(i) · ⌈2xi,j⌉ ≥ 2
∑

children of j

fj(i) · xi,j ≥ dj ,

Therefore, the constraint is satisfied. Otherwise, its parent p satisfies at least half of its
demand implying that xp,j ≥ 1

2 since we have fj(p) ≤ dj by our assumption on the input.
Then, x∗

p,j = ⌊2xp,j⌋ > xp,j , yielding
∑

i x∗
i,j · fj(i) ≥

∑
i xi,j · fj(i) ≥ dj since x is a feasible

solution to LPf . So the constraint is satisfied.

M. Casey, R. Rajaraman, D. Stalfa, and C. Tan 22:13

Finally, we consider any job j that had an edge removed in the cycle. Assume without
loss of generality that (b2, j) was removed from the graph. Since j is the root of the tree it is
in (by line 11), all of its neighboring blocks are its children. Then, we have

∑
i

x∗
i,j · fj(i) =

∑
i̸=b2

⌈2xi,j⌉ · fj(i) ≥ xb1,j · fj(b1) + xb2,j · fj(b2) +
∑

i̸=b1,b2

2xi,j · fj(i)

≥
∑

i

xi,j · fj(i) ≥ dj .

The second inequality comes as a consequence of line 10 and the fact (b2, j) was removed
from the graph, which implies that 2xb1,j · fj(b1) ≥ xb1,j · fj(b1) + xb2,j · fj(b2). So the
constraint is satisfied in all cases. Thus (x∗, y∗) is a feasible integer solution to lp(1-4). ◀

▶ Theorem 7. Algorithm 4 returns a min{(3 + ε)opt, (2 + ϵ)opt + |C|} approximation to
the cms problem in polynomial time if the number of configurations is constant.

Proof. We show that the algorithm returns a solution with the stated approximation factor.
Consider the iteration where C∗ = Copt where Copt is the set of configurations used by an
optimal integer solution. The algorithm will iterate through potential counts mσ for each
σ in C∗, round and return a schedule the first time LPf has a feasible solution; let m be
the vector of how many configurations are used in this iteration. By Lemma 6, the solution
returned is feasible.

We now bound the cost by first arguing that
∑

σ mσ ≤ (1 + ε)opt. Observe that the
y values in the optimal integer solution to lp(1-4) would yield a feasible solution to LPf

if they equalled the corresponding m values in LPf (namely by setting the x variables in
LPf to the x values in the optimal integer solution to lp(1-4)). For each such yi value,
consider pi, the first power of 1 + ε that is at least yi. Then, we have yi ≤ ⌊pi⌋ ≤ (1 + ε)yi.
By definition of L, we will set values for mσ such that they are greater than and within a
factor of (1 + ε) of the y values from the optimal integer solution. Thus they will be feasible,
since they use at least as many of each configuration and

∑
σ mσ ≤ (1 + ε)opt. Since we

iterate through the m values in increasing order of
∑

σ mσ, the first feasible solution will use
at most this many configurations.

Now consider that the rounded solution y∗ has
∑

σ y∗
σ ≤

∑
σ(2mσ + 1) = 2

∑
σ mσ +

|COP T | ≤ 2(1 + ε)opt + |COP T |. Since the optimal integer solution uses at least 1 of
each configuration in COP T , we have that

∑
σ y∗

σ ≤ (3 + ε)opt and also that
∑

σ y∗
σ ≤

(2 + ε)opt + |C|.
Finally, we prove that the runtime of algorithm 4 is polynomial if |C| = O(1). The first for

loop in the algorithm ranges over 2|C| values. The inner for loop ranges over (log L)|C∗| values.
Remember that L =

∑
j dj . But then L ≤ n · maxj dj . Thus the inner loop ranges over

≤ (log(n ·maxj dj))|C∗| ≤ (log n + log maxj dj)|C| values. Since dj is specified as a number,
it is specified using log dj bits. Thus the inner loop runs a number of times polynomial in
the input, except for the number of configurations. Lastly we analyze the body of the inner
for loop. The size of the LP is polynomial in the size of the input, and thus constructing and
solving it takes time polynomial in the size of the input. Constructing the graph takes time
polynomial in the size of the LP, as does rounding using the graph. Thus overall the runtime
of the algorithm is polynomial in the size of the input, except for it being exponential in the
number of configurations. So if |C| = O(1), the algorithm is polynomial. ◀

APPROX/RANDOM 2024

22:14 Scheduling Splittable Jobs on Configurable Machines

4 cms with a constant number of configurations of constant size

In this section, we consider cms with n jobs, a set C of a constant number of configurations
with the additional constraint that each configuration has at most a constant number b

of blocks. Let k be the total number of block types. Since |C| and b are both constant,
k ≤ b|C| is a constant. In Section 4.2, we present our main result of this section, a PTAS for
the problem. As a warmup, in Section 4.1, we present an optimal dynamic programming
algorithm for the problem, which takes time (nbdmax)O(k+|C|); this is pseudo-polynomial
time for constant k and |C|.

4.1 A pseudo-polynomial time algorithm
We present an optimal dynamic programming algorithm that takes time polynomial in n and
the maximum demand. Recall that C denotes the set of configurations, and |C| is constant.
Let N denote the total number of machines. Then, there are

(
N+|C|−1

|C|−1
)

ways of distributing
the N machines among these configurations. Each way yields a specific number of blocks of
each type. For given ni, 1 ≤ i ≤ k, let S(j, n1, n2, . . . , nk) be True if the demand of jobs 1
through j can be satisfied using ni blocks of type i, for each i. Then, we have

S(j, n1, n2, . . . , nk) =∨
mi≤ni,∀i

(S(j − 1, n1 −m1, n2 −m2, . . . , nb −mk) ∧ T (j, m1, m2, . . . , mk))

where T (j, m1, m2, . . . , mk) is true if and only dj can be satisfied using mi blocks of type i,
for each i. Note that T (j, m1, m2, . . . , mk) can be computed easily by inspecting the demand
table of job j and dj .

The algorithm computes S(j, n1, n2, . . . , nk) for 1 ≤ j ≤ n, ni ≤ Nb; the number of
different tuples equals n(Nb)k. The time taken to compute a given S(j, n1, n2, . . . , nk), given
S(j− 1, n1−m1, n2−m2, . . . , nk −mk) for all choices of mi’s, is proportional to the number
of different choices of mi’s, which is bounded by

(
N+|C|−1

|C|−1
)
. We thus obtain that S can be

computed in n(Nb)O(k+|C|). This computation, coupled with a binary search over possible
values of N , yields the desired algorithm. Since N is bounded by n times the maximum
demand, we obtain a pseudopolynomial time optimal algorithm if |C| and k are bounded.

4.2 A polynomial-time approximation scheme
Blocks and patterns. Abusing notation slightly, we use fj(σ) to denote the total demand
of j satisfied if every block in configuration σ is assigned to j. We partition the set J of
jobs into two groups: the large jobs L and small jobs S. A job j is small if there exists a
configuration σ such that fj(σ) ≥ εdj ; otherwise, j is large.

Let ε > 0 be a given constant parameter, and let λ = ε/(2b). We define a pattern π to be
a size k list of integers π1 through πk that sum to no more than b/λ2; πi denotes the number
of blocks i in pattern π. Let W be the set of all possible patterns. So, |W | ≤ (b/λ2)k. We
assign each small job a type. Job j is of type t ∈ 2W if each pattern π ∈ t is such that the
demand of j is satisfied if j is allocated πi blocks i for 1 ≤ i ≤ k. So, the number of job
types is at most 2(b/λ2)k . Define constant γ = 2(b/λ2)k .
The linear program. We define a linear program PTAS-LP using the following notation. In
PTAS-LP, σ ranges over all configurations in C, p ∈ {1, . . . , k} ranges over types of blocks,
xj,p is the number of p-blocks dedicated to processing a large job j, yσ is the number of

M. Casey, R. Rajaraman, D. Stalfa, and C. Tan 22:15

machines we use with configuration σ, σp is the number of p-blocks in σ, zt,π is the number
of small jobs of type t that are distributed according to pattern π, and nt is the number of
small jobs of type t. Recall that πp is the pth entry of π. PTAS-LP minimizes

∑
σ∈C yσ

subject to the following constraints∑
j∈L xi,j +

∑
t∈2W

∑
π∈W (zt,π · πi) ≤

∑
σ yσ · σi i ∈ [k] (5)∑

i∈[k] fj(p) · xi,j ≥ dj j ∈ L (6)∑
π zt,π ≥ nt t ∈ 2W (7)

xi,j , yσ, zt,π ≥ 0 j ∈ L, i ∈ [k], σ, t ∈ 2W , π ∈W (8)

Constraints. Constraint 5 guarantees that the number of blocks i that are used to execute
jobs is at most the number of available blocks i. Constraint 6 ensures that each large job is
fully executed, and constraint 7 guarantees that each small job is fully executed. Constraint 8
ensures non-negativity.

Lemma 8 proves that it is sufficient to consider schedules in which small jobs are executed by
a bounded number of blocks. Lemma 9 uses Lemma 8 and shows PTAS-LP is an approximate
relaxation for the problem.

▶ Lemma 8. For any schedule with m machines, there exists a schedule with m(1 + bλ)
machines in which each small job is executed by at most b/λ2 blocks.

Proof. Consider any placement P that uses m machines. Suppose a small job j is in more
than b/ε2 blocks in P . Since each configuration is of size at most b, it follows that j is
placed in at least 1/λ2 machines. Since j is small, there exists a configuration σ such that
fj(σ) ≥ λdj . We remove j from each machine to which it is assigned in P and place it in
1/λ additional machines, each with configuration σ, guaranteeing that the demand of j is
satisfied. Since each machine can hold at most k small jobs, this modification of P results in
the increase in the number of machines by a factor of at most (1 + bλ), yielding the desired
claim. ◀

▶ Lemma 9. The value of PTAS-LP is at most (1 + bλ)opt.

Proof. Let A be an optimal placement of the jobs on m machines. Using Lemma 8, we first
compute a new placement B using at most m(1 + bλ) machines in which each small job is
placed in at most 1/λ2 machines.

We now define variable assignments so that the value of PTAS-LP is no more than
(1 + bλ)m. For each large job j and each block i, set xi,j to be the number of blocks i on
which B executes j. For each small job type t and each pattern π, set zt,π to be the number
of small jobs that are executed in pattern π according to B. Note that since each small job
is placed in at most 1/λ2 machines, and hence at most b/λ2 blocks, the placement of each
small job follows one of the patterns in W . Set yσ equal to the number of machines with
configuration σ according to A.

It is easy to see that constraints (6 - 8) are satisfied. To see that constraint 5 is satisfied,
observe that each machine used by B either has some block executing a large job (in which
case it contributes toward the first term of 5) or it has some block executing a small job
(in which case it contributes toward the second term). Therefore, the left hand side of 5
counts the total number of blocks needed to complete all the jobs, while the right hand side
computes the total number of blocks supplied by the machines. ◀

APPROX/RANDOM 2024

22:16 Scheduling Splittable Jobs on Configurable Machines

Algorithm 5 Schedule for O(1) configurations of O(1) size.

Input: (C, J, k)
1 Solve PTAS-LP; let (x, y, z) be the solution computed.
2 if n ≤ b(|C|+ γ)/λ then
3 Compute and return an optimal solution using enumeration
4 foreach large job j and block i do
5 x̂i,j = ⌈xi,j⌉; Assign ⌈xi,j⌉ blocks i to job j

6 foreach job type t and pattern π do
7 Assign blocks per pattern π to each job in ⌈zt,π⌉ small jobs of type t

8 foreach configuration σ do
9 Use ⌈yσ⌉ machines with configuration σ

▶ Theorem 10. Algorithm 5 returns a (1+ε) approximation to the cms problem in polynomial
time if the number of configurations is constant and they are of constant size.

Proof. First, if n ≤ b(|C|+ γ)/λ, then the algorithm returns an optimal solution. Otherwise,
since each machine has at most b blocks, we obtain that opt ≥ (|C|+ γ)/λ. We will show
that the number of machines used is at most (1 + bλ)opt + λ2bopt + |C|+ γ, which is at
most (1 + 2bλ)opt = (1 + ε)opt.

Rounding up the x variables increases the number of blocks by at most the number
of large jobs times the number of block types. Since each large job requires at least 1/λ2

machines, this increase in the number of blocks is at most λ2bopt. Rounding up the z

variables adds at most 1/λ2 blocks per small job type assigned to a given pattern, increasing
the number of blocks by at most γ. Rounding up the y variables increases the number of
machines by |C|. Taken together with the above increase in the number of blocks, each of
which requires at most one machine, the total increase is bounded by λ2bopt + γ + |C|. By
Lemma 9, the LP optimal is at most (1 + bλ)opt, yielding the desired claim.

The linear program PTAS-LP has at most nk + |C| + γ log γ variables and k + n + γ

linear constraints (other than the non-negativity ones), and can be solved in polynomial time.
The enumeration for n ≤ b(|C|+ γ)/λ is constant time, while the rest of the algorithm is
linear in the number of variables. The hidden constant, however, is doubly exponential in
|C| and the configuration size bound b, and exponential in 1/ε. ◀

5 cms with O(1) number jobs and block types, and all configurations
up to a given size

In this section, we consider models for which we are able to obtain optimal solutions in
polynomial time. For models with a constant number of jobs, blocks, and configurations, the
linear program (1-4) has constant size and so can be solved as an integer program. Many
models, however, do not fit this framework and require more sophisticated methods. Consider
a setting where the number n of jobs is constant, as well as the number k of block types.
We also assume that there exists an integer K such that the set of available configurations
C includes all configurations up to size K. For example, with k = 2 block types {1, 2} and
K = 3, the set of available configurations C = {{1, 1, 1}, {1, 1, 2}, {1, 2, 2}, {2, 2, 2}}. In this
section, we show that a class of problems, including this model, is polynomial time solvable
using methods developed by Goemans and Rothvoss [5] to optimally solve bin packing with
a constant number of job types.

M. Casey, R. Rajaraman, D. Stalfa, and C. Tan 22:17

Consistent with our initial description of the cms model, we assume all configurations
are given as input. However, the input can be reduced exponentially if configurations are
given as a single parameter K indicating the size of all valid configurations. The algorithm
described in this section is polynomial time in either case – that is, the algorithm’s runtime
is polynomial in log K and log maxi,j{dj/fj(i)} (assuming n and k are constant). We note
that there is an easy reduction from bin packing with constant job types to this problem
(when configurations are not listed individually).

Let P be the set of vectors:

u1,1
...

uk,n

v1
...

vn

1

subject to
n∑

j=1

b∑
i=1

ui,j ≤ K (9)

vj =
k∑

i=1
ui,j · fj(i) j ∈ J (10)

ui,j ≥ 0 i ∈ [k], j ∈ J (11)
vj ≥ 0 j ∈ J (12)

Let QH be the set of vectors

z1,1
...

zb,n

w1
...

wn

h

subject to,

0 ≤ h ≤ H (13)
wj ≥ dj j ∈ J (14)
zi,j ≥ 0 i ∈ [k], j ∈ J (15)

▶ Lemma 11 (Theorem 2.2 in [5]). Let N = nk + n + 1. Given rational polyhedra P, Q ∈ RN

where P is bounded, one can find a vector y ∈ int.cone(P ∩ZN)∩Q and a vector λ ∈ Z|P ∩ZN |
≥0

such that y =
∑

x∈P ∩ZN λxx in time enc(P)2O(N) · enc(Q), or decide that no such y exists.
Moreover, the support of λ is bounded by 22N+1.

▶ Lemma 12. Given P and QH , the algorithm of Lemma 11 returns a vector λ iff there
exists a solution using at most H machines. Moreover, a returned vector λ provides a solution
that uses at most H machines.

Proof. As in the lemma, let N = nk + n + 1. We first show that, if there exists a valid
solution using at most H machines then int.cone(P ∩ ZN) ∩QH ̸= ∅. Suppose there exists
a valid solution to the problem using at most H machines. We argue that each machine µ

corresponds to an integer valued vector in P . Consider an arbitrary machine µ in the given
solution. Recall that µ(i, j) = the number of blocks of type i on which µ executes job j.
This implies that

∑
j

∑
i µ(i, j) ≤ K. Setting vj =

∑
i µ(i, j) · fj(i) ensures that the vector

(v1 . . . vn 1 u1,1 . . . ub,n) ∈ P . Let pµ be the vector in P corresponding to machine µ. Let
λ = (λµ), where λµ is the multiplicity of machine µ in the given solution. Then

∑
µ λµ · xµ

yields integer vector q = (z1,1 . . . zb,n w1 . . . wn h). Since every job is fully executed, we can
infer that wj ≥ dj . Since the solution uses at most H machines, we can infer that 0 ≤ h ≤ H .
Therefore, q ∈ Q, which implies that int.cone(P ∩ ZN) ∩Q ̸= ∅.

We now show that, if int.cone(P ∩ ZN) ∩ QH ̸= ∅, then there exists a solution to the
problem using at most H machines. Suppose there exists a vector q ∈ int.cone(P ∩ZN)∩QH .
Define λ = (λx)x∈P ∩ZN such that

∑
x∈P ∩ZN x · λx = q. As above, we treat each element

x ∈ P ∩ ZN as corresponding to a machine, and λx as the multiplicity of that machine in
our final schedule. Similar reasoning shows that λ yields a valid solution, which completes
the proof of the lemma. ◀

▶ Theorem 13. Given an instance of cms with O(1) jobs and O(1) block types, and where
all configurations of size at most K are available, there exists an algorithm that computes an
optimal solution in poly(log K, log maxi,j{dj/fj(i)}) time.

APPROX/RANDOM 2024

22:18 Scheduling Splittable Jobs on Configurable Machines

Proof. The maximum number of machines needed in any solution is m = n ·maxi,j{dj/fj(i)}.
We binary search in the range [0, m] to find the minimum integer value of H for which the
algorithm of Lemma 11, given P and QH , returns a vector λ. By Lemma 12 this provides an
optimal solution. ◀

We have shown the existence of an algorithm that computes an optimal solution to cms
with O(1) number of jobs and block types, and with all configurations up to a given size.
However, the Goemans-Rothvoss framework generalizes to a constant number of polytopes
(Theorem 6.2 in [5]) which entails the following stronger claim.

▶ Lemma 14. Suppose an instance of cms has a constant number of jobs and blocks, and the
set of all configurations can be specified using a set T of rational polytopes with |T | = O(1).
Then there exists an algorithm that computes an optimal solution in time polynomial in log K

and log maxi,j{dj/fj(i)}).

To prove Lemma 14, we use the following result from Goemans and Rothvoss.

▶ Lemma 15 (Theorem 6.2 in [5]). Given rational polytopes {Pt ⊆ Rnk+n+1 : t ∈ T} and
rational polyhedron Q ⊆ Rn+1, define Xt := {x ∈ Zn+1 : ∃y ∈ Znb, (x, y) ∈ Pt}. Then
there is an algorithm that decides correctly whether int.cone(

⋃
t∈T Xt) ∩ Q ̸= ∅ in time

(enc(P))2O(nk+n+1+|T |) · enc(Q)O(1). In the affirmative case, the algorithm provides a vector
λ = (λt,x)t∈T,x∈X with λt,x ∈ Z≥0 and (

∑
t∈T

∑
x∈X λx · x) ∈ Q. Moreover, the size of the

support of λ is bounded by 22(nk+n+1+|T |)+1.

Proof of Lemma 14. For each t ∈ T , we specify Pt as an nk + n + 1 length vector as
above, except the polytope is defined by arbitrary rational constraints specific to Pt. QH is
defined as above. As in Lemma 12, we argue the following claim: given {Pt}t∈T and QH ,
the algorithm of Lemma 15 returns a vector λ iff there exists a solution using at most H

machines. Moreover, a returned vector λ provides a solution that uses at most H machines.
The reasoning is similar to that used in Lemma 12.

Let Xt be defined as in the lemma, for all t ∈ T . If there is a valid solution then for each
machine µ there is some t such that µ can be represented as an element p of Pt. Also, we
define λ = (λt,p)t∈T,p∈X such that λt,p provides the multiplicity of the machine corresponding
to p in the solution. The fact that we begin with a valid solution on at most H machines
ensures that

∑
t∈T

∑
x∈X x ·λt,x ∈ QH . In the other direction, we show that if the algorithm

returns a vector λ, then λ provides a solution to the problem. As above, we can interpret
λt,x as providing the multiplicity of the machine corresponding to x ∈ X in our solution –
since there exists y such that (x, y) ∈ Pt, we can infer that x is a valid machine. By the
constraints on QH , we can infer that the derived solution completes all jobs and uses at most
H machines. This proves the lemma. ◀

References
1 Nikhil Bansal and Maxim Sviridenko. The santa claus problem. In Proceedings of the Thirty-

Eighth Annual ACM Symposium on Theory of Computing, STOC ’06, pages 31–40, New York,
NY, USA, 2006. Association for Computing Machinery. doi:10.1145/1132516.1132522.

2 Deeparnab Chakrabarty, Julia Chuzhoy, and Sanjeev Khanna. On allocating goods to maximize
fairness. In 2009 50th Annual IEEE Symposium on Foundations of Computer Science, pages
107–116, 2009. doi:10.1109/FOCS.2009.51.

3 S. W. Cheng and Y. Mao. Restricted max-min allocation: Integrality gap and approximation
algorithm. Algorithmica, 84:1835–1874, 2022.

https://doi.org/10.1145/1132516.1132522
https://doi.org/10.1109/FOCS.2009.51

M. Casey, R. Rajaraman, D. Stalfa, and C. Tan 22:19

4 Irit Dinur and David Steurer. Analytical approach to parallel repetition. In Proceedings of the
Forty-Sixth Annual ACM Symposium on Theory of Computing, STOC ’14, pages 624–633, New
York, NY, USA, 2014. Association for Computing Machinery. doi:10.1145/2591796.2591884.

5 Michel X. Goemans and Thomas Rothvoss. Polynomiality for bin packing with a constant
number of item types. J. ACM, 67(6), November 2020. doi:10.1145/3421750.

6 Qiang-Sheng Hua, Amy Wang, Dongxiao Yu, and Francis Lau. Dynamic programming
based algorithms for set multicover and multiset multicover problem. Theor. Comput. Sci.,
411:2467–2474, June 2010. doi:10.1016/j.tcs.2010.02.016.

7 Zhihao Jiang and Haoyu Zhao. An fptas for stochastic unbounded min-knapsack problem.
In Yijia Chen, Xiaotie Deng, and Mei Lu, editors, Frontiers in Algorithmics, pages 121–132,
Cham, 2019. Springer International Publishing.

8 B. Korte and J. Vygen. Bin-Packing, pages 426–441. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2006. doi:10.1007/3-540-29297-7_18.

9 Jan Karel Lenstra, David B. Shmoys, and Eva Tardos. Approximation algorithms for scheduling
unrelated parallel machines. In 28th Annual Symposium on Foundations of Computer Science
(sfcs 1987), pages 217–224, 1987. doi:10.1109/SFCS.1987.8.

10 Baolin Li, Tirthak Patel, Siddharth Samsi, Vijay Gadepally, and Devesh Tiwari. Miso:
exploiting multi-instance gpu capability on multi-tenant gpu clusters. In Proceedings of the
13th Symposium on Cloud Computing, pages 173–189, 2022.

11 Baolin Li, Siddharth Samsi, Vijay Gadepally, and Devesh Tiwari. Clover: Toward sustainable
ai with carbon-aware machine learning inference service. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, pages 1–15,
2023.

12 R. J. Lipton, E. Markakis, E. Mossel, and A. Saberi. On approximately fair allocations
of indivisible goods. In Proceedings of the 5th ACM Conference on Electronic Commerce,
EC ’04, pages 125–131, New York, NY, USA, 2004. Association for Computing Machinery.
doi:10.1145/988772.988792.

13 NVIDIA Multi-Instance GPU User Guide. https://docs.nvidia.com/datacenter/tesla/
pdf/NVIDIA_MIG_User_Guide.pdf, 2024.

14 Deepak Narayanan, Fiodar Kazhamiaka, Firas Abuzaid, Peter Kraft, Akshay Agrawal, Srikanth
Kandula, Stephen Boyd, and Matei Zaharia. Solving large-scale granular resource allocation
problems efficiently with pop. In Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles, pages 521–537, 2021.

15 Sridhar Rajagopalan and Vijay V. Vazirani. Primal-dual rnc approximation algorithms
for set cover and covering integer programs. SIAM J. Comput., 28:525–540, 1999. URL:
https://api.semanticscholar.org/CorpusID:36747871.

16 Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu Kong, Matthai Philipose,
Arvind Krishnamurthy, and Ravi Sundaram. Nexus: A gpu cluster engine for accelerating
dnn-based video analysis. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles, pages 322–337, 2019.

17 Cheng Tan, Zhichao Li, Jian Zhang, Yu Cao, Sikai Qi, Zherui Liu, Yibo Zhu, and Chuanxiong
Guo. Serving DNN models with multi-instance GPUs: A case of the reconfigurable machine
scheduling problem, 2021. arxiv:2109.11067. arXiv:2109.11067.

18 Vijay V. Vazirani. Approximation Algorithms. Springer Publishing Company, Incorporated,
2010.

19 Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang, Pengyang Hou, Zhi Li, Yihui Feng, Wei
Lin, and Yangqing Jia. {AntMan}: Dynamic scaling on {GPU} clusters for deep learning.
In 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20),
pages 533–548, 2020.

APPROX/RANDOM 2024

https://doi.org/10.1145/2591796.2591884
https://doi.org/10.1145/3421750
https://doi.org/10.1016/j.tcs.2010.02.016
https://doi.org/10.1007/3-540-29297-7_18
https://doi.org/10.1109/SFCS.1987.8
https://doi.org/10.1145/988772.988792
https://docs.nvidia.com/datacenter/tesla/pdf/NVIDIA_MIG_User_Guide.pdf
https://docs.nvidia.com/datacenter/tesla/pdf/NVIDIA_MIG_User_Guide.pdf
https://api.semanticscholar.org/CorpusID:36747871
https://arxiv.org/abs/2109.11067

22:20 Scheduling Splittable Jobs on Configurable Machines

A Constructing Schedules of Polynomial Size

For any schedule S with m machine instances, there exists a multiset of configurations T used
in S and, for each job j, a multiset of blocks Tj used in S. Note both enc(T) and enc(Tj), for
every j, are polynomial in |C|, |J |, and k, where enc(A) denotes the binary encoding length
of a multiset A.

▶ Lemma 16. Given a multiset of configurations T and, for each job j, a multiset of blocks
Tj, we can output a schedule M such that (i) the number of block instances across all
machines instances in M is at least the number of block instances in T , (ii) the multiset of
blocks assigned to each job j across all machine instances in M is identical to Tj, and (iii)
the description of M has length polynomial in unique(T) +

∑
j unique(Tj), where unique(A)

denotes the number of distinct elements in multiset A.

Proof. We construct M via Algorithm 6. We show that the number of different machines
in the schedule produced by Algorithm 6 is polynomial in |T |+

∑
j |Tj |. A new machine is

constructed in each iteration of the while-loop. In a single iteration of the while-loop, machines
are allocated until condition (i) or condition (ii) holds. By the line 10 and 11 updates, the
number of times these conditions can be met is at most unique(T) +

∑
j unique(Tj). This

proves the claim. ◀

Algorithm 6 Multiset-to-Machines.

Input: (T, T1, . . . , Tj)
1 for all σ : sσ ← the number of occurrences of σ in T

2 for all i, j : ti,j ← the number of occurrences of i in Tj

3 while sσ +
∑

i,j ti,j > 0 do
4 choose any σ ∈ T such that sσ > 0
5 construct a new machine µ with configuration σ

6 foreach i ∈ [k] do
7 assign σi jobs to block i in σ, ensuring that for every job j, µ(i, j) ≤ ti,j

8 allocate a instances of µ, where a is the minimum value such that
either (i) a = sσ, or (ii) for some i, j, a · µ(i, j) = ti,j

9 for all i, j : ti,j ← ti,j − a · µ(i, j)
10 sσ ← sσ − a

On Instance-Optimal Algorithms for a
Generalization of
Nuts and Bolts and Generalized Sorting
Mayank Goswami #

Queens College CUNY, Flushing, New York, USA

Riko Jacob #

IT University of Copenhagen, København S, Denmark

Abstract
We generalize the classical nuts and bolts problem to a setting where the input is a collection of n

nuts and m bolts, and there is no promise of any matching pairs. It is not allowed to compare a nut
directly with a nut or a bolt directly with a bolt, and the goal is to perform the fewest nut-bolt
comparisons to discover the partial order between the nuts and bolts. We term this problem bipartite
sorting.

We show that instances of bipartite sorting of the same size exhibit a wide range of complexity,
and propose to perform a fine-grained analysis for this problem. We rule out straightforward
notions of instance-optimality as being too stringent, and adopt a neighborhood-based definition.
Our definition may be of independent interest as a unifying lens for instance-optimal algorithms
for other static problems existing in literature. This includes problems like sorting (Estivill-Castro
and Woods, ACM Comput. Surv. 1992), convex hull (Afshani, Barbay and Chan, JACM 2017),
adaptive joins (Demaine, López-Ortiz and Munro, SODA 2000), and the recent concept of universal
optimality for graphs (Haeupler, Hladík, Rozhoň, Tarjan and Tětek, 2023).

As our main result on bipartite sorting, we give a randomized algorithm that is within a factor of
O(log3(n + m)) of being instance-optimal w.h.p., with respect to the neighborhood-based definition.

As our second contribution, we generalize bipartite sorting to DAG sorting, when the underlying
DAG is not necessarily bipartite. As an unexpected consequence of a simple algorithm for DAG
sorting, we rule out a potential lower bound on the widely-studied problem of sorting with priced
information, posed by (Charikar, Fagin, Guruswami, Kleinberg, Raghavan and Sahai, STOC 2000).
In this problem, comparing keys i and j has a known cost cij ∈ R+ ∪ {∞}, and the goal is to sort
the keys in an instance-optimal way, by keeping the total cost of an algorithm as close as possible
to

∑n−1
i=1 cx(i)x(i+1). Here x(1) < · · · < x(n) is the sorted order. While several special cases of cost

functions have received a lot of attention in the community, no progress on the general version
with arbitrary costs has been reported so far. One reason for this lack of progress seems to be a
widely-cited Ω(n) lower bound on the competitive ratio for finding the maximum. This Ω(n) lower
bound by (Gupta and Kumar, FOCS 2000) uses costs in {0, 1, n, ∞}, and although not extended to
sorting, this barrier seems to have stalled any progress on the general cost case.

We rule out such a potential lower bound by showing the existence of an algorithm with a
Õ(n3/4) competitive ratio for the {0, 1, n, ∞} cost version. This generalizes the setting of generalized
sorting proposed by (Huang, Kannan and Khanna, FOCS 2011), where the costs are either 1 or
infinity, and the cost of the cheapest proof is always n − 1.

2012 ACM Subject Classification Theory of computation → Abstract machines; Theory of compu-
tation → Sorting and searching

Keywords and phrases Sorting, Priced Information, Instance Optimality, Nuts and Bolts

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.23

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2211.04601 [15]

© Mayank Goswami and Riko Jacob;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 23; pp. 23:1–23:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mayank.goswami@qc.cuny.edu
https://orcid.org/0000-0002-2111-3210
mailto:rikj@itu.dk
https://orcid.org/0000-0001-9470-1809
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.23
https://arxiv.org/abs/2211.04601
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Instance-Optimal Algorithm and Sorting

Funding Mayank Goswami: Supported by NSF grant CCF-1910873.
Riko Jacob: Part of this work done during the second Hawaiian workshop on parallel algorithms and
data structures, University of Hawaii at Manoa, Hawaii, USA, NSF Grant CCF-1930579.

1 Introduction

The classic nuts-and-bolts problem, originally mentioned as an exercise in [27], asks: a
disorganized carpenter has n nuts and n bolts, and there is (perfect) matching bolt for every
nut. The only allowed comparison is between a nut and a bolt, and the result of such a
comparison is either <, = or >. The goal is to find the matching without comparing two
nuts or two bolts to each other. A simple Quicksort type algorithm can be shown to solve
this problem in optimal O(n log n) comparisons with high probability: Pick a random nut,
compare to all bolts, find the matching bolt, and compare that bolt to all nuts. The problem
is now partitioned into two subproblems with the match at the boundary; recurse. In a
later work [3], Alon, Blum, Fiat, Kannan, Naor and Ostrovsky developed a deterministic
Quicksort-type algorithm that uses expanders and performs O(n polylog n) comparisons.
This was later improved to an optimal O(n log n) comparisons by Komlós, Ma, Szémeredi [24],
by performing substantial modifications on AKS sorting.

Our starting point is a remark by Komlós, Ma and Szémeredi: “In particular, the fact
that we can sort the nuts and bolts at all relies on the fact that there is a match between
them.” Indeed, if there is no matching (all comparisons come out < or >), one realizes
that the above randomized Quicksort based algorithm fails, as there is no partitioning into
subproblems. The only case where sorting without a matching is possible is when nuts and
bolts alternate in the final sorted order. Call this the perfectly interleaved case. Komlós,
Ma and Szémeredi observed (in a private communication with Aumann) that their AKS
sorting-based algorithm sorts the nuts and bolts using O(n log n) comparisons in this setting1.
However, a general instance may not be perfectly interleaved, and this setting was left open.

Generalized Nuts and Bolts. We focus on the problem alluded to by Komlós, Ma, and
Szémeredi: what if the carpenter is completely disorganized, and has an unequal collection
of nuts and bolts, without any matching pairs2? That is, assume the carpenter has a set R

of n nuts and a set B of m bolts, and is only allowed to compare a nut to a bolt, and the
result is either <, or >. Unless m = n and we are in the perfectly interleaved case, sorting
R ∪ B is not possible: there could be two (or more) nuts (resp. bolts) that compare the
same way to all the bolts (resp. nuts). A natural goal for the carpenter now is to “sort
as much as you can”, i.e., partition the set of nuts R into subsets R1, R2, . . . such that for
any r, r′ ∈ Ri and any b ∈ B, r and r′ have the same order with b (either both are smaller,
or both are larger), and vice-versa (see figure 1). We term this generalization of nuts and
bolts as bipartite sorting: given the complete bipartite graph G = (R ∪B, E), the goal is to
discover the orientation3 on all the edges in E by querying as few of them as possible.

The need for fine-grained analysis. If all nuts are smaller than all bolts, it is clear that
nm comparisons are needed by any algorithm, and obviously this number of comparisons
suffices for any instance. Recall that the perfectly interleaved case can be solved (in fact

1 For a simple randomized algorithm that does the same, see Appendix A.1 of full version [15].
2 It can be observed that having some matchings in the input only makes it easier to solve.
3 An edge e = (u, v) in G is oriented as u⃗v if u < v in the underlying DAG.

M. Goswami and R. Jacob 23:3

Figure 1 An example output to an instance of the bipartite sorting problem. Continuous runs of
incomparable nuts and bolts are called “stripes”.

completely sorted) much faster with only O(n log n) comparisons. Assuming for simplicity
that m = Θ(n), the inherent complexities of instances range in [Õ(n), Ω(n2)]. Is there a
way to define instance-optimality for bipartite sorting that captures its variety of underlying
instances, and is there a good instance-optimal algorithm?

It is worthwhile to imagine the DAGs for the above two instances: if all nuts are smaller
than all bolts, the DAG G⃗ = (V = R ∪ B, E⃗) will have all edges oriented from R to B,
whereas the DAG in the perfectly interleaved case will be the transitive closure of the oriented
edges in the directed Hamiltonian path corresponding to the sorted order of the nuts and
the bolts. A transitive reduction of a DAG is the fewest number of oriented edges that by
transitivity imply all other orientations. For the first instance, the transitive reduction has
size nm, whereas for the second case, it has size n− 1, and therefore if we ignore logO(1) n

factors, for both instances, the sizes of their transitive reductions matches their complexity.
This immediately suggests a parametrization similar to an output-sensitive setting: the
number of comparisons of a good algorithm should be close to (say, within log factors of) the
size of the transitive reduction of the underlying DAG.

However, the following instance dashes all hopes of an algorithm that performs only
roughly as many queries as there are edges in the transitive reduction: n − 1 nuts are all
smaller than a special bolt b, which is smaller than a special nut r, which is smaller than all
other n − 1 bolts. We call this the “one-inversion” instance. Even though the transitive
reduction here has size 2n−1, any algorithm must perform n2 comparisons to find the hidden
special pair (r, b). Thus the gap between the transitive reduction and the inherent complexity
of this instance is Ω(n), which is as large as the gap between the complexity of any two
instances. Observe that the DAG for this instance is in some sense just “one-flip-away” from
the all-nuts-smaller-than-all-bolts DAG, a phenomenon that will be important later. Given
that the transitive reduction fails to capture the instances, we ask:

Is there another meaningful way to define instance-optimality for bipartite sorting that
captures its variety of underlying instances, and is there a good instance-optimal algorithm?

2 Our Results and Technical Overview

In this paper, we answer the above question in the affirmative, and in the process of doing so,
make unexpected progress on a widely-studied problem called generalized sorting (Huang,
Kannan and Khanna [20]), which in turn is a special case of the sorting with priced information
problem introduced by Charikar et al. [8]. We explain this connection first before stating
our results.

DAG Sorting. One can generalize bipartite sorting to DAG sorting where the set of allowed
comparisons is represented by an arbitrary (not necessarily bipartite) graph G = (V, E). The
goal is still to discover all orientations in the underlying DAG G⃗ = (V, E⃗) or equivalently, its
transitive reduction, by querying as few edges of G as possible, where a query of an edge
(u, v) ∈ E returns < or >. Edges not present in E cannot be queried.

APPROX/RANDOM 2024

23:4 Instance-Optimal Algorithm and Sorting

Arbitrary f(x1, · · · , xn) with Priced Information [8]

Searching, Other Problems
[23, 11, 26]

[25, 5]

DAG Sorting,
Arbitrary Costs, HA×

Sorting with Priced
Information[8], HA!

Sorting with costs
{0, 1, n,∞} HA!

Generalized Sorting[20],
Costs ∈ {1,∞}, HA!

Bipartite
Sorting,

HA×

Bichromatic [8]
Sorting [16], HA!

Unit-Cost Sorting

Structured Costs
Sorting[17], HA!

Perfectly
Interleaved, HA!

Not Perfectly
Interleaved, HA×

Nuts and Bolts[24, 3]

DAG Sorting,
Costs {0, 1,∞}

HA×

Finding Maximum
Arbitrary Costs [8, 17]

Finding Maximum
Costs {0, 1, n,∞}[8, 17]

�
�Ω

O

In versionSort

Figure 2 The landscape of sorting with priced information. Solid arrows go from a problem to its
special case. HA!indicates that the Hamiltonian path is assumed to exist and HA× indicates that
a Hamiltonian path may not exist. Problems shaded in gray are introduced or studied in this paper
for the first time. Dotted arrows highlight our results, arrows with O show algorithms carrying over
from one problem to another, and✚Ω show lower bounds not carrying over.

It turns out that under the promise that G⃗ = (V, E⃗) has a directed Hamiltonian path,
DAG sorting is exactly equivalent to generalized sorting. Thus both bipartite sorting4 and
generalized sorting can be viewed as special cases of DAG sorting. In fact, one can go a step
further and assign non-negative costs to the edges in E in DAG sorting, and now ask for
algorithms that find the transitive reduction with the cheapest cost. If the underlying DAG
has a Hamiltonian path, this is exactly the problem of sorting with priced information.

4 And by transitivity, sorting nuts and bolts when perfectly interleaved, matching nuts and bolts, and
classical sorting.

M. Goswami and R. Jacob 23:5

2.1 Bipartite Sorting
As our main result, we define a meaningful notion of instance optimality for bipartite sorting,
and give an algorithm that is instance optimal up to a factor of O(log3(n)). We found this
(definition, algorithm) result surprising because it shows that in some sense, the “one-flip”
phenomenon (recall the “one-inversion” instance) mentioned in the introduction is the only
obstruction to achieving (almost) instance optimality. We believe our definition may be of
independent interest as it unifies several previously-studied notions of instance optimality.

2.1.1 Defining Instance-Optimality
The transitive reduction of G⃗, denoted as T⃗ , can be thought of as the “cheapest proof” of
the underlying DAG being G⃗. Such a comparison to the cheapest proof has historically
been very useful in defining instance optimality. Indeed, for the problems of generalized
sorting and sorting with priced information, when the transitive reduction equals the directed
Hamiltonian path, the cost of this directed Hamiltonian path is the measure of instance-
optimality (and the factor by which an algorithm exceeds it is called competitive ratio in
the original work by Charikar et al.[8]). The cheapest proof appears again in the work by
Demaine, López-Ortiz and Munro [10]], who study the problems of comparison-based set
unions, intersections and differences. However in our setting, as the one-inversion instance
shows, the size of the transitive reduction |T⃗ | is too strong a benchmark to compare the
performance of an algorithm to.

An important work on instance optimality deviating from a comparison to cheapest
proof is by [Afshani, Barbay and Chan,[1]] which studies instance optimal algorithms for
the convex hull problem. This was also adopted by [Cardinal, Dallant and Iacono [6]], who
studied bichromatic rectangular visibility. When x is an input sequence of points, [1] and [6]
define OPT (x) to be the runtime of an algorithm that is order-oblivious, i.e., OPT’s code can
depend on the set of elements in x, but not on their order. The fact that some restriction on
OPT is needed (at least for static problems) follows because comparing the runtime of an
algorithm A on an input x to an algorithm (OPT) that is “tailor-made” for an input x is too
strong: if OPT’s code can depend on x, OPT (x) can be very small compared to A(x). In
the convex hull problem OPT (x) would just be O(n) as OPT only needs to read the input5,
and for DAG/bipartite sorting if OPT knows the underlying DAG G⃗ then (since we only
count query complexity) OPT equals zero!

We posit a “neighborhood-based” approach to defining notions of instance optimality. In
a nutshell, we observe that most definitions for instance optimality boil down to choosing the
“right” neighborhood. The smaller the neighborhood is, the stronger the notion of instance-
optimality, and the harder it is to attain. If the neighborhood is the set of all instances,
we are back to worst-case analysis. Thus the art is in choosing the smallest meaningful
neighborhood that still allows for instance optimal algorithms. This general step-by-step
process of increasing the neighborhood until one sees hope for instance-optimality reveals
quite a bit about the fine-grained nature of a problem. Perhaps this way of looking at
instance-optimality was already known, but since we have not seen it in print, we show (see
Appendix C of the full version of this paper [15]) how most of the existing works on instance-

5 [Afshani, Barbay and Chan [1]] state: “For example, consider the 2D convex hull problem, which has
Θ(n log n) worst-case complexity in the algebraic computation tree model: for every input sequence of
n points, one can easily design an algorithm A (with its code depending on the input sequence) that
runs in O(n) time on that particular sequence, thus ruling out the existence of an instance-optimal
algorithm.”

APPROX/RANDOM 2024

23:6 Instance-Optimal Algorithm and Sorting

optimality, ranging from the classical works on adaptive sorting and presortedness [13], to
later works by Demaine et al. [10] and Afshani et al.[1], and including the very recent work
on universal optimality [18], all agree with this paradigm.

We define a neighborhood of the underlying DAG G⃗, denoted as N (G⃗). See Definition 8
for a precise definition but intuitively, this is the set of all DAGs that are either isomorphic,
or “one-flip” away from G⃗. Define the runtime TA(G⃗) of a randomized algorithm A on an
instance G⃗ as its expected comparison-cost on instance G⃗. Let C(G⃗) be the set of randomized
(Las Vegas) algorithms that are correct for all instances in N (G⃗). Now define

OPT(G⃗) = inf
A∈C(G⃗)

max
G⃗′∈N (G⃗)

TA(G⃗′).

For α ≥ 1, we say an algorithm A is α-instance optimal if for every instance G⃗, TA(G⃗) ≤
α OPT(G⃗). Does there exist an algorithm achieving α = O(1), or α = logO(1) n?

2.1.2 InversionSort: An Almost Instance Optimal Algorithm
The algorithm we investigate for bipartite sorting is a variant of an algorithm InversionSort
that was recently presented by us (Goswami and Jacob [16]) for the version when there is
a sorted order on the nuts and bolts, and nuts can be compared to nuts (at a cost α > 1)
and bolts can be compared to bolts (at a cost β > 1). In bipartite sorting, two nuts (or two
bolts) cannot be compared to each other, i.e., α = β =∞, but due to the similarity to the
previous algorithm we call the algorithm for bipartite sorting InversionSort too. Note that in
[16] the previous algorithm was compared to the cost of the Hamiltonian, whereas now not
only may the Hamiltonian cease to exist, its natural counterpart (the transitive reduction) is
a weak lower bound.

As a first try, let us see what goes wrong when we apply the simple randomized QuickSort
algorithm for nuts and bolts to bipartite sorting. We pick a random nut r and use it to
pivot the bolts obtaining two sets B<r and B>r. Since no match was obtained, in the
alternating step we can select a random bolt b, say from B>r, and pivot the nuts, obtaining
R<b (containing r) and R>b. Instead of the two perfectly-partitioned subproblems obtained
in nuts and bolts, we unfortunately now have three subproblems: (R<b, B<r), (R<b, B>r),
and (R>b, B>r).

If the nuts and bolts were perfectly interleaved, we show (see Appendix A.1 of the full
version of this paper [15]) that a BFS-style Quicksort algorithm that we call BackboneSort
sorts using O(n log n) comparisons. BackboneSort works in a sequence of alternating phases,
a nut-phase and a bolt-phase. In a nut phase it tries to refine the nut subproblems and
makes progress over the three subproblems above in a round-robin fashion: for example,
to make progress in (R<b, B<r), it would select a random bolt in B<r and pivot R<b, and
vice-versa in a bolt-phase.

Unfortunately, in a general instance of bipartite sorting the nuts and bolts are not perfectly
interleaved everywhere, and it turns out that BackboneSort can perform badly (see Theorem
29 of full version [15]). The reason for this behavior arises from selecting a “random” pivot
in the subproblem: for the perfectly interleaved instance, its sub-instances are also perfectly
interleaved (in particular all three subproblems (R<b, B<r), (R<b, B>r), and (R>b, B>r) can
be shown to be roughly a constant fraction of the original problem with good probability) ,
and then such a random pivot is guaranteed to be good, just like in randomized Quicksort.
However, if the underlying instance is lop-sided (think of many nuts in R<b sandwiched
between two bolts in B<r), a random bolt is not a good pivot. To add to this complication,
an instance may be lop-sided in one region and perfectly interleaved in another, and an
instance-optimal algorithm should ideally be able to detect such a situation.

M. Goswami and R. Jacob 23:7

InversionSort proceeds similarly to BackboneSort, but instead of selecting random pivots,
it performs a random comparison: when trying to make progress in (R<b, B<r), it will look
for “inversions”, defined as a pair (r, b) ∈ R<b ×B<r such that b < r. When it finds such a
pair, it uses them as pivots. The intuition is that regions having “easy” subinstances (like
perfectly interleaved ones) will resolve fast, whereas those that are lop-sided, like all nuts
less than all bolts, will take longer, but this is a necessary task in this sub-region.

The following theorem quantifies the performance of InversionSort. Here, N = n + m and
Definition 8 is our precise definition of instance optimality, sketched in the previous section.

▶ Theorem 1 (Instance Optimality of InversionSort). There exists a constant c > 0, such that
for every instance I, the cost of InversionSort on I is, with probability at least 1− 1/N , at
most c(log N)3 OPT(I), where OPT(I) is as in Definition 8.

Thus InversionSort is O(log3 N)-instance optimal, with respect to a natural notion of
instance-optimality that accounts for the one-flip neighborhood of the underlying DAG. We
conjecture that InversionSort is actually O(1)-instance optimal with this notion6.

2.2 Unexpected Result: Generalized Sorting and Sorting with Priced
Information

While Theorem 1 gives an algorithm for bipartite sorting that is instance-optimal, what can
we say for DAG sorting? Unfortunately proving a polylog-instance optimality guarantee
seems out of reach for now. The reason is that even the “sortable” case of DAG sorting, where
the DAG has a directed Hamiltonian path, has a current best bound of Õ(n1.5) comparisons,
or in other words, is a factor Õ(

√
n) away from the Hamiltonian cost (which is n− 1). This

results from an interesting randomized algorithm by Huang, Kannan and Khanna [20] that
uses the work by Kahn and Linial [22] on balancing extensions via the Brunn-Minkowski
theorem.

For a DAG that is not sortable, we extend the algorithm of Huang, Kannan and Khanna
to give an algorithm that performs Õ(min(wn1.5, n2)) comparisons and outputs the transitive
reduction of G⃗ (see Theorem 20). Here w denotes the width of the DAG, which is the size
of its largest antichain (a set of incomparable elements). We now point out an unexpected
consequence of this result.

The problem of sorting with priced information introduced by Charikar, Fagin, Guruswami,
Kleinberg, Raghavan and Sahai, [8], is a generalization of the classical, unit-cost, comparison-
based sorting, defined as follows. The input is a weighted undirected graph G on n vertices,
with the cost cij ∈ R≥0 on the edge eij indicating the cost to compare keys (represented by
vertices) vi and vj . As before, edges not in G have cost ∞ and cannot be queried, and a
query on an edge eij reveals if vi < vj (indicated as e⃗ij) or vi > vj (indicated as e⃗ji).

Since the hidden Hamiltonian path H is the cheapest proof, its cost which equals∑n−1
i=1 cx(i)x(i+1) is a lower bound. Here x(1) < · · · < x(n) is the sorted order. [8] propose

finding algorithms that come as close to the cost of H as possible. The competitive ratio is
defined as the ratio of the cost of the algorithm to the cost of H, and the goal is to find an
algorithm with small competitive ratio.

Several special cases of cost functions have been studied, but for arbitrary costs, almost
nothing is known about the above problem. Note that the Õ(n1.5) result by Huang, Kannan
and Khanna [20] works when all costs are either 1 or ∞. What about the version with

6 As evidence, we prove in Theorem 28 in Appendix A.2 of full version [15] that InversionSort solves the
perfectly interleaved instance in an optimal O(n log n) comparisons.

APPROX/RANDOM 2024

23:8 Instance-Optimal Algorithm and Sorting

arbitrary costs? Many works state that the general-cost version is “arbitrarily bad” (Huang,
Kannan and Khanna [20]), “bleak” or “hopeless” (Gupta and Kumar [17]). The only evidence
for this is an Ω(n) lower bound on the competitive ratio of any algorithm that finds the
maximum. There is an example where the costs are either 0, 1, n or ∞, and one can show
that any algorithm that finds the maximum element m must have cost Ω(n) times that of the
cheapest proof (of m being the maximum) (Charikar et al. [8], Hartline et al. [19], Gupta
and Kumar [17]). While it certainly provided intuition, the Ω(n) lower bound for maximum
(with costs in {0, 1, n,∞}) was never extended to sorting.

This makes the {0, 1, n,∞} version interesting due to three reasons:
do instances in this cost regime contain an Ω(n) lower bound for sorting too?
it is the natural step-up from generalized sorting with costs in {1,∞}, and
this is the first instance with forbidden comparisons that requires an instance-specific
analysis for the competitive ratio. For generalized sorting and for stochastic sorting7, the
cost of the Hamiltonian is always n−1, so one only has to bound the cost of an algorithm,
without worrying about the underlying instance. However, when costs are in {0, 1, n,∞}
the cost of the Hamiltonian can range from 0 to n(n − 1), and so an algorithm must
adapt to the underlying instance.

Our second theorem addresses this cost version of sorting with priced information, showing
that it cannot be the {0, 1, n,∞} version that makes sorting hopeless!

▶ Theorem 2. Consider the problem of sorting when every comparison has a cost in
{0, 1, F,∞}, for any F ≥ n3/4. There exists a polynomial time randomized algorithm whose
competitive ratio is Õ(n3/4), with high probability.

The main ingredient in the proof of this theorem is the aforementioned Õ(min(wn1.5, n2))
comparisons algorithm for DAG sorting. Even though DAG sorting does not promise a
Hamiltonian, it turns out to be useful because it can be used as a subroutine in a “greedy”
algorithm for the {0, 1, n,∞} cost version: obtain with cheapest cost the partial DAG formed
by all costs 0 and 1 comparisons.

Organization. We state our problems precisely in Section 3. This is followed by our result on
bipartite sorting (Theorem 1) in Section 4, and our result on sorting with priced information
(Theorem 2) in Section 5.

3 Problem Definitions

We formally define the problem of bipartite sorting first, and then the problems of DAG
sorting and sorting with priced information. We invite the reader to see Figure 2 for the
landscape of these problems, their relations to each other, and how our results fit in this
landscape.

▶ Definition 3 (Bipartite Sorting). Input: A complete bipartite undirected graph G of unit
costs on V = R∪B. Only edges in G can be queried (at unit cost), and querying an undirected
edge (u, v) has one of two outcomes, u < v (implying u⃗v ∈ G⃗) or u > v (implying v⃗u ∈ G⃗).
N := |V |.

7 Also initiated by Huang, Kannan and Khanna [20], this is the version where the input graph G is
random

M. Goswami and R. Jacob 23:9

The instance of bipartite sorting is defined by a partition of R (reds) and B (blues) into
stripes (S1, · · · , Sk) (Figure 1), i.e., by the relative order8 between the reds and the blues.
Note that Sis are unordered sets. The DAG G⃗ has, for all 1 ≤ i ≤ k − 1, an edge from every
element in Si to every element of the other color greater than it, i.e., to every element in
∪ℓ≥0Si+(2ℓ+1).
Output: The sequence of stripes (S1, · · · , Sk) (see figure 1). Equivalently, the transitive
reduction of G⃗.

DAG Sorting. Let P denote a partial order on a set of n elements, and let P⃗ denote the
transitively closed DAG on V = {v1, · · · , vn} indicating all order relations in P . That is, the
vertex vi is identified with element i, the edge −→eij between vertices i and j exists if vi < vj ,
the edge ←−eij exists if vi > vj , and no edge between vi and vj exists if elements i and j are
incomparable. For convenience, let P denote the set of (undirected) edges in P⃗ without their
directions. Let w denote the width of P⃗ .

▶ Definition 4 (Implied and essential edge, transitive reduction [2]). Given a DAG G⃗ = (V, E⃗),
an edge (u, v) ∈ E⃗ is implied, if there is a directed path in G⃗ from u to v. Otherwise, (u, v)
is essential. The set of essential edges is called the transitive reduction of G⃗.

Note that for every implied edge (u, v) ∈ E⃗, there is a directed u to v path of essential edges
in G⃗. It turns out that the transitive reduction of a DAG is unique [2]. Let T⃗ denote the
transitive reduction of P⃗ . Let T denote the undirected version of T⃗ .

▶ Definition 5 (DAG Sorting, arbitrary costs). Input: An undirected graph G = (V, E ⊂ P)
with costs cij ∈ R≥0 on edges. An oracle that answers, given an undirected edge eij of G, its
orientation in P⃗ .

Promise: T ⊂ E. That is, the queryable edges contain the edges of the transitive reduction.
Output: T⃗ .
Cost of an algorithm A: The total cost of the edges queried by A on the instance P⃗ . This

will be denoted by cost(A, G⃗), where G⃗ is the directed version of G (also referred to as the
instance from now on), and contains all the information about P⃗ .

When cij = 1 for all i, j, we call the problem simply DAG Sorting.

We will only care about the query cost of the algorithm, and while there may be a compact
representation of T⃗ , we ask the algorithm to output T⃗ in its entirety for simplicity.

DAG sorting generalizes sorting with priced information, which we describe next. This
problem was introduced by [8] in the broader context of querying with priced information,
where one wants to compute a function f of n inputs, and querying an input has a certain
cost associated to it. The competitive ratio is defined as the (worst case) ratio of the cost of
the query strategy to the cost of the cheapest proof of f . This work initiated a multitude
of papers on priced information, studying problems like learning with attribute costs [23],
stochastic boolean function evaluation [11], searching on trees [26, 25], and priced information
in external memory [5].

▶ Definition 6 (Sorting with Priced Information [8]). Sorting with priced information is a
special case of DAG sorting, when the partial order P is a total order. In this case, P⃗ is a
tournament and therefore P is a complete graph. T⃗ is simply a directed Hamiltonian path

8 S1 is the set of all sources in the DAG G⃗; since red and blue elements can be compared with unit-cost,
S1 must necessarily be of one color. Si can be iteratively defined as the set of sources in G⃗ after all
stripes 1 to i − 1 have been deleted.

APPROX/RANDOM 2024

23:10 Instance-Optimal Algorithm and Sorting

H in P⃗ . The input G is any graph on n vertices containing the edges of H without their
directions, and the output is H. The total cost of the edges queried by an algorithm A on the
instance G⃗ will be denoted by cost(A, G⃗).

Competitive ratio for sorting with priced information. The competitive ratio of A (as
defined in [8]) is ρ(A, n) = maxG⃗ cost(A, G⃗)/cost(H), where the maximum is taken over all
instances G⃗ of n vertices with a total order. The goal is to find sorting algorithms with
small competitive ratio. Here cost(H) is considered as a proxy for the complexity of the
instance G⃗, as it is the cheapest proof. It certainly is a valid lower bound, for the edges on
the Hamiltonian must be queried by any algorithm.
For example, when G is the complete unit-cost graph, MergeSort or QuickSort achieve a
competitive ratio of Θ(log n) (the latter w.h.p. if randomized). Similarly, when G is unit-cost
but not complete, the Õ(n1.5) cost algorithm algorithm by Huang, Kannan and Khanna [20]
has a competitive ratio of Õ(

√
n). As mentioned, very little is known about the case when G

has arbitrary costs.
We end with the remark that DAG sorting is closely related to a line of work initiated by

Faigle and Turán,[14] called sorting a partial ordered set, or identifying a poset. This was
followed up by several works such as [9] and [12]. For a survey on this line of work that also
includes generalized sorting, we refer the reader to [7].

4 Results on Bipartite Sorting

This section is divided into three subsections. In Section 4.1 we formally state our definition
of instance-optimality. In Section 4.2 we derive some lower bounds on OPT stemming from
the definition of instance-optimality. Finally, in Section 4.3 we define InversionSort, and
prove that it comes close to achieving instance-optimality (Theorem 1) by charging the
comparisons performed by InversionSort to the derived lower bounds.

4.1 Defining Instance-Optimality
As mentioned in the introduction, the following instance of bipartite sorting shows that
comparing the cost of an algorithm to the transitive reduction is hopeless.

▶ Definition 7 (One-inversion Instance). Let G = (R, B, E) be the undirected complete
bipartite graph on |R| = |B| = n/2. Pick an arbitrary r ∈ R, b ∈ B, let R−r = R \ {r} and
B−b = B \ {b}. Define a DAG G⃗ via its transitive reduction as follows.

TR(G⃗) = {x⃗b : x ∈ R−r} ∪ {b⃗r} ∪ {r⃗y : y ∈ B−b}.

The transitive reduction has size O(n), but any algorithm must spend Ω(n2) comparisons
to identify r and b. Thus the “cheapest proof” is too strong a benchmark. We now present
our neighborhood-based approach for bipartite sorting. This approach is general, and in
the Appendix C of the full version [15], we show how this neighborhood-based approach
fits several works on instance-optimal algorithms for static problems, namely the works on
adaptive sorting [13], on set intersection, union and difference [10], and the recent work on
universal optimality [18].

We start with small neighborhoods and gradually increase them until there is no imme-
diate obstruction to instance-optimality. Define NA(G⃗) as the set of DAGs (Automorphic)
isomorphic to G⃗ if all edges in G⃗ are unit-cost, and cost-isomorphic9 otherwise. Next, define

9 Meaning there exists an isomorphism btween the DAGs that preserves the costs.

M. Goswami and R. Jacob 23:11

the runtime of an algorithm on an instance G⃗ as its maximum comparison-cost on any
instance in NA(G⃗). Define OPTA(G⃗) as the smallest comparison-cost of any algorithm.

For unit-cost sorting, G⃗ is a complete DAG, and |NA(G⃗)| = n!. It is easily seen that
now OPT (G⃗) = Ω(n log n), and the unnecessary log n gap arising from comparing to the
cheapest proof vanishes. This is also consistent with the fact that any O(n log n) algorithm
that ignores the sequence of keys and only treats them as a set is O(1) instance optimal in
the order-oblivious setting.10

Moving on to the case when G⃗ is not complete, we see that the above definition is not
sufficient by the following observation. Consider the case when G⃗ is a complete bipartite
graph, with all edges going in the same direction, i.e., from one partition R to the other
B. Now |NA(G⃗)| = 1, and any algorithm that knows that it is operating on G⃗ has zero
comparison cost11. However, any instance-unaware algorithm needs Ω(|R||B|) comparisons
to verify that the instance is indeed G⃗. This suggests that we need a larger neighborhood
than just NA(G⃗).

Let E⃗ denote the set of edges in the transitive reduction of G⃗, also called essential
edges (Definition 4). Define NE(G⃗) as the set of DAGs that differ from G⃗ in exactly
one essential edge being flipped, and any other changes it may imply. Again, define the
runtime of an algorithm on an instance G⃗ as its maximum comparison-cost on any instance
in NE(G⃗), and define OPTA(G⃗) as the smallest comparison-cost of any algorithm. It is
straightforward now to observe that if G⃗ is sortable, OPT (S) ≥ cost(H) and if G⃗ is not
sortable, OPT (S) ≥ cost(TR(G⃗)). Thus, we recover both definitions of competitive ratio by
considering this one-flip neighborhood.

The algorithms we consider here are randomized, and we hence want a definition of
instance optimality that allows for randomization. The notion of “instance optimal in the
random-order setting” of [1], based on Yao’s principle, compares implicitly to the optimal
expected running time of a correct randomized algorithm (Las Vegas style). Our following
definition does this directly:

▶ Definition 8 (α-Instance Optimality). Let N (G⃗) = NE(G⃗) ∪ NA(G⃗). Define the runtime
TA(G⃗) of a randomized algorithm A on an instance G⃗ as its expected comparison-cost on
instance G⃗. Let C(G⃗) be the set of randomized (Las Vegas) algorithms that are correct for all
instances in N (G⃗). Define OPT(G⃗) = infA∈C(G⃗) maxG⃗′∈N (G⃗) TA(G⃗′). For some α ≥ 1, an
algorithm A is called α-instance optimal if for every instance G⃗, TA(G⃗) ≤ α OPT(G⃗).

4.2 Lower Bounds on OPT
We first refine our notion of instance-optimality to make it more amenable to deriving lower
bounds.

▶ Definition 9 (Instance Optimality Distribution). Let C′(G⃗) be the set of deterministic
algorithms that are correct for all instances in N (G⃗). Let D(G⃗) be the uniform distribution
over NA(G⃗). Define OPT(G⃗) = infA∈C′(G⃗) EG⃗′∼D(G⃗)TA(G⃗′).

An application of Yao’s principle [28] shows that for any G⃗: OPTD(G⃗) ≤ OPT(G⃗). Note
that the optimal algorithm is allowed to depend on I. We remark that while the following
lower bounds would be easy to prove for algorithms unaware of I using adversary arguments,
we prove this for OPT (Definition 9), which requires some extra care.

10 All algorithms that exploit certain presortedness in the input necessarily exploit the input sequence of
keys. This corresponds to a smaller neighborhood than the n! size automorphism neighborhood.

11 Recall that we do not charge to write down the transitive reduction which has size O(|R||B|), only the
query cost.

APPROX/RANDOM 2024

23:12 Instance-Optimal Algorithm and Sorting

▶ Lemma 10 (Transitive Reduction or Verification lower bound). Let I be an instance of
bipartite sorting, let K ⊂ E⃗I be its transitive reduction, and define CV = |K|. Then, any
algorithm that is correct for all inputs from N (I) must perform at least CV comparisons.

Proof. Assume there exists an algorithm A that is correct for all instances in N (I) simultan-
eously that performs at most CV − 1 comparisons on input I. This means that there must
exist an edge e on the transitive reduction that is not verified by A. As A is deterministic, it
would report I as output even when the input had e flipped because all other edges have the
same direction as in I, as we will argue now: If this (non-flipped) edge is between two stripes
of size one, the two endpoints merge into two other stripes, but no edges changes direction.
If this edge is between two stripes and both of them have size at least 2, then we create
one additional inversion without changing other directions. If one stripe has size one and
the other has size at least two, one element is moved from the size-at-least-two stripe to a
neighboring stripe. Again, no bichromatic edges (implied or not) change their direction. ◀

While the above lower bound is natural as it is the cheapest proof, Definition 9 now allows
for the following lower bound that captures the complexity of instances where transitive
reduction is too weak a measure (recall the instance in Definition 7).

▶ Lemma 11 (Inversion finding lower bound). Let I be an instance of bipartite sorting with
n ≥ 2 red and m ≥ 2 blue elements, where not all comparisons come out the same, and define

CI = nm

min(|{(r, b) ∈ R×B | r < b}|, |{(r, b) ∈ R×B | r > b}|) .

Under the distribution of Definition 9, any deterministic algorithm A that does at most CI/2
comparisons must fail with probability (at least) 1/8.

Proof. Let D be the uniform distribution over NA(I). Remember that NA(I) contains all
instances where the stripes are internally arbitrarily permuted. Observe |NA(I)| ≥ 4 by
the bounds on n and m. W.l.o.g., assume |{(r, b) ∈ R × B | r < b}| < |{(r, b) ∈ R × B |
b < r}|, i.e., the usual outcome of a comparison is b < r and the inversion is r < b. Let
p = 1/CI = |{(r, b) ∈ R×B | r < b}|/nm ≤ 1/2 be the probability that a randomly chosen
pair of elements is an inversion. By Yaos principle, let A be a deterministic algorithm and
think of it as a decision tree T where nodes are red-blue comparisons and non-inversion go
to the left, inversions go to the right. Each leaf of the tree is marked with an output (that
declares which instance was represented by the input), or a failure output.

Claim. Let vk be the node v that is reached by k comparisons returning “non-inversion”
(i.e. the leftmost node of T at depth k). When input is drawn from D, the node vk is reached
with probability at least 1− kp.

Proof of Claim. An input reaches vk if k (potentially dependent) random experiments all
came out as “non-inversion”, each having a probability 1− p. The claim follows from a union
bound over the fail events. ◁

From the claim it follows that if vk is a leaf for k ≤ CI/2, the algorithm must fail with
probability at least 1/4: Then kp ≤ CI/2 · 1/CI = 1/2 and 1 − kp ≥ 1/2, so half of the
inputs reach vk. Because there are at least four inputs, at least two reach vk, but it can only
be labeled with one, the other(s), which stand for at least 1/4 of the inputs in NA(I), make
the algorithm fail. ◀

M. Goswami and R. Jacob 23:13

Finally, we will need to combine various lower bounds from different subproblems. Let
I be an instance and (S1, · · · , Sk) its stripes (see Figure 1). Consider pairs of indices
(a1, b1), · · · , (aℓ, bℓ), where for all 1 ≤ j ≤ ℓ, aj and bj both belong to {1, · · · , k}, and
aj < bj < aj+1 < bj+1 for all j < ℓ. For 1 ≤ j ≤ ℓ define the subinstance Ij by the subgraph
of G⃗I on the vertices Vj =

⋃bj

i=aj
Si.

▶ Lemma 12 (Decomposition into Lower Bounds for Subproblems). For 1 ≤ j ≤ ℓ, let Ij be a
subinstances of I as above. Then OPTD(I) ≥

∑ℓ
j=1 OPTD(Ij).

Proof. As we are working with Definition 9, we first have to check that an algorithm that is
correct on N (I) is actually correct on each N (Ij). To this end observe that every edge flip
in Ij is also an edge flip in I, and that any permutation of the labels/names in Ij is also a
permutation in I.

Run the algorithm A on an instance I ′ drawn from D(I), and let X be the random
variable describing the number of comparisons of A. Define the random variables Xj to be
the number of comparisons between vertices in subproblem I ′

j . Then
∑

Xj ≤ X.
Let’s conceptually draw I ′ from D(I) by first finding a position in the input list (name)

for all vertices not in Ij and finally draw names for the vertices in Ij . Now we can think of A

as deterministic algorithm for Ij by considering all comparisons not in Ij as fixed, and we
get E[Xj] ≥ OPTD(Ij). The statement of the lemma follows by linearity of expectation. ◀

4.3 InversionSort and its O(log3 n) instance-optimal guarantee
A generic state of InversionSort will be defined using a backbone, which is a sequence of
elements of alternating colors, called representatives or pivots. Each representative will be
assigned a bucket, which is a set of elements of the same color that lie between the two
neighboring representatives of the other color on the backbone.

InversionSort makes progress from one state to the next by performing three steps: a)
finding an inversion (which is defined soon) between neighboring representatives on the
backbone, b) inserting this inversion on the backbone, and c) pivoting with these two elements,
thereby refining the buckets.

4.3.1 Description of InversionSort

▶ Definition 13 (Backbone, Representatives, and Buckets). The backbone consists
of a totally ordered, alternating list of representatives (u0, u1, u2, . . . , u2k, u2k+1) =
(r0, b1, r2, . . . , r2k, b2k+1), where r2i ∈ R and b2j+1 ∈ B with ri < bi+1 and bi < ri+1.
Here, r0 is an artificial red element that is smaller than all elements, and the last ele-
ment b2k+1 is an artificial blue element that is larger than all elements. The represent-
atives define the buckets (X0, X1, X2, . . . , X2k, X2k+1) = (R0, B1, R2, . . . , R2k, B2k+1) by
Ri = {x ∈ R | bi−1 < x < bi+1} \ {ri} and Bi = {x ∈ B | ri−1 < x < ri+1} \ {bi}. Here, as
a convention, the representative is not included in the bucket. Again, R0 = {x ∈ R | x < b1}
and B2k+1 = {x ∈ B | r2k < x} are special cases.

▶ Definition 14 (active subproblems and buckets). As long InversionSort did not create a
certificate that there are no further inversions between xi and xi+1, the subproblem defined
by the buckets Xi and Xi+1 is called active, and so are Xi and Xi+1.

Our previous work [16] now defines an inversion, which gives the algorithm its name.
Consider adjacent representatives ui and ui+1, their corresponding adjacent buckets Xi and
Xi+1, and a bichromatic pair (x, y) of elements x ∈ Xi and y ∈ Xi+1. Observe that x and

APPROX/RANDOM 2024

23:14 Instance-Optimal Algorithm and Sorting

Algorithm 1 Algorithm InversionSort.

Require: elements R red, B blue
create trivial backbone B from R and B, see Definition 13
η ← 0
while there is an active subproblem (see Definition 14) in B do

η ← η + 1
for each active (see Definition 14) bucket s do

Sample one element xs

for each active subproblem between buckets s (left), and q (right) do
Test for inversion between xs and xq

for each active subproblem Xi, Xi+1 where η - mark (age) > |Xi||Xi+1| do
do all comparisons between Xi and Xi+1
update the backbone and certificates accordingly
the subproblem is finished, i.e. no longer active

for each found inversion do
update the backbone, including splitting buckets and resampling pivots
mark new subproblems with round η as age

y are not ordered by transitivity of the backbone. Because x and y are of different color,
they can be compared. If y < x, the pair is called an inversion. This allows one to extend
the backbone: we get ui < y < x < ui+1, which is a chain of actual comparisons between
elements of alternating color.
The only way to find an inversion in a bipartite setting (this is where the bichromatic setting
is different) is to uniformly at random, from all pairs in Xi and Xi+1, pick x and y. If the
fraction of inversions is p, then the probability of finding an inversion is p and the expected
number of trials to find one is 1/p.

InversionSort starts by (trivially) having the backbone consist only of the artificial
smallest red element r0 and largest blue element b1, and R0 = R and B1 = B. For a given
backbone (u0, u1, u2, . . . , u2k, u2k+1) = (r0, b1, r2, . . . , r2k, b2k+1), InversionSort first, for each
pair Xi, Xi+1 of adjacent buckets that have not yet found an inversion or a proof that there
is no further inversion (i.e., reached the adjacent-stripe verification bound), in a round-robin
manner, does one round of inversion-searching by randomly comparing pairs of elements in
adjacent buckets. If this leads to an inversion, the inverted pair is saved and the algorithm
moves to the next pair of adjacent buckets. At the end of the round, all identified inversions
are considered and used to extend the backbone. Then InversionSort splits existing buckets
by pivoting with new elements on the backbone. Because there is at most one pair of
inversions between each two neighboring representatives on the backbone, each element is
compared to at most two new representatives in each round.

This reestablishes the backbone and creates some new pairs of neighboring buckets, for
which InversionSort initializes the inversion finding procedures. The algorithm stops once all
neighboring pairs of buckets are shown to not have an inversion, i.e., the comparisons in the
verification bound between neighboring stripes have been performed.

Analysis. [16] visualizes a run of InversionSort as a ternary (refinement) tree, where nodes
correspond to subproblems. For an internal node v, there is a corresponding subinterval on
the backbone defined by two consecutive pivots, say a blue pivot followed by a red pivot,
bv < rv. If InversionSort finds an inversion y < x (x is blue and y is red) between bv and rv,
then v has three children with the respective pivots (bv, y), (y, x), (x, rv).

M. Goswami and R. Jacob 23:15

The random nature of the inversion searching of InversionSort, is made precise in Lemma 11
in [16]. However, a stronger version of this lemma applies for bipartite setting with the same
proof.

▶ Lemma 15 (Randomness in Inversion Finding, Stronger Version of [16, Lemma 11, p11]). At
any stage of the InversionSort, consider a successful inversion finding procedure, which finds
an inversion y < x between representatives ui < y < x < ui+1. Say, w.l.o.g., that ui is red
and ui+1 is blue, and hence x is red and y is blue.
1. for any y ∈ Xi+1, conditioned on y being in the inversion, x is uniformly distributed

among all the red elements in Ry = {x ∈ Xi | y < x < ui+1}, an.
2. for any x ∈ Xi, conditioned on x being in the inversion, y is uniformly distributed in

Bx = {y ∈ Xi+1 | ui < y < x}.

This gives a bound on the height of the tree.

▶ Lemma 16 (Height of the refinement tree [16, Theorem 5, p11]). Let T be the refinement tree
of running InversionSort on an instance I with N = n + m elements. With high probability
in N , the height of T is O(log N).

Handling Overlaps. Because of the overlapping nature of the problem, InversionSort cannot
easily focus on elements between neighboring representatives. For example, for the child
indicated by pivots (y, x), instead of only getting the reds and blues that actually lie in this
range as input, InversionSort instead has to also work with the red elements contained in
(bv, y) and the blue elements inside (x, rv). This “spill-in” from the neighboring subintervals
on the backbone needs to be analyzed.

As is argued in [16], the cost of bichromatic inversion search procedure of InversionSort is
justified by the subinstance (part of the Hamiltonian) between the neighboring elements on
the backbone. In Section 4.3.2, we will analyse this in the bipartite setting using the notion
of instance optimality. However, if the spill-in for this subproblem is too large, inversion
search is too costly. Hence, [16] identify subproblems that do not have too much spill-in
from their neighbors, and call these subproblems unaffected. Inversion search in unaffected
subproblems can be charged to their subinstance. More precisely, [16] show that at any
time, with high probability, at least roughly a 1/(log N)2 fraction of all current problems are
unaffected. Accounting over the whole tree, including the pivoting, introduces another log N

factor corresponding to the depth of the tree.

4.3.2 Putting everything together: Proof of Theorem 1
We now complete the proof of our main result for bipartite sorting, restated here for
convenience.

▶ Theorem 1 (Instance Optimality of InversionSort). There exists a constant c > 0, such that
for every instance I, the cost of InversionSort on I is, with probability at least 1− 1/N , at
most c(log N)3 OPT(I), where OPT(I) is as in Definition 8.

We will show how to charge the comparisons performed by InversionSort to the lower
bounds presented in Section 4.2. First, Lemma 15 and Lemma 16 imply that the refinement
tree height h = O(log n) and hence the pivoting cost is O(n log n). Second, the considerations
about unaffected subproblems remains valid, there are at most O(log2 n) affected subproblems
per unaffected subproblem. The inversion searching cost in each unaffected subproblem is
justified by Lemma 11 if an inversion is found, otherwise by Lemma 10. Adding the extra
O(logN) factor (height of the tree), the next lemma completes the proof of Theorem 1.

APPROX/RANDOM 2024

23:16 Instance-Optimal Algorithm and Sorting

▶ Lemma 17. Let T be the refinement tree of height h for a run of InversionSort on
instance I, and let VT be the set of nodes of T . Then∑

v∈VT

OPT (Iv) ≤ 2h OPT(I)

Proof. It suffices to show that for each level L of T the inequality
∑

v∈L OPT (Iv) ≤ 2 OPT(I)
holds. Note that the subinstances Iv of the same polarity in any L do not share vertices.
Hence the decomposition Lemma 12 is applicable and the lemma follows because there are
two polarities. ◀

5 Result on Sorting with Priced Information: Lower bound does not
extend

Recall that there exists an instance demonstrating the lower bound of Ω(n) on the competitive
ratio of any algorithm that finds the maximum of a set of n elements. Announced in the
original paper by Charikar et al.[8], this was spelled out one year later by Gupta and
Kumar [17]]. The instance is simple to describe (see Appendix B of the full version [15]), and
all comparisons in it have costs in {0, 1, n,∞}. Although this example was never formally
stated for sorting, its discovery seems to have dampened efforts to study (either better
algorithms, or lower bounds for) the general version of sorting with priced information in the
past 20 years.

In this section, we prove Theorem 2, that shows that the Ω(n) lower bound for maximum
with costs in {0, 1, n,∞} cannot extend to sorting.

▶ Theorem 2. Consider the problem of sorting when every comparison has a cost in
{0, 1, F,∞}, for any F ≥ n3/4. There exists a polynomial time randomized algorithm whose
competitive ratio is Õ(n3/4), with high probability.

While counterintuitive at a first glance (after all, the cost to sort is at least the cost to
find the maximum), the simple explanation is that the cheapest proof for sorting is also more
expensive than that of the maximum. This opens up the problem of arbitrary-cost sorting
once again - is there a Ω(n) lower bound for sorting with arbitrary costs, or can our Õ(n3/4)
algorithm be extended to an o(n) competitive algorithm for arbitrary costs?

Theorem 2 is achieved by first developing an algorithm for DAG sorting. Why consider
the case of an unsortable DAG, when the DAG we have is sortable? Here is the reasoning.
If we consider greedy algorithms for sorting with priced information, it is natural to try to
discover as much of G⃗ as possible with low-cost edges12. However, note that the sub-DAG
G⃗≤w consisting of edges with cost at most w in G⃗ may not be sortable, which is exactly the
problem of DAG sorting.

We set up some notation first. Given an undirected complete graph G with costs in
{0, 1, F,∞}, let G⃗ denote the underlying DAG that contains a directed Hamiltonian path.
Define G⃗0 as the DAG obtained by revealing all cost 0 edges, observe that it may not have

12We remark that some time after we first uploaded a version of Theorem 2 to Arxiv, a preprint by
[Jiang, Wang, Zhang and Zhang, Arxiv [21]] was uploaded, where the authors also use an algorithm for
DAG sorting (they call it GPSC) parameterized by w and extend our Õ(n3/4) algorithm to obtain a
Õ(n1−1/2W) competitive algorithm for sorting with priced comparisons with at most W distinct costs.
For our setting when W = 4 they re-derive our result separately as their main theorem would give a
n7/8-competitive ratio.

M. Goswami and R. Jacob 23:17

a Hamiltonian path, and let w0 be the width of G⃗0. Similarly, denote by G⃗01 the DAG
obtained by revealing all cost 0 and 1 edges; G⃗01 may not have a Hamiltonian path either,
and let w01 be the width of G⃗01. Finally, let k1 and kF be the number of cost 1 and cost F

edges on the Hamiltonian path in G⃗.

5.1 Algorithm details
The following is our proposed algorithm for the 0, 1, F,∞ cost version of sorting with priced
information. Below, we will abbreviate the algorithm by Huang, Kannan and Khanna [20]
for the 1,∞ setting, by HKK.

Algorithm 2 Algorithm for 0, 1, F, ∞ cost.

Require: undirected graph G = (V, E, c) with costs c(e) ∈ {0, 1, F,∞}
Ensure: the total order (directed Hamiltonian)

Probe all cost zero edges
Run the following 4 algorithms in parallel, performing one comparison from each. If any
of them discover the Hamiltonian, report the edges in the Hamiltonian path, and abort
the other algorithms

◦ Set F =∞. Run the HKK algorithm on the cost 1 edges, starting from G⃗0
◦ Set F = 1. Run the HKK algorithm on the cost 1 edges, starting from G⃗0
◦ Run Algorithm 3 on the cost 1 edges, starting from G⃗0
◦ Find the 0-1 DAG using Theorem 20, use Algorithm 3 with cost F edges on it.

The running time of the final algorithm will then be a minimum of four running times.
We briefly explain the first two algorithms, and then explain in detail the last two. Recall
that HKK algorithm runs when costs are 1 or ∞. On an input with costs in {0, 1, F,∞},
the first algorithm pretends that cost F edges are forbidden too, i.e., F =∞, and probes
whatever edges HKK would have probed from the cost 1 edges. Clearly, this will not find the
Hamiltonian if it contains cost F edges, as they aren’t queried. However, in the case that
the Hamiltonian does not contain cost F edges, it will sort the input, and stops. The second
algorithm does the opposite: it does not differentiate between cost F and cost 1 edges, and
probes them if they would have been probed by the HKK algorithm. If run for long enough,
this will find the Hamiltonian, and is stopped once it does so.

5.1.1 Algorithm 3 : Hamiltonian By Predecessors
The third algorithm in Algorithm 2 is Algorithm 3, which is also used as the second half
of the fourth algorithm in Algorithm 2. This algorithm finds a Hamiltonian path in a
partially revealed DAG. It utilizes Lemma 18, that generalizes binary search to searching for
predecessors of a vertex in a DAG of width w. For two DAGs D′ and D on the same set of
vertices, we will write D′ ⊂ D if all the directed edges in D′ are also contained in D.

▶ Lemma 18 (Hamiltonian by predecessor search). Let D′ ⊂ D be two DAGs on the vertex set
V and assume that D contains a Hamiltonian path. Assume that the Hamiltonian path in D

contains a set S⃗ of k edges that are not in D′, and let S be the undirected version of S⃗. Let
E be a set of edges that can be queried and assume S ⊂ E. Let w be the width of D′. Then,
k + 1 ≥ w and the Hamiltonian in D can be found with O(wk log n) queries on edges in E.

Below is the pseudocode for Algorithm 3. It uses in turn a predecessor searching subroutine
that is captured by the following simple lemma. Lemma 18.

APPROX/RANDOM 2024

23:18 Instance-Optimal Algorithm and Sorting

▶ Lemma 19 (Predecessor search in DAG). Given a DAG D′ = (V, E′) of width w, and a
vertex v ∈ V , |V | = n, let D be the DAG obtained by extending D′ by probing all edges
involving v. Define Pv = {u | (u, v) is in the transitive reduction of D}. There exists an
algorithm that computes Pv with O(w log n) queries, and runs in O(n2) time.

Proof. Observe that any chain in D′ can contain at most one element of Pv, and hence
|Pv| ≤ w. Indeed, we can run one binary search on each of the w chains in D′, leading to at
most w candidate predecessors. The number of queries is easily seen to be O(w log n) after
computing an optimal partitioning into chains in polynomial time. ◀

Proof of Lemma 18. By Dilworth’s Theorem, D′ can be partitioned into w chains. To
show k + 1 ≥ w, assume otherwise, w > k + 1, and let A be k + 2 non-comparable vertices
in D′. By the pigeonhole principle, there must be two vertices of A in the same of the k + 1
stretches of cost 0 edges on the Hamiltonian, a contradiction to them being incomparable.

To prove that Algorithm 3 performs at most O(kw log n) queries, observe that adding
edges to D′ does not increase its width. In the while loop, as long as D′ is not the Hamiltonian
path, let S be the first layer of a BFS traversal of the transitive reduction of D′ with |S| ≥ 2,
and observe that S is an antichain and hence |S| ≤ w. All vertices of S but one have their
incoming edge on the directed Hamiltonian not yet revealed / queried: Assume there are two
vertices b ̸= d ∈ S and their predecessors a ≺ b and c ≺ d are both already in D. Then, b and
d are not sources in D, and hence S must be the set of successors of a vertex v. Additionally,
there is only a single source s in D, and the set {x | x < v} forms a chain in the transitive
reduction of D starting in s. This means w ≤ a < b and w ≤ c < d contradicting them being
different.

By the above arguments, D contains the Hamiltonian with only k − |S|+ 1 unrevealed
edges missing. We used O(|S|w log n) queries to reduce the number of unrevealed edges by
|S| − 1 for |S| ≥ 2, hence each search creating a missing edge of the Hamiltonian, and this
search must justify at most one additional such search. Hence, the total number of queries
to arrive at the Hamiltonian is O(wk log n).

Binary searching for a vertex v into one of the w chains takes O(log n) probes, and in
O(w log n) probes one is sure to have at least discovered one edge from the Hamiltonian,
namely the incoming edge to v. This can then be repeated k times, revealing the Hamiltonian.

Algorithm 3 Hamiltonian By Predecessors.

Require: undirected G = (V, E) defining which comparisons are allowed
Require: DAG D of already probed edges (initially the cost 0 edges)
Ensure: The updated D contains a directed Hamiltonian

create (and maintain) a chain decomposition C of the transitive reduction of D

while D has width w >1, i.e. is not the intended result do
if The transitive reduction of D has several sources then

Let S be the set of these sources
else

Let v be the lowest vertex with more than 1 successors
Let S be the set of successors of v

for each u in S do
Find all predecessors of u in D (Lemma 19), adding answers to D

\\ there are at most w such predecessors

M. Goswami and R. Jacob 23:19

5.1.2 The fourth algorithm in Algorithm 2
We will develop another algorithm, that proceeds in two steps: a) compute only the 0-1
DAG, G⃗01, and b) find the cost F edges (kF -many of them) on the Hamiltonian path. Step
b) is performed using Algorithm 3. If kF = 0, step a) recovers the complete Hamiltonian
path. Before we state the DAG sorting algorithm for step a), we note that it only needs to
output the transitive reduction of G⃗01.

▶ Theorem 20. There is a poly-time randomized algorithm that w.h.p. solves DAG sorting
for an instance G⃗ with edge costs in {0, 1,∞}, using O(min(wn3/2 log n, n2)) comparisons,
where w is the width of G⃗.

We defer the proof of Theorem 20 for now and analyze our algorithm assuming it.

5.2 Analysis of Algorithm 2
▶ Lemma 21. Algorithm 2 incurs the following costs{

O(min(n1.5 log n , w0k1 log n)) if kF = 0
O(min(Fn1.5 log n , w01n1.5 log n + Fw01kF log n)) if kF > 0

Proof. If kF = 0, the first algorithm that ignores cost F edges by setting F =∞ never probes
a cost F edge, and finishes in O(n1.5 log n) comparisons (this is the cost of the algorithm
by Huang, Kannan and Khanna [20]). Since the DAG formed by cost 0 edges has width
w0 and kF = 0, w0 ≤ k1 + 1. The third step running Algorithm 3 finishes after at most
O(w0k1 log n) comparisons, by Lemma 18.

If kF > 0, the first term comes from running HKK after setting F = 1: the true cost
of probing an edge is at most a factor F larger. Finally, step 4 of Algorithm 2 runs the
algorithm in Theorem 20 first, incurring at most w01n1.5 log n many comparisons. With the
0-1 DAG obtained using Theorem 20, Algorithm 3 now inserts at most kF many edges in
the Hamiltonian, probing at most w01 log n many edges for each. Every probe costs F , for a
total of w01n1.5 log n + Fw01kF log n. ◀

5.2.1 Proof of Õ(n3/4) competitive ratio of Algorithm 2
We claim that the competitive ratio is always bounded by O(n3/4 log n). Observe that the
cost of the Hamiltonian is k1 + FkF . If k1 = kF = 0, the Hamiltonian has a cost of 0 and
our algorithm finds it at cost 0. From now on, we assume not both of k1 and kF are 0.

Consider the case kF = 0 first. Note that this implies that the width w01 of G⃗01 is 1.
First consider the subcase when w0 ≤ n3/4. In this case, the competitive ratio is bounded
above by O(w0k1 log n)/k1 = O(w0 log n) ≤ O(n3/4 log n). In the subcase when w0 > n3/4,
observe that this implies that k1 ≥ n3/4 which implies that the competitive ratio is bounded
above by O(n1.5 log n)/k1 ≤ O(n3/4 log n).

Next, consider the case kF ≥ 1, and the cost of the Hamiltonian is at least FkF . Since
w01 ≤ kF + 1, the cost of the algorithm is at most O(w01n1.5 log n + Fw01kF log n) <

O(kF n1.5 log n + Fw01kF log n), and dividing by FKF (the lower bound on the cost of
the Hamiltonian), we get a competitive ratio of at most O((n1.5/F + w01) log n). Since
F ≥ n3/4, this ratio is O(n3/4 log n) as long as w01 ≤ n3/4. Else if w01 > n3/4, we observe
that kF ≥ n3/4, and then the Fn1.5 log n query cost gives us a competitive ratio of at most
Fn1.5 log n/FkF ≤ n3/4 log n. Thus Theorem 2 is proved. ◀
It remains to prove Theorem 20, which is the topic of the next subsection.

APPROX/RANDOM 2024

23:20 Instance-Optimal Algorithm and Sorting

5.3 Proof of Theorem 20

First, observe that if the width of G⃗ is at least
√

n/4, the statement of Theorem 20 is easy
to achieve by probing all edges. Hence, let us assume the width is at most

√
n/4. We will

show that there is an algorithm that computes G⃗01 with cost at most O(w01n1.5 log n). This
algorithm will only probe cost 0 and 1 edges, and will be a generalization of the algorithm
in [20]. Note that while the algorithm in [20] works on a cost {1,∞} setting under the
promise of a Hamiltonian path in the true graph, our algorithm finds the transitive reduction
of the DAG G⃗01 of width w01. We first address the challenges posed in extending the work
by Huang Kannan and Khanna [20].

Challenges in extending the results of Huang, Kannan and Khanna [20]. At a high level,
the algorithm in [20] alternates between three ways of making progress:

1. Finding and probing balanced edges, defined as those that reduce the number of possible
linear extensions of the current DAG by a 1− (1/(e

√
n))) factor. Finding such edges requires

approximating the average rank of vertices under all possible linear extensions at all stages
of the algorithm.

2. After estimating the indegree of vertices upto an additive error of Õ(
√

n) by an Õ(n1.5)
sampling procedure, the algorithm probes free edges, defined as the set of edges (u, v) where
the average rank of u is smaller than the average rank of v, and v has most Õ(

√
n) unprobed

incoming edges. Free edges that are balanced again reduce the number of linear extensions
by a constant factor. Otherwise, they can contribute at most Õ(n1.5) to the total cost.

3. Binary Search - When there are no free edges, there must exist a set of
√

n vertices with
known total order (Lemma 3.5 in [20]). The other vertices can perform binary search into
these

√
n vertices at a cost of O(n log n), and doing so removes these

√
n vertices from the

picture. The total cost of binary search is therefore Õ(n1.5).
The third step of the algorithm is the step that guarantees a reduction in the problem size.

However,the third step of this algorithm no longer works for DAG sorting: the existence
of a set of

√
n vertices with known total order crucially relies upon the existence of the

Hamiltonian path.

Proof of Theorem 20. All of the definitions, algorithms, and accounting to estimate the
in-degree of a vertex in [20] remain valid and unchanged. Observe that any topological sorting
of the underlying directed graph, together with the undirected graph, reveal the directed
graph. Define the average rank of a vertex as the average rank over all linear extensions
of the true underlying directed graph. The following result implies that the average rank r

on a path in (the transitive reduction of) a DAG is increasing by at least one per edge.

▶ Lemma 22. Let D = (V, E) be a DAG and r : V → Q≥0 be the average rank. Then for
(u, v) ∈ E we have r(u) + 1 ≤ r(v).

Proof. Let Π be the set of all linear extensions that are compatible with D, such
that r(x)|Π| =

∑
π∈Π π(x). Then |Π|(r(v)− r(u)) =

∑
π∈Π π(v)− π(u) ≥ |Π| · 1. ◀

M. Goswami and R. Jacob 23:21

▶ Definition 23 (Convex vertex subset). In a DAG G = (V, E), a subset of vertices S ⊆ V is
convex if for every pair of vertices u, v ∈ S, every vertex w on any directed path from u to v

in G is also in S.13

Hence, considering a subset of the vertices by an upper and a lower bound on the average
rank, leads to a convex subset. Next, a vertex is live if there is an unprobed edge incident
to it, otherwise it is exhausted. The assumed graph is the same directed graph as in [20].
An active vertex is one that has at most 4

√
n log n unprobed in-edges in the assumed graph.

A free edge is an unprobed edge (u, v) where the endpoint v is active. The proof of the
next lemma is identical to that in [20].

▶ Lemma 24 (Generalization of Lemma 3.5 in [20]). The
√

n live vertices with smallest
average rank are all active.

▶ Lemma 25 (Generalization of Lemma 3.6 in [20]). If there are no free edges, and the width
of the underlying G⃗ is at most

√
n/4, then there exists a set S of at least (3/4)

√
n live vertices

with known partial order who form a DAG of width at most
√

n/4.

Proof. Consider the set S of at most
√

n live vertices with smallest average rank. More
precisely, we chose the largest upper bound on the average rank such that |S| ≤

√
n. By

Lemma 22, at most
√

n/4 vertices can have the same average rank, such that |S| ≥ 3/4
√

n.
By Lemma 24, all vertices of S are active. Let u, v ∈ S be a pair of vertices that have a
directed path P from u to v in G⃗. Then, all of this path P is in S, and all live vertices of P

are in S. Hence, because there are no free edges, and all vertices of P not in S are exhausted,
all edges of P must be probed. Hence, S is convex. The statement on the width follows
from a chain decomposition of G⃗ remaining a chain decomposition for a convex subset of
vertices. ◀

Note that Lemma 25 does not imply that the algorithm can, or should, identify precisely
this set S defined in the proof. Hence, the algorithm is going to approximate the smallest
width subset of at least 3/4

√
n vertices among the live vertices. More precisely, starting from

an empty S, it is going to iteratively find the longest (outside S) chain among the live vertices
(also using edges that are implied by transitivity via edges in S). It stops once S contains
at least 3/4

√
n vertices, and uses it as the DAG of small width in the setting of Lemma 19,

and determine for every remaining live vertex its predecessors in S, with O(w log n) queries
each, compared to the O(log n) queries if there is a Hamiltonian. Hence, the total number of
queries increases from O(n3/2 log n) to O(wn3/2 log n), as claimed in Theorem 20, completing
the proof.

References
1 Peyman Afshani, Jérémy Barbay, and Timothy M Chan. Instance-optimal geometric algorithms.

Journal of the ACM (JACM), 64(1):1–38, 2017.
2 Alfred V. Aho, Michael R Garey, and Jeffrey D. Ullman. The transitive reduction of a directed

graph. SIAM Journal on Computing, 1(2):131–137, 1972.

13 Our definition of convexity differs from the definition in the metric graph theory (defined on undirected
graphs), where convex subgraph contains the vertices of only the shortest paths between every pair of
vertices [4].

APPROX/RANDOM 2024

23:22 Instance-Optimal Algorithm and Sorting

3 Noga Alon, Manuel Blum, Amos Fiat, Sampath Kannan, Moni Naor, and Rafail Ostrovsky.
Matching nuts and bolts. In Proceedings of the fifteenth annual ACM-SIAM Symposium on
Discrete Algorithms (SODA’94), pages 690–696, 1994.

4 Hans-Jürgen Bandelt and Victor Chepoi. Metric graph theory and geometry: a survey. In
Surveys on Discrete and Computational Geometry: Twenty Years Later, editors, Jacob E.
Goodman and János Pach and Richard Pollack, volume 453 of Contemporary Mathematics,
pages 49–86. AMS, 2008.

5 Michael A Bender, Mayank Goswami, Dzejla Medjedovic, Pablo Montes, and Kostas Tsichlas.
Batched predecessor and sorting with size-priced information in external memory. In Latin
American Symposium on Theoretical Informatics, pages 155–167. Springer, 2021.

6 Jean Cardinal, Justin Dallant, and John Iacono. An instance-optimal algorithm for bichromatic
rectangular visibility. In 29th Annual European Symposium on Algorithms (ESA 2021). Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

7 Jean Cardinal and Samuel Fiorini. On generalized comparison-based sorting problems. In
Space-Efficient Data Structures, Streams, and Algorithms, pages 164–175. Springer, 2013.

8 Moses Charikar, Ronald Fagin, Venkatesan Guruswami, Jon Kleinberg, Prabhakar Raghavan,
and Amit Sahai. Query strategies for priced information. Journal of Computer and System
Sciences, 64(4):785–819, 2002.

9 Constantinos Daskalakis, Richard M Karp, Elchanan Mossel, Samantha J Riesenfeld, and
Elad Verbin. Sorting and selection in posets. SIAM Journal on Computing, 40(3):597–622,
2011.

10 Erik D Demaine, Alejandro López-Ortiz, and J Ian Munro. Adaptive set intersections, unions,
and differences. In Proceedings of the eleventh annual ACM-SIAM symposium on Discrete
algorithms, pages 743–752, 2000.

11 Amol Deshpande, Lisa Hellerstein, and Devorah Kletenik. Approximation algorithms for
stochastic boolean function evaluation and stochastic submodular set cover. In Proceedings
of the twenty-fifth annual ACM-SIAM Symposium on Discrete Algorithms (SODA’14), pages
1453–1466. SIAM, 2014.

12 Devdatt P Dubhashi, Kurt Mehlhorn, Desh Ranjan, and Christian Thiel. Searching, sorting
and randomised algorithms for central elements and ideal counting in posets. In International
Conference on Foundations of Software Technology and Theoretical Computer Science, pages
436–443. Springer, 1993.

13 Vladimir Estivill-Castro and Derick Wood. A survey of adaptive sorting algorithms. ACM
Comput. Surv., 24(4):441–476, 1992. doi:10.1145/146370.146381.

14 Ulrich Faigle and Gy Turán. Sorting and recognition problems for ordered sets. SIAM Journal
on Computing, 17(1):100–113, 1988.

15 Mayank Goswami and Riko Jacob. On instance-optimal algorithms for a generalization of
nuts and bolts and generalized sorting, 2023. arXiv:2211.04601.

16 Mayank Goswami and Riko Jacob. An algorithm for bichromatic sorting with polylog
competitive ratio. In 15th Innovations in Theoretical Computer Science Conference (ITCS
2024). Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2024.

17 Anupam Gupta and Amit Kumar. Sorting and selection with structured costs. In Proceedings
42nd IEEE Symposium on Foundations of Computer Science (FOCS’01), pages 416–425. IEEE,
2001.

18 Bernhard Haeupler, Richard Hladík, Václav Rozhoň, Robert Tarjan, and Jakub Tětek. Uni-
versal optimality of dijkstra via beyond-worst-case heaps, 2023. arXiv:2311.11793.

19 J Hartline, E Hong, A Mohr, E Rocke, and K Yasuhara. Personal communication. In , 2000.
20 Zhiyi Huang, Sampath Kannan, and Sanjeev Khanna. Algorithms for the generalized sorting

problem. In 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science
(FOCS’11), pages 738–747, 2011. doi:10.1109/FOCS.2011.54.

21 Shaofeng H. C. Jiang, Wenqian Wang, Yubo Zhang, and Yuhao Zhang. Algorithms for the
generalized poset sorting problem, 2023. arXiv:2304.01623.

https://doi.org/10.1145/146370.146381
https://arxiv.org/abs/2211.04601
https://arxiv.org/abs/2311.11793
https://doi.org/10.1109/FOCS.2011.54
https://arxiv.org/abs/2304.01623

M. Goswami and R. Jacob 23:23

22 Jeff Kahn and Nathan Linial. Balancing extensions via brunn-minkowski. Combinatorica,
11(4):363–368, 1991.

23 Haim Kaplan, Eyal Kushilevitz, and Yishay Mansour. Learning with attribute costs. In
Proceedings of the thirty-seventh annual ACM symposium on Theory of computing (STOC’05),
pages 356–365, 2005.

24 János Komlós, Yuan Ma, and Endre Szemerédi. Matching nuts and bolts in O(n log n) time.
SIAM Journal on Discrete Mathematics, 11(3):347–372, 1998.

25 Shay Mozes, Krzysztof Onak, and Oren Weimann. Finding an optimal tree searching strategy
in linear time. In In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’08), volume 8, pages 1096–1105, 2008.

26 Krzysztof Onak and Pawel Parys. Generalization of binary search: Searching in trees and
forest-like partial orders. In 2006 47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS’06), pages 379–388. IEEE, 2006.

27 Gregory JE Rawlins. Compared to what? An introduction to the analysis of algorithms.
Computer Science Press, Inc., 1992.

28 Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified measure of complexity.
In 18th Annual Symposium on Foundations of Computer Science (SFCS 1977), pages 222–227,
1977. doi:10.1109/SFCS.1977.24.

APPROX/RANDOM 2024

https://doi.org/10.1109/SFCS.1977.24

Learning-Augmented Maximum Independent Set
Vladimir Braverman #

Rice University, Houston, TX, USA
Google Research

Prathamesh Dharangutte #

Rutgers University, NJ, USA

Vihan Shah #

University of Waterloo, ON, Canada

Chen Wang #

Rice University, Houston, TX, USA
Texas A&M University, College Station, TX, USA

Abstract
We study the Maximum Independent Set (MIS) problem on general graphs within the framework of
learning-augmented algorithms. The MIS problem is known to be NP-hard and is also NP-hard to
approximate to within a factor of n1−δ for any δ > 0. We show that we can break this barrier in
the presence of an oracle obtained through predictions from a machine learning model that answers
vertex membership queries for a fixed MIS with probability 1/2 + ε. In the first setting we consider,
the oracle can be queried once per vertex to know if a vertex belongs to a fixed MIS, and the oracle
returns the correct answer with probability 1/2 + ε. Under this setting, we show an algorithm that
obtains an Õ(

√
∆/ε)1-approximation in O(m) time where ∆ is the maximum degree of the graph.

In the second setting, we allow multiple queries to the oracle for a vertex, each of which is correct
with probability 1/2 + ε. For this setting, we show an O(1)-approximation algorithm using O(n/ε2)
total queries and Õ(m) runtime. 2

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Computing
methodologies → Machine learning

Keywords and phrases Learning-augmented algorithms, maximum independent set, graph algorithms

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.24

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2407.11364

Funding Vladimir Braverman: Supported partially by the Naval Research (ONR) grant N00014-23-
1-2737, and NSF-CNS 2333887 award.
Prathamesh Dharangutte: Supported by NSF through IIS-2229876 and CCF-2118953.
Vihan Shah: Supported in part by Sepehr Assadi’s Sloan Research Fellowship and NSERC Discovery
Grant.

Acknowledgements The authors are grateful to Sepehr Assadi and Samson Zhou for the helpful
conversations regarding the project. The authors also thank anonymous APPROX reviewers for
helpful suggestions.

1 Introduction

We consider learning-augmented maximum independent set (MIS) in this paper. Given a
(unweighted, undirected) graph G = (V, E), an independent set is a set of vertices I ⊆ V ,
such that for any u, v ∈ I, (u, v) ̸∈ E, i.e., there is no edge between u and v. The maximum
independent set problem asks to find the independent set with the largest size in G.

1 Throughout we use Õ(·) to hide polylog (n) factors.
2 A full version appears on arxiv under the same title.

© Vladimir Braverman, Prathamesh Dharangutte, Vihan Shah, and Chen Wang;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 24; pp. 24:1–24:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vb21@rice.edu
mailto:prathamesh.d@rutgers.edu
mailto:vihan.shah@uwaterloo.ca
mailto:cw200@rice.edu
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.24
https://arxiv.org/abs/2407.11364
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Learning-Augmented Maximum Independent Set

Finding the maximum independent set is one of the classical NP-hard problems [42].
Furthermore, the seminal work of [36, 60] demonstrates the NP-hardness of approximating
the size of the MIS to within a factor of n1−δ for any δ > 0. In contrast, outputting
any single vertex gives an n-approximation trivially. [10] gave a non-trivial O(n/ log2 n)-
approximation to MIS and this was later improved by [29]. These results indicate that the
problem is quite hard in its general form and thus, many research efforts have been devoted to
approximation algorithms in special settings, e.g., planar graphs [3, 47], rectangle-intersection
graphs [16, 22, 32], and exponential-time algorithms [51, 31, 59, 12].

On the other hand, heuristic algorithms, despite their bad worst-case guarantees, often
exhibit commendable performance on real-world graphs [4, 24, 57]. For instance, the greedy
algorithm only offers an approximation guarantee of O(∆), where ∆ is the maximum degree
of G. However, it frequently yields satisfactory empirical results. The gap between the
worst-case hardness and practical efficiency motivates us to study the MIS problem through
the lens of beyond worst-case analysis [11, 52]. In particular, under the modern context, we
ask the question of finding the maximum independent set with learning-augmented oracles.

Learning-augmented algorithms

Learning-augmented algorithms, also known as algorithms with predictions, have attracted
considerable attention in recent years (see, e.g. [50, 38, 46, 21, 56, 7, 9, 1, 37, 13, 53], and
references therein). This paradigm of beyond worst-case analysis has been successful in
surmounting classical thresholds and bridging the gap between the worst-case hardness
and practical efficiency (see, e.g., [48], for an excellent summary). Typically, in learning-
augmented algorithms, we assume the access to an oracle that gives part of the “right answer”
to the problem, and fails with some small but non-negligible probability. Conceptually,
these algorithms aim to take advantage of modern machine learning models, which are fairly
accurate on predictive tasks yet make random mistakes in an inconsistent fashion. Learning-
augmented algorithms provide a great way to analyze algorithms beyond the worst case, and
these algorithms usually have immediate implications in practice (see the empirical results
in, e.g., [20, 38, 26, 56, 1]). Inspired by the recent work in utilizing machine learning-based
techniques for the maximum independent set [2, 49, 14], we consider the MIS problem
through the lens of learning-augmented algorithms.

The advantage of the learning-augmented algorithms has inspired a flurry of work that
studies graph problems within this framework [8, 30, 17, 18, 39, 5, 45, 6, 23, 33]. In a very
recent work, [23] considered the Max-cut problem, in which the oracle model is closely related
to our setting for the MIS problem. Under the Unique Game Conjecture (UCG), it is known
that getting anything better than α ≈ 0.878 approximation for max-cut is NP-hard ([43]).
In contrast, [23] showed that with a learning-augmented oracle, we could achieve better
approximation than the α threshold in polynomial time. In another closely related work,
[33] studied the more general constraint satisfaction problems (CSPs) trough the lens of the
learning-augmented algorithms. There, they obtain results for both the Max-cut and the
Max 2-Lin problem. Although [23, 33] defines more general learning-augmented oracles, they,
unfortunately, fall short of capturing the MIS-type of CSP problems, and their results do
not have direct implications on the MIS problem.

From the above discussion, we can see that a) studying the maximum independent set
problem in the framework of learning-augmented algorithms has great potential; and b) to
this end, the existing models and algorithms are not yet sufficient. In light of this, we ask
the following question:

Under the framework of learning-augmented algorithms, what efficient algorithms
can we get for the maximum independent set problem?

V. Braverman, P. Dharangutte, V. Shah, and C. Wang 24:3

1.1 Our models and contributions
In what follows, we will define the learning-augmented oracle model we consider and present
our main results.

Our oracle model

We consider the following natural learning-augmented oracle: for a fixed maximum independ-
ent set I∗, the oracle answers whether a vertex v ∈ I∗ correctly with probability 1/2 + ε,
and incorrectly with probability 1/2− ε. In addition, the randomness is independent across
the vertices. We denote by ORCG,I∗(v) the answer the oracle gives when queried for vertex v.

We study approximation algorithms for MIS with the learning-augmented oracle in two
settings: the persistent noise setting and the non-persistent noise setting. We discuss the
settings and the results, respectively, as follows.

The persistent noise setting. In the persistent noise setting, the randomness of ORCG,I∗

is drawn exactly once. Therefore, the answer for a vertex will remain the same no matter
how many times you query the oracle. Another way to think about this is that the
oracle can be queried at most once for a vertex. This setting is the most standard in the
learning-augmented literature, and graph problems are often studied under persistent
noise (see, e.g. [30, 17, 18, 58, 39, 5, 23, 33] and references therein). Our main result in
this setting is a randomized algorithm that with high probability3 achieves an Õ(

√
∆)

(multiplicative) approximation to the MIS in O(m) time (Theorem 1).
The non-persistent noise settings. In this setting, for each vertex v, we allow ORCG,I∗(v)
to use fresh randomness for different queries. If we are allowed to make O(n log n) queries
to the oracle in total, then we can trivially recover the entire set I∗ with high probability
by querying each vertex O(log n) times. The interesting case is when we are allowed to
make only O(n) queries, i.e., a number that is asymptotically the same as the persistent
noise setting. Although the non-persistent noise setting is less frequently studied in the
learning-augmented algorithm literature, it has recently sparked considerable interest in
various problems [34, 35, 44]. In Appendix B of the full version, we show that it is easy to
get an O(log n)-approximation with O(n) queries. Our main result considerably improved
on the approximation factor: we show that we can indeed obtain an O(1) approximation
with O(n) queries and Õ(m) runtime (Theorem 5).

Our results in the persistent noise setting hold assuming full independence, but it can be
easily extended to the setting where oracle queries are assumed to use k-wise independent
hash function for k = O(log n). Extending it to the pair-wise independent case is challenging
as the failure probabilities in the concentration bounds are not enough for the application of
a union bound.

1.2 Technical overview
The biggest challenge in leveraging the oracle information is distinguishing the case where
ORCG,I∗(v) is indeed correct. In what follows, we give a high-level overview of our techniques
describing how we can use the neighborhood information for this purpose. For the simplicity
of the discussion, we always assume ε = Θ(1) in the technical overview.

3 As standard in the literature, we use “with high probability” to denote a success probability of
1 − 1/poly(n).

APPROX/RANDOM 2024

24:4 Learning-Augmented Maximum Independent Set

Persistent noise setting

A natural approach in this setting would be to figure out the conditions in which a “yes”
signal for a vertex v from the oracle implies v ∈ I∗, by aggregating signals from N(v).
However, such an idea is hard in the following sense. For a vertex v whose oracle query
ORCG,I∗(v) = 1, if there are many u ∈ N(v) such that ORCG,I∗(u) = 1, we can determine
that v should not be in the MIS. However, the converse is not true: if a vertex v is not
in I∗, it does not necessarily have many neighbors in I∗. As a result, simply aggregating
neighborhood information might not be enough to determine the membership of a vertex in
the MIS.

The key idea here is, instead of looking at the oracle answer for vertex v (ORCG,I∗(v)), we
look at what the oracle says for the neighborhood of the vertex v. This turns out to be a
good enough signal to eliminate vertices that have many edges to the MIS I∗. Specifically,
we can show that if v has Ω̃(

√
deg(v)) edges to I∗, then the oracle queries for N(v) contain

enough information to identify such a vertex v. Upon removal of such vertices, the remaining
vertices have a small degree (Õ(

√
∆)) to I∗, and a greedy independent set on the residual

vertices gives a good approximation.

Non-persistent noise setting

Our algorithm for this setting is a bit more nuanced as we aim to minimize the query
complexity to the oracle while aiming to achieve a good approximation. The starting point of
our algorithm is from the viewpoint of the classical pure exploration algorithms in multi-armed
bandits (MABs). If we ignore the nature of MIS in our oracle, we can reduce to the following
MABs problem: given n arms with mean rewards as either 2

3 or 1
3 , find all the arms with

mean reward 2
3 with O(n) arm pulls. It is well-known that one can find a single best arm

with high constant probability in O(n) queries. The question is, can we solve the problem by
resorting to purely MABs algorithms, and simply ignoring the nature of the MIS?

It turns out that the above plan is not generally feasible. In particular, we note that
returning the set of all arms with the higher reward is very similar to finding the top-k arms
in the MABs literature (see, e.g. [40, 41, 15, 19, 55]). In general, it would require Ω(n log k)
arm pulls to obtain top-k arms with high constant probability ([41, 55]). In Appendix C of
the full version, we provide lower bound results, showing that to find even O(1) fraction of
the high-reward arms in the instance distribution requires ω(n) queries. The lower bounds
teach us that to obtain the desired query efficiency and approximation guarantee, we have to
exploit the structure of the MIS.

To better understand the hardness and the insights of MABs algorithms on our problem,
let us look at the elimination-based algorithm as in the classical algorithm of [27, 28]. The
first idea we can try is to adapt the elimination algorithm to our problem. To this end, a
natural idea is to perform elimination based on whether the mean empirical reward of an
arm is more than 1

2 . More concretely, we maintain a pool Ĩ of surviving vertices and use sr

as the number of queries to each vertex in round r with s1 = O(1). In round r, we can query
ORCG,I∗(v) for sr time for each v ∈ Ĩ. We then eliminate all vertices v ∈ Ĩ whose number of
“yes” answers is less than sr/2, and recurse on the new Ĩ to round r + 1, for which we set
sr+1 = 1.5sr.

Since the probability for any v ̸∈ I∗ to survive decreases doubly-exponentially with the
number of rounds, we can show that all vertices v ̸∈ I∗ are eliminated after O(log log n) rounds,
and the total sample complexity on the non-MIS vertices is at most O(n). Furthermore, the
probability of losing any v ∈ I∗ decreases exponentially, we can argue that in the end, Ĩ

V. Braverman, P. Dharangutte, V. Shah, and C. Wang 24:5

contains at least Ω(1) fraction of the vertices in I∗. Unfortunately, due to this fact, for each
vertex v ∈ I∗ ∩ Ĩ, i.e., the vertices in the MIS that survive till the end, we need to pay for
2O(log log n) = polylog n on the sample complexity. Therefore, this pure exploration algorithm
only works when the size of I∗ is upper-bounded by n/polylog n, and its worst-case guarantee
is only a polylog n approximation.

Note that a polylog n approximation is far from what we want: after all, there is a trivial
algorithm that achieves O(log n) approximation with O(n) samples (see Appendix B of full
version for details). Nevertheless, the existence of such an algorithm teaches us that the
problematic case is when the MIS size is large and, in particular, comparable to the size of
the non-MIS vertices. As such, a natural idea is to design an algorithm that handles the
case when the numbers of the MIS and the non-MIS vertices are comparable, and fuse this
algorithm with the elimination-based MABs procedure we discussed above.

The above idea is quite close to the final strategy we adapt, albeit we proceed differently
for the roles of the two components. In particular, we use the pure exploration MABs
algorithm not to output a set with vertex set Ĩ ⊆ I∗, but to output a set of vertex set Ĩ

whose majority (but not necessarily all) of vertices are in I∗. To this end, we use a more
conservative elimination strategy than the ones in the line of [27, 28]: instead of increasing
the number of samples by a multiplicative factor, we increase the number of samples in each
round by an additive factor. In this way, we cannot guarantee that all the “wrong” arms
are eliminated; however, we can argue that, since the probability for the non-MIS vertices
to survive decreases exponentially, we have i). the number of samples used on the vertices
in I∗ is bounded by O(n) before the size of Ĩ \ I∗ reduces to the size of Ĩ ∩ I∗; and ii). the
number of vertices in Ĩ ∩ I∗ only decreases by a constant fraction. In this way, we can design
an efficient procedure that eliminates the “surplus” non-MIS vertices to always create cases
when the number of non-MIS vertices is smaller.

The final missing piece is the MIS algorithm that deals with the case when the number
of MIS vertices takes the majority of the vertex set. Our algorithm to handle this case is
to compute an approximate vertex cover of the graph and the remaining vertices will form
an approximate independent set. It is a well-known fact that if we compute a maximal
matching and take all their endpoints, it forms a 2-approximate vertex cover that covers
all edges in the graph. Furthermore, since the size of the non-MIS vertices is small, there
can be only a limited number of vertices v ∈ I∗ that can be counted in the vertex cover. As
such, we can simply remove these vertices from the graph. The rest of the graph would form
an independent set, and since we remove at most a constant fraction of vertices from I∗

throughout the two phases, we get an O(1) approximation.

2 Preliminaries

Notation

For a graph G = (V, E), we use deg(v) and N(v) for each vertex v ∈ V to denote the degree
and neighborhood of v, respectively. We use G[U] for any set U of vertices to denote the
induced subgraph of G on U .

We let I∗ denote a fixed maximum independent set of the graph G. We let NI∗(v) = N(v)∩
I∗ be the set of neighbors of the vertex v in the independent set and let degI∗(v) := |NI∗(v)|
be its size. Furthermore, we let ÑI∗(v) be the set of neighbors of the vertex v that are
claimed to be in the independent set by the oracle and let d̃egI∗(v) be its size.

For the purpose of conciseness, we defer the technical preliminaries to Appendix A.

APPROX/RANDOM 2024

24:6 Learning-Augmented Maximum Independent Set

3 An Algorithm in the Persistent Noise Setting

In this section we present an algorithm for the learning-augmented MIS problem with
persistent noise. Formally we prove the following

▶ Theorem 1. There exists a randomized algorithm that given
i) an input graph G = (V, E) with maximum degree ∆ and
ii) an MIS oracle ORCG,I∗ with persistent noise for an unknown maximum independent

set I∗,
in O(m) time outputs an independent set I such that |I| ⩾ ε

12 · (∆ ln n)−0.5 · |I∗| with high
probability.

We dedicate the remainder of this section to the proof of Theorem 1. We start with the
assumption that ε ⩽ 1/4 (we can do this for any constant > 0). This assumption is needed
for technical reasons. If ε > 1/4, then it is easy to simulate an oracle with ε = 1/4 by flipping
the oracle answer with probability p = ε−1/4

1/2+ε (p ⩾ 0 since ε > 1/4). If we do this then the
probability that the oracle gives the incorrect answer is (1/2− ε) + p · (1/2 + ε) = 1/4 which
is exactly what we wanted. Note that the final bound we get on the approximation factor
now changes by a factor of at most 2. This is because when ε > 1/4 we are replacing it with
an oracle for ε = 1/4 and the approximation factor linearly depends on ε.

The algorithm and analysis

We now state our algorithm.

Algorithm 1 An algorithm for MIS in persistent noise setting.

Input: A graph G = (V, E) with maximum degree ∆ that contains an unknown
maximum independent set I∗; an MIS oracle ORCG,I∗ in the persistent noise setting

Output: A set of vertices I such that I forms an independent set and
|I| ⩾ ε

3 · (∆ ln n)−0.5 · |I∗|.
Parameters: sv := (1/2− ε) deg(v) + 6

√
ln n · (1/2− ε)

√
deg(v) .

1. Calculate d̃egI∗(v) for all vertices v ∈ V .
2. Let L be the set of vertices where deg(v) ⩽ 36 ln n for v ∈ V .
3. Let S be the set of vertices where d̃egI∗(v) ⩽ sv for v ∈ V \ L.
4. Output the greedy MIS I on G[S ∪ L].

We first show that if v ∈ I∗, the number of “yes” answers in N(v) cannot be too high.

▷ Claim 2. If v ∈ I∗ \ L then with high probability, d̃egI∗(v) ⩽ (1/2− ε) deg(v) + 6
√

ln n ·
(1/2− ε)

√
deg(v).

Proof. If v ∈ I∗ then degI∗(v) = 0 which means that the expected size of d̃egI∗(v) is
(1/2 − ε) deg(v). Since we assume complete independence for the oracle we can use the
Chernoff bound to get concentration.

Let Xi = 1 if ith neighbor is claimed to be in I∗ by the oracle where i ∈ [deg(v)].
Observe that d̃egI∗(v) =

∑
i Xi is the number of neighbors that claim to be in I∗. We

know µ = E
[
d̃egI∗(v)

]
= (1/2− ε) deg(v). Using the Chernoff (Proposition 12) bound with

δv = 6
(

ln n
deg(v)

)0.5
⩽ 1:

Pr
(

d̃egI∗(v) > (1 + δv)µ
)
⩽ exp

(
−δ2

v · µ
3

)
⩽ n−3. (since ε ⩽ 1/4)

Notice that as deg(v) gets larger we get better concentration. ◁

V. Braverman, P. Dharangutte, V. Shah, and C. Wang 24:7

Note that Claim 2 does not rule out the case that a vertex v ∈ V \ I∗ and has very few
neighbors in I∗. Nevertheless, it tells us that if we simply eliminate the vertices that “block”
a large number of neighbors in I∗, we will not mistakenly drop vertices in I∗.

Next, we show that if a vertex v has many neighbors in I∗ i.e. degI∗(v) is large then
d̃egI∗(v) should also be large and hence we should be able to detect such a vertex v ̸∈ I∗.

▷ Claim 3. If v ̸∈ I∗ and degI∗(v) ⩾ (3/ε)
√

ln n
√

deg(v) then with high probability,
d̃egI∗(v) > (1/2− ε) deg(v) + 6

√
ln n · (1/2− ε)

√
deg(v).

Proof. If v ̸∈ I∗ and degI∗(v) = k then the expected size of d̃egI∗(v) is

µ = E
[
d̃egI∗(v)

]
= k(1/2 + ε) + (deg(v)− k)(1/2− ε) = (1/2− ε) deg(v) + 2εk.

We now use the Chernoff bound (Proposition 11) with t = εk to get concentration:

Pr
(

d̃egI∗(v) < µ− t
)
⩽ exp

(
−2t2/ deg(v)

)
= exp

(
−2ε2k2/ deg(v)

)
⩽ n−3. (using the lower bound on k)

Thus, with high probability we have:

d̃egI∗(v) ⩾ µ− εk

= (1/2− ε) deg(v) + εk

= (1/2− ε) deg(v) + 3
√

ln n
√

deg(v)

> (1/2− ε) deg(v) + 6
√

ln n · (1/2− ε)
√

deg(v) . ◁

We can conclude that the events in Claim 2 and Claim 3 happen with high probability
by a union bound over all vertices.

Finalizing the proof of Theorem 1. Calculating d̃egI∗(v) for all vertices v ∈ V and finding
set S takes O(m) time. The greedy MIS can also be computed in O(m) time.

We first condition on the events in Claim 2 and Claim 3 for all vertices (this happens
with high probability). Notice that for all vertices in v ∈ S we have d̃egI∗(v) ⩽ sv. By
Claim 2 all vertices in I∗ are in S. By Claim 3 we know that any non-MIS vertices v

that are in S have degI∗(v) ⩽ (3/ε)
√

ln n
√

deg(v) ⩽ (6/ε)
√

∆ ln n. Also, vertices in L have
degI∗(v) ⩽ deg(v) =

√
deg(v) ·

√
deg(v) ⩽

√
∆
√

36 ln n ⩽ (6/ε)
√

∆ ln n.
This means that when we run the greedy MIS algorithm and pick a non-MIS vertex,

we eliminate at most (6/ε)
√

∆ ln n vertices in I∗. Thus, we have |I| ⩾ ε
6 · (∆ ln n)−0.5 · |I∗|.

Finally, because of the assumption on ε (ε ⩽ 1/4), we lose a factor of at most 2 in the
approximation, giving us the final bound |I| ⩾ ε

12 · (∆ ln n)−0.5 · |I∗|. ◀

▶ Remark 4. We assume that we have complete independence between the oracle queries for
the vertices. But we can get essentially the same result (up to constants) when the oracle
answers the queries using a k-wise independent hash function instead of a completely random
function for k = O(log n).

This holds because we use Proposition 13 with k = O(log n) instead of the Chernoff
bound (Proposition 12). The min in the exponent always picks the second term because k is
large enough and so we get something very similar to the Chernoff bound in Proposition 12
where the exponent only differs by some constants. Thus, the approximation we get will be
a small constant factor worse but will remain the same asymptotically.

APPROX/RANDOM 2024

24:8 Learning-Augmented Maximum Independent Set

4 An Algorithm in the Non-persistent Noise Setting

In this section, we consider algorithms in the non-persistent noise setting (MABs setting) of
the MIS oracle, i.e., the algorithm can access the learning-augmented MIS oracle with fresh
randomness for each query of a vertex v. The formal statement of our main result in this
setting is as follows.

▶ Theorem 5. There exists a randomized algorithm that given a parameter δ ∈ (0, 1) and
i) an input graph G = (V, E) with a maximum independent set I∗; and
ii) an MIS oracle ORCG,I∗ in the non-persistent noise setting,

with probability at least (1− δ), in O(m log n) time and 30n
ε2 · log 1

δ total queries to ORCG,I∗ ,
computes a set I such that |I| ⩾ 48

50 · |I
∗|.

We dedicate the remainder of this section to the proof of Theorem 5.

The algorithm

As we have discussed in our high-level overview, our algorithm proceeds in two phases. In the
first phase, our algorithm focuses on eliminating most of the vertices in the non-MIS vertex
set. Then, in the second phase, we show that a good approximation to vertex cover is enough
to get a good approximation to the independent set. We can easily find a 2-approximate
vertex cover in O(m) time by computing a maximal matching and picking all its endpoints.
The detailed description of the algorithm is as follows.

Algorithm 2 An algorithm for MIS in non-persistent noise setting.

Input: A graph G = (V, E) that contains an unknown maximum independent set I∗;
an MIS oracle ORCG,I∗ in the multi-armed bandit setting; a confidence parameter
δ ∈ (0, 1).

Output: A set of vertices I such that I forms an independent set and |I| = O(|I∗|).
Parameters: qr = 4

ε2 · (r + log 1
δ).

Maintain a set of Vr with the initialization V0 ← V .
For r = 1 to ∞, do the following:

1. Elimination phase:
For each vertex v ∈ Vr−1:
a. Query v for qr times.
b. Remove v from Vr−1 if the number of 1 returned by ORCG,I∗(v)

(“yes” answers) is less than qr/2.
Let the updated vertex set be Vr, i.e., Vr is a subset of vertices of Vr−1 that
gets at least qr/2 “yes” answers from ORCG,I∗ (v).

2. Vertex Cover phase:
a. Compute a 2-approximate vertex cover Ur of the induced subgraph G[Vr].
b. Let Ir ← Vr \ Ur.

3. Maintain the set I with the maximum size among all Ir’s, i.e., let I ← Ir if Ir is
larger than I and keep I unchanged otherwise.

4. If the total number of ORCG,I∗ queries is more than 30 · n
ε2 · log 1

δ then terminate
and return the currently maintained I.

Note that since we do not necessarily know the actual size of I∗, we compute a vertex
cover after every elimination phase and simply output the independent set with the largest
size throughout the process.

V. Braverman, P. Dharangutte, V. Shah, and C. Wang 24:9

The analysis

We now proceed to the analysis of the algorithm. Before diving into the main lemmas, we
first show some straightforward technical claims that characterize the behavior of the MIS
and non-MIS vertices in the elimination phase. We first show that the probabilities of an
MIS vertex being eliminated and a non-MIS vertex surviving in round r are both small.

▷ Claim 6. The following statements are true:
1. Let v ∈ Vr−1 ∩ I∗; then, the probability that v is removed from Vr is at most 1

100 ·
δ

4r .
2. Let v ∈ Vr−1 \ I∗; then, the probability that v is not removed from Vr is at most 1

100 ·
δ

4r .

Proof. We prove this claim by applying the Chernoff bound in Proposition 11. For any vertex
v ∈ I∗, let the random variable Xi

v = 1 if the ith query for vertex v is a “yes” and Xi
v = 0

otherwise for i ∈ [qr]. Observe that Xv =
∑

i Xi
v is the number of “yes” answers returned by

ORCG,I∗(v) out of the qr queries. Clearly, we have that E [Xv] = (1/2 + ε) · qr, and Xv is a
summation of the independent indicator random variables so, we can apply Proposition 11
to show that

Pr
(

Xv <
qr

2

)
= Pr (Xv − E [Xv] ⩽ −ε · qr)

⩽ exp
(
−2 · ε2 · qr

)
(applying Proposition 11)

= exp
(
−8r − 8 log 1

δ

)
(by the definition of qr)

⩽ exp (−6) · exp (−2r) · exp
(
−8 log 1

δ

)
⩽

1
100 ·

δ

4r
.

Note that the vertices in v ∈ I∗ ∩Vr−1 are in I∗. Therefore, we can get the desired statement
for v ∈ I∗ ∩ Vr−1.

We can similarly define Yv for the number of “yes” answers returned by ORCG,I∗(v) with
qr queries for a vertex v ∈ V \ I∗. Here, we have that E [Yv] = (1/2− ε)qr. As such, we have
that

Pr
(

Yv ⩾
qr

2

)
= Pr (Yv − E [Yv] ⩾ ε · qr)

⩽ exp
(
−2 · ε2 · qr

)
(applying Proposition 11)

= exp
(
−8r − 8 log 1

δ

)
(by the definition of qr)

⩽ exp (−6) · exp (−2r) · exp
(
−8 log 1

δ

)
⩽

1
100 ·

δ

4r
.

This gives us the desired statement for v ∈ Vr−1 \ I∗ as well. ◁

We now prove the main technical lemma of our algorithm that helps eventually prove
Theorem 5. In what follows, we will denote the size of I∗ as αn for some α ∈ (0, 1). Our
main lemma for the elimination phase is as follows.

▶ Lemma 7. Let |I∗| = αn for some α ∈ (0, 1) and r̃ = 1 + log 1
α . With probability at least

1− δ, the following statements about Algorithm 2 are true:
I) The number of vertices in Vr̃ that are not in I∗ is at most αn/100, i,e,

|Vr̃ \ I∗| ⩽ αn

100 .

APPROX/RANDOM 2024

24:10 Learning-Augmented Maximum Independent Set

II) The number of vertices in Vr̃ that are in I∗ is at least 49/50 · αn, i.e.,

|Vr̃ ∩ I∗| ⩾ 49
50 · αn.

III) The total number of ORCG,I∗ queries in the first r̃ rounds is at most 30n/ε2 · log 1/δ, i.e.,
r̃∑

r=1
|Vr−1| · qr ⩽ 30 · n

ε2 · log 1
δ

.

Note that in the above, |Vr−1| · qr is exactly the number of queries used in round r.

Proof. We prove the statements in order.
Proof of i). Note that by Claim 6, the probability that a vertex in V \ I∗ survives round r

is at most 1
100 ·

δ
4r . As such, we have that

E [|Vr̃ \ I∗|] =
∑

v∈Vr̃−1\I∗

Pr (v survives round r̃)

=
∑

v∈V \I∗

Pr (v survives all rounds till r̃)

=
∑

v∈V \I∗

r̃∏
i=1

Pr (v survives round i | v survives all rounds till i− 1)

(All rounds are independent)

⩽
∑

v∈V \I∗

r̃∏
i=1

δ

100 ·
1
4i

⩽ n ·
(

δ

100

)r̃

·
(

1
4

)(r̃
2)

⩽
δn

100 ·
(

1
4

)r̃

⩽
α · n · δ

400 . (using α ∈ (0, 1))

Therefore, by Markov inequality, we have

Pr
(
|Vr \ I∗| > αn

100

)
⩽

δ

4
as desired.
Proof of ii). By Claim 6, the probability that a vertex v is eliminated in round r is at most

δ
100 ·

1
4r . We analyze the number of vertices in I∗ that are eliminated by round r. We can

show that the expected value is

E [|I∗ \ Vr̃|] =
∑
v∈I∗

Pr (v is eliminated by round r̃)

⩽
∑
v∈I∗

r̃∑
i=1

Pr (v is eliminated in round i) (Union Bound)

⩽
∑
v∈I∗

r̃∑
i=1

δ

100 ·
1
4i

⩽ (αn) · δ

100 ·
1
3 . (Geometric Sum)

V. Braverman, P. Dharangutte, V. Shah, and C. Wang 24:11

Therefore, by a simple Markov bound, we have that

Pr
(
|I∗ \ Vr| >

αn

50

)
⩽

δ

6 .

Thus, with probability at least 1− δ/6 we have |I∗ ∩ Vr̃| ⩾ 49
50 · αn.

Proof of iii). Note that we are proving this bound holds even if we remove the termination
condition from the algorithm. This will show that we will reach round r̃ with high probability.
We first condition on the events in the proofs of i) and ii). Note that, unlike the standard
analysis of elimination-based algorithms, here, we cannot directly upper-bound the total
number of queries each round. Instead, we separately analyze the number of queries induced
by the vertices in I∗ and V \ I∗.

We first analyze the number of queries induced by the vertices in V \ I∗. Let us define
X¬I∗ as the total number of queries induced by the non-MIS vertices. Similarly, we can
define Xr

¬I∗ as the queries induced by the non-MIS vertices at round r. Thus, we have that

E [X¬I∗] =
∑

v∈V −I∗

r̃∑
i=1

Pr (v survives till round i) · qi

⩽ n

r̃∑
i=1

qi

i∏
j=1

Pr (v survives round j | v survives till round j − 1)

⩽ n

r̃∑
i=1

qi

i∏
j=1

δ

100 ·
1
4j

(Claim 6)

⩽ n
r̃∑

i=1

(
δ

100

)i

·
(

1
4

)(i
2)
· qi

= n
r̃∑

i=1

(
δ

100

)i

·
(

1
4

)(i
2)
· 4

ε2 · (i + log 1/δ)

⩽
4δn

100ε2

r̃∑
i=1

(
1
4

)i

· (i + log 1/δ) (Since δ ⩽ 1)

⩽
4δn

100ε2 (1 + log 1/δ) . (using properties of geometric sums)

Therefore, by Markov inequality, we can show that

Pr
(

X¬I∗ >
2n

5ε2 log 1/δ

)
⩽ δ/5.

We now analyze the queries induced by the vertices in I∗. Similar to the case of the
non-MIS analysis, let us define XI∗ as the total number of queries induced by the MIS
vertices. We will trivially upper bound XI∗ in the following way:

XI∗ ⩽ αn
r̃∑

i=1
qi

= αn
r̃∑

i=1

4
ε2 ·

(
i + log 1

δ

)

APPROX/RANDOM 2024

24:12 Learning-Augmented Maximum Independent Set

⩽
4αn

ε2 ·
(

r̃2 + r̃ · log 1
δ

)
⩽

4αn

ε2 ·
(

1 + (log 1/α)2 + lg 1/α · (2 + log 1/δ) + log 1/δ
)

⩽
4n

ε2 · (5 + 2 log 1/δ) (using α · lg 1
α ⩽ 1 and α · lg2 1

α ⩽ 2 for any α ∈ (0, 1))

We can then add the number of queries used by X¬I∗ and XI∗ to get the desired sample
complexity bound of 30n

ε2 · log 1/δ.
Finally, we can apply a union bound over the failure probabilities of the events in the

proofs of i), ii), and ii) to argue that with probability at least 1− δ, all the statements hold.
Lemma 7 ◀

We now proceed to show the guarantee of the matching and MIS phase. Our main lemma
for this part is as follows.

▶ Lemma 8. Let Vr ⊆ V be any subset of vertices in Algorithm 2. Furthermore, assume
that the number of MIS vertices in Vr is at least 50 times the number of non-MIS vertices in
Vr, i.e.,

|Vr ∩ I∗| ⩾ 50 · |Vr \ I∗| .

Then, the set Ir returned by Algorithm 2 is a valid independent set, and we have

|Ir| ⩾
49
50 · |Vr ∩ I∗| .

Proof. Recall that we compute a 2-approximate vertex cover Ur in the vertex cover phase.
We know that the complement Ir ← Vr \ Ur is an independent set. This is because all edges
of the graph are incident on the vertex cover so the remaining vertices form an independent
set.

We know that Vr \ I∗ is a vertex cover since Vr ∩ I∗ is an independent set. Thus, we have

|Ir| = |Vr| − |Ur| (by definition)
⩾ |Vr ∩ I∗|+ |Vr \ I∗| − 2 |Vr \ I∗| (since Ur is a 2-approximation)

⩾ |Vr ∩ I∗| − 1
50 · |Vr ∩ I∗| (using the assumption)

= 49
50 · |Vr ∩ I∗|

Lemma 8 ◀

The final missing piece is the efficiency of the algorithm. We now prove that the algorithm
is efficient both in time and the number of ORCG,I∗ oracle queries.

▶ Lemma 9. Algorithm 2 runs in O(m log n) time and uses at most 30n
ε2 · log 1

δ queries on
ORCG,I∗ .

Proof. The query complexity is by the design of the algorithm as we terminate upon using
more than 30 · n

ε2 · log 1
δ queries.

For the running time, note that in each iteration of r, we only need to: i). take the
majority for all queried vertices, which can be maintained in O(n) time; and ii). compute a
greedy matching and remove the vertices, which takes O(m) time. By Lemma 7, the process
terminates in O(log 1

α) = O(log n) time (α ⩾ 1
n since there has to be at least one vertex in

I∗). Therefore, the entire algorithm takes O(m log n) time in total. ◀

V. Braverman, P. Dharangutte, V. Shah, and C. Wang 24:13

Finalizing the proof of Theorem 5. The query efficiency is by the design of the algorithm,
and the running time simply follows from Lemma 9. For the approximation guarantee,
note that by Lemma 7, we will proceed to round r̃ = 10 log 1

α , at which point we will have
|Vr̃ ∩ I∗| ⩾ 49

50 · αn and |Vr ∩ I∗| ⩾ 50 · |Vr \ I∗|. Therefore, by Lemma 8, the returned Ir̃ is
of size at least

|Ir̃| ⩾
49
50 · |Vr̃ ∩ I∗| ⩾ 49

50 ·
49
50 · αn,

which gives us the desired 48/50 approximation. ◀

▶ Remark 10. We aim to get the O(1) approximation in our algorithm and analysis. However,
we remark that we can get both non-asymptotic and asymptotic trade-offs between the number
of queries and the approximation factor. For the non-asymptotic trade-off (i.e., using more
queries to get a better constant approximation), we can increase the leading constant on the
sample complexity, and obtain the approximation with a larger constant. For the asymptotic
trade-off, we can perform the simple trick by sampling k vertices uniformly at random and
running Algorithm 2 on the sampled vertices. This will give us an O(k

n)-approximation
algorithm with O(k

ε2 · log 1
δ) queries as long as αk = Ω(log n).

5 Discussion and Open Problems

We discussed learning-augmented algorithms for the Maximum Independent Set problem in
this paper. Our main results include algorithms for both persistent and non-persistent noise
settings, demonstrating that a learning-augmented oracle could lead to MIS algorithms with
considerably better efficiency. There are several intriguing open problems following our work.

For the persistent noise setting, the main open question is whether we could beat the
Θ̃(
√

∆/ε) approximation bound with the same oracle. We do not have any lower bounds
for the persistent noise setting in this paper, and it is unclear what type of techniques
could be used to prove lower bounds for learning-augmented algorithms.
For the non-persistent noise setting, our algorithm matches the asymptotically optimal
approximation factor using O(n) queries. In Appendix C of full version, we also proved
that we cannot obtain the same results by only querying the oracle (and not looking into
the graph). An open problem here is that if we want to recover a 1− o(1) fraction of the
MIS vertices, how many queries do we need? We suspect there is a lower bound on the
number of queries (e.g., ω(n)), but it is not immediately clear how to prove it.
We can also ask about sublinear number of queries on the oracle ORCG,I∗ , i.e., if we
make o(n) queries on the oracle, what is the best we can do for both persistent and
non-persistent noise settings? Currently, our algorithms in both settings require Ω(n)
queries to the oracle.
Finally, for the practical aspect of the algorithms, we believe the oracles are possible
to implement in practice. For instance, if we have features on the nodes, it is possible
to use forward-pass graph convolution networks (GCNs), and simply run greedy in each
“cluster” of nodes whose final features are sufficiently similar. Exploring practical oracles
for this purpose would also be an interesting problem to resolve.

References
1 Anders Aamand, Justin Y. Chen, Huy Lê Nguyen, Sandeep Silwal, and Ali Vakilian. Improved

frequency estimation algorithms with and without predictions. CoRR, abs/2312.07535, 2023.
doi:10.48550/arXiv.2312.07535.

APPROX/RANDOM 2024

https://doi.org/10.48550/arXiv.2312.07535

24:14 Learning-Augmented Maximum Independent Set

2 Sungsoo Ahn, Younggyo Seo, and Jinwoo Shin. Learning what to defer for maximum inde-
pendent sets. In Proceedings of the 37th International Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research,
pages 134–144. PMLR, 2020. URL: http://proceedings.mlr.press/v119/ahn20a.html.

3 Vladimir E. Alekseev, Vadim V. Lozin, Dmitriy S. Malyshev, and Martin Milanic. The max-
imum independent set problem in planar graphs. In Edward Ochmanski and Jerzy Tyszkiewicz,
editors, Mathematical Foundations of Computer Science 2008, 33rd International Symposium,
MFCS 2008, Torun, Poland, August 25-29, 2008, Proceedings, volume 5162 of Lecture Notes
in Computer Science, pages 96–107. Springer, 2008. doi:10.1007/978-3-540-85238-4_7.

4 Diogo V Andrade, Mauricio GC Resende, and Renato F Werneck. Fast local search for the
maximum independent set problem. Journal of Heuristics, 18:525–547, 2012.

5 Antonios Antoniadis, Hajo Broersma, and Yang Meng. Online graph coloring with predictions.
arXiv preprint, 2023. arXiv:2312.00601.

6 Yossi Azar, Debmalya Panigrahi, and Noam Touitou. Discrete-smoothness in online algorithms
with predictions. Advances in Neural Information Processing Systems, 36, 2024.

7 Eric Balkanski, Vasilis Gkatzelis, Xizhi Tan, and Cherlin Zhu. Online mechanism design with
predictions. CoRR, abs/2310.02879, 2023. doi:10.48550/arXiv.2310.02879.

8 Etienne Bamas, Andreas Maggiori, and Ola Svensson. The primal-dual method for learning
augmented algorithms. Advances in Neural Information Processing Systems, 33:20083–20094,
2020.

9 Siddhartha Banerjee, Vincent Cohen-Addad, Anupam Gupta, and Zhouzi Li. Graph searching
with predictions. In Yael Tauman Kalai, editor, 14th Innovations in Theoretical Computer
Science Conference, ITCS 2023, January 10-13, 2023, MIT, Cambridge, Massachusetts, USA,
volume 251 of LIPIcs, pages 12:1–12:24. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2023. doi:10.4230/LIPICS.ITCS.2023.12.

10 Ravi Boppana and Magnús M Halldórsson. Approximating maximum independent sets by
excluding subgraphs. BIT Numerical Mathematics, 32(2):180–196, 1992.

11 Ravi B Boppana. Eigenvalues and graph bisection: An average-case analysis. In 28th Annual
Symposium on Foundations of Computer Science (sfcs 1987), pages 280–285. IEEE, 1987.

12 Nicolas Bourgeois, Bruno Escoffier, Vangelis Th. Paschos, and Johan M. M. van Rooij. Fast
algorithms for max independent set. Algorithmica, 62(1-2):382–415, 2012. doi:10.1007/
S00453-010-9460-7.

13 Jan van den Brand, Sebastian Forster, Yasamin Nazari, and Adam Polak. On dynamic graph
algorithms with predictions. In Proceedings of the 2024 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 3534–3557. SIAM, 2024.

14 Lorenzo Brusca, Lars C. P. M. Quaedvlieg, Stratis Skoulakis, Grigorios Chrysos, and Volkan
Cevher. Maximum independent set: Self-training through dynamic programming. In Alice
Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine,
editors, Advances in Neural Information Processing Systems 36: Annual Conference on
Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, Decem-
ber 10 - 16, 2023, 2023. URL: http://papers.nips.cc/paper_files/paper/2023/hash/
7fe3170d88a8310ca86df2843f54236c-Abstract-Conference.html.

15 Wei Cao, Jian Li, Yufei Tao, and Zhize Li. On top-k selection in multi-armed bandits and
hidden bipartite graphs. In Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi
Sugiyama, and Roman Garnett, editors, Advances in Neural Information Processing Systems
28: Annual Conference on Neural Information Processing Systems 2015, December 7-12, 2015,
Montreal, Quebec, Canada, pages 1036–1044, 2015. URL: https://proceedings.neurips.cc/
paper/2015/hash/ab233b682ec355648e7891e66c54191b-Abstract.html.

16 Parinya Chalermsook and Julia Chuzhoy. Maximum independent set of rectangles. In Claire
Mathieu, editor, Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2009, New York, NY, USA, January 4-6, 2009, pages 892–901. SIAM,
2009. doi:10.1137/1.9781611973068.97.

http://proceedings.mlr.press/v119/ahn20a.html
https://doi.org/10.1007/978-3-540-85238-4_7
https://arxiv.org/abs/2312.00601
https://doi.org/10.48550/arXiv.2310.02879
https://doi.org/10.4230/LIPICS.ITCS.2023.12
https://doi.org/10.1007/S00453-010-9460-7
https://doi.org/10.1007/S00453-010-9460-7
http://papers.nips.cc/paper_files/paper/2023/hash/7fe3170d88a8310ca86df2843f54236c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/7fe3170d88a8310ca86df2843f54236c-Abstract-Conference.html
https://proceedings.neurips.cc/paper/2015/hash/ab233b682ec355648e7891e66c54191b-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/ab233b682ec355648e7891e66c54191b-Abstract.html
https://doi.org/10.1137/1.9781611973068.97

V. Braverman, P. Dharangutte, V. Shah, and C. Wang 24:15

17 Justin Chen, Sandeep Silwal, Ali Vakilian, and Fred Zhang. Faster fundamental graph
algorithms via learned predictions. In International Conference on Machine Learning, pages
3583–3602. PMLR, 2022.

18 Justin Y Chen, Talya Eden, Piotr Indyk, Honghao Lin, Shyam Narayanan, Ronitt Rubinfeld,
Sandeep Silwal, Tal Wagner, David P Woodruff, and Michael Zhang. Triangle and four cycle
counting with predictions in graph streams. arXiv preprint, 2022. arXiv:2203.09572.

19 Lijie Chen, Jian Li, and Mingda Qiao. Nearly instance optimal sample complexity bounds for
top-k arm selection. In Aarti Singh and Xiaojin (Jerry) Zhu, editors, Proceedings of the 20th
International Conference on Artificial Intelligence and Statistics, AISTATS 2017, 20-22 April
2017, Fort Lauderdale, FL, USA, volume 54 of Proceedings of Machine Learning Research,
pages 101–110. PMLR, 2017. URL: http://proceedings.mlr.press/v54/chen17a.html.

20 Jakub Chledowski, Adam Polak, Bartosz Szabucki, and Konrad Tomasz Zolna. Robust
learning-augmented caching: An experimental study. In Marina Meila and Tong Zhang,
editors, Proceedings of the 38th International Conference on Machine Learning, ICML 2021,
18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research, pages
1920–1930. PMLR, 2021. URL: http://proceedings.mlr.press/v139/chledowski21a.html.

21 Nicolas Christianson, Tinashe Handina, and Adam Wierman. Chasing convex bodies and
functions with black-box advice. In Po-Ling Loh and Maxim Raginsky, editors, Conference
on Learning Theory, 2-5 July 2022, London, UK, volume 178 of Proceedings of Machine
Learning Research, pages 867–908. PMLR, 2022. URL: https://proceedings.mlr.press/
v178/christianson22a.html.

22 Julia Chuzhoy and Alina Ene. On approximating maximum independent set of rectangles. In
Irit Dinur, editor, IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS
2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 820–829.
IEEE Computer Society, 2016. doi:10.1109/FOCS.2016.92.

23 Vincent Cohen-Addad, Tommaso d’Orsi, Anupam Gupta, Euiwoong Lee, and Debmalya
Panigrahi. Max-cut with ϵ-accurate predictions. CoRR, abs/2402.18263, 2024. doi:10.48550/
arXiv.2402.18263.

24 Jakob Dahlum, Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Ren-
ato F. Werneck. Accelerating local search for the maximum independent set problem. In
Andrew V. Goldberg and Alexander S. Kulikov, editors, Experimental Algorithms - 15th
International Symposium, SEA 2016, St. Petersburg, Russia, June 5-8, 2016, Proceed-
ings, volume 9685 of Lecture Notes in Computer Science, pages 118–133. Springer, 2016.
doi:10.1007/978-3-319-38851-9_9.

25 Devdatt P Dubhashi and Alessandro Panconesi. Concentration of measure for the analysis of
randomized algorithms. Cambridge University Press, 2009.

26 Jon C. Ergun, Zhili Feng, Sandeep Silwal, David P. Woodruff, and Samson Zhou. Learning-
augmented k-means clustering. In The Tenth International Conference on Learning Rep-
resentations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL:
https://openreview.net/forum?id=X8cLTHexYyY.

27 Eyal Even-Dar, Shie Mannor, and Yishay Mansour. PAC bounds for multi-armed bandit and
markov decision processes. In Jyrki Kivinen and Robert H. Sloan, editors, Computational
Learning Theory, 15th Annual Conference on Computational Learning Theory, COLT 2002,
Sydney, Australia, July 8-10, 2002, Proceedings, volume 2375 of Lecture Notes in Computer
Science, pages 255–270. Springer, 2002. doi:10.1007/3-540-45435-7_18.

28 Eyal Even-Dar, Shie Mannor, and Yishay Mansour. Action elimination and stopping conditions
for the multi-armed bandit and reinforcement learning problems. J. Mach. Learn. Res., 7:1079–
1105, 2006. URL: http://jmlr.org/papers/v7/evendar06a.html.

29 Uriel Feige. Approximating maximum clique by removing subgraphs. SIAM Journal on
Discrete Mathematics, 18(2):219–225, 2004.

30 Willem Feijen and Guido Schäfer. Using machine learning predictions to speed-up dijkstra’s
shortest path algorithm. CoRR, pages 1–28, 2021.

APPROX/RANDOM 2024

https://arxiv.org/abs/2203.09572
http://proceedings.mlr.press/v54/chen17a.html
http://proceedings.mlr.press/v139/chledowski21a.html
https://proceedings.mlr.press/v178/christianson22a.html
https://proceedings.mlr.press/v178/christianson22a.html
https://doi.org/10.1109/FOCS.2016.92
https://doi.org/10.48550/arXiv.2402.18263
https://doi.org/10.48550/arXiv.2402.18263
https://doi.org/10.1007/978-3-319-38851-9_9
https://openreview.net/forum?id=X8cLTHexYyY
https://doi.org/10.1007/3-540-45435-7_18
http://jmlr.org/papers/v7/evendar06a.html

24:16 Learning-Augmented Maximum Independent Set

31 Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. Measure and conquer: a simple
o(20.288n) independent set algorithm. In Proceedings of the Seventeenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2006, Miami, Florida, USA, January 22-26,
2006, pages 18–25. ACM Press, 2006. URL: http://dl.acm.org/citation.cfm?id=1109557.
1109560.

32 Waldo Gálvez, Arindam Khan, Mathieu Mari, Tobias Mömke, Madhusudhan Reddy Pittu,
and Andreas Wiese. A 3-approximation algorithm for maximum independent set of rectangles.
In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA,
January 9 - 12, 2022, pages 894–905. SIAM, 2022. doi:10.1137/1.9781611977073.38.

33 Suprovat Ghoshal, Konstantin Makarychev, and Yury Makarychev. Constraint satisfaction
problems with advice. arXiv preprint, 2024. arXiv:2403.02212.

34 Francesco Gullo, Domenico Mandaglio, and Andrea Tagarelli. A combinatorial multi-armed
bandit approach to correlation clustering. Data Min. Knowl. Discov., 37(4):1630–1691, 2023.
doi:10.1007/S10618-023-00937-5.

35 Shubham Gupta, Peter W. J. Staar, and Christian de Sainte Marie. Clustering items from
adaptively collected inconsistent feedback. In Sanjoy Dasgupta, Stephan Mandt, and Yingzhen
Li, editors, International Conference on Artificial Intelligence and Statistics, 2-4 May 2024,
Palau de Congressos, Valencia, Spain, volume 238 of Proceedings of Machine Learning Research,
pages 604–612. PMLR, 2024. URL: https://proceedings.mlr.press/v238/gupta24a.html.

36 Johan Håstad. Clique is hard to approximate within n(1−ϵ). In 37th Annual Symposium on
Foundations of Computer Science, FOCS ’96, Burlington, Vermont, USA, 14-16 October,
1996, pages 627–636. IEEE Computer Society, 1996. doi:10.1109/SFCS.1996.548522.

37 Monika Henzinger, Andrea Lincoln, Barna Saha, Martin P Seybold, and Christopher Ye. On
the complexity of algorithms with predictions for dynamic graph problems. arXiv preprint,
2023. arXiv:2307.16771.

38 Chen-Yu Hsu, Piotr Indyk, Dina Katabi, and Ali Vakilian. Learning-based frequency estimation
algorithms. In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL: https://openreview.net/
forum?id=r1lohoCqY7.

39 Bingbing Hu, Evangelos Kosinas, and Adam Polak. Connectivity oracles for predictable vertex
failures. arXiv preprint, 2023. arXiv:2312.08489.

40 Shivaram Kalyanakrishnan and Peter Stone. Efficient selection of multiple bandit arms:
Theory and practice. In Johannes Fürnkranz and Thorsten Joachims, editors, Proceedings of
the 27th International Conference on Machine Learning (ICML-10), June 21-24, 2010, Haifa,
Israel, pages 511–518. Omnipress, 2010. URL: https://icml.cc/Conferences/2010/papers/
410.pdf.

41 Shivaram Kalyanakrishnan, Ambuj Tewari, Peter Auer, and Peter Stone. PAC subset selection
in stochastic multi-armed bandits. In Proceedings of the 29th International Conference on
Machine Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 - July 1, 2012. icml.cc /
Omnipress, 2012. URL: http://icml.cc/2012/papers/359.pdf.

42 Richard M Karp. Reducibility among combinatorial problems. Springer, 2010.
43 Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inapproximability

results for max-cut and other 2-variable csps? SIAM Journal on Computing, 37(1):319–357,
2007.

44 Yuko Kuroki, Atsushi Miyauchi, Francesco Bonchi, and Wei Chen. Query-efficient correlation
clustering with noisy oracle. CoRR, abs/2402.01400, 2024. doi:10.48550/arXiv.2402.01400.

45 Silvio Lattanzi, Ola Svensson, and Sergei Vassilvitskii. Speeding up bellman ford via minimum
violation permutations. In International Conference on Machine Learning, pages 18584–18598.
PMLR, 2023.

http://dl.acm.org/citation.cfm?id=1109557.1109560
http://dl.acm.org/citation.cfm?id=1109557.1109560
https://doi.org/10.1137/1.9781611977073.38
https://arxiv.org/abs/2403.02212
https://doi.org/10.1007/S10618-023-00937-5
https://proceedings.mlr.press/v238/gupta24a.html
https://doi.org/10.1109/SFCS.1996.548522
https://arxiv.org/abs/2307.16771
https://openreview.net/forum?id=r1lohoCqY7
https://openreview.net/forum?id=r1lohoCqY7
https://arxiv.org/abs/2312.08489
https://icml.cc/Conferences/2010/papers/410.pdf
https://icml.cc/Conferences/2010/papers/410.pdf
http://icml.cc/2012/papers/359.pdf
https://doi.org/10.48550/arXiv.2402.01400

V. Braverman, P. Dharangutte, V. Shah, and C. Wang 24:17

46 Thomas Lavastida, Benjamin Moseley, R. Ravi, and Chenyang Xu. Learnable and instance-
robust predictions for online matching, flows and load balancing. In Petra Mutzel, Rasmus
Pagh, and Grzegorz Herman, editors, 29th Annual European Symposium on Algorithms, ESA
2021, September 6-8, 2021, Lisbon, Portugal (Virtual Conference), volume 204 of LIPIcs,
pages 59:1–59:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/
LIPICS.ESA.2021.59.

47 Avner Magen and Mohammad Moharrami. Robust algorithms for MAX INDEPENDENT SET
on minor-free graphs based on the sherali-adams hierarchy. In Irit Dinur, Klaus Jansen, Joseph
Naor, and José D. P. Rolim, editors, Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, 12th International Workshop, APPROX 2009, and
13th International Workshop, RANDOM 2009, Berkeley, CA, USA, August 21-23, 2009.
Proceedings, volume 5687 of Lecture Notes in Computer Science, pages 258–271. Springer,
2009. doi:10.1007/978-3-642-03685-9_20.

48 Michael Mitzenmacher and Sergei Vassilvitskii. Algorithms with predictions. Communications
of the ACM, 65(7):33–35, 2022.

49 Thomas Pontoizeau, Florian Sikora, Florian Yger, and Tristan Cazenave. Neural maximum
independent set. In Machine Learning and Principles and Practice of Knowledge Discovery in
Databases - International Workshops of ECML PKDD 2021, Virtual Event, September 13-17,
2021, Proceedings, Part I, volume 1524 of Communications in Computer and Information
Science, pages 223–237. Springer, 2021. doi:10.1007/978-3-030-93736-2_18.

50 Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ML
predictions. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò
Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural Information Processing Systems
31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018,
December 3-8, 2018, Montréal, Canada, pages 9684–9693, 2018. URL: https://proceedings.
neurips.cc/paper/2018/hash/73a427badebe0e32caa2e1fc7530b7f3-Abstract.html.

51 John M Robson. Finding a maximum independent set in time o (2n/4). Technical report,
Technical Report 1251-01, LaBRI, Université Bordeaux I, 2001.

52 Tim Roughgarden. Beyond the worst-case analysis of algorithms. Cambridge University Press,
2021.

53 Karim Abdel Sadek and Marek Elias. Algorithms for caching and mts with reduced number
of predictions. arXiv preprint, 2024. arXiv:2404.06280.

54 Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff-hoeffding bounds for
applications with limited independence. SIAM J. Discret. Math., 8(2):223–250, 1995.

55 Max Simchowitz, Kevin G. Jamieson, and Benjamin Recht. The simulator: Understanding
adaptive sampling in the moderate-confidence regime. In Satyen Kale and Ohad Shamir,
editors, Proceedings of the 30th Conference on Learning Theory, COLT 2017, Amsterdam, The
Netherlands, 7-10 July 2017, volume 65 of Proceedings of Machine Learning Research, pages
1794–1834. PMLR, 2017. URL: http://proceedings.mlr.press/v65/simchowitz17a.html.

56 Clifford Stein and Hao-Ting Wei. Learning-augmented online packet scheduling with deadlines.
CoRR, abs/2305.07164, 2023. doi:10.48550/arXiv.2305.07164.

57 Jose L. Walteros and Austin Buchanan. Why is maximum clique often easy in practice? Oper.
Res., 68(6):1866–1895, 2020. doi:10.1287/OPRE.2019.1970.

58 Jinghui Xia and Zengfeng Huang. Optimal clustering with noisy queries via multi-armed bandit.
In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan
Sabato, editors, International Conference on Machine Learning, ICML 2022, 17-23 July 2022,
Baltimore, Maryland, USA, volume 162 of Proceedings of Machine Learning Research, pages
24315–24331. PMLR, 2022. URL: https://proceedings.mlr.press/v162/xia22a.html.

59 Mingyu Xiao and Hiroshi Nagamochi. Exact algorithms for maximum independent set. In
Leizhen Cai, Siu-Wing Cheng, and Tak Wah Lam, editors, Algorithms and Computation
- 24th International Symposium, ISAAC 2013, Hong Kong, China, December 16-18, 2013,
Proceedings, volume 8283 of Lecture Notes in Computer Science, pages 328–338. Springer,
2013. doi:10.1007/978-3-642-45030-3_31.

APPROX/RANDOM 2024

https://doi.org/10.4230/LIPICS.ESA.2021.59
https://doi.org/10.4230/LIPICS.ESA.2021.59
https://doi.org/10.1007/978-3-642-03685-9_20
https://doi.org/10.1007/978-3-030-93736-2_18
https://proceedings.neurips.cc/paper/2018/hash/73a427badebe0e32caa2e1fc7530b7f3-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/73a427badebe0e32caa2e1fc7530b7f3-Abstract.html
https://arxiv.org/abs/2404.06280
http://proceedings.mlr.press/v65/simchowitz17a.html
https://doi.org/10.48550/arXiv.2305.07164
https://doi.org/10.1287/OPRE.2019.1970
https://proceedings.mlr.press/v162/xia22a.html
https://doi.org/10.1007/978-3-642-45030-3_31

24:18 Learning-Augmented Maximum Independent Set

60 David Zuckerman. Linear degree extractors and the inapproximability of max clique and
chromatic number. In Proceedings of the thirty-eighth annual ACM symposium on Theory of
computing, pages 681–690, 2006.

A Technical Preliminaries

We use the following standard forms of Chernoff bound.

▶ Proposition 11 (Chernoff-Hoeffding bound). Let X1, . . . , Xm be m independent random
variables with support in [0, 1]. Define X :=

∑m
i=1 Xi. Then, for every t > 0,

Pr (X − E [X] ⩾ t) ⩽ exp
(
−2t2

m

)
Pr (X − E [X] ⩽ −t) ⩽ exp

(
−2t2

m

)
.

▶ Proposition 12 (Chernoff bound; c.f. [25]). Suppose X1, . . . , Xm are m independent random
variables with range [0, 1] each. Let X :=

∑m
i=1 Xi and µL ⩽ E [X] ⩽ µH . Then, for any

δ ∈ [0, 1],

Pr (X > (1 + δ) · µH) ⩽ exp
(
−δ2 · µH

3 + δ

)
and Pr (X < (1− δ) · µL) ⩽ exp

(
−δ2 · µL

2 + δ

)
.

We also consider limited independence hash functions. Roughly speaking, a k-wise
independent hash function behaves like a totally random function when considering at most
k elements. Formally, a family of hash functions H = {h : [n]→ [m]} is k-wise independent
if for any x1, x2, . . . , xk ∈ [n] and y1, y2, . . . , yk ∈ [m] the following holds:

Pr
h∈RH

(h(x1) = y1 ∧ h(x2) = y2 ∧ . . . ∧ h(xk) = yk) = m−k.

We shall use the following concentration result on an extension of Chernoff-Hoeffding bounds
for limited independence hash function.

▶ Proposition 13 ([54]). Suppose h is a k-wise independent hash function and X1, . . . , Xm

are m random variables in {0, 1} where Xi = 1 iff h(i) = 1. Let X :=
∑m

i=1 Xi. Then, for
any δ > 0,

Pr (|X − E [X]| ⩾ δ · E [X]) ⩽ exp
(
−min

{
k

2 ,
δ2

4 + 2δ
· E [X]

})
.

Maximum Unique Coverage on Streams: Improved
FPT Approximation Scheme and Tighter Space
Lower Bound
Philip Cervenjak #

School of Computing and Information Systems, The University of Melbourne, Australia

Junhao Gan #

School of Computing and Information Systems, The University of Melbourne, Australia

Seeun William Umboh #

School of Computing and Information Systems, The University of Melbourne, Australia
ARC Training Centre in Optimisation Technologies, Integrated Methodologies, and Applications
(OPTIMA), Melbourne, Australia

Anthony Wirth #

School of Computer Science, The University of Sydney, Australia
School of Computing and Information Systems, The University of Melbourne, Australia

Abstract
We consider the Max Unique Coverage problem, including applications to the data stream model.
The input is a universe of n elements, a collection of m subsets of this universe, and a cardinality
constraint, k. The goal is to select a subcollection of at most k sets that maximizes unique coverage,
i.e, the number of elements contained in exactly one of the selected sets. The Max Unique Coverage
problem has applications in wireless networks, radio broadcast, and envy-free pricing.

Our first main result is a fixed-parameter tractable approximation scheme (FPT-AS) for Max
Unique Coverage, parameterized by k and the maximum element frequency, r, which can be
implemented on a data stream. Our FPT-AS finds a (1 − ε)-approximation while maintaining a
kernel of size Õ(kr/ε), which can be combined with subsampling to use Õ(k2r/ε3) space overall.
This significantly improves on the previous-best FPT-AS with the same approximation, but a kernel
of size Õ(k2r/ε2). In order to achieve our first result, we show upper bounds on the ratio of a
collection’s coverage to the unique coverage of a maximizing subcollection; this is by constructing
explicit algorithms that find a subcollection with unique coverage at least a logarithmic ratio of the
collection’s coverage. We complement our algorithms with our second main result, showing that
Ω(m/k2) space is necessary to achieve a (1.5 + o(1))/(ln k − 1)-approximation in the data stream.
This dramatically improves the previous-best lower bound showing that Ω(m/k2) is necessary to
achieve better than a e−1+1/k-approximation.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation → Approximation algorithms analysis; Theory of computation
→ Streaming, sublinear and near linear time algorithms

Keywords and phrases Maximum unique coverage, maximum coverage, approximate kernel, data
streams

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.25

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2407.09368

Funding Philip Cervenjak: This work was supported by the Elizabeth and Vernon Puzey Scholarship,
and by the Faculty of Engineering and Information Technology.

Acknowledgements We thank the anonymous reviewers for their valuable feedback.

© Philip Cervenjak, Junhao Gan, Seeun William Umboh, and Anthony Wirth;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 25; pp. 25:1–25:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pcervenjak@student.unimelb.edu.au
https://orcid.org/0000-0002-8349-619X
mailto:junhao.gan@unimelb.edu.au
https://orcid.org/0000-0001-9101-1503
mailto:william.umboh@unimelb.edu.au
https://orcid.org/0000-0001-6984-4007
mailto:anthony.wirth@sydney.edu.au
https://orcid.org/0000-0003-3746-6704
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.25
https://arxiv.org/abs/2407.09368
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Maximum Unique Coverage on Streams

1 Introduction

We study the Max Unique Coverage problem, where we are given a universe of n elements,
a collection of m subsets of the universe, and an integer k ∈ {1, . . . ,m}. The goal is to select
a collection of at most k subsets that maximizes the number of elements covered by exactly
one set in the collection. This problem is a natural variant of the classic Max Coverage
problem, where the goal is to select a collection of k subsets that maximizes the number of
elements covered by at least one set in the collection.

A weighted version of Max Unique Coverage was first formally studied by Demaine et
al. [9]. In their motivating scenario, a number of wireless base stations, each with an associated
cost, must be placed to maximize the number of mobile clients served. However, due to
interference, if covered by more than one base station, a client receives bad service. Demaine
et al. point out further applications to radio broadcast and envy-free pricing. They then
showed an offline polynomial-time Ω(1/ logm)-approximation algorithm for their problem,
which easily translates to a Ω(1/ log k)-approximation for our problem.1 Under various
complexity assumptions, they showed (semi-)logarithmic inapproximability for polynomial-
time algorithms; Guruswami and Lee [11] later proved nearly logarithmic inapproximability,
assuming NP does not admit quasipolynomial-time algorithms.

Streaming. Our work emphasizes solving Max Unique Coverage approximately in the
data stream model. All previous works, except McGregor et al. [15], only consider this
problem in the offline model. In the data stream model, we focus on set-streaming: each
set in the stream is fully specified before the next; this setting is assumed in related works
[18, 2, 22, 16, 15]. We also constrain the space, measured in bits, to be o(mn), i.e., sublinear
in both the number of sets, m, and the size of the universe, n. Thus, we define the Max
Unique Coverage problem to include the cardinality constraint, k. Previous works often
formulate this problem without a cardinality constraint, simply referring to it as the “Unique
Coverage” problem; this is equivalent to our formulation when k = m.

We are particularly interested in Max Unique Coverage when parameterized by k

and the maximum frequency, r, defined as the maximum number of sets that an element
belongs to; we also consider the maximum set size d to a lesser extent. This parameterization
has received considerable attention in studying fixed-parameter tractable approximation
schemes (FPT-AS) for classic coverage problems [21, 4, 20, 14, 15, 13, 19], but not as much
for the Max Unique Coverage problem [15]. Note that an FPT exact algorithm for this
parameterization is unlikely to exist because, when r = 2, Max Unique Coverage is
equivalent to Capacitated Max Cut, which was shown by Misra et al. [17] to be W[1]-hard
when parameterized by the capacity constraint.2

A central idea in achieving both FPT space and running time bounds is kernelization. We
transform a problem instance, I, into a smaller problem instance, I ′, called the (approximate)
kernel, such that |I ′| ≤ g(γ), where g is a computable function in terms of problem
parameters γ, while I ′ (approximately) preserves the optimal solution value of I; a good
solution can be found by brute-force search within I ′. Consistent with other works [8, 7, 6, 15],
we further require an FPT streaming algorithm to use g(γ) polylog |I| space.

1 This is by assuming that all sets have unit cost and that the budget is k.
2 Although Misra et al. [17] prove W[1]-hardness for Budgeted Max Cut when parameterized by the

budget, their hardness proof only requires each vertex (corresponding to a set in our formulation) to
have unit cost.

P. Cervenjak, J. Gan, S. W. Umboh, and A. Wirth 25:3

1.1 Our Contributions
Our first main result is an FPT-AS for Max Unique Coverage with strong space, running
time, and approximation bounds, that is applicable to the data stream model. A crucial
step in achieving such bounds is showing improved upper bounds on a key parameter of
a collection C. The unique coverage ratio is the ratio between the coverage of C and the
maximum unique coverage over all subcollections Q ⊆ C. We let ϕ denote an upper bound
on the unique coverage ratio: we define performance bounds of our FPT-AS in terms of ϕ.

Main Result 1: FPT Approximation Scheme. We propose the FPT-AS UniqueTopSets,
parameterized by the cardinality constraint, k, and the maximum frequency, r, which can be
easily implemented in the data stream model. It achieves a (1− ε)-approximation using a
kernel of size ⌈kr(ϕ+ 1)/ε⌉. We formally present this algorithm in Theorem 3.6.

UniqueTopSets is a refined version of the FPT-AS in Theorem 12 of McGregor et
al. [15], in that our algorithm achieves a (1− ε) rather than a (1/2− ε)-approximation using
only an extra logarithmic factor of (ϕ+ 1) in the kernel size. Further, our algorithm improves
on the FPT-AS in Theorem 10 of McGregor et al. [15] by saving a factor of O(k/ε) in the
kernel size, and therefore a factor of [O(k/ε)]k in the running time, while achieving the same
approximation factor. See Table 1 for a comparison of our FPT-AS with others.

Table 1 Comparison of FPT-AS for Max Unique Coverage, parameterized by cardinality
constraint, k, and maximum frequency, r. Note that the running time of each algorithm below is
implied by its kernel size. Each finds a solution of size at most k by brute-force search in the kernel.
Below, we can assign ϕ = min(ln k + 1, 2 ln r + o(log r), 2 ln d + o(log d)).

Reference Approx. Kernel Size

[15, Theorem 10] 1 − ε O
(
k2r log m/ε2)

[15, Theorem 12] 1/2 − ε ⌈kr/ε⌉

Ours, Theorem 3.6 (UniqueTopSets) 1 − ε ⌈kr(ϕ + 1)/ε⌉

Unique Coverage Algorithms. In order to show good values for ϕ, we propose a number
of offline polynomial-time algorithms that, given an arbitrary C, explicitly return a B ⊆ C
whose unique coverage is at least a logarithmic ratio of C’s coverage. We refer to them as
unique coverage algorithms; in fact, they can be thought as approximation algorithms for the
unconstrained Unique Coverage problem on an input instance of C.

Our three offline polynomial-time algorithms, UniqueGreedy, UniqueGreedyFreq,
and UniqueGreedySize, each take a collection of sets, C, and return a collection, B ⊆ C,
whose unique coverage is at least a 1/(ln ℓ+ 1), 1/(2 ln r + o(log r)), and 1/(2 ln d+ o(log d))
proportion of C’s coverage respectively; in this context, ℓ = |C|, r is the maximum frequency in
C, and d is the maximum set size in C. We formally present these algorithms in Theorem 4.1,
Theorem 4.4, and in Theorem 4.8, respectively. See Table 2 for a comparison of our algorithms
with those of Demaine et al. [9] along with their implied bounds, ϕ, albeit weaker than ours.

APPROX/RANDOM 2024

25:4 Maximum Unique Coverage on Streams

Table 2 Polynomial-time algorithms for Max Unique Coverage. Compared to others, our
methods imply constant-factor improvements in the unique coverage ratio bound, ϕ.

Parameter Reference (Implied) ϕ

ℓ = collection size
[9, Theorem 4.1] 10.66 ln(ℓ + 1)

Ours, Theorem 4.1
(UniqueGreedy) ln ℓ + 1

r = maximum frequency
in a collection

[9, Theorem 4.1] 10.66 ln(r + 1)

Ours, Theorem 4.4
(UniqueGreedyFreq) 2 ln r + o(log r)

d = maximum set size
in a collection

[9, Theorem 4.2] 21.32 ln(d + 1)

Ours, Theorem 4.8
(UniqueGreedySize) 2 ln d + o(log d)

Implication for FPT Approximation Scheme. The bound on the unique coverage ratio, ϕ,
affects the kernel size and therefore the brute-force running time of UniqueTopSets. In
particular, when r = Ω(

√
k), the bound of ϕ implied by UniqueGreedy is 10.66 times

smaller than implied by Demaine et al. [9]; whereas when r = o(
√
k), the bound of ϕ implied

by UniqueGreedyFreq is almost 5.33 smaller than implied by Demaine et al. This means,
by using our implied bounds rather than those implied by Demaine et al., we save a factor of
10.66k in UniqueTopSets’s running-time when r = Ω(

√
k), and a factor of almost 5.33k

when r = o(
√
k).

Improvements in Polynomial-Time Approximation. As a separate contribution, each of
our three unique coverage algorithms finds a logarithmic approximation to Max Unique
Coverage, both offline and in the data stream. We first find a solution C to Max Coverage in
polynomial time, and then run one of our above algorithms on C to return the subcollection
B ⊆ C. For this purpose, our algorithms UniqueGreedy, UniqueGreedyFreq, and
UniqueGreedySize improve the approximation factor due to Demaine et al. [9] by a factor
of 10.66, 5.33, and 10.66, respectively. Following the above approach, we propose a single-pass
streaming algorithm for Max Unique Coverage that achieves a (1/(2ϕ)−ε)-approximation
using Õ(k2/ε3) space, where we can assign ϕ = min(ln k+ 1, 2 ln r+ o(log r), 2 ln d+ o(log d)).
We formally state this in Theorem 3.8.

Main Result 2: Streaming Lower Bound. Our second main result is a significantly improved
streaming lower bound for Max Unique Coverage. In the data stream model, we prove
that any randomized algorithm that achieves a (1.5 +o(1))/(ln k−1)-approximation for Max
Unique Coverage w.h.p. requires Ω(m/k2) space. We formally state this in Theorem 5.1.
Our lower bound improves on the lower bound by McGregor et al. [15], which shows a similar
result, but achieves w.h.p. a e−1+1/k ≥ 1/e-approximation. Interestingly, our approximation
threshold is close to 3 times larger than the approximation (in terms of k) achieved by our
Õ(k2/ε3) space algorithm in Theorem 3.8, indicating that a dramatic increase in space is
needed to bridge this approximation gap.

P. Cervenjak, J. Gan, S. W. Umboh, and A. Wirth 25:5

Table 3 Comparison of space lower bounds for Max Unique Coverage in the data stream.
Note that the lower bound by Assadi [1] was shown for Max Coverage with constant k = 2, but it
is not difficult to adapt it for Max Unique Coverage because, in the hard instance constructed
for the lower bound, the unique coverage of any pair of sets behaves similarly to its coverage.

Reference Approx. Space LB

[1, Theorem 4] 1 − ε Ω
(
m/ε2)

[15, Theorem 16] 1/e Ω
(
m/k2)

Ours, Theorem 5.1 (1.5 + o(1))/(ln k − 1) Ω
(
m/k2)

1.2 Technical Overview

FPT Approximation Scheme. UniqueTopSets refines the technique used in the FPT-AS
for Max Unique Coverage in Theorem 12 of McGregor et al. [15], which is to construct
an approximate kernel by storing a number of the largest sets by individual size, and then
to find a subcollection of the kernel with maximum unique coverage by brute-force search.
Similar techniques have been used in FPT-AS approaches for Max Vertex Cover [14, 13]
and Max Coverage [21, 20, 15, 19]. Our novelty is providing a stronger analysis of the
approximation factor preserved by the kernel, allowing us to achieve a (1− ε)-approximation
while only increasing the kernel size by a logarithmic factor in k, r, or d.

Unique Coverage Algorithms. All of our unique coverage algorithms are combinatorial in
design. Our first two, UniqueGreedy and UniqueGreedyFreq, are novel algorithms
that each, in some sense, use a greedy approach, noting that UniqueGreedy is used as
subroutine of UniqueGreedyFreq. Our third algorithm, UniqueGreedySize, is easily
derived by combining UniqueGreedyFreq with the approach by Demaine et al. [9] for
sets with maximum cost d (maximum size in our case).

Streaming Lower Bound. Our streaming lower bound relies on a novel reduction from
k-player Set Disjointness in the one-way communication model to Max Unique Coverage
in the data stream. In the hard instance of Max Unique Coverage thus constructed,
either all collections of ℓ ≤ k sets have a unique coverage of ak2(1.5 + o(1)) w.h.p. or
there exists a single collection of k sets whose unique coverage is at least ak2(ln k − 1),
where a = Ω(k logm). By a standard argument, we show that distinguishing between these
instances of Max Unique Coverage with a streaming algorithm is as hard as solving Set
Disjointness, implying the required space lower bound.

1.3 Paper Structure

After preliminaries in Section 2, Section 3 presents our FPT-AS UniqueTopSets and a
polynomial-time algorithm, both applicable to the data stream. In Section 4, we present our
component algorithms for bounding the unique coverage ratio. In Section 5, we present a
space lower bound for achieving a (1.5 + o(1))/(ln k − 1)-approximation for Max Unique
Coverage. We conclude in Section 7. Claims whose proofs are found in the full version of
this paper are marked thus: (*).

APPROX/RANDOM 2024

25:6 Maximum Unique Coverage on Streams

2 Preliminaries

Notation. For convenience, we hence let [n] denote the set of integers {1, 2, . . . , n}. Likewise,
U = [n] denotes a universe of n elements, while V denotes a collection of m subsets of U .

Given a collection C of sets, the unique cover of C is the subset of the universe covered
by exactly one set in C, formally, ψ̃(C) := (

⋃
S∈C S) \ (

⋃
S ̸=T∈C S ∩ T), and the unique

coverage of C is |ψ̃(C)|. For convenience, the cover of C is the union of the sets in C, formally
ψ(C) :=

⋃
S∈C S, and the coverage of C is |ψ(C)|. Further, the non-unique cover of C is the

subset of the universe covered by at least two sets from C, formally ψ≥2(C) =
⋃
S ̸=T∈C S ∩ T

– or equivalently ψ≥2(C) = ψ(C) \ ψ̃(C) – and the non-unique coverage of C is |ψ≥2(C)|. The
maximum unique coverage of C is the largest unique coverage of a subcollection of C. The
unique coverage ratio of C is the ratio between its coverage and maximum unique coverage.
In other words, if Q is the subcollection of C that has maximum unique coverage, then the
unique coverage ratio of C is |ψ(C)|/|ψ̃(Q)|.

Given an element x ∈ U and a collection C of sets, the frequency of x in C is defined as
freqC(x) := |{S ∈ C : x ∈ S}|, i.e., the number of sets in C that contain x; and the maximum
frequency is defined as r := maxx∈U freqC(x). Also, the maximum set size is defined as
d := maxS∈C |S|. We often use r and d to refer to the maximum frequency and set size,
respectively, in C = V unless stated otherwise. Note that r ≤ |C| holds for every C. We let
Hz :=

∑z
t=1 1/t denote the zth harmonic number, a term that appears several times.

Formal Problem Definition. An instance of Max Unique Coverage consists of an element
universe U , a collection V of m subsets of U , and an integer k ∈ [m]; when the context
is clear, we represent an instance with just V for simplicity. The goal of Max Unique
Coverage is to return a subcollection B ⊆ V (more precisely, a collection of IDs of sets),
with |B| ≤ k, that maximizes |ψ̃(B)|. We let O denote an optimal solution to this Max
Unique Coverage problem, and OPT := |ψ̃(O)| as the maximum unique coverage.

Subsampling for the Data Stream Model. The universe subsampling technique has
been widely successful in the development of streaming algorithms for coverage problems
[10, 12, 3, 16]. In this work, we follow the approach of McGregor and Vu [16], and sample
the universe so that each set has size O(k logm/ε2). We assume that k ∈ o(mn), and also
that k is known prior to reading the stream. The main result is given in the following lemma,
with a proof sketch of the subsampling approach in Section 6.

▶ Lemma 2.1 (Subsampling Approach [15]). Let ε ∈ (0, 1) be the subsampling error parameter.
Given an instance of Max Unique Coverage and an α-approximation streaming algorithm,
we can run the algorithm on ⌈log2 n⌉ parallel subsampled instances and select one of them
such that the algorithm’s solution corresponds to a (α− 2ε)-approximation for the original
instance with probability 1 − 1/ poly(m). Moreover, if the streaming algorithm stores at
most s sets in every subsampled instance, then the total space complexity of the subsampling
approach is bounded by ⌈log2 n⌉ · s ·O

(
k logm log n/ε2).

3 Streaming FPT-AS and Polynomial-Time Algorithms

In Section 3.1, we prove a kernelization lemma. Then, we use it to obtain an FPT-AS and a
parameterized streaming algorithm in Section 3.2. Finally, we show how to use a bound on
the unique coverage ratio to obtain a polynomial-time streaming algorithm in Section 3.3.

P. Cervenjak, J. Gan, S. W. Umboh, and A. Wirth 25:7

3.1 Kernelization Lemma
Our Kernelization Lemma below, as well as its proof, is a refinement of Lemma 11 by
McGregor et al. [15]. We first provide some intuition on why our kernel preserves a (1− ε)-
approximation for Max Unique Coverage.

Intuition of Kernelization Lemma. For convenience, let ε′ be an intermediate error para-
meter and define the kernel A as the collection of the ⌈kr/ε′⌉ largest sets in instance V by
individual size. Given the optimal solution for Max Unique Coverage, O, let Oin and Oout

be the collections of optimal sets found and not found in A respectively.
One main step in proving our Kernelization Lemma is showing that, in expectation,

a collection of |Oout| sets sampled without replacement from A, denoted by Z, can be
appended to Oin with little overlap in their unique covers. In particular, we can prove that
E[|ψ̃(Oin ∪ Z)|] ≥ (1− ε′)|ψ̃(O)| − ε′|ψ(O)|.

However, due to the ε′|ψ(O)| term, this is not enough to achieve the required approx-
imation factor. This term reflects the fact that, even if the unique cover of Oin has little
overlap with the unique cover of Z, the entire cover of Oin could be more extensive and,
thus, overlap significantly with the unique cover of Z. To address this, in Claim 3.4, we
show ϕ|ψ̃(O)| ≥ |ψ(O)|, where ϕ upper bounds the unique coverage ratio. Substituting
this into the lower bound for E[|ψ̃(Oin ∪ Z)|], and assigning ε′ = ε/(ϕ + 1), we obtain
E[|ψ̃(Oin∪Z)|] ≥ (1−ε)|ψ̃(O)|, implying the existence of a (1−ε)-approximate subcollection
of A. Lastly, the final kernel size of |A| = ⌈kr(ϕ+ 1)/ε⌉ follows from the assignment of ε′.

▶ Lemma 3.1 (Kernelization Lemma). Suppose that every collection of sets has unique
coverage ratio at most ϕ. Let V denote a collection of sets. Then, for every ε ∈ (0, 1), the
subcollection, A, of the ⌈kr(ϕ+ 1)/ε⌉-largest sets of V (by size) contains a subcollection of
at most k sets with unique coverage at least (1− ε)OPT.

Proof. Assume that |V| ≥ ⌈kr(ϕ+ 1)/ε⌉: otherwise, A would contain every set in V and so
would trivially have O as a subcollection. Let Oin = O ∩A and Oout = O \ A. Let Z be a
uniform random sample of |Oout| sets chosen from A without replacement. The main goal is
to prove Claim 3.5, below. Since Oin and Z are subsets of A, this implies the existence of
subcollection B ⊆ A as required by the lemma.

We start with the following lower bound on the expected unique coverage of Oin ∪ Z, as
shown in inequality (1) below. Then we lower bound each of the RHS terms separately and
simplify afterwards. By definition,

|ψ̃(Oin ∪ Z)| ≥ |ψ̃(Oin)|+ |ψ̃(Z)| − (|ψ̃(Oin) ∩ ψ(Z)|+ |ψ(Oin) ∩ ψ̃(Z)|) ,
hence, by linearity of expectation,

E[|ψ̃(Oin ∪ Z)|] ≥ |ψ̃(Oin)|+ E[|ψ̃(Z)|]− E[|ψ̃(Oin) ∩ ψ(Z)|]− E[|ψ(Oin) ∩ ψ̃(Z)|] . (1)

Define an intermediate error parameter, ε′ = ε/(ϕ + 1), meaning |A| = ⌈kr/ε′⌉. The
probability of a set S ∈ A being selected in Z is p := |Oout|/|A| ≤ k/(kr/ε′) = ε′/r. Now
Claim 3.2, below, is easily derived from the proof of Lemma 11 in by McGregor et al. [15].

▷ Claim 3.2. It holds that E[|ψ̃(Z)|] ≥ (1− ε′)|ψ̃(Oout)| .

Proof. Quantity |ψ̃(Z)| can be lower bounded by summing, over every S ∈ Z, the number of
elements in S not contained in any other T ∈ Z \ {S}. From there, we prove inequality (3.2),
below. We let [E] denote the indicator variable for event E .

APPROX/RANDOM 2024

25:8 Maximum Unique Coverage on Streams

|ψ̃(Z)| ≥
∑
S∈Z

|S| − ∑
T∈Z\{S}

|S ∩ T |

 , hence,

E[|ψ̃(Z)|]

≥ E

∑
S∈A

|S|[S ∈ Z]−
∑

T∈A\{S}

|S ∩ T |[S ∈ Z ∧ T ∈ Z]

≥
∑
S∈A

|S|p− ∑
T∈A\{S}

|S ∩ T |p2

 Pr[S ∈ Z ∧ T ∈ Z] ≤ p2

≥
∑
S∈A

(
|S|p− |S|p2(r − 1)

)
≥ p(1− pr)

∑
S∈A
|S|

each x ∈ S intersects
≤ r − 1 other sets

≥ p(1− ε′)
∑
S∈A
|S| p ≤ ε′

r

≥ p(1− ε′)|A|
∑
Y ∈Oout |Y |
|Oout|

for all S ∈ A and all
Y ∈ Oout : |S| ≥ |Y |

≥ p(1− ε′)|A| |ψ̃(Oout)|
|Oout|

subadditivity of ψ̃

= p(1− ε′) |ψ̃(Oout)|
p

= (1− ε′)|ψ̃(Oout)| . ◁

Claim 3.3 upper bounds the expected size of the overlap between ψ̃(Oin) and ψ(Z) and
the expected size of the overlap between ψ̃(Z) and ψ(Oin).

▷ Claim 3.3. E[|ψ̃(Oin) ∩ ψ(Z)|] ≤ ε′|ψ̃(Oin)| and E[|ψ(Oin) ∩ ψ̃(Z)|] ≤ ε′|ψ(Oin)|.

Proof. To prove the first inequality,

E[|ψ̃(Oin) ∩ ψ(Z)|] ≤
∑

x∈ψ̃(Oin)

∑
S∈A : x∈S

Pr[S ∈ Z] ≤
∑

x∈ψ̃(Oin)

rp ≤ ε′|ψ̃(Oin)| .

To prove the second inequality, it is clear that ψ̃(Z) ⊆ ψ(Z) for all Z, so we have E[|ψ(Oin)∩
ψ̃(Z)|] ≤ E[|ψ(Oin) ∩ ψ(Z)|]. Then substituting ψ(Oin) for ψ̃(Oin) in the argument for the
first inequality, we see that E[|ψ(Oin) ∩ ψ(Z)|] ≤ ε′|ψ(Oin)|. ◁

We now turn to a property of the optimal solution for Max Unique Coverage, O.

▷ Claim 3.4. ϕ|ψ̃(O)| ≥ |ψ(O)| .

Proof. Recall that we assumed that every collection of sets has unique coverage ratio at
most ϕ. In particular, O has a subcollection, Q, of at most k sets with ϕ|ψ̃(Q)| ≥ |ψ(O)|.
By optimality, O’s unique coverage is at least that of Q. Thus, we get the desired inequality.

◁

Starting from Ineq. (1), we can now lower bound E[|ψ̃(Oin ∪ Z)|], thus proving the lemma.

▷ Claim 3.5. We have the lower bound E[|ψ̃(Oin ∪ Z)|] ≥ (1− ε)|ψ̃(O)| .

P. Cervenjak, J. Gan, S. W. Umboh, and A. Wirth 25:9

Proof.

E[|ψ̃(Oin ∪ Z)|]
≥ |ψ̃(Oin)|+ E[|ψ̃(Z)|]− E[|ψ̃(Oin) ∩ ψ(Z)|]− E[|ψ(Oin) ∩ ψ̃(Z)|] Ineq. (1)
≥ |ψ̃(Oin)|+ (1− ε′)|ψ̃(Oout)| − ε′|ψ̃(Oin)| − ε′|ψ(Oin)| Claims 3.2 and 3.3
= (1− ε′)

(
|ψ̃(Oin)|+ |ψ̃(Oout)|

)
− ε′|ψ(Oin)|

≥ (1− ε′)|ψ̃(O)| − ε′|ψ(Oin)| subadditivity of ψ̃
≥ (1− ε′)|ψ̃(O)| − ε′|ψ(O)| monotonicity of ψ
≥ (1− ε′)|ψ̃(O)| − ε′ϕ|ψ̃(O)| Claim 3.4
= (1− ε′ (1 + ϕ)) |ψ̃(O)|
= (1− ε)|ψ̃(O)| . ◁

◀

3.2 Applications of the Kernelization Lemma
We now apply the Kernelization Lemma to prove the following theorem.

▶ Theorem 3.6. Suppose that every collection of sets has unique coverage ratio at most ϕ.
Let V denote a collection of sets, k ≥ 2 denote the cardinality constraint, r ≥ 2 denote the
maximum frequency in V, and ε ∈ (0, 1) denote an error parameter. Then, there exists
1. an FPT-AS that finds a (1− ε)-approximation for Max Unique Coverage and has a

running time of (er(ϕ+ 1)/ε)k poly(m,n, 1/ε); and
2. a streaming algorithm that finds a (1− 3ε)-approximation for Max Unique Coverage

with probability 1− 1/ poly(m) and uses Õ(ϕk2r/ε3) space.

Our algorithm, UniqueTopSets, takes a collection of sets V with maximum frequency
r ≥ 2, a cardinality constraint k, and an error parameter ε ∈ (0, 1), and returns a (1− ε)-
approximation for Max Unique Coverage. It also takes parameter ϕ, an upper bound
on the unique coverage ratio of every subcollection. UniqueTopSets first finds A, the
⌈kr(ϕ+ 1)/ε⌉-largest sets S ∈ V by size |S|. Then, it brute-forces over A, i.e., it finds the
subcollection of A containing at most k sets and has the maximum unique coverage.

FPT-AS. Let us first see how UniqueTopSets has the properties of the FPT-AS claimed
in Theorem 3.6. The Kernelization Lemma (Lemma 3.1) immediately implies that the
solution returned by UniqueTopSets is a (1− ε)-approximation. The running time bound
follows by bounding the number of subcollections of A containing at most k sets.

▶ Lemma 3.7. UniqueTopSets has running time in (er(ϕ+ 1)/ε)k poly(m,n, 1/ε).

Proof. UniqueTopSets considers every possible collection of ℓ ∈ [k] sets from A and
outputs the one with the best unique coverage. Below, the second inequality holds since
replacing ℓ with k makes each binomial coefficient larger, as ℓ ≤ k ≤ kr/2 due to r ≥ 2;
the equality holds since

(
z+1
k

)
=
(
z
k

)
(z + 1)/(z + 1− k); and the final inequality holds since(

z
k

)
≤ (ez/k)k. Thus, the running time is bounded as follows.

k∑
ℓ=1

(
|A|
ℓ

)
poly(m,n) ≤ poly(m,n)

k∑
ℓ=1

(kr(ϕ+1)
ε + 1
ℓ

)
≤ poly(m,n)k

(kr(ϕ+1)
ε + 1
k

)

= poly(m,n, 1/ε)
(kr(ϕ+1)

ε

k

)
≤ poly(m,n, 1/ε)

(
er(ϕ+ 1)

ε

)k
. ◀

APPROX/RANDOM 2024

25:10 Maximum Unique Coverage on Streams

Streaming Algorithm. UniqueTopSets can also be run on a data stream using the
subsampling approach from Lemma 2.1. UniqueTopSets returns a (1−ε)-approximation in
each subsampled instance by Lemma 3.1, implying a (1− 3ε)-approximation for the original
instance, V, with probability 1− 1/ poly(m). Further, it stores |A| ≤ ⌈kr(ϕ+ 1)/ε⌉ sets in
each subsampled instance, implying an overall space complexity of ⌈log2 n⌉ · |A| · Õ(k/ε2) =
Õ(ϕk2r/ε3).

3.3 Polynomial-Time Streaming Algorithm
Here we present a single-pass streaming algorithm that returns a (1/(2ϕ)− ε)-approximation
for Max Unique Coverage, given a bound on the unique coverage ratio, ϕ. We present
the algorithm in Theorem 3.8 below.

In the theorem statement, we assume we can use an offline polynomial-time algorithm,
Alg, that takes a collection C and returns a subcollection B ⊆ C such that |ψ̃(B)| ≥ |ψ(C)|/ϕ
for a ratio ϕ depending on |C| ≤ k, the maximum frequency r, and the maximum set size d.
Alg can be substituted with a procedure that runs all of our unique coverage algorithms
from Section 4 on C and returns the solution with the best unique coverage.

▶ Theorem 3.8. Let V denote a data stream of m sets, k ≥ 2 denote a cardinality constraint,
r ≥ 2 denote the maximum frequency in V, d ≥ 2 denote the maximum set size in V, and
ε ∈ (0, 1) denote an error parameter. Further, assume we have a polynomial-time algorithm
Alg with unique coverage ratio ϕ depending on k, r, and d. Then we can find a (1/(2ϕ)−3ε)-
approximation for Max Unique Coverage with probability 1− 1/ poly(m), using one pass,
Õ(k2/ε3) space, and in polynomial-time.

Proof. We use the subsampling approach from Lemma 2.1. In each subsampled instance, we
use an existing polynomial-time streaming algorithm [16] to find a (1/2− ε)-approximation,
C, for Max Coverage in one pass while storing Õ(k/ε) sets; the sets in C must be stored
explicitly so that we can run Alg on C. Running Alg on C returns a B ⊆ C that is
a (1/(2ϕ) − ε)-approximation for the subsampled instance of Max Unique Coverage.
This implies a (1/(2ϕ) − 3ε)-approximation for the original instance, V, with probability
1− 1/ poly(m). Further, explicitly storing Õ(k/ε) sets in each subsampled instance implies
an overall space complexity of ⌈log2 n⌉ · Õ(k/ε) · Õ(k/ε2) = Õ(k2/ε3). ◀

4 Algorithms for Bounding the Unique Coverage Ratio

We here present algorithms that run in polynomial time. Given a collection, C, each returns a
subcollection B ⊆ C such that B’s unique coverage is within a logarithmic ratio of C’s coverage.
We hence call this the unique coverage ratio of an algorithm. Our algorithms UniqueGreedy
(Section 4.1), UniqueGreedyFreq (Section 4.2), and UniqueGreedySize (Section 4.3)
have unique coverage ratios that are logarithmic in ℓ = |C|, r, and d, respectively.

4.1 UniqueGreedy
We present and analyze our algorithm UniqueGreedy, with pseudocode in Algorithm 1.
Its purpose is to take a collection C of ℓ sets and return a collection B ⊆ C whose unique
coverage is at least a 1/Hℓ factor of C’s coverage. We formally state this in Theorem 4.1.

UniqueGreedy Overview. UniqueGreedy first checks whether C’s unique coverage is at
least 1/Hℓ of its own coverage. If so, then it immediately returns C as the solution, which of
course occurs if ℓ = 1. If not, then the idea is to discard the set T ∈ C with the smallest

P. Cervenjak, J. Gan, S. W. Umboh, and A. Wirth 25:11

contribution to C’s unique coverage. It follows that the total loss in coverage from C to
C \ {T} is only 1/ℓ of C’s unique coverage. Observe that T contributes at most 1/ℓ to C’s
unique coverage, and any elements in T that are also in C’s non-unique cover must remain
in C \ {T}’s cover. We then apply UniqueGreedy recursively, to C \ {T}. As we show in
Theorem 4.1, since the performance of UniqueGreedy relates unique coverage to coverage,
C \ {T} has sufficient coverage so that the recursive solution from UniqueGreedy(C \ {T})
has a unique coverage of at least 1/Hℓ of C’s coverage.

Algorithm 1 UniqueGreedy.

Input: C: collection of ℓ sets.
Output: B ⊆ C: subcollection satisfying |ψ̃(B)| ≥ |ψ(C)|/Hℓ.

1 if |ψ̃(C)| ≥ |ψ(C)|/Hℓ then
2 B ← C
3 else
4 T ← arg minS∈C |S ∩ ψ̃(C)|
5 B ← UniqueGreedy(C \ {T})
6 return B

▶ Theorem 4.1. Given a collection of ℓ sets, C, UniqueGreedy returns a collection B ⊆ C
satisfying

|ψ̃(B)| ≥ |ψ(C)|
Hℓ

. (2)

Proof. We prove Theorem 4.1 by induction on ℓ = |C|.

Base Case. If ℓ = 1, then |ψ̃(C)| = |ψ(C)| and B = C, so we are done.

Inductive Case. Consider the case ℓ ≥ 2, and assume that Theorem 4.1 holds for ℓ − 1.
Then one of two subcases must hold: (i) |ψ̃(C)| ≥ |ψ(C)|/Hℓ; or (ii) the negation, |ψ̃(C)| <
|ψ(C)|/Hℓ. In subcase (i), the Line 1 condition succeeds and UniqueGreedy returns the
subcollection B = C, which clearly satisfies Ineq. (2).

So, we focus on subcase (ii); since |ψ̃(C)| < |ψ(C)|/Hℓ, the Line 1 condition fails, thus
Line 5 assigns to B the solution from the recursive call on C \ {T}. Claim 4.3 lower bounds
the coverage of this subcollection, |ψ(C \ {T})|. Prior to that, we prove a handy claim.

▷ Claim 4.2. |ψ(C \ {T})| = |ψ≥2(C)|+ |ψ̃(C) \ T | .

Proof. Observe that ψ≥2(C) and ψ̃(C)\T are disjoint; so it suffices to show that ψ(C \{T}) =
ψ≥2(C) ∪ (ψ̃(C) \ T). We first show that RHS is a subset of LHS. Each element covered at
least twice in C remains covered in C \ {T}; while each element uniquely covered in C that is
not in T remains covered in C \ {T}. Going the other way, consider an element that is in
neither ψ≥2(C) nor ψ̃(C) \T : then the only set it was in was T , and hence it is not in C \ {T}.

◁

▷ Claim 4.3. Subcollection C \ {T} satisfies

|ψ(C \ {T})| ≥
(

1− 1
ℓHℓ

)
|ψ(C)| .

APPROX/RANDOM 2024

25:12 Maximum Unique Coverage on Streams

Proof. First, observe that the contribution of each S ∈ C to ψ̃(C), i.e., |S ∩ ψ̃(C)|, is disjoint
from the contributions of all other sets in C: each element in ψ̃(C) is covered by exactly one
set. Therefore, the set T = arg minS∈C |S ∩ ψ̃(C)| in Line 4 satisfies

|T ∩ ψ̃(C)| ≤ |ψ̃(C)|
ℓ

. (3)

With Claim 4.2, we now prove Claim 4.3.

|ψ(C \ {T})| = |ψ≥2(C)|+ |ψ̃(C) \ T |
= |ψ(C)| − |ψ̃(C)|+ |ψ̃(C)| − |T ∩ ψ̃(C)|
= |ψ(C)| − |T ∩ ψ̃(C)|

≥ |ψ(C)| − |ψ̃(C)|
ℓ

Ineq. (3)

> |ψ(C)| − |ψ(C)|
ℓHℓ

subcase (ii)

=
(

1− 1
ℓHℓ

)
|ψ(C)| . ◁

Recall that in subcase (ii), Line 5 assigns to B the solution from the recursive call
on C \ {T}. Since |C \ {T}| = ℓ − 1, we apply the inductive assumption to prove that B
satisfies Ineq. (2).

|ψ̃(B)| ≥ |ψ(C \ {T})|
Hℓ−1

inductive assumption

≥ 1
Hℓ−1

(
1− 1

ℓHℓ

)
|ψ(C)| Claim 4.3

= 1
Hℓ−1

ℓHℓ − 1
ℓHℓ

|ψ(C)|

= 1
Hℓ−1

Hℓ − 1
ℓ

Hℓ
|ψ(C)|

= |ψ(C)|
Hℓ

. Hℓ −
1
ℓ

= Hℓ−1, for ℓ ≥ 2

We have proven that B satisfies Ineq. (2) in the base case and the inductive case, proving
Theorem 4.1. ◀

4.2 UniqueGreedyFreq
In this section, we present and analyze our algorithm UniqueGreedyFreq, with pseudocode
in Algorithm 2. The purpose of this algorithm is to take a collection C with maximum
frequency r ≤ |C|, and an error parameter εr ∈ (0, 1), and return a collection B ⊆ C whose
unique coverage is at least a (1/H⌈r(r−1)/εr⌉ − εr) factor of C’s coverage. By an appropriate
choice of εr depending on r, this factor can be simplified to 1/(2 ln r + o(log r)).

UniqueGreedyFreq Overview. The idea of UniqueGreedyFreq is to group all of the
sets from C into ℓ̂ disjoint collections, G1, . . . ,Gℓ̂, so that the sets must be selected into the
solution B in these groups, i.e., for each i ∈ [ℓ̂], either all of the sets in Gi, or none of the sets
in Gi, must be selected into B. Then, letting Ĉ be the collection of the covers of G1, . . . ,Gℓ̂,
we can call UniqueGreedy on Ĉ to find a selection of these covers, namely B̂. The returned
solution, B, is constructed by merging each Gi whose cover was selected into B̂, which ensures
that the sets are selected in groups.

P. Cervenjak, J. Gan, S. W. Umboh, and A. Wirth 25:13

It can be seen that, by calling UniqueGreedy on Ĉ and by Theorem 4.1, the unique
coverage of B̂ is at least 1/Hℓ̂ of Ĉ’s coverage, and therefore at least 1/Hℓ̂ of C’s coverage since
Ĉ and C have the same cover. The issue now is that sets from the same Gi can overlap after
being selected as a group into B, which would make B’s unique coverage smaller than B̂’s
unique coverage. This is addressed by setting the number of groups to be ℓ̂ = ⌈r(r − 1)/εr⌉,
and by the way UniqueGreedyFreq allocates the sets into these groups: it allocates each
S ∈ C to the group Gi whose unique coverage intersects the least with S. In this way, the
total unique coverage that is lost due to overlapping sets in the same Gi can be bounded
by εr|ψ(C)|. Thus, B’s unique coverage is at least (1/Hℓ̂ − εr) = (1/H⌈r(r−1)/εr⌉ − εr) of C’s
coverage. Details are given in the proof of Theorem 4.4.

Algorithm 2 UniqueGreedyFreq.

Input: C: collection with maximum frequency r ≥ 2, εr ∈ (0, 1): error parameter.
Output: B ⊆ C: collection satisfying |ψ̃(B)| ≥

(
1/H⌈r(r−1)/εr⌉ − εr

)
|ψ(C)|.

1 ℓ̂← ⌈r(r − 1)/εr⌉
2 for i ∈ [ℓ̂] do // Initialize empty groups
3 Gi ← ∅
4 for S ∈ C do // Allocate sets to groups
5 i← arg minj∈[ℓ̂] |ψ̃(Gj) ∩ S|
6 Gi ← Gi ∪ {S}
7 Ĉ ← {ψ(G1), . . . , ψ(Gℓ̂)} // Define collection of groups’ covers
8 B̂ ← UniqueGreedy(Ĉ)
9 B ← ∅

10 for ψ(Gi) ∈ B̂ do // Construct returned solution
11 B ← B ∪ Gi
12 return B

▶ Theorem 4.4. Given C with maximum frequency r ≥ 2, and error parameter εr ∈ (0, 1),
algorithm UniqueGreedyFreq returns a collection B ⊆ C satisfying

|ψ̃(B)| ≥
(

1
H⌈r(r−1)/εr⌉

− εr
)
|ψ(C)| . (4)

Moreover, setting εr = (9.27 ln r)−1(2 ln r + 2 ln ln r + 5.61)−1, we obtain

|ψ̃(B)| ≥
(

1− 1/(9.27 ln r)
2 ln r + 2 ln ln r + 5.61

)
|ψ(C)| ≥ 1

2 ln r + o(log r) |ψ(C)| . (5)

Proof. We first prove Ineq. (4), starting with the following claim.

▷ Claim 4.5. ψ̃(B) = ψ̃(B̂) \
⋃
i : ψ(Gi)∈B̂ ψ≥2(Gi).

Proof. Consider an element x that is in exactly one set in B. This means that x is in exactly
one set from exactly one group, say Gy, chosen in B. Focusing on B̂, element x is clearly
in ψ(Gy) only, but might occur more than once in Gy. Excluding elements that are in ψ≥2(Gi)
for every i, we thus have the claim statement. ◁

With Claim 4.5, we prove Claim 4.6.

▷ Claim 4.6. The solution B satisfies |ψ̃(B)| ≥ |ψ̃(B̂)| − εr|ψ(C)|.

APPROX/RANDOM 2024

25:14 Maximum Unique Coverage on Streams

Proof. Given Claim 4.5, B satisfies Ineq. (6),

|ψ̃(B)| ≥ |ψ̃(B̂)| −
∑

i : ψ(Gi)∈B̂

|ψ≥2(Gi)|

≥ |ψ̃(B̂)| −
∑
i∈[ℓ̂]

|ψ≥2(Gi)| . (6)

We upper bound
∑
i∈[ℓ̂] |ψ≥2(Gi)| in Ineq. (6). Let St be the tth set allocated in the Line 4

loop, let Gi,0 = ∅, and let Gi,t be the subcollection Gi just after allocating St.
Upon inserting St into Gi, every element in ψ̃(Gi,t−1) that becomes non-uniquely covered is

accounted for by ψ̃(Gi,t−1)∩St. So it holds that |ψ≥2(Gi,t)|− |ψ≥2(Gi,t−1)| = |ψ̃(Gi,t−1)∩St|.
Thus, |ψ≥2(Gi)| can be expressed by Equation (7) below, observing that for St the relevant
difference term is zero.

|ψ≥2(Gi)| =
∑
St∈Gi

(|ψ≥2(Gi,t)| − |ψ≥2(Gi,t−1)|) telescoping series

=
∑
St∈Gi

|ψ̃(Gi,t−1) ∩ St| . (7)

For each i ∈ [ℓ̂] and each St ∈ Gi, we want to show an upper bound of |ψ̃(Gi,t−1) ∩ St| ≤
(r − 1)|St|/ℓ̂. To see this, since the maximum frequency is r, each element x ∈ St is covered
by at most r − 1 other sets, each possibly in a different group. Therefore, we have that∑

j∈[ℓ̂]

|ψ̃(Gj,t−1) ∩ {x}| ≤ r − 1 ,

∑
x∈St

∑
j∈[ℓ̂]

|ψ̃(Gj,t−1) ∩ {x}| ≤
∑
x∈St

(r − 1) ,

∑
j∈[ℓ̂]

|ψ̃(Gj,t−1) ∩ St| ≤ (r − 1)|St| .

Recall that St was allocated to the group Gi = arg minj∈[ℓ̂] |ψ̃(Gj,t−1) ∩ St| in Lines 5–6.
Therefore, by averaging on the above inequality, we have that for each i ∈ [ℓ̂] and each St
that ends up in Gi,

|ψ̃(Gi,t−1) ∩ St| ≤
r − 1
ℓ̂
|St| . (8)

Now we upper bound
∑
i∈[ℓ̂] |ψ≥2(Gi)|.∑

i∈[ℓ̂]

|ψ≥2(Gi)| =
∑
i∈[ℓ̂]

∑
St∈Gi

|ψ̃(Gi,t−1) ∩ St| Equation (7)

≤ r − 1
ℓ̂

∑
i∈[ℓ̂]

∑
St∈Gi

|St| Ineq. (8)

= r − 1
ℓ̂

∑
S∈C
|S| G1, . . . ,Gℓ̂ partitions C

≤ r − 1
ℓ̂

r|ψ(C)| for all x ∈ ψ(C) : freqC(x) ≤ r

= r(r − 1)
⌈r(r − 1)/εr⌉

|ψ(C)| value of ℓ̂ (Line 1)

P. Cervenjak, J. Gan, S. W. Umboh, and A. Wirth 25:15

≤ r(r − 1)
r(r − 1)/εr

|ψ(C)|

≤ εr|ψ(C)| .

Applying the above upper bound to Ineq. (6) completes the proof of the claim. ◁

To prove Ineq. (4), it remains to lower bound |ψ̃(B̂)|, in the inequality of Claim 4.6, in
terms of |ψ(C)|. Below, |ψ(Ĉ)| = |ψ(C)| holds since every S ∈ C is allocated to some Gi ∈ Ĉ.

|ψ̃(B)| ≥ |ψ̃(B̂)| − εr|ψ(C)| Claim 4.6

≥ |ψ(Ĉ)|
Hℓ̂

− εr|ψ(C)| Line 8 and Theorem 4.1

= |ψ(Ĉ)|
H⌈r(r−1)/εr⌉

− εr|ψ(C)| value of ℓ̂ (Line 1)

= |ψ(C)|
H⌈r(r−1)/εr⌉

− εr|ψ(C)| |ψ(Ĉ)| = |ψ(C)|

=
(

1
H⌈r(r−1)/εr⌉

− εr
)
|ψ(C)| .

Ineq. (5). It remains to show that there exists a choice of εr that implies Ineq. (5).

▷ Claim 4.7 (*). Setting εr = (9.27 ln r)−1(2 ln r + 2 ln ln r + 5.61)−1 implies Ineq. (5).

This completes the proof of Theorem 4.4. ◀

4.3 UniqueGreedySize
In this section, we present UniqueGreedySize, with pseudocode in Algorithm 3, derived
by combining UniqueGreedyFreq with the approach in Theorem 4.2 of Demaine et al. [9].
The purpose of this algorithm is to take a collection, C, with maximum set size d, an error
parameter, εd ∈ (0, 1), and another error parameter, ε̂d ∈ (0, 1), and return a B ⊆ C whose
unique coverage is at least a logarithmic factor of C’s coverage, where the factor depends
on d, εd, and ε̂d. We state this formally in Theorem 4.8 and give the proof for completeness;
in fact, our proof slightly generalizes the proof of Theorem 4.2 of Demaine et al. [9], by
allowing an arbitrary εd rather than fixing εd = 1/2.

UniqueGreedySize Overview. UniqueGreedySize first modifies C into a “minimal” col-
lection by discarding each set T that uniquely covers no element. Then it checks if C’s
size is at least an εd factor of its own coverage. If so, then it assigns C to the solution
B. Otherwise, it constructs a sub-instance on those elements of frequency at most d and
calls UniqueGreedyFreq on the sub-instance with error ε̂d to get B̂. Returned solution B
comprises each set S ∈ C whose intersection with Û was selected into B̂.

▶ Theorem 4.8. Let C denote a collection of sets, d denote the maximum size of a set in C,
εd ∈ (0, 1) denote an error parameter, and ε̂d ∈ (0, 1) denote an error parameter passed to
UniqueGreedyFreq. Then UniqueGreedySize returns a collection B ⊆ C satisfying

|ψ̃(B)| ≥ min(εd, (1− εd)β(d, ε̂d))|ψ(C)| , (9)

APPROX/RANDOM 2024

25:16 Maximum Unique Coverage on Streams

Algorithm 3 UniqueGreedySize.

Input: C: collection with maximum set size d, εd ∈ (0, 1): error parameter,
ε̂d ∈ (0, 1): error parameter used in UniqueGreedyFreq.

Output: B ⊆ C: subcollection satisfying |ψ̃(B)| ≥ min(εd, (1− εd)β(d, ε̂d))|ψ(C)|
where β(d, ε̂d) = 1/H⌈d(d−1)/ε̂d⌉ − ε̂d.

1 while T ← arg minS∈C |S ∩ ψ̃(C)| satisfies |T ∩ ψ̃(C)| = 0 do // Make C minimal
2 C ← C \ {T}
3 if |C| ≥ εd|ψ(C)| then
4 B ← C
5 else // Define instance on elements with freq.≤ d
6 Û ← {x ∈ ψ(C) : freqC(x) ≤ d}
7 Ĉ ← {S ∩ Û : S ∈ C}
8 B̂ ← UniqueGreedyFreq(Ĉ, ε̂d)
9 B ← ∅

10 for S ∩ Û ∈ B̂ do // Construct returned solution
11 B ← B ∪ {S}
12 return B

where β(d, ε̂d) = 1/(H⌈d(d−1)/ε̂d⌉)− ε̂d denotes the unique coverage ratio of UniqueGreedy-
Freq. Moreover, by assigning εd = (1/β(d, ε̂d)+1)−1, ε̂d = (c1 ln d)−1(2 ln d+2 ln ln d+c2)−1,
and appropriate constants to c1 and c2, we derive from Ineq. (9) the simpler inequality below.

|ψ̃(B)| ≥ 1
2 ln d+ o(log d) |ψ(C)| . (10)

Proof. We begin by proving Ineq. (9). Discarding sets from C that uniquely cover no elements,
as in Lines 1–2, does not affect ψ(C). So assume that C is minimal, i.e., every S ∈ C uniquely
covers at least one element. This means that |ψ̃(C)| ≥ |C|.

Now one of two cases must hold: (i) |C| ≥ εd|ψ(C)|; or (ii) |C| < εd|ψ(C)|. The final ratio
in Ineq. (9) is the minimum ratio achieved out of these two cases.

In case (i), UniqueGreedySize returns the solution B = C, by the success of the
condition in Line 3. Further, |ψ̃(B)| = |ψ̃(C)| ≥ |C| ≥ εd|ψ(C)| holds by the minimality of C.
Thus, B satisfies Ineq. (9) in case (i).

In case (ii), we show that the set Û of elements x ∈ ψ(C) with freqC(x) ≤ d, as in Line 6,
satisfies |Û | ≥ (1− εd)|ψ(C)|. We have

|U \ Û | < 1
d

∑
S∈C
|S| for all x ∈ U \ Û : freqC(x) > d

≤ |C| max. set size is d
< εd|ψ(C)| , case (ii)

|Û | > (1− εd)|ψ(C)| .

By the Line 7 definition, ψ(Ĉ) = Û , so |ψ(Ĉ)| ≥ (1 − εd)|ψ(C)|. Therefore, calling
UniqueGreedyFreq on Ĉ with maximum frequency d and error ε̂d, as in Line 8, gives
a collection B̂ satisfying |ψ̃(B̂)| ≥ β(d, ε̂d)|ψ(Ĉ)| ≥ β(d, ε̂d)(1 − εd)|ψ(C)|. Likewise, by
definition, in Lines 9–11, |ψ̃(B)| ≥ |ψ̃(B̂)|. Thus, B satisfies Ineq. (9) in case (2), proving
Theorem 4.8.

P. Cervenjak, J. Gan, S. W. Umboh, and A. Wirth 25:17

Ineq. (10). We first maximize min(εd, (1− εd)β(d, ε̂d)) with respect to εd by setting the
two arguments as equal; this makes the RHS of Ineq. (9) equal to εd = (1/β(d, ε̂d) + 1)−1.
Then, by assigning ε̂d = (c1 ln d)−1(2 ln d+ 2 ln ln d+ c2)−1 and appropriate constants to c1
and c2, UniqueGreedyFreq’s unique coverage ratio satisfies β(d, ε̂d) ≥ 1/(2 ln d+ o(log d))
as in Theorem 4.4. Further substituting this into the RHS of Ineq. (9) proves Ineq. (10).
This completes the proof of Theorem 4.8. ◀

5 Space Lower Bound for a (1.5 + o(1))/(ln k − 1)-Approximation

In this section, we prove the following theorem:

▶ Theorem 5.1. Let e2.5 ≤ k ≤ m, a = k lnm+ ln(k/0.05), and assume the universe size to
be n = k(k − 1)

∑k
t=1 ⌈a/t⌉. Then every constant-pass randomized streaming algorithm for

Max Unique Coverage that, with probability at least 0.95, has an approximation factor of
(3/2 + 3/

√
2k)/(Hk − 1), requires Ω(m/k2) space.

5.1 High-Level Ideas of the Reduction
Similar to other approaches [16, 15], we prove our space lower bound by reducing the
problem of k-player Set Disjointness (with the unique intersection promise) in the one-way
communication model, denoted by Disj, to Max Unique Coverage in the stream model.

Set Disjointness in the One-Way Communication Model. In the one-way communication
model, players must take turns in some fixed order to send a message to the player next in
order, i.e., the jth player can only send a message to the (j + 1)th player. There can be p ≥ 1
rounds of communication, where a single round is completed once every player has taken
their turn. The last player can send a message back to the 1st player at the end of a round if
there is a next round.

In an instance of Disj, each player j ∈ [k] is given a set of integers Dj ⊆ [m]. Moreover,
it is promised that only two kinds of instances can occur:

NO instance. All sets Dj are pairwise disjoint.
YES instance. There is a unique integer i∗ ∈ [m] such that, for all j ∈ [k], i∗ ∈ Dj .

The goal then is for the kth player (in the final round) to correctly answer, with probability
at least 0.9, whether the given sets form a YES or NO instance.

The communication complexity of Disj in the p-round one-way communication model is
Ω(m/k), even for randomized protocols and even when the players can use public random-
ness [5]. Thus, as there are ≤ pk messages, every (randomized) protocol for Disj must have
at least one message of size Ω(m/(pk2)) in the worst case.

Reduction Overview. Given an instance of Disj, the main goal of the reduction, with
parameter a, is for the players to construct an instance of Max Unique Coverage in a
stream such that if they were given a NO instance of Disj, the optimal unique coverage is less
than ak2(1.5+o(1)) (with high probability); whereas if the players were given a YES instance
of Disj, the optimal unique coverage is at least ak2(Hk−1). The ratio of these optimal unique
coverages is less than (1.5 + o(1))/(Hk − 1), so the players can use a (1.5 + o(1))/(Hk − 1)-
approximation streaming algorithm on the Max Unique Coverage instance to distinguish
between a NO and YES instance. By a standard argument, this implies a protocol for Disj
which involves each player sending the memory of the streaming algorithm in a message to

APPROX/RANDOM 2024

25:18 Maximum Unique Coverage on Streams

the next player. A constant-pass O(s)-space streaming algorithm implies a protocol with a
maximum message size of O(s) in constant rounds of communication where each pass of the
streaming algorithm takes one round. Thus, a (1.5 +o(1))/(Hk−1)-approximation streaming
algorithm for Max Unique Coverage requires Ω(m/k2) space.

Intuition of Max Unique Coverage Construction. Here, we give the intuition for construct-
ing the streaming instance of Max Unique Coverage that achieves the optimal unique
coverages above, with details in the proof of Theorem 5.1.

Let the universe of the Max Unique Coverage instance be U = U1 ∪ · · · ∪ Uk, where
U1, . . . , Uk are k disjoint sub-universes such that |Ut| = k(k− 1)⌈a/t⌉ (for a sufficiently large
a as in Theorem 5.1). Then, for each i ∈ [m], each player j constructs Sij ⊆ U such that
Si1, . . . , S

i
k satisfy the following properties:

1. Each set Sij covers t/k proportion of Ut for all t.
2. For each t ∈ [k], the sets Si1, . . . , Sik partition a proportion, qt ∈ [0, 1], of Ut while having a

common intersection in the remaining (1− qt) proportion of Ut. I.e., sets with identical i
form a “sunflower”, with their overlap concentrated in the sunflower’s “kernel”.

3. The choice of elements to be covered by Sij are independent and uniform random with
respect to i ∈ [m].

The above construction ensures that (with high probability) every collection of ℓ ∈ [k]
sets, Si1j1

, . . . , Siℓjℓ
, with distinct i1, . . . , iℓ has a unique coverage less than ak2(1.5+o(1)) (with

high probability); whereas a collection of ℓ = k sets with identical i1, . . . , iℓ has a unique
coverage of at least ak2(Hk − 1). Observe that k ≥ e2.5 ensures that Hk − 1 > 1.5 + o(1).

Finally, to construct the streaming instance of Max Unique Coverage, each player j
inserts Sij into the stream iff i ∈ Dj . This means that, given a NO instance, every set Sij in
the stream has a distinct i; whereas given a YES instance, there exists a collection of ℓ = k

sets in the stream all indexed by i∗, the unique integer contained in all D1, . . . , Dk. This
results in the optimal unique coverages for the NO and YES instances as required.

5.2 Proof of Theorem 5.1
We show a reduction from Disj to Max Unique Coverage. Assume without loss of
generality that the sets Dj are padded so that |D1∪ · · ·∪Dk| ≥ m/4 ≥ m/k2 holds for k ≥ 2.

Construction of Max Unique Coverage Instance. First, the players define the Max
Unique Coverage universe as U = U1 ∪ · · · ∪ Uk, where U1, . . . , Uk are k disjoint sub-
universes such that |Ut| = k(k−1)⌈a/t⌉. Observe that, as per the assumption in Theorem 5.1,
we have n = |U | =

∑k
t=1 |Ut| = k(k − 1)

∑k
t=1 ⌈a/t⌉.

The players now construct the Max Unique Coverage sets so that they satisfy the
properties given in the overview. For each i ∈ [m] and t ∈ [k], the players define Ũ it ⊆ Ut as
an independent and uniformly chosen random subset of size qt = (k − t)/(k − 1) proportion
of Ut; they then independently and uniformly-at-random partition Ũ it into k equally sized
sets, P it,1, . . . , P it,k; the players agree on all of these choices using public randomness. For
example, the players obtain a common random permutation of Ut and pick the corresponding
parts in order. Note that Ũ it can be divided into k equal sets since |Ũ it |/k is an integer, viz.

|Ũ it |
k

= qt|Ut|
k

= (k − t)k(k − 1)
k(k − 1)

⌈a
t

⌉
= (k − t)

⌈a
t

⌉
.

P. Cervenjak, J. Gan, S. W. Umboh, and A. Wirth 25:19

Then, for each i ∈ [m], each player j defines their set Sij such that, for each t ∈ [k], it covers
the jth set in the partition of Ũ it , namely P it,j ; and it covers all of Ut \ Ũ it . More precisely,

Sij =
k⋃
t=1

[
P it,j ∪ (Ut \ Ũ it)

]
.

Observe Claim 5.2, which we use in Claim 5.4 later.

▷ Claim 5.2. For each i ∈ [m], j ∈ [k], and t ∈ [k], Sij covers t/k proportion of Ut.

Proof. The proportion of Ut that Sij covers is |Sij ∩Ut|/|Ut|, which we prove to be t/k below.

|Sij ∩ Ut|
|Ut|

=
|P it,j |
|Ut|

+ |Ut \ Ũ
i
t |

|Ut|
= |Ũ it |
k|Ut|

+ |Ut \ Ũ
i
t |

|Ut|
= qt
k

+ 1− qt

= k − t
k(k − 1) + 1− k − t

k − 1 = k − t
k(k − 1) + t− 1

k − 1

= k − t+ kt− k
k(k − 1) = kt− t

k(k − 1) = t(k − 1)
k(k − 1) = t

k
. ◁

To complete the construction, each player j inserts set Sij into the stream iff i ∈ Dj .
There are Θ(m) sets inserted into the stream since m/4 ≤ |D1 ∪ · · · ∪Dk| ≤ m.

Upper Bound on Optimal Unique Coverage in a NO Instance. Next, we prove Lemma 5.3,
which implies the required upper bound on the optimal unique coverage in a NO instance.
We say that a collection Ldi = {Si1j1

, . . . , Siℓjℓ
} with distinct i1, . . . , iℓ is a player-distinct

collection; we also say that Ldi is feasible if it contains at most k sets. Note that in the Max
Unique Coverage instance generated from a NO instance of Disj, every feasible solution
is a player-distinct collection. Thus, it suffices to upper bound the unique coverage of every
feasible player-distinct collection.

▶ Lemma 5.3. With probability at least 0.95, every feasible player-distinct collection Ldi
satisfies |ψ̃(Ldi)| < ak2(3/2 + 3/

√
2k).

Proof. First, we upper bound E[|ψ̃(Ldi)∩Ut|] for every feasible player-distinct collection, Ldi,
and for every sub-universe Ut (Claim 5.4), then we use Hoeffding’s inequality to prove an
upper bound on |ψ̃(Ldi) ∩ Ut| that with high probability, holds simultaneously for every Ldi
and Ut (Claim 5.5). Summing the bound in Claim 5.5 over all k sub-universes suffices.

For a feasible player-distinct collection Ldi, let Xx,Ldi be the random variable such that
Xx,Ldi = 1 if element x ∈ ψ̃(Ldi), and Xx,Ldi = 0 otherwise. This means that for each
sub-universe Ut, we have

|ψ̃(Ldi) ∩ Ut| =
∑
x∈Ut

Xx,Ldi ; and so |ψ̃(Ldi)| =
k∑
t=1

∑
x∈Ut

Xx,Ldi . (11)

▷ Claim 5.4 (*). For each feasible player-distinct Ldi of ℓ ∈ [k] sets and each sub-universe
Ut, it holds that E

[
|ψ̃(Ldi) ∩ Ut|

]
≤ k(a+ t)ℓ (1− t/k)ℓ−1.

▷ Claim 5.5 (*). With probability at least 0.95, for every feasible player-distinct Ldi of
ℓ ∈ [k] sets and every sub-universe Ut, it holds that

|ψ̃(Ldi) ∩ Ut| < k(a+ t)ℓ
(

1− t

k

)ℓ−1
+ k(a+ t)

(2t)1/2 .

APPROX/RANDOM 2024

25:20 Maximum Unique Coverage on Streams

Finally, summing the inequality of Claim 5.5 over the k sub-universes gives an upper
bound on |ψ̃(Ldi)| that holds simultaneously for every feasible player-distinct collection Ldi
with high probability. We finalize the proof of Lemma 5.3 in Claim 5.6.

▷ Claim 5.6 (*). With probability at least 0.95, |ψ̃(Ldi)| < ak2
(

3/2 + 3/
√

2k
)

. ◀

Lower Bound on Optimal Unique Coverage in a YES Instance. Lemma 5.7 supports the
required lower bound on the optimal unique coverage in a YES instance.

▶ Lemma 5.7. For all i, collection Lid = {Si1, . . . , Sik} satisfies |ψ̃(Lid)| ≥ ak2(Hk − 1).

Proof. For each t ∈ [k], Lid uniquely covers |Ũ it | by construction. Below, the inequality
holds since |Ut| = k(k − 1)⌈a/t⌉ ≥ ak(k − 1)/t.

|ψ̃(Lid)| =
k∑
t=1
|Ũ it | =

k∑
t=1

qt|Ut| ≥
k∑
t=1

k − t
k − 1

ak(k − 1)
t

=
k∑
t=1

k − t
t

ak

= ak
k∑
t=1

(
k

t
− 1
)

= ak

(
k

k∑
t=1

1
t
− k

)
= ak2 (Hk − 1) . ◀

To conclude, when the players reduce from a NO instance of Disj, with probability at
least 0.95, the optimal unique coverage is less than ak2(3/2 + 3/

√
2k), since the streamed

sets are player distinct and by Lemma 5.3; whereas when they reduce from a YES instance,
the optimal unique coverage is at least ak2(Hk − 1) since the sets Si∗1 , . . . , S

i∗

k are in the
stream and by Lemma 5.7. The required optimal unique coverage in a NO instance fails with
probability at most 0.05. Let α = (3/2 + 3/

√
2k)/(Hk − 1). Given a randomized O(s)-space

α-approximation streaming algorithm with failure probability at most 0.05, the players can
run this algorithm on the Max Unique Coverage instance to distinguish between a NO
or YES instance with failure probability at most 0.1. This implies a protocol for Disj with
maximum message size O(s). Thus, a constant-pass randomized α-approximation streaming
algorithm with success probability at least 0.95 requires Ω(m/k2) space.

6 Subsampling for the Data Stream

Here we outline the subsampling approach from [15]. Given a data stream instance of Max
Unique Coverage, it is possible to construct a number of subsampled instances by sampling
the universe U at varying rates. By running an algorithm on these subsampled instances in
parallel, we lose only a small error in approximation w.h.p. while only needing to store sets
of size O(k logm/ε2). We summarize the overall approach in Lemma 2.1 and give a proof
sketch.

Proof Sketch of Lemma 2.1. Given an instance of Max Unique Coverage with universe
U and collection o sets V, let v be a guess of the optimal solution value; each subsampled
instance corresponds to some value of v (we calculate these guesses shortly). Let h : U →
{0, 1} be a hash function that is Ω(k logm/ε2)-wise independent such that

Pr[h(x) = 1] = p = ck logm
ε2v

,

where c is a sufficiently large constant. Let U ′ = {x ∈ U : h(x) = 1} be the subsampled
universe, S′ = S ∩ U ′, V ′ = {S′ : S ∈ V} be the subsampled subsets, and OPT′ be the
optimal unique coverage in the subsampled instance. Further, let B′ be a solution from V ′

P. Cervenjak, J. Gan, S. W. Umboh, and A. Wirth 25:21

and B be the corresponding solution from the original collection V . Then Lemma 6.1 below
(a restatement of [15, Lemma 23]) shows that, in a subsampled instance where v ≤ OPT,
w.h.p., the loss in approximation is at most 2ε.

▶ Lemma 6.1 ([15], Lemma 23). If v ≤ OPT, then with probability at least 1− 1/ poly(m),
we have that

(1 + ε)pOPT ≥ OPT′ ≥ (1− ε)pOPT .

Furthermore, for some α ∈ (0, 1), if B′ ⊆ V ′ satisfies |ψ̃(B′)| ≥ α(1 − ε)pOPT, then
|ψ̃(B)| ≥ (α− 2ε)OPT.

We guess v = 2i for each i ∈ [⌈log2 n⌉] and construct a subsampled instance for each v in
parallel. Then, in the particular subsampled instance where OPT/2 ≤ v ≤ OPT, Lemma 6.1
implies the following upper bound on every set size |S′| with probability 1− 1/ poly(m).

|S′| ≤ OPT′ ≤ (1+ε)pOPT = (1+ε)ck logm
ε2v

OPT ≤ (1+ε)2ck logm
ε2 = O

(
k logm
ε2

)
.

To ensure that we only ever store sets of size O(k logm/ε2), we terminate every subsampled
instance that contains a set S′ with |S′| > (2ck logm/ε2)(1 + ε). W.h.p., this does not
terminate the subsampled instance where OPT/2 ≤ v ≤ OPT by the above upper bound on
|S′| for every S′ in this particular instance.

This means that, out of the nonterminated subsampled instances, we should select the one
with the smallest v and return the corresponding solution, giving an (α− 2ε)-approximation
for the original instance w.h.p. (this works even if the smallest nonterminated guess satisfies
v < OPT/2 since Lemma 6.1 holds for all v ≤ OPT).

The overall space complexity, ⌈log2 n⌉ · s ·O(k logm log n/ε2), follows from the number
of guesses of v and, for each guess, the algorithm storing at most s sets of size O(k logm/ε2)
and using O(log n) bits to store each element. ◀

7 Conclusions

We are pleased to present a suite of algorithms, and a streaming lower bound, for Max
Unique Coverage. The component algorithms that build a solution to Max Unique
Coverage from a solution to Max Coverage serve to support a fixed-parameter tractable
approximation scheme (FPT-AS). The lower bound shows that Ω(m/k2) space is required
even to get within a (1.5 + o(1))/(ln k − 1) factor of optimal.

A plasuible future direction would be to reduce, or indeed eliminate, the role of the upper
bound on the unique coverage ratio, ϕ, in the kernel size in a FPT-AS. This would match
the kernel size used in existing FPT-ASs for Max Coverage, but may not be possible due
to the inherent hardness of Max Unique Coverage. Another direction would be proving a
streaming lower bound with a tighter approximation threshold. This may require a reduction
from a different communication problem, rather than the renowned k-player Set Disjointess.

References
1 Sepehr Assadi. Tight space-approximation tradeoff for the multi-pass streaming set cover

problem. In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, pages 321–335, 2017.

2 Giorgio Ausiello, Nicolas Boria, Aristotelis Giannakos, Giorgio Lucarelli, and V.T̃h Paschos.
Online maximum k-coverage. Discrete Applied Mathematics, 160(13-14):1901–1913, 2012.

APPROX/RANDOM 2024

25:22 Maximum Unique Coverage on Streams

3 MohammadHossein Bateni, Hossein Esfandiari, and Vahab S. Mirrokni. Almost optimal
streaming algorithms for coverage problems. In Christian Scheideler and MohammadTaghi
Hajiaghayi, editors, Proceedings of the 29th ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA 2017, Washington DC, USA, July 24-26, 2017, pages 13–23. ACM,
2017. doi:10.1145/3087556.3087585.

4 Édouard Bonnet, Vangelis Th Paschos, and Florian Sikora. Parameterized exact and approxima-
tion algorithms for maximum k-set cover and related satisfiability problems. RAIRO-Theoretical
Informatics and Applications-Informatique Théorique et Applications, 50(3):227–240, 2016.

5 Amit Chakrabarti, Subhash Khot, and Xiaodong Sun. Near-optimal lower bounds on the
multi-party communication complexity of set disjointness. In 18th IEEE Annual Conference
on Computational Complexity, 2003. Proceedings., pages 107–117. IEEE, 2003.

6 Rajesh Chitnis and Graham Cormode. Towards a theory of parameterized streaming algorithms.
In 14th International Symposium on Parameterized and Exact Computation, 2019.

7 Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Hajiaghayi, Andrew
McGregor, Morteza Monemizadeh, and Sofya Vorotnikova. Kernelization via sampling with
applications to finding matchings and related problems in dynamic graph streams. In Pro-
ceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete algorithms, pages
1326–1344. SIAM, 2016.

8 Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Hajiaghayi, and
Morteza Monemizadeh. New streaming algorithms for parameterized maximal matching
& beyond. In Proceedings of the 27th ACM symposium on Parallelism in Algorithms and
Architectures, pages 56–58, 2015.

9 Erik D. Demaine, Uriel Feige, MohammadTaghi Hajiaghayi, and Mohammad R. Salavatipour.
Combination can be hard: Approximability of the unique coverage problem. SIAM Journal
on Computing, 38(4):1464–1483, 2008.

10 Erik D. Demaine, Piotr Indyk, Sepideh Mahabadi, and Ali Vakilian. On streaming and
communication complexity of the set cover problem. In Fabian Kuhn, editor, Distributed
Computing - 28th International Symposium, DISC 2014, Austin, TX, USA, October 12-15,
2014. Proceedings, volume 8784 of Lecture Notes in Computer Science, pages 484–498. Springer,
2014. doi:10.1007/978-3-662-45174-8_33.

11 Venkatesan Guruswami and Euiwoong Lee. Nearly optimal NP-hardness of unique coverage.
SIAM Journal on Computing, 46(3):1018–1028, 2017.

12 Sariel Har-Peled, Piotr Indyk, Sepideh Mahabadi, and Ali Vakilian. Towards tight bounds for
the streaming set cover problem. In PODS, pages 371–383. ACM, 2016.

13 Chien-Chung Huang and François Sellier. Matroid-constrained maximum vertex cover: Ap-
proximate kernels and streaming algorithms. In SWAT 2022, 2022.

14 Pasin Manurangsi. A note on max k-vertex cover: Faster FPT-AS, smaller approximate kernel
and improved approximation. In 2nd Symposium on Simplicity in Algorithms (SOSA 2019).
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.

15 Andrew McGregor, David Tench, and Hoa T. Vu. Maximum Coverage in the Data Stream
Model: Parameterized and Generalized. In 24th International Conference on Database Theory,
2021.

16 Andrew McGregor and Hoa T. Vu. Better streaming algorithms for the maximum coverage
problem. Theory of Computing Systems, 63(7):1595–1619, 2019.

17 Neeldhara Misra, Hannes Moser, Venkatesh Raman, Saket Saurabh, and Somnath Sikdar. The
parameterized complexity of unique coverage and its variants. Algorithmica, 65:517–544, 2013.

18 Barna Saha and Lise Getoor. On maximum coverage in the streaming model & application
to multi-topic blog-watch. In Proceedings of the 2009 siam international conference on data
mining, pages 697–708. SIAM, 2009.

19 François Sellier. Parameterized matroid-constrained maximum coverage. In 31st Annual
European Symposium on Algorithms (ESA 2023). Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2023.

https://doi.org/10.1145/3087556.3087585
https://doi.org/10.1007/978-3-662-45174-8_33

P. Cervenjak, J. Gan, S. W. Umboh, and A. Wirth 25:23

20 Piotr Skowron. FPT approximation schemes for maximizing submodular functions. Information
and Computation, 257:65–78, 2017. doi:10.1016/j.ic.2017.10.002.

21 Piotr Skowron and Piotr Faliszewski. Fully proportional representation with approval ballots:
Approximating the MaxCover problem with bounded frequencies in FPT time. In Proceedings
of the AAAI Conference on Artificial Intelligence, pages 2124–2130, 2015.

22 Huiwen Yu and Dayu Yuan. Set coverage problems in a one-pass data stream. In Proceedings
of the 2013 SIAM international conference on data mining, pages 758–766. SIAM, 2013.

APPROX/RANDOM 2024

https://doi.org/10.1016/j.ic.2017.10.002

Improved Streaming Algorithm for the Klee’s
Measure Problem and Generalizations ∗

Mridul Nandi r⃝ #

Indian Statistical Institute, Kolkata, India

N. V. Vinodchandran r⃝ #

University of Nebraska, Lincoln, USA

Arijit Ghosh r⃝ #

Indian Statistical Institute, Kolkata, India

Kuldeep S. Meel r⃝ #

University of Toronto, Canada

Soumit Pal r⃝ #

Indian Statistical Institute, Kolkata, India

Sourav Chakraborty #

Indian Statistical Institute, Kolkata, India

Abstract
Estimating the size of the union of a stream of sets S1, S2, . . . , SM where each set is a subset of a
known universe Ω is a fundamental problem in data streaming. This problem naturally generalizes
the well-studied F0 estimation problem in the streaming literature, where each set contains a
single element from the universe. We consider the general case when the sets Si can be succinctly
represented and allow efficient membership, cardinality, and sampling queries (called a Delphic
family of sets). A notable example in this framework is the Klee’s Measure Problem (KMP), where
every set Si is an axis-parallel rectangle in d-dimensional spaces (Ω “ r∆s

d where r∆s :“ t1, . . . , ∆u

and ∆ P N). Recently, Meel, Chakraborty, and Vinodchandran (PODS-21, PODS-22) designed a
streaming algorithm for pϵ, δq-estimation of the size of the union of set streams over Delphic family
with space and update time complexity O

´

log3 |Ω|

ε2 ¨ log 1
δ

¯

and rO
´

log4 |Ω|

ε2 ¨ log 1
δ

¯

, respectively.
This work presents a new, sampling-based algorithm for estimating the size of the union of

Delphic sets that has space and update time complexity rO
´

log2 |Ω|

ε2 ¨ log 1
δ

¯

. This improves the space
complexity bound by a log |Ω| factor and update time complexity bound by a log2

|Ω| factor.
A critical question is whether quadratic dependence of log |Ω| on space and update time com-

plexities is necessary. Specifically, can we design a streaming algorithm for estimating the size of
the union of sets over Delphic family with space and complexity linear in log |Ω| and update time
polyplog |Ω|q? While this appears technically challenging, we show that establishing a lower bound
of ωplog |Ω|q with polyplog |Ω|q update time is beyond the reach of current techniques. Specifically,
we show that under certain hard-to-prove computational complexity hypothesis, there is a streaming
algorithm for the problem with optimal space complexity Oplog |Ω|q and update time polyplogp|Ω|qq.
Thus, establishing a space lower bound of ωplog |Ω|q will lead to break-through complexity class
separation results.

2012 ACM Subject Classification Theory of computation Ñ Sketching and sampling

Keywords and phrases Sampling, Streaming, Klee’s Measure Problem

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.26

Category APPROX

∗ The authors chose to abandon the traditional alphabetical ordering of authors in favor of a randomized
ordering, marked by r⃝. The publicly verifiable documentation of this randomization can be found at:
https://tinyurl.com/2mb96dea

© Mridul Nandi, N. V. Vinodchandran, Arijit Ghosh, Kuldeep S. Meel, Soumit Pal, and
Sourav Chakraborty;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 26; pp. 26:1–26:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mridul@isical.ac.in
mailto:vinod@unl.edu
mailto:arijit.iitkgpster@gmail.com
mailto:meel@cs.toronto.edu
mailto:soumitpal378@gmail.com
mailto:sourav@isical.ac.in
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.26
https://tinyurl.com/2mb96dea
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

M.Nandi, N. V. Vinodchandran, A. Ghosh, K. S. Meel, S. Pal, and S. Chakraborty 26:1

Funding N. V. Vinodchandran r⃝: Vinodchandran’s research is partially supported by NSF grants
2130608 and 2342244.
Arijit Ghosh r⃝: Arijit Ghosh is partially supported by the Science & Engineering Research Board
of the DST, India, through the MATRICS grant MTR/2023/001527.
Kuldeep S. Meel r⃝: This work was supported in part by National Research Foundation Singapore
under its NRF Fellowship Programme [NRF-NRFFAI1-2019- 0004].

Acknowledgements We acknowledge the support of the Natural Sciences and Engineering Research
Council of Canada (NSERC) [RGPIN-2024-05956].

1 Introduction

The past three decades bear witness to significant developments in the field of data streaming.
The widespread adoption of computing systems has led to the era of big data, wherein the
ubiquity of sensors has allowed the collection of a large amount of data. Consequently, the
data streaming model and the design of algorithms that balance time and space efficiency in
this model are of significant interest to theoreticians and practitioners alike.

In this paper, we focus on one of the fundamental problems in data streaming: Given
a stream of sets S1, S2, . . . SM where each Si is a subset of a universe Ω, output an pε, δq-
estimate (see the Definition 5) of the size of the union of the sets, that is, |

Ť

i Si|. Note that
when sets are singletons, the problem boils down to the estimation of the zeroth frequency
moment (F0) of the stream of items and is well-studied in streaming literature. In particular, a
long line of work culminated in the development of algorithms for F0-estimation with optimal
space complexity Oplog |Ω| ` 1

ε2 q and Op1q update time complexity [16] (for a constant error
probability δ). In this work, we will focus on the Delphic family of sets which is a general
framework for computational problems over abstract sets.

▶ Definition 1 (Delphic family). Let Ω be a discrete universe. A set S Ď Ω belongs to a
Delphic family1 if the following queries can be done in Oplog |Ω|q time: (1) Membership:
Given any x P Ω check if x P S, (2) Cardinality: Determine the size of S, that is |S|, (3)
Sampling: Draw a uniform random sample from S.

The notion of the Delphic family is general enough to capture several well-known problems,
such as Klee’s Measure Problem (KMP) [23, 25], test coverage estimation, and DNF counting.
For example, the streaming version of Klee’s Measure Problem (KMP) refers to the case
where the sets in a stream are represented by an axis-parallel rectangle in r∆sd where ∆
is a natural number. KMP is a naturally occurring and fundamental topic that has been
extensively researched in computational geometry [4, 6, 8, 10, 9, 12, 14, 17, 21]. While
Delphic Sets was coined in [19], the notion has been implicit in prior work stretching to the
early 1980’s. We are interested in designing streaming algorithms for estimating the size of
the union of sets over a Delphic family. We also call this problem F0 estimation problem
over Delphic sets.

▶ Problem 2. Given a stream S “ xS1, S2, . . . , SM y wherein each Si Ď Ω belongs to a

Delphic family, and 0 ă ε ă 1 output an pε, 1{3q2 approximation of F0pSq :“
ˇ

ˇ

ˇ

ˇ

M
Ť

i“1
Si

ˇ

ˇ

ˇ

ˇ

.

1 As observed in [18], every Delphic set can be represented by a circuit of size Oplog |Ω| log log |Ω|q.
2 c is pε, 1{3q approximation of F0pSq if PrrF0pSqp1 ´ εq ď c ď F0pSqp1 ` εqs ě 2{3. Note that the choice

of 1{3 is arbitrary. The probability 1{3 can be boosted to an arbitrary δ by using standard boosting
technique.

APPROX/RANDOM 2024

26:2 Improved Streaming Algorithm for the Klee’s Measure Problem and Generalizations

Table 1 In the table n :“ log |Ω|, m :“ log M and c :“ Op1q. The Big-Oh notation (O) in the
above comparison table shows only dependency on n and m and hides the polyp1{ε, 1{δq factors on
ε and δ.

Comparison of Complexity Bounds with Previous Works

Algorithm Technique Type Set Type Space Complexity Update Time

[22] Hashing based KMP d “ 1 Opε´2
¨ nq Opnq

[25] Hashing based KMP d ě 2 Opε´1
¨ d ¨ nq

c Opnd
q

[19] Sampling based Delphic Opε2
¨ m ¨ nq Opε2

¨ log m ¨m2
¨nq

[18] Sampling based Delphic Opε´2
¨ n3

q Opε´2
¨ n4

q

This Paper Sampling based Delphic Opε´2
¨ n2

q Opε´2
¨ n2

q

The design goal is to optimize the algorithm’s update time and space complexity, wherein
the update time complexity refers to the amount of time spent processing an item (a set in
our case) of the stream.

1.1 Prior Work and Technical Challenges

Since the work of Alon, Matias, and Szegedy [1], streaming algorithms gained considerable
interest from algorithm design community. However, the problem of estimating distinct
elements in a stream of items has been investigated prior to the work of [1]. In particular,
the seminal work of Flajolet and Martin [11] pioneered a sketching-based framework for
streaming algorithms for the case wherein every element of the stream is a singleton. The
sketching-based techniques crucially rely on the use of pairwise independent hash functions.
In the early 2000s, the sketching-based approach emerged as a principal technical tool in
the design of streaming algorithms. Particularly for F0 estimation of single-item streams, a
series of hash-function-based algorithms led to the development of both space-efficient and
update-time optimal algorithms [16, 5].

F0 estimation over set streams has garnered interest from researchers due to the natural
extension from singletons to sets. Notably, Pavan and Tirthapura [22] and Sun and Poon [24]
explored range-efficient F0 estimation, which addresses a specific case of the KMP in one
dimension. For the broader KMP, Tirthapura and Woodruff [25] developed an algorithm
with optimal space complexity. However, the update time for their algorithm was Op|Ω|q,
which is exponential in terms of set representation. Subsequently, Pavan, Vinodchandran,
Bhattacharyya, and Meel [23] proposed an alternative technique, yet it similarly faced an
update time complexity of Op|Ω|q.

All the above-mentioned algorithms employed hash function based approaches and failed
to yield an algorithm with update time complexity polynomial in representation of sets for
the general case of Delphic sets. The primary technical barrier to such approaches arises from
the fact that sketching-based techniques crucially rely on checking whether for a function h,
randomly chosen from a pairwise independent hash family, there exists an element x P Si

such that hpxq “ 0. Nevertheless, whether a pairwise independent hash family exists that
supports such checking in time polyplog |Ω|q is unknown.

In [19], the authors introduced a sampling-based technique for F0 estimation that eschews
traditional hash functions. Their method involves maintaining a bucket X , where each stream
element is selected independently with probability p. To handle element repetitions, new
elements from a set Si replace those in X , with all elements in Si sampled independently

M.Nandi, N. V. Vinodchandran, A. Ghosh, K. S. Meel, S. Pal, and S. Chakraborty 26:3

at the same probability p. To manage the bucket’s size, elements are discarded with a
probability of 1{2 once a threshold based on ε´1 is reached, halving p simultaneously. This
approach yields a space complexity of Õ

´

log |Ω|¨log M
ε2

¯

, with a logarithmic dependence on the
stream size M . In a subsequent work [18], the authors modified this approach by allowing
p to vary, not just decrease. Each tuple in X then included the element and its sampling
probability at arrival. This adjustment removed the dependency on M , leading to space
complexity of Õ

´

log3
|Ω|

ε2

¯

and update time complexity of Õ
´

log4
|Ω|

ε2

¯

. This contrasts with
the optimal algorithm for singleton sets Si by Kane, Nelson, and Woodruff, which has a
space complexity of Oplog |Ω| ` 1

ε2 q.
The above-mentioned line of research leads to the following significant open question:

Can we design algorithm for F0 estimation over Delphic sets with space complexity
Oplog |Ω|q and update-time complexity polyplog |Ω|q (ignoring dependency on ε and δ)?

Remark: We note that if we have no restriction on the update time complexity, then the
problem over Delphic sets reduces to F0 estimation of singleton streams: when a set Si

arrives, we can cycle through all elements in the universe Ω and use membership testing
only to stream elements of Si. This leads to an algorithm with optimal space complexity of
O
`

logp|Ω|q ` ε´2˘ but with update time that depends linearly on |Ω|. An asymptotic lower
bound of Ω

`

logp|Ω|q ` ε´2˘ is known for the space complexity [15, 1].
It is worth observing that if we were to follow the approach suggested in [19, 18], then

ensuring that the value of p at least 1
ε2¨F0pSq

with sufficiently high probability does entail the
space complexity of Õp

log3
|Ω|

ε2 q. Therefore, an improvement in space complexity must require
a new approach.

1.2 Our Results
As our first contribution, we report progress towards the above question. In particular, we
establish the following:

▶ Theorem 3 (Main Theorem). There is a streaming algorithm that given a stream S “

xS1, S2, . . . , SM y wherein each Si belongs to Delphic family, and 0 ă ε ă 1 outputs an

pε, 1{3q-estimation of
ˇ

ˇ

ˇ

ˇ

ŤM
i“1 Si

ˇ

ˇ

ˇ

ˇ

with space complexity O
´

log2
|Ω|

ε2 ¨ log 1
ε

¯

and update time

complexity O
´

log2
|Ω|

ε2 ¨ log3 1
ε

¯

.

The above theorem improves the space complexity by a factor of log |Ω| and the update
time complexity by a factor of log2

|Ω|. We note that for special cases such as KMP, we
can bring the update time complexity factor of log3 1

ε to log 1
ε , resulting in update time

complexity of O
´

d2 log2 ∆
ε2 ¨ log 1

ε

¯

where Ω “ r∆sd.
Theorem 3 leads to the natural question of whether further improvement is possible

towards solving the open question of designing a streaming algorithm for F0 estimation over
Delphic sets with space complexity O plog |Ω|q (ignoring the dependence on ε and δ) and
update time complexity significantly smaller than |Ω|. This seems hard and will require
new techniques: since storing a single element takes Oplog |Ω|q space implies that one can
only store a constant number of elements at any point of time. This appears to be a major
technical restriction for sampling-based approaches like our algorithm in Theorem 3 and
we even conjecture that ωplog |Ω|q space is required if we restrict the update time to be
polyplog |Ω|q. Unfortunately, establishing such a lower bound has a major computational

APPROX/RANDOM 2024

26:4 Improved Streaming Algorithm for the Klee’s Measure Problem and Generalizations

complexity bottleneck. In particular, we show that establishing a lower bound on space
other than the lower bound known for computing F0 for singleton streams will lead to major
separation result in computational complexity.

NTISP(poly,LINSPACE) is the class of language accepted by non-deterministic Turning
machines in polynomial time and linear space simultaneously. Likely, DTISP(poly,LINSPACE)
is the class of languages accepted by deterministic Turing machines in polynomial time and
linear space simultaneously. Whether or not NTISP(poly, LINSPACE) = DTISP(poly,
LINSPACE) is an open problem in complexity theory. If NTISP(poly,LINSPACE) =
DTISP(poly,LINSPACE) then P=NP. The other implication is yet to be discovered. However,
separating NTISP(poly, LINSPACE) from DTISP(poly,LINSPACE) is a hard open question.
The best-known lower bound for time-space complexity classes is that SAT (which is in
NTISP(poly,LINSPACE)) cannot be solved in DTISP(n1.8, opnq) [26]. Any improvement on
this will be a major result in complexity theory. We show the following:

▶ Theorem 4. There is a streaming algorithm, DelphicWithNP, that given, a stream S “

xS1, ¨ ¨ ¨ , SM y, where each set Si Ď Ω is a member of a Delphic family, 0 ă ε, and an oracle
access to a language belonging to NTISP(poly,LINSPACE), computes a pε, 1{3q-approximation
of F0pSq. Moreover, DelphicWithNP has the following properties:
(1) it takes Oplog |Ω| ¨ ε´2q space and polyplog |Ω|, 1

ε q update time,
(2) the queries it makes to the oracle are of size Oplog |Ω| ¨ ε´2q .

Thus, if NTISP(poly,LINSPACE) = DTISP(poly,LINSPACE), there is an algorithm
(without oracle calls) for pε, 1{3q-estimation of F0 of a set stream over Delphic family with
Oplog |Ω| ¨ ε´2q space and polyplog |Ω|, 1{εq update time.

Thus, for constant ε, we get a space optimal algorithm for estimating F0 over Delphic set
streams as log |Ω| space is required even in the singleton case. In fact, the above theorem is
true for a very relaxed version of Delphic sets where we only require one of the conditions
for membership in Delphic sets to be decided in time linear in the representation of the set.
Theorem 4 implies that establishing a space lower bound of ωplog |Ω|q for estimating F0pSq
of Delphic set streams with polyplog |Ω|q will lead to proving NTISP(poly,LINSPACE) ‰

DTISP(poly,LINSPACE), thus resolving a significant lower bound in complexity theory.
Our work leaves a tantalizing open question:

What is the optimal space complexity for F0 estimation of set streams over
Delphic family with polyplog |Ω|q update time complexity?

1.3 Technical Overview
Key Ideas for Theorem 3
The high-level idea is to maintain a bucket for every level k P t1, . . . , log |Ω|u such that the
bucket, X pkq, at level k consists of elements from

Ť

i Si that were independently selected with
a probability of 2´k. To handle repetitions, i.e., when a new set Si arrives, we remove all the
elements of X pkq that are present in Si. This process ensures that the event of an element s

being in X pkq at the end of the stream depends only on whether s was independently chosen
from the set Si, where Si is the last set containing s, and there is no Sj with j ą i such that
s P Sj .

To bound the space complexity, we establish a threshold, denoted by thresh, limiting
the maximum size of the bucket. Whenever |X pkq| “ thresh, no additional elements can
be added to X pkq (i.e., we must wait until some elements are removed from X pkq). We set
thresh :“ O

` 1
ε2

˘

. Note that storing any element requires Oplog |Ω|q space, and thus storing
thresh log |Ω| elements necessitates O

´

log2
|Ω|

ε2

¯

space.

M.Nandi, N. V. Vinodchandran, A. Ghosh, K. S. Meel, S. Pal, and S. Chakraborty 26:5

The key technical insight from [19] is that if thresh “ O
´

log M
ε2

¯

, it can be demonstrated
that, with sufficiently high probability and for k ą logpF0pSqq, X pkq would not be full (i.e.,
|X pkq| ă thresh) at all times. Furthermore, in [18], it was observed that thresh “ O

´

log |Ω|

ε2

¯

,
then it can be demonstrated that, with sufficiently high probability and for k ą logpF0pSqq,
X pkq would not be full (i.e., |X pkq| ă thresh) when an element s P

Ť

i Si appears for the last
time in a stream.

The major technical advancement in our analysis hinges on a crucial observation: while
it is plausible for X pkq to be full when an element s makes its final appearance in the stream,
the resulting relative error of our estimator |X pkq| ¨ 2k remains manageable even when k

is approximately logarithmic in the order of magnitude of the size of the stream, that is
k „ logpF0pSqq. The ensuing technical analysis is complex due to its dependence on a
meticulous formulation of significant events and the construction of a sum of products of
random variables. We introduce two sets of random variables, denoted as X

pkq
i,r and Y

pkq
i,r .

The random variable X
pkq
i,r indicates whether an element is sampled from the j-th set Sj

in the stream. The random variables Y
pkq

i,r indicate whether a set of sampled elements is
included in the buckets. We then define a series of random variables Z

pkq
r , dependent on

the aforementioned random variables X
pkq
i,r and Y

pkq
i,r . To leverage concentration inequalities

effectively, we maintain a collection of O
`

1{ε2˘ buckets at each level k. Additionally, we set
the size of each bucket to be O plogp1{εqq. At the end of the stream, for each level k, we
calculate the average number of elements in the buckets at that level, denoted as Z

pkq.
Finally, it is important to note that our technical analysis only ensures that the relative

error is small for k « logpF0pSqq. Since F0pSq is unknown a priori, we must identify a method
to choose an optimal k˚ for returning the final estimate Z

pk˚
q
¨ 2k˚ . A key observation is

that Z
pkq is less than 1 for k ąą logpF0pSqq. Therefore, finding the largest k for which Z

pkq

exceeds 1 should suffice.

Key Ideas for Theorem 4
The main idea is to adapt one of the standard hashing-based algorithms (e.g., Gibbons and
Tirthapura’s algorithm) for F0 estimation for singleton streams that takes O

`

log |Ω| ¨ 1
ε2

˘

space. The algorithm starts with picking a hash function h from a pairwise independent
family and keeps a bucket X which is initially set to empty and has a capacity of O

` 1
ε2

˘

. The
computational challenge is to implement the update step. For this, when a new set S comes,
we need to add all elements x P S so that the first m bits of hpxq are all 0s for a variable m

that the algorithm keeps. If the addition of these elements makes the bucket X overflow,
m is incremented and deletes all elements X with m ` 1st bit of hash value is non-zero.
The main computational challenge is to implement this step. However, we show how this
step can be implemented by making linear size queries to disjoint union of two languages
in NTISP(poly,LINSPACE). Thus if NTISP(poly,LINSPACE) = DTISP(poly,LINSPACE),
then queries to this language can be simulated in space Oplog |Ω| ¨ 1

ε2 q and update time
polyplog |Ω|, ε´1q.

1.4 Paper Organization
The remainder of this paper is structured as follows. Section 2 introduces key notations and
fundamental concepts. In Section 3, we present our primary Algorithm 2 for Delphic sets
with WOR sampling, along with its correctness analysis. Subsequently, in subsection 3.2, we

APPROX/RANDOM 2024

26:6 Improved Streaming Algorithm for the Klee’s Measure Problem and Generalizations

present the algorithm for the general Delphic set. Section 4 contains the proof of Theorem 4.
The appendix is divided as follows: Section A presents the concentration bounds used in
the correctness analysis; Section B provides the missing proofs for Proposition 15; Section
C details the algorithm for KMP along with its correctness analysis; and finally, Section D
offers some basic probability results.

2 Preliminaries

2.1 F0-Estimator and Klee’s Measure Problem
For a stream of sets, S :“ xS1, S2, . . . , SM y where each set in the stream is a subset of Ω,
recall that we denote by F0pSq the size of the union of the sets: F0pSq “

ˇ

ˇ

ˇ

ŤM
j“1 Sj

ˇ

ˇ

ˇ

▶ Definition 5. A random variable X is an pε, δq-approximation of c if Prrp1 ´ εqc ď X ď

p1 ` εqcs ě p1 ´ δq. We also simply write the event p1 ´ εqc ď X ď p1 ` εqc as X “ p1 ˘ εqc

(or X ‰ p1 ˘ εqc to denote the complement event).

Finally an F0-estimator is a streaming algorithm that on input ε, δ P p0, 1q and access to
a stream of set S :“ xS1, S2, . . . , SM y outputs an pε, δq approximation of F0pSq.

There are two main complexity measures that we are interested about an F0-estimator -
space complexity and update time complexity. The space complexity is the amount of work
space needed by the algorithm. The update time complexity is the amount of time spent by
the algorithm for processing a single set in the stream. The goal is to design an F0-estimator
while trying to minimize both the space complexity and the update time complexity of the
algorithm.

The notion of Delphic sets captures several well-known problems, such as Klee’s Measure
Problem, which we define below.

Let ∆ be a natural number, consider the following set r∆s “ t1, 2, . . . , ∆u. A d-dimensional
axis-aligned rectangle r over r∆sd is a subset of r∆sd, succinctly represented by the tuple
pa1, b1, ¨ ¨ ¨ ad, bdq, and contains all the tuples tpx1, . . . , xdqu where ai ď xi ď bi and xi P r∆s.
Formally, we write r “ tpx1, x2, . . . , xdq : ai ď xi ď bi, xi P r∆s for all i P rdsu

▶ Definition 6 (Klee’s Measure Problem (KMP) in Streaming Setting). Given a stream R
of size M such that R “ xr1, r2, ¨ ¨ ¨ rM y, where each item ri is a d-dimensional rectangle,
compute a pε, δq-approximation of

ˇ

ˇ

ˇ

ŤM
i“1 ri

ˇ

ˇ

ˇ
.

Note that KMP is a special case of Problem 2 since set of d-dimensional axis-aligned rectangles
over r∆sd forms a Delphic family.

2.2 Notations
For any positive integer k, we write rks “ t1, 2, . . . , ku. In the rest of this paper, we will
assume that S :“ xS1, S2, . . . , SM y is a stream of sets, where each set is a subset of universe
Ω, i.e., Sj Ď Ω for all j P rM s. We denote by sj :“ |S1| ` ¨ ¨ ¨ ` |Sj | for all j P rM s and
s0 :“ 0. We write s :“ sM to denote the total number of elements counting with repetition
that appeared in the stream S. For j P rM s, let Ij “ tsj´1 ` 1, sj´1 ` 2, . . . , sju, the set Ij

denotes the indices of elements in the set Sj . Note that Ij ’s are disjoint and
M
Ť

j“1
Ij “ rss.

Clearly, for every i P rss, we can assign a streaming-index j :“ jpiq (which is unique) such
that i P Ij .

M.Nandi, N. V. Vinodchandran, A. Ghosh, K. S. Meel, S. Pal, and S. Chakraborty 26:7

Although, total order of the elements on Ω is not needed for our algorithms, we will assume
an ordering of the elements of Ω; this will help us in the presentation of the correctness proofs
of the algorithm. We can open the set stream into element streams and write a sequence
xx1, . . . , xsy, where Sj “ txi : i P Iju, xsj´1`1 ă ¨ ¨ ¨ ă xsj@j P rM s. For any k P r|Sj |s we
will denote by Sjrks to the element xsj´1`k.

At any point, say after the sets S1, . . . , Sj have arrived in the stream and for any element
x in the stream xx1, . . . , xsj

y, that is, the stream we have seen till now, we will be interested
in the last time the element appeared in the stream. The set of indices in rsj´1s that contains
the last appearance of any element is called the set of final indices with respect to jth set Sj

and is denoted by Fj .
More formally, let j P rM s be a stream index. We call i ď sj´1 a final index with respect

to jth set Sj if xi R txi`1, . . . , xsj
u. Let

Fj “ ti ď sj´1 : i is a final indices w.r.t. jth set Sju.

When j “ 1, the set F1 “ H.
Now we make the following simple but valuable observations:

▶ Observation 7.
1. For all j P rM s, (i) Fj and Ij are disjoint i.e., Fj X Ij “ H and (ii) txi : i P Fju is

disjoint from Sj.
2. txi : i P Fju \ Sj Ď S. The equality occurs for j “ M , i.e., txi : i P Fu “ S where

F “ FM \ IM . Note, |F | “ F0pSq.
3. For all j P rM ´ 1s, Fj`1 Ď Fj \ Ij.

2.3 Delphic Family with WOR Sampling
The definition of Delphic Sets (Definition 1) allows one to draw a uniform random sample
from a Delphic Set S. However, if one needs to uniformly draw a set of k distinct samples
from S, the only option is to draw independent samples from S until one gets k distinct
samples. One can use the coupon collector theorem to ensure that with high probability, one
has to draw at most Opk log kq samples. Nevertheless, this “high probability” statement may
not be sufficient if one has to repeat this process multiple times - a slightly more involved
calculation may be necessary.

One way of dealing with this issue is assuming one is allowed to draw samples “without
replacement (WOR)”. Formally, we define a Delphic family with WOR sampling as follows:

▶ Definition 8 (Delphic family with WOR sampling). A set S Ď Ω belongs to the Delphic
family with WOR sampling if the following queries can be done:
(1) know the size of the set S, in Oplog |Ω|q time
(2) given any x check if x P S, in Oplog |Ω|q time
(3) for any k ď |S|, we can draw in Opk log |Ω|q time a uniformly random subset S of size k.

Note that, in contrast to Definition 8, the original Delphic family (Definition 1) can be
called “Delphic family with WR sampling”, where WR stands for “with replacement”.

2.4 Random Processes and Distributions
We will be drawing samples according to different distributions. All the distributions are
standard in the literature. The following are the distributions we will be using in this paper.

APPROX/RANDOM 2024

26:8 Improved Streaming Algorithm for the Klee’s Measure Problem and Generalizations

▶ Definition 9 (Binomial Distribution). Given any n P N and any p P r0, 1s the Binomial
Distribution over the set of integers t0, 1, 2, . . . , nu is denoted as Binpn, pq where probability
of a number 0 ď k ď n is

`

n
k

˘

pkp1 ´ pqn´k.

▶ Definition 10 (Bernoulli Process). Given any finite set S and any p P r0, 1s, a Bernoulli
sample of probability p for the set S is denoted as BerpS, pq such that every element x P S is
picked with probability p. If X denotes the sampled subset of S with probability p then for
any set T Ď S, PrpX “ T q “ p|T |p1 ´ pq|S|´|T |.

By abuse of notation, we will use Berppq to denote the distribution over t0, 1u where
the probability of 1 is p. So, the Bernoulli process is nothing but independent copies of the
Bernoulli distribution where 1 (or 0) represents that the element is picked (or not picked
respectively).

Clearly, if X „ BerpS, pq then |X| „ Binp|S|, pq. We now describe how to sample the
Bernoulli process. We first sample d „ Binp|S|, pq, then we sample d many elements, denoted
as T , in a without replacement (WOR) manner. Then, T „ BerpS, pq. One can sample
WOR through with replacement (WR) sampling (this is well-known as the coupon collection
problem). We have the following lemma using the coupon collector theorem (see Appendix D).

▶ Lemma 11. WRSamplepS, r, tq (Algorithm 1) outputs a subset L of the set S with the
following guarantee

With probability ě

´

1 ´ r
t

r log r `1
¯

the algorithm outputs a set of size r distinct samples,
each drawn uniformly from the set S.
With the remaining probability at most r

t
r log r `1 the algorithm outputs an empty set.

The maximum number of samples drawn from S is t.

Algorithm 1 WRSamplepS, r, tq.

1: Input Set S t, r P N
2: Initialize L “ H;
3: for 1 ď i ď t do
4: if |L| ă r then
5: Draw a random sample x from S (with replacement)
6: if x R L then L “ L Y txu

7: if |L| ‰ r then L “ H

8: Output L

3 F0-Estimator for Delphic sets

In this section, we prove Theorem 3. We prove it in two steps. In Section 3.1, we present
Algorithm 2 and prove that it is an F0-estimator for Delphic Sets with WOR sampling. Then,
in Section 3.2, we show how the Algorithm 2 can be modified to obtain an F0-estimator for
general Delphic Sets and hence prove Theorem 3.

3.1 Handling Delphic Sets with WOR sampling
In this section, we will prove the following theorem:

M.Nandi, N. V. Vinodchandran, A. Ghosh, K. S. Meel, S. Pal, and S. Chakraborty 26:9

▶ Theorem 12. If S is a stream of Delphic Sets with WOR sampling, then the Algorithm 2
is an pε, 1{3q-F0-estimator. Also, the space and update time complexity of Algorithm 2 is
O
´

log2
|Ω|

ε2 ¨ log ε´1
¯

.

Before we present the proof of the correctness of the algorithm and the analysis of its
complexities (in Section 3.1.1 and Section 3.1.2 respectively), we will give a brief description
of the algorithm.

Description of the Algorithm

Let 0 ă ε ď 1{2, and we set thresh :“ max
␣

18, rlog 2
ε s
(

and Reps “ 90{ε2. We will now give
an efficient F0-estimator for Delphic sets. At each level k, where k P t1, . . . , log |Ω|u, there is
a collection of Reps many buckets X pkq

r with r P t1, . . . , Repsu. Each bucket X pkq
r can contain

at most thresh many samples from the universe rns. At the beginning of the algorithm, all
the Reps many buckets in each level k is an empty set. Let the input stream S of Delphic
sets be the following: S :“ xS1, . . . , SM y, where Sj Ď Ω for all j P rM s. Note that we want

to estimate the size of the set S “
M
Ť

j“1
Sj . Suppose that our algorithm has already processed

the S1, . . . , Si from the stream and the buckets X pkq
r in each level k contains a sample of

elements from the set S. Now, our algorithm receives a new set Si`1 over the data stream.
Our algorithm will perform the following steps to process the new set Si`1:
Step 1: For each buckets X pkq

r , where k P rlog |Ω|s and r P rRepss, we will first begin by
removing all the elements in X pkq

r that are also present in the new set Si`1, see lines
6 to 9 from the Algorithm 2. Observe that the time complexity for this step will be
O
`

Reps thresh log2
|Ω|

˘

Step 2: Ideally, we would like to add an element from Si`1 independently with probability
2´k to each bucket X pkq

r , but this may not be possible as the size of each bucket is
thresh. To work around this problem, for each k P rlog |Ω|s and r P rRepss, we will first
sample d

pkq
r „ Binp|Si`1|, 2´kq. By slight abuse of notation, we will denote by |X pkq

r |

the current size of the bucket X pkq
r . If d

pkq
r ě thresh ´ |X pkq

r | then we will keep X pkq
r

unchanged. Otherwise, as Si`1 is a Delphic set with WOR sampling, we will sample
without replacement d

pkq
r many samples from Si`1 and add them to X pkq

r . See lines 10
to 13 from the Algorithm 2.

Once we have processed the whole stream S “ xS1, . . . , SM y, for all k P rlog |Ω|s, we will
calculate the average size Z

pkq of the buckets in each level k, (See lines 14 to 15 from
Algorithm 2) that is,

Z
pkq

“
1

Reps

Reps
ÿ

r“1
|X pkq

r |

Once all the averages have been computed for each level k P rlog |Ω|s the algorithm computes
the maximum k, let us call it k˚ for which Z

pk˚
q
ě 1. Finally, the algorithm outputs 2k˚

¨Z
k˚

.
See lines 16 to 17 from Algorithm 2.

3.1.1 Correctness of Algorithm 2 for Delphic Sets with WOR sampling
If we replace the lines 10-13 in Algorithm 2 by the following lines, then it is easy to see that
it functionally behaves identically.
10: Draw d

pkq
r from Binp|Sj |, 1{2kq

APPROX/RANDOM 2024

26:10 Improved Streaming Algorithm for the Klee’s Measure Problem and Generalizations

Algorithm 2 [F0-Estimator for Delphic Sets with WOR sampling.]

1: Input Stream “ xS1, S2, . . . , SM y, ε, δ

2: Initialize
3: p Ð 1; thresh Ð maxtrlog 2{εs, 18u; Reps Ð r90{ε2s;
4: for (1 ď k ď log |Ω|) and (1 ď r ď Reps) do
5: X pkq

r Ð H;

Streaming Phase:
6: for j “ 1 to M do.
7: for (1 ď k ď log |Ω|) and (1 ď r ď Reps). do
8: for all s P X pkq

r do
9: if s P Si then remove s from X pkq

r

10: Draw d
pkq
r from Binp|Sj |, 1{2kq

11: if |X pkq
r | ` d

pkq
r ď thresh then

12: Lpkq
r is a set of d

pkq
r samples drawn from Sj WOR

13: X pkq
r “ X pkq

r Y Lpkq
r

Post-Streaming Phase:
14: for 1 ď k ď log |Ω| do.
15: Z

pkq
“ 1

Reps
řReps

r“1 |X pkq
r |

16: k˚ “ maxtk P rlog ns : Z
pkq

ě 1u
17: Output Z

pk˚
q
¨ 2k˚

11: Lpkq
r is a set of d

pkq
r samples drawn Sj WOR

12: if |X pkq
r | ` d

pkq
r ď thresh then

13: X pkq
r “ X pkq

r Y Lpkq
r

Note that the differences between the above lines and the lines in the Algorithm 2 is that
in the Algorithm 2 we do not sample the set Lpkq

r unless we are sure that we will use the
set Lpkq

r , that is the condition |X pkq
r | ` d

pkq
r ď thresh is satisfied. We do this in the actual

algorithm (more like a “lazy sampling”) to have better control on the worst-case update time
complexity. But, for the presentation of the proof of correctness of the theorem it is useful
to use the above three lines (instead of lines 10-13 in Algorithm 2) where we first sample
Lpkq

r and then decide whether to use it.
Let us consider the jth round of the streaming phase of the algorithm. That is when the

set Sj arrives in the stream. By the construction of the set Lpkq
r it follows that all elements

of Sj ’s are chosen in Lpkq
r independently with probability 2´k. For the sake of presentation,

let Lpkq
j,r denote the set Lpkq

r during the jth round of the streaming phase of the algorithm
3. Recall that the elements in the set Sj , that is, the elements xsj´1`1, . . . , xsj

and for any
i P rsjs we denote by jpiq the stream index such that i P tsjpiq´1 ` 1, . . . , sjpiqu (refer to the
notations in the Section 2.2). For any i P rsjs let us denote by X

pkq
i,r the random variable

that takes value 1 if xi is included in Lpkq
jpiq,r and 0 otherwise, that is, the element xi is in the

set Lpkq
r during the jth round of the streaming phase of the algorithm. Clearly, for any i, r, k

X
pkq
i,r

i.i.d.
„ Berp2´kq.

3 We ignore the streaming index j in the Algorithm 2 as we use the same state to update the random set
over different indices j.

M.Nandi, N. V. Vinodchandran, A. Ghosh, K. S. Meel, S. Pal, and S. Chakraborty 26:11

However, the random set is actually included in X pkq
r provided |X pkq

r | ` d
pkq
r ď thresh. To

indicate whether an element is actually included in X pkq
r we define the random variable Y

pkq
i,r ,

for any i P rsjs. We define the random variable Y
pkq

i,r as Y
pkq

i,r “ 1 if |X pkq
r | ` d

pkq
r ď thresh, 0

otherwise (i.e., xi is eventually included in X pkq
r if X

pkq
i,r Y

pkq
i,r “ 1).

Formally, the random variable Y
pkq

i,r can be defined recursively. First we note that since
in lines 8-9 (of Algorithm 2) we remove all the elements in X pkq

r that are in Sj , so at that
time (after line 9)

X pkq
r Ď

´

Y
j´1
k“1Sk

¯

zSj “ txi : i P Fju.

Thus the size of X pkq
r after line 9 is

ř

aPFj
X

pkq
a,r Y

pkq
a,r . Thus,

Y
pkq

i,r “

$

’

&

’

%

0 if
ÿ

aPFjpiq

Xpkq
a,r Y pkq

a,r `
ÿ

aPIjpiq

Xpkq
a,r ą thresh

1 otherwise.

Now, in the post-streaming phase, we set

Zpkq
r “

ÿ

iPF
X

pkq
i,r Y

pkq
i,r ,@r P rRepss, Z

pkq
“

Z
pkq
1 ` ¨ ¨ ¨ ` Z

pkq
Reps

Reps .

Note that F denote the set of all final indices of the elements of S. Thus, Z
pkq
r ’s are the

sizes of the sets X pkq
r after processing the stream. Moreover, these are independent for all r

and k.

▶ Lemma 13. For any k such that thresh ě 6c where c :“ F0pSq

2k .

cp1 ´ 2´threshq ď EpZpkq
r q ď c (1)

VarpZpkq
r q ď cp1 ` 2´threshcq. (2)

Proof. The upper bound of expectation directly follows from the linearity of expectation.
For the lower bound, we first note that

PrpY pkq
i,r “ 0 | X

pkq
i,r “ 1q ď Pr

¨

˝

ÿ

aPFj

Xpkq
a,r Y pkq

a,r `
ÿ

aPIj

Xpkq
a,r ě thresh ` 1

ˇ

ˇ

ˇ

ˇ

ˇ

X
pkq
i,r “ 1

˛

‚

ď PrpBinpF0pSq ´ 1, pq ě threshq ď 2´thresh.

Note that the last inequality follows from Lemma 20. Thus, ExpXpkq
i,r Y

pkq
i,r q “ PrpXpkq

i,r “

1, Y
pkq

i,r “ 1q ě pp1 ´ 2´threshq for all i. Hence, the lower bound is established by linearity of
expectation. To bound the variance, we first bound the second moment:

ExppZpkq
r q2q “ ExpZpkq

r q `
ÿ

i‰j

ExpXpkq
i,r Y

pkq
i,r X

pkq
j,r Y

pkq
j,r q ď ExpZpkq

r q ` F0pSq2p2.

Hence we obtain,

VarpZpkq
r q ď ExpZpkq

r qp1 ´ ExpZpkq
r q ` F0pSq2p2

ď c
`

1 ´
`

1 ´ 2´thresh˘ c
˘

` c2 ď c ` c22´thresh ◀

APPROX/RANDOM 2024

26:12 Improved Streaming Algorithm for the Klee’s Measure Problem and Generalizations

Before we complete the proof of the correctness of our Algorithm 2, we first state a core
result based on bucket-load random variables (defined below) that would be used.
▶ Definition 14 (Bucket-load). A pc, αq-bucket-load is a nonnegative random variable Z such
that the first and second moments of Z satisfy the following relations:

cp1 ´ αq ď ExpZq ď c AND VarpZq ď c ` αc2.

From Lemma 13 we note that for any k with thresh ě 6F0pSq{2k, Z
pkq
r ’s are pc, αq-

bucket-load random variables for c “ F0pSq{2k and α “ 2´thresh ď mintε{2, 2´18u. Due to
independence of the random variables Z

pkq
1 , . . . , Z

pkq
Reps, the random variable Z

pkq has mean
approximately c and variance Opc{Repsq. Thus, for an appropriately large Reps, we can apply
Chebyshev’s inequality to show that Z

pkq is indeed very close to c with high probability. The
following proposition makes this intuition formal. Let k0 be the unique negative power of 2
such that

3
4 ă c0 “

F0pSq
2k0

ď
3
2 (3)

▶ Proposition 15. Let Reps “ r90{ε2s and let k0 be the number defined in Equation 3. For
every k ě k0 ´ 1, let Z

pkq
1 , . . . , Z

pkq
Reps be the Reps many independent pF0pSq{2k, ε{2q-bucket

load random variables. Then,
1. Z

pk0q and Z
pk0´1q are pε, 1{24q-approximation of c0 and 2c0 respectively. Hence, 2k0 ¨Z

pk0q

and 2k0´1 ¨ Z
pk0´1q are pε, 1{24q-approximations of F0pSq.

2. PrpZpk0´1q
ă 1q `

ř

iě1 PrpZpk0`iq
ě 1q ď 1{4.

We postpone the proof of Proposition 15 to the Appendix B.
Item 2 of the Proposition 15 proves that k˚ P tk0, k0 ´ 1u with probability at least 3/4

(where k˚ is defined in line 16). The first part proves that Z
pk0q

¨ 2k0 and Z
pk0´1q

¨ 2k0´1

are pε, 1{24q-approximations of F0pSq. Hence, we observe that Z
pk˚

q2k˚ is an pε, 1{3q-
approximation of F0pSq (as this can fail either when k˚ R tk0, k0 ´ 1u, or Z

pk0q
¨ 2k0 or

Z
pk0´1q

¨ 2k0´1 fails to approximate F0pSq, the probability of any one of these can happen
with probability at most 1{3). This proves that the Algorithm 2 is an F0-estimator for
Delphic Sets with WOR sampling.

3.1.2 Complexity of the Algorithm 2
The space complexity and the update time complexity are clear from the pseudo-code of the
algorithm. The size of X pkq

r is upper bounded by thresh. And since r ranges from 1 to Reps
and k ranges from 1 to log |Ω|, so the maximum number of elements of Ω stored is O

´

log |Ω|

ε2

¯

.
Nevertheless to store an element of Ω, one needs Oplog |Ω|q bits. So the total space required
is O

´

log2
|Ω|

ε2 ¨ log ε´1
¯

. The additional space required for bookkeeping is Oplog |Ω|q.
By the definition of Delphic Sets with WOR sampling, knowing the size of a set Sj and

checking if an element is in Sj can be done in Oplog |Ω|q time. So the for any j, r and k the
lines 8 to 9 can be done is at most Op|X pkq

r | logp|Ω|qq “ Opthresh logp|Ω|qq step. The number
of samples drawn from any set Sj (in line 12 is at most thresh. So the time taken in line 12
is also Opthresh logp|Ω|qq. We should note here that we assume line 10 that is drawing a
sample from Binp|Sj |, 1{2kq can be done in order Opthresh logp|Ω|qq steps, since |Sj | ď |Ω|

and k ď log |Ω|. We have to do these steps for all k and r. Thus in total the update time
complexity is Opthresh logp|Ω|q ¨ plog |Ω|q ¨ Repsq “ O

´

log2
|Ω|

ε2 ¨ log ε´1
¯

.
Thus, we have the Theorem 12.

M.Nandi, N. V. Vinodchandran, A. Ghosh, K. S. Meel, S. Pal, and S. Chakraborty 26:13

3.2 F0- Estimator for General Delphic Sets
Algorithm 2 in line 12 uses the ability to sample from the sets in the stream with WOR
sampling. This property is not available in general Delphic Sets. However, with a little
modification to Algorithm 2, we can also have an F0-estimator for general Delphic Sets,
which is what Theorem 3 states.

Proof of Theorem 3. To have an F0-estimator for general Delphic sets, we need to make
two important changes to Algorithm 2. Firstly, we set the thresh to be maxtrlog 4{εs, 18u
(instead of maxtrlog 2{εs, 18u). Secondly, we change the line 12 to the following:
12: Lpkq

r “ WRSamplepS, d
pkq
r , d

pkq
r log d

pkq
r logp 4

ε qq

While in Algorithm 2 in line 12 the set |Lpkq
r | “ d

pkq
r with probability 1, in the modified

algorithm this is not the case. In other words, if we try to prove the correctness of the
modified algorithm in the same line as the proof of Algorithm 2 we note that the random
variable Y

pkq
i,r takes value slightly differently.

The random variable Y
pkq

i,r can take value 1 for two possible cases.
1. Due to the overflow of the bucket, which can now happen with probability at most

2´thresh ď ε{4 (This is due to the modified setting of thresh so that 2´thresh ď ε{4).
2. Due to WRSample returning an empty set. By Lemma 11 and by the setting of the inputs

of WRSample this can happen also with probability at most ε{4.

Thus we can prove a lemma corresponding to Lemma 13 and hence, Z
pkq
r is pc, αq-bucket-

load where α “ mint2´18, ε{2u. Now, we can apply our core Proposition 15 to conclude the
correctness of the algorithm.

It is easy to see that the space and time complexity of the modified algorithm is
O
´

log2
|Ω|

ε2 ¨ log ε´1
¯

and O
´

log2
|Ω|

ε2 ¨ log3 ε´1
¯

respectively. ◀

4 Space Optimal Algorithm with an Oracle in NTISP(poly,
LINSPACE)

In this section, we give a sketch of the proof of Theorem 4. We will implement the F0-
estimation algorithm by Gibbons and Tirthapura [13] for singleton streams as described
in [2]. The proof that the algorithm gives the correct estimation follows from their proof and
is hence omitted. The algorithm picks a random hash function h from a pairwise-independent
family and keeps a bucket X of hash values of a subset of elements in the stream and a
number z of leading zeros of all the elements in the bucket. The size of the bucket is bounded
by Op 1

ε2 q. When a new item x comes, if the number of leading zeros of hpxq ě z, the
algorithm updates the bucket to X Y thpxqu. If the bucket overflows, then z is updated to
z ` 1, and all elements from X with leading zeros ď z are removed. At the end of the stream,
the algorithm outputs |X | ¨ 2z as the estimate. In adapting their algorithm for the case of
set streams, the computational challenge is implementing the update. The central intuition
is that this can be accomplished by querying a language in NTISP(poly,LINSPACE) with
query size Oplog |Ω| ¨ 1

ε2 q. Thus if NTISP(poly,LINSPACE) =DTISP(poly,LINSPACE), then
queries to the language can be simulated in space Oplog |Ω| ¨ 1

ε2 q and time polyplog |Ω|, ε´1q.
We will use n to denote log |Ω|, the length of the representation of any element in the

universe Ω. For any binary string y, Zeropyq denotes the number of leading zeros of y. We
will use the standard Toeplitz family of pairwise-independent hash functions denoted by
HTeoppn, kq (see Appendix D for details). Let h be a hash function. For every m P t1, . . . nu,

APPROX/RANDOM 2024

26:14 Improved Streaming Algorithm for the Klee’s Measure Problem and Generalizations

the mth prefix-slice of h, denoted hm, is a map from t0, 1un to t0, 1um, where hmpyq is the
first m bits of hpyq. If h is from HTeoppn, kq, both h and hm are efficiently computable and
take linear space to represent.

For a member S Ď Ω of the Delphic set, we will assume a representation of size Op|Ω|q

and denote it by rS . This is required for computational purposes, and all the Delphic families
discussed in earlier works have such representations (e.g., rectangles in KMP). We use the
notation x P rS to mean x P S. Note that since S is a Delphic set, membership can be
checked in time and space linear in the representation.

Oracle Languages
We will define two languages, L and Lpref , and show that they are in NTISP(poly,LINSPACE).
We use these languages to implement Gibbons and Tirthapura algorithms. The first language,
L, checks whether the bucket overflows by adding new elements from the current set S with
the current value of the leading zeros count.

L “txrS , h, X , ℓ, m, 1ℓ log ny | Dx1 ă x2 ă . . . ă xk such that xi P rS

& @iphmpxiq “ 0mq & |thpx1q, . . . , hpxkqu Y X | ą ℓu.

The following language is (close to) the prefix language of L that can be used to construct
witnesses x1, . . . , xk P rS if adding new elements does not result in an overflow of X .

Lpref “
␣

xrS , h, X , ℓ, m, 1ℓ¨log n, i, jy | Dx1 ă x2 ă . . . ă xk such that
xi P rS & @iphmpxiq “ 0mq& |thpx1q, . . . , hpxkqu Y X | ď ℓ & ith bit of xj is 1

(

.

To implement the algorithm, we must update X with new elements from S (represented
by rS), the current set in the stream. For this, the algorithm uses a subroutine Construct
that in turn uses Lpref to search for a set of ď l the elements xis in S so that hmpxiq “ 0m.
We will ensure that we will use Construct only when we are guaranteed that adding the hash
values on these elements will not make X overflow. For this, we will use membership in L.
The Algorithm 3 is described below. Theorem 4 follows from Claim 16, Claim 17, and the
guarantee of Gibbons and Tirthapura’s algorithm.

Algorithm 3 DelphicWithNPpS, ε).

1: h
R
ÐÝ HTeoppn, nq

2: X Ð ϕ, Const Ð 100
ε2 , m Ð 0

3: while not End-of-Stream do
4: On item rS

5: while
@

rS , h, X , Const, m, 1Const¨log n
D

R L do
6: Remove all ys from X for which Zeropyq “ m

7: m Ð m ` 1
8: X Ð X Y ConstructpxrS , h, X , Const, 1Const¨log nyq

9: Output |X |2m

▷ Claim 16. Both L and Lpref are in NTISP(poly,LINSPACE).

Proof. We show membership of L in NTISP(poly,LINSPACE). The proof of membership
of Lpref is similar. Consider the following non-deterministic machine ML. ML on input
txrS , h, X , 1ℓ, my first guesses a number 1 ď k ď l and x1 ă x2 ă . . . ă xk in Ω. Then it

M.Nandi, N. V. Vinodchandran, A. Ghosh, K. S. Meel, S. Pal, and S. Chakraborty 26:15

verifies the following: (1) @i xi P rS , (2) @i hmpxiq “ 0m, (3) |thpx1q, . . . , hpxkqu Y X | ą ℓ.
The input size is Op|X | ` ℓ ¨ log nq. Since all the steps: guessing and verification (1), (2), and
(3), can be done in time polynomial in the input length, ML runs in polynomial time. The
critical observation is that ML can write down all the guesses in space linear in the input (at
most l xis from Ω that takes Opℓ log nq bits to store). Thus, the overall space used is linear
in the input length. ◁

Let k be the maximum value of |thpx1q, . . . , hpxtqu Y X | so that the following property
P holds:
1. Dx1 ă x2 ă . . . ă xt such that xi P rS

2. @iphmpxiq “ 0mq.

▷ Claim 17. There is a deterministic algorithm Construct, takes xrS , h, X , Const, 1Const¨log ny

as input and L and Lpref as oracles and if k ď Const, it returns a set thpx1q, . . . , hpxkqu (if
non-empty) so that @iphmpxiq “ 0mq and xi P rS . Construct runs in time polynomial and
space linear in the input length and makes only queries that are linear in the input length.

Proof (Sketch). Construct first queries L to check k ą Const. If k ą Const, it rejects.
Otherwise, it first finds k and uses k log n queries to Lpref to construct all xis in S with the
property P . The complexity bounds are clear from the language’s description and definition.

◁

5 Conclusion

In this paper, we present a new elegant algorithm that improves both the space and update
time complexities for the computation of the size of the union of Delphic sets. The space
and time complexities of our algorithm are rO

´

log2
p|Ω|q ¨

logp1{δq
ε2

¯

. To complement our
algorithm, we also show that, given access to NTISP(poly, LINSPACE) oracle, there exists a
hashing based algorithm for approximating the size of the union of Delphic sets with space
complexity O

`

logp|Ω|q ¨ ε´2 ¨ δ´1˘ and poly
`

logp|Ω|q, ε´1, log 1
δ

˘

update time complexity.
Note Ω plogp|Ω|qq lower bound for our problem follows directly from the lower bound of
F0-estimation problem, but the above result implies that if the complexity of our problem is
ω plogp|Ω|qq, then we should not expect this to be proved soon.

References
1 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the

frequency moments. J. Comput. Syst. Sci., 58(1):137–147, 1999. doi:10.1006/jcss.1997.
1545.

2 Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan. Counting
distinct elements in a data stream. In Proc. of RANDOM, pages 1–10, 2002. doi:10.1007/
3-540-45726-7_1.

3 Vladimir Batagelj and Ulrik Brandes. Efficient generation of large random networks. Phys.
Rev. E, 71:036113, March 2005. doi:10.1103/PhysRevE.71.036113.

4 Jon Louis Bentley. Algorithms for klee’s rectangle problems. Technical report, Technical
Report, Computer, 1977.

5 Jaroslaw Blasiok. Optimal streaming and tracking distinct elements with high probability. In
Proc. of SODA, 2018. doi:10.1137/1.9781611975031.156.

6 Karl Bringmann and Tobias Friedrich. Approximating the volume of unions and intersections
of high-dimensional geometric objects. Comput. Geom., 43(6-7):601–610, 2010. doi:10.1016/
j.comgeo.2010.03.004.

APPROX/RANDOM 2024

https://doi.org/10.1006/jcss.1997.1545
https://doi.org/10.1006/jcss.1997.1545
https://doi.org/10.1007/3-540-45726-7_1
https://doi.org/10.1007/3-540-45726-7_1
https://doi.org/10.1103/PhysRevE.71.036113
https://doi.org/10.1137/1.9781611975031.156
https://doi.org/10.1016/j.comgeo.2010.03.004
https://doi.org/10.1016/j.comgeo.2010.03.004

26:16 Improved Streaming Algorithm for the Klee’s Measure Problem and Generalizations

7 Larry Carter and Mark N. Wegman. Universal classes of hash functions. J. Comput. Syst.
Sci., 18(2):143–154, 1979. doi:10.1016/0022-0000(79)90044-8.

8 Timothy M. Chan. A (slightly) faster algorithm for klee’s measure problem. Comput. Geom.,
43(3):243–250, 2010. doi:10.1016/j.comgeo.2009.01.007.

9 Eric Y Chen and Timothy M Chan. Space-efficient algorithms for klee’s measure problem.
algorithms, 3(5):6, 2005.

10 Bogdan S. Chlebus. On the klee’s measure problem in small dimensions. In Branislav
Rovan, editor, SOFSEM ’98: Theory and Practice of Informatics, 25th Conference on Current
Trends in Theory and Practice of Informatics, Jasná, volume 1521, pages 304–311, 1998.
doi:10.1007/3-540-49477-4_22.

11 Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data base applic-
ations. J. Comput. Syst. Sci., 31(2):182–209, 1985. doi:10.1016/0022-0000(85)90041-8.

12 Michael L Fredman and Bruce Weide. On the complexity of computing the measure of
Ť

[ai,
bi]. Communications of the ACM, 21(7):540–544, 1978.

13 E. Grädel, W. Thomas, and T. Wilke. Automata, Logics, and Infinite Games: A Guide to
Current Research. Lecture Notes in Computer Science 2500. Springer, 2002.

14 Joachim Gudmundsson and Rasmus Pagh. Range-efficient consistent sampling and locality-
sensitive hashing for polygons. In 28th International Symposium on Algorithms and Computa-
tion, ISAAC, volume 92 of LIPIcs, pages 42:1–42:13, 2017. doi:10.4230/LIPIcs.ISAAC.2017.
42.

15 Piotr Indyk and David P. Woodruff. Tight lower bounds for the distinct elements problem.
In 44th Symposium on Foundations of Computer Science (FOCS 2003), 11-14 October 2003,
Cambridge, MA, USA, Proceedings, pages 283–288. IEEE Computer Society, 2003. doi:
10.1109/SFCS.2003.1238202.

16 Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm for the
distinct elements problem. In Proceedings of the Twenty-Ninth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS, pages 41–52, 2010. doi:
10.1145/1807085.1807094.

17 Victor Klee. Can the measure of be computed in less than o (n log n) steps? The American
Mathematical Monthly, 84(4):284–285, 1977.

18 Kuldeep S. Meel, Sourav Chakraborty, and N. V. Vinodchandran. Estimation of the size of
union of delphic sets: Achieving independence from stream size. In Leonid Libkin and Pablo
Barceló, editors, PODS, pages 41–52. ACM, 2022. doi:10.1145/3517804.3526222.

19 Kuldeep S. Meel, N. V. Vinodchandran, and Sourav Chakraborty. Estimating the size of union
of sets in streaming models. In Proc. of PODS, pages 126–137, 2021. doi:10.1145/3452021.
3458333.

20 Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomization and Probab-
ilistic Techniques in Algorithms and Data Analysis. Cambridge University Press, USA, 2nd
edition, 2017.

21 Mark H Overmars and Chee-Keng Yap. New upper bounds in klee’s measure problem. SIAM
Journal on Computing, 20(6):1034–1045, 1991. doi:10.1137/0220065.

22 A. Pavan and Srikanta Tirthapura. Range-efficient counting of distinct elements in a massive
data stream. SIAM J. Comput., 37(2):359–379, 2007. doi:10.1137/050643672.

23 Aduri Pavan, N. V. Vinodchandran, Arnab Bhattacharya, and Kuldeep S. Meel. Model
counting meets f0 estimation. In PODS’21: Proceedings of the 40th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems, pages 299–311. ACM, 2021. doi:
10.1145/3452021.3458311.

24 He Sun and Chung Keung Poon. Two improved range-efficient algorithms for f0 estimation.
Theor. Comput. Sci., 410(11):1073–1080, 2009. doi:10.1016/j.tcs.2008.10.031.

25 Srikanta Tirthapura and David P. Woodruff. Rectangle-efficient aggregation in spatial data
streams. In Proc. of PODS, pages 283–294. ACM, 2012. doi:10.1145/2213556.2213595.

26 Richard Ryan Williams. Time-space tradeoffs for counting np solutions modulo integers. compu-
tational complexity, 17:179–219, 2007. URL: https://api.semanticscholar.org/CorpusID:
8815358.

https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.1016/j.comgeo.2009.01.007
https://doi.org/10.1007/3-540-49477-4_22
https://doi.org/10.1016/0022-0000(85)90041-8
https://doi.org/10.4230/LIPIcs.ISAAC.2017.42
https://doi.org/10.4230/LIPIcs.ISAAC.2017.42
https://doi.org/10.1109/SFCS.2003.1238202
https://doi.org/10.1109/SFCS.2003.1238202
https://doi.org/10.1145/1807085.1807094
https://doi.org/10.1145/1807085.1807094
https://doi.org/10.1145/3517804.3526222
https://doi.org/10.1145/3452021.3458333
https://doi.org/10.1145/3452021.3458333
https://doi.org/10.1137/0220065
https://doi.org/10.1137/050643672
https://doi.org/10.1145/3452021.3458311
https://doi.org/10.1145/3452021.3458311
https://doi.org/10.1016/j.tcs.2008.10.031
https://doi.org/10.1145/2213556.2213595
https://api.semanticscholar.org/CorpusID:8815358
https://api.semanticscholar.org/CorpusID:8815358

M.Nandi, N. V. Vinodchandran, A. Ghosh, K. S. Meel, S. Pal, and S. Chakraborty 26:17

A Concentration Bounds

▶ Lemma 18. Let Z be a random variable with cp1 ´ ε{2q ď ExpZq ď c for some c ą 0 and
0 ď ε ă 1. Then,

PrpZ ‰ p1 ˘ εqcq ď
4 VarpZq

c2ε2 .

Note that the lower tail event Z ď c´cε implies Z´ExpZq ď cε{2. Thus, |Z´c| ą cε implies
that |Z ´ ExpZq| ą cε{2. Thus, the above result follows from the Chebyshev’s inequality.
The following lemma directly follows from Chebyshev’s inequality.

▶ Lemma 19.
1. Let Z be a random variable with ExpZq ě µ. Then,

PrpZ ď µ ´ tq ď
VarpZq

t2 .

2. Let Z be a random variable with ExpZq ď µ. Then,

PrpZ ě µ ` tq ď
VarpZq

t2 .

We will also need the following Chernoff bound.

▶ Lemma 20 (See Theorem 4.4 from [20]). Suppose T „ Binpn, pq and L ě 6np then

PrpT ě Lq ď 2´L.

B Proof of Proposition 15

We first observe the simple properties of the first and second moments of averages of the
independent bucket-loads.

▶ Lemma 21. Let c0 and k0 be defined as in Equation 3. Then,
c0p1 ´ ε{2q ď EpZpk0q

q ď c0,

VarpZpk0q
q ď V0 :“ c0 ` c2

02´18

Reps ď 1
80 .

VarpZpk0´1q
q ď V´1 :“ 2c0 ` 4c2

0ε{8
Reps ď 2V0 ď 1

40 .
For all i ě 1,

VarpZpk0`iq
q ď Vi :“ 2´i ¨ c0 ` 2´2ic2

0ε{2
Reps ď V0{2i

The above follows directly from Lemma 13 along with the choice of Reps “ 99{ε2 and
ε ď 0.5. Now, by using Lemma 18,

PrpZpk0q
‰ p1 ˘ εqc0q ď

4VarpZpk0q
q

c2
0ε2 ď

2
ε2Reps p

2
c0

` εq ď
p8{3q ` 2ε

ε2Reps ď 1{24.

The last inequality follows from the choice of Reps “ 90{ε2 and we assume that ε ď 0.5.
So, Z

pk0q is an pε, 1{24q-approximation of c0. Similarly, by using Lemma 18, Z
pk0´1q is an

pε, 1{24q-approximation of 2c0. This completes the proof of Item 1 in Proposition 15.

Now we prove the Item 2 of Proposition 15.

APPROX/RANDOM 2024

26:18 Improved Streaming Algorithm for the Klee’s Measure Problem and Generalizations

We start by bounding PrpZpk0´1q
ă 1q. Note that EpZpk0´1q

q ě 2c0p1 ´ 2´threshq ě

3{2 ˆ p1 ´ 2´18q ě 3{2 ´ β, where β is a negligible real number such that 3{219 ď β ď 2´17.
Now it is easy to see that there exists some α P R with 2´16 ď α ď 2´15 and α2 ` 4α ă 1
such that 1

2`α ď 1{2 ´ β. By using Lemma 19,

PrpZpk0´1q
ă 1q ď p2 ` αq2 VarpZpk0´1q

q “ p4 ` 4α ` α2q V´1 ď 5V´1 “ 10V0 (4)

Now let us bound PrpZpk0`iq
ě 1q for every i ě 1. Note that EpZpk0`1q

q ď c0{2 ď 3{4.
So, by Lemma 19 we obtain

Pr
´

Z
pk0`1q

ě 1
¯

ď 16V1 “ 8V0 (5)

Note that for i ě 2 we have EpZpk0`iq
q ď c0{2i ď 1{2. Applying Lemma 19 working out

in detail we obtain,

Pr
´

Z
pk0`iq

ą 1
¯

ď 4Var
´

Z
pk0`iq

¯

ď 2´i`2V0

Thus using the infinite geometric sum we obtain
ÿ

iě2
PrpZpk0`iq

ě 1q ď 2V0 (6)

Hence from the inequalities 5 and 6 we obtain
ÿ

iě1
PrpZpk0`iq

ě 1q ď 10V0 (7)

Finally, combining the inequalities 4 and 7 we conclude

PrpZpk0´1q
ă 1q `

ÿ

iě1
PrpZpk0`iq

ě 1q ď 1{4

This completes the proof of Item 2 of Proposition 15. ◀

C Further Improvements for Klee’s Measure Problem

Recall, every d-dimensional rectangle is a Delphic set with Ω “ r∆sd. Therefore, Theorem 3
provides an algorithm that has space complexity O

´

d2 log2 ∆
ε2 ¨ log ε´1

¯

and has update time

complexity O
´

d2 log2 ∆
ε2 ¨ log3 ε´1

¯

for Klee’s Measure Problem. We now discuss how we can
further improve the dependence on ε. The key idea behind such an improvement is to observe
that we can avoid the overhead due to WOR by by replacing with sampling from Geometric
distribution. Such a replacement is possible only because there exists a total ordering for all
the elements in Ω “ r∆sd such that we can access i-th element in time logp|Ω|q. Interestingly,
all the known classes of Delphic sets satisfy the above property and therefore, we formalize
such a family below:

▶ Definition 22. A set S Ď Ω belongs to Ordered Delphic family if there exists a total
ordering ĺ for all the elements in the Ω and the following queries can be done in Oplog |Ω|q

time.
1. Know the size of the set S,
2. For any 1 ď i ď |S| the ith element of the set S can be obtained,
3. Given any x check if x P S.

M.Nandi, N. V. Vinodchandran, A. Ghosh, K. S. Meel, S. Pal, and S. Chakraborty 26:19

In Section 2.4 we discussed how one can sample a Bernoulli process from a Delphic Set by
using the coupon collector theorem. There is an alternate way to sample a Bernoulli process
if the set is a Ordered Delphic Set. The set L returned by the algorithm SamplepS, pq follows
BerpS, pq. Since there is an order to the elements in a Ordered Delphic set, the process is
basically same as sampling a Bernoulli process from r|S|s. This is a well known result in
probability theory and details can be found in [3].

Algorithm 4 GeometricSamplepn, pq.

1: Input Set n p P r0, 1s.
2: Initialize L “ H; t “ 0
3: for t ď |S| do
4: Sample g from Geoppq

5: t “ t ` g

6: if t ď n then L “ L Y ttu

7: Output L

▶ Lemma 23. The subroutine GeometricSamplepn, pq outputs a subset of rns according to
the Bernoulli process. More precisely, if we set Ij “ 1 if i P L, 0 otherwise then I1, . . . , In

follow identically and independently distributed to Berppq.

Using the subroutine GeometricSample we can now present the improved algorithm
(Algorithm 5) for the Ordered Delphic Sets.

Algorithm 5 [F0-Estimator for Ordered Delphic Sets.]

1: Input Stream “ xS1, S2, . . . , SM y, ε, δ

2: Initialize
3: p Ð 1; thresh Ð maxtrlog 2{εs, 18u; Reps Ð r90{ε2s;
4: for (1 ď k ď log n) and (1 ď r ď Reps) do
5: X pkq

r Ð H;

Streaming Phase:
6: for j “ 1 to M do
7: for (1 ď k ď log n) and (1 ď r ď Reps) do
8: for all s P X pkq

r do
9: if s P Si then remove s from X pkq

r

10: Draw D
pkq
r from GeometricSamplep|Sj |, 1{2kq

11: if |X pkq
r | ` |D

pkq
r | ď thresh then

12: Lpkq
r “ tSjrℓs | ℓ P D

pkq
r u

13: X pkq
r “ X pkq

r Y Lpkq
r

Post-Streaming Phase:
14: for 1 ď k ď log n do
15: z̄pkq “ 1

Reps
řReps

r“1 |X pkq
r |

16: k˚ “ maxtk P rlog ns : z̄pkq ě 1u
17: Output z̄pk˚

q 92k˚

Algorithm 5 is the streaming algorithm for the Ordered Delphic Sets. For proving the
correctness of Algorithm 5, we have the following theorem:

APPROX/RANDOM 2024

26:20 Improved Streaming Algorithm for the Klee’s Measure Problem and Generalizations

▶ Theorem 24 (correctness theorem of Algorithm 5). If S is a stream of Ordered Delphic Set
the Algorithm 5 is an pε, 1{3q-F0-estimator. Also, the space and update time complexity of
Algorithm 5 is O

´

log2
|Ω|

ε2 ¨ log ε´1
¯

.

Proof of Theorem 24. Note that, the only difference between Algorithm 5 and Algorithm 2
is in lines 10, 11 and 12. Also note that the Algorithm 5 behaves identically if lines 10 to
13 is replaced by
10: Draw D

pkq
r from GeometricSamplep|Sj |, 1{2kq

11: Lpkq
r “ tSjrℓs | ℓ P D

pkq
r u

12: if |X pkq
r | ` |D

pkq
r | ď thresh then

13: X pkq
r “ X pkq

r Y Lpkq
r

By Lemma 23 the size of D
pkq
r is distributed according to the binomial distribution

Binp|Sk|, 1{2kq, that is the distribution of d
pkq
r in Algorithm 2 is same as the distribution of

|D
pkq
r | in Algorithm 5. Thus, L

pkq
r is distributed according to BerpSj , 1{2kq which is also the

same distribution if |Dpkq
r | samples are drawn from Sj using WOR sampling.

Thus the correctness of the Algorithm 5 follows from the correctness of Algorithm 2. The
complexities of Algorithm 5 is also identical to that of Algorithm 2. ◀

Recall that every d-dimensional rectangle can be viewed as an Ordered Delphic set,
therefore, Theorem 24 implies the following result in the context of Klee’s Measure Problem.

▶ Corollary 25 (Improved Algorithm for KMP). There is a streaming algorithm for the Klee’s
Measure Problem with space and update time complexity O

´

d2 log2 ∆
ε2 ¨ log 1

ε

¯

.

D Basic Probability Results

▶ Definition 26 (Geometric Distribution). Given any p P p0, 1s the Geometric Distribution
over the set of positive integers t1, 2, 3, . . .u is denoted as Geoppq where probability of a positive
integer k is p1 ´ pqk´1p.

▶ Theorem 27 (Coupon Collection Problem). Given access to uniform random samples from
a set T and a number r ď |T |, let Wr be a random variable that stand for the number of
independent uniform random samples from T needed before we get r distinct samples from T .
Then Pr pWr ą βr log rq ď r´β`1.

▶ Remark 28 (Pairwise Independent Hash Function). We will use pairwise independent hash
functions. For an integer n, k and Hpn, kq fi th : t0, 1un Ñ t0, 1uku be a family of hash
functions mapping t0, 1un to t0, 1uk. We use h

R
ÐÝ Hpn, kq to denote the probability space

obtained by choosing a function h uniformly at random from Hpn, kq. A family of hash
functions Hpn, kq is 2´wise independent if @α1, α2 P t0, 1uk, distinct x1, x2, P t0, 1un, h

R
ÐÝ

Hpn, kq, Prrphpx1q “ α1q ^ phpx2q “ α2qs “
1

22k . Several families of 2-wise independent hash
functions are known. We will use HTeoppn, kq, which is known to be 2-wise independent [7].
The family is defined as follows: HTeoppn, kq fi th : t0, 1un Ñ t0, 1uku is the family of
functions of the form hpxq “ Ax ` b with A P Fkˆn

2 and b P Fkˆ1
2 where A is a uniformly

randomly chosen Toeplitz matrix of size k ˆ n while b is uniformly randomly matrix of size
k ˆ 1. It is worth noticing that HTeop can be represented with Θpnq-bits and hash value of
any element x P t0, 1un can be computed in Opnkq time.

An EPTAS for Cardinality Constrained Multiple
Knapsack via Iterative Randomized Rounding
Ilan Doron-Arad #

Computer Science Department, Technion, Haifa, Israel

Ariel Kulik #

Computer Science Department, Technion, Haifa, Israel

Hadas Shachnai #

Computer Science Department, Technion, Haifa, Israel

Abstract
In [Math. Oper. Res., 2011], Fleischer et al. introduced a powerful technique for solving the generic
class of separable assignment problems (SAP), in which a set of items of given values and weights
needs to be packed into a set of bins subject to separable assignment constraints, so as to maximize
the total value. The approach of Fleischer at al. relies on solving a configuration LP and sampling a
configuration for each bin independently based on the LP solution. While there is a SAP variant for
which this approach yields the best possible approximation ratio, for various special cases, there
are discrepancies between the approximation ratios obtained using the above approach and the
state-of-the-art approximations. This raises the following natural question: Can we do better by
iteratively solving the configuration LP and sampling a few bins at a time?

To assess the potential of the iterative approach we consider a specific SAP variant as a case-study,
Uniform Cardinality Constrained Multiple Knapsack, for which we answer this question
affirmatively. The input is a set of items, each has a value and a weight, and a set of uniform capacity
bins. The goal is to assign a subset of the items of maximum total value to the bins such that (i)
the capacity of any bin is not exceeded, and (ii) the number of items assigned to each bin satisfies a
given cardinality constraint. While the technique of Fleischer et al. yields a

(
1 − 1

e

)
-approximation

for the problem, we show that iterative randomized rounding leads to efficient polynomial time
approximation scheme (EPTAS), thus essentially resolving the complexity status of the problem.
Our analysis of iterative randomized rounding may be useful for solving other SAP variants.

2012 ACM Subject Classification Theory of computation

Keywords and phrases multiple knapsack, cardinality constraint, EPTAS, iterative randomized
rounding

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.27

Category APPROX

Related Version Full Version: https://doi.org/10.48550/arXiv.2308.12622 [9]

Funding Ariel Kulik: This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 852780-ERC (SUBMODULAR)

1 Introduction

We consider problems in the class of maximizing assignment problems with packing constraints,
also known as separable assignment problems (SAP). A general problem in this class
is defined by a set of bins and a set of items to be packed in the bins. There is a value vij

(also called profit sometimes) associated with assigning item i to bin j. We are also given a
separate packing constraint for each bin j. The goal is to find an assignment of a subset of
the items to the bins which maximizes the total value accrued. This class includes several
well studied problems such as the generalized assignment problem (GAP).

© Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 27; pp. 27:1–27:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:idoron-arad@cs.technion.ac.il
https://orcid.org/0009-0007-9235-2175
mailto:ariel.kulik@gmail.com
https://orcid.org/0000-0002-0533-3926
mailto:hadas@cs.technion.ac.il
https://orcid.org/0000-0002-6645-4350
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.27
https://doi.org/10.48550/arXiv.2308.12622
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 An EPTAS for Cardinality Constrained Multiple Knapsack

In [12], Fleischer at al. introduced a powerful technique for solving SAP and its variants.
The technique relies on first solving a configuration linear programming (configuration-LP)
relaxation of the problem. Subsequently, configurations (i.e., feasible subsets of items for a
single bin) are sampled independently according to a distribution specified by the LP solution
to obtain an integral solution for the given instance. For many SAP variants, such as GAP,
the approximation guarantee of the resulting algorithm is (1− 1/e).

Intuitively, we can do better using the following iterative randomized rounding approach:
Iteratively solve a configuration LP relaxation of the problem for the remaining items and
bins and sample a few configurations based on the distribution specified by the LP solution,
until all bins are used. We note that if the LP is solved only once and all of the bins are
packed based on the solution, then we have exactly the algorithm of Fleischer et al. [12].
This raises the following question:

Can iterative randomized rounding improve the approximation ratio of [12]?

As shown in [12], under standard complexity assumptions, there is a SAP variant for
which their approximation ratio of (1− 1/e) is the best possible. However, for various
special cases (such as multiple knapsack and GAP), there are discrepancies between
the approximation guarantee obtained using the algorithm of [12] and the state-of-the-art
approximations. This indicates that the iterative approach may potentially lead to improved
approximation for some variants (compared to [12]). Hence, to assess the potential of the
iterative approach we focus as a case study on one interesting SAP variant, namely, Uniform
Cardinality Constrained Multiple Knapsack (CMK). Specifically, we show that
iterative randomized rounding is superior to the technique of [12] and use it to essentially
resolve the complexity status of this problem.

An input for CMK consists of a set of items, each has a value and a weight, and a set of
uniform capacity bins. The goal is to assign a subset of the items of maximum total value
to the bins such that (i) the total weight of items in each bin does not exceed its capacity,
and (ii) the number of items assigned to each bin satisfies a given cardinality constraint.1

CMK has real-world applications in cloud computing, as well as in manufacturing systems
and radio networks (see the full version of the paper [9]).

1.1 Related Work
Iterative randomized rounding of configuration-LPs has been recently used for obtaining the
current state-of-the-art approximation for vector bin packing in [17]. In this problem, the
goal is to pack a set of items, each given by a d-dimensional size vector for some d > 1, in a
minimum number of d-dimensional bins, where a subset of items fits in a bin if it adheres to
the capacity constraints in all dimensions. We are not aware of an application of iterative
randomized rounding of configuration-LPs for maximization problems.

The multiple knapsack with uniform capacities (UMK) problem is the special
case of CMK with no cardinality constraint, or equivalently, where the cardinality constraint
is larger than the total number of items. In the more general multiple knapsack (MK)
problem, the capacity of the bins may be arbitrary. In terms of approximation algorithms,
UMK and MK are well understood. A polynomial time approximation scheme PTAS for

1 See a more formal definition in Section 1.3.

I. Doron-Arad, A. Kulik, and H. Shachnai 27:3

UMK was given by Kellerer [16]. Later, Chekuri and Khanna [5] developed the first PTAS
for MK and ruled out the existence of a fully PTAS (FPTAS), already for UMK with only
two bins. Jansen designed more involved efficient PTAS (EPTAS) for MK [13, 14], thus
resolving the complexity status of the problem.2

For CMK, a randomized (1− 1/e)-approximation follows from the previously mentioned
results of Fleischer et al. [12] for SAP. More specifically, the authors present a randomized
algorithm for SAP whose approximation guarantee is ((1− 1/e) · β), where β is the best
approximation ratio for the single bin subproblem.3 A slightly more efficient approximation
ratio for CMK follows from a recent result of Cohen et al. [7] who give a randomized
(1− ln(2)/2− ε) ≈ 0.653-approximation for uniform 2-dimensional vector multiple knapsack.
In this problem, the cardinality constraint of CMK is generalized to a second knapsack
constraint.

We note that a PTAS for CMK can be obtained using ideas of [5]. We outline the main
steps. First, item values are discretized into O(log n) value classes, where n is the number of
items. Then, enumeration is used to roughly determine the number of items taken from each
value class. Clearly, one should take from each value class the items with smallest weights,
leading to a reduced problem of packing sufficient items from each value class in the m given
(uniform) bins. Packing these items in (1 + ε) ·m + O(1) uniform bins can be done using
an asymptotic FPTAS for bin packing with cardinality constraint [11] (or more generally,
for bin packing with a partition matroid [8]). Finally, the algorithm keeps the m bins with
highest values. We note that the running time of the enumeration step is very high. This
leaves open the question whether CMK admits an EPTAS.

1.2 Our Results
Our main contribution is in showing that iterative randomized rounding can substantially
improve the approximation guarantee of the configuration-LP rounding approach of [12]. The
analysis is based on concentration bounds; thus, our iterative algorithm is applied to a slightly
restricted subclass of CMK instances in which the value of each configuration is relatively
small, and the number of bins is large w.r.t. the given error parameter. Recall that even for
two bins the problem does not admit an FPTAS [5]. Hence, we do not expect the iterative
approach to work for a small number of bins. More specifically, given an error parameter
ε ∈ (0, 0.1) we say that a CMK instance I is ε-simple if (i) every feasible subset of items C

which can be packed in a single bin has value at most ε30 ·OPT(I), (ii) m > exp(exp(ε−30)),
and (iii) ε ·m ∈ N, where m is the number of bins and OPT(I) is the optimum value of I.4
For clarity, we first state our algorithmic result for the subclass of ε-simple CMK instances
(see Section 3 for more details).

▶ Theorem 1. For every ε ∈ (0, 0.1) and an ε-simple CMK instance I, iterative randomized

rounding (see Algorithm 1) returns a (1− ε)-approximation for I in time
(

|I|
ε

)O(1)
, where

|I| is the encoding size of I.

An in depth look into the algorithm of Fleischer et al. [12] reveals that the approximation
ratio of their algorithm on ε-simple instance is not better than

(
1− 1

e

)
, indicating the

improved ratio in Theorem 1 stems from the use of the iterative approach.

2 We give formal definitions of approximation schemes in Section 2.
3 The paper [12] shows that the existence of an FPTAS for the single bin subproblem, as in the case

of 0/1-knapsack with cardinality constraint, implies a (1 − 1/e)-approximation for the corresponding
variant of SAP.

4 In our discussion of ε-simple instances, we did not attempt to optimize the constants.

APPROX/RANDOM 2024

27:4 An EPTAS for Cardinality Constrained Multiple Knapsack

We give a simple reduction showing that our algorithm for ε-simple instances yields a
randomized EPTAS for general CMK instances.

This essentially resolves the complexity status of CMK, since an FPTAS is ruled out [5].

▶ Theorem 2. There is a randomized EPTAS for CMK.

For the proof of Theorem 2 see Section 3.

1.3 Technical Overview
In the following, we outline our algorithmic approach and its analysis. For clarity, we focus
in this section on high-level ideas and omit some technical details to improve clarity. We
start with a more formal definition of CMK. An instance of CMK consists of a set of items
I, a weight function w : I → [0, 1], a value function v : I → R≥0, a number of bins m ∈ N>0,
and a cardinality constraint k ∈ N>0. A solution is a tuple (C1, . . . , Cm) such that for all
j ∈ {1, . . . , m} it holds that Cj ⊆ I, |Cj | ≤ k and w(Cj) =

∑
i∈Cj

w(i) ≤ 1. The value of
the solution (C1, . . . , Cm) is

∑
i∈S v(i) where S =

⋃m
j=1 Cj . The goal is to find a solution of

maximum value. Note that we allow the sets C1, . . . , Cm to intersect, but if an item appears
in multiple sets its value is counted only once.

The Algorithm

Our algorithm applies an iterative randomized rounding approach based on a configuration-
LP. The use of such linear program dates back to the work of Karmarkar and Karp on bin
packing [15], and such linear programs are commonly used in approximation algorithms for
resource allocation problems (e.g., [3, 1, 12, 13, 17, 7]).

We use a configuration polytope P (ℓ) ⊆ [0, 1]I , where ȳ ∈ P (ℓ) can be intuitively
interpreted as “there is a way to fractionally pack the items into ℓ bins such that each
item i ∈ I is packed ȳi times”. The algorithm takes as an input a value ε > 0 which serves
as a discretization factor and determines the approximation ratio. Our iterative approach
uses 1

ε iterations, and each iteration packs ε ·m of the remaining bins. Therefore, at the
beginning of the j-th iterations, (j − 1) · ε ·m bins were packed (in previous iterations) and
(1− (j − 1) · ε) ·m bins are still empty. We use Sj to denote the set of items that were not
packed by the end of the j-th iteration (and thus are still available for packing). The main
steps of the algorithm are as follows.

1. Initialize S0 ← I to be all the items.
2. For j from 1 to 1

ε do:
a. Solve the linear program

max
∑
i∈I

ȳi · v(i)

s.t. ȳ ∈ P (m · (1− (j − 1) · ε))
ȳi = 0 ∀i ∈ I \ Sj−1

(1)

That is, we want to obtain a maximum value using m · (1− (j − 1) · ε) bins and only
items in Sj−1. Let ȳj be the solution found.

b. Sample ε ·m bins according to the solution ȳj (defined more formally in later); update
Sj to be Sj−1 minus all the items packed in the current iteration.

3. Return the collection of m packed bins.

I. Doron-Arad, A. Kulik, and H. Shachnai 27:5

The linear program in (1) can be approximated efficiently, but cannot be solved exactly in
polynomial time. For the purpose of this technical overview, we assume it can be solved
exactly. In Item 2b we use the randomized rounding technique for configuration LPs of
Fleischer et al. [12]. The same randomized rounding technique is commonly used by other
algorithms (e.g., [3, 1, 17, 2]). We give the full details on the sampling process in Section 3.

High Level Analysis

Let Qj be the set of items packed in the j-th iteration (that is, Qj = Sj \ Sj−1). In the j-th
iteration, the linear program uses m · (1− (j − 1) · ε) bins and attains value of

∑
i∈I ȳj

i · v(i),

with an average value of
∑

i∈I
ȳj

i
·v(i)

m·(1−(j−1)·ε) per bin. As the number of bins sampled in each
iteration is small, it can be shown that with high probability the average value per bin in
the packing generated by the randomized rounding is roughly the same as the average value
in the fractional solution. That is,∑

i∈Qj
v(i)

ε ·m
≈

∑
i∈I ȳj

i · v(i)
m · (1− (j − 1) · ε) ,

or equivalently,

∑
i∈Qj

v(i) ≈ ε ·
∑

i∈I ȳj
i · v(i)

1− (j − 1) · ε .

Observe the left hand term is the value attained from items packed in the j-th iteration. In
each iteration of the algorithm the distribution by which the bins are sampled is updated, so
the algorithm does not pack items already packed in previous iterations (by the constraints
ȳi = 0 for i ∈ I \ Sj−1 in (1)). Thus, we have that Q1, . . . , Qε−1 are disjoint. It follows that
the value of the solution returned by the algorithm is

v(I \ Sε−1) =
ε−1∑
j=1

∑
i∈Qj

v(i) ≈ ε ·
ε−1∑
j=1

∑
i∈I ȳj

i · v(i)
1− (j − 1) · ε (2)

Ideally, we would like the average value per bin to be (at least) OPT
m in each of the

solutions ȳj , where OPT is the value of the optimal solution of the instance. That is, the
average value per bin in each of the iterations remains the average value per bin in the
optimum. As ȳj conceptually uses m · (1− (j − 1)ε) bins, this implies that∑

i∈I

ȳj
i · v(i) ≳

OPT
m
·m · (1− (j − 1) · ε) = OPT · (1− (j − 1) · ε) , (3)

for every j ∈ [ε−1]. If we assume (3) holds and plug it into (2), we get that the value of the
solution returned by the algorithm is

v(I \ Sε−1) ≈ ε ·
ε−1∑
j=1

∑
i∈I ȳj

i · v(i)
1− (j − 1) · ε ≳ ε ·

ε−1∑
j=1

OPT · (1− (j − 1) · ε)
1− (j − 1) · ε = OPT.

That is, the algorithm returns a solution of value close to OPT (not strictly better naturally),
assuming (3) holds. This leaves us with the goal of showing that (3) holds with high
probability.

APPROX/RANDOM 2024

27:6 An EPTAS for Cardinality Constrained Multiple Knapsack

Linear Structures and Equation (3)

To show that (3) holds we define a random vector γ̄j ∈ [0, 1]I for every j ∈ [ε−1]. We use γ̄j

to lower bound the value of the configuration-LP. We show that with high probability (i) the
value of γ̄j (that is,

∑
i∈I γ̄j

i · v(i)) is ≈ (1 − (j − 1)ε) · OPT and (ii) γ̄j ∈ P ((1 + δ) ·mj)
where mj = (1− (j − 1) · ε) ·m is the number of remaining bins at the beginning of the j-th
iteration and δ > 0 is small. Once properties (i) and (ii) are shown, it follows that γ̄j

1+δ is
a solution of high value for the linear program in the j-th iteration, and (3) immediately
follows as the algorithm finds an optimal solution in every iteration. Property (i) is shown
using a simple calculation of the expected value of the vector γ̄j followed by an application
of a concentration bound which shows that with high probability the value of γ̄j does not
deviate afar from its expected value. Showing property (ii) is more challenging.

The polytope P (ℓ) can be represented via a finite set of linear constraints S ⊆ RI
≥0

by P (ℓ) = {ȳ ∈ [0, 1]I | ∀ū ∈ S : ū · ȳ ≤ ℓ} (the set S is the same for every ℓ). While S
is finite, its size is non-polynomial in the input instance. A naive approach to show that
γ̄j ∈ P ((1 + δ)mj) is to consider each constraint ū ∈ S separately, and apply concentration
bounds to show ȳ · ū ≲ mj with high probability. Subsequently, the union bound can be used
to lower bound the probability that ȳ · ū ≲ mj for every ū ∈ S simultaneously. However, due
to the large number of vectors in S, a direct application of the union bound does not lead to
such useful lower bound.

We use a linear structure to overcome the above challenge. The linear structure provides an
approximate representation of the configuration polytope using a small number of constraints
(that is, the number of constraints only depends on ε). As the number of constraints is
reduced, we can now apply the above logic successfully − use a concentration bound to show
that each constraint of the linear structure holds independently with high probability, and
then use the union bound to show that all the constraints hold simultaneously with high
probability. By the properties of the linear structure, once we show that all constraints hold,
we are guaranteed that γ̄j ∈ P ((1 + δ) ·mj), as stated in (ii).

The concept of linear structure was introduced in [17]. It is essentially a non-constructive
version of the subset oblivious algorithms used by the Round&Approx framework of [3]. We
construct the linear structure for CMK based on ideas from [17, 1]. The structure leverages
the relatively simple structure of the cardinality constraint.

Technical Contribution

In this paper, we present the first use of an iterative randomized rounding approach of
a configuration-LP for a maximization problem. As such, the paper provides the basic
foundations required for the analysis of iterative randomized rounding for maximization
problems. Iterative randomized rounding of a configuration-LP has been recently used for bin
packing problems in [17]. Indeed, in some places the analysis only requires simple adaptations
of ideas from [17]. In other parts, the adaptation is more challenging.

These challenges arise mainly due to the fact that while in bin packing all the remaining
items must be fully packed by the configuration-LP, in maximization problems the remaining
items may be partially selected or not selected at all by the configuration-LP. Thus, the
probability of an item to be packed after j iterations may take different values for different
items. In contrast, this probability is the same for all items in the case of bin packing.
Similarly, while in the case of bin packing all items must be packed by the configuraiton-LP
in every iteration, in maximization problem there is a degree of freedom in the selection
of items to be packed. This, in turn, led to a different approach for the use of the linear
structure.

I. Doron-Arad, A. Kulik, and H. Shachnai 27:7

We note that while the paper [7] deals with a generalization of CMK and uses several
similar concepts (configuration LP, sampling, subset oblivious algorithms), the algorithm
in [7] does not use an iterative approach. It relies on two separate stages: the first uses a
randomized rounding of a configuration-LP that is solved once, and the second stage uses
a combinatorial algorithm. We believe the analysis of the iterative randomized rounding
algorithm presented in this paper will be useful in showing iterative randomized rounding
yields an improved approximation for the Uniform 2-dimensional Vector Multiple Knapsack
(2d-UMK) problem considered in [7]. The main challenge in applying our analysis to 2d-UMK
is that our analysis relies on a robust linear structure, which is unlikely to exist for 2d-UMK
(as that would lead to a PTAS, contradicting the hardness results in [7]). This can potentially
be bypassed with the use of an analog of the linear structure that holds for 2d-UMK and
adaption of the analysis to this potential structure.

1.4 Organization
In Section 2 we give some definitions and notation. Section 3 presents our main algorithm
and an outline of its analysis. In Section 4 we give the detailed analysis (proofs of Lemmas 6,
7, 10 and 11). The proofs of Lemma 9 and Lemma 4 are given in the full version of the
paper [9].

2 Preliminaries

We start with some definitions and notation. Let OPT(I) be the value of an optimal solution
for an instance I of a maximization problem Π. For α ∈ (0, 1], a solution x for the instance I

is an α-approximate solution if its value is at least α ·OPT(I). For α ∈ (0, 1], we say that A is
an α-approximation algorithm for Π if for any instance I of Π, A outputs an α-approximate
solution for I. An algorithm A is a randomized α-approximation for Π if for any instance I

of Π it always returns a solution for I, and the solution is an α-approximate solution with
probability at least 1

2 . A polynomial-time approximation scheme (PTAS) for a maximization
problem Π is a family of algorithms (Aε)ε>0 such that for any ε > 0, Aε is a polynomial-time
(1− ε)-approximation algorithm for Π. As the running time of a PTAS may be impractically
high, two restrictive classes of PTAS have been proposed in the literature: (Aε)ε>0 is an
efficient PTAS (EPTAS) if the running time of Aε is of the form f

(1
ε

)
· nO(1), where f is an

arbitrary function, and n is the bit-length encoding size of the input instance; (Aε)ε>0 is
a fully PTAS (FPTAS) if the running time of Aε is bounded by

(
n
ε

)O(1). Given a boolean
expression D, we define 1D ∈ {0, 1} such that 1D = 1 if D is true and 1D = 0 otherwise.

We give an alternative definition of our problem that will be used in the technical sections.
An instance of CMK is a tuple I = (I, w, v, m, k), where I is a set of items, w : I → [0, 1]
is the weight function, v : I → R≥0 is the value function, m ∈ N>0 is the number of bins,
and k ∈ N>0 is the cardinality constraint. A configuration of the instance I is C ⊆ I such
that |C| ≤ k and w(C) =

∑
i∈C w(i) ≤ 1. Let CI be the set of all configurations of I, and

CI(i) = {C ∈ C | i ∈ C} the set of all configurations which contain i ∈ I. When clear from
the context, we simply use C = CI and C(i) = CI(i).

A solution of I is a tuple of m configurations S = (C1, . . . , Cm) ∈ Cm. The value of
the solution S = (C1, . . . , Cm) is v(S) = v

(⋃
b∈[m] Cb

)
(generally, for any set B ⊆ A and

a function f : A→ R≥0, we use f(B) =
∑

b∈B f(b)). The objective is to find a solution of
maximum value. Let OPT(I) be the optimal solution value for the instance I, and |I| the
encoding size of I. W.l.o.g., we consider a tuple with fewer than m configurations to be
a solution. In this case, for some r ≤ m, the tuple (C1, . . . , Cr) ∈ Cr is equivalent to the
solution (C1, . . . , Cr, ∅, . . . , ∅) ∈ Cm.

APPROX/RANDOM 2024

27:8 An EPTAS for Cardinality Constrained Multiple Knapsack

Our main algorithm, given in Section 3, is applied to a restricted subclass of simple
instances. We now give a more formal definition for this subclass of instances.

▶ Definition 3. Let ε ∈ (0, 0.1), We say that a CMK instance I = (I, w, v, m, k) is ε-simple
if the following conditions hold.

For every C ∈ C, we have that v(C) ≤ ε30 ·OPT(I).
m > exp(exp(ε−30))
ε ·m ∈ N.

We give a reduction showing that our algorithm for ε-simple instances yields a randomized
EPTAS for general CMK instances.5 This is formalized in the next lemma (we give the proof
in [9]).

▶ Lemma 4. Given ε ∈ (0, 0.1) such that ε− 1
2 ∈ N, let A be a randomized algorithm which

returns a (1− ε)-approximate solution for any ε-simple CMK instance I in time
(

|I|
ε

)O(1)
.

Then, there is a randomized EPTAS for CMK.

Theorem 2 follows from Theorem 1 and Lemma 4.

3 The Algorithm

In this section, we formally present our iterative randomized rounding algorithm for ε-simple
CMK instances. The algorithm relies on a linear programming (LP) relaxation of CMK that
we formalize through the notion of fractional solutions.

A fractional solution for an instance I = (I, w, v, m, k) is a vector x̄ ∈ RC
≥0; the value x̄C

represents a fractional selection of the configuration C for the solution. The coverage of x̄ is
the vector cover(x̄) ∈ RI

≥0 defined by

∀i ∈ I : coveri(x̄) = (cover(x̄))i =
∑

C∈C(i)

x̄C .

The vector x̄ is feasible if cover(x̄) ∈ [0, 1]I . The size of x̄ is ∥x̄∥ =
∑

C∈C x̄C (throughout
this paper, for every vector z̄ ∈ Rn we use ∥z̄∥ =

∑n
i=1 |z̄i|). The value of ȳ ∈ [0, 1]I is

v(ȳ) =
∑

i∈I ȳi ·v(i). The value of x̄ is the value of the cover of x̄, that is, v(x̄) = v(cover(x̄)).
For ℓ ∈ N>0, let [ℓ] = {1, . . . , ℓ}.

A solution S = (C1, . . . , Cm) for I, where C1, . . . , Cm are disjoint and non-empty, can be
encoded as a feasible fractional solution x̄ ∈ {0, 1}C defined by x̄Cb

= 1 for every b ∈ [m],
and x̄C = 0 for every other configuration. It is easy to verify that ∥x̄∥ = m, coveri(x̄) = 1
for every i ∈ S, coveri(x̄) = 0 for every i ∈ I \ S, and v(x̄) = v(S).

We use fractional solutions to define a linear program (LP). Let K be a set and γ̄ ∈ RK .
The support of γ̄ is supp(γ̄) = {i ∈ K | γ̄i ̸= 0}. Let I = (I, w, v, m, k) be a CMK instance.
For every set S ⊆ I of remaining items and ℓ ∈ N remaining bins, we define the configuration
LP of S and ℓ by

LP(S, ℓ) :

max v(x̄)
s.t. x̄ is a feasible fractional solution for I

supp(x̄) ⊆ 2S

∥x̄∥ = ℓ

5 In our discussion of ε-simple instances, we did not attempt to optimize the constants.

I. Doron-Arad, A. Kulik, and H. Shachnai 27:9

That is, in LP(S, ℓ) exactly ℓ configurations are selected6, and these configurations contain
only items in S. We can formally define the configuration polytope P (ℓ) discussed in
Section 1.3 via fractional solutions by

P (ℓ) = {cover(x̄) | x̄ is a feasible fractional solution for I and ∥x̄∥ ≤ ℓ} . (4)

It can be shown that LP(Sj , (1− (j − 1) · ε) ·m) is equivalent to the linear program in (1).
A generalization of LP(S, ℓ) for the separable assignment problem (SAP) was considered

in [12]. Given pi ≥ 0 for every i ∈ I, the paper [12] shows that linear programs such as
LP(S, ℓ) admit an FPTAS whenever the single bin problem − of finding C ∈ C such that∑

i∈I pi is maximized − admits an FPTAS. As the single bin case of CMK has an FPTAS
(e.g., [4, 18, 10]), we get the following.

▶ Lemma 5. There is an algorithm which given a CMK instance I = (I, w, v, m, k), S ⊆ I,

ℓ ∈ N and ε > 0, finds a (1− ε)-approximate solution for LP(S, ℓ) in time
(

|I|
ε

)O(1)
.

Given a fractional solution x̄ such that ∥x̄∥ ̸= 0, we say that a random configuration
R ∈ C is distributed by x̄, and write R ∼ x̄, if Pr(R = C) = x̄C

∥x̄∥ for all C ∈ C.
The pseudocode of our algorithm for CMK is given in Algorithm 1. In each iteration

1 ≤ j ≤ ε−1, the algorithm uses the solution x̄j for LP(Sj−1, mj) to sample ε·m configurations,
where Sj−1 is the set of items remaining after iteration (j − 1), and mj is the number of
remaining (unassigned) bins.

Algorithm 1 Iterative Randomized Rounding.

input : Error parameter ε ∈ (0, 0.1), ε− 1
2 ∈ N, and an ε-simple CMK

instance I = (I, w, v, m, k)
output : A solution for the instance

1 Initialize S0 ← I

2 for j = 1, . . . , ε−1 do
3 Find a (1− ε)-approximate solution x̄j for LP(Sj−1, mj), where

mj = m (1− (j − 1) · ε).
4 Sample independently q = ε ·m configurations Rj

1, . . . , Rj
q ∼ x̄j .

5 Update Sj = Sj−1 \
(⋃q

b=1 Rj
b

)
.

6 Return as solution
(

Rj
b

)
1≤j≤ε−1, 1≤b≤q

Consider the execution of Algorithm 1 with the input I = (I, w, v, m, k) and ε ∈ (0, 0.1)
such that ε− 1

2 ∈ N. The notations we use below, such as x̄j , Sj , and Rj
b, refer to the variables

used throughout the execution of the algorithm. Clearly, Algorithm 1 returns a solution
for I. Furthermore, by Lemma 5, the running time of the algorithm is polynomial in I and
ε−1. Let V = v

(⋃ε−1

j=1
⋃q

b=1 Rj
b

)
= v (I \ Sε−1) be the value of the returned solution.

Main Lemmas

In the following, we describe the main lemmas we prove in order to lower bound the value
of V . The proofs of the lemmas are given in Section 4 and the full version of the paper [9].

6 Note that x̄∅ may be greater than 1.

APPROX/RANDOM 2024

27:10 An EPTAS for Cardinality Constrained Multiple Knapsack

A simple calculation shows that the expected value of v(Rj
b), given all the samples up

to (and including) iteration (j − 1), is v(x̄j)
m·(1−(j−1)·ε) . To compute the expected value of

v
(⋃q

b=1 Rj
b

)
, we need to take into consideration events in which an item i ∈ I appears in

several configurations among Rj
1, . . . , Rj

q. In Section 4.2 we show that, since only a small
number of configurations are sampled in each iteration (in comparison to the overall remaining
number of bins), such events have small effect on the expected value (with the exception of
the last ε− 1

2 iterations). This observation is coupled with a concentration bound to prove
the next lemma.

▶ Lemma 6. With probability at least 1− exp
(
−ε−8), it holds that

V = v(I \ Sε−1) ≥
ε−1−ε− 1

2∑
j=1

v(x̄j) ·

(
ε− ε

3
2

)
1− (j − 1)ε − ε9 ·OPT(I).

Lemma 6 is the formal statement of (2). Lemma 6 essentially reduces the problem of
deriving a lower bound for V to obtaining a lower bound on v(x̄j).

To obtain a lower bound for v(x̄j) we use the following steps. We define random
vectors γ̄j ∈ [0, 1]I for every j ∈ [ε−1] such that v(γ̄j) is high, and there is z̄j such that
cover(z̄j) = γ̄j−1 and ∥z̄j∥ ≈ mj . We scale down z̄j to obtain a solution for LP(Sj−1, mj)
of value ≈ v(γ̄j−1), and consequently get a lower bound for v(x̄j). We use a linear structure
defined below, to show the existence of z̄j . We further use auxiliary random vectors λ̄j to
define γ̄j .

Let (Ω,F , Pr) be the probability space defined by the execution of the algorithm. Define
the σ-algebras F0 = {∅, Ω} and Fj = σ

(
{Rj′

b | 1 ≤ j′ ≤ j, 1 ≤ b ≤ q}
)

. That is, Fj describes
events which only depend on the outcomes of the random sampling up to (and including) the
j-th iteration of the algorithm. We follow the standard definition of conditional probabilities
and expectations given σ-algebras (see, e.g., [6]).

Fix an optimal solution (C∗
1 , . . . , C∗

m) for the instance and let S∗ =
⋃m

j=1 C∗
j be the set of

items in this solution. Also, given a set S ⊆ I denote by 1S the vector z̄ ∈ {0, 1}I satisfying
z̄i = 1 for i ∈ S, and z̄i = 0 otherwise.

We define γ̄j and λ̄j inductively using S∗. Define γ̄0 = 1S∗ , that is γ̄0
i = 1 for every

i ∈ S∗ and γ̄0
i = 0 for every i ∈ I \ S∗. For every j ∈ [ε−1 − 1] define λ̄j ∈ RI

≥0 by

λ̄j
i = 1− j · ε

1− (j − 1)ε ·
1

Pr(i ∈ Sj | Fj−1) · γ̄
j−1
i (5)

for all i ∈ Sj−1 and λ̄j
i = 0 for i /∈ Sj−1. Intuitively, the expression Pr(i ∈ Sj | Fj−1) in (5)

is the probability that item i will still be available for packing after the j-th iteration, where
the probability is calculated at the end of the iteration j − 1. Also, for every j ∈ [ε−1 − 1]
define γ̄j ∈ RI

≥0 by

γ̄j
i = 1i∈Sj

· λ̄j
i ∀i ∈ I. (6)

Observe that λ̄j is Fj−1-measurable random variable whereas γ̄j is Fj-measurable. Intuitively,
this means that the value of λ̄j is known by the end of the (j − 1)-th iteration, while the
value of γ̄j is only known by the end of the j-th iteration.

The lower bound on v(γ̄j−1) relies on a simple calculation of expectations followed by a
concentration bound. By induction it can be shown that E[γ̄j−1

i] = (1 − (j − 1)ε) · 1i∈S∗ ,
and therefore,

E[v(γ̄j−1)] = (1− (j − 1)ε) · v(S∗) = (1− (j − 1)ε) ·OPT(I).

We use concentration bounds to show that indeed v(γ̄j−1) does not deviate from its expected
value.

I. Doron-Arad, A. Kulik, and H. Shachnai 27:11

▶ Lemma 7. With probability at least 1− exp(−ε−20), it holds that

∀j ∈ [ε−1] : v(γ̄j−1) ≥ (1− ε(j − 1)) ·OPT(I)− ε3 ·OPT(I).

We give the proof of Lemma 7 in the full version of the paper [9].
Our next challenge is to show that there is a solution for LP(Sj−1, mj) whose cover is

roughly γ̄j−1, which can be alternatively stated as γ̄j−1 ∈ P (ℓ) where ℓ ≈ mj , and P (ℓ) is
as defined in (4). To this end, we introduce a linear structure for CMK. The main idea in
linear structures is that they allow us to determine that γ̄j ∈ P (ℓ) by checking if γ̄j satisfies
a small number of linear inequalities.

Given a vector ū ∈ RI
≥0 which defines an inequality in the linear structure, we use concen-

tration bounds to show that γ̄j · ū ≤ E[γ̄j · ū]+ξ, where ξ is an error terms. The concentration
bounds we use only provide useful guarantees if the error term ξ is of order of the maximum
sum of entries in ū w.r.t. a single configuration, that is, tol(ū) = max

{∑
i∈C ūi |C ∈ C

}
. We

refer to the value tol(ū) as the tolerance of ū. We consequently require the linear structure
to be robust to additive errors of order of the tolerance. Also, we say that S ⊆ I can be
packed into ℓ ∈ N bins if there are ℓ configurations C1, . . . , Cℓ ∈ C such that

⋃ℓ
b=1 Cb = S.

▶ Definition 8 (Linear Structure). Let (I, w, v, m, k) be a CMK instance and δ > 0 a
parameter. Also, consider a subset S ⊆ I such that S can be packed in ℓ ∈ N bins. A δ-linear
structure of S is a set of vectors L ⊆ RI

≥0 which satisfy the following property.
Let ȳ ∈ ([0, 1] ∩Q)I , 0 < α < 1 and t > 0, such that

1. supp(ȳ) ⊆ S

2. ∀ū ∈ L : ū · ȳ ≤ α · ū · 1S + t · tol(ū)
Then, there is a fractional solution x̄ whose cover is ȳ and ∥x̄∥ ≤ α · ℓ + 20δℓ + (t + 1) ·
exp(δ−5).

The size of the structure L is |L|.

Alternatively, a δ-linear structure guarantees for S that for every ȳ ∈ [0, 1]I with rational
entries, 0 < α < 1 and t > 0, if supp(ȳ) ⊆ S and ȳ satisfies |L| linear inequalities, then
ȳ ∈ P (α · ℓ + 20δℓ + (t + 1) · exp(δ−5)).

In [9] we prove the next result.

▶ Lemma 9. Given δ > 0, let I = (I, w, v, m, k) be a CMK instance, and S ⊆ I a subset
which can be packed into ℓ > exp(δ−5) bins. Then there is a δ-linear structure L of S of size
at most exp

(
δ−4).

The above lemma is an adaptation of a construction of [17] used to solve the vector bin
packing problem, in which there are additional requirements for the packing of S. Our
adaptation leverages the relative simplicity of a cardinality constraint to omit these additional
requirements.

We use Lemma 9 to show the existence of an ε2-linear structure of S∗, where S∗ is the
set of items in an optimal solution. We use the linear structure to show the existence of
a fractional solution z̄j such that cover(z̄j) = γ̄j−1 and ∥z̄j∥ ≈ (1 − (j − 1)ε)m for every
j ∈ [ε1]. A simple scaling is then used to construct a solution for LP(Sj−1, mj) and establish
the following lower bound on v(x̄j).

▶ Lemma 10. With probability at least 1− exp(−ε−20), it holds that

∀j ∈ [ε−1] : v(x̄j) ≥ (1− ε) ·
(

1− 30 · ε2

1− (j − 1)ε

)
· v(γ̄j−1).

APPROX/RANDOM 2024

27:12 An EPTAS for Cardinality Constrained Multiple Knapsack

We give the proof of Lemma 10 in [9]. Together, Lemma 10 and Lemma 7 essentially
give the formal proof of (3). Finally, using Lemmas 6, 7, and 10, we obtain the next result,
whose proof is given in [9].

▶ Lemma 11. With probability at least 1−exp(−ε−5), it holds that V ≥ (1−60
√

ε) ·OPT(I).

Theorem 1 follows directly from Lemma 11.

4 The Analysis

Consider an execution of Algorithm 1 with the input I = (I, w, v, m, k) and ε > 0. We use
the notation and definitions as given in Section 3. Also, let ȳj = cover(x̄j) be the coverage
of x̄j . Observe x̄j and ȳj are Fj−1-measurable. That is, their values are determined by
the outcomes of the samples up to (and including) the j − 1 iteration. As in Section 3 we
let (C∗

1 , . . . , C∗
m) be an optimal solution for the instance I. We define S∗ =

⋃m
b=1 C∗

b and
OPT = v(S∗) = OPT(I).

4.1 Concentration Bounds
Before we give the proofs of Lemmas 6, 7, 10, and 11, we need to introduce some concentration
bounds for self-bounding functions.

▶ Definition 12. A non-negative function f : Xn → R≥0 is called self-bounding if there exist
n functions f1, . . . , fn : Xn−1 → R such that for all x = (x1, . . . , xn) ∈ Xn,

0 ≤ f(x)− ft(x(t)) ≤ 1, and
n∑

t=1

(
f(x)− ft(x(t))

)
≤ f(x),

where x(t) = (x1, . . . , xt−1, xt+1, . . . , xn) ∈ Xn−1 is obtained by dropping the t-th component
of x.

We rely on the following concentration bound due to Boucheron, Lugosi and Massart [3].

▶ Lemma 13. Let f : Xn → R≥0 be a self-bounding function and let X1, . . . , Xn ∈ X be
independent random variables. Define Z = f(X1, . . . , Xn). Then the following holds:
1. Pr (Z ≥ E[Z] + t) ≤ exp

(
− t2

2·E[Z]+ t
3

)
, for every t ≥ 0.

2. Pr (Z ≤ E[Z]− t) ≤ exp
(
− t2

2·E[Z]

)
, for every t > 0.

The setting considered in [3] can be trivially extended to a setting in which the random
variable are conditionally independent on a σ-algebra G (see [6] for the definition of conditional
independence) and the function f itself is a G-measurable random function. This is formally
stated in the next lemma.

▶ Lemma 14. Let (Ω,F , Pr) be a finite probability space and let G ⊆ F be a σ-algebra. Let
D be a finite set of self-bounding function from χℓ to R≥0 and let f ∈ D be a G-measurable
random function. Also, let X1, . . . , Xℓ ∈ χ be random variables which are conditionally
independent given G. Define Z = f(X1, . . . , Xn). Then the following holds:
1. Pr (Z ≥ E[Z | G] + t | G) ≤ exp

(
− t2

2·E[Z | G]+ t
3

)
, for every t ≥ 0.

2. Pr (Z ≤ E[Z | G]− t | G) ≤ exp
(
− t2

2·E[Z | G]

)
for every t ≥ 0.

The generalization in Lemma 14 is required since the variables Rj
1, . . . , Rj

q are dependent for
q > 1 while being conditionally independent given the variables Rj′

b for every j′ < j and
b ∈ [q]. The following construction for self-bounding function was shown in [7].

I. Doron-Arad, A. Kulik, and H. Shachnai 27:13

▶ Lemma 15. Let I = (I, w, v, m, k) be a CMK instance, and h : I → R≥0. For some

ℓ ∈ N>0 define f : Cℓ → R≥0 by f(C1, . . . , Cℓ) =
h(
⋃

i∈[ℓ]
Ci)

η where η ≥ maxC∈C h(C). Then
f is self-bounding.

4.2 The proof of Lemma 6
The first step towards the proof of Lemma 6 is to show a lower bound on the probability of
an item to appear in one of the sampled configurations Rj

1, . . . , Rj
q in terms of ȳj

i .

▶ Lemma 16. For every i ∈ I and j ∈
[
ε−1] it holds that Pr (i ∈ Sj−1 \ Sj | Fj−1) ≥

1− exp
(
−ε · ȳj

i

1−(j−1)ε

)
.

Proof. By a simple calculation,

Pr (i ∈ Sj−1 \ Sj | Fj−1) = Pr
(

i ∈
q⋃

b=1
Rj

b

∣∣∣∣∣ Fj−1

)

= 1− Pr
(

i /∈
q⋃

b=1
Rj

b

∣∣∣∣∣ Fj−1

)

= 1−
q∏

b=1
Pr
(

i /∈ Rj
b

∣∣∣ Fj−1

)
= 1−

q∏
b=1

(
1− Pr

(
i ∈ Rj

b

∣∣∣ Fj−1

))
= 1−

q∏
b=1

(
1− Pr

(
Rj

b ∈ C(i)
∣∣∣ Fj−1

))
.

(7)

The third equality holds as Rj
1, . . . , Rj

q are conditionally independent given Fj−1. Therefore,
by (7) and since the configurations are distributed by x̄j we have

Pr (i ∈ Sj−1 \ Sj | Fj−1) = 1−
q∏

b=1

(
1− Pr

(
Rj

b ∈ C(i)
∣∣∣ Fj−1

))

= 1−
(

1−
∑

C∈C(i) x̄j
C

∥x̄j∥

)q

= 1−
(

1− ȳj
i

m · (1− (j − 1) · ε)

)ε·m

= 1−

(1− ȳj
i

m · (1− (j − 1) · ε)

)m·(1−(j−1)·ε)
ȳ

j
i

ε·ȳ

j
i

(1−(j−1)·ε)

≥ 1−
(
e−1) ε·ȳ

j
i

(1−(j−1)·ε)

= 1− exp
(
− ε · ȳj

i

(1− (j − 1) · ε)

)
.

The inequality holds since (1− 1
x)x ≤ 1

e for all x ≥ 1. ◀

APPROX/RANDOM 2024

27:14 An EPTAS for Cardinality Constrained Multiple Knapsack

The next lemma uses Lemma 16 to lower bound the total value of sampled configurations
in the j-th iteration.

▶ Lemma 17. For all j ∈
[
ε−1 − ε− 1

2

]
it holds that

E [v(Sj−1 \ Sj) | Fj−1] ≥ v(x̄j) ·
(

ε− ε
3
2

) 1
1− (j − 1)ε .

Proof. By Lemma 16 we get

E [v(Sj−1 \ Sj) | Fj−1] =
∑
i∈I

v(i) · Pr (i ∈ Sj−1 \ Sj | Fj−1)

≥
∑
i∈I

v(i) ·
(

1− exp
(
−ε · ȳj

i

1− (j − 1)ε

))

≥
∑
i∈I

v(i) ·

ε · ȳj
i

1− (j − 1)ε −
(

ε · ȳj
i

1− (j − 1)ε

)2

=
∑
i∈I

v(i) ·
(

ε · ȳj
i

1− (j − 1)ε ·
(

1− ε · ȳj
i

1− (j − 1)ε

))
.

(8)

The second inequality follows from 1− exp(−x) ≥ x− x2 for all x ≥ 0. By (8) we have

E [v(Sj−1 \ Sj) | Fj−1] ≥
∑
i∈I

v(i) ·
(

ε · ȳj
i

1− (j − 1)ε ·
(

1− ε · 1
1− (ε−1 − ε− 1

2 − 1)ε

))

=
∑
i∈I

v(i) ·
(

ε · ȳj
i

1− (j − 1)ε ·
(

1− ε

ε + ε
1
2

))

= 1
1− (j − 1)ε ·

(
ε− ε2

ε + ε
1
2

)
·
∑
i∈I

v(i) · ȳj
i

= 1
1− (j − 1)ε ·

(
ε− 1

ε−1 + ε− 3
2

)
· v(x̄j)

≥ v(x̄j) ·
(

ε− ε
3
2

) 1
1− (j − 1)ε .

The first inequality holds since j ≤ ε−1−ε− 1
2 and since x̄j is a feasible solution for LP(S, mj);

thus, ȳj ∈ [0, 1]I . ◀

We can also use Lemma 14 to show that the value of the configurations sampled in the
j-th iteration does not deviate significantly from its expected value.

▶ Lemma 18. For all j ∈ [ε−1] it holds that

Pr
(

v(Sj−1 \ Sj) ≤ E [v (Sj−1 \ Sj) | Fj−1]− ε10 ·OPT(I)
)
≤ exp

(
−ε−9) .

Proof. Recall that q = ε ·m. Define a function f : Cq → R≥0 by f(X) = v(S)
ε30·OPT(I) for all

X = (C1, . . . , Cq) ∈ Cq. Since I is ε-simple it holds that v(C) ≤ ε30 · OPT for all C ∈ C,
thus, by Lemma 15 it follows that f is a self-bounding function. Therefore,

I. Doron-Arad, A. Kulik, and H. Shachnai 27:15

Pr
(

v(Sj−1 \ Sj) ≤ E
[
v (Sj−1 \ Sj)

∣∣ Fj−1
]
− ε10 ·OPT(I)

∣∣∣∣ Fj−1

)
= Pr

(
f
(

Rj
1, . . . , Rj

q

)
≤ E

[
f
(

Rj
1, . . . , Rj

q

) ∣∣∣∣ Fj−1

]
− ε−20

∣∣∣∣ Fj−1

)

≤ exp

− ε−40

2 · E
[
f
(

Rj
1, . . . , Rj

q

) ∣∣∣∣ Fj−1

]
 .

(9)

The inequality holds by Lemma 14. In addition, since Rj
1, . . . , Rj

q is a solution for I, it also
holds that

E
[
f
(

Rj
1, . . . , Rj

q

) ∣∣∣∣ Fj−1

]
≤ OPT(I)

ε30 ·OPT(I) = ε−30. (10)

Hence, by the above

Pr
(

v(Sj−1 \ Sj) ≤ E
[
v (Sj−1 \ Sj)

∣∣ Fj−1
]
− ε10 ·OPT(I)

∣∣∣∣ Fj−1

)

≤ exp

− ε−40

2 · E
[
f
(

Rj
1, . . . , Rj

q

) ∣∣∣∣ Fj−1

]

≤ exp
(
− ε−40

2 · ε−30

)
= exp

(
−ε−10

2

)
≤ exp

(
−ε−9) .

(11)

The first inequality holds by (9). The second inequality follows from (10). For the last
inequality, recall that ε < 0.1. Therefore, by (11) it holds that (unconditionally on Fj−1),

Pr
(

v(Sj−1 \ Sj) ≤ E
[
v (Sj−1 \ Sj)

∣∣ Fj−1
]
− ε10 ·OPT(I)

)
≤ exp

(
−ε−9) . ◀

The proof of Lemma 6 follows from Lemma 17 and Lemma 18.

▶ Lemma 6. With probability at least 1− exp
(
−ε−8), it holds that

V = v(I \ Sε−1) ≥
ε−1−ε− 1

2∑
j=1

v(x̄j) ·

(
ε− ε

3
2

)
1− (j − 1)ε − ε9 ·OPT(I).

APPROX/RANDOM 2024

27:16 An EPTAS for Cardinality Constrained Multiple Knapsack

Proof.

Pr

v(I \ Sε−1) ≥
ε−1−ε− 1

2∑
j=1

v(x̄j) ·

(
ε− ε

3
2

)
1− (j − 1)ε − ε9 ·OPT(I)

≥ Pr

 ∧
j∈
[

ε−1−ε− 1
2

]
v(Sj−1 \ Sj) ≥ v(x̄j) ·

(
ε− ε

3
2

)
1− (j − 1)ε − ε10 ·OPT(I)

≥ Pr

 ∧
j∈
[

ε−1−ε− 1
2

]
(

v(Sj−1 \ Sj) ≥ E [v (Sj−1 \ Sj) | Fj−1]− ε10 ·OPT(I)
) .

≥ 1− Pr

 ∨
j∈
[

ε−1−ε− 1
2

]
(

v(Sj−1 \ Sj) < E [v (Sj−1 \ Sj) | Fj−1]− ε10 ·OPT(I)
) .

(12)

The first inequality holds because if all ε−1− ε− 1
2 events in the second expression occur, then

so is the event in the first expression. The second inequality holds by Lemma 17. By (12)
and the union bound

Pr

v(I \ Sε−1) ≥
ε−1−ε− 1

2∑
j=1

v(x̄j) ·

(
ε− ε

3
2

)
1− (j − 1)ε − ε9 ·OPT(I)

≥ 1−

∑
j∈
[

ε−1−ε− 1
2

]Pr
(

v(Sj−1 \ Sj) ≥ E [v (Sj−1 \ Sj) | Fj−1]− ε10 ·OPT(I)
)

≥ 1− ε−1 · exp
(
−ε−9)

≥ 1− exp(−ε−8).

The second inequality holds Lemma 18. For the last inequality, recall that ε < 0.1. ◀

The remaining proofs are given in the full version of the paper [9].

References
1 Nikhil Bansal, Marek Eliás, and Arindam Khan. Improved approximation for vector bin

packing. In Proc. SODA, pages 1561–1579. SIAM, 2016.
2 Nikhil Bansal and Arindam Khan. Improved approximation algorithm for two-dimensional

bin packing. In Proceedings of the twenty-fifth annual ACM-SIAM symposium on discrete
algorithms, pages 13–25. SIAM, 2014.

3 Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. A sharp concentration inequality
with applications. Random Structures & Algorithms, 16(3):277–292, 2000.

4 Alberto Caprara, Hans Kellerer, Ulrich Pferschy, and David Pisinger. Approximation algorithms
for knapsack problems with cardinality constraints. Eur. J. Oper. Res., 123(2):333–345, 2000.

5 Chandra Chekuri and Sanjeev Khanna. A polynomial time approximation scheme for the
multiple knapsack problem. SIAM Journal on Computing, 35(3):713–728, 2005.

I. Doron-Arad, A. Kulik, and H. Shachnai 27:17

6 Yuan Shih Chow and Henry Teicher. Probability theory: independence, interchangeability,
martingales. Springer Science & Business Media, 1997.

7 Tomer Cohen, Ariel Kulik, and Hadas Shachnai. Improved approximation for two-dimensional
vector multiple knapsack. In 34th International Symposium on Algorithms and Computation,
ISAAC, pages 20:1–20:17, 2023.

8 Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai. An afptas for bin packing with par-
tition matroid via a new method for lp rounding. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Schloss-
Dagstuhl-Leibniz Zentrum für Informatik, 2023.

9 Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai. An EPTAS for cardinality constrained
multiple knapsack via iterative randomized rounding. arXiv preprint, 2023. arXiv:2308.12622.

10 Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai. An fptas for budgeted laminar matroid
independent set. Operations Research Letters, 51(6):632–637, 2023.

11 Leah Epstein and Asaf Levin. Afptas results for common variants of bin packing: A new
method for handling the small items. SIAM Journal on Optimization, 20(6):3121–3145, 2010.

12 Lisa Fleischer, Michel X Goemans, Vahab S Mirrokni, and Maxim Sviridenko. Tight ap-
proximation algorithms for maximum separable assignment problems. Math. Oper. Res.,
36(3):416–431, 2011.

13 Klaus Jansen. Parameterized approximation scheme for the multiple knapsack problem. SIAM
Journal on Computing, 39(4):1392–1412, 2010.

14 Klaus Jansen. A fast approximation scheme for the multiple knapsack problem. In Proc.
SOFSEM, pages 313–324, 2012.

15 Narendra Karmarkar and Richard M Karp. An efficient approximation scheme for the one-
dimensional bin-packing problem. In 23rd Annual Symposium on Foundations of Computer
Science (sfcs 1982), pages 312–320. IEEE, 1982.

16 Hans Kellerer. A polynomial time approximation scheme for the multiple knapsack problem.
In RANDOM-APPROX, pages 51–62. Springer, 1999.

17 Ariel Kulik, Matthias Mnich, and Hadas Shachnai. Improved approximations for vector bin
packing via iterative randomized rounding. In 64th IEEE Annual Symposium on Foundations
of Computer Science, FOCS, pages 1366–1376, 2023.

18 Wenxin Li, Joohyun Lee, and Ness Shroff. A faster fptas for knapsack problem with cardinality
constraint. Discrete Applied Mathematics, 315:71–85, 2022.

APPROX/RANDOM 2024

https://arxiv.org/abs/2308.12622

Rectangle Tiling Binary Arrays
Pratik Ghosal #

Indian Institute of Technology, Palakkad, India

Syed Mohammad Meesum #

Krea University, India

Katarzyna Paluch #

University of Wrocław, Wrocław, Poland

Abstract
The problem of rectangle tiling binary arrays is defined as follows. Given an n × n array A of
zeros and ones and a natural number p, our task is to partition A into at most p rectangular
tiles, so that the maximal weight of a tile is minimized. A tile is any rectangular subarray of A.
The weight of a tile is the sum of elements that fall within it. We present a linear (O(n2)) time
(3

2 + p2

w(A))-approximation algorithm for this problem, where w(A) denotes the weight of the whole
array A. This improves on the previously known approximation with the ratio 2 when p2

w(A) < 1/2.
The result is best possible in the following sense. The algorithm employs the lower bound of

L = ⌈w(A)
p
⌉, which is the only known and used bound on the optimum in all algorithms for rectangle

tiling. We prove that a better approximation factor for the binary RTile cannot be achieved using
L, because there exist arrays, whose every partition contains a tile with weight at least (3

2 + p
w(A))L.

We also consider the dual problem of rectangle tiling for binary arrays, where we are given an upper
bound on the weight of the tiles, and we have to cover the array A with the minimum number of
non-overlapping tiles. Both problems have natural extensions to d-dimensional versions, for which
we provide analogous results.

2012 ACM Subject Classification Theory of computation → Packing and covering problems

Keywords and phrases Rectangle Tiling, RTILE, DRTILE

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.28

Category APPROX

Related Version Full Version: https://arxiv.org/pdf/2007.14142

Funding This work was partially funded by Polish National Science Center grant UMO-
2018/29/B/ST6/02633.

1 Introduction

In this paper we study several variants of the rectangle tiling problem. These problems
belong to a very wide class of discrete optimization tiling problems. As an input, we are given
a two-dimensional array A[1...n, 1...n], where each cell A[i, j] has a non-negative weight.

RTile. Given a two-dimensional array A of size n × n and a natural number p, we partition
A into at most p rectangular subarrays, called tiles, so that the maximum weight of any tile
is minimized. In other words, we have to cover A with tiles such that no two tiles overlap,
while minimizing the weight of any tile. The weight of a tile is the sum of the elements that
fall within it.

DRTile. A natural variant of RTile is called the DRTile problem. The DRTile problem
is a dual of the RTile problem, where we are given an upper bound W on the weight of the
tiles, and we have to cover the array A with the minimum number of non-overlapping tiles.

© Pratik Ghosal, Syed Mohammad Meesum, and Katarzyna Paluch;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 28; pp. 28:1–28:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pratik@iitpkd.ac.in
https://orcid.org/0000-0002-4416-5160
mailto:meesum.syed@krea.edu.in
https://orcid.org/0000-0002-1771-403X
mailto:abraka@cs.uni.wroc.pl
https://orcid.org/0000-0002-7504-6340
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.28
https://arxiv.org/pdf/2007.14142
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Rectangle Tiling Binary Arrays

These two problems have a natural extension to d dimensions. Here the input is a
d-dimensional array A of size n in each dimension and we have to partition A into non-
overlapping d-dimensional tiles so that the optimality criterion of the RTile/DRTile problem
is satisfied.

In this paper we consider a special case of the RTile/DRTile problem, where each cell
has a binary weight, i.e., the weight of any cell is either 0 or 1. We extend our approach to
solve the d-dimensional binary RTile/DRTile problem.

Motivation. The RTile/ DRTile problem is a general problem in combinatorial optim-
ization that has a wide variety of applications in real life. These include load balancing in
parallel computing environments, video compression, data partitioning, database mining,
and building equisum histogram on two or more attributes. A detailed description of the
practical applications of RTile/ DRTile problem can be found in [1, 7, 11].

Related Work. Both the RTile and DRTile problems can be solved in polynomial time
when the array is one-dimensional. The RTile problem can be solved using dynamic
programming in time O(np). For any fixed ϵ < 1, the best known algorithm has the running
time O(min{n + p1+ϵ, n log n}) [8]. An extensive survey on the RTile problem in one-
dimension can be found in [8]. On the other hand, the DRTile problem in one dimension
can be solved using a greedy algorithm in linear time.

Both the RTile and DRTile problems have been proven to be NP-hard [7]. Grigni
and Manne [6] proved that optimal p × p tiling (which is a restricted variant of the RTile
problem) is NP-hard even when the cell weight is binary. Charikar et al. [3] showed this
problem to be APX-hard and NP-hard to approximate within a factor of 2. Khanna et
al. [7] proved the RTile problem to be NP-hard to achieve a 5

4 -approximation. Recently
Głuch and Loryś [5] have improved the lower bound of the RTile problem to 4

3 . It is not
known whether the binary RTile is solvable in polynomial time or NP-hard. Khanna et
al. [7] gave the first approximation algorithm for the RTile problem with the ratio 5

2 . The
approximation ratio was improved to 7

3 independently by Sharp [15] and Loryś and Paluch [9].
Loryś and Paluch [10] gave a 9

4 -approximation algorithm for this problem. Berman et al. [1]
improved the approximation ratio to 11

5 . Finally, Paluch [13] gave a 17
8 -approximation for this

problem and also proved that the approximation ratio is tight with respect to the used lower
bound. As far as the DRTile problem is concerned, Khanna et al. [7] gave an O(n5)-time
4-approximation algorithm using the Hierarchical Binary Tiling (HBT) technique. They
improved the approximation ratio to 2 using a modified version of the HBT technique, but
the running time of this algorithm is very high making the algorithm less practical. Loryś
and Paluch [9] also gave a 4-approximation for the DRTile problem while improving the
running time to linear.

The d-dimensional version of this problem was introduced by Smith and Suri [16]. They
gave a d+3

2 -approximation algorithm that runs in time O(nd + p log nd). Sharp [15] improved
the approximation ratio to d2+2d−1

2d−1 that runs in time O(nd + 2dp log nd). Paluch [14] gave a
d+2

2 -approximation algorithm while matching the previous running time. She also proved
that the ratio is tight with respect to the known lower bound of the problem.

RPack is an extensively studied variant of rectangle tiling, in which we are given a
set of axis-parallel weighted rectangles in a n × n grid, and the goal is to find at most k

disjoint rectangles of largest weight. Khanna et al. [7] proved that this problem is NP-hard
even when each rectangle intersects at most three other rectangles. They gave an O(log n)-
approximation algorithm for RPack that runs in O(n2p log n) time. In [1] Berman et al.

P. Ghosal, S. M. Meesum, and K. Paluch 28:3

considered the multi-dimensional version of this problem. The dual of RPack is known to
be NP-hard even when we are interested in finding a sub-set of disjoint rectangles with a
total weight equal to at least some given w. Du et al. [4] considered a min-max version of
RTile, where the weight of each tile cannot be smaller than the given lower bound and the
aim is to minimize the maximum weight of a tile. They [4] gave a 5-approximation algorithm
for this problem and Berman and Raskhodnikova [2] improved the approximation factor to 4
and the approximation ratio of the binary variant to 3.

Previous Work. The binary version of the RTile problem has also been studied. Khanna
et al. [7] gave a 9

4 -approximation for the binary RTile problem. Loryś and Paluch [9] and
Berman et al. [1] independently improved the approximation ratio for binary RTile to 2.

Our Results. We improve the approximation ratio of the binary RTile problem to 3
2 + p2

w(A) ,
where w(A) denotes the number of ones in A. For the arrays A satisfying p2

w(A) ≈ 0, it
implies that the approximation ratio of the algorithm amounts to 3

2 . The running time of our
algorithm is linear (O(n2)). The approximation is best possible in the following sense. The
algorithm employs the lower bound of L = ⌈ w(A)

p ⌉, which is the only known and used bound
on the optimum in all algorithms for rectangle tiling. We prove that a better approximation
factor for the binary RTile cannot be achieved using L, because there exist arrays, whose
every partition contains a tile of weight at least (3

2 + p
w(A))L.

The general approach to solving this problem is to some extent similar to the approach
of [13]. The found tiling is also hierarchical and we use the notions of boundaries and types of
columns/subarrays as well as we apply linear programming in a non-standard way. However,
in the present paper the types of subarrays are organized in a somewhat different manner.
In particular, the idea of shadows is new. To compute the desired partition of A into tiles,
we only check a small number of tilings of simply defined subarrays. The subarrays are
identified with the help of so called boundaries and their shadows, which, roughly speaking,
designate parts of A tileable in a certain manner and having a weight greater than 3

2 L. To
prove the tileability of subarrays composed of multiple simpler subarrays we employ linear
programming. Its application here differs from the one in [13] in that each dimension is
treated completely symmetrically and thus more “globally” and in the method of showing the
feasibility of dual programs. We show that the binary DRTile problem can be approximated
by reducing it to the binary RTile problem. As for the d-dimensional binary RTile problem,
the algorithm for the 2-dimensional binary RTile problem can be extended to obtain an
approximation for the d-dimensional binary RTile problem. The same approximation ratio
for the d-dimensional binary DRTile problem can also be found analogously.

Organization. In Section 2, we recall the necessary definitions. In Section 3, we revisit the
definition of a boundary and introduce shadows of a boundary. In Section 4, we assume that
w(A) ≫ p2 and present a 3

2 -approximation algorithm for the RTile problem. The goal of
this section is also to introduce the methods needed for the approximation of the binary
RTile more gradually, without obscuring the presentation with many technical aspects.
In Section 5 we present a (3

2 + p2

w(A))-approximation algorithm for the general case (which,
in particular, applies also when p2

w(A) is not negligible). This approximation is achieved
by applying only small modifications to the approach described in Section 4. In Section
6, we show that the approximation factor we obtain for the RTile problem is tight with
respect to the known lower bound. Section 7 contains our result on the DRTile problem.
We conclude by presenting an approximation algorithm for the multi-dimentional RTile
problem in Section 8.

APPROX/RANDOM 2024

28:4 Rectangle Tiling Binary Arrays

2 Preliminaries

Let A be a two-dimensional array of size n × n, where each of its elements belongs to the set
{0, 1}. Given A and a natural number p, we want to partition A into p rectangular subarrays,
called tiles so that the maximal weight of a tile is minimized. The weight of a tile T , denoted
w(T), is the sum of elements within T . w(A) denotes the weight of the whole array A. Since
any array element is either equal to 0 or 1, w(A) amounts to the number of 1s in A.

First, notice that the problem is trivial when p ≥ w(A). Assume then that p < w(A).
Clearly, the maximal weight of a tile cannot be smaller than w(A)

p . Consequently, L = ⌈ w(A)
p ⌉

is a lower bound on the value of the optimal solution to the RTile problem.
Thus to design an α-approximation algorithm for the RTile problem, it suffices to

demonstrate the method of partitioning A into p tiles such that the weight of each tile does
not surpass αL.

The number p of allowed tiles is linked to the weight of the array A in the following
manner.

▶ Fact 1. Let w(A) and L be as defined above. Then, p ≥ ⌈ w(A)
L ⌉.

The proof directly follows from the assumption that L = ⌈ w(A)
p ⌉

▶ Definition 2. An array A is said to be f-partitioned if it is partitioned into rectangular
tiles such that the weight of any tile does not exceed f .

We denote by A[i] the i-th column of A, by A[i..j] a subarray of A consisting of columns
i, i + 1, . . . , j. Thus AT [i] denotes the i-th row of A and AT [i..j] a subarray of A consisting
of rows i, i + 1, . . . , j.

3 The Boundaries and Their Shadows

Let us assume that we want to design an α-approximation algorithm for the RTile problem.
Hence the weight of any tile must not exceed αL. In other words, we want to obtain an
αL-partitioning for A.

To help find such a partitioning we are going to make use of a sequence of (vertical)
boundaries and their shadows. The vertical boundaries and shadows of array A are defined
iteratively below. Each boundary and each shadow is a distinct column of A. The i-th
boundary of A is denoted as Bi = A[bi], i.e., Bi is the bi-th column of A (or equivalently,
Bi = A[k], where k = bi). Similarly, the i-th shadow of A is denoted as B′

i = A[b′
i]. The

number of boundaries and their shadows depends on the weight and structure of A. The
shadow B′

i = A[b′
i] is equal to either Bi or the column succeeding Bi, i.e. either b′

i = bi, or
b′

i = bi + 1. For each boundary Bi we define its type - we say that boundary Bi is of type j,
denoted as t(Bi) = j, if its weight satisfies ⌊ w(Bi)

αL ⌋ = j − 1.
The ideas behind boundaries and shadows are as follows. The first vertical boundary

B1 indicates simply which part of the array consisting of successive columns starting from
the leftmost, exceeds αL. This means that such a subarray cannot be covered with one tile.
However, the subarray A[1..b1 − 1] ending on column b1 − 1 can form one tile, because its
weight is not greater than αL. For i > 1 the i-th boundary Bi = A[bi] is established in the
following way. We distinguish two cases: (i) Bi−1 = B′

i−1 and (ii) Bi−1 ̸= B′
i−1. Let us first

consider case (i). Suppose that t(Bi−1) = j. Any boundary of type j can be αL-partitioned
(horizontally) into j tiles. We check how far to the right we are able to extend one of
such partitions. Thus, to identify the ith boundary Bi, we find bi such that the subarray

P. Ghosal, S. M. Meesum, and K. Paluch 28:5

.

≤ 3
2 L
> 3

2 L

A[1] A[2] A[3] A[4] A[5] A[n]

Figure 1 An array with column A[4] as the only boundary.

A[b′
i−1..bi − 1] can be αL-partitioned horizontally into j tiles and the subarray A[b′

i−1..bi]
cannot. When (ii) Bi−1 ≠ B′

i−1, to identify the ith boundary Bi, we proceed in the same
way as with the first boundary B1, i.e., we find bi such that the subarray A[b′

i−1..bi − 1] can
be αL-partitioned horizontally into 1 tile and the subarray A[b′

i−1..bi] cannot.
As for the i-th shadow B′

i we put it in the same column as the boundary Bi if the subarray
A[b′

i−1..bi] cannot be αL-partitioned into t(Bi) tiles and otherwise, we put it just behind Bi

- in column bi + 1. Notice that in the case of a shadow we check the tileability into t(Bi)
tiles and not t(Bi−1). Also, we observe that Bi ̸= B′

i can happen only when t(Bi) > t(Bi−1)
or Bi−1 ̸= B′

i−1. If Bi ≠ B′
i, then it means, as we later prove, that the subarray A[1..bi] is

rather easy to partition and we could in fact tile it with a proper number of tiles and start
the process of tiling anew with the subarray A[b′

i..n].
We now give a formal definition of a sequence of (vertical) boundaries of A and their

shadows. For technical reasons we introduce a column A[0] to array A.

▶ Definition 3. A boundary Bi is of type j, denoted as t(Bi) = j, if its weight satisfies⌊
w(Bi)

αL

⌋
= j − 1. Based on that, the boundaries and their shadows are defined as follows:

1. B[0] = A[0], B′
0 = A[1], thus b0 = 0 and b′

0 = 1,
2. i-th boundary Bi :

a. If Bi−1 = B′
i−1, then Bi = A[bi] iff

A[bi−1..bi − 1] can be αL-partitioned horizontally into t(Bi−1) tiles and A[bi−1..bi]
cannot.

b. If Bi−1 ̸= B′
i−1, then Bi = A[bi] iff

w(A[bi−1 + 1..bi − 1]) ≤ αL and w(A[bi−1 + 1..bi]) > αL.
3. i-th Shadow B′

i: Let t(Bi) = j.
B′

i = Bi iff A[b′
i−1..bi] cannot be αL-partitioned horizontally into j tiles.

The horizontal boundaries are defined analogously. To illustrate the notion of boundaries
and shadows let us consider a few examples.

▶ Example 4. Array A has only one vertical boundary B1 = A[4] of type 1.
This means that the total weight of the first 3 columns does not exceed αL, i.e., w(A[1..3]) ≤
αL, and the weight of the subarray consisting of columns 1 . . . 4 does - w(A[1..4]) > αL.
Since t(B1) = 1, by the definition, the weight of B1 = A[4] is not greater than αL and the
shadow B′

1 of B1 coincides with B1. Since A has only one boundary, it means that the weight
of the subarray consisting of all columns except for the first 3 is not greater than αL, i.e.,
w(A[4..n]) ≤ αL.

APPROX/RANDOM 2024

28:6 Rectangle Tiling Binary Arrays

▶ Example 5. Array A has only one vertical boundary B1 = A[4] of type 2 and B′
1 = A[4].

Exactly as in the example above, we have w(A[1..3]) ≤ αL and w(A[1..4]) > αL. The weight
of B1 satisfies: 3L ≥ w(A[4]) > αL, because t(B1) = 2. By the fact that B′

1 = B1, we know
that the horizontal partition of A[1..4] into 2 tiles of weight not surpassing αL is impossible.
Since A has only one boundary, we obtain that A[4..n] can be partitioned into t(B1) = 2
tiles.

▶ Example 6. Array A has only one vertical boundary B1 = A[4] of type 2 and B′
1 = A[5].

Again, we have w(A[1..3]) ≤ αL and w(A[1..4]) > αL. This time, however, B′
1 ̸= B1,

therefore A[1..4] can be partitioned into 2 horizontal tiles with weight αL at most. Since A

has only one boundary and B′
1 ̸= B1, we have that w(A[5..n]) ≤ αL.

▶ Lemma 7. Let k denote the number of vertical boundaries of A and Tv =
∑k

i=1 t(Bi).
Then array A can be αL- tiled with Tv + 1 tiles.

Proof. Suppose first that for each 1 ≤ i ≤ k it holds that Bi = B′
i. Then by Definition

3, each subarray A[bi..bi+1 − 1] can be tiled horizontally with t(Bi) tiles and the subarray
A[1..b1 − 1] can be covered by 1 tile. Therefore we indeed use Tv + 1 tiles.

For the general case, let i = min{k : Bk ̸= B′
k}. It means that the subarray A[bi−1..bi]

can be tiled horizontally with t(Bi) tiles. By Definition 3 for each j ≤ i − 2 the subarray
A[bj ..bj+1 − 1] can be tiled horizontally with t(Bj) tiles and the subarray A[1..b1 − 1] can be
covered by a single tile. This way the number of used tiles amounts to

∑i−2
j=1 t(Bj)+t(Bi)+1 ≤∑i

j=1 t(Bj). We continue in the same manner with the subarray A[b′
i..n]. ◀

Analogously, we define a horizontal sequence of boundaries of A, i.e., a vertical sequence
of boundaries of AT .

Throughout the paper, B1, B2, . . . , Bk and C1, . . . , Cl denote, respectively, the vertical
and horizontal sequence of boundaries of A. Let Tv =

∑k
i=1 t(Bi) and Th =

∑l
i=1 t(Ci) and

let T = min{Tv, Th}.

▶ Fact 8. Array A can be αL-tiled with T + 1 tiles.

Since we can always αL-partition A into T + 1 tiles, to prove that there exists an α-
approximation algorithm for the binary RTile problem, it suffices to show that T + 1 is
an allowed number of tiles, i.e., that T + 1 ≤ p. To do so, it is enough to prove that it
always holds that w(A) > TL. This is because since w(A) ≤ pL and T and p are integers,
the inequality w(A) > TL implies T + 1 ≤ p.

We state this observation as:

▶ Fact 9. Let α be such that for any A it holds that w(A) > TL. Then p ≥ T + 1 and there
exists an α-approximation algorithm for the binary RTile problem.

Let us first note that it is easy to prove that w(A) > T L
2 .

▶ Lemma 10. The weight of A satisfies w(A) > T L
2 . Hence, p > T

2 .

Proof. We begin by proving that it is always possible to partition the array A vertically into
disjoint subarrays A1, A2, . . . , Ak where each subarray except the first (A1) will contain one
of the following boundary types:
1. A single boundary of type j, where j is greater than one.
2. Two boundaries of type 1.
3. A boundary of type j followed by a boundary of type 1, where j is greater than one.

P. Ghosal, S. M. Meesum, and K. Paluch 28:7

The first subarray A1 may have any of the types of boundaries mentioned above or a
single boundary of type 1. We will now describe how to construct these subarrays.

Let B1, B2, . . . , Bl be a sequence of vertical boundaries of A. We construct the subarrays
A1, . . . , Ak iteratively. If t(Bl) > 1, then we define A[bl..n] as the last vertical subarray,
otherwise, the last subarray is represented by A[bl−1..n]. We then repeat this process on
the remaining array A[1...bx−1], where x ∈ {l − 1, l} based on our choice of the last vertical
subarray. We continue until we cannot construct a vertical subarray with one of the sets of
boundaries mentioned in points 1 − 3.

In this case, the remaining subarray either has no boundary or has a boundary of type 1.
If it has no boundary, we merge it with the vertical subarray containing the first boundary.
If it has a boundary of type 1, we define it as the first vertical subarray and call it A1.

Suppose Ti represents the sum of the types of boundaries that are located within the
subarray Ai. Our goal is to prove that w(Ai) ≥ 1

2 TiL. If Ai contains a boundary Br of type
j > 1 then,

w(Ai) ≥ w(Br) ≥ (j − 1).32L ≥ 1
3(j + 1).32L

≥ 1
2 t(Br)L = 1

2TiL

If Ai contains two boundaries Br and Br+1 of type 1 then,

w(Ai) ≥ w(A[br . . . br+1]) ≥ 3
2L

≥ 1
2(t(Br) + t(Br+1))3

2L >
1
2Ti.L

If Br is a boundary of type j > 1 and Br+1 is a boundary of type 1 in Ai then,

w(A1) ≥ w(Br) ≥ (j − 1).32L ≥ 1
3(j + 1).32L

≥ 1
2(t(Br) + t(Br+1))L = 1

2Ti.L

If the A1 contains one of the above sets of boundaries then w(A1) ≥ T1.L
2 . Otherwise, A1

contains a single boundary of type 1. Then,

w(A1) ≥ 3
2L >

1
2 t(B1)L = 1

2T1.L

In conclusion we have proved that for each Ai, w(Ai) ≥ Ti.L
2 . Therefore w(A) ≥ T L

2 . ◀

We now present a lemma that establishes conditions under which a subarray A′ of A can
be partitioned into horizontal tiles.

▶ Lemma 11. Let A′ = A[i1 . . . i2] be a subarray of A and k a natural number greater or
equal 2.

Suppose that w(A[i1])+w(A[i2])
k + w(A[i1 + 1 . . . i2 − 1]) ≤ αL. Then A′ can be partitioned

into k horizontal tiles of weight at most: (i) αL + 1 if k = 2, (ii) αL + 2 if k > 2.

Proof. We divide the number equal to the sum of the weights of two columns A[i1] and
A[i2] (the columns may be unconnected) by k. We check where the division lines fall with
respect to the subarray. Often they may occur in the middle of a row (consisting of two
array elements) and we have to move the division so that the whole row is included or the

APPROX/RANDOM 2024

28:8 Rectangle Tiling Binary Arrays

x6 x4

x2 x1

x5 x3

Figure 2 An array with one horizontal boundary containing the subarrays x2 and x1 and one
vertical boundary containing the subarrays x3, x1 and x4.

whole row is excluded. If k = 2, then we choose one of the two options - moving the division
upwards or downwards, hence, in the worst case we may have to increase the weight of one
tile by 1. For k > 2, we may have to shift the division by almost the whole row and thus
increase the weight of some tiles by 2. Next we extend this partition to include the subarray
A′′ = A[i1 + 1 . . . i2 − 1] - we do not change the partition of the two-column subarray, but
simply follow the partition lines. In the worst case the whole weight of A′′ will fall into only
one tile - yielding a tile of weight w(A[i1])+w(A[i2])

k + w(A[i1 + 1 . . . i2 − 1]). ◀

4 A 3
2-approximation when w(A) ≫ p2

In this section we deal with arrays such that p2

w(A) is close to 0, which means that the total
weight of any p2 elements of A is negligible. We are going to show that under this assumption,
for α = 3

2 , the weight of A satisfies w(A) > TL. Hence, by Fact 9 we get that for this type
of arrays there exists a 3

2 -approximation for the binary RTile problem. For the general case
the proof that α = 3

2 + p2

w(A) , the weight of A satisfies w(A) > TL, presented in the next
section will be only a slight modification of the one shown here.

▶ Convention 12. Throughout this section whenever we speak about tiling and partitioning,
we respectively mean “ 3

2 L-partitioning” and “tiling using tiles of weight at most 3
2 L”.

▶ Remark. The total number of cells at the intersection of the horizontal and vertical
boundaries is O(T 2). By Lemma 10 we have that O(T 2) = O(p2). Therefore by the
assumption of this section, it implies that the total weight of the cells in the intersections of
the boundaries is negligible with respect to the total weight of the array.

▶ Observation 13 ([12]). Assume we have two complexes: one as in Figure 2 and the other
with the variables related to the variables of the first one as follows: x′

1 = x1, x′
4 = x4,

x′
3 = x3, x′

5 = x′
6 = 0 and x′

2 = x2 + max{x5, x6}. Then the weight of the second complex is
not bigger than the weight of the first one while the inequalities describing the first complex
remain true for the second.

Given an array A we build a linear program, with the help of which we will be able to
relate the total weight of the array to the sum of types of boundaries T , i.e., we will show
that w(A) > TL.

P. Ghosal, S. M. Meesum, and K. Paluch 28:9

Using Observation 13, we can assume that the whole weight of the array A is contained
in the boundaries, i.e., each element of A that does not belong to any boundary has value
0. Each vertical boundary Bi is crossed by l horizontal boundaries and thus cut into l + 1
parts. We assign a variable xj,i to each part, i.e., the jth part of Bi consists of elements
A[cj−1 + 1, bi], A[cj−1 + 2, bi], . . . , A[cj − 1, bi] and xj,i denotes the sum of the weights of
these elements. Similarly, each horizontal boundary Ci is crossed by k vertical boundaries
and thus cut into k + 1 parts. We assign a variable zi,j to each such part. The value of each
variable xj,i or zi,j denotes the weight of the corresponding part of the boundary.

In the linear program, we minimize the sum of non-negative variables xj,i and zi,j subject
to a set of constraints associated with the boundaries. For each vertical boundary Bi we will
have either one or two constraints of the following form:
1. If t(Bi) > 1, then we add the constraint 1

t(Bi)−1
∑l+1

j=1 xj,i ≥ 3
2 L, which simply describes

the total weight of Bi.
2. a. B′

i−1 ̸= Bi−1.
i. t(Bi) = 1. The added constraint is

∑l
j=1 zj,i +

∑l+1
j=1 xj,i > 3

2 L.

ii. t(Bi) > 1 and B′
i = Bi (which means that A[b′

i−1..bi] cannot be tiled horizontally
with t(Bi) tiles). By Lemma 11 we are justified to add the constraint

∑l
j=1 zj,i +

1
t(Bi)

∑l+1
j=1 xj,i > 3

2 L.

iii. t(Bi) > 1 and B′
i ̸= Bi. In this case we do not add any constraint.

b. B′
i−1 = Bi−1.

i. B′
i ≠ Bi. The added constraint is

∑l
j=1 zj,i+ 1

t(Bi−1) (
∑l+1

j=1 xj,i+
∑l+1

j=1 xj,i−1) > 3
2 L.

ii. B′
i = Bi. Let Ti = max{t(Bi−1), t(Bi)}. The constraint we add is

∑l
j=1 zj,i +

1
Ti

(
∑l+1

j=1 xj,i +
∑l+1

j=1 xj,i−1) > 3
2 L. The constraint is a consequence of Lemma 11.

Thus, each Bi defines either one or two constraints. Analogously, each horizontal variable
Cj also defines one or two constraints. The linear program dual to the one we have just
described has dual variables y′

i, yi. For each Bi with t(Bi) > 1 let y′
i denote the dual variable

corresponding to the constraint 1
t(Bi)−1

∑l+1
j=1 xj,i > 3

2 L. The other type of a constraint (if it
exists) defined by Bi is represented by yi. The dual variables corresponding to horizontal
boundaries are wi, w′

i.

▶ Example 14. In this example array A has one vertical boundary B1 of type 1 and one
horizontal boundary C1 of type 1.

0

z1,1 z1,2

x1,1

x2,1

0

00

B1

C1

Figure 3 An array with one vertical and one horizontal boundary.

The linear program for A looks as follows. In brackets we give the dual variables
corresponding to respective inequalities.

minimize x1,1 + x2,1 + z1,1 + z1,2
subject to x1,1 + x2,1 + z1,1 > 3

2 L (y1)
x1,1 + z1,1 + z1,2 > 3

2 L (w1)

APPROX/RANDOM 2024

28:10 Rectangle Tiling Binary Arrays

B1 B2

C1

C2

0 0

0

00

0

0

00

x1,1 x1,2

x2,1 x2,2

x3,1 x3,2

z1,1

z2,1

z1,2

z2,2 z2,3

z1,3

Figure 4 An array with two vertical and two horizontal boundaries.

▶ Example 15. In this example array A has two vertical boundaries and two horizontal
ones, each of the four boundaries is of type 1. The array is depicted in Figure 4. The linear
program for A looks as follows. In brackets we give the dual variables corresponding to
respective inequalities.

minimize
∑2

i=1
∑3

j=1 xj,i +
∑2

i=1
∑3

j=1 zi,j

subject to
∑3

j=1 xj,1 +
∑2

i=1 zi,1 > 3
2 L (y1)∑2

i=1
∑3

j=1 xj,i +
∑2

i=1 zi,2 > 3
2 L (y2)∑3

j=1 z1,j +
∑2

i=1 x1,i > 3
2 L (w1)∑2

i=1
∑3

j=1 zi,j +
∑2

i=1 x2,i > 3
2 L (w2)

▶ Example 16. In this example array A has two vertical boundaries B1, B2 and two horizontal
ones C1, C2. Their types are the following: t(B1) = t(C2) = 2 and t(B2) = t(C1) = 1. Also
B′

1 ̸= B1 and C ′
2 = C2.

minimize
∑2

i=1
∑3

j=1 xj,i +
∑2

i=1
∑3

j=1 zi,j

subject to
1
2

∑3
j=1 xj,1 +

∑2
i=1 zi,1 > 3

2 L (y1)∑3
j=1 xj,1 > 3

2 L (y′
1)∑2

i=1 zi,2 +
∑3

j=1 xj,2 > 3
2 L (y2)∑3

j=1 z1,j +
∑2

i=1 x1,i > 3
2 L (w1)

1
2

∑2
i=1

∑3
j=1 zi,j +

∑2
i=1 x2,i > 3

2 L (w2)∑3
j=1 z2,j > 3

2 L (w′
2)

Let us now build dual linear program for the primal linear program of the Example 16.
The dual linear program has the form:

maximize 3
2 L(y1 + y2 + w1 + w2)

subject to y′
1 + 1

2 y1 + w1 ≤ 1 (x1,1)
y2 + w1 ≤ 1 (x1,2)

y′
1 + 1

2 y1 + w2 ≤ 1 (x2,1)
y2 + w2 ≤ 1 (x2,2)

y1 + w1 + 1
2 w2 ≤ 1 (z1,1)

y2 + w1 + 1
2 w2 ≤ 1 (z1,2)

y1 + w′
2 + 1

2 w2 ≤ 1 (z2,1)
y2 + w′

2 + 1
2 w2 ≤ 1 (z2,2)

P. Ghosal, S. M. Meesum, and K. Paluch 28:11

Algorithm 1 for the binary RTILE problem.

1: A← [1 . . . n, 1 . . . n] a two-dimensional array
2: Construct the horizontal and vertical boundaries and their shadows using Definition 3.
3: B ← {B1, B2, . . . Bk} (the vertical boundaries, where each Bi = A[bi])
4: B′ ← {B′

1, B′
2, . . . B′

k} (the shadows of Bis, where each B′
i = A[b′

i])
5: t(B)← {t(B1), t(B2), . . . t(Bk)} (the types of the vertical boundaries)
6: C ← {C1, C2, . . . Cl} (the horizontal boundaries, where each Ci = A[ci])
7: C′ ← {C′

1, C′
2, . . . C′

l} (the horizontal boundaries, where each C′
i = A[c′

i])
8: t(C)← {t(C1), t(C2), . . . t(Cl)} (the types of the horizontal boundaries)
9: Tv ←

∑k

i=1 t(Bi)
10: Th ←

∑l

i=1 t(Ci)
11: if Tv ≤ Th then
12: use the vertical boundaries B as described below from line 15
13: else
14: use the horizontal boundaries C instead of the vertical ones
15: if Bk = B′

k then
16: partition A[bk . . . n] horizontally into t(Bk) tiles
17: else
18: cover A[bk + 1 . . . n] with one tile
19: for i = k − 1 . . . , 1 do
20: if Bi = B′

i then
21: if Bi+1 = B′

i+1 then
22: tile A[bi . . . bi+1 − 1] horiz. into t(Bi) tiles (by point 2a of Definition 3)
23: else
24: partition A[bi . . . bi+1] horiz. into t(Bi+1) tiles (by point 3 of Definition 3)
25: else(Bi+1 ̸= B′

i+1)
26: if Bi+1 = B′

i+1 then
27: cover A[bi + 1 . . . bi+1 − 1] horiz. with one tile (by point 2b of Definition 3)
28: else
29: partition A[bi + 1 . . . bi+1] horiz. into t(Bi+1) tiles (by point 3 of Definition 3)
30: if B1 = B′

1 then
31: cover A[1 . . . b1 − 1] with one tile
32: else
33: partition A[1 . . . b1] horiz. into t(B1) tiles

To figure out the form of constraints constituting the dual program in general, let us
consider a variable xj,i. Notice that it occurs in at most one constraint defined by a horizontal
boundary. It can possibly be contained only in the constraint defined by Cj represented by wj ,
where its coefficient is 1. If t(Bi) = 1, then we do not have y′

i and xj,i occurs in the constraint
represented by yi and possibly in the constraint represented by yi+1. Thus the inequality in
the dual program corresponding to xj,i has the form αj,iyi + αj,i+1yi+1 + βj,iwj ≤ 1, where
each of the coefficients belongs to [0, 1].

If t(Bi) > 1, then we do have y′
i and xj,i occurs in this constraint with the coefficient

1
t(Bi)−1 . If Bi ≠ B′

i, then xj,i does not occur in any other constraints and the inequality
in the dual program has the form 1

t(Bi)−1 y′
i + βj,iwj ≤ 1, where βj,i ∈ [0, 1]. Otherwise,

xj,i may also belong to the constraints represented by yi and yi+1. In each one of them it
occurs with the coefficient equal to at most 1

t(Bi) . Therefore the inequality has the form
1

t(Bi)−1 y′
i + αj,iyi + αj,i+1yi+1 + βj,iwj ≤ 1, where each of the coefficients αj,i+1, αj,i belongs

to [0, 1
t(Bi)].

We are ready to lower bound the weight of the array A with the aid of its boundaries
and their shadows.

▶ Lemma 17. w(A) > TL.

APPROX/RANDOM 2024

28:12 Rectangle Tiling Binary Arrays

Proof. Since the value of any cost function of the dual linear program described above is
a lower bound on the minimal value of the cost function of the primal linear program, it
suffices to find a feasible assignment of the dual variables such that the cost function will be
have value greater than TL.

▷ Claim 18. We can satisfy all constraints of the dual program by assigning the following
values to the dual variables. Each yi and each wj is assigned 1

3 . If Bi defines only one
constraint y′

i, then we assign t(Bi)
3 to y′

i. Otherwise y′
i is assigned t(Bi)−1

3 .

The claim follows from the fact that the inequality 1
T −1 · T

3 + 1
3 ≤ 1 is satisfied by each

T ≥ 2 and that the inequality T −1
3(T −1) + 2

3T + 1
3 ≤ 1 is also satisfied by each T ≥ 2.

This means that the total value contributed by the dual variables yi, y′
i (corresponding to

constraints defined by boundary Bi) is at least t(Bi)
3 .

Thus w(A) > 3
2 L(Tv

3 + Th

3) ≥ TL. ◀

We show a method for finding a tiling of A with at most T + 1 tiles. By Facts 1, 8,
Lemmas 7 and 17, we proved that T + 1 ≤ p, when the approximation factor is 3

2 . In other
words, we obtain a 3

2 -approximation algorithm for binary RTile.

▶ Theorem 19. For any array A satisfying p2

w(A) ≈ 0, there exists a linear time 3
2 -

approximation algorithm for binary RTile.

5 A (3
2 + β)-approximation

In this section we examine the general case, arrays such that p2

w(A) is not negligible. We will
aim for a (3

2 + β)-approximation. When β < 1
2 , the approximation ratio of our algorithm

is better than 2. Throughout the section, whenever we refer to tiling and partitioning, we
mean (3

2 + β)L-partitioning and tiling using tiles of weight at most (3
2 + β)L.

We define a sequence of boundaries and shadows analogously as in the previous section,
but with respect to (3

2 + β)L, i.e., we replace each occurrence of “ 3
2 L” with “(3

2 + β)L” and
modify the meaning of tiling and partitioning accordingly, i.e., to (3

2 + β)L-partitioning.
We want to prove an analogue of Lemma 17. To this end we will consider an analogous

linear program, in which we have all the variables occurring in the previous section and
additionally we have a variable si,j for each pair (Bi, Cj), which denotes the element of A at
the intersection of the vertical boundary Bi and the horizontal boundary Cj . The function
we minimize is

∑k
i=1 xj,i +

∑l
j=1 zi, j +

∑k
i=1

∑l
j=1 si,j . For each variable si,j we have an

additional constraint: −si,j ≥ −1. The variable si,j is also included in all those constraints
which refer to the part of A covering the intersection of Bi with Cj .

For instance, the linear program for the array from Example 14 is modified as follows:

minimize x1,1 + x2,1 + z1,1 + z1,2 + s1,1
subject to x1,1 + x2,1 + z1,1 + s1,1 > (3

2 + β)L (y1)
x1,1 + z1,1 + z1,2 + s1,1 > (3

2 + β)L (w1)
−s1,1 ≥ −1 (t1,1).

The linear program for the array from Example 15 in the new scenario looks as follows:
min

∑2
i=1

∑3
j=1 xj,i +

∑2
i=1

∑3
j=1 zi,j +

∑2
i=1

∑2
j=1 si,j

s.t.
∑3

j=1 xj,1 +
∑2

i=1 zi,1 +
∑2

j=1 s1,j > (3
2 + β)L (y1)∑2

i=1

∑3
j=1 xj,i +

∑2
i=1 zi,2 +

∑2
i=1

∑2
j=1 si,j > (3

2 + β)L (y2)∑3
j=1 z1,j +

∑2
i=1 x1,i +

∑2
i=1 si,1 > (3

2 + β)L (w1)∑2
i=1

∑3
j=1 zi,j +

∑2
i=1 x2,i +

∑2
i=1

∑2
j=1 si,j > (3

2 + β)L (w2)
−si,j ≥ −1(ti,j), for each 1 ≤ i, j ≤ 2.

P. Ghosal, S. M. Meesum, and K. Paluch 28:13

Correspondingly, in the dual program we maximize (3
2 + β)L(

∑
yi +

∑
wj) −

∑
ti,j and

we have an additional constraint for each primal variable si,j .
The dual linear program for the array from Example 15 contains the following additional

inequalities.

y1 + y2 + w1 + w2 − t1,1 ≤ 1 (s1,1)
y1 + y2 + w2 − t1,2 ≤ 1 (s1,2)
y2 + w1 + w2 − t2,1 ≤ 1 (s2,1)
y2 + w2 − t2,2 ≤ 1 (s2,2).

We can see that if we want to assign 1
3 to each variable yi, wj , then we sometimes also

have to assign 1
3 to variables ti,j to ensure the feasibility - compare the first inequality in the

set of additional inequalities above. We can notice that we have to assign 1
3 to ti,j only if

both i < k and j < l, i.e. when si,j does not belong to Bk or Cl.

▶ Lemma 20. For β = p2

w(A) , it holds that w(A) > TL.

Proof. We can satisfy all constraints of the dual program by assigning the following values
to the dual variables. Each yi and each wj is assigned 1

3 . If Bi defines only one constraint y′
i,

then we assign t(Bi)
3 to y′

i. Otherwise y′
i is assigned t(Bi)−1

3 . Also, each ti,j such that i < k

and j < l is assigned 1
3 .

Some of the constraints in the primal program have value (3
2 + β)L − 2 on the right

hand side. Such constraints correspond to some borders of type greater than 2, when we use
Lemma 11. Let us analyze such cases in more detail. Assume that for a boundary Bi of type
k > 2 we indeed use Lemma 11. Then the primal linear program contains a constraint with
value (3

2 + β)L − 2 on the right hand side. This constraint corresponds to the dual variable
yi. We notice that Bi also defines a constraint of type 1, which has (3

2 + β)L on the right
hand side and corresponds to the dual variable y′

i. Hence each such boundary contributes at
least t(Bi)−1

3 (3
2 + β)L + 1

3 (3
2 + β)L − 2) ≥ ((3

2 +β)L− 2
3 t(Bi)

3) to the cost function of the dual
linear program.

Similarly, some of the constraints in the primal program have value (3
2 + β)L − 1 on the

right hand side. Such constraints correspond to some borders of type equal to 2, when we use
Lemma 11. Each such boundary contributes at least ((3

2 +β)L− 1
2 t(Bi)

3) to the cost function of
the dual linear program.

Thus the value of the cost function of the dual linear program is lower bounded by
((3

2 + β)L − 2
3)(Tv

3 + Th

3) − (Th−1)(Tv−1)
3 ≥ TL + p Tv+Th

3 − 2
3 (Tv + Th) − (Th−1)(Tv−1)

3 . Since
L ≥ w(A)

p , we get that w(A) ≥ TL + p(Tv+Th)
3 + Tv+Th

9 − TvTh

3 − 1
3 . Because p ≥ T , we obtain

that p(Tv+Th)
3 + Tv+Th

9 − TvTh

3 − 1
3 ≥ T 2

3 + Tv+Th

9 − 1
3 > 0.

Therefore, w(A) > TL. ◀

▶ Theorem 21. There exists a (3
2 + p2

w(A))-approximation algorithm for binary RTile that
has a linear (O(n2)) running time.

6 Tightness of approximation

In this section, we show that the approximation ratio for the RTile problem is tight with
respect to the only known lower bound. Precisely, we prove the following theorem.

▶ Theorem 22. Let p = 2k, for some k ∈ N. Then, there exists a binary array Ak such that
the maximum weight of a tile in any tiling of Ak into p tiles has weight at least 3

2 · w(Ak)
p + 1.

APPROX/RANDOM 2024

28:14 Rectangle Tiling Binary Arrays

(a)

(b)

Figure 5 The empty squares denote a value of 0, while the ones are colored black. (a) On tiling
this array with 3 tiles, one tile will always contain 5 ones, giving an approximation factor of 5

3 . (b)
4-crosses placed in an array for proving an approximation lower bound of 3

2 .

We define an L-cross to consist of 2L + 1 ones, it is obtained by taking a (L + 1) × (L + 1)
array, and filling the (L

2 + 1)th row as well as the (L
2 + 1)th column with ones, finally the rest

of the entries are filled with zeros. The coordinate (L
2 + 1, L

2 + 1) is referred to as the center
of the L-cross defined above. An L-cross centered at (x, y) is obtained by translating the
center of an L-cross to the coordinate (x, y). Note that an L-cross consists of four contiguous
segments of ones, referred to as arms, each containing L

2 ones. We define Ak as shown in
Figure 3.

Proof. Suppose that p is even, therefore p = 2k, for some k ∈ N; our input binary array Ak

is obtained as follows. We place k many L-crosses centered at (j · (L + 1) − L
2 , j · (L + 1) − L

2),
for each 1 ≤ j ≤ k, the rest of the entries of Ak are zero. Note that the L-crosses are placed
diagonally in a non-overlapping manner, and w(A)

p = L. The array for L = 4 is illustrated in
Figure 5(a).

If p = 2, then it is obvious that one tile will have to contain 3 arms of the cross and thus
have weight 3

2 L + 1. We will prove that for every k ∈ N, one of the tiles will have weight at
least 3

2 L + 1.
Suppose that for k crosses and 2k tiles the thesis holds by induction. We will now prove

it for k + 1 crosses and 2k + 2 tiles. Let T1 be the tile that contains the cell Ak+1[1, 1]. If
this tile has weight smaller than 3

2 L, then we have the following two cases:
1. If T1 does not contain the center of the lower left cross Ak+1[L

2 + 1, L
2 + 1], then T1 is

formed either by the first L
2 columns or the first L

2 rows. Due to symmetry, it is enough
to consider the case when T1 is formed by the first L

2 columns. Let T2 be the tile that
contains Ak+1[L

2 + 1, 1]. If T2 has weight smaller than 3
2 L, then its upper right corner

P. Ghosal, S. M. Meesum, and K. Paluch 28:15

Ak+1[x, y] is such that either x < L + 1 or y < L + 1. Due to symmetry, it is enough to
consider the case when x < L + 1. In this case, if y < n, then we can extend T2 so that
y = n without increasing the weight of T2 as it would not intersect any new L-cross.
Thus, we are left with 2k tiles, and an array which has Ak as a subarray, therefore by the
induction hypothesis we get that the weight of maximum weight tile is at least 3

2 L + 1.
2. If T1 contains the center of the cross Ak+1[L

2 + 1, L
2 + 1], then its right upper corner

Ak+1[x, y] is such that x < L + 1 or y < L + 1. Notice that we may assume that either
one tile will be formed by subarray Ak+1[x + 1, 1, n, y] or by subarray Ak+1[1, y + 1, x, n].
This is because the tile that contains Ak+1[x + 1, y + 1] cannot contain both Ak+1[1, y + 1]
and Ak+1[x + 1, 1]. Suppose w.l.o.g. that the tile T2 that contains Ak+1[x + 1, 1] does
not cover any cell of row y + 1. We may then extend the upper right corner of T2 till
Ak+1[n, y], without increasing the weight of any tile. We are left with 2k tiles, and the
induction hypothesis gives us the result.

In the case when p is odd, the input binary array A′
p is obtained from Ak+1 by deleting any

rows and columns in it with index at least k(L + 1) + L
2 + 2. This, in effect adds an extra

half L-cross near the upper right corner of Ak. Clearly, for p = 3 it is not possible to tile A′
3

with 3 tiles such that the weight of maximum weight tile is less than 3
2 L. The rest of the

proof follows from arguments similar to the case when p is even. ◀

▶ Remark. The approximation factor of our algorithm is 3
2 + p2

w(A) which is equal to (3
2 + p

L)L.
Since p

L is equal to p2

w(A) , it means that the approximation of our algorithm is tight under
the condition that w(A) ≫ p2.

7 DRTile

In this section, we present an approximation algorithm for the DRTile problem. We have
presented a 3

2 + β-approximation algorithm for the RTile problem in Section 3. Now we
show how to reduce an instance of the DRTile problem to an instance of the RTile problem
to achieve an approximation ratio for the DRTile problem. Before we proceed, let us recall
the definition of the DRTile problem.

the DRTile problem
Input: A two-dimensional array A and a weight upper bound w.
Goal: Partition A into a minimum number of non-overlapping tiles, where the weight
of each tile must not be larger than W .

Let us consider an array A with w(A) = n. Suppose W , provided as input, is the
maximum allowed weight of any tile. Clearly, the minimal number of tiles we need to use
to cover A is ⌈ n

W ⌉. Consequently, ⌈ n
W ⌉ is a lower bound to the optimal solution of the

DRTile problem. Our goal is to obtain a γ-approximation algorithm, where γ depends on
W . Therefore, the number of tiles we are allowed to use to cover A with this approximation
is γ × ⌈ n

W ⌉.
We construct an instance of the the RTile problem as follows: as an input we have the

same array A, and we are allowed to use at most p = γ × ⌈ n
W ⌉ tiles. Hence from Section 2,

the lower bound on the maximum weight of a tile is ⌈ n
γ×⌈ n

W ⌉ ⌉. Hence the maximum weight
of a tile with approximation factor of 3

2 + β is,⌈ n

γ × ⌈ n
W ⌉

⌉
× (3

2 + β) ≤
⌈ n

γ × n
W

⌉
× (3

2 + β) =
⌈W

γ

⌉
× (3

2 + β).

APPROX/RANDOM 2024

28:16 Rectangle Tiling Binary Arrays

For the solution returned by RTile to be a valid solution of DRTile, the value of
⌈ W

γ ⌉ × (3
2 + β) must not exceed W . This allows us to derive a bound on the value of the

approximation factor γ, we have,

⌈W

γ
⌉ × (3

2 + β) ≤ W

⇒⌈W

γ
⌉ ≤ W

(3
2 + β)

⇒W

γ
≤ W

(3
2 + β)

+ 1

⇒γ ≥ (3
2 + β) · W

W + (3
2 + β)

.

This gives us the following theorem.

▶ Theorem 23. There exists a (3
2 + β) · W

W +(3
2 +β) -approximation algorithm for the DRTile

problem where (3
2 +β) is the approximation factor for the RTile problem. The approximation

factor of the DRTile problem tends to 3
2 as the value of W is increased.

8 The Multidimentional RTile Problem

In Section 3, the algorithm presented for the RTile problem was restricted to two dimensions.
In this section, we generalize that algorithm for the d-dimensional RTile problem, where
d ≥ 2. In the d-dimensional RTile problem, we are given a d-dimensional array of size n in
each dimension, containing 0/1 as entries, and we have to partition the array into p non-
overlapping d-dimensional tiles such that the maximum weight of a tile in a tiling is minimized.
Similarly to Section 3, we assume that pd

w(A) is close to 0 and give a 2d−1
d -approximation

algorithm for the d-dimensional RTile problem. Notice that the approximation ratio
converges to 2 as we increase the value of d.

Boundaries and Shadows. The definition of the boundaries and their shadows is a gen-
eralization of the definitions in Section 3. The type of the boundaries in a d-dimensional
array can be defined analogously. By [i], we define the set of boundaries of dimension
n × n × . . . × 1 × . . . × n, where ith dimension has size 1.

Let B1, B2, ..Bk ∈ [i] , we define Ti =
∑k

i=1 t(Bi). Finally T is defined as
min{T1, T2, ..., Td}. The following lemma is analogous to Fact 2.

▶ Lemma 24. Let T = {T1, T2, ..., Td}, then the array can be 2d−1
d -tiled with T + 1 tiles.

We can estimate the minimal weight of the array using a linear program. The constraints
of the linear program have a similar form as mentioned in Section 3. In two dimensional
problem, each constraint is greater than 1.5L. In the d-dimensional RTile problem, each
constraint is greater than 2d−1

d L, instead of 1.5L.

▶ Lemma 25. Let T = {T1, T2, ..., Td}, then w(A) > TL.

The proof of this lemma is analogous to Lemma 20.

▶ Theorem 26. There exists a 2d−1
d -approximation algorithm for the multi-dimensional

RTile problem assuming pd

w(A) is negligible.

P. Ghosal, S. M. Meesum, and K. Paluch 28:17

References
1 Piotr Berman, Bhaskar DasGupta, S. Muthukrishnan, and Suneeta Ramaswami. Improved

approximation algorithms for rectangle tiling and packing. In Proceedings of the 12th Annual
Symposium on Discrete Algorithms, pages 427–436, 2001.

2 Piotr Berman and Sofya Raskhodnikova. Approximation algorithms for min-max generalization
problems. ACM Trans. Algorithms, 11(1):5:1–5:23, 2014.

3 Moses Charikar, Chandra Chekuri, and Rajeev Motwani. Unpublished. Unpublished manu-
script.

4 Wenliang Du, David Eppstein, Michael T. Goodrich, and George S. Lueker. On the approxim-
ability of geometric and geographic generalization and the min-max bin covering problem. In
Algorithms and Data Structures, 11th International Symposium, WADS, pages 242–253, 2009.

5 Grzegorz Gluch and Krzysztof Lorys. 4/3 rectangle tiling lower bound. CoRR, abs/1703.01475,
2017. arXiv:1703.01475.

6 Michelangelo Grigni and Fredrik Manne. On the complexity of the generalized block distribution.
In Parallel Algorithms for Irregularly Structured Problems, Third International Workshop,
IRREGULAR ’96, pages 319–326, 1996.

7 Sanjeev Khanna, S. Muthukrishnan, and Mike Paterson. On approximating rectangle tiling and
packing. In Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 384–393, 1998.

8 Sanjeev Khanna, S. Muthukrishnan, and Steven Skiena. Efficient array partitioning. In
Automata, Languages and Programming, 24th International Colloquium, ICALP’97, Bologna,
Italy, 7-11 July 1997, Proceedings, pages 616–626, 1997.

9 Krzysztof Lorys and Katarzyna E. Paluch. Rectangle tiling. In Approximation Algorithms for
Combinatorial Optimization, Third International Workshop, APPROX2000, pages 206–213,
2000.

10 Krzysztof Lorys and Katarzyna E. Paluch. New approximation algorithm for RTILE problem.
Theor. Comput. Sci., 303(2-3):517–537, 2003.

11 S. Muthukrishnan, Viswanath Poosala, and Torsten Suel. On rectangular partitionings in two
dimensions: Algorithms, complexity, and applications. In Database Theory - ICDT ’99, pages
236–256, 1999.

12 Katarzyna Paluch. Approximation Algorithms for Rectangle Tiling. PhD thesis, University of
Wrocław, Poland, 2004.

13 Katarzyna E. Paluch. A 2(1/8)-approximation algorithm for rectangle tiling. In Automata,
Languages and Programming: 31st International Colloquium, ICALP 2004, pages 1054–1065,
2004.

14 Katarzyna E. Paluch. A new approximation algorithm for multidimensional rectangle tiling.
In Algorithms and Computation, 17th International Symposium, ISAAC 2006, pages 712–721,
2006.

15 Jonathan P Sharp. Tiling multi-dimensional arrays. In International Symposium on Funda-
mentals of Computation Theory, pages 500–511. Springer, 1999.

16 Adam Smith and Subhash Suri. Rectangular tiling in multidimensional arrays. J. Algorithms,
37(2):451–467, 2000.

APPROX/RANDOM 2024

https://arxiv.org/abs/1703.01475

Approximation Algorithms for Correlated Knapsack
Orienteering
David Alemán Espinosa #

Dept. of Combinatorics and Optimization, Univ. Waterloo, Waterloo, ON N2L 3G1, Canada

Chaitanya Swamy #

Dept. of Combinatorics and Optimization, Univ. Waterloo, Waterloo, ON N2L 3G1, Canada

Abstract
We consider the correlated knapsack orienteering (CorrKO) problem: we are given a travel budget
B, processing-time budget W , finite metric space (V, d) with root ρ ∈ V , where each vertex is
associated with a job with possibly correlated random size and random reward that become known
only when the job completes. Random variables are independent across different vertices. The goal
is to compute a ρ-rooted path of length at most B, in a possibly adaptive fashion, that maximizes
the reward collected from jobs that processed by time W . To our knowledge, CorrKO has not been
considered before, though prior work has considered the uncorrelated problem, stochastic knapsack
orienteering, and correlated orienteering, which features only one budget constraint on the sum of
travel-time and processing-times.

Gupta et al. [19] showed that the uncorrelated version of this problem has a constant-factor
adaptivity gap. We show that, perhaps surprisingly and in stark contrast to the uncorrelated
problem, the adaptivity gap of CorrKO is is at least Ω

(
max{

√
log B,

√
log log W }

)
. Complementing

this result, we devise non-adaptive algorithms that obtain: (a) O(log log W)-approximation in quasi-
polytime; and (b) O(log W)-approximation in polytime. This also establishes that the adaptivity
gap for CorrKO is at most O(log log W). We obtain similar guarantees for CorrKO with cancellations,
wherein a job can be cancelled before its completion time, foregoing its reward. We show that an
α-approximation for CorrKO implies an O(α)-approximation for CorrKO with cancellations.

We also consider the special case of CorrKO where job sizes are weighted Bernoulli distributions,
and more generally where the distributions are supported on at most two points (2CorrKO). Although
weighted Bernoulli distributions suffice to yield an Ω(

√
log log B) adaptivity-gap lower bound for

(uncorrelated) stochastic orienteering, we show that they are easy instances for CorrKO. We develop
non-adaptive algorithms that achieve O(1)-approximation, in polytime for weighted Bernoulli distri-
butions, and in (n+log B)O(log W)-time for 2CorrKO. (Thus, our adaptivity-gap lower-bound example,
which uses distributions of support-size 3, is tight in terms of support-size of the distributions.)

Finally, we leverage our techniques to provide a quasi-polynomial time O(log log B) approximation
algorithm for correlated orienteering improving upon the approximation guarantee in [2].

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis;
Mathematics of computing → Discrete optimization

Keywords and phrases Approximation algorithms, Stochastic orienteering, Adaptivity gap, Vehicle
routing problems, LP rounding algorithms

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.29

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2408.16566

Funding David Alemán Espinosa: Supported in part by NSERC grant 327620-09.
Chaitanya Swamy: Supported in part by NSERC grant 327620-09.

1 Introduction

The orienteering problem, first introduced by [16], is a fundamental and widely-studied vehicle-
routing problem (VRP). The input to the problem consists of a length/travel bound B, finite
metric space (V, d) representing travel times, root vertex ρ ∈ V , and non-negative rewards

© David Alemán Espinosa and Chaitanya Swamy;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 29; pp. 29:1–29:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dalemane@uwaterloo.ca
mailto:cswamy@uwaterloo.ca
https://orcid.org/0000-0003-1108-7941
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.29
https://arxiv.org/abs/2408.16566
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 Approximation Algorithms for Correlated Knapsack Orienteering

associated with the vertices. The goal is to compute a path rooted at ρ of length at most B

that collects maximum reward. Orienteering often arises as a subroutine in devising algorithms
for other more complex VRPs, both in approximation algorithms [4, 12, 6, 22, 13, 14, 1],
as also in computational methods, where it arises as the pricing problem when using a
branch-cut-and-price method on a set-covering/configuration LP.

Gupta et al. [19] introduced the following stochastic version of orienteering to model
settings where one must spend some uncertain amount of time processing a visited node
in order to collect its reward. Formally, each vertex corresponds to a job with a random,
possibly correlated, processing time and reward, drawn from a given probability distribution.
Random variables corresponding to different vertices are independent. The reward and
processing time of a job become known only when the job is fully processed. The goal is to
devise an algorithm, also called policy, that visits a sequence of vertices (starting at ρ) in a
possibly adaptive fashion that maximizes the expected total reward collected, subject to the
constraint that the total time expended in traveling and processing jobs is at most B. Jobs
cannot be preempted, and only jobs completed by the time-horizon B yield reward. This is
the correlated orienteering (CorrO) problem. We refer to the special case where rewards and
sizes are independent, simply as stochastic orienteering; due to independence, one can move
to deterministic rewards by replacing the random rewards with their expectations.

A related problem, and the focus of this paper, is correlated knapsack orienteering
(CorrKO), wherein there are two separate budgets: B for the (deterministic) travel time, and
W for the total time spent in processing jobs. Again, we refer to the uncorrelated problem as
stochastic knapsack orienteering. Correlated knapsack orienteering can be motivated from a
similar perspective as CorrO. Indeed, it is quite natural to decouple the “apples and oranges”
entities of travel time and processing time when these may represent disparate resources; e.g.,
travel time may represent latency of access of jobs in a distributed network, and processing
time may present CPU time.

In general, a policy may be adaptive and choose the next vertex to visit based on the
(size, reward) realizations of the vertices previously visited; unless otherwise stated, the
approximation ratio is always measured relative to the maximum reward OPT that can be
achieved by an adaptive policy. On the other hand, a non-adaptive policy fixes beforehand
the sequence of vertices to visit, and only the stopping-point (when the time-horizon B is
exceeded) depends on the (size, reward) realizations. While adaptive policies may collect
much greater reward, non-adaptive policies are usually easier to implement, specify, and
analyze, by virtue of the fact that they admit a much-more compact description compared
to the decision tree associated with an adaptive policy whose description may require space
that is exponential in the input size. Consequently, much work in stochastic optimization has
focused on developing good non-adaptive policies and obtaining bounds on the adaptivity
gap, which is the supremum, over all problem instances, of OPT/(maximum reward achieved
by a non-adaptive policy); see e.g., [9, 17, 11, 18, 19, 7, 20].

Prior work has studied stochastic orienteering, CorrO, and stochastic knapsack orien-
teering, and our current knowledge for these problems can be summarized as follows. (1)
The adaptivity gap for stochastic orienteering is O(log log B) [19] and Ω(

√
log log B) [2], and

there is a non-adaptive algorithm that achieves and O(1)-approximation with respect to the
non-adaptive optimum [19], and hence obtains an O(log log B)-approximation; the approach
leading to the latter result also yields an O(1)-approximation for stochastic knapsack orien-
teering. (2) The adaptivity gap for CorrO is also O(log log B) [2], but this is established non-
constructively; algorithmically, we can obtain O(α log B)-approximation in polytime [19] and
O

(
α · log2 log B

log log log B

)
in quasi-polytime [2], where α is the approximation ratio for deadline-TSP.

D. Alemán Espinosa and C. Swamy 29:3

To our knowledge, there is no prior work on CorrKO. As noted above, (uncorrelated)
stochastic knapsack orienteering and CorrO admit quite different guarantees, and this raises
the natural question: where does CorrKO stand in terms of difficulty relative to these two
problems? Is it more difficult than the uncorrelated problem? How does it compare in
difficulty relative to CorrO?

Our contributions
We initiate a study of correlated knapsack orienteering, and obtain results that, in particular,
shed light on these questions. Our chief contributions are as follows.
1. Adaptivity gap and approximation algorithms. Somewhat surprisingly, and in

stark contrast with (uncorrelated) stochastic knapsack orienteering, we prove that the
adaptivity gap for CorrKO is not a constant, showing that the correlated problem is strictly
harder than the uncorrelated problem.
▶ Theorem 1.1 (see Section 3). The adaptivity gap for CorrKO is
Ω

(
max{

√
log B,

√
log log W}

)
, where B is the travel budget and W is the processing-time

budget.
Complementing this, we develop various non-adaptive approximation algorithms for
CorrKO. Our main algorithmic result is a quasi-polytime O(log log W)-approximation
algorithm for CorrKO, which thus shows that the adaptivity gap is O(log log W).
▶ Theorem 1.2. There are non-adaptive algorithms for CorrKO with the following
guarantees:
(a) O(log log W)-approximation in time (n + log B)O(log W log log W) (Section 4.1);
(b) O(log W)-approximation in polynomial time (Section 4.2).
By leveraging the approach leading to Theorem 1a, we also obtain the following guarantee
for correlated orienteering, which improves upon the approximation guarantee in [2] (that
also runs in quasi-polytime) by an O

(log log B
log log log B

)
-factor.

▶ Theorem 1.3. Given an α-approximation algorithm for deadline TSP with running
time T , we can obtain a non-adaptive O(α log log B)-approximation algorithm for CorrO
with running time (n + log B)O(log B log log B) · T . Using the algorithm for deadline TSP
in [15], we obtain an O(log log B)-approximation in quasi-polytime.

2. CorrKO with 2-point distributions. Our adaptivity-gap lower bound uses distributions
of support-size 3, whereas the Ω(

√
log log B) adaptivity-gap lower-bound example for

stochastic orienteering in [2] considers weighted Bernoulli size distributions. In Section 5,
we investigate CorrKO from a fine-grained-complexity perspective to understand this
discrepancy. In contrast with stochastic orienteering, we show that when all distributions
are supported on at most 2 points – we call this 2CorrKO– the adaptivity gap becomes
O(1) (Theorem 5.3), and we can obtain a non-adaptive O(1)-approximation in time
(n + log B)O(log W) (Theorem 5.4). Moreover, for weighted Bernoulli size distributions,
we obtain a polytime non-adaptive O(1)-approximation (Theorem 5.5). Our key insight
here lies in identifying a novel deterministic problem, that we call orienteering with
knapsack deadlines (OrientKD), which we show is equivalent to 2CorrKO, up constant
factors. In OrientKD, in addition to orienteering, each vertex v has a weight and knapsack
deadline, and an orienteering-solution P is feasible, if for every v ∈ P , the total weight of
all nodes on P up to (and including) v is at most its knapsack deadline. For instance,
in a setting where jobs distributed over a network have to be processed on a single
machine, travel times could represent the latency involved in accessing a job, and the
knapsack deadlines would capture completion-time deadlines on the machine. We obtain

APPROX/RANDOM 2024

29:4 Approximation Algorithms for Correlated Knapsack Orienteering

the above approximation guarantee for OrientKD (Theorem 5.1), and hence obtain the
same guarantee (up to constant factors) for 2CorrKO.
These results show that our adaptivity-gap example is tight in terms of the support-size:
any such lower-bound example must involve some distribution of support-size at least 3.

3. CorrKO with cancellations. In this version (see Section 6), we can cancel or discard
the current vertex v at any time-step prior to its completion, foregoing its reward, and
we are not allowed to return to v. We obtain the same approximation guarantees for this
problem as for CorrKO: i.e., quasi-polytime O(log log W)-approximation, and polytime
O(log W)-approximation. En route, we obtain an O(1)-approximation for the special case
where we obtain non-zero rewards only when jobs instantiate to size at most W/2.

Our results paint a nuanced picture of the complexity of CorrKO vis-a-vis CorrO and stochastic
knapsack orienteering. While CorrKO is harder than stochastic knapsack orienteering, our
algorithmic results suggest that it is easier than CorrO. We obtain similar approximation fac-
tors for both problems in quasi-polytime, but in polytime, we obtain O(log W)-approximation
for CorrKO, while the current-best polytime factor for CorrO is O(log n log B); also, with
weighted Bernoulli distributions, CorrKO is provably easier than CorrO.

Technical overview. We now highlight the key technical ideas underlying our results. Let
OPT be the optimal reward for CorrKO. Let Sv denote the random size of vertex v. For an
integer j ≥ 0, let Xj

v := min{Sv, 2j} and µj
v = E

[
Xj

v

]
. The significance of these quantities

is that if µj(Pρ,v − v) ≤ c · 2j , where P is a rooted path, v ∈ P , and Pρ,v is the ρ ⇝ v

portion of P , then a random subpath P ′′ of P where we retain each u ∈ P independently
with probability 1

2c satisfies Pr[v ∈ P ′′ and is processed by time 2j] ≥ 1
4c ; this indicates that

πv(2j), which is the expected reward of v if its processing starts by time 2j , can serve as a
good proxy for the expected reward obtained from v.

Algorithms for CorrKO and CorrO. Our quasi-polytime O(log log W)-approximation for
CorrKO builds upon a structural result for CorrO shown by [2]. They show that one can
extract a suitable rooted path Q∗ from the decision tree representing an optimal adaptive
policy and suitable nodes φ−1 = ρ, φ0, φ1, . . . , φk on Q∗, where k ≤ log W , such that (roughly
speaking): (a) the prefix property µj(Q∗

ρ,φj
− φj) ≤ O(K) · 2j holds for every j = 0, . . . , k,

and (b)
∑k

j=0
∑

v∈Q∗
φj−1,φj

πv(2j) = Ω(OPT), where K = O(log log W) (see Theorem 7.1).
So if we could find this path Q∗, then using the sampling idea described above, one can easily
obtain an O(K)-approximation. For CorrO, Bansal and Nagarajan [2] “guess” the portal
nodes φ0, . . . , φk and write a configuration LP to find suitable paths between every pair of
consecutive portal nodes. They use randomized rounding to round a fractional solution,
which incurs a log k

log log k -factor violation of the prefix property due to Chernoff bounds, since
for each j, µj(Q∗

ρ,φj
− φj) can be written as a sum of O(K) · 2j-bounded independent random

variables. When one combines this with the node-sampling step, one therefore incurs an
O

(
K · log k

log log k

)
-factor loss relative to the value of the LP solution.

For CorrKO (and CorrO), we proceed similarly, but we guess many more portal vertices. We
split each Q∗

φj−1,φj
into O(K) segments having µj-weight at most 2j , and guess the end-points

of all such segments (see Theorems 4.1, 4.2). We then again set up a configuration LP and use
randomized rounding; however, we can now ensure that the prefix property holds with O(1)
violation, since we can decompose µj(Q∗

ρ,φj
− φj) into a sum of 2j-bounded random variables

corresponding to the µj-weight of each random segment. Thus, an application of Chernoff
bounds and the union bound only incurs an O(1)-factor violation of the prefix property,

D. Alemán Espinosa and C. Swamy 29:5

since K = Ω(log k); therefore, we lose only an O(K)-factor compared to the value of the LP
solution. This idea extends to CorrO. The only essential difference between CorrKO and CorrO
comes from how well we can solve the corresponding configuration LP; for CorrKO, we can
obtain an O(1)-approximation to the LP-optimum using an O(1)-approximation algorithm
for knapsack orienteering (see below), but for CorrO, we obtain an O(α)-approximate LP
solution given an α-approximation for deadline TSP.

The O(log W)-approximation for CorrKO proceeds by relating the problem to knapsack
orienteering (KnapOrient), which is orienteering with an additional total-node-weight budget
constraint. For each index j = 0, 1, . . . , log W , we use the portion of the optimal adaptive-
policy tree corresponding to nodes processed at some point in [2j , 2j+1), to extract a good
fractional solution to an LP-relaxation (KO-LP) for KnapOrient, where we exploit the LP-
relaxation for orienteering [14]. This translation is easy because one can naturally interpret
the LP variables as corresponding to certain probabilities obtained from an adaptive policy.

We remark that one can combine the LP-relaxations for orienteering [14] and the correlated
knapsack problem [18], which is the special case where all nodes are co-located, to obtain
an LP for CorrKO. However, the chief impediment in rounding an LP solution is that the
rounding algorithms for orienteering and correlated knapsack may give rise to incompatible
orderings. Rounding the orienteering-portion of the LP solution yields a node sequence, and
we need to stick with a subsequence of this to satisfy the travel-budget constraint. However,
forcing one to consider items in a prescribed order for correlated knapsack can drastically
reduce the reward obtained, because jobs that instantiate to large sizes (i.e., > W/2) may
need to be processed in a different incompatible order; see Appendix A. This tension is real,
as evidenced by our adaptivity-gap lower bound, and seems challenging to deal with.

2CorrKO. The chief insight here is that the problematic case where we obtain reward
only from large-size instantiations becomes quite structured in two ways. (1) There is no
adaptivity gap, since only the path in the adaptive-policy tree corresponding to small-size (i.e.,
≤ W/2) instantiations can yield non-zero reward. (2) Given (1), one can infer that the reward
obtained from a vertex v is a function of the total small size, and total large-size-instantiation
probablity of vertices visited up to v. This allows one to define an instance of orienteering
with knapsack deadlines (OrientKD) to capture the stochastic problem.

CorrKO with cancellations. The algorithm for CorrKO with cancellations considers two
cases. For large-size instantiations, it is not hard to argue that cancellations do not help (as
with correlated knapsack [18]). For small-size instantiations, we formulate an LP by combining
the LPs for orienteering [14] and correlated knapsack with cancellations [18]. We show that
from an LP solution, one can define a suitable KnapOrient-instance and extract a good LP
solution for this KnapOrient-instance. The KnapOrient-instance is defined in such a way that
feasible solutions to this instance can be mapped to fractional solutions to the correlated-
knapsack LP. So we can first round the solution to obtain an integral KnapOrient-solution Q,
and then utilize the LP-rounding algorithm in [18] for correlated knapsack with cancellations
to process vertices, with cancellations, in the order they appear on Q. It is crucial here that
the algorithm in [18] for small-size instantiations has the flexibility that one can specify a
prescribed order for considering vertices (unlike in CorrKO with large-size instantiations).

Related work
As mentioned earlier, orienteering is a fundamental problem in combinatorial optimization
that finds various applications. Blum et al. [5] devised the first constant-factor approximation
algorithm for orienteering, and the current best approximation factor is (2 + ϵ) for any

APPROX/RANDOM 2024

29:6 Approximation Algorithms for Correlated Knapsack Orienteering

ϵ > 0 [8]. Friggstad and Swamy [14] gave the first LP-based O(1)-approximation algorithm.
Their LP plays an important role for obtaining some of our results. Deadline TSP, also
known as deadline orienteering, is a generalization of orienteering, where nodes now have
deadlines, and a path P is feasible if, for every v ∈ P , its travel time along P is at most its
deadline; the goal is again to compute a maximum-reward feasible path. Both orienteering
and deadline TSP can be considered in the rooted, or point-to-point (P2P) setting, where both
the start and end nodes of the path are specified. Deadline TSP admits a polytime O(log n)-
approximation [1] and an O(1)-approximation in time nO(log(maximum deadline)) [15]. Friggstad
and Swamy [15] also consider the more general monotone-reward TSP, wherein the the
reward of a node v having travel time t is given by rewdv(t), where rewd(.) is a non-increasing
function. They showed that this problem is essentially equivalent to deadline TSP.

The literature on stochastic optimization problems is rich, and we discuss below only the
work that is most relevant to our work.

Stochastic knapsack problems. Stochastic orienteering and CorrKO generalize respec-
tively stochastic knapsack, which was studied in the seminal work of [9], and correlated
knapsack [18, 21], which correspond to the special case where all nodes are co-located (i.e.,
the travel budget is irrelevant). The state-of-the-art for stochastic knapsack is a (2 + ϵ)-
approximation [3]. Gupta et al. [18] obtained the first constant-factor approximation for
correlated knapsack, and the constant was improved to (2 + ϵ) by Ma [21].
Stochastic VRPs. We have already mentioned the works of Gupta et al. [19] and [2] that
consider (uncorrelated) stochastic orienteering and correlated orienteering. A minimization
version of stochastic orienteering, called stochastic k-TSP was considered by [11, 20], where
instead of a travel budget, we want to collect a reward of at least k, and seek to minimize the
expected travel time. Ene et al. [11] gave an adaptive O(log k)-approximation algorithm
for this problem, and Jiang et al. [20] obtained a non-adaptive O(1)-approximation.
The special case where all nodes are co-located is called stochastic knapsack cover for
which [10] obtained a (2 + ϵ)-approximation.
Multi-armed bandits with metric switching costs. A related problem to CorrKO is
the multi-armed bandit problem with metric switching costs, considered by Guha and
Munagala [17], which can be viewed as a setting where each vertex corresponds to a
Markov chain (i.e., arm) with known transition probabilities and rewards. Guha and
Munagala consider this setting under a crucial martingale assumption, which does not
hold for CorrO or CorrKO, with separate budgets for the travel-cost and the number of
arm-pulls, as in CorrKO. In their setting, one can also abandon a vertex and possibly
return to this vertex at a later time. They devise an O(1)-approximation algorithm for this
problem that is a hybrid between adaptive and non-adaptive policies: it non-adaptively
specifies the sequence of arms to visit, but adaptively decides when an arm should be
abandoned. They use an elegant Lagrangian-relaxation idea to reduce the problem to
orienteering; this Lagrangian-relaxation idea was also later used in [19].

2 Preliminaries and notation

For an integer n ≥ 0, we use [n] to denote {1, . . . , n}, where [0] := ∅, and JnK to denote
{0} ∪ [n]. For any universe U , set S ⊆ U and element e ∈ U , we sometimes use S − e and
S + e to denote S \ {e} and S ∪ {e} respectively.

The problems we consider involve a metric space (V, d) and root ρ ∈ V . The metric
d : V × V 7→ Z≥0 is symmetric and captures travel times between vertices; by scaling we may
assume that these are integers. Let n = |V | and ∆ be the diameter of the metric space. For

D. Alemán Espinosa and C. Swamy 29:7

a set S of edges of the underlying complete graph (V, E), we use d(S) to denote
∑

e∈S d(e).
Similarly, for any f ∈ RV and U ⊆ V , f(U) denotes

∑
v∈U fv. We say that a path P in G is

rooted if it begins at ρ. We always think of the nodes on a rooted path P as being ordered in
increasing order of their distance from ρ along the path. For any u, w ∈ P , we say u ≺P w to
denote that u comes before w on P , and u ⪯P w means that u = w or u ≺P w; we omit the
subscript P when P is clear from the context. We will interchangeably think of a path as an
edge-set, or a sequence of nodes; the meaning will be clear from the context. For any path
P and nodes a, b ∈ P , we use Pa,b to denote the a-b portion of P . For a path P starting at
node r, and a node v ∈ P , we define the travel time of v as d(Pr,v).

Deterministic max-reward vehicle routing. The following three vehicle routing problems
(VRPs) play a prominent role in the study of stochastic orienteering. All three problems
fall in the genre of max-reward VRPs, wherein we have nonnegative node rewards {πv}v∈V ,
and we need to select some vertices and find a suitable path visiting these vertices, so as to
maximize the reward obtained. The differences in the problems lie in which paths are allowed,
and the definition of the reward collected by a path. The problems below can be considered
in the rooted setting, where we have a root ρ and the feasible paths form a subset of rooted
paths, or in the point-to-point (P2P) setting, where both a start-node a and end-node b are
specified, and the feasible paths are a subset of a-b paths.

Orienteering. We have a budget B, and feasible paths (in the rooted and P2P versions)
are those with length at most B; we collect the reward of all nodes on a feasible path.
Deadline TSP, also called deadline orienteering. Here nodes have deadlines {Dv}v∈V .
A path P with the appropriate end-points is feasible if the travel time of each node in P

is at most its deadline. So in the rooted case, a rooted path P is feasible if d(Pρ,v) ≤ Dv

for all v ∈ P ; in the P2P-case, an a-b path P is feasible if d(Pa,v) ≤ Dv for all v ∈ P . We
collect the reward of all nodes on a feasible path. (Equivalently, one can say that the
feasible paths are all paths with the prescribed end-points, and we collect the reward
from all nodes on the path that are visited by their deadlines.)
Observe that orienteering is the special case where the deadline of each node is the length
bound B. Also, the rooted and P2P versions of deadline TSP are equivalent [14].
Monotone-reward TSP. This is a generalization of deadline TSP, where each node
v has a non-increasing reward-function πv : Z+ 7→ R+, where πv(t) gives the reward
obtained from v if v is visited at time t. Every path P with the appropriate end-points is
feasible, and the reward of P is given by

∑
v∈P πv(travel time of v) =

∑
v∈P πv

(
d(Pr,v)

)
,

where r is the start node of P .
Friggstad and Swamy [14] showed that monotone-reward TSP can be reduced to deadline
TSP losing a (1 + ϵ)-factor, for an ϵ > 0. Monotone-reward TSP will play a key role in
the algorithm for correlated orienteering.

Stochastic orienteering problems. In the correlated knapsack orienteering (CorrKO) prob-
lem, each vertex v ∈ V is associated with an stochastic job with a random processing time
or size Sv ∈ Z≥0 and a possibly correlated random reward Rv ∈ R≥0. We use the terms
processing time and size interchangeably. These random variables are independent across
different vertices, and their distributions are specified in the input. We are given a length or
travel-time budget B, and a processing-time budget W . A solution, or policy, for CorrKO
visits a sequence of (distinct) vertices starting from the root ρ, in a possibly adaptive fashion,
without exceeding the travel-time and processing-time budgets. More precisely, when a
vertex v is visited, it’s corresponding job is processed non-preemptively, and we get to know

APPROX/RANDOM 2024

29:8 Approximation Algorithms for Correlated Knapsack Orienteering

the processing time and reward of the job only upon its completion; the completion time of
job v is the total processing time of all jobs up to and including v. So if the adaptive policy
visits vertices v0 := ρ, . . . , vℓ = u in that order, then it must be that the total travel-time∑ℓ

i=1 d(vi−1, vi) to get to u is at most B, and the total processing time of (the jobs associated
with) v1, . . . , vℓ−1 is at most W . We collect the rewards of v1, . . . , vℓ−1, and we collect u’s
reward if its completion time is at most W . The goal is to maximize the expected total
reward collected. For notational convenience, we also assign a deterministic value of 0 to the
reward and processing time of ρ.

In the correlated orienteering (CorrO) problem, the setup is almost the same as in CorrKO,
except that there is only one budget B, which is the budget for the sum of the travel
times and processing times. (That is, we have one notion of time, which advances due to
both travel and the processing of jobs.) So if an adaptive policy for CorrO visits vertices
v0 := ρ, . . . , vℓ = u in that order, then we must have

∑ℓ
i=1 d(vi−1, vi) +

∑ℓ−1
i=1 Svi ≤ B; that

is, the completion time of each vi for i = 1, . . . , ℓ − 1, as also the time when we reach vℓ,
taking into account both travel time and processing time, should be at most B. We collect
rewards from v1 . . . , vℓ−1, and we collect u’s reward if

∑ℓ
i=1 d(vi−1, vi) +

∑ℓ
i=1 Svi

≤ B.
Any adaptive policy for CorrKO or CorrO can be represented by a decision tree T rooted

at ρ, whose nodes are labeled by vertices of V , and the branches of a node labeled v ∈ V

correspond to the different size and reward instantiations of v, with each branch specifying
the next node to visit under the corresponding instantiation.

A nonadaptive policy (for CorrKO or CorrO) fixes a priori the sequence of vertices to
potentially visit, without looking at the size and reward instantiations. The adaptivity gap for
an instance is the ratio (optimal expected reward collected by an adaptive policy)/(optimal
reward collected by a nonadaptive policy), and the adaptivity gap for a problem is the
supremum over all instances of the adaptivity gap for the instance.

Deterministic knapsack-constrained vehicle routing. Algorithms for stochastic orienteering
problems frequently utilize knapsack-constrained variants of deterministic VRPs, wherein we
seek a feasible solution to the VRP satisfying an additional knapsack constraint on the total
vertex-weight of the path. More precisely, suppose we have an underlying “base” max-reward
VRP, specified by a collection I of feasible paths along with nonnegative vertex-rewards
{πv}v∈V , where the goal is to find a maximum-reward path in I. In the knapsack-constrained
version of this VRP, we also have a knapsack constraint specified by nonnegative knapsack
weights {wtv}v∈V and knapsack budget W , which restricts the set of feasible solutions to
Iknap := {τ ∈ I :

∑
v∈τ wtv ≤ W}; the goal is to find a maximum-reward path in Iknap, i.e.,

a maximum-reward path in I satisfying the knapsack constraint. When the base VRP is:
(i) orienteering, the knapsack-constrained version is knapsack orienteering (KnapOrient); (ii)
deadline-TSP, the knapsack-constrained version is knapsack deadline orienteering (KnapDO).
KnapOrient and KnapDO were considered by [19, 2] in the context of stochastic orienteering.
We say that the base-VRP is a rooted-VRP, if all paths in I start at the same vertex, and it
is a P2P-VRP, if all paths in I have the same start and end nodes.

We give a general reduction (Theorem 2.1) showing if the base-VRP is a rooted-VRP
or P2P-VRP, and satisfies a certain subpath-closure property, then an α-approximation for
the VRP can be used as a black-box to obtain an (α + 2)-approximation for the knapsack-
constrained VRP. Let τ be a path with ends a, b ∈ V , which we will view as a sequence of
nodes. By a P2P-subpath of τ , we mean any a-b path whose node-sequence is a subsequence
of τ ; by a rooted-subpath of τ , we mean any path starting at a whose node-sequence is a
subsequence of τ . (Note that any subsequence of τ yields a path, since we are working with

D. Alemán Espinosa and C. Swamy 29:9

a complete graph.) The subpath-closure property requires that for every path τ ∈ I: (a) for
rooted-VRP, every rooted-subpath τ ′ of τ is also in I, (b) for P2P-VRP, every P2P-subpath
τ ′ of τ is also in I. Most max-reward VRPs – e.g., orienteering, deadline TSP – satisfy the
subpath-closure property. (Also, note that if a VRP satisfies the subpath-closure property,
then so does the knapsack-constrained VRP.)

The above reduction is based on a Lagrangian-relaxation idea that was also used by [19],
specifically to obtain approximation algorithms for KnapOrient and KnapDO. However,
their approach results in a constant-factor blowup -in the approximation ratio (factor 2 for
KnapOrient, and factor 4 for KnapDO1 when going from the VRP to the knapsack-constrained
VRP; our general reduction yields a better factor, in a somewhat simpler fashion.

▶ Theorem 2.1. Consider a max-reward rooted-VRP or P2P-VRP, specified by a set I of
feasible solutions satisfying the subpath-closure property. For any ϵ > 0, an α-approximation
algorithm A (where α ≥ 1) for the VRP can be used to obtain an (α + 2)(1 + ϵ)-approximation
for the knapsack-constrained VRP by making O

(log n
ϵ

)
calls to A.

▶ Corollary 2.2. There are algorithms with the following guarantees.
(a) (4 + ϵ)-approximation, for any ϵ > 0, for rooted- and P2P- knapsack orienteering;
(b) O(log n)-approximation for the rooted and P2P versions of knapsack deadline orienteering,

and knapsack monotone-reward TSP;
(c) O(1)-approximation in O

(
nlog n∆)

time, for the rooted and P2P versions of knapsack
deadline orienteering, and knapsack monotone-reward TSP.

LP-relative guarantee for KnapOrient. For rooted KnapOrient, we can utilize Theorem 2.1
to obtain an LP-relative approximation guarantee. This will be useful in devising algorithms
for CorrKO. Consider the following LP-relaxation for rooted KnapOrient along the lines of
an LP-relaxation for rooted orienteering in [14]. Let ρ be the root node for the KnapOrient
instance. We bidirect the edges of the complete graph on V to obtain the arc-set A.

max
∑

u,v∈V

zv
u · πu (KO-LP)

s.t. xv
(
δin(u)

)
≥ xv

(
δout(u)

)
∀u ∈ V − ρ, v ∈ V (O1)

xv
(
δin(S)

)
≥ zv

u ∀v ∈ V, S ⊆ V − ρ, u ∈ S (O2)
zv

u = 0 ∀u, v ∈ V : dρ,u > dρ,v (O3)∑
a∈A

da · xv
a ≤ Bzv

v , xv
(
δout(ρ)

)
= zv

v ∀v ∈ V (O4)

x, z ≥ 0

∑
v∈V

zv
v = 1 (O5)

∑
u,v∈V

zv
u · wtu ≤ W. (KN)

The xv
a and zv

u variables encode the arcs included, and vertices visited, respectively by the
KnapOrient-path, provided that v is the node visited that is furthest from ρ, i.e., v maximizes
d(ρ, u) among all nodes u on the path: constraints (O3) enforce this semantics; in an integer
solution, these variables will be 0 if v is not the furthest visited node from ρ. Constraints

1 [19] do not explicitly state a result for KnapDO, and instead embed this result within their algorithm
for correlated orienteering. We can infer this factor by tracing through their algorithm and analysis.

APPROX/RANDOM 2024

29:10 Approximation Algorithms for Correlated Knapsack Orienteering

(O1) and (O2) encode that the ρ ⇝ u-connectivity is zv
u, and together with (O4) encode

that {xv
a} is a ρ-preflow of value zv

v satisfying the length budget. Constraint (O5) enforces
that overall x is a ρ-preflow of value 1. Constraints (O1)–(O5) are from the LP for rooted
orienteering in [14]; (KN) is the new constraint encoding the knapsack budget.

▶ Theorem 2.3. We can obtain a KnapOrient-solution that obtains reward at least
OPT KO-LP/5.

3 An adaptivity-gap lower bound for CorrKO

We now show that the adaptivity gap for CorrKO is Ω
(
max{

√
log B,

√
log log W}

)
, thereby

proving Theorem 1.1. We consider the following instance of correlated knapsack orienteering
that has a similar spirit as the adaptivity-gap example in [2] for (uncorrelated) stochastic
orienteering. The metric is a tree-metric induced by a complete binary tree T on a vertex
set V , with root r ∈ V and H ≥ 4 levels, where the distances decrease geometrically as we
move away from r. To conform to our notation, we include a separate dummy node ρ that
serves as the root for CorrKO, with distance 0 to r; but when we say root below, we always
mean the root r of the tree T . The knapsack budget is W := 22H+1 and the length/travel
budget is B := 2H−1 − 1. For a node v ∈ V , we use: lev(v) to denote the level of v, path(v)
to denote the unique r ⇝ v-path in T , and par(v) to denote the parent of v if v ̸= r. The
root r is at level H and each leaf node is at level 1; for a non-leaf node v at level ℓ, the
distance between v and its children is 2ℓ−2. For a rooted path P in T we say that a node
v ∈ P is a right-branching (resp. left-branching) node if the node succeeding v on P is its
right-child (resp. left-child). We denote by rt(P) and left(P), the right-branching nodes
and left-branching nodes of P , respectively. For notational convenience, we assume that the
end-node of P other than r is a left-branching node; if P = r, then we say that r ∈ left(P).
The (correlated) (size, reward) distribution of node v is supported on three points:(

S(3)
v , R(3)

v) = (0, 0),
(
S(2)

v , R(2)
v

)
=

(
22lev(v)

·
∏

w∈rt(path(v))

22lev(w)
, 0

)
(
S(1)

v , R(1)
v

)
=

(
W −

∑
w∈rt(path(v))

S(2)
w ,

(
1 − 1√

H

)|rt(path(v))|
)

and we have Pr[Sv = S
(3)
v] = 1 − 1√

H
− 1

H , Pr[Sv = S
(2)
v] = 1√

H
, Pr[Sv = S

(1)
v] = 1

H ; see
Fig. 1. Observe that S

(2)
v ≤

(
22lev(v)+1)

/2 ≤ W/2, and S
(1)
v > W/2 for every node v.

Importantly, note that any policy for this instance can obtain positive reward from at
most one item. This is because for any v ∈ V , S

(1)
v > W/2. Therefore we can assume that

any policy terminates upon observing a size S
(1)
v for any visited vertex v. The binary tree is

built so that a certain adaptive policy (see the proof of Theorem 3.1) can always reach a
leaf-node if no positive reward has been collected in previous levels. The construction of the
tree prevents any path from going upward from a node to its parent, as this will cause the
length budget to run out. But more importantly, the instance is set up to preclude a policy
from going to a left child of a node v if its instantiated size is S

(2)
v in the sense that if this

happens then one cannot collect positive reward from this point on (Lemma 3.4).
The adaptivity-gap lower bound immediately follows from Theorems 3.1 and 3.2, since

H = Ω(log B) and H = Ω(log log W) for the above CorrKO instance.

▶ Theorem 3.1. There is an adaptive policy for the above CorrKO instance that obtains Ω(1)
expected reward.

D. Alemán Espinosa and C. Swamy 29:11

ρ

r

v1

v2

v3
...

...
...

...
...

...
...

...

(
22H

, 0
)

(
2(2H +2H−1), 0

)
(

2(2H +2H−2), 0
)

(
2(2H +2H−2+2H−3), 0

)

(W , 1)

(
W − 22H

, 1 − 1√
H

)
(

W − 22H

, 1 − 1√
H

)
(

W − 22H

− 2(2H +2H−2),
(

1 − 1√
H

)2
)

Level

H

H − 1

H − 2

H − 3
...

Figure 1 The (S(2)
v , R

(2)
v), (S(1)

v , R
(1)
v) pairs are shown respectively on the left and right of each

highlighted vertex in the tree.

▶ Theorem 3.2. Any nonadaptive policy for the above CorrKO instance obtains expected
reward at most 2√

H
.

Proof of Theorem 3.1. Consider the following adaptive policy A: the policy moves to node
r from ρ, and then proceeds as follows. Let v be the current node visited, which is r initially.
If v is a leaf, then the policy ends after the instantiation of v. Otherwise, the next node
visited by A is: the left child of v, if Sv = S

(3)
v , and the right child of v if Sv = S

(2)
v ; if

Sv = S
(1)
v , then A stops and does not visit any other nodes.

Let P ∗ denote the (random) path traversed by A, which we may view as a rooted path
in T . Let vlast be the last vertex visited by A, i.e., vlast is the end-node of P ∗ other than r

and P ∗ = path(vlast).

▷ Claim 3.3. We have d(P ∗) ≤ B and S(P ∗) :=
∑

v∈P ∗ Sv ≤ W with probability 1.

We argue that the expected reward collected by P ∗ is at least 1−e−1

4 . Let R = R(P ∗) :=∑
v∈P ∗ Rv denote the reward obtained by P ∗. Note that vlast is the only vertex from which

P ∗ can collect positive reward. So E
[
R

]
= Pr

[
Svlast = S

(1)
vlast

]
· E

[
R

(1)
vlast

]
. Observe that if

Svlast ̸= S
(1)
vlast , then vlast is a leaf node, and hence the event {Svlast ̸= S

(1)
vlast} occurs precisely

when A visits H vertices, one on each level of T , and none of them instantiate to size S
(1)
v .

Since vertex sizes are independent across different vertices, we have Pr
[
Svlast ̸= S

(1)
vlast

]
=(

1 − 1
H

)H ≤ e−1, and so E
[
R

]
≥ (1 − e−1)E

[
R

(1)
vlast

]
.

We have R
(1)
vlast =

(
1 − 1√

H

)|rt(P ∗)|, and since
(
1 − 1√

H

)x is a convex function, we obtain

that E
[
R

(1)
vlast

]
≥

(
1 − 1√

H

)E[
|rt(P ∗)|

]
. Observe that v ∈ P ∗ gets included in rt(P ∗) precisely

when Sv instantiates to S
(2)
v , which happens with probability 1√

H
. So we can upper bound

E
[
|rt(P ∗)|

]
by H · 1√

H
=

√
H. It follows that E

[
R

(1)
vlast

]
≥

(
1 − 1√

H

)√
H ≥ 1

4 , where the last
inequality uses the fact that 1 − x ≥ 4−x for x ≤ 0.5. ◀

Proof of Theorem 3.2. Let σ be some non-adaptive policy, which we may again view as a
rooted path in T , since we can always move first to r. We may assume that σ visits vertices
in decreasing order of their levels, since any backtracking from a node v to its ancestor would
cause one to exceed the travel budget. We say that an execution of σ “cheats” if, for some
visited node v, Sv instantiates to S

(2)
v , and σ proceeds to visit a vertex in the subtree of T

rooted at the left-child of v.

APPROX/RANDOM 2024

29:12 Approximation Algorithms for Correlated Knapsack Orienteering

▶ Lemma 3.4. σ does not collect any positive reward after cheating.

Proof. Suppose σ cheats at some vertex u. Let v be any node in the tree rooted at the
left-child of u. The residual knapsack budget after visiting u is at most W − S

(2)
u . It suffices

to show that S
(1)
v > W −S

(2)
u . Since S

(1)
v = W −

∑
w∈rt(path(v)) S

(2)
w , this amounts to showing

that S
(2)
u >

∑
w∈A S

(2)
w , where A = rt(path(v)). We argue that S

(2)
w < S

(2)
u for every w ∈ A,

and the S
(2)
w ’s are distinct for w ∈ A. This, coupled with the fact that S

(2)
u and the S

(2)
w ’s

are all powers of 2, implies the above inequality.
Recall that for a node z, we have S

(2)
z = 22lev(z) ·

∏
w∈rt(path(z)) 22lev(w) . Let A =

{a1, a2, . . . , a|A|}, where the nodes are ordered in increasing order of their distance from r.
Then, for any i ≥ 2, we have S

(2)
ai = 22lev(ai) ·S(2)

ai−1 , showing that each S
(2)
ai is a distinct power of

2, and S
(2)
ai increases with i. Note that u /∈ rt(path(v)) and rt(path(u)) ⊆ A. So for z = a|A|, we

have S
(2)
z =

∏
w∈A−rt(path(u)) 22lev(w) ·

∏
w∈rt(path(u)) 22lev(w) and

∏
w∈A−rt(path(u)) 22lev(w)

< 22lev(u) .
It follows that S

(2)
z < S

(2)
u . ◀

Recall that we view σ also as a rooted path in T . We can show that the total expected
reward obtained from rt(σ) and left(σ) are both at most 1√

H
, which completes the proof. For

the latter bound, we utilize the fact that, due to Lemma 3.4, we can collect positive reward
from a node v only if Sw = S

(3)
w for every w ∈ left(path(v)) − v. ◀

4 Approximation algorithms for CorrKO

We now devise non-adaptive approximation algorithms for CorrKO. In Section 4.1, we
develop an O(log log W)-approximation algorithm with (n+log B)O(log W log log W) (i.e., quasi-
polynomial) running time, which will prove Theorem 1a, and in Section 4.2, we obtain a
polytime O(log W)-approximation algorithm, thereby proving Theorem 1b.

4.1 Quasi-polytime O(log log W)-approximation algorithm
There are two chief components underlying our algorithm. First, we isolate a key structural
result (Theorems 4.1 and 4.2) showing that from an optimal adaptive policy, one can extract
a suitable path Q∗ and certain “portal” vertices on this path, such that the subpaths of
Q∗ between these portal vertices satisfy various nice properties. Second, we exploit this
structural result algorithmically as follows. The structural result allows us to reduce the
problem, at the expense of an O(log log W)-factor loss, to that of finding the portal vertices,
and suitable paths between these portal vertices that satisfy certain knapsack constraints on
the total expected truncated size E

[
min{Sv, 2j}

]
of nodes on these paths. We “guess” (i.e.,

enumerate over all possible choices of) these portal vertices and some auxiliary information,
and set up a configuration LP (CKO-P) to find paths between these portal vertices. This
configuration LP can be solved near-optimally, and we show that a fractional solution can be
rounded incurring only an O(1)-factor loss in the objective and in the constraints. Finally,
we argue that this leads to an O(log log W)-approximation non-adaptive policy.

Our approach is similar in spirit to the one in [2] for CorrO, and in Section 7, we show
that our approach also yields an O(log log B)-approximation for CorrO, which improves
upon the guarantee in [2] by an O

(log log B
log log log B

)
-factor. While we borrow various ingredients

from [2], the key difference between our approach and theirs is that we extract much more
information from the adaptive policy in terms of so-called portal vertices, which enables us
to round an underlying configuration LP incurring only a constant-factor violation in the
knapsack constraints; in contrast, this step in [2] incurs an O

(log log B
log log log B

)
-factor violation of

the constraints, and this savings is the source of our improved guarantee.

D. Alemán Espinosa and C. Swamy 29:13

Structural results. Recall that, for a path P and nodes a, b ∈ P , we use Pa,b to denote
the a-b portion of P . If P is a u-v path, its regret is dreg(P) := d(P) − d(u, v), and the
two-point regret of P with respect to a node a ∈ P is dreg(P, a) := d(P) − d(u, a) − d(a, v) =
dreg(Pu,a) + dreg(Pa,v). For an index j ∈ {0, 1, . . . , L := ⌈log W ⌉}, recall that we define
Xj

v := min{Sv, 2j} and µj
v := E

[
Xj

v

]
. For any vertex v ∈ V , let πv(t) := E

[
Rv · 1Sv≤W −t

]
=∑W −t

t′=0 Pr[Sv = t′] · E
[
Rv | Sv = t′] denote the expected reward obtained from v if its

processing starts at time t. Note that πv(t) = 0 for any t > W . Also, note that πρ(t) = 0
for all t. We may assume that πv(0) ≤ OPT/4 for every v ∈ V , as otherwise, we can obtain
Ω(OPT) reward by going to a single node.

Throughout, let K = 3 log(6 log W) + 12, L = ⌈log W ⌉, N1 = 2(K + 1). Define φ−1 := ρ.

▶ Theorem 4.1. There exists a rooted path Q∗ with d(Q∗) ≤ B, vertices φ0 ⪯ φ1 ⪯ . . . ⪯ φk

on Q∗ for some k ≤ L, and, for each j ∈ JkK, a vertex-set Porj ⊆ Q∗
φj−1,φj

containing nodes
φj−1, φj, with |Porj | ≤ N1, whose vertices are ordered by the order they appear on Q∗,
satisfying the following properties.
(a)

∑k
j=0

∑
v∈Q∗

φj−1,φj
−φj

πv(2j − 1) ≥ OPT/4.
(b) µj(Q∗

ρ,φj
− φj) ≤ (K + 1)2j for all j ∈ JkK.

(c) For every j ∈ JkK and consecutive nodes a, b ∈ Porj, we have µj(Q∗
a,b − b) ≤ 2j.

As mentioned earlier, in our quasi-polytime algorithm, we utilize Theorem 4.1 to construct
a good rooted path, by using enumeration to guess

⋃
j Porj , and an LP to then obtain suitable

paths between consecutive nodes of
⋃

j Porj . In order to ensure that the total path length is
at most the travel budget B, we will also need to obtain some information about the lengths
d(Q∗

a,b) for consecutive nodes a, b in
⋃

j Porj . Naively guessing these lengths would yield
incur a large BO(LN1)-factor in the running time; to do better, and reduce the dependence to
(log B)O(LN1), we instead guess the two-point regret of each Q∗

a,b with respect to a “mid-point”
node, within a factor of 2, which suffices (see Fig. 2). We refine Theorem 4.1 to incorporate
these estimates as follows.

▶ Theorem 4.2 (Main structural result). Let the node-sequence φ0, . . . , φk, where k ≤ L,
and for each j ∈ JkK, the ordered node sequence Porj of at most N1 nodes, be as given by
Theorem 4.1. Define Por :=

⋃k
j=0 Porj, which we call “portal nodes”, where the ordering of

nodes in Por is Por0, Por1, . . . , Pork; for a ∈ Por, a ̸= φk, let next(a) be the next node in Por
after a. For each a ∈ Por − φk, there exists an a-next(a) path Q∗

a,next(a), auxiliary node ma,
and integer γa ≥ 0, such that the following properties hold.
(P1) (Distance) d(Q∗

a,b) ≤ Da := 2γa − 1 + d(a, ma) + d(ma, b) for every pair of consecutive
nodes a, b ∈ Por.

(P2) (Total-length)
∑

a∈Por−φk
Da ≤ B.

(P3) (Reward)
∑k

j=0
∑

a∈Porj−φj

∑
v∈Q∗

a,next(a)−next(a) πv(2j − 1) ≥ OPT/8.

(P4) (Prefix-size)
∑j

h=0
∑

a∈Porh−φh
µj

(
Q∗

a,next(a) − next(a)
)

≤ (K + 1)2j for all j ∈ JkK.
(P5) (Size) µj(Q∗

a,b − b) ≤ 2j for every j ∈ JkK and pair of consecutive nodes a, b ∈ Porj.

Configuration LP and non-adaptive algorithm. Now assume that we have found, by
enumeration, nodes φ0, . . . , φk, where k ≤ L, ordered node-sets Porj for j ∈ JkK, and length
bounds Da for every pair of consecutive nodes a, b ∈ Por :=

⋃k
j=0 Porj , as stipulated by

Theorem 4.2. (We also need to enumerate for {ma, γa}a∈Por−φk
; we do not use these quantities

directly, but these are used to specify the Da length bounds.) That is, these objects are
compatible with suitable Q∗

a,b paths such that P1–P5 hold. Clearly, this enumeration takes
(n log B)O(N1L) = (n log B)O(log W log log W) time, which is the source of the running time in
Theorem 1a.

APPROX/RANDOM 2024

29:14 Approximation Algorithms for Correlated Knapsack Orienteering

φ−1 = ρ φ0 φ1 φ2 φ3

· · ·
φj−1 φj

· · ·
a next(a)

Q∗
a,next(a)

µj
(
Q∗

a,next(a) − next(a)
)

≤ 2j

maa next(a)

µj
(

Q∗
ρ,φj

− φj

)
≤ (K + 1)2j

Figure 2 Portal nodes Por and paths between portal nodes. The solid nodes depict Porj .

We formulate a configuration LP to find a-b paths, for every pair of consecutive nodes
a, b ∈ Por, satisfying properties P1, P3–P5. To this end, fix some j ∈ JkK and a ∈ Porj − φj ,
and let b = next(a). The valid a-b paths (i.e., the configurations) are the solutions to the
following (deterministic) point-to-point knapsack orienteering (KnapOrient) problem: the
end-nodes are a, b, the length budget is Da, the knapsack weights are µj

v for all v ∈ V − b

and µj
b = 0, and the knapsack-budget is 2j . Let Ia denote the set of all feasible solutions to

this KnapOrient instance.
The configuration LP has variables xa

τ , for every a ∈ Por − φk and τ ∈ Ia, indicating the
a-next(a) paths that are chosen.

max
k∑

j=0

∑
a∈Porj−φj

∑
τ∈Ia

xa
τ ·

(∑
v∈τ−next(a)

πv(2j − 1)
)

(CKO-P)

s.t.
∑

τ∈Ia

xa
τ = 1 ∀a ∈ Por − φk (1)

∑
a∈Por−φk

∑
τ∈Ia:v∈τ−next(a)

xa
τ ≤ 1 ∀v ∈ V (2)

j∑
h=0

∑
a∈Porh−φh

∑
τ∈Ia

xa
τ · µj

(
τ − next(a)

)
≤ (K + 1)2j ∀j ∈ JkK (3)

x ≥ 0.

Constraints (1) encodes that we select an a-b path for every consecutive pair of nodes
a, b ∈ Por, and constraints (2) ensure that each node v lies on at most one of these a-b
paths; constraint (3) encodes the (Prefix-size) property P4. (Note that if φh−1 = φh, then
Porh = {φh}, so we do not have any term for index h in the objective function, and on the
LHS of (3).)

To gain some intuition, notice that Theorem 4.2 shows that there is a feasible integral
solution to (CKO-P) of objective value at least OPT/8: we set xa

τ = 1 for τ = Q∗
a,next(a) for

every a ∈ Por − φk. Properties P1 and P5 show that Q∗
a,next(a) ∈ Ia; property P4 shows that

(3) holds, and P3 shows that the objective value is at least OPT/8.
We can solve (CKO-P) approximately, given an approximation algorithm for KnapOrient,

since this can be used to obtain an approximate separation oracle for the dual of (CKO-P).

D. Alemán Espinosa and C. Swamy 29:15

▷ Claim 4.3. The optimal value of (CKO-P), OPT CKO-P, is at least OPT/8.

▶ Lemma 4.4. Given an α-approximation algorithm for KnapOrient, we can compute in
polytime a solution x to (CKO-P) of objective value at least OPT CKO-P/α.

We use randomized rounding to round the solution x obtained by Lemma 4.4, and
Chernoff bounds yield that this only incurs an O(1)-factor loss in the objective, and in the
violation of constraints (3); here is where we crucially exploit property P5. We then obtain
an O(K)-approximate non-adaptive policy for CorrKO from the rounded solution.

Algorithm CSKO-Alg. // Rounding (x, y) and obtaining a non-adaptive policy

1 Independently, for each a ∈ Por − φk, letting b = next(a), do the following: pick an
a-b path by choosing τ ∈ Ia with probability xa

τ /2, and choosing the “direct” path
a, b with the remaining probability 0.5; let Pa,b denote the path picked.

2 If for any j ∈ JkK, we have
∑j

h=0
∑

a∈Porh−φh
µj

(
Pa,next(a) − next(a)

)
> 5(K + 1)2j ,

then return the empty policy that does not visit any node.
3 Consider the concatenated sequence of nodes {Pa,next(a)}a∈Por−φk

(where Por is
ordered as in Theorem 4.2). If a non-portal node is repeated in this sequence, then
shortcut the Pa,next(a) paths so as to retain only the first occurrence of each node.
Let P ′

a,next(a) denote the shortcut version of Pa,next(a) (which is still an a-next(a)
path). Let P ′ be the rooted path given by the node-sequence {P ′

a,next(a)}a∈Por−φk
,

where we retain only one copy of each portal node.
4 Sample each v ∈ P ′ − ρ independently with probability 1

10(K+1) to obtain the rooted
path, P ′′. return the non-adaptive policy P ′′.

Analysis overview. The key observation is that since for any j ∈ JkK, any h ≤ j,
any a ∈ Porh − φh, and any τ ∈ Ia, we have µj

(
τ − next(a)

)
≤ 2j , we obtain that∑j

h=0
∑

a∈Porh−φh
µj

(
Pa,next(a)−next(a)

)
is the sum of a collection of independent 2j-bounded

random variables,2 whose expectation is O
(
(K +1) ·2j

)
, due to constraint (3). It follows from

Chernoff bounds that the probability that this sum exceeds 5(K + 1)2j , for any fixed index j,
is exp −Ω(K), and so by a union bound, step 2 succeeds with high probability (Lemma 4.5).

To bound the reward obtained, consider a node v and index j ∈ JkK, and define yj
v :=∑

a∈Porj−φj

∑
τ∈Ia:v∈τ−next(a) xa

τ . (Note that
∑k

h=0 yh
v ≤ 1.) We say that v is “visited by

segment j” if v ̸= φj and v ∈
⋃

a∈Porj−φj
Pa,next(a); we say that v is “retained by segment j”

if v ̸= φj and v remains on
⋃

a∈Porj−φj
P ′

a,next(a) after the shortcutting in step 3. Note that
the latter events are disjoint, for different js. (Note that for a portal node in Porj − φj , both
events happen with probability 1.) Clearly, v is retained by segment j only if it is visited by
segment j. For convenience of analysis, we will view step 3 as being executed even if step 2
fails, so we can talk about the event “v retained by segment j” regardless of the outcome
of step 2. It is not hard to argue that Pr[v is retained by segment j] = Ω(yj

v), but we need
some care to show that this holds even when we condition on the event that step 2 succeeds,
as subtle dependencies between events arise here. Nevertheless, we show that this indeed
holds (Lemma 4.6).

2 This the key difference from [2]. They guess only the φj nodes, and so in their case, the corresponding
sum gets decomposed into the sum of (K + 1)2j-bounded random variables, and so an application of
Chernoff bounds incurs an additional log k

log log k = log log W
log log log W -factor.

APPROX/RANDOM 2024

29:16 Approximation Algorithms for Correlated Knapsack Orienteering

Finally, given that step 2 succeeds and the rounded path P ′ satisfies (3) with O
(
(K +1)2j

)
on the RHS, due to the random sampling in step 4, we can argue that, for any node v retained
by segment j, the non-adaptive policy processes v by time 2j − 1 with probability 1

O(K)

(Lemma 4.7). Thus, the expected reward of the non-adaptive policy is 1
O(K) ·

∑k
j=0

∑
v∈V yv

j ·
πv(2j − 1) ≥ OPT

O(K) .
For an index j ∈ JkK, let Bj be the event that

∑j
h=0

∑
a∈Porh−φj

µj
(
Pa,next(a) −next(a)

)
>

5(K + 1)2j . So B :=
∨k

j=0 Bj is the event that step 2 fails; let Bc denote the complement of
B. Recall that K = 3 log log(6W) + 12.

▶ Lemma 4.5. Pr[Bj] ≤ e−(K+1) for all j ∈ JkK. Hence, Pr[B] ≤ 1/ poly(log W).

▶ Lemma 4.6. For any node v ∈ V and any j ∈ JkK, we have
Pr[{v is retained by segment j} ∧ Bc] ≥ yj

v

16 .

▶ Lemma 4.7. Consider any node v ∈ V − φk. Suppose that v is retained by segment j

in step 3. Then Pr[non-adaptive policy P ′′ processes v by time 2j − 1] ≥ 1
20(K+1) , where the

probability is over both the random sampling in step 4 and the random execution of P ′′.

Proof of Theorem 1a. Combining Lemmas 4.6 and 4.7, and since for any v ∈ V − φk, the
events “v is retained by segment j” are disjoint across different js, the expected reward

obtained from a node v is at least
∑k

j=0
πv(2j−1)yj

v

320(K+1) . So the total expected reward obtained
by P ′′ is at least 1

320(K+1) ·
(
objective value of x

)
= OPT/O(K).

The running time is polynomial in the time needed to enumerate the quantities in
Theorem 4.2, which is poly

(
(n log B)O(log W log log W)) = O

(
(n + log B)O(log W log log W)). ◀

4.2 Polynomial-time O(log W)-approximation algorithm

The polytime algorithm also proceeds by gleaning some structural insights from an optimal
adaptive policy that enable one to reduce the problem to rooted knapsack orienteering, losing
an O(log W)-factor. Recall that L = ⌈log W ⌉.

▶ Theorem 4.8. There exists an index j ∈ JLK such that, for the KnapOrient-instance with
start node ρ, travel budget B, knapsack budget 2j+1, knapsack weights {µj

v}v∈V , and rewards
{πv(2j − 1)}v∈V , the optimal value of the LP-relaxation (KO-LP), is at least OPT/(L + 1).

Proof of Theorem 1b. Theorem 4.8 leads to the following simple algorithm. For the index
j in the theorem statement, we solve (KO-LP) and round it to an integer solution P losing
a factor of 5 (see Theorem 2.3). We sample each non-root node in P independently with
probability 1

4 , and return the resulting rooted path P ′′. To analyze this, for any v ∈ P , we
have that the probability that the non-adaptive policy P ′′ processes v by time 2j − 1 is at
least 1

8 . The claim follows because Pr
[∑

w≺P ′′ v Sw ≥ 2j
]

= Pr
[∑

w≺P ′′ v Xj
w ≥ 2j

]
, which is

at most

E
[∑

w≺P ′′ v Xj
w

]
2j

= 1
4 ·

E
[∑

w≺P v Xj
w

]
2j

≤ 1
4 ·

∑
w∈P µj

w

2j
≤ 1

2 .

The probability of the stated event is therefore at least Pr[v ∈ P ′′]/2 ≥ 1/8. Therefore, the
expected reward obtained is at least 1

8 ·
∑

v∈P πv(2j − 1) ≥ OPT
L+1 · 1

5 · 1
8 = OPT/O(L). ◀

D. Alemán Espinosa and C. Swamy 29:17

5 Refined approximation guarantees and hardness results for CorrKO

In this section, we perform a fine-grained-complexity study of CorrKO. Motivated by the
fact that our adaptivity-gap lower bound for CorrKO utilizes distributions of support-size
3, whereas the adaptivity-gap lower-bound example for stochastic orienteering [2] considers
weighted Bernoulli distributions, we investigate the complexity of CorrKO when we have
distributions supported on at most 2 points – we call this special case 2CorrKO– as also the
further special case where the vertex-size distributions are weighted Bernoulli distributions.

In stark contrast with stochastic orienteering, we show that the adaptivity gap is a
constant for 2CorrKO. Moreover, we obtain non-adaptive O(1)-approximation algorithms
that run in polynomial time for weighted Bernoulli distributions (Theorem 5.5), and in time
(n + log B)O(log W) for general 2CorrKO (Theorem 5.4).

The chief insight underlying the above results is that one can isolate a novel deterministic
VRP, that we call orienteering with knapsack deadlines (OrientKD), that governs the complex-
ity of 2CorrKO. In OrientKD, we are given an (rooted or P2P) orienteering instance, along
with nonnegative knapsack weights {wtv}v∈V and knapsack deadlines {KDv}. A path P with
start node a is feasible, if it is feasible for the orienteering instance, and

∑
u∈Pa,v

wtu ≤ KDv

for every node v ∈ P ; the goal is to find a feasible path P that obtains the maximum reward.
For this problem, we obtain the following approximation results.

▶ Theorem 5.1. We can obtain the following approximation guarantees for OrientKD:
(a) O(1)-approximation in (n + log B)O(log W) time;
(b) polytime O

(
log(maxv KDv

KDmin
)
)
-approximation, where KDmin is the minimum non-zero knap-

sack deadline.

We show that, up to constant factors, OrientKD is equivalent to 2CorrKO in terms of
approximability (Theorem 5.4). The O(1)-approximation for 2CorrKO, and the polytime
O(1)-approximation for weighted Bernoulli distributions both fall out as direct consequences
of this equivalence: the former, because we can devise an (n + log B)O(log W)-time O(1)-
approximation for OrientKD (Theorem 5.1); the latter, because the OrientKD instance that
one needs to solve for weighted Bernoulli distributions is in fact a KnapOrient instance.
Another corollary is a hardness result for CorrKO showing that an α-approximation for
CorrKO relative to the non-adaptive optimum implies an O(α)-approximation for OrientKD
(Theorem 5.6); this follows because such an approximation guarantee for CorrKO implies an
O(α)-approximation for 2CorrKO (since the adaptivity gap for 2CorrKO is O(1)).

Difficult instances of CorrKO. We begin by distilling the key source of difficulty for CorrKO
(Lemma 5.2). This will prove to be useful when we study 2CorrKO, as it will allow us to
focus on the core of the problem. We define the size instantiation Sv of a vertex v to be
large if Sv > W/2, and small otherwise. We argue that the difficulty of CorrKO stems from
instances where most of the optimal reward comes from vertices that instantiate to a large
size with small probability.

To make this precise, we introduce some notation. For a vertex v, we can split its reward
Rv as Rv = Rv

>W/2 + Rv
≤W/2, where Rv

>W/2 := Rv1Sv>W/2 and Rv
≤W/2 := Rv1Sv≤W/2.

We can consider the modified CorrKO instances I>W/2 and I≤W/2, where the rewards are
given by {Rv

>W/2}v∈V and {Rv
≤W/2}v∈V respectively; so in I>W/2, we only collect non-

zero reward from large instantiations, and in I≤W/2, we only collect non-zero reward from
small instantiations. For p ∈ [0, 1], define I>W/2(p) to be the instance with vertex set
V (p) := {v ∈ V : Pr[Sv > W/2] ≤ p} (note that ρ ∈ V (p)). Thus, in instance I>W/2(p), we
only consider vertices that instantiate to a large size with probability at most p (i.e., small
probability), and collect reward only from large instantiations.

APPROX/RANDOM 2024

29:18 Approximation Algorithms for Correlated Knapsack Orienteering

▶ Lemma 5.2. Suppose we have an α-approximation algorithm for CorrKO instances of
the form I>W/2(0.5). Then, we can obtain an

(
α + O(1)

)
-approximation algorithm for all

CorrKO instances.

Proof. A CorrKO instance I can be decomposed into three instances, I1 = I≤W/2, I2 =
I>W/2(0.5), and I3 with vertex set V3 := {v ∈ V : Pr[Sv > W/2] > 0.5} and rewards
{Rv

>W/2}v∈V3 . Any vertex v yields positive reward in at most one of these 3 instances for
any size instantiation, and so OPT = OPT (I) ≤ OPT (I1) + OPT (I2) + OPT (I3).

We can obtain non-adaptive polices that yield approximation guarantees of β1 = O(1),
β3 = O(1) for I1 and I3 respectively. Any adaptive policy for I3 can collect positive reward
from at most one vertex, which is the first vertex that instantiates to a large size; after this
the policy may as well stop. The expected number of nodes visited by an adaptive policy is at
most

∑
i≥1 2−(i−1) ≤ 4, so simply visiting the node in V3 with largest expected reward, yields

an O(1)-approximation to OPT (I3). For I1, one can argue that an O(1)-approximation
follows by solving the KnapOrient instance with rewards {E

[
Rv

≤W/2]
}v∈V , travel budget B,

knapsack weights {E
[
min{Sv, W}

]
}v∈V , and knapsack budget 2W .

Let β2 = α. Consider now the algorithm that With probability βj

β1+β2+β3
, runs the

corresponding algorithm for instance Ij , for j = 1, 2, 3. The expected reward obtained via
this is at least

∑3
j=1

βj

β1+β2+β3
· OPT(Ij)

βj
≥ OPT

β1+β2+β3
= OPT

α+O(1) . ◀

5.1 2CorrKO: CorrKO with distributions of support-size at most 2

Recall that 2CorrKO denotes the special case of CorrKO where, for each vertex v, the
distribution of Sv is supported on at most 2 values, denoted S

(1)
v , S

(2)
v with S

(1)
v ≥ S

(2)
v .

By Lemma 5.2, to obtain an O(1)-approximation for 2CorrKO, it suffices to consider the
instance I2 = I>W/2(0.5), and we focus on such instances in the sequel. To keep notation
simple, we continue to use V to denote the vertex set of I2. Then we may assume that
the (size, reward) distribution for each v ∈ V is (S(1)

v , Rv) with probability pv, and (S(2)
v , 0)

with probability 1 − pv, where (i) S
(1)
v > W/2 ≥ S

(2)
v and (ii) pv ≤ 0.5. Property (i) holds

because if S
(1)
v ≤ W/2, then v yields 0 reward for I2, so may be discarded; if S

(2)
v > W/2,

then Pr[Sv > W/2] = 1, which means that v would not be considered for I2. Given (i) the
reward when the size is S

(2)
v must be 0, and (ii) holds because pv = Pr[Sv > W/2]. We first

argue that the adaptivity gap for such instances is 1.

▶ Theorem 5.3. The adaptivity gap for 2CorrKO (instances of the form I>W/2(0.5)) is 1.

Proof. Let T be the decision tree of an optimal adaptive policy. Consider the (rooted) path
σ of T corresponding to the S

(2)
v size instantiations. Then T cannot collect any reward

outside of σ, since the residual knapsack budget when we reach any node v ∈ T \ σ is less
than W/2. So the non-adaptive policy represented by σ has the same expected reward
as T . ◀

We now show that the resulting 2CorrKO problem is equivalent to OrientKD, up to constant-
factor approximation losses. By “equivalent”, we always mean equivalent up a multiplicative
O(1) factor. We actually show that 2CorrKO is equivalent to another problem, knapsack ori-
enteering with knapsack deadlines (KnapOrientKD), which is the knapsack-constrained version
of OrientKD; by Theorem 2.1, OrientKD and its knapsack-constrained version KnapOrientKD
are equivalent, so this implies that 2CorrKO and OrientKD are equivalent.

D. Alemán Espinosa and C. Swamy 29:19

▶ Theorem 5.4. Given an α-approximation algorithm for one of the problems, KnapOrientKD
or 2CorrKO, one can obtain an O(α)-approximation algorithm for the other. Hence, the prob-
lems 2CorrKO and OrientKD are equivalent. This implies an O(1)-approximation algorithm
for 2CorrKO with running time (n + log B)O(log W).

The approximation guarantee above follows from the guarantee for OrientKD stated in
Theorem 5.1. We briefly sketch how to reduce 2CorrKO to KnapOrientKD. By essentially
“inverting” this reduction, we obtain the opposite reduction, from KnapOrientKD to 2CorrKO.

Let I be a 2CorrKO instance. By Theorem 5.3, we can focus on non-adaptive policies for
I. Let τ be a ρ-rooted path representing a non-adaptive policy. It is not hard to show that
the expected reward from a node v ∈ τ is pvRv

∏
w≺τ v(1 − pw) if

∑
w≺τ v S

(2)
w ≤ W − S

(1)
v ,

and is 0 otherwise. Also, one can argue that the total expected reward from nodes v ∈ τ

with
∑

w≺τ v pw > 1 is a small fraction of OPT (I). This motivates the following reduction to
KnapOrientKD. We set rewards {πvRv}v∈V . The constraint

∑
w≺τ v S

(2)
w ≤ W − S

(1)
v can be

encoded by a knapsack deadline, by considering knapsack weights {S
(2)
w }w∈V and knapsack

deadlines {W − S
(1)
w + S

(2)
w }w∈V . The additional knapsack constraint will encode that the

total pw-weight of the path should be at most 1, so that the expected reward obtained for I
from each vertex v on the KnapOrientKD-solution is Ω(pvRv).

For weighted Bernoulli size distributions, which is the special case of 2CorrKO where
S

(2)
v = 0 for all v ∈ V , the above reduction actually crates a KnapOrient instance, since

the knapsack-deadlines are trivially satisfied by any rooted path. Since we have a polytime
O(1)-approximation for KnapOrient, we obtain the following.

▶ Theorem 5.5 (Weighted Bernoulli size distributions). There is a polytime O(1)-approximation
for CorrKO with weighted Bernoulli size distributions.

As noted earlier, combining the equivalence of 2CorrKO and OrientKD, and the O(1)
adaptivity gap for 2CorrKO, yields the following hardness result.

▶ Theorem 5.6 (Hardness of approximating the non-adaptive optimum). Given an α-approxi-
mation algorithm for CorrKO with respect to the non-adaptive optimum, we can obtain an
O(α)-approximation algorithm for OrientKD.

6 CorrKO with cancellations

In CorrKO with cancellations (CorrKO-Cancel), the input is the same as in CorrKO, but we
are now allowed to cancel the processing of the current vertex v at any (integer) timestep
before its size and reward get fully realized; if v is cancelled, then no reward is collected
from v and we cannot process v again. As with CorrKO, we only collect reward from vertices
that complete by the processing-time horizon W . Gupta et al. [18] showed that even for
correlated knapsack (which is the special case of CorrKO where all vertices are co-located),
the optimal reward when we allow cancellations can be substantially larger than the optimal
reward without cancellations, so we need to develop new algorithms to handle cancellations.

We obtain the same guarantees for CorrKO-Cancel as for CorrKO: that is, O(log log W)-
approximation in (n + log B)O(log W log log W) time, and a polytime O(log W)-approximation.

We proceed as follows. Recall that for a vertex v, we define Rv
>W/2 := Rv1Sv>W/2 and

Rv
≤W/2 := Rv1Sv≤W/2. Let I>W/2 and I≤W/2 denote the CorrKO-Cancel instances where

the rewards are given by {Rv
>W/2}v∈V and {Rv

≤W/2}v∈V respectively. As observed by [18],
cancellations do not help for the instance I>W/2, i.e., the optimal reward is the same both
with and without cancellations. This is because if a policy cancels a vertex v after it has

APPROX/RANDOM 2024

29:20 Approximation Algorithms for Correlated Knapsack Orienteering

run for some t ≤ W/2 time steps, we can modify the policy to not process v at all, without
decreasing the reward accrued from subsequently-processed vertices; if v is cancelled after it
has run for more than W/2 time steps, then both with and without cancellation, the policy
cannot collect any further reward.

We show that we can obtain an O(1)-approximation for I≤W/2. With probability 0.5
each, we can work on the instance I≤W/2, where we utilize this O(1)-approximation, or the
instance I>W/2, where we utilize the approximation results for CorrKO. So this yields: an
O(log log W)-approximation in quasi-polytime, and a polytime O(log W)-approximation.

So we focus on obtaining an O(1)-approximation for CorrKO-Cancel instances of the form
I≤W/2. Our approach is based on LP-rounding, by combining the LP-rounding approaches
for orienteering in [14] and the correlated knapsack problem with cancellations in [18]. We
combine the LP-relaxations for these two problems to obtain the following LP, whose optimal
value yields an upper bound on the optimal reward. We use Ru(t) to denote the reward Ru

when the size Su is t; this is 0 if Pr[Su = t] = 0. Note that Ru(t) = 0 for all t > W/2, since
we are considering I≤W/2.

max
∑
u∈V

W/2∑
t=1

zu,t · Pr[Su = t | Su ≥ t] · Ru(t) (CKOC-LP)

s.t. (O1) – (O5)∑
v∈V

zv
u = zu,0 ∀u ∈ V (4)

zu,t = su,t + zu,t+1 ∀u ∈ V, t ∈ JW K (CK1)
su,t ≥ Pr[Su = t | Su ≥ t] · zu,t ∀u ∈ V, t ∈ JW K (CK2)∑

u∈V

W∑
t=0

t · su,t ≤ W (CK3)

x, z, s ≥ 0.

The xv
a and zv

u variables, and constraints (O1)–(O5) are from the LP for rooted orienteering
(and also present in LP (KO-LP) for KnapOrient). They encode the arcs included, and
vertices visited, respectively by the rooted path, provided that v is the furthest node from ρ

that is visited. Constraints (O1)–(O5) are valid because any rooted path Q, corresponding
to an execution of an adaptive policy, satisfies these constraints, where the superscript v in
the non-zero variables is the furthest node from ρ on Q.

The zu,t and su,t variables, constraints (CK1)–(CK3), and the objective function are from
the LP in [18] for correlated knapsack with cancellations. For any vertex u and t ≥ 0, variable
zu

t encodes that u is processed for a least t time units, and su,t encodes that u is processed
for exactly t time units. Thus, variable zu,0 encodes that u is visited, and constraint (4)
links the orienteering and correlated knapsack LPs. Gupta et al. [18] show (see Theorem 3.1
in [18]) that constraints (CK1)–(CK3) are valid for correlated knapsack with cancellations,
and that the objective function provides an upper bound on the expected reward obtained.

We remark that [18] showed that one can replace (CK1)–(CK3) with a polynomial-size
formulation losing an O(1)-factor, which applies here as well.

We round an optimal solution (x, z, s) to (CKOC-LP) in two phases. We first extract a
suitable knapsack orienteering instance from the LP solution, and use Theorem 2.3 to obtain
a good rooted path Q for this KnapOrient instance. Now, we select a subsequence of Q to visit
by solving a correlated knapsack with cancellations problem involving only vertices in Q. The
KnapOrient-instance is set up so that from (x, z, s), one can extract a good LP solution to the

D. Alemán Espinosa and C. Swamy 29:21

correlated knapsack problem restricted to vertices in Q. We utilize the LP-rounding result
in [18] to round this solution to obtain a CorrKO-Cancel solution that visits the vertices in Q

in order, potentially cancelling some vertices along the way. Thus, we obtain a non-adaptive
policy for CorrKO-Cancel. In the second phase, we crucially leverage an important aspect of
the LP-rounding algorithm in [18] for correlated knapsack with cancellations, namely that it
is order oblivious: it’s guarantee does not depend on the order in which the vertices (i.e.,
items in correlated knapsack) are considered. This flexibility allows us to consider vertices
in Q in the order they are visited, and thereby ensure that the travel-budget constraint is
satisfied. (We remark that for the correlated knapsack without cancellations, we do not have
this flexibility, when considering large instantiations; see Appendix A. This lack of flexibility
is the main obstacle in obtaining a good solution from large instantiations in CorrKO.)

7 O(log log B)-approximation for CorrO

Our approach in Section 4 for CorrKO can be utilized to yield the guarantees mentioned
in Theorem 1.3: that is, an O(α log log B)-approximation algorithm for CorrO in time
(n + log B)O(log B log log B) · T , where T is the running time of the given α-approximation
algorithm for deadline TSP. The algorithm in [15] for deadline TSP translates to an O(1)-
approximation in nO(log B) time, so this implies an O(log log B)-approximation for CorrO in
quasi-polytime. We also simplify the exposition significantly by making use of monotone-
reward TSP [15] as a subroutine.

Let K = 3 log(6 log B) + 12, L = ⌈log B⌉, N1 = 2(K + 1). Define φ−1 := ρ, and
πv(t) := E

[
Rv · 1Sv≤B−t

]
=

∑B−t
t′=0 Pr[Sv = t′] · E

[
Rv | Sv = t′]. Let OPT CorrO denote the

optimal reward for the CorrO instance. We may assume that πv(dρ,v) ≤ OPT CorrO/4 for
every v ∈ V , as otherwise, we can obtain Ω(OPT CorrO) reward by going to a single node.
The algorithm in [2] is based on the following structural result, which we have paraphrased
(and corrected slightly) to conform to our notation.

▶ Lemma 7.1 (Lemma 3.6 in [2]). There exists a rooted path P with d(P) ≤ B, and vertices
φ0 ⪯ φ1 ⪯ . . . ⪯ φk on P for some k ≤ L, such that:
(a)

∑k
j=0

∑
v∈Pφj−1,φj

−φj
πv

(
d(Pρ,v + 2j − 1)

)
≥ OPT CorrO/4; and

(b) µj(Pρ,φj
− φj) ≤ (K + 1)2j for all j ∈ JkK.

We refine this by subdividing each Pφj−1,φj subpath into at most 2(K + 1) segments each
of µj-weight at most 2j , and by guessing the two-point regrets of these segments, to obtain a
structural result analogous to Theorem 4.2.

▶ Theorem 7.2 (Structural result for CorrO). Let the rooted path P and node-sequence
φ0, . . . , φk, where k ≤ L, be as in Lemma 7.1. For each j ∈ JkK, there is a vertex-set
Porj ⊆ Pφj−1,φj

containing φj−1, φj , with |Porj | ≤ N1, whose nodes are ordered by the order
they appear on P , and for every node a ∈

(⋃k
j=0 Porj

)
− φk, there is a path Q

a, node ma,
integer γa ≥ 0, satisfying the following properties. For a, b ∈ Por :=

⋃k
j=0 Porj , let next(a) be

the next node in Por after a, for a ̸= φk; let b ≺ a if b comes before a in Por.
(C1) (Distance) d(Qa) ≤ Da := 2γa − 1 + d(a, ma) + d

(
ma, next(a)

)
for every a ∈ Por − φk.

(C2) (Total-length)
∑

a∈Por−φk
Da ≤ B.

(C3) (Reward)
∑K

j=0
∑

a∈Porj−φj

∑
v∈Q

a−next(a) πv

(∑
b≺a Db + d(Qa

a,v) + 2j − 1
)

≥
OPT CorrO/8.

(C4) (Prefix-size)
∑j

h=0
∑

a∈Porh−φh
µj

(
Q

a − next(a)
)

≤ (K + 1)2j for all j ∈ JkK.
(C5) (Size) µj

(
Q

a − next(a)
)

≤ 2j for every j ∈ JkK and every a ∈ Porj − φj.

APPROX/RANDOM 2024

29:22 Approximation Algorithms for Correlated Knapsack Orienteering

We now exploit this structural result in much the same way as in Section 4.1 by setting up
a configuration LP to find the Q

a-paths. Note that only the (Reward) property C3 is different
from the (Reward) property in Theorem 4.2 for CorrKO, and correspondingly, we now exploit
monotone-reward TSP to capture the reward of an Q

a path. Assume that we have found
the “portal nodes” Por and length bounds Da for all a ∈ Por − φk satisfying Theorem 7.2.
To capture the reward obtained from an a-next(a) path, the configurations Ia for a node
a ∈ Por − φk will now consist of feasible solutions to P2P knapsack monotone-reward TSP,
which is the knapsack-constrained version of P2P-monotone-reward TSP: they are simply all
a-next(a) paths τ with µj

(
τ −next(a)

)
≤ 2j . The length budget Da will be captured implicitly,

by defining the reward function of a node v ≠ next(a) to be πv

(∑
b≺a Db + d(τa,v) + 2j − 1

)
if d(τa,v) ≤ Da − d(v, next(a)) and 0 otherwise, which is a non-increasing function of d(τa,v);
for v = next(a), the reward function is defined to be identically 0. For notational convenience,
define πa,j(τ) to be the total reward obtained from nodes in τ under the above rewards.

The configuration LP for CorrO now has the same constraints as (CKO-P), but the
objective function changes to max

∑k
j=0

∑
a∈Porj−φj

∑
τ∈Ia

xa
τ · πa,j(τ). Let (CO-P) denote

this LP, and OPT CO-P denote its optimal value.
We now have OPT CO-P ≥ OPT CorrO/8, and one can argue that an α-approximation

algorithm for deadline TSP (and hence, monotone-reward TSP [15]) can be used to obtain
a (CO-P)-solution x of value at least OPT CO-P/O(α). The LP-rounding algorithm and
conversion to a non-adaptive policy are exactly as in Algorithm CSKO-Alg. The analysis
is similar, but we now analyze the reward on a path-by-path basis, considering the reward
obtained from paths τ ∈ Ia, for each a ∈ Por − φk. We can again argue that step 2 succeeds
with high probability, and moreover that the expected reward obtained is large conditioned
on this. Hence, we obtain an O(K) approximation.

References
1 Nikhil Bansal, Avrim Blum, Shuchi Chawla, and Adam Meyerson. Approximation algorithms

for deadline-TSP and vehicle routing with time-windows. In Proceedings of the 36th Annual
ACM Symposium on Theory of Computing (STOC), pages 166–174, 2004. doi:10.1145/
1007352.1007385.

2 Nikhil Bansal and Viswanath Nagarajan. On the adaptivity gap of stochastic orienteering. Math-
ematical Programming, 154(1-2):145–172, December 2015. doi:10.1007/s10107-015-0927-9.

3 Anand Bhalgat. A (2+ ϵ)-approximation algorithm for the stochastic knapsack problem.
Unpublished manuscript, 2011.

4 Avrim Blum, Prasad Chalasani, Don Coppersmith, Bill Pulleyblank, Prabhakar Raghavan,
and Madhu Sudan. The minimum latency problem. In Proceedings of the 26th Annual ACM
Symposium on Theory of Computing (STOC), pages 163–171, 1994. doi:10.1145/195058.
195125.

5 Avrim Blum, Shuchi Chawla, David R. Karger, Terran Lane, Adam Meyerson, and Maria
Minkoff. Approximation Algorithms for Orienteering and Discounted-Reward TSP. SIAM
Journal on Computing, 37(2):653–670, January 2007. doi:10.1137/050645464.

6 Deeparnab Chakrabarty and Chaitanya Swamy. Facility Location with Client Latencies: Linear
Programming Based Techniques for Minimum Latency Problems. Mathematics of Operations
Research, 41(3):865–883, 2016. doi:10.1287/moor.2015.0758.

7 Shuchi Chawla, Evangelia Gergatsouli, Yifeng Teng, Christos Tzamos, and Ruimin Zhang.
Pandora’s box with correlations: Learning and approximation. In Proceedings of the 61st
Annual Symposium on Foundations of Computer Science (FOCS), pages 1214–1225, 2020.

8 Chandra Chekuri, Nitish Korula, and Martin Pál. Improved algorithms for orienteering and
related problems. ACM Transactions on Algorithms, 8(3):1–27, July 2012. doi:10.1145/
2229163.2229167.

https://doi.org/10.1145/1007352.1007385
https://doi.org/10.1145/1007352.1007385
https://doi.org/10.1007/s10107-015-0927-9
https://doi.org/10.1145/195058.195125
https://doi.org/10.1145/195058.195125
https://doi.org/10.1137/050645464
https://doi.org/10.1287/moor.2015.0758
https://doi.org/10.1145/2229163.2229167
https://doi.org/10.1145/2229163.2229167

D. Alemán Espinosa and C. Swamy 29:23

9 Brian C. Dean, Michel X. Goemans, and Jan Vondrák. Approximating the Stochastic Knapsack
Problem: The Benefit of Adaptivity. Mathematics of Operations Research, 33(4):945–964,
November 2008. doi:10.1287/moor.1080.0330.

10 Amol Deshpande, Lisa Hellerstein, and Devorah Kletenik. Approximation Algorithms for
Stochastic Submodular Set Cover with Applications to Boolean Function Evaluation and Min-
Knapsack. ACM Transactions on Algorithms, 12(3):1–28, June 2016. doi:10.1145/2876506.

11 Alina Ene, Viswanath Nagarajan, and Rishi Saket. Approximation Algorithms for Stochastic
k-TSP. In Proceedings of the 37th IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS), pages 27:27–27:14, 2017. arXiv:
1610.01058.

12 Jittat Fakcharoenphol, Chris Harrelson, and Satish Rao. The k -traveling repairmen problem.
ACM Transactions on Algorithms, 3(4):40, November 2007. doi:10.1145/1290672.1290677.

13 Zachary Friggstad and Chaitanya Swamy. Approximation algorithms for regret-bounded
vehicle routing and applications to distance-constrained vehicle routing. In Proceedings of
the 46th Annual ACM Symposium on Theory of Computing (STOC), pages 744–753, 2014.
doi:10.1145/2591796.2591840.

14 Zachary Friggstad and Chaitanya Swamy. Compact, Provably-Good LPs for Orienteering and
Regret-Bounded Vehicle Routing. In Proceedings of 19th IPCO, pages 199–211, 2017.

15 Zachary Friggstad and Chaitanya Swamy. Constant-Factor Approximation to Deadline TSP
and Related Problems in (Almost) Quasi-Polytime. In Proceedings of 48th ICALP, pages
67:1–67:21, 2021.

16 Bruce L. Golden, Larry Levy, and Rakesh Vohra. The orienteering problem. Naval
Research Logistics, 34(3):307–318, 1987. doi:10.1002/1520-6750(198706)34:3<307::
AID-NAV3220340302>3.0.CO;2-D.

17 Sudipto Guha and Kamesh Munagala. Multi-armed Bandits with Metric Switching Costs. In
Proceedings of 36th ICALP, pages 496–507, 2009. doi:10.1007/978-3-642-02930-1_41.

18 Anupam Gupta, Ravishankar Krishnaswamy, Marco Molinaro, and Ramamoorthi Ravi. Ap-
proximation algorithms for correlated knapsacks and non-martingale bandits. In 52nd Annual
Symposium on Foundations of Computer Science, pages 827–836, 2011.

19 Anupam Gupta, Ravishankar Krishnaswamy, Viswanath Nagarajan, and R. Ravi. Running
Errands in Time: Approximation Algorithms for Stochastic Orienteering. Mathematics of
Operations Research, 40(1):56–79, 2015. doi:10.1287/moor.2014.0656.

20 Haotian Jiang, Jian Li, Daogao Liu, and Sahil Singla. Algorithms and Adaptivity Gaps for
Stochastic k-TSP. In Proceedings of 11th ITCS, pages 45:1–45:25, 2020. arXiv:1911.02506.

21 Will Ma. Improvements and Generalizations of Stochastic Knapsack and Multi-Armed Bandit
Approximation Algorithms: Extended Abstract. In Proceedings of the 25th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 1154–1163, 2014. doi:10.1137/1.
9781611973402.85.

22 Viswanath Nagarajan and R. Ravi. Approximation algorithms for distance constrained vehicle
routing problems. Networks, 59(2):209–214, March 2012. doi:10.1002/net.20435.

A Adversarial orderings can be arbitrarily bad for correlated knapsack

Consider an instance of correlated stochastic knapsack on the set of items [n] with budget
W > 2n+1. Let Si and Ri denote respectively the random size and random reward of i,
which follows the following distribution.

(Si, Ri) =
{(

S
(1)
i := W − 2n−i + 1, R

(1)
i := 1

)
with probability 1

n(
S

(2)
i := 2n−i, R

(2)
i := 0

)
with probability 1 − 1

n .

At most one item can obtain positive reward since W/2 < W − 2n−i+1 + 1 for all i ∈ [n].

APPROX/RANDOM 2024

https://doi.org/10.1287/moor.1080.0330
https://doi.org/10.1145/2876506
https://arxiv.org/abs/1610.01058
https://arxiv.org/abs/1610.01058
https://doi.org/10.1145/1290672.1290677
https://doi.org/10.1145/2591796.2591840
https://doi.org/10.1002/1520-6750(198706)34:3<307::AID-NAV3220340302>3.0.CO;2-D
https://doi.org/10.1002/1520-6750(198706)34:3<307::AID-NAV3220340302>3.0.CO;2-D
https://doi.org/10.1007/978-3-642-02930-1_41
https://doi.org/10.1287/moor.2014.0656
https://arxiv.org/abs/1911.02506
https://doi.org/10.1137/1.9781611973402.85
https://doi.org/10.1137/1.9781611973402.85
https://doi.org/10.1002/net.20435

29:24 Approximation Algorithms for Correlated Knapsack Orienteering

Suppose that we are forced to process the items in the ordering 1, . . . , n deciding at
each step whether we attempt to insert the current item into the knapsack or abandon it
forever. Let j be the first item that we choose to insert into the knapsack. It instantiates to
size 2n−j with probability 1 − 1/n. If this happens we get zero total reward: the residual
budget becomes W − 2n−j , which is less than the S

(1)
i -sizes of items j + 1, . . . , n (which

yield positive reward). Therefore, by processing the items in this ordering the expected
reward is at most 1/n. But suppose we process the items in the reverse order n, . . . , 1. If
we attempt to insert items n, n − 1, . . . , j and get zero reward from all of them, the residual
budget is W −

∑n
k=j 2n−k = W − 2n−j+1 + 1 > S

(1)
j−1, which means that item j − 1 can be

inserted and would yield reward 1 with probability 1
n . Thus, the probability that no item

gives positive reward is (1 − 1/n)n ≤ e−1 and the expected reward we obtain in this case is
at least (1 − e−1). This is Ω(n) times larger than the expected reward that can be obtained
by any policy that is forced to process items in the order 1, . . . , n.

Greedy Heuristics and Linear Relaxations for the
Random Hitting Set Problem
Gabriel Arpino # Ñ

University of Cambridge, UK

Daniil Dmitriev # Ñ

ETH Zürich and ETH AI Center, Switzerland

Nicolo Grometto #

Princeton University, USA

Abstract
Consider the Hitting Set problem where, for a given universe X = {1, . . . , n} and a collection of
subsets S1, . . . , Sm, one seeks to identify the smallest subset of X which has a nonempty intersection
with every element in the collection. We study a probabilistic formulation of this problem, where
the underlying subsets are formed by including each element of the universe independently with
probability p. We rigorously analyze integrality gaps between linear programming and integer
programming solutions to the problem. In particular, we prove the absence of an integrality gap
in the sparse regime mp ≲ log n and the presence of a non-vanishing integrality gap in the dense
regime mp ≫ log n. Moreover, for large enough values of n, we look at the performance of Lovász’s
celebrated Greedy algorithm [12] with respect to the chosen input distribution, and prove that it finds
optimal solutions up to multiplicative constants. This highlights separation of Greedy performance
between average-case and worst-case settings.

2012 ACM Subject Classification Mathematics of computing → Combinatorial optimization; Theory
of computation → Approximation algorithms analysis; Theory of computation → Randomness,
geometry and discrete structures

Keywords and phrases Hitting Set, Random Hypergraph, Integrality Gap, Greedy Algorithm

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.30

Category APPROX

Related Version Extended Version: https://arxiv.org/abs/2305.05565 [1]

Acknowledgements The authors thank Dylan J. Altschuler, Afonso S. Bandeira, Raphaël Barboni,
and Anastasia Kireeva for helpful discussions. DD is supported by ETH AI Center doctoral fellowship
and ETH Foundations of Data Science initiative. GA is supported by the Cambridge Trust. NG is
grateful for the funding received from Elizaveta Rebrova.

1 Introduction

Hitting Set is a classical problem in combinatorial optimization which, for a given ground
set X := {1, ..., n} of elements and a collection C := {S1, ...,Sm} of subsets of X , asks
to identify the smallest set S ⊆ X that intersects every subset in C. Hitting Set arises
naturally from the study of Minimum Vertex Covers on Hypergraphs (MVCH), upon viewing
hyperedges as subsets and vertices as elements of the ground set. This is also known as the Set
Cover problem [14], which has a rich history in worst-case computational complexity theory,
including appearing as one of Karp’s 21 NP-complete problems. An important question
regards the behaviour of natural random instances of Hitting Set where each element of
the ground set is independently assigned to any subset with probability p, motivated, among
others, by applications such as group testing [10]. A classical theorem of Lovász [12] gives

© Gabriel Arpino, Daniil Dmitriev, and Nicolo Grometto;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 30; pp. 30:1–30:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ga442@cam.ac.uk
https://gabrielarpino.github.io/
https://orcid.org/0000-0001-5974-7035
mailto:daniil.dmitriev@ai.ethz.ch
https://daniildmitriev.github.io/
https://orcid.org/0000-0002-3241-5599
mailto:ng1069@princeton.edu
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.30
https://arxiv.org/abs/2305.05565
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Greedy Heuristics and Linear Relaxations for the Random Hitting Set Problem

an upper bound on the integrality gap in this problem which grows with the degree of the
underlying hypergraph, i.e., the maximum number of subsets intersecting any one element.
This bound was shown to be tight in the worst-case, but leaves much to be desired from an
average-case perspective.

In this paper, we characterize the average-case integrality gap present in random
Hitting Set and prove that, with high probability, Lovász’s greedy algorithm [12] finds
the minimal hitting set in polynomial time. Namely, we consider the following integer
programming (IP) formulation of the problem,

valIP :=
{

minimize
x

∥x∥1

subject to Ax ≥ 1, x ∈ {0, 1}n
,

(1.1)

where the i-th row of A ∈ {0, 1}m×n provides a binary encoding of the membership of the
elements of X in the set Si and 1 := (1, . . . , 1) ∈ Rm. With the vertex cover formulation
of the problem at hand, we note that A consists of the incidence matrix of the underlying
hypergraph. In particular, the constraint Ax ≥ 1 ensures that each set in C is hit by a
prescribed candidate solution vector. A natural convex relaxation is obtained by allowing
fractional solutions, and may be expressed as the following linear program (LP),

valLP :=
{

minimize
x

∥x∥1

subject to Ax ≥ 1, x ∈ [0, 1]n.
(1.2)

Whilst clearly valLP ≤ valIP, tightness need not hold in general. In fact, for m = n and
A ∈ {0, 1}n×n chosen such that each row and column contains exactly k ones, for some fixed
1 < k < n, an optimal solution is provided by x∗

LP = (1/k, ..., 1/k), which is not integral, thus
leading to a strictly smaller objective whenever n/k is not an integer. This evidences the
existence of a multiplicative integrality gap, as we define next.

▶ Definition 1. Given solutions valIP and valLP to Equation (1.1) and Equation (1.2) re-
spectively, we define multiplicative integrality gap as follows:

IPGAP := valIP

valLP
. (1.3)

In [12], Lovász proved an essentially optimal worst-case upper bound on the Hitting Set
multiplicative integrality gap: IPGAP ≤ 1 + log dmax, where dmax corresponds to the maximum
degree in the underlying hypergraph. This is obtained by analysing the Greedy algorithm
(Algorithm 1), which constructs a vertex cover by sequentially adding vertices with the
highest degree amongst the uncovered edges, and will be discussed in more detail in the
next sections. However, in many natural examples, the maximum degree dmax grows with
the number of vertices in the hypergraph, thus leading to progressively worse bounds for
increasingly large hypergraphs. Besides being arguably the most natural candidate for solving
Hitting Set, the greedy algorithm has been shown to be the best possible polynomial time
approximation algorithm [15] for the worst-case instances of this classical problem.

Despite extensive work conducted on Hitting Set in the last decades, a gap remains
in our understanding of the typical performance of linear programming and the greedy
algorithm on random problem instances. We hence pose the following questions:
1. Are there integrality gaps in random instances of Hitting Set?
2. Can near-optimal solutions be found efficiently?

G. Arpino, D. Dmitriev, and N. Grometto 30:3

In the present work, we provide answers to the above questions with high probability (w.h.p.)
in a non-asymptotic sense, in the setting where the cardinality n of the ground set X is large
but finite. We will prove the absence of integrality gaps up to constants in a wide regime
of n, m, p, by conducting an average case analysis of an algorithm that outputs integral
covers of matching size to the fractional ones. In addition, a rigorous analysis of the greedy
routine will follow by a straightforward reduction. The forthcoming results are valid under
the conditions listed below, which will be assumed to hold throughout.

▶ Assumption 2. We assume that
1. Each element j ∈ X is assigned to any subset Si, i ∈ [m] with probability p ≡ p(n),

independently. That is, A ∈ {0, 1}m×n is such that Aij
iid∼ Bernoulli(p);

2. n is intended to be large but finite;
3. m ≡ m(n) = poly(n), i.e. ∃c, C > 0, such that cnc ≤ m ≤ CnC for n large enough;
4. There exist δ ∈ (0, 1), such that p ≡ p(n) satisfies 1/nδ ≤ p ≤ 1/2, for all n large enough.

Note that in Assumption 2.3, the upper bound is chosen to avoid trivial solutions w.h.p.
which arise, for example, in the setting where the number of sets grows exponentially in
the cardinality of X . In addition, Assumption 2.4 is by no means restrictive, since one
can show that for m = poly(n) and np ≪ log n, we have that A contains an all-zero row
w.h.p., yielding an infeasible solution for IP. The requirement p ≤ 1/2 is chosen for technical
convenience and can be relaxed to any constant p, encompassing the regime in [10].

Our contributions stem from the study of the size of the inclusion sets Ij := {i ∈ [m] : j ∈ Si},
for j ∈ [n], which in the MVCH formulation of the problem at hand correspond to the set
of hyperedges incident to any given vertex. The key quantity under study is the average
inclusion set size, that is E|Ij | = mp, for all j, under the present distributional assumptions.
This quantity exhibits two separate regimes of interest, referred to as the sparse, mp≪ log n,
and dense, mp≫ log n, regimes. These, in turn, determine the size of the maximum inclusion
set, or maximum degree, dmax := maxj∈[n] |Ij |. We characterize the integrality gap behaviour
up to multiplicative constants and analyse Lovász’s Greedy algorithm [12] in these two
regimes w.h.p as n → ∞. We do this by proving the success of a simple greedy heuristic,
the BlockGreedy algorithm (Algorithm 2). Throughout, we use the notation valGr, valBGr to
denote the size of the hitting set returned by Greedy and BlockGreedy respectively. Below
we provide an informal description of the main results which hold with high probability,
where A(n) ∼ B(n) denotes that cA(n) ≤ B(n) ≤ CA(n) for large enough n and for some
constants c, C > 0:

Sparse Regime (mp ≪ log n)

We show that IPGAP ∼ 1 in the sparse regime by proving that the BlockGreedy algorithm
succeeds in reaching the LP lower bound of m

dmax
.

valBGr ∼ valIP ∼ valLP ∼
m

dmax
.

Dense Regime (mp ≫ log n)

We prove that IPGAP ∼ log mp
log n in the dense regime. We show that the BlockGreedy

algorithm performs as well as IP in this regime, i.e.

1
p

log
(

mp

log n

)
∼ valBGr ∼ valIP ≫ valLP ∼

1
p
∼ m

dmax
.

APPROX/RANDOM 2024

30:4 Greedy Heuristics and Linear Relaxations for the Random Hitting Set Problem

n0.1 n0.3 n0.5 n0.7
1/n0.9
1/n0.7

1/n0.5

1/n0.3

valBGr ∼ valIP ∼ valLP ∼ m/dmax

valBGr ∼ valIP ∼ log
(

mp
log n

)
/p

valLP ∼ 1/p

m(n)

p(n) mp ∼ log n

Figure 1 Transition between the sparse and the dense regime for different values of the average
inclusion set size mp.

Threshold Regime (mp ∼ log n)

This regime smoothly interpolates between the sparse and dense ones, with IPGAP ∼ 1. The
scaling for all quantities of interest is m/dmax ∼ 1/p.

Greedy

We prove that valGr ∼ valIP when δ < 1/2, where δ is the parameter from Assumption 2.4.

The results above are also depicted in Figure 1, and the formal statements are given
in Corollary 9 and Theorem 10. The rest of the paper is organized as follows. In Section
2, we present relevant notation. In Section 3, we outline and discuss related literature. In
Section 4, we prove a number of preliminary results that will be instrumental in developing
the core arguments. Subsequently, in Section 5, we delve into the algorithmic aspects of the
problem at hand by first providing guarantees for a simple algorithm, BlockGreedy. We
then analyse Greedy by means of a reduction. We conclude in Section 6 by summarizing the
results and offering indications for future work. We defer the proofs of more technical results
to the appendix, in order to streamline the presentation for the reader’s convenience.

2 Notation and conventions

For integers k ∈ N, we write [k] := {1, ..., k}. We denote vectors, matrices by bold-faced
Roman letters x, A ∈ Rk,Rk×k, respectively, for some k ∈ N. Define the inclusion set of
an element, or node, j ∈ [n] as Ij = {i ∈ [m] : j ∈ Si}. We denote the ℓ1 norm of the j-th
column of A by Xj , j ∈ [n], noting that Xj = |Ij | and X1, . . . Xn

iid∼ Binomial(m, p). In
addition, we let dmax ≡ dmax(X1, . . . , Xn) := maxi∈[n] Xi. We use E, Var to denote expectation
and variance, respectively. By ≲, ≳ we denote inequalities up to multiplicative constants.
We let A ∼ B denote that A ≲ B ≲ A for large enough n. We let log denote the natural
logarithm. For possibly random functions f(n), g(n), we let {f ≲ g} denote a sequence of

G. Arpino, D. Dmitriev, and N. Grometto 30:5

events {f(n) ≤ Ag(n)} for some constant A > 0 independent of n. Consequently, P(f ≲ g)
is viewed as a function of n. For deterministic functions h(n), w(n), we let h≪ w, h≫ w

denote that h/w → 0, w/h→ 0 respectively, as n→∞. The notation for other inequalities
is defined analogously. We say that a sequence of events {An} holds with high probability
(w.h.p.) with respect to a probability measure P if there exists a constant c > 0, independent
of n, such that P(An) ≥ 1− n−c, for large enough values of n.

3 Related Work

Worst-case analysis of Greedy

Perhaps the most well-known algorithm for solving Hitting Set, or equivalently MVCH, is
the greedy algorithm of Lovász [12], with runtime complexity O(mn2). This algorithm,
which constructs a cover by sequentially adding elements of the ground set which hit the
largest number of remaining subsets, was initially studied by Lovász [12] and Johnson [11]
independently, for deterministic hypergraphs. Lovász analyses the greedy algorithm to obtain
an upper bound on the Hitting Set integrality gap of 1 + log dmax. Slavik [15] developed
the tightest known approximation lower bound for Greedy, constructing an instance where
Greedy finds coverings at least log m times as large as the minimum one. Importantly,
Feige [6] proved that an approximation ratio of (1− ϵ) log m is not achievable in polynomial
time for any ϵ > 0 unless NP ⊂ TIME [nO(log log n)], certifying Greedy as the best possible
polynomial-time approximation algorithm for set cover in the worst-case.

Random Hitting Set

Little is known about the typical performance of polynomial-time algorithms on random
instances of Hitting Set. Closing this gap is important from a theoretical standpoint and for
applications in combinatorial inference. A prime example of this is found in group testing, a
classical inference problem where one aims to identify a small subset of defective items within
a large population by conducting the smallest number of pooled tests, with applications
ranging from the analysis of communication protocols [8] to DNA sequencing [5] and search
problems [4]. In [10], Iliopoulos and Zadik consider the smallest hitting set as an estimator
in the setting of the group testing problem, referring to it as the Smallest Satisfying Set
estimator. In particular, they provide extensive empirical evidence supporting the claim
that the class of instances of the random hitting set problem induced by non-adaptive group
testing is tractably solvable by computers.

Insights from Statistical Physics

The analysis of a random instance of Hitting Set appears in the work of Mézard and Tarzia
and relies on nonrigorous techniques from statistical physics [13]. This work considers regular
uniform hypergraphs, where the degree of vertices and the size of edges are fixed and assumed
to be constant. Depending on these values, they evidence sharp transitions between three
different phases, the so-called replica symmetry, 1-replica symmetry breaking, and full replica
symmetry breaking phases, which characterize the complexity of the optimization landscape
for this problem in the average case setting.

APPROX/RANDOM 2024

30:6 Greedy Heuristics and Linear Relaxations for the Random Hitting Set Problem

Fixed p regime

Another instance was studied by Telelis and Zissimopoulos [16] in the setting of random
Bernoulli hypergraphs, where elements belong to subsets independently with fixed probability
p ∈ (0, 1). Their analysis concerns the asymptotic regime where the size n of the ground
set scales to infinity. In this setting, they study the average-case performance of a simple
deterministic algorithm which approximates random Hitting Set within an additive error
term at most o(log m) almost everywhere. This gives an improvement over Lovász’s argument
in [12] which provides a multiplicative bound. However, the analysis in [16] does not capture
the case of sparse hypergraphs, i.e., when p→ 0 as n→∞. The analysis in [16] also does
not prove guarantees for the Greedy algorithm in the chosen parameter regime.

Related problem formulations

We bring to the reader’s attention a more recent line of work [2, 3], where the authors
obtain bounds on (additive) integrality gaps between the value of a random integer program
max cT x, Ax ≤ b, x ∈ {0, 1}n with m constraints and that of its linear programming
relaxation for a wide range of distributions on (A, b, c), holding w.h.p. as n→∞. These
include the case where the entries of A are uniformly distributed on an integer interval
consisting of at least three elements and where the columns of A are distributed according
to an isotropic logconcave distribution. However, these fail to capture the setting where A is
sparse with entries in {0, 1}, which is of interest for Hitting Set.

4 Preliminary Bounds

In this section, we outline preliminary bounds on valLP, valIP, dmax which will prove crucial to
analysing IPGAP and Greedy. We begin by characterizing the value of the linear program:

▶ Lemma 3. There exists c > 0, independent of n, such that with probability at least
1− exp(cn1−δ), we have that

m

dmax
≤ valLP ≲

1
p

.

The proof is included in Appendix A, and follows from a maximum argument and a standard
Chernoff bound. We note that the proof also implies P(IP is feasible) ≥ 1− exp

(
−cn1−δ

)
.

Although Lemma 3 readily yields valIP ≥ m/dmax, we highlight that this lower bound is not
tight whenever mp≫ log n. Indeed, we apply the first moment method to obtain a tighter
lower bound on valIP in this regime:

▶ Lemma 4. Let mp≫ log n. For any D ≥ 1 and n large enough, with probability at least
1− n−D we have that

1
p

log
(

mp

log n

)
≲ valIP

The proof of Lemma 4 is provided in Appendix A. Lemmas 3 and 4 come short of providing
a full characterization of IPGAP, namely lacking an upper bound on valIP. In this light, we
turn our attention to the Greedy algorithm, and utilize it to construct a feasible integral
solution and hence an upper bound on the value of IP. The analysis of Greedy crucially
relies on characterizing the maximum inclusion set size, dmax := maxj∈[n] |Ij |. The following
lemma offers such a characterization in expectation, and evidences a key difference between
the sparse and dense regimes of our problem:

G. Arpino, D. Dmitriev, and N. Grometto 30:7

Algorithm 1 Greedy.

1: I ← {I1, . . . , In} ▷ Inclusion sets
2: U ← [m]
3: t← 0
4: while |U | > 0 do
5: P ← argmaxI∈I

∣∣I ∩ U
∣∣ ▷ Greedy step

6: I ← I \ {P}
7: U ← U \ P

8: t← t + 1
9: valGr ← t

10: return valGr.

▶ Lemma 5 (Maximum of Binomials). Let X1, . . . , Xn
iid∼ Bin(m, p). Under the conditions in

Assumption 2, it holds that

Edmax = Emax
i∈[n]

Xi ∼

{
log n

log(log n/mp) , if mp≪ log n,

mp , if mp ≳ log n.

The proof of Lemma 5 is provided in Appendix A, and involves a straight forward application
of Markov’s and Jensen’s inequalities. Lemma 5 indicates a sharp transition between two
regimes: the sparse regime mp≪ log n, where binomial random variables are known to be
well approximated by Poisson random variables, and the dense regime mp≫ log n, where
binomial random variables are known to be well approximated by Gaussian random variables.
Importantly, in the sparse (Poisson-like) regime, the expected maximum of binomial random
variables exceeds their individual expectations: EX1 ≪ Edmax. Meanwhile in the dense
(Gaussian-like) regime, the expected maximum and individual expectations are asymptotically
equivalent up to multiplicative constants: EX1 ∼ Edmax. This fine-grained characterization
of the maxima of binomial random variables will prove essential to analysing the behaviour
of BlockGreedy in Section 5. Finally, we characterize the asymptotic behaviour of dmax and
prove that dmax ≲ Edmax with high probability. Whilst this one sided result suffices for the
forthcoming analysis, we expect a matching lower bound to hold as well. Additional insights
into the concentration of dmax may be found in Lemmas 19, 20, in Appendix A.

▶ Lemma 6. Let X1, . . . , Xn
iid∼ Bin(m, p). Then, there exist constants c, c̃ > 0, independent

of n, such that

P
(

max
i∈[n]

Xi ≥ c · Emax
i∈[n]

Xi

)
≤ 1

nc̃
.

The proof of Lemma 6 is provided in Appendix A.

5 Algorithmic solutions

5.1 Challenges of Greedy analysis
The aim of the present section is to conduct a rigorous analysis of the standard Greedy
algorithm for the Hitting Set problem, within the prescribed Bernoulli random setting. In
particular, we show that this routine succeeds at constructing hitting sets of optimal size
w.h.p., as in the results of Section 4, up to multiplicative constants. This is done by first
analysing a variation of the greedy heuristic, and subsequently proceeding by a reduction
argument.

APPROX/RANDOM 2024

30:8 Greedy Heuristics and Linear Relaxations for the Random Hitting Set Problem

Algorithm 2 BlockGreedy.

1: Let Bt ⊂ {I1, ..., In} denote the t-th block, i.e. inclusion sets that become available at
step t.

2: I ← ∅
3: U ← [m]
4: t← 0
5: while |U | > 0 and Bt ̸= ∅ do
6: I ← I ∪ Bt ▷ Adding elements from the new block
7: P ← argmaxI∈I

∣∣I ∩ U
∣∣ ▷ Greedy step

8: I ← I \ {P}
9: U ← U \ P

10: t← t + 1
11: valBGr ← t

12: if |U | > 0 then cover the rest of U with a trivial algorithm, valBGr ← valBGr + |U |
13: return valBGr.

The core principle of Greedy is to construct a feasible solution in steps, by sequentially
adding to the candidate solution an element which hits the largest number of remaining
sets. In the chosen setting, where elements are added to sets with equal probability and
independently of each other, we have precise estimates on the number of subsets hit by
an element which is picked first. In fact, the size of this set is given by the maximum of
independent Binomial random variables, which was analysed in Section 4. However, this
very first step introduces nontrivial dependencies amongst the remaining matrix columns
and significantly complicates keeping track of the marginal gains of each subsequent element
addition to the candidate solution.

5.2 BlockGreedy algorithm

In order to circumvent this issue, we introduce a modified greedy routine, which we refer
to as the BlockGreedy algorithm, where the elements of the ground set [n] are split into
separate sets of a given size, which we call blocks. At the t-th iteration, the algorithm
picks the element hitting the largest number of remaining sets across the first t blocks only.
By choosing the size of the blocks appropriately, we have that at each iteration t one is
guaranteed to find a solution of near-optimal size at least within the set of newly-included
independent columns.
BlockGreedy is detailed in Algorithm 2, whilst informally, it works as follows.
1. Let K be the size of the solution (suggested by theoretical analysis);
2. Uniformly at random split n columns into K blocks with n/K columns per block;
3. Start with an empty set of possible choices of columns;
4. At the t-th iteration, first add the columns from the t-th block (Step 6). Then, perform

one greedy step on the current set of possible choices (Step 7);
5. If after K iterations of the algorithm, some subsets remain uncovered, we use a trivial

covering, i.e., covering each subset by a separate column.
Note that the first selection of the element which hits the most number of subsets again
introduces dependencies. However, the columns that are in the newly added block are
independent of everything else at time t. Let vt be the element which is picked at the t-th step

G. Arpino, D. Dmitriev, and N. Grometto 30:9

of BlockGreedy, ft be the number of new subsets that are hit by vt
1, and Ft :=

∑t
i=1 fi be

the total number of subsets which are hit after t steps. In order to analyse how many elements
BlockGreedy has picked, we will consider the sequence f1, f2, . . . , fs, with Ft :=

∑t
i=1 fi,

such that the following holds:
1. Fs = m;
2. if mp ≲ log n, then s ≲ valLP, otherwise, s ≲ valIP.

The first property ensures that BlockGreedy picks at most s elements, and the second
property gives optimal bounds on s. One way to guarantee that BlockGreedy succeeds is
to prove that among the choices of BlockGreedy at each step t, there was an element ṽt

which hits at least ft new subsets w.h.p. We will prove that it is enough to look for ṽt in
the new block of columns Bt, which are added at step t. Note that unless Ft = m, we have
that ft ≥ 1, since each subset is hit by at least one element w.h.p.. Therefore, it will be
enough to find a sequence {f1, f2, . . . , fv} such that Fv ≥ m− v, since it implies F2v = m.
This allows us to reduce the problem of proving the effectiveness of BlockGreedy to a key
technical lemma. This lemma assumes that before step t, exactly Ft−1 subsets are hit, and
bounds from below the probability that some vertex in the new block will hit at least ft new
subsets. This boils down to computing P(Bin(m− Ft−1, p) ≥ ft).

▶ Lemma 7 (Informal, see Lemma 26). Let ε > 0 and mp ≲ log n. For some constants τ > 0,
1 < α < β, and for t ∈ N, let:

ft =
⌈
(α/β)k

τEdmax

⌉
where k is such that β−k−1m < m− Ft−1 ≤ β−km;

Then there exists a choice of τ, α, β and K, such that FK ≥ m−K and K ∼ valLP. Further-
more, for this sequence ft (which depends on ε), for any t ≤ K,

P(Bin(m− Ft−1, p) ≥ ft) ≥ n−ε. (5.1)

Note that the implicit constants in the statements K ∼ valLP depend on ε.

This lemma highlights the crucial dependency of the problem on the relationship between
the average degree, mp, and log n. For clarity of exposition, we only state the lemma for
the case mp ≲ log n and refer to the Lemma 26 in the Appendix for the full version and
corresponding proof. Here we comment on the intuition behind the proof.
When mp ≲ log n, we need to carefully track how the maximum degree changes. We look for
an element which (i) covers a large number of subsets, i.e., close to the expected maximum
number, Edmax and (ii) can be found with large enough probability. The second property is
important for the reduction to the standard Greedy algorithm, whose direct analysis presents
substantial difficulties, and is done later in this section. The quantity Edmax is sensitive to
mp whenever the latter is close to log n. Hence, we need to adjust which element we look for
accordingly. This is done by setting ft =

⌈
(α/β)k

τEdmax

⌉
and increasing the parameter k as

the number of remaining rows, m− Ft, decreases.
For example, consider the case mp = log n. First, we can only pick a random element, since
it will be as good (up to a multiplicative constant) as the maximal element. However, during
the execution of the algorithm, the problem becomes more sparse, and if we continue to

1 It may happen that vt hits more than ft new subsets. In this case, we still only count that exactly ft are
covered, and several extra sets will be covered multiple times in subsequent rounds. This overcounting
simplifies the analysis and does not result in suboptimal solution.

APPROX/RANDOM 2024

30:10 Greedy Heuristics and Linear Relaxations for the Random Hitting Set Problem

pick random elements, we will construct a suboptimal solution. Therefore, we gradually
increase how much the newly picked element will cover, with respect to a random element.
This corresponds to the transition between Gaussian-like and Poisson-like behaviour of
Bin(m− Ft−1, p).
It is now straightforward to prove the following theorem, which makes rigorous the statements
in Section 1.

▶ Theorem 8. Under Assumption 2, we have that

(i) if mp ≲ log n then, for any ε > 0 and n large enough,

P
(

valBGr ≲
m

Edmax

)
≥ 1− exp

(
−n1−δ−ε

)
;

(ii) if mp≫ log n, then, for any ε > 0 and n large enough,

P
(

valBGr ≲
1
p

log
(

mp

log n

))
≥ 1− exp

(
−n1−δ−ε

)
.

(5.2)

Note that if mp ≳ nγ for some γ > 0, then log mp
log n ∼ log n, and the bound in (ii) can be

simplified.

Proof. The main idea of the proof is to analyse the distribution of the columns that are
added at each step t. These columns are independent, and for each newly added column, the
number of additional subsets which it covers is distributed according to Bin(m− Ft−1, p),
where Ft−1 is the number of subsets which are already covered. Lemma 26 (see Lemma 7
above for an informal version) allows us to lower bound Ft, and we show now that we can do
this with high probability.
Fix ε > 0 and let ε′ := ε/4. Let f1, f2, . . . be the sequence from Lemma 26 for ε′ and
let K be the value for which (C.1) is satisfied, i.e. FK ≥ m − K. Notice that K ≤
C max

{
m

Edmax
, 1

p log(mp
log n)

}
for some constant C > 0, for n large enough. We uniformly at

random split n elements (columns) into K groups of size n/K each (assuming without loss of
generality that K divides n, otherwise we consider groups of size ⌊n/K⌋), so that Bt yields a
new set of n/K elements at each iteration t ≤ K and Bt = ∅ for t > K. We say that the
algorithm fails at step t if before step t, at least Ft−1 subsets are covered, but after step t less
than Ft sets are covered. Using that, for n large enough, (i) columns in each newly added
block are independent, (ii) P (Bin(m− Ft−1, p) ≥ ft) ≥ n−ε′ , and (iii) n/K ≥ n1−δ−ε′ , we
get

P (BlockGreedy fails at step t)
(i)
≤ (P (Bin(m− Ft−1, p) < ft))n/K

(ii)
≤
(

1− n−ε′
)n/K

(iii)
≤ exp

(
−n1−δ−2ε′

)
.

We then proceed by applying a union bound to obtain the result,

P (BlockGreedy fails during first K steps)

≤
K∑

t=1
P (BlockGreedy fails at step t) ≤ K · exp

(
−n1−δ−2ε′

)
≤ exp

(
−n1−δ−3ε′

)
,

where the second inequality holds since, by definition, the algorithm runs for K iterations,
and the third one holds for n large enough. We proved that BlockGreedy succeeds in finding

G. Arpino, D. Dmitriev, and N. Grometto 30:11

at most K elements such that at most m−FK sets remain uncovered. Since by construction,
m−FK ≤ K, we can cover the remaining rows trivially using that IP is feasible by Lemma 16
with high probability, which proves that

P (valBGr ≤ 2K) ≥ 1− exp
(
−n1−δ−4ε′

)
= 1− exp

(
−n1−δ−ε

)
,

for n large enough. Recalling that K ≲ valLP for mp ≲ log n, and that K ≲ valIP for
mp≫ log n, finishes the proof. ◀

▶ Corollary 9. Under Assumption 2, we have that for any D > 0,

(i) for any n large enough,

P (valBGr ∼ valIP) ≥ 1− n−D;
(ii) if mp ≲ log n, then, for any n large enough,

P (IPGAP ∼ 1) ≥ 1− n−D;
(iii) if mp≫ log n, then, for any n large enough,

P
(

IPGAP ∼ log
(

mp

log n

))
≥ 1− n−D.

(5.3)

Proof. Proof follows from Lemma 3, Lemma 4, and Theorem 8. ◀

5.3 Reduction from BlockGreedy to Greedy

With the above results at hand, we now proceed to analyse the Greedy algorithm by means
of a suitable reduction. Recall that we denote outputs of BlockGreedy and Greedy as valBGr

and valGr respectively.

▶ Theorem 10. Under Assumption 2 with δ < 1/2, we have that, for n large enough,

P (valGr ∼ valIP) ≥ 1− exp
(
−
√

n
)

.

Proof. We use Theorem 8 with ε = 1/8− δ/4, and let K,Bt be as defined in the proof of
Theorem 8. We have that, for n large enough,

P (BlockGreedy fails at any step) ≤ exp
(
−n∆) ,

where ∆ := 3/4− δ/2 > 1/2.
Given a matrix A, consider running the above definition of BlockGreedy for J := exp(

√
n)

times, each time reshuffling the columns. In what follows, we address BlockGreedy and
Greedy defined with the same tie-breaking strategy when it comes to a number of elements
hitting the same number of sets, i.e., selecting the left-most column in the associated matrix
A. Both valBGr and valGr are random variables, but conditioned on A, valGr is deterministic,
while valBGr still depends on the randomness of separating columns into blocks. Using the
union bound, we have that

P (valGr > 2K) ≤ P (∃ a failed copy of BlockGreedy)
+ P (valBGr < valGr over all J copies) .

(5.4)

Applying the union bound again, we can upper bound the first term in (5.4):

P (∃ a failed copy of BlockGreedy) ≤ J exp
(
−n∆) = exp

(
−n∆ + n1/2

)
. (5.5)

APPROX/RANDOM 2024

30:12 Greedy Heuristics and Linear Relaxations for the Random Hitting Set Problem

Now we focus on the second term in (5.4). Let v1, v2, . . . , vg be the ordered sequence of
elements picked by Greedy. Let Mt := {v1 ∈ B1, v2 ∈ B1 ∪ B2, . . . , vt ∈ B1 ∪ . . . ∪ Bt}. The
event {valBGr ≥ valGr} contains the event Mg, since in this case BlockGreedy will necessarily
pick exactly the same columns v1, v2, . . . , vg. Given that each reshuffling of the columns
generates a uniform distribution of Bi’s over possible partitions of n columns, we get that

P (Mg) = P (v1 ∈ B1)P (v2 ∈ B1 ∪ B2 |M1) . . .P (vg ∈ B1 ∪ . . . ∪ Bg |Mg−1) .

The t-th term in the product above is equal to

P(vt ∈ B1 ∪ . . . ∪ Bt |Mt−1) =
t n

K − (t− 1)
n− (t− 1) ≥

t

K
− t− 1

n
≥ t

2(K − 1) ,

where the last inequality holds for n ≥ 4K (recall that n≫ K). Since Mg ⊂ {valBGr ≥ valGr},
we can lower bound the probability of the latter event as follows (note that when g < K

there will be less terms in the product, hence, P(Mg) will be even larger),

P (valBGr ≥ valGr for 1 copy) ≥ P(Mg)

≥
K−1∏
t=1

P(vt ∈ B1 ∪ . . . ∪ Bt |Mt−1) ≥
K−1∏
t=1

t

2(K − 1) ≥ e−2K ,

where we used that k! ≥ (k/e)k in the last inequality. Since K ≤ C max
{

m
Edmax

, 1
p log(mp

log n)
}

and 1/p ≤ nδ, there exists a constant C̃ > 0 large enough, such that K ≤ C̃nδ log n.
Therefore, using independence of the reshuffling between the copies, we can compute

P (valBGr < valGr over all J copies) = (1− P (valBGr ≥ valGr for 1 copy))J

≤ (1− e−2K)J

≤ exp
(
−e

√
n−2C̃nδ log n

)
.

(5.6)

Combining (5.4), (5.5) and (5.6), we showed that P (valGr > 2K) ≤ exp (−
√

n) for n large
enough, which finishes the proof. ◀

▶ Remark 11. We note that the δ < 1/2 condition in Theorem 10 is likely not optimal,
and could be relaxed by reducing to BlockGreedy with more carefully chosen sets Bt. In
particular, the appropriate set sizes |Bt| may not be identical across t ≤ K. The analysis
becomes more technical in this case, and we highlight this as an interesting open direction.

6 Discussion and Open Questions

Our work characterises multiplicative integrality gaps for the random hitting set problem. In
this section, we discuss the intuition behind our main results, together with open questions
and conjectures.

6.1 Summary of our results and proof techniques
We identified that the nature of integrality gaps depends on the size of the inclusion set,
also viewed as the sparsity of the underlying hypergraph. In particular, when the average
degree of a vertex is small, i.e., when each element belongs to a small number of subsets, we
proved that there exists only a constant gap between linear and integer program solutions,
together with a simple algorithmic solution. The situation changes when the hypergraph

G. Arpino, D. Dmitriev, and N. Grometto 30:13

becomes dense, where we show an increasing integrality gap. This separation stems mostly
from the property of the binomial distribution, where the maximum of random variables
grows identically to the expected value whenever the expected value is large, but is away
from it if mp≪ log n.
In our analysis of BlockGreedy, we track this change of behaviour using a geometric series,
which means that the further we are in the execution of the algorithm, the larger the ratio
between the element we pick and the average element will be. This picture coincides exactly
with how the binomial distribution will behave if we decrease the average degree: for large
instances, it will look approximately as a Gaussian, but when the average degree is small,
Poisson approximation starts to dominate, the right tail becomes heavier, and the difference
between dmax and mp increases. Our analysis tracks the transition between Gaussian and
Poisson-like behavior.

6.2 Multiplicative vs. additive integrality gaps
Our result only concerns multiplicative gaps, but the constants in our analysis can be large.
This might be a consequence of the generality of the studied problem. For example, if one
focuses only on the case of constant p, which immediately implies a very dense instance in
our characterization, [16] proves that a simple algorithm is optimal for approximating the
integer program up to a small additive error. Proving similar upper bounds on the constant
in more general cases is an interesting open problem. Based on numerical experiments, we
formulate the following conjectures.

▶ Conjecture 12 (Very sparse). For mp≪ 1, valGr
valLP

→ 1.

▶ Conjecture 13 (Sparse). For 1 ≲ mp≪ log n, valGr
valIP

→ 1, and valIP
valLP

→ C1 ∈ (1, 1.5).

▶ Conjecture 14 (Dense). For mp≫ log n, valGr
valIP

→ C2 ∈ (1, 1.5).

6.3 Analysis of a linear program solution.
One motivation for studying the gaps between the integer and linear programs together with
the solutions of linear programs themselves is to construct a rounding scheme which converts
a fractional solution to an integer one. We believe this is another interesting direction for
future work. In particular, numerical experiments show that entries which have large value
in the fractional solution have a strong tendency to correspond to elements that are picked
for the integer solution. This supports the claim that a combination of the greedy and linear
programming approach might be fruitful in efficiently solving Hitting Set. One approach
for further study consists of first solving a linear program, initializing x with the largest
elements in the linear solution, and greedily covering the remaining subsets.

References
1 Gabriel Arpino, Daniil Dmitriev, and Nicolo Grometto. Greedy heuristics and linear relaxations

for the random hitting set problem, 2023. arXiv:2305.05565.
2 Sander Borst, Daniel Dadush, Sophie Huiberts, and Samarth Tiwari. On the integrality

gap of binary integer programs with gaussian data. Mathematical Programming, 2022. doi:
10.1007/s10107-022-01828-1.

3 Sander Borst, Daniel Dadush, and Dan Mikulincer. Integrality gaps for random integer
programs via discrepancy. In Proceedings of the 2023 ACM-SIAM Symposium on Discrete
Algorithms, SODA, 2023. doi:10.1137/1.9781611977554.ch65.

APPROX/RANDOM 2024

https://arxiv.org/abs/2305.05565
https://doi.org/10.1007/s10107-022-01828-1
https://doi.org/10.1007/s10107-022-01828-1
https://doi.org/10.1137/1.9781611977554.ch65

30:14 Greedy Heuristics and Linear Relaxations for the Random Hitting Set Problem

4 Dingzhu Du, Frank K Hwang, and Frank Hwang. Combinatorial group testing and its
applications. World Scientific, 2000. doi:10.1142/4252.

5 Yaniv Erlich, Anna Gilbert, Hung Ngo, Atri Rudra, Nicolas Thierry-Mieg, Mary Wootters,
Dina Zielinski, and Or Zuk. Biological screens from linear codes: theory and tools. BioRxiv,
2015. doi:10.1101/035352.

6 Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM (JACM),
1998. doi:10.1145/285055.285059.

7 William Feller and Philip M Morse. An introduction to probability theory and its applications.
American Institute of Physics, 1958. doi:10.1063/1.3062516.

8 Antonio Fernández Anta, Miguel A Mosteiro, and Jorge Ramón Muñoz. Unbounded contention
resolution in multiple-access channels. Algorithmica, 2013. doi:10.1007/s00453-013-9816-x.

9 Abdolhossein Hoorfar and Mehdi Hassani. Inequalities on the lambert w function and
hyperpower function. Journal of Inequalities in Pure and Applied Mathematics, 2008. URL:
https://arxiv.org/abs/2305.05565.

10 Fotis Iliopoulos and Ilias Zadik. Group testing and local search: is there a computational-
statistical gap? In Conference on Learning Theory. PMLR, 2021. URL: https://proceedings.
mlr.press/v134/iliopoulos21a.html.

11 David S Johnson. Approximation algorithms for combinatorial problems. In Proceedings of the
fifth annual ACM symposium on Theory of computing, 1973. doi:10.1145/800125.804034.

12 László Lovász. On the ratio of optimal integral and fractional covers. Discrete mathematics,
1975. doi:10.1016/0012-365X(75)90058-8.

13 Marc Mézard and Marco Tarzia. Statistical mechanics of the hitting set problem. Physical
Review E, 2007. doi:10.1103/PhysRevE.76.041124.

14 Vangelis T Paschos. A survey of approximately optimal solutions to some covering and packing
problems. ACM Computing Surveys (CSUR), 1997. doi:10.1145/254180.254190.

15 Petr Slavík. A tight analysis of the greedy algorithm for set cover. In Proceedings of the twenty-
eighth annual ACM symposium on Theory of computing, 1996. doi:10.1145/237814.237991.

16 Orestis A Telelis and Vassilis Zissimopoulos. Absolute O(log m) error in approximating
random set covering: an average case analysis. Information Processing Letters, 2005. doi:
10.1016/j.ipl.2005.02.009.

17 Ramon Van Handel. Probability in high dimension. Lecture notes, 2014. URL: https:
//api.semanticscholar.org/CorpusID:124828412.

A Auxiliary lemmas

▶ Lemma 15 (Lower Bound in Lemma 3). We have that

valLP ≥
m

dmax
.

Proof. Let x∗
LP = (x∗

1, x∗
2, . . . , x∗

m) be an optimal solution for (1.2). Since Ax∗
LP ≥ 1

entrywise, by summing all entries we obtain that

m ≤
∑

i

x∗
i Xi ≤ dmax

∑
i

x∗
i = dmaxvalLP.

which upon rearranging yields the desired result. ◀

In addition to the above, we have the following elementary upper bound on valLP, which
holds both in the sparse and dense regime.

▶ Lemma 16 (Upper Bound in Lemma 3). There exists c > 0, independent of n, such that

P
(

valLP ≲
1
p

)
≥ 1− exp

(
−cn1−δ

)
.

This also implies that P(IP is feasible) ≥ 1− exp
(
−cn1−δ

)
.

https://doi.org/10.1142/4252
https://doi.org/10.1101/035352
https://doi.org/10.1145/285055.285059
https://doi.org/10.1063/1.3062516
https://doi.org/10.1007/s00453-013-9816-x
https://arxiv.org/abs/2305.05565
https://proceedings.mlr.press/v134/iliopoulos21a.html
https://proceedings.mlr.press/v134/iliopoulos21a.html
https://doi.org/10.1145/800125.804034
https://doi.org/10.1016/0012-365X(75)90058-8
https://doi.org/10.1103/PhysRevE.76.041124
https://doi.org/10.1145/254180.254190
https://doi.org/10.1145/237814.237991
https://doi.org/10.1016/j.ipl.2005.02.009
https://doi.org/10.1016/j.ipl.2005.02.009
https://api.semanticscholar.org/CorpusID:124828412
https://api.semanticscholar.org/CorpusID:124828412

G. Arpino, D. Dmitriev, and N. Grometto 30:15

Proof. Consider the candidate feasible solution x̂ := 1
C̃np

1, for some constant 0 < C̃ < 1.
The following results from applying a union bound over constraints and the standard Chernoff
bound.

P (x̂ not feasible) = P (∃i ∈ [m] : (Ax̂)i < 1)
≤ mP

(
Bin(n, p) < C̃np

)
≤ nC exp

(
− (1− C̃)2np

2

)
≤ exp

(
−cn1−δ

)
.

The desired conclusion follows by considering the complementary event to the one above
and noting that ∥x̂∥1 ∼ 1/p. Note that the event {x̂ is feasible for LP} implies the event
{IP is feasible}. ◀

▶ Lemma 17 (Lambert W function, [9]). For any x ≥ e, there holds that

log x− log log x + log log x

2 log x
≤W0(x) ≤ log x− log log x + e

e− 1
log log x

log x
. (A.1)

In particular,

W0(x) = log x− log log x + o(1), as x→∞. (A.2)

In addition, for any x ≥ 1/e, the following identity is satisfied

W0(x) = log x

W0(x) . (A.3)

Proof of Lemma 4. Fix D ≥ 1. Let Zk := |{x ∈ {0, 1}m : Ax ≥ 1, ∥x∥1 = k}| be the
number of feasible solutions of norm exactly k. Clearly, Zk ≤ Zk+1 for any k ≥ 0. We also
have that

EZk =
∑

∥x∥=k

P ((Ax)i ≥ 1, ∀i ∈ [m]) =
(

n

k

)(
1− (1− p)k

)m
.

We will now show that for k ≪ 1
p log

(
mp

log n

)
, we have EZk ≤ n−D. Using that p ≤ 1/2 from

Assumption 4 and that for x ∈ (0, 1
2), we have (1− x)y ≥ e−2xy, we can bound

EZk =
(

n

k

)
(1− (1− p)k)m ≤ nk

(
1− e−2pk

)m

≤ nke−me−2pk

= exp
{

k log n−me−2pk
}

.

Therefore, EZk ≤ n−D will follow from

2pke2pk ≤ −2Dpe2pk + 2mp

log n
. (A.4)

Since k ≪ 1
p log

(
mp

log n

)
, we also have that k ≤ k∗ := 1

2p W0

(
mp

D log n

)
for n large enough. For

k = k∗, the left hand side of (A.4) is equal to mp
D log n , while the right hand side is lower

bounded by mp
log n . Since D ≥ 1, we recover that EZk ≤ n−D. Note that for n large enough,

valIP ≪ 1
p log mp

log n implies that Zk∗ > 0. Therefore, applying Markov’s inequality, we get
that

P
(

valIP ≪
1
p

log
(

mp

log n

))
≤ P (Zk∗ > 0) ≤ EZk∗ ≤ n−D, (A.5)

APPROX/RANDOM 2024

30:16 Greedy Heuristics and Linear Relaxations for the Random Hitting Set Problem

and the proof follows by considering the complementary events. Note that using similar
derivations, one can also show that for k∗ := 1

p log
(

1
δ

mp
log n

)
, where δ is defined in Assumption 4,

we have EZk∗ ≥ 1. ◀

Proof of Lemma 5. For ease of notation, let us define bn := log n
mp , b∗

n := 1
e (bn − 1), gn :=

log n
log(log n/mp) . We begin by proving the desired upper bound. By Jensen’s inequality and
bounding the maximum of positive values by their sum, for any λ > 0, we obtain

Emax
i∈[n]

Xi ≤ 1
λ

logE exp
(

λ max
i∈[n]

Xi

)
= 1

λ
logE

(
max
i∈[n]

exp (λXi)
)

≤ 1
λ

log
∑
i∈[n]

E exp(λXi).

Finally, computing the moment generating function of binomial random variables, together
with the inequality 1− x ≤ e−x yields

Emax
i∈[n]

Xi = log n + m log (1− p(1− eλ))
λ

≤ log n−mp(1− eλ)
λ

.

In the regime where mp ≳ log n, we may choose λ > 0 arbitrary, independent of n, from
which it immediately follows that Emaxi∈[n] Xi ≲ mp.
For mp≪ log n, we proceed by differentiating the last line in the above display and setting
the resulting expression to zero. From this, we may choose λ as the solution of the following.

eλ−1 (λ− 1) = b∗
n

Under the present assumptions, this is expressed in terms of the Lambert W function as
λ = 1 + W0(b∗

n), so that by (A.3), we obtain

Emax
i∈[n]

Xi ≤
log n

(
1− 1

bn
+ b∗

n

bn

e
W0(b∗

n)

)
1 + W0(b∗

n) ∼ gn.

In the dense mp ≳ log n regime, a matching lower bound is easily obtained by noting that
Emaxi∈[n] Xi ≥ EX1 = mp.
To deal with the sparse regime, let τ = 1/16. From Markov’s inequality,

Emax
i∈[n]

Xi ≥ τgnP
(

max
i∈[n]

Xi = ⌈τgn⌉
)

= τgn (1− (1− P (X1 = ⌈τgn⌉))n) .

Hence, applying Lemma 25, for n large enough,

Emax
i∈[n]

Xi ≥ τgn

(
1−

(
1− n−1/2

)n)
≥ (τ/2)gn,

thus providing a matching lower bound for the sparse regime.
In the intermediate threshold regime mp ∼ log n, the average and maximum of Xi’s

become of the same order, that is mp ∼ Edmax ∼ log n. The smooth transition follows by
noting that in this regime, bn, b∗

n, W0(b∗
n) ∼ 1. ◀

▶ Lemma 18 (Chernoff Bound - upper tail). Let X1, ..., Xn be independent random variables
taking values in {0, 1}, X denote their sum and µ = EX. Then for any δ > 0,

P (X ≥ (1 + δ)µ) ≤ e−δ2µ/(2+δ).

In order to deal with concentration of dmax around its expectation, we state the following
useful result on tensorization of variance. We introduce notation Vari and Ei, where subscript
i indicates conditioning on each component of an underlying random vector, except for the
i-th one.

G. Arpino, D. Dmitriev, and N. Grometto 30:17

▶ Lemma 19 (Theorem 2.3, [17]). Let X1, ..., Xn be independent random variables and for
each function f : Rn → R, define

Varif(x1, ..., xn) := Var (x1, ..., xi−1, Xi, xi+1, ..., xn) .

Then, there holds that

Var (f (X1, ..., Xn)) ≤ E
n∑

i=1
Varif (X1, ..., Xn)

▶ Lemma 20 (Concentration for dmax). Let X1, . . . , Xn
iid∼ Bin(m, p). Then, for any t > 0,

P (|dmax − Edmax| > t) ≤ mp

t2 .

▶ Remark 21. Note that in all regimes of m, p satisfying Assumption 2, choosing t ∼ Edmax is
sufficient to deduce from the previous lemma that dmax ∼ Edmax w.h.p..

Proof. Proceeding by Chebyschev’s inequality, it suffices to show that Var(dmax ≤ mp. By
Lemma 19, we have that

Var(dmax) ≤ E
n∑

i=1
Ei (dmax − Eidmax)2

= E
n∑

i=1
Ei

[
(dmax − Eidmax)2 | dmax = Xi

]
Pdmax = Xi

+ E
n∑

i=1
Ei

[
(dmax − Eidmax)2 | dmax ̸= Xi

]
Pdmax ̸= Xi

= 1
n
E

n∑
i=1

VarXi

≤ mp,

which is as required. ◀

Proof of Lemma 6. Let us consider the sparse and dense regimes separately.
In the dense regime for mp ≳ log n, there exist constants c1, c2, c3 > 0 such that c1mp ≤
Emaxi∈[n] Xi ≤ c2mp, as argued in Lemma 5, and mp ≥ c3 log n. We apply the union and
Chernoff bounds as in Lemma 18 to obtain, for any t ≥ 1/c1,

P
(

max
i∈[n]

Xi ≥ t · Emax
i∈[n]

Xi

)
≤ nP (X1 ≥ tc1mp)

≤ n exp
(
− (tc1 − 1)2mp

1 + tc1

)
≤ n exp

(
−c3(tc1 − 1)2 log n

1 + tc1

)
.

It now suffices to choose t as a function of c1, c3 such that c3(tc1−1)2

1+tc1
> 1. By rearranging and

solving the resulting quadratic equation, it follows immediately that any t > 1
c1

+ 1+
√

1+8c3
2c3c1

>
1
c1

suffices. Hence, there exist universal constants c, c̃, such that the desired conclusion holds.
We now consider the sparse regime mp≪ log n, where by Lemma 5 there exists c4 > 0 such
that mp ≤ c4 log n/ log

(
log n

log mp

)
. Notice that for any λ > 0, maxi∈[n] Xi ≤ 1

λ log
∑n

i=1 eλXi .
We apply Markov’s inequality to obtain, for any t > 0,

APPROX/RANDOM 2024

30:18 Greedy Heuristics and Linear Relaxations for the Random Hitting Set Problem

P
(

max
i∈[n]

Xi ≥ t · Emax
i∈[n]

Xi

)
≤ P

(
n∑

i=i

eλXi ≥ eλtE maxi∈[n] Xi

)

≤ nEeλX1

exp
(
λt Emaxi∈[n] Xi

)
=

n
(
1− p + peλ

)m

exp
(
λt Emaxi∈[n] Xi

)
≤ exp

log n + mp
(
eλ − 1

)
− λt c4 log n

log
(

log n
mp

)
 ,

where we used that 1 + x < ex to obtain the last inequality. Finally, by choosing t = 3/c4
and λ = log (log n/mp), we obtain

P
(

max
i∈[n]

Xi ≥
3
c4
· Emax

i∈[n]
Xi

)
≤ 1

n
. ◀

▶ Lemma 22 (Asymptotic expression for binomial probability mass function).
Let a ≡ a(n) and b ≡ b(n) be such that
1. 1≪ b≪

√
a,

2. p≪ 1.
If b ≥ Cap for C > 1, then

logP(Bin(⌈a⌉ , p) = ⌈b⌉) ≥ −
(

b log b

ap
− b + ap

)
(1 + o(1)), (A.6)

If also b≫ ap, we have that

logP(Bin(⌈a⌉ , p) = ⌈b⌉) ≥ −
(

b log b

ap

)
(1 + o(1)), (A.7)

Furthermore, all bounds remain valid upon replacing ⌈a⌉ to ⌊a⌋.

Proof. We defer the proof of Lemma 22 to the extended version of this work found in [1]. ◀

▶ Lemma 23 (Binomial Monotonicity). Let Sm ∼ Bin(m, p). Then for r ≥ mp, we have that
P(Sm = r + 1) ≤ P(Sm = r) and P(Sm−1 = r) ≤ P(Sm = r).

Proof. The proof follows a similar argument as that presented in [7].

P(Sm = r + 1)
P(Sm = r) =

(
m

r+1
)
pr+1(1− p)m−r−1(

m
r

)
pr(1− p)m−r

=
m!

(r+1)!(m−r−1)! p
r+1(1− p)m−r−1

m!
r!(m−r)! p

r(1− p)m−r

= (m− r)p
(r + 1)(1− p) ≤ 1.

Similar arguments show that P(Sm−1 = r) ≤ P(Sm = r). ◀

G. Arpino, D. Dmitriev, and N. Grometto 30:19

B Main tool for the case mp ≲ log n and Proof of Lemma 25

▶ Lemma 24. If mp ≲ log n, then, for any ε > 0, there exist constants τ > 0 and 1 < α < β,
such that, for k ≲ log n and for any m̃, satisfying β−k−1m ≤ m̃ ≤ β−km, for all n large
enough,

P
(

Bin(m̃, p) =
⌈
(α/β)kτEdmax

⌉)
≥ n−ε.

Proof. The proof is essentially a careful application of Lemma 22. Let τ, α, β be constants to
be fixed later and m̃ =

⌊
β−k−1m

⌋
. Depending on whether we have mp≪ log n or mp ∼ log n,

different terms will dominate the asymptotic expression from Lemma 22.
We start with the case mp≪ log n. From Lemma 5, this implies that mp≪ Edmax ≪ log n.
Here we can fix α ≡ 2 and β ≡ 3. Applying (A.7) for a = 3−k−1m and b = (2/3)kτEdmax, we
have:

logP
(

Bin(m̃, p) =
⌈
(2/3)kτEdmax

⌉)
≥ −(2/3)kτEdmax log

(
2k3τEdmax

mp

)
(1 + o(1)) (B.1)

Recall that our goal is to show logP
(

Bin(m̃, p) =
⌈
(2/3)kτEdmax

⌉)
≥ −ε log n. We first

show that there exists τ > 0 satisfying the following two inequalities:

(i) (2/3)kτ(log 3 + k log 2)Edmax

log n
≤ ε

4 ,

(ii) (2/3)kτ
Edmax

log n
log
(
Edmax

mp

)
≤ ε

4 .

(B.2)

Indeed, since Edmax ≪ log n and k ≪ (3/2)k, inequality (i) will be satisfied for any τ > 0 for
n large enough. For (ii) we need to use explicit bound for Edmax, in particular from Lemma 5
we know that there exists C > 0, such that Edmax ≤ C log n/(log log n− log mp) for n large
enough. Plugging this into (ii), we get for k = 0,

τ
Edmax

log n
log
(
Edmax

mp

)
≤ τC(log C + log log n − log(log log n − log mp) − log mp)

log log n − log mp
= τC +o(1). (B.3)

For τ = ε/(8C), (ii) holds for k = 0 for n large enough. By increasing k we only decrease
left hand side of (ii), therefore, the same value of τ works for any k ≥ 0.
Finally, by adding (i) and (ii) we showed that, for n large enough,

logP
(

Bin(m̃, p) =
⌈
(α/2)kτEdmax

⌉)
≥ −ε

2 log n(1 + o(1)) > −ε log n,

which finishes the proof for the case mp≪ log n.
Now we focus on the case mp ∼ log n. Here we apply (A.6) for the values a = β−k−1m and
b = (α/β)kτEdmax keeping in mind the condition b ≥ Cap with C > 1. We have

logP
(

Bin(m̃, p) =
⌈
(α/β)kτEdmax

⌉)
≥ −

(
(α/β)kτEdmax log

(
βαkτEdmax

mp

)
− (α/β)kτEdmax + β−k−1mp

)
(1 + o(1))

We pick τ = γmp/Edmax, for some constant γ > 1 to be specified later. Note that this way
condition for applying (A.6), b

ap ≥ C > 1, is satisfied since b
ap ≥

τEdmax
mp = γ > 1. This

simplifies the latter expression to the following:

APPROX/RANDOM 2024

30:20 Greedy Heuristics and Linear Relaxations for the Random Hitting Set Problem

logP
(

Bin(m̃, p) =
⌈
(α/β)kγmp

⌉)
≥ −mp

(
(α/β)kγ log

(
βγαk

)
− (α/β)kγ + β−k−1) (1 + o(1))

Since in this regime we have mp ≤ D log n for some D > 0, for n large enough, it is enough
to show

(α/β)kγ log
(
βγαk

)
− (α/β)kγ + β−k−1 ≤ ε/(2D).

We first show that there exist constants 1 < α < β and γ > 1, depending on ε and D,
satisfying the following two inequalities for any k ≥ 0:

(i) (α/β)k

(
γ log βγ − γ + 1

αkβ

)
≤ ε

4D
,

(ii) (α/β)kk log α ≤ ε

4D
.

Note that left hand side of (i) decreases as k increases, therefore, it is enough to look at
k = 0. We need to show that there exist β, γ > 1, depending on ε, D such that

f(β, γ) := γ log βγ − γ + 1
β
≤ ε

4D
.

Note that ∂f
∂β = γ/β − 1/β2 > 0 and ∂f

∂γ = log βγ > 0 as long as βγ > 1. Since f(1, 1) = 0,
we can find β, γ > 1, close enough to 1, such that f(β, γ) ≤ ε/(4D). We use these values of
β and γ (or, equivalently, τ). Since k ≪ (β/α)k, there exists α ∈ (1, β), such that (ii) holds.
Summing (i) and (ii) shows that, for n large enough,

logP
(

Bin(m̃, p) =
⌈
(α/β)kγmp

⌉)
≥ −εmp

2D
(1 + o(1)) ≥ −ε log n

2 (1 + o(1)) ≥ −ε log n.

We proved that for mp ≲ log n, for any ε > 0, for n large enough, there exists τ, α, β, such
that

Pr
(

Bin(
⌊
β−k−1m

⌋
, p) = ⌈(α/β)kτEdmax⌉

)
≥ n−ε.

Since β−k−1mp < β−kmp < ⌈(α/β)kτEdmax⌉, from binomial monotonicity, Lemma 23, we
have that for any m̃ such that β−k−1m ≤ m̃ ≤ β−km,

P
(

Bin(m̃, p) = ⌈(α/β)kτEdmax⌉
)
≥ n−ε.

In order to deal with the more delicate sparse regime throughout the paper where
mp≪ log n, we apply the following technical lemma.

▶ Lemma 25. For mp≪ log n, ε > 0, and n large enough, we have

P
(

Bin(m, p) =
⌈

ε

8
log n

log (log n/mp)

⌉)
≥ n−ε. ◀

Proof of Lemma 25. We follow the argument in Lemma 24 with k = 0 and Edmax replaced
by log n/(log log n− log mp). Note that in the proof of Lemma 24, in the case mp≪ log n, we
only used that mp≪ Edmax ≪ log n and Edmax ≤ C log n/(log log n− log mp) for some C > 0.
Since both these properties remain true upon replacing Edmax with log n/(log log n− log mp),
the proof follows. Since τ = ε/(8C), in the setting of Lemma 25, and C = 1 in this argument,
we pick τ = ε/8. ◀

G. Arpino, D. Dmitriev, and N. Grometto 30:21

C Lemma 26, formal version of Lemma 7

▶ Lemma 26. Let ε > 0. Consider the following choices of f1, f2, . . .:

(i) if mp ≲ log n, for some constants τ > 0 and 1 < α < β,

ft =
⌈
(α/β)k

τEdmax

⌉
where k is such that β−k−1m < m− Ft−1 ≤ β−km;

(ii) if mp≫ log n, and log mp≪ log n,

ft =
⌈
mp(1− p)t−1⌉ if t ≤ t∗ :=

⌈
1
p

log
(

mp

log n

)⌉
,

ft = f̃t−t∗ , otherwise, where f̃t is the sequence from the case mp ≲ log n;
(iii) otherwise, i.e., when log mp ≳ log n,

ft =
⌈
mp(1− p)t−1⌉ .

Then, there exists K, such that

(i) FK ≥ m−K;
(ii) if mp ≲ log n, then K ∼ valLP;

if mp≫ log n, then K ∼ valIP.

(C.1)

Furthermore, for this sequence ft (which depends on ε), for any t ≤ K,

P(Bin(m− Ft−1, p) ≥ ft) ≥ n−ε. (C.2)

Note that the implicit constants in the statements K ∼ valLP or K ∼ valIP depend on ε.

Proof. We proceed in the proof by first showing that there exists K̃, such that m−FK̃ ≲ K̃,
and then, by increasing K̃ by a multiplicative factor, we find K such that m− FK ≤ K.

Case mp ≲ log n. From Lemma 24, there exist constants τ > 0, α, β with 1 < α < β,
such that, for any m̃, satisfying β−k−1m ≤ m̃ ≤ β−km, for all n large enough,

P
(

Bin(m̃, p) =
⌈
(α/β)kτEdmax

⌉)
≥ n−ε.

Recall that in this case ft =
⌈
(α/β)kτEdmax

⌉
, where k is such that β−k−1m ≤ m− Ft−1 ≤

β−km and Ft =
∑t

s=1 fs. From Lemma 24 we have that P(Bin(m − Ft−1, p) = ft) ≥ n−ε.
Our goal is to prove that there exists s ≲ valLP ∼ m/Edmax, such that m− Fs ≲ s.

▶ Lemma 27. Let t(k) := β−1
βτ

m
Edmax

α−k.

If m− Ft−1 ≤ β−km

then m− Ft+t(k)−1 ≤ β−k−1m.

Informally, if after t− 1 steps of BlockGreedy, at most β−km subsets are uncovered, then
after t + t(k) − 1 steps, at most β−k−1m subsets remain uncovered.

Proof. Let s ≥ t. As long as m−Fs−1 > β−k−1m, we will always have fs =
⌈
(α/β)kτEdmax

⌉
.

We proceed by contradiction. Assume that m− Ft+t(k)−1 > β−k−1m. This implies that for
all s ∈ [t− 1, t + t(k) − 1], we have fs = f :=

⌈
(α/β)kτEdmax

⌉
. Therefore,

Ft+t(k)−1 − Ft−1 = t(k)f ≥ m(β − 1)
βk+1 = β−km− β−k−1m,

APPROX/RANDOM 2024

30:22 Greedy Heuristics and Linear Relaxations for the Random Hitting Set Problem

and

m− Ft+t(k)−1 = m− Ft−1 −
(
Ft+t(k)−1 − Ft−1

)
≤ β−km− (β−km− β−k−1m) = β−k−1m.

Therefore, we must have m− Ft+t(k)−1 ≤ β−k−1m. ◀

Note that we always have β−1m ≤ m−F0 = m. If we consecutively apply Lemma 27 starting
with k = 0, then, for v(k) :=

∑k
s=0 t(s) we have m − Fv(k)−1 ≤ β−k−1m. Therefore, for

k := log Edmax
log β , we have m− Fv(k)−1 ≤ m

Edmax
. We can bound

v(k) ≤
∞∑

s=0
t(k) = β − 1

βτ(α− 1)
m

Edmax
∼ m

Edmax
.

From Lemma 6 we have dmax ≲ Edmax with high probability. Together with Lemma 15 this
implies valLP ≥ m

dmax
≳ m

Edmax
. Now, if we pick K̃ := v(k) ≲ m

Edmax
, we have that valBGr ≲ m

Edmax
.

Since valLP ≤ valBGr, we have that K̃ ∼ valLP and m− FK̃ ≲ K̃.

Case mp ≫ log n. Here, we have that Edmax = mp(1 + o(1)), therefore, picking an element
that hits an average number of subsets is approximately the same as picking an element that
hits close to maximum number of subsets. From the properties of the mean and the median
of the binomial distribution, it follows that P(Bin(m̃, p) ≥ ⌈m̃p⌉) ≥ 1/3, for any m̃.

We begin with the case log mp≪ log n. This means that mp cannot grow polynomially
in n, but e.g. mp ∼ log2 n is possible. In this regime, valIP ∼ 1

p log
(

mp
log n

)
. Let K1 =⌈

1
p log

(
mp

log n

)⌉
and f1, . . . , fK1 be a sequence such that fs = ⌈mp(1− p)s⌉. Then, we have

that m− FK1 ≤ m(1− p)K1 ≤ 1
p log n. Therefore, (m− FK1)p ∼ log n, and we can continue

with f̃t from the previous section mp ∼ log n, with F̃t :=
∑t

s=1 f̃t. For this sequence
f̃1, . . . , f̃K2 , we have have K2 ≲ 1

p , and m− FK1 − F̃K2 ≲ 1
p ≪

1
p log

(
mp

log n

)
. The required

statement holds for combined sequences ft and f̃t and K̃ := K1 + K2.
Finally, we study the case log mp ≳ log n, which implies that valIP ∼ 1

p log n. This case is

trivial, as one can pick K̃ =
⌈

1
p log

(
mp

log n

)⌉
≲ valIP and f1, . . . , fK̃ a sequence such that

fs = ⌈mp(1− p)s⌉. Then, we have that m− FK̃ ≤ m(1− p)K̃ ≤ 1
p log n ≲ valIP.

From m − FK̃ ≲ K̃ to m − FK ≤ K. Finally, using that ft ≥ 1 by Lemma 16 unless
Ft = m, there exists some constant C > 0, such that for K := CK̃, FK ≥ m −K, which
finishes the proof. ◀

The Expander Hitting Property When the Sets Are
Arbitrarily Unbalanced
Amnon Ta-Shma #

Department of Computer Science, Tel Aviv University, Israel

Ron Zadicario #

Department of Computer Science, Tel Aviv University, Israel

Abstract
Numerous works have studied the probability that a length t − 1 random walk on an expander
is confined to a given rectangle S1 × . . . × St, providing both upper and lower bounds for this
probability. However, when the densities of the sets Si may depend on the walk length (e.g., when
all set are equal and the density is 1 − 1/t), the currently best known upper and lower bounds are
very far from each other. We give an improved confinement lower bound that almost matches the
upper bound.

We also study the more general question, of how well random walks fool various classes of test
functions. Recently, Golowich and Vadhan proved that random walks on λ-expanders fool Boolean,
symmetric functions up to a O(λ) error in total variation distance, with no dependence on the
labeling bias. Our techniques extend this result to cases not covered by it, e.g., to functions testing
confinement to S1 × . . . × St, where each set Si either has density ρ or 1 − ρ, for arbitrary ρ.

Technique-wise, we extend Beck’s framework for analyzing what is often referred to as the “flow”
of linear operators, reducing it to bounding the entries of a product of 2 × 2 matrices.

2012 ACM Subject Classification Theory of computation → Random walks and Markov chains;
Theory of computation → Expander graphs and randomness extractors

Keywords and phrases Expander random walks, Expander hitting property

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.31

Category RANDOM

Related Version Full Version: https://eccc.weizmann.ac.il/report/2024/118 [14]

Funding Amnon Ta-Shma: The research leading to these results has received funding from the Israel
Science Foundation (grant number 443/22)
Ron Zadicario: The research leading to these results has received funding from the Israel Science
Foundation (grant number 443/22) and the Blavatnik Family Foundation.

Acknowledgements We thank the RANDOM 2024 anonymous referees for their helpful comments.

1 Introduction

Fix a set of vertices V = [n] and t subsets S1, . . . , St ⊆ V . The hitting property of expander
graphs [1] says that for a sufficiently good expander graph G on the set of vertices V , the
probability that for all i = 1, . . . , t the i’th step of a random walk on G falls inside Si is
small, and therefore, with a good probability, the walk escapes the confinement S1 × . . . × St.
Specifically,

▶ Theorem 1 (Expander Hitting Property, based on [10]). Let G = (V, E) be a λ-expander.
Then, for every sequence of subsets S1, . . . , St ⊆ V such that Si is of density ρi = |Si| / |V |,

Pr
(v1,...,vt)∼RWt

G

[∀i vi ∈ Si] ≤ √
ρ1ρt ·

t−1∏
i=1

(
(1 − λ)√ρiρi+1 + λ

)
. (1)

© Amnon Ta-Shma and Ron Zadicario;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 31; pp. 31:1–31:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amnon@tauex.tau.ac.il
https://orcid.org/0000-0001-8186-3622
mailto:ronzadicario@mail.tau.ac.il
https://orcid.org/0000-0001-8968-4848
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.31
https://eccc.weizmann.ac.il/report/2024/118
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 The Expander Hitting Property When the Sets Are Arbitrarily Unbalanced

We remark that a slightly weaker bound of
∏t−1

i=1
(√

ρiρi+1 + λ
)

appears in [10]. For the case
where all densities ρi are the same ρ, a bound of ρ ((1 − λ)ρ + λ)t−1 appears in [15], and of
ρ(ρ + λ)t−1 appears in [2]. The bound in the general case (Equation 1) follows by a similar
proof, with a slightly more careful analysis. See Subsection 4.1.

However, on a conceptual level, one expects an expander random walk to mimic a truly
random walk, each time choosing a vertex uniformly at random independent of all other
choices. I.e., ideally, we would have liked a bound stating that the probability of an expander
random walk being confined to S1 × . . . × St is roughly the same as the probability of the
same event with respect to a walk on the complete graph with self loops (which equals the
product of the densities of the sets). Indeed, for the case in which all densities are equal, the
following has been proven in [2]:

▶ Theorem 2 ([2]). Let G = (V, E) be a λ-expander. For every sequence of subsets
S1, . . . , St ⊆ V such that Si is of density ρ,

If λ < ρ/6, then Pr
(v1,...,vt)∼RWt

G

[∀i vi ∈ Si] ≥ ρ · (ρ − 2λ)t−1.

If λ < ρ2/2, then Pr
(v1,...,vt)∼RWt

G

[∀i vi ∈ Si] ≥ ρ · (ρ − λ)t−1.

How tight are these bounds?
To get a feeling for the upper and lower bounds, let us look at the special case where all

densities ρi are the same ρ. In this case, independent sampling gives the exact answer ρt.
The upper bound (Theorem 1) is ρµt−1, where µ = ρ + (1 − ρ)λ, and

|ρµt−1 − ρt| = ρ(µt−1 − ρt−1) = ρ(µ − ρ)
t−2∑
j=0

ρjµt−2−j ≤ ρ(1 − ρ)λ
t−2∑
j=0

ρj ≤ ρ · λ,

where the first equality is because µ ≥ ρ and the second equality is using ak − bk =
(a − b)

∑k−1
j=0 ajbk−1−j . We also use µ − ρ = (1 − ρ)λ. In particular the error term is at most

λ, and tends to zero when λ tends to 0.
However, for the lower bound (Theorem 2), for any λ we have

∣∣ρt − ρ(ρ − λ)t−1∣∣ = ρ(ρt−1 − (ρ − λ)t−1) = ρλ
t−2∑
j=0

ρt−2−j(ρ − λ)j

≥ ρλρt−2
t−2∑
j=0

(ρ − λ)j ≈ ρt−1 λ

λ + 1
t

.

Thus, when λ is some small constant, independent of t and ρ = 1 − 1/t, the difference
between independent sampling and the lower bound is ρt−1 λ

λ+1/t =≈ 1/e. Therefore, even
for arbitrarily small λ, if we let t grow to infinity and we let the density ρ depend on t,
there is a constant gap between the independent sampling probability and the lower bound!
Thus, a natural question is: can we find a better lower bound that matches the independent
probability? In this work we prove:

▶ Theorem 3 (New confinement lower-bound). Let G = (V, E) be a λ-expander, and let
S1, . . . , St ⊆ V be each of density ρ for some ρ.1. If λ ≤ ρ2

3 , then

Pr
(v1,...,vt)∼RWt

G

[∀i vi ∈ Si] ≥ ρ ·
(
ρ − λ(1 − ρ2)

)t−1
.

1 In fact, we prove the theorem under more general conditions, see Section 4

A. Ta-Shma and R. Zadicario 31:3

This bound is close to the independent sampling probability:∣∣ρt − ρ · (ρ − λ(1 − ρ2))t−1∣∣ = ρt − ρ · (ρ − λ(1 − ρ2))t−1

= ρ · λ(1 − ρ2)
t−2∑
j=0

ρj(ρ − λ(1 − ρ2))t−2−j

≤ λ · ρ(1 − ρ2) ·
∞∑

j=0
ρj = λ · ρ(1 + ρ) ≤ 2ρλ.

Therefore, for any λ, if we let t grow to infinity, and even if we let the density ρ depend
on t, the distance between the independent probability (ρt) and the lower bound is at most
2λ (instead of an absolute constant before).

1.1 Further Results
Expander random walks are typically used as a randomness-efficient way of generating a
uniform-like sequence of vertices v1, . . . , vt. In most applications, the walk is used to “fool” a
test function f . For example, we may think of the confinement problem when all sets Si are
the same set S, as taking an expander with |V | vertices, which we label with 0 or 1 according
to membership in S. We set f to be the AND function. We compare the probability that
f(x1, . . . , xt) evaluates to 1 when x1, . . . , xt are the labels obtained from a random walk on
the graph (which is the quantity we want to bound) with the probability that f evaluates to
1 when the labels are obtained from vertices chosen uniformly at random (which is a known
quantity and equals the density S raised to the power of t). We wish to claim these two
quantities are close to each other.

More generally, we say a test function f : Zt
d′ → Zd is ε-fooled by expander ran-

dom walks if for every λ-expander graph G = (V, E) and every labeling val : V → Zd′ ,
dT V

(
f(val(RWt

G)), f(val(Indt
V))
)

≤ ε. where
RWt

G is the distribution obtained by taking a length t − 1 random walk on G. That is, we
sample v1 ∈ V uniformly at random. Then, for i = 2, . . . , t sample vi uniformly at random
from the neighbours of vi−1. f(val(RWt

G)) is the distribution of f(val(v1), . . . , val(vt))
when (v1, . . . , vt) is sampled from RWt

G.
Indt

V is the distribution obtained by sampling v1, . . . , vt ∈ V uniformly at random. Note
that Indt

V = RWt
J where J is the complete graph on V with self loops. f(val(Indt

V)) is
the distribution of f(val(v1), . . . , val(vt)) when (v1, . . . , vt) is sampled from Indt

V .

Cohen et al. [4] proved that all Boolean symmetric functions f are fooled by expander
random walks with up to a O(λ/

√
ρmin) error in total variation distance, where ρmin =

min{ρ0, ρ1}, and ρb is the density of b, i.e., that fraction of vertices with label b. Thus, even
in the symmetric Boolean case, the error bound of [4] is O(λ) only when ρmin is bounded
from below by some constant. When ρmin is allowed to depend on t, the error bound of [4]
may weaken as t increases.

A remarkable recent result of Golowich and Vadhan [8] significantly strengthened and
extended the results of [4], and using new techniques managed to eliminate the dependence
on the bias. That is, they prove that all symmetric Boolean functions are fooled by expander
random walks with up to O(λ) error in total variation distance, where the constant hidden
in the Big-O notation is absolute and does not depend on ρmin.

Notice that [8] implies that for confinement to a single set (which is a symmetric function)
the difference between independent sampling and RW sampling is bounded by O(λ), even
when the density ρ may depend on t. Thus, it implies that Theorem 2, which gives constant

APPROX/RANDOM 2024

31:4 The Expander Hitting Property When the Sets Are Arbitrarily Unbalanced

difference for ρ = 1 − 1/t, is not tight. In this regard, Theorem 3 gives a bound that replaces
the O(λ) difference guaranteed by [8] with a more precise bound (that is in particular at
most 2λ).

Let us now discuss whether the are functions for which the [8] bound does not guarantee
an O(λ) error, while our technique does.

A first candidate for such a problem is the confinement problem for S1 ×. . .×St, where the
sets Si might be different, and are only guaranteed to all have the same density. Theorem 3
still guarantees the same bound, whereas [8] seems to not apply, because the function is not
symmetric anymore. However, the Golowich-Vadhan result might be modified to cover this
case as well, by using one fixed set, and adding corresponding permutation operators to the
expanders, making them directed (which is still fine for [8]).2

However, using our techniques, we prove the following. Let 1S(i) equal 1 if i ∈ S and 0
otherwise. Then, 1S1 ⊗ · · · ⊗ 1St

equals one if the input is confined to S1 × . . . × St and zero
otherwise. We prove:

▶ Theorem 4. Let G = (V, E) be a λ-expander where λ ≤ 1/3, and t ≥ 1 an integer . Let
S1, . . . , St ⊆ V be a sequence of subsets such that the largest subset also has the maximal
variance. Then,

dT V

(
1S1 ⊗ · · · ⊗ 1St

(RWt
G), 1S1 ⊗ · · · ⊗ 1St

(Indt
V)
)

< 3ρmax · λ,

where ρmax is the density of the largest subset.

In particular,

▶ Corollary 5. Let G = (V, E) be a λ-expander where λ ≤ 1/3, and t ≥ 1 an integer. Let
S ⊆ V be a subset of density ρ, and suppose S1, . . . , St ⊆ V are subsets such that for every i,
Si = S or Si = S. Then,

dT V

(
1S1 ⊗ · · · ⊗ 1St

(RWt
G), 1S1 ⊗ · · · ⊗ 1St

(Indt
V)
)

< 3ρ · λ.

Notice that these functions are not symmetric, and therefore the results of [8] do not
apply to them, while our techniques still work.

We also use similar techniques to analyze the extent to which the sum function modulo d

is fooled by expander random walks on graphs with arbitrarily biased labelings, and prove
that it is fooled with an O(

√
d · λ) error in total variation distance, with no dependence on

the labeling bias. We prove:

▶ Theorem 6. For integers t ≥ 1, d′ ≥ 2, and d ≥ 2 let G = (V, E) be a λ-expander where
λ ≤ 1/6. Let val : V → Zd′ be any labeling. Then

dT V

(
Sumd

(
val(RWt

G)
)

, Sumd

(
val(Indt

V)
))

≤ 5
√

d · λ.

The O(
√

d · λ) error term also follows from the work of [8] on width-d permutation
branching programs, using different techniques.

Additionally, we prove a bound on the bias of a labeling in terms of the density of the
most frequent label, ρmax. This is in contrast to previous bias-dependent result (e.g [8] for
symmetric functions over Zd with d > 2) where the total variation bound degrades with ρmin,
rather than 1 − ρmax (and notice that always ρmin ≤ 1 − ρmax). This dependence is more

2 We thank the anonymous referee for bringing this to our attention.

A. Ta-Shma and R. Zadicario 31:5

resilient as it can tolerate very rare labels, as long as the most common label is not too
dominant. We think that this observation could potentially serve as an incentive to shift the
bias dependence in previous works from the smallest label weight to the largest. Specifically,
we prove,

▶ Proposition 7. For a prime p, let val : [n] → Zp be a labeling that assigns label a ∈ Zp to
ρa fraction of the vertices, and denote ρmax = maxa ρa. Then, for every non-trivial character

χ of Zp, biasχ(val) ≤
√

1 −
(

1 − cos 2π
p

)
(1 − ρmax), where biasχ(val) def=

∣∣Ei∈[n]χ(val(i))
∣∣.

We also point out that our proofs apply even if the graph is different for each of the t

steps, as long as it is a λ-expander at each step. The same property holds in previous works
as well, e.g [8].

1.2 The Technique
We extend the techniques of Gillman [6], Healy [9] and Beck [3], that established a framework
for analyzing what is often referred to as the “flow” of linear operators. The flow of a linear
operator T from the linear subspace V2 to the linear subspace V1 is the quantity ∥Π1TΠ2∥
where Πi is the projection operator onto Vi. In our context, V1 and V2 will be either the line
spanned by the all-ones vector (The “parallel space”), or its orthogonal complement (The
“perpendicular space”).

Let G also denote the transition matrix of a λ-expander graph, and let P denote the
projection matrix on the set S. That is, P is the diagonal matrix satisfying P [v, v] = 1 if
v ∈ S and 0 otherwise. The probability that a length t random walk on G never escapes S

can be expressed algebraically as 1T (PG)t−1P1, where we denote 1 = 1√
|V |

(1, . . . , 1)T .
One way to analyze this expression is to decompose the probability distribution at each of

the t steps to its parallel and perpendicular components. The parallel component is identical
to the independent sampling case, while the perpendicular component is shrunk by a factor
of λ after each step on G. The above approach underlies many results in the field, and, in
particular, the expander Chernoff bound [6, 9]. Beck [3] simplified the analysis by defining
a 2 × 2 “flow” matrix for a linear operator T . The i, j’th entry of the flow matrix is the
flow of T from Vj to Vi, where Vi and Vj are either the perpendicular space or the parallel
space. This notation reduced the problem of bounding quantities like

∣∣1T T1
∣∣ to bounding

the [0, 0] entry of a 2 × 2 matrix with non-negative entries. In this language, the expression
1T (PG)t−1P1 is the flow of the operator (PG)t−1P from the parallel space to itself. For
more details about the flow framework see Section 3.

[2] proved their confinement probability lower bound by giving simultaneous upper and
lower bounds on flows between the perpendicular and parallel spaces. However, they did it
explicitly and specifically for the confinement problem with equal density at each step, and
obtained sub-optimal bounds. In this paper we analyze flows emerging from confinement
problems (and additional problems) using the 2 × 2 flow matrix notation. As a result,
we achieve simpler terms that are easier to follow and generalize to a broader setting of
confinement problems with varying densities. These terms also indicate how to improve upon
previous work (even when all densities are equal).

1.3 Summary and Discussion
As mentioned before, several total variation bounds in previous works depend on the labeling
bias, namely on the weights ρb that are induced by a labeling. Cohen et al. [4] proved that all
Boolean symmetric functions are fooled by expander random walks with up to a O(λ/

√
ρmin)

error in total variation distance.

APPROX/RANDOM 2024

31:6 The Expander Hitting Property When the Sets Are Arbitrarily Unbalanced

Recently, Golowich and Vadhan [8], significantly strengthened and extended these results
using new techniques, and in some cases managed to eliminate the dependence on the bias.
In particular, they prove that for the Boolean case, all symmetric functions are fooled by
expander random walks with up to O(λ) error in total variation distance, where the constant
hidden in the Big-O notation is absolute.

For the non-Boolean case much less is known:
For symmetric functions defined on Zt

d, Golowich and Vadhan prove an O((d
ρmin

)O(d) · λ)
total-variation bound where ρmin = mina ρa, and ρa is the density of label a. Notice that
in this bound there is a dependence on ρmin. It is an intriguing open problem whether
the dependence on the bias is necessary.
Golowich and Vadhan [8] also show that expander random walks fool width-w permutation
branching programs up to a O(λ) error in ℓ2 distance, and a O(

√
w · λ) error in total

variation distance, a bound that does not depend on the bias of the labeling. Notice that
this bias-independent bound also holds for non-symmetric functions, as long as they are
computed by a low-width permutation branching program.

In this work we add another example where the error bound does not depend on the
labeling bias. We show for the confinement problem, when the set of maximal density
ρ(S) is also of maximal variance (the variance is

√
ρ(S)(1 − ρ(S))), the error bound is O(λ)

regardless of the densities. Note that this case is not symmetric. We also improve the lower
bound for the symmetric case, as previously discussed.

There are many open problems left.
First, and foremost, is it possible that all symmetric functions over Σt are O|Σ|(λ) fooled
by random-walks? For Σ = {0, 1} [8] gave an affirmative answer, but the general case is
left open.
What other non-symmetric functions are fooled by random-walks without a dependence
on the bias? [8] showed all small-width permutation branching programs are such. We
added the confinement test functions when all sets have the same variance. What other
functions have this property?
As alluded to by Proposition 7, we think that for many functions the parameter dominating
the bias-dependent error is 1 − ρmax rather than ρmin. For example, the bias-dependent
bound for any confinement test function (Proposition 29) is O(λ

1−ρmax
) where ρmax is the

density of the largest set. It would be interesting to examine previous results and see if
the error terms can be correspondingly amended.

The paper is organized as follows: In Section 2 we give some preliminaries and background,
and introduce our notations. In Section 3 we review Beck’s flow framework [3] and extend it.
In Section 4 we prove Theorem 3, and prove analogous lower bounds in the general setting
of varying sets and densities. In Section 5 we study fooling confinement test functions, and
in particular prove Theorem 4. In Section 6, we prove Theorem 6 using our techniques. The
proof for Proposition 7 appears in the full version of this paper [14].

2 Preliminaries

Notation

For any positive integer d, let Zd denote the group of integers modulo d, and [d] = {1, . . . , d}.
We define the ℓ1-norm of a vector x ∈ Fn as ∥x∥1 =

∑
i |xi|, and its ℓ2-norm as ∥x∥ =√∑

i |xi|2. For a field F = R or C, let 1n = (1/
√

n, . . . , 1/
√

n) ∈ Fn denote the normalized

A. Ta-Shma and R. Zadicario 31:7

all-ones vector. When n is clear from context we simply write 1. For a matrix M ∈ Fn×n,
the operator norm of M is given by maxx∈Fn\{0} ∥Mx∥ / ∥x∥. For M ∈ Cn×n, its conjugate
transpose is denoted as M∗. For two real matrices L, M ∈ Rn×n, the notation L ≤e.w M

stands for entry-wise inequality
A symmetric matrix W ∈ [0, 1]n×n is an undirected random walk matrix on n vertices

if the columns and rows of W sum to 1, which implies that Wj,i = Wi,j represents the
transition probability between vertex i and j, or vice versa. In this context, In denotes the
n × n identity matrix, and Jn = 1n1T

n represents a matrix with all entries being 1/n. When
the dimension is clear from the context, we use the notations I and J respectively. Notably,
Jn is the random walk matrix for a complete graph on n vertices with self-loops. For a
sequence of matrices M1, . . . , Mt, we denote

∏t
i=1 Mi = Mt · Mt−1 · . . . · M1.

We often use the decomposition Fn = V0 ⊕ V1 where V0 = Span{1} is the subspace of
Fn spanned of the all ones vector, and V1 = V⊥

0 is its orthogonal complement. We define
Π0 as the projection operator onto V0, noting that Π0 = Jn, and Π1 as the projection on
V1, noting that Π1 = In − Jn. For a vector x ∈ Fn we define x∥ = Π0x and x⊥ = Π1x.

For two probability distributions p1 and p2 over a finite sample space Ω, their total
variation distance is dT V (p1, p2) = 1

2 ·
∑

s∈Ω |p1(s) − p2(s)| .

The Information Theoretic XOR-Lemma

The characters of the group Zd are the maps χb(a) = ωb·a
d for b = 0, . . . , d − 1, where

ωd = e
2πi

d . Let CZd denote the vector space of all complex valued function on Zd, equipped
with the inner product ⟨h, g⟩ =

∑
a∈Zd

h(a)g(a).
The information theoretic XOR-Lemma [7] relates the total variation distance between

two distributions over Zd to the heaviest Fourier coefficient of their difference, also called the
maximum bias.

▶ Lemma 8 (Based on [7]). For any two distributions p1 p2 over Zd: dT V (p1, p2) ≤
√

d
2 ·

maxb∈Zd
|⟨χb, p1 − p2⟩| .

The proof, based on [7], appears in the full version of this paper.

Expanders

For a regular, undirected graph G = (V, E) on n vertices, the random walk matrix is the nor-
malized adjacency matrix. The spectral expansion is defined as the second largest eigenvalue
of the graph’s random walk matrix in absolute value, namely λ(G) = maxx,y⊥1

|⟨x,Gy⟩|
∥x∥·∥y∥ =

maxx⊥1
∥Gx∥
∥x∥ , where the maximum is over all non-zero x, y ∈ Rn which are orthogonal to the

all-ones vector, and by abuse of notation G also denotes the random walk matrix of the graph
G. We say G is a λ-expander if λ(G) = λ. For a λ-expander G, let A = 1

λ (G−J). Since the all-
ones vector is an eigenvector of both G and J with eigenvalue 1, it follows that A is zero on the
parallel space Span{1}. Additionally, ∥Ax∥ =

∥∥Ax⊥ + Ax∥
∥∥ = 1

λ ·
∥∥Gx⊥

∥∥ ≤
∥∥x⊥

∥∥ ≤ ∥x∥ .

This implies a valuable decomposition G = J + λA where the symmetric “error matrix” A is
zero on the parallel space, and ∥A∥ ≤ 1. Another useful decomposition follows by setting
E = 1

λ (G − (1 − λ) · J). One can easily verify that E acts like the identity on the parallel
space, and that the orthogonal space is E-invariant. Thus, for every vector x we have

∥Ex∥2 =
∥∥Ex∥

∥∥2 +
∥∥Ex⊥

∥∥2 ≤
∥∥x∥

∥∥2 + 1
λ

∥∥Gx⊥
∥∥2 ≤ ∥x∥2

.

This gives rise to the decomposition G = (1 − λ)J + λE where the symmetric “error
matrix” E satisfies ∥E∥ ≤ 1.

APPROX/RANDOM 2024

31:8 The Expander Hitting Property When the Sets Are Arbitrarily Unbalanced

3 Flow

Let F be either C or R. We decompose Fn = V0 ⊕ V1 where V0 is the span of the all-
ones vector Span{1} (the “parallel” space) and V1 = V⊥

0 its orthogonal complement (the
“orthogonal” space). Let Π0 be the projection operator onto V0, and Π1 the projection onto
V1.

Throughout this work we study linear operators T : Fn → Fn by examining ∥Πb1TΠb2∥
for b1, b2 ∈ {0, 1}. Intuitively, this can be understood as the “flow of mass” from Vb2 to Vb1

under the linear operator T . To study the flow of a linear operator, we extend upon the
techniques introduced by Gillman, Healy, and Beck, using the notation and claims of Beck
[3]. These were used mostly in the context of the expander Chernoff bound [6, 9].

▶ Definition 9 (The Flow Matrix). Let T : Fn → Fn be any linear operator. Then the flow
matrix of T , denoted T̃ , is the 2 × 2 non-negative matrix defined by

T̃ =
(

∥Π0TΠ0∥ ∥Π0TΠ1∥
∥Π1TΠ0∥ ∥Π1TΠ1∥

)
▶ Example 10. Let G be the random walk operator of a λ-expander graph. Then

G̃ ≤e.w

(
1 0
0 λ

)
where ≤e.w stands for entry-wise inequality.

To see this, apply the decomposition G = J + λA where ∥A∥ ≤ 1 and A is zero on the
parallel space. That is, AΠ0 = Π0A = 0. We then have

(i) ∥Π0GΠ0∥ = ∥Π0JΠ0∥ = ∥J∥ = 1,
(ii) ∥Π0GΠ1∥ = ∥Π0(J + λA)Π1∥ = ∥Π0JΠ1 + λΠ0AΠ1∥ = 0,
(iii) By symmetry ∥Π1GΠ0∥ = 0 .
(iv) Finally, ∥Π1GΠ1∥ = λ ∥Π1AΠ1∥ ≤ λ.

By submultiplicativity and subadditivity of the operator norm, we have the following
submultiplicativity property of the flow operator:

▷ Claim 11 ([3]). For every linear operators L, M : Fn → Fn, we have L̃ · M ≤e.w L̃ · M̃ .

Proof. Let i, j ∈ {0, 1}. Recall that Π0 = J and Π1 = I − J , and thus Π0 + Π1 = I. We have

L̃ · M [i, j] = ∥ΠiLMΠj∥ = ∥ΠiL(Π0 + Π1)MΠj∥ ≤ ∥ΠiLΠ0MΠj∥ + ∥ΠiLΠ1MΠj∥
≤ ∥ΠiLΠ0∥ · ∥Π0MΠj∥ + ∥ΠiLΠ1∥ · ∥Π1MΠj∥

= L̃[i, 0] · M̃ [0, j] + L̃[i, 1] · M̃ [1, j] = L̃ · M̃ [i, j]. ◁

Typically, the primary technical tool utilized for analyzing flow matrices consists of the
following bound, which generally hold for non-negative 2 × 2 matrices.

▶ Lemma 12 ([3]). If A =
(

a b

c d

)
≥e.w 0 with a ≥ 1 and d < 1, then

At[0, 0] ≤ a ·
(

a + bc

1 − d

)t−1

A. Ta-Shma and R. Zadicario 31:9

Proof. By induction on t. The base case t = 1 is clear. Assume for 1, . . . , t − 1 and let us
prove for t. We have the following recurrence relation

At[0, 0] = At−1[0, 0] · A[0, 0] +
t−2∑
j=0

Aj [0, 0] · A[0, 1] · A[1, 1]t−2−j · A[1, 0]

where j goes over the last time the path was at vertex 0 before taking the final step. As
A[i, j] ≥ 0 and A[0, 0] ≥ 1, we see that Ak2 [0, 0] ≥ Ak1 [0, 0] for all k2 ≥ k1. Hence,

At[0, 0] = At−1[0, 0] · a +
t−2∑
j=0

Aj [0, 0] · bc · dt−2−j

≤ At−1[0, 0]

a + bc
∞∑

j=0
dj

 ≤ At−1[0, 0]
(

a + bc

1 − d

)
The proof is complete by applying the induction hypothesis. ◀

A simple way to generalize this lemma to the case where A[0, 0] > A[1, 1] but not necessarily
A[0, 0] > 1 is as follows.

▶ Lemma 13. If A =
(

a b

c d

)
≥e.w 0 with a > d then At[0, 0] ≤ a ·

(
a + bc

a−d

)t−1
.

Proof. Write A = a ·
(

1 b
a

c
a

d
a

)
. Then, by the previous lemma

At[0, 0] ≤ at ·

(
1 +

b
a · c

a

1 − d
a

)t−1

= a ·
(

a + bc

a − d

)t−1
. ◀

▶ Remark 14. Note that the lemma above is not tight when a is small. Indeed, At[0, 0]
decreases with a, while the bound of Lemma 13 blows up when a approaches d. We do not
try to optimize the bound for d close to a. Also, it would be nice to have a generalization of
this lemma for the case of possibly different A1, . . . , At.

▶ Lemma 15. If A =
(

a b

c d

)
≥e.w 0 with a > d. Then for all t ≥ 2,

At[0, 0] − (A[0, 0])t ≤ abc

a − d
·

t−2∑
k=0

ak

(
a + bc

a − d

)t−k−2

Proof. For every integer k ≥ 1 xk − yk = (x − y) ·
∑k−1

i=0 xiyk−i−1. Using this and Lemma 13,
we see that

At[0, 0] − (A[0, 0])t ≤ a ·
(

a + bc

a − d

)t−1
− at = a

((
a + bc

a − d

)t−1
− at−1

)

= a · bc

a − d
·

t−2∑
k=0

ak

(
a + bc

a − d

)t−k−2
◀

▶ Lemma 16. For an integer t ≥ 1, Let M1, . . . , Mt be a sequence of n × n matrices. Then∣∣∣∣∣1T

(
t∏

i=1
Mi

)
1 − 1T

(
t∏

i=1
Π0Mi

)
1

∣∣∣∣∣ ≤

(
t∏

i=1
M̃i

)
[0, 0] −

(
t∏

i=1
M̃i[0, 0]

)
.

APPROX/RANDOM 2024

31:10 The Expander Hitting Property When the Sets Are Arbitrarily Unbalanced

Proof. Writing Mi = Π0Mi + Π1Mi we have

1T

(
t∏

i=1
Mi

)
1 =

∑
b∈{0,1}t

1T
t∏

i=1
(Πbi

Mi)1 =
∑

b∈{0,1}t−1

1T Π0Mt

(
t−1∏
i=1

(Πbi
Mi)

)
· 1

Since 1T Π1 = 0. To complete the proof let LHS =
∣∣∣1T

∏t
i=1 Mi1 − 1T

(∏t
i=1(Π0Mi)

)
1
∣∣∣.

Then,

LHS =

∣∣∣∣∣∣∣∣∣
∑

b∈{0,1}t−1

b̸=0t

1T Π0Mt

(
t−1∏
i=1

(ΠbiMi)
)

· 1

∣∣∣∣∣∣∣∣∣
≤

∑
b∈{0,1}t−1

b̸=0t

∣∣∣∣∣1T Π0Mt

(
t−1∏
i=1

(Πbi
Mi)

)
· Π01

∣∣∣∣∣ ≤
∑

b∈{0,1}t−1

b̸=0t

∥∥∥∥∥Π0Mt

(
t−1∏
i=1

(Πbi
Mi)

)
· Π0

∥∥∥∥∥
=

∑
b∈{0,1}t−1

b̸=0t

∥∥∥∥∥Π0MtΠbt−1

(
t−1∏
i=2

(
Πbi

MiΠbi−1

))
· Πb1M1Π0

∥∥∥∥∥
≤

∑
b∈{0,1}t−1

b̸=0t

∥∥Π0MtΠbt−1

∥∥ ·
t−1∏
i=2

∥∥Πbi
MiΠbi−1

∥∥ ∥Πb1M1Π0∥

=
∑

b∈{0,1}t−1

b̸=0t

M̃t[0, bt−1]
(

t−1∏
i=2

M̃i[bi, bi−1]
)

M̃1[b1, 0] =
(

t∏
i=1

M̃i

)
[0, 0] −

t∏
i=1

M̃i[0, 0]. ◀

▶ Lemma 17. Let A1, . . . , At be a sequence of non-negative 2 × 2 matrices such that for all
i, Ai ≤e.w A for some 2 × 2 matrix A. Then(

t∏
i=1

Ai

)
[0, 0] −

t∏
i=1

(Ai[0, 0]) ≤ At[0, 0] − (A[0, 0])t.

Proof. We have(
t∏

i=1
Ai

)
[0, 0] −

t∏
i=1

(Ai[0, 0]) =
∑

b∈{0,1}t−1

b̸=0t

At[0, bt−1]
(

t−1∏
i=2

Ai[bi, bi−1]
)

A1[b1, 0]

≤
∑

b∈{0,1}t−1

b̸=0t−1

A[0, bt−1]
(

t−1∏
i=2

A[bi+1, bi]
)

A[b1, 0] = At[0, 0] − (A[0, 0])t. ◀

We now proceed to establish techniques for proving flow lower bounds. While these concepts
were introduced specifically for the confinement problem with the same set density in [2], we
extend them to general linear operators and use the flow matrix notation.

A. Ta-Shma and R. Zadicario 31:11

▶ Lemma 18 (Flow Progress). For linear operators T1, . . . , Tt,

t̃∏
i=1

Ti[0, 0] ≥ T̃t[0, 0] ·
t̃−1∏
i=1

Ti[0, 0] − T̃t[0, 1] ·
t̃−1∏
i=1

Ti[1, 0] (2)

t̃∏
i=1

Ti[1, 0] ≤ T̃t[1, 0] ·
t̃−1∏
i=1

Ti[0, 0] + T̃t[1, 1] ·
t̃−1∏
i=1

Ti[1, 0] (3)

Proof. We have

t̃∏
i=1

Ti[0, 0] =

∥∥∥∥∥Π0

t∏
i=1

TiΠ0

∥∥∥∥∥ =

∥∥∥∥∥Π0 (TtΠ0 + TtΠ1)
t−1∏
i=1

TiΠ0

∥∥∥∥∥
≥ ∥Π0TtΠ0∥ ·

∥∥∥∥∥Π0

t−1∏
i=1

TiΠ0

∥∥∥∥∥− ∥Π0TtΠ1∥ ·

∥∥∥∥∥Π1

t−1∏
i=1

TiΠ0

∥∥∥∥∥
= T̃t[0, 0] ·

t̃−1∏
i=1

Ti[0, 0] − T̃t[0, 1] ·
t̃−1∏
i=1

Ti[1, 0]

and

t̃∏
i=1

Ti[1, 0] =

∥∥∥∥∥Π1

t∏
i=1

TiΠ0

∥∥∥∥∥ =

∥∥∥∥∥Π1 (TtΠ0 + TtΠ1)
t−1∏
i=1

TiΠ0

∥∥∥∥∥
≤ ∥Π1TtΠ0∥ ·

∥∥∥∥∥Π0

t−1∏
i=1

TiΠ0

∥∥∥∥∥+ ∥Π1TtΠ1∥ ·

∥∥∥∥∥Π1

t−1∏
i=1

TiΠ0

∥∥∥∥∥
= T̃t[1, 0] ·

t̃−1∏
i=1

Ti[0, 0] + T̃t[1, 1] ·
t̃−1∏
i=1

Ti[1, 0] ◀

▶ Definition 19 (Flow sequence). For a sequence of linear operators T1, . . . , Tt, the flow
sequence is defined recursively such that c1 = T̃1[0,0]

T̃1[1,0]
and for k ≥ 1

ck+1 = T̃k+1[0, 0] · ck − T̃k+1[0, 1]
T̃k+1[1, 0] · ck + T̃k+1[1, 1]

The constants ci emerge from recursively dividing Equation 2 of Lemma 18 by Equation 3,
as demonstrated by the following lemmas. Therefore, from an intuitive perspective, the
constants ci in the definition above can be thought of as a lower bound on the ratio between
the mass preserved inside the parallel space after the i-th step and the mass lost to its
orthogonal complement.

We remark that the smaller T̃i[0, 1], T̃i[1, 1] are taken relative to T̃i[0, 0] and T̃i[1, 0], the
larger sequence elements will become. In all of our use cases, each operator Ti includes a
step on a λ-expander graph G. Thus, as we shall later see, we can make T̃i[0, 1] and T̃i[1, 1]
smaller by taking the the expansion parameter λ smaller, and hence the sequence elements
larger. Specifically, in all instances considered in this work, the constants ci are strictly
positive. Therefore, for the remainder of this section, we proceed with the assumption that
the provided linear operators T1, . . . , Tt are such that their corresponding flow sequence
elements are positive.

APPROX/RANDOM 2024

31:12 The Expander Hitting Property When the Sets Are Arbitrarily Unbalanced

▶ Lemma 20. Let T1, . . . , Tt be linear operators with a positive flow sequence. Then, for all
k = 1, . . . , t it holds that

∏̃k
i=1 Ti[0, 0] ≥ ck ·

∏̃k
i=1 Ti[1, 0].

Proof. By induction on k. For k = 1 the claim holds by definition. For the induction
step, assume that

∏̃k
i=1 Ti[0, 0] ≥ ck ·

∏̃k
i=1 Ti[1, 0]. Plugging the induction hypothesis into

Equation 2 see that

k̃+1∏
i=1

Ti[0, 0] ≥ T̃k+1[0, 0] ·
k̃∏

i=1
Ti[0, 0] − T̃k+1[0, 1] ·

k̃∏
i=1

Ti[1, 0]

≥

(
T̃k+1[0, 0] − T̃k+1[0, 1]

ck

)
t̃−1∏
i=1

Ti[0, 0].

Similarly, plugging the induction hypothesis into Equation 3,

k̃+1∏
i=1

Ti[1, 0] ≤ T̃k+1[1, 0] ·
k̃∏

i=1
Ti[0, 0] + T̃k+1[1, 1] ·

k̃∏
i=1

Ti[1, 0]

≤

(
T̃k+1[1, 0] + T̃k+1[1, 1]

ck

)
k̃∏

i=1
Ti[0, 0].

Combining these we obtain

k̃+1∏
i=1

Ti[0, 0] ≥

(
T̃k+1[0, 0] − T̃k+1[0,1]

ck

)
(

T̃k+1[1, 0] + T̃k+1[1,1]
ck

) k̃∏
i=1

Ti[0, 0]

=
(

T̃k+1[0, 0] · ck − T̃k+1[0, 1]
T̃k+1[1, 0] · ck + T̃k+1[1, 1]

)
k̃∏

i=1
Ti[0, 0] = ck+1 ·

k̃∏
i=1

Ti[0, 0] ◀

Hence we have the following corollary

▶ Corollary 21. For all k = 1, . . . , t we have

k̃∏
i=1

Ti[0, 0] ≥ T̃1[0, 0] ·
k∏

i=2

(
T̃i[0, 0] − T̃i[0, 1]

ci−1

)

Proof. By induction on k. For k = 1 the product on the right hand side is empty and the
equality trivially holds. For the induction step, Using Equation 2, the previous claim, and
the induction hypothesis,

k̃+1∏
i=1

Ti[0, 0] ≥ T̃k+1[0, 0] ·
k̃∏

i=1
Ti[0, 0] − T̃k+1[0, 1] ·

k̃∏
i=1

Ti[1, 0]

≥

(
T̃k+1[0, 0] − T̃k+1[0, 1]

ck

)
k̃∏

i=1
Ti[0, 0] ≥ T̃1[0, 0] ·

k+1∏
i=2

(
T̃i[0, 0] − T̃i[0, 1]

ci−1

)
. ◀

A. Ta-Shma and R. Zadicario 31:13

4 Expander Hitting Property Revised

We use the following notations. For a set Si ⊆ [n] we define its density as ρi = |Si| /n and
its variance as σi =

√
ρi(1 − ρi). We let Pi be the projection matrix on the set Si. That is,

Pi is the diagonal matrix satisfying Pi[v, v] = 1 if v ∈ Si and 0 otherwise. G is the random
walk operator of the graph G.

4.1 Confinement Probability Upper-bounds
We begin with the hitting property for sets with possibly different densities. In [10] the
authors give the bound

∏t−1
j=1(√ρjρj+1 + λ), which corresponds to ∥PtG . . . GP1∥ rather than

1T PtG . . . GP11. However, we observe that this loss is not necessary.

▶ Proposition 22 (Expander Hitting Property). Let G = (V, E) be a λ-expander. Then, for
every sequence of subsets S1, . . . , St ⊆ V such that Si is of density ρi,

Pr
(v1,...,vt)∼RWt

G

[∀i vi ∈ Si] ≤ √
ρ1ρt ·

t−1∏
i=1

(
(1 − λ)√ρiρi+1 + λ

)
.

Proof. First note that for all i, ∥PiJPi+1∥ = √
ρiρi+1. Indeed,

∥PiJPi+1∥ =
∥∥Pi1(Pi+11)T

∥∥ = ∥Pi1∥ · ∥Pi+11∥ = √
ρiρi+1

Decomposing G = (1 − λ)J + λE with ∥E∥ ≤ 1, we find that

∥PiGPi+1∥ = ∥(1 − λ) · PiJPi+1 + λ · PiEPi+1∥
≤ (1 − λ) · ∥PiJPi+1∥ + λ ≤ (1 − λ)√ρiρi+1 + λ.

Let u = (1/n, . . . , 1/n) ∈ Rn be the uniform vector. Expressing the probability linear-
algebraically we obtain

Pr
(v1,...,vt)∼RWt

G

[∀i vi ∈ Si] = 1T Pt

(
t−1∏
i=1

GPi

)
1 = 1T Pt

t−1∏
i=1

(Pi+1GPi)P11

=

∥∥∥∥∥Pt

t−1∏
i=1

(Pi+1GPi)P1u

∥∥∥∥∥
1

≤ √
ρt · n ·

∥∥∥∥∥
t−1∏
i=1

(Pi+1GPi)P1u

∥∥∥∥∥
≤ √

ρt · n ·

∥∥∥∥∥
t−1∏
i=1

(Pi+1GPi)

∥∥∥∥∥ · ∥P1u∥ = √
ρt · n ·

∥∥∥∥∥
t−1∏
i=1

(Pi+1GPi)

∥∥∥∥∥
2

·
√

ρ1

n

≤ √
ρtρ1 ·

t−1∏
i=1

∥(Pi+1GPi)∥ ≤ √
ρ1ρt ·

t−1∏
i=1

(
(1 − λ)√ρiρi+1 + λ

)
,

where we use P 2
i = Pi, and the first inequality is Cauchy-Schwartz, noting that after

multiplying by Pt, the resulting vector has at most ρt · n non-zero entries. ◀

4.2 Confinement Probability Lower-bounds
As explained in the introduction, previous lower bounds do not give an O(λ) bound on the
error term comparing with the independent sampling case. In this section, we give a tighter
lower bound that, in particular, is O(λ)-close to the probability of the same confinement
event but with independently chosen samples.

APPROX/RANDOM 2024

31:14 The Expander Hitting Property When the Sets Are Arbitrarily Unbalanced

Expressing the probability linear-algebraically we find that

Pr
(v1,...,vt)∼RWt

G

[∀i vi ∈ Si] = 1T
t∏

i=2
(PiG) P11 =

∥∥∥∥∥Π0

t∏
i=1

(PiG) Π0

∥∥∥∥∥ =
˜t∏

i=1
(PiG)[0, 0].

Therefore, we see that this quantity is applicable to bounds via the lower-bound part of the
flow framework. Consider the sequence of linear operators P1G, . . . , PtG with corresponding
flow sequence c1, . . . ct. It follows from Corollary 21 that

˜t∏
i=1

(PiG)[0, 0] ≥ P̃1G[0, 0] ·
k+1∏
i=2

(
P̃iG[0, 0] − P̃iG[0, 1]

ci−1

)

Hence, our next objective is to bound the entries of P̃iG, and find lower bounds on the
constants c1, . . . ct.

▶ Lemma 23. For all i = 1, . . . , t we have P̃iG ≤e.w

(
ρi λσi

σi λ

)
where the first column holds

with equality.

Proof. First, observe that

P̃iG[0, 0] = ∥Π0PiGΠ0∥ =
∥∥11T PiG11T

∥∥ =
∥∥11T Pi11T

∥∥ =
∣∣1T Pi1

∣∣ = ρi

Following the discussion about the norm of rank-one matrices, we see that for b ∈ {0, 1},

∥ΠbPiGΠ0∥ =
∥∥ΠbPiG11T

∥∥ = ∥ΠbPi1∥ · ∥1∥ = ∥ΠbPi1∥ .

Using this , we find that

P̃iG[0, 0]2 + P̃iG[1, 0]2 = ∥Π0Pi1∥2 + ∥Π1Pi1∥2 = ∥Pi1∥2 = ρi

hence P̃iG[1, 0] =
√

ρi(1 − ρi) = σi.
Now, let us write G = J + λA where ∥A∥ ≤ 1 and A is zero on the parallel space. Then

P̃iG[0, 1] = ∥Π0PiGΠ1∥ = ∥Π0Pi (J + λA) Π1∥ = λ ∥Π0PiAΠ1∥ = λ ∥Π0PiΠ1AΠ1∥
≤ λ ∥Π0PiΠ1∥ = λσi

where we have used that Π1A = A in the last equality. In the inequality we observe that
P̃iG[1, 0] = ∥Π1PiGΠ0∥ = ∥Π1PiΠ0∥ = ∥Π0PiΠ1∥ . Hence we substitute ∥Π0PiΠ1∥ = σi.

For the last entry we have P̃iG[1, 1] = ∥Π1PiGΠ1∥ = λ ∥Π1PiAΠ1∥ ≤ λ. ◀

By definition of flow sequence (Definition 19) and the previous lemma, we obtain:

▶ Corollary 24 (Flow sequence lower-bound). Let G = (V, E) be a λ-expander, and let
S1, . . . , St ⊆ V be a sequence of subsets such that Si is of density ρi and variance σi. Let
c1, . . . , ct be the flow sequence of the linear operators P1G, . . . , PtG. Then c1 = ρ1

σ1
and:

ci+1 ≥ ci·ρi+1−λ·σi+1
ci·σi+1+λ .

▶ Corollary 25. Let G = (V, E) be a λ-expander, and let S1, . . . , St ⊆ V be a sequence
of subsets such that Si is of density ρi. Let c1, . . . , ct be the flow sequence of the linear
operators P1G, . . . , PtG. Suppose that λ is sufficiently small so that ci > 0 for all i. Then,

Pr
(v1,...,vt)∼RWt

G

[∀i vi ∈ Si] ≥ ρ1 ·
∏t

i=2

(
ρi − σi

ci−1
λ
)

.

A. Ta-Shma and R. Zadicario 31:15

Next, we demonstrate how distinct conditions imposed on λ lead to varying bounds on the
flow sequence, consequently leading to corresponding confinement probability lower bounds.

▶ Lemma 26. Let G = (V, E) be a λ-expander, and let S1, . . . , St ⊆ V be a sequence of
subsets each of density ρi. If for all i, λ < 1

6 · σiσi+1 · 1+ρi+1
1−ρi+1

, then

Pr
(v1,...,vt)∼RWt

G

[∀i vi ∈ Si] ≥ ρ1 ·
t∏

i=2

(
ρi − 2 · σi

σi−1
λ

)
.

Proof. By Corollary 25, it suffices to prove that under our assumption on λ, we have ci ≥ σi/2
for all i.

For i = 1, we clearly have c1 = ρ1
σ1

= σ1
1−ρ1

> σ1. Now, assume that ci ≥ σi/2. Using
Corollary 24, we find that

ci+1 − σi+1

2 ≥ ciρi+1 − λσi+1

ciσi+1 + λ
− σi+1

2 =
ci

(
2ρi+1 − σ2

i+1
)

− 3λσi+1

2 (ciσi+1 + λ)

= ciρi+1 (1 + ρi+1) − 3λσi+1

2 (ciσi+1 + λ)

Therefore it suffices to show 3λσi+1 ≤ ciρi+1 (1 + ρi+1). Indeed, using our assumption on λ

and the induction hypothesis,

λ <
1
6 · σiσi+1 · 1 + ρi+1

1 − ρi+1
≤ ci

3 · σi+1

1 − ρi+1
(1 + ρi+1) = ci

3 · ρi+1

σi+1
(1 + ρi+1). ◀

The first part of Theorem 2 follows as a special case of the lemma above, in which all sets have
the same density. Indeed, in this case, our assumption on λ becomes λ < 1

6 ·σ2· 1+ρ
1−ρ = 1

6 ρ(1+ρ).

▶ Lemma 27. Let G = (V, E) be a λ-expander, and let S1, . . . , St ⊆ V be a sequence of
subsets each of density ρi. If for all i, λ < 1

2 · σi

σi+1
· ρ2

i+1, then

Pr
(v1,...,vt)∼RWt

G

[∀i vi ∈ Si] ≥ ρ1 ·
t∏

i=2

(
ρi − σi

σi−1
λ

)
.

Proof. By Corollary 25 it suffices to prove that under our assumption on λ, we have ci ≥ σi

for all i. The proof is by induction on i. For i = 1 we clearly have c1 =
√

ρ1
1−ρ1

= σ1
1−ρ1

> σ1.

Assume that ci ≥ σi. By Corollary 24, we have

ci+1

σi+1
≥ ciρi+1 − λσi+1

ciσ2
i+1 + λσi+1

=
ciρi+1 + ciσ

2
i+1 + λσi+1 − ciσ

2
i+1 − 2λσi+1

ciσ2
i+1 + λσi+1

= 1 +
ci

(
ρi+1 − σ2

i+1
)

− 2λσi+1

ciσ2
i+1 + λσi+1

= 1 +
ciρ

2
i+1 − 2λσi+1

ciσ2
i+1 + λσi+1

Therefore it suffices to show 2λσi+1 ≤ ciρ
2
i+1. Indeed, using our assumption on λ and the

induction hypothesis, λ < 1
2 · σi

σi+1
· ρ2

i+1 ≤ ciρ2
i+1

2σi+1
. ◀

The second part of Theorem 2 follows as a special case of the lemma above, in which all sets
have the same density. In that case our assumption on λ becomes λ < ρ2

2 .
The following lemma refines the bound given in [2] and also allows for arbitrary densities

with decreasing variances.

APPROX/RANDOM 2024

31:16 The Expander Hitting Property When the Sets Are Arbitrarily Unbalanced

▶ Lemma 28. Let G = (V, E) be a λ-expander, and let S1, . . . , St ⊆ V be a sequence of
subsets, each of density ρi and variance σi. Suppose that σ1 ≥ · · · ≥ σt. If λ ≤ σi

σi−1
· ρi−1ρi

4

for all i, then Pr
(v1,...,vt)∼RWt

G

[∀i vi ∈ Si] ≥ ρ1 ·
∏t

i=2
(
ρi − λ(1 − ρ2

i−1)
)

.

Proof. Using our assumption that σi ≥ σi+1 for all i = 1, . . . , t, it suffices to prove that
σi ≤ (1 − ρ2

i)ci for all i. Indeed, in that case, by Corollary 25 we obtain

Pr
(v1,...,vt)∼RWt

G

[∀i vi ∈ Si] ≥ ρ1 ·
t∏

i=2

(
ρi − σi

ci−1
λ

)
≥ ρ1 ·

t∏
i=2

(
ρi − σi−1

ci−1
λ

)

≥ ρ1 ·
t∏

i=2

(
ρi − (1 − ρ2

i−1) · λ
)

Now, we prove by induction on i that σi ≤ (1 − ρ2
i)ci. For i = 1 we clearly have

(1 − ρ2
1)c1 = (1 − ρ2

1)
√

ρ1

1 − ρ1
= (1 + ρ1)

√
ρ1(1 − ρ1) > σ1.

Assume that σi−1 ≤ (1 − ρ2
i−1)ci−1. Then, by Corollary 24

1 − ρ2
i

σi
· ci ≥ 1 − ρ2

i

σi
· ci−1ρi − λσi

ci−1σi + λ
= ci−1σi(1 + ρi) − λ(1 − ρ2

i)
ci−1σi + λ

= ci−1σi + λ + ci−1σiρi − λ(2 − ρ2
i)

ci−1σ + λ
= 1 + ci−1σiρi − λ(2 − ρ2

i)
ci−1σi + λ

where the second equality uses the identity ρ(1 − ρ2)/σ = σ(1 + ρ). Thus, it remains to prove
that ci−1σiρi ≥ λ(2 − ρ2

i). Indeed, on the one hand, by our induction hypothesis

ci−1σiρi ≥ σi−1σiρi

(1 − ρ2
i−1) = σi

σi−1
· ρi−1ρi

1 + ρi−1
.

using the identity ρ/σ = σ/(1 − ρ).
On the other hand, our assumption on λ implies that

λ ≤ σi

σi−1
· ρi−1ρi

4 ≤ σi

σi−1
· ρi−1ρi

(1 + ρi−1)(2 − ρ2
i)

and the proof is complete. ◀

When all subsets have the same density ρ, we observe that in fact (1 + ρ)(2 − ρ2) ≤ 3.
Therefore, Theorem 3 follows.

5 Fooling Non-Symmetric Confinement Functions

The class of t-wise confinement functions Conf⊗t
n ⊆ {f : [n]t → {0, 1}} is defined as

Conf⊗t
n = {1S1 ⊗ · · · ⊗ 1St | S1, . . . , St ⊆ [n]} where 1S(i) equals 1 if i ∈ S and 0 otherwise.

This class of functions is sometimes referred to as cut-tensors or cut-functions. Generally,
confinement functions are not symmetric, hence a density-independent total variation bound
for this class is not implied by the previous work of [8]. Nevertheless, we show that the class
of confinement functions where the sets have equal variances, is O(λ)-fooled by expander
random walks regardless of the densities.

We begin with a density-dependent bound which holds for all confinement functions.

A. Ta-Shma and R. Zadicario 31:17

▶ Proposition 29. For t ≥ 1, let G = (V, E) be a λ-expander, and let S1, . . . , St be a sequence
of subsets such that Si is of density ρi. Let ρmax = maxi ρi. Then,

dT V

(
1S1 ⊗ · · · ⊗ 1St

(RWt
G), 1S1 ⊗ · · · ⊗ 1St

(Indt
V)
)

≤
(

1 + 1 − ρt−1
max

1 − ρmax

)
· λ.

Proof. First, observe that we may assume t ≥ 2, as for t = 1 the distributions are identical and
claim trivially holds. The decomposition G = J +λA with ∥A∥ ≤ 1 implies that ∥G − J∥ ≤ λ.
Also, recall that ∥JPiJ∥ = ρi. Let LHS be left-hand size of the inequality in the proposition.
Expressing LHS linear-algebraically, we see that LHS =

∣∣∣1T
∏t

i=1 (PiG) 1 − 1T
∏t

i=1 (PiJ) 1
∣∣∣

and

LHS ≤

∥∥∥∥∥
t∏

i=1
(PiG) −

t∏
i=1

(PiJ)

∥∥∥∥∥ ≤
t∑

k=1

∥∥∥∥∥∥
 t∏

j=k+1
(PjG)

Pk(G − J)

k−1∏
j=1

(PjJ)

∥∥∥∥∥∥
≤

t∑
k=1

∥(G − J)∥

∥∥∥∥∥∥
k−1∏

j=1
(PjJ)

∥∥∥∥∥∥ ≤
t∑

k=1
λ ·

k−2∏
j=1

ρj ≤ λ

(
1 +

t−2∑
ℓ=0

ρℓ
max

)

= λ ·
(

1 + 1 − ρt−1
max

1 − ρmax

)
◀

Note that, in particular, the proof implies a tλ bound for all confinement functions. A similar
hybrid idea was used in [12] to derive a generalization of the expander mixing lemma for
length-t random walks.3 Proposition 29 shows that when the all the sets are small, say, of
density which is bounded from above by some constant α, the corresponding confinement
function is Oα(λ)-fooled.

We proceed with the main result for this section.

Proof of Theorem 4. First, observe that we may assume t ≥ 2, as for t = 1 the distributions
are identical and claim trivially holds. Let LHS be left-hand side of the inequality in the
proposition. Let n = |V | and identify V with [n] arbitrarily. Let us denote by ρi the density
of Si, and by σi its variance, so that ρmax = maxi ρi. Further denote σmax = maxi σi.

We consider two cases according to the relationship between ρmax and λ. Assume first
that ρmax ≤ 2λ. Applying the upper-bound Proposition 22 we find that

LHS =

∣∣∣∣∣ Pr
(v1,...,vt)∼RWt

G

[∀i vi ∈ Si] −
t∏

i=1
ρi

∣∣∣∣∣ ≤ √
ρ1ρt ·

t−1∏
i=1

(
λ + (1 − λ)√ρiρi+1

)
≤ ρmax (λ + ρmax(1 − λ))t−1 ≤ ρmax (3λ)t−1 ≤ 3 · ρmax · λ

For the first inequality we observe that both terms inside the absolute value are non-negative,
hence the magnitude of their difference is bounded by the maximal one. Additionally, the
upper-bound provided by the hitting property as presented in Proposition 22 applies to both
terms. Then, we bound λ + 2λ(1 − λ) ≤ 3λ. The last inequality holds under our assumption
that λ ≤ 1/3 and t ≥ 2.

3 In fact their result is more general, as it goes beyond random walk on expander graphs. Their “splittable-
mixing lemma” holds for what they call “λ-splittable structures”, which are subsets of [n]t that admit
certain high-dimensional expansion properties.

APPROX/RANDOM 2024

31:18 The Expander Hitting Property When the Sets Are Arbitrarily Unbalanced

Now, Assume that ρmax ≥ 2λ. For i = 1, . . . , t, let Pi be the n × n projection matrix on
the set Si. That is, Pi is the diagonal matrix satisfying Pi[v, v] = 1 if v ∈ Si and 0 otherwise.

We have the following entry-wise bounds on the flow matrices: P̃i ≤e.w

(
ρi σi

σi 1

)
where all

entries except for the right bottom are equality. To see this, consider that

∥Π0PiΠ0∥ = ∥JPiJ∥ =
∥∥11T Pi11T

∥∥ =
∣∣1T Pi1

∣∣ = ρi.

Moreover, for b ∈ {0, 1} we have

∥ΠbPiΠ0∥ =
∥∥ΠbPi11T

∥∥ = ∥ΠbPi1∥ · ∥1∥ = ∥ΠbPi1∥ .

Since ∥Pi1∥ =
√∑

i∈Si

1
n = √

ρi, we have

∥Π1PiΠ0∥ = ∥Π1Pi1∥ =
√

∥Pi1∥2 − ∥Π0Pi1∥2 =
√

ρi(1 − ρi) = σi.

By symmetry we also have ∥Π1PΠ0∥ = σi . Finally, we bound ∥Π1PiΠ1∥ ≤ ∥Π1∥2 ∥Pi∥ ≤ 1.

Let σmax = maxi σi, and recall that by assumption σmax =
√

ρmax(1 − ρmax). Through
utilizing the submultiplicativity of the flow operator (Claim 11) and Example 10, we find

that G̃Pi ≤e.w

(
ρi σi

λσi λ

)
≤e.w A for A

def=
(

ρmax σmax
λσmax λ

)
. Now, expressing the total

variation distance linear algebraically, we have

LHS =

∣∣∣∣∣ Pr
(v1,...,vt)∼RWt

G

[∀i vi ∈ Si] −
t∏

i=1
ρi

∣∣∣∣∣ =

∣∣∣∣∣1T
t∏

i=2
(PiG) P11 − 1T

t∏
i=2

(PiJ) P11

∣∣∣∣∣
=

∣∣∣∣∣1T
t∏

i=1
(GPi) 1 − 1T

t∏
i=1

(JPi) 1

∣∣∣∣∣ =

∣∣∣∣∣1T
t∏

i=1
(GPi) 1 − 1T

t∏
i=1

(Π0GPi) 1

∣∣∣∣∣
≤

(
t∏

i=1
G̃Pi

)
[0, 0] −

(
t∏

i=1
G̃Pi[0, 0]

)
≤ At[0, 0] − (A[0, 0])t

Where the first inequality is by Lemma 16, and the second is by Lemma 17 Using Lemma 15
we obtain the bound

At[0, 0] − (A[0, 0])t ≤ λρmaxσ2
max

ρmax − λ
·

t−2∑
k=0

ρk
max

(
ρmax + λσ2

max
ρmax − λ

)t−k−2

= λρ2
max(1 − ρmax)
ρmax − λ

·
t−2∑
k=0

ρk
max

(
ρmax + λρmax(1 − ρmax)

ρmax − λ

)t−k−2

≤ 2ρmax · λ · (1 − ρmax)
t−2∑
k=0

ρk
max (ρmax + ρmax(1 − ρmax))t−k−2

≤ 2ρmax · λ · (1 − ρmax)
∞∑

k=0
ρk

max = 2ρmax · λ,

where in the second inequality we have used that ρmax/(ρmax − λ) ≤ 2 and λ/(ρmax − λ) ≤ 1
under our assumption that ρmax ≥ 2λ. ◀

A. Ta-Shma and R. Zadicario 31:19

6 Fooling The Sum Function modulo d

For integers d ≥ 2, d′ ≥ 2 and t ≥ 1, define the function Sumd′,d : Zt
d′ → Zd as

Sumd′,d(a1, . . . , at) =
∑t

i=1 ai mod d. Given the insignificance of d′ within this context,
we will simplify our notation by omitting it, using only Sumd.

In this section we use the flow framework to prove a bias-independent O(
√

d · λ) total
variation bound for Sumd. We also prove a bias amplification result (Lemma 33) from which
an O(

√
d ·ct) total variation bound can be derived using Lemma 8, where c < 1 is a parameter

that depends on the bias of the labeling and λ. [8] obtains a similar bound, which they
derive from their results on permutation branching programs.
▶ Remark 30. While characters of Zd are formally defined on values in Zd, throughout this
section, we simplify notation by using χ(a) for an arbitrary integer a and character χ of Zd,
to mean χ(a mod d).

6.1 Bias Amplification
We begin our discussion with the Boolean case.

▶ Definition 31 (bias over Z2). The bias of a labeling val : [n] → {0, 1} is defined as
bias(val) def=

∣∣Ei∈[n](−1)val(i)
∣∣.

The distribution over {0, 1} obtained by sampling a uniformly random element of [n]
and outputting its label is bias(val)-biased. However, the distribution obtained by taking t

uniformly random samples from [n] and computing the parity of the corresponding labels is
only bias(val)t-biased. That is, the bias decreases exponentially with t. To see this, note that∣∣∣∣ E

(i1,...,it)∈[n]t
(−1)

∑t

j=1
val(ij)

∣∣∣∣ =

∣∣∣∣∣∣
t∏

j=1
E

ij∈[n]
(−1)val(ij)

∣∣∣∣∣∣ = bias(val)t.

It has been observed in [13] that this bias reducing construction can be derandomized by
taking length-(t − 1) expander random walks on [n] rather than independent samples. In this
case, it is shown that the bias of the resulting distribution is at most (bias(val)+λ)⌊t/2⌋, where
λ is the expansion parameter of the graph. In [13], this property is called parity sampling,
and it follows that expander random walks are good parity samplers. This observation is a
key part of the breakthrough construction of almost optimal ε-balanced codes [13].

In the context of the sum function modulo d, we allow labelings with a larger alphabet
size. It is therefore natural to ask whether the bias amplification phenomenon extends to
Zd where d > 2. Observe that the bias of a labeling val : [n] → {0, 1} is simply the inner
product of the distribution induced by the labeling with the non-trivial character of Z2. This
notion extends naturally to characters of Zd as follows.

▶ Definition 32 (bias over Zd). For integers d ≥ 2 and d′ ≥ 2, the bias of a labeling
val : [n] → Zd′ with respect to a character χ of Zd is defined as biasχ(val) def=

∣∣Ei∈[n]χ(val(i))
∣∣.

The same argument as before shows that for any character χ of Zd, taking t independent
samples from [n] and outputting the sum of their labels modulo d yields a distribution on
Zd with bias biasχ(val)t with respect to the character χ. Moreover, we prove that replacing
the independent samples by length t − 1 random walk on a λ-expander graph obtains a
distribution on Zd with bias at most (biasχ(val) + λ)⌊t/2⌋ with respect to the character χ. (In
fact, the bound is slightly better, as here it may be larger than 1). In other words, expander
random walks are good character samplers. This fact has also been independently observed
in [11].

APPROX/RANDOM 2024

31:20 The Expander Hitting Property When the Sets Are Arbitrarily Unbalanced

▶ Lemma 33 (Bias Amplification). For integers t ≥ 2, d ≥ 2, and d′ ≥ 2, let G = (V, E) be a
λ-expander, and let val : V → Zd′ be any labeling. Let χ be a character of Zd. Then∣∣∣∣∣ E

(v1,...,vt)∼RWt
G

χ

(
t∑

i=1
val(vi)

)∣∣∣∣∣ ≤
(
(1 − λ)2 · biasχ(val) + 2λ(1 − λ) + λ2)⌊ t

2 ⌋
, (4)

where biasχ(val) =
∣∣∣∣ E
i∈[n]

χ(val(i))
∣∣∣∣ is the bias of val with respect to χ.

The proof for Lemma 33 appears in the full version of this paper [14]

6.2 Bias-independent bound using the flow framework
When the bias is bounded by a constant, the bias amplification property implies that the
distributions Sumd(val(Indt

V)) and Sumd(val(RWt
G)) are highly unbiased, with bias which is

exponentially small in t. Applying the triangle inequality to the XOR-Lemma (Lemma 8),
we see that the total variation distance between these distributions is bounded by the sum of
the biases of each distribution with respect to a worst-case non-trivial character. As such,
it is decreasing exponentially fast with t as well. However, this argument hinges on the
assumption that the given labeling is balanced. If we have, say, biasχ(val) = 1 − 1/t for some
non-trivial character χ of Zd, the bias amplification argument is insufficient for an effective
total variation bound. This constitutes the primary reason why earlier works such as [5] and
[4], which rely heavily on the bias-amplification property, result in total variation bounds
that are bias-dependent.

Next, we use the flow framework to obtain an O(
√

d · λ) bias independent bound, similar
to that of [8]. The proof in this case is arguably simpler than the more general case in [8],
which applies for all small-width permutation branching programs.

Proof of Theorem 6. First, observe that we may assume t ≥ 2, as for t = 1 the distributions
are identical, and the claim trivially holds. Let LHS be left-hand side of the inequality in the
theorem. Let n = |V | and identify V with [n] arbitrarily. Observe that in order to obtain a
total variation bound, it suffices to bound the maximum bias of the difference between the
two distributions. Indeed, by the XOR-Lemma (Lemma 8)

LHS ≤
√

d

2 · max
χ∈Ẑd

∣∣〈χ, Sumd

(
val(RWt

G)
)

− Sumd

(
val(Indt

V)
)〉∣∣

We fix a character χ of Zd that attains the maximum. Let µ = biasχ(val) be the bias of the
labeling val with respect to χ. We consider two cases according to the relation between µ

and λ. To begin, let us assume that µ ≤ 3λ. In that case,

LHS ≤
√

d

2

∣∣∣∣∣ E
v=(v1,...,vt)∼RWt

G

χ

(
t∑

i=1
val(vi)

)
− E

v∼Indt
V

χ

(
t∑

i=1
val(vi)

)∣∣∣∣∣ (5)

≤
√

d ·
(
(1 − λ)2 · µ + 2λ(1 − λ) + λ2)⌊ t

2 ⌋

≤
√

d ·
(
3(1 − λ)2 · λ + 2λ(1 − λ) + λ2)⌊ t

2 ⌋ ≤
√

d · (5λ)⌊
t
2 ⌋ ≤ 5

√
d · λ,

where the second inequality is implied by the triangle inequality and the bias amplifica-
tion property established in the previous subsection. The last inequality holds under our
assumption that t ≥ 2 and λ ≤ 1/6.

A. Ta-Shma and R. Zadicario 31:21

Now, let us assume that µ ≥ 3λ. Instead of applying the triangle inequality on the
second line of Equation 5, we express it linear algebraically. We then give entry-wise bounds
for the flow matrices of the involved linear operators. Let P be the n × n diagonal matrix
P = diag(χ(val(1)), . . . , χ(val(n))). We have the following entry-wise bounds on the flow

matrix: P̃ ≤e.w

(
µ

√
1 − µ2√

1 − µ2 1

)
where all entries except for the right bottom are

equality. To see this, note that

P̃ [0, 0] = ∥Π0PΠ0∥ = ∥JPJ∥ =
∥∥11T P11T

∥∥ =
∣∣1T P1

∣∣ = µ.

Moreover, we see that for b ∈ {0, 1},

∥ΠbPΠ0∥ =
∥∥ΠbP11T

∥∥ = ∥ΠbP1∥ ·
∥∥1T

∥∥ = ∥ΠbP1∥ .

Now, since P is unitary,

P̃ [0, 0]2 + P̃ [1, 0]2 = ∥Π0P1∥2 + ∥Π1P1∥2 = ∥P1∥2 = ∥1∥ = 1

By symmetry we conclude that P̃ [1, 0] = P̃ [0, 1] =
√

1 − µ2. Finally, we bound P̃ [1, 1] =
∥Π1PΠ1∥ ≤ ∥Π1∥2 ∥P∥ ≤ 1. By submultiplicativity of the flow operator (Claim 11) and

Example 10, We see that G̃P ≤e.w A for A
def=
(

µ
√

1 − µ2

λ
√

1 − µ2 λ

)
. Now, Let us pick

up Equation 5 after the first inequality. Expressing the bias linear-algebraically,∣∣∣∣∣ E
v∼RWt

G

χ

(
t∑

i=1
val(vi)

)
− E

v∼Indt
V

χ

(
t∑

i=1
val(vi)

)∣∣∣∣∣ =
∣∣1T (PG)t−1P1 − 1T (PJ)t−1P1

∣∣
and,∣∣1T (PG)t−1P1 − 1T (PJ)t−1P1

∣∣ =
∣∣1T (GP)t1 − 1T (JP)t1

∣∣
=
∣∣1T (GP)t1 − 1T (Π0GP)t1

∣∣ (Π0G = J)

≤ (G̃P)t[0, 0] − (G̃P [0, 0])t (Lemma 16)
≤ At[0, 0] − (A[0, 0])t. (Lemma 17)

Applying Lemma 13 we obtain the bound

At[0, 0] − (A[0, 0])t ≤ λµ(1 − µ2)
µ − λ

t−2∑
k=0

µk

(
µ + λ(1 − µ2)

µ − λ

)t−k−2

≤ 3
2 · λ(1 − µ2)

t−1∑
k=0

µk

(
µ + 1

2 · (1 − µ2)
)t−k−1

≤ 3
2 · λ · (1 + µ)(1 − µ)

∞∑
k=0

µk

≤ 3 · λ.

where the second inequality holds as our assumption µ ≥ 3λ implies that µ/(µ − λ) ≤ 3/2
and λ/(µ − λ) ≤ 1/2. In the third inequality we have used that µ + 1

2 · (1 − µ2) ≤ 1. Overall,
we have dT V

(
Sumd

(
val(RWt

G)
)

, Sumd

(
val(Indt

V)
))

< 5
√

d · λ in all cases, and the proof is
complete. ◀

APPROX/RANDOM 2024

31:22 The Expander Hitting Property When the Sets Are Arbitrarily Unbalanced

References
1 Miklós Ajtai, János Komlós, and Endre Szemerédi. Deterministic simulation in logspace. In

Proceedings of the nineteenth annual ACM symposium on Theory of computing, pages 132–140,
1987.

2 Noga Alon, Uriel Feige, Avi Wigderson, and David Zuckerman. Derandomized graph products.
Computational Complexity, 5:60–75, 1995.

3 C. Beck. Chernoff bounds for expander walks. https://www.ias.edu/video/csdm/2015/
0310-ChristopherBeck, 2015. A recording of a lecture, given at the Institute for Advanced
Study, Princeton, USA.

4 Gil Cohen, Dor Minzer, Shir Peleg, Aaron Potechin, and Amnon Ta-Shma. Expander
random walks: The general case and limitations. In 49th International Colloquium on
Automata, Languages, and Programming (ICALP 2022). Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2022.

5 Gil Cohen, Noam Peri, and Amnon Ta-Shma. Expander random walks: A fourier-analytic
approach. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, pages 1643–1655, 2021.

6 David Gillman. A chernoff bound for random walks on expander graphs. SIAM Journal on
Computing, 27(4):1203–1220, 1998.

7 Oded Goldreich. Three XOR-lemmas – An exposition. Studies in Complexity and Cryptography.
Miscellanea on the Interplay between Randomness and Computation: In Collaboration with
Lidor Avigad, Mihir Bellare, Zvika Brakerski, Shafi Goldwasser, Shai Halevi, Tali Kaufman,
Leonid Levin, Noam Nisan, Dana Ron, Madhu Sudan, Luca Trevisan, Salil Vadhan, Avi
Wigderson, David Zuckerman, pages 248–272, 2011.

8 Louis Golowich and Salil Vadhan. Pseudorandomness of expander random walks for symmetric
functions and permutation branching programs. In 37th Computational Complexity Conference
(CCC 2022). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

9 Alexander D Healy. Randomness-efficient sampling within nc. Computational Complexity,
17:3–37, 2008.

10 Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications.
Bulletin of the American Mathematical Society, 43(4):439–561, 2006.

11 Akhil Jalan and Dana Moshkovitz. Near-optimal cayley expanders for abelian groups. arXiv
preprint, 2021. arXiv:2105.01149.

12 Fernando Granha Jeronimo, Shashank Srivastava, and Madhur Tulsiani. Near-linear time
decoding of ta-shma’s codes via splittable regularity. In Proceedings of the 53rd Annual ACM
SIGACT Symposium on Theory of Computing, pages 1527–1536, 2021.

13 Amnon Ta-Shma. Explicit, almost optimal, epsilon-balanced codes. In Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing, pages 238–251, 2017.

14 Amnon Ta-Shma and Ron Zadiario. The expander hitting property when the sets are arbitrarily
unbalanced. Electronic Colloquium on Computational Complexity (ECCC), TR24-118, 2024.
URL: https://eccc.weizmann.ac.il/report/2024/118.

15 Salil P Vadhan et al. Pseudorandomness. Foundations and Trends® in Theoretical Computer
Science, 7(1–3):1–336, 2012.

https://www.ias.edu/video/csdm/2015/0310-ChristopherBeck
https://www.ias.edu/video/csdm/2015/0310-ChristopherBeck
https://arxiv.org/abs/2105.01149
https://eccc.weizmann.ac.il/report/2024/118

Near-Linear Time Samplers for Matroid
Independent Sets with Applications
Xiaoyu Chen #

State Key Laboratory for Novel Software Technology, New Cornerstone Science Laboratory,
Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu Province, China

Heng Guo #

School of Informatics, University of Edinburgh, Informatics Forum, 10 Crichton Street, Edinburgh,
EH8 9AB, UK

Xinyuan Zhang #

State Key Laboratory for Novel Software Technology, New Cornerstone Science Laboratory,
Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu Province, China

Zongrui Zou #

State Key Laboratory for Novel Software Technology, New Cornerstone Science Laboratory,
Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu Province, China

Abstract
We give a Õ(n) time almost uniform sampler for independent sets of a matroid, whose ground set
has n elements and is given by an independence oracle. As a consequence, one can sample connected
spanning subgraphs of a given graph G = (V, E) in Õ(|E|) time, whereas the previous best algorithm
takes O(|E| |V |) time. This improvement, in turn, leads to a faster running time on estimating
all-terminal network reliability. Furthermore, we generalise this near-linear time sampler to the
random cluster model with q ≤ 1.

2012 ACM Subject Classification Theory of computation → Random walks and Markov chains

Keywords and phrases Network reliability, Random cluster modek, Matroid, Bases-exchange walk

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.32

Category RANDOM

Funding Heng Guo: This project has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme (grant agreement No.
947778).

Acknowledgements We would like to thank the hospitality of NII Shonan meeting No. 186, where
some of the discussion took place.

1 Introduction

Let M = ([n], I) be a matroid of rank r and λ ∈ Rn
>0 be the external fields (namely weights

for the ground set elements). Denote its set of bases by B = B(M), and by I = I(M) the
set of independent sets. Suppose that we want to sample a random base B ∈ B from the
following distribution:

∀B ∈ B, µB,λ(B) ∝
∏
i∈B

λi.

There is a natural Markov chain, namely the bases-exchange walk (also known as the down-up
walk) [8], that converges to the distribution above. Anari, Liu, Oveis Gharan, and Vinzant [2]
showed that this chain mixes in polynomial time. Subsequently, Cryan, Guo, and Mousa [7]
and a follow up work by Anari, Liu, Oveis Gharan, Vinzant, and Vuong [3] refined the mixing
time to the optimal O(r log r).

© Xiaoyu Chen, Heng Guo, Xinyuan Zhang, and Zongrui Zou;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 32; pp. 32:1–32:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chenxiaoyu233@smail.nju.edu.cn
mailto:hguo@inf.ed.ac.uk
mailto:zhangxy@smail.nju.edu.cn
mailto:zou.zongrui@smail.nju.edu.cn
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.32
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 Near-Linear Time Samplers for Matroid Independent Sets with Applications

In this work, we focus on another important distribution associated with the matroid M,
namely, the distribution µM,λ over the independent sets of M:

∀S ∈ I, µM,λ(S) ∝
∏
i∈S

λi. (1)

As suggested by the previous work [3], in order to sample from µM,λ, we may construct
another matroid MI so that there is a one-to-one correspondence between the bases of MI
and the independent sets of M. Therefore, we may use the bases-exchange walk on MI to
approximately generate samples from µM,λ within O(n log n) steps.

However, an efficient implementation of the bases-exchange walk on MI is far from trivial.
Note that the input matroid is usually given succinctly. For example, for a graphic matroid,
it is sufficient to input the associated graph, rather than a list of all the bases or independent
sets, which can be exponentially large in the size of the graph. The most common and
standard way is to give the matroid by an independence oracle OI . Upon receiving a subset
of elements, the independence oracle OI returns whether or not the set is independent. Given
OI , the naïve implementation of the bases-exchange walk requires O(n) oracle calls per step.
Depending on the application, there may be even further cost of implementing the oracle.
This prevents us from getting a near-linear time sampler for many potential applications.

To get a faster algorithm, Anari, Liu, Oveis Gharan, Vinzant, and Vuong considered a
different oracle O′ [3]. One can query O′ a subset S ⊆ [n] with the promise that S contains
at most one circuit. If a circuit exists, O′ will output a uniformly random element of the
circuit. In [3], it is showed that there is a sampling algorithm for µM,λ using O(n log n)
queries in total of O′. However the downside is that this oracle O′ is typically more difficult
to implement than the independence oracle OI . In our applications to be discussed later
(network reliability and the random cluster model), the independence oracle OI can be
implemented in logarithmic time (at least in an amortized sense), whereas it appears to
require at least linear time to implement O′. A straightforward implementation of O′ requires
O(r) calls to OI , where r is the rank of the matroid M. This leads to a sampling algorithm
using O(rn log n) oracle calls to OI . Note that the rank r is often not a constant and can be
as large as Ω(n).

We give a sampler which requires O((1 + λmax)n log(n/ε)) oracle calls in expectation to
OI , where λmax := maxi∈[n] λi and ε is the sampling error. This improves the previously
best O(rn log n) running time [3]. We use the total variation distance (TV distance) to
measure the distance between two distributions µ and ν over a finite space Ω, defined by
DTV (µ, ν) := 1

2
∑

X∈Ω |µ(X) − ν(X)|.

▶ Theorem 1. Equipped with the independence oracle OI of a matroid M = ([n], I),
there exists an algorithm that takes external fields λ ∈ Rn

>0 and ε ∈ (0, 1) as inputs, and
outputs a random set S ∈ I satisfying DTV (µM,λ, S) ≤ ε. In expectation, it runs in
O ((1 + λmax)n log(n/ε)(log n + tOI

)) time, where tOI
is the time to answer a query by the

independence oracle OI and λmax := maxi∈[n] λi.

The proof of Theorem 1 is given in Section 3.
▶ Remark 2. In particular, instead of the independence oracle OI , for our algorithm in
Theorem 1, it suffices to have a data structure maintaining a set S ⊆ [n] which supports:

to insert an element to S;
to delete an element from S;
and to query if S ∈ I.

Given such a data structure, tOI
in Theorem 1 can be substituted by the worst case or

amortized running time of these operations.

X. Chen, H. Guo, X. Zhang, and Z. Zou 32:3

The crux of Theorem 1 is a fast implementation of the transition step of the bases-
exchange chain for MI . Note that the transition of a Markov chain is in itself yet another
sampling problem. We design a rejection sampling procedure for this latter sampling task.
There is a constant upper bound for the rejection probability (see Lemma 14), guaranteeing
a success with high probability in logarithmic trials.

A consequence of our algorithm is a faster approximation algorithm for the all-terminal
network reliability. The problem is defined as follows. Given a connected undirected graph
G = (V, E) and failure probabilities p ∈ RE

>0, the all-terminal network reliability Zrel(G, p) is
the probability that the graph is connected if each edge e fails (i.e. is removed) independently
with probability pe. Formally, for S ⊆ E, let

wt(S) := 1[G[E \ S] is connected] ·
∏
e∈S

pe

∏
f∈E\S

(1 − pf), (2)

where G[E \ S] is the spanning subgraph of G on E \ S. Then the reliability of the network is

Zrel(G, p) :=
∑
S⊆E

wt(S).

By standard techniques [16, 20, 17], estimating Zrel(G, p) can be reduced to approximate
sampling of the (weighted) distribution of connected spanning subgraphs:

∀S ⊆ E, µNR
G,p(S) ∝ wt(S). (3)

The study of the computational complexity of network reliability was initiated by Valiant
[21]. Exact evaluation of the all-terminal version is known to be #P-hard [15, 19]. Guo and
Jerrum [11] gave the first fully polynomial-time randomized approximate scheme (FPRAS)
using the partial rejection sampling framework [12]. This algorithm samples from µNR

G,p in
O(|E| + pmax|V ||E|

1−pmax
) time in expectation [10] where pmax := maxi pi is the maximum failure

probability, and this bound is tight for the technique. It is also worth mentioning that, using
the result in [3] directly, it is possible to get an Õ(|V | |E|) time sampler, whose running time
is of roughly the same order as the partial rejection sampling algorithm.

Using Theorem 1, we obtain an Õ(|V |) speed-up to sample from µNR
G,p. This gives the

first near-linear time sampler for connected spanning subgraphs.

▶ Corollary 3. Let G = (V, E) be a connected graph with n vertices and m edges. Let
p ∈ (0, 1)E be the failure probabilities for edges. There is an algorithm that takes G, p and
ε ∈ (0, 1) as input, and outputs a random subset S ⊆ E such that DTV

(
µNR

G,p, S
)

≤ ε in
O

(
m(log3 n+log 1

ε)
1−pmax

)
time in expectation, where pmax := maxe∈E pe.

Proof. Let Ω := {S ⊆ E | µNR
G,p(S) > 0} be the support of µNR

G,p. Recall that µNR
G,p(S) > 0 if

and only if G[E \ S] is connected. This means that there is a spanning tree T of G contained
in E \S. Note that spanning trees are bases of the graphic matroid MG of a graph G. Hence,
let MNR := (E, Ω), it holds that MNR is the dual matroid of MG, namely the co-graphic
matroid. This also means that µNR

G,p = µM,λ for M = MNR and λe = pe

1−pe
, ∀e ∈ E as

defined in (1).
It remains to implement the independence oracle efficiently. For this we use dynamic

data structures for connectivity of graphs, which is a topic that has been extensively studied.
For MNR, as in Remark 2, we implement the independence oracle OI with amortized cost
tOI

= O(log2 n) by using the data structure in [22, Section 3] directly. The corollary follows
by combining this with Theorem 1. ◀

APPROX/RANDOM 2024

32:4 Near-Linear Time Samplers for Matroid Independent Sets with Applications

As we can see in the proof, the advantage of our algorithm is that the independence oracle
can be implemented in amortized logarithmic time. In contrast, it requires at least linear
time to implement the oracle O′ of Anari, Liu, Oveis Gharan, Vinzant, and Vuong [3]. Our
sampling algorithm in Theorem 1 calls the independence oracle only a near-linear number of
times, which is crucial to obtain the overall near-linear running time.

Using the counting to sampling reduction in [10], Corollary 3 implies an FPRAS that
outputs an (1 ± ε)-approximation of Zrel(G, p) in time O

(
mn log4(n)
ε2(1−pmax) log 1

1−pmax

)
. As before,

this improves the previous best running time by a factor of Õ(n). We also note that the
running time in Corollary 3 is linear in (1 − pmax)−1. This factor comes from our rejection
sampling implementation of the down-up walk, whereas the naïve implementation of the down-
up walk has logarithmic dependence. On the other hand, in most applications, 1−pmax = Ω(1).
For example, for the uniform distribution over connected spanning subgraphs, pe = 1/2 for
all e. Moreover, in the simulated annealing counting to sampling reduction [10], we do not
need to consider pe larger than pmax. Thus, in this reduction, there is no extra slowdown
due to this linear dependence on 1 − pmax. In any case, we leave improving this dependence
for near-linear time samplers as an open problem.

The distribution µNR
G,p in (3) is a special case of the random cluster model on the graph

G with parameter q = 0 [9]. More generally, for a matroid M = ([n], I) with a rank function
rk(·), the random cluster model with parameter q ≥ 0 and external fields λ ∈ Rn

>0 is defined
as follows: for S ⊆ X,

πRC,q,λ(S) ∝ q− rk(S)
∏

xi∈S

λi. (4)

For q = 0, the support of the distribution in (4) must have the highest rank. For a graphic
matroid over a graph G, this means that G[S] must be connected, namely S in (4) corresponds
to E \ S in µNR

G,p.
We also extend our near-linear time sampler to random cluster models with q ≤ 1. Note

that the rank of S plays an important role in the distribution in πRC,q,λ (4). Thus, instead
of the independence oracle, here we use a rank oracle, which upon a query S returns the
rank of S.

▶ Theorem 4. Let 0 ≤ q ≤ 1 be a parameter. Equipped with the rank oracle Or of a
matroid M = ([n], I), there exists an algorithm that takes external fields λ ∈ Rn

>0 and
ε ∈ (0, 1) as inputs, and outputs a random set S such that DTV (πRC,q, S) ≤ ε. It runs in
O

(
(1 + λ−1

min)n log(n/ε)(log n + tOr
)
)

time in expectation, where tOr
is the time to answer a

query by the rank oracle Or and λmin := mini∈[n] λi.

Theorem 4 is proved in Section 4.
Similar to Remark 2, it suffices to replace the rank oracle by a data structure that supports

insertion/deletion of elements and query if the rank changes after removing an element. For
graphs, the rank oracle, once again, can be implemented using the data structure in [22].
This is because rk(S) = |V | − 1 + κ(E) − κ(S), where κ(S) is the number of connected
components in G[S]. Thus the rank change query in graphs is exactly the same as asking if
u and v are connected after removing an edge (u, v). The amortized cost of using this data
structure is O(log2 n).

▶ Corollary 5. Let G = (V, E) be a graph with n vertices and m edges. Let q ≤ 1 be a
parameter and λ ∈ RE

>0 be the external fields on edges. There is an algorithm that takes G,
λ and ε ∈ (0, 1) as input, and outputs a random subset S ⊆ E such that DTV (πRC,q, S) ≤ ε

in O
(
(1 + λ−1

min)m(log3 n + log 1
ε)

)
time in expectation, where λmin := mini∈[n] λi.

X. Chen, H. Guo, X. Zhang, and Z. Zou 32:5

2 Preliminaries

2.1 Matroid
Matroid is an abstract combinatorial structure that generalizes the notion of linear inde-
pendence. It is usually specified by a pair M = (U, I) where U is a ground set and I ⊆ 2U

is a collection of subsets of U . The subsets in I are known as the independent sets of the
matroid and satisfy the following axioms:

∅ ∈ I;
if S ∈ I, T ⊆ S, then T ∈ I;
if S, T ∈ I and |S| > |T |, then there is an element i ∈ S \ T such that T ∪ {i} ∈ I.

The first axiom ensures that I is non-empty. The second shows that I is downward closed,
and the third implies that the cardinality of maximal independent sets are the same. This
maximum cardinality is known as the rank of the matroid M. The set of bases B = B(M)
is the collection of independent sets of maximum cardinality. The rank also extends as a
function to subsets of U . For S ⊆ U , rk(S) is defined as the size of the maximum independent
sets contained in S.

For a matroid M = (U, I), its dual matroid M⋆ = (U, I⋆) has the same ground set U with
the collection of independent sets I⋆ := {S ⊆ U | ∃B ∈ B(M), B ⊆ U \ S}. By definition,
every base B⋆ of M⋆ is the complement of the base B = U \ B⋆ of M and vice versa.

2.2 Strongly log-concave polynomial
Let f ∈ R[x1, x2, . . . , xn] be a polynomial with non-negative coefficients. f is called

r-homogeneous if the degree of every monomial in f is r;
multiaffine if every variable appears with degree no more than 1;
log-concave over the first orthant (or log-concave for short) if log f is concave over Rn

>0,
i.e., for x, y ∈ Rn

>0 and λ ∈ (0, 1),

f(λx + (1 − λ)y) ≥ f(x)λf(y)1−λ;

strongly log-concave if f is either vanishes or log-concave after taking any sequence of
partial derivatives.

The notion of strong log-concavity is introduced by Gurvitz [14, 13]. For a homogeneous
polynomial, it turns out to be equivalent to related notions of complete log-concavity by
Anari, Oveis Gharan, and Vinzant [4] and Lorentzian by Brändén and Huh [6]. See [6,
Theorem 2.30]. For simplicity, we will not define the latter two.

A well known fact is that affine transform T : Rm → Rn (i.e., T (y) = Ay + b for some
A ∈ Rn×m and b ∈ Rn) preserves log-concavity.

▶ Lemma 6 ([4, Lemma 2.1]). If f ∈ R[x1, · · · , xn] is log-concave and T : Rm → Rn is
an affine transformation such that T (Rm

>0) ⊆ Rn
>0, then f(T (y1, · · · , ym)) ∈ R[y1, · · · ym] is

log-concave.

As observed in [3], for a multiaffine polynomial f , its partial derivative is given by

∂1f = lim
c→∞

f(c, x2, · · · , xn)
c

,

which means the derivatives of a multiaffine log-concave polynomial are limits of log-concave
polynomials, which are also log-concave by definition. It implies that a multiaffine log-concave
polynomial is automatically strongly log-concave.

APPROX/RANDOM 2024

32:6 Near-Linear Time Samplers for Matroid Independent Sets with Applications

▶ Fact 7 ([3]). If polynomial f is multiaffine and log-concave, then f is strongly log-concave.

We note that most polynomials we consider are multiaffine, which means that log-concavity
and strong log-concavity are equivalent within the scope of this work.

2.3 Polynomial and distribution
Let µ be a distribution over 2[n]. The generating function of µ is given by

gµ =
∑

S⊆[n]

µ(S)
∏
i∈S

xi.

It is known that multiaffine polynomials are closely related to generating polynomials of
distribution. Let f be a multiaffine polynomial f ∈ R[x1, x2, . . . , xn] with non-negative
coefficients. If f ̸= 0, there exists a distribution µ over 2[n] such that its generating
polynomial is identical to f up to a scaling factor. Hence, we may also say f is the generating
polynomial of µ.

Furthermore, if the generating function gµ of µ is r-homogeneous and log-concave, then
the support of µ must be the set of bases of a matroid [6].

2.4 Down-up walk
Let µ be a distribution over

([n]
r

)
. Let Ω(µ) := {S ⊆ [n] | µ(S) > 0} be the support of µ.

A classical method for sampling from this homogeneous distribution is the down-up walk,
described below.

▶ Definition 8. For a distribution µ over
([n]

r

)
, the down-up walk P updates a configuration

S ∈
([n]

r

)
according to the following rule:

1. select a subset T ⊆ S of size r − 1 uniformly at random;
2. update S to S′ by selecting S′ ⊇ T with probability proportional to µ(S′).
When the support of µ is the set of bases of a matroid, this walk is also known as the
bases-exchange walk.

If the down-up walk P connects Ω(µ), then µ is its unique stationary distribution. Its
mixing time is defined by

tmix(ε) := min
{

t

∣∣∣∣ max
S∈Ω(µ)

DTV
(
P t(S, ·), µ

)
≤ ε

}
.

The down-up walk mixes rapidly if gµ is (strongly) log-concave [7, 3].

▶ Proposition 9 ([3, Theorem 1]). If gµ is r-homogeneous and log-concave, the mixing time
of the down-up walk can be bounded by tmix(ε) = O(r log(r/ε)).

3 Our algorithm

In this section, we prove Theorem 1. Our main tool is the down-up walk in Definition 8. As
the uniform distribution over independent sets is not homogeneous, in Section 3.1 we first
consider a standard homogenization, namely its polarized version. Then standard results
imply that the down-up walk for the polarized homogeneous distribution mixes in time
O(n log n). In Section 3.2, we show how to implement the down-up walk with Õ(1) cost.
With these ingredients, the proof of Theorem 1 is given at the end of this section.

X. Chen, H. Guo, X. Zhang, and Z. Zou 32:7

3.1 Down-up walk for polarized polynomial
Let M = ([n], I) be a rank-r matroid and λ ∈ Rn

>0 be the external fields. Consider

g(x1, · · · , xn) :=
∑
S∈I

∏
i∈S

xi.

It is straightforward to verify that g(λ1x1, · · · , λnxn) is the generating polynomial of µM,λ.
Note that g is not homogeneous, which means that we may not directly employ the

down-up walk to sample from the distribution µM,λ. However, there is a homogeneous
variant of g,

gh(y, x1, · · · , xn) :=
∑
S∈I

yn−|S|
∏
i∈S

xi. (5)

As a key step in the proof of Mason’s ultra-log-concavity conjecture for independent sets of
matroid [1, 6], the following result is proved.

▶ Lemma 10 ([1, Theorem 4.1]). The polynomial gh in (5) is strongly log-concave.

However, gh is not multiaffine, which means that it is not a generating polynomial of any
distribution. Instead, we consider the polarized version of gh.

▶ Lemma 11. If gh in (5) is strongly log-concave, then the following polynomial is also
strongly log-concave:

gp(x1, · · · , xn, y1, · · · , yn) =
∑
S∈I

en−|S|(y)(
n

|S|
) ∏

i∈S

xi, (6)

where ek(y) =
∑

1≤i1<i2<...<ik≤n

∏k
j=1 yij is the k-th elementary symmetric polynomial.

We remark that Lemma 11 is a special case of [6, Proposition 3.1], and it is more explicitly
derived in [18, Section 6.6].

The polarized polynomial in (6) corresponds back to a distribution. Let X := {x1, · · · , xn}
denote elements in M and Y := {y1, · · · , yn} denote the auxiliary variables introduced by
polarization. Let π be the distribution over subsets of X ∪ Y corresponding to the generating
polynomial gp(λ1x1, . . . , λnxn, y1, . . . , yn). Then the support of π is given by

Ω(π) = {A ∪ B | A ∈ I, B ⊆ Y, |A| + |B| = n}.

Furthermore, for every S = A ∪ B ∈ Ω(π), it holds that

π(S) ∝ 1(
n

|A|
) ∏

xi∈A

λi,

and
∑

S:S∩X=A π(S) = µM,λ(A).
Therefore, to sample from µM,λ within a TV distance of ε, it suffices to sample S ∈ Ω(π)

such that DTV (S, π) ≤ ε, and then return S ∩ X as the result.
Note that gp is homogeneous and multiaffine. Moreover, according to Lemma 10 and

Lemma 11, gp is strongly log-concave. Thus, the polynomial gp(λ1x1, · · · , λnxn, y1, · · · , yn)
is also log-concave by Lemma 6. Hence, by Proposition 9, we have the following result, which
gives a powerful framework to build fast sampling algorithm for independent set of matroid.

▶ Lemma 12. The down-up walk P of π mixes in time O(n log(n/ε)).

APPROX/RANDOM 2024

32:8 Near-Linear Time Samplers for Matroid Independent Sets with Applications

Algorithm 1 a step of down-up walk P on π.

1 select a subset T ⊆ S of size n − 1 uniformly at random;
2 update S to S′ by selecting random S′ ⊇ T according to the following law:

Pr [S′] ∝ 1[S′ ∩ X ∈ I] ×

1

(n
|T ∩X|)

, S′ \ T ∈ Y ;
λi

(n
|T ∩X|+1)

, S′ \ T = {xi} for some xi ∈ X.
(7)

We note that the mixing time O(n log(n/ε)) does not readily imply a sampler which runs
in O(n log(n/ε)) time, as it may take ω(1) time to implement a single transition step of P .
According to Definition 8, in each step, P updates a state S ∈ Ω(π) as in Algorithm 1.

The main obstacle is to implement the second step in Algorithm 1 efficiently. A naïve
approach checks whether ({xi} ∪ T) ∩ X ∈ I for each xi ∈ X \ T by calling the independence
oracle OI , and then generates a random sample from all “feasible” xi and together with all
of yi ∈ Y \ T according to the desired distribution in (7). In the worst case, this gives an
O(n) overhead and the running time of the sampling algorithm becomes O(n2 log n).

3.2 A fast implementation of the down-up walk

Our main contribution is an efficient implementation of the down-up walk P on π, where
each step of P takes constant time in expectation given an independence oracle OI . In fact,
the implementation task is yet another sampling problem from the distribution in (7), and
we do so by rejection sampling, described in Algorithm 2.

Algorithm 2 implementation for the second step of the down-up walk P .

input : a subset T ⊆ X ∪ Y of size n − 1 such that T ∩ X ∈ I
output : a random configuration S according to the distribution defined in (7)

1 while true do
2 propose an element e ∈ (X ∪ Y) \ T according to the following distribution ν:

∀e ∈ (X ∪ Y) \ T, ν(e) ∝

{
λi, e = xi ∈ X \ T ;
n−|T ∩X|
1+|T ∩X| , e ∈ Y \ T.

(8)

3 if (T ∪ {e}) ∩ X ∈ I then
4 return S = T ∪ {e};

The correctness of Algorithm 2 is straightforward.

▶ Fact 13. The state S produced by Algorithm 2 follows the distribution defined in (7).

In terms of efficiency, the while loop in Algorithm 2 is anticipated to execute for a
constant number of rounds in expectation. This is because the rejection probability is upper
bounded by a constant, as shown by the next lemma.

▶ Lemma 14. It holds that Pre∼ν [(T ∪ {e}) ∩ X ̸∈ I] ≤ λmax
1+λmax

, where λmax = maxi∈[n] λi.

X. Chen, H. Guo, X. Zhang, and Z. Zou 32:9

Proof. Suppose |T ∩ X| = k. Note that if e ∈ Y \ T , then (T ∪ {e}) ∩ X ∈ I. This means

Pre∼ν [(T ∪ {e}) ∩ X ̸∈ I] ≤
∑

xi∈X\T

λi∑
xi∈X\T λi +

∑
y∈Y \T

n−k
1+k

=
∑

xi∈X\T λi∑
xi∈X\T (1 + λi)

≤ λmax

1 + λmax
,

where the equality is due to |Y ∩ T | + k = n − 1. ◀

Now, we are ready to prove Theorem 1.

Proof of Theorem 1. Our algorithm is just running Algorithm 1 for O(n log(n/ε)) steps
and then output S ∩ X. Line 2 of Algorithm 1 is implemented by Algorithm 2, to get a
random state S. By Lemma 12 and Fact 13, it holds that DTV (S ∩ X, µ) ≤ ε.

To implement (8), we maintain two balanced binary search trees TX and TY that keep
track of the weight of each node and the sum of weights in each subtree. The first tree
TX maintains elements xi ∈ X \ T each assigned with weight λi, and the second tree TY

maintains elements yi ∈ Y \ T with weight 1.
To produce an e ∼ ν, first choose tree TZ ∈ {TX , TY } randomly according to the law:

TZ =
{

TX with prob. ∝
∑

xi∈X\T λi

TY with prob. ∝ n − |T ∩ X|
,

where we note that
∑

xi∈X\T λi, and |T ∩ X| could be obtained by a constant number of
queries via the binary search trees. To sample an element e ∈ TZ according to the weights of
each element, we may consider a binary search algorithm on TZ that runs in O(log n) time.
We initialize a variable e with the root of TZ , and then repeat the following procedure:
1. Let L be the sum of weights in the left subtrees of e, R be the sum of weights in the right

subtrees, and W be the weights of e;
2. Sample a real number 0 < x < L + R + W uniformly at random. If x < W , return e; else

if x < W + L, update e to the left child of e; otherwise, update e to the right child of e.
Finally, by Lemma 14, the rejection sampling procedure in Algorithm 2 runs within O(1+λmax)
rounds in expectation. Also note that in each round of the rejection sampling, we need tOI

time to query the independence oracle. Together, the algorithm runs in

O((1 + λmax)n log(n/ε)(log n + tOI
))

time in expectation. ◀

4 Random cluster models with q ≤ 1

Once again, let M = (X, I) be a matroid, equipped with a rank function rk(·). Let
λ = {λi}i∈[n], where λi > 0 is the weight or external field of xi ∈ X. Let 0 ≤ q ≤ 1 be a
parameter. Recall the definition of the random cluster model [9] in (4). Note that when
q = 0, the support of πRC,q,λ are all subsets of full rank, namely they are the complements
of the independent sets of the dual matroid.

Similar to Section 3.1, as the distribution is not homogeneous, we want to polarize it. Let
Y be a set of n = |X| auxiliary variables. For T ⊆ X ∪ Y such that |T | = n, the polarized
distribution is given by

π̂RC,q,λ(T) ∝
q− rk(T ∩X) ∏

xi∈T ∩X λi(
n

|T ∩Y |
) . (9)

APPROX/RANDOM 2024

32:10 Near-Linear Time Samplers for Matroid Independent Sets with Applications

Let the right hand side of (9) be wt(T). Note that the marginal distribution of π̂RC,q,λ on
X is the same as πRC,q,λ.

Once homogenized, we may consider the up-down walk for π̂RC,q,λ. For the up step, we
uniformly add an element from (X ∪ Y) \ T . For the down step, suppose the current set is T

such that |T | = n + 1. We want to remove an element e ∈ T with probability proportional to
wt(T \ {e}). Namely, the transition probability p(e) satisfies

p(e) ∝

q− rk(T ∩X)
∏

xi∈T ∩X
λi

(n
|T ∩Y |−1)

if e ∈ T ∩ Y ;
q− rk(T ∩X)

∏
xi∈T ∩X

λi

λj(n
|T ∩Y |)

if e = xj ∈ T ∩ X and rk(T ∩ X \ e) = rk(T ∩ X);
q− rk(T ∩X)+1

∏
xi∈T ∩X

λi

λj(n
|T ∩Y |)

if e = xj ∈ T ∩ X and rk(T ∩ X \ e) = rk(T ∩ X) − 1.

(10)

We may further normalize (10) to get

p(e) ∝

n−|T ∩Y |+1

|T ∩Y | = |T ∩X|
|T ∩Y | if e ∈ T ∩ Y ;

λ−1
j if e = xj ∈ T ∩ X and rk(T ∩ X \ e) = rk(T ∩ X);

qλ−1
j if e = xj ∈ T ∩ X and rk(T ∩ X \ e) = rk(T ∩ X) − 1.

(11)

To implement (11), we may first propose e ∼ ν where

ν(e) ∝

{
|T ∩X|
|T ∩Y | if e ∈ T ∩ Y ;
λ−1

j if e = xj ∈ T ∩ X,

and then reject e ∈ T ∩ X with probability 1 − q if rk(T ∩ X \ {e}) = rk(T ∩ X) − 1. Keep
doing this until we accept. To see the efficiency of this implementation. Let E be the event
that rejection happens. Then,

Pr [E] ≤
∑

xj∈T ∩X

(1 − q)λ−1
j∑

xj∈T ∩X λ−1
j +

∑
e∈T ∩Y

|T ∩X|
|T ∩Y |

= (1 − q)
∑

xj∈T ∩X λ−1
j∑

xj∈T ∩X(λ−1
j + 1)

≤ 1 − q

1 + λmin
,

where λmin := mini∈[n] λi. Thus, in expectation, we will successfully make a transition after
O

(
λmin+1
λmin+q

)
= O(1 + λ−1

min) steps.
One more issue with the implementation is that we need to check the rank of T ∩ X and

T ∩ X \ {e}. This is why we need a rank oracle instead of the independence oracle.
The only missing ingredient to get Theorem 4 is the mixing time of the chain. To this

end, we claim that the up-down walk here is just the down-up walk of the corresponding
random cluster model on the dual matroid. As the homogenized generating polynomial for
random cluster models with q ≤ 1 is shown to be strongly log-concave by Brändén and Huh
[5], Proposition 9 implies that the mixing time of the up-down walk is O(n log(n/ε)) as well.

Finally we verify the claim. Let M = (X, I) be the dual matroid of M. Consider the
random cluster model on M with external fields q/λ, where λ = {λi} is the external field
vector of the original model:

∀U ⊆ X, πM,q,q/λ(U) ∝ q−rkM(U)
∏

xi∈U

(
q

λi

)
.

This is equivalent to having the field 1/λ, but the extra q simplifies some calculation next.

X. Chen, H. Guo, X. Zhang, and Z. Zou 32:11

The rank function of the dual matroid satisfies:

rkM(U) = |U | + rkM(X \ U) − rkM(X).

As rkM(X) is a constant, we have

∀U ⊆ X, πM,q,q/λ(U) ∝ q−rkM(X\U)
∏

xi∈X\U

λi.

Similarly, the polarized version of πM,q,q/λ satisfies

∀R ∈
(

X ∪ Y

n

)
, π̂M,q,q/λ(R) ∝

q−rkM(X\R) ∏
xi∈X\R λi(

n
|R∩Y |

) .

Comparing the above with (9), we have that

π̂M,q,q/λ(R) = π̂M,q,λ((X ∪ Y) \ R). (12)

The down-up walk (with R being the current state) on π̂M,q,q/λ is:
(down) remove an element from R uniformly at random;
(up) add an element e ∈ (X ∪ Y) \ R to R with probability ∝ π̂M,q,q/λ(R ∪ {e}).

As T = (X ∪ Y) \ R, we can rephrase this down-up walk as an up-down walk on the random
cluster over M:

(up) add an element from (X ∪ Y) \ T to T uniformly at random;
(down) remove an element e ∈ T from T with probability ∝ π̂M,q,q/λ(R ∪ {e}) =
π̂M,q,λ(T \ {e}), where the equality is by (12).

Thus, we conclude that the down-up walk on π̂M,q,q/λ is the same as the up-down walk on
π̂M,q,λ modulo mapping T to (X ∪ Y) \ T . This verifies the claim and finishes the proof of
Theorem 4.

References
1 Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant. Log-concave polyno-

mials III: Mason’s ultra-log-concavity conjecture for independent sets of matroids. arXiv,
abs/1811.01600, 2018. arXiv:1811.01600.

2 Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant. Log-concave polynomials
II: high-dimensional walks and an FPRAS for counting bases of a matroid. In STOC, pages
1–12. ACM, 2019.

3 Nima Anari, Kuikui Liu, Shayan Oveis Gharan, Cynthia Vinzant, and Thuy-Duong Vuong.
Log-concave polynomials IV: approximate exchange, tight mixing times, and near-optimal
sampling of forests. In STOC, pages 408–420. ACM, 2021. arXiv:2004.07220v2.

4 Nima Anari, Shayan Oveis Gharan, and Cynthia Vinzant. Log-concave polynomials, entropy,
and a deterministic approximation algorithm for counting bases of matroids. In FOCS, pages
35–46. IEEE, 2018. arXiv:1807.00929v2.

5 Petter Brändén and June Huh. Hodge-Riemann relations for Potts model partition functions.
arXiv, abs/1811.01696, 2018. arXiv:1811.01696.

6 Petter Brändén and June Huh. Lorentzian polynomials. Ann. of Math. (2), 192(3):821–891,
2020. arXiv:1902.03719v6.

7 Mary Cryan, Heng Guo, and Giorgos Mousa. Modified log-Sobolev inequalities for strongly
log-concave distributions. Ann. Probab., 49(1):506–525, 2021.

8 Tomás Feder and Milena Mihail. Balanced matroids. In STOC, pages 26–38. ACM, 1992.
9 Cornelius M. Fortuin and Pieter W. Kasteleyn. On the random-cluster model. I. Introduction

and relation to other models. Physica, 57:536–564, 1972.

APPROX/RANDOM 2024

https://arxiv.org/abs/1811.01600
https://arxiv.org/abs/2004.07220v2
https://arxiv.org/abs/1807.00929v2
https://arxiv.org/abs/1811.01696
https://arxiv.org/abs/1902.03719v6

32:12 Near-Linear Time Samplers for Matroid Independent Sets with Applications

10 Heng Guo and Kun He. Tight bounds for popping algorithms. Random Structures Algorithms,
57(2):371–392, 2020.

11 Heng Guo and Mark Jerrum. A polynomial-time approximation algorithm for all-terminal
network reliability. SIAM J. Comput., 48(3):964–978, 2019.

12 Heng Guo, Mark Jerrum, and Jingcheng Liu. Uniform sampling through the Lovász local
lemma. J. ACM, 66(3):18:1–18:31, 2019.

13 Leonid Gurvits. On multivariate Newton-like inequalities. In Advances in combinatorial
mathematics, pages 61–78. Springer, Berlin, 2009.

14 Leonid Gurvits. A polynomial-time algorithm to approximate the mixed volume within a
simply exponential factor. Discrete Comput. Geom., 41(4):533–555, 2009.

15 Mark Jerrum. On the complexity of evaluating multivariate polynomials. PhD thesis, The
University of Edinburgh, 1981.

16 Mark R. Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation of combinatorial
structures from a uniform distribution. Theoret. Comput. Sci., 43(2-3):169–188, 1986.

17 Vladimir Kolmogorov. A faster approximation algorithm for the gibbs partition function. In
COLT, volume 75, pages 228–249. PMLR, 2018.

18 Giorgos Mousa. Local-to-Global Functional Inequalities in Simplicial Complexes. PhD thesis,
The University of Edinburgh, 2022.

19 J. Scott Provan and Michael O. Ball. The complexity of counting cuts and of computing the
probability that a graph is connected. SIAM J. Comput., 12(4):777–788, 1983.

20 Daniel Štefankovič, Santosh Vempala, and Eric Vigoda. Adaptive simulated annealing: a
near-optimal connection between sampling and counting. J. ACM, 56(3):Art. 18, 36, 2009.

21 Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM J. Comput.,
8(3):410–421, 1979.

22 Christian Wulff-Nilsen. Faster deterministic fully-dynamic graph connectivity. In SODA, pages
1757–1769. SIAM, 2013.

On the Amortized Complexity of Approximate
Counting
Ishaq Aden-Ali # Ñ

University of California, Berkeley, CA, USA

Yanjun Han # Ñ

New York University, NY, USA

Jelani Nelson # Ñ

University of California, Berkeley, CA, USA

Huacheng Yu # Ñ

Princeton University, NJ, USA

Abstract
Naively storing a counter up to value n would require Ω(log n) bits of memory. Nelson and Yu [9],
following work of Morris [8], showed that if the query answers need only be (1 + ϵ)-approximate
with probability at least 1 − δ, then O(log log n + log log(1/δ) + log(1/ϵ)) bits suffice, and in fact
this bound is tight. Morris’ original motivation for studying this problem though, as well as modern
applications, require not only maintaining one counter, but rather k counters for k large. This
motivates the following question: for k large, can k counters be simultaneously maintained using
asymptotically less memory than k times the cost of an individual counter? That is to say, does this
problem benefit from an improved amortized space complexity bound?

We answer this question in the negative. Specifically, we prove a lower bound for nearly the
full range of parameters showing that, in terms of memory usage, there is no asymptotic benefit
possible via amortization when storing multiple counters. Our main proof utilizes a certain notion of
“information cost” recently introduced by Braverman, Garg and Woodruff [2] to prove lower bounds
for streaming algorithms.

2012 ACM Subject Classification Theory of computation → Lower bounds and information com-
plexity

Keywords and phrases streaming, approximate counting, information complexity, lower bounds

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.33

Category RANDOM

Funding Ishaq Aden-Ali: supported by ONR DORECG award N00014-17-1-2127.
Yanjun Han: work done while at UC Berkeley, supported by the Berkeley-Simons Research Fellowship
and Norbert Wiener postdoctoral fellowship.
Jelani Nelson: supported by NSF award CCF-1951384, ONR grant N00014-18-1-2562, and ONR
DORECG award N00014-17-1-2127.

Acknowledgements We thank Sidhanth Mohanty for very enlightening discussions on unpredictable
paths, half Cauchy random variables, and stochastic processes in general that ultimately led to the
discovery of the first version of our main lower bound. We also thank Mark Sellke for answering
a certain question regarding stochastic processes. Lastly, we thank Greg Valiant for raising the
question of the amortized space complexity of approximate counting.

1 Introduction

Maintaining a counter subject to increments is one of the most basic data structural problems
in computer science. If the counter value stays below n, then the naive solution of maintaining
the counter explicitly consumes O(log n) bits of memory. In 1978, Morris devised a new

© Ishaq Aden-Ali, Yanjun Han, Jelani Nelson, and Huacheng Yu;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 33; pp. 33:1–33:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:adenali@berkeley.edu
https://ishaqadenali.github.io/
https://orcid.org/0009-0001-5487-0883
mailto:yanjunhan@nyu.edu
https://yanjunhan2021.github.io/
https://orcid.org/0000-0002-8335-2364
mailto:minilek@berkeley.edu
https://people.eecs.berkeley.edu/~minilek/publications/
https://orcid.org/0000-0001-7370-3733
mailto:yuhch123@gmail.com
https://www.cs.princeton.edu/~hy2/
https://orcid.org/0000-0003-1450-1896
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.33
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 On the Amortized Complexity of Approximate Counting

approximate counting algorithm which could maintain such a dynamic counter using much
fewer bits in expectation [8]. His algorithm uses a number of random bits which itself is a
random variable, whose expectation is O(log log n + log(1/ϵ) + log(1/δ)). At query time, this
Morris Counter returns the correct counter value up to (1+ϵ)-multiplicative error with failure
probability at most δ. Recently, Nelson and Yu [9] showed that a slight alteration to Morris’
algorithm improves the dependence on δ, consuming only O(log log n+log(1/ϵ)+log log(1/δ))
bits of memory. They also proved that this bound is asymptotically optimal.

Morris’ original motivation for developing his approximate counter in the mid 1970s was,
for each of 263 possible trigrams (sequences of three characters), to count the number of
occurrences of that trigram amongst words in some text; these counts were then used by
typo, an early Unix spellchecker (see more on this history in a survey by Lumbroso [7]).
Approximate counters still find use in modern-day applications. For example, Redis is a
highly popular in-memory database which is often used as a cache, and one built-in cache
replacement policy is Least Frequently Used. To implement LFU, each item stored in cache
must have an associated counter, counting the number of queries to that item over some time
window. These counters are currently implemented in Redis using a variant of the Morris
Counter [6].

Both the original application of Morris as well as modern-day applications of approximate
counting, such as that described in Redis, need not store just one counter but many. Even
in the 1970s, Morris’ computer would have had enough memory to count the number of
occurrences of a single trigram, but the difficulty was keeping counts of all 263 counters in
memory simultaneously. Similarly, modern-day computers and mobile devices clearly also
contain enough memory to store a single counter for any reasonable counter value, but one
may wish to minimize the space per counter in an application where many counters must be
stored simultaneously, as in the case of Redis being used to cache a large number of items.
Thus even the original motivation of Morris inspires the following question:

What is the amortized space complexity of approximate counting? Specifically, for k large,
is it possible to maintain k approximate counters using less memory than k times that of an
individual approximate counter?

Typically such lower bounds are obtained via a direct sum argument in combination
with an information complexity lower bound [3]. Specifically, a common way to carry
out proving such lower bounds in the streaming context is as follows [1]: first, devise a
communication game that you believe is hard (requires a lot of communication) to solve,
and which reduces to the streaming problem (i.e., a low-memory streaming algorithm would
imply a low-communication protocol). Suppose for illustration that this communication
game is one-way, with Alice receiving input X who sends a single message Π to Bob who
holds input Y . Here we use distributional complexity, in which (X, Y) is drawn from some
distribution D, and the goal is to devise a protocol in which Bob computes some f(X, Y)
with success probability at least 1 − δ. Now, the so-called external information complexity of
Π is defined as I(Π; X, Y), which is at most |Π| and thus it suffices to lower bound I(Π; X, Y).
Once one establishes a lower bound on this quantity, then for a sequence {(Xi, Yi)}k

i=1 of
k of independently drawn such inputs, we have the following inequality [3, Theorem 1.5]:
I(Π; X1, Y1, X2, Y2, . . . , Xk, Yk) ≥

∑k
i=1 I(Π; Xi, Yi). Note though that if we want a lower

bound for Π solving the k-fold problem, then we cannot immediately invoke the single-
instance lower bound to bound each summand on the right hand side (since this Π is a
protocol solving the k-fold problem, not a single instance!). One then typically completes the
argument by showing how to efficiently embed the single-instance communication game into
that of k parallel instances, to then lift the single-instance lower bound to a lower bound for
the k-fold problem as outlined above.

I. Aden-Ali, Y. Han, J. Nelson, and H. Yu 33:3

The trouble with obtaining our desired lower bound for approximate counting via the
above paradigm is that the memory lower bound of [9] was not proven via information
complexity, and thus it is not clear how to execute the above direct sum argument. Rather,
the lower bound proof there followed an approach similar to the proof of the pumping lemma
for regular languages [10].

Our Contribution. We answer the above question in the negative for nearly the full range of
parameters (for technical reasons in our analysis, we require the restriction ϵ < 1/ log log(1/δ)).
Specifically, for this range of ϵ we prove a strong memory lower bound demonstrating that
there is no asymptotic benefit from amortization when maintaining multiple approximate
counters. Our main approach is to first establish a novel information complexity type lower
bound for a single approximate counter, which we then lift to multiple counters using a
standard direct sum argument, by constructing an embedding of the single-counter problem
into the k-fold problem.

Below we formally define the problem we solve, then state our main result. The approx-
imate counting problem for a single counter is to maintain a multiplicative approximation
to a count N (initially 0) that undergoes a sequence of increment operations. Specifically,
the algorithm should support two operations: increment() increments N by 1, and query()
returns a value N̂ such that P(|N̂ − N | ≥ ϵN) ≤ δ; that is, at any point in time the data
structure should be able to provide a (1 + ϵ) multiplicative approximation with probability
at least 1 − δ. Our generalization to approximating k counters is as follows:

▶ Definition 1 ((k, ϵ, δ)-approximate counter). Let N1, . . . , Nk be k counters all initially set
to 0. We say a randomized algorithm A is a (k, ϵ, δ)-approximate counter if it supports two
operations: increment(i) increments Ni by 1, and query(i) returns a value N̂i such that

P
(

|N̂i − Ni| ≥ ϵNi

)
≤ δ.

When k = 1, we will simply call this an (ϵ, δ)-approximate counter.

The following is then our main theorem, when here and henceforth we use n in lower
bounds to denote an upper bound on the number of increment operations:

▶ Theorem 2. For any δ < c1 and ϵ < c2/ log log(1/δ), if k < c3n then after a sequence of
at most n updates any (k, ϵ, δ)-counter must use Ω(k min{log(n/k), log log(n/k) + log(1/ϵ) +
log log(1/δ)}) bits of memory in expectation. Else if k > c3n, then a lower bound of
Ω(n log(2k/(c3n))) holds; c1, c2, c3 ≥ 0 are universal constants. Furthermore, for both ranges
of k, these lower bounds are tight up to constant factors.

1.1 Preliminaries and notation
We write X ∼ D to represent a random variable X sampled from the probability distribution
D. If the distribution of X has not been explicitly defined, we write PX to the corresponding
probability distribution of X. For two probability distributions P and Q defined on the
same domain, we write TV(P, Q) =

∫
|dP − dQ| to be their total variation distance and

KL(P∥Q) =
∫

dP log(dP/dQ) their Kullback-Leibler divergence. We frequently make use
of Pinsker’s inequality TV(P, Q) ≤

√
KL(P∥Q)/2. For random variables X and Y , we

write H(X) = Ex∼PX
[log(1/PX(x))] to denote the (Shannon) entropy and H(X | Y) =

E(x,y)∼PXY
[log(1/PX|Y (x | y))] to be the conditional (Shannon) entropy. The mutual

APPROX/RANDOM 2024

33:4 On the Amortized Complexity of Approximate Counting

information between two random variables X and Y is I(X; Y) := H(X) − H(X | Y) =
H(Y) − H(Y | X). The conditional mutual information is I(X; Y | Z) := H(X | Z) − H(X |
Y, Z). We frequently make use of the following inequality:

I(X; Y | Z) = E
X,Z

[
KL(PY |Z∥PY |X,Z)

]
.

We also use the following well known facts about conditional mutual information [4]:

▶ Proposition 3 (Chain rule). For random variables X1, X2, Y, Z we have

I(X1, X2; Y | Z) = I(X1; Y | Z, X2) + I(X2; Y | Z).

▶ Proposition 4 (Superadditivity). Let X1, · · · , Xn, Y and Z be random variables such that
X1, . . . , Xn are conditionally independent given Z. Then

n∑
i=1

I(Xi; Y | Z) ≤ I(X1, . . . , Xn; Y | Z).

Lastly, c, c1, c2, . . . > 0 represent universal constants that may change from statement to
statement.

1.2 Proof overview
Now we present an overview of our lower bound proof. It turns out that the terms
Ω(k(log log(n/k) + log(1/ϵ))) in the lower bound can be proved using a similar argument to
the single counter case, which holds even in the offline setting, and the main challenge is
to prove the dependence on δ, Ω(k log log(1/δ)). The previous proof, for single counter, of
Ω(log log(1/δ)) is based on a pumping-lemma argument, which crucially uses the fact that
all updates are exactly the same, i.e., incrementing the counter. However, this no longer
holds with multiple counters – we may increment any one of the k counters each time, and
there are k different updates we can perform. The previous argument fails to generalize.

As we mentioned in the introduction, we first (re)prove an information theoretic lower
bound for single counter, then apply the superadditivity of mutual information for independent
variables to obtain the direct-sum result. For simplicity, in this overview we will focus on the
case where δ = 2−Θ(n/k), and prove an Ω(k log log(1/δ)) = Ω(k log(n/k)) lower bound when
ϵ ≤ O(1/ log(n/k)). This case captures all the main ideas, and generalizing to the full lower
bound is straightforward.

To facilitate the argument, we first slightly reformulate the problem:1 Consider a stream
with T batches of updates (think T = (n/k)0.1), and in each batch i, the inputs are k

nonnegative integers Xi,c for c ∈ [k], which are the number of increments we apply to each
counter in this batch. Since the batch number i takes only O(log T) bits to maintain, we may
assume without loss of generality that it is given to the algorithm for free. Clearly if there
is an algorithm that approximately maintains k counters, this reformulation also admits a
solution using the same space, provided

∑
i,c Xi,c ≤ n. After the reformulation, the single

counter problem simply has T nonnegative numbers Xi as the input stream, and we would
like to approximate their sum using small space provided that the sum is at most poly T ,
again assuming that i is given to the algorithm for free.

We will design a hard distribution over the input streams, and analyze the failure
probability and measure “information” with respect to this distribution. It is crucial that
the notion of information cost we use for streaming algorithms is chosen carefully. The

1 For simplicity, the overview uses slightly different notation and parameters than the actual proof.

I. Aden-Ali, Y. Han, J. Nelson, and H. Yu 33:5

information cost defined in [2] turns out to be the right measure for our problem. Fix a
streaming algorithm, and let Mi be its memory state immediately after processing Xi (see
Figure 1). When all numbers Xi are independent, which will be the case for our distribution,
the information cost of this algorithm is defined as follows (see Figure 2)

IC :=
T∑

i=1

i∑
j=1

I(Mi; Xj | Mj−1).

X1 X2

R2R1

M2M1

X3

R3

M3

Xn

Rn

MnM0

Figure 1 A depiction of the evolution of the memory state of a randomized streaming algorithm
A. X1, . . . , Xn are the inputs the streaming algorithm receives and R1, . . . , Rn are the independent
random bits A uses as it processes the stream. M0 is the (possibly random) initial state and Mi is
the state of A after processing Xi. Note that Mi is a deterministic function of the previous memory
state Mi−1, the ith input Xi, and the random bits Ri. When the inputs are random variables,
this figure also depicts the dependence structure of the joint distribution of the random variables
(X1, . . . , Xn, R1, . . . , Rn, M0, M1, . . . , Mn).

X1 X2

M2M1

X3

M3

X4

M4

I(M4; X4 | M3)

I(M4; X3 | M2)

I(M4; X2 | M1)

M0

I(M4; X1 | M0)

Figure 2 An illustration of a single inner sum of the information cost
∑

j≤i
I(Mi; Xj |Mj−1) for

i = 4. To simplify the presentation we do not include the random bits that the streaming algorithm
uses while processing the stream in this illustration.

As it was shown in [2], this quantity lower bounds
∑T

i=1 |Mi|, i.e., T times the memory
consumption, and it satisfies the direct-sum property: solving k independent instances of
the problem needs exactly k times IC. Thus, it suffices to prove an IC lower bound of
Ω(T log T) = Ω(T log(n/k)) for a single approximate counter. Intuitively, such a lower bound
means that the algorithm must spend Ω(1) bits remembering each bit of the sum (recall that
we ensure

∑
Xi ≤ poly T).

Let us first focus on the lowest bit, i.e., the parity of the sum. Note that one does not
have to know the lowest bit in order to return an approximation of the sum. Nevertheless, we
will show that the algorithm has to constantly pay attention to this bit in order to output a
good approximation with very high probability. To this end, let us consider the distribution
where the Xi’s are independent and uniform in {0, 1}. Let us focus on the terms in IC with
j = i, i.e., those of the form I(Mi; Xi | Mi−1). Intuitively, under this distribution, this term
represents how much attention the algorithm is paying to the evolution of the parity at batch
i. This is because Xi is simply the difference between the parities of the first i − 1 and first i

inputs.

APPROX/RANDOM 2024

33:6 On the Amortized Complexity of Approximate Counting

Suppose that I(Mi; Xi | Mi−1) ≪ 1 for a constant fraction of i. Then, we can show that
the algorithm will make an error of Ω(T) with at least δ probability. Roughly speaking,
this is because for each such i, conditioned on Mi and Mi−1, the distribution of Xi is still
close to uniform (as Xi is uniform conditioned on Mi−1). Therefore, if we condition on all
M0, M1, . . . , MT , most Xi can still take both values 0 or 1 with constant probability, and all
Xi are still independent by the Markov property of the algorithm. In particular, by setting
all these Xi’s to 0 or setting all to 1, we reach the same final memory state MT , but in the
two cases, the total sum differs by Ω(T). Since both happen with probability 2−O(T) ≫ δ

given the final memory state MT , the algorithm must make an error of at least Ω(T) with
probability at least δ.

We can extend this argument to any specific bit of the sum by considering a stream
with Θ(T/Bl) independent random increments that are uniform in {0, Bl} for some constant
B and l ∈ [L], where L = logB T . Our final hard distribution interleaves L such streams,
which we call the scales. For each scale l ∈ [L], we evenly spread the Θ(T/Bl) random
increments in the whole stream with a gap of Θ(Bl) batches. Note that now the sum of
all inputs is always at most O(T log T). For the sum in the definition of IC, we will only
focus on L terms for each i: I(Mi; X⌊i⌋l

| M⌊i⌋l−1), where X⌊i⌋l
is the closest scale l input

before Mi. If IC ≪ T · L = O(T log T), then there must exist some scale l∗ such that
I(Mi; X⌊i⌋l∗ | M⌊i⌋l∗ −1) ≪ 1 for most i. Then we apply the above argument, and show
that conditioned on the memory states right before each scale-l∗ input, most scale-l∗ inputs
can still take values 0 or Bl∗ with constant probability, and the scale-l∗ inputs are still
independent. We further observe that for most of them, the inputs between X⌊i⌋l∗ and Mi

are coming from the lower scales l < l∗. The standard deviation of their sum is much smaller
than Bl∗ , and we can show that they do not affect the sum by too much as we alter X⌊i⌋l∗ .
Thus, by setting these scale-l∗ inputs to 0 or Bl∗ , the entire sum will again differ by Ω(T),
but they lead to the same final memory state, i.e., the algorithm does not distinguish between
the two cases. Since the sum is O(T log T), such a difference is more than ϵ times the sum
when ϵ < O(1/ log T). A more careful analysis shows that this happens with probability at
least 2−O(T) > δ, leading to a contradiction.

Discussion on the choice of the hard distribution

We note here that the independent uniform {0, 1} distribution, by itself, is not hard for the
information cost. One solution with low information cost is to divide Xi’s into blocks of
size S = Θ(ϵ−2 log T), and maintain the exact sum within the current block. If all blocks
have sums (1 ± ϵ)S/2, then we simply remember this fact and use T/2 as the final output.
Otherwise, the algorithm finds a block whose sum is not in this range, then it maintains the
exact sum for all future blocks. Since all previous blocks have sums (1 ± ϵ)S/2, in particular,
S/2 is a (1+ϵ)-approximation for them, the algorithm can also return a (1+ϵ)-approximation
of the whole sum. Now note that this case only happens with 1/poly(T) probability, and
the total information cost is at most T times the expected memory usage. The expected
memory is at most O(log(1/ϵ) + log log T) bits for maintaining the sum in the current block,
plus O(T −Θ(1) · log T) bits in expectation for maintaining the entire exact sum. When
ϵ = Θ(1/ log T), the information cost is only O(T log log T) ≪ T log T .

The above strategy works since the sum of block is concentrated around the expectation,
hence, we need extra space to maintain the exact sum only with very small probability. One
can also show that the above strategy also applies to any i.i.d. distributions with some
concentration.2 Our hard distribution is inspired by the discrete half-Cauchy distribution,

2 For example, it suffices to have finite E[|X|1.01].

I. Aden-Ali, Y. Han, J. Nelson, and H. Yu 33:7

which has probability Θ(1/(x + 1)2) at integers x ≥ 0. This distribution does not have an
expectation, hence, there is no concentration for blocks of any size. We also have a more
involved proof of our main result that uses this distribution instead; the main property that
proof relies on is that for every W random variables, roughly one of them takes value Θ(W).
The hard distribution we actually use in this paper is a bounded distribution that can be
viewed as extracting this useful property of the half-Cauchy distribution, but which can be
analyzed more simply.

2 Lower Bounds

In this section we will prove our lower bound for the space complexity of (k, ϵ, δ)-approximate
counting. We split the proof into two parts. We first focus on proving the difficult part of the
lower bound that depends on the failure probability δ. To do so, we derive a lower bound for
the space complexity of (ϵ, δ)-approximate counting by appealing to an information theoretic
argument. By using a good definition of information cost together with an appropriately
chosen hard distribution, we can prove that any accurate algorithm remember a lot of
information about many different parts of the stream, i.e. it incurs a high information cost.
This immediately gives us a lower bound on the memory size. We then use this result
to prove a space lowerbound for (k, ϵ, δ)-approximate counting via a direct sum argument.
We conclude the section by proving the portion of the lower bound that depends on the
approximation error ϵ and the total sum of all counters n by generalizing the argument used
in the single counter case.

2.1 Information lower bound for a single counter
Recall that for a randomized streaming algorithm A we define Mi to be the state of A after
processing the ith input Xi together with some additional independent random bits Ri, i.e.
Mi is a deterministic function of Mi−1, Xi and Ri (equivalently, a deterministic function
of X≤i and R≤i). The following is a notion of information cost for streaming algorithms
originally defined by Braverman, Garg, and Woodruff [2].

▶ Definition 5. Let A be a randomized streaming algorithm. Given a distribution D over input
sequences of length s, we define the information cost of algorithm A on input (X1, . . . , Xs) ∼ D
to be

IC(A, D) :=
s∑

i=1

i∑
j=1

I(Mi; Xj | Mj−1).

The above definition of the information cost is motivated by the following chain of inequalities:

E |Mi| ≥ H(Mi) (source coding theorem3)
≥ I(Mi; X≤i, M<i)

=
i∑

j=1
I(Mi; Xj , Mj−1 | X<j , M<j−1)

=
i∑

j=1
I(Mi; Mj−1 | X<j , M<j−1) + I(Mi; Xj | X<j , M<j)

=
i∑

j=1
I(Mi; Xj | X<j , M<j)

=
i∑

j=1
I(Mi; Xj | Mj−1).

APPROX/RANDOM 2024

33:8 On the Amortized Complexity of Approximate Counting

This implies that IC(A; D) ≤
∑s

i=1 E |Mi|. The main technical part of this paper is proving
the following lower bound for a single counter using this notion of information cost.

▶ Lemma 6. Let A be a (ϵ, δ)-approximate counter with parameters δ ∈ (0, c1) and ϵ ∈
(0, c2

log log(1/δ)) that uses |M | bits of space. There is a distribution D over inputs such that the
information cost of A on (X1, . . . , Xn) ∼ D satisfies

IC(A; D) = Ω(n log log(1/δ)),

where P[
∑n

i=1 Xi ≤ n] = 1 and n ≥ c3 logc4(1/δ). This implies the space lower bound

1
n

n∑
i=1

E |Mi| = Ω(log log(1/δ)) = Ω(min{log n, log log(1/δ)}).

Proof. We construct the distribution D as follows: let B ∈ N be a large integer constant to
be specified later, and T is the largest power of B such that T < log32(1/δ). When δ < c1
where c1 = c1(B) is a sufficiently small constant, we have T ≥ B and so L := logB T ∈ N.
The distribution D is an interleaving of L distributions Dℓ on L different scales, where for
each scale ℓ ∈ [L], the distribution Dℓ is a product distribution

∏T
i=1 Dℓ,i:

under Dℓ,i, Yℓ,i

{
∼ Unif({0, Bℓ}) if Bℓ divides (i − 1),
= 0 otherwise.

For notational simplicity, we also denote the non-zero entries of Yℓ,i by Zℓ,j = Yℓ,Bℓ(j−1)+1
for j ∈ [T/Bℓ]. The stream under distribution D is then generated by interleaving the Yℓ,i

terms to form the sequence Xn = (Y1,1, · · · , YL,1, Y1,2, · · · , YL,2, · · · YL,T), where n := TL is
the length of the sequence. The total value of the counter under this stream is at most

L∑
ℓ=1

Bℓ · T

Bℓ
= n.

Finally, note that n = TL ≥ c3 logc4(1/δ) for an appropriate choice of constants c3, c4 ≥ 0.
Let A be an (ϵ, δ)-approximate counter, and assume towards contradiction that IC(A; D) <

αnL where α is a small constant. For any index i ∈ [n] in the stream, let ⌊i⌋ℓ := BℓL⌊(i −
1)/(BℓL)⌋ + ℓ be the index of the closest Zℓ,j to the left of Xi in the stream, i.e. X⌊i⌋ℓ

= Zℓ,j .
Similarly, for j ∈ [T/Bℓ], we define ⌈j⌉ℓ := BℓL(j − 1) + ℓ to be the index of the jth non-zero
entry of scale ℓ in the stream, i.e. X⌈j⌉ℓ

= Zℓ,j . The definition of the information cost tells
us that

αnL > IC(A; D)

=
n∑

i=1

∑
j≤i

I(Mi; Xj | Mj−1)

≥
n∑

i=1

L∑
ℓ=1

I(Mi; X⌊i⌋ℓ
| M⌊i⌋ℓ−1)

3 The source coding theorem holds for any prefix code. In general we may lose a factor of 2 in this
inequality: we have both E[|Mi|] ≥ H(Mi | |Mi|) and E[|Mi|] =

∑
n≥1 npn =

∑
n≥1 pn log(1/2−n) =∑

n≥1 pn log(pn/2−n) + H(|Mi|) ≥ H(|Mi|) for pn := P(|Mi| = n); consequently 2E[|Mi|] ≥ H(Mi |
|Mi|) + H(|Mi|) ≥ H(Mi).

I. Aden-Ali, Y. Han, J. Nelson, and H. Yu 33:9

=
L∑

ℓ=1

T/Bℓ∑
j=1

⌈j+1⌉ℓ−1∑
i=⌈j⌉ℓ

I(Mi; X⌈j⌉ℓ
| M⌈j⌉ℓ−1)

≥
L∑

ℓ=1

T/Bℓ∑
j=1

BℓL · I(M⌈j+1⌉ℓ−1; X⌈j⌉ℓ
| M⌈j⌉ℓ−1)

≥ min
ℓ∈[L]

BℓL2
T/Bℓ∑
j=1

I(M⌈j+1⌉ℓ−1; X⌈j⌉ℓ
| M⌈j⌉ℓ−1)

= min
ℓ∈[L]

BℓL2
T/Bℓ∑
j=1

I(M⌈j+1⌉ℓ−1; Zℓ,j | M⌈j⌉ℓ−1)

where the second last inequality is due to the data processing inequality. By Markov’s
inequality, there exist ℓ0 ∈ [L] and J0 ⊆ [T/Bℓ0] with |J0| ≥ T/(2Bℓ0) and

I(M⌈j+1⌉ℓ0 −1; Zℓ0,j | M⌈j⌉ℓ0 −1) ≤ 2α, ∀j ∈ J0.

For ease of presentation, we abuse notation and write the above inequality as I(Mj ; Zj |
Mj−1) ≤ 2α for j ∈ J0. We shall also keep in mind that the stream between Mj−1 and Mj

contains (Z<
j , Zj , Z>

j), where Z<
j is the collection of all non-zero inputs {Zℓ′,j′} inside this

window with a lower scale ℓ′ < ℓ, and Z>
j is the counterpart with a higher scale ℓ′ > ℓ (see

Figure 3).
Next we define several good events for the sake of analysis. The first good event Ej,1

characterizes the behavior of the contribution of Z<
j and is formally defined as

1(Ej,1) := 1

(∣∣sum(Z<
j) − E[sum(Z<

j) | Mj−1, Mj]
∣∣ ≤ Bℓ0

4

)
, j ∈ J0.

By Chebyshev’s inequality, it is clear that

E
Mj−1,Mj

[P(Ec
j,1 | Mj−1, Mj)] ≤ E

Mj−1,Mj

[
Var(sum(Z<

j | Mj−1, Mj)
(Bℓ0/4)2

]

≤
Var(sum(Z<

j))
(Bℓ0/4)2

= 16
B2ℓ0

∑
ℓ<ℓ0

Bℓ0−ℓ · B2ℓ

4 ≤ 4
B − 1 .

Consequently, it holds that

E
Mj−1,Mj

[TV(PZj
, PZj |Mj−1,Mj ,Ej,1)]

= E
Mj−1,Mj

[TV(PZj |Mj−1 , PZj |Mj−1,Mj ,Ej,1)]

≤ E
Mj−1,Mj

[TV(PZj |Mj−1 , PZj |Mj−1,Mj
) + TV(PZj |Mj−1,Mj

, PZj |Mj−1,Mj ,Ej,1)]

= E
Mj−1,Mj

[TV(PZj |Mj−1 , PZj |Mj−1,Mj
)] + E

Mj−1,Mj

[P(Ec
j,1 | Mj−1, Mj)]

≤

√
1
2 E

Mj−1,Mj

[KL(PZj |Mj−1∥PZj |Mj−1,Mj
)] + 4

B − 1

=
√

I(Zj ; Mj | Mj−1) + 4
B − 1

≤
√

α + 4
B − 1 ,

APPROX/RANDOM 2024

33:10 On the Amortized Complexity of Approximate Counting

which can be made small by choosing α > 0 small enough and B ∈ N large enough.
Note that in the above inequality we have used the triangle inequality TV(P, Q) ≤
TV(P, R) + TV(Q, R), the conditioning relationship TV(P, P|E) = P (Ec), Pinsker’s in-
equality TV(P, Q) ≤

√
KL(P∥Q)/2, and Jensen’s inequality E[

√
X] ≤

√
E[X].

The next good event E2 concerns the simultaneous occurrence of {Ej,1} for a constant
proportion of j ∈ J0. Specifically, E2 is the event that there exists some J1 ⊆ J0 such that:
1. |J1| ≥ |J0|/2 ≥ T/(4Bℓ0);
2. event Ej,1 is true for all j ∈ J1;
3. a small TV distance TV(PZj

, PZj |Mj−1,Mj ,Ej,1) ≤ 1/4 (denoted by event Ej,2) for all
j ∈ J1.

Since {(Z<
j , Zj , Z>

j)} are conditionally independent given {Mj},

E
{Mj}

 ∑
j∈J0

1(Ej,1 ∩ Ej,2)

=

∑
j∈J0

E
Mj−1,Mj

[1(Ej,1 ∩ Ej,2)]

≥
∑
j∈J0

(
1 − E

Mj−1,Mj

[P(Ec
j,1 | Mj−1, Mj)]

− 4 · E
Mj−1,Mj

[TV(PZj , PZj |Mj−1,Mj ,Ej,1)]
)

≥
(

1 − 4
B − 1 − 4

(√
α + 4

B − 1

))
|J0|

≥ 3
4 |J0|,

by choosing α small enough and B large enough. Consequently, by Markov’s inequality, we
have P(E2) ≥ 1/2 over the randomness of {Mj} and {(Z<

j , Zj , Z>
j)}.

Now we condition on E2 and arrive at the desired contradiction. For a probability
distribution P over the real line and ∆ ≥ 0, define a quantity f(P, ∆) as follows:

f(P, ∆) = max{δ > 0 : ∃L ∈ R such that P ((−∞, L]) ≥ δ, P ([L + ∆, ∞)) ≥ δ}.

Intuitively, a small f(P, ∆) implies that the distribution P assigns a lot of probability to
some interval of length ∆. The following lemma summarizes some properties of f(P, ∆).

▶ Lemma 7. Let P and Q be two probability distributions over R, and P ⋆ Q denote their
convolution. For ∆1, ∆2, ∆ ≥ 0, it holds that

f(P ⋆ Q, ∆1 + ∆2) ≥ f(P, ∆1)f(Q, ∆2),
f(P ⋆ Q, ∆) ≥ f(P, ∆)/2.

Proof. For the first claim, suppose that

min{P ((−∞, L1)], P ([L1 + ∆1, ∞))} ≥ f(P, ∆1),
min{Q((−∞, L2)], Q([L2 + ∆2, ∞))} ≥ f(Q, ∆2).

Then the first inequality follows from

P ⋆ Q((−∞, L1 + L2]) ≥ P ((−∞, L1])Q((−∞, L2]) ≥ f(P, ∆1)f(Q, ∆2),
P ⋆ Q([L1 + L2 + ∆1 + ∆2, ∞))

≥ P ([L1 + ∆1, ∞))Q([L2 + ∆2, ∞)) ≥ f(P, ∆1)f(Q, ∆2).

The second claim is a direct consequence of the first claim and f(Q, 0) ≥ 1/2. ◀

I. Aden-Ali, Y. Han, J. Nelson, and H. Yu 33:11

To apply Lemma 7, we consider the conditional distribution PS|{Mj}, where S =
∑n

i=1 Xi

is the total number of counter updates, and {Mj} are the memory states at scale ℓ0
defined before. Since the counter A is (ϵ, δ)-approximate, in expectation PS|{Mj} must have
probability mass at least 1 − δ on an interval of size 2ϵn. This implies that

E
{Mj}

[f(PS|{Mj}, 2ϵn)] ≤ δ. (1)

On the other hand, since {(Z<
j , Zj , Z>

j)} are conditionally independent given {Mj}, we
may invoke Lemma 7 (first part for J1 and second part for Jc

1) to arrive at

E
{Mj}

[f(PS|{Mj}, 2ϵn)] ≥ P(E2) E
{Mj}

[f(PS|{Mj}, 2ϵn) | E2]

≥ 1
2 · E

{Mj}

 ∏
j∈J1

f(Psum(Z<
j

,Zj ,Z>
j

)|Mj−1,Mj
,

2ϵn

|J1|
) ·

(
1
2

) T

Bℓ0
−|J1|

| E2

≥ 1

2T
· E

{Mj}

 ∏
j∈J1

f(Psum(Z<
j

,Zj ,Z>
j

)|Mj−1,Mj
, 8ϵLBℓ0) | E2

 .

Conditioned on the event E2, the event Ej,1 implies that the deviation of sum(Z<
j) to its

posterior mean is at most Bℓ0/4, and the event Ej,2 implies that the posterior (marginal)
distribution of Zj puts at least 1/4 probability mass on both 0 and Bℓ0 . Moreover, sum(Z>

j)
is always an integral multiple of Bℓ0+1. Now we prove that

f(Psum(Z<
j

,Zj ,Z>
j

)|Mj−1,Mj ,Ej,1,Ej,2
,

Bℓ0

3) ≥ 1
16 .

We distinguish into two cases:
1. Case I: P(sum(Z>

j) ̸= median(sum(Z>
j))) ≥ 1/8. As sum(Z>

j) is always an integral
multiple of Bℓ0+1, this implies that with probability at least 1

8 , |median(sum(Z>
j)) −

sum(Z>
j)| is at least Bℓ0+1/2. By symmetry, without loss of generality we may assume that

median(sum(Z>
j))−sum(Z>

j) is at least Bℓ0+1/2 with probability at least (1/8)/2 = 1/16.
Moreover, the range of Zj is Bℓ0 , and the range of sum(Z<

j) is at most Bℓ0/2 under Ej,1.
Consider the interval[

median(sum(Z<
j , Zj , Z>

j), median(sum(Z<
j , Zj , Z>

j)) + Bℓ0

3

]
of length Bℓ0/3, it is clear that

P
(
sum(Z<

j , Zj , Z>
j) ≤ median(sum(Z<

j , Zj , Z>
j))

)
≥ 1

2 ,

P
(

sum(Z<
j , Zj , Z>

j) ≥ median(sum(Z<
j , Zj , Z>

j)) + Bℓ0

3

)
≥ P

(
sum(Z>

j) ≥ median(sum(Z>
j)) + 3Bℓ0

2 + Bℓ0

3

)
≥ 1

16 ,

as long as Bℓ0+1/2 ≥ 11Bℓ0/6, or equivalently B ≥ 4.
2. Case II: P(sum(Z>

j) = median(sum(Z>
j))) ≥ 7/8. In this case, we argue that each of the

following two probabilities is at least 1/16:

P
(

sum(Z<
j) + Zj + sum(Z>

j) ≤ E[sum(Z<
j)] + Bℓ0

3 + median(sum(Z>
j))

)
,

APPROX/RANDOM 2024

33:12 On the Amortized Complexity of Approximate Counting

P
(

sum(Z<
j) + Zj + sum(Z>

j) ≥ E[sum(Z<
j)] + 2Bℓ0

3 + median(sum(Z>
j))

)
.

By symmetry we only prove the first claim, where the event occurs whenever Zj = 0 and
sum(Z>

j) is equal to its median. By the union bound, this happens with probability at
least 1 − (1/8 + 3/4) = 1/8.

Consequently, as long as ϵ ≤ 1/(24L) = O(1/ log log(1/δ)),

E
{Mj}

[f(PS|{Mj}, 2ϵn)] ≥
(

1
32

)T

. (2)

However, as T < log32(1/δ), inequalities (1) and (2) are contradictory to each other. Thus,
the assumption that IC(A; D) < αnL cannot be true. ◀

X1 X2

M2M1

X3

M3

X4 X5

M5M4

X6

M6

X8 X9

M9M8

X10

M10

X11 X12

M12M11

X13

M13

X7

M7

X14

M14

Z2,2

=

Z1,3

=

0

=

0

=

0

=

0

=

0

=

Z1,2

=

0

=

0

=

0
=

Z3,1

=

Z2,1

=

Z1,1

=

= M j

= M j−1

= Zj ∈ Z>
j ∈ Z<

j

∈ Z<
j

M0

Figure 3 A simple example that illustrates the interleaving process for our random stream. We
set the parameters B = 2 and T = 8 so that we sample from L = 3 scales to get a stream of total
length n = 24. We do not illustrate the entire stream to save space. In this example we consider
ℓ0 = 2 and demonstrate what a typical Zj looks like. The sequence of random variables inside the
red dotted box/window consists of the terms (Z<

j , Zj , Z>
j) and we highlight the memory states

Mj−1, Mj .

2.2 Amortized space complexity via direct sum
We will now “lift” the information lower bound for any (ϵ, δ)-approximate counter to a lower
bound for any (k, ϵ, δ)-approximate counter from which we can derive a lower bound on the
memory size. The proof follows from a simple direct sum argument applied to the information
cost.

▶ Lemma 8. Any (k, ϵ, δ)-approximate counter with parameters δ ∈ (0, c1) and ϵ ∈
(0, c2

log log(1/δ)) that maintains k counters with total sum at most n ≥ k(c3 logc4(1/δ)) must
use

Ω(k log log(1/δ)) = Ω(k min{log(n/k), log log(1/δ)})

bits of memory in expectation.

I. Aden-Ali, Y. Han, J. Nelson, and H. Yu 33:13

Proof. We prove the lower bound via a reduction to the information lower bound for a single
counter. That is, we will embed updates from the hard distribution D used to prove the single
counter lower bound in Lemma 6 into the k counter problem. Fix a (k, ϵ, δ)-approximate
counter Ak. Since the distribution D is a product distribution, we can write D =

∏n′

i=1 Di

for n′ := n/k. We define Xk
i := (Xi,1, . . . , Xi,k) ∼ (Di)k for each i ∈ [n′]. We consider Xk

i

to be the ith input to Ak where Xi,j is the update applied to jth counter. The overall input
to Ak is

(Xk
1 , . . . , Xk

n′) ∼
n′∏

i=1
(Di)k,

and the total sum of all counts is at most n = kn′ ≥ k(c3 logc4(1/δ)) (see Lemma 6). Define
Dint :=

∏n′

i=1(Di)k. Let Mi be the memory state of the algorithm after processing the ith
input Xk

i . We can lower bound the information cost incurred by Ak:

IC(Ak, Dint) =
n′∑

i=1

i∑
j=1

I(Mi; Xk
j | Mj−1) ≥

k∑
u=1

n′∑
i=1

i∑
j=1

I(Mi; Xj,u | Mj−1),

where the inequality follows from the superadditivity of conditional mutual information
(Proposition 4).

We now explain how we embed the single counter problem into the k counter problem
using Ak. Given the input Xn′ = (X1, . . . , Xn′) ∼ D for a single counter, we pick an index
u ∈ [k] uniformly at random and proceed as if the updates are applied to uth counter of
Ak. Denote by U this uniformly random index. For the other counters, we simulate “fake”
updates from the same distribution and apply them to Ak as if they were received as inputs.
Denote by A′ the resulting approximate counter that maintains Xn′ . We can upper bound
the information cost of A′ by

IC(A′, D) =
n′∑

i=1

i∑
j=1

I(Mi; Xj,U | Mj−1, U)

= 1
k

k∑
u=1

n′∑
i=1

i∑
j=1

I(Mi; Xj,u | Mj−1)

≤ 1
k

n′∑
i=1

i∑
j=1

I(Mi; Xk
j | Mj−1)

= IC(Ak, Dint)
k

.

Combining the above with Lemma 6 provides a lower bound on IC(A′, D), which further
implies the space lower bound

1
n′

n′∑
i=1

E[|Mi|] ≥ Ω(k min{log(n/k), log log(1/δ)})

for the claimed range of ϵ and δ. ◀

2.3 Offline lower bound
We now state and prove the remaining part of the lower bound.

APPROX/RANDOM 2024

33:14 On the Amortized Complexity of Approximate Counting

▶ Lemma 9. For any ϵ ∈ (0, c1), δ ∈ (0, c2) and 1 < k ≤ n, any (k, ϵ, δ)-approximate counter
A that maintains k counters with total sum at most n must use

|M | = Ω (min{k log(n/k), k log(1/ϵ) + k log log(n/k)})

bits of memory.

Proof. Let N(i) = ⌈(e4iϵ − 1) · ϵ−1⌉. Some simple calculations show

(1 − ϵ) · N(i + 1) − (1 + ϵ) · N(i)

≥ ϵ−1(1 − ϵ)(e4(i+1)ϵ − 1) − ϵ−1(1 + ϵ)(e4iϵ − 1) − (1 + ϵ)
= ϵ−1((1 − ϵ)eϵ − 1 − ϵ)e4iϵ + 1 − ϵ

≥ ϵ−1((1 − ϵ)e4ϵ − 1 − ϵ)e4iϵ

≥ ϵ−1((1 − ϵ)(1 + 4ϵ) − 1 − ϵ) · 1
= 2 − 4ϵ > 0.

So for any i ̸= i′, N(i) and N(i′) must have a (1 ± ϵ) multiplicative gap. We will consider
k counters that take on such values, i.e. k counters that receive an (arbitrary) sequence of
increments leading to counts N(i1), N(i2), . . . , N(ik) respectively. It is easy to see that if
ir ≤ (4ϵ)−1 · ln(1+nϵ/k) for all r ∈ [k], the total sum of all the counters will be at most n. Let
q := ⌊(4ϵ)−1 · ln(1+nϵ/k)⌋ and define the set of possible counts N := {N(1), N(2), . . . , N(q)}.
We can represent the counts of all k counters as vectors in Nk.

Consider a “large” collection of vectors V ⊆ Nk such that for every pair of counts u, v ∈ V ,
u and v differ in at least at least 90% of the coordinates. Notice that this implies that u

and v differ multiplicatively in at least 90% of the coordinates by definition. Such a V is
equivalent to an error correcting code.

▶ Definition 10. An error correcting code C of length k over a finite alphabet Σ is a subset
of Σk. The elements of C are called code words. The distance of the code C, denoted ∆(C),
is defined as the minimum hamming distance between any two code words c1, c2 ∈ C, i.e.

∆(C) := min
c,c′∈C

c ̸=c′

∆(c, c′),

where ∆(c, c′) := |{i : ci ̸= c′
i}| is the hamming distance between two vectors.

In the language of error correcting codes, we want our collection of counts V to be a a large
error correcting code with a minimum distance of 0.9k. Fortunately, the Gilbert-Varshamov
bound immediately implies the existence of such a V that is large enough for our purposes.

▶ Lemma 11 (Gilbert-Varshamov bound). For any alphabet size q > 1, code length k and
distance d ≤ k, there exists an error correcting code C with size,

|C| ≥ qk∑d−1
i=0

(
k
i

)
(q − 1)i

.

Consequently, for d = 0.9k and any q larger than a universal constant, there is a code C with
size |C| ≥ q0.05k.

Thus, when q is a large enough constant (which can be achieved by making for ϵ smaller than
some universal constant c), the Gilbert-Varshamov bound tells us there is a choice of V such
that |V | ≥ q0.05k. Fix a (k, ϵ, δ)-approximate counter A. For any v ∈ V and i ∈ [k], A must

I. Aden-Ali, Y. Han, J. Nelson, and H. Yu 33:15

accurately approximate vi with probability at least 1 − δ. Denote the event that A correctly
approximates vi by Ev,i. Since E[

∑k
i=1 1(Ec

v,i)] ≤ k · δ < k/20, by Markov’s inequality we
can conclude the existence of a subset Iv ⊆ [k] such that:
1. |Iv| ≥ 0.9k,
2. P[∩i∈Iv

Ev,i] > 1/2. Put in words, with probability at least 1/2, for every i ∈ Iv, the
algorithm A outputs a (1 + ϵ)-approximation for vi.

Define the event Ev := ∩i∈Iv
Ev,i. Since E

[∑
v∈V 1(Ec

v)
]

≤ |V |/2, a standard averaging
argument implies the existence of a fixed choice for the random seed of A and a subset of
counts V ′ ⊆ V such that:
1. |V ′| > |V |/2,
2. and the algorithm is correct on all v ∈ V ′ in the sense of the event Ev on this random

seed.
Fix such a random seed and denote the now deterministic algorithm A′. For two counts
u, v ∈ V ′ define the set Du,v := {i ∈ [k] : ui ≠ vi}. By construction we have that
|Du,v| ≥ 0.9k. We have

|Du,v ∩ Iu ∩ Iv| ≥ k − |Dc
u,v| − |Ic

u| − |Ic
v |

≥ k − 0.3k = 0.7k > 1.

Thus, there is at least one index i∗ ∈ [k] such that ui∗ ̸= vi∗ and A′ (1 + ϵ)-approximates
both ui∗ and vi∗ , so A′ arrives at a different state for u and v. Since this holds for every
pair in V ′, we can conclude that A′ must arrive at a different state for every count in V ′.
We can now conclude that

2|M | ≥ |V ′| ≥ 0.5 · (⌊(4ϵ)−1 · ln(1 + nϵ/k)⌋)0.05k =
(

Ω
(

ln(1 + nϵ/k)
ϵ

))0.05k

,

or

|M | ≥ 0.05k log
(

ln(1 + nϵ/k)
ϵ

)
− O(k).

We distinguish into three cases:
1. If ϵ < k/n, then ln(1+nϵ/k)

ϵ = Ω(n/k), which implies |M | ≥ 0.05k log(n/k) − O(k).
2. If k/n ≤ ϵ <

√
k/n, we have

|M | ≥ 0.05k log(1/ϵ) − O(k)
≥ 0.05k log(1/ϵ) + k log log(n/k) − O(k log log(1/ϵ)).

3. If ϵ >
√

k/n, we have

|M | ≥ 0.05k log(1/ϵ) + 0.05k log log(ϵn/k) − O(k)
≥ 0.05k log(1/ϵ) + 0.05k log log(n/k) − O(k).

Putting all the above bounds together gives us

|M | ≥ min{0.05k log(n/k) − O(k), 0.05k log(1/ϵ) + 0.025k log log(n/k)
− O(k log log(1/ϵ))}

= Ω(min{k log(n/k), k log(1/ϵ) + k log log(n/k)}). ◀

APPROX/RANDOM 2024

33:16 On the Amortized Complexity of Approximate Counting

3 Upper bounds

We now state matching upper bounds (k, ϵ, δ)-approximate counting that follow immediately
from the single counter case. We give upper bounds in two regimes: the case k ≤ N , and the
case k > N . We start by analyzing the first case.

Recall that the space usage of an approximate counter is typically a random variable, and
the goal is to then prove an upper bound on the expected space (or, say, a high probability
bound). The work of Nelson and Yu [9] provided the following bound on expected space
usage for a single counter:

▶ Theorem 12 ([9]). For any ϵ, δ ∈ (0, 1/2), there is an (ϵ, δ)-approximate counter with
expected space usage O(log log N + log log(1/δ) + log(1/ϵ)) bits.

The following is then a very simple corollary of Theorem 12.

▶ Corollary 13. For any ϵ, δ ∈ (0, 1/2) and 1 ≤ k ≤ N , there is a (k, ϵ, δ)-approximate
counter that uses O(k(log log(2N/k) + log log(1/δ) + log(1/ϵ))) bits in expectation.

Proof. We simply instantiate k independent copies of the data structure from Theorem 12
to provide k independent approximate counters, one per actual counter. For each 1 ≤ i ≤ k,
let Si denote the (random) number of bits of memory used to store the approximate counter
representing the ith counter Ni and recall N :=

∑
i Ni. Then the total expected space is

E

[
k∑

i=1
Si

]
=

k∑
i=1

E[Si]

≤ C
k∑

i=1
(log log(Ni) + log log(1/δ) + log(1/ϵ)) (Theorem 12)

= Ck(log log(1/δ) + log(1/ϵ)) +
k∑

i=1
log log(Ni)

≤ Ck(log log(4N/k) + log log(1/δ) + log(1/ϵ)) (Jensen),

where the last inequality uses concavity of the function x ∈ (1, ∞) 7→ log log(x). Note that we
inject a constant 4 in the iterated logarithm so that the log log term stays nonnegative. ◀

We now turn to the case k > N . In this case, there is a clear lower bound of
Ω(N log(Ck/N)) bits, since log(

∑N
j=1

(
k
j

)
) bits of memory are needed to simply remember

which counters are non-zero, and the logarithm of this sum is Θ(N log(Ck/N)) [5, Exercise
9.42]. We claim that this is also an upper bound. Specifically, we can use O(N log(Ck/N))
bits to remember the locations of the t ≤ N non-zero counters. Now we have reduced to the
case k = t ≤ N and can apply Corollary 13 to approximately remember their values.

References
1 Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics

approach to data stream and communication complexity. J. Comput. Syst. Sci., 68(4):702–732,
2004.

2 Mark Braverman, Sumegha Garg, and David P. Woodruff. The coin problem with applications
to data streams. In Proceedings of the 61st IEEE Annual Symposium on Foundations of
Computer Science (FOCS), pages 318–329, 2020.

I. Aden-Ali, Y. Han, J. Nelson, and H. Yu 33:17

3 Amit Chakrabarti, Yaoyun Shi, Anthony Wirth, and Andrew Chi-Chih Yao. Informational
complexity and the direct sum problem for simultaneous message complexity. In Proceedings
of the 42nd Annual Symposium on Foundations of Computer Science (FOCS), pages 270–278,
2001.

4 Thomas M. Cover and Joy A. Thomas. Elements of information theory. Wiley, 2 edition,
2006. URL: http://www.elementsofinformationtheory.com/.

5 Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics: A
Foundation for Computer Science, 2nd Ed. Addison-Wesley, 1994.

6 Elena Kolevska. What happens with Redis runs out of memory, December 2018. URL:
https://www.youtube.com/watch?v=Xjq5XL2u3po.

7 Jérémie Lumbroso. The story of HyperLogLog: How Flajolet processed streams with coin
flips. CoRR, abs/1805.00612, 2018.

8 Robert H. Morris. Counting large numbers of events in small registers. Commun. ACM,
21(10):840–842, 1978.

9 Jelani Nelson and Huacheng Yu. Optimal bounds for approximate counting. In Proceedings of
the 41st ACM International Conference on Principles of Database Systems (PODS), pages
119–127, 2022.

10 Michael Sipser. Introduction to the theory of computation. PWS Publishing Company, 1997.

APPROX/RANDOM 2024

http://www.elementsofinformationtheory.com/
https://www.youtube.com/watch?v=Xjq5XL2u3po

Matrix Multiplication Reductions
Ashish Gola #

Simon Fraser University, Burnaby, Canada

Igor Shinkar #

Simon Fraser University, Burnaby, Canada

Harsimran Singh #

Simon Fraser University, Burnaby, Canada

Abstract
In this paper we study a worst case to average case reduction for the problem of matrix multiplication
over finite fields. Suppose we have an efficient average case algorithm, that given two random
matrices A, B outputs a matrix that has a non-trivial correlation with their product A · B. Can
we transform it into a worst case algorithm, that outputs the correct answer for all inputs without
incurring a significant overhead in the running time? We present two results in this direction.

Two-sided error in the high agreement regime. We begin with a brief remark about a reduction
for high agreement algorithms, i.e., an algorithm which agrees with the correct output on a large
(say > 0.9) fraction of entries, and show that the standard self-correction of linearity allows us
to transform such algorithms into algorithms that work in worst case.

One-sided error in the low agreement regime. Focusing on average case algorithms with one-sided
error, we show that over F2 there is a reduction that gets an O(T) time average case algorithm
that given a random input A, B outputs a matrix that agrees with A · B on at least 51% of
the entries (i.e., has only a slight advantage over the trivial algorithm), and transforms it into
an Õ(T) time worst case algorithm, that outputs the correct answer for all inputs with high
probability.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Matrix Multiplication, Reductions, Worst case to average case reductions

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.34

Category RANDOM

Related Version arXiv: https://arxiv.org/pdf/2404.08085

Acknowledgements We are grateful to the anonymous referees for their helpful comments. We also
thank Sasha Golovnev and Tom Gur for their valuable feedback.

1 Introduction

The problem of efficiently multiplying two matrices has been extensively studied for decades.
Improving on the straightforward O(n3) time algorithm, Strassen’s algorithm [24] computes
the product of two matrices in time O(nlog2 7 = n2.807), and it is perhaps the most widely used
in practice. Since then, a long and exciting line of research ([19, 5, 21, 20, 23, 9, 22, 25, 17, 1])
has led to a significant improvement of the value of the optimal exponent of the running
time for matrix multiplication problem. The fastest algorithm known today is due to Duan,
Wu, and Zhou [10], and its running time is O(n2.371866).

Worst-case to average-case reductions serve as a means to convert algorithms that output
correct answers on a fraction of inputs into algorithms with correct outputs on all possible
inputs. These reductions can be viewed from two different perspectives. From the hardness
point of view, they can be used to show that a problem maintains its hardness even in the

© Ashish Gola, Igor Shinkar, and Harsimran Singh;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 34; pp. 34:1–34:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ashish_kg@sfu.ca
mailto:ishinkar@sfu.ca
https://orcid.org/0000-0001-5013-6422
mailto:hsa223@sfu.ca
https://orcid.org/0009-0006-8131-0263
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.34
https://arxiv.org/pdf/2404.08085
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 Matrix Multiplication Reductions

average case. From the algorithmic side, they provide a framework for developing worst-
case algorithms, by first designing weak algorithms with average case guarantees, and then
transforming them into algorithms which work on all outputs.

In this paper, we study the following variant of a worst-case to average-case reduction for
the matrix multiplication problem. Suppose we have an efficient algorithm that given two
random matrices A, B ∈ Fn×n, computes a matrix C ∈ Fn×n that agrees with the product
A · B on a large fraction of the entries of the matrix. Can we transform such an algorithm
into one that computes A · B correctly for all entries of the output matrix without incurring
a significant overhead in the running time?

More formally, we define the agreement between two matrices as the fraction of entries
on which the two matrices agree.

▶ Definition 1. Let F be a field, and let A, B ∈ Fn×n be two matrices. We define agreement
between A and B, denoted by agr(A, B), as the fraction of entries (i, j) on which Ai,j = Bi,j ,
i.e.,

agr(A, B) = |{(i, j) : Ai,j = Bi,j}|
n2 .

Then, our goal can be stated as the task of transforming an algorithm that on a random
input A, B outputs a matrix C such that agr(C, AB) ≥ α for some parameter α ∈ [0, 1] into
an algorithm that solves the matrix multiplication problem correctly on all inputs.

We present two results in this direction. Both results consider the matrix multiplication
problem over finite fields.

High agreement regime with two-sided error

We show that any algorithm that solves the matrix multiplication problem correctly on a
high fraction of the coordinates, can be converted into a worst case algorithm. Specifically,
we prove the following theorem.

▶ Theorem 2. Fix a finite field F. Let α ∈ (0, 1/8). Let ALG be an algorithm that gets as
input two matrices A, B ∈ Fn×n, runs in time T (n), and outputs a matrix ALG(A, B) ∈ Fn×n.
Suppose that

EA,B∈Fn×n [agr(ALG(A, B), A · B)] > 1 − α .

Then, there is an algorithm ALG∗ that gets as input two matrices A, B ∈ Fn×n, runs in time
O(T (n) · log(n)), and outputs a matrix ALG∗(A, B) ∈ Fn×n such that for all A, B it holds
that

Pr[ALG∗(A, B) = A · B] > 1 − 1/n ,

where the randomness is only over the internal coins of ALG∗.

The proof of this result relies on rather standard ideas, and essentially uses the self-
correction of linear functions [6].

Low agreement with one-sided error

For this result, we restrict our discussion to the finite field F2. Note that it is trivial to
design an O(n2) time algorithm such that EA,B∈Fn×n

2
[agr(ALG(A, B), A · B)] ≥ 1/2. Indeed,

the algorithm can simply output 0 in all entries irrespective of the input. Alternatively, the
algorithm can output a random 0/1 matrix. Hence, it is natural to ask whether it is possible
to obtain a better-than-1/2 algorithm for the matrix multiplication over F2.

A. Gola, I. Shinkar, and H. Singh 34:3

Below we show that in the special case of one-sided error approximation, any better-than-
1/2 approximation O(T) time algorithm can be transformed into a worst case algorithm with
running time Õ(T). Formally, we prove the following theorem.

▶ Theorem 3. Let ALG be an algorithm that gets input two matrices A, B ∈ Fn×n
2 , runs in

time T (n), and outputs a matrix ALG(A, B) ∈ Fn×n
2 . Let δ > 0, and suppose that

EA,B∈Fn×n
2

[agr(ALG(A, B), A · B)] ≥ 1/2 + δ.
If (AB)i,j = 0, then ALG(A, B)i,j = 0.

Then, there is an algorithm ALG∗ that gets as input two matrices A, B ∈ Fn×n
2 , runs in time

Õ(T (n)), and outputs a matrix ALG∗(A, B) ∈ Fn×n
2 such that for all A, B it holds that

Pr[ALG∗(A, B) = A · B] > 1 − 1/n,

where the randomness is only over the internal coins of ALG∗.

▶ Remark 4. Below we make several comments about Theorem 3.

1. Note that the conditions of the theorem can be written equivalently as follows.
PrA,B∈Fn×n

2
i,j∈[n]

[ALG(A, B)i,j = 1] ≥ δ.

If (AB)i,j = 0, then ALG(A, B)i,j = 0.
2. The notion of algorithms with one-sided error is typically studied in the context of

randomized algorithms, e.g., relating to the classes RP (and coRP), where the guarantee
is that for every NO input the algorithm outputs the correct answer with probability 1,
and for every YES input it is correct with probability at least 2/3. The error model in
Theorem 3 is different, as we consider algorithms that are correct on random inputs on
all output 0-bits, and on at least some α-fraction of 1-bits.

3. Alternatively, we can view the one-side error condition of Theorem 3 as an errorless
heuristic, where in each entry of the matrix ALG outputs either 1 representing the correct
answer, or says “I don’t know” and outputs 0.

4. We remark that the standard methods of self-correcting linear functions work in the
high agreement regime, but fail when the average case guarantee is low. We apply the
techniques from additive combinatorics developed in [2], particularly a version of the
probabilistic Bogolyubov-Ruzsa Lemma, to perform a self-correction procedure which
helps in this regime.

5. Our proof of Theorem 3 assumes that ALG is deterministic. It is rather straightforward
to extend the proof and allow it to be randomized, by appropriately modifying the sets
of good inputs (Xi,j and Y A

i,j) to account for the randomness of the algorithm.

1.1 Related work
The study of average-case complexity began with Levin’s work [18], followed by subsequent
works like [4]. A substantial body of research (e.g., [16], [15] and related references) identified
numerous barriers in formulating worst-case to average-case reductions for NP-complete
problems. For a comprehensive overview of this subject, see the classical surveys by Im-
pagliazzo [14], Bogdanov and Trevisan [7] and Goldreich [12].

Asadi et al. [2, 3] presented a new framework for carrying out efficient worst-case to
average case reductions for various fundamental problems. Particularly, for the problem of
matrix multiplication, they proved that if there exists an O(T (n)) time algorithm M for
matrix multiplication which computes the correct output on an ϵ fraction of inputs, then
there exists a randomized algorithm M ′ which computes the correct output on all inputs,
running in time O(exp(O(log5(1/ϵ)) · T (n)). The proof relied on additive combinatorial
techniques and used the probabilistic Bogolyubov-Ruzsa Lemma.

APPROX/RANDOM 2024

34:4 Matrix Multiplication Reductions

Hirahara and Shimizu [13] improved the exp(O(log5(1/ϵ))) overhead to an Õ(1/ϵ) factor.
Their idea involved dividing the output matrix into smaller blocks and using the Direct-
Product Theorem in a black-box manner.

The aforementioned papers assume that we have access to an algorithm which gives a
fully correct output on some fraction of the inputs, i.e., for these inputs all entries in the
output matrix are correct. The setting presented in this paper, where the output of the given
algorithm is not fully correct, seems to differ significantly from the works mentioned above.
In particular, we do not see how to apply the Direct-Product theorem to our setting of the
problem.

A related problem was studied by [11]. Specifically, they provided an Õ(n2 + kn) time
randomized algorithm and an Õ(kn2) time deterministic algorithm for correcting the product
of two matrices over a ring, where the product has at most k incorrect entries. Theorem 2
improves upon their work for a certain range of k, e.g., n2/20 < k < n2/8, and Theorem 3
gives a new result for k closer to n2/2 in a very specific error model.

1.2 Open problems

We mention the following two problems that are left open in this work.

Low agreement with two-sided error

Is it possible to transform a two-sided error algorithm over F2 with a low agreement guarantee
into a worst case algorithm. That is, given an O(T (n)) time algorithm ALG with the
guarantee EA,B∈Fn×n

2
[agr(ALG(A, B), A · B)] > 1/2 + δ, can we convert it into an algorithm

that correctly outputs the correct answer on all inputs and has running time Õ(T (n))?

Generalizing over finite fields

Extend Theorem 3 in a meaningful way to work over any finite field.

2 Preliminaries

For a positive integer n we define [n] = {0, 1, . . . , n − 1}. We index the coordinates of our
matrices starting from 0 rather than 1, which is typically more standard. We refer to the
element in the row i and column j of the matrix A as Ai,j .

We define a notion of row-shift (or row-rotation) and column-shift as follows.

▶ Definition 5. Given a matrix A ∈ Fn×m, 0 ≤ π ≤ n − 1, and 0 ≤ σ ≤ m − 1, define Aπ,σ

to be the matrix obtained from A by cyclically rotating all its rows downwards by π units and
all its columns rightwards by σ units, that is,

(Aπ,σ)i,j = A(i−π) mod n,(j−σ) mod m

The following proposition is immediate from the definition above.

▶ Proposition 6. For any A, B, C ∈ Fn×n and any π, σ we have AB = C if and only if
Aπ,0 · B0,σ = Cπ,σ.

A. Gola, I. Shinkar, and H. Singh 34:5

2.1 Additive Combinatorics Tools
We now present the additive combinatorics toolkit which will be useful in the worst-case to
average-case reduction for the low agreement regime with one-sided error.

For a set A ⊆ Fn
2 , let 1A : Fn

2 → {0, 1} denote the indicator function of A. The Fourier
expansion of a function f : Fn

2 → C is given by f(x) =
∑

r∈Fn
2

f̂(r) · χr(x), where χr(x) =
(−1)⟨x,r⟩, and the Fourier coefficients of f are defined as f̂(r) = ⟨f, χr⟩ = Ex[f(x) · χr(x)].
Parseval’s identity says that

∑
r∈F2n 1̂A(r)

2
= ⟨1A, 1A⟩ = α, where α is the density of A.

Define Specγ(A) = {r ∈ Fn
2 :

∣∣∣1̂A(r)
∣∣∣ ≥ γ}. Below we state Chang’s lemma, which

describes a certain structure of Specγ(A).

▶ Lemma 7 (Chang’s Theorem [8]). Let A ⊆ Fn be a set of size |A| = α · |F|n, and let γ > 0.
Then

dim(span(Specγα(A))) ≤ O

(
log(1/α)

γ2

)
.

Recall that the subset sum of two sets A and B is defined as A+B = {a+b : a ∈ A , b ∈ B}.
Analogously, we define tA = A+A+· · ·+A (t times) as tA = {a1 +a2 · · ·+at : a1, a2, . . . , at ∈
A}. The following lemma says that for an arbitrary set A ⊆ Fn, the sumset tA contains a
large affine subspace.

▶ Lemma 8 (Probabilistic Bogolyubov-Ruzsa lemma). Let A ⊆ Fn
2 be a set of size |A| = α · 2n,

for some α ∈ (0, 1], and let t ≥ 3 be an integer. Then, tA contains an affine subspace V ⊆ Fn
2

of dimension dim(V) ≥ n − O(log(1/α)) such that for all v ∈ V it holds that

Pr
a1,a2,..,at−1∈Fn

2

[a1, a2, a3, .., at ∈ A] ≥ αt

(
1 + 1

2t−2

)
− αt−1

2t−2 ,

where at = v − a1 − a2 − .. − at−1.
In particular, if t > log2(1/α) + 2, then tA contains an affine subspace V ⊆ Fn

2 of
dimension dim(V) ≥ n − k, for k = O(log(1/α)), such that for all v ∈ V it holds that

Pr
a1,a2,..,at∈Fn

2
v=

∑t

i=1
ai

[a1, a2, a3, .., at ∈ A] ≥ (α/2)t .

Below we prove Lemma 8 only for odd values of t, which is slightly more complicated
than the case of even t. After the proof, we remark how to modify the proof to work for
even t’s.

Proof. Let A ⊆ Fn
2 be a set of size |A| = α · |F|n, for some α ∈ (0, 1]. Consider the set

R = Specα/2 \ {0} = {r ∈ F n
2 \ {0} :

∣∣∣1̂A(r)
∣∣∣ >

α

2 }

Next we define an affine subspace V = {v ∈ Fn
2 : ⟨v, r⟩ = sr ∀r ∈ R} for some sr ∈ {0, 1}

to be defined later, and claim that V satisfies the conclusions of Lemma 8. We will need the
following two claims.

▷ Claim 9. For all r ∈ R there exists sr ∈ {0, 1} such that (1)
∑

r∈R 1̂A(r)t · (−1)sr ≥ 0
and (2) if r∗ ∈ R is a linear combination r∗ =

∑
r∈R cr · r of vectors in R (with cr ∈ F2),

then sr∗ =
∑

r∈R cr · sr (mod 2).

APPROX/RANDOM 2024

34:6 Matrix Multiplication Reductions

Proof. Let R′ be a maximal subset of R of linearly independent vectors. Choose sr′ ∈ {0, 1}
independently with probability 0.5 each for every r′ ∈ R′. Now any r ∈ R \ R′, can be
expressed as a linear combination r =

∑
r′ cr′ · r′ of vectors in R′ with cr′ ∈ {0, 1} define

sr =
∑

r′ cr′ · sr′ . It is immediate to verify that condition (2) is satisfied.
In order to satisfy condition (1) note that by linearity of expectation E[

∑
r∈R 1̂A(r)t ·

(−1)sr] = 0, and hence there exists a choice of (sr)r∈R such that
∑

r∈R 1̂A(r)t · (−1)sr ≥ 0,
as required. ◁

▷ Claim 10. We have
∑

r ̸∈R,r ̸=0

∣∣∣1̂A(r)
∣∣∣t

≤ (α/2)t−2(α − α2).

Proof. For t ≥ 3, it holds that∑
r ̸∈R,r ̸=0

∣∣∣1̂A(r)
∣∣∣t

≤ max
r ̸∈R,r ̸=0

∣∣∣1̂A(r)
∣∣∣t−2 ∑

r ̸∈R,r ̸=0

∣∣∣1̂A(r)
∣∣∣2

≤ (α/2)t−2
∑

r∈F2n\{0}

1̂A(r)
2

< (α/2)t−2(α − α2) . ◁

Define an affine subspace V = {v ∈ Fn
2 : ⟨v, r⟩ = sr ∀r ∈ R}, where sr ∈ {0, 1} is from

Claim 9. Note that if the vectors in R are linearly dependent, then the second condition of
Claim 9 guarantees that we can define V = {v ∈ Fn : ⟨v, r′⟩ = sr′ ∀r′ ∈ R′} for a maximal set
R′ ⊂ R of linearly independent vectors in R, and the remaining constraints will be satisfied
by linearity. Then, according to Lemma 7 we have

dim(V) ≥ n − O (log(1/α)) .

Using the two claims above, and noting that Pra1,a2,..,at−1∈Fn [a1, a2, a3, .., at ∈ A] =
1A ∗ 1A ∗ .. ∗ 1A(v) (t times), for any v ∈ V we have

Pra1,a2,..,at−1∈Fn [a1, a2, a3, .., at ∈ A] = 1A ∗ 1A ∗ .. ∗ 1A(v)

=
∑

r∈Fn

1̂A(r)
t
χr(v)

= 1̂A(0)
t

+
∑
r∈R

1̂A(r)
t
χr(v) +

∑
r ̸∈R,r ̸=0

1̂A(r)
t
χr(v)

≥ αt +
∑
r∈R

1̂A(r)
t

· (−1)sr − (α/2)t−2(α − α2)

≥ αt + 0 − (α/2)t−2(α − α2)

= αt

(
1 + 1

2t−2

)
− αt−1

2t−2 .

In particular, for t > log2(1/α) + 2, we have

Pra1,a2,..,at−1∈Fn [a1, a2, a3, .., at ∈ A] ≥ αt

(
1 + 1

2t−2

)
− αt−1

2t−2

≥ αt

(
1 + 1

2t−2

)
− αt

≥ (α/2)t ,

as required. ◀

A. Gola, I. Shinkar, and H. Singh 34:7

▶ Remark 11. For even values of t the lemma is slightly easier. Specifically, since 1̂A(r)
t

is
always non-negative, we can take sr = 0 in Claim 9, and the rest of the proof works the
same.

3 High Agreement with Two-Sided Error

In this section, we prove Theorem 2. Specifically, we show that if there exists an algorithm
which, given two matrices A, B ∈ Fn×n, runs in time T (n) and correctly computes their
product on a large fraction of all entries of output on average, then there exists another
algorithm that runs in Õ(T (n)) time and correctly computes their product on all entries of
output. The proof essentially uses the self-correction of linearity [6].

▶ Theorem 2. Fix a finite field F. Let α ∈ (0, 1/8). Let ALG be an algorithm that gets as
input two matrices A, B ∈ Fn×n, runs in time T (n), and outputs a matrix ALG(A, B) ∈ Fn×n.
Suppose that

EA,B∈Fn×n [agr(ALG(A, B), A · B)] > 1 − α .

Then, there is an algorithm ALG∗ that gets as input two matrices A, B ∈ Fn×n, runs in time
O(T (n) · log(n)), and outputs a matrix ALG∗(A, B) ∈ Fn×n such that for all A, B it holds
that

Pr[ALG∗(A, B) = A · B] > 1 − 1/n ,

where the randomness is only over the internal coins of ALG∗.

Proof. Given the algorithm ALG as in the assumption of the theorem, we design ALG∗ as
follows.

Algorithm 1 Approximation for High Agreement Matrix Multiplication Algorithms.

Input: A, B ∈ Fn×n, ALG
Output: A · B

1 Let k = O(log(n))
2 for r = 0 to k do
3 Generate two random matrices R, S ∈ Fn×n

4 Select two random variables π, σ ∈ [n] independently
5 M = ALG((A + R)π,0, (B + S)0,σ) − ALG(Rπ,0, (B + S)0,σ) − ALG((A +

R)π,0, S0,σ) + ALG(Rπ,0, S0,σ)
6 Let Cr = Mn−π,n−σ

7 Define the matrix C ∈ Fn×n by taking the majority vote of all Cr in each coordinate.

Correctness

Consider an entry (i, j) in the output matrix A · B. In each iteration we call ALG four times,
and in each of the calls the input is distributed uniformly in Fn×n. Furthermore, since π, σ

are chosen uniformly, it follows that (i + π, j + σ) are distributed uniformly. Therefore, the
probability that that all the four calls of ALG produce the correct answer in this entry is at
least 1 − 4α. Therefore, for each repetition r, we have

Pr[(Cr)i,j = (A · B)i,j] ≥ 1 − 4α .

APPROX/RANDOM 2024

34:8 Matrix Multiplication Reductions

By Chernoff bound, the probability that the majority vote of the k repetition will produce
an incorrect answer is upper bounded by

Pr[(Cr)i,j = (A · B)i,j] ≥ exp (−Ω((1 − 4α − 1/2) · k)) < 1/n3 ,

Here we make the assumption that α is bounded below 1/8.
Hence, the probability that a particular entry (i, j) is incorrect after k iterations is at

most n−3. By union bound over all entries, the probability that at least one entry is incorrect
in the output matrix is at most n2 · n−3 = 1/n.

Running time

The total running time is dominated by O(log(n)) invocations of ALG, and hence, the
runtime of ALG∗ is O(T (n) · log(n)). ◀

4 Low Agreement with One-Sided Error

In this section we prove Theorem 3. We restate the theorem here for convenience.

▶ Theorem 3. Let ALG be an algorithm that gets input two matrices A, B ∈ Fn×n
2 , runs in

time T (n), and outputs a matrix ALG(A, B) ∈ Fn×n
2 . Let δ > 0, and suppose that

EA,B∈Fn×n
2

[agr(ALG(A, B), A · B)] ≥ 1/2 + δ.
If (AB)i,j = 0, then ALG(A, B)i,j = 0.

Then, there is an algorithm ALG∗ that gets as input two matrices A, B ∈ Fn×n
2 , runs in time

Õ(T (n)), and outputs a matrix ALG∗(A, B) ∈ Fn×n
2 such that for all A, B it holds that

Pr[ALG∗(A, B) = A · B] > 1 − 1/n,

where the randomness is only over the internal coins of ALG∗.

Before proving the theorem, we need some definitions. We start by defining the notion
of a good coordinate. We say a coordinate (i, j) ∈ [n] × [n] is good, if ALG returns 1 at the
entry (i, j) for more than δ/2 fraction of possible inputs.

▶ Definition 12. Denote by G the set of good coordinates, defined as

G = {(i, j) ∈ [n] × [n] : Pr
A,B∈Fn×n

2

[ALG(A, B)i,j = 1] > δ/2} .

The following claim is immediate from the definition and the assumptions of the theorem.

▷ Claim 13. |G| ≥ (δ/2) · n2.

Proof. Let pi,j = PrA,B∈Fn×n
2

[ALG(A, B)i,j = 1]. Note that by the assumptions of Theorem 3,
we have Ei,j [pi,j] ≥ δ. Note that

δ ≤ Ei,j∈[n]×[n][pi,j] ≤ Pr
i,j

[(i, j) ∈ G] ·1+Pr
i,j

[(i, j) ̸∈ G] · (δ/2) ≤ Pr
i,j

[(i, j) ∈ G] ·1+1 · (δ/2) ,

and hence Pr[(i, j) ∈ G] ≥ δ/2, as required. ◁

Next, we define the notion of good input matrices with respect to a good coordinate.

A. Gola, I. Shinkar, and H. Singh 34:9

▶ Definition 14. For a coordinate (i,j), define Xi,j as follows.

Xi,j = {A : Pr
B

[ALG(A, B)i,j = 1] ≥ δ/4} .

Given a coordinate (i, j) and a matrix A, define Y A
i,j to be the set of matrices B for which

ALG returns 1 at the entry (i, j). That is,

Y A
i,j = {B : ALG(A, B)i,j = 1} .

We make the following claim about the densities of Xi,j and Y A
i,j .

▷ Claim 15. For any (i, j) ∈ G it holds that PrA∈Fn×n [A ∈ Xi,j] ≥ δ/4. Furthermore, if
A ∈ Xi,j then PrB∈Fn×n [B ∈ Y A

i,j] ≥ δ/4.

Proof. Fix a good coordinate (i, j) ∈ G, and for each A ∈ Fn×n,
Let pA = PrB∈Fn×n [ALG(A, B)(i,j) = 1]. From the definition of G we have EA[pA] ≥ δ/2.

δ/2 ≤ EA[pA] = Pr
A∈Fn×n

[A ∈ Xi,j] · 1 + Pr
A∈Fn×n

[A ̸∈ Xi,j] · δ/4 ≤ Pr
A∈Fn×n

[A ∈ Xi,j] + δ/4 ,

and hence, Pr[A ∈ Xi,j] ≥ δ/4.
The furthermore part is by definition of Xi,j . ◁

▶ Definition 16. Denote by Lk ∈ Fn×n a random matrix of rank at most k, constructed by
sampling the first k columns independently uniformly at random from Fn, and then taking the
remaining n − k columns to be uniformly random linear combinations of the first k vectors.

The following lemma is from [2]. It shows that if L2k
A is a random matrix of rank at most

2k sampled as in Definition 16, then MA = A − (L2k
A) belongs to any subspace of matrices of

co-dimension k with a non-negligible probability. We provide the proof of the lemma here
for completeness.

▶ Lemma 17 (Lemma 4.8 from [2]). Fix a matrix A ∈ Fn×n, let k be a parameter, and let
ℓ ≥ 2k. Let Lℓ

A be a random matrix of rank at most ℓ sampled as in Definition 16, and let
MA = A − (Lℓ

A). Then, for any subspace V ⊆ Fn×n of dim(V) ≥ n2 − k it holds that

Pr[MA ∈ V] ≥ 1
2|F|k

.

Proof. Since V has co-dimension at most k, a matrix in V must be orthogonal to all the
basis vectors of its orthogonal complement. Since there are up to k such basis vectors, the
membership condition of MA in V can be written down in the form of k linear constraints.
Viewing MA as a vector in Fn2 , we can write the k linear constraints on the elements of the
matrix M2k

A in the form

α1 · (MA)i1,j1 + α2 · (MA)i2,j2 + · · · + αr(MA)it,jt
= 0 .

Here, αi’s are constants and t ∈ [n2] is the number of elements upon which the constraints
depend. Writing MA as m ∈ Fn2 , we can represent these linear constraints as a system of
equations of the form G · m = 0, where G is a k × n2 matrix. Now, we perform Gaussian
elimination on G, which gives us a matrix G′, where each row has a 1 entry such that all the
other entries in the column containing this 1 are 0. We refer to such 1’s as leading 1’s. That
is, by permuting the columns of G′, we may think of it as being of the form G′ = [Ik|G∗].

APPROX/RANDOM 2024

34:10 Matrix Multiplication Reductions

Consider the set of k coordinates of m corresponding to the k leading 1s in G′, one
from each row. These k coordinates of m in turn correspond to k pairs of coordinates
{(i1, j1), (i2, j2) . . . (ik, jk)} in MA. These k pairs of coordinates in MA can belong to at most
k rows in MA. We now bound the probability of none of these k rows in Lℓ

A being a linear
combination of the other rows. Let us denote this event as Ω. Then

Pr[Ω] =
(

1 − 1
2ℓ

) (
1 − 2

2ℓ

) (
1 − 4

2ℓ

)
· · ·

(
1 − 2k−1

2ℓ

)
≥

(
1 − 2k−1

2ℓ

)k

≥
(

1 − 1
2k+1

)k

≥ 1 − k

2k+1 ≥ 1
2

If Ω happens, then we get a coordinate (ir, jr) in MA corresponding to the rth linear
constraint, for all r ∈ [k], such that no other constraint depends upon it (as it corresponds to
a leading 1) and it is chosen uniformly at random (since the rows containing these coordinates
are linearly independent). Therefore, the probability that this random value satisfies the
ith constraint is 1/|F|. To see this, assume that the values of all other coordinates involved
in the ith constraint are fixed, then we are left with only one choice for the value of the
coordinate (ci, c′

i) which satisfies the constraint. Therefore, we have

Pr[MA ∈ V] = Pr[All k linear constraints are satisfied]

= Pr[Ω] · 1
|F|k

≥ 1
2|F|k

.

This completes the proof of Lemma 17. ◀

4.1 Computing the good coordinates
Next, we start describing the reduction guaranteed by Theorem 3. As a first step we design
Algorithm 2, that gets two matrices A, B and outputs a matrix C with values in F2 ∪ {⊥},
satisfying the following guarantees.
1. If Ci,j ̸= ⊥, then Ci,j contains the correct values, i.e., Ci∗,j∗ = (A · B)i∗,j∗ .
2. For any good coordinate (i∗, j∗) ∈ G we have Pr[Ci∗,j∗ = (A · B)i∗,j∗] ≥ δ0, where δ0 is

some constant that depends only on δ. That is, with non-negligible probability Ci∗,j∗

contains the correct answer, and not ⊥.
Then, in Section 4.2 we use Algorithm 2 as a subroutine, in order to compute the entire
matrix A · B correctly.

In lines 3-4 we decompose A = L2k
A + MA, and B = L2tk

B + MB with the intention of
computing A · B by writing

AB = (MA + L2k
A) · (MB + L2tk

B)
= MA · MB + MA · L2tk

B + L2k
A · MB + L2k

A · L2tk
B .

Lines 5-13 try to compute C = MA · MB. Then, in line 14, we sum up the 4 terms. Using
the fact that multiplication of matrices of rank k takes O(kn2) time, the last three terms can
be computed in O(tkn2) time, and hence, it remains to compute MA · MB . The remainder
of this subsection is dedicated to analyzing lines 5-13, which contain the most involved part
of the algorithm.

A. Gola, I. Shinkar, and H. Singh 34:11

Algorithm 2 Approximating good coordinates for one-sided error algorithms.

Input: A, B ∈ Fn×n
2 , ALG

Output: An n × n matrix C with values F2 ∪ {⊥}
1 Let t > log(4/δ) + 2
2 Let k = O(log(1/δ)) from the “in particular” part of Lemma 8 with α = δ/4 and t

chosen above
3 Sample two random matrices L2k

A and L2tk
B of rank at most 2k and 2tk respectively,

as in Definition 16
4 Define MA = A − L2k

A and MB = B − L2tk
B

5 Let C be the n × n matrix initialized with all ⊥
6 Sample t − 1 random matrices R1, R2, .., Rt−1 ∈ Fn×n

2 and set
Rt = MA − (R1 + R2 + .. + Rt−1)

7 for r = 1, . . . , t do
8 Sample t − 1 random matrices S

(r)
1 , S

(r)
2 , .., S

(r)
t−1 ∈ Fn×n

2 and set
S

(r)
t = MB − (S(r)

1 + S
(r)
2 + .. + S

(r)
t−1)

9 for r, s = 1, . . . , t do
10 Compute ALG(Rr, S

(r)
s)

11 for (i, j) ∈ [n] × [n] do
12 if ALG(Rr, S

(r)
s)i,j = 1 for all r, s ∈ {1, . . . , t} then

13 Set Ci,j =
∑

r,s ALG(Rr, S
(r)
s)i,j (mod 2)

14 return C + MA · L2tk
B + L2k

A · MB + L2k
A · L2tk

B // if Ci,j = ⊥, then we return ⊥ in the
coordinate (i, j)

We would like to compute MA · MB by writing MA = R1 + R2 + · · · + Rt, and MB =
S

(r)
1 + S

(r)
2 + · · · + S

(r)
t for r = 1 . . . t, and then computing ALG(Rr, S

(r)
s) for all r, s. Note

that if we could guarantee that ALG(Rr, S
(r)
s) returns Rr · S

(r)
s , then, we would have

MA · MB =
∑
r,s

Rr · S(r)
s =

∑
r,s

ALG(Rr, S(r)
s) . (1)

However, ALG is not guaranteed to return the product of the inputs correctly. Instead, we
claim that (1) for some good coordinates (i∗, j∗) it holds Ci∗,j∗ = (MA · MB)i∗,j∗ , and (2)
the remaining coordinates in C remain ⊥. This is summarized formally in the next two
claims.

▷ Claim 18. For any (i, j) ∈ [n]×[n] if Ci,j ∈ {0, 1} (i.e., Ci,j ̸= ⊥), then Ci,j = (MA ·MB)i,j .

Proof. Fix any coordinate (i, j). Note that in line 13 we set Ci,j =
∑

r,s ALG(Rr, S
(r)
s)i,j

(mod 2) only if ALG(Rr, S
(r)
s)i,j = 1 for all r, s. Recall that by the assumption of the

algorithm if ALG(Rr, S
(r)
s)i,j = 1, then ALG(Rr, S

(r)
s)i,j = (Rr · S

(r)
s)i,j . The claim follows

by Equation (1) restricted to the coordinate (i, j), as

Ci,j =
∑
r,s

ALG(Rr, S(r)
s)i,j =

∑
r,s

(Rr · S(r)
s)i,j = (MA · MB)i,j ,

as required. ◁

▷ Claim 19. Fix a good coordinate (i∗, j∗) ∈ G. Then Pr[Ci∗,j∗ = (MA · MB)i∗,j∗] ≥ δ0 =
0.5O(log3(1/δ)).

APPROX/RANDOM 2024

34:12 Matrix Multiplication Reductions

Proof. Consider the set Xi∗,j∗ from Definition 14 for a good entry (i∗, j∗) ∈ G. By Claim 15,
the density of Xi,j is at least δ/4, and hence, Lemma 8 guarantees the existence of an affine
subspace Vi∗,j∗ of dimension dim(Vi∗,j∗) ≥ n − k. Then, using Lemma 17 with Vi∗,j∗ we have

Pr[MA ∈ VXi,j
] ≥ 1

2 · 2k
. (2)

Let us condition on the event that MA ∈ VXi∗,j∗ . Then by Lemma 8,

Pr
R1,R2,..,Rt∈Fn×n

n∑
r

Rr=MA

[R1, R2, .., Rt ∈ Xi,j] ≥ (δ/8)t . (3)

For each of R1, . . . , Rt define the sets Y R1 , Y R2 , . . . , Y Rt as in Definition 14. (Recall Y R is
the set of are all matrices S such that (R · S)i∗,j∗ = 1. We omit the subscript (i∗, j∗) for
readability.)

From Claim 15, we know each of Y R1 , . . . , Y Rt has density at least δ/4. Hence, by
applying Lemma 8 on each of them, we obtain subspaces VY R1 , .., VY Rt of co-dimension
at most k. Define VY = VY R1 ∩ VY R2 ∩ · · · ∩ VY Rt to be their intersection, and note that
dim(VY) ≥ n − tk. Therefore, by applying Lemma 17 on the matrix B with the subspace
VY , we get 1

Pr[MB ∈ VY] ≥ 1
2 · 2tk

. (4)

Conditioning further on the event that MB ∈ VY , we apply Lemma 8, and for each r = 1, . . . , t

we get

Pr
S

(r)
1 ,...,S

(r)
t∑

s
S(r)

s =MB

[S(r)
1 , . . . , S

(r)
t ∈ Y Rr] ≥ (δ/8)t .

Since the events above are independent between different r’s, the probability that the
algorithm returns correct output on the entry (i∗, j∗) is lower bounded by the product of the
probabilities in Equations (2)–(4), and hence

Pr[Ci∗,j∗ = (MA · MB)i∗,j∗] ≥ 1
2k+1 × (δ/8)t × 1

2 · 2tk
×

(
(δ/8)t

)t ≥ 1
2O(log3(1/δ)) .

This completes the proof of Claim 19. ◁

4.2 Proof of Theorem 3

We are now ready to prove Theorem 3. Algorithm 3 uses Algorithm 2 as a subroutine, by
running it several times. We claim that Algorithm 3 correctly computes the correct answer
with high probability for any input A, B. Note that Algorithm 2 is guaranteed to be correct
only for good coordinates, although it does not get the good coordinates as an input, and
the guarantee about the good coordinates only appears in the analysis.

1 Note that although the algorithm samples MB before R1, . . . , Rt, in fact they are sampled independently
of each other, and hence Lemma 17 is applicable here.

A. Gola, I. Shinkar, and H. Singh 34:13

Algorithm 3 Approximation for one-sided Agreement Matrix Multiplication Algorithms.

Input: A, B ∈ Fn×n
2

Output: A · B

1 Let C be the n × n matrix initialized with all ⊥.
2 Let δ0 be the constant from Claim 19
3 repeat O

(
log(n)
δ·δ0

)
times

4 Sample uniformly random π, σ ∈ [n].
5 Run Algorithm 2 with the inputs as Aπ,0, B0,σ, ALG.
6 Let C∗ be the resulting matrix
7 for (i, j) ∈ [n] × [n] do
8 if C∗

i+π (mod n),j+σ (mod n) ̸= ⊥ then
9 Set Ci,j = C∗

i+π,j+σ

10 return C

The following claim completes the proof of Theorem 3.

▷ Claim 20. Fix a coordinate (i, j) ∈ [n] × [n]. Algorithm 3 returns the matrix C such that
Pr[Ci,j = (A · B)i,j] ≥ 1 − 1/n3.

In particular, by taking the union bound over all coordinates (i, j) it follows that for any
input A, B Algorithm 3 returns their product with probability at least 1 − 1/n.

Proof. Fix a coordinate (i, j) ∈ [n] × [n]. The algorithm chooses random π and σ, and runs
Algorithm 2 on the shifted matrices Aπ,0 and B0,σ.

Note that since π and σ are chosen uniformly at random, it follows that Pr[(i + π

(mod n), j + σ (mod n)) ∈ G] = |G|/n2 ≥ δ/2.
Suppose that (i + π (mod n), j + σ (mod n)) is indeed a good coordinate. Then by

Claim 20 with probability δ0 we obtain the correct answer in the coordinate (i+π (mod n), j+
σ (mod n)), in which case we set Ci,j to be that answer (A · B)i,j . Otherwise, Ci,j remains
⊥.

Therefore, with probability at least (δ/2) · δ0 in each iteration Ci,j changes from ⊥ to
(A · B)i,j , and once it changes, it never changes its value again.

By repeating the procedure R = O(log(n)
δ·δ0

) times, the probability that in the end of the
algorithm Ci,j = ⊥ is upper bounded by Pr[Ci,j = ⊥] ≤ (1 − δ0)R < 1/n3. This completes
the proof of the claim. ◁

We conclude the proof with the analysis of the running time of the algorithm.

Running Time

The total running time of Algorithm 3 is essentially dominated by the running time of
Algorithm 2 multiplied by O

(
log(n)
δ·δ0

)
. Each iteration of Algorithm 2 involves O(t2) calls to

ALG plus additional O(tn2) time. Therefore, the running time is O(t2 log(n)T (n)/δ · δ0).
Since t = O(log 1/δ), and δ0 = 0.5O(log3(1/δ)) the total running time of the algorithm is is
2O(log3(1/δ)) · T (n) log(n).

In particular, even for a slightly sub-constant δ ≥ exp(− log0.33(n)), our algorithm runs
in time T (n) · no(1).

This completes the proof of Theorem 3.

APPROX/RANDOM 2024

34:14 Matrix Multiplication Reductions

References
1 Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix

multiplication. In SODA 2021, pages 522–539. SIAM, 2021.
2 Vahid R. Asadi, Alexander Golovnev, Tom Gur, and Igor Shinkar. Worst-case to average-case

reductions via additive combinatorics. In STOC 2022, pages 00–00. ACM, 2022.
3 Vahid R. Asadi, Alexander Golovnev, Tom Gur, Igor Shinkar, and Sathyawageeswar Sub-

ramanian. Quantum Worst-Case to Average-Case Reductions for All Linear Problems,
pages 2535–2567. Society for Industrial and Applied Mathematics, 2024. doi:10.1137/
1.9781611977912.90.

4 Shai Ben-David, Benny Chor, Oded Goldreich, and Michel Luby. On the theory of average
case complexity. Journal of Computer and System Sciences, 44(2):193–219, 1992. doi:
10.1016/0022-0000(92)90019-F.

5 Dario Bini, Milvio Capovani, Francesco Romani, and Grazia Lotti. O(n2.7799) complexity for
n × n approximate matrix multiplication. Information Processing Letters, 8(5):234–235, 1979.
doi:10.1016/0020-0190(79)90113-3.

6 Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applications
to numerical problems. In STOC 1990, pages 73–83. ACM, 1990.

7 Andrej Bogdanov and Luca Trevisan. Average-case complexity. Found. Trends Theor. Comput.
Sci., 2(1):1–106, October 2006. doi:10.1561/0400000004.

8 Mei-Chu Chang. A polynomial bound in Freiman’s theorem. Duke Mathematical Journal,
113(3):399–419, 2002. doi:10.1215/S0012-7094-02-11331-3.

9 Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progressions.
Journal of Symbolic Computation, 9(3):251–280, 1990. Computational algebraic complexity
editorial. doi:10.1016/S0747-7171(08)80013-2.

10 Ran Duan, Hongxun Wu, and Renfei Zhou. Faster matrix multiplication via asymmetric
hashing. In 64th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2023, Santa Cruz, CA, USA, November 6-9, 2023, pages 2129–2138. IEEE, 2023. doi:
10.1109/FOCS57990.2023.00130.

11 Leszek Ga̧sieniec, Christos Levcopoulos, Andrzej Lingas, Rasmus Pagh, and Takeshi Tokuyama.
Efficiently correcting matrix products. Algorithmica, 79(2):428–443, October 2017. doi:
10.1007/s00453-016-0202-3.

12 Oded Goldreich, editor. Studies in complexity and cryptography: miscellanea on the interplay
between randomness and computation. Springer-Verlag, Berlin, Heidelberg, 2011.

13 Shuichi Hirahara and Nobutaka Shimizu. Hardness self-amplification: Simplified, optimized,
and unified. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing,
STOC 2023, pages 70–83. Association for Computing Machinery, 2023. doi:10.1145/3564246.
3585189.

14 Russell Impagliazzo. A personal view of average-case complexity. Proceedings of Structure
in Complexity Theory. Tenth Annual IEEE Conference, pages 134–147, 1995. URL: https:
//api.semanticscholar.org/CorpusID:2154064.

15 Russell Impagliazzo. Relativized separations of worst-case and average-case complexities for
NP. In Proceedings of the 26th Annual IEEE Conference on Computational Complexity, CCC
2011, San Jose, California, USA, June 8-10, 2011, pages 104–114. IEEE Computer Society,
2011. doi:10.1109/CCC.2011.34.

16 Russell Impagliazzo and Leonid A. Levin. No better ways to generate hard NP instances
than picking uniformly at random. In 31st Annual Symposium on Foundations of Computer
Science, St. Louis, Missouri, USA, October 22-24, 1990, Volume II, pages 812–821. IEEE
Computer Society, 1990. doi:10.1109/FSCS.1990.89604.

17 François Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings of the 39th
International Symposium on Symbolic and Algebraic Computation, ISSAC ’14, pages 296–303,
New York, NY, USA, 2014. Association for Computing Machinery. doi:10.1145/2608628.
2608664.

https://doi.org/10.1137/1.9781611977912.90
https://doi.org/10.1137/1.9781611977912.90
https://doi.org/10.1016/0022-0000(92)90019-F
https://doi.org/10.1016/0022-0000(92)90019-F
https://doi.org/10.1016/0020-0190(79)90113-3
https://doi.org/10.1561/0400000004
https://doi.org/10.1215/S0012-7094-02-11331-3
https://doi.org/10.1016/S0747-7171(08)80013-2
https://doi.org/10.1109/FOCS57990.2023.00130
https://doi.org/10.1109/FOCS57990.2023.00130
https://doi.org/10.1007/s00453-016-0202-3
https://doi.org/10.1007/s00453-016-0202-3
https://doi.org/10.1145/3564246.3585189
https://doi.org/10.1145/3564246.3585189
https://api.semanticscholar.org/CorpusID:2154064
https://api.semanticscholar.org/CorpusID:2154064
https://doi.org/10.1109/CCC.2011.34
https://doi.org/10.1109/FSCS.1990.89604
https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1145/2608628.2608664

A. Gola, I. Shinkar, and H. Singh 34:15

18 Leonid A. Levin. Average case complete problems. SIAM Journal on Computing, 15(1):285–286,
1986. doi:10.1137/0215020.

19 V. Ya. Pan. Strassen’s algorithm is not optimal trilinear technique of aggregating, uniting and
canceling for constructing fast algorithms for matrix operations. In 19th Annual Symposium
on Foundations of Computer Science (SFCS 1978), pages 166–176, 1978. doi:10.1109/SFCS.
1978.34.

20 Francesco Romani. Some properties of disjoint sums of tensors related to matrix multiplication.
SIAM Journal on Computing, 11(2):263–267, 1982. doi:10.1137/0211020.

21 A. Schönhage. Partial and total matrix multiplication. SIAM Journal on Computing, 10(3):434–
455, 1981. doi:10.1137/0210032.

22 Andrew James Stothers. On the complexity of matrix multiplication. In University of
Edinburgh, 2010. URL: https://api.semanticscholar.org/CorpusID:262795811.

23 V. Strassen. The asymptotic spectrum of tensors and the exponent of matrix multiplication.
In 27th Annual Symposium on Foundations of Computer Science (sfcs 1986), pages 49–54,
1986. doi:10.1109/SFCS.1986.52.

24 Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13(4):354–356,
1969.

25 Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-winograd. In
Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing, STOC
’12, pages 887–898, New York, NY, USA, 2012. Association for Computing Machinery. doi:
10.1145/2213977.2214056.

APPROX/RANDOM 2024

https://doi.org/10.1137/0215020
https://doi.org/10.1109/SFCS.1978.34
https://doi.org/10.1109/SFCS.1978.34
https://doi.org/10.1137/0211020
https://doi.org/10.1137/0210032
https://api.semanticscholar.org/CorpusID:262795811
https://doi.org/10.1109/SFCS.1986.52
https://doi.org/10.1145/2213977.2214056
https://doi.org/10.1145/2213977.2214056

Testing Intersectingness of Uniform Families
Ishay Haviv
The Academic College of Tel Aviv-Yaffo, Tel Aviv 61083, Israel

Michal Parnas
The Academic College of Tel Aviv-Yaffo, Tel Aviv 61083, Israel

Abstract
A set family F is called intersecting if every two members of F intersect, and it is called uniform
if all members of F share a common size. A uniform family F ⊆

([n]
k

)
of k-subsets of [n] is ε-far

from intersecting if one has to remove more than ε ·
(

n
k

)
of the sets of F to make it intersecting. We

study the property testing problem that given query access to a uniform family F ⊆
([n]

k

)
, asks to

distinguish between the case that F is intersecting and the case that it is ε-far from intersecting.
We prove that for every fixed integer r, the problem admits a non-adaptive two-sided error tester
with query complexity O(ln n

ε
) for ε ≥ Ω((k

n
)r) and a non-adaptive one-sided error tester with query

complexity O(ln k
ε

) for ε ≥ Ω((k2

n
)r). The query complexities are optimal up to the logarithmic

terms. For ε ≥ Ω((k2

n
)2), we further provide a non-adaptive one-sided error tester with optimal

query complexity of O(1
ε
). Our findings show that the query complexity of the problem behaves

differently from that of testing intersectingness of non-uniform families, studied recently by Chen,
De, Li, Nadimpalli, and Servedio (ITCS, 2024).

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms; Mathematics of computing → Combinatorial algorithms

Keywords and phrases Intersecting family, Uniform family, Property testing

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.35

Category RANDOM

Related Version Full Version: http://arxiv.org/abs/2404.11504

Funding Ishay Haviv: Research supported in part by the Israel Science Foundation (grant
No. 1218/20).

Acknowledgements We would like to thank the anonymous reviewers for their useful comments.

1 Introduction

A set family F is called intersecting if for every two sets F1, F2 ∈ F , it holds that F1 ∩F2 ̸= ∅.
The study of intersecting families plays a central role in the area of extremal combinatorics
with a particular attention dedicated to the uniform case, where all the sets of the family
share a common size. One of the most influential results in this context is the Erdős–Ko–Rado
theorem [4], proved in 1938 and published in 1961, which states that for integers n and k

with n ≥ 2k, the maximum size of an intersecting family of k-subsets of [n] = {1, 2, . . . , n}
is

(
n−1
k−1

)
, attained by the families of all k-subsets that include a fixed element. Another

prominent result, proved by Lovász [10] in 1978 settling a conjecture of Kneser [9] from
1955, asserts that for n ≥ 2k, the family

([n]
k

)
of all k-subsets of [n] cannot be covered by

fewer than n − 2k + 2 intersecting families. This result is tight, as follows by considering,
for each i ∈ [n − 2k + 1], the family of k-subsets of [n] that include i, and the family of
k-subsets of [n] \ [n − 2k + 1]. A more recent result, proved by Dinur and Friedgut [3] in
2009, provides a structural characterization for large intersecting families of k-subsets of [n]
when k is sufficiently smaller than n. It says, roughly speaking, that every such family is

© Ishay Haviv and Michal Parnas;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 35; pp. 35:1–35:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.35
http://arxiv.org/abs/2404.11504
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 Testing Intersectingness of Uniform Families

approximately contained in an intersecting junta, that is, an intersecting family J over [n],
such that the membership of a set F in J depends only on F ∩ J for a fixed set J ⊆ [n],
where the size of J is determined by the precision of the containment (see Theorem 7).

In this paper, we investigate intersecting uniform families from the computational perspect-
ive of property testing. This field delves into the amount of data required for distinguishing
objects that satisfy a prescribed property from those that significantly deviate from satisfying
it. The objective is to design a randomized algorithm for this task, called a (two-sided error)
tester, that succeeds with high constant probability and minimizes the query complexity,
i.e., the number of queries to the input object. If the tester accepts objects that satisfy the
given property with probability 1, we say that its error is one-sided. The tester is said to be
non-adaptive if its queries are determined independently of the answers provided for prior
queries. For a thorough introduction to the field of property testing, the reader is referred to,
e.g., [8].

For integers n and k with n ≥ 2k and for a real ε ∈ [0, 1), we say that a family F ⊆
([n]

k

)
is

ε-far from intersecting if one has to remove more than ε ·
(

n
k

)
of its sets to make it intersecting.

In the property testing problem Intersectingn,k,ε, we are given access to a family F ⊆
([n]

k

)
,

represented by an indicator function f :
([n]

k

)
→ {0, 1}, and the goal is to distinguish between

the case that F is intersecting and the case that it is ε-far from intersecting. Note that the
Erdős–Ko–Rado theorem [4] implies that every intersecting family F ⊆

([n]
k

)
includes at most

a k/n fraction of the sets of
([n]

k

)
. This gives impetus to studying the Intersectingn,k,ε

problem for a proximity parameter ε = ε(n, k) that diminishes faster than the ratio k/n (see
the discussion at the end of Section 3).

Our interest in testing intersectingness of uniform families is sparked and inspired by a
recent paper of Chen, De, Li, Nadimpalli, and Servedio [2], who introduced and explored
the analogue problem for general (non-uniform) families of sets. In their setting, the input
consists of an indicator function f : {0, 1}n → {0, 1} of a family F of subsets of [n] (of
any size), identified with their characteristic vectors in {0, 1}n, and the goal is to decide
whether F is intersecting or ε-far from intersecting. Here, since the size of the domain is 2n,
a family is said to be ε-far from intersecting if more than ε · 2n of its sets should be removed
to make it intersecting. Chen et al. [2] proved that this problem admits a non-adaptive
one-sided error tester with query complexity poly(n

√
n·log(1/ε), 1

ε). They further established
a nearly matching lower bound, showing that the query complexity of every non-adaptive
one-sided error tester for the problem is 2Ω(

√
n·log(1/ε)), whenever ε ∈ [2−n, ε0] for some

constant ε0 > 0. For non-adaptive two-sided error testers, they obtained a lower bound of
2Ω(n1/4/

√
ε) on the query complexity, assuming that ε ∈ [1/

√
n, ε0] for some constant ε0 > 0.

As will be shortly described, the results of the present paper highlight a significant difference
between the behavior of the query complexity of testing intersectingness in the uniform and
non-uniform settings.

1.1 Our Contribution

This paper studies the query complexity of the Intersectingn,k,ε testing problem. We offer
nearly matching upper and lower bounds for various settings of the integers n and k and the
proximity parameter ε = ε(n, k). Let us mention already here that all of our upper bounds
are proved via efficient testers, whose running time is polynomial in n. We further note that
the results presented below are applicable for all integers n and k for which the conditions on
ε allow it to be smaller than 1. The precise and formal statements are given in the upcoming
technical sections.

I. Haviv and M. Parnas 35:3

Our first result furnishes a non-adaptive two-sided error tester for the case of ε ≥ Ω((k/n)r)
for a fixed constant r. Its analysis borrows the structural characterization of large intersecting
uniform families due to Dinur and Friedgut [3]. Note that the multiplicative factors hidden
by the O(·) and Ω(·) notations might depend on r.

▶ Theorem 1 (Two-Sided Error Tester). For every fixed integer r, for all integers n and k

with n ≥ 2k and for any real ε ≥ Ω((k
n)r), there exists a non-adaptive two-sided error tester

for Intersectingn,k,ε with O(ln n
ε) queries.

In fact, we prove Theorem 1 in a stronger form, adopting the concept of tolerant property
testing, introduced by Parnas, Ron, and Rubinfeld [12]. Strengthening the standard notion
of property testing, a tolerant tester is required to accept not only objects that satisfy the
given property, but also those that are close to satisfying it (and as usual, to reject objects
that significantly deviate from the property). Accordingly, the tester given in Theorem 1 is
shown to accept with high probability any family that can be made intersecting by removing
relatively few of its sets (see Theorem 6). Note that a result of Tell [13] implies that a
two-sided error is essentially inherent in tolerant property testing.

We next turn our attention to designing one-sided error testers for the Intersectingn,k,ε

problem, wherein an intersecting family must be accepted with probability 1. A natural
non-adaptive tester for this purpose, termed the canonical tester, selects m random sets
from

([n]
k

)
, uniformly and independently, and checks whether they include two sets that

demonstrate the non-intersectingness of the input family, namely, two disjoint sets within
the family. This raises the combinatorial question, which might be of independent interest,
of determining the smallest number m = m(n, k, ε) of random sets from

([n]
k

)
that guarantee

with high probability a pair of disjoint sets that lie in a family F ⊆
([n]

k

)
, assuming that F is

ε-far from intersecting. As our main technical contribution, we address this question for the
case where ε ≥ Ω((k2/n)r) for a fixed constant r. Our analysis yields the following result.

▶ Theorem 2 (One-Sided Error Tester). For every fixed integer r, for all integers n and k

with n ≥ 2k and for any real ε ≥ Ω((k2

n)r), there exists a non-adaptive one-sided error tester
for Intersectingn,k,ε with O(ln k

ε) queries.

Let us emphasize that the tester provided by Theorem 2 surpasses that of Theorem 1 in two
respects: its error is one-sided, and its query complexity is lower, replacing the ln n term
by ln k. On the other hand, Theorem 2 requires ε to satisfy ε ≥ Ω((k2/n)r), and is thus
applicable only for n ≥ Ω(k2), whereas the two-sided error tester of Theorem 1 is applicable
already for n ≥ Ω(k).

For the special case of r = 2, we offer a notably simple analysis of the canonical tester,
enabling us to enhance the query complexity achieved in Theorem 2 by getting rid of the
logarithmic term. This gives the following result.

▶ Theorem 3 (One-Sided Error Tester; r = 2). For all integers n and k with n ≥ 2k and for any
real ε ≥ Ω((k2

n)2), there exists a non-adaptive one-sided error tester for Intersectingn,k,ε

with O(1
ε) queries.

We further consider the Intersectingn,k,ε problem for integers n and k satisfying
n = α · k for an arbitrary constant α ≥ 2. Interestingly, the canonical tester fails in this case,
because its random samples are unlikely to include even a single pair of disjoint sets, unless
the number of samples is exponential in n. Nevertheless, we show that for all constants
α ≥ 2 and ε ∈ (0, 1), the Intersectingn,k,ε problem with n = α · k admits a non-adaptive
one-sided error tester with constant query complexity. The proof employs a result of Friedgut
and Regev [7], and the details are given in Section 4.2 (see Theorem 17).

APPROX/RANDOM 2024

35:4 Testing Intersectingness of Uniform Families

Our final result supplies a lower bound on the query complexity of the Intersectingn,k,ε

problem. Note that the lower bound applies even to adaptive two-sided error testers. While
the result can be derived from a general result of [5], our proof in the full version of the
paper explicitly presents hard instances of the problem.

▶ Theorem 4 (Lower Bound). For all integers n and k with n ≥ 2k and for any real
ε = ε(n, k) with

(
n
k

)−1 ≤ ε < 1
2 , the query complexity of every tester for Intersectingn,k,ε

is Ω(1
ε).

It is noteworthy that Theorem 4 implies that the query complexities achieved by our
testers for the Intersectingn,k,ε problem are nearly tight. Specifically, the query complexity
obtained in Theorem 3 is tight up to a multiplicative constant, while those of Theorems 1
and 2 are tight up to multiplicative logarithmic terms. An intriguing task for further research
would be to decide whether these logarithmic terms can be avoided. More ambitiously, it
would be interesting to determine the query complexity of the Intersectingn,k,ε problem
for general values of n, k, and ε = ε(n, k).

1.2 Proof Techniques
We provide here a high-level description of the ideas applied in the proofs of Theorems 1
and 2. Let us start with the proof of Theorem 1, which gives a non-adaptive two-sided error
tester for the Intersectingn,k,ε problem with query complexity O(ln n

ε), where ε ≥ Ω((k
n)r)

for a fixed integer r. Given access to a family F ⊆
([n]

k

)
, our tester attempts to decide

whether F is approximately contained in an intersecting j-junta over [n] for some integer j

that depends solely on r. To do so, the tester picks random sets from
([n]

k

)
, uniformly and

independently, and checks whether they lie in F . These samples are used to estimate, for
each intersecting j-junta J over [n], the fraction of sets in

([n]
k

)
that lie in F \J . Our analysis

shows that O(ln n
ε) samples suffice for these estimations to be pretty accurate with high

probability. Then, if those estimations indicate that F is approximately contained in some
intersecting j-junta over [n], the tester predicts that F is close to intersecting. Otherwise,
relying on the aforementioned structural result of Dinur and Friedgut [3], the tester deduces
that F is far from intersecting with high probability. Let us stress that the tester is two-sided
error, because even if F is intersecting and is essentially aligned with some intersecting
j-junta J over [n], the random samples might wrongly suggest, with low probability, that
F significantly deviates from J . As previously noted, Theorem 1 is proved with respect to
tolerant property testing. For the precise statement and argument, the reader is referred to
Section 3.

We next outline the approach applied in the proof of Theorem 2, which establishes a
non-adaptive one-sided error tester for the Intersectingn,k,ε problem with query complexity
O(ln k

ε), where ε ≥ Ω((k2

n)r) for a fixed integer r. As mentioned earlier, the proof of this
result relies on the canonical tester, which selects random sets from

([n]
k

)
, uniformly and

independently, and checks if they include two sets that violate the intersectingness of the
given family. Therefore, our goal is to show that if a family F ⊆

([n]
k

)
is ε-far from intersecting,

then a collection of O(ln k
ε) random sets from

([n]
k

)
includes with high probability two disjoint

sets within F . Consider a family F ⊆
([n]

k

)
, and assume that F is ε-far from intersecting.

Notice that this in particular implies that |F| > ε ·
(

n
k

)
, as otherwise, one could remove at

most ε ·
(

n
k

)
of its sets to make it intersecting.

Let us first suppose that the chosen random sets include, for each set A ⊆ [n] of size at
most r − 1, a set FA ∈ F with FA ∩ A = ∅. A key observation in our approach is that the
number of sets in

([n]
k

)
that intersect all of those sets FA does not exceed kr ·

(
n−r
k−r

)
. To see

I. Haviv and M. Parnas 35:5

this, observe that every set that intersects them all includes an element j1 ∈ F∅, an element
j2 ∈ F{j1}, an element j3 ∈ F{j1,j2}, and so on, up to an element jr ∈ F{j1,...,jr−1}, where the
r elements j1, . . . , jr are distinct. It thus follows that there exists a collection of at most kr

subsets of [n] of size r, such that every set in
([n]

k

)
that intersects all the sampled sets that

lie in F contains at least one of the sets of the collection. This implies that the number of
those sets does not exceed kr ·

(
n−r
k−r

)
≤ (k2

n)r ·
(

n
k

)
. Now, by combining our assumption on ε

with the fact that |F| > ε ·
(

n
k

)
, one can show that a random set from

([n]
k

)
lies in F and is

disjoint from at least one of the previously sampled sets that lie in F with non-negligible
probability. Therefore, a few additional random sets from

([n]
k

)
are expected to provide with

high probability the desired witness for the non-intersectingness of F .
The scenario discussed above, however, is somewhat oversimplified. It definitely might

be the case that for some set A ⊆ [n] of size at most r − 1, the sets of F that are disjoint
from A are quite rare, and as such, our random samples are not expected to include them.
Following the terminology of [3], we say that such a set A captures F (see Definition 13). To
deal with this situation, we show that if a set A of size at most r − 1 captures F , then it
admits two disjoint subsets B, C ⊆ A, such that the sub-families F1 and F2 of F , defined as
the restrictions of F to the sets whose intersection with A is, respectively, B and C, are far
from being cross-intersecting, that is, one has to remove plenty of sets from F1 and F2 so
that every set of F1 will intersect every set of F2. Since B and C are disjoint, this essentially
allows us to ignore from now on the elements of A, and to analyze the probability that
the random samples include two disjoint sets, one from F1 and one from F2. By a slight
variant of the key observation described above, we wish our samples to include, for each
set A′ ⊆ [n] \ A of size at most r − 1, a set FA′ ∈ F2 with FA′ ∩ A′ = ∅. If the samples
include such sets, then it can be shown that a random set is expected to lie in F1 and be
disjoint from some previously chosen set of F2 with non-negligible probability. However, if
some set A′ ⊆ [n] \ A of size at most r − 1 captures F2, then a suitable set FA′ is unlikely
to be found. In this case, we repeat the above process and further refine F1 and F2, fixing
the intersections of their sets with A′ to some disjoint subsets and keeping them far from
cross-intersecting. It might be needed to repeat this process multiple times, but a crucial
component of our argument shows that r iterations suffice. Indeed, after this number of
iterations, it turns out that the refined family F2 is already too small to still satisfy the
invariant that F1 and F2 are far from cross-intersecting.

To summarize, our analysis of the canonical tester shows that if a family F ⊆
([n]

k

)
is

ε-far from intersecting for a sufficiently large ε = ε(n, k), then there exist a set A ⊆ [n]
and two disjoint subsets B, C ⊆ A, such that (a) the restrictions F1 and F2 of F to the
sets whose intersections with A are B and C, respectively, are far from cross-intersecting,
and (b) no subset of [n] \ A of size at most r − 1 captures F2 (see Lemma 15). This allows
us to show that O(ln k

ε) sets chosen randomly from
([n]

k

)
include with high probability a

collection of sets of F2, such that relatively few sets of F1 intersect them all. Therefore, a
few additional samples from

([n]
k

)
are expected to include a set of F1 that is disjoint from one

of the previously picked sets of F2, resulting in the desired witness for non-intersectingness
(see Lemma 16). For the precise and full argument, the reader is referred to Section 4.1.2.

1.3 Related Work
The Erdős–Ko–Rado theorem [4] implies that for all integers n and k with n ≥ 2k, every
family F ⊆

([n]
k

)
whose size exceeds

(
n−1
k−1

)
is not intersecting. One may thus ask whether

such a family F must include a set that is disjoint from many of the sets of F . This question
was recently investigated by Frankl and Kupavskii [6] and by Chau, Ellis, Friedgut, and

APPROX/RANDOM 2024

35:6 Testing Intersectingness of Uniform Families

Lifshitz [1], who provided a positive answer in a strong sense. Namely, it was shown in [1]
that for any δ > 0, there exists some α > 0, such that for all integers n and k with n ≥ α · k,
every family F ⊆

([n]
k

)
of size |F| =

(
n−1
k−1

)
+ 1 includes a set that is disjoint from at least

(1
2 − δ) ·

(
n−k−1

k−1
)

of the sets of F .
We point out that the combinatorial question arising in our analysis of the canonical

tester for the Intersectingn,kε problem is similar in spirit to the question studied in [6, 1].
Indeed, the analysis requires us to show that if a family F ⊆

([n]
k

)
is ε-far from intersecting,

then a relatively small collection of random sets, chosen uniformly and independently from([n]
k

)
, includes with high probability two disjoint sets that lie in F . For such a statement,

one has to show not only the existence of a set in F that is disjoint from many of the sets of
F , but that many of the sets of F satisfy this property. Yet, a crucial difference between
the two concepts is that in ours, the family F is not assumed to exceed the Erdős–Ko–Rado
threshold but rather to be ε-far from intersecting.

1.4 Outline
The rest of the paper is organized as follows. In Section 2, we provide some definitions
and tools that will be used throughout the paper. In Section 3, we present and analyze
our two-sided error tester for the Intersectingn,k,ε problem and confirm Theorem 1.
Finally, in Section 4, we present and analyze the one-sided error canonical tester for the
Intersectingn,k,ε problem and confirm Theorems 2 and 3. We further present there
another one-sided error tester, appropriate for integers n and k with n = Θ(k). The proof of
Theorem 4 can be found in the full version of the paper.

2 Preliminaries

Throughout the paper, we omit all floor and ceiling signs, whenever these are not crucial.

2.1 Intersecting Families
For integers n and k, let

([n]
k

)
denote the family of all k-subsets of [n] = {1, . . . , n}. A family

F ⊆
([n]

k

)
is called intersecting if for every two sets F1, F2 ∈ F , it holds that F1 ∩ F2 ̸= ∅. For

a real ε ∈ [0, 1], we say that F is ε-close to intersecting if it is possible to make F intersecting
by removing at most ε ·

(
n
k

)
of its sets. Otherwise, we say that F is ε-far from intersecting.

For two families F1, F2 ⊆
([n]

k

)
, the pair (F1, F2) is called cross-intersecting if for every

two sets F1 ∈ F1 and F2 ∈ F2, it holds that F1 ∩ F2 ̸= ∅. For a real ε ∈ [0, 1], we say that the
pair (F1, F2) is ε-close to cross-intersecting if it is possible to make (F1, F2) cross-intersecting
by removing at most ε ·

(
n
k

)
of the sets of F1 and F2. Otherwise, we say that (F1, F2) is ε-far

from cross-intersecting. Note that if a family F ⊆
([n]

k

)
is ε-far from intersecting, then the

pair (F , F) is ε-far from cross-intersecting.
A function f :

([n]
k

)
→ {0, 1} is called intersecting, ε-close to intersecting, and ε-far from

intersecting, if the family f−1(1) of the sets of
([n]

k

)
that are mapped by f to 1 is, respectively,

intersecting, ε-close to intersecting, and ε-far from intersecting. For reals ε1, ε2 ∈ [0, 1) with
ε1 ≤ ε2, let Intersectingn,k,ε1,ε2 denote the tolerant property testing problem that given
query access to a function f :

([n]
k

)
→ {0, 1}, asks to distinguish between the case that f is

ε1-close to intersecting and the case that f is ε2-far from intersecting. We will be particularly
interested in the case of ε1 = 0, hence for a real ε ∈ [0, 1), we let Intersectingn,k,ε denote
the Intersectingn,k,0,ε problem.

I. Haviv and M. Parnas 35:7

2.2 Chernoff–Hoeffding Bound
We will need the following version of the Chernoff–Hoeffding bound.

▶ Theorem 5. For an integer m and a real p ∈ (0, 1), let X1, . . . , Xm be independent binary
random variables satisfying Pr [Xi = 1] = p and Pr [Xi = 0] = 1 − p for all i ∈ [m], and put
X = 1

m ·
∑m

i=1 Xi. Then, for any µ ≥ 0,
1. if p ≤ µ, then Pr

[
X ≥ 2µ

]
≤ e−m·µ/3, and

2. if p ≥ µ, then Pr
[

X ≤ µ/2
]

≤ e−m·µ/8.
Note that the assertion of Theorem 5 for p = µ follows from standard statements of the
Chernoff–Hoeffding bound (see, e.g, [11, Theorem 2.3]). The cases of p < µ and p > µ stem
by monotonicity.

3 Two-Sided Error Tester

In this section, we present and analyze a tolerant non-adaptive two-sided error tester for the
Intersectingn,k,ε1,ε2 problem and prove the following result. Its special case with ε1 = 0
yields Theorem 1.

▶ Theorem 6. For every integer r ≥ 2, there exist constants c1 = c1(r) and c2 = c2(r) for
which the following holds. For all sufficiently large integers n and k with n ≥ 2k and for all
reals ε1, ε2 ∈ [0, 1) with ε2 ≥ 4 · ε1 + c1 · (k

n)r, there exists a tolerant non-adaptive two-sided
error tester for Intersectingn,k,ε1,ε2 with at most c2 · ln n

ε2
queries, running time polynomial

in n, and success probability at least 2/3.

A crucial ingredient in the proof of Theorem 6 is the following theorem due to Dinur and
Friedgut [3]. Here, a family J of subsets of [n] is called a j-junta over [n] if there exists a set
J ⊆ [n] of size |J | = j such that the membership of a set F in J depends only on F ∩ J .

▶ Theorem 7 ([3]). For every integer r ≥ 2, there exist constants j = j(r) and a = a(r)
for which the following holds. For all integers n and k with n > 2k and k > j, if a family
F ⊆

([n]
k

)
is intersecting, then there exists an intersecting j-junta J over [n] such that

|F \ J | ≤ a ·
(

n−r
k−r

)
.

We are ready to prove Theorem 6.

Proof of Theorem 6. Fix an integer r ≥ 2, and let j = j(r) and a = a(r) be the constants
given in Theorem 7. Let n and k be sufficiently large integers. Since the theorem trivially
holds for n = 2k (with an appropriate c1), it may be assumed that n > 2k and k > j. For
an integer m and for reals ε1, ε2 ∈ [0, 1) with ε1 ≤ ε2, consider the following tester for the
Intersectingn,k,ε1,ε2 problem.

Input: Query access to a function f :
([n]

k

)
→ {0, 1}.

1. Pick m sets G1, . . . , Gm uniformly and independently at random from
([n]

k

)
.

2. Query f for the value of f(Gi) for each i ∈ [m].
3. For each intersecting j-junta J over [n], let αJ denote the fraction of the chosen

sets Gi that are mapped by f to 1 and do not lie in J , that is,

αJ = 1
m · |{i ∈ [m] | f(Gi) = 1 and Gi /∈ J }|.

4. If there exists an intersecting j-junta J over [n] with αJ ≤ ε2
2 , then accept, and

otherwise reject.

APPROX/RANDOM 2024

35:8 Testing Intersectingness of Uniform Families

The above tester is clearly non-adaptive. For the analysis of its success probability,
suppose that

ε2 ≥ 4 ·
(

ε1 + a ·
(k

n

)r
)

and m ≥ 12 · (j · ln n + 2j + 2)
ε2

. (1)

Let f :
([n]

k

)
→ {0, 1} be an input function, and consider the family F = f−1(1). Our goal is

to prove that if F is ε1-close to intersecting then the tester accepts f with probability at
least 2/3, and that if F is ε2-far from intersecting then the tester rejects f with probability
at least 2/3.

For each intersecting j-junta J over [n], let pJ denote the fraction of the sets of
([n]

k

)
that are mapped by f to 1 and do not lie in J , that is,

pJ = 1(
n
k

) ·
∣∣∣∣{G ∈

(
[n]
k

) ∣∣∣∣ f(G) = 1 and G /∈ J
}∣∣∣∣.

We shall prove that, with high probability, the values of pJ are well approximated by the
quantities αJ that our tester computes. Let E denote the event that for every intersecting
j-junta J over [n], it holds that
1. if pJ ≤ ε2

4 , then αJ < ε2
2 , and

2. if pJ ≥ ε2, then αJ > ε2
2 .

For a fixed intersecting j-junta J over [n], apply Item 1 of Theorem 5 with µ = ε2
4 to obtain

that if pJ ≤ ε2
4 , then αJ ≥ ε2

2 with probability at most e−m·ε2/12. Further, apply Item 2 of
Theorem 5 with µ = ε2 to obtain that if pJ ≥ ε2, then αJ ≤ ε2

2 with probability at most
e−m·ε2/8 ≤ e−m·ε2/12. The number of intersecting j-juntas over [n] is clearly bounded by(

n
j

)
· 22j . Therefore, by the union bound, the probability that there exists an intersecting

j-junta J over [n] for which either pJ ≤ ε2
4 and αJ ≥ ε2

2 , or pJ ≥ ε2 and αJ ≤ ε2
2 does not

exceed(
n

j

)
· 22j

· e−m·ε2/12 ≤ nj · 22j

· e−m·ε2/12 ≤ e−2 < 1
3 ,

where the second inequality holds by our assumption on m given in (1). Therefore, the event
E occurs with probability at least 2/3.

It suffices to show now that if the event E occurs, then the answer of our tester is correct.
Suppose first that F is ε1-close to intersecting. By definition, there exists an intersecting
family F ′ ⊆

([n]
k

)
such that |F \ F ′| ≤ ε1 ·

(
n
k

)
. By Theorem 7, using n > 2k and k > j, there

exists an intersecting j-junta J over [n] such that |F ′ \ J | ≤ a ·
(

n−r
k−r

)
≤ a · (k

n)r ·
(

n
k

)
. It

thus follows that this J satisfies

|F \ J | ≤ ε1 ·
(

n

k

)
+ |F ′ \ J | ≤ ε1 ·

(
n

k

)
+ a ·

(k

n

)r

·
(

n

k

)
≤ ε2

4 ·
(

n

k

)
,

where the last inequality relies on our assumption on ε1 and ε2 in (1). This implies that
pJ ≤ ε2

4 , and since the event E occurs, it follows that αJ < ε2
2 , hence our tester accepts f .

Next, suppose that F is ε2-far from intersecting. This implies, for each intersecting j-junta
J over [n], that pJ > ε2, as otherwise, one could remove at most ε2 ·

(
n
k

)
of the sets of F

to obtain a sub-family of the intersecting family J . Since the event E occurs, each such J
satisfies αJ > ε2

2 , hence our tester rejects f .
Finally, let m be the smallest integer satisfying the condition in (1). Observe that the

running time of our tester is polynomial in m and in the number of intersecting j-juntas over
[n], where j depends only on r. It follows that the running time is polynomial in n and 1/ε2,
so by our assumption on ε2 in (1), it is polynomial in n. This completes the proof. ◀

I. Haviv and M. Parnas 35:9

▶ Remark 8. The assumption on ε1 and ε2 in Theorem 6 can be weakened, by an almost
identical proof, to ε2 ≥ (1 + δ) · ε1 + c1 · (k

n)r with an arbitrary δ > 0. For simplicity of
presentation, we omit the details.

We conclude this section with the observation that for all integers n and k with n ≥ 2k

and for all reals ε1, ε2 ∈ [0, 1) with ε2 ≥ 4 · (ε1 + k
n), there exists an efficient tolerant non-

adaptive two-sided error tester for Intersectingn,k,ε1,ε2 with O(1
ε2

) queries and high success
probability. To see this, consider the tester that given access to a function f :

([n]
k

)
→ {0, 1}

picks O(1
ε2

) sets uniformly and independently at random from
([n]

k

)
, queries f on them, and

computes the fraction α of the chosen sets that are mapped by f to 1. If α ≤ ε2
2 , then the

tester accepts, and otherwise it rejects.
For correctness, let p denote the fraction of the sets of

([n]
k

)
that are mapped by f to 1. If

f is ε1-close to intersecting, then f can be made intersecting by flipping at most ε1 ·
(

n
k

)
of its

values. By the Erdős–Ko–Rado theorem [4], the fraction of the sets of
([n]

k

)
in an intersecting

family does not exceed k
n , hence p ≤ ε1 + k

n ≤ ε2
4 . In this case, Theorem 5 yields that with

high probability, it holds that α ≤ ε2
2 and the tester accepts. On the other hand, if f is

ε2-far from intersecting, then it holds that p > ε2, so using again Theorem 5, it follows that
with high probability, we have α > ε2

2 and the tester rejects.

4 One-Sided Error Tester

In this section, we present non-adaptive one-sided error testers for the Intersectingn,k,ε

problem. We start with the canonical tester, which is used to prove Theorems 2 and 3. We
then offer another non-adaptive one-sided error tester, appropriate for integers n and k with
n = Θ(k).

4.1 Canonical Tester
Consider the following tester for the Intersectingn,k,ε problem.

Canonical Tester (n, k, m)
Input: Query access to a function f :

([n]
k

)
→ {0, 1}.

1. Pick m sets G1, . . . , Gm uniformly and independently at random from
([n]

k

)
.

2. Query f for the value of f(Gi) for each i ∈ [m].
3. If for every two indices i1, i2 ∈ [m] with Gi1 ∩ Gi2 = ∅, it holds that either

f(Gi1) = 0 or f(Gi2) = 0, then accept, and otherwise reject.

The description of Canonical Tester immediately implies that it is non-adaptive and
that it accepts every intersecting function with probability 1 and is thus one-sided error. In
what follows, we analyze the number of queries m needed to reject with high probability any
function ε-far from intersecting for ε ≥ Ω((k2

n)r), where r is a fixed integer. We start with
the case of r = 2, for which we offer a simple analysis that yields a bound of O(1

ε) on the
query complexity. We then consider the case of a general r, for which we obtain a bound of
O(ln k

ε) on the query complexity.

4.1.1 The case r = 2

We prove the following result, which confirms Theorem 3.

APPROX/RANDOM 2024

35:10 Testing Intersectingness of Uniform Families

▶ Theorem 9. For all integers n and k with n ≥ 2k and for any real ε ∈ [0, 1) with
ε ≥ 2 · (k2

n)2, there exists a non-adaptive one-sided error tester for Intersectingn,k,ε with
O(1

ε) queries, running time polynomial in n, and success probability at least 2/3.

The proof of Theorem 9 requires two simple lemmas. The first one, given below, may be
viewed as an analogue of a lemma of [2] for uniform families. Here, for a collection M of
pairs of sets, we say that the pairs of M are pairwise disjoint if no set lies in more than one
pair of M.

▶ Lemma 10. For integers n and k with n ≥ 2k and for a real ε ∈ [0, 1), if a family F ⊆
([n]

k

)
is ε-far from intersecting, then there exists a collection of more than ε

2 ·
(

n
k

)
pairwise disjoint

pairs (C, D) of sets of F satisfying C ∩ D = ∅.

Proof. Let F ⊆
([n]

k

)
be a family ε-far from intersecting, and consider a maximal collection M

(with respect to inclusion) of pairwise disjoint pairs (C, D) of sets of F satisfying C ∩ D = ∅.
The maximality of M implies that F can be made intersecting by removing all the 2 · |M| sets
that lie in the pairs of M. Since F is ε-far from intersecting, it follows that 2 · |M| > ε ·

(
n
k

)
.

This completes the proof. ◀

Using Lemma 10, we obtain the following.

▶ Lemma 11. For integers n and k with n ≥ 2k and for a real ε ∈ [0, 1), let F ⊆
([n]

k

)
be a

family ε-far from intersecting with |F| > k2 ·
(

n−2
k−2

)
. Then, more than ε

2 ·
(

n
k

)
of the sets of F

are disjoint from at least 1
2 · (|F| − k2 ·

(
n−2
k−2

)
) of the sets of F .

Proof. Let F ⊆
([n]

k

)
be a family ε-far from intersecting. By Lemma 10, there exists a

collection M of more than ε
2 ·

(
n
k

)
pairwise disjoint pairs (C, D) of sets of F satisfying

C ∩ D = ∅. Fix a pair (C, D) ∈ M. The disjointness of C and D implies that every set in([n]
k

)
that intersects both C and D includes some element of C and a different element of

D. It follows that the number of sets in
([n]

k

)
that intersect both C and D does not exceed

k2 ·
(

n−2
k−2

)
. Therefore, either C or D is disjoint from at least 1

2 · (|F| − k2 ·
(

n−2
k−2

)
) of the sets

of F . Since the pairs of M are pairwise disjoint, it follows that more than ε
2 ·

(
n
k

)
sets of F

are disjoint from at least 1
2 · (|F| − k2 ·

(
n−2
k−2

)
) of the sets of F , as required. ◀

We are ready to prove Theorem 9.

Proof of Theorem 9. For integers n, k, m and for a real ε ∈ [0, 1), consider the Canonical
Tester (n, k, m) for the Intersectingn,k,ε problem. As previously mentioned, this tester
is non-adaptive and one-sided error. To establish its correctness, it suffices to prove that if
a function f :

([n]
k

)
→ {0, 1} is ε-far from intersecting, then the m sets picked by the tester

include with probability at least 2/3 two disjoint sets that lie in f−1(1). Indeed, this implies
that the tester rejects such an f with the desired probability.

For a real ε ≥ 2 · (k2

n)2, let f :
([n]

k

)
→ {0, 1} be a function ε-far from intersecting.

Consider the family F = f−1(1), and note that F is ε-far from intersecting. In particular, it
holds that |F| > ε ·

(
n
k

)
, because F can be made intersecting by removing all of its sets. This

implies that

|F| − k2 ·
(

n − 2
k − 2

)
> ε ·

(
n

k

)
− k2 ·

(
k

n

)2
·
(

n

k

)
≥ ε

2 ·
(

n

k

)
, (2)

where the second inequality relies on our assumption on ε. We say that a set of
([n]

k

)
is

useful if it lies in F and is disjoint from at least ε
4 ·

(
n
k

)
of the sets of F . By Lemma 11,

combined with (2), the number of useful sets is greater than ε
2 ·

(
n
k

)
. Hence, a random set

picked uniformly from
([n]

k

)
is useful with probability at least ε/2.

I. Haviv and M. Parnas 35:11

Now, consider the m sets chosen by Canonical Tester. The probability that no useful
set is picked throughout the first 4/ε choices does not exceed (1 − ε/2)4/ε ≤ e−2 < 1/6.
Therefore, with probability at least 5/6, these choices include a useful set A. Since A is useful,
it is disjoint from at least ε

4 ·
(

n
k

)
of the sets of F . Therefore, once such a set A is chosen, the

probability that a random set picked uniformly from
([n]

k

)
lies in F and is disjoint from A is

at least ε/4. It follows that the probability that no such set is picked throughout the next
8/ε choices does not exceed (1 − ε/4)8/ε ≤ e−2 < 1/6. By the union bound, for m = 12/ε,
the m sets picked by our tester include with probability at least 2/3 two disjoint sets that lie
in F . Observe that for this choice of m, the running time of our tester is polynomial in n

and 1/ε. By our assumption on ε, the running time is polynomial in n, as desired. ◀

4.1.2 General r

We proceed by analyzing the more nuanced case in which ε ≥ Ω((k2/n)r) for a general
integer r. We prove the following result, which confirms Theorem 2.

▶ Theorem 12. For every integer r ≥ 1, there exist constants c1 = c1(r) and c2 = c2(r) for
which the following holds. For all integers n and k with n ≥ 2k and for any real ε ∈ [0, 1)
with ε ≥ c1 · (k2

n)r, there exists a non-adaptive one-sided error tester for Intersectingn,k,ε

with at most c2 · ln k
ε queries, running time polynomial in n, and success probability at least

2/3.

The proof of Theorem 12 requires a few lemmas, which involve the following definition.

▶ Definition 13. For integers n and k with n ≥ 2k, a family F ⊆
([n]

k

)
, a set A ⊆ [n], and a

set B ⊆ A, we let F(A↓B) denote the family of sets of F whose intersection with A is B,
that is,

F(A↓B) = {F ∈ F | F ∩ A = B}.

We say that the set A ε-captures F if the number of sets of F that are disjoint from A is
smaller than ε ·

(
n
k

)
, equivalently, |F(A↓∅)| < ε ·

(
n
k

)
.

The following lemma shows that if two families are far from cross-intersecting, then for
every small set A, it is possible to restrict the families to disjoint intersections with A, so
that the obtained restrictions are still far from cross-intersecting. The proof can be found in
the full version of the paper.

▶ Lemma 14. For an integer r ≥ 0, integers n and k with n ≥ 2k, and a real ε ∈ [0, 1),
let F1, F2 ⊆

([n]
k

)
be two families such that the pair (F1, F2) is ε-far from cross-intersecting,

and let A ⊆ [n] be a set of size |A| ≤ r. Then, there exist two sets B, C ⊆ A with B ∩ C = ∅
for which the pair (F1(A↓B), F2(A↓C)) is ε

3r -far from cross-intersecting. Moreover, if A
ε

3r -captures F2, then the guaranteed set C is not empty.

As a consequence of Lemma 14, we obtain the following.

▶ Lemma 15. For integers r, t ≥ 0, integers n and k with n ≥ 2k, and a real ε ∈ [0, 1), let
F1, F2 ⊆

([n]
k

)
be families such that the pair (F1, F2) is ε-far from cross-intersecting. Then,

there exist sets A ⊆ [n] and B, C ⊆ A with B ∩ C = ∅, such that
1. the pair (F1(A↓B), F2(A↓C)) is ε

3r·t -far from cross-intersecting, and
2. either there is no subset of [n] \ A of size at most r that ε

3r·t -captures F2(A↓C), or |C| ≥ t.
Moreover, if ε ≥ 3r·t · (k

n)t, then the guaranteed set C satisfies |C| < t.1

1 Note that by combining the second item of the lemma with the “moreover” part, it follows that if
ε ≥ 3r·t · (k

n)t, then there is no subset of [n] \ A of size at most r that ε
3r·t -captures F2(A↓C).

APPROX/RANDOM 2024

35:12 Testing Intersectingness of Uniform Families

Proof. Fix an integer r ≥ 0. We start by proving the first part of the lemma, i.e., the
existence of sets A ⊆ [n] and B, C ⊆ A with B ∩ C = ∅ satisfying Items 1 and 2. To do
so, we apply induction on t. The result clearly holds for t = 0, as follows from the choice
A = B = C = ∅ (for which we have F1 = F1(A↓B), F2 = F2(A↓C), and |C| ≥ 0).

Now, take t ≥ 1, and assume that the result holds for t − 1. To prove it for t, let
F1, F2 ⊆

([n]
k

)
be families such that the pair (F1, F2) is ε-far from cross-intersecting. By the

induction hypothesis, there exist sets A ⊆ [n] and B, C ⊆ A with B ∩ C = ∅, such that the
families H1 = F1(A↓B) and H2 = F2(A↓C) satisfy that
1. the pair (H1, H2) is ε

3r·(t−1) -far from cross-intersecting, and
2. either there is no subset of [n]\A of size at most r that ε

3r·(t−1) -captures H2, or |C| ≥ t−1.
By ε

3r·t ≤ ε
3r·(t−1) , it follows from Item 1 that the pair (H1, H2) is ε

3r·t -far from cross-
intersecting. Therefore, if there is no subset of [n] \ A of size at most r that ε

3r·t -captures H2,
then the result holds for t with the same sets A, B, C, and we are done. Otherwise, there
exists a set A′ ⊆ [n] \ A of size at most r that ε

3r·t -captures H2. In particular, there exists a
subset of [n] \ A of size at most r that ε

3r·(t−1) -captures H2, hence by Item 2 above, it follows
that |C| ≥ t − 1.

We apply Lemma 14 with the pair (H1, H2), which is ε
3r·(t−1) -far from cross-intersecting,

and with the set A′. Letting B′, C ′ ⊆ A′ be the sets with B′ ∩ C ′ = ∅ guaranteed by the
lemma, it follows that the pair (H1(A′

↓B′), H2(A′
↓C′)) is ε̃-far from cross-intersecting for

ε̃ = 1
3r · 1

3r·(t−1) = 1
3r·t . Moreover, since A′ ε̃-captures H2, it follows from the lemma that C ′

is not empty.
To complete the argument, define A′′ = A∪A′, B′′ = B ∪B′, and C ′′ = C ∪C ′. Recalling

that A ∩ A′ = ∅, B ∩ C = ∅, and B′ ∩ C ′ = ∅, we obtain that B′′ ∩ C ′′ = ∅ and that

|C ′′| = |C| + |C ′| ≥ (t − 1) + 1 = t.

We further have H1(A′
↓B′) = F1(A′′

↓B′′) and H2(A′
↓C′) = F2(A′′

↓C′′). Hence, the sets
A′′, B′′, C ′′ satisfy the required properties with respect to F1, F2 and t. This completes the
proof of the first part of the lemma.

We finally show that if ε ≥ 3r·t · (k
n)t, then the guaranteed set C satisfies |C| < t. To

establish the contrapositive statement, let A, B, C be the sets guaranteed by the lemma for
two families F1, F2 ⊆

([n]
k

)
, and suppose that |C| ≥ t. Since the pair (F1(A↓B), F2(A↓C)) is

ε
3r·t -far from cross-intersecting, it follows that |F2(A↓C)| > ε

3r·t ·
(

n
k

)
. On the other hand,

each set of F2(A↓C) contains the set C, hence |F2(A↓C)| ≤
(

n−t
k−t

)
≤ (k

n)t ·
(

n
k

)
. By combining

the two inequalities, we obtain that ε < 3r·t · (k
n)t. This completes the proof. ◀

The following lemma constitutes a key ingredient in our analysis of the canonical tester.
Its proof can be found in the full version of the paper.

▶ Lemma 16. For every integer r ≥ 1, there exists a constant c = c(r), such that for all
integers n and k with n ≥ 2k and for any real ε ∈ [0, 1) with ε ≥ 2 · (k2

n)r, the following
holds. Let F ⊆

([n]
k

)
be a family, and suppose that there exist sets A ⊆ [n] and B, C ⊆ A

with B ∩ C = ∅, such that the pair (F(A↓B), F(A↓C)) is ε-far from cross-intersecting, and
there is no subset of [n] \ A of size at most r − 1 that ε-captures F(A↓C). Then, if at least
c · ln k

ε sets are chosen uniformly and independently at random from
([n]

k

)
, then the probability

that they include two disjoint sets that lie in F is at least 2/3.

We are ready to prove Theorem 12.

I. Haviv and M. Parnas 35:13

Proof of Theorem 12. For integers n, k, m and for a real ε ∈ [0, 1), consider the Canonical
Tester (n, k, m) for the Intersectingn,k,ε problem. As previously mentioned, this tester
is non-adaptive and one-sided error. Fix an integer r ≥ 1, let c = c(r) be the constant given
in Lemma 16, and suppose that

ε ≥ 2 · 3r2
·
(

k2

n

)r

and m ≥ c · 3r2
· ln k

ε
. (3)

It suffices to prove that if a function f :
([n]

k

)
→ {0, 1} is ε-far from intersecting, then the m

sets picked by our tester include with probability at least 2/3 two disjoint sets that lie in
f−1(1). Indeed, this implies that the tester rejects such an f with the desired probability.

Let f :
([n]

k

)
→ {0, 1} be a function ε-far from intersecting. Set F = f−1(1), and note that

the family F is ε-far from intersecting, hence the pair (F , F) is ε-far from cross-intersecting.
Apply Lemma 15 with F1 = F2 = F and with t = r, to obtain that there exist sets A ⊆ [n]
and B, C ⊆ A with B ∩ C = ∅, such that for ε̃ = ε

3r2 , it holds that
1. the pair (F(A↓B), F(A↓C)) is ε̃-far from cross-intersecting, and
2. either there is no subset of [n] \ A of size at most r that ε̃-captures F2(A↓C), or |C| ≥ r.
Moreover, our assumption on ε in (3) clearly implies that ε ≥ 3r2 · (k

n)r, hence it follows
from the lemma that |C| < r. We thus derive from Item 2 above that there is no subset of
[n] \ A of size at most r that ε̃-captures F(A↓C). This obviously implies that there is no
subset of [n] \ A of size at most r − 1 that ε̃-captures F(A↓C).

Now, by our assumptions in (3), it holds that ε̃ ≥ 2 · (k2

n)r and m ≥ c · ln k
ε̃ . Therefore,

we can apply Lemma 16 with the family F , the sets A, B, C, the integer r, and the real ε̃, to
obtain that with probability at least 2/3, the m sets picked by our tester include two disjoint
sets that lie in F , as required.

Finally, let m be the smallest integer satisfying the condition in (3). Observe that the
running time of our tester is polynomial in n and m, hence it is polynomial in n and 1/ε.
By our assumption on ε in (3), the running time is polynomial in n, and the proof is
completed. ◀

4.2 The case n = Θ(k)

We turn our attention now to the Intersectingn,k,ε problem, where the integers n and k

satisfy n = α · k for an arbitrary constant α ≥ 2. We first observe that for this range of
parameters, the canonical tester is not effective, even for a constant ε. To see this, observe
that two random sets, chosen uniformly and independently from

([n]
k

)
, are disjoint with

probability
(

n−k
k

)
/
(

n
k

)
. For n = α · k, with α ≥ 2 being a constant, this probability decreases

exponentially in n. Therefore, a collection of random sets from
([n]

k

)
is unlikely to include

even a single pair of disjoint sets, unless their number grows exponentially in n. As a result,
the canonical tester does not provide a useful upper bound on the query complexity of the
Intersectingn,k,ε problem in this setting.

To overcome this difficulty, we consider a slightly different tester for the
Intersectingn,k,ε problem, which picks random pairs of disjoint sets from

([n]
k

)
and checks

if at least one of the pairs demonstrates a violation of intersectingness for the tested function.
This tester allows us to prove the following result.

▶ Theorem 17. For all reals α ≥ 2 and ε ∈ (0, 1), there exists some c = c(α, ε), such that
for all sufficiently large integers n and k with n = α · k, there exists a non-adaptive one-sided
error tester for Intersectingn,k,ε with c queries and success probability at least 2/3.

APPROX/RANDOM 2024

35:14 Testing Intersectingness of Uniform Families

Theorem 17 is obtained using the following result, that was proved (in a generalized form)
by Friedgut and Regev [7].

▶ Theorem 18 ([7]). For all reals α > 2 and ε ∈ (0, 1), there exist a real δ = δ(α, ε) > 0 and
an integer j = j(α, ε), such that for all sufficiently large integers n and k with n = α · k, the
following holds. Suppose that F ⊆

([n]
k

)
is a family, such that for every intersecting j-junta

J over [n], it holds that |F \ J | > ε ·
(

n
k

)
. Then, a random unordered pair {A, B} of two

disjoint sets of
([n]

k

)
, chosen uniformly from all such pairs, satisfies A ∈ F and B ∈ F with

probability at least δ.

Proof of Theorem 17. Fix α ≥ 2 and ε ∈ (0, 1), and let n and k be sufficiently large integers
with n = α · k. For an integer m, consider the following tester for the Intersectingn,k,ε

problem.

Input: Query access to a function f :
([n]

k

)
→ {0, 1}.

1. Pick m unordered pairs {A1, B1}, . . . , {Am, Bm} of sets of
([n]

k

)
with Ai ∩Bi = ∅

for all i ∈ [m] uniformly and independently at random.
2. Query f for the values of f(Ai) and f(Bi) for each i ∈ [m].
3. If for each i ∈ [m], it holds that f(Ai) = 0 or f(Bi) = 0, then accept, and

otherwise reject.

The above tester is clearly non-adaptive. Since it accepts every intersecting function with
probability 1, its error is one-sided. It suffices to show that there exists m = m(α, ε), such
that if a function f :

([n]
k

)
→ {0, 1} is ε-far from intersecting, then our tester rejects it with

probability at least 2/3. Let f :
([n]

k

)
→ {0, 1} be a function ε-far from intersecting.

Consider first the simple case of α = 2. Here, the fact that f is ε-far from intersecting
implies that more than ε ·

(
n
k

)
of the 1

2 ·
(

n
k

)
unordered pairs of disjoint sets of

([n]
k

)
violate

the intersectingness. For m = 1/ε, the probability that our tester accepts f is at most
(1 − 2ε)m = (1 − 2ε)1/ε ≤ e−2. Hence, with the complement probability, which exceeds 2/3,
our tester rejects f , as desired.

Next, suppose that α > 2, let δ = δ(α, ε) > 0 and j = j(α, ε) be the constants given in
Theorem 18, and put F = f−1(1). Since F is ε-far from intersecting, it follows that every
intersecting j-junta J over [n] satisfies |F \ J | > ε ·

(
n
k

)
. By Theorem 18, at least δ fraction

of the unordered pairs of disjoint sets of
([n]

k

)
violate the intersectingness. Letting m = 2/δ,

the probability that our tester accepts f is at most (1 − δ)m = (1 − δ)2/δ ≤ e−2. As before,
it follows that with probability at least 2/3, our tester rejects f , and we are done. ◀

References
1 Hou Tin Chau, David Ellis, Ehud Friedgut, and Noam Lifshitz. On the maximum degree of

induced subgraphs of the Kneser graph. arXiv, abs/2312.06370, 2023. arXiv:2312.06370.
2 Xi Chen, Anindya De, Yuhao Li, Shivam Nadimpalli, and Rocco A. Servedio. Testing

intersecting and union-closed families. In Proc. of the 15th Innovations in Theoretical Computer
Science Conference (ITCS’24), pages 33:1–33:23, 2024.

3 Irit Dinur and Ehud Friedgut. Intersecting families are essentially contained in juntas. Comb.
Probab. Comput., 18(1–2):107–122, 2009.

4 Paul Erdős, Chao Ko, and Richard Rado. Intersection theorems for systems of finite sets.
Quart. J. Math., 12(1):313–320, 1961.

5 Eldar Fischer. A basic lower bound for property testing. arXiv, abs/2403.04999, 2024.
arXiv:2403.04999.

6 Peter Frankl and Andrey Kupavskii. Maximal degrees in subgraphs of Kneser graphs. arXiv,
abs/2004.08718, 2020. arXiv:2004.08718.

https://arxiv.org/abs/2312.06370
https://arxiv.org/abs/2403.04999
https://arxiv.org/abs/2004.08718

I. Haviv and M. Parnas 35:15

7 Ehud Friedgut and Oded Regev. Kneser graphs are like Swiss cheese. Discrete Analysis, 2:1–18,
2018.

8 Oded Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.
9 Martin Kneser. Aufgabe 360. Jahresbericht der Deutschen Mathematiker-Vereinigung, 58(2):27,

1955.
10 László Lovász. Kneser’s conjecture, chromatic number, and homotopy. J. Comb. Theory, Ser.

A, 25(3):319–324, 1978.
11 Colin McDiarmid. Concentration. In Probabilistic methods for algorithmic discrete mathematics,

volume 16 of Algorithms Combin., pages 195–248. Springer, Berlin, 1998.
12 Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and distance

approximation. J. Comput. Syst. Sci., 72(6):1012–1042, 2006.
13 Roei Tell. A note on tolerant testing with one-sided error. In Computational Complexity and

Property Testing – On the Interplay Between Randomness and Computation, pages 173–177.
Springer, 2020.

APPROX/RANDOM 2024

On the Houdré-Tetali Conjecture About an
Isoperimetric Constant of Graphs
Lap Chi Lau #

Cheriton School of Computer Science, University of Waterloo, Canada

Dante Tjowasi #

Cheriton School of Computer Science, University of Waterloo, Canada

Abstract
Houdré and Tetali defined a class of isoperimetric constants φp of graphs for 0 ≤ p ≤ 1, and
conjectured a Cheeger-type inequality for φ 1

2
of the form

λ2 ≲ φ 1
2
≲
√

λ2,

where λ2 is the second smallest eigenvalue of the normalized Laplacian matrix. If true, the conjecture
would be a strengthening of the hard direction of the classical Cheeger’s inequality. Morris and
Peres proved Houdré and Tetali’s conjecture up to an additional log factor, using techniques from
evolving sets. We present the following related results on this conjecture.
1. We provide a family of counterexamples to the conjecture of Houdré and Tetali, showing that

the logarithmic factor is needed.
2. We match Morris and Peres’s bound using standard spectral arguments.
3. We prove that Houdré and Tetali’s conjecture is true for any constant p strictly bigger than 1

2 ,
which is also a strengthening of the hard direction of Cheeger’s inequality.

Furthermore, our results can be extended to directed graphs using Chung’s definition of eigenvalues
for directed graphs.

2012 ACM Subject Classification Theory of computation → Random walks and Markov chains

Keywords and phrases Isoperimetric constant, Markov chains, Cheeger’s inequality

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.36

Category RANDOM

Funding Supported by an NSERC Discovery Grant and a Math-funded Undergraduate Research
Award from University of Waterloo.

Acknowledgements We thank Christian Houdré and Prasad Tetali for their encouragement and the
anonymous reviewers for their helpful comments.

1 Introduction

Motivated by Talagrand’s isoperimetric inequality for the hypercubes [20] (see Subsection 1.2),
Houdré and Tetali [8] extended Talagrand’s isoperimetric constant to general Markov chains
and also to different exponents.

▶ Definition 1 (Isoperimetric Constants for Markov Chains [8]). Let (V, P, π) be an irreducible
Markov chain with vertex set V , transition matrix P ∈ R|V |×|V | and stationary distribution
π : V → R≥0. For any p ∈ (0, 1], define the isoperimetric constant as

φp(P) := min
S⊂V :π(S)≤ 1

2

φp(S) := min
S⊂V :π(S)≤ 1

2

∑
v∈S π(v) ·

(∑
u∈S P (v, u)

)p

π(S) .

© Lap Chi Lau and Dante Tjowasi;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 36; pp. 36:1–36:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lapchi@uwaterloo.ca
mailto:vdtjowasi@uwaterloo.ca
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.36
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 On the Houdré-Tetali Conjecture About an Isoperimetric Constant of Graphs

Let ∂S := {v ∈ S |
∑

u∈S P (v, u) > 0} be the inner vertex boundary of S. Then, for p = 0,

φ0(P) := min
S⊂V :π(S)≤ 1

2

φ0(S) := min
S⊂V :π(S)≤ 1

2

π(∂S)
π(S) .

Given an undirected graph or a directed graph G = (V, E), let PG be the transition matrix of
the natural random walk, where PG(v, u) = 1/ deg(v) in the undirected case and PG(v, u) =
1/ degout(v) in the directed case. Then the isoperimetric constant φp(G) for the graph G is
defined as φp(PG).

When p = 1, this is known as the Cheeger isoperimetric constant of a Markov chain
(see e.g. [16]) or the edge conductance/expansion of a graph (see Section 2 for definition).
When p = 0, this measures the vertex expansion of an undirected graph or a directed graph.
Talagrand studied the case p = 1

2 and proved a lower bound on φ 1
2

for Boolean hypercubes.
One can view φ 1

2
as a quantity that interpolates between edge conductance and vertex

expansion, since it follows from the Cauchy-Schwarz inequality that φ 1
2
(G)2 ≤ φ1(G) · φ0(G),

and Talagrand used his lower bound to recover Margulis’ theorem about edge conductance
and vertex expansion on hypercubes (see Subsection 1.2).

For an undirected graph G, one can use the second smallest eigenvalue λ2 of the matrix
I − PG to give upper and lower bound on φ1(G). The classical Cheeger’s inequality is

λ2(I − PG) ≲ φ1(G) ≲
√

λ2(I − PG).

Houdré and Tetali conjectured that the same relations hold for φ 1
2
(G) as well when the

Markov chain is reversible.

▶ Conjecture 2 ([8]). Let (V, P, π) be an irreducible and reversible Markov chain. Then

λ2(I − P) ≲ φ 1
2
(P) ≲

√
λ2(I − P).

It is clear from the definition that φp(G) increases as p decreases, and thus λ2 ≲ φ1(G) ≤
φp(G) for all p < 1. Therefore, the Houdré-Tetali conjecture is a strengthening of the hard
direction of Cheeger’s inequality. It predicts that when the hard direction of Cheeger’s
inequality is tight for a graph G such that φ1(G) ≍

√
λ2, then the graph must satisfy

φ1(G) ≍ φ 1
2
(G). Or, in other words, when φ1(G) ≪ φ 1

2
(G) such as on the hypercube (see

Remark 7) or on the dumbbell graphs, then the hard direction of Cheeger’s inequality cannot
be tight. So, the conjecture can be viewed as an improved Cheeger’s inequality in the spirit
of [11, 10] and this is a main motivation of this work.

Morris and Peres came close to proving the conjecture with an extra logarithmic factor.

▶ Theorem 3 ([18]). Let (V, P, π) be an irreducible and reversible Markov chain. Suppose
that P (v, v) ≥ 1

2 for all v ∈ V . Then

λ2(I − P) ≳
(
φ 1

2
(P)
)2

log
(
1/φ 1

2
(P)
) .

Their proof is based on techniques from evolving sets. They lower bounded the “boundary
gauge” Ψ using φ 1

2
, and also upper bounded the mixing rate using Ψ so that they can relate

λ2 and φ 1
2
.

L. C. Lau and D. Tjowasi 36:3

1.1 Our Results
We found counterexamples to the Houdré-Tetali conjecture, showing that the extra logarithmic
factor is needed.

▶ Theorem 4. There are irreducible and reversible Markov chains (V, P, π) with

λ2(I − P) ≲ log |V |
|V |2

and φ 1
2
(P) ≳ log |V |

|V |
=⇒ λ2(I − P) ≲

(
φ 1

2
(P)
)2

log
(
1/φ 1

2
(P)
) .

The counterexample is simple to describe, which is a weighted undirected graph with
vertex set [n] and edge weight P (i, j) inversely proportional to min{|i − j|, n − |i − j|}3. See
Section 4 for details.

On the positive side, we match the result of Morris and Peres using standard spectral
arguments. We show that the simple sweep-cut algorithm can be used to output a set S

with φ 1
2
(S) satisfying the guarantee in Theorem 3, without the self-loop assumption. See

Subsection 3.1.
Perhaps more interestingly, the same arguments can be used to prove that the Houdré-

Tetali conjecture is true if we replace 1
2 by any constant p > 1

2 .

▶ Theorem 5. Let (V, P, π) be an irreducible and reversible Markov chain. For any p ∈ (1
2 , 1],(

φp(P)
)2 ≤ 4

2p − 1 · λ2(I − P).

Similar to the discussion after Conjecture 2, this shows that the tight examples of the hard
direction of Cheeger’s inequality must satisfy φ 1

2 +ϵ(G) ≲
√

1
ϵ · φ1(G) for any ϵ ∈ (0, 1

2). Also,
this provides an improved analysis of Cheeger’s inequality that if φ1(G) ≪

√
2p − 1 · φp(G)

then φ1(G) ≪
√

λ2. So this result has similar consequences as if Houdré and Tetali’s
conjecture was true.

Finally, we observe that the same statement as in Theorem 5 can also be proved for
non-reversible Markov chains, by replacing λ2(I − P) with the eigenvalue defined for directed
graphs by Chung [5]. See Theorem 9.
▶ Remark 6 (φp for p < 1

2). For p < 1
2 , a simple argument shows that an inequality of the

form in Theorem 5 cannot hold. To see it, consider the transformation P → (1 − δ)I + δP

for some parameter 0 < δ < 1 (equivalent to adding a large self loop when δ is small) will
scale φp by a factor δp, while the second eigenvalue scales by a factor of δ, and so the ratio
φp(G)/

√
λ2(I − PG) scales by δp− 1

2 → ∞ as δ → 0. When p = 1
2 , adding self loops does not

change the ratio. Thus, it is the first exponent where such an inequality makes sense.

1.2 Previous Work on Boolean Hypercubes
The isoperimetric constant φ 1

2
was initially studied by Talagrand in the Boolean hypercubes.

Let {0, 1}n be the n-dimensional hypercube. For a point x ∈ {0, 1}n, let x⊕i be the point
obtained by flipping the i-th bit of x. For a subset S ⊂ {0, 1}n, if x /∈ S define hS(x) = 0
and otherwise if x ∈ S define

hS(x) :=
∣∣{i ∈ [n] | x⊕i /∈ S}

∣∣,
so that

∑
x hS(x) is the size of the edge boundary of S. Let µ be the uniform distribution

on {0, 1}n and µ(S) :=
∑

x∈S µ(x). The classical Poincaré inequality can be stated as, for
any S ⊂ {0, 1}n,

µ(S) · (1 − µ(S)) ≲ Ex∼µ

[
hS(x)

]
. (1)

APPROX/RANDOM 2024

36:4 On the Houdré-Tetali Conjecture About an Isoperimetric Constant of Graphs

Talagrand [20] proved a strengthening of the Poincaré inequality: For any S ⊂ {0, 1}n,

µ(S) · (1 − µ(S)) ≲ Ex∼µ

[√
hS(x)

]
. (2)

The quantity E
√

hS is always smaller than EhS and can be seen as a different measure of
the boundary information of S. Let ∂S := {x | hS(x) > 0} be the vertex boundary of S. By
the Cauchy-Schwarz inequality, Talagrand’s theorem implies Margulis’ theorem [17] that

µ(S)2 · (1 − µ(S))2 ≲ Ex∼µ

[
hS(x)

]
· µ(∂S),

which was an original motivation for Talagrand to consider the quantity E
√

hS . More
recently, both Margulis’ and Talagrand’s theorems inspired the analogs for directed graphs
developed in [3, 9], to make major progresses in analyzing sublinear time algorithms for
testing monotone functions. See also [6, 7] for a proof of a Talagrand’s conjecture that further
sharpens these inequalities.

The following remark clarifies the connection between φp and the quantities appearing in
Poincaré’s inequality and Talagrand’s inequality.

▶ Remark 7 (φp for Hypercubes). For the n-dimensional Boolean hypercube Qn, the stationary
distribution π is simply the uniform distribution µ. Note that the numerator in φ1(Qn) is
exactly 1

nEx∈µ[hf (x)], and the Poincaré inequality translates to φ1(Qn) ≳ 1
n . Similarly, the

numerator of φ 1
2
(Qn) is exactly 1√

n
Ex∈µ[

√
hf (x)], and the Talagrand’s inequality translates

to φ 1
2
(Qn) ≳ 1√

n
.

Finally, we note that a parameter similar to φp, called hp
f , was also studied in [6].

2 Preliminaries

Given two functions f, g, we use f ≲ g to denote the existence of a positive constant c > 0,
such that f ≤ c · g always holds. We use f ≍ g to denote f ≲ g and g ≲ f . For positive
integers k, we use [k] to denote the set {1, 2, . . . , k}. For a function f : X → R, supp(f)
denotes the domain subset on which f is nonzero. The function log x refers to the base e

logarithm.

Undirected Graphs. Let G = (V, E) be an undirected graph. Let w : E → R≥0 be a weight
function on the edges. The weighted degree of a vertex v is defined as degw(v) :=

∑
e:e∋v w(e).

Let S ⊂ V be a nonempty subset of vertices. The edge boundary of S is defined as
δ(S) := {e ∈ E | e ∩ S ≠ ∅ and e ∩ S ̸= ∅} and w(δ(S)) be the total edge weight of δ(S).
The volume of S is defined as volw(S) :=

∑
v∈S degw(v). The edge conductance of S and of

G are defined as

ϕ(S) :=
w
(
δ(S)

)
volw(S) and ϕ(G) := min

S:volw(S)≤volw(V)/2
ϕ(S).

In an undirected graph, the ordinary random walk has transition matrix P with P (u, v) =
w(uv)/ degw(u) for every u, v ∈ V . If the graph is connected, then the stationary distribution
π is unique with π(u) = degw(u)/

∑
v∈V degw(v) for every u ∈ V . It is thus straightforward

to check that ϕ(S) = φ1(S) and ϕ(G) = φ1(G), i.e. the two definitions coincide.

L. C. Lau and D. Tjowasi 36:5

Directed Graphs. Let G = (V, E) be a directed graph. Let w : E → R≥0 be a weight func-
tion on the edges. The weighted indegree of a vertex v is defined as din

w (v) :=
∑

u:−→uv∈E w(−→uv)
and the weighted outdegree of v is defined as dout

w (v) :=
∑

u:−→vu∈E w(−→vu). In a directed graph,
the ordinary random walk has transition matrix P with P (u, v) = w(−→uv)/ degout

w (u). The
stationary distribution π has no easy description but is unique as long as the directed graph
is strongly connected. There are different notions of directed edge conductance for directed
graphs. In analyzing random walks, the standard definition is exactly φ1(G) as described in
Definition 1, and this quantity is closely related to the mixing time of random walks; see
e.g. [16, 5, 18]. In analyzing graph partitioning, there is a definition that extends the edge
conductance above to directed graphs, which will not be used in this paper; see e.g. [21, 13].

Spectral Graph Theory. Given an undirected graph G = (V, E) with a weight function
w : E → R≥0, its adjacency matrix A = A(G) is an |V |×|V | matrix where the (u, v)-th entry is
w(uv). The Laplacian matrix is defined as L := D−A, where D := diag({degw(v)}v∈V) is the
diagonal degree matrix. The normalized adjacency matrix is defined as A := D−1/2AD−1/2,
and the normalized Laplacian matrix is defined as L := I − A. Let λ1(L) ≤ λ2(L) ≤ · · · ≤
λn(L) be the eigenvalues of L. It is known that λ1(L) = 0 with eigenvector D1/21⃗, and

λ2(L) = min
g⊥D1/21⃗

gT Lg

gT g
= min

f⊥D1⃗

fT Lf

fT Df
= min

f⊥D1⃗

∑
uv∈E w(uv) · (f(u) − f(v))2∑

v degw(v) · f(v)2 .

Cheeger’s inequality [4, 2, 1] is a fundamental result in spectral graph theory that connects
edge conductance of an undirected graph G = (V, E) to the second smallest eigenvalue of its
normalized Laplacian matrix:

λ2

2 ≤ ϕ(G) ≤
√

2λ2.

The random walk transition matrix P is similar to the normalized Laplacian matrix
A, and the matrix I − P is similar to the normalized Laplacian matrix L. In particular,
I − P enjoys the same spectral properties as L with real eigenvalues and a quadratic form
characterization of λ2 as above; see Lemma 8.

Chung [5] defined the Laplacian matrix of a directed graph and used it to prove an analog
of Cheeger’s inequality. These will be stated in Subsection 3.2.

3 Positive Results

To prove Theorem 5, we follow standard spectral arguments used in proving Cheeger-type
inequalities, in Trevisan’s style. First, we start with the second eigenvector f2 : V → R and
truncate it so that the π weight of its support is at most half while preserving its Rayleigh
quotient. The proof of the following lemma is standard and we defer it to the end of this
section.

▶ Lemma 8. Let (V, P, π) be an irreducible and reversible Markov chain. Let f2 be an
eigenvector associated to the second smallest eigenvalue of the matrix I − P , with π({v |
f2(v) > 0}) ≤ 1

2 . Define the truncated vector f such that f(v) := max{f2(v), 0} for all
v ∈ V . Then

λ2(I − P) ≥
∑

f(i)≥f(j) π(i) · P (i, j) · (f(i) − f(j))2∑
i∈V π(i)f(i)2 .

APPROX/RANDOM 2024

36:6 On the Houdré-Tetali Conjecture About an Isoperimetric Constant of Graphs

Then the plan is to prove that one of the level sets has small isoperimetric constant.
We index the vertices by [n] and order them so that f(i) ≤ f(j) for i ≤ j. For any t ≥ 0,
define the level set St := {i ∈ [n] | f(i)2 > t}. By the construction of f , it holds that
π(St) ≤ 1

2 for any t ≥ 0, and so φp(P) ≤ mint:t≥0 φp(St). For convenience, we rescale f so
that maxi f(i) = 1.

To prove that one of St has small isoperimetric constant, we choose a uniform random t ∈
[0, 1] and consider φp(St). We will bound the expected value of the numerator of φp(St) and of
the denominator of φp(St) and conclude that there exists a t with φp(St) at most the ratio of
the expected values, i.e. min

t:t≥0
φp(St) ≤ Et[numerator of φp(St)] / Et[denominator of φp(St)].

The expected value of the denominator is easy to analyze. Since we choose t uniformly
randomly, each vertex i is included in St with probability f(i)2, and thus

Et[π(St)] =
∑
i∈V

π(i) · f(i)2.

The rest of the proof is to analyze the expected value of the numerator
∑

i∈V π(i)·P (i, St)p.
For a vertex i, if the random threshold t is between f(j)2 and f(j − 1)2 with f(j) > f(j − 1),
then P (i, St) = P (i, [j − 1]), and so

Et

[
P (i, St)p

]
=

i∑
j=1

(
f(j)2 − f(j − 1)2) · P (i, [j − 1])p

=
i∑

j=1

(
f(j)2 − f(j − 1)2) ·

j−1∑
l=1

(
P (i, [l])p − P (i, [l − 1])p

)
=

i−1∑
l=1

(
f(i)2 − f(l)2) ·

(
P (i, [l])p − P (i, [l − 1])p

)
,

where the second equality is by writing a telescoping sum and the third equality is by a
change of summation. So, the expected numerator Et[

∑n
i=1 π(i) · P (i, St)p] is

n∑
i=1

i−1∑
j=1

π(i) ·
(
f(i)2 − f(j)2) ·

(
P (i, [j])p − P (i, [j − 1])p

)

≤

√√√√ n∑
i=1

i−1∑
j=1

π(i) · (f(i) − f(j))2 · P (i, j)

·

√√√√ n∑
i=1

i−1∑
j=1

π(i) · (f(i) + f(j))2 ·
(
P (i, [j])p − P (i, [j − 1])p

)2

P (i, j)

≤

√√√√λ2 ·
n∑

i=1
π(i) · f(i)2 ·

√√√√ n∑
i=1

4 · π(i) · f(i)2 ·
i−1∑
j=1

(
P (i, [j])p − P (i, [j − 1])p

)2

P (i, [j]) − P (i, [j − 1]) ,

where the first inequality is by Cauchy-Schwarz, and the second inequality is by Lemma 8
and (f(i) + f(j))2 ≤ 4f(i)2 and P (i, j) = P (i, [j]) − P (i, [j − 1]).

To upper bound the inner sum of the second term, we denote aj := P (i, [j]) and it suffices
to upper bound the sum of the form

∑n
j=1(ap

j − ap
j−1)2/(aj − aj−1) with a0 = 0 and an ≤ 1,

with a bound independent of n. Let C(n, a) denote the supremum of the sum when an = a.
Note that C(n, a) = a2p−1 · C(n, 1) by a simple scaling argument. Let (ai)n

i=1 be an optimal
sequence that achieves the supremum of C(n, 1). Then,

L. C. Lau and D. Tjowasi 36:7

C(n, 1) = C(n − 1, an−1) +
(1 − ap

n−1)2

1 − an−1
= a2p−1

n−1 · C(n − 1, 1) +
(1 − ap

n−1)2

1 − an−1

≤ a2p−1
n−1 · C(n, 1) +

(1 − ap
n−1)2

1 − an−1
.

It follows that

C(n, 1) ≤ sup
a∈[0,1]

(1 − ap)2

(1 − a)(1 − a2p−1) ≤ sup
a∈[0,1]

(1 − ap)2

(2p − 1)(1 − a)2 ≤ 1
2p − 1 ,

where the second inequality is by the mean value theorem that 1 − a2p−1 ≥ (2p − 1)(1 − a)
and the last inequality is because a ∈ [0, 1] and p ∈ (1

2 , 1]. Clearly, C(n, 1) ≥ C(n, an) for
any an ∈ [0, 1], and so the inner sum of the second term in the expected numerator is at
most 1

2p−1 . Putting together, this completes the proof of Theorem 5 as

φp(P) ≤ min
t:t>0

φp(St) ≤
Et[
∑n

i=1 π(i) · P (i, St)p]
Et[π(St)]

≤ 2
√

λ2

√
1

2p − 1 ,

which implies that
(
φp(P)

)2 ≤ 4
2p−1 · λ2.

3.1 Recovering Morris and Peres’s Result
To recover Theorem 3, we follow the same arguments but add a truncation step so that the
sequence ai above will start with a0 ≈ φ 1

2
(P). In this subsection, we plug in p = 1

2 . As
above, the main work is to upper bound the expected value of the numerator. Recall that

Et

[√
P (i, St)

]
=

i−1∑
j=1

(
f(i)2 − f(j)2) ·

(√
P (i, [j]) −

√
P (i, [j − 1])

)
,

Let li be the index such that
√

P (i, [li]) ≤ 1
2 φ 1

2
(P) but

√
P (i, [li + 1]) > 1

2 φ 1
2
(P). Then, we

can upper bound the right hand side by

Et

[√
P (i, St)

]
≤ 1

2φ 1
2
(P) · f(i)2 + (f(i)2 − f(li + 1)2)

(√
P (i, [li + 1]) − 1

2φ 1
2
(P)
)

+
i−1∑

j=li+2
(f(i)2 − f(j)2)

(√
P (i, [j]) −

√
P (i, [j − 1])

)
.

To shorten the expression, let us use the notations

ai,0 = 1
2φ 1

2
(P) and ai,j =

√
P (i, [li + j]).

Summing over i and using these notations, the expected numerator is

Et

[n∑
i=1

π(i) ·
√

P (i, St)
]

≤ 1
2φ 1

2
(P) ·

n∑
i=1

π(i) · f(i)2

+
n∑

i=1
π(i) ·

i−li−1∑
j=1

(f(i)2 − f(li + j)2) · (ai,j − ai,j−1)︸ ︷︷ ︸
(∗)

APPROX/RANDOM 2024

36:8 On the Houdré-Tetali Conjecture About an Isoperimetric Constant of Graphs

Applying Cauchy-Schwarz as before gives

(∗) ≤

√√√√ n∑
i=1

i−li−1∑
j=1

π(i) · (f(i) − f(li + j))2 · P (i, li + j)

·

√√√√ n∑
i=1

i−li−1∑
j=1

π(i) · (f(i) + f(li + j))2 ·
(
ai,j − ai,j−1

)2

P (i, li + j)

≤

√√√√λ2 ·
n∑

i=1
π(i) · f(i)2 ·

√√√√√√√
n∑

i=1
4 · π(i) · f(i)2 ·

i−1∑
j=1

ai,j − ai,j−1

ai,j + ai,j−1︸ ︷︷ ︸
(∗∗)

,

where the second inequality uses Lemma 8 and P (i, li + j) = a2
i,j − a2

i,j−1.
To upper bound (∗∗), we let bi := ai,j and use that 1

2 φ 1
2
(P) = b0 ≤ b1 ≤ . . . ≤ bm ≤ 1 =:

bm+1 to upper bound the function

f : (b0, b1, . . . , bm) → b1 − b0

b1 + b0
+ b2 − b1

b2 + b1
+ · · · + bm − bm−1

bm + bm−1
+ 1 − bm

1 + bm

The partial derivative of f is

∂f

∂bi
= 2bi−1

(bi + bi−1)2 − 2bi+1

(bi+1 + bi)2 = 2(bi+1 − bi−1)(bi−1bi+1 − b2
i)

(bi + bi−1)2(bi+1 + bi)2 .

Since bi+1 − bi−1 > 0 by definition, the function increases up until b2
i = bi−1bi+1 and then

decreases. So, the maximum is attained when bi = (b0)
m+1−i

m+1 with b0 = 1
2 φ 1

2
(P) and

bm+1 = 1, in which case the sum is
m+1∑
i=1

bi − bi−1

bi + bi−1
=

m+1∑
i=1

1 − bi−1
bi

1 + bi−1
bi

=
m+1∑
i=1

1 − b
1

m+1
0

1 + b
1

m+1
0

= (m + 1) · 1 − b
1

m+1
0

1 + b
1

m+1
0

For b0 ∈ [0, 1], this value is increasing when m increases, and so the sum is upper bounded by

(∗∗) ≤ lim
x→∞

x · 1 − b
1
x
0

1 + b
1
x
0

= lim
x→∞

x · 1 − b
1
x
0

2 = lim
y→0

1 − by
0

2y

= lim
y→0

−by
0 log b0

2 = 1
2 log 1

b0
= 1

2 log 2
φ 1

2
(P) ,

where the third last equality is by L’Hôpital’s rule. Plugging this back into (∗∗) and (∗), the
expected numerator is

Et

[n∑
i=1

π(i) ·
√

P (i, St)
]

≤ 1
2φ 1

2
(P) ·

n∑
i=1

π(i) · f(i)2

+

√√√√λ2 ·
n∑

i=1
π(i) · f(i)2 ·

√√√√ n∑
i=1

2 log 2
φ 1

2
(P) · π(i) · f(i)2.

As before, the expected denominator is Et[π(St)] =
∑

i∈V π(i) · f(i)2. Putting together,

φ 1
2
(P) ≤ min

t:t>0
φ 1

2
(St) ≤

Et

[∑n
i=1 π(i) ·

√
P (i, St)

]
Et[π(St)]

≤ 1
2φ 1

2
(P) +

√
2 log 2

φ 1
2
(P)λ2.

Rearranging recovers Theorem 3.

L. C. Lau and D. Tjowasi 36:9

3.2 Non-Reversible Markov Chains

Houdré and Tetali only formulated Conjecture 2 for reversible Markov chains of which the
eigevalues of I − P are real. For non-reversible Markov chains, we observe that Chung’s
definition of eigenvalues for directed graphs [5] can be used to obtain the same results in
Theorem 3 and Theorem 5.

Given a directed graph G = (V, E) with a weight function w : E → R≥0, let PG be the
transition matrix of the ordinary random walks on G with PG(u, v) = w(uv)/

∑
v∈V w(uv)

for each edge uv ∈ E. Suppose G is strongly connected, then there is a unique stationary
distribution π : V → R+ such that πT P = πT . Let Π = diag(π). Chung defined the
Laplacian of the directed graph G as

L⃗G := I − 1
2

(
Π 1

2 PΠ− 1
2 + Π− 1

2 P T Π 1
2

)
.

Since L⃗G is a real symmetric matrix, its eigenvalues are real. Let λ2 be the second smallest
eigenvalue of L⃗G. Chung [5] proved an analog of Cheeger’s inequality that

1
2φ1(G)2 ≤ λ2(L⃗G) ≤ 2φ1(G).

We observe that λ2(L⃗G) can be used to extend our results to non-reversible Markov chains.

▶ Theorem 9. Let (V, P, π) be an irreducible Markov chain. For any p ∈ (1
2 , 1],

(
φp(P)

)2 ≤ 4
2p − 1 · λ2(L⃗G).

For p = 1/2,

λ2(L⃗G) ≳
(
φ 1

2
(P)
)2

log
(
1/φ 1

2
(P)
) .

Note that the main proofs of Theorem 5 and Theorem 3 (i.e. computing the expected
numerator) did not require the Markov chain to be reversible. The reversible assumption was
only used in characterizing the second eigenvalue in Lemma 8. The following is an analog of
Lemma 8 for non-reversible Markov chains using Chung’s definition of the second eigenvalue
of directed graphs.

▶ Lemma 10. Let (V, P, π) be an irreducible Markov chain. Let v2 be an eigenvector associated
to the second smallest eigenvalue of the matrix L⃗G. Define the reweighted eigenvector
f2 := Π− 1

2 v2, with π({v : f2(v) ≥ 0}) ≤ 1
2 . Define the truncated vector f := max(f2, 0).

Then

λ2(L⃗G) ≥
∑

u,v∈V :f(u)≥f(v) π(u) · P (u, v) · (f(u) − f(v))2∑
v∈V π(v)f(v)2 .

With this lemma, we can follow the proofs of Theorem 5 and Theorem 3 verbatim as in
above, by defining level sets St using the truncated vector f and computing the expected
numerator and denominator and so on.

This concludes the proof of Theorem 9. We will prove Lemma 10 in the next subsection.

APPROX/RANDOM 2024

36:10 On the Houdré-Tetali Conjecture About an Isoperimetric Constant of Graphs

3.3 Proofs of Auxiliary Lemmas
In this subsection, we prove Lemma 8 and Lemma 10. The proofs are standard but we
include them for completeness.

Proof of Lemma 8. For f, g : V → R, we define ⟨f, g⟩π :=
∑

i∈V π(i) · f(i) · g(i). By
definition of the second eigenvector, ⟨(I − P)f2, f2⟩π = λ2⟨f2, f2⟩π.

For f := max(f2, 0), note that Pf ≥ Pf2, as

(Pf)(i) =
∑
j∈V

p(i, j)f(j) ≥
∑
j∈V

p(i, j)f2(j) = (Pf2)(i),

and thus

⟨Pf, f⟩π =
∑

i∈V :f2(i)≥0

π(i) ·(Pf)(i) ·f(i) ≥
∑

i∈V,f2(i)≥0

π(i) ·(Pf2)(i) ·f2(i) = (1−λ2)⟨f, f⟩π,

where the last equality uses that Pf2 = (1 − λ2)f2. It follows that

λ2 ≥ ⟨(I − P)f, f⟩π

⟨f, f⟩π
.

The denominator is the same as the denominator in the statement. It remains to check that
the numerator is also the same as the numerator in the statement. By direct calculation,

⟨(I − P)f, f⟩π =
∑
i∈V

π(i)f(i)2 −
∑
i∈V

π(i)
∑
j∈V

P (i, j)f(j)f(i)

=
∑
i∈V

∑
j∈V

π(i)P (i, j)f(i)2 −
∑
i∈V

∑
j∈V

π(i)P (j, i)f(j)f(i)

=
∑
i∈V

∑
j∈V

π(i)P (i, j)
(1

2(f(i)2 + f(j)2) − f(i)f(j)
)

=
∑
i>j

π(i)P (i, j)(f(i) − f(j))2,

where the second equality uses
∑

j∈V P (i, j) = 1 and the third equality uses reversibil-
ity which gives π(i)P (i, j) = π(j)P (j, i) for all i, j ∈ V , to get

∑
i,j π(i)P (i, j)f(i)2 =∑

i,j π(i)P (i, j)f(j)2. ◀

To prove Lemma 10, we will use the following facts about λ2(L⃗G) in [5].

▶ Lemma 11 ([5]). Let G = (V, E) be a strongly connected directed graph and π be its
stationary distribution. The second smallest eigenvalue λ2 of the directed Laplacian L⃗G

satisfies

λ2 = inf
f⊥π

∑
u,v∈V π(u) · P (u, v) · |f(u) − f(v)|2∑

v∈V π(v) · |f(v)|2

Suppose v2 is an eigenvector of L⃗G associated with eigenvalue λ2. Then, for the reweighted
eigenvector f2 := Π− 1

2 v2, for all u ∈ V ,

λ2 · f2(u) · π(u) = 1
2
∑

v

(
f2(u) − f2(v)

)
·
(
π(u)P (u, v) + π(v)P (v, u)

)
.

L. C. Lau and D. Tjowasi 36:11

Proof of Lemma 10. We claim that the truncated vector f := max{f2, 0} satisfies

λ2 · f(u) · π(u) ≥ 1
2
∑

v

(
f(u) − f(v)

)
·
(
π(u)P (u, v) + π(v)P (v, u)

)
.

for all u ∈ V . Indeed, for u such that f(u) > 0,

λ2 · f(u) · π(u) = λ2 · f2(u) · π(u)

= 1
2
∑
v∈V

(
f2(u) − f2(v)

)
·
(
π(u)P (u, v) + π(v)P (v, u)

)
≥ 1

2
∑
v∈V

(
f(u) − f(v)

)
·
(
π(u)P (u, v) + π(v)P (v, u)

)
,

where the second equality is by the fact above and the last inequality is by f2(u) − f2(v) ≥
f(u) − f(v) for all u, v ∈ V due to truncation. For u such that f(u) = 0, the inequality holds
trivially because

λ2 · f(u) · π(u) = 0 ≥ 1
2
∑

v

(
− f(v)

)
·
(
π(u)P (u, v) + π(v)P (v, u)

)
as f(v) ≥ 0 for all v by truncation. Thus the claim follows. Multiplying both sides of the
claim by f(u) and then summing over all u gives

λ2 ·
∑
u∈V

f2(u)π(u) ≥ 1
2
∑
u∈V

f(u)
∑
v∈V

(
f(u) − f(v)

)
·
(
π(u)P (u, v) + π(v)P (v, u)

)
= 1

2
∑
u∈V

∑
v∈V

π(u) · P (u, v) ·
(1

2f(u)2 + 1
2f(v)2 − f(u)f(v)

)
= 1

2
∑
u∈V

∑
v∈V

π(u) · P (u, v) ·
(
f(u) − f(v)

)2
.

This is equivalent to the statement where the sum is over pairs with f(u) ≥ f(v). ◀

4 Counterexamples

In this section, we prove Theorem 4 by constructing a family of counterexamples and bounding
their second eigenvalues and φ 1

2
value. The construction is simple.

▶ Definition 12 (Counterexamples). Let Gn be a graph with vertex set [n]. For each i, j ∈
[n], i ̸= j, the edge weight is

P (i, j) = 1
C
(

min{|i − j|, n − |i − j|}
)3 ,

where C =
∑n

i=1 1/ min{|i − j|, n − |i − j|}3 is the normalizing constant to make the graph
1-regular.

We will prove the two claims in Theorem 4 about the second smallest eigenvalue and the
φ 1

/
2(G) value. First, we analyze the second smallest eigenvalue, based on the construction

that I − P is a circulant matrix.

▶ Lemma 13. For Gn in Definition 12, the second smallest eigenvalue of I − P is

λ2(I − P) ≲ log n

n2 .

APPROX/RANDOM 2024

36:12 On the Houdré-Tetali Conjecture About an Isoperimetric Constant of Graphs

Proof. By our construction, the graph Gn is cyclic that P (i, j) = P ((i + k) mod n, (j +
k) mod n) for all i, j, k ∈ [n]. So the matrix I − P is a circulant matrix of the form

I − P =

a0 a1 a2 . . . an−1
an−1 a0 · · · · · · an−2

an−2 an−1
. an−3

...
.

...
a1 a2 a0

where a0 = 1 and aj = −P (1, j + 1) for all j ∈ [n]. It is well-known that an n × n circulant
matrix with first row entries a ∈ Rn has eigenvalues and corresponding eigenvectors{ n−1∑

i=0
aiωk

i
}n−1

k=0
and

{(
1, ωk, . . . , ωn−1

k

)T
}n−1

k=0

where ωk := e
2πkı

n are the n-th roots of unity for k ∈ [n] (where ı denotes the imaginary
number).

So, the second smallest eigenvalue λ2 of I − P corresponds to the first n-th root of unity
ω := ω1 = e

2πı
n , and

λ2 =
n−1∑
i=0

ai · ωi =
n∑

i=2
P (1, i) −

⌊n/2⌋+1∑
i=2

P (1, i) · ωi−1 −
n∑

i=⌊n/2⌋+2

P (1, i) · ωi−1.

We consider two cases, when n is odd and n is even. When n = 2k + 1 is odd, note that by
definition P (1, i) = P (1, 2k + 3 − i) for 2 ≤ i ≤ k + 1 and so we can pair up the terms in the
above equation to get

λ2 =
k+1∑
i=2

P (1, i)
(

2 − ωi−1 − 1
ωi−1

)
= −

k+1∑
i=2

P (1, i)
(

ω
i−1

2 − 1
ω

i−1
2

)2
.

Using the definition of ωk := e
2πkı

n = cos 2kπ
n + ı sin 2kπ

n , it follows that

λ2 = −
k+1∑
i=2

P (1, i)
(

ω
i−1

2 − ω
i−1

2

)2
= −

∑k+1
i=2 P (1, i)

(
2ı sin (i − 1)π

n

)2

= 4
∑k+1

i=2 P (1, i)
(

sin (i − 1)π
n

)2
.

Finally we use the fact that sin x < x and that P (1, i) = 1
C·min{|i−1|,n−|i−1|}3 < 1

(i−1)3 for
2 ≤ i ≤ k + 1 as C ≥ 1 to conclude that

λ2 < 4
k+1∑
i=2

1
(i − 1)3

((i − 1)π
n

)2
= 4

k∑
i=1

1
i

(π2

n2

)
≲

log n

n2 .

When n = 2k is even, the proof follows along the same lines, but we need to remove the term
k = n

2 + 1 in the sum because ωn/2 = −1. However, it only contributes a term of O
(1

n3

)
to

the sum, which is negligible. ◀

It remains to prove that φ 1
2
(P) ≳ log n

n . As this graph is symmetric, our intuition is that
φ 1

2
(P) attains its minimum at the set S = {1, . . . , n

2 }. In this case, for each vertex i ∈ S,

√
P (i, S) ≥

√√√√i+ n
2∑

j=i

1
j3 ≈ 1

i
− 1

i + n
2

≥ 1
2i

,

L. C. Lau and D. Tjowasi 36:13

which implies that

φ 1
2
(S) ≳

n
2∑

i=1

1
n

√
P (i, S) ≳ 1

n

n
2∑

i=1

1
i
≳

log n

n
.

Our plan was to prove that S indeed attains the minimum, but we do not have such a proof.
Instead, we will work on a slightly different lower bound, which satisfies a concavity property
that allows us to argue that sets of consecutive vertices attain the minimum, in order to
prove the lower bound. It turns out that the proof is a bit long and we will present it in the
next subsection.

4.1 Proof of φ1
2

Lower Bound
First, we set up some notations for the proof. Let us partition the vertex set of Gn into two
sets A and B := G \ A with |A| ≤ |B|. As the graph Gn is cyclic, we can arrange the vertices
V = [n] in a clockwise manner and without loss of generality we assume 1 ∈ A and n ∈ B.
Let us divide the vertices of A and B into contiguous sets A1, B1, A2, B2, . . . , Ak, Bk in the
cyclic representation, and denote their sizes by ai := |Ai| and bi := |Bi| for 1 ≤ i ≤ k. More
explicitly, for 1 ≤ i ≤ k, the vertices in Ai and Bi are

Ai =
{ i−1∑

j=1
aj +

i−1∑
j=1

bj +1, . . . ,
i∑

j=1
aj +

i−1∑
j=1

bj

}
,Bi =

{ i∑
j=1

aj +
i−1∑
j=1

bj +1, . . . ,
i∑

j=1
ai +

i−1∑
j=1

bi

}
.

For two disjoint subsets S, T ⊂ V , let us define f(S, T) :=
∑

u∈S

√
P (u, T). Note that

φ 1
2
(A) = f(A,B)

|A| , so our goal is to lower bound

f(A, B) =
k∑

i=1
f(Ai, B).

For two sets S, T ∈ {Ai}k
i=1 ∪ {Bi}k

i=1, let us define the contiguous block [S, T] to
be the block of sets from S clockwise up until T , possibly going around. For example,
[Bk, A2] := Bk ∪ A1 ∪ B1 ∪ A2, and note that [S, T] ̸= [T, S] since the sets are counted
clockwise.

After we set up the notations, we start with a lower bound on f(Ai, B) by a natural
function, the logarithm of the size of contiguous sets, which is the “slightly different lower
bound” that we mentioned before this subsection.

▶ Lemma 14. For 1 ≤ i ≤ k,
√

2C · f(Ai, B) ≥
∑k

j=1

(
log
(
|[Ai, Aj]| + 1

)
+ log

(
|[Bi, Bj−1]| + 1

)
− log

(
|[Bi, Aj]| + 1

)
− log

(
|[Ai, Bj−1]| + 1

))
,

where C is the normalizing constant in Definition 12 and |[S, T]| denotes the number of
vertices in the block [S, T].

Proof. We prove the statement for f(A1, B). By definition of f, Ai, Bi stated above,

√
2C · f(A1, B) =

√
2C ·

∑
i∈A1

√√√√ k∑
l=1

P (i, Bl)

=
√

2C ·
a1∑

i=1

√√√√ k∑
l=1

bl∑
j=1

P

(
i,

l∑
m=1

am +
l−1∑

m=1
bm + j

)
.

APPROX/RANDOM 2024

36:14 On the Houdré-Tetali Conjecture About an Isoperimetric Constant of Graphs

By the definition of P in Definition 12, P (i, j) ≥ 1
C|i−j|3 and so

√
2C · f(A1, B) ≥

√
2 ·

a1∑
i=1

√√√√ k∑
l=1

bl∑
j=1

(l∑
m=1

am +
l−1∑

m=1
bm + j − i

)−3

=
√

2 ·
a1−1∑
i=0

√√√√ k∑
l=1

bl∑
j=1

(l∑
m=2

am +
l−1∑

m=1
bm + j + i

)−3
.

We lower bound the inner sum by an integral, so that

√
2C · f(A1, B) ≥

√
2 ·

a1−1∑
i=0

√√√√ k∑
l=1

∫ bl+1

1

(l∑
m=2

am +
l−1∑

m=1
bm + x + i

)−3
dx

=
a1−1∑
i=0

(k∑
l=1

(l∑
m=2

am +
l−1∑

m=1
bm + i + 1

)−2

︸ ︷︷ ︸
αl

−
(l∑

m=2
am +

l∑
m=1

bm + i + 1
)−2

︸ ︷︷ ︸
βl

)1/2
.

Now we use the following simple inequality about decreasing numbers.

▷ Claim 15. Let (αi)k
i=1, (βi)k

i=1 be positive real numbers such that α1 ≥ β1 ≥ α2 ≥ β2 ≥
· · · ≥ αk ≥ βk ≥ 0. Then

k∑
i=1

(
α2

i − β2
i

)
≥
(k∑

i=1

(
αi − βi

))2
.

Proof. The proof is by induction. For i = 1, the claim is clear as α2
1 − β2

1 ≥ (α1 − β1)2.
Suppose that the claim is true for i = k. Let A =

∑k+1
i=2 (α2

i − β2
i) and B =

∑k+1
i=2 (αi − βi).

For the induction step, we need to show that α2
1 − β2

1 + A ≥ (α1 − β1 + B)2. Since A ≥ B2

by induction, it suffices to show that α2
1 − β2

1 ≥ (α1 − β1)(α1 − β1 + 2B), which is equivalent
to β1 ≥ B. It follows from the property of decreasing sequence that B ≤ α2 ≤ β1, verifying
the induction step. ◁

The √
αl and

√
βl in the right hand side above satisfy the assumptions of the claim, and

thus

√
2C ·f(A1, B) ≥

k∑
l=1

a1−1∑
i=0

((l∑
m=2

am +
l−1∑

m=1
bm +i+1

)−1
−
(l∑

m=2
am +

l∑
m=1

bm +i+1
)−1)

We again lower bound the inner sum by an integral so that
√

2C · f(A1, B) is at least

k∑
l=1

∫ a1

0

((l∑
m=2

am +
l−1∑

m=1
bm + x + 1

)−1
−
(l∑

m=2
am +

l∑
m=1

bm + x + 1
)−1)

dx

=
k∑

l=1

(
log
(l∑

m=1
am +

l−1∑
m=1

bm + 1
)

− log
(l∑

m=2
am +

l−1∑
m=1

bm + 1
)

− log
(l∑

m=1
am +

l∑
m=1

bm + 1
)

+ log
(l∑

m=2
am +

l∑
m=1

bm + 1
))

L. C. Lau and D. Tjowasi 36:15

=
k∑

l=1

(
log
(
|[A1, Al]| + 1

)
− log

(
|[B1, Al]| + 1

)
− log

(
|[A1, Bl]| + 1

)
+ log

(
|[B1, Bl]| + 1

))
,

using the definition e.g. |[A1, Bl]| =
∑l

j=1(aj + bj). ◀

Next, we are going to sum up the lower bounds in Lemma 14 to obtain a lower bound on
f(A, B). To write the sum nicely, we use a simple observation on the signs of the logarithm
in our sum. Let us call a contiguous block [S, T] odd if there are an odd number of sets in
{Ai}k

i=1 ∪ {Bi}k
i=1, and even otherwise. Note that the odd blocks are exactly those with the

first and last sets from the same partition A or B, e.g. [Ai, Aj], [Bi, Bj]. With this definition,
the lower bound on f(A, B) can be written as follows.

▶ Lemma 16. Using the definitions and notations in this subsection,
√

2C ·f(A, B) ≥
∑

S ̸=T :[S,T]odd

log
(
|[S, T]|+1

)
−

∑
S ̸=T :[S,T]even

log
(
|[S, T]|+1

)
−(k−1) log(n+1),

where the sum is over S, T ∈ {Ai}k
i=1 ∪ {Bi}k

i=1.

Proof. We sum the inequalities in Lemma 14 from 1 ≤ i ≤ k. On the right hand side of
the inequality in Lemma 14, we see that all contiguous blocks starting from Ai or Bi are in
the sum, with the odd blocks positive and even blocks negative. Thus, summing over all
Ai, every contiguous block is counted once as it is uniquely determined by the starting and
ending sets, except for the whole cycle which appears once on the right hand side for every i

with a negative sign. ◀

To prove a lower bound on the right hand side of Lemma 16, the idea is to use the
following concavity property.

▶ Lemma 17. For k ≥ 2, consider the function

h : (a1, b1 . . . , ak, bk) →∑
S ̸=T :[S,T]odd

log
(
|[S, T]| + 1

)
−

∑
S ̸=T :[S,T]even

log
(
|[S, T]| + 1

)
− (k − 1) log(n + 1),

where the sum is over S, T ∈ {Ai}k
i=1 ∪ {Bi}k

i=1 and so |[S, T]| depends on a1, b1, . . . , ak, bk.
Then, for all positive j, the function

g : x → h(x, b1, s − x, b2, . . . , ak, bk),

obtained by fixing non-negative integers b1, b2, a3, b3, . . . , ak, bk as the size of the other sets
and s as the sum of a1 + a2, is concave on x ∈ [0, s].

Proof. To prove concavity, we use the second derivative test, where g is concave if the second
derivative g′′ is non-positive. We write g as g0 + g1(x) + g2(x), where the g1(x) consists of all
the log terms which contain A1 but not A2, and similarly g2(x) consists of all the log terms
which contain only A2 but not A1. The remaining terms are in g0, which either contain both
A1 and A2 or none of A1 and A2. Note that these terms are independent of x, because if a
block [S, T] contains both A1 and A2 then its size |[S, T]| is the same even when we change
x, so these terms can be ignored when we compute derivatives.

APPROX/RANDOM 2024

36:16 On the Houdré-Tetali Conjecture About an Isoperimetric Constant of Graphs

Let us focus on g1(x) first. The blocks that contain A1 but not A2 must be of the form
[S, A1] or [S, B1] for some set S. Let σ([S, T]) denote the parity of the block [S, T]. Note
that the parity of [S, A1] and [S, B1] are different, and so

g′′
1 (x) =

∑
S

(−1)σ([S,A1])+1
((

log
(
|[S, A1]| + 1

))′′ −
(

log
(
|[S, B1]| + 1

))′′
)

=
∑

S

(−1)σ([S,A1])+1
(

log(|[S, Bk]| + x + 1)′′ − (log(|[S, Bk]| + x + b1 + 1)
)′′

=
∑

S

(−1)σ([S,A1])
((

|[S, Bk]| + x + 1
)−2 −

(
|[S, Bk]| + x + b1 + 1

)−2
)

=
∑

S

(−1)σ([S,A1])
(

b1 ·
(
|[S, Bk]| + x + 1

)−2 ·
(
|[S, Bk]| + x + b1 + 1

)−1

+ b1 ·
(
|[S, Bk]| + x + 1

)−1 ·
(
|[S, Bk]| + x + b1 + 1

)−2
)

,

where the sum is over S ∈ {Ai}k
i=1 ∪ {Bi}k

i=1. In the special case when S = A1, we violate
our own notation and let |[A1, Bk]| = 0 in this proof; all other cases are still the same.

When b1 = 0, the sum equals zero and we are done, so assume b1 ̸= 0. To see that g′′
1 (x)

is negative, we pair up the terms with S = Bi and S = Ai+1 with indices taken modulo k so
that

1
b1

· g′′
1 (x) =

k∑
i=1

[(
|[Bi, Bk]| + x + 1

)−2 ·
(
|[Bi, Bk]| + x + b1 + 1)−1

+
(
|[Bi, Bk]| + x + 1

)−1 ·
(
|[Bi, Bk]| + x + b1 + 1

)−2

−
(
|[Ai+1, Bk]| + x + 1

)−2 ·
(
|[Ai+1, Bk]| + x + b1 + 1

)−1

−
(
|[Ai+1, Bk]| + x + 1

)−1 ·
(
|[Ai+1, Bk]| + x + b1 + 1

)−2
]

< 0,

where the inequality holds because |[Ai+1, Bk]| < |[Bi, Bk]| and so each summand is negative
(recall the special case that |[A1, Bk]| = 0 in this proof).

The function g2(x) is handled analogously in view of the symmetry of the second derivative
of the logarithm. This proves that g is concave. ◀

With the concavity property, we can apply a simple “swapping/merging” argument to
reduce to the case when there is only one contiguous set, i.e. k = 1, and then finish the proof.

By concavity, the function g(x) attains its minimum at one of the endpoints, and so

h(a1, . . . , bn) ≥ min
{

h(0, b1, a1 + a2, b2, . . . , an, bn), h(a1 + a2, b1, 0, b2, . . . , an, bn)
}

The next observation is that when one set has size zero, we can merge the two adjacent sets
in the same partition into one. More formally, let b1 = 0 without loss of generality, we claim
that

h(a1, 0, a2, b2 . . . , ak, bk) = h(a1 + a2, b2, . . . , ak, bk).

To see this, note that |[S, A1]| and |[S, B1]| have the same values but they have different
signs so the terms involving them cancel out each other, and similarly the terms involving
|[B1, S]| and |[A2, S]| cancel out each other. Therefore, in h(a1, 0, a2, b2, . . . , ak, bk), there are
no terms ending with A1 or B1 and no terms beginning with B1 or A2, and all the remaining
terms have a one-to-one correspondence with the terms in h(a1 + a2, b2, . . . , ak, bk).

L. C. Lau and D. Tjowasi 36:17

This reduces k by one. Repeating the same argument until k = 1, we see that
√

2C · f(A, B) ≥ h(|A|, n − |A|) = log(|A| + 1) + log(n − |A| + 1) − log(n + 1),

and thus

φ 1
2
(G) = min

A:|A|≤ n
2

f(A, B)
|A|

≳ min
l:l≤ n

2

h(l, n − l)
l

= min
l:l≤ n

2

log(l + 1) + log(n − l + 1) − log(n + 1)
l

,

where we used that C is upper bounded by an absolute constant.
It remains to lower bound the right hand side. Since l ≤ n

2 , it follows that log(n − l −
1) − log(n + 1) ≥ log((n + 1)/2) − log(n + 1) = − log 2, and so

log(k + 1) + log(n − k + 1) − log(n + 1)
k

≥
log k+1

2
k

≳
log k+1

2
k+1

2
≥ log n

n
,

where the last inequality is because log n
n is decreasing for n ≥ 3 and for 1 ≤ k ≤ 4 the last

inequality clearly holds when n is large enough. This concludes the proof of Theorem 4.

Concluding Remarks and Open Questions
We believe that the same analysis of φp(G) can be extended to other generalizations of
Cheeger’s inequality in [15, 11], and also to the directed edge conductance using the recent
notions of reweighted eigenvalues in [19, 12, 13, 14]. We leave it as an open question to find
a counterexample where the transition matrix is the simple random walk matrix of a graph.

References
1 Noga Alon. Eigenvalues and expanders. Combinatorica, 6:83–96, 1986.
2 Noga Alon and Vitali Milman. ł1, isoperimetric inequalities for graphs, and superconcentrators.

Journal of Combinatorial Theory, Series B, 38(1):73–88, 1985.
3 Deeparnab Chakrabarty and C. Seshadhri. An o(n) monotonicity tester for boolean functions

over the hypercube. SIAM Journal on Computing, 45(2), 2016.
4 Jeff Cheeger. A lower bound for the smallest eigenvalue of the laplacian. In Problems in

Analysis, pages 195–199. Princeton University Press, 1970.
5 Fan Chung. Laplacians and cheeger inequality for directed graphs. Annals of Combinatorics,

9:1–19, 2005.
6 Ronen Eldan and Renan Gross. Concentration on the boolean hypercube via pathwise

stochastic analysis. Inventiones Mathematics, 230:935–994, 2022.
7 Ronen Eldan, Guy Kindler, Noam Lifshitz, and Dor Minzer. Isoperimetric inequalities made

simpler. Technical report, ArXiv preprint, 2204.06686, 2022.
8 Christian Houdré and Prasad Tetali. Isoperimetric invariants for product Markov chains and

graph products. Combinatorica, 24:359–388, 2004.
9 Subhash Khot, Dor Minzer, and Muli Safra. On monotonicity testing and boolean isoperimetric-

type theorem. SIAM Journal on Computing, 47(6), 2018.
10 Tsz Chiu Kwok, Lap Chi Lau, and Yin Tat Lee. Improved cheeger’s inequality and analysis

of local graph partitioning using vertex expansion and expansion profile. SIAM Journal on
Computing, 46(3):890–910, 2017.

11 Tsz Chiu Kwok, Lap Chi Lau, Yin Tat Lee, Shayan Oveis Gharan, and Luca Trevisan. Improved
cheeger’s inequality: Analysis of spectral partitioning algorithms through higher order spectral
gap. In Proceedings of the 45th Annual Symposium on Theory of Computing (STOC), pages
11–20, 2013.

APPROX/RANDOM 2024

36:18 On the Houdré-Tetali Conjecture About an Isoperimetric Constant of Graphs

12 Tsz Chiu Kwok, Lap Chi Lau, and Kam Chuen Tung. Cheeger inequalities for vertex
expansion and reweighted eigenvalues. In Proceedings of the 62nd IEEE Annual Symposium
on Foundations of Computer Science (FOCS), pages 366–377, 2022.

13 Lap Chi Lau, Kam Chuen Tung, and Robert Wang. Cheeger inequalities for directed graphs
and hypergraphs using reweighted eigenvalues. In Proceedings of the 55th Annual ACM
Symposium on Theory of Computing (STOC), pages 1834–1847, 2023.

14 Lap Chi Lau, Kam Chuen Tung, and Robert Wang. Fast algorithms for directed graph
partitioning using flows and reweighted eigenvalues. In Proceedings of the 2024 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2024, pages 591–624, 2024.

15 James R. Lee, Shayan Oveis Gharan, and Luca Trevisan. Multi-way spectral partitioning and
higher-order cheeger inequalities. In Proceedings of the 44th Annual Symposium on Theory of
Computing (STOC), pages 1117–1130, 2012.

16 David Levin and Yuval Peres. Markov chains and mixing times, volume 107. American
Mathematical Society, 2017.

17 Grigory Margulis. Probabilistic characteristics of graphs with large connectivity. Problemy
Peredachi Informatsii, 10(2):101–108, 1977.

18 Ben Morris and Yuval Peres. Evolving sets, mixing and heat kernel bounds. Probability Theory
and Related Fields, 133:245–266, 2005.

19 Sam Olesker-Taylor and Luca Zanetti. Geometric bounds on the fastest mixing Markov chain.
In the 13th Innovations in Theoretical Computer Science Conference (ITCS 2022), 2022.

20 Michel Talagrand. Isoperimetry, logarithmic sobolev inequalities on the discrete cube, and
margulis’ graph connectivity theorem. Geometric and Functional Analysis, 3(3):295–314, 1993.

21 Yuichi Yoshida. Nonlinear laplacian for digraphs and its applications to network analysis.
In Proceedings of the 9th ACM International Conference on Web Search and Data Mining
(WSDM), pages 483–492, 2016.

Nearly Optimal Bounds for Sample-Based Testing
and Learning of k-Monotone Functions
Hadley Black # Ñ

University of California, San Diego, USA

Abstract
We study monotonicity testing of functions f : {0, 1}d → {0, 1} using sample-based algorithms,
which are only allowed to observe the value of f on points drawn independently from the uniform
distribution. A classic result by Bshouty-Tamon (J. ACM 1996) proved that monotone functions can
be learned with exp(Õ(min{ 1

ε

√
d, d})) samples and it is not hard to show that this bound extends

to testing. Prior to our work the only lower bound for this problem was Ω(
√

exp(d)/ε) in the small
ε parameter regime, when ε = O(d−3/2), due to Goldreich-Goldwasser-Lehman-Ron-Samorodnitsky
(Combinatorica 2000). Thus, the sample complexity of monotonicity testing was wide open for
ε ≫ d−3/2. We resolve this question, obtaining a nearly tight lower bound of exp(Ω(min{ 1

ε

√
d, d}))

for all ε at most a sufficiently small constant. In fact, we prove a much more general result, showing
that the sample complexity of k-monotonicity testing and learning for functions f : {0, 1}d → [r]
is exp(Ω(min{ rk

ε

√
d, d})). For testing with one-sided error we show that the sample complexity is

exp(Ω(d)).
Beyond the hypercube, we prove nearly tight bounds (up to polylog factors of d, k, r, 1/ε in the

exponent) of exp(Θ̃(min{ rk
ε

√
d, d})) on the sample complexity of testing and learning measurable

k-monotone functions f : Rd → [r] under product distributions. Our upper bound improves upon the
previous bound of exp(Õ(min{ k

ε2

√
d, d})) by Harms-Yoshida (ICALP 2022) for Boolean functions

(r = 2).

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms; Mathematics of computing → Probabilistic algorithms

Keywords and phrases Property testing, learning, Boolean functions, monotonicity, k-monotonicity

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.37

Category RANDOM

Related Version Full Version: https://arxiv.org/abs/2310.12375

Funding Hadley Black: This work was done while the author was at UCLA supported by NSF
award AF:Small 2007682, NSF Award: Collaborative Research Encore 2217033.

Acknowledgements We would like to thank Eric Blais and Nathaniel Harms for helpful discussions
during the early stages of this work and for their thoughtful feedback. We would also like to thank
the anonymous reviewers whose comments helped significantly to improve this write up.

1 Introduction

A function f : X → R over a partial order P = (X , ⪯) is k-monotone if there does not exist a
chain of k + 1 points x1 ≺ x2 ≺ · · · ≺ xk+1 for which (a) f(xi+1) − f(xi) < 0 when i is odd
and (b) f(xi+1) − f(xi) > 0 when i is even. When k = 1, these are the monotone functions,
which are the non-decreasing functions with respect to ⪯. Monotone and k-monotone Boolean
functions over domains {0, 1}d, [n]d, and Rd have been the focus of a significant amount of
research in property testing and computational learning theory. We give an overview of the
literature in Section 1.4.

© Hadley Black;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 37; pp. 37:1–37:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hablack@ucsd.edu
https://hablack.github.io/
https://orcid.org/0009-0008-9662-2870
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.37
https://arxiv.org/abs/2310.12375
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 Sample-Based Testing and Learning of k-Monotone Functions

The field of property testing is concerned with the design and analysis of sub-linear
time randomized algorithms for determining if a function has, or is far from having, some
specific property. A key aspect in the definition of a property testing algorithm is the type
of access it has to the function. Early works on property testing, e.g. [61, 44], focused on the
notion of query-based testers, which are allowed to observe the value of the function on any
point of their choosing, and since then this has become the standard model. The weaker
notion of sample-based testers, which can only view the function on independent uniform
samples, was also considered by [44] and has received some attention over the years, see e.g.
[51, 3, 41, 45, 37, 38]. Sample-based algorithms are considered more natural in many settings,
for example in computational learning theory, where they are the standard model. In fact,
sample-based testing and learning are closely related problems; given a learning algorithm, it
is always possible to design a testing algorithm with the same sample complexity, up to an
additive poly(1/ε) factor1.

For many fundamental properties, there is still a large gap between how much we know
in the query-based vs the sample-based models. Monotonicity (and k-monotonicity) is such
a property; despite a vast body of research on query-based monotonicity testing over the
hypercube {0, 1}d, the only work we know of which considers this problem in the sample-based
model is [43], who gave an upper bound of O(

√
2d/ε) and a matching lower bound for the

case when ε = O(d−3/2) on the number of samples needed to test monotonicity of functions
f : {0, 1}d → {0, 1}. The upper bound for learning monotone Boolean functions due to
[23, 54] also implies a testing upper bound of exp(Õ(1

ε

√
d)). Thus, this question has been

wide open for ε ≫ d−3/2.
Our work addresses this gap in the monotonicity testing literature, proving a lower bound

which matches the learning upper bound for all ε at most some constant, up to a factor
of log d in the exponent. More generally, we prove tight lower bounds for k-monotonicity
testing of functions, f : {0, 1}d → [r], i.e. functions with image size at most r. To round
out our results, we also give an improved learning algorithm for k-monotone functions over
Rd under product distributions whose sample complexity matches our sample-based testing
lower bound, up to poly-logarithmic factors in the exponent.

1.1 Results
Before explaining our results and the context for them, we first provide some terminology
and basic notation. Given a domain X and a distribution µ over X , we denote the Hamming
distance between two functions f, g : X → R under µ by dµ(f, g) = Px∼µ[f(x) ̸= g(x)]. We
say that f is ε-far from k-monotone if dµ(f, g) ≥ ε for every k-monotone function g. The
results in this paper pertain to sample-based testing and learning of k-monotone functions
with respect to Hamming distance. We use the following terminology:

The example oracle for f under µ, denoted by EX(f, µ), when queried, generates an
example (x, f(x)) where x is sampled according to µ.
A sample-based k-monotonicity tester under µ is a randomized algorithm which is given
access to EX(f, µ) for an arbitrary input function f and satisfies the following: (a) if
f is k-monotone, then the algorithm accepts with probability at least 2/3, and (b) if f

is ε-far from k-monotone, then the algorithm rejects with probability at least 2/3. The
tester has one-sided error if in case (a) it accepts with probability 1.

1 See Lemma C.1 in the full version of the paper for a precise statement. Also, note that if the learning
algorithm is proper, then the time complexity is also preserved. If the learning algorithm is improper,
then there is a time complexity blow-up, but the sample complexity is still preserved.

H. Black 37:3

A sample-based learning algorithm for k-monotone functions under µ is a randomized
algorithm which is given access to EX(f, µ) for an arbitrary k-monotone input function
f and outputs a hypothesis h such that dµ(f, h) ≤ ε with probability at least 1 − δ. If
left unspecified, δ = 1/3.

In all of the above definitions if µ is unspecified, then it is the uniform distribution.
Testing and learning are closely related problems; any sample-based learning algorithm can
be used to construct a sample-based tester with the same sample complexity. We refer to
this transformation as the testing-by-learning reduction and although this is not a new idea
we provide a proof in Section C in the full version of the paper for completeness.

Finally, we recall some important learning theory terminology. A learning algorithm
for concept class C is called proper if it always outputs a hypothesis h ∈ C, and is called
improper if it is allowed to output arbitrary h. Given a function f , and a concept class
C, let d(f, C) = ming∈C d(f, g). An agnostic proper learner is one which, given any f (not
necessarily in C), outputs a hypothesis h ∈ C for which d(f, h) ≤ d(f, C) + ε with probability
at least 1 − δ.

1.1.1 Sample-Based Testing and Learning on the Hypercube

The problem of learning monotone Boolean functions over the hypercube {0, 1}d was studied
by [23] who proved an upper bound2 of exp(O(min{ 1

ε

√
d log d, d})) for improper learning and

very recently by [54, 55] who obtained the same upper bound for agnostic proper learning.
The improper learning upper bound was extended by [17] who showed an upper bound of
exp(O(min{ k

ε

√
d log d, d})) and a nearly matching lower bound of exp(Ω(min{ k

ε

√
d, d})) for

learning k-monotone Boolean functions for any k ≥ 1. The testing-by-learning reduction
shows that their upper bound also holds for sample-based testing. The only prior lower
bound for sample-based testing that we’re aware of is Ω(

√
2d/ε) when ε = O(d−3/2) and

k = 1 [43, Theorem 5]. Our main result is the following much more general lower bound for
this problem, which we prove in Section 3.

▶ Theorem 1 (Testing Lower Bound). There is an absolute constant c > 0 such that for all
ε ≤ c, every sample-based k-monotonicity tester for functions f : {0, 1}d → [r] under the
uniform distribution has sample complexity

exp
(

Ω
(

min
{

rk

ε

√
d, d

}))
.

Even for the special case of sample-based monotonicity testing of Boolean functions (k = 1
and r = 2), Theorem 1 is already a new result, which matches the upper bound for learning
by [23] and is the first lower bound to hold for ε ≫ d−3/2. Moreover, our lower bound is
much more general, holding for all r, k, and is optimal in all parameters, d, r, k, ε, up to a
log d factor in the exponent. We show a nearly matching upper bound in Theorem 3.

We also note that the testing-by-learning reduction implies that the same lower bound
holds for learning with samples. As we mentioned, this result was already known for Boolean

2 We remark that any function over {0, 1}d can be learned exactly with O(d2d) = exp(O(d)) samples by
a coupon-collector argument. Combining this with the exp(O(1

ε

√
d log d)) upper bound by [23] yields

exp(O(min{ 1
ε

√
d log d, d})). We use this slightly clunkier notation involving the min to emphasize that

our upper and lower bounds are nearly matching in all parameter regimes.

APPROX/RANDOM 2024

37:4 Sample-Based Testing and Learning of k-Monotone Functions

functions (the r = 2 case) [17], but the general case of r ≥ 2 was not known prior to our
work3.

▶ Corollary 2 (Learning Lower Bound). There is an absolute constant c > 0 such that for
every ε ≤ c, every sample-based uniform-distribution learning algorithm for k-monotone
functions f : {0, 1}d → [r] has sample complexity

exp
(

Ω
(

min
{

rk

ε

√
d, d

}))
.

On the upper bound side, a relatively straightforward argument extends the learning
algorithm of [17] for Boolean k-monotone functions, to k-monotone functions with image
size at most r. We give a short proof in Section 1.5. This shows that our lower bounds in
Theorem 1 and Corollary 2 are tight up to a factor of log d in the exponent.

▶ Theorem 3 (Learning Upper Bound for Hypercubes). There is a uniform-distribution
learning algorithm for k-monotone functions f : {0, 1}d → [r] which achieves error at most ε

with time and sample complexity

exp
(

O

(
min

{
rk

ε

√
d log d, d

}))
.

The testing-by-learning reduction again gives us the following corollary.

▶ Corollary 4 (Testing Upper Bound for Hypercubes). There is a sample-based k-monotonicity
tester for functions f : {0, 1}d → [r] with sample complexity

exp
(

O

(
min

{
rk

ε

√
d log d, d

}))
.

Lastly, we consider the problem of sample-based testing with one-sided error. For
monotonicity testing of functions f : {0, 1}d → {0, 1} with non-adaptive queries, we know that
one-sided and two-sided error testers achieve the same query-complexity (up to polylog(d, 1/ε)
factors): there is a Õ(

√
d/ε2) one-sided error upper bound due to [53] and a Ω̃(

√
d) two-

sided error lower bound due to [33]. We show that the situation is quite different for
sample-based monotonicity testing; while the sample complexity of two-sided error testers is
exp(Θ̃(min{ 1

ε

√
d, d})), one-sided error testers require exp(Θ(d)) samples for all ε.

▶ Theorem 5 (Testing with One-Sided Error). For every d, r, k, and ε > 0, sample-based
k-monotonicity testing of functions f : {0, 1}d → [r] with one-sided error requires exp(Θ(d))
samples.

1.1.2 Sample-Based Testing and Learning in Continuous Product Spaces
Learning k-monotone Boolean-valued functions has also been studied over Rd with respect
to product measures by [49] who gave an upper bound of exp(Õ(min{ k

ε2

√
d, d})) where Õ(·)

hides polylog factors of d, k, and 1/ε. Our next result gives an upper bound which improves
the dependence on ε from 1/ε2 to 1/ε in the exponent. By the same approach we used to
generalize the upper bound in Theorem 3 to arbitrary r ≥ 2, we get the same generalization
for product spaces. We obtain the following upper bound which matches our lower bound
for {0, 1}d in Theorem 1 up to polylog factors of d, k, r, and 1/ε. We say that a function
f : Rd → [r] is measurable if the set f−1(i) is measurable for every i ∈ [r].

3 It is possible that the techniques from [17] could be extended to provide an alternative proof of
Corollary 2, but we have not checked whether this is the case.

H. Black 37:5

▶ Theorem 6 (Learning Upper Bound for Product Spaces). Given an arbitrary product measure
µ, there is a learning algorithm under µ for measurable k-monotone functions f : Rd → [r]
with time and sample complexity

exp
(

Õ

(
min

{
rk

ε

√
d, d

}))
.

The Õ(·) hides polylogarithmic dependencies on d, r, k, and 1/ε.

We prove Theorem 6 in Section 4. Once again the testing-by-learning reduction gives us
the following corollary for sample-based testing.

▶ Corollary 7 (Testing Upper Bound for Product Spaces). Given an arbitrary product measure
µ, there is a k-monotonicity tester for measurable functions f : Rd → [r] under µ with sample
complexity

exp
(

Õ

(
min

{
rk

ε

√
d, d

}))
.

The Õ(·) hides polylogarithmic dependencies on d, r, k, and 1/ε.

1.2 Proof Overviews
In this section we give an overview of our proofs for Theorem 1 and Theorem 6.

1.2.1 The Testing Lower Bound for Hypercubes
Our proof of Theorem 1 uses a family functions known as Talagrand’s random DNFs
introduced by [63] which have been used by [4] and [33] to prove lower bounds for monotonicity
testing of Boolean functions f : {0, 1}d → {0, 1} against adaptive and non-adaptive query-
based testers. Very recently, they have also been used to prove lower bounds for tolerant
monotonicity testing [29] and for testing convexity of sets in {−1, 0, 1}d [10].

To understand our construction, let us first consider the special case of monotonicity of
Boolean functions, i.e. k = 1 and r = 2. We think of a DNF term as a point t ∈ {0, 1}d which
is said to be satisfied by x ∈ {0, 1}d if t ⪯ x, where ⪯ denotes the standard bit-wise partial
order over {0, 1}d. The width of a term t is its Hamming weight, |t|, and the width of a DNF
is the max width among its terms. Consider N randomly chosen terms t1, . . . , tN each of
width |tj | = w. We will see later how to choose N and w. Let B := {x : d

2 ≤ |x| ≤ d
2 + ε

√
d}

and for each j ∈ [N], let

Uj := {x ∈ B : tj ⪯ x and tj′
̸⪯ x for all j′ ̸= j}

be the set of points in B which satisfy tj and no other terms. Let U :=
⋃

j∈[N] Uj . Now observe
that any two points lying in different Uj ’s are incomparable and therefore independently
embedding an arbitrary monotone function into each Uj will result in a function which
globally is monotone if one defines the function outside of U appropriately. Using this fact
we can define two distributions Dyes and Dno as follows. Let A denote the set of points in
x ∈ {0, 1}d for which either |x| > d

2 + ε
√

d or x ∈ B and tj , tj′ ⪯ x for two different terms
j ̸= j′.

f ∼ Dyes is drawn by setting f(x) = 1 if and only if x ∈ A ∪
(⋃

j∈T Uj

)
where T ⊆ [N]

contains each j ∈ [N] with probability 1/2, independently. Such a function is always
monotone.

APPROX/RANDOM 2024

37:6 Sample-Based Testing and Learning of k-Monotone Functions

f ∼ Dno is drawn by setting f(x) = 1 if and only if x ∈ A ∪ R where R contains each
x ∈ U with probability 1/2, independently. Such a function will be Ω(|U | · 2−d)-far from
monotone with probability Ω(1) since its restriction with U is uniformly random.

Now, each x ∈ U satisfies Pf∼Dyes [f(x) = 1] = Pf∼Dno [f(x) = 1] = 1/2 and for both
distributions the events f(x) = 1 and f(y) = 1 are independent when x, y lie in different Uj ’s.
Therefore, any tester will need to see at least two points from the same Uj to distinguish
Dyes and Dno. Roughly speaking, by birthday paradox this gives a Ω(

√
N) lower bound on

the number of samples. The lower bound is thus determined by the maximum number of
terms N that can be used in the construction for which |U | = Ω(ε2d).

So how are N and w chosen? By standard concentration bounds, we have |B| = Ω(ε2d)
and observe that a point x ∈ B satisfies a random term with probability exactly (|x|/d)w.
We need U to contain a constant fraction of B, i.e. we need x to satisfy exactly 1 term with
constant probability. The expected number of satisfied terms is N · (|x|/d)w and, roughly
speaking, we need this value to be Θ(1) for all x ∈ B. Applying this constraint to the case
when |x| = d/2 forces us to pick N ≈ 2w. Now when |x| = d/2 + ε

√
d, the expected number

of satisfied terms is N · 2−w · (1 + 2ε/
√

d)w ≈ (1 + 2ε/
√

d)w and we are forced to choose
w ≈

√
d/ε. The lower bound for sample-based monotonicity testing of f : {0, 1}d → {0, 1} is

then Ω(
√

N) ≈ exp(Ω(
√

d/ε)).
Let us now think about generalizing this construction to testing k-monotonicity of

functions f : {0, 1}d → [r]. The moral of the above argument is that the permitted number of
terms is controlled by the number of distinct Hamming weights in the set B. We observe that
for larger values of k and r we can partition B into k(r−1) blocks as B := B1∪B2∪· · ·∪Bk(r−1)

each with a window of Hamming weights of size only ε
√

d
k(r−1) . We are able to essentially repeat

the above construction independently within each block wherein we can set w ≈ k(r−1)
√

d
ε

and consequently N ≈ 2
k(r−1)

√
d

ε .
For each block i ∈ [k(r − 1)], the random Talagrand DNF within block Bi is defined

analogously to the above construction, except that it assigns function values from {i mod
(r − 1), i mod (r − 1) + 1}, instead of {0, 1}. See Figure 1 for an illustration. Since there are
k(r−1) blocks in total, the distribution Dyes only produces k-monotone functions. At the same
time, a function f ∼ Dno assigns uniform random {a, a+1} values within each block Bm(r−1)+a.
This results in a large number of long chains through Ba ∪ B(r−1)+a ∪ · · · ∪ B(k−1)(r−1)+a

which alternate between function value a and a + 1. Considering the union of all such chains
for a = 0, 1, . . . , r − 2 shows that f is Ω(ε)-far from k-monotone with probability Ω(1).

1.2.2 The Learning Upper Bound for Product Spaces

As we discussed in Section 1.1, it suffices to prove Theorem 6 for the case of r = 2, i.e.
learning functions f : Rd → {±1} under a product measure µ. We use a downsampling
technique to reduce this problem to learning a discretized proxy of f over a hypergrid [N]d
where N = Θ(kd/ε) with mild label noise. This technique has been used in previous works
[46, 12, 49] and our proof borrows many technical details from [49].

Next, for N which is a power of 2, we observe that a k-monotone function f : [N]d → {±1}
can be viewed as a k-monotone function over the hypercube {±1}d log N by mapping each
point x ∈ [N]d to its bit-representation. We can then leverage a result of [17] which shows
that all but a ε-fraction of the mass of the Fourier coefficients of k-monotone Boolean
functions f : {0, 1}d → {0, 1} is concentrated on the terms with degree at most k

√
d

ε . We
can then use the Low-Degree Algorithm introduced by [57] which was shown to work under
random classification noise by [50].

H. Black 37:7

⋮

⋮

⋮

B0

B1

Br−2

B(k−1)(r−1)

B(k−1)(r−1)+1

B(k−1)(r−1)+(r−2)

d
2

d
2
+ ε d

0,1
0 0 0 0 0

1 1 1
0,1 0,1 0,1 0,1

1 1 1 1 1
2

2
1,2 1,2 1,2 1,2

r − 2 r − 2 r − 2 r − 2
r − 1r − 1,2 r − 1,2 r − 1,2

0 0 0 0

1 1
0,1

0,1 0,1 0,1

1 1
1 1,2

2 1,21,2

r − 2 r − 2

r − 1
r − 1,2r − 1,2

r − 1

0

d
2
+

ε d
k(r − 1)

d
2
+ 2

ε d
k(r − 1)

d
2
+

ε d
k

r − 2

1

1,2

0

⋮

⋮

Figure 1 An illustration of the construction used in our proof of Theorem 1. The image represents
the set of points in the hypercube {0, 1}d with Hamming weight in the interval [d

2 , d
2 +ε

√
d), increasing

from bottom to top. The numbers on the left denote the Hamming weight of the points lying in
the adjacent horizontal line. The Bi blocks are the sets of points contained between two adjacent
horizontal lines. Each orange shaded region within Bi represents the set of points satisfied by a term
ti,j . The blue numbers represent the value that functions in the support of Dyes and Dno can take.
We have used the notation “r − 1, 2” as shorthand for r − 2, r − 1.

1.3 Discussion and Open Questions

Our results for sample-based testing and learning over the hypercube are tight up to a log d

factor in the exponent. Our upper bound for product spaces matches the lower bound for
hypercubes only up to polylog factors of d, k, r, 1/ε in the exponent. In particular, the upper
bound for product spaces goes to ∞ as any one of the parameters r, k, or 1/ε grow to
∞, whereas the lower bound for the hypercube can be at most exp(Θ(d)) simply because
|{0, 1}d| = 2d and so any function f : {0, 1}d → R can be learned exactly with exp(O(d))
samples. It seems intuitive that sample-based testing and learning of k-monotone functions
over [n]d should require nΩ(d) samples as either of the parameters k or r approaches ∞.
A corollary of such a result would be that the sample-complexity of these problems for
f : Rd → [r] grow to ∞ as k or r approach ∞. Moreover, if this is true, then k-monotonicity
of functions f : Rd → R is not testable with a finite number of samples. Our results do not
address this and it would be interesting to investigate this further.

▶ Question 8. Is there a lower bound for sample-based k-monotonicity testing of functions
f : [n]d → [r] which approaches nΩ(d) as r or k go to ∞?

APPROX/RANDOM 2024

37:8 Sample-Based Testing and Learning of k-Monotone Functions

1.4 Related Work
Monotone functions and their generalization to k-monotone functions have been extensively
studied within property testing and learning theory over the last 25 years. We highlight some
of the results which are most relevant to our work. Afterwards, we discuss some selected
works on sample-based property testing.

1.4.1 Sample-Based Monotonicity Testing
Sample-based monotonicity testing of Boolean functions over the hypercube, {0, 1}d, was
considered by [43] (see [43, Theorems 5 and 6]) who gave an upper bound of O(

√
2d/ε) and a

lower bound of Ω(
√

2d/ε) for ε = O(d−3/2). Sample-based monotonicity testing over general
partial orders was studied by [42] who gave a O(

√
N/ε) one-sided error tester for functions

f : D → R where D is any partial order on N elements. Sample-based monotonicity testing
of functions on the line f : [n] → [r] was studied by [58] who gave a one-sided error upper
bound of O(

√
r/ε) and a matching lower bound of Ω(

√
r) for all sample-based testers.

1.4.2 Query-Based Monotonicity Testing
Monotonicity testing has been extensively studied in the standard query model [59, 35, 43, 34,
56, 42, 47, 1, 48, 2, 39, 62, 8, 22, 36, 16, 60, 9, 26, 27, 32, 7, 19, 30, 25, 52, 4, 33, 11, 58, 12,
49, 15, 21, 14, 13, 29]. When discussing these works we treat ε as a small constant for brevity.
For f : {0, 1}d → {0, 1}, the non-adaptive query complexity has been established at Θ̃(

√
d)

[53, 33] with an adaptive lower bound of Ω̃(d1/3) [33]. This gap for adaptive monotonicity
testing of Boolean functions is still an outstanding open question. For f : [n]d → {0, 1} and
f : Rd → {0, 1} under product measures, a recent result of [13] established a non-adaptive
upper bound of d1/2+o(1). For functions f : {0, 1}d → [r], [15] showed upper and lower bounds
of Θ̃(min(r

√
d, d)) for non-adaptive, one-sided error testers and there is a general (adaptive)

lower bound of Ω(min(d, r2)) due to [16]. For real-valued functions f : [n]d → R, the query
complexity is known to be Θ(d log n). The upper bound is non-adaptive [26] and the lower
bound holds even for adaptive testers [28].

1.4.3 k-Monotonicity Testing
The generalization to k-monotonicity testing has also been studied in the standard query
model by [46, 24]. These works show that the query-complexity of non-adaptive one-sided
error k-monotonicity testing is exp(Θ̃(

√
d)) for all k ≥ 2, demonstrating an interesting

separation between (1-)monotonicity and 2-monotonicity.

1.4.4 Learning Monotone Functions
Monotone Boolean functions f : {0, 1}d → {0, 1} were studied in the context of learning
theory by [23] who showed that they can be (improperly) learned to error ε under the uniform
distribution with exp(Õ(1

ε

√
d)) time and samples. Very recent works [54, 55] have given

agnostic proper learning algorithms with the same complexity.

1.4.5 Learning k-Monotone Functions
The result of [23] was generalized by [17] who gave upper and lower bounds of exp(Θ̃(k

ε

√
d))

for learning k-monotone Boolean functions f : {0, 1}d → {0, 1}. For Boolean functions over
hypergrids f : [n]d → {0, 1}, [24] gave an upper bound of exp(Õ(min(k

ε2

√
d, d))) where Õ(·)

hides polylog factors of d, k, 1/ε. This result was generalized to functions f : Rd → {0, 1}
under product measures by [49].

H. Black 37:9

1.4.6 Sample-Based Property Testing
The notion of sample-based property testing was first presented and briefly studied by [44].
Broader studies of sample-based testing and its relationship with query-based testing have
since been given by [40, 41, 45]. A characterization of properties which are testable with a
constant number of samples was given by [20].

As we mentioned, sample-based algorithms are the standard model in learning theory,
and learning requires at least as many samples as testing for every class of functions. Thus,
it is natural to ask, when is testing easier than learning in terms of sample complexity? This
question is referred to as testing vs learning and has been studied by [51] and more recently
by [18, 37, 38].

There has also been work studying models that interpolate between query-based and
sample-based testers. For instance, [3] introduced the notion of active testing, where the
tester may make queries, but only on points from a polynomial-sized batch of unlabeled
samples drawn from the underlying distribution. This was inspired by the notion of active
learning which considers learning problems under this access model.

Sample-based convexity testing of sets over various domains has also seen some recent
attention [31, 5, 6, 10].

1.5 Learning Functions with Bounded Image Size: Proof of Theorem 3
In this section we give a short proof showing that the learning algorithm of [17] can be
extended in a relatively straightforward manner to functions f : {0, 1}d → [r] by increasing
the sample-complexity by a factor of r in the exponent.

Proof of Theorem 3. [17, Theorem 1.4] proved this result for the case of r = 2. In particular,
they show that there is a sample-based learning algorithm which given an arbitrary k-
monotone Boolean function f , outputs h such that Ph[d(f, h) > ε] < δ using ln(1/δ) ·
exp

(
O
(

min
{

rk
ε

√
d log d, d

}))
queries4 to the example oracle, EX(f). We will make use of

this result.
For each t ∈ [r], let ft : {0, 1}d → {0, 1} denote the thresholded Boolean function defined

as ft(x) := 1(f(x) ≥ t). Observe that for all x ∈ {0, 1}d we have f(x) = argmaxt{ft(x) = 1}.
Thus, for each t ∈ [r], run the learning algorithm of [17] with error parameters set to ε′ := ε/r

and δ = 1/3r to obtain a hypothesis ht. We have P[d(ht, ft) > ε/r] < 1/3r. By a union
bound, with probability at least 2/3, every t ∈ [r] satisfies d(ht, ft) ≤ ε/r. Moreover, if
this holds then by another union bound we have Px[∃t ∈ [r] : ht(x) ̸= f(x)] ≤ ε. Thus, the
hypothesis h(x) := argmaxt{ht(x) = 1} satisfies d(h, f) ≤ ε. The number of samples used is
ln(1/δ) · exp(O(min{ k

ε′

√
d log d, d})) = exp(O(min{ rk

ε

√
d log d, d})) and this completes the

proof. ◀

2 Preliminaries on k-Monotonicity

We use the notation [n] := {0, 1, . . . , n − 1}.

▶ Definition 9. Given a poset P = (X , ⪯) and a function f : X → R, an m-alternating
chain is a sequence of points x1 ≺ x2 ≺ · · · ≺ xm such that for all i ∈ {1, . . . , m − 1},
1. f(xi+1) − f(xi) < 0 when i is odd, and
2. f(xi+1) − f(xi) > 0 when i is even.

4 Their result (Thm 1.4 of [17]) is stated for constant δ, but can be easily extended to arbitrary δ with
the stated query complexity by replacing Thm 3.1 in their proof with the Low-Degree Algorithm stated
for general δ.

APPROX/RANDOM 2024

37:10 Sample-Based Testing and Learning of k-Monotone Functions

▶ Definition 10 (k-monotonicity). For a poset P = (X , ⪯), a function f : X → R is called
k-monotone if it does not have any (k + 1)-alternating chains.

Let MP,k denote the set of all k-monotone functions f : X → R over the poset P = (X , ⪯).
The Hamming distance between two functions f, g : X → R is d(f, g) = |X |−1 · |{x ∈
X : f(x) ̸= g(x)}|. The distance to k-monotonicity of f is denoted by ε(f, MP,k) :=
ming∈MP,k

d(f, g). The following claim is our main tool for lower bounding the distance to
k-monotonicity.

▷ Claim 11. Let f : X → R and k′ ≥ 3k be an integer. Let C ⊂ X k′ be a collection of
disjoint k′-alternating chains for f . Then

ε(f, MP,k) ≥ 1
3|X |

·

∣∣∣∣∣ ⋃
C∈C

C

∣∣∣∣∣ .
Proof. Observe that every k-monotone function g ∈ MP,k has the following property: for
every C = (x1, x2, . . . , xk′) ∈ C, the sequence(

1, g(x2) − g(x1), g(x3) − g(x2), . . . , g(xk′) − g(xk′−1)
)

changes sign at most k − 1 times, whereas the sequence(
1, f(x2) − f(x1), f(x3) − f(x2), . . . , f(xk′) − f(xk′−1)

)
changes sign exactly k′ − 1 times. We have prepended a 1 so that the first sign change occurs
as soon as the function value decreases. Now, changing f(xi) can only reduce the number of
times the sequence changes sign by at most 2 and so |{i : f(xi) ̸= g(xi)}| ≥ k′−k

2 . Summing
over all chains in C and normalizing yields

d(f, g) ≥ k′ − k

2 · |C|
|X |

≥ k′

3 · |C|
|X |

≥ 1
3|X |

·

∣∣∣∣∣ ⋃
C∈C

C

∣∣∣∣∣
where the second inequality follows from k ≤ k′/3 and the third inequality is due to the fact
that the chains in C are all disjoint and each of size k′. This completes the proof since this
inequality holds for all g ∈ MP,k. ◁

We use the notation Mr,k to denote the set of all k-monotone functions f : {0, 1}d → [r]
over the hypercube whose image has at most r distinct values.

3 Lower Bound for Sample-Based Testers

In this section we prove Theorem 1, our lower bound on the sample-complexity of testing
k-monotonicity of functions f : {0, 1}d → [r]. We refer the reader to Section 1.2.1 for a
discussion of our main ideas and a proof sketch for the special case of k = 1 and r = 2, i.e.
monotone Boolean functions. Our proof follows the standard approach of defining a pair of
distributions Dyes, Dno over functions f : {0, 1}d → [r] which satisfy the following:

Dyes is supported over k-monotone functions.
Functions drawn from Dno are typically Ω(ε)-far from k-monotone: Pf∼Dno [ε(f, Mr,k) =
Ω(ε)] = Ω(1).
The distributions over labeled examples from Dyes and Dno are close in TV-distance.

H. Black 37:11

Our construction uses a generalized version of a family functions known as random Talag-
rand DNFs, which were used by [4] and [33] to prove lower bounds for testing monotonicity
of Boolean functions with adaptive and non-adaptive queries.

Let r, k satisfy rk ≤ ε
√

d
24300 . For convenience, we will assume that k(r−1)

ε and
√

d are
integers and that k(r−1)

ε divides
√

d. Let Lℓ :=
{

x ∈ {0, 1}d : |x| = ℓ
}

denote the ℓ’th
Hamming level of the hypercube. We partition

⋃
ℓ∈[0,ε

√
d) Ld/2+ℓ into k(r − 1) blocks as

follows. For each i ∈ [k(r − 1)], define

Bi =
(i+1)· ε

√
d

k(r−1) −1⋃
ℓ=i· ε

√
d

k(r−1)

L d
2 +ℓ.

The idea of our proof is to define a random DNF within each Bi. The width of each DNF will
be set to w := (r−1)k

√
d

2ε and for each i, the number of terms in the DNF within Bi will be set
to Ni := 2w · e−i = 2

(r−1)k
√

d
2ε (1−o(1)). The DNF defined over Bi will assign function values

from {i mod (r − 1), i mod (r − 1) + 1}. The terms in each DNF will be chosen randomly
from the following distribution. We think of terms as points t ∈ {0, 1}d in the hypercube
where another point x satisfies t if t ⪯ x, i.e. ti = 1 implies xi = 1.

▶ Definition 12 (Term distribution). A term t ∈ {0, 1}d is sampled from the distribution
Dterm as follows. Form a (multi)-set S ⊆ [d] by choosing w independent uniform samples
from [d]. For each a ∈ [d], let ta := 1(a ∈ S).

3.1 The Distributions Dyes and Dno

We now define the yes and no distributions over functions f : {0, 1}d → [r]. For each i ∈
[k(r−1)], choose terms ti,1, . . . , ti,Ni i.i.d. from Dterm and let ttt = {ti,j : i ∈ [k(r−1)], j ∈ [Ni]}
denote the random set of all terms. Now, for each i ∈ [k(r − 1)] and j ∈ [Ni], define the set

Ui,j =
{

x ∈ Bi : x ⪰ ti,j and x ̸⪰ ti,j′
for all j′ ̸= j

}
(1)

of all points in the i’th block that satisfy the j’th term uniquely. Let Ui =
⋃

j∈[Ni] Ui,j denote
the set of points in Bi that satisfy a unique term. The following claim is key to our result
and motivates our choice of w and Ni. We defer its proof to Section 3.2.

▷ Claim 13. For any i ∈ [k(r − 1)], j ∈ [Ni], and x ∈ Bi, we have

1
45Ni

≤ Pt[x ∈ Ui,j] ≤ 3
Ni

.

As a corollary, we have Pt[x ∈ Ui] ≥ 1/45.

Functions drawn from Dyes are generated as follows. For each i ∈ [k(r − 1)] choose a
uniform random assignment

ϕϕϕi : [Ni] → {i mod (r − 1), i mod (r − 1) + 1} and let ϕϕϕ = (ϕϕϕi : i ∈ [k(r − 1)]).

For every x ∈ Bi define

fttt,ϕϕϕ(x) =

i mod (r − 1), if ∀j ∈ [Ni], x ̸⪰ ti,j

i mod (r − 1) + 1, if ∃j ̸= j′ ∈ [Ni], x ⪰ ti,j , ti,j′

ϕϕϕi(j), if x ∈ Ui,j .

APPROX/RANDOM 2024

37:12 Sample-Based Testing and Learning of k-Monotone Functions

Functions drawn Dno are generated as follows. For each i ∈ [k(r − 1)] choose a uniform
random function

rrri : Ui → {i mod (r − 1), i mod (r − 1) + 1} and let rrr = (rrri : i ∈ [k(r − 1)]).

For each x ∈ Bi define

fttt,rrr(x) =

i mod (r − 1), if ∀j ∈ [Ni], x ̸⪰ ti,j

i mod (r − 1) + 1, if ∃j ̸= j′ ∈ [Ni], x ⪰ ti,j , ti,j′

rrri(x), if x ∈ Ui.

For x not belonging to any Bi: if |x| < d
2 , then both the yes and no distributions assign

value 0 and if |x| ≥ d
2 + ε

√
d, then both the yes and no distributions assign value r − 1.

In summary, a function fttt,ϕϕϕ ∼ Dyes assigns the same random value ϕϕϕi(j) ∈ {i mod (r −
1), i mod (r − 1) + 1} to all points in Ui,j , which results in a k-monotone function, whereas a
function fttt,rrr ∼ Dno assigns an i.i.d. uniform random {i mod (r−1), i mod (r−1)+1}-value to
each point in Ui, resulting in a function that is far from being k-monotone. By construction,
to detect any difference between these cases a tester will need to sample at least two points
from the same Ui,j . Theorem 1 follows immediately from the following three lemmas.

▶ Lemma 14. Every function in the support of Dyes is k-monotone.

Proof. Consider any ft,ϕϕϕ(x) ∈ supp(Dyes). For each a ∈ [k], consider the union of r − 1
blocks formed by

Ya := Ba(r−1) ∪ Ba(r−1)+1 ∪ · · · ∪ B(a+1)(r−1)−1.

Recall that if |x| < d/2, then ft,ϕϕϕ(x) = 0 and if |x| ≥ d/2 + ε
√

d, then ft,ϕϕϕ(x) = r − 1.
If d/2 ≤ |x| < d/2 + ε

√
d, then x ∈

⋃
a∈[k] Ya. Therefore, it suffices to show that for any

pair of comparable points x ≺ y ∈ Ya, we have ft,ϕϕϕ(x) ≤ ft,ϕϕϕ(y). Firstly, observe that by
construction all points z ∈ Ba(r−1)+b have function value ft,ϕϕϕ(z) ∈ {b, b + 1}. Since x ≺ y, if
x and y are in different blocks, then x ∈ Ba(r−1)+b and y ∈ Ba(r−1)+b′ where b < b′ and so
the inequality is satisfied. Therefore, we may assume x, y ∈ Ba(r−1)+b are in the same block.
Since x ≺ y, if t ≺ x for some term t ∈ supp(Dterm), then t ≺ y as well. I.e. the set of terms
in Ba(r−1)+b satisfied by y is a superset of the set of terms in Ba(r−1)+b satisfied by x. By
construction, this implies ft,ϕϕϕ(x) ≤ ft,ϕϕϕ(y). ◀

▶ Lemma 15. For fttt,rrr ∼ Dno, we have Pttt,rrr[ε(fttt,rrr, Mr,k) = Ω(ε)] = Ω(1).

We prove Lemma 15 in Section 3.4.

▶ Lemma 16. Given a collection of points xxx = (x1, . . . , xs) ∈ ({0, 1}d)s and a function
f : {0, 1}d → [r], let (xxx, f(xxx)) = ((x1, f(x1)), . . . , (xs, f(xs)))) denote the corresponding
collection of labelled examples. Let Eyes and Eno denote the distributions over (xxx, f(xxx))
when xxx consists of s i.i.d. uniform samples and f ∼ Dyes and f ∼ Dno, respectively. If
s ≤ 2

(r−1)k
√

d
5ε , then the total variation distance between Eyes and Eno is o(1).

We prove Lemma 16 in Section 3.3.

H. Black 37:13

3.2 Proof of Claim 13
Proof. Recall w = (r−1)k

√
d

2ε , Ni = 2w · e−i, the definition of Dterm from Definition 12,
and the definition of Ui,j from Equation (1). Since x ∈ Bi we have |x| = d

2 + ℓ where
iε

√
d

k(r−1) ≤ ℓ < (i+1)ε
√

d
k(r−1) . Note that Pt∼Dterm [t ⪯ x] = (|x|/d)w since t ⪯ x iff the non-zero

coordinates of t are a subset of the non-zero coordinates of x. Therefore, we have

Pt[x ∈ Ui,j] = Pti,j [ti,j ⪯ x] ·
∏

j′∈[Ni]\{j}

Pti,j′ [ti,j′
̸⪯ x] = (|x|/d)w (1 − (|x|/d)w)Ni−1 .

Note that the first term is upper bounded as

(|x|/d)w ≤

(
d
2 + (i+1)·ε

√
d

k(r−1)

d

)w

= 1
2w

(
1 + 2ε

k(r − 1)
√

d
· (i + 1)

)w

≤ ei+1+o(1)

2w
≤ e1+o(1)

Ni

and this immediately implies the upper bound on Pt[x ∈ Ui,j]. We can also lower bound this
quantity by

(|x|/d)w ≥

 d
2 + i·ε

√
d

k(r−1)

d

w

= 1
2w

(
1 + 2ε

k(r − 1)
√

d
· i

)w

≥ ei−o(1)

2w
≥ 1

eo(1)Ni
.

Now, combining our upper and lower bounds on (|x|/d)w yields

Pt[x ∈ Ui,j] ≥ 1
eo(1)Ni

(
1 − e1+o(1)

Ni

)Ni

≥ 1
eo(1)Ni

e−(1+o(1))·e1+o(1)
≥ 1

ee+1Ni
≥ 1

45Ni
.

◁

3.3 Dyes and Dno are Hard to Distinguish: Proof of Lemma 16
Proof. Recall the definition of the set Ui,j in Equation (1). For a ̸= b ∈ [s], let Eab denote
the event that xa and xb belong to the same Ui,j for some i ∈ [k(r −1)] and j ∈ [Ni]. Observe
that conditioned on ∨a,bEab, the distributions Eyes and Eno are identical. Let x, y ∈ {0, 1}d

denote two i.i.d. uniform samples. We have

P[Eab] = Px,y,t

∨
i,j

(x ∈ Ui,j ∧ y ∈ Ui,j)

=
∑
i,j

Px,y,t [x ∈ Ui,j ∧ y ∈ Ui,j] =
∑
i,j

Px,t[x ∈ Ui,j]2 (2)

where the first step holds since the Ui,j ’s are disjoint and the second step holds by independence
of x and y. Now, for a fixed i ∈ [k(r − 1)] and j ∈ [Ni] we have the following: by Claim 13,
for x ∈ Bi we have Pt[x ∈ Ui,j] ≤ 3

Ni
and for x /∈ Bi we have Pt[x ∈ Ui,j] = 0. Therefore

Px,t[x ∈ Ui,j] ≤ 3
Ni

. Therefore, the RHS of Equation (2) is bounded as∑
i,j

Px,t[x ∈ Ui,j]2 =
∑

i

Ni · Px,t[x ∈ Ui,j]2 ≤
∑

i

9
Ni

≤ rk · 9
Nk(r−1)−1

since the Ni’s are decreasing with respect to i. Therefore,

dT V (Eyes, Eno) ≤ Pxxx,ttt

 ∨
a,b∈[s]

Eab

 ≤ s2 · rk · 9
Nk(r−1)−1

= o(1)

since Nk(r−1)−1 = 2
(r−1)k

√
d

2ε (1−o(1)) = ω(s2 · rk). ◀

APPROX/RANDOM 2024

37:14 Sample-Based Testing and Learning of k-Monotone Functions

3.4 Functions Drawn from Dno are Far from k-Monotone: Proof of
Lemma 15

Proof. We will use Claim 11, restated below for the special case of r-valued functions over
the hypercube. Recall that Mr,k is the set of k-monotone functions f : {0, 1}d → [r].

▷ Claim 17. Let f : {0, 1}d → [r] and k′ ≥ 3k be an integer. Let C ⊂ ({0, 1}d)k′ be a
collection of disjoint k′-alternating chains for f . Then

ε(f, Mr,k) ≥ 1
3 · 2d

·

∣∣∣∣∣ ⋃
C∈C

C

∣∣∣∣∣ .
From the above claim, we can lower bound the distance to k-monotonicity of f by showing

that it contains a collection of disjoint k′-alternating chains where k′ ≥ 3k whose union
makes up an Ω(ε)-fraction of the hypercube.

Recall Ui = Ui,1 ∪ · · · ∪ Ui,Ni
⊆ Bi and note that ft,rrr ∼ Dno takes values only from

{i mod (r − 1), i mod (r − 1) + 1} in Bi. In particular, for a ∈ {0, 1, . . . , r − 2}, let

Xa = Ba ∪ B(r−1)+a ∪ B2(r−1)+a ∪ · · · ∪ B(k−1)(r−1)+a =
⋃

i∈[k]

Bi(r−1)+a (3)

and note that all points x ∈ Xa are assigned value ft,rrr(x) ∈ {a, a + 1}. Moreover, this value
is chosen uniformly at random when x ∈

⋃
i∈[k] Ui(r−1)+a, which occurs with probability

≥ 1/45 by Claim 13. Let k′′ := ε
√

d
r−1 and recall that we are assuming rk ≤ ε

√
d

24300 and so
k′′ ≥ 24300k. We first show there exists a large collection Ca of length-k′′ disjoint chains in
Xa for all a ∈ {0, 1, . . . , r − 2}.

▷ Claim 18. For every a ∈ {0, 1, . . . , r − 2}, there exists a collection of vertex disjoint chains
Ca ⊂ (Xa)k′′ in Xa of length k′′ of size |Ca| ≥ Ω(2d

√
d
).

Proof. We start by showing that there is a large matching in the transitive closure of the
hypercube from L d

2
to L d

2 +ε
√

d−1. Consider the bipartite graph (U, V, E) where U := L d
2
,

V := L d
2 +ε

√
d−1, and E := {(x, y) ∈ U × V : x ≺ y}. Observe that vertices in U have degree

exactly ∆ :=
(d

2
ε
√

d−1

)
while vertices in V have degree exactly

(d
2 +ε

√
d−1

ε
√

d−1

)
≥ ∆. Note also

that |V | =
(

d
d
2 +ε

√
d−1
)

≥ Ω(2d
√

d
) by Stirling’s approximation. We now use the following claim

from [10].

▷ Claim 19 (Claim 5.10 of [10]). Let (U, V, E) be a bipartite graph and ∆ > 0 be such that
(a) each vertex x ∈ U has degree exactly ∆ and (b) each vertex y ∈ V has degree at least ∆.
Then there exists a matching M ⊆ E in (U, V, E) of size |M | ≥ 1

2 |V |.

By the above claim and the previous observations, there exist subsets S ⊆ L d
2

and
T ⊆ L d

2 +ε
√

d−1 of size |S| = |T | = Ω(2d
√

d
) and a bijection ϕ : S → T satisfying x ≺ ϕ(x) for

all x ∈ S. We now use the following routing theorem due to Lehman and Ron to obtain a
collection of disjoint chains from S to T .

▶ Theorem 20 (Lehman-Ron, [56]). Let a < b and S ⊆ La, T ⊆ Lb where m := |S| = |T |.
Moreover, suppose there is a bijection ϕ : S → T satisfying x ≺ ϕ(x) for all x ∈ S. Then
there exist m vertex disjoint paths from S to T in the hypercube.

H. Black 37:15

Now, invoking the above theorem on our bijection ϕ : S → T yields a collection P of
|P | ≥ Ω(2d

√
d
) vertex disjoint paths from L d

2
to L d

2 +ε
√

d−1. For each a ∈ {0, 1, . . . , r − 2},
let Ca denote the collection of chains formed by taking a path in P and including only the
vertices from Xa (recall Equation (3)). Note that the resulting chains in Ca are of length
k′′ = ε

√
d

r−1 . This completes the proof of Claim 18. ◁

From Claim 18, we have C0, C1, . . . , Cr−2 where each Ca ⊂ (Xa)k′′ is a collection of
vertex disjoint chains of length k′′ ≥ 24300k of size |Ca| ≥ Ω(2d

√
d
). Fix a chain C =

(x1, x2, . . . , xk′′) ∈ Ca. Let A(C) be the random variable which denotes the max-length
alternating sub-chain (recall Definition 9) of C over a random ft,rrr ∼ Dno. Fix xj in the
chain and suppose xj ∈ Bi ⊆ Xa. By Claim 13, Pt[xj ∈ Ui] ≥ 1/45. Moreover, conditioned
on xj ∈ Ui, ft,rrr(xj) is chosen from {a, a + 1} uniformly at random. Thus, any step of the
sequence

(1, ft,rrr(x2) − ft,rrr(x1), ft,rrr(x3) − ft,rrr(x2), . . . , ft,rrr(xk′′) − ft,rrr(xk′′−1))

is non-zero and differs in sign from the previous non-zero step with probability at least
1/90 and so E[A(C)] ≥ k′′/90. I.e., 0 ≤ E[k′′ − A(C)] < k′′(1 − 1

90). Thus, using Markov’s
inequality we have

P
[
A(C) <

k′′

8100

]
= P

[
k′′ − A(C) > k′′

(
1 − 1

90

)(
1 + 1

90

)]
≤ 1

(1 + 1
90)

= 1 − 1
91 . (4)

Now, let C = C0 ∪ C1 ∪ · · · ∪ Cr−2 and let Z := |{C ∈ C : A(C) ≥ k′′

8100 }|. By Equation (4) we
have E[Z] ≥ |C|/91 and 0 ≤ E[|C| − Z] ≤ |C|(1 − 1

91). Again using Markov’s inequality, we
have

P
[
Z <

|C|
8281

]
= P

[
|C| − Z > |C|

(
1 − 1

91

)(
1 + 1

91

)]
≤ 1

(1 + 1
91)

= 1 − 1
92 . (5)

Now, for C ∈ C such that A(C) ≥ k′′/8100, let C ′ be any (k′′/8100)-alternating sub-chain
of C. Let C′ = {C ′ : C ∈ C such that A(C) ≥ k′′/8100} which is a collection of disjoint
(k′′/8100)-alternating chains for ft,rrr. Now, recall that k′′ ≥ 24300k and so k′′/8100 ≥ 3k.
Thus, if Z ≥ |C|/8281, then |C′| ≥ |C|/8281 and so by Claim 17 we have

ε(ft,rrr, Mr,k) ≥ 1
3 · 2d

∣∣∣∣∣ ⋃
C′∈C′

C ′

∣∣∣∣∣ ≥ 1
3 · 2d

· |C′| · k′′

8100 ≥ k′′ · |C|
201, 228, 300 · 2d

(6)

By Claim 18 we have |C| ≥ (r − 1) · Ω(2d
√

d
) and recall that k′′ = ε

√
d

r−1 . Thus, the RHS of
Equation (6) is Ω(ε). In conclusion,

Pt,rrr [ε(ft,rrr, Mr,k) ≥ Ω(ε)] ≥ P
[
Z ≥ |C|

8281

]
≥ 1

92

by Equation (5) and this completes the proof of Lemma 15. ◀

4 Learning Upper Bound over Product Spaces

In this section we prove Theorem 6, our upper bound for learning measurable k-monotone
functions in Rd. We restate the theorem below without any hidden logarithmic factors and
for the case of r = 2. The theorem for general r ≥ 2 can then be obtained by replacing ε with
ε/r and δ by 1/3r following the same approach we used to prove Theorem 3 in Section 1.5.

APPROX/RANDOM 2024

37:16 Sample-Based Testing and Learning of k-Monotone Functions

▶ Theorem 21. Given an arbitrary product measure µ, there is a learning algorithm under µ

which learns any measurable k-monotone function f : Rd → {±1} to error ε with probability
1 − δ with time and sample complexity

ln
(

1
δ

)
· min

{
(d log(dk/ε))O

(
k
ε

√
d log(dk/ε)

)
,

(
dk

ε

)O(d)
}

(7)

Our proof uses downsampling to reduce our learning problem over Rd to learning over
a hypergrid, [N]d, under the uniform distribution with mild label noise. In Section 4.1 we
synthesize the results from [49] which we borrow for our proof. In Section 4.2 we give two
learning results for hypergrids whose time complexities correspond to the two arguments
inside the min expression in Equation (7). In Section 4.3 we describe the learning algorithm
and prove its correctness.

Throughout this section, let µ =
∏d

i=1 µi be any product measure over Rd and let N be
a power of two satisfying 8kd/ε ≤ N ≤ 16kd/ε.

4.1 Reduction to Hypergrids via Downsampling
The idea of downsampling is to construct a grid-partition of Rd into Nd blocks such that
(a) the measure of each block under µ is roughly N−d, and (b) the function f we’re trying
to learn is constant on most of the blocks. Roughly speaking, this allows us to learn f

under µ by learning a proxy for f over [N]d under the uniform distribution. The value of N

needed to achieve this depends on what [49] call the “block boundary size” of the function.
Formally, the downsampling procedure constructs query access to maps block : Rd → [N]d
and blockpoint : [N]d → Rd which have various good properties which we will spell out
in the rest of this section. One should think of block as mapping each point x ∈ Rd to
the block of the grid-partition that x belongs to and blockpoint as mapping each block to
some specific point contained in the block. See [49, Def 2.1] for a formal definition. Given
these maps and a function f : Rd → {±1} we define the function fblock : [N]d → {±1} as
fblock(z) = f(blockpoint(z)). We let block(µ) denote the distribution over [N]d induced by
sampling x ∼ µ and then taking block(x).

▶ Proposition 22 (Downsampling, [49]). Let f : Rd → {0, 1} be a k-monotone function and
N, Q ∈ Z+. Using

m := O

(
NQ2d2

min(δ, ε)2 ln
(

Nd

δ

))
samples from µ = µ1 × · · · × µd, there is a downsampling procedure that constructs query
access to maps block : Rd → [N]d and blockpoint : [N]d → Rd such that with probability at
least 1 − δ over the random samples, the following two conditions are satisfied:
1.
∥∥block(µ) − unif([N]d)

∥∥
TV ≤ δ

Q .
2. Px∼µ

[
f(x) ̸= fblock(block(x))

]
≤ ε.

The total running time and number of samples is O(m).

Proof. [49, Prop. 2.5] shows that there is a randomized procedure using m samples from µ

and O(m) time which constructs the maps block and blockpoint such that with probability
1, we get

Px∼µ

[
f(x) ̸= fblock(block(x))

]
≤ N−d · bbs(f, N) +

∥∥block(µ) − unif([N]d)
∥∥

TV (8)

H. Black 37:17

where bbs(f, N) is the N -block boundary size of f [49, Def. 2.4], which is at most kdNd−1

when f is k-monotone [49, Lemma 7.1]. Thus, the first of the two quantities in the RHS is
at most kd/N which is at most ε/8 using our definition of N . Then, [49, Lemma 2.7] states
that

P
[∥∥block(µ) − unif([N]d)

∥∥
TV > β

]
≤ 4Nd · exp

(
− β2m

18Nd2

)
(9)

and so invoking this lemma with β := min(δ/4Q, ε/8) and m := 18Nd2

β2 ln
(16Nd

δ

)
completes

the proof. ◀

4.2 Learning over Hypergrids
For a function f : X → {±1} and a measure µ over X , recall that the example oracle for
f under µ, denoted by EX(f, µ), when queried, generates an example, (x, f(x)), where x

is sampled from µ. Given a noise parameter η, the noisy example oracle EXη(f, µ), when
queried, samples x from µ, returns the true example (x, f(x)) with probability 1 − η, and
returns the corrupted example (x, −f(x)) with probability η. This is referred to as random
classification noise (RCN).

We prove the following two upper bounds for learning over hypergrids under RCN. The
bound in Lemma 23 is relatively straightforward to prove using coupon collector arguments
plus some additional work to handle the label noise. We give a proof in the appendix (see
Section B in the full version of the paper).

▶ Lemma 23 (Coupon Collecting Learner). Let ε, δ ∈ (0, 1), η ∈ (0, 1/2), and N ∈ Z+. There
is an algorithm which, given any k-monotone function f : [N]d → {±1}, uses at most

Õ

(
1

(1 − 2η)2

(
log 1

ε
+ log 1

δ

))
· NO(d)

examples from EXη(f, unif([N]d)) and returns h : [N]d → {±1}, satisfying Ph[d(f, h) ≤ ε] ≥
1 − δ.

▶ Lemma 24 (Hypercube Mapping Learner). Let ε, δ ∈ (0, 1), η ∈ (0, 1/2), and N ∈ Z+ be a
power of two. There is an algorithm which, given any k-monotone function f : [N]d → {±1},
uses at most

O

(
1

ε2(1 − 2η)2 + log 1
δ

)
(d log N)O

(
k
ε

√
d log N

)
examples from EXη(f, unif([N]d)) and returns h : [N]d → {±1}, satisfying Ph[d(f, h) ≤ ε] ≥
1 − δ.

Proof. Let b : [N] → {±1}log N denote the bijection which maps each element of [N] to its
bit representation. Let bbb : [N]d → {±1}d log N be defined as bbb(x) = (b(x1), . . . , b(xd)). Given
f : [N]d → {±1} define the function f cube : {±1}d log N → {±1} as f cube(z) = f(bbb−1(z)).

▶ Observation 25. If f is k-monotone over [N]d, then f cube is k-monotone over {±1}d log N .

Proof. Observe that if bbb(x) ≺ bbb(y) in {±1}d log N , then x ≺ y in [N]d. Thus, if bbb(x1) ≺ · · · ≺
bbb(xm) is an m-alternating chain for f cube, then x1 ≺ · · · ≺ xm is an m-alternating chain for
f . Therefore, if f cube is not k-monotone, then neither is f . ◀

APPROX/RANDOM 2024

37:18 Sample-Based Testing and Learning of k-Monotone Functions

Now, given Observation 25 and the bijection bbb : [N]d → {±1}d log N , it suffices to provide
a learning algorithm for f cube. This is achieved using the Low-Degree Algorithm introduced
by [57] which was shown by [50] to be robust to classification noise. Formally, we use the
following theorem, which we prove in the appendix for the sake of completeness (see Section
A in the full version of the paper).

▶ Theorem 26 (Low-Degree Algorithm with Classification Noise). Let ε, δ ∈ (0, 1) and η ∈
(0, 1/2). Suppose C is a concept class of Boolean functions over {±1}d such that for some fixed
positive integer τ , all f ∈ C satisfy

∑
S⊆[d] : |S|>τ f̂(S)2 ≤ ε/2. Then there is an algorithm A

which, on any input f ∈ C, uses at most

O

((
1

ε2(1 − 2η)2 + log 1
δ

)
· dτ

)
examples from EXη(f, unif({±1}d)) and returns a hypothesis h : {±1}d → {±1} where
Ph[d(f, h) ≤ ε] ≥ 1 − δ.

We use the following Fourier concentration lemma due to [17] for k-monotone Boolean
functions.

▶ Lemma 27 ([17]). If f : {±1}d → {±1} is k-monotone, then
∑

S : |S|> k
√

d
ε

f̂(S)2 ≤ ε.

By Lemma 27, we can invoke Theorem 26 with τ = k
√

d log N

ε , concluding the proof of
Lemma 24. ◀

4.3 Putting it Together: Proof of Theorem 21
Proof. We now have all the tools to define the algorithm and prove its correctness.

Algorithm 1 Learning algorithm for k-monotone functions under product measure µ.

Input: ε, δ ∈ (0, 1) and access to examples from EX(f, µ) where f : Rd → {±1} is
k-monotone;

1. Let N be a power of 2 such that 8kd
ε ≤ N ≤ 16kd

ε . Let A denote the learning
algorithm for k-monotone functions g : [N]d → {±1} which has the smaller
sample-complexity among the algorithms guaranteed by Lemma 23 and Lemma 24.
Let Q be the sample-complexity of A;

2. Run the downsampling procedure of Proposition 22 to obtain the maps block,
blockpoint, and access to the corresponding function fblock : [N]d → {±1} ;

3. Obtain a set of Q examples S ∈ (Rd × {±1})Q from (EX(f, µ))Q;
4. Let Sblock = {(block(x), f(x)) : (x, f(x)) ∈ S} ∈ ([N]d × {±1})Q;
5. Run A using the sample Sblock, which returns a hypothesis hblock : [N]d → {±1}
for fblock;

Return the hypothesis h : Rd → {±1} for f : Rd → {±1} defined as
h(x) = hblock(block(x))

Recall that given maps block : Rd → [N]d, blockpoint : [N]d → Rd, and a function
f : Rd → {±1} we define the function fblock : [N]d → {±1} as fblock(z) = f(blockpoint(z)).
Recall that block(µ) is the distribution over block(x) ∈ [N]d when x ∼ µ. By Proposition 22,
step (2) of Alg. 1 results in the following items being satisfied with probability at least 1 − δ.
1.
∥∥block(µ) − unif([N]d)

∥∥
TV ≤ δ

Q .
2. Px∼µ

[
f(x) ̸= fblock(block(x))

]
≤ ε.

H. Black 37:19

Firstly, by item (2), an example (block(x), f(x)) where x ∼ µ, is equivalent to an example
(z, b) ∼ EXη(fblock, block(µ)) for some η ≤ ε. I.e. the set Sblock ∈ ([N]d × {±1})Q from step
(4) of Alg. 1 is distributed according to (EXη(fblock, block(µ)))Q. Now, as stated, Lemma 23
and Lemma 24 only hold when A is given a sample from (EXη(fblock, unif([N]d)))Q. However,
the following claim shows that since block(µ) and unif([N]d)) are sufficiently close (item (1)
above), the guarantees on A from Lemma 23 and Lemma 24 also hold when A is given a
sample from (EXη(fblock, block(µ)))Q.

▷ Claim 28. Let C : X → {±1} be a concept class and let A be an algorithm which
given any f ∈ C, ε, δ ∈ (0, 1), and η ∈ [0, 1/2) uses a sample from (EXη(f, unif([N]d)))Q

and produces h satisfying Px∼unif([N]d)[h(x) ̸= f(x)] ≤ ε with probability at least 1 − δ.
If D is a distribution over [N]d with

∥∥D − unif([N]d)
∥∥

T V
≤ γ, then given a sample from

(EXη(f, D))Q, A produces h satisfying Px∼D[h(x) ̸= f(x)] ≤ ε + γ with probability at least
1 − (δ + γQ) .

Using Claim 28 and item (1) above, if step (2) of Alg. 1 succeeds, then with probability at
least 1 − 2δ, step (5) produces hblock such that Pz∼block(µ)[hblock(z) ̸= fblock(z)] ≤ 2ε. By the
triangle inequality and using our definition of h in the return statement of Alg. 1, we have

Px∼µ[h(x) ̸= f(x)]
≤ Px∼µ[f(x) ̸= fblock(block(x))] + Px∼µ[fblock(block(x)) ̸= hblock(block(x))]
= Px∼µ[f(x) ̸= fblock(block(x))] + Pz∼block(µ)[fblock(z) ̸= hblock(z)]. (10)

The first term in the RHS is at most ε by item (2) above and the second term is at most
2ε as we argued in the previous paragraph. Finally, adding up the failure probabilities of
steps (2) and (5), we conclude that Alg. 1 produces h satisfying Px∼µ[h(x) ̸= f(x)] ≤ 3ε

with probability at least 1 − 3δ. ◀

4.3.1 Proof of Claim 28
Proof. It is a well-known fact that for two distributions D1 and D2, the TV-distance between
the corresponding product distributions satisfies

∥∥∥DQ
1 − DQ

2

∥∥∥
T V

≤ Q ∥D1 − D2∥T V and thus
we have∥∥DQ − unif([N]d)Q

∥∥
T V

≤ γQ

Given a set of Q examples S ∈ ([N]d × {±1})Q, let E(S) denote the event that the algorithm
A fails to produce a hypothesis with error at most ε, after sampling S. First, note the
distribution over labels for the distributions are the same, and therefore

PS∼(EXη(f,D))Q [E(S)] − PS∼(EXη(f,unif([N]d)))Q [E(S)]
= PS∼DQ [E(S)] − PS∼unif([N]d)Q [E(S)]. (11)

Using the definition of TV-distance we have

PS∼DQ [E(S)] − PS∼unif([N]d)Q [E(S)] ≤
∥∥DQ − unif([N]d)Q

∥∥
T V

≤ γQ (12)

and therefore

PS∼(EXη(f,D))Q [E(S)] ≤ PS∼(EXη(f,unif([N]d)))Q [E(S)] + γQ ≤ δ + γQ (13)

APPROX/RANDOM 2024

37:20 Sample-Based Testing and Learning of k-Monotone Functions

where we used PS∼(EXη(f,unif([N]d)))Q [E(S)] ≤ δ by the assumption in the statement of the
claim. Now, conditioned on ¬E(S), we have that A produces h satisfying Px∼unif([N]d)[h(x) ̸=
f(x)] ≤ ε. Again using our bound on the TV-distance, we have

Px∼D[h(x) ̸= f(x)] − Px∼unif([N]d)[h(x) ̸= f(x)] ≤
∥∥D − unif([N]d)

∥∥
T V

≤ γ

and so Px∼D[h(x) ̸= f(x)] ≤ ε + γ. ◁

5 Sample-Based Testing with One-Sided Error

In this section we prove Theorem 5, our upper and lower bound on sample-based testing
with one-sided error over the hypercube.

Proof of Theorem 5. By a coupon-collecting argument, there is an O(d · 2d) sample upper
bound for exactly learning any function over {0, 1}d under the uniform distribution and
therefore the upper bound is trivial.

It suffices to prove the lower bound for the case of r = 2 and k = 1, i.e. for testing
monotonicity of Boolean functions. We will need the following fact.

▶ Fact 29. Let A ⊂ {0, 1}d be any anti-chain and let ℓ : A → {0, 1} be any labelling of A.
Then there exists a monotone function f : {0, 1}d → {0, 1} such that f(x) = ℓ(x) for all
x ∈ A. I.e. A shatters the class of monotone functions.

Now, let T be any monotonicity tester with one-sided error and let S ⊆ {0, 1}d denote a
set of s i.i.d. uniform samples. Since T has one-sided error, if the input function is monotone,
then T must accept. In other words, for T to reject it must be sure without a doubt that
the input function is not monotone. By Fact 29 for T to be sure the input function is not
monotone, it must be that S is not an anti-chain. Let f : {0, 1}d → {0, 1} be any function
which is ε-far from monotone. Since T is a valid tester, it rejects f with probability at least
2/3. By the above argument we have

2/3 ≤ PS [T rejects f] ≤ PS [S is not an anti-chain] ≤ s2 · Px,y∼{0,1}d [x ⪯ y] (14)

where the last inequality is by a union bound over all pairs of samples. We then have

Px,y∼{0,1}d [x ⪯ y] = Px,y∼{0,1}d [xi ≤ yi, ∀i ∈ [d]] =
d∏

i=1
Pxi,yi∼{0,1}[xi ≤ yi] = (3/4)d.

(15)

Thus, combining Equation (14) and Equation (15) yields s ≥
√

2
3 (4

3)d = exp(Ω(d)). ◀

References
1 Nir Ailon and Bernard Chazelle. Information theory in property testing and monotonicity

testing in higher dimension. Information and Computation, 204(11):1704–1717, 2006.
2 Nir Ailon, Bernard Chazelle, Seshadhri Comandur, and Ding Liu. Estimating the distance to

a monotone function. Random Structures Algorithms, 31(3):371–383, 2007.
3 Maria-Florina Balcan, Eric Blais, Avrim Blum, and Liu Yang. Active property testing. In

53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS, 2012. doi:
10.1109/FOCS.2012.64.

4 Aleksandrs Belovs and Eric Blais. A polynomial lower bound for testing monotonicity. In
Proceedings, ACM Symposium on Theory of Computing (STOC), 2016.

https://doi.org/10.1109/FOCS.2012.64
https://doi.org/10.1109/FOCS.2012.64

H. Black 37:21

5 Piotr Berman, Meiram Murzabulatov, and Sofya Raskhodnikova. The power and limitations
of uniform samples in testing properties of figures. Algorithmica, 81(3):1247–1266, 2019.
doi:10.1007/s00453-018-0467-9.

6 Piotr Berman, Meiram Murzabulatov, and Sofya Raskhodnikova. Testing convexity of figures
under the uniform distribution. Random Struct. Algorithms, 54(3):413–443, 2019. doi:
10.1002/rsa.20797.

7 Piotr Berman, Sofya Raskhodnikova, and Grigory Yaroslavtsev. Lp-testing. In Proceedings,
ACM Symposium on Theory of Computing (STOC), 2014.

8 Arnab Bhattacharyya. A note on the distance to monotonicity of boolean functions. Technical
Report 012, Electronic Colloquium on Computational Complexity (ECCC), 2008.

9 Arnab Bhattacharyya, Elena Grigorescu, Madhav Jha, Kyoming Jung, Sofya Raskhodnikova,
and David Woodruff. Lower bounds for local monotonicity reconstruction from transitive-
closure spanners. SIAM Journal on Discrete Mathematics (SIDMA), 26(2):618–646, 2012.

10 Hadley Black, Eric Blais, and Nathaniel Harms. Testing and learning convex sets in the
ternary hypercube. In 15th Innovations in Theoretical Computer Science Conference, ITCS,
2024. doi:10.4230/LIPICS.ITCS.2024.15.

11 Hadley Black, Deeparnab Chakrabarty, and C. Seshadhri. A o(d) · polylog(n) monotonicity
tester for Boolean functions over the hypergrid [n]d. In Proceedings, ACM-SIAM Symposium
on Discrete Algorithms (SODA), 2018.

12 Hadley Black, Deeparnab Chakrabarty, and C. Seshadhri. Domain reduction for monotonicity
testing: A o(d) tester for boolean functions in d-dimensions. In Proceedings of the 2020 ACM-
SIAM Symposium on Discrete Algorithms, SODA, 2020. doi:10.1137/1.9781611975994.122.

13 Hadley Black, Deeparnab Chakrabarty, and C. Seshadhri. A d1/2+o(1) monotonicity tester
for boolean functions on d-dimensional hypergrids. In 64th IEEE Annual Symposium on
Foundations of Computer Science, FOCS, 2023. doi:10.1109/FOCS57990.2023.00110.

14 Hadley Black, Deeparnab Chakrabarty, and C. Seshadhri. Directed isoperimetric theorems for
boolean functions on the hypergrid and an Õ(n

√
d) monotonicity tester. In Proceedings of the

55th Annual ACM Symposium on Theory of Computing, STOC, 2023. doi:10.1145/3564246.
3585167.

15 Hadley Black, Iden Kalemaj, and Sofya Raskhodnikova. Isoperimetric inequalities for real-
valued functions with applications to monotonicity testing. Random Structures & Algorithms,
2024.

16 Eric Blais, Joshua Brody, and Kevin Matulef. Property testing lower bounds via communication
complexity. Computational Complexity, 21(2):311–358, 2012.

17 Eric Blais, Clément L. Canonne, Igor Carboni Oliveira, Rocco A. Servedio, and Li-Yang
Tan. Learning circuits with few negations. In RANDOM, 2015. doi:10.4230/LIPIcs.
APPROX-RANDOM.2015.512.

18 Eric Blais, Renato Ferreira Pinto Jr, and Nathaniel Harms. Vc dimension and distribution-free
sample-based testing. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory
of Computing, pages 504–517, 2021.

19 Eric Blais, Sofya Raskhodnikova, and Grigory Yaroslavtsev. Lower bounds for testing properties
of functions over hypergrid domains. In Proceedings, IEEE Conference on Computational
Complexity (CCC), 2014.

20 Eric Blais and Yuichi Yoshida. A characterization of constant-sample testable properties.
Random Struct. Algorithms, 55(1):73–88, 2019. doi:10.1002/rsa.20807.

21 Mark Braverman, Subhash Khot, Guy Kindler, and Dor Minzer. Improved monotonicity
testers via hypercube embeddings. In 14th Innovations in Theoretical Computer Science
Conference, ITCS, 2023. doi:10.4230/LIPIcs.ITCS.2023.25.

22 Jop Briët, Sourav Chakraborty, David García Soriano, and Ari Matsliah. Monotonicity testing
and shortest-path routing on the cube. Combinatorica, 32(1):35–53, 2012.

23 Nader H. Bshouty and Christino Tamon. On the fourier spectrum of monotone functions. J.
ACM, 43(4):747–770, 1996. doi:10.1145/234533.234564.

APPROX/RANDOM 2024

https://doi.org/10.1007/s00453-018-0467-9
https://doi.org/10.1002/rsa.20797
https://doi.org/10.1002/rsa.20797
https://doi.org/10.4230/LIPICS.ITCS.2024.15
https://doi.org/10.1137/1.9781611975994.122
https://doi.org/10.1109/FOCS57990.2023.00110
https://doi.org/10.1145/3564246.3585167
https://doi.org/10.1145/3564246.3585167
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.512
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.512
https://doi.org/10.1002/rsa.20807
https://doi.org/10.4230/LIPIcs.ITCS.2023.25
https://doi.org/10.1145/234533.234564

37:22 Sample-Based Testing and Learning of k-Monotone Functions

24 Clément L. Canonne, Elena Grigorescu, Siyao Guo, Akash Kumar, and Karl Wimmer. Testing
k-monotonicity: The rise and fall of boolean functions. Theory Comput., 15:1–55, 2019.
doi:10.4086/toc.2019.v015a001.

25 Deeparnab Chakrabarty, Kashyap Dixit, Madhav Jha, and C. Seshadhri. Property testing
on product distributions: Optimal testers for bounded derivative properties. In Proceedings,
ACM-SIAM Symposium on Discrete Algorithms (SODA), 2015.

26 Deeparnab Chakrabarty and C. Seshadhri. Optimal bounds for monotonicity and Lipschitz
testing over hypercubes and hypergrids. In Proceedings, ACM Symposium on Theory of
Computing (STOC), 2013.

27 Deeparnab Chakrabarty and C. Seshadhri. An o(n) monotonicity tester for Boolean functions
over the hypercube. SIAM Journal on Computing (SICOMP), 45(2):461–472, 2014.

28 Deeparnab Chakrabarty and C. Seshadhri. An optimal lower bound for monotonicity testing
over hypergrids. Theory of Computing, 10:453–464, 2014. doi:10.4086/toc.2014.v010a017.

29 Xi Chen, Anindya De, Yuhao Li, Shivam Nadimpalli, and Rocco A. Servedio. Mildly exponential
lower bounds on tolerant testers for monotonicity, unateness, and juntas. In Proceedings of
the 2024 ACM-SIAM Symposium on Discrete Algorithms, SODA, 2024. doi:10.1137/1.
9781611977912.151.

30 Xi Chen, Anindya De, Rocco A. Servedio, and Li-Yang Tan. Boolean function monotonicity
testing requires (almost) O(n1/2) non-adaptive queries. In Proceedings, ACM Symposium on
Theory of Computing (STOC), 2015.

31 Xi Chen, Adam Freilich, Rocco A. Servedio, and Timothy Sun. Sample-based high-dimensional
convexity testing. In Approximation, Randomization, and Combinatorial Optimization. Al-
gorithms and Techniques, APPROX/RANDOM, 2017. doi:10.4230/LIPICS.APPROX-RANDOM.
2017.37.

32 Xi Chen, Rocco A. Servedio, and Li-Yang. Tan. New algorithms and lower bounds for
monotonicity testing. In Proceedings, IEEE Symposium on Foundations of Computer Science
(FOCS), 2014.

33 Xi Chen, Erik Waingarten, and Jinyu Xie. Beyond talagrand: New lower bounds for testing
monotonicity and unateness. In Proceedings, ACM Symposium on Theory of Computing
(STOC), 2017.

34 Yevgeny Dodis, Oded Goldreich, Eric Lehman, Sofya Raskhodnikova, Dana Ron, and Alex
Samorodnitsky. Improved testing algorithms for monotonicity. Proceedings, International
Workshop on Randomization and Computation (RANDOM), 1999.

35 Funda Ergun, Sampath Kannan, Ravi Kumar, Ronitt Rubinfeld, and Mahesh Viswanathan.
Spot-checkers. J. Comput. System Sci., 60(3):717–751, 2000.

36 Shahar Fattal and Dana Ron. Approximating the distance to monotonicity in high dimensions.
ACM Trans. on Algorithms (TALG), 6(3), 2010.

37 Renato Ferreira Pinto Jr and Nathaniel Harms. Distribution testing under the parity trace,
2023. arXiv:2304.01374.

38 Renato Ferreira Pinto Jr and Nathaniel Harms. Distribution testing with a confused collector.
In 15th Innovations in Theoretical Computer Science Conference, ITCS, 2024. doi:10.4230/
LIPICS.ITCS.2024.47.

39 Eldar Fischer. On the strength of comparisons in property testing. Information and Computa-
tion, 189(1):107–116, 2004.

40 Eldar Fischer, Yonatan Goldhirsh, and Oded Lachish. Partial tests, universal tests and
decomposability. In Innovations in Theoretical Computer Science, ITCS. ACM, 2014. doi:
10.1145/2554797.2554841.

41 Eldar Fischer, Oded Lachish, and Yadu Vasudev. Trading query complexity for sample-based
testing and multi-testing scalability. In IEEE 56th Annual Symposium on Foundations of
Computer Science, FOCS. IEEE Computer Society, 2015. doi:10.1109/FOCS.2015.75.

https://doi.org/10.4086/toc.2019.v015a001
https://doi.org/10.4086/toc.2014.v010a017
https://doi.org/10.1137/1.9781611977912.151
https://doi.org/10.1137/1.9781611977912.151
https://doi.org/10.4230/LIPICS.APPROX-RANDOM.2017.37
https://doi.org/10.4230/LIPICS.APPROX-RANDOM.2017.37
https://arxiv.org/abs/2304.01374
https://doi.org/10.4230/LIPICS.ITCS.2024.47
https://doi.org/10.4230/LIPICS.ITCS.2024.47
https://doi.org/10.1145/2554797.2554841
https://doi.org/10.1145/2554797.2554841
https://doi.org/10.1109/FOCS.2015.75

H. Black 37:23

42 Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, and Ronitt Rubinfeld.
Monotonicity testing over general poset domains. Proceedings, ACM Symposium on Theory of
Computing (STOC), 2002.

43 Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex Samorodnitsky. Testing
monotonicity. Combinatorica, 20:301–337, 2000.

44 Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. Journal of the ACM, 45(4):653–750, 1998.

45 Oded Goldreich and Dana Ron. On sample-based testers. ACM Trans. Comput. Theory,
8(2):7:1–7:54, 2016. doi:10.1145/2898355.

46 Elena Grigorescu, Akash Kumar, and Karl Wimmer. Flipping out with many flips: Hardness
of testing k-monotonicity. SIAM J. Discret. Math., 33(4):2111–2125, 2019. doi:10.1137/
18M1217978.

47 Shirley Halevy and Eyal Kushilevitz. Distribution-free property testing. Proceedings, Interna-
tional Workshop on Randomization and Computation (RANDOM), 2003.

48 Shirley Halevy and Eyal Kushilevitz. Testing monotonicity over graph products. Random
Structures Algorithms, 33(1):44–67, 2008.

49 Nathaniel Harms and Yuichi Yoshida. Downsampling for testing and learning in product
distributions. In 49th International Colloquium on Automata, Languages, and Programming,
ICALP 2022, 2022. doi:10.4230/LIPIcs.ICALP.2022.71.

50 Michael J. Kearns. Efficient noise-tolerant learning from statistical queries. J. ACM, 45(6):983–
1006, 1998. doi:10.1145/293347.293351.

51 Michael J. Kearns and Dana Ron. Testing problems with sublearning sample complexity. J.
Comput. Syst. Sci., 61(3):428–456, 2000. doi:10.1006/jcss.1999.1656.

52 Subhash Khot, Dor Minzer, and Muli Safra. On monotonicity testing and Boolean isoperimetric
type theorems. In Proceedings, IEEE Symposium on Foundations of Computer Science (FOCS),
2015.

53 Subhash Khot, Dor Minzer, and Muli Safra. On monotonicity testing and boolean isoperimetric-
type theorems. SIAM J. Comput., 47(6):2238–2276, 2018. doi:10.1137/16M1065872.

54 Jane Lange, Ronitt Rubinfeld, and Arsen Vasilyan. Properly learning monotone functions
via local correction. In 63rd IEEE Annual Symposium on Foundations of Computer Science,
FOCS, 2022. doi:10.1109/FOCS54457.2022.00015.

55 Jane Lange and Arsen Vasilyan. Agnostic proper learning of monotone functions: beyond the
black-box correction barrier. In 64th IEEE Annual Symposium on Foundations of Computer
Science, FOCS, 2023. doi:10.1109/FOCS57990.2023.00068.

56 Eric Lehman and Dana Ron. On disjoint chains of subsets. Journal of Combinatorial Theory,
Series A, 94(2):399–404, 2001.

57 Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, fourier transform,
and learnability. J. ACM, 40(3):607–620, 1993. doi:10.1145/174130.174138.

58 Ramesh Krishnan S. Pallavoor, Sofya Raskhodnikova, and Nithin Varma. Parameterized
property testing of functions. ACM Trans. Comput. Theory, 9(4):17:1–17:19, 2018. doi:
10.1145/3155296.

59 Sofya Raskhodnikova. Monotonicity testing. Masters Thesis, MIT, 1999.
60 Dana Ron, Ronitt Rubinfeld, Muli Safra, and Omri Weinstein. Approximating the Influence

of Monotone Boolean Functions in O(
√

n) Query Complexity. In Proceedings, International
Workshop on Randomization and Computation (RANDOM), 2011.

61 R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications to
program testing. SIAM Journal of Computing, 25:647–668, 1996.

62 Michael E. Saks and C. Seshadhri. Parallel monotonicity reconstruction. In Proceedings,
ACM-SIAM Symposium on Discrete Algorithms (SODA), 2008.

63 Michel Talagrand. How much are increasing sets positively correlated? Comb., 16(2):243–258,
1996. doi:10.1007/BF01844850.

APPROX/RANDOM 2024

https://doi.org/10.1145/2898355
https://doi.org/10.1137/18M1217978
https://doi.org/10.1137/18M1217978
https://doi.org/10.4230/LIPIcs.ICALP.2022.71
https://doi.org/10.1145/293347.293351
https://doi.org/10.1006/jcss.1999.1656
https://doi.org/10.1137/16M1065872
https://doi.org/10.1109/FOCS54457.2022.00015
https://doi.org/10.1109/FOCS57990.2023.00068
https://doi.org/10.1145/174130.174138
https://doi.org/10.1145/3155296
https://doi.org/10.1145/3155296
https://doi.org/10.1007/BF01844850

Approximating the Number of Relevant Variables
in a Parity Implies Proper Learning
Nader H. Bshouty #

Department of Computer Science, Technion, Israel

George Haddad #

Department of Computer Science, Technion, Israel

Abstract
Consider the model where we can access a parity function through random uniform labeled examples
in the presence of random classification noise. In this paper, we show that approximating the number
of relevant variables in the parity function is as hard as properly learning parities.

More specifically, let γ : R+ → R+, where γ(x) ≥ x, be any strictly increasing function. In our
first result, we show that from any polynomial-time algorithm that returns a γ-approximation, D

(i.e., γ−1(d(f)) ≤ D ≤ γ(d(f))), of the number of relevant variables d(f) for any parity f , we can,
in polynomial time, construct a solution to the long-standing open problem of polynomial-time
learning k(n)-sparse parities (parities with k(n) ≤ n relevant variables), where k(n) = ωn(1).

In our second result, we show that from any T (n)-time algorithm that, for any parity f , returns a
γ-approximation of the number of relevant variables d(f) of f , we can, in polynomial time, construct
a poly(Γ(n))T (Γ(n)2)-time algorithm that properly learns parities, where Γ(x) = γ(γ(x)).

If T (Γ(n)2) = exp(o(n/ log n)), this would resolve another long-standing open problem of properly
learning parities in the presence of random classification noise in time exp(o(n/ log n)).

2012 ACM Subject Classification Theory of computation

Keywords and phrases PAC Learning, Random Classification Noise, Uniform Distribution, Parity,
Sparcity Approximation

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.38

Category RANDOM

Acknowledgements We would like to thank the anonymous reviewer of RANDOM for providing
another approach for finding the relevant variables in the target function. We also extend our
gratitude to the other reviewers for their useful comments and suggestions, which have greatly
improved this manuscript.

1 Introduction

The problem of PAC learning parity, with and without noise, and approximating its sparsity
has been extensively studied in the literature. See [2, 4, 5, 6, 7, 8, 10, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 32, 33, 35] and references therein.

In properly learning parities under the uniform distribution, the learner can observe
labeled examples {(ai, bi)}i, where bi = f(ai), ai are drawn independently from the uniform
distribution, and f is the target parity. The goal is to return the target parity function f

exactly.
In the random classification noise model with noise rate η, [1], each label bi is independently

flipped (misclassified) with probability η. The problem of learning parities with noise (LPN) is
known to be computationally challenging. Some evidence of its hardness comes from the fact
that it cannot be learned efficiently in the so-called statistical query (SQ) model [27] under
the uniform distribution [9, 12]. LPN serves as the foundation for several cryptographic
constructions, largely because its hardness in the presence of noise is assumed. See for
example [10, 31].

© Nader H. Bshouty and George Haddad;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 38; pp. 38:1–38:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bshouty@cs.technion.ac.il
https://orcid.org/0009-0007-7356-7824
mailto:haddadgeorge@campus.technion.ac.il
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.38
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

38:2 Approximating the Number of Relevant Variables in a Parity Implies Proper Learning

While PAC learning of parities (and thus determining its sparsity) under the uniform
distribution can be accomplished in polynomial time using Gaussian elimination, addressing
this problem in the presence of random classification noise remains one of the most long-
standing challenges in learning theory. The only known algorithm is that of Blum et al.[11],
which runs in time 2O(n/ log n), requires 2O(n/ log n) labeled examples, and handles only a
constant noise rate. This algorithm holds the record as the best-known solution for this
problem. Finding a 2o(n/ log n)-time learning algorithm for parities or proving the impossibility
of such an algorithm remains a significant and unresolved challenge.

When the number of relevant variables1 k of the parity function f is known (f is called
k-sparse parity), all the algorithms proposed in the literature run in time nck for some
constant c < 1, [5, 7, 22, 33, 36]. Finding a polynomial-time algorithm for k-sparse parities
for some k = ω(1), or proving the impossibility of such an algorithm, is another significant
and unresolved challenge.

In a related vein, another challenging problem is determining or approximating the
sparsity of the parity function, i.e., the number of relevant variables in the target function.
This problem was studied in the PAC-learning model [34] under specific2 distributions [2, 3,
4, 7, 16, 17, 18, 19, 20, 30, 35].

For the problem of determining the sparsity under any distribution and without noise,
Downey et al. [18] and Bhattacharyya et al. [4] show that determining the sparsity k of parities
is W [1]-hard. Bhattacharyya et al. [7] show that the time complexity is min(2Θ(n), nΘ(k)),
assuming 3-SAT has no 2o(n)-time algorithm. For the problem of approximating the sparsity,
Dumer et al. [19] showed that if RP ̸=NP, then it is hard to approximate the sparsity within
some constant factor γ > 1. See also [2, 16, 17, 30]. When the distribution is uniform, there
is a polynomial-time algorithm that uses O(n) labeled examples and learns parities using
Gaussian elimination, thereby determining their sparsity.

In this paper, we pose the question: Can we approximate the sparsity of the parity
function in polynomial time using random uniform labeled examples in the presence of
random classification noise? We show that approximating the number of relevant variables
in the parity function is as hard as properly learning parities.

We first show the following.

▶ Theorem 1. Let γ : R+ → R+ be any strictly increasing function, where γ(x) ≥ x.
Consider a polynomial-time algorithm that, for any parity f , uses random uniform labeled
examples of f in the presence of random classification noise and returns an integer D such
that3 γ−1(d(f)) ≤ D ≤ γ(d(f)), where d(f) is the number of relevant variables in f . One can,
in polynomial time, construct an algorithm that runs in polynomial time, uses random uniform
labeled examples in the presence of random classification noise, and learns k(n)-sparse parities
for some4 k(n) = ωn(1).

This would solve the long-standing open problem of polynomial-time learning k-sparse
parities for some k = ωn(1).

We then show that

1 A variable is relevant in f if f depends on that variable.
2 Some of the problems are introduced as follows: Given a matrix M ∈ F m×n

2 , a vector b ∈ {0, 1}m, and
an integer k. Deciding if there exists a weight k vector x ∈ {0, 1}n such that Mx = b. This is equivalent
to the decision problem when the distribution is uniform over the rows of M .

3 See Section 1.4 for the justification of why we use this definition and not the standard definition
d(f) ≤ D ≤ γ(d(f)).

4 Throughout this paper, we also have k = n − ω(1). For k = O(1) and k = n − O(1), there are
polynomial-time learning algorithms.

N. H. Bshouty and G. Haddad 38:3

▶ Theorem 2. From any T (n)-time algorithm that, for any parity f : {0, 1}n → {0, 1}, uses
Q(n) random uniform labeled examples of f in the presence of random classification noise and
returns a γ-approximation of the number of relevant variables d(f) of f , one can, in polynomial
time, construct a poly(Γ(n))T (Γ(n)2)-time algorithm that uses poly(Γ(n))Q(Γ(n)2) random
uniform labeled examples in the presence of random classification noise and properly learns
parities, where Γ(x) = γ(γ(x)).

If T (Γ(n)2) = exp(o(n/ log n)), this would resolve another long-standing open problem of
proper learning parities in the presence of random classification noise in time exp(o(n/ log n)).
This is applicable, for example, for any poly(·)-approximation and exp(n1/c)-time algorithm
for some sufficiently large constant c. As well as to quasi-poly(·)-approximation and exp(exp(
(log n)1/c))-time algorithm for some sufficiently large constant c.

In this paper, while the above discussions and the technique section have been primarily
focused on parities, that is, linear functions over the binary field F2, the results we present
in this paper are not limited to this specific case. We generalize our result to encompass any
linear function over any finite field. This extension allows our results to be applicable to
a broader range of linear systems beyond the binary paradigm, effectively widening their
relevance in coding theory and cryptography.

1.1 Our Technique
In this section, we present the technique used in the paper to prove the results in Theorem 1
and 2.

For learning in the presence of random classification noise, when the noise rate η = 1/2,
the labels will be randomly uniform, and learning is impossible. Therefore, we must assume
that the learner knows some upper bound ηb < 1/2 for η [1].

1.2 Approximation Implies Learning k-Sparse Parities
In this section, we present two approaches that prove Theorem 1. The first is our method,
and the second was suggested by an anonymous reviewer of RANDOM.

While the approach suggested by the anonymous reviewer is truly inspiring, we believe
that our method offers significant value, is worth presenting in this paper, and may be useful
for solving other problems.

1.2.1 First Approach
In this section, we will outline the technique for the binary field, though some essential details
are omitted to provide a broader overview of the main concepts and approach. Additionally,
proving the result for any field requires more careful treatment.

Let γ : R+ → R+ be any strictly increasing function such that for every5 x > 1, γ(x) > x.
Let A be a polynomial-time randomized algorithm that γ-approximates the number of

relevant variables d(f) in a parity f , using random uniform labeled examples of f in the
presence of random classification noise with any noise rate6 η ≤ ηb. Thus, for every parity f
with d(f) relevant variables, with probability at least 1 − δ we have γ−1(d(f)) ≤ A(f) ≤
γ(d(f)). We will demonstrate how to construct a polynomial-time learning algorithm for
k(n)-sparse parities, for some k(n) = ωn(1). First, we will show how to find k(n).

5 We need this constraint to ensure that γ−1(x) < γ(x) for every x > 1.
6 Here, η is not known to the algorithm, but ηb is known.

APPROX/RANDOM 2024

38:4 Approximating the Number of Relevant Variables in a Parity Implies Proper Learning

Let Lin(d) be the class of d-sparse parities. Assume for now that the noise rate is ηb.
Later, we will show how to modify the algorithm to work for any unknown noise rate η ≤ ηb.

We first use the algorithm A to construct a table that provides values which approximate

ΨA(d) = E
(f,s)∼uLin(d)×S(f)

[A(f)]

with additive error of 1/poly(n), for every d ∈ [n] and noise rate ηb. Here f is a d-sparse
parity chosen uniformly at random from Lin(d), and s is a uniformly random string in S(f)
- the set of random bits used by the algorithm (for the randomness of the algorithm and
the noise) for which the algorithm returns a correct answer, namely, returns D such that
γ−1(d) ≤ D ≤ γ(d).

To approximate ΨA(d) for some d ∈ [n], we iterate a polynomial number of times. At
each iteration, we draw a random uniform f ∈ Lin(d) and run A. For each labeled example
requested by A, we draw a random uniform u ∈ {0, 1}n and compute v = f(u). We then,
with probability ηb, return7 (u, v + 1) to A, and, with probability 1 − ηb, return (u, v). If the
algorithm outputs an integer D such that γ−1(d) ≤ D ≤ γ(d), we retain that D. Otherwise,
we repeat the process. Obviously, E[D] = ΨA(d), and therefore, using Hoeffding’s bound,
such a table can be constructed in polynomial time.

Now, using the fact that γ is strictly increasing and γ−1(d) ≤ ΨA(d) ≤ γ(d), and
applying a basic averaging argument, we show that there exists a k := k(n) = ωn(1) for
which ΨA(k + 1) − ΨA(k − 1) ≥ 1/poly(n). We now show how to learn k-sparse parities
with noise rate ηb in polynomial time and afterward for any η ≤ ηb.

Suppose that the target function f ∈ Lin(k) can be accessed through random uniform
labeled examples in the presence of random classification noise with noise rate ηb. We first
show how to approximate ΨA(d(f(x) + xi)) for any i ∈ [n] without knowing f . Recall
that d(f(x) + xi) is the number of relevant variables in f(x) + xi. The key idea here
is that if (a, b) is a labeled example of f , then for a random uniform permutation ϕ,
((aϕ−1(1), . . . , aϕ−1(n)), b+ ai) is a labeled example of the function f(xϕ(1), . . . , xϕ(n)) + xϕ(i)
which is a random and uniform drawn function in Lin(d(f(x) + xi)). Therefore, using
Hoeffding’s Bound, we can approximate ΨA(d(f(x) + xi)) for every i ∈ [n].

Now, xi is relevant in f(x) if and only if f(x)+xi ∈ Lin(k−1) and then ΨA(d(f(x)+xi)) =
ΨA(k− 1). On the other hand, xi is not relevant in f(x) if and only if f(x) +xi ∈ Lin(k+ 1),
and then ΨA(d(f(x) + xi)) = ΨA(k + 1). Since ΨA(k + 1) − ΨA(k − 1) ≥ 1/poly(n), these
two cases are distinguishable in polynomial time. Consequently, we can differentiate between
variables in f that are relevant and those that are not. This gives the learning algorithm
to Lin(k) when the noise rate is ηb.

This algorithm runs in time T = poly(n, 1/(1 − 2ηb)). When η is not known, we can
run the above procedure for all possible values η(j) = 1/2 − j/T c, where c is a sufficiently
large constant, and j ∈ [T c/2] ∪ {1}. For each j, when the algorithm receives a labeled
example (u, v), we magnify the error rate to ηb by drawing ξ ∈ {0, 1}, which is equal to 1
with probability (ηb − η(j))/(1 − 2η(j)), and returning (u, v + ξ) to the algorithm. This new
labeled example has noise rate ηb. We collect all the T c/2 + 1 hypotheses generated from
the outputs and then employ a standard algorithm to select the one closest to the target [1].
The result follows because there exists a j such that8 |η(j) − η| ≤ 1/T c. Consequently, using
the total variation distance, one of the hypotheses is the target.

7 Here, + is exclusive or.
8 If ηj = η + ϵ then the magnified noise is ηb + λϵ where λ = (η + ηb − 1 + ϵ)/(1 − 2(η + ϵ)).

N. H. Bshouty and G. Haddad 38:5

In this paper, we extend our result to any linear function over any finite field F. The
approach used is similar to the case of parities (the binary field F = {0, 1}) with some
technical but nontrivial modifications.

1.2.2 The Second Approach
This second approach was suggested by an anonymous reviewer of RANDOM, whose insightful
comments and suggestions significantly improved this manuscript for the case of the binary
field. For non-binary fields, this approach can identify the relevant variables of the function.
We then use the approach developed in Lemma 9 and Lemma 10 to find the coefficients of
the relevant variables.

Suppose there exists a randomized algorithm A(n) that runs in time T (n) and γ-
approximates the number of relevant variables in a parity function f : {0, 1}n → {0, 1}, using
random uniform labeled examples of f in the presence of random classification noise with a
noise rate η ≤ ηb. Here, too, the algorithm needs to know an upper bound on η. We will
explain the reasons for this below.

Let k1 = ωn(1) be an integer such that k2 = γ(γ(k1) + 1) = n− ωn(1). For any k1-sparse
parity f , the algorithm outputs A(f) ∈ [γ−1(k1), γ(k1)], and for any k2-sparse parity function
g, it outputs A(g) ∈ [γ(k1) + 1, γ(γ(γ(k1) + 1))]. Since the two intervals are disjoint, the
algorithm can distinguish between k1-sparse parities and k2-sparse parities in polynomial
time. Let B be the polynomial-time algorithm that distinguishes between them.

Consider the algorithm B when it runs on random uniform examples with random uniform
labels. Suppose that with probability p, the algorithm answers that the function is a k1-sparse
parity, and with probability 1 − p, it answers that it is a k2-sparse parity. If p > 1/2, then
with probability at least 1/2, B can distinguish between k2-sparse parities and random
uniform examples with random uniform labels. Otherwise, with probability at least 1/2,
B can distinguish between k1-sparse parities and random uniform examples with random
uniform labels.

Suppose, without loss of generality, the latter holds. We now give an algorithm that finds
the relevant variables when the target function is a k1-parity function and, consequently,
learns k1-sparse parities. This algorithm is from [10].

For every i ∈ [n], we run the algorithm B and change the i-th coordinate of each example
to a random uniform element in {0, 1}. If xi is not a relevant variable of f , then the labeled
examples are labeled examples of f , and the algorithm answers that it is a k1-parity function.
If xi is a relevant variable of f , then it is easy to see that the new labeled examples are
random uniform with random uniform labels, and the algorithm answers accordingly. This
distinguishes between variables in f from those that are not in f .

In this method, too, we must know some upper bound on η. Otherwise, algorithms A
and B would need to be Las Vegas algorithms, and we would not know when to stop the
algorithm when dealing with random uniform examples with random uniform labels.

For the problem of finding the relevant variables of the target in other fields, the
generalization of this to any field is straightforward.

1.3 Approximation Implies Learning Parities
In this section, we show how γ-approximation implies proper learning parities.

Let γ(x) be any strictly increasing function. Suppose there exists a randomized algorithm
A(n) that runs in time T (n) and γ-approximates the number of relevant variables in a parity
f : {0, 1}n → {0, 1}, using random uniform labeled examples of f in the presence of random
classification noise.

APPROX/RANDOM 2024

38:6 Approximating the Number of Relevant Variables in a Parity Implies Proper Learning

Let Γ(x) = γ(γ(x)). As in Section 1.2.1, using a basic averaging argument, we show
that there exists a sequence of integers k1 < k2 < · · · < kt < Γ−1(n), where for each i,
ki+1 < Γ(ki) and ΨA(ki + 1) − ΨA(ki − 1) > 1/poly(n). As before, we obtain algorithms
that learn Lin(ki) for each i.

Now, we show how to obtain a learning algorithm for d-sparse parities for every d <

Γ−1(
√
n). Given any d < Γ−1(

√
n)), there exists a j such that kj−1 < d ≤ kj where k0 = 0.

To learn d-sparse parities, we uniformly at random choose distinct i1, . . . , ikj−d ∈ [n], run
the algorithm for learning kj-sparse parities and modify each labeled example (a, b) to
(a, b+ ai1 + · · · + aikj −d

). If g(x) = f(x) + xi1 + · · · + xikj −d
is in Lin(kj), then the algorithm

w.h.p learns g(x). We then show that because d < Γ−1(
√
n)), with high probability,

the variables xi1 , . . . , xikj −d
are not relevant variables in f . We can then conclude that,

w.h.p, g ∈ Lin(kj). Therefore, w.h.p., we can learn g(x), and consequently, we can learn
f(x) = g(x) + xi1 + · · · + xikj −d

.
This provides a learning algorithm for d-sparse parities for any d ≤ Γ−1(

√
n). Recognizing

that this applies to every n, we can regard f as a function over N := Γ(n)2 variables by
adding Γ(n)2 − n dummy variables and appending Γ(n)2 − n random uniform elements from
{0, 1} to each a in the labeled example (a, b). By applying this construction to the algorithm
A(N), we obtain a learning algorithm for d-sparse parity for any d ≤ Γ−1(

√
N) = n.

Now, the algorithm for learning parities can run all the learning algorithms for d-sparse
parities for all d ≤ n. It takes all the outputs and then employs a standard algorithm to
select the one closest to the target [1]. See also Lemma 3.

1.4 Justification for the Use of the γ-Approximation Definition
In our approach, we define a γ-approximation of the number of relevant variables d(f) in a
parity function f such that γ−1(d(f)) ≤ D ≤ γ(d(f)), instead of using the standard definition
d(f) ≤ D ≤ γ(d(f)).

The key reason for this choice is that the latter definition loses its effectiveness when
d(f) approaches n, the number of variables. Specifically, if d(f) is close to n, say O(n), the
condition d(f) ≤ D ≤ γ(d(f)), for γ(n) = ω(n), effectively reduces to d(f) ≤ D ≤ n. In
this scenario, the value of γ becomes less significant because the approximation D would
naturally fall within the trivial range of d(f) = O(n) to n.

On the other hand, our chosen definition γ−1(d(f)) ≤ D ≤ γ(d(f)) ensures that the
approximation D always depends on the function γ. This definition retains its utility even
when d(f) is large, as γ−1(d(f)) provides a lower bound that is influenced by γ, thereby
maintaining the approximation’s relevance and precision.

Thus, by using the γ-approximation definition γ−1(d(f)) ≤ D ≤ γ(d(f)), we ensure a
meaningful and consistent approximation of the number of relevant variables d(f) across the
entire range of possible values, preserving the value and impact of the function γ.

2 Definitions and Preliminaries

Let F be any finite field and Fq be the field with q elements. We define Lin(F) as the class of
all linear functions over the field F, i.e., functions a · x where a ∈ Fn and x = (x1, . . . , xn).
A d-sparse linear function over F is a function in Lin(F) with d relevant variables. The
class Lin(F, d) is the class of all d-sparse linear functions over F. When F is the binary
field F2 = {0, 1}, the functions in Lin(F2) are called parity functions, and the functions
in Lin(F2, d) are called d-sparse parities. We use the notation Linn(F) and Linn(F, d) to
emphasize the number of variables.

N. H. Bshouty and G. Haddad 38:7

For f ∈ Lin(F), we denote by d(f) the number of variables on which f depends. For a
strictly increasing function γ : R+ → R+ such that γ(x) > x for every x, we say that an
algorithm A γ-approximates d(f) in time T = T (n) and Q = Q(n) labeled examples if the
algorithm runs in time T , uses Q labeled examples to f , and with probability at least 2/3,
returns an integer D such that γ−1(d(f)) ≤ D ≤ γ(d(f)).

In proper learning Lin(F) under the uniform distribution, the learner can observe labeled
examples (a, b) where b = f(a) and a ∈ Fn are drawn independently and uniformly distributed
over Fn, with f ∈ Lin(F) being the target linear function. The goal is to (properly) exactly
return the linear function f . In the random classification noise model with noise rate η, each
label b is equal to f(a) with probability 1 − η and is a random uniform element in F\{f(a)}
with probability η.

When η = 1 − 1/|F|, the label is a random uniform element of F; hence, learning
is impossible. Therefore, we must assume that the learner knows some upper bound
ηb < 1 − 1/|F| for η [1]. When η = ηb, to distinguish between labeled examples with random
uniform labels and the function f(x) = 0, we need at least 1/(1−ηb −1/|F|) labeled examples.
Therefore, a polynomial-time algorithm in this model is an algorithm that runs in time
poly(1/(1 − ηb − 1/|F|)), n, 1/δ) [1].

The following Lemma shows how to learn when the algorithm has unlimited computational
power.

▶ Lemma 3. Let C ⊆ Lin(F). Then C is learnable under the uniform distribution in the
random classification noise model in time Õ(|C| log(1/δ)/(1 − ηb − 1/|F|)2) from

Q =
log |C|

δ

(1 − ηb − 1/|F|)2

labeled examples.

Proof. Let (a, b) be a labeled example and f be the target function. Then

Pr[f(a) = b] = ηPr[f(a) = b|b ̸= f(a)] + (1 − η) Pr[f(a) = b|b = f(a)] = 1 − η ≥ 1 − ηb.

If g ̸= f and g ∈ Lin(F) then

Pr[g(a) = b] = ηPr[g(a) = b|b ̸= f(a)] + (1 − η) Pr[g(a) = b|b = f(a)] = 1
|F|
.

The result now follows by applying Chernoff’s bound to estimate Pr[g(a) = b] for all g ∈ C

with confidence of 1 − δ/|C| and an additive error of (1 − ηb − 1/|F|)/4. ◀

The following lemma shows that, in approximation algorithms, the dependency on δ is
logarithmic. This is a well-known result. For completeness, a sketch of the proof is provided.

▶ Lemma 4. If there exists an algorithm A that runs in time T (n), uses Q(n) labeled
examples to f ∈ Lin(F, d) according to the uniform distribution in the presence of random
classification noise and, with probability at least 2/3, returns a γ-approximation of d(f),
then there is an algorithm that runs in time O(T (n) log(1/δ)), uses O(Q(n) log(1/δ)) labeled
examples to f ∈ Lin(F, d) according to the uniform distribution in the presence of random
classification noise, and with probability at least 1 − δ, returns a γ-approximation of d(f).

Proof. We run A, O(log(1/δ)) times and take the median of the outputs. The correctness of
this algorithm follows from an application of Chernoff’s bound. ◀

APPROX/RANDOM 2024

38:8 Approximating the Number of Relevant Variables in a Parity Implies Proper Learning

The same is true for learning.

▶ Lemma 5. If there exists an algorithm A that runs in time T (n), uses Q(n) labeled
examples to f ∈ Lin(F, d) according to the uniform distribution in the presence of random
classification noise and, with probability at least 2/3, properly learns the target f , then there
is an algorithm that runs in time O(T (n) log(1/δ)), uses O(Q(n) log(1/δ)) labeled examples
to f ∈ Lin(F, d) according to the uniform distribution in the presence of random classification
noise, and with probability at least 1 − δ, learns the target f .

Proof. Since A properly learns f , we run the algorithm O(log(1/δ)) times and output the
hypothesis that occurs most frequently in the output. ◀

3 Approximation vs. Learning

In this section, we prove the two results.

3.1 Approximation Implies Learning Some Lin(F, k)
In this section, we prove that approximating the number of relevant variables in the parity
function implies polynomial-time properly learning Lin(F, k(n)) for some k(n) = ωn(1).

We prove.

▶ Theorem 6. Let γ : R+ → R+ be any strictly increasing function where γ(x) > x for
every x. Let π(n) be any function such that π(n) = ωn(1). Consider any polynomial-time
algorithm A′(n) that, for any linear function f ∈ Lin(F), uses random uniform labeled
examples of f in the presence of random classification noise and, with probability at least 2/3,
returns a γ-approximation of the number of relevant variables d(f) of f . From A′(n), one
can, in polynomial time, construct a poly(n, 1/(1 − ηb − 1/|F|),min(|F|, 1/(1 − ηb)π(n)))-time
algorithm that properly learns Lin(F, k(n)) from a polynomial number of random uniform
labeled examples in the presence of random classification noise for some k(n) = ωn(1).

We will assume for now that the noise rate η = ηb is known. In Section 1.2.1, we showed
how to handle unknown noise rates η ≤ ηb. Recall that a polynomial-time algorithm in this
model is an algorithm that runs in time poly(1/(1 − ηb − 1/|F|)), n, 1/δ), [1]. In particular,
the algorithm constructed in Theorem 6 runs in polynomial time for either

Any ηb and fields of size9 |F| = poly(n), or
Any field F when ηb ≤ 1 − 1/|F| − 1/ψ(n), where ψ(n) = 2o(log(n)).

Let A′(n, s, f) be any algorithm that uses random uniform labeled examples of f ∈ Linn(F)
in the presence of random classification noise and, with probability at least 2/3, returns a
γ-approximation of the number of relevant variables, d(f), of f . The new parameter s is
added for the random bits used in the algorithm for its coin flips and the noise. First, we will
use Lemma 4 to make the algorithm’s success probability 1 − δ′ for a fixed, sufficient small
δ′ that depends on n and |F|. For the proof of the Theorem in this section, δ′ = 1/(|F|n7)
suffices. By Lemma 4, this adds a factor of O(log n+ log |F|) to the time and the number of
labeled examples which will be swallowed by the Õ(·) in the final time and sample complexity.
Second, we will modify the output of the algorithm to min(γ(Df), n), where Df is the
output of the latter algorithm. Let the resulting algorithm be denoted as A. We will denote
the algorithm’s output by A(n, s, f). Consequently, we will have that, with probability at
least 1 − δ′,

d(f) ≤ A(n, s, f) ≤ ∆(d(f)) ≤ n (1)

9 This makes sense when we have a sequence of fields Fi such that Fi ⊆ Fi+1 and |Fn| = poly(n).

N. H. Bshouty and G. Haddad 38:9

where

∆(x) = min(γ(γ(x)), n).

Let Sf be the set of all random strings s′ for which d(f) ≤ A(n, s′, f) ≤ ∆(d(f)); that is,
it includes all the random strings that yield correct answers. Throughout this section and
the next, we say that A ∆-approximates d(f). See (1). This should not be confused with
the previous definition of γ-approximates d(f). Here, we use the capital letter ∆ to prevent
any ambiguity.

Let

ΨA(d) = E
(f,s)∼uLin(F,d)×S(f)

[A(n, s, f)]

where ∼u indicates that f is chosen uniformly at random from Lin(F, d) and s uniformly at
random from S(f). Since d ≤ A(n, s, f) ≤ ∆(d) ≤ n for s ∈ S(f) where f ∈ Lin(F, d), we
have

d ≤ ΨA(d) ≤ ∆(d) ≤ n. (2)

We note here that ΨA(d) is independent of δ, as in A, we set δ = δ′ for a fixed δ′. This is
crucial for ensuring the correctness of the proof. Also, ΨA(d) depends on n. This will be
essential only for the next result in the next section.

We first prove that the values of ΨA(d) for d ∈ [n] can be approximated with high
probability.

▶ Lemma 7. Let 0 < h < 1. Let A be an algorithm that runs in time T (n), uses Q(n)
labeled examples of f ∈ Lin(F) according to the uniform distribution in the presence of
random classification noise, and, with probability at least 1 − δ′, ∆-approximates d(f). A
table of real values Ψ′

A(d) for 1 ≤ d ≤ n can be constructed in time Õ(n3/h2)T (n) log(1/δ),
and without using any labeled examples. This table, with probability at least 1 − δ, satisfies
|Ψ′

A(d) − ΨA(d)| ≤ h for all d ∈ [n].

Proof. Define a random variable as the output D of the algorithm A, obtained from running
it on a uniformly random f from Lin(F, d), provided that the output lies within the interval
[d,∆(d)]. The labeled examples of f can be generated by choosing a random uniform
u ∈ {0, 1}n and returning (u, f(u) + e) to A where, with probability 1 − ηb, e = 0 and, with
probability ηb, e is random uniform in F\{0}. Obviously, E[D] = ΨA(d).

By Hoeffding’s bound, to compute E[D] with an additive error h and a confidence
probability of at least 1 − δ/(2n), we need to obtain t = O((n2/h2) log(n/δ)) values of D.
Since the success probability of obtaining a value of D in the interval [d,∆(d)] is 1 − δ′ > 2/3,
we need to run the algorithm O(t + log(2n/δ)) times to acquire t values with a success
probability at least 1 − δ/(2n). Therefore, the time complexity is O((t+ log(2n/δ))nT (n)) =
O(tnT (n)) = Õ(n3/h2)T (n) log(1/δ). ◀

Our next result shows how to estimate ΨA(d(f)) of the target f without knowing d(f).

▶ Lemma 8. Let 0 < h < 1 and τ = O((n2/h2) log(1/δ)). Let A be an algorithm that
runs in time T (n), uses Q(n) labeled examples of f ∈ Lin(F) according to the uniform
distribution, in the presence of random classification noise, and, with probability at least
1 − δ′, ∆-approximates d(f). There is an algorithm B(n, h) that runs in time T ′ = τT (n),
uses Q′ = τQ(n) labeled examples of f ∈ Lin(F) according to the uniform distribution in the
presence of random classification noise and, with probability at least 1 − δ/2 − τδ′, returns ψ
that satisfies |ψ − ΨA(d(f))| ≤ h.

APPROX/RANDOM 2024

38:10 Approximating the Number of Relevant Variables in a Parity Implies Proper Learning

Proof. Suppose v ∈ (F\{0})n is chosen uniformly at random and ϕ : [n] → [n] is a uniformly
random permutation. If we run A with the target f = λ1xi1 + · · · + λdxid

, and for every
labeled example (a, b) ∈ Fn × F, we modify the labeled example to ((v−1

1 aϕ−1(1), . . . , v
−1
n

aϕ−1(n)), b), then the new labeled examples remain uniform and consistent with the function
g(x) = λ1vϕ(i1)xϕ(i1) + · · · + λdvϕ(id)xϕ(id). This function g is a uniformly random element
of Lin(F, d). Using this fact, we show how to approximate ΨA(d).

To this end, let τ = O((n2/h2) log(1/δ)). We iterate τ times, and at each iteration, we
choose a random uniform v ∈ (F\{0})n and random uniform permutation ϕ : [n] → [n].
We request for Q(n) labeled examples and modify each labeled example (a, b) ∈ Fn × F to
((v−1

1 aϕ−1(1), . . . , v
−1
n aϕ−1(n)), b). We then run A on these labeled examples. Let Di be the

output of the i-th iteration. We then output ψ′ = (
∑τ

i=1 Di) /τ.
We now prove that, with probability at least 1 − δ/2 − τδ′, we have |ψ′ − ΨA(d(f))| ≤ h.

Since A(n) runs τ times, with probability at least 1 − τδ′, all the seeds used by A are in S(f)
and d(f) ≤ Di ≤ ∆(d(f)). Also, since A(n) runs on a uniformly random function in Lin(F, d),
we have E[Di] = ΨA(d). By Hoeffding’s bound, along with the fact that Di ≤ ∆(d(f)) ≤ n,
we can conclude that, with probability at least 1 − δ/2, we have |ψ′ − ΨA(d(f))| ≤ h. ◀

Notice that in Lemma 8, τ also depends on h. As h eventually will be O(1/n) and δ′ =
1/(|F|n7), the success probability 1 − δ/2 − τδ′ will be 1 − on(1) for δ = 1/n.

We now show that in any large enough sub-interval of [0, n], there is k for which A can
be used to learn Lin(F, k).

▶ Lemma 9. Let A(n) be an algorithm that runs in time T (n), uses Q(n) labeled examples
of f ∈ Lin(F) according to the uniform distribution in the presence of random classification
noise, and, with probability at least 1 − δ′, ∆-approximates d(f). For every 1 ≤ m ≤
min{j|∆(j) = n} = γ−1(γ−1(n)) there exists m ≤ k ≤ ∆(m) + 1 and
1. An algorithm that, for every f ∈ Lin(F, k), with probability at least 1 − δ/8 − 2τnδ′, where

τ = O(n4 log(1/δ)), identifies the relevant variables of f from random uniform labeled
examples in the presence of random classification noise. This algorithm runs in time
Õ(n5)T (n) log(1/δ) and uses Õ(n4)Q(n) log(1/δ) labeled examples.

2. An algorithm that, with probability at least 1 − δ/2 − |F|knδ′, properly learns Lin(F, k),
from random uniform labeled examples in the presence of random classification noise.
This algorithm runs in time Õ(|F|kn5)T (n) log(1/δ) and uses Õ(n4)Q(n) log(|F|/δ) labeled
examples.

Such k can be found in time Õ(n5)T (n) log(1/δ).

Proof. We first prove the result when the field is not the binary field. Let m be any integer
such that 1 ≤ m ≤ min{j|∆(j) = n}. Since by (2),

∆(m)∑
i=m

ΨA(i+ 1) − ΨA(i) = ΨA (∆(m) + 1) − ΨA (m)

≥ ∆(m) + 1 − ∆(m) = 1,

there is k such that m ≤ k ≤ ∆(m) and

ΨA(k + 1) − ΨA(k) ≥ 1
∆(m) −m+ 1 ≥ 1

n
.

First, we find such k. By Lemma 7, taking h = 1/(16n), with probability at least 1 − δ/4,
we can find k such that ΨA(k + 1) − ΨA(k) ≥ 7/(8n) in time Õ(n5)T (n) log(1/δ).

N. H. Bshouty and G. Haddad 38:11

We now present an algorithm that learns Lin(F, k). The algorithm uses the algorithm
in Lemma 8 to approximate ΨA(d(f + xi)) and ΨA(d(f + αxi)) for some α ∈ F\{0, 1} and
all i ∈ [n] with an additive error of 1/(8n). If xi is not a relevant variable of the target
function f , then both f + xi and f + αxi are in Lin(F, k + 1). Consequently, we obtain
two values in the inteval [ΨA(k + 1) − 1/(8n),ΨA(k + 1) + 1/(8n)]. If xi is a relevant
variable in the function, then one of the functions, either f + xi or f + αxi is in Lin(F, k),
and therefore, one of the values is in the inteval [ΨA(k) − 1/(8n),ΨA(k) + 1/(8n)]. Since
ΨA(k) + 1/(8n) < ΨA(k+ 1) − 1/(8n), the intervals are disjoint, and thus we can distinguish
between the two cases.

By Lemma 8, with probability 1 − δ/2 − τδ′, we can approximate each ΨA(d(f + xi))
(or ΨA(d(f + αxi))) with an additive error h = 1/(8n) in time τT (n) and τQ(n) labeled
examples, where τ = O(n4 log(1/δ)). Taking δ/(8n) for δ, with probability 1 − δ/8 − 2τnδ′,
we can approximate all ΨA(d(f + xi)) and ΨA(d(f + αxi)), i ∈ [n] with an additive error
h = 1/(8n) in time τ ′nT (n) and τ ′Q(n) labeled examples where τ ′ = O(n4 log(n/δ)). This
completes the proof of item 1 for the case where the field is not the binary field.

To prove item 2, suppose, without loss of generality, that x1, . . . , xk are the relevant
variables in f . We approximate ψα,i := ΨA(d(f − αxi + xk+1)) for all α ∈ F and for
every i ∈ [n]. The result follows from the fact that ψα,i = ΨA(k) if and only if the
coefficient of xi is α. Otherwise, ψα,i = ΨA(k + 1). By Lemma 8, to approximate all ψα,i,
with success probability of 1 − δ/4 − |F|knδ′, we need time O(|F|kn5T (n) log(|F|n/δ)) and
O(n4T (n) log(|F|n/δ)) labeled examples. This completes the proof of item 2 for the case
where the field is not the binary field.

Similar to the approach described above, for the binary field, we can show that there
exists a k such that ΨA(k + 1) − ΨA(k − 1) ≥ 1/n. Then, use the algorithm described in
Lemma 8 to approximate ΨA(d(f + xi)) for all i ∈ [n]. If xi is not a relevant variable of the
target function f , then ΨA(d(f + xi)) ∈ [ΨA(k + 1) − 1/(8n),ΨA(k + 1) + 1/(8n)]. If xi is a
relevant variable in f , then ΨA(d(f + xi)) ∈ [ΨA(k− 1) − 1/(8n),ΨA(k− 1) + 1/(8n)]. Since
both intervals are disjoint, we obtain the desired result.10 ◀

Notice that in item 2, the success probability 1 − δ/2 − |F|knδ′, and the time complexity
depends on |F|. We now present an alternative algorithm for finding the coefficients of the
linear function, given that the algorithm knows the relevant variables.

▶ Lemma 10. Let A be an algorithm that, for every f ∈ Lin(F, k), runs in time T , uses Q
random uniform labeled examples in the presence of random classification noise, and identifies
the relevant variables of f . Then there is an algorithm that properly learns Lin(F, k) in time
T +Õ((n3/(1−ηb)k +n/(1−ηb −1/|F|)2) log(1/δ)) and uses Q+O(((1/(1−ηb)k +n/(1−ηb −
1/|F|)2) log(1/δ)) random uniform labeled examples in the presence of random classification
noise.

Proof. We run A to find the relevant variables. The algorithm that finds the coefficients
iterates O((1/(1 − ηb)k) log(1/δ)) times. At each iteration, it requests k labeled examples
and uses Gaussian elimination to find the coefficients. Then, it tests whether the output
function matches the target. If not, it proceeds to the next iteration.

10 Another approach is to utilize the fact that ΨA(k) − ΨA(k − 1) ≥ 1/n, and for every i, approximate
ΨA(gi), where gi = f(x1, . . . , xi−1, 0, xi+1, . . . , xn), using all labeled examples (a, b) that satisfy ai = 0.

APPROX/RANDOM 2024

38:12 Approximating the Number of Relevant Variables in a Parity Implies Proper Learning

Since η = ηb, the probability that all the labeled examples are correct is (1 − ηb)k. If
|F| = q, the probability that k random entries in the examples form a non-singular matrix is(

1 − 1
qk

) (
1 − 1

qk−1

)
· · ·

(
1 − 1

q

)
≥ 1

4 .

Therefore, after t = O((1/(1 − ηb)k) log(1/δ)) iterations, with probability at least 1 − δ/3, at
least one of the outputs is the target. By Lemma 3, learning the target from a set of t linear
functions with a success probability of 1 − δ/3 requires Õ((1/(1 − ηb − 1/q)2)(k + log(1/δ))
labeled examples. ◀

We are now ready to prove Theorem 6.

Proof. Let A′ be an algorithm that runs in polynomial time, uses labeled examples according
to the uniform distribution in the presence of random classification noise, and outputs
γ−1(d(f)) ≤ D ≤ γ(d(f)). Modify the algorithm to output min(γ(D), n). The algorithm now
is a ∆-approximation algorithm, where ∆(x) = min(γ(γ(x)), n). Let m(n) = γ−1(γ−1(π(n))).
Since γ : R+ → R+ is strictly increasing and is defined for all R+, we have γ−1 : R+ → R+,
is also strictly increasing, and m(n) = ωn(1). Let δ′ = 1/(|F|n7) and δ = 1/n. By Lemma 9,
item 1, there exists m(n) ≤ k(n) ≤ ∆(m(n)) = π(n), and an algorithm that, for every
f ∈ Lin(F, k(n)), with probability at least 1 − on(1) > 2/3, identifies the relevant variables
of f from random uniform labeled examples in the presence of random classification noise.
Also, this algorithm runs in polynomial time. Since k(n) ≤ π(n), by Lemma 10 and item 2
in Lemma 9, there is a poly(n, 1/(1 − ηb − 1/|F|),min(|F|, 1/(1 − ηb)π(n))) time learning
algorithm for Lin(F, k). Since k(n) ≥ m(n) = ωn(1), the result follows. ◀

3.2 Approximation Implies Learning Lin(F)

In this section, we prove.

▶ Theorem 11. Let γ : R+ → R+ be any strictly increasing function, where γ(x) > x for
every x. Let Γ(x) := γ(γ(x)). Consider any T (n)-time algorithm A′(n) that, for any linear
function f ∈ Lin(F), uses Q(n) random uniform labeled examples of f in the presence of
random classification noise and, with probability at least 2/3, returns a γ-approximation
of the number of relevant variables d(f) of f . From A′(n), one can, in polynomial time,
construct a Õ(|F|Γ(n)12)T (O(Γ(n)2)) log(1/δ)-time algorithm that properly learns Lin(F)
from Õ(Γ(n)8)Q(O(Γ(n)2)) log(|F|/δ) random uniform labeled examples in the presence of
random classification noise.

We first show that for every d satisfying 12Γ(d)2 ≤ n, there exists a learning algorithm
for Lin(F, d).

▶ Lemma 12. Suppose that for every 1 ≤ m ≤ m′ := Γ−1(n), there exists a k such that
m ≤ k ≤ Γ(m), and an algorithm that runs in time T (n) and, with probability at least
2/3, properly learns f ∈ Lin(F, k) under the uniform distribution in the presence of random
classification noise, and uses Q(n) labeled examples. Then, for every d such that 12Γ(d)2 ≤ n,
there is an algorithm that runs in time O(T (n) log(1/δ)) and properly learns Lin(F, d) under
the uniform distribution in the presence of random classification noise, using O(Q(n) log(1/δ))
labeled examples.

N. H. Bshouty and G. Haddad 38:13

Proof. Let d be an integer such that 12Γ(d)2 < n. Since Γ(d) < n, we have d ≤ m′.
Consequently, there exists k such that d ≤ k ≤ Γ(d) ≤ Γ(m′) = n, along with a proper
learning algorithm B(n, k) for Lin(F, k), that runs in time T (n) and uses Q(n) labeled
examples.

We now present an algorithm for learning Lin(F, d). We uniformly at random draw k − d

variables xi1 , . . . , xik−d
and run the algorithm B(n, k). For each labeled example (a, b) of f ,

we feed B with the labeled example (a, b+ ai1 + · · · + aik−d
). This modified labeled example

serves as a labeled example for the function g = f + xi1 + · · · + xik−d
. The probability that

g ∈ Lin(F, k) is the probability that none of the variables xi1 , . . . , xik−d
are relevant in f .

This probability is given by

k∏
i=d

(
1 − i

n

)
≥ 1 − k2

n
≥ 1 − Γ(d)2

n
≥ 11

12 .

Therefore, with probability at least 1 − (1/3 + 1/12) > 1/2, algorithm B(n, k) learns g
and thus learns f . By Lemma 5, the result follows. ◀

We now show how to construct a learning algorithm for Lin(F, d) for every d ≤ n.

▶ Lemma 13. Suppose that for every n and every d that satisfies 12Γ(d)2 ≤ n, there is an
algorithm A(n) that runs in time T (n) and, with probability at least 2/3, properly learns
f ∈ Lin(F, d) under the uniform distribution in the presence of random classification noise,
using Q(n) labeled examples. Let N(n) = 12Γ(n)2. Then, for every n and every d ≤ n, there
is an algorithm that runs in time T (N(n)) and, with probability at least 2/3, properly learns
f ∈ Lin(F, d) under the uniform distribution in the presence of random classification noise,
using Q(N(n)) labeled examples.

Proof. Let N = N(n). Then for every d ≤ n, we have 12Γ(d)2 ≤ 12Γ(n)2 = N(n). We
run A(N). Whenever the algorithm requests a labeled example, we draw a labeled example
(a, b) ∈ Fn × F, append N − n random uniform entries to a, creating a′. We then provide
(a′, b) to A(N). The algorithm is effective for any d that satisfies 12Γ(d)2 ≤ N = 12Γ(n)2

and, thereby, covers all d ≤ n. ◀

Theorem 11 now follows from Lemma 9, 12 and 13.

References
1 Dana Angluin and Philip D. Laird. Learning from noisy examples. Mach. Learn., 2(4):343–370,

1987. doi:10.1007/BF00116829.
2 Per Austrin and Subhash Khot. A simple deterministic reduction for the gap minimum distance

of code problem. IEEE Trans. Inf. Theory, 60(10):6636–6645, 2014. doi:10.1109/TIT.2014.
2340869.

3 Arnab Bhattacharyya, Édouard Bonnet, László Egri, Suprovat Ghoshal, Karthik C. S., Bingkai
Lin, Pasin Manurangsi, and Dániel Marx. Parameterized intractability of even set and shortest
vector problem. J. ACM, 68(3):16:1–16:40, 2021. doi:10.1145/3444942.

4 Arnab Bhattacharyya, Ameet Gadekar, Suprovat Ghoshal, and Rishi Saket. On the hardness
of learning sparse parities. In Piotr Sankowski and Christos D. Zaroliagis, editors, 24th Annual
European Symposium on Algorithms, ESA 2016, August 22-24, 2016, Aarhus, Denmark,
volume 57 of LIPIcs, pages 11:1–11:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2016. doi:10.4230/LIPICS.ESA.2016.11.

5 Arnab Bhattacharyya, Ameet Gadekar, and Ninad Rajgopal. On learning k-parities with and
without noise. CoRR, abs/1502.05375, 2015. arXiv:1502.05375.

APPROX/RANDOM 2024

https://doi.org/10.1007/BF00116829
https://doi.org/10.1109/TIT.2014.2340869
https://doi.org/10.1109/TIT.2014.2340869
https://doi.org/10.1145/3444942
https://doi.org/10.4230/LIPICS.ESA.2016.11
https://arxiv.org/abs/1502.05375

38:14 Approximating the Number of Relevant Variables in a Parity Implies Proper Learning

6 Arnab Bhattacharyya, Ameet Gadekar, and Ninad Rajgopal. Improved learning of k-parities.
Theor. Comput. Sci., 840:249–256, 2020. doi:10.1016/J.TCS.2020.08.025.

7 Arnab Bhattacharyya, Piotr Indyk, David P. Woodruff, and Ning Xie. The complexity of linear
dependence problems in vector spaces. In Bernard Chazelle, editor, Innovations in Computer
Science - ICS 2011, Tsinghua University, Beijing, China, January 7-9, 2011. Proceedings,
pages 496–508. Tsinghua University Press, 2011. URL: http://conference.iiis.tsinghua.
edu.cn/ICS2011/content/papers/33.html.

8 Avrim Blum. On-line algorithms in machine learning. In Amos Fiat and Gerhard J. Woeginger,
editors, Online Algorithms, The State of the Art (the book grow out of a Dagstuhl Seminar,
June 1996), volume 1442 of Lecture Notes in Computer Science, pages 306–325. Springer, 1996.
doi:10.1007/BFB0029575.

9 Avrim Blum, Merrick L. Furst, Jeffrey C. Jackson, Michael J. Kearns, Yishay Mansour,
and Steven Rudich. Weakly learning DNF and characterizing statistical query learning
using fourier analysis. In Proceedings of the Twenty-Sixth Annual ACM Symposium on
Theory of Computing, 23-25 May 1994, Montréal, Québec, Canada, pages 253–262, 1994.
doi:10.1145/195058.195147.

10 Avrim Blum, Merrick L. Furst, Michael J. Kearns, and Richard J. Lipton. Cryptographic
primitives based on hard learning problems. In Douglas R. Stinson, editor, Advances in
Cryptology - CRYPTO ’93, 13th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 22-26, 1993, Proceedings, volume 773 of Lecture Notes in Computer
Science, pages 278–291. Springer, 1993. doi:10.1007/3-540-48329-2_24.

11 Avrim Blum, Lisa Hellerstein, and Nick Littlestone. Learning in the presence of finitely
or infinitely many irrelevant attributes. J. Comput. Syst. Sci., 50(1):32–40, 1995. doi:
10.1006/JCSS.1995.1004.

12 Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity problem,
and the statistical query model. J. ACM, 50(4):506–519, 2003. doi:10.1145/792538.792543.

13 Nader H. Bshouty. Exact learning from an honest teacher that answers membership queries.
Theor. Comput. Sci., 733:4–43, 2018. doi:10.1016/J.TCS.2018.04.034.

14 Nader H. Bshouty and Lisa Hellerstein. Attribute-efficient learning in query and mistake-bound
models. J. Comput. Syst. Sci., 56(3):310–319, 1998. doi:10.1006/JCSS.1998.1571.

15 Harry Buhrman, David García-Soriano, and Arie Matsliah. Learning parities in the mistake-
bound model. Inf. Process. Lett., 111(1):16–21, 2010. doi:10.1016/J.IPL.2010.10.009.

16 Qi Cheng and Daqing Wan. Complexity of decoding positive-rate primitive reed-solomon
codes. IEEE Trans. Inf. Theory, 56(10):5217–5222, 2010. doi:10.1109/TIT.2010.2060234.

17 Qi Cheng and Daqing Wan. A deterministic reduction for the gap minimum distance problem.
IEEE Trans. Inf. Theory, 58(11):6935–6941, 2012. doi:10.1109/TIT.2012.2209198.

18 Rodney G. Downey, Michael R. Fellows, Alexander Vardy, and Geoff Whittle. The parametrized
complexity of some fundamental problems in coding theory. SIAM J. Comput., 29(2):545–570,
1999. doi:10.1137/S0097539797323571.

19 Ilya Dumer, Daniele Micciancio, and Madhu Sudan. Hardness of approximating the minimum
distance of a linear code. IEEE Trans. Inf. Theory, 49(1):22–37, 2003. doi:10.1109/TIT.
2002.806118.

20 Vitaly Feldman. Attribute-efficient and non-adaptive learning of parities and DNF expressions.
J. Mach. Learn. Res., 8:1431–1460, 2007. doi:10.5555/1314498.1314547.

21 Vitaly Feldman, Parikshit Gopalan, Subhash Khot, and Ashok Kumar Ponnuswami. On
agnostic learning of parities, monomials, and halfspaces. SIAM J. Comput., 39(2):606–645,
2009. doi:10.1137/070684914.

22 Elena Grigorescu, Lev Reyzin, and Santosh S. Vempala. On noise-tolerant learning of sparse
parities and related problems. In Jyrki Kivinen, Csaba Szepesvári, Esko Ukkonen, and Thomas
Zeugmann, editors, Algorithmic Learning Theory - 22nd International Conference, ALT 2011,
Espoo, Finland, October 5-7, 2011. Proceedings, volume 6925 of Lecture Notes in Computer
Science, pages 413–424. Springer, 2011. doi:10.1007/978-3-642-24412-4_32.

https://doi.org/10.1016/J.TCS.2020.08.025
http://conference.iiis.tsinghua.edu.cn/ICS2011/content/papers/33.html
http://conference.iiis.tsinghua.edu.cn/ICS2011/content/papers/33.html
https://doi.org/10.1007/BFB0029575
https://doi.org/10.1145/195058.195147
https://doi.org/10.1007/3-540-48329-2_24
https://doi.org/10.1006/JCSS.1995.1004
https://doi.org/10.1006/JCSS.1995.1004
https://doi.org/10.1145/792538.792543
https://doi.org/10.1016/J.TCS.2018.04.034
https://doi.org/10.1006/JCSS.1998.1571
https://doi.org/10.1016/J.IPL.2010.10.009
https://doi.org/10.1109/TIT.2010.2060234
https://doi.org/10.1109/TIT.2012.2209198
https://doi.org/10.1137/S0097539797323571
https://doi.org/10.1109/TIT.2002.806118
https://doi.org/10.1109/TIT.2002.806118
https://doi.org/10.5555/1314498.1314547
https://doi.org/10.1137/070684914
https://doi.org/10.1007/978-3-642-24412-4_32

N. H. Bshouty and G. Haddad 38:15

23 David Guijarro, Víctor Lavín, and Vijay Raghavan. Exact learning when irrelevant variables
abound. Inf. Process. Lett., 70(5):233–239, 1999. doi:10.1016/S0020-0190(99)00063-0.

24 David Guijarro, Jun Tarui, and Tatsuie Tsukiji. Finding relevant variables in PAC model
with membership queries. In Osamu Watanabe and Takashi Yokomori, editors, Algorithmic
Learning Theory, 10th International Conference, ALT ’99, Tokyo, Japan, December 6-8, 1999,
Proceedings, volume 1720 of Lecture Notes in Computer Science, page 313. Springer, 1999.
doi:10.1007/3-540-46769-6_26.

25 Thomas Hofmeister. An application of codes to attribute-efficient learning. In Paul Fischer and
Hans Ulrich Simon, editors, Computational Learning Theory, 4th European Conference, Euro-
COLT ’99, Nordkirchen, Germany, March 29-31, 1999, Proceedings, volume 1572 of Lecture
Notes in Computer Science, pages 101–110. Springer, 1999. doi:10.1007/3-540-49097-3_9.

26 Adam Tauman Kalai, Yishay Mansour, and Elad Verbin. On agnostic boosting and parity
learning. In Cynthia Dwork, editor, Proceedings of the 40th Annual ACM Symposium on
Theory of Computing, Victoria, British Columbia, Canada, May 17-20, 2008, pages 629–638.
ACM, 2008. doi:10.1145/1374376.1374466.

27 Michael J. Kearns. Efficient noise-tolerant learning from statistical queries. J. ACM, 45(6):983–
1006, 1998. doi:10.1145/293347.293351.

28 Adam R. Klivans and Rocco A. Servedio. Toward attribute efficient learning of decision lists
and parities. In John Shawe-Taylor and Yoram Singer, editors, Learning Theory, 17th Annual
Conference on Learning Theory, COLT 2004, Banff, Canada, July 1-4, 2004, Proceedings,
volume 3120 of Lecture Notes in Computer Science, pages 224–238. Springer, 2004. doi:
10.1007/978-3-540-27819-1_16.

29 Vadim Lyubashevsky. The parity problem in the presence of noise, decoding random linear
codes, and the subset sum problem. In Approximation, Randomization and Combinatorial
Optimization, Algorithms and Techniques, 8th International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems, APPROX 2005 and 9th International-
Workshop on Randomization and Computation, RANDOM 2005, Berkeley, CA, USA, August
22-24, 2005, Proceedings, pages 378–389, 2005. doi:10.1007/11538462_32.

30 Daniele Micciancio. Locally dense codes. In IEEE 29th Conference on Computational
Complexity, CCC 2014, Vancouver, BC, Canada, June 11-13, 2014, pages 90–97. IEEE
Computer Society, 2014. doi:10.1109/CCC.2014.17.

31 Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. CoRR,
abs/2401.03703, 2024. doi:10.48550/arXiv.2401.03703.

32 Ryuhei Uehara, Kensei Tsuchida, and Ingo Wegener. Optimal attribute-efficient learning
of disjunction, parity and threshold functions. In Shai Ben-David, editor, Computational
Learning Theory, Third European Conference, EuroCOLT ’97, Jerusalem, Israel, March 17-19,
1997, Proceedings, volume 1208 of Lecture Notes in Computer Science, pages 171–184. Springer,
1997. doi:10.1007/3-540-62685-9_15.

33 Gregory Valiant. Finding correlations in subquadratic time, with applications to learning
parities and the closest pair problem. J. ACM, 62(2):13:1–13:45, 2015. doi:10.1145/2728167.

34 Leslie G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, 1984.
doi:10.1145/1968.1972.

35 Alexander Vardy. The intractability of computing the minimum distance of a code. IEEE
Trans. Inf. Theory, 43(6):1757–1766, 1997. doi:10.1109/18.641542.

36 Di Yan, Yu Yu, Hanlin Liu, Shuoyao Zhao, and Jiang Zhang. An improved algorithm for
learning sparse parities in the presence of noise. Theor. Comput. Sci., 873:76–86, 2021.
doi:10.1016/J.TCS.2021.04.026.

APPROX/RANDOM 2024

https://doi.org/10.1016/S0020-0190(99)00063-0
https://doi.org/10.1007/3-540-46769-6_26
https://doi.org/10.1007/3-540-49097-3_9
https://doi.org/10.1145/1374376.1374466
https://doi.org/10.1145/293347.293351
https://doi.org/10.1007/978-3-540-27819-1_16
https://doi.org/10.1007/978-3-540-27819-1_16
https://doi.org/10.1007/11538462_32
https://doi.org/10.1109/CCC.2014.17
https://doi.org/10.48550/arXiv.2401.03703
https://doi.org/10.1007/3-540-62685-9_15
https://doi.org/10.1145/2728167
https://doi.org/10.1145/1968.1972
https://doi.org/10.1109/18.641542
https://doi.org/10.1016/J.TCS.2021.04.026

The Number of Random 2-SAT Solutions Is
Asymptotically Log-Normal
Arnab Chatterjee # Ñ

Department of Computer Science, TU Dortmund, Germany

Amin Coja-Oghlan # Ñ

Department of Computer Science, TU Dortmund, Germany

Noela Müller # Ñ

Department of Mathematics and Computer Science, Eindhoven University of Technology,
Netherlands

Connor Riddlesden # Ñ

Department of Mathematics and Computer Science, Eindhoven University of Technology,
Netherlands

Maurice Rolvien # Ñ

Department of Computer Science, TU Dortmund, Germany

Pavel Zakharov # Ñ

Department of Computer Science, TU Dortmund, Germany

Haodong Zhu # Ñ

Department of Mathematics and Computer Science, Eindhoven University of Technology,
Netherlands

Abstract

We prove that throughout the satisfiable phase, the logarithm of the number of satisfying assignments
of a random 2-SAT formula satisfies a central limit theorem. This implies that the log of the number
of satisfying assignments exhibits fluctuations of order

√
n, with n the number of variables. The

formula for the variance can be evaluated effectively. By contrast, for numerous other random
constraint satisfaction problems the typical fluctuations of the logarithm of the number of solutions
are bounded throughout all or most of the satisfiable regime.

2012 ACM Subject Classification Theory of computation → Randomness, geometry and discrete
structures

Keywords and phrases satisfiability problem, 2-SAT, random satisfiability, central limit theorem

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.39

Category RANDOM

Related Version Full Version: https://arxiv.org/abs/2405.03302

Funding Amin Coja-Oghlan: DFG CO 646/3, DFG CO 646/5 and DFG CO 646/6.
Noela Müller : NWO Gravitation grant NETWORKS-024.002.003.
Pavel Zakharov: DFG CO 646/6
Haodong Zhu: European Union’s Horizon 2020 research and innovation programme under the
Marie Skłodowska-Curie grant agreement no. 945045 and NWO Gravitation project NETWORKS-
024.002.003

© Arnab Chatterjee, Amin Coja-Oghlan, Noela Müller, Connor Riddlesden, Maurice Rolvien, Pavel
Zakharov, and Haodong Zhu;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 39; pp. 39:1–39:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arnab.chatterjee@tu-dortmund.de
https://eac.cs.tu-dortmund.de/
mailto:amin.coja-oghlan@tu-dortmund.de
https://eac.cs.tu-dortmund.de/
mailto:n.s.muller@tue.nl
https://research.tue.nl/en/persons/noela-m�ller
mailto:c.d.riddlesden@tue.nl
https://research.tue.nl/en/persons/connor-riddlesden
mailto:maurice.rolvien@tu-dortmund.de
https://eac.cs.tu-dortmund.de/
mailto:pavel.zakharov@tu-dortmund.de
https://eac.cs.tu-dortmund.de/
mailto:h.zhu1@tue.nl
https://research.tue.nl/en/persons/haodong-zhu
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.39
https://arxiv.org/abs/2405.03302
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 The Number of Random 2-SAT Solutions Is Asymptotically Log-Normal

1 Introduction

1.1 Background and motivation

The quest for satisfiability thresholds has been a guiding theme of research into random
constraint satisfaction problems [7, 17, 24]. But once the satisfiability threshold has been
pinpointed a question of no less consequence is to determine the distribution of the number
of satisfying assignments within the satisfiable phase [33]. Indeed, the number of solutions is
intimately tied to phase transitions that affect the geometry of the solution space, which in
turn impacts the computational nature of finding or sampling solutions [4, 15, 28]. However,
few tools are currently available to count solutions of random problems. Where precise
rigorous results exist (such as in random NAESAT or XORSAT), the proofs typically rely on
the method of moments (e.g., [6, 26, 40, 41]). Yet a necessary condition for the success of
this approach is that the problem in question exhibits certain symmetries, which are absent
in many interesting cases [7, 20].

The aim of the present paper is to shed a closer light on the number of satisfying
assignments in random 2-SAT, the simplest random CSP that lacks said symmetry properties.
While the random 2-SAT satisfiability threshold has been known since the 1990s [19, 31], a
first-order approximation to the number of satisfying assignments has been obtained only
recently [5]. This timeline reflects the computational complexity of the respective questions.
As is well known, deciding the satisfiability of a 2-CNF reduces to directed reachability,
solvable in polynomial time [10].

By contrast, calculating the number of satisfying assignmets Z(Φ) of a 2-CNF Φ is a
#P-hard task [45]. Nonetheless, Monasson and Zecchina [36] put forward a delicate physics-
inspired conjecture as to the exponential order of the number of satisfying assignments of
random 2-CNFs. Achlioptas et al. [5] recently proved this conjecture. Their theorem provides
a first-order, law-of-large-numbers approximation of the logarithm of the number of satisfying
assignments. The present paper contributes a much more precise result, namely a central
limit theorem. We show that throughout the satisfiable phase the logarithm of the number
of satisfying assignments, suitably shifted and scaled, converges to a Gaussian. This is the
first central limit theorem of this type for any random CSP.

Let Φ = Φn,m be a random 2-CNF on n Boolean variables x1, . . . , xn with m clauses,
drawn independently and uniformly from all 4

(
n
2
)

possible 2-clauses. Suppose that m ∼ dn/2
for a fixed real d > 0. Thus, d gauges the average number of clauses in which a variable xi

appears. The value d = 2 marks the satisfiability threshold; hence, Φ is satisfiable with high
probability (“w.h.p.”) if d < 2, and unsatisfiable w.h.p. if d > 2 [19, 31]. Achlioptas et al. [5]
determined a function ϕ(d) > 0 such that for all d < 2, i.e., throughout the entire satisfiable
phase we have

Z(Φ) = exp(nϕ(d) + o(n)) w.h.p. , (1)

thereby determining the leading exponential order of Z(Φ).
However, (1) fails to identify the limiting distribution of Z(Φ). To be precise, since (1)

shows that Z(Φ) scales exponentially, we expect this random variable to exhibit multiplicative
fluctuations. Therefore, the appropriate goal is to find the limiting distribution of the
logarithm of this random variable, i.e., of log Z(Φ). Indeed, physics intuition suggests that
log Z(Φ) should be asymptotically Gaussian [34]. The main result of the present paper
confirms this hunch. Specifically, letting Γη(d) be a Gaussian with mean 0 and standard
deviation η(d) > 0, we prove that for all 0 < d < 2, log Z(Φ) satisfies

A. Chatterjee et al. 39:3

P
[
log Z(Φ) − E[log Z(Φ) | Z(Φ) > 0] < z

√
m
]

∼ P
[
Γη(d) < z

]
(z ∈ R). (2)

The order Θ(
√

n) of fluctuations confirmed by (2) sets random 2-SAT apart from a large
family of other random constraint satisfaction problems. For example, for random graph
q-colouring with q ≥ 3 colours the log of the number of q-colourings superconcentrates, i.e.,
merely has bounded fluctuations throughout most of the regime where the random graph
is q-colourable [12].1 The same is true of random NAESAT, XORSAT and the symmetric
perceptron [1, 11, 20, 40]. In each of these cases, certain fundamental symmetry properties
(e.g., that the set of q-colourings remains invariant under permutations of the colours) enable
the computation of the number of solutions via the method of moments. Random 2-SAT
lacks the respective symmetry (as the set of satisfying assignments is not generally invariant
under swapping “true” and “false”), and accordingly (2) establishes that the number of
solutions fails to superconcentrate (for more details see [20]).

1.2 The main result
The formula for the standard deviation η(d) from (2) comes in terms of a fixed point equation
on a space of probability measures. Thus, let P(R2) be the set of all (Borel) probability
measures on R2. For 0 < d < 2 and 0 ≤ t ≤ 1 we define an operator

logBP⊗
d,t :P

(
R2) → P

(
R2) , ρ 7→ ρ̂ = logBP⊗

d,t(ρ), (3)

as follows. Let

(ξρ,i)i≥1, (ξ′
ρ,i)i≥1, (ξ′′

ρ,i)i≥1, ξρ,i =
(

ξρ,i,1
ξρ,i,2

)
, ξ′

ρ,i =
(

ξ′
ρ,i,1

ξ′
ρ,i,2

)
, ξ′′

ρ,i =
(

ξ′′
ρ,i,1

ξ′′
ρ,i,2

)

be random vectors with distribution ρ, let d
dist= Po(td), d′, d′′ dist= Po((1 − t)d) and let

si, s′
i, s′′

i , ri, r′
i, r′′

i for i ≥ 1 be uniformly random on {±1}, all mutually independent. Then
ρ̂ is the distribution of the vector(∑d

i=1 si log
(1

2
(
1 + ri tanh(ξρ,i,1/2)

))
+
∑d′

i=1 s′
i log

(1
2
(
1 + r′

i tanh(ξ′
ρ,i,1/2)

))∑d
i=1 si log

(1
2
(
1 + ri tanh(ξρ,i,2/2)

))
+
∑d′′

i=1 s′′
i log

(1
2
(
1 + r′′

i tanh(ξ′′
ρ,i,2/2)

))) .

In addition, define a function B⊗
d,t : P(R2) → (0, ∞] by letting

B⊗
d,t(ρ) = E

[2∏
h=1

log
(

1 − 1
4(1 + r1 tanh(ξρ,1,h/2))(1 + r2 tanh(ξρ,2,h/2))

)]
. (4)

▶ Theorem 1. For any 0 < d < 2, t ∈ [0, 1], there exists a unique probability measure
ρd,t ∈ P(R2) such that

ρd,t = logBP⊗
d,t(ρd,t) and

∫
R2

∥ξ∥2
2dρd,t(ξ) < ∞. (5)

1 Formally, up to the so-called condensation threshold, which precedes the q-colourabiliy threshold by a
small additive constant, the logarithm of the number of q-colurings minus its expectation converges in
distribution to a random variable with bounded moments [12, 13, 20].

APPROX/RANDOM 2024

39:4 The Number of Random 2-SAT Solutions Is Asymptotically Log-Normal

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
d

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Va

ria
nc

e

(d)2

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Ex
pe

ct
at

io
n

(d)
First moment bound

Figure 1 Left: Numerical approximations to the function ϕ(d) from (1) (red) and the variance
η(d)2 from (7) (green). The black dashed line is the first moment bound d 7→ log(2) + d

2 log(3/4).
Right: An illustration of the tree T ⊗ from Section 2.6.

Furthermore,

lim
n→∞

log Z(Φ) − E[log Z(Φ) | Z(Φ) > 0]√
m

= Γη(d) in distribution, where (6)

η(d)2 =
∫ 1

0
B⊗

d,t(ρd,t)dt − B⊗
d,0(ρd,0) ∈ (0, ∞). (7)

The conditioning on log Z(Φ) > 0 is necessary in (6), because even for d < 2 the formula
Φ is unsatisfiable with probability Ω(n−1), in which case log Z(Φ) = −∞. Moreover, the
L2-bound from (5) ensures that the integral (7) is well-defined. Finally, (6) implies (2).

How can the formula (7) be evaluated? Because the proof of the uniqueness of the
stochastic fixed point ρd,t from (5) is based on the contraction method, a fixed point iteration
will converge rapidly. In effect, for any d, t a discrete distribution that approximates ρd,t

arbitrarily well (in Wasserstein distance) can be computed via a randomised algorithm called
population dynamics [34, Chapter 14]. Since B⊗

d,t(ρd,t) varies continously in d and t, η(d)2

can thus be approximated within any desired accuracy, see Figure 1.

2 Proof strategy

The main challenge towards the proof of Theorem 1 is to get a handle on the variance of
log Z(Φ) given satisfiability. The key idea, inspired by spin glass theory [18] but novel to
random constraint satisfaction, is to count the joint number of satisfying assignments of
two correlated random formulas. Once this is accomplished Theorem 1 will follow from the
careful application of a general martingale central limit theorem. To get acclimatised we first
revisit the method of moments, the reasons it fails on random 2-SAT and the combinatorial
interpretation of the law of large numbers (1).

2.1 The method of moments fails
The default approach to estimating the number of solutions to a random CSP is the venerable
second moment method [7]. Its thrust is to show that the second moment of the number
of solutions is of the same order as the square of the expected number of solutions. If so
then the moment computation together with small subgraph conditioning yields the precise
limiting distribution of the number of solutions [23, 42]. However, this approach works only if
the log of the number of solutions superconcentrates around the log of the expected number
of solutions.

A. Chatterjee et al. 39:5

This necessary condition is not satisfied in random 2-SAT. In fact, a straightforward
calculation yields

1
n

logE[Z(Φ)] ∼ log 2 + d

2 log(3/4). (8)

The formula on the r.h.s. is displayed as the black dashed line in Figure 1. As can be
verified analytically, this line strictly exceeds the function ϕ(d) from (1) for any 0 < d < 2.
Consequently, (1) implies that log Z(Φ) ≤ logE[Z(Φ)] − Ω(n) w.h.p. In other words, the
expected number of solutions E[Z(Φ)] overshoots the typical number of solutions by an
exponential factor w.h.p. ; cf. the discussion in [6, 8].

2.2 Belief Propagation
Instead of the method of moments, the prescription of the physics-based work of Monasson
and Zecchina [36] is to estimate log Z(Φ) by way of the Belief Propagation (BP) message
passing algorithm. This approach was vindicated rigorously by Achlioptas et al. [5].

As we will reuse certain elements of that analysis we dwell on BP briefly. For a clause a

of a 2-CNF Φ let ∂a = ∂Φa be the set of variables that a contains. Moreover, for x ∈ ∂a

let signΦ(x, a) = sign(x, a) ∈ {±1} be the sign with which x appears in a. Analogously,
let ∂x = ∂Φx be the set of clauses in which variable x appears. BP introduces “messages”
between clauses a and the variables x ∈ ∂a. More precisely, each such clause-variable
pair a, x comes with two messages µx→a, µa→x. The messages are probability distributions
on “true” and “false”, which we represent by ±1. Thus, µx→a(±1), µa→x(±1) ≥ 0 and
µx→a(1) + µx→a(−1) = µa→x(1) + µa→x(−1) = 1.

The messages get updated iteratively by an operator

BP : (µx→a, µa→x)a,x∈∂a 7→ (µ̂x→a, µ̂a→x)a,x∈∂a = BP((µx→a, µa→x)a,x∈∂a). (9)

For a clause a with adjacent variables ∂a = {x, y} the updated messages µ̂a→x(±1) are
defined by

µ̂a→x(sign(x, a)) = 1
1 + µy→a(sign(y, a)) , µ̂a→x(−sign(x, a)) = µy→a(sign(y, a))

1 + µy→a(sign(y, a)) .

(10)

Moreover, for a variable x and a clause a ∈ ∂x we define2

µ̂x→a(s) =
∏

b∈∂x\{a} µb→x(s)∏
b∈∂x\{a} µb→x(1) +

∏
b∈∂x\{a} µb→x(−1) (s ∈ {±1}) ; (11)

The purpose of BP is to heuristically “approximate” the marginal probabilities that a random
satisfying assignment σ = σΦ of Φ will set a certain variable to a specific truth value. The
“approximation” given by the set (µx→a, µa→x)a,x∈∂a of messages reads

µx(s) =
∏

b∈∂x µb→x(s)∏
b∈∂x µb→x(1) +

∏
b∈∂x µb→x(−1) (s ∈ {±1}). (12)

The BP “ansatz” now asks that we iterate the BP operator until an (approximate) fixed
point is reached, i.e., ideally until µ̂a→x = µa→x and µ̂x→a = µx→a for all a, x. Then we
evaluate the BP marginals (12) and plug them into a generic formula called the Bethe free

2 For the sake of tidyness, if the above denominator vanishes we simply let µ̂x→a(±1) = 1
2 .

APPROX/RANDOM 2024

39:6 The Number of Random 2-SAT Solutions Is Asymptotically Log-Normal

entropy, which yields the BP “approximation” of log Z(Φ); an excellent exposition can be
found in [34]. The BP recipe provably yields the correct result if the bipartite graph induced
by the clause-variable incidences of the 2-CNF Φ is acyclic, but may be totally off otherwise.

Of course, for 1 < d < 2 the bipartite graph associated with the random formula Φ
contains cycles in abundance. Nonetheless, (1) confirms that the BP formula provides a
valid approximation to within o(n). The proof is based on two observations. First, that the
local structure of the clause-variable incidence graph can be described by a Galton-Watson
tree. Second, that the Galton-Watson tree enjoys a spatial mixing property called Gibbs
uniqueness.

Since the proof of Theorem 1 also harnesses Gibbs uniqueness, let us elaborate. To mimic
the local structure of Φ consider a multitype Galton-Watson tree T whose types are variable
nodes and clause nodes of four sub-types (s, s′) with s, s′ ∈ {±1}. The root o is a variable
node. The offspring of any variable node is a Po(d/4) number of clause nodes of each of the
four sub-types. Finally, the offspring of a clause node is a single variable node. The clause
type (s, s′) indicates that s is the sign with which the parent variable appears in the clause,
while s′ determines the sign of the child variable. Thus, the Galton-Watson tree T can be
viewed as a (possibly infinite) 2-CNF. For an integer ℓ ≥ 0 let T (2ℓ) be the finite tree/2-CNF
obtained by deleting all variables and clauses at a distance larger than 2ℓ from the root.

The tree T approximates Φ locally in the sense that for any fixed ℓ and any given variable
xi the distribution of the depth-2ℓ neighbourhood of xi in Φ converges to T (2ℓ) as n → ∞ (in
the sense of local weak convergence). Moreover, Gibbs uniqueness posits that under random
satisfying assignments of the tree-CNF T (2ℓ) the truth value σo of the root under a random
satisfying assignment σ decouples from the values σT ,y of variables y ∈ ∂2ℓo at distance
precisely 2ℓ from o for large ℓ. Formally, with S(T (2ℓ)) the set of satisfying assignments of
the 2-CNF T (2ℓ), the following is true.

▶ Proposition 2 ([5, Proposition 2.2]). We have

lim
ℓ→∞

E
[

max
τ∈S(T (2ℓ))

∣∣∣P [σo = 1 | T (2ℓ), σ∂2ℓo = τ∂2ℓo

]
− P

[
σo = 1 | T (2ℓ)

]∣∣∣] = 0. (13)

2.3 Approaching the variance
The proof of the formula (1) combines the Gibbs uniqueness property and the local convergence
to the Galton-Watson tree with a coupling argument called the “Aizenman-Sims-Starr
scheme” [5]. Unfortunately, this combination does not seem precise enough to get a handle
on the limiting distribution of log Z(Φ) by a long shot. Actually, it is anything but clear
how even the order of the standard deviation of log Z(Φ) could be derived along these lines.
One specific problem is that the rate of convergence of (13) diminishes as d approaches the
satisfiability threshold.

To tackle this challenge we devise a combinatorial interpretation of log2 Z(Φ). A key
idea, which we borrow from spin glass theory [18], is to set up a family of correlated
random formulas. Specifically, given integers M, M ′ ≥ 0 we construct a correlated pair
(Φ1(M, M ′), Φ2(M, M ′)) of formulas on the variable set Vn = {x1, . . . , xn} as follows. Let
(ai)i≥1, (a′

i)i≥1, (a′′
i)i≥1 be sequences of mutually independent uniformly random clauses on

Vn. Then

Φ1(M, M ′) = a1 ∧ · · · ∧ aM ∧ a′
1 ∧ · · · ∧ a′

M ′ , (14)
Φ2(M, M ′) = a1 ∧ · · · ∧ aM ∧ a′′

1 ∧ · · · ∧ a′′
M ′ .

A. Chatterjee et al. 39:7

Thus, the two formulas share clauses a1, . . . , aM . Additionally, each contains another M ′

independent clauses. In particular, Φ1(m, 0), Φ2(m, 0) are identical, while Φ1(0, m), Φ2(0, m)
are independent.

Interpolating between these extreme cases offers a promising avenue for computing the
variance: given that Φ1(M, m − M) and Φ2(M, m − M) are satisfiable for all M , we can
write a telescoping sum

log Z(Φ1(m, 0)) · log Z(Φ2(m, 0)) − log Z(Φ1(0, m)) · log Z(Φ2(0, m)) (15)

=
m∑

M=1
log Z(Φ1(M, m − M)) · log Z(Φ2(M, m − M))

− log Z(Φ1(M − 1, m − M + 1)) · log Z(Φ2(M − 1, m − M + 1)).

If we could take the expectation on the l.h.s. of (15), we would precisely obtain the variance
of log Z(Φ). Moreover, each summand on the r.h.s. amounts to a “local” change of swapping
a shared clause for a pair of independent clauses. Yet we cannot just take the expectation of
(15), because some Φh(M, m − M) may be unsatisfiable. To remedy this, we will replace
log Z(Φ) by a tamer random variable with the same limiting distribution. Its construction is
based on the Unit Clause Propagation algorithm.

2.4 Unit Clause Propagation
Employed by all modern SAT solvers as a sub-routine, Unit Clause Propagation is a linear
time algorithm that tracks the implications of partial assignments. The algorithm receives as
input a 2-CNF Φ along with a set L of literals. These literals are deemed to be “true”. The
algorithm then pursues direct logical implications, thereby identifying additional “implied”
literals that need to be true so that no clause gets violated. This procedure is outlined in
Steps 1–2 of Algorithm 1; the outcome of Steps 1–2 is independent of the order in which
literals/clauses are processed.

Algorithm 1 Pessimistic Unit Clause Propagation (“PUC”).

Data: A 2-CNF Φ along with a set L of literals deemed true.
1 while there exists a clause a ≡ l ∨ ¬l′ with l′ ∈ L and l ̸∈ L do
2 add literal l to L;
3 For variables x ∈ V (Φ) such that x ∈ L or ¬x ∈ L let

σx =

1 if x ∈ L and ¬x ̸∈ L,

−1 if ¬x ∈ L and x ̸∈ L,

0 otherwise.

Let C be the set of all clauses a such that σx = 0 for all x ∈ ∂a and return L, C, σ;

Clearly, trouble brews if PUC ends up placing both a literal l and its negation ¬l into
the set L. Our “pessimistic” Unit Clause variant makes no attempt at mitigating such
contradictions. Instead, Step 3 just constructs a partial assignment where all conflicting
literals are set to a dummy value zero. Additionally, PUC identifies the set C of conflict clauses
that contain conflicted variables only.

APPROX/RANDOM 2024

39:8 The Number of Random 2-SAT Solutions Is Asymptotically Log-Normal

Now consider a 2-CNF Φ on a set of variables V (Φ). For each possible literal l ∈ {x, ¬x :
x ∈ V (Φ)} we run PUC(Φ, L = {l}). Let C(Φ, {l}) be the set of conflict clauses returned by
PUC. Obtain the pruned formula Φ̂ from Φ by removing all clauses in C(Φ) =

⋃
l C(Φ, {l}).

Then it is easy to verify the following.

▶ Fact 3. For any 2-CNF Φ the pruned 2-CNF Φ̂ is satisfiable.

Generally, the pruned formula Φ̂ could have far fewer clauses than the original formula
Φ. Accordingly, even if Φ is satisfiable the number Z(Φ̂) of satisfying assignments of Φ̂
could dramatically exceed Z(Φ). However, the following proposition shows that on a random
formula, the impact of pruning is modest.

▶ Proposition 4. With probability 1 − o(n−1/2) we have | log Z(Φ̂) − log Z(Φ)| ≤ n1/3.

2.5 Variance redux

The error bound from Proposition 4 is tight enough so that towards the proof of Theorem 1
it suffices to establish a central limit theorem for log Z(Φ̂), i.e., the log of the number of
satisfying assignments of the pruned formula. Once again the pivotal task to this end is
to compute the variance of log Z(Φ̂). Revisiting the telescoping sum (15), we obtain the
following expression. Recalling (14), we write Φ̂h(M, M ′) = ̂Φh(M, M ′) for the formula
obtained by pruning Φh(M, M ′).

▶ Lemma 5. Let

∆(M) = E

[
log
(

Z(Φ̂1(M, m − M))
Z(Φ̂1(M − 1, m − M))

)
· log

(
Z(Φ̂2(M, m − M))

Z(Φ̂2(M − 1, m − M))

)]
, (16)

∆′(M) = E

[
log
(

Z(Φ̂1(M − 1, m − M + 1))
Z(Φ̂1(M − 1, m − M))

)
· log

(
Z(Φ̂2(M − 1, m − M + 1))

Z(Φ̂2(M − 1, m − M))

)]
.

(17)

Then Var
[
log Z(Φ̂)

]
=

m∑
M=1

(∆(M) − ∆′(M)) .

Lemma 5 expresses the variance as a sum of local changes. For example, Φ1(M, m − M)
is obtained from Φ1(M − 1, m − M) by adding a single random clause, namely aM . Thus,
∆(M) equals the expected change upon addition of a single shared clause – modulo the effect
of pruning, that is.

But fortunately, on random formulas only a few clauses get pruned w.h.p. In effect,
we can express the impact of these random changes neatly in terms of random satisfying
assignments of the “small” formulas Φ̂h(M −1, m−M) that appear in (16)–(17). Specifically,
the quotients in (16)–(17) boil down to the probabilities that random satisfying assignments
of the “small” formulas survive the extra clause that gets added to obtain the 2-CNFs in the
respective numerators. Thus, with σ = (σy)y∈Vn denoting a random satisfying assignment
of Φ̂h(M − 1, m − M), we obtain the following.

A. Chatterjee et al. 39:9

▶ Proposition 6. Let 1 ≤ M ≤ m. W.h.p. we have

Z(Φ̂h(M, m − M))
Z(Φ̂h(M − 1, m − M))

=

1 −
∏

y∈∂aM

P
[
σy ̸= sign(y, aM) | Φ̂h(M − 1, m − M), aM

]
+ o(1) (h = 1, 2),

Z(Φ̂1(M − 1, m − M + 1))
Z(Φ̂1(M − 1, m − M))

=

1 −
∏

y∈∂a′
m−M+1

P
[
σy ̸= sign(y, a′

m−M+1) | Φ̂1(M − 1, m − M), a′
m−M+1

]
+ o(1),

Z(Φ̂2(M − 1, m − M + 1))
Z(Φ̂2(M − 1, m − M))

=

1 −
∏

y∈∂a′′
m−M+1

P
[
σy ̸= sign(y, a′′

m−M+1) | Φ̂2(M − 1, m − M), a′
m−M+1

]
+ o(1).

2.6 Local convergence in probability

To evaluate the expressions from Proposition 6 we need to get a grip on the joint distribution
of the truth values of y under random satisfying assignments of the two correlated formulas
Φ̂h(M − 1, m − M). To this end we will devise a Galton-Watson tree T ⊗ that mimics
the joint distribution of the local structure of (Φ̂1(M − 1, m − M), Φ̂2(M − 1, m − M)).
Subsequently, we will establish Gibbs uniqueness for this Galton-Watson tree to compute
the expressions from Proposition 6.

The Galton-Watson tree T from Section 2.2 that describes the local topology of the
“plain” random formula Φ had one type of variable nodes and four types (±1, ±1) of clause
nodes. To approach the correlated pair (Φ̂1(M, m − M − 1), Φ̂2(M, m − M − 1)) we need a
Galton-Watson process with three types of variable nodes and a full dozen types of clause
nodes. Specifically, there are shared, 1-distinct and 2-distinct variable nodes. The root o of
T ⊗ is a shared variable node. The clause node types are (s, s′)-shared, (s, s′) 1-distinct and
(s, s′) 2-distinct for s, s′ ∈ {±1}.

In addition to d ∈ (0, 2) the offspring distributions of T ⊗ = T ⊗
d,t involve a second

parameter t ∈ [0, 1]:
A shared variable spawns Po(dt/4) shared clauses of type (s, s′) as well as Po(d(1 − t)/4)
1-distinct clauses of type (s, s′) and Po(d(1 − t)/4) 2-distinct clauses of type (s, s′) for
any s, s′ ∈ {±1}.
An h-distinct variable begets Po(d/4) h-distinct clauses of type (s, s′) for any s, s′ ∈ {±1}
(h = 1, 2).
A shared clause has precisely one shared variable as its offspring.
An h-distinct clause spawns a single h-distinct variable (h = 1, 2).

Figure 1 provides an illustration of the tree T ⊗. Shared variables/clauses are indicated in
red, 1-distinct variables/clauses in green and 2-distinct ones in blue.

From T ⊗ we extract a pair (T 1, T 2) of correlated random trees. Specifically, T h is
obtained from T ⊗ by deleting all (3 − h)-distinct variables and clauses. Hence, the parameter
t determines how “similar” T 1, T 2 are. Specifically, if t = 1 then no {1, 2}-distinct clauses
exist and thus T 1, T 2 are identical. By contrast, if t = 0 then T 1, T 2 are independent copies
of the tree T from Section 2.2.

APPROX/RANDOM 2024

39:10 The Number of Random 2-SAT Solutions Is Asymptotically Log-Normal

For an integer ℓ ≥ 0 obtain T ⊗, (2ℓ), T
(2ℓ)
1 , T

(2ℓ)
2 from T ⊗, T 1, T 2 by omitting all nodes

at a distance greater than 2ℓ from the root o. As in Section 2.2, we can interpret these
trees as 2-CNFs, with the type (s, s′) of a clause indicating the signs of its parent and child
variables. We say that two possible outcomes T, T ′ of T ⊗,(2ℓ) are isomorphic if there is a
tree isomorphism that preserves the root o as well as all types.

Further, a variable x ∈ Vn is called a 2ℓ-instance of T in (Φ̂1(M, M ′), Φ̂2(M, M ′)) if
there exist isomorphisms ιh of the 2-CNFs Th obtained from T by deleting all (3 − h)-distinct
variables/clauses to the depth-2ℓ neighbourhoods ∂≤2ℓ

Φ̂h(M,M ′)x of x in Φ̂h(M, M ′) such that
the root gets mapped to x, i.e., ι1(o) = ι2(o) = x,
for any shared variable y of T1, T2 the image variables coincide, i.e., ι1(y) = ι2(y),
for any shared clauses a of T1, T2 the image ι1(a) = ι2(a) ∈ {a1, . . . , aM } is a shared
clause,
for any 1-distinct clause a whose parent in T1 is a shared variable, ι1(a) ∈ {a′

1, . . . , a′
M ′},

and
for any 2-distinct clause a whose parent in T2 is a shared variable, ι1(a) ∈ {a′′

1 , . . . , a′′
M ′}.

Let N (2ℓ)(T, (Φ1(M, M ′), Φ2(M, M ′))) be the number of 2ℓ-instances of T in (Φ1(M, M ′),
Φ2(M, M ′)). The following proposition confirms that T ⊗ models the local structure of
(Φ̂1(M, M ′), Φ̂2(M, M ′)) faithfully.

▶ Proposition 7. Let ℓ > 0 be a fixed integer, let t ∈ [0, 1] and suppose that M ∼ tdn/2
and M ′ ∼ (1 − t)dn/2. Then w.h.p. for all possible outcomes T of T ⊗,(2ℓ) we have
N (2ℓ)(T, (Φ̂1(M, M ′), Φ̂2(M, M ′))) ∼ nP

[
T ⊗, (2ℓ) ∼= T

]
.

2.7 Correlated Belief Propagation
Now that we have a branching process description of our pair of correlated formulas the next
step is to run BP on the random trees (T 1, T 2) to find the joint distribution of the truth
values σ

T
(2ℓ)
1 ,o

, σ
T

(2ℓ)
2 ,o

assigned to the root. Hence, let

µ(2ℓ) =
(
P
[
σ

T
(2ℓ)
1 ,o

= 1 | T ⊗
]

,P
[
σ

T
(2ℓ)
2 ,o

= 1 | T ⊗
])

∈ (0, 1)2. (18)

Since BP is exact on trees, we could calculate these marginals by iterating (9)–(11) for
2ℓ steps, starting from all-uniform messages. But our objective is not merely to calculate the
marginals of a specific pair of trees, but the distribution of the vector (18) for a random T ⊗.
Fortunately, due to the Markovian nature of the Galton-Watson tree T ⊗, the bottom-up BP
computation on a random tree can be expressed by a fixed point iteration on the space of
probability distributions on R2. The appropriate operator is the logBP⊗

d,t-operator from (3).
To be precise, that operator expresses the updates of the log-likelihood ratios of the BP
messages from (10)–(11). Thus, let

t : (z1, z2) ∈ R2 7→ ((1 + tanh(z1/2))/2, (1 + tanh(z2/2))/2) ∈ (0, 1)2

be the function that maps log-likelihood ratios back to probabilities. Furthermore, for a
probability measure ρ ∈ P(R2) let t(ρ) be the pushforward probability measure on (0, 1)2.3

▶ Proposition 8. Let ρ
(0)
d,t ∈ P(R2) be the atom at the origin and let ρ

(ℓ)
d,t = logBP⊗

d,t(ρ
(ℓ−1)
d,t).

Then µ(2ℓ) has distribution t(ρ(ℓ)
d,t).

3 That is, for a measurable A ⊆ (0, 1)2 we have t(ρ)(A) = ρ(t−1(A)).

A. Chatterjee et al. 39:11

Figure 2 The distributions t(ρd,t) for d = 1.9 and t = 0.1, 0.5, 0.9.

We employ the contraction method to show that the sequence (ρ(ℓ)
d,t)ℓ≥1 of measures converges.

▶ Proposition 9. There exists a unique ρd,t ∈ P(R2) that satisfies (5) and limℓ→∞ ρ
(ℓ)
d,t = ρd,t

weakly.

Furthermore, the Gibbs uniqueness property (13) extends to T 1 and T 2.

▶ Corollary 10. For all t ∈ [0, 1] and h = 1, 2 we have

E

[
max

τ∈S(T
(2ℓ)
h

)

∣∣∣P [σT
(2ℓ)
h

,o
= 1 | T ⊗, σ

T
(2ℓ)
h

,∂2ℓo
= τ∂2ℓo

]
− P

[
σ

T
(2ℓ)
h

,o
= 1 | T ⊗

]∣∣∣] → 0,

(19)

as ℓ → +∞.

Combining Propositions 8 and 9 and Corollary 10, we are now in a position to pinpoint
the joint marginals of Φ̂1(M, M ′), Φ̂2(M, M ′). Formally, let

πΦ̂1(M,M ′),Φ̂2(M,M ′) =

1
n

n∑
i=1

δ(P[σΦ̂1(M,M′),xi
=1|Φ̂1(M,M ′)],P[σΦ̂2(M,M′),xi

=1|Φ̂2(M,M ′)]) ∈ P([0, 1]2)

be the empiricial distribution of the joint marginals of Φ̂1(M, M ′) and Φ̂2(M, M ′), which
we need to know to evaluate the expressions from Proposition 6. Furthermore, denote by
W1(· , ·) the Wasserstein L1-distance of two probability measures on [0, 1]2.

▶ Corollary 11. For any t ∈ [0, 1] and any M ∼ tnd/2, M ′ ∼ (1 − t)dn/2 we have

E
[
W1

(
πΦ̂1(M,M ′),Φ̂2(M,M ′), t(ρd,t)

)]
= o(1).

Finally, combining Proposition 6 with Corollary 11, we obtain the variance of log Z(Φ̂).

▶ Corollary 12. With η(d)2 from (7) we have η(d) > 0 and Var log Z(Φ̂) ∼ mη2
d.

Because the proof of Proposition 9 is based on a contraction argument, for any d, t the
distribution ρd,t can be approximated effectively within any given accuracy via a fixed point
iteration. Figure 2 displays approximations to t(ρd,t) for different values of t and shows
how correlations between the two coordinates of the random vector increase with t (brighter
diagonal).

APPROX/RANDOM 2024

39:12 The Number of Random 2-SAT Solutions Is Asymptotically Log-Normal

2.8 The central limit theorem
With the variance computation done, we have now overcome the greatest hurdle en route to
Theorem 1. Indeed, to obtain the desired asymptotic normality we just need to combine the
techniques from the variance computation with a generic martingale central limit theorem.

To this end we set up a filtration (Fn,M)0≤M≤mn
by letting Fn,M be the σ-algebra gener-

ated by a1, . . . , aM . Hence, conditioning on Fn,M amounts to conditioning on a1, . . . , aM ,
while averaging on the remaining clauses aM+1, . . . , am. The conditional expectations

Zn,M = m−1/2E
[
log Z(Φ̂) | Fn,M

]
(20)

then form a Doob martingale. Let Xn,M = Zn,M − Zn,M−1 be the martingale differences.

▶ Proposition 13. For all 0 < d < 2 the martingale (20) satisfies

lim
n→∞

E
[

max
1≤M≤m

|Xn,M |
]

= 0 and lim
n→∞

E

∣∣∣∣∣η(d)2 −
m∑

M=1
X2

n,M

∣∣∣∣∣ = 0. (21)

Thanks to pruning, the first condition from (21) is easily checked. Furthermore, the
steps that we pursued towards the proof of Corollary 12, i.e., the variance calculation, also
imply the second condition without further ado. Finally, as (21) demonstrates that the
marginal differences are small and that the variance process converges to a deterministic
limit, Theorem 1 follows the general martingale central limit theorem from [27].

3 Discussion

The hunt for satisfiability thresholds of random constraint satisfaction problems was launched
by the experimental work of Cheeseman, Kanefsky and Taylor [17]. The 2-SAT threshold was
the first one to be caught [19, 31]. Subsequent successes include the 1-in-k-SAT threshold [3]
and the k-XORSAT threshold [26, 40]. Furthermore, Friedgut [29] proved the existence
of non-uniform (i.e., n-dependent) satisfiability thresholds in considerable generality. The
plot thickened when physicists employed a compelling but non-rigorous technique called
the cavity method to “predict” the exact satisfiability thresholds of many further problems,
including the k-SAT problem for k ≥ 3 [35]. A line of rigorous work [6, 8, 22] culminated in
the verification of this physics prediction for large k [24].

Even though the satisfiability threshold of random 2-SAT was determined already in
the 1990s, the problem continued to receive considerable attention. For example, Bollobás,
Borgs, Chayes, Kim and Wilson [14] investigated the scaling window around the satisfiability
threshold, a point on which a recent contribution by Dovgal, de Panafieu and Ravelomanana
elaborates [25]. Abbe and Montanari [2] made the first substantial step towards the study
of the number of satisfying assignments that 1

n log Z(Φ) converges in probability to a
deterministic limit φ(d) for Lebesgue-almost all d ∈ (0, 2). However, their techniques do not
reveal the value φ(d). Moreover, Montanari and Shah [37] obtain a “law-of-large-numbers”
estimate of the number of assignments that violate all but o(n) clauses for d < 1.16. Finally,
the aforementioned article of Achlioptas et al. [5] verifies the prediction from [36] as to the
number of satisfying assignments for all d < 2. The main result of the present paper refines
these results considerably by establishing a central limit theorem.

For random k-CNFs with k ≥ 3 an upper bound on the number of satisfying assignments
can be obtained via the interpolation method from mathematical physics [39]. This bound
matches the predictions of the cavity method [34]. However, no matching lower bound is

A. Chatterjee et al. 39:13

currently known. The precise physics prediction called the “replica symmetric solution” has
only been verified for “soft” versions of random k-SAT where unsatisfied clauses are penalised
but not strictly forbidden, and for clause-to-variable ratios well below the satisfiability
threshold [37, 38, 44].

Random CSPs such as random k-XORSAT or random k-NAESAT that exhibit stronger
symmetry properties than random k-SAT tend to be amenable to the method of moments
[6].4 Therefore, more is known about their number of solutions. For example, due to
the inherent connection to linear algebra, the number of satisfying assignments of random
k-XORSAT formulas is known to concentrate on a single value right up to the satisfiability
threshold [11, 26, 40]. Furthermore, in random k-NAESAT, random graph colouring and
several related problems, the logarithm of the number of solutions superconcentrates, i.e.,
has only bounded fluctuations for constraint densities up to the so-called condensation
threshold, a phase transition that shortly precedes the satisfiability threshold [12, 20, 41].
The same is true of random k-SAT instances with regular literal degrees [23]. A further
example is the symmetric perceptron [1], where the number of solutions superconcentrates
but the limiting distribution is a log-normal with bounded variance. Going beyond the
condensation transition, Sly, Sun and Zhang [43] proved that the number of satisfying
assignments of random regular k-NAESAT formulas matches the “1-step replica symmetry
breaking” prediction from physics.

Apart from the superconcentration results for symmetric problems from [12, 23, 20, 41],
the limiting distribution of the logarithm of the number of solutions has not been known in
any random constraint satisfaction problem. In particular, Theorem 1 is the first central
limit theorem for this quantity in any random CSP. We expect that the technique developed
in the present work, particularly the use of two correlated random instances in combination
with spatial mixing, can be extended to other problems. The present use of correlated
instances is inspired by the work of Chen, Dey and Panchenko [18] on the p-spin model from
mathematical physics, a generalisation of the famous Sherrington-Kirkpatrick model. That
said, on a technical level the present use of correlated instances is quite different from the
approach from [18]. Specifically, while here we construct correlated 2-CNFs that share a
specific fraction of their clauses and employ a martingale central limit theorem, Chen, Dey
and Panchenko combine a continuous interpolation of two mixed p-spin Hamiltonians with
Stein’s method.

A further line of work deals with central limit theorems for random optimisation problems.
Cao [16] provided a general framework based on the “objective method” [9]. Unfortunately,
the conditions of Cao’s theorem tend to be unwieldy for Max Csp problems with hard
constraints. Recent work of Kreačič [32] and Glasgow, Kwan, Sah, Sawhney [30] on the
matching number therefore instead resorts to the use of stochastic differential equations. A
promising question for future work might be whether the present method of considering
correlated instances might extend to random optimisation problems.

References
1 E. Abbe, S. Li, and A. Sly. Proof of the contiguity conjecture and lognormal limit for the

symmetric perceptron. In Proc. 62nd FOCS, pages 327–338, 2022.
2 E. Abbe and A. Montanari. On the concentration of the number of solutions of random

satisfiability formulas. RSA, 45:362–382, 2014.

4 Formally, by “symmetry” we mean that the empirical distribution of the marginals of random solutions
converges to an atom; cf. [21].

APPROX/RANDOM 2024

39:14 The Number of Random 2-SAT Solutions Is Asymptotically Log-Normal

3 D. Achlioptas, A. Chtcherba, G. Istrate, and C. Moore. The phase transition in 1-in-k sat and
nae 3-sat. In Proc. 12th SODA, pages 721–722, 2001.

4 D. Achlioptas and A. Coja-Oghlan. Algorithmic barriers from phase transitions. In Proc. 49th
FOCS, pages 793–802, 2008.

5 D. Achlioptas, A. Coja-Oghlan, M. Hahn-Klimroth, J. Lee, N. Müller, M. Penschuck, and
G. Zhou. The number of satisfying assignments of random 2-sat formulas. Random Structures
and Algorithms, 58:609–647, 2021.

6 D. Achlioptas and C. Moore. Random k-sat: two moments suffice to cross a sharp threshold.
SIAM Journal on Computing, 36:740–762, 2006.

7 D. Achlioptas, A. Naor, and Y. Peres. Rigorous location of phase transitions in hard optimiza-
tion problems. Nature, 435:759–764, 2005.

8 D. Achlioptas and Y. Peres. The threshold for random k-sat is 2k ln 2 − O(k). Journal of the
AMS, 17:947–973, 2004.

9 D. Aldous and J. Steele. The objective method: probabilistic combinatorial optimization and
local weak convergence. In H. Kesten, editor, Probability on Discrete Structures. Springer,
2004.

10 B. Aspvall, M. F. Plass, and R. E. Tarjan. A linear-time algorithm for testing the truth of
certain quantified boolean formulas. Information Processing Letters, 8:121–123, 1979.

11 P. Ayre, A. Coja-Oghlan, P. Gao, and N. Müller. The satisfiability threshold for random linear
equations. Combinatorica, 40:179–235, 2020.

12 V. Bapst, A. Coja-Oghlan, and C. Efthymiou. Planting colourings silently. Combinatorics,
Probability and Computing, 26:338–366, 2017.

13 V. Bapst, A. Coja-Oghlan, S. Hetterich, F. Rassmann, and D. Vilenchik. The condensation
phase transition in random graph coloring. Communications in Mathematical Physics, 341:543–
606, 2016.

14 B. Bollobás, C. Borgs, J. Chayes, J. Kim, and D. Wilson. The scaling window of the 2-sat
transition. RSA, 18:201–256, 2001.

15 G. Bresler and B. Huang. The algorithmic phase transition of random k-sat for low degree
polynomials. In Proc. 62nd FOCS, pages 298–309, 2021.

16 S. Cao. Central limit theorems for combinatorial optimization problems on sparse erdős-rényi
graphs. Annals of Applied Probability, 31:1687–1723, 2021.

17 P. Cheeseman, B. Kanefsky, and W. Taylor. Where the really hard problems are. In Proc.
IJCAI, pages 331–337, 1991.

18 W.-K. Chen, P. Dey, and D. Panchenko. Fluctuations of the free energy in the mixed p-spin
models with external field. Probability Theory and Related Fields, 168:41–53, 2017.

19 V. Chvátal and B. Reed. Mick gets some (the odds are on his side). In Proc. 33th FOCS,
pages 620–627, 1992.

20 A. Coja-Oghlan, T. Kapetanopoulos, and N. Müller. The replica symmetric phase of random
constraint satisfaction problems. Combinatorics, Probability and Computing, 29:346–422, 2020.

21 A. Coja-Oghlan, F. Krzakala, W. Perkins, and L. Zdeborová. Information-theoretic thresholds
from the cavity method. Advances in Mathematics, 333:694–795, 2018.

22 A. Coja-Oghlan and K. Panagiotou. The asymptotic k-sat threshold. Advances in Mathematics,
288:985–1068, 2016.

23 A. Coja-Oghlan and N. Wormald. The number of satisfying assignments of random regular
k-sat formulas. Combinatorics, Probability and Computing, 27:496–530, 2018.

24 J. Ding, A. Sly, and N. Sun. Proof of the satisfiability conjecture for large k. Annals of
Mathematics, 196:1–388, 2022.

25 S. Dovgal, É. de Panafieu, and V. Ravelomanana. Exact enumeration of satisfiable 2-sat
formulae. arXiv:2108.08067, 2021. arXiv:2108.08067.

26 O. Dubois and J. Mandler. The 3-xorsat threshold. In Proc. 43rd FOCS, pages 769–778, 2002.
27 G. Eagleson. Martingale convergence to mixtures of infinitely divisible laws. Annals of

Probability, 3:557–562, 1975.

https://arxiv.org/abs/2108.08067

A. Chatterjee et al. 39:15

28 C. Efthymiou. On sampling symmetric gibbs distributions on sparse random graphs and
hypergraphs. In Proc. 49th ICALP, page 57, 2022.

29 E. Friedgut. Sharp thresholds of graph properties, and the k-sat problem. Journal of the AMS,
12:1017–1054, 1999.

30 M. Glasgow, M. Kwan, A. Sah, and M. Sawhney. A central limit theorem for the matching
number of a sparse random graph. arXiv:2402.05851, 2024.

31 A. Goerdt. A threshold for unsatisfiability. Journal of Computer and System Sciences,
53:469–486, 1996.

32 E. Kreačič. Some problems related to the Karp-Sipser algorithm on random graphs. PhD thesis,
University of Oxford, 2017.

33 F. Krzakala, A. Montanari, F. Ricci-Tersenghi, G. Semerjian, and L. Zdeborová. Gibbs states
and the set of solutions of random constraint satisfaction problems. Proceedings of the National
Academy of Sciences, 104:10318–10323, 2007.

34 M. Mézard and A. Montanari. Information, physics and computation. Oxford University Press,
2009.

35 M. Mézard, G. Parisi, and R. Zecchina. Analytic and algorithmic solution of random satisfiab-
ility problems. Science, 297:812–815, 2002.

36 R. Monasson and R. Zecchina. The entropy of the k-satisfiability problem. Physical Review
Letters, 76:3881, 1996.

37 A. Montanari and D. Shah. Counting good truth assignments of random k-sat formulae. In
Proc. 18th SODA, pages 1255–1264, 2007.

38 D. Panchenko. On the replica symmetric solution of the K-sat model. Electronic Journal of
Probability, 19:67, 2014.

39 D. Panchenko and M. Talagrand. Bounds for diluted mean-fields spin glass models. Probability
Theory and Related Fields, 130:319–336, 2004.

40 B. Pittel and G. Sorkin. The satisfiability threshold for k-xorsat. Combinatorics, Probability
and Computing, 25:236–268, 2016.

41 F. Rassmann. On the number of solutions in random graph k-colouring. Combinatorics,
Probability and Computing, 28:130–158, 2019.

42 R. Robinson and N. Wormald. Almost all regular graphs are hamiltonian. Random Structures
and Algorithms, 5:363–374, 1994.

43 A. Sly, N. Sun, and Y. Zhang. The number of solutions for random regular nae-sat. Probability
Theory and Related Fields, 182:1–109, 2022.

44 M. Talagrand. The high temperature case for the random K-sat problem. Probability Theory
and Related Fields, 119:187–212, 2001.

45 L. Valiant. The complexity of enumeration and reliability problems. SIAM Journal on
Computing, 8:410–421, 1979.

APPROX/RANDOM 2024

Private Counting of Distinct Elements in the
Turnstile Model and Extensions
Monika Henzinger #

Institute of Science and Technology, Klosterneuburg, Austria

A. R. Sricharan #

Faculty of Computer Science, Doctoral School Computer Science, University of Vienna, Austria

Teresa Anna Steiner #

Technical University of Denmark, Lyngby, Denmark

Abstract
Privately counting distinct elements in a stream is a fundamental data analysis problem with many
applications in machine learning. In the turnstile model, Jain et al. [NeurIPS2023] initiated the study
of this problem parameterized by the maximum flippancy of any element, i.e., the number of times
that the count of an element changes from 0 to above 0 or vice versa. They give an item-level (ϵ, δ)-
differentially private algorithm whose additive error is tight with respect to that parameterization.
In this work, we show that a very simple algorithm based on the sparse vector technique achieves
a tight additive error for item-level (ϵ, δ)-differential privacy and item-level ϵ-differential privacy
with regards to a different parameterization, namely the sum of all flippancies. Our second result
is a bound which shows that for a large class of algorithms, including all existing differentially
private algorithms for this problem, the lower bound from item-level differential privacy extends to
event-level differential privacy. This partially answers an open question by Jain et al. [NeurIPS2023].

2012 ACM Subject Classification Security and privacy

Keywords and phrases differential privacy, turnstile model, counting distinct elements

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.40

Category RANDOM

Related Version Full Version: https://arxiv.org/abs/2408.11637

Funding Monika Henzinger : This project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme (MoDynStruct,
No. 101019564) and the Austrian Science Fund (FWF) grant DOI 10.55776/Z422, grant DOI
10.55776/I5982, and grant DOI 10.55776/P33775 with additional funding from the netidee SCIENCE
Stiftung, 2020–2024.
Teresa Anna Steiner : Supported by a research grant (VIL51463) from VILLUM FONDEN.

1 Introduction

Counting distinct elements in a stream is a fundamental data analysis problem that is
widely studied [12, 13, 17, 18, 20] and has many applications [1, 10, 19, 2, 21, 5], including
network analysis [21] and detection of denial of service attacks [1, 5]. If the data includes
sensitive information, the essential challenge is to give accurate answers while providing
privacy guarantees to the data owners. Differential privacy is the de-facto standard in private
data analysis and is widely employed both in research and in industry. In the insertions-only
model, the problem of counting distinct elements while preserving differential privacy is
well-studied [3, 9, 14].

Recent work by Jain, Kalemaj, Raskhodnikova, Sivakumar, and Smith [16] (which was
concurrent with an earlier version of the results presented in this paper, see [15, Section
5]) initiated the study of this problem in the more general turnstile model. They give
an algorithm which is item-level, (ϵ, δ)-differentially private and analyze the additive error

© Monika Henzinger, A. R. Sricharan, and Teresa Anna Steiner;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 40; pp. 40:1–40:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:monika.henzinger@ist.ac.at
https://orcid.org/0000-0002-5008-6530
mailto:sricharan.arunapuram@univie.ac.at
https://orcid.org/0009-0008-1554-1965
mailto:terst@dtu.dk
https://orcid.org/0000-0003-1078-4075
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.40
https://arxiv.org/abs/2408.11637
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

40:2 Private Counting of Distinct Elements in the Turnstile Model and Extensions

parameterized in the maximum flippancy of any element, i.e., the number of times that the
count of an element changes from 0 to above 0 or vice versa. They also give lower bounds
which show that the additive error of the algorithm is tight for item-level differential privacy
(up to log factors) with respect to their parameterization. There is still a gap for event-level
differential privacy, which is posed as an open question. The algorithm is based on several
instantiations of the binary tree mechanism.

In this paper we show that a simple algorithm based on the sparse vector technique
achieves a tight additive error (up to log factors) for item-level (ϵ, δ)-differential privacy
and item-level ϵ-differential privacy, with regards to a different parameterization, namely
the total flippancy, i.e., the sum of the flippancies of all elements. The additive error
depends polynomially on the total flippancy with a smaller exponent than the exponent
of the maximum flippancy in the additive error in [16]. Thus, if there are few elements in
total, or few elements which change their count from 0 to above 0 or vice versa, then our
algorithm achieves a better additive error. Additionally, we give is a reduction which shows
that for a large class of algorithms, including all existing differentially private algorithms
for this problem, the lower bound from item-level differential privacy extends to event-level
differential privacy. This is a step towards answering the open question posed in [16].

1.1 Problem Definition
More formally, we assume there are d different items, and our goal is to maintain a multiset
of them and to determine at each time step how many of them are currently at least once in
the multiset, i.e., the number of distinct elements in the multiset. The update operations are
modeled as follows: The input at every time step is a d-dimensional vector xt ∈ {−1, 0, 1}d,
such that xt

i = 1 if element i gets inserted at time t, xt
i = −1 if element i gets deleted at

time t, and xt
i = 0 otherwise. Note that this means that we allow multiple non-zero entries

in xt, corresponding to multiple updates at every time step. However, the lower bound also
extends to the case where we assume that at most one element may be inserted or deleted at
any time step, i.e., ||xt||1 ≤ 1, which we call singleton update streams. At every time step t,
we want to output the number of distinct elements in the multiset. By our definition of the
input stream, an element i is present at time t if and only if

∑
t′≤t xt′

i > 0.

▶ Definition 1 (CountDistinct). Let x1, x2, . . . , xT be an input stream with xt ∈ {−1, 0, 1}d

for all t ∈ [1, T]. We define CountDistinct(x)t =
∑d

i=1 1(
∑

t′≤t xt′

i > 0), where 1(E) is
the indicator function that is 1 if E is true and 0 otherwise. Then, the CountDistinct
problem is to output CountDistinct(x)t at all time steps t. The error of CountDistinct
is defined to be the maximum additive error over all time steps.

In this paper, we consider two privacy notions: event-level differential privacy, and item-level
differential privacy. They differ in their definition of neighboring input streams. Two input
streams x and y are event-level neighboring, if there exists a time step t∗ and an item i∗ ∈ [1, d]
such that we have xt

i = yt
i for all (i, t) ̸= (i∗, t∗). That is, two event-level neighboring streams

may differ in at most one item in at most one update operation. Two input streams x and y

are item-level neighboring, if there exists an item i∗ ∈ [1, d] such that xt
i = yt

i for all t and
for all i ∈ [1, d] \ {i∗}. That is, two item-level neighboring streams may differ in all update
operations related to one item.

Finally, we consider two models regarding the input stream. In the general model the
counts for any item at any time step t is given by

∑
t′≤t xt′

i , which can be any integer in [−t, t]
and we only care about whether

∑
t′≤t xt′

i is larger than zero or not. In the “likes”-model1

1 The name was chosen as it models the count of “likes” on a social media website, as motivated by [16].

M. Henzinger, A. R. Sricharan, and T. A. Steiner 40:3

for every item i at any time step t, it must hold that
∑

t′≤t xt′

i ∈ {0, 1}, i.e., the multiset is a
set. Said differently, an item can only be inserted if it is absent in the set and it can only be
deleted when it is present.

1.2 Summary of Results
In this paper, we give new upper and lower bounds for item-level differential privacy,
parameterized in the total flippancy K, which is defined as the total number of times any
item switches from a non-zero count to a zero count, or vice versa. In detail, let f t(xi) =
1(
∑

t′≤t xt′

i > 0). The total flippancy is formally defined as K =
∑d

i=1
∑T

t=2 1(f t(xi) ̸=
f t−1(xi)). Note that in the “likes”-model, the total flippancy is equal to the total number of
updates. As CountDistinct(x)t =

∑d
i=1 f t(xi), it follows that K is an upper bound on

the number of changes in CountDistinct(x) over time.

Upper Bounds

As our first main result, we give algorithms solving CountDistinct while providing item-
level differential privacy, which work in the general model (thus also in the “likes”-model).
In the following, we state the exact bounds for given K. If K is not given to the algorithm,
the error bounds worsen by at most a ln2 K factor.

▶ Theorem 2. Let d be a non-zero integer, β > 0, K be a known upper bound on the total
flippancy, and let T be a known upper bound on the number of time steps. Then there exists
1. an item-level ϵ-differentially private algorithm for CountDistinct in the general model

with additive error O(min(d, K,
√

ϵ−1K ln(T/β), ϵ−1T log(T/β)) with probability at least
1 − β at all time steps simultaneously, for any ϵ > 0 and β ∈ (0, 1);

2. an item-level (ϵ, δ)-differentially private algorithm for CountDistinct in the general
model with additive error O(min(d, K,

(
ϵ−2K ln(1/δ) ln2(T/β)

)1/3
, ϵ−1

√
T ln(1/δ) log(T/β))

with probability at least 1−β at all time steps simultaneously, for any δ ∈ (0, 1), ϵ ∈ (0, 1),
and β ∈ (0, 1).

As our lower bounds (discussed below) show, our bounds for ϵ-differential privacy are tight,
if K is known and K ≤ T . If K > T , we incur at most an extra ln T factor, and if K is not
known, we incur extra ln K factors (see Section 6). For (ϵ, δ)-differential privacy, the upper
bounds are tight up to ln T , ln K and ln(1/δ) factors.

Lower bounds

We complement our upper bounds by almost tight lower bounds on the additive error which
hold for any item-level differentially private algorithm in the “likes”-model. As this is the
“more restricted” of the two models, the lower bounds also carry over to the general model.
For ϵ-differential privacy, our lower bound follows from a packing argument.

▶ Theorem 3 (Simplified version of Theorem 16). For any L ≤ T , there exists an in-
put stream x of d-dimensional vectors from {−1, 0, 1}d, which is valid in the “likes”-
model, with length T and flippancy K = Θ(L), such that any item-level, ϵ-differentially
private algorithm for CountDistinct must with constant probability have an error at least
Ω(min(d, K,

√
ϵ−1K max(ln(T/K), 1))).

The lower bound above also holds for singleton updates. When multiple updates are
allowed, then K could potentially be larger than T . In that case, Theorem 16 in Sec-
tion 5 shows that for any T ≤ L ≤ dT , there exists a stream with flippancy K = Ω(T),

APPROX/RANDOM 2024

40:4 Private Counting of Distinct Elements in the Turnstile Model and Extensions

Table 1 Comparison of our results (in blue) and the results in [16] for the different models.
K denotes the total flippancy and w denotes the maximum flippancy of an input stream x. For
simplicity of exposition, we consider singleton insertions and omit factors polynomial in ln T , ln(1/δ),
and ϵ−1. The bounds marked with ∗ hold for output dependent algorithms (see the discussion before
Theorem 5 for details). The bounds in the last line follow from a simple application of a continual
counting algorithm on the difference sequence.

Item-level ϵ-dp Item-level (ϵ, δ)-dp Event-level ϵ-dp Event-level (ϵ, δ)-dp

general model O(min(
√

w, T 1/3)) O(min(
√

w, T 1/3))
[16] Ω(min(w,

√
T)) Ω(min(

√
w, T 1/3) Ω(min(

√
w, T 1/4))

“likes”-model O(min(
√

w, T 1/3)) O(min(
√

w, T 1/3))
[16] Ω(min(w,

√
T)) Ω(min(

√
w, T 1/3))

general model O(
√

K) O(K1/3) O(
√

K) O(K1/3)
this work Ω(

√
K) Ω(K1/3) Ω(min(w,

√
K))∗ Ω(min(

√
w, K1/3))∗

“likes”-model O(
√

K) O(K1/3) O(
√

K) O(K1/3)
this work Ω(

√
K) Ω(K1/3)

“likes”-model O(1) O(1)

K = O(L), such that any item-level, ϵ-differentially private algorithm to the Count-
Distinct problem must have error at least Ω(min(d, ϵ−1T,

√
ϵ−1L max(ln(T/L), 1))) =

Ω(min(d, ϵ−1T,
√

ϵ−1K max(ln(T/K), 1))) with constant probability. For (ϵ, δ)-differential
privacy, we can use a similar strategy as in [16] to get the following bounds:

▶ Theorem 4 (Simplified version of Theorem 19). Let ϵ, δ ∈ (0, 1]. Let K, T be sufficiently large
parameters. There exists a dimension d ∈ N and an input stream x of d-dimensional vectors
from {−1, 0, 1}d of length T with flippancy at most K which is valid in the “likes”-model,
such that any item-level, (ϵ, δ)-differentially private algorithm for CountDistinct must
have error at least Ω

(
ϵ−1 · min

(√
T

log T , (Kϵ)1/3

log(Kϵ)

))
with constant probability.

Note that this lower bound holds for the case where multiple insertions are allowed in every
time step. In Theorem 19 we also give a lower bound of Ω

(
K1/3

ϵ log K

)
for singleton-updates.

Time and Space Complexity

Our main algorithm (achieving the O(
√

ϵ−1K ln T) error bound for ϵ-differential privacy and
O
(
(K ln(1/δ) ln2 T)1/3/ϵ2/3) error bound for (ϵ, δ)-differential privacy) can be implemented

using constant time per update, assuming that drawing from a Laplace distribution takes
constant time. Specifically, the total running time is O(#updates + SKtLap), where tLap
is the time to draw one Laplace random variable, SK = O(

√
Kϵ/ ln T + 1) for ϵ-dp, and

SK = O

((
Kϵ√

ln(1/δ) ln(T/β)

)2/3
)

for (ϵ, δ)-dp. The algorithm uses O(d) words of space. The

only information our algorithm needs to store are the true counts for each item, plus a
constant number of words of extra information. This holds even for the case where K is
unknown, since we sequentially run our known K algorithm with increasing guesses for K.

Comparison to the recent work by Jain, Kalemaj, Raskhodnikova, Sivakumar, and
Smith [16]

In recent work, [16] considered the CountDistinct problem with a similar, but different
parameterization. In [16], they parameterize the additive error in the maximum flippancy, i.e.,
they parameterize on wx = maxi∈[d](

∑T
t=2 1(f t(xi) ̸= f t−1(xi)). Recall that K denotes the

M. Henzinger, A. R. Sricharan, and T. A. Steiner 40:5

total flippancy of a stream x and note that wx ≤ K ≤ d · wx. [16] consider only streams with
singleton updates and give algorithms for item-level, (ϵ, δ)-differential privacy in the general

model, with an error bound of Õ

(
min

(
(√wx log T + log3 T) ·

√
log(1/δ)

ϵ , (T log(1/δ))1/3

ϵ2/3 , T

))
2.

In comparison, our bounds in this setting are Õ
(

min
(

(K ln(1/δ) ln2 T)1/3

ϵ2/3

)
, K
)

. Note that
K ≤ T for singleton updates, and thus, our upper bounds recover their second and third
bound up to a ln2/3 T factor. Furthermore, ignoring polynomial factors in log T , log(1/δ)
and ϵ−1, their bound is O(√wx) while ours is O(K1/3). Thus, if (roughly) K < w

3/2
x ,

our algorithm outperforms theirs. Specifically, if d ≤ √
wx or if there are only few items

with high flippancy, we expect our algorithm to do better. In cases where the flippancy
is well-distributed, i.e., many items have a similar flippancy, and d ≥ √

wx, we expect the
algorithm in [16] to perform better.

In terms of space and time complexity, their algorithm, like ours, needs to maintain a
count for each element. Thus, the space in terms of words is Ω(d). On top of that, they run a
variant of the binary tree mechanism, which depending on the implementation, uses Ω(log T)
space. In their final solution, they actually run log T copies of the binary tree mechanism in
parallel, bringing their space consumption to O(d + log2 T) words. Thus, the space of our
algorithm is an additive log2 T term better, which can be crucial for large streams. In terms
of time complexity, each of the binary tree mechanism needs to draw Ω(T log T) independent
Laplace noises, thus their time complexity is at least Ω(T log2 TtLap), where tLap is the time
it takes to draw a Laplace noise. Also here, our algorithm is more efficient.

In terms of lower bounds, for item-level, ϵ-differential privacy in the “likes”-model, [16]
give a lower bound of Ω(min(ϵ−1w,

√
ϵ−1T , T)) for streams of maximum flippancy at most

w. For (ϵ, δ)-differential privacy, they give a lower bound of Ω̃(min(ϵ−1√
w, ϵ−2/3T 1/3, T))

for item-level privacy in the “likes”-model, and Ω̃(min(ϵ−1√
w, ϵ−3/4T 1/4, T)) for event-level

privacy in the general model, for streams of maximum flippancy at most w. Their upper
bounds in the item-level setting match their lower bounds up to factors polynomial in log T

and log(1/δ). For event-level in the general model, there is a gap for
√

T ≤ w ≤ T 2/3, and
closing this gap was posed as an explicit open question in [16]. As our second main result,
we make a step towards closing this gap, which we explain below.

Reduction from item-level, “likes”-model to output-dependent event-level, general
model

All upper bounds mentioned so far hold for item-level differential privacy. As our upper
bounds hold in the general model and our lower bounds hold in the “likes”-model, we can
conclude that for item-level privacy, the “likes”-model and the general model are roughly
equally hard. [16] arrived at this conclusion as well, albeit with a different parameterization.

However, for event-level differential privacy, the picture is different: for the “likes”-model,
a very simple algorithm gives an error of O(ϵ−1polylog(T)) with constant probability. To
see this, define the difference sequence for the CountDistinct problem as difft(x) =
CountDistinct(x)t −CountDistinct(x)t−1 for t > 1. As can be easily seen, (difft(x))t>1
and (difft(y))t>1 differ by at most 1 in at most one time step t for any event-level neighboring
streams x and y in the “likes”-model. Thus, applying a standard continual counting algorithm
gives the claimed error, as shown for “well-behaved” difference sequences in general in [11].

2 For simplicity of exposition, we use Õ(X) to denote O(X · polylog(X))

APPROX/RANDOM 2024

40:6 Private Counting of Distinct Elements in the Turnstile Model and Extensions

For event-level differential privacy and the general model however, the best known
algorithms are the algorithms for item-level differential privacy in this paper and [16]. [16]
also present lower bounds for event-level differential privacy in the general model which,
however, leave a gap for certain parameter settings. Closing that gap was explicitly posed
as an open question in [16]. We make a step towards closing that gap, by noting that all
existing differentially private algorithms for the CountDistinct problem in any model share
the following property: If CountDistinct(x) = CountDistinct(y) for any two input
streams x and y, then the output distributions of the algorithms are equal. That is, any two
streams which produce the same true output, will have the same output distributions. We
call such algorithms output-determined. We show that if we only consider output-determined
algorithms for CountDistinct, then achieving event-level differential privacy in the general
model is just as hard as item-level differential privacy for the “likes”-model. Thus our above
lower bounds also apply to such algorithms. In particular, this shows that if one were trying
to close the gap for event-level differential privacy in the general model, one needs to find an
algorithm which does not only depend on the true answers to CountDistinct.

▶ Theorem 5 (Simplified version of Theorem 15). Let ϵ > 0 and δ ≥ 0. Let A1 be an
event-level, (ϵ, δ)-differentially private, output-determined algorithm for CountDistinct
that works in the general model and has error at most α for streams of length T + 1 with
probability 1−β. Then there exists an item-level, (2ϵ, (1+eϵ)δ)-differentially private algorithm
A2 for CountDistinct that works in the “likes”-model, and has error at most α for streams
of length T with probability 1 − β.

Generalizations & Applications

While our algorithms are (nearly) tight for the CountDistinct problem, they are not
tailored specifically to the problem and work in a more general setting as well. In particular,
recall that CountDistinct(x)t =

∑d
i=1 f t(xi), where f t(xi) = 1(

∑
t′≤t xt′

i > 0). Now
consider any real-valued function Q on input streams x1, x2, . . . , with xi ∈ {−1, 0, 1}. We
use Qt(x) to denote Q(x1, . . . , xt). Our algorithm works for any such function Q such that
the following two conditions are fulfilled: (1) for any x and y which are neighboring, we
have |Qt(x) − Qt(y)| ≤ 1 for all time steps t, and (2)

∑T
t=1 |Qt(x) − Qt−1(x)| ≤ K.

▶ Theorem 6. Let Q be a function satisfying properties (1) and (2). Then there exists
1. an item-level ϵ-differentially private algorithm for computing Q with additive error

O(min(K,
√

ϵ−1K ln(T/β))), ϵ−1T log(T/β))

at all time steps with probability at least 1 − β, for any ϵ > 0;
2. an item-level (ϵ, δ)-differentially private algorithm for computing Q with additive error

O(min(K, (ϵ−2K ln(1/δ) ln2(T/β))1/3, ϵ−1
√

T ln(1/δ) log(T/β)))

at all time steps with probability at least 1 − β, for any ϵ > 0, δ ∈ (0, 1);
The extension to unknown K also holds, with extra ln K factors as earlier. Thus, for
a continuous function Q which has maximum sensitivity 1 over all time steps, we get
a bound parameterized in the sum of all differences, i.e., the L1-norm of the difference
sequence. While our results hold in the turnstile model and the additive error is parameterized
by the total flippancy, [11] gave an ϵ-differentially private mechanism with additive error
O(Γ log3/2 log(T/β)) in the insertions-only or deletions-only setting, where Γ is the continuous
global sensitivity which is the L1-norm of the difference sequence of two neighboring inputs.

M. Henzinger, A. R. Sricharan, and T. A. Steiner 40:7

We can apply our algorithm to the problem considered in Fichtenberger et al. [11] of
continuously counting high degree nodes under differential privacy, which counts the number
of nodes with degree at least τ , where τ is given and public. For user-level, edge-differential
privacy (i.e., neighboring streams may differ in all updates of the same edge), they give a
lower bound of Ω(n). Our algorithm gives new parameterized bounds for this problem: In
particular, choosing Qt(x) = # of high degree nodes

2 , Theorem 6 gives an error bound of roughly
O(

√
K), under ϵ-differential privacy, and roughly O(K1/3) under (ϵ, δ)-differential privacy,

where we ignore an O(ϵ−1 ln T ln(1/δ) ln K) factor. Note that K can be as large as T , but
for many applications, it could be much smaller: for example, in social networks, it has been
shown that the degree distribution follows a power-law distribution, which implies that the
set of high-degree nodes only changes infrequently. K does not to be given to the algorithm.

1.3 Algorithm Overview
The main idea of our algorithm is to use the sparse vector technique first introduced by
Dwork, Naor, Reingold, Rothblum, and Vadhan [7] (the form we use it in can be found in
Dwork and Roth [8]) on carefully chosen queries and with carefully chosen thresholds. The
sparse vector technique can be described as follows: It is given a data set x, a sequence of
q queries, a threshold Thresh, and a stopping parameter S. It will process these queries
sequentially, and for each of them answer “yes” or “no” depending on whether or not q(x) is
approximately (up to an additive error α) above the threshold. It stops after it has answered
“yes” S times. Dwork and Roth [8] show that it is possible to design an ϵ-differentially private
algorithm achieving the above with α = O(ϵ−1S log(q/β)) with probability 1 − β, and an
(ϵ, δ)-differentially private algorithm with α = O(ϵ−1

√
S log(1/δ) log(q/β)) with probability

1 − β. In the following discussion, we ignore ϵ−1, log(1/δ), log q and log(1/β) factors.
Our main idea is to note that the total flippancy K can be seen as an upper bound on the

total change in the output, i.e., the sum of the absolute differences in the output in every time
step. Our strategy is as follows: We start by estimating the number of distinct elements at
the beginning of the stream. Then, we keep reporting this estimate until a significant change
occurs in the true number of distinct elements. We track whether such a change has occurred
using the sparse vector technique. Once there has been a significant change, i.e., once the
sparse vector technique answers “yes”, we update the output. The goal now is to balance the
additive error of the sparse vector technique with the error accumulated between updates.
The error between updates is roughly Thresh; the error of the sparse vector technique is α;
and the total change of the output is bounded by K. To balance the two we set Thresh
= Θ(α). Furthermore we have to choose S in a way that makes sure that the sparse vector
technique does not abort before we have seen the entire stream. We can show that every
time our sparse vector technique answers “yes”, the change in output has been roughly
Thresh. Thus it is enough to set S > K/Thresh. As mentioned above, for ϵ-differential
privacy α (and, thus, Thresh) must depend linearly on S, which implies that S must be
chosen to be Θ(

√
K), giving an additive error of O(

√
K). For (ϵ, δ)-differential privacy, we

have Thresh= Θ(α) = O(
√

S). This implies that S3/2 must be Θ(K), i.e., S = Θ(K2/3).
Thus the additive error is O(K1/3).

Note that this requires that K is known at the beginning of the algorithm. If K is
unknown, we run the above algorithm for exponentially increasing guesses of K (K = 2, 4, 8,

etc.). In particular, we run the algorithm for a guess of K, and if it terminates preemptively,
we double our guess and repeat. Since we do not know beforehand how many instances are
needed, in order to make sure the resulting algorithm is still ϵ-differentially private, we run
the jth instance with privacy parameter ϵj = O(ϵ/j2), such that

∑∞
j=1 ϵj ≤ ϵ. At the end of

the algorithm, j = Θ(ln K), therefore we incur an extra ln2 K factor in the additive error.

APPROX/RANDOM 2024

40:8 Private Counting of Distinct Elements in the Turnstile Model and Extensions

2 Preliminaries

We denote {1, . . . , n} by [n] and the input stream length by T , the number of time steps.

Continual observation algorithm

An algorithm A in the continual observation model gets an update at every time step
t ≤ T , and produces an output at = A(x1, . . . , xt) which is a function of x1 to xt; AT (x) =
(a1, a2, . . . , aT) denotes the sequence of outputs at all time steps.

▶ Definition 7 (Differential privacy [6]). A randomized algorithm A is (ϵ, δ)-differentially
private ((ϵ, δ)-dp) if for all S ∈ range(AT) and all x, y neighboring

Pr[AT (x) ∈ S] ≤ eϵ Pr[AT (y) ∈ S] + δ.

If δ = 0 then A is ϵ-differentially private (ϵ-dp).

▶ Definition 8 (Laplace Distribution). The Laplace distribution centered at 0 with scale b is
the distribution with probability density function fLap(b)(x) = (2b)−1 · exp (−|x|/b) . We use
X ∼ Lap(b) or just Lap(b) to denote a random variable X distributed according to fLap(b)(x).

In our definitions below, we use χ to represent a generic universe of elements.

▶ Definition 9 (Sensitivity). Let f : χ → Rk. The Lp-sensitivity ∆p is defined as

max
x∈χ,y∈χ,x∼y

||f(x) − f(y)||p,

where x ∼ y denotes that x and y are neighbouring.

▶ Fact 1 (Theorem 3.6 in [8]: Laplace Mechanism). Let f be any function f : χ → Rk

with L1-sensitivity ∆1. Let Yi ∼ Lap(∆1/ϵ) for i ∈ [k]. The mechanism defined as A(x) =
f(x) + (Y1, . . . , Yk) satisfies ϵ-differential privacy.

▶ Fact 2 (Laplace Tailbound). If X ∼ Lap(b), then Pr[|X| ≥ t · b] ≤ e−t.

The following fact follows from Theorem A.1 in [8]:

▶ Fact 3 (Gaussian Mechanism). Let f be any function f : χ → Rk with L2-sensitivity
∆2. Let Yi ∼ N (0, σ2) for i ∈ [k], where σ ≥

√
2 ln(2/δ)∆2/ϵ. The mechanism defines as

A(x) = f(x) + (Y1, . . . , Yk) satisfies (ϵ, δ)-differentially privacy.

▶ Fact 4 (Gaussian tailbound). If X ∼ N (0, σ2), then Pr[|X| ≥ σ
√

ln(2/β)] ≤ β

The following facts are respectively given by Theorem 3.16, 3.20 and Corollary 3.21 in [8].

▶ Fact 5 (Composition Theorem). Let A1 be an (ϵ1, δ1)-differentially private algorithm
A1 : χ → range(A1) and A2 an (ϵ2, δ2)-differentially private algorithm A2 : χ × range(A1) →
range(A2). Then B : χ → range(A1) × range(A2) defined as B(x) = (A1(x), A2(x, A1(x)) is
(ϵ1 + ϵ2, δ1 + δ2)-differentially private.

▶ Fact 6 (Advanced Composition). Let ϵ, δ, δ′ ≥ 0. Let A1 be an (ϵ, δ)-differentially private
algorithm A1 : χ → range(A1) and Ai be (ϵ, δ)-differentially private algorithms Ai : χ ×
range(Ai−1) → range(Ai), for 2 ≤ i ≤ k. Then the composition B : χ → range(A1) ×
· · · × range(Ak) defined as B(x) = (A1(x), A2(x, A1(x)), . . . , Ak(x, Ak−1(x))) is (ϵ′, kδ + δ′)-
differentially private, where ϵ′ =

√
2k ln(1/δ′)ϵ + kϵ(eϵ − 1).

▶ Corollary 10. Let ϵ∗, δ, δ′ ≥ 0 and δ′, ϵ∗ < 1. Let A1, . . . , Ak be as in Fact 6 with

ϵ = ϵ∗/(2
√

2k ln(1/δ′)).

Then the composition B (defined as in Fact 6) is (ϵ∗, kδ + δ′)-differentially private.

M. Henzinger, A. R. Sricharan, and T. A. Steiner 40:9

3 Item-Level Algorithms in General Model

In this section, we give algorithms which work for any input sequence in the general model,
and thus also for input sequences that fulfill the conditions of the “likes”-model. The upper
bounds on the additive error for ϵ-differential privacy match the lower bounds in Section 5,
except for the log(T/β) factor in the case where K > T .

3.1 Known Total Flippancy
We prove Theorem 11 in this section. We give some intuition first on Algorithm 1. The
algorithm works by iteratively checking if the true number of distinct elements currently
present (called Q) is “far” from the current output of our algorithm (called out) using a
sparse vector technique (SVT) instantiation. We start the algorithm by estimating out at the
beginning of the stream (line 8). Then, we keep outputting out, while we track the difference
between out and the true number of distinct elements Q (line 14). Once there has been a
significant change, we update the output (line 18).

There are two parameters of interest here. One is the number of times we update the
output: we abort after SK updates happen (line 21). The other is the parameter Thresh,
which determines how large the current error needs to be such that we satisfy the condition
in line 14. The parameter SK goes into the error from composition, while the parameter
Thresh directly goes into the additive error bound.

The goal is to balance the error accumulated between updates (which is roughly Thresh),
and the error from updating out privately (which is roughly SK for ϵ-differential privacy, and
roughly

√
SK for (ϵ, δ)-differential privacy due to composition). Additionally, we want to

make sure our algorithm does not abort before having processed the entire stream. We show
that every time SVT returns “yes”, the total flippancy in the stream has increased by at
least Ω(Thresh). Since we know the total flippancy is bounded by K, in order to make sure
that we do not abort preemptively, we choose SK such that SK · Thresh ≈ K. Balancing the
two error terms yields an additive error of approximately

√
K for ϵ-differential privacy, and

K1/3 for (ϵ, δ)-differential privacy.

▶ Theorem 11. Let d and T be non-zero integers, let β > 0, and let K be an upper bound
on the total flippancy which is given. Let T be a known upper bound on the number of time
steps. Then there exists
1. an item-level ϵ-differentially private algorithm for CountDistinct in the general model

with error at most O(min(d, K,
√

ϵ−1K ln(T/β), ϵ−1T log(T/β)) at all time steps with
probability at least 1 − β for ϵ > 0;

2. an item-level (ϵ, δ)-differentially private algorithm for CountDistinct in the general
model with error O

(
min(d, K,

(
ϵ−2K ln(1/δ) ln2(T/β)

)1/3
, ϵ−1

√
T ln(1/δ) log(T/β)

)
at

all time steps with probability at least 1 − β, for any 0 < δ < 1 and 0 < ϵ < 1.

Proof. The O(min(d, K)) bound follows from the fact that the algorithm that outputs 0 at
every time step is ϵ-differentially private and has error at most min(d, K) for any ϵ. The
third error bounds in the minimum for Theorem 11 are achieved by Algorithm 1, as shown
below. Since we assume here all parameters are known, one can compute the minimum of
the three bounds and choose the algorithm accordingly. The fourth bound in Theorem 11
follow by a direct application of the Laplace mechanism Fact 1 with ∆1 = T resp. Gaussian
mechanism Fact 3 with ∆2 =

√
T .

APPROX/RANDOM 2024

40:10 Private Counting of Distinct Elements in the Turnstile Model and Extensions

Algorithm 1 CountDistinct, known K.

1: Input: Data Stream x = x1, x2, . . . , initial counts c1, . . . , cd (default 0), parameters ϵ, δ

and β, stream length bound T , stopping parameter SK ≥ 1
2: if δ = 0 then ϵ1 = ϵ/(2SK)
3: if δ > 0 then ϵ1 = ϵ/(4

√
2SK ln(1/δ))

4: count = 1
5: τ1 = Lap(2/ϵ1)
6: ν1 = Lap(1/ϵ1)
7: Q = 0
8: out = Q + ν1
9: Thresh = 16ϵ−1

1 (ln(2T/β))
10: for t = 1, . . . , do
11: ci = ci + xt

i for all i ∈ [d]
12: Q = |{i ∈ [d] | ci > 0}|
13: µt = Lap(4/ϵ1)
14: if |out − Q| + µt > Thresh + τcount then
15: count = count + 1
16: τcount = Lap(2/ϵ1)
17: νcount = Lap(1/ϵ1)
18: out = Q + νcount
19: end if
20: output out
21: if count ≥ SK then Abort
22: end for

The algorithm for our third bound, given in Algorithm 1, is based on the sparse vector
technique, where SK is a parameter dependent on K that we choose suitably below. We omit
the proof of the following lemma, since it follows from well-known techniques (Sparse Vector
Technique [7, 8], Laplace mechanism (Fact 1) and composition theorems (Facts 5 and 6)).

▶ Lemma 12. For δ = 0 and any ϵ > 0, Algorithm 1 is ϵ-differentially private. For 0 < ϵ < 1
and 0 < δ < 1, Algorithm 1 is (ϵ, δ)-differentially private.

We show the claimed accuracy bound using the following lemma.

▶ Lemma 13. For δ = 0, for any time step t before the algorithm aborts, we have that the
maximum error up to time t is at most O(ϵ−1SK ln(T/β)). Setting SK =

√
Kϵ/(18 ln(T/β))+

1, with probability at least 1 − β, Algorithm 1 does not abort before having seen the entire
stream, and has error at most O(

√
ϵ−1K ln(T/β) + ϵ−1 ln(T/β)). For δ > 0, for any

time step t before the algorithm aborts, we have that the maximum error up to time t is

O(ϵ−1
√

SK ln(1/δ) ln(T/β)). Setting SK =
(

Kϵ

36
√

ln(1/δ) ln(T/β)

)2/3
+ 1, with probability at

least 1 − β, Algorithm 1 does not abort before having seen the entire stream, and has error at
most O

((
ϵ−2K ln(1/δ) ln2(T/β)

)1/3 +ϵ−1
√

ln(1/δ) ln(T/β)
)

.

Proof. Note that at every time step t in Algorithm 1, we set Q =
∑d

i=1 f t(xi). Let
α = (8/ϵ1) ln(2T/β) = (1/2) · Thresh. By Laplace tailbounds (Fact 2), at every time step t:
(a) |τℓ| ≤ (2/ϵ1) ln(2T/β) = α/4 with probability at least 1 − β/(2T), where ℓ is the value

of variable count at time step t, and

M. Henzinger, A. R. Sricharan, and T. A. Steiner 40:11

(b) |µt| ≤ (4/ϵ1) ln(2T/β) = α/2 with probability at least 1 − β/(2T).
Thus, with probability ≥ 1 − β, we have at all time steps t simultaneously:

(i) Whenever the condition in line 14 is true at time t, then |out −
∑

i∈[d] f t(xi)| >

Thresh − 3α/4 = 5α/4, and
(ii) Whenever the condition in line 14 is false at time t, then |out −

∑
i∈[d] f t(xi)| ≤

Thresh + 3α/4 < 3α.

Further, the random variable νℓ for ℓ ∈ [SK] is distributed as Lap(1/ϵ1) and is added to∑
i∈[d] f t(xi) at every time step t where out is updated. By the Laplace tail bound (Fact

2), νℓ is bounded for all ℓ ∈ [SK] by ϵ−1
1 ln(SK/β) ≤ α/8 with probability at least 1 − β.

Altogether, all of these bounds hold simultaneously with probability at least 1 − 2β. We
condition on all these bounds being true.

Assume the algorithm has not terminated yet at time t and let out be the value of variable
out at the beginning of time t. Let pℓ be the last time step at which the value of out was
updated. It holds that |out −

∑
i∈[d] fpℓ

i (x)| = |νℓ| ≤ α/8. If the condition in line 14 is true
at time t, then∣∣∣∣∣∣
∑
i∈[d]

fpℓ

i (x) −
∑
i∈[d]

f t(xi)

∣∣∣∣∣∣ ≥

∣∣∣∣∣∣
∑
i∈[d]

f t(xi) − out

∣∣∣∣∣∣−
∣∣∣∣∣∣out −

∑
i∈[d]

fpℓ

i (x)

∣∣∣∣∣∣ ≥ 5α/4−α/8 = 9α/8.

Thus, between two time steps where the value of out is updated, there is a change of at
least 9α/8 in the sum value, i.e., the value of f t(xi) has changed at least once for ≥ 9α/8
different items i. Since K =

∑d
i=1
∑T

t=2 1(f t(xi) ̸= f t−1(xi)), to guarantee (under the noise
conditions), that the algorithm does not terminate before we have seen the entire stream, it
suffices to choose SK where SK > K/(9α/8).

For δ = 0, we have α = (8/ϵ1) ln(2T/β) = (16SK/ϵ) ln(2T/β), thus we have to choose
SK > Kϵ/(18SK ln(2T/β)). Choosing SK = ⌊

√
Kϵ/(18 ln(2T/β))⌋ + 1 fulfills this condition.

Similarly, for δ > 0, choosing SK =
(

Kϵ

36
√

ln(1/δ) ln(T/β)

)2/3
+ 1 fulfills this condition.

Now consider any time step t and let out be the output at time t, i.e., the value
after processing time step t. If the condition in line 14 is false, we showed above that
|out−

∑
i∈[d] f t(xi)| < 3α. If the condition is true at time t, we have out =

∑
i∈[d] f t(xi) + νℓ

for some ℓ ∈ [SK], and, thus, |out −
∑

i∈[d] f t(xi)| ≤ α/8 < α.
For δ = 0, we have α = (8/ϵ1) ln(2T/β) = O(

√
ϵ−1K ln(T/β) ln(T/β) + ϵ−1 ln(T/β)).

Plugging in SK =
(

Kϵ

36
√

ln(1/δ) ln(T/β)

)2/3
+ 1 yields the final bound for δ > 0. ◀

To finish the proof of Theorem 11, note that if ϵ−1 ln(T/β) >
√

ϵ−1K ln(T/β), then√
ϵ−1K ln(T/β) > K, which can be seen by multiplying both sides of the inequality with√
K/
√

ϵ−1 ln(T/β). Thus the upper bound min(d, K,
√

ϵ−1K ln(T/β)) holds for δ = 0.
Also, if ϵ−1

√
ln(1/δ) ln(T/β) >

(
ϵ−2K ln(1/δ) ln2(T/β)

)1/3, then
ϵ−1
√

ln(1/δ) ln(T/β) > K, which can be seen by first cubing the inequality and
then dividing by ϵ−2 ln(1/δ) ln2(T/β). Thus, for δ > 0, the upper bound of
min(d, K,

(
ϵ−2K ln(1/δ) ln2(T/β)

)1/3) holds. ◀

3.2 Generalizations
We now argue about Theorem 6. Let Q be a real-valued function on input streams from
{−1, 0, 1} and let Qt = Q(x1, . . . , xt). Further, let Q be such that 1.) for any x and y which are
neighboring, we have |Qt(x)−Qt(y)| ≤ 1 for all time steps t, and 2.)

∑T
t=1 |Qt(x)−Qt−1(x)| ≤

APPROX/RANDOM 2024

40:12 Private Counting of Distinct Elements in the Turnstile Model and Extensions

K. The first bound from Theorem 6 is achieved by an algorithm that never updates the
output, and the third bounds for ϵ and (ϵ, δ)-differential privacy are obtained by the Laplace
and Gaussian mechanisms, respectively. The second bound for both ϵ and (ϵ, δ)-differential
privacy is obtained by Algorithm 1 by setting Q = Qt(x) at every time step t. The proofs
follow by exchanging

∑
i∈[d] f t(xi) by Qt(x) in the proofs of Lemma 12 and 13.

4 A Connection between the General Model under Event-Level
Privacy and the “Likes”-Model under Item-Level Privacy

Our bounds from Theorems 2, 3, and 4 as well as the bounds from [16] imply that under
item-level privacy, the “likes”-model and the general model are roughly equally hard: all
upper bounds hold for the general model and all lower bounds hold for the “likes”-model,
and the bounds are tight up to a log T factor. However, under event-level privacy, the
“likes”-model is significantly easier than the general model: It can be solved via continual
counting on the difference sequence of the true output, which gives error polylogarithmic in
log T . This is possible because for event-level privacy in the “likes”-model, the difference
sequence of the output (i.e., the difference between the true output value of the current
and the preceding time step) has ℓ∞-sensitivity 1 for event-level privacy, but for item-level
privacy, the sensitivity can be as large as T .

In the general model, there are no better upper bounds known for event-level differential
privacy than for item-level differential privacy, and the upper and lower bounds from [16] for
(ϵ, δ)-differential privacy for the event-level setting in the general model leave a polynomial (in
T) gap, in the case where the maximum flippancy wx ∈ (T 1/2, T 2/3): In that case, ignoring
polynomial factors in ϵ−1, log(1/δ), and log T , the lower bound of [16] is Ω(T 1/4), while their
algorithm gives an additive error of O(T 1/3). Specifically, finding the best achievable error
for event-level privacy in the general model is explicitly posed as an open question in [16].

We resolve this question for a large class of algorithms, called γ-output-determined
algorithms. All known algorithms for this problem in any model are 0-output-determined.
Specifically, we show that for γ-output-determined algorithms our lower bounds and the lower
bounds from [16] for item-level privacy in the “likes”-model basically carry over to event-level
privacy in the general model. It follows that our algorithm and the algorithm from [16]
for event-level privacy in the general model are tight up to a factor that is linear in log T

within the class of output-determined algorithms. Note that our reduction works both for the
ϵ-differential privacy as well as for (ϵ, δ)-differential privacy and we give the corresponding
lower bounds in Theorems 16 and 19. In the following, we denote by CountDistinct(x)
the stream of true answers to the CountDistinct problem on stream x.

▶ Definition 14. Let γ ≥ 0. An algorithm A for the CountDistinct problem is said
to be γ-output-determined, if for all inputs x and y such that CountDistinct(x) =
CountDistinct(y) and any S ∈ range(A) we have:

Pr(A(x) ∈ S) ≤ Pr(A(y) ∈ S) + γ

▶ Theorem 15. Let ϵ > 0, δ ≥ 0 and γ ≥ 0. Let A1 be an event-level, (ϵ, δ)-differentially
private, γ-output-determined algorithm for CountDistinct that works in the general model
and has error at most α for streams of length T +1 with probability 1−β. Then there exists an
item-level, (2ϵ, (1 + eϵ)δ + eϵγ)-differentially private algorithm A2 for CountDistinct that
works in the “likes”-model, and has error at most α for streams of length T with probability
1 − β.

M. Henzinger, A. R. Sricharan, and T. A. Steiner 40:13

Proof. We describe algorithm A2, that is item-level (2ϵ, (1 + eϵ)δ + eϵγ)-dp in the “likes”-
model, derived from a γ-output-determined algorithm A1 which is event-level, (ϵ, δ)-dp in the
general model: Let x be an input for CountDistinct in the “likes”-model of length T , i.e., x

is such that
∑

t′≤t xt′

i can only take the values 0 or 1, for any i ∈ [d] and t ∈ [T]. Let x0 = 0dx,
i.e., we attach a d-dimensional all-zero vector before x, and define (A2(x))t = (A1(x0))t+1

for all t ∈ [T] (note that A1 can take inputs from the “likes”-model). We now show that
A2 is item-level (2ϵ, (1 + eϵ)δ + eϵγ)-differentially private. Let x and y be two item-level
neighbouring inputs in the “likes”-model. That is, there exists an item i such that the
streams xi and yi may be completely different, while xj = yj for all j ̸= i. Additionally, since
we are in the “likes”-model, for any time step t,

∑
t′≤t xt′

i ∈ {0, 1} and
∑

t′≤t yt′

i ∈ {0, 1}.
Next, we define input streams z and w in the general model where CountDistinct(z) =

CountDistinct(w), z is event-level neighbouring to x0, and w is event-level neighbouring
to y0. Since A1 is event-level (ϵ, δ)-dp and works for the general model, we then have for any
S ∈ range(A2)

Pr[A2(x) ∈ S] = Pr[(A1(x0))T +1
t=2 ∈ S] ≤ eϵ Pr[(A1(z))T +1

t=2 ∈ S] + δ

≤ eϵ Pr[(A1(w))T +1
t=2 ∈ S] + δ + γ

≤ e2ϵ Pr[(A1(y0))T +1
t=2 ∈ S] + (1 + eϵ)δ + eϵγ

= e2ϵ Pr[A2(y) ∈ S] + (1 + eϵ)δ + eϵγ,

where the second inequality holds as A1 is γ-output-determined.
To define such z and w, let −ei be the vector such that −ei(j) = 0 for all j ̸= i

and −ei(i) = −1. Then z = −eix and w = −eiy. Note that z and w are valid input
streams for the general model, while they are not valid for the “likes”-model. Clearly,
z is event-level neighbouring to x0, and w is event level neighbouring to y. Recall that
CountDistinct(z)t =

∑d
j=1 1(

∑
t′≤t zt

j > 0). Since
∑

t′≤t xt
i ∈ {0, 1} for all t ∈ [T] we

have
∑

t′≤t zt
i ≤ 0 for all t ∈ [T + 1]. By the same argument, we have

∑
t′≤t wt

i ≤ 0 for all
t ∈ [T + 1]. Since z and w only differ in the ith coordinate, which never contributes to the
CountDistinct value as it is never 1, we have CountDistinct(z) = CountDistinct(w).

We are left with analyzing the error of the two algorithms. For this, note that by definition
of x0, we have CountDistinct(x0)t+1 = CountDistinct(x)t. Thus, running A2 on x

gives the same error as running A1 on x0. ◀

In particular, for any output-determined algorithm, Theorem 15 implies that all lower bounds
on the error for the CountDistinct problem under item-level differential privacy which
hold for the“likes”-model (and thus, all lower bounds for CountDistinct under item-level
differential privacy shown in this paper in Theorem 19 and in [16]), carry over to event-level
differential privacy in the general model. This means that if there is an algorithm achieving
a better error than the bounds stated in Theorem 19 and in [16] for event-level differential
privacy in the general model, it cannot be γ-output-determined for γ = O(δ), i.e., it must be
such that it does not only depend on the number of distinct elements at any given time step.

5 Item-Level Lower Bounds in the “Likes”-Model

In the following we show lower bounds for solving CountDistinct under item-level differ-
ential privacy, and in the “likes”-model. The lower bounds also apply to the general model.
In Section 3, we showed a complementing upper bound which holds in the general model,
even if K is unknown to the algorithm.

APPROX/RANDOM 2024

40:14 Private Counting of Distinct Elements in the Turnstile Model and Extensions

▶ Theorem 16. Let d and T > 4 be non-negative integers and let ϵ > 0.
1. Let L ≥ 8 be a non-negative integer such that L ≤ dT . There exists an input stream x of

d-dimensional vectors from {−1, 0, 1}d, which is valid in the “likes”-model with multiple
updates per time step, with length T and flippancy K with min(3L/8, T/4 − 1) ≤ K ≤
min(L, dT/4) such that any ϵ-differentially private algorithm to the CountDistinct
problem with item-level privacy with error at most α at all time steps with probability at
least 2/3 must satisfy

α = Ω(min(d, L, ϵ−1T,
√

ϵ−1L max(ln(T/L), 1)))

= Ω(min(d, K, ϵ−1T,
√

ϵ−1K max(ln(T/K), 1))).

2. Let L ≥ 8 be a non-negative integer such that L ≤ T . There exists an input stream x of
d-dimensional vectors from {−1, 0, 1}d, which is valid in the “likes”-model with multiple
updates per time step, with length T , flippancy K with L/16 ≤ K ≤ min(L, T/4), and
with ||xt||1 = 1 for all t (i.e., each update modifies at most one item) such that any
ϵ-differentially private algorithm to the CountDistinct problem with item-level privacy
with error at most α at all time steps with probability at least 2/3 must satisfy

α = Ω(min(d, K,
√

ϵ−1K ln(T/K)).

Proof. Let d, T , and L be as given in the theorem statement. Assume there is an ϵ-
differentially private algorithm A for the CountDistinct problem with error at most α

at all time steps with probability at least 2/3. If α > d/2, then the error is Ω(d). Also, if
α > L/8, then α = Ω(L). Thus, in the following, we consider the case α ≤ d/2 and α ≤ L/8.
Defining m = ⌊2α⌋, it follows that m ≤ min(d, L/8).

Singleton updates. We first find T ′ ≤ T and L′ ≤ L such that 4m divides T ′ and m divides
L′. If this is not the case for T and L, then pick parameters T ′ and L′ such that (i) 4m

divides T ′ and m divides L′, (ii) ∆ = T − T ′ ≤ 4m < L/2 ≤ T/2 (i.e. T ′ = Θ(T)) and (iii)
0 ≤ L − ∆ − L′ ≤ m. This implies that L′ ≥ 7L/8 − ∆ ≥ 3L/8. Thus, as L ≤ T , then
0 ≤ L − ∆ − L′ = L − (T − T ′) − L′ = T ′ − L′ − (T − L) ≤ T ′ − L′, i.e., L′ ≤ T ′.

We use T ′ and L′ in the proof below to construct a sequence of length T ′ fulfilling the
statements of the theorem. To complete the proof of the theorem, we append to the sequence
T −T ′ many all-zero vectors to guarantee that the stream has length T . Note that appending
to the sequence “blank” operation will not invalidate the statements of the theorem.

We now construct a set of input sequences of length T ′ with flippancy K := min(L′, T ′/4)
and use them to prove a lower bound for α of Ω(min(K ln(T ′/K),

√
ϵ−1K ln(T ′/K))).

Combined with the above case distinctions giving lower bounds on α of Ω(d), and
Ω(L), the fact that K = Θ(L) and that T ′ = Θ(T), this implies that α =
Ω(min(d, K,

√
ϵ−1K(ln(T/K) + 1)).

Let k := min(L′, T ′/4)/m be a positive integer. Partition the timeline into T ′/m blocks
of length m, namely B1 = [1, m], B2 = [m + 1, 2m], Now, for any subset of blocks
J = (j1, . . . , jk) with 1 ≤ j1 < j2 < · · · < jk ≤ T ′/m, define an input sequence x(J) such
that for any item i ∈ [m] we insert element i in the ith time step of every odd block of J

(i.e. the first, third, ... block in J), and delete it again at the ith position of every even
block of J (i.e. the second, fourth, ... block in J). More formally, for any item i ∈ [m],
set x(J)t

i = 1 for all t = Bj2p−1 [i] = (j2p−1 − 1)m + i, p = 1 . . . , ⌈k/2⌉, and set x(J)t
i = −1

for all t = Bj2p = (j2p − 1)m + i, p = 1 . . . , ⌈k/2⌉. In all other time steps t, no updates
are performed, i.e., x(J)t is an all-zero vector. Thus, for every i ∈ [m], we have f t(xi) = 1

M. Henzinger, A. R. Sricharan, and T. A. Steiner 40:15

for all time steps t ∈ [j2p−1m, (j2p − 1)m], for all p ≤ ⌈k/2⌉, and f t(xi) = 0 for all time
steps t ∈ [j2pm, (j2p+1 − 1)m]. For any item m < i ≤ d, we have f t(xi) = 0 for all t ∈ [T ′].
Furthermore, items i with i > m (if they exist) are never inserted or deleted. In total,
there are k = min(L′, T ′/4)/m updates per item i ∈ [m], thus exactly K updates in total,
and, hence, the total flippancy is K = min(L′, T ′/4). If K = L′, then L ≥ K ≥ 3L/8. If
K = T ′/4, then L′ ≤ T ′ implies that L ≥ L′ ≥ K = T ′/4 ≥ L′/4 ≥ 3L/32 ≥ L/16. Thus in
either case K = Θ(L′). Furthermore K ≤ T ′/4 ≤ T/4.

Now let EJ , for J = (j1, . . . , jk) with 1 ≤ j1 < j2 < · · · < jk ≤ T ′/m, be the set
of output sequences where A outputs (i) a value of m/2 or larger for all time steps t ∈
[j2p−1m, (j2p − 1)m] with 1 ≤ p ≤ ⌈k/2⌉, and (ii) smaller than m/2 for all time steps t such
that (a) t < j1m or (b) t ∈ [j2pm, (j2p+1 − 1)m] for some 0 ≤ p < ⌈k/2⌉ or (c) t ≥ jkm. Note
that for an input sequence x(J) every output sequence where A has additive error smaller
than α = m/2 must belong to EJ . As the algorithm is correct with probability at least 2/3,
Pr[A(x(J)) ∈ EJ] ≥ 2/3.

Two input sequences are neighboring if they differ in the data of at most one item for
item-level differential privacy. As two input sequences x(I) and x(J) with I ̸= J differ in
the data of at most m items, it follows by group privacy that Pr[A(x(J)) ∈ EI] ≥ e−mϵ2/3
for any J = (j1, . . . , jk) with 1 ≤ j1 < j2 < · · · < jk ≤ T ′/m and I = (i1, . . . , ik) with
1 ≤ i1 < i2 < · · · < ik ≤ T ′/m. Also note that the set of output sequences EJ for distinct
J = (j1, . . . , jk) are disjoint, since for each multiple of m (i.e., the end of a block), it is clearly
defined whether the output is at least m/2 or smaller than m/2, and as such the values
j1, . . . , jk can be uniquely recovered. Thus, there are

(
T ′/m

k

)
disjoint events EJ and the sum

over all J of the probabilities that the algorithm with input x(I) outputs an event EJ is at
most 1. More formally, we have:

1 ≥
(

T ′/m

k

)
e−mϵ2/3 ≥ (T ′/m)k

(k)k
e−mϵ2/3. = T ′(K/m)

KK/m
e−mϵ2/3

where the last equality is since k = K/m. This gives

m2 + ϵ−1m ln(3/2) ≥ ϵ−1K ln(T ′/K)

which implies

m = Ω(min(K ln(T ′/K),
√

ϵ−1K ln(T ′/K)).

Note that since T ′ ≥ 4K, ln(T ′/K) ≥ ln(4) > 1. This completes the proof.

Multiple updates. We first find T ′ ≤ T and L′ ≤ L such that 4 divides T ′ and m divides L′.
If this is not the case for T and L, then pick parameters T ′ and L′ such that (i) 4 divides T ′

and m divides L′, (ii) ∆ = T − T ′ ≤ 4 (i.e. T ′ = Θ(T)) and (iii) ∆m ≤ L − L′ ≤ (∆ + 1)m.
This implies that L′ ≥ L − (∆ + 1)m ≥ L − 5m ≥ 3L/8.

We use T ′ and L′ in the proof below to construct a sequence of length T ′ fulfilling the
statements of the theorem. To complete the proof of the theorem, we append to the sequence
T −T ′ many all-zero vectors to guarantee that the stream has length T . Note that appending
to the sequence “blank” operation will not invalidate the statements of the theorem.

The idea is similar to above, only we do not define blocks, but directly choose k :=
min(L′/m, T ′/4) time steps in which all items in [m] are updated. Thus the flippancy K

will equal mk. More precisely, we construct the following set of input sequences. For any
I = (t1, . . . , tk) with 1 ≤ t1 < t2 < · · · < tk ≤ T ′, we define an input sequence x(I) as
follows: For any item i ∈ [m], set x(I)tj

i = 1 for all odd j, and x(I)tj

i = −1 for all even j.

APPROX/RANDOM 2024

40:16 Private Counting of Distinct Elements in the Turnstile Model and Extensions

All other coordinates are set to 0. In total, there are k updates per item in [m], thus, exactly
K updates in total, i.e., the total flippancy equals K = min(L′, mT ′/4). This implies that
min(3L/8, T/4 − 1) ≤ K ≤ min(L, dT/4).

Now, let EI , for I = (t1, . . . , tk) with 1 ≤ t1 < t2 < · · · < tk ≤ T ′, be the set of
output sequences with a value of m/2 or larger at all time steps t ∈ [t2p−1, t2p) for some
1 ≤ p ≤ ⌈k/2⌉, and a value smaller than m/2 at all time steps t where (a) t ≤ t1 or (b)
t ∈ [t2p, t2p+1) for some 0 ≤ p < ⌈k/2⌉. Note that for input sequence x(I) every output
sequence where A has an additive error smaller than m/2 must be in EI . As the algorithm is
correct with probability at least 2/3, Pr[A(x(I)) ∈ EI] ≥ 2/3. As two input sequences x(I)
and x(J) with I ̸= J = (j1, . . . , jk) with 1 ≤ j1 < j2 < · · · < jk ≤ T ′ differ in the data of at
most m items, it follows by group privacy that Pr[A(x(I)) ∈ EJ] ≥ e−mϵ2/3 for any such J .

Let J = (j1, . . . , jk) with 1 ≤ j1 < j2 < · · · < jk ≤ T ′. Note that the events EI and EJ

for any I ̸= J are disjoint, since in the event EI it is clearly defined for every time step
whether the output is at least m/2 or smaller than m/2, and from that the set I can be
uniquely recovered. Thus, there are

(
T ′

k

)
disjoint events EJ and the probability that with

input x(I) the algorithm outputs any one of them is at most 1. Thus we have

1 ≥
(

T ′

k

)
e−mϵ2/3 ≥ T ′k

kk
e−mϵ2/3 = T ′K/m

(K/m)K/m
e−mϵ2/3 (1)

where the last equality is since k = K/m.
Next we consider two cases, the first one resulting in two different lower bounds on m

and the second one giving a third lower bound on m. The combination of these three lower
bounds then gives the claimed bound above of

α = m/2 = Ω(min(ϵ−1T ′,
√

ϵ−1K max(ln(T ′/K), 1), K max(ln(T ′/K), 1))))

Case 1. L′ < mT ′/4. In this case K = L′ and we have

m2ϵ + m ln(3/2) ≥ K ln(T ′m/K) ≥ K max(ln(T ′/K), 1)

where the last inequality holds since K ≤ mT ′/4, i.e., ln(T ′m/K) ≥ ln(4) > 1. Hence

m = Ω(min(
√

ϵ−1K max(ln(T ′/K), 1), K max(ln(T ′/K), 1))).

As K = L′ = Θ(L) it follows that

m = Ω(min(
√

ϵ−1L max(ln(T ′/L), 1), L max(ln(T ′/L), 1))).

Case 2. L′ ≥ mT ′/4. This implies that K = mT ′/4 and, thus, that there are updates in at
least T ′/4 many time steps. In this case Inequality 1 can be reformulated as follows:

1 ≥ T ′K/m

K/m
K/m

e−mϵ2/3 = 4T ′/4e−mϵ2/3 = eln(4)T ′/4−mϵ2/3,

which implies that Inequality 1 is satisfied for m = Ω(ϵ−1T ′).
These two cases show α = Ω(min(ϵ−1T ′,

√
ϵ−1L max(ln(T ′/L), 1), L max(ln(T ′/L), 1)))

for the above input sequence. Combined with the above lower bounds on α of Ω(min(d, L)) and
the fact that T ′ = Θ(T), it follows that α = Ω(min(d, L, ϵ−1T,

√
ϵ−1L max(ln(T/L), 1))). ◀

M. Henzinger, A. R. Sricharan, and T. A. Steiner 40:17

Algorithm 2 CountDistinct, unknown K.

1: Input: Data Set D = x1, x2, . . . , initial counts c1, . . . , cd (default 0), parameters ϵ, δ

and β, T

2: t = 1
3: K1 = 2
4: for j = 1, . . . , do
5: ϵj = 6ϵ/(π2j2)
6: δj = 6δ/(π2j2)
7: βj = 6β/(π2j2)
8: if δ = 0 then
9: SKj

=
√

Kjϵj/(18 ln(T/βj)) + 1
10: end if
11: if δ > 0 then

12: SKj
=
(

Kjϵj

36
√

ln(1/δj) ln(T/βj)

)2/3
+ 1

13: end if
14: Run Algorithm 1 on xt, xt+1, . . . , c1, . . . , cd, ϵj , δj , βj , T , SKj until it aborts
15: Let t′ be the last time step processed by Algorithm 1
16: t = t′ + 1
17: j = j + 1
18: Kj = 2j

19: end for

6 Unknown Total Flippancy

The algorithms from Section 3 can be easily extended to the case where the total flippancy
K is not known beforehand, at the cost of polylog(K) factors in the error bound, as shown
by Algorithm 2 and the lemmata below. The fact that K is not known causes no serious
problem, as the algorithm repeatedly “guesses” K and then runs the algorithm from earlier
with the current guess.

▶ Lemma 17. For any 0 < ϵ < 1 and 0 ≤ δ < 1, Algorithm 2 is (ϵ, δ)-differentially private.

Proof. By Lemma 12, the jth instance of Algorithm 1 is (ϵj , δj)-differentially private. Since∑∞
j=1 ϵj = ϵ and

∑∞
j=1 δj = δ, by Fact 5, Algorithm 2 is (ϵ, δ)-differentially private. ◀

▶ Lemma 18. For δ = 0, the error of Algorithm 2 is at most

O(ln K
√

ϵ−1K ln(T ln K/β) + ϵ−1 ln2 K ln(T ln K/β)).

For δ > 0, the error of Algorithm 2 is at most

O((ϵ−1K ln2 K ln(ln K/δ) ln2(T ln K/β))1/3 + ϵ−1 ln2 K
√

ln(ln K/δ) ln(T ln K/β)).

Proof. Let jl be the value of variable j after the last element in the stream is processed. For
any j < jl, note that by Lemma 13, with probability at least 1 − βj , by the choice of SKj

,
the algorithm does not abort before having seen the entire stream if the total flippancy is at
most Kj . Thus, when the algorithm aborts for some j < jl, we know that the flippancy is at
least Kj , and the bound from Lemma 13 holds for the jth instance of Algorithm 1 with SKj

.
Since the algorithm aborts for all j < jl, we can conclude that the total flippancy of

the stream processed by the jth run of Algorithm 1 is at least Kj . Since
∑

j βj = β, with
probability at least 1 − β, (1) the total flippancy K is at least

∑
j<jl

Kj = 2jl − 1, and

APPROX/RANDOM 2024

40:18 Private Counting of Distinct Elements in the Turnstile Model and Extensions

(2) the bound from Lemma 13 holds for all instances of Algorithm 1 (with their respective
parameters). It follows (a) that K ≥ Kjl

− 1 ≥ Kj for all j < jl and (b) jl = O(ln K). The
maximum error over the stream is the maximum error of any instance of Algorithm 1. Since
Kj = O(K), ϵjl

≤ ϵj and δjl
≤ δj for all j ≤ jl, the final bound is now obtained by plugging

K, ϵjl
= Θ(ϵ/j2) for ϵ, δjl

= Θ(δ/j2) for δ, and βjl
= Θ(β/j2) for β into the bound from

Lemma 13, and upper bounding j2 by log2 K. ◀

One can also obtain the minimum of the bound from Lemma 18 and min(K, T, d) at the
cost of an additive ϵ ln2 K ln(ln K/β) factor with a slightly more involved algorithm, which
involves choosing to either not update the output or abort if there is a trivial algorithm
which performs better for the current estimate of K. If we knew the value of K beforehand,
we could choose the best algorithm upfront. Not knowing the value of K makes it slightly
more complicated. However, the algorithm and analysis are fairly straightforward, and we
defer it to the full version.

7 Lower Bounds for Approximate Differential Privacy

In this section, we adapt the lower bounds from [16] for item-level differential privacy to our
parameter scheme.

▶ Theorem 19. Let ϵ, δ ∈ (0, 1].
1. Let K, T be sufficiently large parameters. There exists a dimension d and an input stream

x of d-dimensional vectors from {−1, 0, 1}d of length T and with flippancy at most K

which is valid in the “likes”-model, such that any item-level, (ϵ, δ)-differentially private
algorithm to the CountDistinct problem with error at most α at all time steps with
probability at least 0.99 must satisfy α = Ω

(
min

(√
T

ϵ log T , (Kϵ)1/3

ϵ log(Kϵ)

))
.

2. Let K and T be sufficiently large parameters satisfying K ≤ T . There exists a dimension
d and an input stream x of d-dimensional vectors from {−1, 0, 1}d of length T and with
flippancy at most K which is valid in the “likes”-model and satisfies ||xt||1 = 1 for all t,
such that any item-level, (ϵ, δ)-differentially private algorithm to the CountDistinct
problem with error at most α at all time steps with probability at least 0.99 must satisfy
α = Ω

(
K1/3

ϵ log K

)
.

The reduction in [16] is based on a lower bound for the 1-way marginals problem. In that
problem, the data set y is an table consisting of n rows and m columns, where every entry is
in {0, 1}. Two data sets y and y′ are neighbouring if they differ in at most one row. The goal
is to estimate the average column sums, i.e., the vector (

∑n
i=1 y[i, j])j∈[m]. The following

lower bound holds for estimating 1-way marginals under (ϵ, δ)-differential privacy:

▶ Lemma 20 (Bun, Ullman, and Vadhan [4]). Let ϵ ∈ (0, 1], γ ∈ (0, 1), and m, n ∈ N, and
δ = o(1/n). Any algorithm which is (ϵ, δ)-differential private and has error at most γ with
probability at least 0.99 satisfies n = Ω

(√
m

γϵ log m

)
.

Proof Sketch of Theorem 19. We start by arguing about Item 2. For this case, our example
stream is exactly the same as in [16], given in Algorithm 5 in [16] (for a formulation using
our slightly different notation see Algorithm 3). They give a reduction from the 1-way
marginals problem: For any instance I of the 1-way marginals problem with n rows and
m columns, there is an instance C(I) of CountDistinct with T = 2mn, such that if I
and I ′ are neighbouring, then C(I) and C(I ′) are item-neighbouring. Further, if we can
solve C(I) within error α, we can solve I within error α/n. It follows by Lemma 20 that
α = Ω

(
min

(√
m

ϵ log m , n
))

. In the instance they constructed, d = n, i.e. each row in the 1-way

M. Henzinger, A. R. Sricharan, and T. A. Steiner 40:19

marginals problem gives an item in the CountDistinct problem. Further, the total flippancy
K can be as large as 2mn for worst case inputs. Thus, in order to apply the reduction, we
need 2mn ≤ K ≤ T . Given parameters K ≤ T , we choose m = K/(2n). The lower bound

Ω
(

min
(√

m
ϵ log m , n

))
translates to Ω

(
min

(√
K/(2n)

ϵ log(K/(2n)) , n

))
. For n = K1/3

2(ϵ log K)2/3 , we have

√
K/(2n)

ϵ log(K/(2n)) ≥ K1/3ϵ1/3 log1/3 K

ϵ log(K1/2)
= Ω

(
K1/3 log1/3 K

ϵ2/3 log K

)
= Ω(n).

Thus, we get α = Ω
(

K1/3 log1/3 K
ϵ2/3 log K

)
.

For Item 1., where we allow general updates, we have to slightly modify the example
in [16]: namely, in their Algorithm 5, we collapse every one of their vectors z(j), j = 1, . . . , m,
into vectors of length 2, one time step for all insertions corresponding to column j, and one
time step for all deletions corresponding to column j. See Algorithm 4. We then again get a
reduction with the same properties as before, except that T = 2n and K can be as large as
2mn. Now, the analysis from [16] can be repeated with our T taking the role of wx in [16],
and our K taking the role of T in [16]. ◀

Algorithm 3 Algorithm 5 from [16]: Reduction from 1-way marginals to CountDistinct.

1: Input: Data Set y[1], . . . , y[n] ∈ {0, 1}n×m and blackbox access to a mechanism M for
CountDistinct

2: Output: Estimates of marginals b = (b[1], . . . , b[m])
3: for j = 1, . . . , m do
4: for i = 1, . . . , n do
5: Set z(j)[i] = ei

6: Set z(j)[i + n] = −ei

7: end for
8: end for
9: Run M on x → z(1) ◦ z(2) ◦ · · · ◦ z(m) and record answer vector r

10: for j ∈ [m] do do
11: b[j] = r[(2j − 1)n]/n

12: end for
13: output b

Algorithm 4 Reduction from 1-way marginals to CountDistinct for arbitrarily many updates
per round.

1: Input: Data Set y[1], . . . , y[n] ∈ {0, 1}n×m and blackbox access to a mechanism M for
CountDistinct

2: Output: Estimates of marginals b = (b[1], . . . , b[m])
3: for j = 1, . . . , m do
4: Set z(j)[1] = yT [j]
5: Set z(j)[2] = −yT [j]
6: end for
7: Run M on x → z(1) ◦ z(2) ◦ · · · ◦ z(m) and record answer vector r

8: for j ∈ [m] do do
9: b[j] = r[(2j − 1)]/n

10: end for
11: output b

APPROX/RANDOM 2024

40:20 Private Counting of Distinct Elements in the Turnstile Model and Extensions

References
1 Aditya Akella, Ashwin Bharambe, Mike Reiter, and Srinivasan Seshan. Detecting ddos attacks

on isp networks. In Proceedings of the Workshop on Management and Processing of Data
Streams, pages 1–2, 2003.

2 Daniel N Baker and Ben Langmead. Dashing: fast and accurate genomic distances with
hyperloglog. Genome biology, 20:1–12, 2019.

3 Jean Bolot, Nadia Fawaz, S. Muthukrishnan, Aleksandar Nikolov, and Nina Taft. Private
decayed predicate sums on streams. In Proc. 16th ICDT, pages 284–295, 2013. doi:10.1145/
2448496.2448530.

4 Mark Bun, Jonathan R. Ullman, and Salil P. Vadhan. Fingerprinting codes and the price of
approximate differential privacy. SIAM J. Comput., 47(5):1888–1938, 2018. doi:10.1137/
15M1033587.

5 Vera Clemens, Lars-Christian Schulz, Marten Gartner, and David Hausheer. Ddos detection
in P4 using HYPERLOGLOG and COUNTMIN sketches. In Proc. NOMS 2023, pages 1–6,
2023.

6 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. Calibrating noise
to sensitivity in private data analysis. In Shai Halevi and Tal Rabin, editors, Theory of
Cryptography, Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA,
March 4-7, 2006, Proceedings, volume 3876 of Lecture Notes in Computer Science, pages
265–284. Springer, 2006. doi:10.1007/11681878_14.

7 Cynthia Dwork, Moni Naor, Omer Reingold, Guy N. Rothblum, and Salil P. Vadhan. On the
complexity of differentially private data release: efficient algorithms and hardness results. In
Proc. 41st STOC, pages 381–390, 2009. doi:10.1145/1536414.1536467.

8 Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci., 9(3-4):211–407, 2014.

9 Alessandro Epasto, Jieming Mao, Andres Muñoz Medina, Vahab Mirrokni, Sergei Vassilvitskii,
and Peilin Zhong. Differentially private continual releases of streaming frequency moment
estimations. In Yael Tauman Kalai, editor, Proc. 14th ITCS, pages 48:1–48:24, 2023. doi:
10.4230/LIPIcs.ITCS.2023.48.

10 Cristian Estan, George Varghese, and Michael E. Fisk. Bitmap algorithms for counting active
flows on high-speed links. IEEE/ACM Trans. Netw., 14(5):925–937, 2006.

11 Hendrik Fichtenberger, Monika Henzinger, and Lara Ost. Differentially private algorithms for
graphs under continual observation. In Proc. 29th ESA, pages 42:1–42:16, 2021.

12 Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data base
applications. J. Comput. Syst. Sci., 31(2):182–209, 1985.

13 Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. Hyperloglog: the
analysis of a near-optimal cardinality estimation algorithm. In Proc. 2007 Conference on
Analysis of Algorithms, pages 127–146, 2007.

14 Badih Ghazi, Ravi Kumar, Jelani Nelson, and Pasin Manurangsi. Private counting of distinct
and k-occurring items in time windows. In Proc. 14th ITCS, pages 55:1–55:24, 2023. doi:
10.4230/LIPIcs.ITCS.2023.55.

15 Monika Henzinger, A. R. Sricharan, and Teresa Anna Steiner. Differentially private histogram,
predecessor, and set cardinality under continual observation, 2023. arXiv:2306.10428.

16 Palak Jain, Iden Kalemaj, Sofya Raskhodnikova, Satchit Sivakumar, and Adam Smith. Count-
ing distinct elements in the turnstile model with differential privacy under continual observation,
2023. arXiv:2306.06723.

17 Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm for the distinct
elements problem. In Proc. 29th PODS, pages 41–52, 2010.

18 Matti Karppa and Rasmus Pagh. Hyperlogloglog: Cardinality estimation with one log more.
In Proc. 28th KDD, pages 753–761, 2022.

https://doi.org/10.1145/2448496.2448530
https://doi.org/10.1145/2448496.2448530
https://doi.org/10.1137/15M1033587
https://doi.org/10.1137/15M1033587
https://doi.org/10.1007/11681878_14
https://doi.org/10.1145/1536414.1536467
https://doi.org/10.4230/LIPIcs.ITCS.2023.48
https://doi.org/10.4230/LIPIcs.ITCS.2023.48
https://doi.org/10.4230/LIPIcs.ITCS.2023.55
https://doi.org/10.4230/LIPIcs.ITCS.2023.55
https://arxiv.org/abs/2306.10428
https://arxiv.org/abs/2306.06723

M. Henzinger, A. R. Sricharan, and T. A. Steiner 40:21

19 Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Why go logarithmic if we can
go linear?: Towards effective distinct counting of search traffic. In Prov. 11th EDBT, pages
618–629, 2008.

20 Dingyu Wang and Seth Pettie. Better cardinality estimators for hyperloglog, pcsa, and beyond.
In Proc. 42nd PODS, pages 317–327, 2023.

21 Lotte Weedage, Nelly Litvak, and Clara Stegehuis. Locating highly connected clusters in large
networks with hyperloglog counters. J. Complex Networks, 9(2), 2021.

APPROX/RANDOM 2024

Hilbert Functions and Low-Degree Randomness
Extractors
Alexander Golovnev # Ñ

Georgetown University, Washington, DC, United States of America

Zeyu Guo # Ñ

The Ohio State University, Columbus, OH, United States of America

Pooya Hatami # Ñ

The Ohio State University, Columbus, OH, United States of America

Satyajeet Nagargoje # Ñ

Georgetown University, Washington, DC, United States of America

Chao Yan # Ñ

Georgetown University, Washington, DC, United States of America

Abstract
For S ⊆ Fn, consider the linear space of restrictions of degree-d polynomials to S. The Hilbert
function of S, denoted hS(d,F), is the dimension of this space. We obtain a tight lower bound on
the smallest value of the Hilbert function of subsets S of arbitrary finite grids in Fn with a fixed size
|S|. We achieve this by proving that this value coincides with a combinatorial quantity, namely the
smallest number of low Hamming weight points in a down-closed set of size |S|.

Understanding the smallest values of Hilbert functions is closely related to the study of degree-d
closure of sets, a notion introduced by Nie and Wang (Journal of Combinatorial Theory, Series A,
2015). We use bounds on the Hilbert function to obtain a tight bound on the size of degree-d closures
of subsets of Fn

q , which answers a question posed by Doron, Ta-Shma, and Tell (Computational
Complexity, 2022).

We use the bounds on the Hilbert function and degree-d closure of sets to prove that a random
low-degree polynomial is an extractor for samplable randomness sources. Most notably, we prove
the existence of low-degree extractors and dispersers for sources generated by constant-degree
polynomials and polynomial-size circuits. Until recently, even the existence of arbitrary deterministic
extractors for such sources was not known.

2012 ACM Subject Classification Theory of computation → Pseudorandomness and derandomization

Keywords and phrases Extractors, Dispersers, Circuits, Hilbert Function, Randomness, Low Degree
Polynomials

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.41

Category RANDOM

Related Version Full Version: https://eccc.weizmann.ac.il/report/2024/092/ [20]

Funding Alexander Golovnev: Supported by the NSF CAREER award (grant CCF-2338730)
Pooya Hatami: Supported by NSF grant CCF-1947546.
Satyajeet Nagargoje: Supported by the NSF CAREER award (grant CCF-2338730)
Chao Yan: Research supported in part by by a gift to Georgetown University.

Acknowledgements We thank Omar Alrabiah, Jesse Goodman, Jonathan Mosheiff, and João Ribeiro
for sharing with us an early draft of their work. We would also like to thank Jesse Goodman and S.
Venkitesh for helpful discussions and pointers. We are very grateful to the anonymous reviewers for
their comments and pointers to related work. Part of this work was conducted while the second
author was visiting the Simons Institute for the Theory of Computing at UC Berkeley; he extends
his thanks to the institute for its support and hospitality.

© Alexander Golovnev, Zeyu Guo, Pooya Hatami, Satyajeet Nagargoje, and Chao Yan;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 41; pp. 41:1–41:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alexgolovnev@gmail.com
https://golovnev.org
https://orcid.org/0000-0002-7847-1027
mailto:zguotcs@gmail.com
https://zeyuguo.bitbucket.io
https://orcid.org/0000-0001-7893-4346
mailto:pooyahat@gmail.com
https://pooyahatami.org
https://orcid.org/0000-0001-7928-8008
mailto:satyajeetn2012@gmail.com
https://satyajeetn.github.io
https://orcid.org/0009-0003-0452-7360
mailto:cy399@georgetown.edu
https://sites.google.com/georgetown.edu/chao-yan/home
https://orcid.org/0000-0001-6482-6643
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.41
https://eccc.weizmann.ac.il/report/2024/092/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

41:2 Hilbert Functions and Low-Degree Randomness Extractors

1 Introduction

1.1 Hilbert Functions
Low-degree polynomials are fundamental objects in theoretical computer science, and their
properties are extensively studied due to their important role in areas such as error correcting
codes and circuit lower bounds. Let d ≥ 0 be an integer, F be a field, and S ⊆ Fn be a set.
Each degree-d n-variate polynomial p over F can be naturally viewed as a map p : Fn → F,
and hence also defines a map p|S : S → F. Considering the linear space of all such maps in FS ,
which is a subspace of the space of all maps from S to F, allows one to tap into a wide array
of algebraic techniques in order to prove useful facts about the set S. This approach was for
example utilized in complexity theory famously in the work of Smolensky [39], where proving
bounds on the dimension of the aforementioned subspace was used to obtain lower-bounds for
AC0[⊕] circuits computing the indicator function of the set S, for various S ⊆ {0, 1}n. The
dimension of the space consisting of p|S for all degree-d polynomials p is indeed a well-studied
and classical concept in algebraic geometry known as the (affine) Hilbert function of S,
denoted by hS(d,F). Hilbert functions encode important geometric and algebraic information,
such as the dimension, degree, and regularity of varieties, in a more general context.

Hilbert functions have previously been studied in complexity theory due to their ap-
plications in circuit lower bounds, in particular for AC0[⊕] circuits, that were established
by Smolensky [39] and Razborov [36]. Such applications require finding sets S ⊆ {0, 1}n

where the Hilbert function takes a very large value. However, it is also interesting to prove
general lower bounds or find lower-bounding methods for arbitrary sets S. An example
of such a result is the work of Moran and Rashtchian [32], who showed upper and lower
bounds on hS(d,F) for S ⊆ {0, 1}n ⊆ Fn via various concepts in VC theory. [32] treated the
Hilbert function as a complexity measure of the set S and compared it to measures that
arise naturally in learning theory, including “shattering” and “strong shattering” values.

Suppose r > 0 is an integer. It is natural to wonder, what the extreme values of hS(d,F)
are, among all sets S of size |S| = r. It is not hard to show that the maximum value is equal
to min (r, hFn(d,F)) when S ⊆ Fn. For example, the maximum value of the Hilbert function
of a set S ⊆ Fn

2 of size r is min(r,
(

n
≤d

)
).

On the other hand, finding the true smallest value of hS(d,F) is a natural and intriguing
question even when S is restricted to subsets of some finite and structured set in Fn.

▶ Question 1. Let 0 ≤ d ≤ n be integers, F be a field, and A = A1 × · · · × An ⊆ Fn where
Ai ⊆ F are finite sets. For any r ≤ |A|, what is the smallest value of hS(d,F) among all
subsets S ⊆ A of cardinality |S| = r?

This question has been answered in the case of F = F2 and A = Fn
2 by Keevash and

Sudakov [27] and Ben-Eliezer, Hod, and Lovett [6], and later generalized to F = Fp and
A = Fn

p by Beame, Oveis Gharan, and Yan [4]. For simplicity, let r = pk for some k ≥ 0. [4]
proved that the smallest value of hS(d,Fp) with |S| = r is equal to the number of degree-≤ d

monomials on k variables, for example when p = 2, this is equal to simply
(

k
≤d

)
=
(log2 r

≤d

)
.

We prove a more general result that answers Question 1 for arbitrary finite grids A ⊆ Fn

in arbitrary fields F. We show that the smallest values of Hilbert functions are exactly
determined by an extremal combinatorial question about the number of low-Hamming-weight
elements in down-closed sets, which we solve by building on the work of Beelen and Datta [5].

The prior works discussed above were motivated by applications in bounding the list-size
of the Reed-Muller codes and obtaining certain extensions of Frankl–Ray-Chaudhuri–Wilson
theorems on cross-intersecting sets. In contrast, in this paper, we are interested in Question 1
due to its applications in pseudorandomness, particularly in randomness extraction.

A. Golovnev, Z. Guo, P. Hatami, S. Nagargoje, and C. Yan 41:3

Understanding the smallest values of Hilbert functions is closely related to the study of
degree-d closure of sets, a notion introduced by Nie and Wang [33].

▶ Definition 1. The degree-d closure of a set T ⊆ Fn is defined as

cld(T) := {a ∈ Fn | for every degree-d polynomial f , f |T ≡ 0 ⇒ f(a) = 0} .

Equivalently, cld(T) is the set of all points a ∈ Fn such that the values f(a) of a degree-d
polynomial f are determined by f |T .

The existence of a small set with a large degree-d closure has application to hitting-set
generators for polynomials [17]. As an application of our answer to Question 1, we obtain an
upper bound on the size of cld(T) in terms of |T |. Our bound in fact yields an optimal way
of creating a small set with a large degree-d closure.

Futhermore, Question 1 has direct implications to the theory of randomness extractors,
which we discuss next.

1.2 Randomness Extractors
The theory of randomness extractors is an active research area that was initiated in [38, 7]
with the motivation of simulating randomized algorithms with access to “weak” randomness
sources. The main objective of this theory is to design extractors that are capable of
purifying imperfect randomness sources into high-quality random bits or bit sequences.
Extractors and related objects such as dispersers, samplers, and condensers have since found
numerous applications in constructing other pseudorandom objects such as pseudorandom
generators [34] and expander graphs [50], as well as applications in other areas of theoretical
computer science and mathematics including cryptography [15], combinatorics [30], hardness
of approximation [51], error correcting codes [42], and metric embeddings [25].

A deterministic extractor for a family X of distributions over {0, 1}n is a map f : {0, 1}n →
{0, 1}m such that for any X ∈ X , f(X) is close to the uniform distribution in statistical
distance. It is common to measure the amount of randomness in a random variable X by
its min-entropy, defined H∞(X) := − log2 maxx∈{0,1}n Pr[X = x]. It is easy to show that no
deterministic extractor can extract from general n-bit randomness sources of min-entropy as
high as n − 1 [11]. As a result, researchers in the area have explored two directions. Much
of the focus in the area has been given to the more powerful seeded extractors that have
access to an additional short purely random seed. This article contributes to another line
of work that has extensively investigated the extra assumptions on the randomness sources
that allow for explicit deterministic extractors and dispersers to exist. A widely studied
class of sources in this latter direction, introduced in [43] is “samplable sources”, where the
sources of randomness are distributions sampled by applying a low-complexity map (e.g.,
a decision forest, local map, NC0 circuit, AC0 circuit, an affine or a low-degree map) to
the uniform distribution. Unfortunately, constructing explicit extractors even for sources
samplable by really low-complexity maps has been quite challenging, and for example all
the known constructions of extractors for local sources require quite high min-entropy of
Ω(

√
n) [47, 14]. Due to the difficulty of constructing good explicit extractors and motivated

by applications in complexity theory such as circuit lower bounds [29] and lower bounds for
distribution-sampling [46], researchers have considered the seemingly easier task of proving
the existence of low-complexity extractors [45, 19, 10, 44, 8, 16, 24, 12, 1].

The state of affairs is much worse when it comes to randomness extraction from sources
sampled by more powerful maps such as AC0[⊕] or low-degree F2-polynomial maps. In
this case obtaining nontrivial explicit constructions and even non-explicit low-complexity

APPROX/RANDOM 2024

41:4 Hilbert Functions and Low-Degree Randomness Extractors

extractors remains open. In fact, the same problems are open even in the case of dispersers.
Here a map f : {0, 1}n → {0, 1} is a disperser for X if for every source X ∈ X , the support
of f(X) is {0, 1}. On the positive side, Chattopadhyay, Goodman, and Gurumukhani [9],
recently proved the existence of deterministic (not necessarily low-complexity) extractors for
low-degree F2-polynomial sources with logarithmic min-entropy.

1.3 Our Results on Hilbert Functions
We obtain our answer to Question 1 by first reducing it to a purely combinatorial problem. In
particular, via an algebraic geometric argument, we prove the following theorem which states
that the minimum value of Hilbert functions over subsets of a grid is exactly captured by a
combinatorial quantity related to down-closed sets. (A set T ⊆ Nn is said to be down-closed
if T is closed under decreasing any coordinates of its elements.)

▶ Theorem 2 (See Corollary 35). Let F be a field, and A1, . . . , An ⊆ F be finite sets of size
|Ai| = ri. Define A = A1 × · · · × An. For every k ≤ |A|,

min
S⊆A:|S|=k

hS(d,F) = min
down-closed T ⊆F :|T |=k

|T≤d| ,

where F =
∏

i{0, . . . , ri − 1} and T≤d = {x ∈ T :
∑

i xi ≤ d}.

For space reasons, we defer the proofs of Theorem 2 and the consequent results to the
full version [20].

Let I be the ideal of F[X1, . . . , Xn] associated with a set S ⊆ A, that is, the set of all
polynomials vanishing on S.

Classical results in algebraic geometry (such as Hilbert’s Nullstellensatz) establish close
connections between the structure of S and the structure of I, which allows us to focus on
studying I.

The proof of Theorem 2 is based on the idea that the ideal I can be reasonably ap-
proximated by another ideal, the ideal of leading terms of I. This approximation preserves
important information about I, and consequently, about S as well. In particular, when the
ideal of leading terms of I is defined with respect to a specific total order of monomials
compatible with the total degree, it can be shown that such an approximation preserves the
value of the Hilbert function. One advantage of working with the ideal of leading terms is
that it is a monomial ideal, that is, an ideal generated by monomials, whose relatively simple
structure can be analyzed using combinatorial tools.

We remark that the concept of transforming a general ideal into a monomial ideal is
closely related to the theory of Gröbner bases, which serves as a basis of computational
algebraic geometry. For a detailed discussion, see, e.g., [3]. This concept is also used in
Smolensky’s algebraic method for proving circuit lower bounds [40].

Theorem 2 allows us to reduce the problem of determining the smallest value of Hilbert
function of a set of size k to understanding the smallest number of low-Hamming-weight
points in down-closed sets of the same size. We then solve this combinatorial problem by
proving that the minimum is obtained by the down-closed set MF (k) which is defined as the
set of k lexicographically first elements of F .

▶ Theorem 3 (See Theorem 38). Let 1 ≤ r1 ≤ · · · ≤ rn be integers and let F =∏n
i=1{0, . . . , ri − 1}. Then

min
down-closed T ⊆F

|T≤d| = |MF (k)≤d| .

A. Golovnev, Z. Guo, P. Hatami, S. Nagargoje, and C. Yan 41:5

In the case of r1 = · · · = rn = 2, we prove the above theorem via an elementary
combinatorial argument, that via a series of operations turns any set of k elements into
MF (k) without increasing the number of elements of Hamming weight ≤ d. We prove the
general case by building on a recent result of Beelen and Datta [5]. This result generalizes
the work of Wei [49] and Heijnen–Pellikaan [22, 21] in studying the generalized Hamming
weights of certain linear codes.

We record the following corollary of our results specialized to finite fields which generalizes
the bounds due to [27, 6, 4], where Mn

q (k) is the set of k lexicographically first strings in the
set
∏n

i=1{0, 1 . . . , q − 1}.

▶ Corollary 4 (See Corollary 39). For every prime power q, and n, k, d ∈ N where k ≤ qn, we
have

min
S⊆Fn

q :|S|=k
hS(d,Fq) = |Mn

q (k)≤d| .

In particular, setting q = 2, for every n, k, d ∈ N where k ≤ 2n, and every S ⊆ Fn
2 of size

|S| = k,

hS(d,F2) ≥
(

⌊log(k)⌋
≤ d

)
.

1.3.1 Degree-d Closure of Sets
Motivated by its applications to combinatorial geometry, the notion of degree-d closures of
subsets of Fn

q was introduced in [33]. This concept has since found further applications and
connections to complexity theory [28, 35, 41] and pseudorandomness [17].

Recall that the degree-d closure cld(T) of a set T ⊆ Fn over a finite field F is the set of
all points a ∈ Fn such that any degree-d polynomial vanishing on T also vanishes at a. Nie
and Wang [33] proved the following result.

▶ Theorem 5 ([33, Theorem 5.6]). Let n, d ∈ N and T ⊆ Fn
q . Then

|cld(T)| ≤ qn

hFn
q
(d,Fq) · |T |. .

Building on our results on Hilbert functions, we obtain an improvement of Theorem 5 by
obtaining a tight upper bound on the size of degree-d closures of sets.

▶ Theorem 6 (See Theorem 47 and Theorem 48). Let n, d, m ∈ N. Let T ⊆ Fn
q be a set of

size m. Then

|cld(T)| ≤ max
0≤k≤qn:|Mn

q (k)≤d|≤m
k =

{
max0≤k≤qn:|Mn

q (k)≤d|=m k if m ≤ hFn
q
(d,Fq),

qn otherwise.
(1)

Moreover, this bound is tight in the sense that for any 0 ≤ m ≤ qn, there exists T ⊆ Fn
q of

size m for which (1) holds with equality.

In fact, the set T of size m that attains the bound in the above theorem can be constructed
explicitly; see Theorem 48 for details.

For convenience, we state the following corollary which is used later in the paper. For
n, d, δ ∈ N, denote by N(n, d, δ) the number of monomials Xe1

1 · · · Xen
n with e1, . . . , en ≤ δ

and e1 + · · · + en ≤ d.

APPROX/RANDOM 2024

41:6 Hilbert Functions and Low-Degree Randomness Extractors

▶ Corollary 7. Let n, d, ℓ ∈ N. If T ⊆ Fn
q is a set of size less than N(ℓ, d, q − 1), then

|cld(T)| < qℓ. In particular, if q = 2 and T ⊆ Fn
2 is a set of size less than

(
ℓ

≤d

)
, then

|cld(T)| < 2ℓ.

Proof. Observe that |Mn
q (qℓ)≤d| = N(ℓ, d, q − 1). Then apply Theorem 6. ◀

Let us compare our bound with the bound of Nie and Wang in some specific settings.

▶ Example 8. Suppose ℓ ≤ n. Let T ⊆ Fn
2 be a set of size

(
ℓ

≤d

)
− 1. Then by Corollary 7,

we have the bound |cld(T)| ≤ 2ℓ − 1. On the other hand, the bound of Nie and Wang
(Theorem 5) gives

|cld(T)| ≤ 2n(
n

≤d

) · |T | ,

which is exponential in n, rather than in ℓ, at least when d ≤
(1

2 − c
)

n for some constant
c > 0.

▶ Example 9. Suppose ℓ ≤ n and d < q. Let T ⊆ Fn
q be a set of size N(ℓ, d, q − 1) − 1 =(

ℓ+d
d

)
− 1. Then by Corollary 7, we have the bound |cld(T)| ≤ qℓ − 1, which is exponential in

ℓ log q. On the other hand, the bound of Nie and Wang (Theorem 5) gives

|cld(T)| ≤ qn(
n+d

d

) · |T | ,

which is exponential in n log q, rather than in ℓ log q, at least when n + d ≤ q1−c for some
constant c > 0.

In [17], Doron, Ta-Shma, and Tell explicitly asked if there exists a small set T ⊆ Fn
q

whose degree-d closure is very large. Our Theorem 6 gives an upper bound on the size of the
degree-d closure of T in terms of the size of T , which is tight in the sense that there exist
sets T that exactly meet this bound for every cardinality of T . Moreover, such sets T can be
constructed explicitly (see Theorem 48). Thus, we completely resolve the question posed by
Doron, Ta-Shma, and Tell.

1.4 Our Results on Randomness Extractors
Continuing the line of work on low-complexity extractors, in this paper we investigate the
power of low-degree polynomials in randomness extraction.

▶ Question 2. For which families X of sources does there exist a low-degree disperser?
Similarly, for which families X of sources does there exist a low-degree extractor?

Let us first discuss the easier task of obtaining low-degree dispersers before moving on to our
main application of low-degree extractors. For simplicity, we will focus on the most important
case of extracting randomness over F2, but all our results easily generalize to Fq. Non-explicit
constructions of low-degree dispersers can be obtained via understanding the probability that
a random low-degree polynomial is a disperser for a family X of distributions over {0, 1}n

which we identify with Fn
2 in the natural way. Our starting point is the observation that the

notion of Hilbert functions can be used to exactly describe the probability that a random
degree-d polynomial f : {0, 1}n → {0, 1} is a disperser for a fixed source X ∈ X . Indeed, this
probability is exactly equal to 1 − 21−hS(d,F2), where S = support(X). Thus, in particular,
Corollary 4 can be used to bound the probability that a random degree-d polynomial is not
a disperser for a fixed source.

A. Golovnev, Z. Guo, P. Hatami, S. Nagargoje, and C. Yan 41:7

1.4.1 Low-Degree Dispersers
Let X be a family of sources of min-entropy ≥ k. Observing that the support of any
distribution X ∈ X is of size ≥ 2k, one gets as an immediate corollary of Corollary 4, the
existence of low-degree dispersers X as long as |X | is small.

▶ Theorem 10 (Informal, see Corollary 50). Let n, d, k ≥ 1. Let X be a family of distributions
of min-entropy ≥ k. Then a random degree-d polynomial over F2 is a disperser for X with
probability at least

1 − |X | · 21−(k
≤d) .

This theorem itself implies the existence of low-degree dispersers for several interesting
families of samplable sources such as sources sampled by local maps, bounded-depth decision
forests, and polynomial-sized bounded-fan-in circuits, to name a few.

A map f : {0, 1}m → {0, 1}n is called ℓ-local if each of its output bits depends on at
most ℓ input bits. A depth-ℓ decision forest is a map f where each output bit can be
computed as a depth-ℓ decision tree. It is easy to obtain an upper bound exponential in
poly(n) on the number of local or decision forest sources. Hence we get the following as a
corollary of Theorem 10.

▶ Corollary 11 (Informal, see Corollary 51). Let 1 ≤ ℓ ≤ d ≤ n be integers. There exists a
degree-d disperser

for the family of ℓ-local sources on {0, 1}n with min-entropy k > d(2ℓn + 2ℓn log n)1/d.
for the family of depth-ℓ decision forest sources on {0, 1}n with min-entropy k > d((ℓ +
log n)2ℓ+1n)1/d.

As mentioned above, since in addition to the min-entropy requirement, the only require-
ment in Theorem 10 about the family X is a bound on |X |, it can be used to immediately
obtain low-degree dispersers for various other families of sources as well. For example, since
for any c, the number of Boolean circuits with ≤ nc bounded fan-in gates is at most 2O(nc+1),
one can also use Theorem 10 to obtain a degree-O(c) disperser for such families of circuits.
However, we will not do an exhaustive search for all such applications, and instead our
main disperser applications will focus on two powerful families of sources, namely sources
sampled by low-degree polynomials over F2 and AC[⊕] circuits which we define as the family
of unbounded-depth polynomial-size Boolean circuits with AND, OR, XOR, NOT gates of
unbounded fan-in, where the input gates are not counted towards the size.

Note that low-degree polynomial maps f : {0, 1}m → {0, 1}n, even affine ones, can depend
on the entire input for any m ≫ n and thus one cannot simply bound |X | when X is the
family of sources sampled by low-degree polynomials. This property holds for AC[⊕] circuits,
as we allow them to non-trivially depend on an arbitrary number of input gates (since the
circuit gates have unbounded fan-in). Nevertheless, utilizing an “input-reduction” trick of [9]
which applies to both the foregoing families of sources, it can be shown that for our disperser
purposes we may assume the input of both families of sources to be of length O(n). This
allows us to apply Theorem 10 to obtain low-degree dispersers for both of these families.

▶ Theorem 12 (Informal, see Theorems 53 and 54). For every 1 ≤ ℓ < d ≤ n, there exists a
degree-d disperser

for the family of degree-ℓ sources on {0, 1}n with min-entropy k ≥ (12ℓ · dd · n)
1

d−ℓ + 1.
for the family of nℓ-size AC[⊕] circuit sources on {0, 1}n with min-entropy k ≥ (302 · dd ·
n2ℓ)

1
d−2 + 1.

In particular, for every ℓ ∈ N, there is a degree-(ℓ + 2) disperser for degree-ℓ sources on
{0, 1}n with min-entropy Ω (

√
n).

APPROX/RANDOM 2024

41:8 Hilbert Functions and Low-Degree Randomness Extractors

We note that both of these source families are very powerful, and to the best of our
knowledge, no nontrivial low-complexity dispersers for either of these families of sources was
known prior to this work (except in the easier case of degree-1 sources which corresponds to
affine sources for which explicit extractors for logarithmic entropy was recently proved [30]).
Let us also point out that the two foregoing classes have incomparable power, and that it is
straightforward to use our proof technique to conclude the same result for a class of sources
that generalizes both AC[⊕] and constant-degree polynomials. Indeed, the input-reduction
and counting idea works for the “hybrid” class of polynomial-size circuits which extends
AC[⊕] by allowing additional unbounded fan-in gates computing arbitrary polynomials of
fixed constant degree. However, for ease of exposition, we have chosen to present only the
results for AC[⊕] and low-degree sources separately.

1.4.2 Low-Degree Extractors
Next, we move on to another application concerning the existence of low-degree extractors
for samplable sources. Can we prove the existence of low-degree extractors for all the families
for which we proved the existence of low-degree dispersers? We prove this by showing an
analogue of Theorem 10 for extractors.

▶ Theorem 13 (Informal, see Theorem 58 for the more general statement). Let X be a family
of distributions of min-entropy k ≥ 5 log n over {0, 1}n for large enough n. Then for every
d ≥ 6, a uniformly random degree-d polynomial is an ε-extractor for X with probability at
least

1 − |X | · e3n−O(kd/2)/n2

for ε = (2d)d · k−d/4.

A similar statement (see Theorem 58) holds for families of sources that are close to convex
combinations of another small family of sources. Combined with the input-reduction trick,
we obtain as a corollary, the existence of low-degree extractors for various families of sources,
notably, lower-degree sources and AC[⊕] circuits.

▶ Theorem 14 (Informal, see Theorem 60). For all ℓ, d ≥ 1, and all large enough n, and
k ≥ 5 log n. There exists a degree-d F2-polynomial that is an ε-extractor for the following
families of sources over {0, 1}n for ε = (2d)d · k−d/4:

ℓ-local sources for k ≥ (2ℓn3 log n)2/d.
depth-ℓ decision forest sources for k ≥ (2ℓn3(log n + ℓ))2/d.
degree-ℓ sources for k ≥ (3ℓn)

6
d−2ℓ .

nℓ-size AC[⊕] circuit sources (with unbounded number of input gates) for k ≥ 3n
4(ℓ+1)

d−4 .

In Theorem 61, we further extend our low-degree extractors to multi-output extractors
that output Θ(k) bits. This is done by independently picking random degree-d polynomials
p1, . . . , pt for some t = Θ(k), and analyzing the probability that each pi is an extractor for
the family of sources obtained by X conditioned on the values of p1, . . . , pi−1.

Let us now discuss our proof technique for Theorem 13. Recall that Theorem 10 was a
corollary to Corollary 4 which showed that a random polynomial is with high probability
non-constant on the support of any fixed high min-entropy distribution. A priori it is not
clear how to use this bound on the Hilbert function to prove Theorem 13.

Indeed, let us consider the simpler case of a fixed k-flat source X over {0, 1}n, which is
uniformly distributed over a set S ⊆ {0, 1}n with |S| = 2k. Note that a map p : {0, 1}n →
{0, 1} is an extractor for X if it has small bias on S. Thus, for example, to prove the special

A. Golovnev, Z. Guo, P. Hatami, S. Nagargoje, and C. Yan 41:9

case of Theorem 13 for small families of k-flat sources, we would need to prove that a random
degree-d polynomial is small-biased on S with high probability. However, Corollary 4 only
tells us that hS(d,F2) ≥

(
k

≤d

)
, which is not enough to prove concentration bounds for the

bias of a random degree-d polynomial on an arbitrary set S. We note that when S is highly
structured, that is when it is an affine subspace, this problem is equivalent to questions about
list-decoding size of Reed-Muller codes, and known results such as one by Kaufman, Lovett,
and Porat [26] that show that the number of distinct ε-biased degree-d polynomials on a
k-dimensional subspace S is at most (1/ε)kd−1 could be utilized. However, for our application
we have to deal with arbitrary sets S.

Uniform covering by sets of full Hilbert dimension. We say that a set T ⊆ {0, 1}n has
“full Hilbert dimension” if hT (d,F2) = |T |. Note that when T has full Hilbert dimension, then
the restriction of a random degree-d polynomial to T is uniformly distributed over {0, 1}T .
In particular, if T is a sufficiently large set of full Hilbert dimension, then a random degree-d
polynomial is small-biased on T with high probability. We use this observation to design our
technique for bounding the probability that a random degree-d polynomial is small-biased on
any fixed source X of large min-entropy. For simplicity we describe the idea for flat sources.
In this case, X is uniformly distributed over a set S with |S| ≥ 2k. It is sufficient to prove
the existence of an almost-uniform covering of S by large sets T1, . . . , Tt of the same size
with full Hilbert dimensions, where we call a covering almost-uniform if each element x ∈ S

belongs to roughly tm/|S| many sets, where we assume |Ti| = m.
We obtain such a covering by analyzing the probability that a uniformly picked subset

Ti ⊆ S has full Hilbert dimension. Using our bound on the Hilbert function, Corollary 4,
which allows us to bound the size of the “degree-d closure” of small sets, we prove that a
random set Ti of size m, for some m =

(Θ(k)
≤d

)
, has full Hilbert dimension with high probability.

Similarly, we prove using the Bayes rule, that we may pick these good sets Ti’s of full Hilbert
dimension in a way that leads to an almost uniform covering. Since Ti’s are of sufficiently
large size

(Θ(k)
≤d

)
and of full Hilbert dimension, we can use the Hoeffding inequality to bound

the probability that a random degree-d polynomial is biased on a Ti to be exponentially small
in Θ(k)d, which is good enough for our applications to existence of low-degree extractors.
We obtain the following result which can be used to prove Theorem 13.

▶ Theorem 15 (Informal, see Theorem 57). Let n, d, k ≥ 1, and ε > 0 be a real. Then for every
distribution X over {0, 1}n with H∞(X) ≥ k, a uniformly random degree-d polynomial f is
an ε-extractor for X, with probability at least 1 − e3n−ε2(ℓ

≤d)/(Cn2) where ℓ = k/2 − log(32n/ε)
and C = 7 · (32)2.

We find our technique of obtaining almost uniform coverings with sets of full Hilbert
dimension to be powerful, and hope that it will find other applications beyond the ones
explored here.

1.5 Remarks
Correlation bounds over arbitrary subsets. We note that our proof of Theorem 15 (The-
orem 58) can be modified to the following correlation bounds with any fixed function.

▶ Theorem 16. Let n, d, k ≥ 1, ε > 0 be a real, and g : Fn
2 → F2 be a fixed function. Then

for every distribution X over {0, 1}n with H∞(X) ≥ k, for a uniformly random degree-d
polynomial f we have

Pr[f(X) = g(X)] = 1
2 ± ε,

with probability at least 1 − e3n−ε2(ℓ
≤d)/(Cn2) where ℓ = k/2 − log(32n/ε) and C = 7 · (32)2.

APPROX/RANDOM 2024

41:10 Hilbert Functions and Low-Degree Randomness Extractors

This generalization is quite straightforward, as once we obtain a uniform covering by sets
of maximum Hilbert dimension, then Hoeffding bounds can be used to bound the correlation
of a random polynomial with the fixed function restricted to the sets belonging to the cover.
This can then be used to bound the over-all correlation with the fixed function in a similar
way to the proof of Theorem 58.

Punctured Reed-Muller codes. The special case of Theorem 16 when X is a flat source can
be interpreted as a bound on the list-decoding size of Reed-Muller codes when “punctured” on
a large set S ⊆ Fn

2 . Recall that the binary Reed-Muller code RM[d, n] consists of codewords
in Fn

2 that correspond to the evaluation vectors of degree ≤ d polynomials over F2. Given a
set S ⊆ Fn

2 , the resulting punctured code consists of the evaluation of degree ≤ d polynomials
on S. In this context, Theorem 16 can be used to bound the list-size of any puncturing of the
Reed-Muller code, showing that for any word w from FS

2 , only a small fraction of codewords
are within radius 1

2 − ε of w. Another interpretation of Theorem 16 is that any puncturing of
the Reed-Muller codes over a set S can be turned into a “small-biased” code without much
loss in the rate of the code.

Sampling lower bound for polynomial sources. Our low-degree extractor for lower-degree
sources (Theorem 14) has a direct application in distributions that are hard to sample
by low-degree polynomials. Indeed, an argument similar to the proof of [48, Lemma 3],
Theorem 14 implies the existence of a degree-O(d) polynomial p for which the distribution
(U, p(U)) cannot be sampled by any degree-d source, where U ∼ Un.

Suppose that p is a degree-O(d) polynomial that is an ε-extractor for the family of
degree ≤ 2d sources over {0, 1}n of min-entropy ≥ n

2 , where ε = o(1). The existence of
such a polynomial p is guaranteed by Theorem 14. Now suppose that (G(U′), g(U′)), where
U′ ∼ Um for some m ≥ 1, is a degree ≤ d source sampling (U, p(U)). In particular, G is
an n-bit degree ≤ d source and g is a degree ≤ d polynomial. Consider the n-bit random
variable R = G(U′) · g(U′) + Un · (1 − g(U′)). Since R is sampled by a degree ≤ 2d source
of min-entropy n − O(1), Pr[p(R) = 1] = 1

2 + o(1). On the other hand, by the definition R,
we have Pr[p(R) = 1] ≥ 1

2 + Ω(1), which is a contradiction.

Related Work. An independent and concurrent paper by Alrabiah, Goodman, Mosheiff, and
Ribeiro [2] proves the existence of low-degree extractors for similar families of sources that
are considered in our work, as well as sumset sources. While the proofs are quite different,
they both rely on bounds on the dimension of punctured Reed-Muller codes (equivalently
the Hilbert function).

2 Preliminaries

All logarithms in this paper are base 2. By N we denote the set of non-negative integers. For
a positive integer n, by [n] we denote the set {1, . . . , n}. For a prime power q, denote by Fq

the finite field q elements.
For simplicity, throughout this paper, we refer to a polynomial as a degree-d polynomial

if its total degree is at most d. When q is a prime power, by Pq(n, d) we denote the set of all
degree-d polynomials from F[X1, . . . , Xn] with individual degrees at most q − 1. Note that
each element of Pq(n, d) corresponds to a unique map Fn

q → Fq.

A. Golovnev, Z. Guo, P. Hatami, S. Nagargoje, and C. Yan 41:11

Let r1, . . . , rn ≥ 1 be integers and F =
∏n

i=1{0, . . . , ri − 1}. For x ∈ F and i ∈ [n], xi

denotes the ith coordinate of x. For x ∈ F , we define its generalized Hamming weight as
|x| :=

∑
i xi, where the summation is over the integers. For an integer d ≥ 0, and a set

T ⊆ F , we denote the set of its elements of generalized Hamming weight ≤ d by

T≤d := {x ∈ T : |x| ≤ d} .

For a, b ∈ F , we write a ≤P b if ai ≤ bi for all i ∈ [n]. We say a subset T ⊆ F is
down-closed if for all a, b ∈ F such that a ≤P b, if b is in T , then so is a. Similarly, we say a
subset T ⊆ F is up-closed if for all a, b ∈ F such that a ≤P b, if a is in T , then so is b.

The lexicographic order ≺ on F is defined as follows. For distinct x, y ∈ F , x precedes
y, denoted x ≺ y, in lexicographic order if xi < yi, where i is the smallest index such that
xi ̸= yi.

We will be studying the following quantity.

▶ Definition 17. For F =
∏n

i=1{0, . . . , ri − 1} and k ≤ |F |, let

HF (d, k) := min
T

|T≤d| ,

where the minimum is taken over all down-closed sets T ⊆ F with |T | = k. Moreover, denote
HF (d, k) by Hn

q (d, k) in the special case where r1 = · · · = rn = q for some q ≥ 1.

2.1 Probability Distributions
We use lowercase letters such as x, y to denote vectors, uppercase bold letters such as X, Y
to denote random variables, and X , Y to denote families of distributions. By Un we denote
the uniform distribution over {0, 1}n.

The statistical distance between two distributions A and B over a finite domain X is

∆(A, B) = 1
2

(∑
x∈X

|Pr[x ∈ A] − Pr[x ∈ B]|
)

.

We say two distributions A and B are ε-close if ∆(A, B) ≤ ε. For a distribution X ∼ {0, 1}n,
the min-entropy of X is

H∞(X) = min
x∈support(X)

− log(Pr[X = x]) .

We will use following forms of Chernoff’s and Hoeffding’s bounds (see, e.g., [31, 23]).

▶ Theorem 18 (Chernoff bound). Let X1, . . . , Xn ∈ {0, 1} be independent random variables.
Let X =

∑n
i=1 Xi and µ = E(X). Then we have

Pr[|X − µ| ≥ δµ] ≤ 2e−µδ2/3

for all 0 < δ < 1.

▶ Theorem 19 (Hoeffding’s inequality). Let X1, . . . , Xn ∈ [0, 1] be independent random
variables, X =

∑n
i=1 Xi and µ = E[X]. Then,

Pr[|X − µ| ≥ R] ≤ 2e− 2R2
n .

APPROX/RANDOM 2024

41:12 Hilbert Functions and Low-Degree Randomness Extractors

2.2 Randomness Sources, Dispersers, and Extractors
▶ Definition 20 (Sources and Their Convex Combinations). A distribution X ∼ {0, 1}n is a
source from a class C of functions, if X = f(Um) for some f : {0, 1}m → {0, 1}n ∈ C. A
distribution Y is a convex combination of sources Xi if Y =

∑
i piXi for some non-negative

pi satisfying
∑

i pi = 1, i.e., Y samples from each Xi with probability pi.

One of the most powerful classes of sources that we consider in this work is the class of
circuits of polynomial size.

▶ Definition 21 (AC[⊕] circuits). An AC[⊕] circuit is an unbounded-depth Boolean circuit
consisting of AND, OR, XOR, NOT gates of unbounded fan-in. The size of such a circuit is
the number of non-input gates in it.

We focus on the class of AC[⊕] circuit as it generalizes circuit classes previously studied in
this context: unbounded-depth circuits of bounded fan-in from P/poly, and bounded-depth
circuits of unbounded fan-in from, say, AC0. We remark that we define AC[⊕] sources (see
Definition 22) as sources where each output is computed by an AC[⊕] circuit of polynomial
size but with an arbitrary (possibly super-polynomial) number of inputs. This explains why
in this context P/poly and AC0 circuits are incomparable, and why we work with AC[⊕]
circuits generalizing both of the aforementioned classes. In fact, our results hold even for a
larger class of circuits where not only XOR but arbitrary constant-degree polynomials over
F2 can be computed at gates (see the discussion at the end of Section 6).

▶ Definition 22 (Structured Sources). Let n, d, m ∈ N, f : {0, 1}m → {0, 1}n, and X be a
distribution over {0, 1}n that is generated as f(Um).

X is called a d-local source if every output bit of f depends only on at most d of its
input bits.
X is called a depth-d decision forest source if every output bit of f is determined by a
depth-d decision tree of its input variables.
X is called a degree-d source if every output bit of f is a degree-d polynomial over F2.
X is called a size-nd circuit source if there is an AC[⊕] circuit of size nd that computes
all output bits of f .

Note that every d-local source is a depth-d decision forest source, and a degree-d source.
Also, every depth-d decision forest source is a degree-d source and a 2d-local source.

We will use the following bounds on the numbers of d-local sources and depth-d decision
forest sources.

▶ Proposition 23. Let n, d ≥ 1.
The number of d-local sources over {0, 1}n is bounded from above by 22dn+2dn log n.
The number of depth-d decision forest sources is bounded from above by 2(d+log n)2d+1n.

For polynomial and circuit sources where the number of input bits cannot be bounded
by a small function of n (unlike the sources considered in Proposition 23), we will need the
following bounds on the number of such sources for a fixed number of input bits m.

▶ Proposition 24. Let n, d, m ≥ 1.
The number of degree-d polynomials f : Fm

2 → Fn
2 is bounded from above by 2n·(m

≤d).
The number of AC[⊕] circuits C : {0, 1}m → {0, 1}n of size nd is bounded from above by
24nd(nd+m).

A. Golovnev, Z. Guo, P. Hatami, S. Nagargoje, and C. Yan 41:13

▶ Definition 25 (Disperser). A function Disp : {0, 1}n → {0, 1} is a disperser for a family X
of sources over {0, 1}n with min-entropy k, if for every source X ∈ X with H∞(X) ≥ k, the
support of Disp(X) is {0, 1}.

▶ Definition 26 (Extractor). A function Ext : {0, 1}n → {0, 1}m is an ε-extractor for a family
X of sources over {0, 1}n with min-entropy k, if for every source X ∈ X with H∞(X) ≥ k,
∆ (Ext(X(Ut)), Um) ≤ ε.

For clarity of presentation, in this paper when working with sources that are guaranteed
to have entropy H∞(X) ≥ k, we will always assume that k is an integer.

2.3 Hilbert Functions and Standard Monomials
In this section, we recall some necessary definitions (see, e.g., [13]). Let F be a field,
X1, . . . , Xn be indeterminates, and F[X1, . . . , Xn] be the polynomial ring in n indeterminates
over F. For a polynomial f ∈ F[X1, . . . , Xn] and S ⊆ Fn, let f |S ∈ FS be the restriction of f

to S. For d ∈ N, by ΓS(d) ⊆ FS we denote the vector space spanned by f |S for all degree-d
polynomials f :

ΓS(d) := {f |S : f ∈ F[X1, . . . , Xn], deg(f) ≤ d} .

▶ Definition 27 (Hilbert function). For a set S ⊆ Fn, the (affine) Hilbert function of S over
F, hS(· ,F) : N → N, is defined as the dimension of ΓS(d) over F, i.e.,

hS(d,F) := dimF (ΓS(d)) .

▶ Definition 28 (Monomial order). Let ⪯ be a total order on the monomials in a polynomial
ring F[X1, . . . , Xn]. The order ⪯ is called a monomial order if 1 is the minimal element
of ⪯, and for all monomials m1, m2, m satisfying m1 ⪯ m2, we have that m1m ⪯ m2m. The
order ⪯ is degree-compatible if for all monomials m1, m2 such that deg(m1) < deg(m2), we
have that m1 ⪯ m2.

Examples of degree-compatible monomial orders include the graded lexicographic and graded
reverse lexicographic orders.

▶ Definition 29 (Graded orders). The graded lexicographic order ≤grlex and the graded reverse
lexicographic order ≤grevlex are defined as follows. For a pair of monomials m1 = Xα1

1 · · · Xαn
n

and m2 = Xβ1
1 · · · Xβn

n , let α =
∑n

i=1 αi, β =
∑n

i=1 βi, and γ = (β1 − α1, . . . , βn − αn). We
have that m1 ≤grlex m2 if and only if either α < β, or α = β and the leftmost non-zero entry
of γ is positive. Similarly, m1 ≤grevlex m2 if and only if either α < β, or α = β and the
rightmost non-zero entry of γ is negative.

▶ Definition 30 (Leading monomial). For a nonzero polynomial f ∈ F[X1, . . . , Xn], the
leading monomial of f under a monomial order ⪯ is the largest monomial of f under ⪯.

Let R be a commutative ring (such as the polynomial ring F[X1, . . . , Xn]). An ideal of R

is a subset I of R such that for all a, b ∈ I and r ∈ R, we have that a + b ∈ I and ra ∈ I.

▶ Definition 31 (Standard monomial). Let I be an ideal of F[X1, . . . , Xn], and ⪯ be a
monomial order. A standard monomial m of I is a monomial in X1, . . . , Xn that is not the
leading monomial of any nonzero polynomial in I.

APPROX/RANDOM 2024

41:14 Hilbert Functions and Low-Degree Randomness Extractors

For an ideal I and d ∈ N, SM(I) denotes the set of all standard monomials of I, and
SM≤d(I) denotes the set of all standard monomials of I of degree at most d:

SM≤d(I) = {m ∈ SM(I) : deg(m) ≤ d} .

For a set S ⊆ Fn, by I(S) we denote the ideal of polynomials in F[X1, . . . , Xn] vanishing
on S,

I(S) = {f ∈ F[X1, . . . , Xn] : f |S = 0S} .

For an ideal I of F[X1, . . . , Xn], define the set V (I) ⊆ Fn by

V (I) = {a ∈ Fn : f(a) = 0 for all f ∈ I} .

By definition, for all f ∈ I and a ∈ V (I), we have f(a) = 0. So I ⊆ I(V (I)).
Finally, for a set S ⊆ Fn, define

SM(S) = SM(I(S)) and SM≤d(S) = SM≤d(I(S)) .

We say that a set T of monomials is down-closed if for all monomials m and m′ such that
m ∈ T and m′ divides m, it holds that m′ ∈ T . It is easy to see that SM(S) is down-closed.
Indeed, if m′ was the leading monomial of a polynomial p ∈ I(S), then m would be the
leading monomial of the polynomial p · (m/m′) ∈ I(S).

We will use the following facts about SM(S) and SM≤d(S), which are proven, for example,
in [37, Lemma 1] and [18, Corollary 2.1.21].

▶ Lemma 32. Let S ⊆ Fn be a finite set. Then
(a) for every monomial order ⪯,

|S| = |SM(S)| ;

(b) for every degree-compatible monomial order ⪯ and every d ∈ N,

hS(d,F) = |SM≤d(S)| .

3 Hilbert Functions of Sets in Finite Grids

Let F be a field. We consider Hilbert functions of subsets of a finite grid A =
∏n

i=1 Ai,
where each Ai is a finite subset of the field F. The main result of this section is that the
minimum value hS(d,F) of a set S ⊆ A of size k equals the quantity HF (d, k) introduced in
Definition 17, where F =

∏n
i=1{0, 1, . . . , |Ai| − 1}.

Consider the following setting: Let r1, . . . , rn be integers such that 1 ≤ ri ≤ |F| for i ∈ [n].
For each i ∈ [n], let Ai be a subset of F consisting of ri distinct elements ai,1, . . . , ai,ri

∈ F. Let
A be the Cartesian product

∏n
i=1 Ai. Let M be the set of monomials dividing

∏n
i=1 Xri−1

i .
Let σA be the bijection from M to A defined by

σA :
n∏

i=1
Xei

i 7→ (a1,e1+1, . . . , an,en+1). (2)

Finally, fix a degree-compatible monomial order ⪯.
The next lemma states that every down-closed subset T ⊆ M can be realized as the set

of standard monomials of the set σA(T) ⊆ A.

A. Golovnev, Z. Guo, P. Hatami, S. Nagargoje, and C. Yan 41:15

▶ Lemma 33. Let T be a down-closed subset of M.
Then SM(σA(T)) = T .

For space reasons, we defer the proofs of Lemma 33 and the consequent results to the full
version [20].

▶ Lemma 34. Let k, d ∈ N such that k ≤ |A|. Then

min
S⊆A:|S|=k

hS(d,F) = min
down-closed T ⊆M:|T |=k

|{m ∈ T : deg(m) ≤ d}| .

Let F =
∏n

i=1{0, 1, . . . , ri − 1}. Let ϕ : M → F be the bijection

ϕ :
n∏

i=1
Xei

i 7→ (e1, . . . , en). (3)

Lemma 34 can now be reformulated as follows.

▶ Corollary 35. Let k, d ∈ N such that k ≤ |A|. Then

min
S⊆A:|S|=k

hS(d,F) = HF (d, k) . (4)

For the special case of a finite field F = Fq, r1 = · · · = rn = q, and A1 = · · · = An = Fq,
we have A = Fn

q , and the right-hand side of Equation (4) becomes Hn
q (d, k) from Definition 17.

This leads us to the following corollary.

▶ Corollary 36. For every n, k, d ∈ N where k ≤ qn, a prime power q, and every set S ⊆ Fn
q

of size |S| = k, we have that

hS(d,Fq) ≥ Hn
q (d, k) .

Finally, we state the following lemma, which will be used in Section 5. Its proof reuses
ideas from the previous proofs in this section.

▶ Lemma 37. Let n, d ∈ N. Let σA : M → A and ϕ : M → F be the bijections (2) and (3)
respectively. Let S ⊆ A such that T := σ−1

A (S) ⊆ M is down-closed. Let T ′ = ϕ(T) ⊆ F .
Then hS(d,F) = T ′

≤d.

4 Number of Points with Low Hamming Weight in Down-Closed Sets

In this section, we will find the exact values of all Hn
q (d, k) which, by Corollary 36, will give

us tight lower bounds on the Hilbert function of sets of size k.
For every n, k, q where k ≤ qn, we define Mn

q (k) as the set of the first k elements of
{0, . . . , q − 1}n in lexicographic order.

The main result of this section is the following theorem.

▶ Theorem 38. For every n, k, d, q ∈ N where k ≤ qn,

Hn
q (d, k) = |Mn

q (k)≤d| .

Combining Corollary 36 and Theorem 38, we obtain the following bounds on the Hilbert
function.

APPROX/RANDOM 2024

41:16 Hilbert Functions and Low-Degree Randomness Extractors

▶ Corollary 39. For every prime power q, and n, k, d ∈ N where k ≤ qn, we have

min
S⊆Fn

q :|S|=k
hS(d,Fq) = |Mn

q (k)≤d| .

In particular, setting q = 2, for every n, k, d ∈ N where k ≤ 2n, and every S ⊆ Fn
2 of size

|S| = k,

hS(d,F2) ≥
(

⌊log(k)⌋
≤ d

)
.

We will use the following notation: For t ∈ {0, 1, . . . , n}, define Dn
q (t) to be the set of

x ∈ {0, . . . , q − 1}n whose first n − t coordinates are zero.
Note that for every q, k, and n,

Dn
q

(
⌊logq k⌋

)
⊆ Mn

q (k) ⊆ Dn
q

(
⌈logq k⌉

)
.

When n and q are clear from the context, we omit the superscript n and the subscript q from
Mn

q (k), Dn
q (t), and Hn

q (d, k).

4.1 The Boolean Case, q = 2
For a set S ⊆ {0, 1}n, let min(S) and max(S) be respectively the smallest and the largest
strings in S in lexicographic order. We say a set S ⊆ {0, 1}n is a contiguous k-set if |S| = k

and S consists of all x such that min(S) ⪯ x ⪯ max(S).
We first show that M(k) has the largest number of low Hamming weight strings among

all contiguous k-sets.

▶ Lemma 40. Let n, k, d ∈ N be integers such that k ≤ 2n. Let Sk ⊆ {0, 1}n be a contiguous
k-set. Then |M(k)≤d| ≥ |Sk

≤d|.

We now use Lemma 40 to prove that if a contiguous k-set Sk that does not contain any
of the first k strings in lexicographic order, then the result of Lemma 40 |Sk

≤d| ≤ |M(k)≤d|
can be strengthened to |Sk

≤d| ≤ |M(k)≤d−1|.

▶ Lemma 41. Let n, k, d ∈ N be integers such that k ≤ 2n. Let Sk ⊆ {0, 1}n be a contiguous
k-set. If Sk ∩ M(k) = ∅, then |M(k)≤d−1| ≥ |Sk

≤d|.

We are finally ready to prove the Boolean case of Theorem 38.

Proof of Theorem 38, the q = 2 case. Let S ⊆ {0, 1}n be a down-closed set of size k. We
prove this theorem by a simultaneous induction on k, d ≥ 0.

For the base cases, we consider pairs (k, d) such that d = 0 or k ≤ 2d. The case of
d = 0 is trivial. For the case where k ≤ 2d, a down-closed set S of size k cannot have
strings of Hamming weight > d, thereby showing |S≤d| = k. Also, by construction, M(k) is a
down-closed set of size k, implying H(d, k) = |M(k)≤d| = k in this case.

Given d ≥ 1 and k > 2d, assume that the theorem is true for all (k′, d′) such that either
k′ < k, or k′ = k and d′ < d. Suppose S is a down-closed set of size k and let m be the
smallest integer such that S ⊆ D(m). Define

S0 := {x ∈ S : xn−m+1 = 0} ,

S1 := {x − en−m+1 : x ∈ S and xn−m+1 = 1} .

A. Golovnev, Z. Guo, P. Hatami, S. Nagargoje, and C. Yan 41:17

Since S is down-closed, we have S1 ⊆ S0. Moreover,

|S≤d| = |S0
≤d| + |S1

≤d−1| .

Applying the induction hypothesis for k′ = |S0| < k and d, we get |M(|S0|)≤d| ≤ |S0
≤d|. Let

T = M(k)\M(|S0|). Since |S1| ≤ |S0|, we have M(|S1|)∩T = ∅, and we may apply Lemma 41
to get |T≤d| ≤ |M(|S1|)≤d−1|. Now applying the induction hypothesis for k′ = |S1| and
d′ = d − 1, we get |M(|S1|)≤d−1| ≤ |S1

≤d−1|. Combining these observations, we get

|M(k)≤d| = |M(|S0|)≤d| + |T≤d|
≤ |S0

≤d| + |M(|S1|)≤d−1|
≤ |S0

≤d| + |S1
≤d−1|

= |S≤d|.

This concludes the induction, and shows that for every k, d ≥ 0, and down-closed set S of
size k, |M(k)≤d| ≤ |S≤d|. ◀

4.2 The General Case of Finite Grids

We prove Theorem 38 in this subsection. In fact, we prove the theorem in a more general
setting, described as follows.

Let F =
∏n

i=1{0, 1, . . . , ri − 1} where r1 ≤ r2 ≤ · · · ≤ rn. Let d ∈ N. We introduce the
following notations:

For S ⊆ F , define ∇(S) := {a ∈ F : b ≤P a for some b ∈ S}, i.e., ∇(S) is the up-closure
of S. For k ∈ {0, . . . , |F |}, denote by M(k) the set of the smallest k elements of F in
lexicographic order. And for r ∈ {0, . . . , |F≤d|}, denote by L≤d(r) the set of the largest r

elements of F≤d in lexicographic order.
The main result of this subsection is the following generalization of Theorem 38.

▶ Theorem 42. For every k ∈ N such that k ≤ |F |,

HF (d, k) = |M(k)≤d| .

We derive Theorem 42 from a combinatorial result of Beelen and Datta [5], which
generalizes the earlier work of Wei [49] and Heijnen–Pellikaan [22, 21].

▶ Theorem 43 ([5, Theorem 3.8]). Let S ⊆ F≤d and r = |S|. Then |∇(L≤d(r))| ≤ |∇(S)|.1

Define ∆(S) := F \ ∇(S) for S ⊆ F . The next lemma gives a characterization of ∆(S).

▶ Lemma 44. Let T ⊆ F≤d be down-closed and S = F≤d \ T . Then ∆(S) is the unique
maximal set with respect to inclusion among all down-closed subsets U of F satisfying
U≤d = T .

▶ Lemma 45. Let r ∈ {0, . . . , |F≤d|} and k = |∆(L≤d(r))|. Then ∆(L≤d(r)) = M(k).

1 In [5], L≤d(r) is denoted by M(r), while we use M(r) to denote the set of the smallest r elements of F
in lexicographic order.

APPROX/RANDOM 2024

41:18 Hilbert Functions and Low-Degree Randomness Extractors

5 A Tight Bound on the Size of Degree-d Closures of Sets

For n, d, δ ∈ N, denote by N(n, d, δ) the number of monomials Xe1
1 · · · Xen

n with e1, . . . , en ≤ δ

and e1 + · · · + en ≤ d. For example, N(n, d, 1) =
(

n
≤d

)
and N(n, d, δ) =

(
n+d

d

)
for d ≤ δ.

▶ Lemma 46. hFn
q
(d,Fq) = N(n, d, q − 1).

In particular, Theorem 5, which was proved by Nie and Wang [33], can be restated as

|cld(T)| ≤ qn

hFn
q
(d,Fq) · |T | = qn

N(n, d, q − 1) · |T | . (5)

We now give the following tight bound on the size of the degree-d closure of a set T ⊆ Fn
q ,

improving (5).

▶ Theorem 47. Let n, d, m ∈ N. Let T ⊆ Fn
q be a set of size m. Then

|cld(T)| ≤ max
0≤k≤qn:|Mn

q (k)≤d|≤m
k =

{
max0≤k≤qn:|Mn

q (k)≤d|=m k if m ≤ N(n, d, q − 1),
qn otherwise.

(6)

The next theorem states that the bound in Theorem 47 is tight and explicitly constructs
sets that meet this bound.

▶ Theorem 48. Let σA : M → A and ϕ : M → F be the bijections (2) and (3) respectively,
where A = Fn

q , F = {0, 1, . . . , q − 1}n, and M = {
∏n

i=1 Xei
i : 0 ≤ e1, . . . , en ≤ q − 1}. Let m

be any integer such that 0 ≤ m ≤ qn. Choose the maximum k ≤ qn such that |Mn
q (k)≤d| ≤ m.

Let T0 = (σA ◦ ϕ−1)(Mn
q (k)≤d) ⊆ A = Fn

q . If |T0| ≥ m, let T = T0. Otherwise, let T be an
arbitrary set obtained by adding m − |T0| elements from Fn

q \ T0 to T0. Then T is a set of
size m that attains the equality in (6).

6 Low-Degree Dispersers

In this section, we will show how to use Theorem 38 to conclude the existence of low-degree
dispersers for various families of sources. In Section 6.1, we will use Corollary 39 to show that
for every family of at most 2O(kd) sources of min-entropy k, there exists a degree-d disperser.
In particular, this will imply dispersers for local sources and bounded-depth decision forest
sources. In Section 6.2, we will extend this result to large families of sources, including
polynomial and circuit sources.

6.1 Dispersers for Small Families of Sources
In Theorem 49, we use the bound of Corollary 39 on the values of Hilbert functions to bound
the probability that a random polynomial takes a fixed value on an arbitrary subset of Fn

2 .

▶ Theorem 49. Let n, d ≥ 1, S ⊆ Fn
2 be an arbitrary nonempty set, and f : S → F2 be a

function. Then,

Pr
p∈uP2(n,d)

[p|S ≡ f] ≤ 2−hS(d,F2) ≤ 2−(⌊log2 |S|⌋
≤d) . (7)

We will now use Theorem 49 to prove the existence of low-degree dispersers for every
small family of sources.

A. Golovnev, Z. Guo, P. Hatami, S. Nagargoje, and C. Yan 41:19

▶ Corollary 50. Let n, d, k ≥ 1, and X be a family of distributions of min-entropy ≥ k over
{0, 1}n.

Then a uniformly random polynomial p ∈ P2(n, d) is a disperser for X with probability at
least

1 − |X | · 21−(k
≤d) .

Proof. Let X be a distribution from X . Since H∞(X) ≥ k, we have that |support(X)| ≥ 2k.
By Theorem 49,

Pr
p∈uP2(n,d)

[p|support(X) is constant] ≤ 21−(k
≤d) .

The corollary follows by applying the union bound over all |X | sources in X . ◀

We will demonstrate two immediate applications of Corollary 50 for the families of local
and decision forests sources.

▶ Corollary 51 (Low-degree dispersers for local sources). Let 1 ≤ ℓ ≤ d ≤ n be integers. There
exists p ∈ P2(n, d) that is a disperser

for the family of ℓ-local sources on {0, 1}n with min-entropy k > d(2ℓn + 2ℓn log n)1/d.
for the family of depth-ℓ decision forest sources on {0, 1}n with min-entropy k > d((ℓ +
log n)2ℓ+1n)1/d.

The recent result of [1] uses further properties of local sources to prove the existence of
low-degree dispersers for local sources with min-entropy k ≥ cℓ3d · (n log n)1/d for a constant
c > 0. Noting that every depth-ℓ decision forest source is also a (2ℓ − 1)-local source, the
disperser of [1] for local sources implies a result similar to the above.

6.2 Dispersers for Polynomial and Circuit Sources
In this section, we will extend the results of the previous section to prove the existence
of low-degree dispersers for powerful families of sources including polynomial-size circuits
and low-degree polynomial sources. Unlike the previous examples such as local sources, the
sources considered here may non-trivially depend on an arbitrary number of inputs. For
example, even a degree-1 (i.e. affine) source defined by an affine map f : Fm

2 → Fn
2 can

depend on an arbitrary number m ≫ n of input bits. We get around this by restricting
the map f : {0, 1}m → {0, 1}n defining the source to a low-dimensional affine subspace.
Specifically, we will use the input-reduction procedure from [9], where it was used to prove
that random (not necessarily bounded degree) maps extract from low-degree sources.

▶ Lemma 52 ([9, Lemma 4.5]). Let m, n, k ∈ N, k > 1, and f : Fm
2 → Fn

2 be a function. If
H∞(f(Um)) ≥ k, then there exists an affine map L : F11k

2 → Fm
2 such that

H∞ (f (L(U11k))) ≥ k − 1 .

Equipped with Lemma 52, we are ready to construct dispersers for low-degree sources.

▶ Theorem 53 (Low-degree disperser for lower-degree polynomial sources). Let 1 ≤ ℓ < d ≤ n

be integers. There exists p ∈ P2(n, d) that is a disperser for the family of degree-ℓ sources on
{0, 1}n with min-entropy k ≥ (12ℓ · dd · n)

1
d−ℓ + 1.

In particular, for every ℓ ∈ N, there is a degree-(ℓ + 2) disperser for degree-ℓ sources on
{0, 1}n with min-entropy Ω (

√
n).

APPROX/RANDOM 2024

41:20 Hilbert Functions and Low-Degree Randomness Extractors

▶ Theorem 54 (Low-degree disperser for circuit sources). Let ℓ ≥ 1 and n ≥ d ≥ 2ℓ + 2 be
integers. There exists p ∈ P2(n, d) that is a disperser for the family of nℓ-size circuit sources
on {0, 1}n with min-entropy k ≥ (302 · dd · n2ℓ)

1
d−2 + 1.

Theorems 53 and 54 construct low-degree dispersers for sources generated by constant-
degree polynomials and polynomial-size AC[⊕] circuits. These two classes of sources are
incomparable. Indeed, AC[⊕] computes AND(x1, . . . , xm) which is not a constant-degree
polynomial, while constant-degree polynomials compute polynomials in m inputs which do
not admit circuits of size polynomial in n. We remark that the techniques of Theorems 53
and 54 can be used to conclude the same result for a class of sources that generalizes both
AC[⊕] and constant-degree polynomials. This is the class of polynomial-size circuits which
extends AC[⊕] with gates computing arbitrary polynomials in m inputs of a fixed constant
degree. For ease of exposition, we present only the results for more natural sources in
Theorems 53 and 54.

7 Random Low-Degree Polynomials Extract from Fixed Sources

In this section, we use our bounds on the values of Hilbert functions to prove the existence
of a low-degree extractor for a fixed high min-entropy source. Specifically, in Theorem 57
we show that for every source X of high min-entropy, a random low-degree polynomial p

has bias ≤ ε, i.e., Prx∈uX [f(x) = 1] ∈ 1/2 ± ε with high probability. One special case of
interest is the case of k-flat sources X which are uniform distributions over sets of size 2k. In
Section 8, we will use Theorem 57 to prove the existence of low-degree extractors for various
expressive families of sources.

We start this section by using our bounds on the degree-d closure of sets in order to
lower-bound the probability that a random somewhat large subset T of a set S has “full
Hilbert dimension”, i.e., hT (d,F2) = |T |. We then use this to prove Lemma 56 which states
that for a large enough set S ⊆ {0, 1}n, a random subset T ⊆ S of full Hilbert dimension will
contain each element x ∈ S with almost the same probability. Finally, we present a proof of
Theorem 57 which crucially relies on Lemma 56.

▷ Claim 55. Let 1 ≤ d ≤ n, d ≤ ℓ, and S ⊆ {0, 1}n. Let T be a uniformly random subset of
S of size

(
ℓ

≤d

)
. Then

Pr
T

[
hT (d,F2) = |T | =

(
ℓ

≤ d

)]
≥ 1 −

(
ℓ

≤ d

)
· 2ℓ/|S| .

▶ Lemma 56. Let 1 ≤ d ≤ n, d ≤ ℓ, and S ⊆ {0, 1}n. Let T be a uniformly random subset
of S of size

(
ℓ

≤d

)
. Then for every x ∈ S,

(1 − δ) ·
(

ℓ
≤d

)
|S|

≤ Pr
T

[x ∈ T | hT (d,F2) = |T |] ≤ 1
(1 − δ) ·

(
ℓ

≤d

)
|S|

,

where δ =
(

ℓ
≤d

)
· 2ℓ/|S|.

Equipped with Lemma 56, we are ready to present the proof of Theorem 57.

▶ Theorem 57. Let n, d, k ≥ 1, and ε > 0 be a real. Then for every distribution X over
{0, 1}n with H∞(X) ≥ k, a uniformly random degree-d polynomial f is an ε-extractor for X,

Pr
x∼X

[f(x) = 1] = 1
2 ± ε

with probability at least 1 − e3n−ε2(ℓ
≤d)/(Cn2) where ℓ = k/2 − log(32n/ε) and C = 7 · (32)2.

A. Golovnev, Z. Guo, P. Hatami, S. Nagargoje, and C. Yan 41:21

8 Low-Degree Extractors

In this section, we extend the results of Section 6 to the setting of extractors. We start
with the extractors version of Corollary 50 in Theorem 58, where we show that low-degree
polynomials extract from small families of sources. Then, in Theorem 60, we use Theorem 58
to prove the existence of low-degree extractors for a number of families of sources. Finally,
in Section 8.1, we prove the existence of low-degree extractors with multi-bit outputs.

▶ Theorem 58. Let X be a family of distributions of min-entropy k ≥ 5 log n over {0, 1}n

for large enough n. Let Y be a family of distributions each of which is ε′-close to a convex
combination of distributions from X . Then for every d ≥ 6, a uniformly random polynomial
p ∈ P2(n, d) is an ε-extractor for Y with probability at least

1 − |X | · e3n−30kd/2/n2

for ε =
(
2d/k1/4)d + ε′.

We will use the following input-reduction result from [9].

▶ Theorem 59 ([9, Theorem 4.1]). Let m, n, k ∈ N, k > 1, and f : Fm
2 → Fn

2 be a function.
If H∞(f(Um)) ≥ k, then there exist affine maps L1, . . . , Lt : F11k

2 → Fm
2 such that the distri-

bution f(Um) is 2−k-close to a convex combination of distributions f (Li(U11k)). Moreover,
for each i ∈ [t],

H∞ (f (Li(U11k))) ≥ k − 1 .

We are now ready to prove that low-degree polynomials extract from many sources of
interest.

▶ Theorem 60. For all ℓ, d ≥ 1, and all large enough n, there exists p ∈ P2(n, d) that is an
ε-extractor for the following families of sources over {0, 1}n of min-entropy k ≥ 5 log n for
ε = 2

(
2d/k1/4)d.

ℓ-local sources for k ≥ (2ℓn3 log n)2/d.
depth-ℓ decision forest sources for k ≥ (2ℓn3(log n + ℓ))2/d.
degree-ℓ sources for k ≥ (3ℓn)

6
d−2ℓ .

nℓ-size circuit sources for k ≥ 3n
4(ℓ+1)

d−4 .

8.1 Extractors Outputting Multiple Bits
In Theorem 61, we show how to extend our single-bit extractors for small families of sources
to the multi-bit setting, which combined with input-reduction lemma, will extend all our
single-bit extractors from Theorem 60 to O(k)-bit extractors.

▶ Theorem 61. Let X be a family of distributions of min-entropy k ≥ 5 log n over {0, 1}n

for large enough n. Let Y be a family of distributions each of which is ε′-close to a convex
combination of distributions from X . Then for every d ≥ 6 and t < k, let p1, . . . , pt ∈ P2(n, d)
be independent and uniformly random polynomials. Then p = (p1, . . . , pt) is a tε-extractor
for Y with probability at least

1 − |X | · e3n+t+1−30(k−2t)d/2/n2

for ε =
(
2d/k1/4)d + ε′, assuming ε ≤ 1/4.

APPROX/RANDOM 2024

41:22 Hilbert Functions and Low-Degree Randomness Extractors

References
1 Omar Alrabiah, Eshan Chattopadhyay, Jesse Goodman, Xin Li, and João Ribeiro. Low-degree

polynomials extract from local sources. In ICALP, 2022.
2 Omar Alrabiah, Jesse Goodman, Jonathan Mosheiff, and João Ribeiro. Low-degree polynomials

are good extractors. Manuscript, 2024.
3 Dave Bayer and David Mumford. What can be computed in algebraic geometry? arXiv

preprint, 1993. arXiv:alg-geom/9304003.
4 Paul Beame, Shayan Oveis Gharan, and Xin Yang. On the bias of Reed–Muller codes over

odd prime fields. SIAM Journal on Discrete Mathematics, 34(2):1232–1247, 2020.
5 Peter Beelen and Mrinmoy Datta. Generalized Hamming weights of affine Cartesian codes.

Finite Fields and Their Applications, 51:130–145, 2018.
6 Ido Ben-Eliezer, Rani Hod, and Shachar Lovett. Random low-degree polynomials are hard to

approximate. computational complexity, 21(1):63–81, 2012.
7 Manuel Blum. Independent unbiased coin flips from a correlated biased source – A finite state

Markov chain. Combinatorica, 6:97–108, 1986.
8 Andrej Bogdanov and Siyao Guo. Sparse extractor families for all the entropy. In ITCS, 2013.
9 Eshan Chattopadhyay, Jesse Goodman, and Mohit Gurumukhani. Extractors for polynomial

sources over F2. In ITCS, 2024.
10 Kuan Cheng and Xin Li. Randomness extraction in AC0 and with small locality. In RANDOM,

2018.
11 Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and

probabilistic communication complexity. SIAM Journal on Computing (SICOMP), 17(2):230–
261, 1988.

12 Gil Cohen and Avishay Tal. Two structural results for low degree polynomials and applications.
In RANDOM, 2015.

13 David Cox, John Little, and Donal O’Shea. Ideals, varieties, and algorithms: an introduction
to computational algebraic geometry and commutative algebra. Springer, 2013.

14 Anindya De and Thomas Watson. Extractors and lower bounds for locally samplable sources.
In RANDOM, 2011.

15 Yevgeniy Dodis, Shien Jin Ong, Manoj Prabhakaran, and Amit Sahai. On the (im)possibility
of cryptography with imperfect randomness. In FOCS, 2004.

16 Yevgeniy Dodis and Kevin Yeo. Doubly-affine extractors, and their applications. In ITC, 2021.
17 Dean Doron, Amnon Ta-Shma, and Roei Tell. On hitting-set generators for polynomials that

vanish rarely. Computational Complexity, 31(2):16, 2022.
18 Bálint Felszeghy. Gröbner theory of zero dimensional ideals with a view toward combinatorics.

PhD thesis, Budapest University of Technology and Economics, 2007.
19 Oded Goldreich, Emanuele Viola, and Avi Wigderson. On randomness extraction in AC0. In

CCC, 2015.
20 Alexander Golovnev, Zeyu Guo, Pooya Hatami, Satyajeet Nagargoje, and Chao Yan. Hilbert

functions and low-degree randomness extractors, 2024. URL: https://eccc.weizmann.ac.
il/report/2024/092/.

21 Petra Heijnen. Some classes of linear codes: observations about their structure, construction,
(non-)existence and decoding. PhD thesis, Technische Universiteit Eindhoven, 1999.

22 Petra Heijnen and Ruud Pellikaan. Generalized Hamming weights of q-ary Reed-Muller codes.
IEEE Transactions on Information Theory (ToIT), 44(1):181–196, 1998.

23 Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of
the American Statistical Association, 58(301):13–30, 1963.

24 Xuangui Huang, Peter Ivanov, and Emanuele Viola. Affine extractors and AC0-parity. In
RANDOM, 2022.

25 Piotr Indyk. Uncertainty principles, extractors, and explicit embeddings of L2 into L1. In
STOC, 2007.

https://arxiv.org/abs/alg-geom/9304003
https://eccc.weizmann.ac.il/report/2024/092/
https://eccc.weizmann.ac.il/report/2024/092/

A. Golovnev, Z. Guo, P. Hatami, S. Nagargoje, and C. Yan 41:23

26 Tali Kaufman, Shachar Lovett, and Ely Porat. Weight distribution and list-decoding size
of Reed–Muller codes. IEEE Transactions on Information Theory (ToIT), 58(5):2689–2696,
2012.

27 Peter Keevash and Benny Sudakov. Set systems with restricted cross-intersections and the
minimum rank ofinclusion matrices. SIAM Journal on Discrete Mathematics, 18(4):713–727,
2005.

28 Swastik Kopparty and Srikanth Srinivasan. Certifying polynomials for AC0[⊕] circuits, with
applications to lower bounds and circuit compression. Theory of Computing, 14(12):1–24,
2018.

29 Jiatu Li and Tianqi Yang. 3.1n − o(n) circuit lower bounds for explicit functions. In STOC,
2022.

30 Xin Li. Two source extractors for asymptotically optimal entropy, and (many) more. arXiv
preprint, 2023. arXiv:2303.06802.

31 Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomization and Probab-
ilistic Techniques in Algorithms and Data Analysis. Cambridge University Press, 2017.

32 Shay Moran and Cyrus Rashtchian. Shattered sets and the Hilbert function. In MFCS, 2016.
33 Zipei Nie and Anthony Y. Wang. Hilbert functions and the finite degree Zariski closure in

finite field combinatorial geometry. Journal of Combinatorial Theory, Series A, 134:196–220,
2015.

34 Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of Computer and
System Sciences, 52(1):43–52, 1996. doi:10.1006/jcss.1996.0004.

35 Igor Carboni Oliveira, Rahul Santhanam, and Srikanth Srinivasan. Parity helps to compute
majority. In CCC, 2019.

36 Alexander A. Razborov. Lower bounds on the size of bounded depth circuits over a complete
basis with logical addition. Mathematical notes of the Academy of Sciences of the USSR,
41(4):333–338, 1987.

37 Zachary Remscrim. The Hilbert function, algebraic extractors, and recursive Fourier sampling.
In FOCS, 2016.

38 Miklos Santha and Umesh V. Vazirani. Generating quasi-random sequences from semi-
random sources. Journal of Computer and System Sciences (JCSS), 33(1):75–87, 1986.
doi:10.1016/0022-0000(86)90044-9.

39 Roman Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit
complexity. In STOC, 1987.

40 Roman Smolensky. On representations by low-degree polynomials. In FOCS, 1993.
41 Srikanth Srinivasan. A robust version of Hegedűs’s lemma, with applications. TheoretiCS, 2,

2023.
42 Amnon Ta-Shma and David Zucherman. Extractor codes. In STOC, 2001.
43 Luca Trevisan and Salil Vadhan. Extracting randomness from samplable distributions. In

FOCS, 2000.
44 Salil P. Vadhan. Constructing locally computable extractors and cryptosystems in the bounded-

storage model. Journal of Cryptology, 17:43–77, 2004.
45 Emanuele Viola. The complexity of constructing pseudorandom generators from hard functions.

Computational Complexity, 13(3-4):147–188, 2005.
46 Emanuele Viola. The complexity of distributions. SIAM Journal on Computing (SICOMP),

41(1):191–218, 2012.
47 Emanuele Viola. Extractors for circuit sources. SIAM Journal on Computing (SICOMP),

43(2):655–672, 2014.
48 Emanuele Viola. Quadratic maps are hard to sample. ACM Transactions on Computation

Theory (TOCT), 8(4):1–4, 2016.
49 Victor K. Wei. Generalized Hamming weights for linear codes. IEEE Transactions on

Information Theory (ToIT), 37(5):1412–1418, 1991.

APPROX/RANDOM 2024

https://arxiv.org/abs/2303.06802
https://doi.org/10.1006/jcss.1996.0004
https://doi.org/10.1016/0022-0000(86)90044-9

41:24 Hilbert Functions and Low-Degree Randomness Extractors

50 Avi Wigderson and David Zuckerman. Expanders that beat the eigenvalue bound: Explicit con-
struction and applications. Combinatorica, 19(1):125–138, 1999. doi:10.1007/s004930050049.

51 David Zuckerman. Linear degree extractors and the inapproximability of max clique and chro-
matic number. Theory of Computing, 3(6):103–128, 2007. doi:10.4086/toc.2007.v003a006.

https://doi.org/10.1007/s004930050049
https://doi.org/10.4086/toc.2007.v003a006

Matrix Multiplication Verification Using Coding
Theory∗

Huck Bennett # Ñ

University of Colorado Boulder, CO, USA

Karthik Gajulapalli # Ñ

Georgetown University, Washington DC, USA

Alexander Golovnev # Ñ

Georgetown University, Washington DC, USA

Evelyn Warton # Ñ

Oregon State University, Corvallis, OR, USA

Abstract
We study the Matrix Multiplication Verification Problem (MMV) where the goal is, given three
n × n matrices A, B, and C as input, to decide whether AB = C. A classic randomized algorithm
by Freivalds (MFCS, 1979) solves MMV in Õ(n2) time, and a longstanding challenge is to (partially)
derandomize it while still running in faster than matrix multiplication time (i.e., in o(nω) time).

To that end, we give two algorithms for MMV in the case where AB − C is sparse. Specifically,
when AB −C has at most O(nδ) non-zero entries for a constant 0 ≤ δ < 2, we give (1) a deterministic
O(nω−ε)-time algorithm for constant ε = ε(δ) > 0, and (2) a randomized Õ(n2)-time algorithm using
δ/2 · log2 n + O(1) random bits. The former algorithm is faster than the deterministic algorithm of
Künnemann (ESA, 2018) when δ ≥ 1.056, and the latter algorithm uses fewer random bits than the
algorithm of Kimbrel and Sinha (IPL, 1993), which runs in the same time and uses log2 n + O(1)
random bits (in turn fewer than Freivalds’s algorithm).

Our algorithms are simple and use techniques from coding theory. Let H be a parity-check
matrix of a Maximum Distance Separable (MDS) code, and let G = (I | G′) be a generator matrix
of a (possibly different) MDS code in systematic form. Our deterministic algorithm uses fast
rectangular matrix multiplication to check whether HAB = HC and H(AB)T = H(CT), and our
randomized algorithm samples a uniformly random row g′ from G′ and checks whether g′AB = g′C

and g′(AB)T = g′CT .
We additionally study the complexity of MMV. We first show that all algorithms in a natural

class of deterministic linear algebraic algorithms for MMV (including ours) require Ω(nω) time. We
also show a barrier to proving a super-quadratic running time lower bound for matrix multiplication
(and hence MMV) under the Strong Exponential Time Hypothesis (SETH). Finally, we study
relationships between natural variants and special cases of MMV (with respect to deterministic
Õ(n2)-time reductions).

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Pseudorandomness and derandomization; Theory of computation →
Error-correcting codes

Keywords and phrases Matrix Multiplication Verification, Derandomization, Sparse Matrices, Error-
Correcting Codes, Hardness Barriers, Reductions

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.42

Category RANDOM

Related Version Full Version: https://arxiv.org/abs/2309.16176 [7]

∗ Due to space constraints, we have made the body of our submission a modified version of the introduction
to our paper. This introduction contains a detailed overview of our work and a comparison with prior
work. Nevertheless, we strongly encourage the reader to read the full version of our paper [7].

© Huck Bennett, Karthik Gajulapalli, Alexander Golovnev, and Evelyn Warton;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 42; pp. 42:1–42:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:huckbennett@gmail.com
https://home.cs.colorado.edu/~hbennett/
https://orcid.org/0000-0002-5469-8841
mailto:kg816@georgetown.edu
https://kgajulapalli.org
https://orcid.org/0009-0000-1029-1882
mailto:alexgolovnev@gmail.com
https://golovnev.org/
https://orcid.org/0000-0002-7847-1027
mailto:wartone@oregonstate.edu
https://www.evelynw.xyz/
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.42
https://arxiv.org/abs/2309.16176
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

42:2 Matrix Multiplication Verification Using Coding Theory

Funding Huck Bennett: Supported by NSF Grant CCF-2312297.
Karthik Gajulapalli: Supported by NSF grant CCF-2338730.
Alexander Golovnev: Supported by NSF grant CCF-2338730.

Acknowledgements We thank Amir Nayyeri for many helpful discussions in the early stages of work
on this paper, and Mark Iwen [16] for answering questions about [17]. We also thank the anonymous
reviewers for their helpful comments.

1 Introduction

The goal of the Matrix Multiplication Problem (MM) is to compute the product AB of
two n × n matrices A and B given as input. Matrix multiplication has many practical and
theoretical applications, and because of this has been studied by an extensive line of work.
The primary goal of this work has been to determine the running time O(nω) of the fastest
algorithms for MM, which is captured by the matrix multiplication exponent ω.1 The best
upper bounds on ω and related quantities continue to improve [23, 3, 11, 22, 25], and [25]
recently showed the current best known bound of ω ≤ 2.371552. The dream of this line of
work is to show that ω = 2, and this in fact holds under certain plausible combinatorial
and group-theoretic conjectures (see [10, Conjecture 4.7 and Conjecture 3.4]). Nevertheless,
showing that ω = 2 seems very challenging for the time being.

In this work, we consider a variant of matrix multiplication where the goal is to verify
that the product of two matrices is equal to a third matrix. Specifically, we study the
Matrix Multiplication Verification Problem (MMV) where, given three n × n matrices A, B,
and C as input, the goal is to decide whether AB = C. MMV is clearly no harder than
matrix multiplication – it can be solved in O(nω) time by computing the product AB and
then comparing the product entry-wise against C – but it is natural to ask whether it is
possible to do better. In what became classic work, Freivalds [12] answered this question
in the affirmative and gave a simple, randomized algorithm that solves MMV in Õ(n2)
time. This Õ(n2) running time bound is essentially the best possible, and so, unlike matrix
multiplication, the complexity of MMV is relatively well understood.

However, it is in turn natural to ask whether it is possible to derandomize Freivalds’s
algorithm partially or completely. More specifically, it is natural to ask whether it is possible
to give a deterministic algorithm for MMV running in Õ(n2) time or at least O(nω−ε) time
for constant ε > 0.2 Or, if it is not possible to give a deterministic algorithm for MMV with
these running times, it is natural to ask whether it is possible to use fewer random bits than
Freivalds’s algorithm, which uses n random bits. Trying to answer these questions has become
a key goal for derandomization efforts, and has received substantial study [4, 19, 20, 21].

1 Formally, ω is defined as the infimum over ω′ such that the product of two n × n matrices can be
computed in O(nω′

) time. So, MM algorithms are actually only guaranteed to run in O(nω+ε) time for
any constant ε > 0.

2 We use the notation Õ(f(n)) to mean f(n) · poly(log f(n)). Freivalds’s algorithm uses O(n2) arithmetic
operations, each of which takes poly(log n) time when working over integer matrices with entries bounded
in magnitude by poly(n); we assume this setting in the introduction.
Of course, it is only possible for such a O(nω−ε)-time algorithm to exist if ω > 2. We assume that this
is the case throughout the introduction.

H. Bennett, K. Gajulapalli, A. Golovnev, and E. Warton 42:3

Table 1 Algorithms for MMV on matrices A, B, C ∈ Zn×n with entries of magnitude at most
poly(n) and such that AB −C has at most nδ non-zero entries for 0 ≤ δ ≤ 2. Our new algorithms are
shown in bold. We list asymptotic running times, with poly(log n) factors suppressed for readability,
and the number of random bits used to achieve success probability 1/2. (Each of the three listed
randomized algorithms has one-sided error, so this probability is meaningful.) Here ω(·, ·, ·) is the
rectangular matrix multiplication exponent, ω = ω(1, 1, 1) is the (square) matrix multiplication
exponent, and ε > 0 is an arbitrarily small positive constant.

Algorithm Asymptotic Runtime Bits of Randomness

Matrix Multiplication nω+ε 0

Random Entry Sampling (folklore) n3−δ 2n2−δ · log2(n) + O(1)

Freivalds’s Algorithm [12] n2 n

Vandermonde Mat. Sampling [19] n2 log2(n) + O(1)

Multipoint Poly. Evaluation [21] n2 + n1+δ 0

Cauchy Bound [20] n3 (n2 in Integer RAM) 0

Parity Check/Fast RMM (Thm. 1) nω(1,1,δ/2)+ε 0

Cauchy Mat. Sampling (Thm. 2) n2 δ
2 · log2(n) + O(1)

1.1 Our Results
Our main results are two new algorithms for the Matrix Multiplication Verification Problem
in the sparse regime, i.e., in the case where AB − C is promised to have few non-zero entries
(if any). See Table 1 for a summary of our algorithms and how they compare to other known
algorithms for MMV. Additionally, we give a barrier for giving a fast algorithm for MMV
using a broad class of linear algebraic techniques, a barrier to showing hardness of MMV,
and reductions between variants of MMV.

1.1.1 Algorithms
Besides being inherently interesting, MMV in the sparse regime is the natural decision
version of the well-studied Output-Sensitive Matrix Multiplication Problem (OSMM). It is
also motivated by the following scenario. Suppose that Alice wants to compute the product
AB of two large matrices A and B, but has restricted computational resources. So, she
sends A and B to Bob, who has more extensive computational resources. Bob computes the
product AB, and sends the result back to Alice over a noisy channel (without error-correction,
which increases the size of the message), from which Alice receives a matrix C. Alice knows
that either C = AB as desired, or that C is corrupted but (with high probability) only differs
from AB in a few entries. She wants to check which is the case efficiently.

We define ∥v∥0 (respectively, ∥M∥0) to be the number of non-zero entries in (i.e., Hamming
weight of) a vector v (respectively, matrix M). We call a vector v (respectively, matrix M)
t-sparse if ∥v∥0 ≤ t (respectively, if ∥M∥0 ≤ t).

Our first algorithm (given in Figure 2) is deterministic, and uses fast rectangular matrix
multiplication. For α, β, γ ∈ [0, 1], let the rectangular matrix multiplication exponent
ω(α, β, γ) be the infimum over values ω′ > 0 such that the product of a nα × nβ matrix and a
nβ ×nγ matrix can be computed using O(nω′) arithmetic operations. Note that ω = ω(1, 1, 1)
is the standard (square) matrix multiplication exponent.

APPROX/RANDOM 2024

42:4 Matrix Multiplication Verification Using Coding Theory

1 1.25 1.5 1.75 22

2.1

2.2

2.3

2.4

2.5

δ

R
un

ni
ng

T
im

e
Ex

po
ne

nt

MM [25]
[21]
Theorem 1

Figure 1 Running times of deterministic algorithms for MMV when AB − C is O(nδ)-sparse
for 1 ≤ δ ≤ 2. Our algorithm from Theorem 1 is faster than the best known algorithms for matrix
multiplication [25] and faster than Künnemann’s algorithm [21] for all 1.056 ≤ δ < 2. The plotted
blue points corresponding to the running time of the algorithm in Theorem 1 are derived from the
bounds on ω(1, 1, δ/2) in [25, Table 1]. The line segments connecting them are justified by the fact
that ω(1, 1, ·) is a convex function.

(1) Let k := ⌈
√

t⌉.
(2) Compute an arbitrary prime p that satisfies n ≤ p ≤ 2n.
(3) Compute a (parity check) matrix H ∈ Fk×n

p of a code with distance at least k + 1.
(4) Output YES if H(AB − C) = 0 and H(AB − C)T = 0 (where arithmetic is

performed over Z), and output NO otherwise.

Figure 2 Deterministic Algorithm for MMV corresponding to Theorem 1.

▶ Theorem 1 (Fast deterministic MMV for sparse matrices, informal). Let A, B, C ∈ Zn×n be
matrices satisfying maxi,j{|Ai,j | , |Bi,j | , |Ci,j |} ≤ nc for some constant c > 0 and satisfying
∥AB − C∥0 ≤ nδ for 0 ≤ δ ≤ 2. Then for any constant ε > 0, there is a deterministic
algorithm for MMV on input A, B, C that runs in O(nω(1,1,δ/2)+ε) time.

We note that ω(1, 1, β) < ω for all β < 1 (assuming ω > 2);3 and so our algorithm is faster
than matrix multiplication when AB − C is promised to be O(nδ)-sparse for constant δ < 2.
Furthermore, it is faster than Künnemann’s algorithm [21], which is also for MMV in the
regime where AB − C is sparse, when ω(1, 1, δ/2) < 1 + δ. The equation ω(1, 1, δ/2) = 1 + δ

whose unique solution corresponds to the crossover point at which our algorithm becomes
faster than Künnemann’s turns out to be relevant in other contexts too [27], and [23, 25] both
provide bounds on its solution. Specifically, [25] shows that the solution δ to this equation
satisfies δ ≤ 1.056, and so our algorithm in Theorem 1 is (strictly) faster than any previously
known deterministic algorithm for MMV when 1.056 ≤ δ < 2.

3 See [7, Theorem 2.3]

H. Bennett, K. Gajulapalli, A. Golovnev, and E. Warton 42:5

(1) Let k := ⌈
√

t/ε⌉.
(2) Compute an arbitrary prime p satisfying k + n ≤ p < 2(k + n).
(3) Compute a ⌈

√
t⌉-regular matrix S = (s1, . . . , sk) ∈ Fn×k

p .
(4) Sample a uniformly random column index i ∼ {1, . . . , k}.
(5) Output YES if ABsi = Csi and (AB)T si = CT si (where arithmetic is performed

over Z), and output NO otherwise.

Figure 3 Randomized Algorithm for MMV corresponding to Theorem 2.

Additional bounds on ω(1, δ/2, 1) = ω(1, 1, δ/2) – and hence the running time of the
algorithm in Theorem 1 – appear in [25, Table 1]. For example, that table shows that
ω(1, 1, 0.55) < 2.067 and ω(1, 1, 0.95) < 2.333 (which correspond to δ = 1.1 and δ = 1.9,
respectively). We also note that our algorithm runs in essentially optimal Õ(n2) time when
δ ≤ 0.642 ≤ 2ω⊥, where ω⊥ := sup{ω′ > 0 : ω(1, 1, ω′) = 2} ≥ 0.321 is the dual matrix
multiplication exponent [25], but that Künnemann’s algorithm [21] runs in Õ(n2) time for
any δ ≤ 1.

Our second algorithm runs in Õ(n2) time, but is randomized (see Figure 3). It uses few
bits of randomness when AB − C is sparse.

▶ Theorem 2 (Fast randomized MMV for sparse matrices, informal). Let c > 0 be a constant,
let A, B, C ∈ Zn×n be matrices satisfying maxi,j{|Ai,j | , |Bi,j | , |Ci,j |} ≤ nc and satisfying
∥AB − C∥0 ≤ nδ for 0 ≤ δ ≤ 2, and let ε = ε(n) ≥ 1/n. Then there is a randomized
algorithm for MMV on input A, B, C that runs in Õ(n2) time, succeeds with probability 1 − ε,
and uses at most ⌈δ/2 · log2(n) + log2(1/ε)⌉ bits of randomness.

Theorem 2 improves on the number of random bits used by the algorithm of Kimbrel
and Sinha [19] when δ < 2 (which uses log2(n) + log2(1/ε) + O(1) random bits regardless of
the sparsity of AB − C), and matches the number of random bits used by their algorithm
when δ = 2. The algorithms both run in Õ(n2) time. In fact, one may think of the algorithm
summarized in Theorem 2 as a natural extension of the algorithm in [19] to handle the
sparse case more efficiently, although it requires additional techniques to implement. (Our
algorithm requires matrices with a stronger pseudorandomness property than theirs; see the
“algorithmic techniques” section below.)

We note that Theorem 2 only improves on known algorithms when 1 < δ < 2, and only
by a factor of δ/2. Indeed, as mentioned above, when δ ≤ 1 Künnemann’s algorithm [21]
solves MMV deterministically in Õ(n2) time, and when δ = 2 our algorithm matches the
number of random bits used by Kimbrel and Sinha’s algorithm. Although seemingly modest,
this constant-factor improvement is not surprising: any super-constant improvement on
the number of bits used by [19] (i.e., an MMV algorithm using o(log n) random bits) could
be turned into a deterministic algorithm for MMV with only a sub-polynomial (i.e., no(1))
multiplicative increase in running time.

1.1.1.1 Algorithmic techniques

Here we briefly summarize the techniques that we use for the MMV algorithms corresponding
to Theorems 1 and 2. We start by remarking that Theorems 1 and 2 hold not just for
matrices over Z with entries of polynomial magnitude, but also for matrices over all finite

APPROX/RANDOM 2024

42:6 Matrix Multiplication Verification Using Coding Theory

fields Fq with q ≤ poly(n).4 In fact, our algorithms work “natively” in the finite field setting
– i.e., on n × n matrices A, B, C over finite fields Fq – which is directly amenable to using
techniques from coding theory. We assume this setting in the description below. Furthermore,
there is a linear-time, sparsity-preserving reduction from MMV to the special case of MMV
where C is fixed as C = 0 and the goal is to decide whether AB = 0 for input matrices A, B

(see [21, Proposition 3.1]). We will also generally assume this setting in the introduction.
For both algorithms, we will use the observation that if AB − C is non-zero and t-sparse

then at least one row or column of AB − C must be non-zero and k-sparse for k := ⌊
√

t⌋. A
similar observation appears in [26].

Our first, deterministic algorithm (Theorem 1) uses a matrix H over Fq such that any k

columns of H are linearly independent. Equivalently, we require a matrix H ∈ Fm×n
q such

that for all non-zero vectors x ∈ Fn
q with ∥x∥0 ≤ k (corresponding to a sparse, non-zero

column or row of AB), Hx ≠ 0. This is exactly the property guaranteed by the parity-check
matrix H of an error correcting code C ⊆ Fn

q with minimum distance d > k. Moreover, if a
code C with minimum distance d = k + 1 is a so-called Maximum Distance Separable (MDS)
code, then it has a k ×n parity-check matrix H. MDS codes with useful parameters exist and
have efficiently constructible parity-check matrices. In particular, (generalized) Reed-Solomon
codes are MDS codes, and exist when k ≤ n ≤ q (see, e.g., [14]). Their parity-check matrices
H are Vandermonde matrices, which are constructible in kn · poly(log q) ≤ n2 · poly(log q)
time.

Our algorithm then uses fast rectangular matrix multiplication to compute HAB =
(HA)B and H(AB)T = (HBT)AT using roughly nω(1,1,δ/2) arithmetic operations, where
0 ≤ δ ≤ 2 is such that t ≤ nδ. If AB = 0, then HAB = H(AB)T = 0. On the other hand, if
AB ̸= 0 then AB is t-sparse and therefore has a k-sparse row or column. So, at least one of
the expressions HAB and H(AB)T is non-zero.

Our second, randomized algorithm (Theorem 2) uses a matrix S ∈ Fm×n
q with the property

that all of its k × k submatrices are non-singular. Matrices S with this property are called
k-regular, and matrices S all of whose square submatrices (of any size) are non-singular are
called super regular.5 We note that k-regularity is stronger than the property we require for
H in the first algorithm. In particular, if a matrix S ∈ Fm×n

q is k-regular and 0 < ∥x∥0 ≤ k,
then ∥Sx∥0 ≥ m − k + 1. I.e., S being k-regular implies not only that Sx is non-zero, but
that Sx has relatively high Hamming weight for such x. This property is useful because it
implies that Pr[⟨s, x⟩ ̸= 0] ≥ (m − k + 1)/m, where s is a random row of S. Indeed, this
observation leads to our second algorithm: we sample a random row s from a k-regular
matrix S ∈ Fm×n

q and check whether sAB = 0 and s(AB)T = 0. Setting, e.g., m = 2k, we
get that this algorithm succeeds with probability at least (2k − k + 1)/(2k) > 1/2.

It remains to construct (rows of) k-regular matrices S efficiently. Although a priori it is
not even obvious that k-regular matrices exist for arbitrary k, in fact super regular matrices
exist and are efficiently constructible. Specifically, we use a family of super regular (and hence
k-regular) matrices called Cauchy matrices; the entries of such a matrix S are defined as
Si,j = 1/(xi − yj), where x1, . . . , xm, y1, . . . , yn are distinct elements of Fq. In fact, as follows
from their definition, given a (random) index 1 ≤ i ≤ m, it is even possible to construct the
ith row of a Cauchy matrix S efficiently without computing the rest of the matrix, as needed.

4 The algorithms also work over larger finite fields, but with slower running times due to the increased bit
complexity of performing arithmetic operations over those fields.

5 For formal definitions see [7, Section 2.4]

H. Bennett, K. Gajulapalli, A. Golovnev, and E. Warton 42:7

Finally, we remark that there is a deep connection between MDS codes and super regular
matrices (and between generalized Reed-Solomon codes, Vandermonde matrices, and Cauchy
matrices). Specifically, if G = (I | S) is the generator matrix of an MDS code in systematic
form, then S is a super regular matrix [24]. Moreover, if such a matrix G is the generator
matrix of a generalized Reed-Solomon code, then S is a Cauchy matrix [24].

1.1.2 Barriers
The dream for the line of work described in this paper is to give a deterministic, Õ(n2)-time
algorithm for MMV on arbitrary matrices. However, achieving this goal has proven to be
very difficult despite a substantial amount of work towards it. So, it is natural to ask whether
perhaps no such algorithm exists, i.e., whether MMV is in some sense hard. We first show a
result in this direction, and then show a barrier result to showing SETH hardness of MMV
(and even MM).6

1.1.2.1 Linear algebraic algorithms barrier

We first prove that a natural class of deterministic linear algebraic algorithms for MMV
based on multiplying smaller matrices – including the algorithm in Theorem 1 – cannot run
in less than nω time when using a matrix multiplication subroutine running in worst-case
rectangular matrix multiplication time and when performing all multiplications independ-
ently. Specifically, the Ω(nω) lower bound holds if for all α, β ≥ 0, the subroutine requires
Ω(nω(1,1,α)) to compute the product of an n × nα matrix and an n × n, and Ω(nω(1,1,β)) time
to compute the product of an n × n matrix and an n × nβ matrix.

The idea is that natural algorithms for verifying that AB = C for n × n matrices A, B, C

including ours amount to performing k “zero tests.” More specifically, the ith such test checks
that Li(AB − C)Ri = 0 for some fixed nαi × n matrix Li and n × nβi matrix Ri, where
αi, βi ∈ [0, 1]. We observe that the conditions Li(AB − C)Ri = 0 for i = 1, . . . , k together
correspond to a homogeneous system of

∑k
i=1 nαi+βi linear equations in the n2 variables

corresponding to the entries of X = AB − C for 1 ≤ i, j ≤ n. So, for this system to have
Xi,j = 0 for 1 ≤ i, j ≤ n as its unique solution, it must be the case that

∑k
i=1 nαi+βi ≥ n2,

which we show implies that
∑k

i=1 nω(1,1,min(αi,βi)) ≥
∑k

i=1 nω(αi,1,βi) ≥ nω. Therefore, an
algorithm that independently computes each product LiABRi in time Ω(nω(1,1,min(αi,βi)))
uses Ω(nω).7

1.1.2.2 A barrier to SETH-hardness of MM

While under certain reasonable conjectures, the matrix multiplication exponent ω = 2 (see [10,
Conjecture 4.7 and Conjecture 3.4]), the best provable upper bound we have is ω < 2.371552
by [25]. Nevertheless, given the apparent difficulty of showing ω ≈ 2, it is natural to ask
whether MM is in fact hard. To that end, we study showing its hardness under the Strong
Exponential Time Hypothesis (SETH). However, rather than showing SETH-hardness of MM,
we show a barrier to proving nγ-hardness of MM for constant γ > 2 under SETH. (Because
MMV is trivially reducible to MM, our hardness barrier result also applies to MMV.)

6 More properly, our first result is a barrier to giving a fast algorithm for MMV, and our second result
is a barrier to showing hardness of MMV (i.e., it “gives a barrier to giving a barrier” for a fast MMV
algorithm).

7 For a more detailed exposition of this barrier see [7, Section 3.3]

APPROX/RANDOM 2024

42:8 Matrix Multiplication Verification Using Coding Theory

We informally define several concepts used in the statement of our result. SETH says
that for large constant k, k-SAT instances on n variables take nearly 2n time to solve, and
the Nondeterministic Strong Exponential Time Hypothesis (NSETH) says that certifying
that such k-SAT formulas are not satisfiable takes nearly 2n time even for nondeterministic
algorithms. We call a matrix rigid if the Hamming distance between it and all low-rank
matrices is high (the Hamming distance and rank are quantified by two parameters). Rigid
matrices have many connections to complexity theory and other areas, and a key goal is to
find explicit, deterministic constructions of such matrices.

Intuitively, NSETH rules out showing hardness of problems with non-trivial co-nondetermi-
nistic algorithms under SETH. Somewhat more precisely, assuming NSETH, problems
contained in coTIME[f(n)] (but perhaps only known to be in TIME[g(n)] for g(n) = ω(f(n))),
cannot be shown to be Ω(f(n)1+ε)-hard under SETH.8 Künnemann [21] noted that, because
Freivald’s algorithm shows that MMV is in coTIME[n2 ·poly(log n)], NSETH rules out showing
Ω(nγ) hardness of MMV under SETH for constant γ > 2.

In this work, we extend this observation and give a barrier not only to showing SETH-
hardness of MMV but to showing hardness of MM. We demonstrate that, if there exists a
constant γ > 2 and a reduction from k-SAT to MM such that a O(nγ−ε)-time algorithm
for MM for any constant ε > 0 breaks SETH, then either (1) the Nondeterministic Strong
Exponential Time Hypothesis (NSETH) is false, or (2) a new non-randomized algorithm for
computing (arbitrarily large) rigid matrices exists. We also note that, by known results,
falsifying NSETH implies a new circuit lower bound as a consequence. In short, our barrier
result says that showing nγ-hardness of MM under SETH for γ > 2 would lead to major
progress on important questions in complexity theory.9

A key idea that we use for proving our result is that it is possible to compute the product
of two non-rigid matrices efficiently using a nondeterministic algorithm. This follows from
two facts. First, by definition, a non-rigid matrix is the sum of a low-rank matrix L and a
sparse matrix S, and using nondeterminism it is possible to guess L and S efficiently. Second,
it is possible to compute the product of two sparse matrices or a low-rank matrix and another
matrix efficiently. (In fact, we also use nondeterminism to guess a rank factorization of L,
and this factorization is what allows for fast multiplication by L.)

Very roughly, we prove the barrier result as follows. We first suppose that there is
a reduction from k-SAT to (potentially multiple instances of) matrix multiplication. In
particular, such a reduction outputs several pairs of matrices to be multiplied. We then
analyze three cases:
1. If the matrices output by this reduction always have small dimension (as a function

of n), then we can compute the product of each pair quickly using standard matrix
multiplication algorithms (even using naïve, cubic-time matrix multiplication). This leads
to a fast, deterministic algorithm for k-SAT, which refutes SETH (and hence NSETH).

2. If the matrices output by this reduction are always not rigid, then we can compute the
product of each pair quickly using the nondeterministic algorithm sketched above. This
leads to a fast, nondeterministic algorithm for showing that k-SAT formulas are not
satisfiable, which refutes NSETH.

3. Finally, if neither of the above cases holds, then the reduction must sometimes output
rigid matrices with large dimension as a function of n. So, we obtain an algorithm for
generating arbitrarily large rigid matrices using an NP oracle: iterate through all k-SAT

8 We refer the reader to see [7, Definition 2.22] for a formal definition of SETH-hardness.
9 See see [7, Section 4] for a more detailed exposition.

H. Bennett, K. Gajulapalli, A. Golovnev, and E. Warton 42:9

formulas φ with at most a given number of variables, apply the reduction from k-SAT
to MM to each formula, and then use the NP oracle to check whether each large matrix
output by the reduction is rigid.

We remark that although NSETH is a strong and not necessarily widely believed con-
jecture, [18, 9] showed that refuting it (as in Item 2 above) would nevertheless imply an
interesting new circuit lower bound. Specifically, they showed that if NSETH is false, then
the complexity class ENP requires series-parallel circuits of size ω(n).

Additionally, we remark that despite how slow the “iterate through all sufficiently large
k-SAT formulas and apply the k-SAT-to-MM reduction to each one” algorithm described
in Item 3 seems, it would still substantially improve on state-of-the-art non-randomized
algorithms for generating rigid matrices. This is also true despite the fact that the algorithm
uses an NP oracle.10

1.1.3 Reductions
Again, motivated by the apparent challenge of fully derandomizing Freivalds’s algorithm, we
study relationships between variants of MMV with the goal of understanding what makes the
problem hard to solve deterministically in Õ(n2) time but easy to solve in Õ(n2) time using
randomness (in contrast to MM). More specifically, we study which variants are potentially
easier than MMV (i.e., reducible to MMV, but not obviously solvable deterministically in
Õ(n2) time using known techniques), equivalent to MMV, and potentially harder than MMV
(i.e., variants to which MMV is reducible, but which are not obviously as hard as MM). We
study these questions by looking at deterministic Õ(n2)-time reductions between variants.
See Figure 4 for a summary of our results.

First, we show that two apparently special cases of MMV are in fact equivalent to MMV.
These special cases are: (1) the Inverse Verification Problem, where the goal is to verify
that B = A−1 for input matrices A and B (equivalently, the special case of MMV where
C = In), and (2) the Symmetric MMV Problem, where the input matrices A and B (but
not necessarily C) are symmetric.11 These reductions are relatively simple, and complement
the (also simple) reduction of [21], who showed that the All Zeroes Problem (i.e., the special
case of MMV where C = 0) is MMV-complete.

Second, we identify two problems that are Õ(n2)-time reducible to MMV, but are not
clearly solvable in Õ(n2) time or equivalent to MMV. These problems are: (1) the Strong
Symmetric MMV Problem, where all three of the input matrices A, B, and C are symmetric,
and (2) the Monochromatic All Pairs Orthogonal Vectors Problem, where the goal is, given
vectors a1, . . . , an to decide whether ⟨ai, aj⟩ = 0 for all i ̸= j.

Third, we identify two problems for which there are Õ(n2)-time reductions from MMV
and that are Õ(n2)-time reducible to MM. These “MMV/MM-intermediate problems” are:
(1) the Matrix Product Sparsity Problem (MPS), in which the goal is, given matrices A

and B and r ≥ 0 as input, to decide whether ∥AB∥0 ≤ r, and (2) the k-MMV problem, in
which given matrices A1, . . . , Ak, C as input, the goal is to decide whether

∏k
i=1 Ai = C. We

note that MPS is equivalent to the counting version of the Orthogonal Vectors Problem
(#OV).12 We additionally show that k-MMV is equivalent to the k-All Zeroes problem,

10 See [7, Section 4] for a more thorough discussion.
11 See [7, Section 5] for the complete reductions
12 Indeed, Monochromatic All Pairs Orthogonal Vectors is no harder than MMV (and not obviously

equivalent), Bichromatic All Pairs Orthogonal Vectors is equivalent to the All Zeroes Problem and is

APPROX/RANDOM 2024

42:10 Matrix Multiplication Verification Using Coding Theory

MMV

AllZeroes

Inverse-Verification

Symmetric-MMVStrong-Symmetric-MMV

k-AllZeroes

Mono-All-Pairs-OV k-MMV

MPS MM

Figure 4 A diagram of reductions among MMV and related problems on n × n matrices. Arrows
represent deterministic O(n2)-time reductions (and double-headed arrows denote equivalences under
such reductions). Red arrows indicate new (non-trivial) reductions.

i.e., k-MMV where C is fixed to be 0. See Figure 4 for a summary of these variants and
reductions between them. For a full presentation of definitions and reductions we refer the
reader to [7, Section 5].

1.2 Related Work
We next discuss other algorithms for MMV and related problems on n × n integer matrices
A, B, and C. We summarize these algorithms, as well as ours, in Table 1. We start by
noting that it suffices to consider the special case of MMV where C = 0 (i.e., where the
goal is to decide whether AB = 0), which is called the All Zeroes Problem. Indeed, a
result from [21] shows that there is a simple O(n2)-time reduction from MMV on n × n

matrices A, B, C to the All Zeroes problem on 2n × 2n matrices A′, B′ with the property
that ∥AB − C∥0 = ∥A′B′∥0. So, for this section we consider the All Zeroes Problem without
loss of generality.

Perhaps the most closely related works to ours are [17, 1], which use fast rectangular
matrix multiplication for the Output-Sensitive Matrix Multiplication Problem (OSMM). In
t-OSMM, the goal is, given matrices A, B as input, to compute the product AB when it is
promised to be t-sparse. There is a trivial reduction from MMV when the output is promised
to be t-sparse to t-OSMM – compute AB and check whether it is equal to 0. Indeed, OSMM
is essentially the search version of sparse MMV. In particular, [17] use techniques from
compressive sensing to solve OSMM. However, it is not clear that the measurement matrix
M in [17] can be constructed deterministically in Õ(n2) time, and so the algorithm in [17]
is a non-uniform algorithm as described. There are other candidate measurement matrices
with deterministic constructions that may work for a similar purpose [16], but the exact
tradeoffs do not seem to have been analyzed and it is not clear that it is possible to get a
(uniform) algorithm with the same parameters. Additionally, [17] only handles the case when
all columns or rows of AB are promised to have a given sparsity, rather than the case where
there is a “global bound” of t on the sparsity of the matrix product itself.

therefore equivalent to MMV, and MPS/#OV is at least as hard as MMV. In the fine-grained complexity
setting OV variants are usually considered with n vectors in dimension d = poly(log n); here we are
considering the regime where d = n.

H. Bennett, K. Gajulapalli, A. Golovnev, and E. Warton 42:11

The main algorithm in [1] for OSMM (summarized in [1, Theorem 1.4]) runs in randomized
time O(n1.3459δ) when both the input matrices A, B and their product AB are nδ-sparse.13

For the special case when all entries in A, B are non-negative [1] give a deterministic
algorithm with the same running time as their randomized algorithm. We note that [1] was
written independently and concurrently with this work.

Besides simply using matrix multiplication, perhaps the most natural idea for an algorithm
for the All Zeroes problem is to compute a random entry (AB)i,j of AB and check whether it
is non-zero. If ∥AB∥0 ≥ nδ, then sampling, say, 10n2−δ random entries of AB independently
will find a non-zero entry with good constant probability. Because computing each such
entry amounts to computing an inner product, and sampling indices i, j ∼ {1, . . . , n} takes
roughly 2 log2 n random bits, this algorithm overall takes Õ(n3−δ) time and O(n2−δ log n)
random bits. So, this algorithm is relatively efficient and succeeds with good probability in
the case when AB is dense, but even then requires a relatively large number of random bits.
We also note the somewhat odd fact that this algorithm is most efficient when AB is dense,
whereas our algorithms are most efficient when AB is sparse.

Freivalds’s algorithm [12] works by sampling a uniformly random vector x ∼ {0, 1}n, and
outputting “YES” if ABx = 0 and “NO” otherwise. If AB = 0, then this algorithm is always
correct, and if AB ̸= 0 then it fails with probability at most 1/2.14 In particular, Freivalds’s
algorithm has one-sided error with no false negatives (i.e., it is a coRP algorithm).

A key idea for subsequent algorithms was to reduce MMV to a question about polynomials.
The main idea is the following. Define x := (1, x, x2, . . . , xn−1)T , where x is an indeterminate,
and define pi(x) := (ABx)i =

∑n
j=1(AB)i,j · xj−1. Note that AB = 0 if and only if

the polynomials pi(x) are identically zero (as formal polynomials) for all i ∈ {1, . . . , n}.
Furthermore, if the ith row of AB is non-zero then pi(x) is a non-zero polynomial of degree
at most n − 1, and therefore has at most n − 1 distinct complex (and hence integral) roots.
So, for such pi(x) and a non-empty set S ⊂ Z, Prα∼S [p(α) = 0] ≤ (n − 1)/ |S|, which is
less than 1/2 when |S| ≥ 2n. This observation leads to the following algorithm for MMV,
which forms the basis for Kimbrel and Sinha’s algorithm [19]. Sample α ∼ {1, . . . , 2n}, and
output “YES” if and only if ABα = 0 for α := (1, α, α2, . . . , αn−1)T . Using associativity, it
is possible to compute this product as A(Bα) using O(n2) arithmetic operations.

However, there is an issue with this algorithm: it requires computing powers of α up to
αn−1. These powers require Ω(n) bits to represent for any integer α ≥ 2, and so performing
arithmetic operations with them takes Ω(n) time. To solve this, Kimbrel and Sinha instead
consider the “test vector” α modulo an (arbitrary) prime 2n ≤ q ≤ 4n, which they can find
deterministically in O(n2) time. They show that their algorithm is still correct with good
probability (over the choice of α) with this modification.

Korec and Wiedermann [20] showed how to deterministically find a good α for the above
test – that is, a value α such that pi(α) ̸= 0 if pi is not identically zero – using Cauchy’s bound,
which gives an upper bound on the magnitude of the largest root of a polynomial as a function
of the polynomial’s coefficients. Namely, they just choose α larger than Cauchy’s bound.
(They note that the maximum magnitude of an entry in AB – and hence of a coefficient in

13 A more general version of this theorem, which gives an algorithm whose running time depends both on
the sparsity of the input matrices A, B and of their product AB, appears as [1, Theorem 1.7].

14 To see this, note that in the latter case some row sT of AB must be non-zero, and let j∗ be the index
of the last non-zero entry in s. Then for uniformly random x ∼ {0, 1}n, Pr[ABx = 0] ≤ Pr[⟨s, x⟩ =
0] = Pr[sj∗ xj∗ = −

∑j∗−1
k=1 skxk] ≤ 1/2. Moreover, this holds for matrices A, B over any ring R, and so

Freivalds’s algorithm works for MMV over any ring R.

APPROX/RANDOM 2024

42:12 Matrix Multiplication Verification Using Coding Theory

any of the polynomials pi(x) – is at most nµ2, where µ is the maximum magnitude of an
entry in A or B.) Their algorithm uses only O(n2) arithmetic operations, but again requires
computing powers of α up to αn−1, and therefore the algorithm has bit complexity Ω(n3).

Additionally, we mention the work of Künnemann [21], which works for MMV over finite
fields Fq with q > n2 (he reduces MMV over the integers to MMV over such fields). His
algorithm works by considering the bivariate polynomial f(x, y) = fA,B(x, y) := xT ABy

for x = (1, x, x2, . . . , xn−1), y = (1, y, y2, . . . , yn−1), where x and y are indeterminates, and
the corresponding univariate polynomial g(x) = gA,B(x) := f(x, xn). The coefficient of
x(i−1)+(j−1)n in g(x) (and of xi−1yj−1 in f(x, y)) is equal to (AB)i,j , and so to decide
whether AB = 0 it suffices to decide whether g(x) (or f(x, y)) is identically zero as a formal
polynomial.15 He shows that to do this it in turn suffices to decide whether g(αi) = 0
for all i ∈ {0, . . . , t − 1}, where α ∈ Fq is an element of order at least n2 and t = nδ is
an upper bound on the sparsity of AB. Indeed, he notes that the system of equations
g(1) = · · · = g(αt−1) = 0 is a Vandermonde system of homogeneous linear equations in the
at most t non-zero entries (AB)i,j in AB, and so its only solution is the solution (AB)i,j = 0
for all 1 ≤ i, j ≤ n (i.e., it must be the case that AB = 0). To evaluate g on the t values
1, α, . . . , αt−1 quickly, he uses a known result about fast multipoint polynomial evaluation.

We also note that MMV and its variants have also been studied from angles other
than derandomization of Freivalds’s algorithm. Notably, [8] gave a O(n5/3)-time quantum
algorithm for MMV, [15] studied the Boolean Matrix Multiplication Verification problem,
and [13, 26] study the problem of correcting matrix products. I.e., they study the problem
of computing AB given matrices A, B, and C where ∥AB − C∥0 is guaranteed to be small,
which Künnemann showed is equivalent to OSMM.

Finally, we remark that other recent works including [9, 5, 2, 6] have also studied “barriers
to SETH hardness”.

1.3 Open Questions
Of course, the main question that we leave open is whether Freivalds’s algorithm can be
fully derandomized, i.e., whether there is a deterministic Õ(n2)-time algorithm for MMV
on n × n matrices over finite fields Fq with q ≤ poly(n) and integer matrices with entries
[−nc, nc] for constant c > 0. Additionally, it would be interesting to extend our results for
MMV in the sparse regime to Output Sensitive Matrix Multiplication. The coding-theoretic
techniques that we use seem amenable to this.

References
1 Amir Abboud, Karl Bringmann, Nick Fischer, and Marvin Künnemann. The time complexity

of fully sparse matrix multiplication. In SODA, 2024.
2 Divesh Aggarwal, Huck Bennett, Zvika Brakerski, Alexander Golovnev, Rajendra Kumar,

Zeyong Li, Spencer Peters, Noah Stephens-Davidowitz, and Vinod Vaikuntanathan. Lattice
problems beyond polynomial time. In STOC, 2023.

3 Joah Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix
multiplication. In SODA, 2021.

4 Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. Simple construction of almost
k-wise independent random variables. In FOCS, 1990.

15 Indeed, [21] notes that this mapping from A, B to g(x) is a reduction from the All Zeroes Problem to
Univariate Polynomial Identity Testing (UPIT).

H. Bennett, K. Gajulapalli, A. Golovnev, and E. Warton 42:13

5 Tatiana Belova, Alexander Golovnev, Alexander S. Kulikov, Ivan Mihajlin, and Denil Sharipov.
Polynomial formulations as a barrier for reduction-based hardness proofs. In SODA, 2023.

6 Tatiana Belova, Alexander S. Kulikov, Ivan Mihajlin, Olga Ratseeva, Grigory Reznikov, and
Denil Sharipov. Computations with polynomial evaluation oracle: ruling out superlinear
SETH-based lower bounds. arXiv, 2023. arXiv:2307.11444.

7 Huck Bennett, Karthik Gajulapalli, Alexander Golovnev, and Evelyn S Warton. Matrix
multiplication verification using coding theory. arXiv preprint, 2023. arXiv:2309.16176.

8 Harry Buhrman and Robert Spalek. Quantum verification of matrix products. arXiv, 2004.
arXiv:quant-ph/0409035.

9 Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan Paturi,
and Stefan Schneider. Nondeterministic extensions of the strong exponential time hypothesis
and consequences for non-reducibility. In ITCS, 2016.

10 Henry Cohn, Robert Kleinberg, Balázs Szegedy, and Christopher Umans. Group-theoretic
algorithms for matrix multiplication. In FOCS, 2005.

11 Ran Duan, Hongxun Wu, and Renfei Zhou. Faster matrix multiplication via asymmetric
hashing. In FOCS, 2023.

12 Rūsin, š Freivalds. Fast probabilistic algorithms. In MFCS, 1979.
13 Leszek Gasieniec, Christos Levcopoulos, Andrzej Lingas, Rasmus Pagh, and Takeshi Tokuyama.

Efficiently correcting matrix products. Algorithmica, 79(2):428–443, 2017.
14 Jonathan I. Hall. Notes on coding theory. Available at https://users.math.msu.edu/users/

halljo/classes/codenotes/GRS.pdf.
15 Wing-Kai Hon, Meng-Tsung Tsai, and Hung-Lung Wang. Verifying the product of generalized

boolean matrix multiplication and its applications to detect small subgraphs. In WADS, 2023.
16 Mark A. Iwen, 2023. Personal Communication.
17 Mark A. Iwen and Craig V. Spencer. A note on compressed sensing and the complexity of

matrix multiplication. Information Processing Letters, 109(10):468–471, 2009. doi:10.1016/
j.ipl.2009.01.010.

18 Hamid Jahanjou, Eric Miles, and Emanuele Viola. Local reductions. In ICALP, 2015.
19 Tracy Kimbrel and Rakesh Kumar Sinha. A probabilistic algorithm for verifying matrix

products using O(n2) time and log2 n + O(1) random bits. Information Processing Letters,
45(2):107–110, 1993.

20 Ivan Korec and Jiří Wiedermann. Deterministic verification of integer matrix multiplication
in quadratic time. In SOFSEM, 2014.

21 Marvin Künnemann. On nondeterministic derandomization of Freivalds’ algorithm: Con-
sequences, avenues and algorithmic progress. In ESA, 2018.

22 François Le Gall. Faster rectangular matrix multiplication by combination loss analysis. In
SODA, 2024.

23 François Le Gall and Florent Urrutia. Improved rectangular matrix multiplication using
powers of the Coppersmith-Winograd tensor. In SODA, 2018.

24 Ron M. Roth and Abraham Lempel. On MDS codes via Cauchy matrices. IEEE Transactions
on Information Theory, 35(6):1314–1319, 1989.

25 Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou. New bounds for
matrix multiplication: from alpha to omega. In SODA, 2024.

26 Yu-Lun Wu and Hung-Lung Wang. Correcting matrix products over the ring of integers. arxiv,
2023. arXiv:2307.12513.

27 Uri Zwick. All pairs shortest paths using bridging sets and rectangular matrix multiplication.
Journal of the ACM, 49(3):289–317, 2002.

APPROX/RANDOM 2024

https://arxiv.org/abs/2307.11444
https://arxiv.org/abs/2309.16176
https://arxiv.org/abs/quant-ph/0409035
https://users.math.msu.edu/users/halljo/classes/codenotes/GRS.pdf
https://users.math.msu.edu/users/halljo/classes/codenotes/GRS.pdf
https://doi.org/10.1016/j.ipl.2009.01.010
https://doi.org/10.1016/j.ipl.2009.01.010
https://arxiv.org/abs/2307.12513

Interactive Coding with Unbounded Noise
Eden Fargion #

Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel

Ran Gelles #

Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel

Meghal Gupta #

University of California, Berkeley, CA, USA

Abstract
Interactive coding allows two parties to conduct a distributed computation despite noise corrupting
a certain fraction of their communication. Dani et al. (Inf. and Comp., 2018) suggested a novel
setting in which the amount of noise is unbounded and can significantly exceed the length of the
(noise-free) computation. While no solution is possible in the worst case, under the restriction of
oblivious noise, Dani et al. designed a coding scheme that succeeds with a polynomially small failure
probability.

We revisit the question of conducting computations under this harsh type of noise and devise a
computationally-efficient coding scheme that guarantees the success of the computation, except with
an exponentially small probability. This higher degree of correctness matches the case of coding
schemes with a bounded fraction of noise.

Our simulation of an N -bit noise-free computation in the presence of T corruptions, communicates
an optimal number of O(N + T) bits and succeeds with probability 1 − 2−Ω(N). We design this
coding scheme by introducing an intermediary noise model, where an oblivious adversary can choose
the locations of corruptions in a worst-case manner, but the effect of each corruption is random: the
noise either flips the transmission with some probability or otherwise erases it. This randomized
abstraction turns out to be instrumental in achieving an optimal coding scheme.

2012 ACM Subject Classification Theory of computation → Interactive computation; Mathematics
of computing → Coding theory; Computing methodologies → Distributed algorithms

Keywords and phrases Distributed Computation with Noisy Links, Interactive Coding, Noise
Resilience, Unbounded Noise, Random Erasure-Flip Noise

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.43

Category RANDOM

Related Version Full Version: https://arxiv.org/abs/2407.09463 [10]

Funding Ran Gelles: partially supported by a grant from the United States-Israel Binational Science
Foundation (BSF), Jerusalem, Israel, Grant No. 2020277.

Acknowledgements E. Fargion and R. Gelles would like to thank Paderborn University for hosting
them while part of this research was done. R. Gelles would like to thank CISPA – Helmholtz Center
for Information Security for hosting him.

1 Introduction

In many distributed systems nowadays, communication channels suffer various types of noise
and interference that may corrupt information exchanged between devices. Interactive coding,
initiated by the seminal work of Schulman [25, 26] (see also [12]), allows two or more devices
to correctly complete their computation despite channel noise, by adding only a moderate
amount of redundancy to the computation. The capability of an interactive coding scheme
usually depends on the specific type of noise it is designed to withstand. For instance, when

© Eden Fargion, Ran Gelles, and Meghal Gupta;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 43; pp. 43:1–43:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:eden.fargion@gmail.com
https://orcid.org/0009-0006-2849-5887
mailto:ran.gelles@biu.ac.il
https://orcid.org/0000-0003-3615-3239
mailto:meghal@berkeley.edu
https://orcid.org/0000-0001-7657-2847
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.43
https://arxiv.org/abs/2407.09463
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

43:2 Interactive Coding with Unbounded Noise

the noise can flip bits, interactive coding schemes withstand up to a fraction of 1/6 of flipped
bits [8, 20] (a fraction of 1/4 can be withstood over channels with larger alphabets [5]); when
the noise erases bits (i.e., replaces a bit with a special erasure mark ⊥), then a fraction of 1/2
of bit erasures can be withstood [11, 20], which also applies for larger alphabets [8]. When
messages can be inserted and deleted, the maximal corruption rate is again 1/4, see [4, 27].

In a recent work, Dani, Hayes, Movahedi, Saia, and Young [7] suggested a different and
interesting model for interactive coding in which the amount of noise is unbounded. That
is, the number T of corruptions that affects a given execution, can be arbitrary. Note that
this number T is unknown to the coding scheme; this is in contrast to the standard model
of interactive coding, where a limit on the fraction of corrupted transmissions is known by
all devices. The scheme in [7] correctly computes any two-party computation that takes
N rounds without noise, by communicating N + O(T +

√
N(T + 1) log T) bits and succeeds

with probability 1 − O(1/N log N).
In a nutshell, the idea of the scheme in [7] is as follows. Every message sent between

the parties contains the round number it corresponds to and a signature. A device checks
that the signature is valid before processing a received message. If the signature does not
check out, the device ignores that communication. The coding scheme tracks the progress of
both parties via the added information of the round number, so that corrupted messages are
re-transmitted until they arrive correctly at the other side.

One significant drawback of the above approach, is that the noise might corrupt a message
along with its signature so that the receiver believes that the signature is correct. This
occurs with exponentially small probability in the length of the signature, which leads to
the polynomially-small failure probability of the scheme. In other words, the scheme in [7]
assumes that the noise never creates a valid signature and settles with a failure probability
of magnitude 1/N log N .

In this work we aim to achieve an interactive coding scheme that can withstand an
unbounded amount of noise, yet, with failure probability exponentially small in N , similar to
most previous work on interactive coding (e.g., [26, 18, 2, 19]). This effectively means that
the coding scheme must cope with corrupted messages being processed by some device. That
is, the coding scheme must be resilient to the event, that occurs with polynomially small
probability in N , where both the message and the signature are corrupted in a matching way.

Our main result is a coding scheme that is resilient to an arbitrary and a priori unknown
number T of bit flips, with exponentially small failure probability.

▶ Theorem 1.1 (Main). Given any two-party binary interactive protocol π of length N ,
there exists an efficient randomized protocol Π of length O(N + T) that simulates π with
probability 1 − 2−Ω(N) over a binary channel in the presence of an arbitrary and a priori
unknown number T of corruptions. The noise is assumed to be independent of the parties’
randomness.

We note that the scheme assumes oblivious noise in the sense that the T corrupted transmis-
sions are selected at the beginning of the computation (as a function of the coding scheme
and the parties’ inputs) and is independent of the parties’ (private) randomness. This
assumption is crucial, as no coding scheme withstands an unbounded amount of noise that is
non-oblivious [7, Theorem 6.1].

1.1 Techniques
Towards an optimal scheme: the code concatenation approach. The immediate approach
towards an improved coding scheme for an unbounded amount of corruptions is of code
concatenation, namely composing two layers of interactive code. The inner layer would be

E. Fargion, R. Gelles, and M. Gupta 43:3

responsible for transmitting bits over the channel despite the unbounded amount of noise
(e.g., [7, 15]). The outer layer would then “see” only a limited amount of noise (which passes
the inner layer with polynomially-small probability) and perform a standard interactive
coding (e.g., [25, 26, 5, 21, 19, 14, 20]) using these bits.

Unfortunately, such an approach faces severe difficulties. For the inner layer, the scheme
of Dani et al. [7] assumes that no corrupted message is accepted by a party. That is, a
message can either be correct or marked as invalid. Requiring the parties to process incorrect
messages might cause their inner state to differ in a way that could not be recovered by the
scheme. That is, a single corrupted message (that is believed to be correct by one of the
parties) might cause the parties to “lose sync”, so that the parties do not agree anymore on
when the next phase of the scheme begins and ends, or whether the scheme has terminated
or not. The scheme will not recover from this fault because the synchronization information
would be sent by one party at certain rounds but expected by the other party at different
rounds. The other option for the inner layer is the scheme by Gelles and Iyer [15] designed
to withstand an unbounded amount of erasures, and thus, on its surface, does not fit our
purpose.

The randomized erasure–flip model. The key towards solving the above conundrum stems
from defining a new random noise model that we name the unbounded probabilistic Erase–Flip
noise model (UPEF). This model (formally defined in Section 2.2) still allows an unbounded
number of corruptions determined by the adversary in an oblivious way. However, when
the i-th transmission is corrupted by the adversary, the effect of the corruption is random:
the transmitted bit is flipped with some probability pi or erased with the complementary
probability. The probabilities {pi}i∈N are parameters of the model and can be determined
by the algorithm’s designer. In a sense, this type of noise matches the effect oblivious noise
has on messages that are protected with a signature: with some probability the corruption is
detected (the signature does not verify) and the message is marked as corrupted, i.e., erased.
On the other hand, with some small probability the corruption is such that the signature
verifies the corrupted message; in this case we have a flip. The probabilities are determined
by the length of the signatures in use.1

This novel randomized model is much simpler to handle, and facilitates the design and
analysis of optimal coding schemes. Furthermore, any scheme designed for this model can
be translated into a coding scheme that works in the standard unbounded flips (UF) noise
model, by employing signatures of respective length to match the erasure–flip probabilities of
the UPEF model. Therefore, this model serves as a crucial tool for obtaining optimal coding
schemes in the standard model.

Switching to the UPEF model allows us to use the scheme in [15] as the inner code
of our concatenated coding scheme, in an almost as-is fashion: by smartly setting the
probabilities {pi}i∈N, we can guarantee, with very high probability, that any execution
experiences an unbounded number of erasures but only a bounded number of bit-flips. The
scheme in [15] withstands the erasures and delivers the non-erased bits (either correct or
not) to the outer layer, which should be able to cope with this limited amount of bit flips.

One problem still remains, but to explain it, we must first explain how the [15] scheme
works. In a nutshell, the parties simulate the underlying (noiseless) protocol π bit-by-bit,
where the scheme adds to each bit the parity (mod 2) of the corresponding round number.

1 We use AMD codes [6] to generate signatures, see the full version of this paper [10, Appendix A] for the
exact details.

APPROX/RANDOM 2024

43:4 Interactive Coding with Unbounded Noise

The scheme works in challenge-response–style iterations: The first party (Alice) begins by
sending the bit of the next round of π along with the parity of that round (the challenge).
Bob receives this bit, and if the parity corresponds to the round number he expects, he
records this bit and replies with the next bit of π along with the parity of that round in π (the
response). When this reply reaches Alice, and the parity is correct, Alice records the bit from
Bob and moves on to the next iteration. In any case of erasures or if the parity mismatches,
the receiver ignores the received message. The analysis in [15] shows that this single parity
bit suffices to keep track of the progress despite an unbounded amount of erasures.

However, in the UPEF model, a bit flip can either corrupt the content bit (i.e., the next
simulated round of π) or the parity bit sent along! Corrupting the parity bit damages the
correctness of the [15] scheme, but this is the only way the noise can affect correctness.
Throughout a detailed case analysis, we prove that corrupting the parity bit has the sole
effect of making the parties out-of-sync, in the sense that one party advances to the next
round in π, while the other does not. Luckily, this type of out-of-sync corruption was already
considered in the interactive-coding community, initiated by the work of Braverman, Gelles,
Mao, and Ostrovsky [4], which presented a non-efficient scheme that withstands a noise
level of up to 1/18 fraction of the rounds, where “noise” here means insertions and deletions
producing out-of-sync events as described above. That work was followed by a work by
Sherstov and Wu [27], who showed that a variant of the [4] scheme withstands the optimal
level of noise, namely, up to 1/4 of the rounds, and by a work by Haeupler, Shahrasbi, and
Vitercik [22], who presented an efficient scheme, based on synchronization strings, with noise
resilience of 1/44.

Therefore, we can set the scheme in [22] (denoted HSV hereinafter) as the outer layer in
our construction, and set the probabilities {pi}i∈N such that the total number of insertion
and deletion errors will not surpass the threshold expected by the HSV scheme, except with
an exponentially small probability. This construction achieves our goal of obtaining a coding
scheme in the UPEF model, with optimal length of O(N + T), and an exponentially small
failure probability.

Unfortunately, once converting this optimal UPEF scheme back to the standard UF
model, the overhead increases severely. In particular, the way we set the probabilities {pi}i∈N
implies a logarithmic overhead on the size of the signatures, leading to a sub-optimal scheme
of length O((N + T) log(N + T)) in the UF model. To avoid this increase in communication,
we must maintain the probabilities {pi}i∈N “large”, and design a new scheme that is still
optimal in the UPEF model despite the high values of {pi}i∈N.

Obtaining an optimal scheme: the iterative approach. In order to obtain a UF-optimal
scheme, we take a different approach, namely, we execute an increasing-length instances of a
“standard” interactive coding [7]. As before, we start by constructing a coding scheme over
the UPEF model. Our goal now is to maximize the pi’s as much as possible. The main idea
is as follows. Let’s fix each pi to some constant, say, 2/3. Now, any corruption in the UPEF
model will cause an erasure with a fixed probability of 1/3. The number of erasures a party
observes is a good estimate of the level of noise during the same transmissions. Hence, the
parties can continue running the scheme again and again, until they believe the noise level
was low enough to produce the correct output.

In more detail, Alice and Bob run an efficient interactive coding scheme resilient to a
constant fraction of adversarial flips (e.g., [2, 19]). After executing the scheme, Alice and
Bob count the number of erasures observed during the execution and estimate (with high
probability) the fraction of corruption they experienced. They communicate this estimate

E. Fargion, R. Gelles, and M. Gupta 43:5

to each other, and decide how to continue accordingly. If the noise level seems sufficiently
low, the resilient scheme must have produced the correct output, and the parties can safely
terminate. Otherwise, the parties re-run the interactive scheme, doubling its length. They
repeat this action until they reach an execution where the noise level is low enough to
guarantee the success of the underlying interactive coding scheme.

With a correct choice of parameters, this results in a UPEF scheme of length O(N + T).
However, since all {pi}i∈N are fixed to a constant, once we translate this scheme into a UF
scheme, we keep its length up to a constant and obtain an optimal length of O(N + T) in
this case as well.

We note that a communication complexity of Θ(N +T) is tight for the UF model. A lower
bound of Ω(N + T) is immediate by considering the case where the adversary corrupts the
entirety of the communication between Alice and Bob for Θ(T) rounds, e.g., by flipping each
bit with probability 1/2, thereby not allowing any information to cross the channel during
these rounds. After this corruption, N rounds are still needed to complete the protocol
without noise.

1.2 Related Work
As mentioned above, the field of interactive coding was initiated by the work of Schulman [25,
26]. Following this work, many two-party interactive coding schemes were developed, with
the goal to optimize various properties, such as efficiency, communication rate, and noise
resilience [5, 18, 2, 23, 21, 13, 3, 14, 20]. Two-party coding schemes for different types of
noise, such as erasures or insertions and deletions, appeared in [11, 13, 8, 4, 22, 27, 9, 20].
See [12] for an extensive survey on this field.

Closest to our work are coding schemes that withstand an unbounded amount of corruption.
As mentioned above, Dani et al. [7] developed a randomized scheme that deals with an
unbounded amount T of oblivious bit-flips, succeeds with high probability, and simulates
any π of length N in N + O(T +

√
N(T + 1) log T) rounds. Gelles and Iyer [15] developed a

deterministic scheme that deals with an unbounded amount T of (not necessarily oblivious)
erasures in at most 2N + 4T communication rounds. For the multiparty setting, Aggarwal,
Dani, Hayes, and Saia [1] developed a coding scheme that correctly simulates any protocol
over an arbitrary network withstanding an unbounded amount of oblivious corruptions in
Õ(N + T) rounds, suppressing logarithmic terms.

1.3 Paper Outline
We set up the UPEF and UF models, recall the insertion-deletion model, and review
interactive coding protocols in Section 2. In Section 3 we describe an optimal UPEF coding
scheme that follows a code concatenation approach. Its analysis is deferred to the full version
of this paper [10, Appendix A]. Finally, in Section 4 we describe an optimal coding scheme
in the UPEF model that follows an iterative approach. We then show how to translate it
into an optimal UF coding scheme.

2 Preliminaries

Notations. For an integer n ∈ N we use [n] = {1, 2, 3, . . . , n}. All logarithms are taken to
base 2 unless otherwise mentioned. For two strings a, b we denote by a◦ b their concatenation.
We will use ⃝k=1,2,...,ℓ ak ≜ a1 ◦ a2 ◦ · · · ◦ aℓ to abbreviate the concatenation of multiple
strings. We use Oε(·), Θε(·), etc., to explicitly remind that the constant inside the O(·) may
depend on (the constant) ε.

APPROX/RANDOM 2024

43:6 Interactive Coding with Unbounded Noise

2.1 Interactive Protocols and Coding Schemes
Consider two parties, Alice and Bob, having inputs x, y ∈ {0, 1}k respectively, who wish to
compute some function f(x, y) by communicating over a channel with alphabet Σ. Towards
that goal, Alice and Bob use an interactive protocol composed of two algorithms π = (πa, πb)
for Alice and Bob, respectively. These algorithms assume a common clock known by both
parties (i.e., the protocol is synchronized) and determine, for each party in each round
(timestep), whether the party (1) has to send a message in that round, (2) which symbol the
party sends, and (3) if the party should terminate in that round and which output should it
give.

Each party records all the messages it receives during the execution of the protocol. The
collection of these records is the party’s transcript. We assume that π has fixed order of
speaking; this means that in each round exactly one party is transmitting a symbol (the other
party listens), and the identity of the transmitting party in a given round is predetermined
and independent of the parties’ inputs. In particular, a protocol in which Alice speaks in odd
rounds, and Bob speaks in even rounds is said to be of an alternating order. Note that if π is
not alternating, then it can be converted to an alternating-order protocol while increasing the
communication complexity by a factor of at most 2. We say that a protocol is k-alternating,
for some k ∈ N, if during its execution each party transmits bulks of k bits. The length of a
protocol is defined to be the number of rounds it includes until both parties have terminated.

Noisy channels and coding schemes. Now, assume that the parties are connected by a
noisy channel. Formally, given an input and output alphabets Σin, Σout, respectively, a single
utilization of a noisy channel is the (possibly randomized) function C : Σin → Σout.

We can now discuss protocols that perform over noisy channels. We say that a protocol
π′ simulates π over the noisy channel C, if for any inputs (x, y), after executing π′ over the
noisy channel C, the parties can output their transcripts in an execution of π over a noiseless
channel with inputs (x, y). When the channel noise or the algorithm π′ are probabilistic, we
say that π′ simulates π with probability p if the probability that the parties’ output equal the
transcript of π is at least p, for any inputs pair.

A coding scheme (for some given noisy channel C) is a function CS, whose input is a
noiseless protocol π, and its output is a protocol π′ = CS(π) which simulates π over the
channel C. When the channel noise or the scheme are probabilistic, we say that the coding
scheme has success probability p, if for any π, the protocol π′ = CS(π) simulates π with
probability p.

2.2 Noise Models
As alluded to in the introduction, our scheme is designed to withstand an unbounded amount
of (oblivious) bit flips. However, we design the scheme by reducing the unbounded-flip model
to a different noise model with unbounded probabilistic erasures and flips. Furthermore, the
effect of probabilistic erasures and flips noise on the inner layer of our coding scheme is such
that the outer layer “sees” insertion and deletion noise. We will now define these three noise
models in turn.

The Unbounded Flip noise model (UF). Our main noise model is the unbounded flip
noise model, set forth by Dani et al. [7]. Given a specific execution of π′ with inputs (x, y),
the adversary sets a noise corruption pattern E ⊂ N such that the amount of noise, |E|,
satisfies |E| = T for some number T ∈ N decided by the adversary. The noise pattern can

E. Fargion, R. Gelles, and M. Gupta 43:7

be set as a function of π, x, y but is independent of any randomness the parties might have
(i.e., an oblivious noise). The noise pattern E determines which bits get flipped during
the execution of π. Namely, if i ∈ E, then the i-th transmitted bit in π will be flipped.
Otherwise, the bit goes through uncorrupted. Note that T might be arbitrary. When one of
the parties terminates, the channel sends zeros to the another party, which may be flipped
by the adversary.

The Unbounded Probabilistic Erasure-Flip noise model (UPEF). Our coding scheme in
this work is designed and analyzed within the following noise model, that combines both
erasure and flip noise. This model naturally appears when executing a protocol in the UF
model while each message contains a (probabilistic) signature or a message authentication
tag that indicates its validity.

In this model, the parties are connected via a noisy communication channel C : {0, 1} →
{0, 1, ⊥}, which can either flip bits or erase them (denoted by the erasure mark ⊥). Similar
to the UF model, given any specific execution of π′ with inputs (x, y), the rounds which
are corrupted are predetermined by an adversary that knows π′, x, y and the inputs but not
the parties’ private randomness. This corruption is described via the noise pattern E ⊂ N,
where i ∈ N means that the i-th round is corrupted; otherwise, the bit arrives at the other
side intact. When a round is corrupted, the effect is as follows: the bit is flipped with some
probability pi or is erased with probability 1 − pi. The probabilities {pi}i∈N are parameters
of the model and will be specified later.

Terminating in the UPEF is different from terminating in the UF. When Alice terminates,
the channel transmits a special “silence” symbol, namely, “□”. Upon the reception of this
special symbol, Bob knows that Alice has quit, and terminates as well.

Similar to the UF model, we restrict the discussion to noise patterns in which the total
number of corrupted rounds is finite. That is, there exists some number T ∈ N, unknown to
the parties and π, such that |E| = T .

The Insertion-Deletion noise model. The insertion-deletion noise model [4], which we
briefly describe here, is important for our analysis of the concatenated coding scheme.

In this model we consider alternating interactive protocols π′, where no common clock is
assumed by the parties. Instead, Alice sends the first symbol (round 1), and Bob is idle until
receiving this symbol. Once the first symbol is obtained by Bob he transmits a symbol back
to Alice (round 2). Alice will execute round 3 once receiving this symbol, and so on. The
noise is allowed to either corrupt a symbol (i.e., the receiver will obtain a different symbol
from the one sent, a substitution), or to completely delete the symbol, so that the receiver
receives nothing. In the latter case, the protocol is “stuck” as both parties await an incoming
symbol to proceed. To avoid getting stuck, the noise must inject a new symbol towards the
sender of the symbol that got deleted. This causes the parties to get out of sync, that is, one
of them will believe the current round is i, while the other will believe the current round is
i + 2. See also [4, 27, 22, 9, 16, 17].

In [22], the authors give an efficient constant-rate coding scheme for insertions and
deletion noise, which we will use in our construction.

▶ Theorem 2.1 (Theorem 1.2 in [22]). For any alternating protocol π of length n and for any
ε > 0, there exists an efficient randomized protocol π′ simulating π in presence of δ = 1/44−ε

fraction of edit-corruptions, whose length is Θε(n) and succeeds with probability 1 − 2−Θ(n).
The alphabet size of π′ is Θε(1).

We assume that at its termination, π′ has an output, which equals to the output of π (under
the conditions in the theorem).

APPROX/RANDOM 2024

43:8 Interactive Coding with Unbounded Noise

3 A UPEF-optimal coding scheme via code concatenation

In this section we give an optimal UPEF coding scheme, based on code-concatenation
approach (Algorithms 1 and 2). The analysis of the scheme, presented in the full version of
this paper [10, Appendix A], proves the following Theorem.

▶ Theorem 3.1. Given any two-party binary interactive protocol π of length N , there exists
some constant C and an efficient randomized protocol Π of length O(N + T) that simulates
π with probability 1 − 2−Ω(N) over a binary channel in the presence of an arbitrary and a
priori unknown number T of probabilistic Erasure–Flip corruptions, with pi = min

{
CN
i2 , 1

2
}

.

Let π be a binary alternating protocol that assumes noiseless channels of length |π| = N .
Our goal is to simulate π in the UPEF model. Let π′ be the randomized protocol obtained
from π via Theorem 2.1, by setting δ = 1/45 (i.e., ε = 1/1980). We denote |π′| = N ′. Denote
the alphabet of π′ by Σ′ and note that its size is constant, |Σ′| = Θ(1).

Our coding scheme (Algorithms 1 and 2) simulates the communication of π′, symbol by
symbol. As the channel in the unbounded probabilistic Erase–Flip noise model is binary, the
parties communicate the binary representations of the symbols in π′. Therefore, during each
iteration of the simulation, Alice sends a symbol to Bob using log |Σ′| bit transmissions, and
expects a symbol reply from Bob.

Algorithm 1 Simulation over Erasure and Substitution Channel with Unbounded Noise (Alice).

Input: An alternating binary protocol π of length N , an input x

Initialize: Let π′ be the protocol simulating π given by Theorem 2.1, setting ε = 1/1980. Let
N ′ = |π′| and assume Σ′ (the alphabet of π′) is a power of two.

A.1 Ta ← ∅, ra ← 0
A.2 while ra < N′

2 do
A.3 // Send Message
A.4 ra ← ra + 1
A.5 msend ← π′(x | Ta)
A.6 Ta ← Ta ◦msend

A.7 send (msend, ra mod 2) ▷ k transmissions
A.8
A.9 // Receive Message
A.10 receive m′ = (mrec, rrec) ▷ k transmissions
A.11 if m′ does not contain ⊥ and rrec = ra mod 2 then
A.12 Ta ← Ta ◦mrec

A.13 else
A.14 delete the last symbol of Ta

A.15 ra ← ra − 1
A.16 end if
A.17 end while
A.18 Output the output given by π′

The simulation of π′ employs a challenge-response paradigm, where Alice sends a symbol
(the challenge) and expects one back (the response). The parties maintain a counter to track
their respective progress, namely, the variables ra and rb, which represent the number of
successful iterations observed by Alice and Bob, respectively. Every time Alice and Bob send
a symbol, they attach to it the parity (mod 2) of their own counter. Hence, the simulation is
k-alternating, with k = ⌈log |Σ′|⌉ + 1.

E. Fargion, R. Gelles, and M. Gupta 43:9

Algorithm 2 Simulation over Erasure and Substitution Channel with Unbounded Noise (Bob).

Input: An alternating binary protocol π of length N , an input x

Initialize: Let π′ be the protocol simulating π given by Theorem 2.1, setting ε = 1/1980. Let
N ′ = |π′| and assume Σ′ (the alphabet of π′) is a power of two.

B.1 Tb ← ∅, rb ← 0, err ← 0, m← (0, 0)
B.2 while m′ ̸= □ do
B.3 // Receive Message
B.4 receive m′ = (mrec, rrec) ▷ k transmissions
B.5 if m′ does not contain ⊥ and rrec ̸= rb mod 2 then
B.6 Tb ← Tb ◦mrec

B.7 err ← 0
B.8 else
B.9 err ← 1
B.10 end if
B.11
B.12 // Send Message
B.13 if err = 0 then
B.14 rb ← rb + 1
B.15 msend ← π′(y | Tb)
B.16 Tb ← Tb ◦msend

B.17 send m← (msend, rb mod 2) ▷ k transmissions
B.18 else
B.19 send m ▷ k transmissions; m from memory
B.20 end if
B.21 end while
B.22 Output the output given by π′

When Alice receives a symbol (as a response to the challenge she has previously sent),
she checks the counter value attached to it: if it matches her expected counter parity (mod
2), she “believes” this challenge-response iteration, delivers the received symbol to π′ and
increases ra by 1; otherwise, she ignores the reply and tries again in the next iteration.

Bob acts in an analogous manner: if the information received from Alice matches the
counter parity (mod 2) he is expecting, then he “believes” the received symbol, delivers it
to π′, increases rb by 1, obtains from π′ the next symbol to communicate to Alice, and sends
Alice this symbol and the parity of rb. If the information from Alice does not match Bob’s
expectation, he ignores this transmission and replies with the previous symbol computed
by π′ (along with the parity that corresponds to that symbol). When a party “believes” an
iteration, it appends the received and transmitted symbols of the iteration to its transcript,
Ta or Tb, respectively. This transcript records all the symbols communicated so far (by π′)
during the “successful” iterations of Algorithms 1 and 2.

To summarize, in each iteration of the loop, Alice generates the next message of π′,
denoted m ∈ Σ′, based on her current transcript Ta and her input x, i.e., m = π′(x | Ta).
Alice (temporarily) adds m to Ta, and sends its binary representation to Bob, along with the
parity of ra. After receiving a k-bit message (mrec, rrec) from Alice, Bob checks that none
of the k bits have been erased (denoted by ⊥) and that rrec is opposite to his parity (since
Alice added a new symbol and he did not, yet). If everything matches, Bob adds mrec to
his transcript Tb, increases rb by 1, computes the next message m′ = π′(y | Tb) and the new
parity of rb, and transmits them to Alice. On the other hand, if Bob notices any erasures
or the mismatch of the parity, he ignores Alice’s new symbol and replies with the latest
computed (m′, rb) recorded in his memory.

APPROX/RANDOM 2024

43:10 Interactive Coding with Unbounded Noise

At the end of the iteration, Alice receives a message and a parity from Bob; if there were
no erasures and the received parity matches ra, she adds that message to her transcript.
Otherwise, Alice deletes the (temporary) message she added at the beginning of this iteration.

The algorithm ends once the length of Ta reaches the length of π′ (for Alice) or when
a special symbol □, sent by the channel when Alice quits, is received by Bob. We discuss
termination in this model and the implication of assuming this special symbol in the full
version of this paper [10, Appendix B.1].

The complete detailed analysis of the coding scheme (Algorithms 1 and 2) and the proof
of Theorem 3.1, are deferred to the full version of this paper [10, Appendix A].

4 A UF Scheme with Optimal Communication

The concatenated scheme in Section 3, while optimal in the UPEF model, implies a UF
scheme of length O((N + T) log(N + T)) in which the i-th bit is replaced with an AMD
code [6] of length O(log(p−1

i)); see the full version of this paper [10, Appendix B] for details.
In this section, we take a different approach towards constructing an optimal coding scheme
in the UPEF model, namely by executing increasing-length coding schemes in an iterative
fashion. This approach eventually leads to an optimal-communication UF scheme.

Here, Alice and Bob utilize a “standard” interactive coding scheme for substitutions
and estimate the experienced level of noise. If the estimated noise level is too high, Alice
and Bob repeat the execution with a larger amount of redundancy. When the noise level
is low enough, the interactive scheme guarantees the success of the computation, and the
parties can terminate. This approach, in addition to leading to a UF scheme with optimal
communication, is also much simpler and easier to analyze than the scheme of Section 3.
The key difference is that, all we need in order to estimate the noise level well, is that the
probabilities {pi}i∈N are bounded below by a constant, rather than converging to 0. This
aligns perfectly with obtaining optimal complexity, as smaller {pi}i∈N imply longer encodings.

The scheme in this section utilizes a slight variant of the UPEF model, denoted the
modified UPEF (mUPEF) model, which we now describe. Let a noise pattern E ⊂ N be
determined adversarially. As before, if i /∈ E, the i-th transmitted bit reaches the other
party intact. For i ∈ E, the i-th transmitted bit is still erased with probability 1 − pi, and
corrupted with probability pi. However, the corruption here is not necessarily a bit flip as in
the original UPEF. Instead, the adversary determines whether the bit is flipped, erased, or
not corrupted at all. The probabilities {pi}i∈N are parameters of the model. However, we
will actually set them all to have the same value. That is, ∀i, pi = 2/3.

In our scheme, we set pe = 1 − pi = 1/3 as a lower bound on the probability that a bit is
erased. Similar to the UF model, we will assume that when Alice terminates, the channel
implicitly sends Bob a default symbol (e.g., a zero).

In the following sections we describe and analyze a coding scheme in the mUPEF model,
with optimal O(N + T) communication that, due to our choice of pe = 2/3, results with a
UF scheme with O(N + T) communication as well.

An optimal mUPEF Coding Scheme. For the underlying substitution-resilient interactive
coding scheme, we can take any (efficient) 2-party scheme with binary alphabet that is
resilient to a constant fraction of adversarial noise, e.g., [2, 19]. In particular, let us assume
an interactive coding scheme that simulates any (noiseless) protocol π in the presence of
up to 0.1 adversarial substitutions with a constant rate over the binary alphabet. Denote
the substitution-resilient version by π′, so |π′| = O(|π|) = O(N). We assume that π′ is

E. Fargion, R. Gelles, and M. Gupta 43:11

alternating. We additionally assume that the communication of π′ includes a constant
fraction of ones. To be concrete, out of the |π′|/2 bits Alice sends, at least |π′|/8 are the bit 1,
in any execution of π′. We must have this property, because in our scheme, a long sequence
of zeros will indicate termination. For that reason, we want that π′ will not send a long
sequence of zeros. This can be achieved, for instance by making the parties communicate a 1
every alternate round, or by means of randomization (see, e.g., [13]).

We proceed to describe our mUPEF resilient scheme Π simulating the substitution-
resilient π′ defined above. The execution of Π consists of iterations, where the i-th iteration,
i = 0, 1, 2, . . . , takes 2Li rounds with Li = |π′|2i. The i-th iteration can be broken down into
two parts, each of length Li. In the first part, the parties execute π′ from scratch, padded to
length Li; in this padded protocol, each bit of π′ is sent 2i times, and decoding is performed
by majority (defaulting to 0 on ties, considering erased copies as zeros). In the second part of
iteration i, only Bob speaks. He sends Alice the success string 0Li if and only if he observed
less than 0.001peLi erasures in the first part; otherwise Bob sends the error string 1Li .

Alice terminates at the end of iteration i if she observed less than 0.001peLi erasures in
each of the parts of iteration i, and Bob’s transmissions at the second part contains more 0’s
than 1’s (i.e., it decodes to the success string rather than to the error string). Alice gives as
an output the same output that π′ has generated in the iteration in which she terminated.
Bob terminates at the end of iteration j if he observed less than 0.001peLj erasures in the first
part of j and at most 0.001peLj of the received bits in the first part of j are 1’s. Bob gives
as an output the output of the latest iteration k, with k < j, in which (1) he observed less
than 0.001peLj erasures in the first part and (2) he received at least Lk/40 ones from Alice
in the first part. We call a valid iteration any iteration that satisfies these two conditions.

4.1 Analysis

In this section we prove the following theorem.

▶ Theorem 4.1. Given any two-party binary interactive protocol π of length N , there exists
an efficient randomized protocol Π of length O(N + T) that simulates π with probability
1 − 2−Ω(N) over a binary channel in the presence of an arbitrary and a priori unknown
number T of mUPEF corruptions, with pi = 2/3 for all i.

We start with proving the correctness of our coding scheme: we begin by demonstrating that
Alice’s output is correct with high probability. Additionally, we show that Bob’s output at
Alice’s termination is also correct. Then, we prove that Bob terminates after Alice, that
Alice terminates in a valid iteration, and that there are no valid iterations afterwards. This
would imply that Bob gives the right output as well.

Recall that π′ is resilient to 0.1-fraction of substitutions. In addition, recall the padding
mechanism; in order to cause a bit substitution in π′ in some iteration i, at least a half
of its 2i transmitted copies must be flipped or erased. Thus, if there are less than Li/20
corruptions during the first part of iteration i (that is, indices that the adversary puts in E),
then π′ must give the correct output at the end of iteration i, for both Alice and Bob.

In the following lemma, we show that if there are more than Li/20 corruptions in some
iteration i, then Alice continues to executing iteration i + 1 and does not terminate at the
end of iteration i, except with a negligible probability of 2−Ωpe (Li).

▶ Lemma 4.2. Assume that in the first part of iteration i there are ci ≥ Li/20 corruptions.
Then, the probability that Alice terminates at the end of iteration i is 2−Ωpe (Li).

APPROX/RANDOM 2024

43:12 Interactive Coding with Unbounded Noise

Proof. We divide the proof into two separate cases: (1) each of Alice and Bob observes less
than 0.001peLi erasures in the first part, and (2) Bob observes more than 0.001peLi erasures
but Alice does not. Of course, if more than 0.001peLi erasures are observed by Alice during
the first part, she does not terminate by definition.

First, we find the probability of case (1) to occur. Denote by Ei the subset of the noise
pattern E containing only rounds in the first part of iteration i. Then, |Ei| ≥ ci ≥ Li/20.
Let e′ be the number of rounds during the first part of iteration i that were erased because
the event of channel erasure, which happens with probability pe, occurred. It holds that
E[e′] = |Ei|pe ≥ 0.05peLi, and by Chernoff’s inequality (Theorem 4.4(2) in [24]),

Pr(e′ < 0.002peLi) ≤ Pr(e′ < 0.04E[e′]) ≤ e−E[e′] 0.962
2 ≤ e−0.05peLi

0.962
2 ∈ 2−Ωpe (Li).

Thus, if ci ≥ Li/20, then e′ < 0.002peLi with probability 2−Ωpe (Li), which bounds the
probability of case (1) to occur.

In case (2), Bob sees a lot of erasures and sends the error string. In order for Alice to
terminate, it is necessary for her to decode this message as the success string. For this to
happen, it is necessary that the adversary corrupts at least Li/2 bits during the second part
of the i-th iteration. Similar to the proof of case (1), the adversary succeeds to corrupt so
many bits while causing less than 0.001peLi erasures during the second part with probability
of at most 2−Ωpe (Li). We conclude that Alice terminates at the end of iteration i with
probability of at most 2−Ωpe (Li). ◀

The above lemma indicates that, in the event of an excessive number of corruptions, Alice
will not terminate. The following observation complements this idea and states that if Alice
does terminate, the computation of π′ is successful with high probability, hence, her output
in Π is correct.

▶ Observation 4.3. When Alice terminates, π′ gives the correct output, with probability
1 − 2−Ωpe (N).

Proof. If during a given iteration there were less than Li/20 corruptions, then the resilience
of π′ guarantees that it gives the right output, and Alice terminates. The event in which Alice
terminates and provides incorrect output can only occur when there are more corruptions in
a specific iteration, the probability of which was constrained in Lemma 4.2. A union bound
over all possible iterations (while recalling that Li = |π′|2i) bounds the probability for Alice
to give an incorrect output, by

∞∑
i=0

2−Ωpe (Li) = 2−Ωpe (|π′|) = 2−Ωpe (N). ◀

Next, we prove that Bob terminates only after Alice has already terminated, with high
probability.

▶ Lemma 4.4. Consider an iteration i in which Alice has not yet terminated. Then, the
probability that Bob terminates at the end of iteration i is at most 2−Ωpe (Li).

Proof. In order to terminate at the end of iteration i, Bob must observe less than 0.001peLi

erasures in the first part of the iteration. In a manner analogous to the argument presented
in Lemma 4.2, it can be shown that, with a probability approaching 1 − 2−Ωpe (Li), there will
be a total of less than Li/20 corrupted messages received by Bob during the first part of
iteration i. Recall that as long as Alice has not terminated, at least Li/8 out of the Li/2

E. Fargion, R. Gelles, and M. Gupta 43:13

bits she sends in iteration i are ones. Consider these transmissions only. Even if all the
corruptions during the first part of i occur during these transmissions, then Bob will observe
at least 0.001peLi ones in the first part of i, and will therefore not terminate by definition.
Consequently, Bob terminates in iteration i with probability 2−Ωpe (Li). ◀

Bob’s output is the output of π′ in the last valid iteration prior to his termination iteration.
The following lemma shows that, with high probability, the last valid iteration is the same
iteration in which Alice has terminated. By Observation 4.3, π′ gives the correct output in
that iteration.

▶ Lemma 4.5. Denote by i the iteration in which Alice terminates. Then, i is a valid
iteration with probability 1 − 2−Ωpe (Li). Further, the probability that there is a valid iteration
j > i is 2−Ωpe (N).

Proof. In order to prove that i is a valid iteration, we have to show that Bob observes less
than 0.001peLi erasures in the first part of i, and that he receives at least Li/40 ones from
Alice in the first part.

First, note that Bob observes less than 0.001peLi erasures in the first part of i if and
only if he sends the success string in the second part. We demonstrate that with probability
1 − 2−Ωpe (Li) this is the case. As illustrated in case (2) of Lemma 4.2, when Bob transmits
the error string to Alice in the second part of i, Alice terminates with probability 2−Ωpe (Li).
Since Alice terminates in i, there is a probability of 2−Ωpe (Li) that Bob sends the error string
in the second part of i and observes more than 0.001peLi erasures in the first part of i.

We proceed to show that Bob receives at least Li/40 ones from Alice in the first part of
i. By Lemma 4.2, during the first part of iteration i there are less than Li/20 corruptions
with probability 1 − 2−Ωpe (Li). Additionally, Alice always sends at least Li/8 ones in the
first part. Thus, Bob receives at least Li/40 ones during the first part of i with probability
1 − 2−Ωpe (Li), and this is the probability of i to be a valid iteration.

Let j be an iteration such that j > i. Recall that after Alice terminates the channel
sends Bob zeros, by default. We show that j is not a valid iteration with high probability,
by dividing into two cases. If there are at least Lj/40 flips in the transmissions towards
Bob during the first part of iteration j, then with probability 1 − 2−Ωpe (Lj) Bob observes
at least 0.001peLj erasures, similar to case (1) in Lemma 4.2, thus j is not valid. If there
are less than Lj/40 flips in these transmissions, then Bob receives less than Lj/40 ones
and j is not a valid iteration either. Thus, iteration j is valid with probability of at most
2−Ωpe (Lj). Since Lj = |π′|2j , applying a union bound on all the iterations gives a probability
of

∑∞
j=i 2−Ωpe (Lj) = 2−Ωpe (N) to the event that there is a valid iteration after i. ◀

We may use a union bound to conclude the correctness part for Bob. The overall
probability of Bob to terminate after Alice is 1 − 2−Ωpe (N). The probability of Bob to declare
Alice’s termination iteration as valid is 1 − 2−Ωpe (N). Bob gives the correct output at this
iteration with probability 1 − 2−Ωpe (N) by Lemma 4.2, and this iteration is the last valid
iteration with probability 1 − 2−Ωpe (N). We may use the inclusion-exclusion principle to show
that the probability of the intersection of all these four events is 1 − 2−Ωpe (N). Recall that
for any A, B it holds that 1 ≥ P (A ∪ B) = P (A) + P (B) − P (A ∩ B). Then, the fact that
P (A), P (B) ∈ 1 − 2−Ωpe (N) implies that P (A ∩ B) ≥ 2(1 − 2−Ωpe (N)) − 1 ∈ 1 − 2−Ωpe (N).
Thus, the probability of the event in which Bob gives the correct output at his termination
is 1 − 2−Ωpe (N), and we have completed the correctness part of Theorem 4.1.

The communication complexity of Π is
∑iB

i=1 2Li, with iB being the iteration in which
Bob terminates. At any iteration i before Alice terminates, the adversary has to select
at least 0.001peLi bits to corrupt in order to prevent Alice from terminating. In addition,

APPROX/RANDOM 2024

43:14 Interactive Coding with Unbounded Noise

at any iteration i after Alice’s and before Bob’s terminations, the adversary has to select
at least 0.001peLi bits to corrupt in order to prevent Bob from terminating. Denote
the iteration in which Alice terminates by iA < iB. Then,

∑iB−1
i=1,i̸=iA

0.001peLi < T , so∑iB−1
i=1,i̸=iA

2Li < 2000/pe × T . Since Li satisfies Li = 2Li−1 for all i, and since LiA−1, LiB−1

are included in
∑iB−1

i=1,i̸=iA
2Li < 2000/pe × T , then

∑iB

i=1 2Li < 6000/pe × T and the
communication complexity is Ope

(N + T).

4.2 Obtaining a UF-optimal coding scheme
In this section we construct a UF-model scheme based on the mUPEF protocol Π, while
maintaining a communication complexity of O(N + T). Recall, we set pe = 1/3. This means
that adversarial corruption in the i-th transmission of Π, becomes detectable (an erasure)
with probability at least 1/3. We would like to simulate this property in the UF model.

Towards this goal, we independently encode each bit of Π using a random code of length 5.
In particular, we encode a 0 to one of {00000, 10000, 01000} with equal probability, and
encode a 1 to one of {00100, 10010, 01001} with equal probability. A received 5-bit word is
decoded to a 0 or a 1 only if it belongs to respective set, or otherwise it is considered as an
erasure. It can easily be seen that any pattern of 1 to 5 bit-flips decodes to an erasure with
probability at least 1/3 as desired. We have thus inflated the scheme by only a constant
factor. The bit complexity of the resulting UF scheme is then 5 · |Π| = O(N + T).

References
1 Abhinav Aggarwal, Varsha Dani, Thomas P. Hayes, and Jared Saia. A scalable algorithm

for multiparty interactive communication with private channels. In ICDCN 2020: 21st
International Conference on Distributed Computing and Networking, Kolkata, India, January
4-7, 2020, ICDCN ’20, pages 8:1–8:15, New York, NY, USA, 2020. Association for Computing
Machinery. doi:10.1145/3369740.3369771.

2 Zvika Brakerski, Yael T. Kalai, and Moni Naor. Fast interactive coding against adversarial
noise. J. ACM, 61(6):35:1–35:30, December 2014. doi:10.1145/2661628.

3 Mark. Braverman and Klim. Efremenko. List and unique coding for interactive communication
in the presence of adversarial noise. SIAM Journal on Computing, 46(1):388–428, 2017.
doi:10.1137/141002001.

4 Mark Braverman, Ran Gelles, Jieming Mao, and Rafail Ostrovsky. Coding for interactive
communication correcting insertions and deletions. IEEE Transactions on Information Theory,
63(10):6256–6270, October 2017. doi:10.1109/TIT.2017.2734881.

5 Mark Braverman and Anup Rao. Toward coding for maximum errors in interactive com-
munication. IEEE Transactions on Information Theory, 60(11):7248–7255, November 2014.
doi:10.1109/TIT.2014.2353994.

6 Ronald Cramer, Yevgeniy Dodis, Serge Fehr, Carles Padró, and Daniel Wichs. Detection of
algebraic manipulation with applications to robust secret sharing and fuzzy extractors. In
Nigel P. Smart, editor, Advances in Cryptology - EUROCRYPT 2008, 27th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques, Istanbul,
Turkey, April 13-17, 2008. Proceedings, volume 4965, pages 471–488, Berlin, Heidelberg, 2008.
Springer. doi:10.1007/978-3-540-78967-3_27.

7 Varsha Dani, Thomas P. Hayes, Mahnush Movahedi, Jared Saia, and Maxwell Young. Interac-
tive communication with unknown noise rate. Information and Computation, 261:464–486,
2018. doi:10.1016/j.ic.2018.02.018.

8 Klim Efremenko, Ran Gelles, and Bernhard Haeupler. Maximal noise in interactive communi-
cation over erasure channels and channels with feedback. IEEE Transactions on Information
Theory, 62(8):4575–4588, August 2016. doi:10.1109/TIT.2016.2582176.

https://doi.org/10.1145/3369740.3369771
https://doi.org/10.1145/2661628
https://doi.org/10.1137/141002001
https://doi.org/10.1109/TIT.2017.2734881
https://doi.org/10.1109/TIT.2014.2353994
https://doi.org/10.1007/978-3-540-78967-3_27
https://doi.org/10.1016/j.ic.2018.02.018
https://doi.org/10.1109/TIT.2016.2582176

E. Fargion, R. Gelles, and M. Gupta 43:15

9 Klim Efremenko, Elad Haramaty, and Yael Tauman Kalai. Interactive coding with constant
round and communication blowup. In Thomas Vidick, editor, 11th Innovations in Theoretical
Computer Science Conference, ITCS 2020, January 12-14, 2020, Seattle, Washington, USA,
volume 151 of Leibniz International Proceedings in Informatics (LIPIcs), pages 7:1–7:34,
Dagstuhl, Germany, 2020. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/
LIPIcs.ITCS.2020.7.

10 Eden Fargion, Ran Gelles, and Meghal Gupta. Interactive coding with unbounded noise, 2024.
arXiv:2407.09463.

11 Matthew Franklin, Ran Gelles, Rafail Ostrovsky, and Leonard J. Schulman. Optimal coding for
streaming authentication and interactive communication. IEEE Transactions on Information
Theory, 61(1):133–145, January 2015. doi:10.1109/TIT.2014.2367094.

12 Ran Gelles. Coding for interactive communication: A survey. Foundations and Trends® in
Theoretical Computer Science, 13(1-2):1–157, 2017. doi:10.1561/0400000079.

13 Ran Gelles and Bernhard Haeupler. Capacity of interactive communication over erasure
channels and channels with feedback. SIAM Journal on Computing, 46(4):1449–1472, 2017.
doi:10.1137/15M1052202.

14 Ran Gelles, Bernhard Haeupler, Gillat Kol, Noga Ron-Zewi, and Avi Wigderson. Explicit
capacity approaching coding for interactive communication. IEEE Transactions on Information
Theory, 64(10):6546–6560, October 2018. doi:10.1109/TIT.2018.2829764.

15 Ran Gelles and Siddharth Iyer. Interactive coding resilient to an unknown number of erasures. In
23rd International Conference on Principles of Distributed Systems, OPODIS 2019, December
17-19, 2019, Neuchâtel, Switzerland, volume 153 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 13:1–13:16, 2019. doi:10.4230/LIPIcs.OPODIS.2019.13.

16 Ran Gelles, Yael Tauman Kalai, and Govind Ramnarayan. Efficient multiparty interactive
coding – part I: oblivious insertions, deletions and substitutions. IEEE Transactions on
Information Theory, 67(6):3411–3437, 2021. doi:10.1109/TIT.2021.3066009.

17 Ran Gelles, Yael Tauman Kalai, and Govind Ramnarayan. Efficient multiparty interactive
coding - part II: non-oblivious noise. IEEE Transactions on Information Theory, 68(7):4723–
4749, 2022. doi:10.1109/TIT.2022.3160515.

18 Ran Gelles, Ankur Moitra, and Amit Sahai. Efficient coding for interactive communication.
IEEE Transactions on Information Theory, 60(3):1899–1913, March 2014. doi:10.1109/TIT.
2013.2294186.

19 Mohsen Ghaffari and Bernhard Haeupler. Optimal error rates for interactive coding II:
efficiency and list decoding. In 55th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 394–403. IEEE
Computer Society, 2014. doi:10.1109/FOCS.2014.49.

20 Meghal Gupta and Rachel Yun Zhang. The optimal error resilience of interactive communication
over binary channels. In STOC ’22: 54th Annual ACM SIGACT Symposium on Theory
of Computing, Rome, Italy, June 20 - 24, 2022, STOC 2022, pages 948–961, 2022. doi:
10.1145/3519935.3519985.

21 Bernhard Haeupler. Interactive channel capacity revisited. In 55th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21,
2014, pages 226–235, 2014. doi:10.1109/FOCS.2014.32.

22 Bernhard Haeupler, Amirbehshad Shahrasbi, and Ellen Vitercik. Synchronization strings:
Channel simulations and interactive coding for insertions and deletions. In 45th International
Colloquium on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague,
Czech Republic, volume 107 of Leibniz International Proceedings in Informatics (LIPIcs), pages
75:1–75:14, 2018. doi:10.4230/LIPIcs.ICALP.2018.75.

23 Gillat Kol and Ran Raz. Interactive channel capacity. In Symposium on Theory of Computing
Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 715–724, 2013. doi:
10.1145/2488608.2488699.

APPROX/RANDOM 2024

https://doi.org/10.4230/LIPIcs.ITCS.2020.7
https://doi.org/10.4230/LIPIcs.ITCS.2020.7
https://arxiv.org/abs/2407.09463
https://doi.org/10.1109/TIT.2014.2367094
https://doi.org/10.1561/0400000079
https://doi.org/10.1137/15M1052202
https://doi.org/10.1109/TIT.2018.2829764
https://doi.org/10.4230/LIPIcs.OPODIS.2019.13
https://doi.org/10.1109/TIT.2021.3066009
https://doi.org/10.1109/TIT.2022.3160515
https://doi.org/10.1109/TIT.2013.2294186
https://doi.org/10.1109/TIT.2013.2294186
https://doi.org/10.1109/FOCS.2014.49
https://doi.org/10.1145/3519935.3519985
https://doi.org/10.1145/3519935.3519985
https://doi.org/10.1109/FOCS.2014.32
https://doi.org/10.4230/LIPIcs.ICALP.2018.75
https://doi.org/10.1145/2488608.2488699
https://doi.org/10.1145/2488608.2488699

43:16 Interactive Coding with Unbounded Noise

24 Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomization and Proba-
bilistic Techniques in Algorithms and Data Analysis. Cambridge University Press, USA, 2nd
edition, 2017.

25 Leonard J. Schulman. Communication on noisy channels: A coding theorem for computation.
In 33rd Annual Symposium on Foundations of Computer Science, Pittsburgh, Pennsylvania,
USA, 24-27 October 1992, pages 724–733, Los Alamitos, CA, USA, 1992. IEEE Computer
Society. doi:10.1109/SFCS.1992.267778.

26 Leonard J. Schulman. Coding for interactive communication. IEEE Transactions on Informa-
tion Theory, 42(6):1745–1756, November 1996. doi:10.1109/18.556671.

27 Alexander A. Sherstov and Pei Wu. Optimal interactive coding for insertions, deletions, and
substitutions. IEEE Transactions on Information Theory, 65(10):5971–6000, October 2019.
doi:10.1109/TIT.2019.2916927.

https://doi.org/10.1109/SFCS.1992.267778
https://doi.org/10.1109/18.556671
https://doi.org/10.1109/TIT.2019.2916927

Optimal Pseudorandom Generators for Low-Degree
Polynomials over Moderately Large Fields
Ashish Dwivedi # Ñ

Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA

Zeyu Guo # Ñ

Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA

Ben Lee Volk # Ñ

Efi Arazi School of Computer Science, Reichman University, Israel

Abstract
We construct explicit pseudorandom generators that fool n-variate polynomials of degree at most
d over a finite field Fq. The seed length of our generators is O(d log n + log q), over fields of size
exponential in d and characteristic at least d(d − 1) + 1. Previous constructions such as Bogdanov’s
(STOC 2005) and Derksen and Viola’s (FOCS 2022) had either suboptimal seed length or required
the field size to depend on n.

Our approach follows Bogdanov’s paradigm while incorporating techniques from Lecerf’s fac-
torization algorithm (J. Symb. Comput. 2007) and insights from the construction of Derksen and
Viola regarding the role of indecomposability of polynomials.

2012 ACM Subject Classification Theory of computation → Pseudorandomness and derandomization

Keywords and phrases Pseudorandom Generators, Low Degree Polynomials

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.44

Category RANDOM

Related Version Full Version: https://arxiv.org/abs/2402.11915

Funding Ben Lee Volk: The research leading to these results has received funding from the Israel
Science Foundation (grant number 843/23).

Acknowledgements We thank Jesse Goodman and Pooya Hatami for helpful discussions. Part of
this work was carried out while the first two authors were visiting the Simons Institute for the
Theory of Computing at UC Berkeley. We thank the institute for its support and hospitality.

1 Introduction

The role of randomness in efficient computation is one of the central topics in complexity
theory: random bits are useful for designing algorithms, but producing random bits comes
at a cost and it is often desirable to reduce them or eliminate them altogether. One of the
simplest yet most profound insights in this area is that efficient algorithms are, by definition,
computationally limited, and cannot perform arbitrary statistical tests over their random
bits. Therefore, one may hope to construct pseudorandom distributions that use less random
bits but are able to “fool” some limited classes of tests, that cannot distinguish between
them and between truly random bits.

For the pseudorandom distributions to be useful, they need to be efficiently computable
themselves. This is usually modeled as a pseudorandom generator (PRG, for short). A PRG
for a class of C is an efficiently computable function G : S → B such that for every function
f ∈ C, the distributions f(UB) and f(G(US)) are close in statistical distance, where UA

denotes the uniform distribution over the set A. Namely, the two experiments of applying f(·)
to a uniformly random element of B, and applying f(G(·)) to a uniformly random element

© Ashish Dwivedi, Zeyu Guo, and Ben Lee Volk;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 44; pp. 44:1–44:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ashish02dwivedi@gmail.com
https://sites.google.com/view/ashishdwivedi
https://orcid.org/0009-0003-2919-3010
mailto:zguotcs@gmail.com
https://zeyuguo.bitbucket.io/
https://orcid.org/0000-0001-7893-4346
mailto:benleevolk@gmail.com
https://benleevolk.bitbucket.io/
https://orcid.org/0000-0002-7143-7280
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.44
https://arxiv.org/abs/2402.11915
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

44:2 Optimal PRGs for Low-Degree Polynomials over Large Fields

of S, give roughly the same results. For this to be useful and non-trivial, obviously the set S

needs to be significantly smaller than B. The quantity log |S| is called the seed length of the
generator.

There has been a significant amount of work on constructing pseudorandom generators for
various types of restricted distinguishers. In its most general form, where the distinguisher
is allowed to be an arbitrary efficient (even non-uniform) algorithm, constructing such
PRGs would imply breakthrough lower bounds in complexity theory. However, there are
also unconditional constructions of PRGs for distinguishers coming from certain smaller
complexity classes (see, for example, the surveys [34, 17]).

In this paper, we focus on pseudorandom generators in the algebraic setting. Here, the
restriction on the distinguishers is of algebraic nature: we seek to fool distinguishers that are
low-degree n-variate polynomials over finite fields.

The problem of fooling low-degree polynomials is well-studied. The most basic case is
polynomials of degree one, i.e., fooling linear functions. Such generators are also known
as ε-biased sets, and this problem was traditionally studied over F2, although some of the
constructions can be generalized to larger fields. This concept was first defined and considered
by Naor and Naor [24], with various improved constructions given by [2, 14, 4], culminating in
a recent nearly-optimal construction by Ta-Shma [33]. The seed length in those constructions
is O(log n + log q + log(1/ε)), where n denotes the number of variables, ε the error of the
PRG, and q the field size.

While focusing on polynomials of degree one might seem a bit too restrictive, ε-biased
sets have found numerous applications throughout the field of pseudorandomness and
derandomization, and in the theory of computation in general.

One example relevant to this work is that ε-biased sets are in fact a basic building block
in a construction of PRGs for higher-degree polynomials, using a paradigm initiated by
Bogdanov and Viola [7]. They suggested constructing a generator for degree-d polynomials by
summing up ℓ = ℓ(d) independent copies of a generator for degree-one polynomials. The paper
[7] proved a conditional result when the number of summands is d, assuming certain additive
combinatorics conjectures. Lovett [22] showed how to prove an unconditional result at the
cost of making the number of summands 2d. Finally, Viola [35] showed (unconditionally) that
in fact d summands suffice. The seed length in his construction is O(d log n + d2d log(q/ε)).
Indeed, even though the construction only sums d copies of a generator for degree-one
polynomials, for the analysis to go through, the error of this generator needs to be as small
as ε2d (for the final error of the generator for degree-d polynomials to be ε), which incurs a
factor of 2d in the final seed length. Improving this generator and in particular obtaining
meaningful results for polynomials of degree greater than log n is an extremely important
open problem in complexity theory. One reason is that such pseudorandom generators will
yield pseudorandom generators for small constant-depth circuits with parity gates, since
Razborov [25] and Smolensky [32] famously proved that functions computed by such circuits
are approximated by low-degree polynomials.

All the constructions mentioned above work for any field. There are, however, better
results when the field size q is assumed to be large (typically, at least polynomially large in d

and 1/ε). This assumption is useful since it allows one to use powerful tools from algebraic
geometry, such as Weil-type estimates [36] on the number of points of varieties over finite
fields.

This line of work was initiated by Bogdanov [6], who showed how to use different
pseudorandom objects called hitting set generators for low-degree polynomials in order
to construct pseudorandom generators. Bogdanov’s work, followed by the later improved

A. Dwivedi, Z. Guo, and B. L. Volk 44:3

constructions of hitting set generators [19, 23, 10, 16], resulted in a PRG with seed length
O(d4 log n + log q) assuming q ≥ Cd6/ε2 for a sufficiently large constant C.1 Over fields
of large enough characteristic, combining Bogdanov’s paradigm with the results of Lecerf
[21] results in improving the d4 factor to d2. We expand more on Bogdanov’s and Lecerf’s
techniques in Section 1.2, as both are very relevant to this work.

More recently, Derksen and Viola [12] introduced fundamentally new techniques for this
problem, with tools coming from invariant theory. One of their key ideas is to construct a
low-degree polynomial map on a few variables that preserves the indecomposability property
of a polynomial f when composed with it (we refer to Section 2 for more on that). Using this
new tool in conjunction with other techniques, they are able to construct generators with
seed length O(d log(dn) + log q), assuming q ≥ Cd4nδ/ε2 (for some large constant C and
small constant δ), or seed length O(d log n log(d log n) + log q) for q ≥ C(d log n)4/ε2. One
should note, however, that the optimal parameters in the construction of [12] are obtained
after composing their construction with Bogdanov’s original construction.

A related natural question is how small the seed length can potentially be. Alon,
Ben-Eliezer and Krivelevich [1] considered this question and proved a lower bound of
Ω(d log(n/d)+log q+log(1/ε)) on the seed length. Thus, we see that the explicit constructions
of [12] come very close to the optimal bound. However, unlike the result of Bogdanov [6], in
the construction of Derksen and Viola [12] the minimum field size depends on the number of
variables n.

1.1 Our Results
In this paper, we provide an improved construction of PRGs for low-degree polynomials,
with an even shorter seed length, assuming the field size is exponentially large in d (but
independent of n).

▶ Theorem 1.1. Let Fq be a finite field of characteristic at least d(d − 1) + 1 and size
q ≥ C(d2d/ε + d4/ε2) (for some sufficiently large absolute constant C). Then, there exists an
explicit pseudorandom generator that fools n-variate polynomials of degree at most d over
Fq with error ε and seed length O(d log n + log q).

For convenience, we summarize the comparison between Theorem 1.1 and the results of
Bogdanov [6], Viola [35] and Derksen and Viola [12] in the following table. All the entries in
this table are given up to some constant factors, but for ease of readability, we omit O(·)
notations.

Seed Length Field Size Characteristic
[35] d log n + d · 2d log(q/ε) Every q ≥ 2 Any
[6]+[16] d4 log n + log q d6/ε2 Any
[6]+[16]+[21] d2 log n + log q d6/ε2 ≥ d(d − 1) + 1
[12] d log(n) + log q d4n0.001/ε2 Any
[12] d log n · log(d log n) + log q (d log n)4/ε2 Any
This paper: d log n + log q d2d/ε + d4/ε2 ≥ d(d − 1) + 1

We also prove that, if we only want to fool polynomials of prime degree up to d, then
the required field size in Theorem 1.1 can be improved to O(d4/ε2), avoiding an exponential
dependence on d.

1 One should note that since q is polynomially large in 1/ε, the seed length also implicitly depends on
log(1/ε) through the log q term.

APPROX/RANDOM 2024

44:4 Optimal PRGs for Low-Degree Polynomials over Large Fields

▶ Theorem 1.2. Let Fq be a finite field of characteristic at least d(d − 1) + 1 and size
q ≥ C(d4/ε2) (for some sufficiently large absolute constant C). Then, there exists an explicit
pseudorandom generator that fools n-variate polynomials of prime degree up to d over Fq

with error ε and seed length O(d log n + log q).

1.2 Proof Techniques
We start by reviewing the proof of Bogdanov’s PRG. Bogdanov’s idea is to consider restrictions
of the polynomial f we are trying to fool onto planes, and to argue that “most” planes
preserve the output distribution of the polynomial. Since a plane is a two-dimensional
subspace, after having selected a good plane, we only need to sample two more field elements
to select a random element from the plane.

The question now is how to find a good plane. Here, Bogdanov uses results by Kaltofen [18],
who proved an effective version of Hilbert’s irreducibility theorem. Kaltofen demonstrated
that, for every degree-d irreducible polynomial f , there exists a polynomial P of degree
roughly d4, whose variables correspond to the parameters of the plane, such that every point
at which P is nonzero corresponds to a “good” plane for f – that is, a plane that preserves
the irreducibility of f . Therefore, we can use a hitting set generator for polynomials of degree
d4 to find a good plane. This results in a factor of d4 in the final seed length.

Over fields of large characteristic (or characteristic zero), Lecerf [20, 21] obtained an
improved upper bound of O(d2) on the degree of such polynomials, based on ideas of Ruppert
[26, 27] and Gao [15]. However, Lecerf also presents an example where the degree of such a
polynomial must be at least Ω(d2), demonstrating that this approach alone may not suffice
to achieve an improvement within Bogdanov’s framework.

Derksen and Viola circumvent this problem by using a different approach: rather than
preserving irreducibility (or more generality, if a polynomial is reducible, preserving its number
of irreducible factors) as in Bogdanov’s approach, they construct a map that preserves the
indecomposability of polynomials: a polynomial f(x1, . . . , xn) is indecomposable if it cannot
be written as f = g(h(x1, . . . , xn)) where g is a univariate polynomial of degree at least 2.
Over large fields, irreducibility and indecomposability both guarantee that the polynomial is
roughly equidistributed, and in fact these notions are tightly connected. We refer to Section 2
for the precise definitions and description of those connections.

To prove our result, we revisit Bogdanov’s approach, while noting that by applying
Lecerf’s results [21] (rather than Kaltofen’s bounds [18]) in a more careful way, and assuming
the field is sufficiently large, it is in fact enough to use hitting sets generators only for
polynomials of degree O(d), rather than O(d2). We also incorporate the insights from [12]
regarding indecomposability and equidistribution. This requires following the outline above
but making sure that at each step, we only need to hit polynomials of degree O(d).

Following Lecerf’s notation and terminology, suppose F (x1, . . . , xn, y) is an irreducible
polynomial of degree at most d. A point a = (a1, . . . , an) is called a Bertinian good point if
the bivariate polynomial H(x, y) = F (a1x, . . . , anx, y) remains irreducible. Lecerf proves that
there exists a polynomial A(z1, . . . , zn) of degree O(d2) such that if A(a1, . . . , an) ̸= 0 then
a is a Bertinian good point. This is achieved by transforming the question of irreducibility
into a question about the rank of a solution space for a certain linear system that depends
on a1, . . . , an (see Section 4). This transformation naturally leads to defining A as a certain
minor of the matrix representing that linear system. The minor has dimensions O(d) × O(d),
and each entry of the matrix is a polynomial of degree O(d), which results in a total bound
of O(d2) on the degree of its determinant, A.

A. Dwivedi, Z. Guo, and B. L. Volk 44:5

We, however, observe that Lecerf’s results actually imply a much stronger structure of this
linear system: its solution space, over any field, is always spanned by vectors whose entries
are in {0, 1}. In fact, Lecerf directly characterizes the relationship between the irreducible
factors of H(x, y) and the vectors spanning the solution space, though this detail is irrelevant
for the moment.

Thus, in Lecerf’s argument, a1, . . . , an are chosen such that a particular minor is nonzero,
namely, a certain linear system has no non-trivial solutions. But it is enough to select
a1, . . . , an in a way that only guarantees that this linear system has no non-trivial 0/1
solutions!

Fixing any vector u ∈ {0, 1}d, the requirement that u is not a solution to the linear system
turns out to be a condition expressible as u being a nonzero of a polynomial of degree O(d),
rather than O(d2). If we pick a1, . . . , an from a hitting set generator with error δ smaller
than 2−d, we can afford to take a union bound over all vectors in {0, 1}d and ensure that
none of them is a solution to the linear system while keeping the total error small. This is
not a big price to pay in terms of the seed length of the HSG, which is O(d log n + log(1/δ)),
so requiring δ to be exponentially small in d adds an insignificant additive O(d) term. Where
we do pay the price for the small error is in the field size, since the explicit construction
of the HSG we use requires the field size to be at least roughly d/δ. Fortunately, however,
the dependence of the seed length of our generator on the field size q is also by an additive
O(log q) term, which means that once more requiring q to be exponentially large in d has no
adverse effects even on the total seed length of the PRG.

We briefly remark that, for technical reasons, Lecerf’s result also requires the characteristic
of the underlying field to be zero or at least d(d − 1) + 1. We further elaborate on Lecerf’s
techniques in Section 4.

We finally mention another important technical point. Lecerf’s irreducibility character-
ization [21] assumes a technical condition on the polynomial, which he called Hypothesis
(H) (see Section 3). Such a “preprocessing” step, which makes the polynomial monic in a
certain distinguished variable, is common to many factorization algorithms, and can usually
be easily guaranteed by applying a random linear transformation to the variables. However,
doing this in the naïve way would require the use of too many random bits. To solve this
problem, in Section 3 we show that this part can also be derandomized by using a hitting
set generator for polynomials of degree O(d). As explained in Section 3, this part also uses
cruically indecomposability (rather than irreducibility) in a novel way.

2 Preliminaries

We now define the basic objects studied in this paper and introduce the fundamental
mathematical concepts used.

Notation

All logarithms are base 2. Denote by N the set of natural numbers {0, 1, 2, . . . }. For n ∈ N,
define [n] = {1, 2, . . . , n}. For a finite set A, denote by UA the uniform distribution over A.

We often use symbols in bold, e.g., a or x, as the shorthand for a vector (a1, . . . , an) or a
sequence of variables x1, . . . , xn.

Denote by Fq the finite field of size q. The algebraic closure of a field F is denoted by F.
For a commutative ring A and variables x1, . . . , xn, we denote by A[[x1, . . . , xn]] or A[[x]]
the ring of formal power series over A in x1, . . . , xn, i.e.,

A[[x]] =

 ∑
e=(e1,...,en)∈Nn

aexe1
1 · · · xen

n : ae ∈ A

 .

APPROX/RANDOM 2024

44:6 Optimal PRGs for Low-Degree Polynomials over Large Fields

Pseudorandom Generators and Hitting Set Generators

▶ Definition 2.1 (Pseudorandom generator, PRG). Let Fq be a finite field. A pseudorandom
generator (PRG) for n-variate polynomials of degree at most d over Fq with error ε is an
efficiently computable map G : S → Fn

q from a finite set S ̸= ∅ such that for every such
polynomial f of degree at most d, the two distributions f(G(US)) and f(UFn

q
) are ε-close in

statistical distance. That is,

1
2

∑
a∈Fq

∣∣∣∣ Pr
x∈Fn

q

[f(x) = a] − Pr
y∈S

[f(G(y)) = a]
∣∣∣∣ ≤ ε.

The quantity log |S| is called the seed length of G.

A weaker object than a PRG is a hitting set generator. Here, we only require that a
nonzero polynomial is nonzero (with high probability) on the output of the generator.

▶ Definition 2.2 (Hitting set generator, HSG). Let F be a field. A hitting set generator
(HSG) with density 1 − δ for n-variate polynomials of degree at most d over F is an efficiently
computable map H : S → Fn from a finite set S ̸= ∅ such that for every such nonzero
polynomial f of degree at most d,

Pr
y∈S

[f(H(y)) = 0] ≤ δ.

The quantity log |S| is called the seed length of G.

Building on the earlier work [19, 23] and algebraic-geometric codes, Guruswami and
Xing [16] constructed explicit HSGs for low-degree polynomials with asymptotically optimal
seed length and density.

▶ Theorem 2.3 ([16]). There exists an absolute constant C such that for any n, d, q, δ, such
that q ≥ Cd/δ, there exists an explicit HSG for n-variate polynomials of degree at most d

over Fq with density 1 − δ and seed length O(d log n + log(1/δ)).

It should also be noted that for hitting set generators, the field F does not have to be
finite. This generality is used in the statement of the following fact, that an HSG for a field
F is also a HSG for any extension field K of F.

▶ Fact 2.4 ([6, 12]). Let H : S → F be an HSG with density 1 − δ for polynomials of degree
at most d over a field F, and let K be an extension of F. Then H is also an HSG with density
1 − δ for polynomials of degree at most d over K.

Proof. Let B be a basis of K over F, and let f be a nonzero polynomial in K[x1, . . . , xn]
of degree at most d. By expressing every coefficient c ∈ K of a monomial in f as a linear
combination c =

∑
b∈B ab · b with ab ∈ F for every b ∈ B, we may write f =

∑
b∈B fb · b such

that fb ∈ F[x1, . . . , xn] is a polynomial of degree at most d for every b ∈ B, and at least one
fb is nonzero. Thus, for any u ∈ S, f(H(u)) =

∑
b∈B fb(u) · b is nonzero unless fb(H(u)) = 0

for every b, which happens with probability at most δ over the choice of u ∈ S. ◀

Indecomposable Polynomials

The indecomposability of a polynomial is crucially used in the analysis of the PRG construction
in [12] as well as in our analysis. We first define this property.

A. Dwivedi, Z. Guo, and B. L. Volk 44:7

▶ Definition 2.5 (Indecomposability). Let f ∈ F[x] be a non-constant polynomial over a field
F. It is said to be decomposable over F if there exist h ∈ F[x] and a univariate polynomial
g ∈ F[y] such that deg(g) ≥ 2 and f = g(h). Otherwise, f is said to be indecomposable
over F.

Obviously, if a polynomial f ∈ Fq[x] over a finite field Fq is indecomposable over Fq,
then it is also indecomposable over Fq. The following lemma, which was proved in [3] and
generalized in [5], states that the converse is also true.

▶ Lemma 2.6 ([3]; see also [5, Theorem 4.2]). A polynomial f ∈ Fq[x] that is indecomposable
over Fq is also indecomposable over Fq.

In [12], Derksen and Viola proved the following result, which states that if a polynomial
is indecomposable, then its outputs are equidistributed.

▶ Lemma 2.7 ([12, Lemma 12]). There exists an absolute constant C > 0 such that the
following holds: Suppose f ∈ Fq[x] = Fq[x1, . . . , xn] is indecomposable over Fq. Then f(UFn

q
)

is ε-close to UFq
, where ε = Cd2/

√
q.

The proof of Lemma 2.7 is based on the observation that the indecomposability of f

precisely captures the property that for most b ∈ Fq, the variety f−1(b), defined by the
constraint f(x) = b, is absolutely irreducible. This condition of absolute irreducibility is
required by the Weil bound [36]. Consequently, one can apply the Weil bound to show
that for most b, the number of points in f−1(b) ∩ Fn

q is close to qn−1, thereby proving the
equidistribution of the output of f . For details, we refer the reader to [12].

Finally, the following lemma connects indecomposability with irreducibility over algebra-
ically closed fields. It is explicitly stated in, e.g., [9].

▶ Lemma 2.8 ([9, Lemma 7]). Let f ∈ F[x] be a non-constant polynomial over a field F.
Then f is indecomposable over F iff f − t is irreducible over F(t), where t is a new variable.

Resultants

Let f(y) =
∑d1

i=0 aiy
i and g(y) =

∑d2
i=0 biy

i be two univariate polynomials in y over a field
F and suppose that d1 + d2 > 0. The Sylvester Matrix of f and g is the (d1 + d2) × (d1 + d2)
matrix

a0 b0
a1 a0 b1 b0

a2 a1
. . . b2 b1

. . .
...

. . . a0
...

. . . b0
... a1 bd2

... b1
ad1 bd2

ad1

...
...

.
ad1 bd2

.

The determinant of this matrix is called the resultant of f and g, and is denoted Res (f, g).
It holds that f and g have a common factor if and only if Res (f, g) = 0 ([11, Proposition 3
in Chapter 3, Section 6]).

APPROX/RANDOM 2024

44:8 Optimal PRGs for Low-Degree Polynomials over Large Fields

Thus, in the case where g = ∂f
∂y , it holds that Res (f, g) ̸= 0 if and only if f does not have

a root of multiplicity greater than one.

Hensel Lifting

Hensel lifting is a general technique for “lifting” roots or factorizations of a polynomial
modulo an ideal I of a ring R to those modulo powers of I, under some mild conditions.
The use of Hensel’s lifting lemma is standard in multivariate factorization algorithms, and it
is available in various forms. We state one standard form, which can be derived from [13,
Theorem 7.3] as a special case. This form is particularly relevant to our discussion of Lecerf’s
techniques in Section 4.

▶ Lemma 2.9 (Hensel’s lifting lemma). Let f ∈ F[x1, . . . , xn, y] = F[x, y] be a nonzero
polynomial over a field F. Suppose λ̄ ∈ F is a simple root of f(0, y) ∈ F[y]. Then there exists
unique λ ∈ F[[x]] such that
1. f(x, λ) = 0, i.e., λ is a root of f as a univariate polynomial in y over F[x], and
2. λ(0) = λ̄.

3 Hypothesis (H)

Lecerf’s papers [20, 21] on multivariate polynomial factoring assume a hypothesis about the
polynomial f , which he calls Hypothesis (H). Such a hypothesis can be satisfied with high
probability by applying a random linear transformation on the variables.

In this section, we discuss Lecerf’s Hypothesis (H) and show that, for our purpose, the
random linear transformation can be derandomized by using a HSG for polynomials of degree
O(d). The fact that we are interested in the irreducibility of f − t for an indeterminate t,
rather than that of f , is crucial in keeping the degree linear in d.

Let F be a field. First, we define Hypothesis (H).

▶ Definition 3.1 (Hypothesis (H) [20, 21]). Let f ∈ F[x1, . . . , xn, y] = F[x, y] be a non-
constant polynomial. We say f satisfies Hypothesis (H) if
1. f is monic in y and degy(f) = deg(f),
2. Res

(
f(0, y), ∂f

∂y (0, y)
)

̸= 0.

We also need a family of invertible linear transformations defined as follows.

▶ Definition 3.2. For a = (a1, . . . , an) ∈ Fn, let sa be the F-linear automorphism of F[x, y]
that fixes y and sends xi to xi + aiy.

▶ Lemma 3.3. Let f ∈ F[x, y] be a nonzero polynomial of degree at most d. Then there
exists a nonzero polynomial B ∈ F[x] of degree at most d such that for every a ∈ Fn satisfying
B(a) ̸= 0, it holds that degy(sa(f)) = d and the coefficient of yd in sa(f) is in F×.

Proof. Let fd be the degree-d homogeneous part of f , so that we can write f = fd + g where
g = f − fd has degree less than d. Write fd =

∑d
i=0 ci(x)yi, where each ci ∈ F[x] is either

zero or a homogeneous polynomial of degree d − i.
Consider a ∈ Fn. Note that

sa(f) = sa(fd) + sa(g) =
d∑

i=0
sa(ci(x))yi + sa(g) =

d∑
i=0

ci(x + y · a)yi + g(x + y · a, y).

A. Dwivedi, Z. Guo, and B. L. Volk 44:9

As deg(g) < d and each ci is either zero or homogeneous of degree d − i, we have that
degy sa(f) ≤ d, and that the coefficient of yd in sa(f) is

∑d
i=0 ci(a) ∈ F. So we may choose

B =
∑d

i=0 ci, which is a nonzero polynomial of degree at most d. ◀

▶ Lemma 3.4. Assume f ∈ F[x, y] is a polynomial of degree d ≥ 1 that satisfies Item 1 of
Hypothesis (H). Further assume that char(F) is either zero or greater than d. Let c ∈ F×.
Then f + ct is a degree-d polynomial satisfying Hypothesis (H) as a polynomial over F(t).

Proof. As f satisfies Item 1 of Hypothesis (H) and has degree d ≥ 1, so does f + ct. So
it suffices to verify Item 2. Write f =

∑d
i=0 ciy

i, where ci ∈ F[x] and cd = 1. Then
∂(f+ct)

∂y =
∑d

i=1(i · ci)yi−1, which has degree d − 1 in y since d · cd = d ̸= 0 by the assumption
about char(F).

Let c̄i = ci(0) for i = 0, 1, . . . , d. Let h = Res
(

(f + ct)(0, y), ∂f+ct
∂y (0, y)

)
. Then h is the

determinant of the following (2d − 1) × (2d − 1) matrix:

c̄0 + ct 0 · · · 0 c̄1 0 · · · 0
c̄1 c̄0 + ct · · · 0 2c̄2 c̄1 · · · 0

c̄2 c̄1
. . . 0 3c̄3 2c̄2

. . . 0
...

...
. . . c̄0 + ct

...
...

. . . c̄1

c̄d c̄d−1 · · ·
... dc̄d (d − 1)c̄d−1 · · ·

...

0 c̄d
. . .

... 0 dc̄d
. . .

...
...

...
. . . c̄d−1

...
...

. . . (d − 1)c̄d−1
0 0 · · · c̄d 0 0 · · · dc̄d

.

Observe that degt h ≤ d−1, and that the coefficient of td−1 in h is cd−1(dc̄d)d = cd−1dd ̸= 0
since only those entries on the diagonal contribute to this coefficient. This implies that h ̸= 0,
i.e., f + ct satisfies Item 2 of Hypothesis (H). ◀

▶ Corollary 3.5. Assume that f ∈ F[x, y] is a polynomial of degree d ≥ 1 and that char(F)
is either zero or greater than d. Then there exists a nonzero polynomial B ∈ F[x] of degree
at most d such that for every a ∈ Fn satisfying B(a) ̸= 0, sa(f) − t equals a product c · g

where c ∈ F× and g ∈ F(t)[x, y] is a degree-d polynomial satisfying Hypothesis (H).

Proof. Let B be as in Lemma 3.3. Consider a ∈ Fn satisfying B(a) ̸= 0. By Lemma 3.3,
we may write sa(f) = c · g̃ where c ∈ F× and g̃ satisfies Item 1 of Hypothesis (H). Then
sa(f) − t = c · g̃ − t = c · g where g = g̃ − c−1t. By Lemma 3.4, g is a degree-d polynomial
satisfying Hypothesis (H). ◀

Thus, by choosing good a ∈ F via an explicit HSG for polynomials of degree at most d

and performing the transformation f 7→ sa(f), we may assume f − t satisfies Hypothesis (H).

Satisfying Hypothesis (H) in Small Characteristics

While our final result needs char(F) > d(d − 1), the assumption that char(F) is zero or large
enough is not crucial for the sake of satisfying Hypothesis (H). We now sketch how to modify
the proof of Lemma 3.4 when 0 < char(F) ≤ d.

Let p = char(F) > 0. For our purpose, we may assume F is a perfect field and f is
indecomposable over F. This implies that f ̸∈ F[xp

1, . . . , xp
n, yp]. Then it is not hard to show

that there exists an integer e > 0 coprime to p such that for random a ∈ Fn, with high

APPROX/RANDOM 2024

44:10 Optimal PRGs for Low-Degree Polynomials over Large Fields

probability, not only is the coefficient of yd in sa(f) nonzero, but so is the coefficient of ye.
Choose the largest e that has this property. After replacing f by sa(f), the polynomial ∂f+ct

∂y

in the proof of Lemma 3.4 would have degree e − 1 instead of d − 1 in y. Then degt(h) = e − 1
and the coefficient of te−1 in h is ce−1(ec̄e)d, which is nonzero iff c̄e = ce(0) is nonzero. The
latter condition can be guaranteed with high probability by performing the substitutions
xi 7→ xi + bi for random b = (b1, . . . , bn) ∈ Fn. Finally, it is not difficult to show that the
choices of a and b can be derandomized by using an explicit HSG for polynomials of degree
O(d).

4 Lecerf’s Techniques

We describe Lecerf’s techniques in this section. For simplicity, our discussion is restricted to
the special case where the base field is algebraically closed.

Let K be an algebraically closed field, and let f ∈ K[x, y] be a polynomial of degree
d ≥ 1 satisfying Hypothesis (H). Define f̄ := f(0, y) ∈ K[y]. As K is algebraically closed and
Res

(
f(0, y), ∂f

∂y (0, y)
)

̸= 0, the univariate polynomial f̄ factorizes into distinct linear factors

f̄ =
d∏

i=1
(y − λ̄i)

where λ̄i ∈ K for i ∈ [d]. By Hensel’s lifting lemma, the above factorization of f̄ over K lifts
to a factorization of f into distinct linear factors

f =
d∏

i=1
(y − λi),

where λi ∈ K[[x]] and λi(0) = λ̄i for i ∈ [d].
Now we introduce new variables z = (z1, . . . , zn) and x, and define g :=

f(z1x, . . . , znx, y) ∈ K[z, x, y]. Then g factorizes into linear factors

g =
d∏

i=1
(y − λi(z1x, . . . , znx))

where each λi(z1x, . . . , znx) lives in K[z][[x]]. For i ∈ [d], let gi be the factor y −
λi(z1x, . . . , znx) of g, and let ĝi be its cofactor

∏
j∈[d]\{i} gj . So gi, ĝi ∈ K[z][[x]][y].

For h ∈ A[[x]][y] over a commutative ring A and (j, k) ∈ N2, denote by coeff
(
h, xjyk

)
∈ A

the coefficient of xjyk in h. We are now ready to define the linear system Dz,σ used in
[20, 21].

▶ Definition 4.1 (Linear system Dz,σ [20, 21]). Let σ ∈ N. Define Dz,σ to be the following
linear system over K(z) in the unknowns ℓ1, . . . , ℓd:

Dz,σ

d∑
i=1

coeff
(

ĝi
∂gi

∂y
, xjyk

)
· ℓi = 0, k ≤ d − 1, d ≤ j + k ≤ σ − 1,

d∑
i=1

coeff
(

ĝi
∂gi

∂x
, xjyk

)
· ℓi = 0, k ≤ d − 1, j ≤ σ − 2, d ≤ j + k ≤ σ − 1.

We have the following easy lemma.

A. Dwivedi, Z. Guo, and B. L. Volk 44:11

▶ Lemma 4.2. For (j, k) ∈ N2, coeff
(

ĝi
∂gi

∂x , xjyk
)

, coeff
(

ĝi
∂gi

∂y , xjyk
)

∈ K[z] are polynomi-
als of degree at most j + 1 and j respectively.

Proof. Consider arbitrary i ∈ [d] and (j, k) ∈ N2. As gi = y − λi(z1x, . . . , znx) and j ≥ 0,
only terms of degree at most j in z1, . . . , zn contribute to the coefficient of xjyk in gi. Then,
as the operator ∂

∂x is linear and sends xuyv to uxu−1yv for all u, v ∈ N, one can see that
only terms of degree at most j + 1 in z1, . . . , zn contribute to the coefficient of xjyk in ∂gi

∂x .
Also, ∂gi

∂y = 1 by definition.
For any h1, . . . , hs ∈ K[z][[x]][y] and h =

∏s
i=1 hi, we have

coeff
(
h, xjyk

)
=

∑
j1,...,js,k1,...,ks∈N∑

i
ji=j,

∑
i

ki=k

s∏
i=1

coeff
(
hi, xjiyki

)
. (1)

We already know deg
(
coeff

(
gi, xjyk

))
≤ j, deg

(
coeff

(
∂gi

∂x , xjyk
))

≤ j + 1, and

deg
(

coeff
(

∂gi

∂y , xjyk
))

= 0 for i ∈ [d] and (j, k) ∈ N2 by the above discussion. Choosing
(h1, . . . , hs) to be (g1, . . . , gi−1, gi+1, . . . gd, ∂gi

∂x) and (g1, . . . , gi−1, gi+1, . . . gd, ∂gi

∂y) respect-
ively and applying (1) proves the claim. ◀

For a = (a1, . . . , an) ∈ Kn, we can assign a1 . . . , an to z1, . . . , zn respectively in the
polynomials coeff

(
ĝi

∂gi

∂x , xjyk
)

, coeff
(

ĝi
∂gi

∂y , xjyk
)

∈ K[z]. This yields a linear system over
K, called the specialization of Dz,σ at a and denoted by Da,σ.

▶ Definition 4.3 (Specialization). For σ ∈ N and a = (a1, . . . , an) ∈ Kn, define Da,σ to be
the following linear system over K in the unknowns ℓ1, . . . , ℓd:

Da,σ

d∑
i=1

coeff
(

ĝi
∂gi

∂y
, xjyk

)
(a) · ℓi = 0, k ≤ d − 1, d ≤ j + k ≤ σ − 1,

d∑
i=1

coeff
(

ĝi
∂gi

∂x
, xjyk

)
(a) · ℓi = 0, k ≤ d − 1, j ≤ σ − 2, d ≤ j + k ≤ σ − 1.

For S ⊆ [d], define δS = (δS,1, . . . , δS,d) ∈ Kd by

δS,i =
{

1 i ∈ S,

0 i ̸∈ S.

For every factor f̃ of f , we may associate a set S ⊆ [d] such that f̃ =
∏

i∈S(y − λi), i.e.,
S is the set of indices i ∈ [d] such that y − λi divides f̃ . The irreducible factors f1, . . . , fr

of f over K are then associated with sets S1, . . . , Sr ⊆ [d], which form a partition of [d]. In
[20, 21], Lecerf proved that, when σ is large enough, the solution space of Dz,σ is exactly
spanned by the vectors δS1 , . . . , δSr

, and a similar statement holds for the specializations
Da,σ. We state Lecerf’s results formally as the following theorem.

▶ Theorem 4.4 ([20, 21]). Assume char(K) is zero or greater than d(d − 1). Let σ ≥ 2d. Let
f ∈ K[x, y] be a polynomial of degree d ≥ 1 satisfying Hypothesis (H). Then:
1. Suppose f =

∏r
i=1 fi is the factorization of f into its irreducible factors over K. For

i ∈ [r], let Si be the set of indices j ∈ [d] such that y − λj divides fi. Then δS1 , . . . , δSr

form a basis of the solution space of Dz,σ.

APPROX/RANDOM 2024

44:12 Optimal PRGs for Low-Degree Polynomials over Large Fields

2. Let a = (a1, . . . , an) ∈ Kn and fa = f(a1x, . . . , anx, y) ∈ K[x, y]. Suppose fa =
∏s

i=1 fa,i

is the factorization of fa into its irreducible factors over K. For i ∈ [s], let Sa,i be the set
of indices j ∈ [d] such that y − λj(a1x, . . . , anx) divides fa,i. Then δSa,1 , . . . , δSa,s

form a
basis of the solution space of Da,σ.

The first item of Theorem 4.4 is explicitly stated as [21, Lemma 1]. The second item
follows from [20, Theorem 1 and Lemma 4]. For a detailed analysis of the linear systems
Dz,σ and Da,σ, and for a conceptual interpretation of these linear systems in terms of the
closedness condition of differential 1-forms, we refer the reader to [20, 21], as well as to the
earlier paper of Gao [15].

Bertinian Good/Bad Points

The classical Bertini irreducibility theorem [30] states, among other things, that over an
algebraically closed field K, the intersection of an irreducible affine variety of codimension
one (i.e., a hypersurface) with a plane in general position is still irreducible. This motivates
the following definition:

▶ Definition 4.5 (Bertinian good/bad points [21]). Let f ∈ K[x, y] be a non-constant
polynomial satisfying Hypothesis (H). We say a = (a1, . . . , an) ∈ Kn is a Bertinian good
point for f if for every irreducible factor f̃ of f over K, the bivariate polynomial f̃a =
f̃(a1x, . . . , anx, y) is also irreducible over K. We say a = (a1, . . . , an) ∈ Kn is a Bertinian
bad point for f if it is not a Bertinian good point for f .

Lecerf [21, Theorem 6] proved that given f , there exists a nonzero polynomial Q ∈
K[z1, . . . , zn] of degree at most (d − 1)(2d − 1) that vanishes at all Bertinian bad points for
f , where d = deg(f). Let M be the matrix representing the linear system Dz,σ. Lecerf’s
proof can be sketched as follows: By Theorem 4.4, the solution space of Da,σ contains that
of Dz,σ, and a is Bertinian good as long as the two are equal. Thus, we may choose Q to be
the determinant of the largest nonsingular submatrix of M . This is because for such Q, if
Q does not vanish at a, then Dz,σ and Da,σ have the same rank, and hence their solution
spaces must be equal. The bound (d − 1)(2d − 1) on the degree of Q follows from Lemma 4.2.

In [21], Lecerf also demonstrated that the degree bound (d − 1)(2d − 1) is asymptotically
tight by providing an example for which a degree of Ω(d2) of the polynomial Q is necessary.
However, our next lemma states that, perhaps surprisingly, the degree bound can be improved
to 2d − 1 if we allow the use of the zero loci of multiple polynomials to cover the Bertinian
bad points for f . For simplicity, we state the lemma in the special case where f is irreducible,
which suffices for our purpose.

▶ Lemma 4.6. Assume char(K) is zero or greater than d(d − 1). Let f ∈ K[x, y] be an
irreducible polynomial over K of degree d ≥ 1 satisfying Hypothesis (H). Let m = 2d−1 − 1.
Then there exist nonzero polynomials Q1, . . . , Qm ∈ K[z] = K[z1, . . . , zn] of degree at most
2d − 1 such that for every Bertinian bad point a ∈ Kn for f , at least one polynomial Qi

vanishes at a.

Proof. Let σ = 2d. Let N be the number of equations in Dz,σ. Let M be the N × d matrix
over F(z) representing the linear system Dz,σ. Note that by Definition 4.1, the entries of M

are of the form coeff
(

ĝi
∂gi

∂x , xjyk
)

with j ≤ σ − 2 or coeff
(

ĝi
∂gi

∂y , xjyk
)

with j ≤ σ − 1. By
Lemma 4.2 and the fact that σ = 2d, the entries of M are polynomials in K[z] of degree at
most 2d − 1.

A. Dwivedi, Z. Guo, and B. L. Volk 44:13

There are exactly m = 2d−1 − 1 proper subsets of [d] containing 1. Let S1, . . . , Sm be an
enumeration of them. Consider i ∈ [m]. As f is irreducible, by Theorem 4.4, δSi

is not in
the solution space of Dz,σ. So we can fix a row ri = (ri,1, . . . , ri,d) of M such that the inner
product of ri and δSi is nonzero, i.e.,

∑d
j=1 ri,jδSi,j ̸= 0. Let Qi =

∑d
j=1 ri,jδSi,j , which

is a nonzero polynomial in K[z] of degree at most 2d − 1. Choose Qi in this way for each
i = 1, . . . , m.

Now let a be a Bertinian bad point for f . Then fa = f(a1x, . . . , anx, y) factorizes into
more than one irreducible factor over K. Let f̃a be the irreducible factor of fa divisible by
y−λ1(a1x, . . . , anx). Let S be the set of j ∈ [d] such that f̃a is divisible by y−λj(a1x, . . . , anx).
Then S is a proper subset of [d] containing 1. So S = Si for some i ∈ [m]. By Theorem 4.4,
δSi is in the solution space of Da,σ. As Da,σ is the specialization of Dz,σ at a, the vector
(ri,1(a), . . . , ri,d(a)) is a row of the matrix representing Da,σ. So

∑d
j=1 ri,j(a)δSi,j = 0, i.e.,

Qi(a) = 0. ◀

The Number of Low-Degree Polynomials Needed

It is an intriguing mathematical question to us how many low-degree polynomials are needed
to cover the Bertinian bad points for f . We now formalize this question.

▶ Definition 4.7. Let K be an algebraically closed field. For positive integers d and D,
define N(d, D,K) to be the smallest N ∈ N such that the following holds: Let f ∈ K[x, y] be
an irreducible polynomial of degree at most d over K satisfying Hypothesis (H). Then there
exist N nonzero polynomials in K[z] of degree at most D such that the union of the zero loci
of these polynomials contains all Bertinian bad points for f in Kn.

If such N does not exist, define N(d, D,K) = ∞.

In our application, it suffices to consider polynomials of the special form f + c · t, where
c ∈ F×, f ∈ F[x, y] and K = F(t). Moreover, by performing a variable substitution t 7→ −c−1t,
we may assume c = −1. This motivates us to introduce the following variant of Definition 4.7:

▶ Definition 4.8. Let F be a field. For positive integers d and D, define N∗(d, D,F) to be
the smallest N ∈ N such that the following holds: Let f ∈ F[x, y] be a polynomial of degree
at most d such that f − t is an irreducible polynomial over F(t) satisfying Hypothesis (H).
Then there exist N nonzero polynomials in F(t)[z] of degree at most D such that the union
of the zero loci of these polynomials contains all Bertinian bad points for f − t in Fn.

If such N does not exist, define N∗(d, D,F) = ∞.

Lecerf’s result [21, Theorem 6] can be interpreted as the statement that when char(K) is
zero or greater than d(d − 1), it holds that

N(d, D,K) = 1 for D ≥ (d − 1)(2d − 1).

Our Lemma 4.6 states that under the same condition, we have

N(d, D,K) ≤ 2d−1 − 1 for D ≥ 2d − 1.

In [21], Lecerf gave an example showing that the degree bound O(d2) for the smallest D

satisfying N(d, D,K) = 1 is asymptotically tight.2 As one can always combine the N(d, D,K)
polynomials of degree at most D into a single polynomial of degree at most N(d, D,K) · D

by taking their product, this implies N(d, D,K) · D = Ω(d2), i.e., N(d, D,K) = Ω(d2/D).

2 See the example before Theorem 6 in [21].

APPROX/RANDOM 2024

44:14 Optimal PRGs for Low-Degree Polynomials over Large Fields

▶ Question 4.9. Give improved upper bounds (or lower bounds) on N(d, D,K) and
N∗(d, D,F), at least when the characteristic of K or F is zero or large enough.

By definition, N∗(d, D,F) ≤ N(d, D,F(t)). A subexponential upper bound on N∗(d, D,F)
for D = O(d) will improve the required field size in Theorem 1.1.

Finally, it might be possible to exploit some extra structure to derive better bounds on
N∗(d, D,F) than those obtained for N(d, D,K). For example, if we modify the definition of
N∗(d, D,F) by only considering those polynomials f of prime degree, then N∗(d, 2d−1,F) ≤ 1.
This is because if fa − t is reducible over F(t), then fa is decomposable over F by Lemma 2.8.
But as deg(f) is prime, fa must be of the form g(h) with deg(g) = deg(f) and deg(h) = 1.
This in turn implies that fa − t factorizes into deg(f) linear factors over F(t). In Theorem 5.4,
we use this idea to show that the required field size can be improved to O(d4/ε2) if we only
want to fool polynomials whose degrees are prime and at most d.

5 Proofs of the Main Theorems

In this section, we present our PRG construction and prove the main theorems.
Let n and d be positive integers. Let Fq be a finite field of characteristic at least d(d−1)+1.

We now present the construction of our PRG

G : S → Fn+1
q

for polynomials f ∈ Fq[x, y] = Fq[x1, . . . , xn, y] of degree at most d. To simplify our notation,
these polynomials are assumed to be (n + 1)-variate rather than n-variate.

▶ Construction 5.1. The construction is as follows:
Let H : T → Fn

q be an explicit HSG for n-variate polynomials of degree at most
2d − 1 over Fq with density 1 − δ and seed length log |T | = O(d log n + log(1/δ)), where
δ = C0(2d − 1)/q and C0 > 0 is an absolute constant. For i ∈ [n] and s ∈ T , denote the
i-th coordinate of H(s) by H(s)i. The existence of H is guaranteed by Theorem 2.3.
Let S = T × T × Fq × Fq. Define G : S → Fn+1

q by

G(r, s, u, v) = (H(s)1 · u + H(r)1 · v, . . . , H(s)n · u + H(r)n · v, v).

In other words, we use random (r, s) ∈ T × T to pick a plane in Fn+1
q , and use random

(u, v) ∈ Fq × Fq to pick a point on the plane. The following lemma states that with high
probability, a given indecomposable polynomial f ∈ Fq[x, y] remains indecomposable when
restricted to the plane.

▶ Lemma 5.2. Let f ∈ Fq[x, y] be an indecomposable polynomial of degree at most d

over Fq. Let (r, s) be a random element of T × T . Let a = (a1, . . . , an) = H(r) and
b = (b1, . . . , bn) = H(s). Finally, let F = f(b1x + a1y, . . . , bnx + any, y) ∈ Fq[x, y]. Then

Pr [F is indecomposable over Fq] ≥ 1 − 2d−1δ.

Proof. Recall that sa is the Fq-linear automorphism of Fq[x, y] that fixes y and sends xi

to xi + aiy. As f is indecomposable over Fq, so is sa(f). By Lemma 2.6, sa(f) is also
indecomposable over Fq. So sa(f) − t is irreducible over Fq(t) by Lemma 2.8.

By Corollary 3.5, there exists a nonzero polynomial B ∈ Fq[x] of degree at most d such
that if B(a) ̸= 0, then

sa(f) − t = c · g (2)

A. Dwivedi, Z. Guo, and B. L. Volk 44:15

where c ∈ F×
q and g ∈ Fq(t)[x, y] ⊆ Fq(t)[x, y] is a degree-d polynomial satisfying Hypo-

thesis (H). By the HSG property of H , the event B(a) ̸= 0 happens with probability at least
1 − δ. Condition on this event, so that (2) holds. As sa(f) − t is irreducible over Fq(t), so is
g.

Let m = 2d−1 − 1. By Lemma 4.6, there exist nonzero polynomials Q1, . . . , Qm ∈
Fq(t)[z1, . . . , zn] of degree at most 2d − 1 such that the union of the zero loci of these
polynomials contains all b∗ = (b∗

1, . . . , b∗
n) ∈ Fn

q for which g(b∗
1x, . . . , b∗

nx, y) is reducible over
Fq(t). By Fact 2.4, H is an HSG with density 1 − δ for polynomials of degree at most
2d − 1 over Fq(t).3 Therefore, for each i ∈ [m], the probability that Qi(b) = 0 is at most δ.
Condition on the event Q1(b), . . . , Qm(b) ̸= 0. Then g(b1x, . . . , bnx, y) is irreducible over
Fq(t). On the other hand, note that

c·g(b1x, . . . , bnx, y) (2)= (sa(f))(b1x, . . . , bnx, y)−t = f(b1x+a1y, . . . , bnx+any, y)−t = F −t

where the second step uses the definition sa(f) = f(x1 + a1y, . . . , xn + any, y) ∈ Fq[x, y].
So F − t is irreducible over Fq(t). By Lemma 2.8, F is indecomposable over Fq. So it is
indecomposable over Fq.

The indecomposability of F over Fq relies on the conditions B(a) ̸= 0 and
Q1(b), . . . , Qm(b) ̸= 0. By the union bound, these conditions are simultaneously satis-
fied with probability at least 1 − δ − mδ = 1 − 2d−1δ, which completes the proof. ◀

Now we are ready to prove Theorem 1.1.

▶ Theorem 5.3 (Theorem 1.1 restated). There exists an absolute constant C > 0 such that
for ε > 0 and q ≥ C(d2d/ε + d4/ε2) with char(Fq) ≥ d(d − 1) + 1, G as in Construction 5.1
is a PRG for (n + 1)-variate polynomials of degree at most d over Fq with error ε and seed
length O(d log n + log q).

Proof. Let f ∈ Fq[x, y] be a polynomial of degree at most d. We want to prove that f(G(US))
and f(UFn+1

q
) are ε-close (in statistical distance). We may assume that f is a non-constant

polynomial, i.e., deg(f) ≥ 1, since the claim is trivial otherwise.
Our next step is the same as in [12]: f can always be written in the form f = g(h),

where g ∈ Fq[z] is a univariate polynomial and h ∈ Fq[x, y] is indecomposable over Fq. Let
D = h(G(US)) and D′ = h(UFn+1

q
). Then f(G(US)) = g(D) and f(UFn+1

q
) = g(D′). If D

and D′ are ε-close, then g(D) and g(D′) are also ε-close. Thus, by replacing f with h, we
may assume that f is indecomposable over Fq.

Let r, s, a, b and F be as in Lemma 5.2. Then by Lemma 5.2, the probability that F

is decomposable over Fq over random r and s is at most 2d−1δ = C02d−1(2d − 1)/q, where
C0 is as in Construction 5.1. Fix r and s such that F is indecomposable over Fq. Then
f(G(r, s, u, v)) = F (u, v) by definition. Applying Lemma 2.7 to F shows that, for such fixed
r and s, the distribution of F (u, v), i.e., f(G(r, s, u, v)), over random u, v ∈ Fq is ε′-close to
UFq

, where ε′ = C1d2/
√

q and C1 > 0 is an absolute constant. It follows that the statistical
distance between f(G(US)) and UFq is at most 2d−1δ + ε′.

On the other hand, as f is also indecompsable over Fq, applying Lemma 2.7 to f shows
that f(UFn+1

q
) is ε′-close to UFq

. Therefore, the statistical distance between f(G(US)) and
f(UFn+1

q
) is at most

(2d−1δ + ε′) + ε′ = 2d−1δ + 2ε′ = C02d−1(2d − 1)/q + 2C1d2/
√

q (3)

3 Note that we are applying Fact 2.4 to the infinite extension Fq(t)/Fq . In principle, it should be possible
to make the argument finitary by making some adaptations, such as considering specific values of t.
However, this may increase the complexity of the proof.

APPROX/RANDOM 2024

44:16 Optimal PRGs for Low-Degree Polynomials over Large Fields

which is bounded by ε provided that q ≥ C(d2d/ε + d4/ε2) and C > 0 is a large enough
absolute constant. The seed length of G is

2 log |T | + 2 log q = O(d log n + log(1/δ) + log q) = O(d log n + log q)

as δ = C0(2d − 1)/q. ◀

We conclude this section by proving Theorem 1.2, which states that the required field
size can be improved to O(d4/ε2) if we only want to fool polynomials of prime degree.

▶ Theorem 5.4 (Theorem 1.2 restated). There exists an absolute constant C > 0 such that
for ε > 0 and q ≥ C(d4/ε2) with char(Fq) ≥ d(d − 1) + 1, G as in Construction 5.1 is a
PRG for (n + 1)-variate polynomials of prime degree up to d with error ε and seed length
O(d log n + log q).

Proof Sketch. Let f ∈ Fq[x, y] be a polynomial whose degree d′ is prime and at most d. We
want to prove that f(G(US)) and f(UFn+1

q
) are ε-close (in statistical distance). Suppose f is

decomposable over Fq. Then f = g(h) for some polynomials g, h over Fq where deg(g) ≥ 2,
and as d′ = deg(f) is prime, we must have deg(g) = d′ and deg(h) = 1. In this case, the
theorem follows by replacing f with h, which has degree one, and applying Theorem 5.3. So
we may assume that f is indecomposable over Fq.

The rest of the proof follows that of Theorem 5.3, except that we could bound the
probability that F is decomposable over Fq by 2δ, rather than by 2d−1δ, using the following
observation:

In the application of Lemma 4.6, the polynomial has the special form g∗ = f∗ + ct, where
f∗ ∈ Fq[x, y], c ∈ F×

q , and deg(f∗) = d′. By making the substitution t 7→ −c−1t, we may
assume c = −1. Consider any a ∈ Fn

q such that g∗
a = g∗(a1x, . . . , anx, y) is reducible over

Fq(t)
n
. We claim that g∗

a factorizes into linear factors over Fq(t). To see this, note that
f∗

a = f∗(a1x, . . . , anx, y) is a decomposable polynomial over Fq of degree d′ by Lemma 2.8
and the fact that g∗

a = f∗
a − t is reducible over Fq(t). So we may write f∗

a = α(β) where
α ∈ Fq[z], β ∈ Fq[x, y], and deg(α) > 1. As d′ is prime, we must have deg(α) = d′ and
deg(β) = 1. As α is univariate, α − t factorizes into linear factors α1, . . . , αd′ over Fq(t). So
g∗

a = α(β) − t = (α − t)(β) factorizes into the linear factors α1(β), . . . , αd′(β) over Fq(t).
This observation shows that there is only one bad factorization pattern to rule out,

namely, the complete factorization into linear factors. This allows us to save a factor of
2d−1 − 1 and reduce the error probability in Lemma 5.2 from (2d − 1)δ + δ to δ + δ = 2δ.
The bound on the statistical distance between f(G(US)) and f(UFn+1

q
) in (3) now becomes

2δ + 2ε′ = 2C0(2d − 1)/q + 2C1d2/
√

q, which is bounded by ε provided that q ≥ C(d4/ε2)
and C > 0 is a large enough absolute constant. ◀

6 Open Problems

We conclude with some open problems. The most obvious one is reducing the required field
size in our construction. Using Bogdanov’s [6] paradigm, it seems necessary for the field to
be of size at least polynomial in d, since this argument relies on the Weil bound (and indeed,
as mentioned in Section 1, the seed lengths of the known constructions over small fields like
F2 are worse). Still, one could hope to obtain seed length O(d log n) with q being polynomial
in d, and not exponential in d. In our construction, q is exponential in d due to the need
to apply a union bound over all possible vectors in {0, 1}d characterizing the factorization
pattern of fa. It could very well be that there is a more clever argument that rules out

A. Dwivedi, Z. Guo, and B. L. Volk 44:17

multiple vectors at once. We also mention again Question 4.9. As explained in Section 4,
improved upper bounds on the quantity N∗(d, D,F) in that question would improve the field
size required by our construction.

A related open problem is removing the requirement that the characteristic of Fq is at
least d(d − 1) + 1. This requirement comes from using Lecerf’s [21] arguments (dating back
to Gao [15] and Ruppert [26, 27]). We remark that our construction can be adapted to work
in arbitrary characteristics p > 0 by employing the analysis in [8] and increasing the accuracy
parameter σ of Hensel lifting to d(d − 1) + 1; however, this leads to a larger seed length of
O(d2 log n + log q). A proof of this result will be provided in the full version of this paper.

Finally, low-degree polynomials form a natural “weak” class of polynomials. However,
rather than assuming bounds on the degree of polynomials, one can also consider other weak
classes of polynomials, where the restriction comes from bounding their algebraic circuit
complexity. This forms another interesting avenue for generalizing the results on PRGs
for low-degree polynomials. As an analogy, in the context of Boolean computation, the
problem of constructing explicit PRGs for weak computational classes (such as bounded-depth
circuits or read-once oblivious branching programs) is well studied (see [34]). For algebraic
computational models, however, much less is known. Most of the research in this area has
focused on constructing hitting sets of limited models of algebraic circuits (see [31, 28, 29] for
some surveys on this topic), due to the relation to the famous Polynomial Identity Testing
Problem. To the best of our knowledge, there is no known explicit construction of PRGs for
any natural class of algebraic computation. A concrete and intriguing open problem is to
explicitly construct PRGs for the class of sparse polynomials, for which, as described in the
references above, there are many known explicit constructions of hitting sets.

References
1 Noga Alon, Ido Ben-Eliezer, and Michael Krivelevich. Small sample spaces cannot fool low

degree polynomials. In Proceedings of the 12th International Workshop on Randomization and
Computation (RANDOM 2008), volume 5171 of Lecture Notes in Computer Science, pages
266–275. Springer, 2008. doi:10.1007/978-3-540-85363-3_22.

2 Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. Simple construction of almost
k-wise independent random variables. Random Structures & Algorithms, 3(3):289–304, 1992.
doi:10.1002/RSA.3240030308.

3 I. V. Arzhantsev and A. P. Petravchuk. Closed polynomials and saturated subalgebras of
polynomial algebras. Ukrainian Mathematical Journal, 59(12):1783–1790, 2007.

4 Avraham Ben-Aroya and Amnon Ta-Shma. Constructing small-bias sets from algebraic-
geometric codes. Theory of Computing, 9:253–272, 2013. doi:10.4086/TOC.2013.V009A005.

5 Arnaud Bodin, Pierre Debes, and Salah Najib. Indecomposable polynomials and their spectrum.
Acta Arithmetica, 139(1):79–100, 2009.

6 Andrej Bogdanov. Pseudorandom generators for low degree polynomials. In Proceedings of
the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, May 22-24,
2005, pages 21–30. ACM, 2005. doi:10.1145/1060590.1060594.

7 Andrej Bogdanov and Emanuele Viola. Pseudorandom bits for polynomials. SIAM Journal
on Computing, 39(6):2464–2486, 2010. doi:10.1137/070712109.

8 A. Bostan, G. Lecerf, B. Salvy, É. Schost, and B. Wiebelt. Complexity issues in bivariate
polynomial factorization. In Proceedings of the 2004 International Symposium on Symbolic
and Algebraic Computation, ISSAC 2004, pages 42–49. Association for Computing Machinery,
2004.

9 Guillaume Cheze and Salah Najib. Indecomposability of polynomials via Jacobian matrix.
Journal of Algebra, 324(1):1–11, 2010.

APPROX/RANDOM 2024

https://doi.org/10.1007/978-3-540-85363-3_22
https://doi.org/10.1002/RSA.3240030308
https://doi.org/10.4086/TOC.2013.V009A005
https://doi.org/10.1145/1060590.1060594
https://doi.org/10.1137/070712109

44:18 Optimal PRGs for Low-Degree Polynomials over Large Fields

10 Gil Cohen and Amnon Ta-Shma. Pseudorandom generators for low degree polynomials from
algebraic geometry codes. Electronic Colloquium on Computational Complexity, TR13-155,
2013. arXiv:TR13-155.

11 David A. Cox, John B. Little, and Donal O’Shea. Ideals, Varieties and Algorithms. Under-
graduate Texts in Mathematics. Springer, 2007. doi:10.1007/978-0-387-35651-8.

12 Harm Derksen and Emanuele Viola. Fooling polynomials using invariant theory. In 63rd IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO, USA,
October 31 - November 3, 2022, pages 399–406. IEEE, 2022. doi:10.1109/FOCS54457.2022.
00045.

13 David Eisenbud. Commutative Algebra: With a View Toward Algebraic Geometry. Springer
Science & Business Media, 1995.

14 Guy Even, Oded Goldreich, Michael Luby, Noam Nisan, and Boban Velickovic. Efficient
approximation of product distributions. Random Structures & Algorithms, 13(1):1–16, 1998.
doi:10.1002/(SICI)1098-2418(199808)13:1<1::AID-RSA1>3.0.CO;2-W.

15 Shuhong Gao. Factoring multivariate polynomials via partial differential equations. Mathem-
atics of Computation, 72(242):801–822, 2003. doi:10.1090/S0025-5718-02-01428-X.

16 Venkatesan Guruswami and Chaoping Xing. Hitting sets for low-degree polynomials with
optimal density. In Proceedings of the IEEE 29th Conference on Computational Complexity,
CCC 2014, pages 161–168. IEEE Computer Society, 2014. doi:10.1109/CCC.2014.24.

17 Pooya Hatami and William Hoza. Theory of unconditional pseudorandom generators. Electronic
Colloquium on Computational Complexity, TR23-019, 2023. arXiv:TR23-019.

18 Erich L. Kaltofen. Effective Noether irreducibility forms and applications. Journal of Computer
and System Sciences, 50(2):274–295, 1995. doi:10.1006/JCSS.1995.1023.

19 Adam R. Klivans and Daniel A. Spielman. Randomness efficient identity testing of multivariate
polynomials. In Proceedings on 33rd Annual ACM Symposium on Theory of Computing (STOC
2001), pages 216–223. ACM, 2001. doi:10.1145/380752.380801.

20 Grégoire Lecerf. Sharp precision in Hensel lifting for bivariate polynomial factorization.
Mathematics of Computation, 75(254):921–933, 2006.

21 Grégoire Lecerf. Improved dense multivariate polynomial factorization algorithms. Journal of
Symbolic Computation, 42(4):477–494, 2007.

22 Shachar Lovett. Unconditional pseudorandom generators for low degree polynomials. Theory
of Computing, 5(1):69–82, 2009. doi:10.4086/TOC.2009.V005A003.

23 Chi-Jen Lu. Hitting set generators for sparse polynomials over any finite fields. In Proceedings
of the 27th Conference on Computational Complexity, CCC 2012, pages 280–286. IEEE
Computer Society, 2012. doi:10.1109/CCC.2012.20.

24 Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and
applications. SIAM Journal on Computing, 22(4):838–856, 1993. doi:10.1137/0222053.

25 Alexander A. Razborov. Lower bounds on the size of bounded depth circuits over a complete
basis with logical addition. Matematicheskie Zametki, 41:598–607, 1987. English translation
in Mathematical Notes of the Academy of Sci. of the USSR, 41(4):333-338, 1987. doi:
10.1007/BF01137685.

26 Wolfgang Ruppert. Reduzibilität ebener kurven. Journal für die reine und angewandte
Mathematik, 1986(369):167–191, 1986. doi:doi:10.1515/crll.1986.369.167.

27 Wolfgang M. Ruppert. Reducibility of polynomials f(x, y) modulo p. Journal of Number
Theory, 77(1):62–70, 1999. doi:10.1006/jnth.1999.2381.

28 Nitin Saxena. Progress on polynomial identity testing. Bulletin of the EATCS, 99:49–79, 2009.
29 Nitin Saxena. Progress on polynomial identity testing-II. Perspectives in Computational

Complexity: The Somenath Biswas Anniversary Volume, pages 131–146, 2014. doi:10.1007/
978-3-319-05446-9_7.

30 Igor Shafarevich. Basic Algebraic Geometry 1: Varieties in Projective Space. Springer, 1994.

https://arxiv.org/abs/TR13-155
https://doi.org/10.1007/978-0-387-35651-8
https://doi.org/10.1109/FOCS54457.2022.00045
https://doi.org/10.1109/FOCS54457.2022.00045
https://doi.org/10.1002/(SICI)1098-2418(199808)13:1<1::AID-RSA1>3.0.CO;2-W
https://doi.org/10.1090/S0025-5718-02-01428-X
https://doi.org/10.1109/CCC.2014.24
https://arxiv.org/abs/TR23-019
https://doi.org/10.1006/JCSS.1995.1023
https://doi.org/10.1145/380752.380801
https://doi.org/10.4086/TOC.2009.V005A003
https://doi.org/10.1109/CCC.2012.20
https://doi.org/10.1137/0222053
https://doi.org/10.1007/BF01137685
https://doi.org/10.1007/BF01137685
https://doi.org/doi:10.1515/crll.1986.369.167
https://doi.org/10.1006/jnth.1999.2381
https://doi.org/10.1007/978-3-319-05446-9_7
https://doi.org/10.1007/978-3-319-05446-9_7

A. Dwivedi, Z. Guo, and B. L. Volk 44:19

31 Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and open
questions. Foundations and Trends in Theoretical Computer Science, 5(3-4):207–388, 2010.
doi:10.1561/0400000039.

32 Roman Smolensky. On representations by low-degree polynomials. In 34th Annual Symposium
on Foundations of Computer Science, pages 130–138. IEEE Computer Society, 1993. doi:
10.1109/SFCS.1993.366874.

33 Amnon Ta-Shma. Explicit, almost optimal, epsilon-balanced codes. In Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing (STOC 2017), pages 238–251.
ACM, 2017. doi:10.1145/3055399.3055408.

34 Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer Science,
7(1-3):1–336, 2012. doi:10.1561/0400000010.

35 Emanuele Viola. The sum of D small-bias generators fools polynomials of degree D. computa-
tional complexity, 18(2):209–217, 2009. doi:10.1007/S00037-009-0273-5.

36 André Weil. Numbers of solutions of equations in finite fields. Bulletin of the American
Mathematical Society, 55:497–508, 1949.

APPROX/RANDOM 2024

https://doi.org/10.1561/0400000039
https://doi.org/10.1109/SFCS.1993.366874
https://doi.org/10.1109/SFCS.1993.366874
https://doi.org/10.1145/3055399.3055408
https://doi.org/10.1561/0400000010
https://doi.org/10.1007/S00037-009-0273-5

Refining the Adaptivity Notion in the Huge Object
Model
Tomer Adar #

Technion – Israel Institute of Technology, Haifa, Israel

Eldar Fischer #

Technion – Israel Institute of Technology, Haifa, Israel

Abstract
The Huge Object model for distribution testing, first defined by Goldreich and Ron in 2022, combines
the features of classical string testing and distribution testing. In this model we are given access to
independent samples from an unknown distribution P over the set of strings {0, 1}n, but are only
allowed to query a few bits from the samples. The distinction between adaptive and non-adaptive
algorithms, which occurs naturally in the realm of string testing (while being irrelevant for classical
distribution testing), plays a substantial role also in the Huge Object model.

In this work we show that the full picture in the Huge Object model is much richer than just
that of the adaptive vs. non-adaptive dichotomy. We define and investigate several models of
adaptivity that lie between the fully-adaptive and the completely non-adaptive extremes. These
models are naturally grounded by observing the querying process from each sample independently,
and considering the “algorithmic flow” between them. For example, if we allow no information at all
to cross over between samples (up to the final decision), then we obtain the locally bounded adaptive
model, arguably the “least adaptive” one apart from being completely non-adaptive. A slightly
stronger model allows only a “one-way” information flow. Even stronger (but still far from being
fully adaptive) models follow by taking inspiration from the setting of streaming algorithms. To
show that we indeed have a hierarchy, we prove a chain of exponential separations encompassing
most of the models that we define.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms

Keywords and phrases Huge-Object model, Property Testing

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.45

Category RANDOM

Related Version Full Version: https://arxiv.org/abs/2306.16129

Funding Eldar Fischer : Research supported by an Israel Science Foundation grant number 879/22.

1 Introduction

Property testing is the study of sublinear, query-based probabilistic decision-making al-
gorithms. That is, algorithms that return accept or reject after reading only a small
portion of their input. The study of (classical) property testing, starting with [6], [14]
and [15], has seen an extensive body of work. See for example [10]. Usually, a property-
testing algorithm with threshold parameter ε is required to accept an input that satisfies the
property with high probability, and reject an input whose distance from any satisfying one is
more than ε, with high probability as well. For string properties, which were the first to be
studied (along with functions, matrices, etc. that can also be represented as strings), the
distance measure is usually the normalized Hamming distance.

Distribution testing is a newer model, first defined implicitly in [11] (a version of which
has already appeared in 2000 as a technical report). In [4] and [5] it was explicitly defined
and researched. The algorithms in this model are much weaker, where instead of queries, the

© Tomer Adar and Eldar Fischer;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 45; pp. 45:1–45:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tomer-adar@campus.technion.ac.il
https://orcid.org/0009-0004-2371-1339
mailto:eldar@cs.technion.ac.il
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.45
https://arxiv.org/abs/2306.16129
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

45:2 Refining the Adaptivity Notion in the Huge Object Model

decision to accept or reject must be made based only on a sequence of independent samples
drawn from an unknown distribution. In such a setting the distance metric is usually the
variation distance. For a more comprehensive survey, see [7].

The study of a combination of string and distribution testing was initiated in [12]. Here
the samples in themselves are considered to be very large objects, and hence after obtaining
a sample (usually modeled as a string of size n), queries must be made to obtain some
information about its contents. This requires an appropriate modification in the distance
notion. This model is appropriately called the Huge Object model.

Contrast the above to the original “small object” distribution testing model, where it
is assumed that every sample is immediately available to the algorithm in its entirety. In
particular, in the original model, the algorithm does not have any choice of queries, as it
just receives a sequence of independent samples from the distribution to be tested. Hence
one might even call it a “formula” rather than an “algorithm”. Grossly speaking, the only
decision made is whether to accept or reject the provided sequence of sampled objects.

On the other hand, in the string testing model, an algorithm is provided with a (de-
terministic) input string, and may make query decisions based both on internal random
coins and on answers to previous queries. An algorithm which makes use of the option of
considering answers to previous queries when choosing the next query is called adaptive,
while an algorithm that queries based only on coin tosses is called non-adaptive (the final
decision on whether to accept or reject the input must, of course, depend on the actual
answers).

Algorithms for the Huge Object model, due to their reliance on individual queries to the
provided samples, can be adaptive or non-adaptive. This relationship with respect to the
Huge Object model was first explored in [8].

However, as we shall demonstrate below, the complete picture here is richer than the
standard adaptive/non-adaptive dichotomy used in classical string testing. As it turns out,
several categories of adaptivity can be defined and investigated based on the consideration of
the shared information between the different samples that are queried.

1.1 Adaptivity notions in the Huge Object model
For our purpose, unless we state otherwise, we assume that the sequence of samples is taken
in advance (but is not directly disclosed to the algorithm), and is presented as a matrix from
which the algorithm makes its queries. For a sequence of s samples from a distribution whose
base set is {0, 1}n, this would be a binary s× n matrix.

We say that an algorithm is non-adaptive if it chooses its entire set of queries before
making them, which means that it cannot choose later queries based on the answers to earlier
ones. This is identical to the definition of a non-adaptive algorithm for string properties.

A fully adaptive algorithm is allowed to choose every query based on answers to all queries
made before it. This is quite similar to the definition of an adaptive algorithm for string
properties, but restricting ourselves to this dichotomy does not give the full picture. We
refine the notion of adaptivity by considering more subtle restrictions on the way that the
algorithms plan their queries, leading to query models that are not as expressive as those
of fully adaptive algorithms, but are still more expressive than those of non-adaptive ones.
In this introduction we only introduce the rationale of every model; the formal definitions
appear in the preliminaries section.

One interesting restriction, which is surprisingly difficult to analyze, is “being adaptive
for every individual sample, without sharing adaptivity between different samples” (the
results of random coin tosses are still allowed to be shared). We say that an algorithm is

T. Adar and E. Fischer 45:3

locally-bounded if it obeys this restriction. This model captures the concept of distributed
execution, in a way that every node has a limited scope of a single sample, and only when
all nodes are done, their individual outcomes are combined to facilitate a decision.

A more natural restriction is “being able to query only the most recent sample”. We say
that an algorithm is forward-only if it cannot query a sample after querying a later one. This
can be viewed (if we abandon the above-mentioned matrix representation) as the algorithm
being provided with oracle access to only one sample at a time, not being able to “go back in
time” once a new sample was taken. An example for the usage of the model is an anonymous
survey. As long as the survey session is alive, we can present new questions based on past
interactions and on the current one, but once the session ends, we are not able to recall the
same participant for further questioning.

A natural generalization of forward-only adaptiveness is having a bounded memory for
holding samples (rather than only having one accessible sample at a time). Once the memory
is full, the algorithm must drop one of these samples (making it inaccessible) in order to free
up space for a new sample. An additional motivation for this model is the concept of stream
processing, whose goal is computing using sublinear memory. Relevant to our work is [2],
where the input stream is determined by an unknown distribution, in contrast to the usual
streaming setting where the order of the stream is arbitrary. Within the notion of having
memory of a fixed size, we actually distinguish two models. In the weak model, when the
memory is full, the oldest sample is dropped. In the strong model, the algorithm decides
(possibly adaptively) which sample to drop.

We show that every two consecutive models in the above hierarchy have an exponential
separation, which means that there is a property that requires Ω(poly(n)) queries for an ε-test
in the first model (for some fixed ε), but is also ε-testable using O

(
poly

(
ε−1)

log n
)

queries
in the second model (for every ε > 0). Moreover, our upper bounds always have one-sided
error, while the lower bounds apply for both one-sided and two-sided error algorithms. The
exact relationship between the weak and the strong limited memory models remains open,
however.

We believe that investigating limited adaptiveness models can apply to other areas
where there are two “query scales”. That is, when investigating a model takes into account
collections of objects that are restricted both in the way that whole objects are obtained and
in the access model inside each obtained object. For example, one could think of a distributed
computing scenario where the communication between the nodes follows a LOCAL or a
CONGEST scheme (see [13]), but additionally each node holds a “large” input from which it
may only perform sub-linear time computation between the communication rounds.

1.2 Organization of the paper
We start with formal definitions of the models which are required to state our results, followed
by an overview of the results themselves and a description of the main ideas of their proofs.
This review includes the definitions of the properties showing our separation results, along
with a sketch of the lower bounds and the algorithms for the upper bounds. The proofs
themselves are deferred to the full version of this paper.

2 Preliminaries

The following are the core definitions and lemmas used throughout this paper, including the
model definitions used in the overview in Section 3. Here, all distributions are defined over
finite sets.

APPROX/RANDOM 2024

45:4 Refining the Adaptivity Notion in the Huge Object Model

▶ Definition 1 (Common notations). For a set A, the power set of A is denoted by P(A).
For two sets A and B, the set of all functions f : A→ B is denoted by BA. For a finite set
A, the set of all permutations over A is denoted by π(A).

▶ Definition 2 (Set of distributions). Let Ω be a finite set. The set of all distributions that
are defined over Ω is denoted by D(Ω).

While parts of this section are generalizable to distributions over non-finite sets Ω with
compact topologies, we restrict ourselves to distributions over finite sets, which suffice for
our application.

▶ Definition 3 (Property). A property P over a finite alphabet Σ is defined as a sequence of
compact sets Pn ⊆ D(Σn). Here compactness refers to the one defined with respect to the
natural topology inherited from R|Σ|n .

All properties are defined over Σ = {0, 1} unless we state otherwise.

2.1 Distances
The following are the distance measures that we use. In the sequel, we will omit the subscript
(e.g. use “d(x, y)” instead of “dH(x, y)”) whenever the measure that we use is clear from the
context.

▶ Definition 4 (Normalized Hamming distance). For two strings s1, s2 ∈ Σn, we use dH(s1, s2)
to denote their normalized Hamming distance, 1

n |{1 ≤ i ≤ n|s1[i] ̸= s2[i]}|.

For all our distance measures we also use the standard extension to distances between sets,
using the corresponding infimum (which in all our relevant cases will be a minimum). For
example, For a string s ∈ {0, 1}n and a set A ⊆ {0, 1}n, we define dH(s, A) = min

s′∈A
dH(s, s′).

▶ Definition 5 (Variation distance). For two distributions P and Q over a common set Ω,
we use dvar(P, Q) to denote their variation distance, maxE⊆Ω |PrP [E]− PrQ[E]|. Since Ω is
finite there is an equivalent definition of dvar(P, Q) = 1

2
∑

s∈Ω |P (s)−Q(s)|.

▶ Definition 6 (Transfer distribution). For two distributions P over Ω1 and Q over Ω2, we
say that a distribution T over Ω1×Ω2 is a transfer distribution between P and Q if for every
x0 ∈ Ω1, Pr(x,y)∼T [x = x0] = PrP [x0], and for every y0 ∈ Ω2, Pr(x,y)∼T [y = y0] = PrQ[y0].
We use T (P, Q) to denote the set of all transfer distributions between P and Q.

We note that for finite Ω1 and Ω2 the set T (P, Q) is compact as a subset of D(Ω1 × Ω2).

▶ Definition 7 (Earth Mover’s Distance). For two distributions P and Q over a com-
mon set Ω with a metric dΩ, we use dEMD(P, Q) to denote their earth mover’s distance,
defined by the infimum of the “average distance” demonstrated by a transfer distribution,
infT ∈T (P,Q) E(x,y)∼T [dΩ(x, y)].

In the sequel, the above “inf” can and will be replaced by “min”, by the compactness of
T (P, Q) for finite Ω. Most papers (including the original [12]) use an equivalent definition
that is based on linear programming, whose solution is the optimal transfer distribution.

In our theorems, Ω is always {0, 1}n for some n and the metric is the Hamming distance.
Sometimes, as an intermediate phase, we may use a different Ω (usually {1, . . . , k}n for some
k), and then show a reduction back to the binary case.

T. Adar and E. Fischer 45:5

▶ Definition 8 (Distance from a property). The distance of a distribution P from a property
P = ⟨Pn⟩ is loosely noted as d(P,P) and is defined to be dEMD(P,Pn) = infQ∈Pn

dEMD(P, Q).

It is very easy to show that for any two distributions P, Q ∈ D(Σn) we have dEMD(P, Q) ≤
dvar(P, Q). This means that the topology induced by the variation distance is richer than
that induced by the earth mover’s distance (actually for finite sets these two topologies are
identical). In particular it means that all considered properties form compact sets with
respect to the earth mover’s distance. We obtain the following lemma.

▶ Lemma 9. For a property P of distributions over strings, and any distribution P ∈ D(Σn),
there is a distribution realizing the distance of P from P, i.e. a distribution Q ∈ Pn for which
d(P, Q) = d(P,Pn). In particular, the infimum in Definition 8 is a minimum.

2.2 The testing model
This model is defined in [12]. We use an equivalent definition which will be the “baseline”
for our restricted adaptivity variants.

The input is a distribution P over Σn (our final theorems will be for Σ = {0, 1}, but some
intermediate arguments require other finite Σ). An algorithm A gets random oracle access to
s samples that are independently drawn from P . Then it is allowed to query individual bits
of the samples. The output of the algorithm is either accept or reject. For convenience
we identify the samples with an s× n matrix, so for example the query “(i, j)” returns the
jth bit of the ith sample.

The input size n and the number of samples s are hard-coded in the algorithm. As
with boolean circuits, an algorithm for an arbitrarily sized input is defined as a sequence of
algorithms, one for each n.

For a given algorithm we define another measure of complexity, which is the total number
of queries that the algorithm makes. Without loss of generality, we always assume that every
sample is queried at least once (implying that q ≥ s).

For a property P and ε > 0, we say that an algorithm A is an ε-test if:
For every P ∈ P , A accepts the input P with probability higher than 2

3 .
For every P that is ε-far from P, A accepts the input P with probability less than 1

3 .
We say that A is an ε-test with one sided error if:

For every P ∈ P , A accepts the input P with probability 1.
For every P that is ε-far from P, A accepts the input P with probability less than 1

2 .

The choice of the probability bounds in the above definition are somewhat arbitrary. For
the one sided error definition 1

2 is more convenient than 1
3 . We also note that for non-ε-far

inputs that are not in P, any answer by A is considered to be correct.

2.3 Restricted models
As observed by Yao in [16], every probabilistic algorithm can be seen as a distribution over
the set of allowable deterministic algorithms. This simplifies the algorithmic analysis, since
we only have to consider deterministic algorithms (a distinction between public and private
coins can break this picture, but this will not be the case here). We will use Yao’s observation
to define every probabilistic algorithmic model by defining its respective set of allowable
deterministic algorithms. The following definitions formalize the description of the models
introduced in Section 1.

APPROX/RANDOM 2024

45:6 Refining the Adaptivity Notion in the Huge Object Model

▶ Definition 10 (Fully adaptive algorithm). Every deterministic algorithm can be described as
a full decision tree T and a set A of accepted leaves. Without loss of generality we assume
that all leaves have the exactly the same depth (we use dummy queries if “padding” is needed).
Every internal node of T consists of a query (i, j) ∈ {1, . . . , s} × {1, . . . , n} (the jth bit of
the ith sample), and every edge corresponds to an outcome element (in Σ). The number of
queries q is defined as the height of the tree. Every leaf can be described by the string of
length q detailing the answers given to the q queries, corresponding to its root-to-leaf path.
Thus we can also identify A with a subset of Σq.

Now that we have defined the most general form of a deterministic algorithm in the Huge
Object model, we formally define our models for varying degrees of adaptivity.

▶ Definition 11 (Non-adaptive algorithm). We say that an algorithm is non-adaptive if it
chooses its queries in advance, rather than deciding each query location based on the answers
to its previous ones. Formally, every deterministic non-adaptive algorithm is described as a
pair (Q, A) such that Q ⊆ {1, . . . , s} × {1, . . . , n} (for some sample complexity s) is the set
of queries, and A ⊆ ΣQ is the set of accepted answer functions. The query complexity is
defined as q = |Q|.

▶ Definition 12 (Locally-bounded adaptive algorithm). We call an algorithm locally-bounded
if it does not choose its queries to a sample based on answers to queries in other samples.
Formally, every s-sample deterministic locally-bounded algorithm is a tuple (T1, . . . , Ts; A),
where every Ti is a decision tree of height qi (where q =

∑s
i=1 qi is the total number of

queries) that is only allowed to query the ith sample, and A ⊆ Σq represents a set of accepted
superleaves, where a superleaf is defined as the concatenation of the q1, . . . , qs symbol long
sequences that represent the leaves of trees T1, . . . , Ts respectively.

▶ Definition 13 (Forward-only adaptive algorithm). We call an algorithm forward-only if
it cannot query a sample after querying a later one. Formally, a forward-only algorithm
for s samples of n-length strings is defined as a pair (T, A), where T is a decision tree
over {1, . . . , s} × {1, . . . , n} and A ⊆ Σq (as with general adaptive algorithms), additionally
satisfying that for every internal node of T that is not the root, if its query is (i, j) and its
parent query is (i′, j′), then i′ ≤ i.

▶ Definition 14 (Weak memory-bounded adaptive algorithm). We say that an algorithm is weak
m-memory bounded if it can only query a sliding window of the m most recent samples at a
time. Formally, a weak m-memory-bounded adaptive algorithm using s samples of n-length
strings is defined as a pair (T, A), where T is a decision tree over {1, . . . , s}× {1, . . . , n} and
A ⊆ Σq (as with general adaptive algorithms), additionally satisfying that for every internal
node of T that is not the root, if its query is (i, j), then for every ancestor whose query is
(i′, j′), it holds that i′ −m < i.

▶ Definition 15 (Strong memory-bounded adaptive algorithm). A strong memory-bounded
adaptive algorithm for s samples of n-length strings is defined as a triplet (T, A, M) where
T is a decision tree, A ⊆ Σq is the set of accepted answer vectors, and M : nodes(T) →
P({1, . . . , s}) is the “memory state” at every node. The explicit rules of M are:

For every internal node u ∈ T , |M(u)| ≤ k (there are at most k samples in memory).
For every internal node u ∈ T , if i ∈M(u), and if v is a child of u for which i /∈M(v),
then for every descendant w of v, i /∈M(w) (a “forgotten” sample cannot be “recalled”).
For every internal node u ∈ T whose query is (i, j), i ∈M(u) (the ith sample must be in
memory in order to query it).

T. Adar and E. Fischer 45:7

Without loss of generality, because the samples are independent, we can assume that:
M(root) = {1, . . . , k} (the algorithm has initial access to the first k samples).
For every internal node u ∈ T and the set V of all its ancestors, it holds that max(M(u)) ≤
1 + max

v∈V
(max M(v)) (new samples are accessed “in order”).

3 Overview of results and methods

The following is a semi-formal overview of our work, which is described in extensive details
in the full version of the paper. Most of our results are exponential separations between
models (that is, O(log n) vs nΩ(1) bounds).

All separations are with an exponential gap, and are achieved by properties that have an
efficient 1-sided error test in one model, but do not even have an efficient 2-sided test in the
other model.

Figure 1 provides a visualization of our results. More details about the difference between
the weak k-memory and the strong k-memory model are provided below.

Non

adaptive

Locally

bounded

Forward

only

(𝑘=1)

𝑘

Weak

memory

𝑘

Strong

memory

Weak

𝑘+1

memory

Fully

adaptive

Strong

𝑘+1

memory

strictly contains (⊊) contains (⊆) does not contain (⊈)

Figure 1 Graphical summary of our results.

3.1 Non-adaptive algorithms
To showcase what can be done with non-adaptive algorithms, we analyze the property of a
distribution having support size at most m, and the even more basic property of a distribution
being deteministic, that is, having support size 1.

We show that the determinism property (the property that the distribution draws a
specific element with probability 1) can be tested non-adaptively using O(ε−1) queries,
consisting of O(ε−1) samples (as in the classic model) and O(1) queries per sample.

▶ Observation 16. The property of drawing a fixed string has a one-sided error non-adaptive
ε-test that uses O(ε−1) queries.

We also show a non-adaptive m-support test.

▶ Theorem 17. The property of being supported on a set of at most m elements has a
one-sided error non-adaptive ε-test that uses O(ε−2m log m) queries.

Algorithm 1 demonstrates this upper bound.

APPROX/RANDOM 2024

45:8 Refining the Adaptivity Notion in the Huge Object Model

Algorithm 1 One sided ε-test for m-bounded support, non adaptive, O(ε−2m log m) queries.

take s = 1 +
⌈
8ε−1m

⌉
samples.

let t =
⌈
4ε−1(ln m + 2)

⌉
choose j1, . . . , jt ∈ [n] uniformly and independently at random.
let J = {j1, . . . , jt}
for i from 1 to s do

query sample i at j for every j ∈ J , giving substring yi of length |J |.
if

∣∣{y1, . . . , ys
}∣∣ > m then

return reject
return accept

As described in detail in the full version of the paper, in which we prove the correctness
of Algorithm 1, our ε-test for the m-support property needs more than a fixed number
of queries per sample. Though not necessarily optimal, this algorithm demonstrates the
core difference between the Huge Object model and the classic one: the limited ability to
distinguish different samples. This limitation holds for adaptive algorithms as well, even
though the adaptivity can reduce the number of queries per sample for some properties. A
concurrent work [1] shows a lower bound of Ω(ε−1 log ε−1) queries for non-adaptive support
testing even for m = 2, showing that this limitation is unavoidable.

Locally bounded adaptive algorithms
The locally-bounded adaptive model (Definition 12) allows the algorithm to pick its queries
based on answers to previous queries for every fixed sample, but lacks the ability to pass
information between samples. The ability of being adaptive allows the algorithm more ways
to query its samples, but it still lacks the ability to test relations between the samples.

Analysis method

To analyze the locally-bounded model, we define an intermediate model of string testing
which we call the split-adaptive model.

▶ Definition 18 (Split adaptive algorithm). For a fixed k, a k-split adaptive deterministic
algorithm for n-long strings (where n is divisible by k) over some alphabet Σ is a sequence of
k decision trees T1, . . . , Tk, where the tree Ti can only query at indexes between (i− 1)k + 1
and ik, and a set of accepted answer sequences. The query complexity of the algorithm is
defined as the sum of heights of its trees.

In this model, we test properties of k-tuples of strings, where the queries are made
separately for every entry of the tuple (that is, every entry is processed using an adaptive
algorithm that is oblivious of the other entries). To obtain a reduction, we consider every
s-sample locally-bounded algorithm over an input distribution P as a split-adaptive algorithm
whose input is drawn from P s (that is, an s-tuple whose entries are independently drawn
from P).

Exponential separation from the non-adaptive model

Naturally, there is an exponential separation between the locally-bounded model and the non-
adaptive model of the Huge Object model. The property CPal (defined below) demonstrates
this separation.

T. Adar and E. Fischer 45:9

▶ Definition 19 (string property cpal, see [8], [3]). For any fixed n, the property cpal is
defined over {0, 1, 2, 3}n as the set of n-long strings that are concatenations of a palindrome
over {0, 1} and a palindrome over {2, 3} (in this order).

The following lemma is well-known (the adaptive bound, using binary search, is described
in [8]).

▶ Lemma 20. Property cpal does not have a non-adaptive 1
5 -test using o(

√
n) queries, while

having an adaptive ε-test using O(log(n) + 1/ε) many queries.

In [8] this was made into a distribution property by using “distributions” that are
deterministic.

▶ Definition 21 (Distribution property CPal, see [8]). For a fixed, even n, the property
CPal is defined as the set of distributions over {0, 1}n that are deterministic (have support
size 1), whose support is an element that belongs to cpal, with respect to the encoding
(0, 1, 2, 3) 7→ (00, 01, 10, 11).

▶ Lemma 22. CPal has a locally-bounded ε-test that uses O(poly(ε−1) log n) queries for
every ε > 0, but there exists some ε0 > 0 for which any non-adaptive ε0-test requires
Ω(poly(n)) queries.

This is an almost-direct corollary of a result from [12] regarding converting string testing
problems to the Huge Object model. Essentially, the Huge Object model “contains” the
string testing one, and the conversion produces locally adaptive algorithms out of their
respective adaptive string algorithms.

Forward only adaptive algorithms
In the forward-only model (Definition 13), the algorithm virtually gets a stream of samples,
and is allowed to query only the current sample without any restriction (but further queries
to past samples are not allowed), based on answers to all past queries. In contrast to the
locally bounded model, forward algorithms can test a richer collection of binary relations
between samples, due to the ability to query one sample and then use the gathered data to
choose the queries for the next one.

Exponential separation from the locally-bounded model

We use the ability of forward-only algorithms to consider a richer collection of relations
between samples, as compared to locally-bounded algorithms, to show an exponential
separation between these models. The property Inv∗ (defined below) demonstrates this
separation.

In [9] it was shown that ε-testing two functions over {1, . . . , n} for being inverses of each
other is possible with O(ε−1) many queries, while testing a single function for having an
inverse is harder and requires a polynomial number of queries. Formally, we cite the function
property inv:

▶ Definition 23 (Function property inv). For a fixed n, the property inv is defined over
[n][2n] as the set of ordered pairs of functions f, g : [n]→ [n] such that either f(i) = g(i) for
every 1 ≤ i ≤ n or g(f(i)) = i for every 1 ≤ i ≤ n.

APPROX/RANDOM 2024

45:10 Refining the Adaptivity Notion in the Huge Object Model

Note that we modified the definition of the property slightly from the original, by allowing
also the case f = g. This technical change makes it possible to construct a test using
forward-only adaptivity that is also with one-sided error.

Here we separate the two functions by setting them in a probability space with support
size 2. If we allow forward-only adaptivity, then the original inverse test can be implemented,
as it works by verifying that g(f(i)) = i for sufficiently many is. We can call the first sample
“f”, and after writing down our f(i1), . . . , f(iq), we “wait” for a sample of g and then verify
that g(f(ij)) = ij for i1, . . . , iq. Formally, we define the property Inv:

▶ Definition 24 (Distribution property Inv). For a fixed n, the property Inv is defined as
the set of distributions over [n][n] that are supported by a set of the form {f, g} such that
(f, g) ∈ inv. Note that in particular all deterministic distributions satisfy Inv, since we allow
f = g to occur.

To make the above work for binary strings (rather than an alphabet of size n) we use an
appropriate large distance encoding of the values.

▶ Definition 25 (Distribution property Inv∗). For a fixed n, let Cn : [n]→ {0, 1}2⌈log2⌉n be
an error-correction code whose distance is at least 1

3 . We define Inv∗ as the property of
distributions over {0, 1}2⌈log2 n⌉n that can be constructed by the following procedure: beginning
with some P ∈ Inv, we let P ∗ denote the distribution that draws x ∈ [n]n according to P ,
and then outputs the concatenation Cn(x1) · · ·Cn(xn).

The lower bound against locally-bounded adaptivity requires an intricate analysis of
the model. Essentially we use the split-adaptive string-testing model to show that when
querying each of f and g “in solitude”, being adaptive over a function that is drawn at
random does not provide an advantage over a non-adaptive algorithm. In particular, the
values of a uniformly drawn permutation are “too random” to allow the implementation of a
meaningful query strategy without getting some information from the inverse function, even
if we allow to “coordinate in advance” the query strategy.

▶ Theorem 26. Property Inv∗ has a forward-only ε-test that uses O(ε−2 log n) queries for
every ε > 0, but any locally-bounded adaptive 1

5 -test requires Ω(
√

n) queries.

The upper bound for forward-only testing of Inv is demonstrated in Algorithm 2. Applying
Algorithm 2 to Inv∗ is pretty straightforward.

Algorithm 2 One sided ε-test for Inv, forward only, O(ε−2) queries.

Treat samples as n-long strings over [n].
let s = 1 +

⌈
3ε−2⌉

.
choose j2, . . . , js ∈ [n], uniformly at random and independently.
choose k2, . . . , ks ∈ [n], uniformly at random and independently.
query sample 1 at j2, . . . , js, giving f(j2), . . . , f(js).
query sample 1 at k2, . . . , ks, giving f (k2) , . . . , f (ks).
for i from 2 to s do

query sample i at ji, f(ki), giving g(ji), g(f(ki)).
if f(ji) ̸= g(ji) and g(f(ki)) ̸= ki then

return reject
return accept

T. Adar and E. Fischer 45:11

The query foresight method

Some adaptive algorithms do not obey the forward only restriction but can be modified to
do so, using a method we call query foresight. Intuitively, an adaptive algorithm that has
some knowledge about the structure of the queries it may make in the future can make them
speculatively at present (that is, we make all potential queries to satisfy the forward-only
constraint, even though we believe that some of them will later be considered as irrelevant).
The more knowledge the algorithm has about the potential future queries, the less queries
are wasted on the current sample.

As an example to the query foresight method, we analyze and convert a fully adaptive
algorithm for the m-support property (Algorithm 3)

Algorithm 3 One sided ε-test for m-bounded support, strong m + 1-memory, O(ε−1m2) queries.

Memory storage for samples: z1, . . . , zm; x, all initialized to NULL.
Extra cell: We have another syntactic “write-only” memory storage zm+1 which we never
query.
take s = 1 +

⌈
2ε−1m

⌉
samples.

set c, t← 0.
set j1, . . . , jm ← NULL
for k from 1 to s do

Invariant 1 c = m or zc+1 = NULL.
Invariant 2 for 1 ≤ i ≤ c, zi

J are distinct where J = {j1, . . . , jt}.
store x← sample k.
query x at j1, . . . , jt, giving substring yk.
for i from 1 to c do

query sample zi at j1, . . . , jt giving substring yi. ▷ the yis are distinct
choose j ∈ [n] uniformly at random.
query x at j, giving xj .
if ∃i : yi = yk then ▷ if exists it is unique

query sample zi at j giving zi
j .

if xj ̸= zi
j then

store zc+1 ← x.
set jt+1 ← j. ▷ keep Invariant 2
set t← t + 1 and c← c + 1. ▷ keep Invariant 1

else
store zc+1 ← x. ▷ Invariant 2 still holds
set c← c + 1. ▷ keep Invariant 1

if c > m then
return reject

return accept

▶ Theorem 27. Algorithm 3 is a one-sided ε-test for being supported by at most m elements.

We observe that the general structure of Algorithm 3’s queries is highly predictable,
and provide a modified version thereof (Algorithm 4) which is also forward-only, without
increasing its worst-case query complexity.

The idea is straightforward: we simulate the run of an adaptive algorithm. Every time
that the simulation is about to query a new sample, we make additional speculative queries
in the current sample, before dropping it as per the requirement of a forward-only algorithm.

APPROX/RANDOM 2024

45:12 Refining the Adaptivity Notion in the Huge Object Model

If the simulated algorithm makes a query to an old sample, we feed it with the answer of
the corresponding speculative query. If such a speculative query does not exists, we either
accept (for one-sided algorithms) or behave arbitrarily (for two-sided algorithms). If the
prediction is conservative, that is, the speculated queries are ensured to cover all queries to
past samples, then the construction guarantees the exact acceptance probability for every
individual input. This is not guaranteed when the prediction is not conservative, and in this
case we need to analyze the effect of bad speculations.

Algorithm 4 One sided ε-test for m-bounded support, forward only, O(ε−1m2) queries.

take s = 1 +
⌈
2ε−1m

⌉
samples.

choose j1, . . . , js ∈ [n] uniformly and independently at random.
let M be an uninitialized m× n sparse matrix {0, 1}. ▷ storage for speculative queries
let A be an empty list over [n].
c← 0.
for k from 1 to s do

Invariant Mi,j is initialized for all 1 ≤ i ≤ c and j ∈ {j1, . . . , js}.
for all j in A do ▷ simulation of yk

query sample k at j, giving xk
j .

set found ← 0.
for i from 1 to c do

if
∧

j∈A

(
Mi,j = xk

j

)
then ▷ simulation of the yis

set found ← 1.
j ← jk.
query sample k at j, giving xk

j .
if Mi,j ̸= xk

j then
c← c + 1.
add j to A.
query sample k at j1, . . . , js, giving Mc,j1 , . . . , Mc,js

. ▷ speculative queries
▷ keep the invariant

if found = 0 then
c← c + 1.
query sample k at j1, . . . , js, giving Mc,j1 , . . . , Mc,js . ▷ speculative queries

▷ keep the invariant
if c > m then

return reject
return accept

k-bounded memory algorithms
As per Definitions 14 and 15 we have two models of bounded memory, which we call weak
and strong respectively. Intuitively, in both models, the algorithm gets a stream of samples,
and it has an unrestricted access to k of these samples. When the algorithm needs an access
to a new sample, it must give up the ability to access one of the past samples. In the weak
model, the algorithm does not have a choice and it must drop the earliest sample. In other
words, the weak model has an unrestricted access to a sliding window of the k most recent
samples. In the strong model, the algorithm is allowed to choose the sample to drop.

T. Adar and E. Fischer 45:13

For k = 1, the weak and strong models are both equal to each other and to the forward-only
model. Intuitively, as k increases, the algorithm is able to consider more complicated relations
between samples, especially k-ary relations, which are more challenging for k − 1-memory
algorithms.

Exponential separation from the forward-only model

We use the ability to fully consider binary relations using 2-memory algorithms, compared
to the limited ability to do so using forward-only algorithms, to establish an exponential
separation between them.

We define a property Sym that catches the idea of symmetric functions. For some
symmetric function f : [m]× [m]→ {0, 1}, a distribution in the property draws a random key
a ∈ [m] and returns a vector that contains both a (using a high distance code of length m)
and all values of f at points (a, b) for b ∈ [m]. For technical reasons, we use fixed-distance
systematic codes to encode a as a part of the row.

▶ Lemma 28 (Systematic code). There exists a set C of error correction codes, such that for
every n ≥ m ≥ 10, it has a code Cm,n : [m]→ {0, 1}n with the following properties: (1) Its
minimal codeword distance is at least 1

3 and (2) The projection of Cm,n on its first ⌈log2 m⌉
is one-to-one, that is, Cm,n can be decoded by reading the first ⌈log2 m⌉ bits.

From now on, every use of systematic codes refers to the set C that is guaranteed by Lemma
28, usually denoted just by C (rather than the explicit notion Cm,n).

▶ Definition 29 (Matrix property sym). For a fixed n, the property sym of functions with
two variables f : [n]2 → {0, 1} is defined as the property of being symmetric, i.e. satisfying
f(i, j) = f(j, i) for all i, j ∈ [n].

The corresponding distribution property is inspired by considering distributions over the
rows of a symmetric matrix, along with properly encoded identifiers.

▶ Definition 30 (Distribution property Sym). For any m and the systematic code C : [m]→
{0, 1}m from Lemma 28, the property Sym is defined as the set of distributions for which

Pr
x∼P

[∃a ∈ [m] : x1,...,m = C(a)] = 1

(all vectors start with an encoding of a “row identifier”), and for every a, b ∈ [m],

Pr
x,y∼P

[x1,...,m = C(a) ∧ y1,...,m = C(b) ∧ xm+b ̸= ym+a] = 0

(if two “identifiers” a and b appear with positive probability, then the respective “f(a, b)” and
“f(b, a)” are identical).

▶ Theorem 31. There exists a one-sided weak 2-memory ε-test for Sym that makes
O(ε−2 log n) queries, but every forward-only 1

14 -test for Sym must use at least Ω(
√

m)
queries (for sufficiently large m).

The lower bound follows from a forward-only algorithm being given access to every sample
without any knowledge about the keys of “future” samples. If the algorithm has only one
accessible sample at a time, it can only “guess” the other key, but the probability to actually
draw a later sample with that key is too low, unless the algorithm collects queries according
to about

√
m guessed keys.

APPROX/RANDOM 2024

45:14 Refining the Adaptivity Notion in the Huge Object Model

For the upper-bound, Algorithm 5 performs a sequence of independent iterations using
two samples at a time. In every iteration, it gathers their “keys” a1 and a2, verifies the
correctness of their codewords, and then checks whether f(a1, a2) = f(a2, a1). There are
some cases that should be carefully analyzed, for example the case where the distribution
does not correspond to a single f , or the case where some values for “a” appear very rarely
or not at all, but these do not defeat the above algorithm (they somewhat affect its number
of needed iterations).

Algorithm 5 One-sided ε-test for Sym, weak 2-memory, O(ε−2 log n) queries.

let m← n/2.
for

⌈
8ε−2⌉

times do
take two samples x, y.
query x1, . . . , x⌈log2 m⌉, giving κ(x) as a.
query y1, . . . , y⌈log2 m⌉, giving κ(y) as b.
choose i ∈ [m], uniformly at random.
query x, y at i, giving xi, yi.
query ϕx(b), ϕy(a).
if xi ̸= (C(a))i or yi ̸= (C(b))i then

return reject ▷ rejection by key invalidity
if ϕx(b) ̸= ϕy(a) then

return reject ▷ rejection by asymmetry
return accept

Larger memory generalization

We generalize the above theorem to state an exponential separation between the k-weak
model (Definition 14) and the k− 1-strong model (Definition 15). We define a property Park

based on parity for every k ≥ 2 for which:

▶ Theorem 32. For every k ≥ 2, there exists a one-sided weak k-memory ε-test for Park

that makes O(kε−k log n) queries, but every forward-only 1
6k -test for Park must use at least

Ω(
√

m) (for sufficiently large n), which is Ω(n1/2k) queries since n ≈
(

m
k−1

)
.

To motivate the definition of Park, suppose that f :
([m]

k

)
→ {0, 1}k is a function such

that f(A) has zero parity for every subset A ⊆ [m] of size k. We “encode” such a function as
a distribution, making sure to “separate” the k bits of f(A) to k different samples. A typical
sample in the distribution would have an encoding (using a high distance code) of a random
key a ∈ [m], followed by some information on f(A) for every A that contains a. Specifically,
for each such A we supply the ith bit of f(A), where i is the “rank” of a in A (going by the
natural order over [m]).

▶ Definition 33 (Preliminaries for distribution property Park). Let k ≥ 2 be the degree of
freedom in the represented function. Let m be the (sufficiently large) size of the input set
and n =

(
m−1
k−1

)
. Also, consider a systematic code C : [m]→ {0, 1}n.

For a string x ∈ {0, 1}2n, let κ(x) = C−1(x1,...,n) be the key of x (if the inverse function
is not defined we can use an arbitrary key instead). Since we have an implicit mapping
between k − 1-subsets of {1, . . . , m} \ {κ(a)} and the indexes {1, . . . , n}, for every A ⊆
{1, . . . , m} \ {κ(a)} of size k − 1 we can define ΦA(x) as the corresponding bit in xn+1,...,2n.

▶ Definition 34 (Distribution property Park). For k, m, n, C defined above, the property
Park is defined as the set of distributions over {0, 1}2n for which

Pr
x∼P

[∃a ∈ [m] : x1,...,n = C(a)] = 1

T. Adar and E. Fischer 45:15

(all vectors start with an encoding of a “row identifier”), and for every a1 < . . . < ak ∈ [m],

Pr
x1,...,xk∼P

[
k∧

i=1
(xi)1,...,n = C(ai) ∧

k⊕
i=1

Φ{a1,...,ak}\{ai}(xi) = 1
]

= 0

(if all “identifiers” a1, . . . , ak appear with positive probability, then the respective concatenation
of values which forms “f({a1, . . . , ak})” has zero parity).

For the lower bound, if the algorithm has less than k accessible samples at a time, as
with the analysis of the Sym property under forward-only testing, the algorithm here can
only “guess” the missing key, and the probability to make the right guess is too low.

We go further, and show that even if the k − 1-memory algorithm is allowed to choose
which of the samples are retained in every stage (strong k − 1-memory) rather than keeping
a sliding window of recent history, the exponential separation still holds. The separation is
achieved for an εk-test of the property where εk = Θ(1/k).

For the upper bound, Algorithm 6 makes a sequence of independent iterations of k samples
at a time. In every iteration it gathers the keys a1, . . . , ak and verifies their codewords. If
they are all different, the algorithm constructs the value of f({a1, . . . , ak}) and checks its
parity.

Algorithm 6 One-sided ε-test for Park, weak k-memory, O(ε−kk log n) queries.

let m be such that
(

m−1
k−1

)
= n.

for
⌈
4ε−kk

⌉
times do

take k new samples x1, . . . , xk.
for t from 1 to k do

query xt
1, . . . , xt

⌈log2 m⌉, giving κ(xt) as at.
choose i ∈ [m], uniformly at random.
query xt at i, giving xt

i.
if xt

i ̸= (C(at))i then
return reject ▷ reject by key invalidity

if
∣∣{a1, . . . , ak

}∣∣ = k then
for t from 1 to k do

query Φxt({a1, . . . , ak} \ {at}), giving st.
if

⊕k
i=1 st = 1 then

return reject ▷ reject by parity-invalidity
return accept

4 Remaining open problems

It is an open problem whether the weak k-memory model is indeed strictly weaker than the
strong k-memory model (for the same k). And if so, is the separation exponential? Also, we
do not know whether or not for every k there exists k∗ such that the k∗-weak model contains
the k-strong one.

We believe that there exist some ε0 > 0 and 0 < α < 1 such that for every sufficiently
large k, there is an exponential separation between the weak k-memory model and the strong
αk-memory model, with respect to an ε0-test, rather than the separation for εk = Θ(1/k)
that we show for k − 1 vs k memory.

APPROX/RANDOM 2024

45:16 Refining the Adaptivity Notion in the Huge Object Model

Another interesting open problem is whether the fully adaptive model has a simultaneous
exponential separation from all fixed k-memory models. That is, whether there exists a
property P and some ε0 > 0 such that ε0-testing of P would require Ω(poly(n)) queries in
every k-memory model (the polynomial degree possibly depending on k), but P is ε-testable
using O(log n) queries using a fully adaptive algorithm for every fixed ε > 0.

References
1 Tomer Adar, Eldar Fischer, and Amit Levi. Support testing in the huge object model. In

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM 2024, August 28-30, 2024, London, United Kingdom, volume 317. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2024.

2 Maryam Aliakbarpour, Andrew McGregor, Jelani Nelson, and Erik Waingarten. Estimation
of entropy in constant space with improved sample complexity. In Proceedings of the 34th
Annual Conference on Advances in Neural Information Processing Systems (NeurIPS), 2022.

3 Noga Alon, Michael Krivelevich, Ilan Newman, and Mario Szegedy. Regular languages are
testable with a constant number of queries. SIAM Journal on Computing, 30(6):1842–1862,
2001.

4 Tugkan Batu, Eldar Fischer, Lance Fortnow, Ravi Kumar, Ronitt Rubinfeld, and Patrick
White. Testing random variables for independence and identity. In Proceedings 42nd IEEE
Symposium on Foundations of Computer Science, pages 442–451. IEEE, 2001.

5 Tugkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren D Smith, and Patrick White. Testing
that distributions are close. In Proceedings 41st Annual Symposium on Foundations of
Computer Science, pages 259–269. IEEE, 2000.

6 Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applications
to numerical problems. In Proceedings of the twenty-second annual ACM symposium on Theory
of computing, pages 73–83, 1990.

7 Clément L. Canonne. A Survey on Distribution Testing: Your Data is Big. But is it Blue?
Number 9 in Graduate Surveys. Theory of Computing Library, 2020. doi:10.4086/toc.gs.
2020.009.

8 Sourav Chakraborty, Eldar Fischer, Arijit Ghosh, Gopinath Mishra, and Sayantan Sen.
Testing of index-invariant properties in the huge object model. CoRR, abs/2207.12514, 2022.
doi:10.48550/arXiv.2207.12514.

9 Funda Ergün, Ravi Kumar, and Ronitt Rubinfeld. Fast approximate pcps. In Proceedings of
the thirty-first annual ACM symposium on Theory of computing, pages 41–50, 1999.

10 Oded Goldreich. Introduction to property testing. Cambridge University Press, 2017.
11 Oded Goldreich and Dana Ron. On testing expansion in bounded-degree graphs. Studies

in Complexity and Cryptography. Miscellanea on the Interplay between Randomness and
Computation, pages 68–75, 2011.

12 Oded Goldreich and Dana Ron. Testing distributions of huge objects. In Mark Braverman,
editor, 13th Innovations in Theoretical Computer Science Conference, ITCS 2022, January
31 - February 3, 2022, Berkeley, CA, USA, volume 215 of LIPIcs, pages 78:1–78:19. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ITCS.2022.78.

13 David Peleg. Distributed computing: a locality-sensitive approach. SIAM, 2000.
14 Ronitt Rubinfeld and Madhu Sudan. Self-testing polynomial functions efficiently and over

rational domains. In SODA, pages 23–32, 1992.
15 Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with applications

to program testing. SIAM Journal on Computing, 25(2):252–271, 1996.
16 Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified measure of complexity.

In Proceedings of the 18th Annual Symposium on Foundations of Computer Science, pages
222–227, 1977.

https://doi.org/10.4086/toc.gs.2020.009
https://doi.org/10.4086/toc.gs.2020.009
https://doi.org/10.48550/arXiv.2207.12514
https://doi.org/10.4230/LIPIcs.ITCS.2022.78

Support Testing in the Huge Object Model
Tomer Adar #

Technion – Israel Institute of Technology, Haifa, Israel

Eldar Fischer #

Technion – Israel Institute of Technology, Haifa, Israel

Amit Levi #

University of Haifa, Israel

Abstract
The Huge Object model is a distribution testing model in which we are given access to independent
samples from an unknown distribution over the set of strings {0, 1}n, but are only allowed to query a
few bits from the samples. We investigate the problem of testing whether a distribution is supported
on m elements in this model. It turns out that the behavior of this property is surprisingly intricate,
especially when also considering the question of adaptivity.

We prove lower and upper bounds for both adaptive and non-adaptive algorithms in the one-sided
and two-sided error regime. Our bounds are tight when m is fixed to a constant (and the distance
parameter ϵ is the only variable). For the general case, our bounds are at most O(log m) apart. In
particular, our results show a surprising O(log ϵ−1) gap between the number of queries required for
non-adaptive testing as compared to adaptive testing. For one-sided error testing, we also show that
an O(log m) gap between the number of samples and the number of queries is necessary. Our results
utilize a wide variety of combinatorial and probabilistic methods.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms

Keywords and phrases Huge-Object model, Property Testing

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.46

Category RANDOM

Related Version Full Version: https://arxiv.org/abs/2308.15988

Funding Eldar Fischer : Research supported by an Israel Science Foundation grant number 879/22.

1 Introduction

Property testing [12, 7] is a framework concerned with analyzing global properties of an input
while reading only a small part thereof, in the form of queries. Over the past few decades
property testing has become an active field of study in theoretical computer science (see
e.g, [6]). The study of distribution property testing was first implicitly explored in [8], and
explicitly formulated in [3] and [4]. In the standard model of distribution testing, an algorithm
can access a sequence of independently sampled elements drawn from an unknown input
distribution µ, and it either accepts or rejects the input based on this sequence. An ε-testing
algorithm for a property of distributions is required to accept every input distribution that
satisfies the property with high probability (e.g., 2

3), and to reject with high probability (e.g.,
2
3) every input distribution whose variation distance from every distribution satisfying the
property is greater than ε.

The standard model of distribution testing assumes that the elements drawn from
the distribution are fully accessible, which might be unreasonable if they have very large
descriptions (“huge objects”). The Huge Object model, whose study was initiated in [9],
treats the sampled elements as long strings that have to be queried. In this model, for

© Tomer Adar, Eldar Fischer, and Amit Levi;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 46; pp. 46:1–46:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tomer-adar@campus.technion.ac.il
https://orcid.org/0009-0004-2371-1339
mailto:eldar@cs.technion.ac.il
mailto:alevi@cs.haifa.ac.il
https://orcid.org/0000-0002-8530-5182
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.46
https://arxiv.org/abs/2308.15988
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

46:2 Support Testing in the Huge Object Model

example, it is possible that the algorithm has two non-identical samples without being able
to distinguish between them efficiently. This “two-phase” characteristic of the Huge Object
model (“sample then query”, rather than only taking samples or only querying a string)
exhibits rich behavior with respect to adaptive querying, as studied in detail in [1].

In the standard model of distribution testing, [13] and [14] show a tight bound of
Θ(m/ log m) samples for two-sided error ε-testing of having a support size bounded by m in
the standard model, for every fixed ε. An upper bound of O(ε−1m) samples for one-sided
algorithms is implicitly shown in [1], and here we show that it is tight (Proposition 24). Based
on these tight bounds, the bounded support property is considered to be fully understood in
the standard model for one-sided testing, and mostly understood in the two-sided case (for
every fixed m there is still a gap between Ω(ε−1) and O(ε−2) for two-sided testing).

One would expect that having bounded support, which is arguably the simplest of
distribution properties, would have simple and easily understood testing bounds also in
the Huge Object model. As in the standard model, it is the only label-invariant property
that is testable using one-sided error algorithms. However, it turns out that the behaviour
of this property under the Huge Object model is surprisingly intricate. One unexpected
feature that we show here is a gap between the number of queries required for non-adaptively
testing for this property as compared to adaptive testing. Indeed there is no adaptivity in
the standard distribution testing model, and one would not expect the label-invariant (and
even mapping-invariant as per the definition in [9]) property of having bounded support to
exhibit such a gap.

1.1 Definition of the model

The Huge Object model differs from the standard sampling model in its distance measure
and in the way that the algorithm gathers information about the input distribution.

Algorithmic model

A probabilistic algorithm A with q queries and s samples, whose input is a distribution P

over {0, 1}n accessible via the Huge Object model, is an algorithm that acts in the following
manner: at every stage, the algorithm may ask for a new sample v that is provided by drawing
it according to P , independently of all prior samples, or may ask to query a coordinate
j ∈ {1, . . . , n} of an old sample u (the algorithm may use internal coin tosses to make its
decisions). When this query is made, the algorithm is provided with uj ∈ {0, 1} as its answer.
The algorithm has no access to the sampled vectors apart from query access. In the end, after
taking not more than a total of s samples and making a total of not more than q queries,
the algorithm provides its output.

We say that the algorithm is non-adaptive if it makes all its sampling and querying
decisions in advance, prior to receiving all query answers in bulk. Only the final output of a
non-adaptive algorithm may depend on the received answers.

Distances

Here we define some measures of distance. Note that we usually use d(·, ·) without mentioning
the measure that we use, if its context is unambiguous. For distributions over {0, 1}n, d(·, ·)
usually refers to the earth mover’s distance defined below.

T. Adar, E. Fischer, and A. Levi 46:3

▶ Definition 1 (String distance). Let u, v ∈ {0, 1}n be two strings. We define their distance
as the normalized Hamming distance,

dH(u, v) = 1
n
|{1 ≤ i ≤ n | ui ̸= vi}| = Pr

i∼{1,...,n}
[ui ̸= vi]

We define the distance of u ∈ {0, 1}n from a set A ⊆ {0, 1}n as dH(u, A) = minv∈A dH(u, v).

▶ Definition 2 (Transfer distribution). Let P and Q be distributions over finite sets Ω1 and
Ω2, respectively. A distribution T over Ω1 × Ω2 is a transfer distribution from P to Q if for
every a ∈ Ω1, Pr(u,v)∼T [u = a] = P (a), and for every b ∈ Ω2, Pr(u,v)∼T [v = b] = Q(b). The
set of transfer distributions from P to Q is denoted by T (P, Q). Note that this is a compact
set when considered as a set of real-valued vectors.

▶ Definition 3 (Variation distance). Let µ and ν be two distributions over a finite set Ω.
Their variation distance is defined as:

dvar(µ, ν) = 1
2

∑
u∈Ω
|µ(u)− ν(u)| = max

E⊆Ω

∣∣∣∣Pr
µ

[E]− Pr
ν

[E]
∣∣∣∣ = min

T ∈T (µ,ν)
Pr

(u,v)∼T
[u ̸= v]

▶ Definition 4 (Earth mover’s distance). Let P and Q be two distributions over {0, 1}n. Their
earth mover’s distance is defined as:

dEMD(P, Q) = min
T ∈T (P,Q)

E
(u,v)∼T

[dH(u, v)]

The above minimum exists since it is in particular the minimum of a continuous function
over a compact set.

Testing model
▶ Definition 5 (A property). A property P is a sequence P1,P2, . . . such that for every n ≥ 1,
Pn is a compact subset of the set of all distributions over {0, 1}n.

▶ Definition 6 (Distance of a distribution from a property). Let P = (P1,P2, . . .) be a property
and P be a distribution over {0, 1}n for some n. The distance of P from P is defined as
dEMD(P,P) = minQ∈Pn

{dEMD(P, Q)}.

▶ Definition 7 (ε-test). Let P be a property of distributions over {0, 1}n. We say that a
probabilistic algorithm A is an ε-test for P if:

For every P ∈ P, A accepts with probability higher than 2
3 .

For every probability distribution P over {0, 1}n that is ε-far from P (satisfying d(P,P) >

ε), A rejects with probability higher than 2
3

▶ Definition 8 (one-sided and two-sided ε-test). Consider the setting of the above definition.
If additionally for every input P ∈ P, A accepts P with probability 1 (rather than “higher
than 2

3”), then we say that A is a one-sided ε-test for P. Otherwise, we say that A has
two-sided error.

1.2 Summary of our results
Table of results

The following is a table summarizing the bounds presented here for ε-testing for being
supported by at most m elements, along with previously known ones provided for reference
(Section 3 contains a sketch on how to derive them). The hidden coefficients in the O(·) and
the Ω(·) notations are global numerical constants. The new results appear in purple.

APPROX/RANDOM 2024

46:4 Support Testing in the Huge Object Model

Model One-sided Error Two-sided Error
Standard model Θ(ε−1m) Ω(ε−1m/ log m) [13]

(Sample complexity) Folklore, see [1] O(ε−2m/ log m) [14]
Huge Object Ω(ε−1m(log ε−1 + log m)) Ω(ε−1 log ε−1)
Non-adaptive O(ε−1m log ε−1 log m) O(ε−3m log ε−1) [14] + [9]
Huge Object Ω(ε−1m log m) Ω(ε−1m/ log m) [13]

Adaptive O(ε−1m log m · min{log ε−1, log m})

The following are some conclusions to be drawn from the bounds given above. We use
Sm to denote the property of being supported by at most m elements.

Adaptive vs. non-adaptive two-sided asymptotic gap

The most surprising result is that non-adaptively testing a distribution for being supported by
at most two elements cannot be done using a number of queries linear in ε−1, even with two-
sided error. This result applies for every m ≥ 2, and the exact bound is Ω(ε−1 log ε−1) (with
the implicit coefficient being independent of m). To the best of our knowledge, combined with
the O(ε−1) adaptive upper bound of [1] (which we improve in this paper), “being supported
by at most two elements” is the first explicit example of a property that is closed under
mapping (and in particular is label-invariant) which has different asymptotic bounds for the
number of queries for adaptive algorithms and non-adaptive ones in the Huge Object model
(see Theorem 26).

A possible explanation for this is that being label-invariant in the Huge Object model is
different from being so in the standard model, because applying a permutation on the labels
may change their distinguishability, and in particular it may change the distance from the
property.

In this paper we provide a thorough investigation of Sm utilizing a variety of methods. In
particular, we show several gaps such as the above mentioned one. However, the behaviour of
the bounded support property in the Huge Object model, especially when considering it as a
problem with two variables (namely the maximal support sized m and the distance parameter
ε) is still not completely understood. We do have tight bounds for the fixed constant m cases
(where only ε is variable) for all algorithm types, and bounds up to logarithmic factors for
the more general cases.

One-sided bounds and a gap from the standard model

We have tight bounds for ε-testing of Sm for every fixed m (and variable ε) for both non-
adaptive algorithms and adaptive ones. These bounds are also tight for every fixed ε (and
variable m). Additionally, our bounds show a gap between the standard model (considering
sample complexity) and the Huge Object model (considering query complexity). Consider
the bounded support property as a sequence of individual properties, where for every m ≥ 2,
the m-th property is Sm. We show that, if we only allow one-sided error tests, there is an
O(log m) gap between the standard model of distribution testing and the Huge Object model.
In the standard model, there exists a one-sided test for Sm at the cost of O(ε−1m) samples.
In the Huge Object model, there is a lower bound of Ω(ε−1m · log m) many queries for every
one-sided ε-test, even if it is adaptive. Note that the gap is between the number of samples
in the standard model and the number of queries in the Huge Object model, which is the
natural measure of complexity in this model.

T. Adar, E. Fischer, and A. Levi 46:5

New tools
A new algorithmic paradigm

For the adaptive one-sided upper bound, we define a standalone algorithmic primitive,
the “fishing expedition” paradigm, that repeatedly executes a subroutine until it reaches a
predefined goal or when it finds out that it is no longer cost-effective (even if it did not reach
the goal). We believe that this primitive will also be useful in future endeavors.

A hybrid probabilistic-extremal analysis

We define a concept of “valid composition”. Loosely speaking, it is an ordered subset of
samples that become closer to each other as the sequence progresses, but are still ε-far from
each other. We use a hybrid probabilistic-extremal argument to show that for an input
distribution that is ε-far from m-support, with high probability, an algorithm with a bounded
number of queries will find a valid composition with at least m + 1-elements.

The hybrid probabilistic-extremal argument works as follows: we define some rank of
valid compositions. If for every individual valid composition with at most m elements,
there is a high probability that it is not maximal (according to the rank), then globally
there is a high probability that none of them is maximal. Hence, with high probability, the
maximally-ranked valid composition within our samples must have at least m + 1 elements.

A new use for an old combinatorial result

For the adaptive one-sided lower bound, we use an old combinatorial result, that a biclique
covering of the m-clique must have at least m log2 m vertices [10, 11], to show that every
witness against m-support is at least m log m bits long, which makes it a lower bound to
the number of queries. To apply a multiplicative factor of ε−1, which is pretty easy for
non-adaptive algorithms, in adaptive algortihms we analyze the effectivity of a decision tree
that incrementally constructs a witness based on the queries.

1.3 Open problems
One-sided non-adaptive bounds

We have an Ω(ε−1m(log ε−1 + log m)) lower bound for one-sided ε-testing of Sm, as well as
an O(ε−1m log ε−1 log m) upper bound for one-sided ε-testing of Sm. We believe that the
upper bound is tight, but we do not have the corresponding lower bound. What is the true
complexity of one-sided ε-testing Sm?

Non-trivial two-sided bounds

Is there a lower bound of ω(m/ log m) queries for two-sided testing of Sm (noting that [13]
only gives Ω(m/ log m)), even for non-adaptive algorithms? We believe that Ω(m) should be
this lower bound, based on the log m gap in the one-sided case (a Θ(m) tight bound in the
standard model, and a Θ(m log m) tight bound in the Huge Object model).

One-sided adaptive bounds

Our results for one-sided adaptive ε-testing of Sm are tight with respect to m, but have a
logarithmic gap with respect to min{ε−1, m}. Closing this gap is an open problem.

APPROX/RANDOM 2024

46:6 Support Testing in the Huge Object Model

The tradeoffs between sample and query complexity

Our bounds apply to the query complexity of the tests. The lower bounds adapted from
previous works on the traditional model clearly apply for the sample complexity here, even
if we allow a higher query complexity. As for our new upper bounds, most of them have
a polylogarithmic average queries per sample ratio. It would be interesting to investigate
whether the sample complexity can be reduced if we allow a much higher (but still sub-linear
in n) number of queries per sample.

2 Preliminaries

2.1 Algorithmic model
As observed by Yao [16], every probabilistic algorithm can be seen as a distribution over a
set of deterministic algorithms. Hence we can analyze probabilistic query-making algorithms
by analyzing the deterministic algorithms they are supported on.

We observe that we can assume that all samples are drawn before the first query is made,
since they are fully independent: the distribution of every sample made does not depend at
all on any calculation or queries that occurred before it was taken, and so we can assume
that it was taken before any calculation was performed. Based on this observation we can
represent our algorithms using a {0, 1}-valued matrix (whose rows are sampled from the
distribution), from which the algorithms are allowed to query.

▶ Definition 9 (Matrix representation of input access). Considering an algorithm with s

samples and q queries, we assume that the samples are all taken at the beginning of the
algorithm and are used to populate a matrix M ∈ {0, 1}s×n. Then, during the run of the
algorithm, each of its queries is represented as a pair (i, j) ∈ {1, . . . , s} × {1, . . . , n}, for
which the answer is Mi,j.

▶ Definition 10 (Adaptive algorithm). Every deterministic algorithm in the Huge Object
model with q queries over s samples is equivalent to a pair (T, A), where T is a decision tree
of height q in which every internal node contains a query (i, j) (where 1 ≤ i ≤ s is the index
of a sample and 1 ≤ j ≤ n is the index to query), and A is the set of accepting leaves.

▶ Definition 11 (Non-adaptive algorithm). A deterministic algorithm (T, A) with q queries
is non-adaptive if, for every 0 ≤ i < q, all internal nodes at the i-th level consist of the
exact same query. Every non-adaptive algorithm can be represented as a pair (Q, A), where
Q ⊆ {1, . . . , s} × {1, . . . , n} is a set of queries and A ⊆ {Q 7→ {0, 1}} is the set of accepted
answer vectors.

2.2 Technical components

Fishing expedition
We define an algorithmic primitive that allows us to repeat an execution of a probabilistic
subroutine until it is no longer effective. Consider for example a “coupon-collector” type
process, but one in which the number of distinct elements is not known to us. The goal is to
collect a preset number of elements, but we also want to stop early if we believe that there
are no more elements to be effectively collected.

Consider a (probabilistic) subroutine A that can either fail or succeed. We denote the
outcome of an execution of A by R. In this discussion the outcome includes both the
explicit output of the execution and its side effects, which may affect the probabilities for

T. Adar, E. Fischer, and A. Levi 46:7

future executions of A. We thus analyze a sequence of executions R1, . . . , RN , where R1 is
performed over the initial state. We define two behaviors of “coupon collection” that such
an A must present.

▶ Definition 12 (Fail stability). Let A be a subroutine that may succeed or fail. Specifically
let R1, . . . , RN be random variables that detail the outputs of the first N executions of A. We
say that A is fail stable with respect to a set G of outcomes indicating success, if for every
2 ≤ i ≤ N and every result sequence (r1, . . . , ri−1) ∈ supp(R1, . . . , Ri−1) for which ri−1 /∈ G:

Pr [Ri ∈ G | R1 = r1, . . . , Ri−2 = ri−2, Ri−1 = ri−1]
= Pr [Ri−1 ∈ G | R1 = r1, . . . , Ri−2 = ri−2]

In other words, a failure does not affect the probability of further executions to succeed.

▶ Definition 13 (Diminishing returns). Let A and R1, . . . , RN be as in Definition 12. We say
that A has diminishing returns with respect to a set G of successful outcomes, if for every
2 ≤ i ≤ N and every result sequence (r1, . . . , ri−1) ∈ supp(R1, . . . , Ri−1):

Pr [Ri ∈ G | R1 = r1, . . . , Ri−2 = ri−2, Ri−1 = ri−1]
≤ Pr [Ri−1 ∈ G | R1 = r1, . . . , Ri−2 = ri−2]

That is, if A has diminishing returns, then a success in a single execution never increases,
but may decrease, the probability of further executions to succeed.

Recall the coupon-collecting example. We expect it to have both fail stability and
diminishing returns (with respect to a common set G of outcomes indicating success). If we
look for a coupon and do not find it in a single try, nothing happens. Further tries will have
the same probability to succeed. On the other hand, if we collect a coupon, then in further
tries, there are less uncollected coupons left and it is slightly harder to find an additional one.

The fishing expedition paradigm seeks to collect a goal of k coupons, but “gives up” if it
believes that the probability to find an additional coupon is less than some parameter p.

The desired algorithm (Algorithm 1) has three parameters: a threshold p, a confidence q

and a goal k ≥ 1. The input is a subroutine A with diminishing returns and fail stability
(with respect to some common set G). Informally, the goal of the algorithm is to have k

successful executions of A, but also to terminate earlier if the probability of A to succeed
becomes lower than p. Since the algorithm has no actual access to the success probability
of A, it should terminate early only if it is confident enough that the success probability of
further executions is too low for them to be effective.

▶ Lemma 14. Consider a black box subroutine A with fail stability (Definition 12) and
diminishing returns (Definition 13) with respect to a common set G of outcomes indicating
success.

For an algorithm that repeatedly executes A, we define the following random variables:
N – the number of executions.
R1, . . . , RN – their outcomes.
X1, . . . , XN – indicators of success (that is, Xi = 1 if and only if Ri ∈ G).
H =

∑N
i=1 Xi – the number of successful executions.

p̂ = Pr[XN+1 = 1|R1, . . . , RN] – the success probability of a possible extra execution of A.

Considering the parameters p > 0 (threshold), q > 0 (confidence), and k ≥ 1 (goal), there
exists an algorithm that repeatedly executes A for which N ≤ p−1(4H +5(log q−1 +log(log k +
1))) + 1 and H ≤ k, such that with probability higher than 1− q, either H = k or p̂ ≤ p (or
both).

APPROX/RANDOM 2024

46:8 Support Testing in the Huge Object Model

Algorithm 1 Fishing expedition.

parameters k ≥ 1 (goal), p > 0 (threshold), q > 0 (confidence).
input A subroutine A with output, given as a black box, where an output outside a set G

means fail.
let tmax ← ⌊log k + 1⌋.
let N1 ← 0.
set H ← 0.
for t from 2 to tmax do

let Nt ←
⌈
p−1 max{2t, 5(log q−1 + log(log k + 1))}

⌉
.

for N from Nt−1 + 1 to Nt do ▷ possibly empty
run A, let RN be its outcome.
let XN be an indicator for success (XN = 1 if RN ∈ G, otherwise XN = 0).
set H ← H + XN .
if H = k then terminate with N . ▷ goal is reached

if H < 1
2 pNt then

terminate with Nt. ▷ continuing is ineffective

The proof of the lemma follows from two claims. The first claim asserts that for tmax =
⌊log k + 1⌋ and for every 2 ≤ t ≤ tmax, after

⌈
p−1 ·max{2t, 5(log q−1 + log(log k + 2))}

⌉
executions of A, the algorithm terminates if the number of successful executions was less than
a 1

2 p-portion of the total number of executions. The second claim shows that the algorithm
reaches one of its goals with probability higher than 1− q, and uses a variant of Chernoff’s
inequality to give an upper bound on the probabilities of bad events.

Contradiction graph
We define here what it means to be a “counter-example” for having support size at most m.

▶ Definition 15 (Contradiction graph). Let x1, . . . , xs ∈ {0, 1}n be a sequence of strings.
Let Q ⊆ {1 . . . , s} × {1, . . . , n} be a set of queries. We define the contradiction graph of
(x1, . . . , xs; Q) as G(V, E) with V = {1, . . . , s}, and for every 1 ≤ i1, i2 ≤ s:

{i1, i2} ∈ E ⇐⇒ ∃1 ≤ j ≤ n : (xi1)j ̸= (xi2)j ∧ ((i1, j), (i2, j) ∈ Q)

Note that the graph is undirected since the definition of the edges is commutative. It is also
clearly without self-loops.

▶ Definition 16 (Witness against m-support). Let P be a distribution that is supported by a
set of more than m elements. We say that (x1, . . . , xs; Q) is a witness against m-support (of
P) if x1, . . . , xs are all drawn from P , and their contradiction graph is not m-colorable.

In the full version, we prove that calling the above a witness is indeed justified, in the
sense that a distribution P has m-support if and only if there is zero probability to draw a
tuple x1, . . . , xs for which one can provide a query set Q that makes it a witness.

▶ Lemma 17. Let x1, . . . , xs ∈ supp(P) be a set of samples and let Q ⊆ {1, . . . , s}×{1, . . . , n}
be a query set. Let Q1, . . . , Qs be the sample-specific query sets, that is, Q =

⋃s
i=1({i} ×Qi),

and let G be the contradiction graph as per Definition 15. If G is not colorable by m

colors, then |{x1, . . . , xs}| > m. And if G is colorable by m colors, then there exists P̂

with |supp(P̂)| ≤ m and a sequence y1, . . . , ys ∈ supp(P̂) such that for every 1 ≤ i ≤ s,
xi|Qi

= yi|Qi
.

T. Adar, E. Fischer, and A. Levi 46:9

▶ Definition 18 (Explicit witness against m-support). Let P be a distribution that is supported
by a set of more than m elements. We say that (x1, . . . , xs, Q) is an explicit witness against
m-support (of P) if x1, . . . , xs are all drawn from P , and their contradiction graph contains
a clique with m + 1 vertices as a subgraph.

Note that an explicit witness is in particular a witness against m-support, but the converse
does not generally hold.

3 Quick bounds from previous results

We recall some known results for the standard model and use them to derive initial bounds
on testing Sm. Due to space limitation, all proofs are deferred to the full version of the
paper.

Observe that, without loss of generality, we can assume that every sample is queried
at least once. Using distributions over sets of of vectors that are mutually 0.499-far, lower
bounds for the standard model can be converted to to the Huge Object model, implying in
particular the following.

▶ Proposition 19 (Proposition 2.8 in [9]). Every two-sided error ε-test for Sm makes at least
Ω(m/ log m) queries (for some fixed ε).

In the Huge Object model, different samples may be indistinguishable, hence standard-
model algorithms cannot be immediately converted to Huge Object model ones. However,
we can use the following reduction.

▶ Lemma 20 (Theorem 2.2 in [9]). Suppose that P is testable with sample complexity s(n, ε)
in the standard model, and that P is closed under mapping (note that bounded support
properties are closed under mapping). Then for every ε > 0 there exists a non-adaptive ε-test
for P in the Huge Object model that uses 3 · s(m, ε) samples and O(ε−1 log(ε−1s(m, ε/2)))
queries per sample.

▶ Proposition 21 (combining [14] and [9]). There exists a two-sided ε-test for Sm whose
query complexity is O(ε−3m log ε−1).

In the above we used [14] rather than the more recent [15], since we needed a statement
that holds for all values of ε (including those smaller than 1/m). Proposition 21 implies that
for every fixed ε and variable m, there exists an O(m) non-adaptive two-sided error ε-test
for Sm. In this context we also note the following known bounds.

▶ Theorem 22 (Corollary 2.3 in [9]). For every ε > 0 and m ≥ 2, there exists a non-
adaptive one-sided ε-testing algorithm for Sm that takes O(ε−1m) samples and makes
O(ε−2m log(m/ε)) queries.

▶ Theorem 23 (Theorem 6.1 in [1]). For every ε > 0 and m ≥ 2, there exists an adaptive
one-sided ε-testing algorithm for Sm that takes O(ε−1m) samples and makes O(ε−1m2)
queries.

This immediately implies an upper bound of O(ε−1m) samples for ε-testing Sm in the
standard model of distribution testing. As can be expected, this is tight. The following
proposition is considered common knowledge, but for the sake of completeness we prove it in
the full version of the paper.

▶ Proposition 24. Every one-sided ε-test for Sm takes at least Ω(ε−1m) samples in the
standard model.

As with Proposition 19, this can be converted to a Huge Object model bound.

APPROX/RANDOM 2024

46:10 Support Testing in the Huge Object Model

▶ Proposition 25. Every one-sided ε-test for Sm in the Huge Object model must make at
least Ω(ε−1m) queries as well.

In this paper we improve this proposition, showing a gap between the standard model and
the Huge Object model for one-sided error tests.

4 Overview of our proofs

In this section we state our main results and give an overview of how to obtain them. The
full proofs apear in the full version.

4.1 Two-sided, non-adaptive lower-bound
▶ Theorem 26. Every non-adaptive ε-test for Sm must make Ω(ε−1 log ε−1) queries, even
if it has two-sided error.

We first describe our lower bound for S2, which holds the main ideas also for Sm. We
begin by analyzing a restricted form of non-adaptive algorithms, which we call rectangle
algorithms. A rectangle algorithm is characterized by the number of samples s and a set I of
indices. Every sample is queried at the indices of I, hence the query complexity is s · |I|. We
say that |I| is the “width” of the rectangle and that the number of samples is its “height”.

Consider the following O(ε−1)-query rectangle algorithm: for some hard-coded parameter
β > 0, it chooses a set I of O(β−1) indices, and then it takes O(βε−1) samples, and queries
every sample on all indices of I.

Now consider the following form of inputs. For some α > 0 and two strings a and b

for which d(0, a), d(0, b), d(a, b) = Θ(α), let P be the following distribution. The string 0 is
picked with probability 1− cα−1ε, the string a with probability c

2 · α
−1ε and the string b

with probability c
2 · α

−1ε, where c > 1 is some global constant.
Intuitively, the algorithm finds a witness against 2-support if there is a query common to

a and b, at an index j that is not always zero (we call such j a non-zero index). That is,
there are two necessary conditions to reject: the algorithm must get both a and b as samples,
and it must query at an index j for which (a)j ̸= (b)j .

The expected number of non-zero samples that the algorithm gets is O(α−1β). If α is
much greater than β, then with high probability the algorithm only gets all-zero samples
and cannot even distinguish the input distribution from the deterministic all-zero one.

If α is much smaller than β, then with high probability all queries are made in “zero
indices” and the algorithm again cannot even distinguish the input distribution from the
deterministic all-zero one. Thus, the algorithm can reject the input with high probability
only if α ≈ β.

Our construction of Dno chooses α = 2k where k is distributed uniformly over its relevant
range, to ensure that a rectangle algorithm (with a fixed β) “misses” α with high probability.
Intuitively, the idea is that a non-adaptive algorithm must accommodate a large portion of
the possible values of α, which would lead to an additional log ε−1 factor. Then, we show that
given an input drawn from Dno, if the algorithm did not distinguish two non-zero elements,
then the distribution of runs looks exactly the same as the distribution of runs of the same
algorithm given an input drawn from Dyes, which is supported over 0 and a single a.

To show that the above distributions defeat any non-adaptive algorithm (not just rectangle
algorithms), we analyze every index 1 ≤ j ≤ n according to the number of samples which are
queried in that index. If few samples are queried, then this index has a high probability of not
hitting two non-zero samples, rendering it useless (we gain an important advantage by noting

T. Adar, E. Fischer, and A. Levi 46:11

that querying j from at least two non-zero samples is required for it to be useful). If many
samples are queried on j then this index may hit many samples, but only few indices can
host many queries, which gives us a high probability of all of them together not containing a
non-zero index among them.

To extend this result to m ≥ 2, for every t ≥ 2 we define a distribution Dt
no over inputs

that are supported by t + 1 elements (one of them being the zero vector), and also ε-far
from being supported by m elements (for every m ≤ t/2 + 1). As before, we define Dyes as
a distribution over inputs supported by 2 elements, which is identical to D1

no, and then we
proceed with the same argument as before.

▶ Definition 27 (Dt
no, Dyes). The distribution Dt

no (over a set of distributions) is obtained by
the following process. Draw α such that log2 α−1 is uniform over {2, . . . ,

⌊
log2 ε−1⌋

−2}. Draw
a set D ⊆ {1, . . . , n} such that for every 1 ≤ j ≤ n, Pr[j ∈ D] = 4α, independently. Then,
for every 1 ≤ k ≤ t, draw a set Ak ⊆ D such that for every j ∈ D, Pr[j ∈ Ak|j ∈ D] = 1

2 ,
independently. The resulting input is defined as the following distribution over {0, 1}n:

P :

0 with probability 1− 2α−1ε

1A1 with probability 2α−1ε/t
...
1At

with probability 2α−1ε/t

The distribution Dyes is identical to D1
no

4.2 One-sided, non-adaptive upper bound
▶ Theorem 28. There exists a one sided ε-testing algorithm for Sm making O(ε−1 log ε−1 ·
m log m) queries.

Let us first consider a “reverse engineering” algorithm: for every ℓ = 20, 21, . . . , 2log ε−1 ,
we query Θ((ε−1/ℓ) · log m) indices that are common to at least ℓ ·m samples. Intuitively,
according to the analysis of the two-sided lower bound, the algorithm should have roughly
Ω(m log m) indices that distinguish pairs of elements, which suffice for a contradiction graph
that contains an m + 1-clique.

This intuition appears to be lacking when it comes to showing the correctness of this
construction for inputs that lack the special form of Dt

no from Definition 27. To be able to
handle distance combinations (instead of just one “α” as above), we use a concept of “valid
compositions”.

▶ Definition 29. A valid composition is an ordered combination of samples (x1, . . . , xk)
and a sequence of non-decreasing scales (a2, . . . , ak), for which the distances are bounded by
d(xi, {x1, . . . , xi−1}) > 2−ai−1 .

Querying according to index sets whose random choice follows the prescribed distances
distinguishes all elements in a composition with high probability. Our goal is to show the
existence of valid compositions of m + 1 elements in order to ensure that we find an explicit
witness, and thus establish the upper bound. In particular, the algorithm (Algorithm 2)
works as follows. It looks for a set A for of size at least m + 1 whose elements are fully
distinguishable using queries.

At first, the algorithm chooses I0 ⊆ I1 ⊆ · · · ⊆ Ilog ε−1 ⊆ {1, . . . , n}, where Ia consists of⌈
2a+2 log(m + 1)

⌉
indices drawn uniformly and independently.

APPROX/RANDOM 2024

46:12 Support Testing in the Huge Object Model

The algorithm takes 1+32ε−1m samples. Except for the first sample, they are partitioned
into 2m “blocks” of at most 16ε−1 samples each. For every 1 ≤ k ≤ 2m and 0 ≤ a ≤ log ε−1,
the algorithm takes a sequence Sa,k of 23−aε−1 new samples, and queries every sample in it
at the indices of Ia.

The algorithm rejects if there exists a distinguishable composition of size m + 1 (which in
particular is also a witness against Sm).

▶ Definition 30. We say that a composition is a distinguishable composition if for every
1 ≤ i1 < i2 ≤ k there exists a query j ∈ Iai1

∩ Iai2
for which (xi1)j ̸= (xi2)j.

Algorithm 2 Non-adaptive construction of a valid composition.

choose indices i1, . . . , i⌈4ε−1 log(m+1)⌉ uniformly and independently, with repetitions.
for 0 ≤ a ≤ log ε−1 do

let Ia = {i1, . . . , i⌈2a+2 log(m+1)⌉}.
take a sample u.
query u at Ilog ε−1 .
for k from 1 to 2m do

for a from 0 to log ε−1 do
take 23−aε−1 new samples, denoting the sequence by Sa,k.
query all samples in Sa,k at Ia.

if there exists a distinguishable composition of size m + 1 then
return reject

else
return accept

However, it is not clear that “long” valid compositions even exist. To show their existence
with high probability whenever the input is ε-far from having support size at most m, we
use an extremal probabilistic argument. For this purpose, for a composition A we define its
rank to be its scale sequence r⃗(A) = (a2, . . . , ak), and refer to the lexicographic order over
ranks (in particular considering a proper prefix of a sequence to be smaller in that order).

We then show that if the input is ε-far from having support size m, then with high
probability no composition with at most m elements has maximal rank. This implies that
the maximally ranked composition cannot have less than m + 1 elements, leading with high
probability to finding an explicit witness against m-support through the queries made to
this composition.

To show the above in the full version, for every K ⊆ {1, . . . , 2m} we define the event that
the blocks indexed by K are exactly those that contain the maximally ranked composition.
We then show that if the length of this composition is at most m, (and the input is ε-far
from the property), then the probability of this event happening is small enough to deploy a
union bound argument against all such events.

4.3 One-sided, adaptive upper bound

▶ Theorem 31. There exists a one-sided ε-testing algorithm for Sm making O(ε−1m log m ·
min{log ε−1, log m}) queries.

T. Adar, E. Fischer, and A. Levi 46:13

We adaptively construct a distinguishing sequence that resembles a valid composition
(see Definition 29), but at some point we decide to “give up” and change phase to another
way of querying that is more efficient under some conditions. Luckily, the condition that
makes us give up implies them. For every distance scale, from Ω(1) to 1

m , we use the “fishing
expedition” paradigm (Lemma 14) using Algorithm 3 as the subroutine A, to extend our
sequence with as many elements as we can until we are certain enough that it is no longer
effective to look for them (or until we find a witness against m-support). This phase is
described in Algorithm 4.

Algorithm 3 Adaptive one-sided ε-test for Sm, a single batch.

parameters ε > 0, A, m ≥ 2, 0 ≤ a ≤ ⌈log m⌉ where |A| ≤ m.
input A distribution P .
choose a set J of

⌈
2a+2 log m

⌉
indices uniformly and independently.

query X at J for every X ∈ A.
take

⌈
22−aε−1 log m

⌉
samples.

query each new sample at J .
if there exists a sample Y for which Y |J ̸= XJ for every X ∈ A then

set A← A ∪ {Y }.
return success with (Y, J).

else
return fail

Algorithm 4 Adaptive one-sided ε-test for Sm, first phase.

parameters ε > 0, m ≥ 2.
input A distribution P , a set A ⊆ supp(P) of distinguishable elements.
for a from 0 to ⌈log m⌉ do

let ka = m + 1− |A|.
run Algorithm 1 (“fishing expedition”) with parameters k = ka, q = 1

4⌈log m+1⌉ , p = 1
3 ,

and A = Algorithm 3 (a single batch).
if |A| ≥ m + 1 then

return reject
Proceed to the second phase with A.

Unfortunately, it is possible that at some point the algorithm is certain enough that it is
no longer effective to look for elements in any of these scales. At this point, we observe that
the contribution of elements with small distance scale to the distance of the input from Sm

is still Ω(ε) (that is, we can safely ignore the “rare large-distance elements”). To make use of
this observation, the algorithm shifts to the second phase, looking for elements with small
distances in a way which does not follow the theme of looking for valid compositions.

In the small distance scale phase we construct and maintain a “decision tree” data
structure over the existing elements, so that for every element that we need to compare to
the existing elements, we can rule out in advance, using only O(m) many queries, all but one
of them. This allows us to save queries, since the smaller distances require the querying of
relatively many indices for a comparison, which would have been very inefficient to perform
for all existing elements. See Algorithm 5 for precise details.

APPROX/RANDOM 2024

46:14 Support Testing in the Huge Object Model

Algorithm 5 Adaptive one-sided ε-test for Sm, a single iteration of the second phase.

input A sample Y ∈ supp(P), A ⊆ supp(P), a decision tree T ; |A| ≥ 1.
invariant T has |A| leaves corresponding to A’s elements.
choose a set J of m indices uniformly, independently, with repetitions.
let X ∈ A for which T (Y) = T (X) (using up to |A| queries to Y to follow T and find X).
query X, Y at J .
if Y |J ̸= X|J then

set A← A ∪ {Y }.
add Y to T (using a distinguishing index j ∈ J to split the leaf of X).

Finally, we combine the above procedure to obtain our desired algorithm:

Algorithm 6 Adaptive one-sided ε-test for Sm.

input A distribution P .
if ε ≥ 1

m2 then
run Algorithm 2 and return its answer.

take the first sample u.
set A← {u}.
run Algorithm 4 (possibly modifying A, possibly rejecting).
construct a decision tree T based on A.
invariant T has |A| leaves corresponding to A’s elements.
for

⌈
48ε−1⌉

times do
draw another sample Y .
run Algorithm 5 with (Y, A, T) (note that A, T may have been modified).
if |A| ≥ m + 1 then

return reject
return accept

4.4 One-sided lower-bounds
▶ Theorem 32. Every one-sided (possibly adaptive) ε-test for Sm must make Ω(ε−1m log ε−1)
queries.

We prove that an algorithm obtains a witness against m-support if and only if the contradiction
graph (Definition 15) is not m-colorable. Hence we look for the lower bound on the number
of queries needed to construct a non-m-colorable contradiction graph.

We observe that, given a query set, every index j describes a biclique contradiction graph
whose classes are “all samples queried at j for which xj = 0” and “all samples queried at j

for which xj = 1”. The contradiction graph is the union of these graphs. Specifically, we
define the notion of capacity.

▶ Definition 33 (Capacity of an edge cover). Let G be a graph over a set V vertices and let
G = (G1, . . . , Gk) be a sequence of graphs over V1, . . . , Vk ⊆ V such that G =

⋃k
i=1 Gi. We

define the capacity of G as cap(G) =
∑k

i=1 |Vk|.

The following observation follows directly from the definition of capacity.

▶ Observation 34. Let P be a distribution over {0, 1}n, x1, . . . , xs ∈ supp(P) be a set of
samples and Q ⊆ {1, . . . , s} × {1, . . . , n} be a query set. Let S1, . . . , Sn be the index-specific
query sets, that is, Q =

⋃n
j=1(Sj × {j}). In other words, for every j, all samples in Sj

T. Adar, E. Fischer, and A. Levi 46:15

are queried at the index j. Let G = (G1, . . . , Gn) be the edge cover of the contradiction
graph (Definition 15) implied by (x1, . . . , xs; Q): for every 1 ≤ j ≤ n, Gj is the complete
bipartite graph whose vertices are Sj and the sides are Lj = {i ∈ Sj |(xi)j = 0} and
Rj = {i ∈ Sj |(xi)j = 1}. In this setting, cap(G) = |Q|.

The following lemma is crucial for our one-sided testing lower bounds.

▶ Lemma 35 ([10, 11, 2]). Let V be a set of vertices, and let G = (G1, . . . , Gk) be an edge cover
of the V -clique such that all graphs G1, . . . , Gk are bipartite. Then cap(G) ≥ |V | log2 |V |.

It can be extended to any non-m-colorable graph, which is what we need.

▶ Lemma 36. Let G be a graph over a set V of vertices that is not m-colorable, and let
G = (G1, . . . , Gk) be an edge cover of G such that all graphs G1, . . . , Gk are bipartite. Then
cap(G) ≥ (m + 1) log2(m + 1).

Then we extend our analysis in two ways, one of which applies to non-adaptive algorithms
(giving a log ε−1 factor) and the other also applies to adaptive ones (giving a log m factor).

For non-adaptive algorithms, we extend the analysis of the two-sided bound to show
that a one-sided algorithm for Sm requires Ω(ε−1m log ε−1) many queries. The following
shows the hardness of “gathering a witness against Sm”, which allows for a more versatile
argument as compared to the indistinguishability argument that we use for the lower bound
of Theorem 26.

We use Dt
no (Definition 27) using t = 4m/3. For a non-adaptive algorithm that makes

less than O(ε−1m log ε−1) queries, the probability that it distinguishes two specific non-zero
elements is 1

16 . Considering the contradiction graph, excluding the vertex corresponding to
the zero vector, we show that the expected number of edges is at most 1

16
(

t
2
)
. By Markov’s

inequality, with probability higher than 2
3 , there are less than

(3t/4−1
2

)
=

(
m−1

2
)

edges,
meaning that this subgraph is colorable using m − 1 colors. Combined with the vertex
corresponding to the zero vector, the contradiction graph is colorable by m colors, hence it
cannot be a witness against being supported on only m-support.

For the other bounds we use Lemma 36. To show a lower bound against non-adaptive
algorithms, we construct a distribution in which a single, “anchor” element is drawn with prob-
ability 1−Θ(ε). This way, for every non-adaptive algorithm that makes only o(ε−1m log m)
many queries, the expected number of queries applied to other elements is o(m log m).
By Markov’s inequality, with probability 2

3 , only o(m log m) queries are made in non-zero
elements, and in this case, there cannot be a witness against m− 1 other elements.

This construction cannot be immediately applied to adaptive algorithms, since they can
use adaptivity to avoid wasting queries on the anchor element. To overcome this issue, we
use two additional methods. The first one is using very short strings, that is, we focus on
distributions over {0, 1}O(log m) that are ε-far from having m elements in their support (later
we prove that the bound also holds for arbitrarily large n using a simple repetition technique).
The second method involves using shared-secret code ensembles [5] that guarantee, in an
appropriate setting, that if the algorithm makes less than O(log m) queries in an individual
sample, then it gathers no information at all. This way, for every individual sample, the
algorithm either behaves similarly to a non-adaptive algorithm or makes at least a fixed
portion of the maximum number of queries. The exact argument requires a careful analysis
of the decision tree of the algorithm.

APPROX/RANDOM 2024

46:16 Support Testing in the Huge Object Model

References
1 Tomer Adar and Eldar Fischer. Refining the adaptivity notion in the huge object model. In

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM 2024, August 28-30, 2024, London, United Kingdom, volume 317. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2024.

2 Noga Alon. On bipartite coverings of graphs and multigraphs. arXiv preprint, 2023. arXiv:
2307.16784.

3 Tugkan Batu, Eldar Fischer, Lance Fortnow, Ravi Kumar, Ronitt Rubinfeld, and Patrick
White. Testing random variables for independence and identity. In Proceedings 42nd IEEE
Symposium on Foundations of Computer Science, pages 442–451. IEEE, 2001.

4 Tugkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren D Smith, and Patrick White. Testing
that distributions are close. In Proceedings 41st Annual Symposium on Foundations of
Computer Science, pages 259–269. IEEE, 2000.

5 Omri Ben-Eliezer, Eldar Fischer, Amit Levi, and Ron D Rothblum. Hard properties with
(very) short pcpps and their applications. In 11th Innovations in Theoretical Computer Science
Conference (ITCS 2020), 2020.

6 Oded Goldreich. Introduction to property testing. Cambridge University Press, 2017.
7 Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to

learning and approximation. Journal of the ACM, 45(4):653–750, 1998.
8 Oded Goldreich and Dana Ron. On testing expansion in bounded-degree graphs. Studies

in Complexity and Cryptography. Miscellanea on the Interplay between Randomness and
Computation, pages 68–75, 2011.

9 Oded Goldreich and Dana Ron. Testing distributions of huge objects. TheoretiCS, 2, 2023.
10 Georges Hansel. Nombre minimal de contacts de fermeture nécessaires pour réaliser unefonc-

tion booléenne symétrique de n variables. COMPTES RENDUS HEBDOMADAIRES DES
SEANCES DE L ACADEMIE DES SCIENCES, 258(25):6037, 1964.

11 Gyula Katona and Endre Szemerédi. On a problem of graph theory. Studia Scientiarum
Mathematicarum Hungarica, 2:2328, 1967.

12 Ronitt Rubinfeld and Madhu Sudan. Robust characterization of polynomials with applications
to program testing. SIAM Journal on Computing, 25(2):252–271, 1996.

13 Gregory Valiant and Paul Valiant. Estimating the unseen: an n/log (n)-sample estimator for
entropy and support size, shown optimal via new clts. In Proceedings of the forty-third annual
ACM symposium on Theory of computing, pages 685–694, 2011.

14 Gregory Valiant and Paul Valiant. Estimating the unseen: improved estimators for entropy
and other properties. Journal of the ACM (JACM), 64(6):1–41, 2017.

15 Yihong Wu and Pengkun Yang. Chebyshev polynomials, moment matching, and optimal
estimation of the unseen. The Annals of Statistics, 47(2):857–883, 2019.

16 Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified measure of complexity.
In Proceedings of the 18th Annual Symposium on Foundations of Computer Science, pages
222–227, 1977.

https://arxiv.org/abs/2307.16784
https://arxiv.org/abs/2307.16784

Upper Bounds on the 2-Colorability Threshold of
Random d-Regular k-Uniform Hypergraphs for
k ≥ 3
Evan Chang #

Massachusetts Institute of Technology, USA

Neel Kolhe #

University of California, Berkeley, USA

Youngtak Sohn # Ñ

Department of Mathematics, Massachusetts Institute of Technology, USA

Abstract
For a large class of random constraint satisfaction problems (csp), deep but non-rigorous theory
from statistical physics predict the location of the sharp satisfiability transition. The works of Ding,
Sly, Sun (2014, 2016) and Coja-Oghlan, Panagiotou (2014) established the satisfiability threshold
for random regular k-nae-sat, random k-sat, and random regular k-sat for large enough k ≥ k0

where k0 is a large non-explicit constant. Establishing the same for small values of k ≥ 3 remains an
important open problem in the study of random csps.

In this work, we study two closely related models of random csps, namely the 2-coloring on
random d-regular k-uniform hypergraphs and the random d-regular k-nae-sat model. For every
k ≥ 3, we prove that there is an explicit d⋆(k) which gives a satisfiability upper bound for both of
the models. Our upper bound d⋆(k) for k ≥ 3 matches the prediction from statistical physics for the
hypergraph 2-coloring by Dall’Asta, Ramezanpour, Zecchina (2008), thus conjectured to be sharp.
Moreover, d⋆(k) coincides with the satisfiability threshold of random regular k-nae-sat for large
enough k ≥ k0 by Ding, Sly, Sun (2014).

2012 ACM Subject Classification Theory of computation → Randomness, geometry and discrete
structures; Mathematics of computing → Random graphs

Keywords and phrases Random constraint satisfaction problem, replica symmetry breaking, inter-
polation bound

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.47

Category RANDOM

Related Version Full Version: https://arxiv.org/abs/2308.02075 [14]

Funding Youngtak Sohn: Supported by Simons-NSF Collaboration on Deep Learning NSF DMS-
2031883 and Elchanan Mossel’s Vannevar Bush Faculty Fellowship award ONR-N00014-20-1-2826.

Acknowledgements We thank the MIT PRIMES program and its organizers Pavel Etingof, Slava
Gerovitch, and Tanya Khovanova for making this possible. Y.S. thanks Elchanan Mossel, Allan Sly,
and Nike Sun for encouraging feedbacks.

1 Introduction

In this work, we study the 2-coloring on random d-regular k-uniform hypergraphs and
the random d-regular k-nae-sat model for k ≥ 3. We establish an explicit well-defined
upper bound on the satisfiability/colorability threshold that holds for every k ≥ 3, which is
conjectured to be sharp in statistical physics [25] for hypergraph 2-coloring, and matches the
previous rigorous results for random regular k-nae-sat model for k large enough [28].

© Evan Chang, Neel Kolhe, and Youngtak Sohn;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 47; pp. 47:1–47:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:evchang@mit.edu
mailto:neelkolhe@berkeley.edu
mailto:youngtak@mit.edu
https://www.mit.edu/~youngtak/
https://orcid.org/0009-0009-0038-1417
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.47
https://arxiv.org/abs/2308.02075
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

47:2 Upper Bounds on the Colorability Threshold for Random Regular Graph

Given a k-uniform hypergraph with n nodes and m hyperedges, where every edge consists
of k nodes, a hypergraph 2-coloring is an assignment of colors from {red, blue} ≡ {0, 1} to
the nodes such that there is no monochromatic hyperedge. If there is such a 2-coloring,
the hypergraph is said to be colorable or satisfiable. It is a typical example of a constraint
satisfaction problem (csp) that has been studied extensively in combinatorics and computer
science literature [54, 7, 2, 24, 34, 38, 39].

A k-nae-sat problem is another closely related csp studied in computer science [19, 28,
57, 50, 56], which can be viewed as a variant of the infamous k-sat problem [41]. A k-sat
formula is a boolean cnf formula with n variables formed by taking the and of m clauses,
which is the or of k variables or their negations. Then, a nae-sat solution x ∈ {0, 1}n is an
assignment such that x and its negation ¬x evaluates true in the formula. Thus, denoting
each clause as a hyperedge, if no variable is negated in every clause, then a nae-sat solution
is equivalent to a hypergraph 2-coloring.

A significant direction of research on satisfiability has involved examining the large-system
limit of randomly generated problem instances. The study of random constraint satisfaction
problems (csps) aims to discern typical behaviors and phase transitions in these systems as
the number of variables n and the number of constraints m tends to infinity with a fixed
ratio α ≡ m

n . In this sparse regime, there has been considerable effort into identifying the
satisfiability transition, or the critical density, denoted by αsat, beyond which solutions cease
to exist [6, 5, 3, 23].

Many of the sparse csps belong to a broad universality class called the one-step-replica-
symmetry-breaking (1rsb) class from statistical physics [43] (see Chapter 19 of [47] for a
survey) - including 2-coloring on random regular k-uniform hypergraphs, random regular
k-nae-sat, and random k-sat for k ≥ 3. The 1rsb class refers to csps which are predicted
to possess a single layer of hierarchy of well-separated clusters, where a cluster roughly refers
to a dense region of the solution space. A shared characteristic of these problems is that in a
non-trivial regime below αsat ≡ αsat(k), the number of solutions fails to concentrate about
its mean due to the clustering effect. This effect thus prevents standard first and second
moment methods from locating the exact transition, presenting a significant mathematical
challenge.

Despite such difficulties, breakthroughs were made to successfully locate the satisfiability
threshold of the random regular k-nae-sat [31], the random k-SAT [32], and random regular
k-SAT [21] for large enough k ≥ k0, where k0 is a non-explicit large absolute constant. These
works carried out a demanding second moment method to the number of clusters instead
of the number of solutions based on intuitions from statistical physics [46] and previous
mathematical works [6, 20, 21]. See Section 1.1 for further literature.

However, for small values of k ≥ 3, locating the satisfiability threshold for csps in the
1rsb class remains an important open problem. Indeed, for all the aforementioned models in
1rsb class, the physicists conjecture an explicit value α⋆(k) for αsat(k), the 1rsb threshold,
which is expected to be correct for all k ≥ 3 [45, 46, 25]. The methods of [31, 32, 21] crucially
uses the fact that k is large enough for their second moment method to succeed.

In this work, we consider 2-coloring on random d-regular k-uniform hypergraphs, where the
random hypergraph is generated uniformly at random from the set of k-uniform hypergraphs
such that every variable participates in exactly d hyperedges. We also consider random
d-regular nae-sat, where k-sat formula is generated uniformly at random with the condition
that every variable participates in exactly d clauses. We establish an upper bound d⋆(k)
on the satisfiability thresholds for these problems for every k ≥ 3, which is sharp [28] for
random regular k-nae-sat for large k ≥ k0 and conjectured to be sharp [25] for k ≥ 3 for
hypergraph 2-coloring.

E. Chang, N. Kolhe, and Y. Sohn 47:3

▶ Theorem 1.1. For k ≥ 3 and dlbd(k) ≤ d ≤ dubd(k), where dlbd(k), dubd(k) are defined in
(1.4) below, there exists a unique solution x⋆ ≡ x⋆(k, d) to the equation

d = 1 +
(

log 1 − 2x
1 − x

)
/ log

(
1 − 2xk−1

1 − xk−1

)
on the interval 1

2 − 1
2k ≤ x ≤ 1

2 . (1.1)

Define d⋆(k) by the largest zero of the explicit function

⋆Φ(d) := − log(1 − x) − d(1 − k−1 − d−1) log(1 − 2xk) + (d− 1) log(1 − xk−1) , (1.2)

where the existence of the root of ⋆Φ(d) is guaranteed in the interval [dlbd(k), dubd(k)].
Then, for k ≥ 3, and d > d⋆(k), the random d-regular k-uniform hypergraph is not

2-colorable with probability tending to one as the graph size n → ∞. Similarly for k ≥ 3 and
d > d⋆(k), then the random d-regular k-nae-sat instance is not satisfiable with probability
tending to one as n → ∞.

A matching lower bound was obtained in [28] for large enough k ≥ k0 in random d-regular
nae-sat by a demanding second moment method. Our proof is based on an interpolation
method from statistical physics [35, 37, 52]. We give a proof outline in Section 1.2.

We emphasize that for any k ≥ 3, determining the colorability threshold for 2-coloring
on random d-regular k-uniform hypergraphs was previously open, thus Theorem 1.1 for
2-coloring is novel even for large k. Although it is expected that the colorability threshold
for the model matches the satisfiability threshold for random regular k-nae-sat, it is highly
non-trivial to modify the proof techniques for random regular nae-sat [31] to the 2-coloring
model since many of the arguments in [31] crucially take advantage of the randomness of
clauses. For example, any x ∈ {0, 1}n has the same probability of being a nae-sat solution
by the randomness of the clauses while this is obviously not true for the 2-coloring model.
As we see below, even the calculation of the first moment of the solutions is substantially
more involved for the 2-coloring model. Let Znae be the number of solutions of random
d-regular k-nae-sat, then it is trivial to calculate EZnae exactly by taking advantage of the
randomness of the clauses:

EZnae = 2n(1 − 2−k+1)m = exp
(
n
(

log 2 + α log
(
1 − 2−k+1))) =: exp

(
nΦk(α)

)
. (1.3)

On the other hand, if we denote Zcol by the number of 2-colorings on random d-regular k-
uniform graphs, then estimating EZcol is more delicate: we appeal to the idea of exponential
tilting from large deviations theory [26] and local central limit theorem [13] to prove that
EZcol is of the same order as exp

(
nΦk(α)

)
in Lemma 1.7 below. Using the interpolation

bound which is simpler than moment calculations, we clarify a simple mechanism (cf. Lemma
2.2) behind the identical satisfiability upper bounds for both models.

The solution x⋆(k, d) to the equation (1.1) has a mathematical interpretation. Namely,
2x⋆(k, d) is the fraction of the so-called frozen variables in the cluster model. The solution
x⋆(k, d) is called the Belief Propagation (bp) fixed point for the cluster model in statistical
physics. We emphasize that addressing the uniqueness of the bp fixed point is a well-known
major obstacle for many combinatorial optimization and statistical inference problems that
exhibit sharp phase transitions (e.g. for spherical perceptron model [55]; see [59, Chapter 3]
for a further discussion). We establish the uniqueness of the bp fixed point by showing that
the Belief Propagation recursion (cf. (1.12)) is a contraction for k ≥ 3 and [dlbd(k), dubd(k)],
which might be also useful in obtaining a matching lower bound to Theorem 1.1.

APPROX/RANDOM 2024

47:4 Upper Bounds on the Colorability Threshold for Random Regular Graph

Table 1 A comparison with the upper bound d⋆(k) in Theorem 1.1 with the first moment
threshold d1(k) := k log 2

− log(1−2−k+1) for small values of k. For 3 ≤ k ≤ 10, the values also appear in
Table 1 of [25].

k 3 4 5 6 7 8 9 10 11 12 13 14 15
⌈d⋆(k)⌉ 7 20 53 130 307 705 1592 3543 7802 17028 36902 79488 170340
⌈d1(k)⌉ 8 21 54 131 309 708 1594 3546 7804 17031 36905 79491 170343

Since EZnae and EZcol are given by exp
(
nΦk(α)

)
up to a constant (cf. (1.3) and Lemma

1.7), the first moment thresholds for both of the models are given by d1(k) := k log 2
− log(1−2−k+1) .

In Table 1, we report ⌈d⋆(k)⌉ and ⌈d1(k)⌉ for 3 ≤ k ≤ 15. For every 3 ≤ k ≤ 15, the upper
bound ⌈d⋆(k)⌉ in Theorem 1.1 improves over the first moment threshold. For large values of
k, d⋆(k) improves over d1(k) by Ω(k) (see (1.5) below). The quantities dlbd(k), and dubd(k)
are defined by

dlbd(k) =

6.74 k = 3 ,
16.7 k = 4 ,
(2k−1 − 2)k log 2 k ≥ 5 .

dubd(k) =
{

7.5 k = 3 ,
2k−1k log 2 k ≥ 4 .

(1.4)

▶ Remark 1.1. For d ≤ dlbd(k) and large k ≥ k0, the second moment method applied to Znae
succeeds in showing the satisfiability for the random d-regular k-nae-sat model (see [28,
Section 2.1]). For k ∈ {3, 4}, dlbd(k) must be adjusted to be higher to guarantee that ⋆Φ(d)
is well-defined, i.e. there exists a unique solution to (1.1). The value dubd(k) ≡ 2k−1k log 2 >
d1(k) for k ≥ 4 is a convenient upper bound for satisfiability. For k = 3, we take dubd(3)
to be 7.5 > 3 log 2

− log(3/4) = d1(3), which does not change d⋆(3), but is more convenient for the
proof.

Finally, we note that the large k asymptotics of d⋆(k) was proven in [58, Appendix B]:

α⋆(k) ≡ d⋆(k)
k

=
(

2k−1 − 1
2 − 1

4 log 2

)
log 2 + ok(1) , (1.5)

where ok(1) denotes an error tending to zero as k → ∞. Since d1(k) = (2k−1 − 1/2)k log 2 +
ok(1), we have that d⋆(k) ≤ d1(k) − Ω(k).

1.1 Related work
Many of the earlier mathematical works on csps focused on determining their satisfiability
thresholds and verifying the sharpness of sat-unsat transitions. For models that are known
not to exhibit rsb, such goals were established. These models include random 2-sat [15, 12],
random 1-in-k-sat [1], k-xor-sat [33, 27, 53], and random linear equations [8]. On the other
hand, for the models which are predicted to belong to 1rsb class, intensive studies have been
conducted to estimate their satisfiability threshold, as shown in [42, 6, 21] (random k-sat),
[3, 24, 19] (random k-nae-sat), and [4, 16, 23, 17] (random graph coloring).

More recently, the satisfiability thresholds for rcsps that exhibits rsb have been rigor-
ously determined for several models, namely the random regular k-nae-sat [31], maximum
independent set on d-regular graphs [30], random regular k-sat [21] and random k-sat [32]
for large k and d. Although determining the location of q-colorability threshold for the
sparse Erdős Rényi graph is left open, the condensation threshold αcond for random graph
coloring, where the free energy becomes non-analytic, was settled in [11]. They carried out a

E. Chang, N. Kolhe, and Y. Sohn 47:5

technically challenging analysis based on a clever “planting” technique, where the results
were further generalized to other models in [18]. Similarly, [10] identified the condensation
threshold for random regular k-sat, where each variable appears d/2-times positive and
d/2-times negative. Further, in the condensation regime α ∈ (αcond, αsat), many quantities
of interest were established for random regular k-nae-sat with large enough k, matching
the statistical physics prediction. Namely, the number of solutions at exponential scale (free
energy) [58], the concentration of the overlap [49, 51], and the local weak limit [56] were
established. Establishing the same quantities for other models in the condensation regime is
still open.

The closest result to ours in the literature is by Ayre, Coja-Oghlan, and Greenhill [9],
where they lower bound the chromatic number (or equivalently, upper bound the colorability
threshold) of the random regular graph of any degree, which is conjectured to be tight. [9]
also considers the sparse Erdős-Rényi graph, which is more complicated since the conjectured
chromatic number is defined in terms of a distributional (rather than real-valued) optimization
due to the randomness of the local neighborhoods. In this work, we do not consider Erdős-
Rényi type problems, but we additionally address the question of the uniqueness of the
bp fixed point for any k ≥ 3 (unique solution to the equation (1.1)). As in [9], we use an
interpolation bound, which gives an upper bound of the satisfiability threshold also for the
(non-regular) random k-nae-sat model. It would be interesting to address the uniqueness of
the bp fixed point for random k-nae-sat and random k-sat for small k ≥ 3. We refer to
[55, 48, 60, 36] which addresses the uniqueness of bp fixed point for various models.

1.2 Proof methods
We aim to rigorously establish the upper bound for the satisfiability threshold predicted
by the so-called “1rsb cavity method” from statistical physics [25]. To do so, instead of
using moment methods, we use a theorem derived from the so called “interpolation method”
from the theory of spin glasses developed by [35, 37, 52]. The interpolation method has been
successful in upperbounding the satisfiability threshold for random k-sat [29] for large k,
the free energy for random regular k-nae-sat [57], and the colorability threshold for random
graphs [9].

We first introduce the notations and mathematical framework that we use throughout
the paper. For both the d-regular k-uniform hypergraphs and the k-nae-sat formula, we
can represent them as (labelled) (d, k)-regular bipartite graph. Let V = {v1, . . . , vn} be the
set of variables or nodes and F = {a1, . . . , am} be the set of clauses or hyperedges. An edge
is formed if the variable or node vi is included in the clause or hyperedge aj . For an edge e,
we denote v(e) (resp. a(e)) by the variable (resp. clause) adjacent to it.

Denote G = (V, F,E) by the resulting bipartite graph. Each variable v ∈ V has incident
half-edges δv, while each clause a ∈ F has incident half-edges δa. Throughout, we denote
α ≡ m

n = d
k . For the nae-sat formula, there is an extra label for each edge e ∈ E, namely

the literal Le ∈ {0, 1}, which specifies how the variable v(e) participates in the clause a(e).
Then, the labelled graph G = (V, F,E, L) ≡ (V, F,E, (Le)e∈E) represents a nae-sat instance.

▶ Definition 1.2. Given a nae-sat instance G = (V, F,E, L), x ∈ {0, 1}V is a (nae-sat)
solution if∏

a∈F
φ((xv(e) ⊕ Le)e∈δa) = 1 ,

where for z = (zi)i≤k ∈ {0, 1}k, φ(z) ≡ 1(z1 = . . . = zk), and ⊕ denotes addition mod 2.
Given a graph G = (V, F,E), x ∈ {0, 1}V is a (hypergraph 2-) coloring if x is a nae-sat
solution on G with literals identically zero (G, 0).

APPROX/RANDOM 2024

47:6 Upper Bounds on the Colorability Threshold for Random Regular Graph

The configuration model can be described as follows. Add d (resp. k) half-edges adjacent
to each variable (resp. each clause) so that there are total nd = mk number of half-edges
adjacent to variables (resp. clauses). Thus, E can be regarded as a perfect matching between
to the set of half-edges adjacent to variables to those adjacent to clauses, and hence a
permutation in Snd. Then, the configuration model G = (V, F,E) is defined by taking
E ∼ Unif(Snd). For a random d-regular k-nae-sat instance G = (G,L), we take the literals
L ≡ (Le)e∈E

i.i.d.∼ Unif({0, 1}).
Note that the configuration model G may induce multi-edges. However, if we denote

S to be the event that G is simple, then it is well-known that P(G ∈ S) = Ω(1) (see e.g.
Chapter 9 of [40]). Thus, the configuration model is mutually contiguous with respect to the
uniform distribution among all (d, k)-regular graphs, so to prove Theorem 1.1, it suffices to
work with the configuration model.

In order to use the interpolation method, we consider the positive temperature analogs
of the 2-coloring or the nae-sat model, which have more desirable properties due to the
softness of the constraints - e.g. the concentration of the free energy as seen in Lemma 1.3
below. We introduce notations that allow us to set up the positive temperature models. Let
S be a finite set and b ≡ (bs)s∈S be a vector with bs ≥ 0. Also, let X be a finite set encoding
the spins and denote F(X) by the set of functions X → R≥0. Let f : S → F(X) be a random
function which may be chosen randomly according to any distribution, i.e. f(·; s) ∈ F(X)
is random for s ∈ S, and f1, . . . , fk be i.i.d. copies of f . Then, define the random function
θ : X k → R as follows. For x = (x1, . . . , xk) ∈ X k, let

θ(x) =
∑
s∈S

bs

k∏
i=1

fi(xi; s) . (1.6)

We will consider S = X = {0, 1} in Definition 1.4 below, but one may also consider the
case S ≠ X in general. We assume that there exists a constant ε ∈ (0, 1) such that for any
x ∈ X k,

ε ≤ 1 − θ(x) ≤ ε−1 almost surely. (1.7)

On a (d, k)-regular bipartite graph G = (V, F,E), let (θa)a∈F be i.i.d. copies of the random
function θ, and define the (random) Gibbs measure on X V by

µG(x) ≡ 1
Z(G)

∏
a∈F

(
1 − θa(xδa)

)
,

where Z(G) is the normalizing constant explicitly given by

Z(G) ≡
∑
x∈X V

∏
a∈F

(
1 − θa(xδa)

)
. (1.8)

We note that the condition (1.7) on θ guarantees that the Gibbs measure µG is “finite
temperature”. In particular, if we define the free energy

Fn ≡ 1
n
E logZ(G) , (1.9)

where G is drawn from the configuration model and E above is over the randomness of G

and randomness of (θa)a∈F , we have the following concentration of the free energy.

E. Chang, N. Kolhe, and Y. Sohn 47:7

▶ Lemma 1.3. Assume that θ satisfies (1.7) with some constant ε ∈ (0, 1). Then, for any
δ > 0, there exists a constant which only depends on ε, δ > 0 such that

P
(∣∣∣∣ 1n logZ(G) − Fn

∣∣∣∣ ≥ δ

)
≤ e−cn .

The concentration of free energy in Lemma 1.3 is standard in literature [11, 22, 9], and we
provide the proof in Section 2 for completeness.

▶ Definition 1.4. (Positive temperature models) For β > 0, called the inverse temperature,
the positive temperature nae-sat model θnae(·) ≡ θnae(· ; β) is defined as follows. Let
L ≡ (Li)i≤k

i.i.d.∼ Unif({0, 1}) be a sequence of i.i.d. Bernoulli(1/2) random variables. Then
for x = (xi)i≤k ∈ {0, 1}k, define

θnae(x) ≡ θnae(x;β) ≡ (1 − e−β) ·

(
k∏
i=1

(Li ⊕ xi) +
k∏
i=1

(Li ⊕ xi ⊕ 1)
)
. (1.10)

That is, in the general form (1.6), we take S = X = {0, 1}, bi ≡ 1 − e−β , and f(x; 0) ≡
1 − f(x; 1) ≡ 1(x⊕ L) for L ∼ Unif({0, 1}). Moreover, the positive temperature hypergraph
2-coloring model θcol(·) ≡ θcol(· ; β) is defined by taking Li ≡ 0 above:

θcol(x) ≡ θcol(x;β) ≡ (1 − e−β) ·
∑

s∈{0,1}

k∏
i=1

1(xi = s) , (1.11)

which is taking f(x; s) = 1(x = s) in (1.6).

We note that formally taking β = ∞ and θ = θcol(x;β), the corresponding partition function
Z(G) equals the number of 2-coloring on G. A similar statement holds for the nae-sat
model.

By constructing a certain sequential coupling of the given factor graph (G, (θ)a∈F) to a set
of disjoint trees so that the free energy is monotone at every step, the interpolation method
[35, 37, 52] gives an upper bound on the free energy Fn as follows: for ζ ∈ P

(
P(P(X))

)
,

where P(A) denotes the set of probability measures on A, and λ ∈ (0, 1), there exists an
explicit functional P(ζ, λ) ≡ Pd,k,θ(ζ, λ) such that we have Fn ≤ infζ,λ P(ζ, λ) + on(1). By
taking advantage of the interpolation method applied to positive temperature models in
Definition 1.4 and the concentration of the free energy in Lemma 1.3, we prove the proposition
below in Section 2.

▶ Proposition 1.5. For a given k ≥ 3 and d, suppose that there is a solution x ∈ [1/2 −
1/2k, 1/2] to the bp equation (1.1). Further, suppose that ⋆Φ(d) in (1.2) defined with such x
satisfies ⋆Φ(d) < 0. Then, with probability tending to one, no nae-sat solution exists on G.
Also, with probability tending to one, no 2-coloring exists on G.

Moreover, we show that d⋆(k) in Theorem 1.1 is well-defined and that the assumptions of
Proposition 1.5 are meaningful. Note that the bp equation (1.1) is equivalent to Ψd(x) = x,
where Ψd ≡ Ψk,d : [0, 1] → [0, 1] is defined by Ψd ≡ Ψ̇ ◦ Ψ̂ with

Ψ̇(x) ≡ Ψ̇d(x) ≡ 1 − xd−1

2 − xd−1 , Ψ̂(x) ≡ Ψ̂k(x) ≡ 1 − 2xk−1

1 − xk−1 . (1.12)

The function Ψ̇(·) is variable bp recursion and Ψ̂(·) is clause bp recursion (see [31, Section
3.1] for the motivation).

APPROX/RANDOM 2024

47:8 Upper Bounds on the Colorability Threshold for Random Regular Graph

▶ Proposition 1.6. For k ≥ 3 and d ∈ [dlbd(k), dubd(k)], there exists a unique root to
Ψd(x) ≡ (Ψ̇ ◦ Ψ̂)(x) = x in the interval x ∈ [1/2 − 1/2k, 1/2]. Thus, ⋆Φ(d) in equation (1.2)
is well-defined. Furthermore, d → ⋆Φ(d) is continuous in the interval d ∈ [dlbd(k), dubd(k)]
with ⋆Φ(dlbd(k)) > 0 and ⋆Φ(dubd(k)) < 0.

The proof of Proposition 1.6 is given in Section 3 for k ≥ 4. We refer to the full version [14]
for the proof of Proposition 1.6 for k = 3, which requires extra numerical estimates. Finally,
we show that the first moment EZcol of the number of 2-colorings on random d-regular
k-uniform hypergraphs is the same with EZnae up to a constant.

▶ Lemma 1.7. For k ≥ 3, there exist constants Ck,d,i for i = 1, 2,, which only depends on
k, d such that EZcol/EZnae ∈ [Ck,d,1, Ck,d,2]

Proof of Theorem 1.1. By Proposition 1.6, the function ⋆Φ(d) is well-defined and has a
root in the interval [dlbd(k), dubd(k)]. Moreover, since ⋆Φ(dubd(k)) < 0 holds and ⋆Φ(·)
is continuous, we have ⋆Φ(d) < 0 for d ∈ (d⋆(k), dubd(k)]. Hence, Proposition 1.5 shows
that if d ∈ (d⋆(k), dubd(k)], then the 2-coloring of random d-regular k-uniform hypergraph
and random d-regular k-nae-sat is not satisfiable, both with probability tending to one as
n → ∞. Further, since EZcol ≍k,d EZnae = exp

(
n
(

log 2+α log
(
1−2−k+1))) by Lemma 1.7

and log 2 + α log
(
1 − 2−k+1) < 0 holds for d > dubd(k), the same is true for d > dubd(k) by

Markov’s inequality. ◀

2 Satisfiability upper bound by interpolation

In this section, we prove Lemma 1.3, Proposition 1.5, and Lemma 1.7. We prove Proposition
1.5 in Section 2.1 based on the interpolation bound from statistical physics [35, 37]. In
Section 2.2, we prove Lemma 1.3 based on Azuma Hoeffding’s inequality applied to the Doob
martingale with respect to clause revealing filtration. In Section 2.3, we prove Lemma 1.7
based on the local central limit theorem.

2.1 Proof of Proposition 1.5
Throughout, we assume that we are given k ≥ 3 and d such that there is a solution
x ∈ [1/2 − 1/2k, 1/2] to the equation (1.1). We use the following one-step-replica-symmetry-
breaking bound proven in [58, Theorem E.3] for random regular graphs (see also [44]), which
is the analog of [52, Theorem 3] for Erdős-Rényi graphs.

▶ Theorem 2.1 (Theorem E.3 in [58]). Let X and S be finite sets and consider the partition
function Z(G) (cf. Eq. (1.8)), where θ in (1.6) satisfies the condition (1.7) for some ε > 0
and bs ≥ 0 holds for s ∈ S. Let M0 ≡ P(X) be the space of probability measures over X ,
M1 ≡ P(M0) be the space of probability measures over M0, and M2 ≡ P(M1) be the
space of probability measures over M1. For ζ ∈ M2, let η = (ηa,j)a≥0,j≥0 be an array of
i.i.d. samples from ζ. For each index (a, j) let ρa,j ∈ P(X) be a conditionally independent
sample from ηa,j, and denote ρ = (ρa,j)a≥0,j≥0. For x ∈ X define random variables

ua(x) ≡
∑
x∈X k

1{x1 = x}
(
1 − θa(x)

) k∏
j=2

ρa,j(xj) , ua ≡
∑
x∈X k

(
1 − θa(x)

) k∏
j=1

ρa,j(xj) ,

where we recall that (θa)a≥0 are i.i.d. copies of the random function θ. For any λ ∈ (0, 1)
and any ζ ∈ M2,

E. Chang, N. Kolhe, and Y. Sohn 47:9

Fn ≤ P(ζ, λ) +Oε(n−1/3) , where

P(ζ, λ) ≡ Pθ(ζ, λ) := λ−1E logE′
[(∑

x∈X

d∏
a=1

ua(x)
)λ]

− (k − 1)αλ−1E logE′
[

(u0)λ
]
. (2.1)

Here, Fn is the free energy for the configuration model defined in (1.9), E′ denotes the
expectation over ρ conditioned on all else, and E denotes the overall expectation.

▶ Remark 2.1. [58, Theorem E.3] is stated more general than Theorem 2.1 by considering
independent external field {hv}v∈V and random (bs)s∈S . For our purposes, it suffices to
consider non-random bs ≥ 0 and hv ≡ 1.
We use Theorem 2.1 for the positive temperature models in Definition 1.4. Note that
θnae(· ; β) and θcol(· ; β) satisfies the condition (1.7) with ε = e−β . Furthermore, in the
bound (2.1), we take λ = β−1/2 and ζ ≡ ζk,d,β ∈ P

(
P
(
P({0, 1})

))
given by a point mass

at ηk,d,β :

ζk,d,β ≡ δηk,d,β
, (2.2)

where ηk,d,β ∈ P(P({0, 1})) is defined as follows. Identify P({0, 1}) with [0, 1] by the map

ρ ∈ P({0, 1}) ↔ ρ(1) ∈ [0, 1] .

Thus, denoting η ≡ ηk,d,β ∈ P([0, 1]), define

η

(
eβ

eβ + e−β

)
= η

(
e−β

eβ + e−β

)
= x , η

(
1
2

)
= 1 − 2x , (2.3)

where x⋆ ≡ x⋆(k, d) is the bp fixed point, i.e. the solution to the equation (1.1). Such choice
of ζk,d,β is motivated from physics [43] and previous mathematical works [31, Section 3] and
[32, Section 4].

Before proceeding further, we show that if ζ is given as in (2.2), (2.3), then P(ζ, λ) does
not depend on literals. More precisely, suppose that ζ = δη0 , where η0 ∈ P([0, 1]) is such
that η0(dx) = η0(d(1 − x)), i.e. ρ d= 1 − ρ holds for ρ ∼ η0. For a fixed L = (Li)i≤k ∈ {0, 1}k,
let

θL(x) = (1 − e−β) ·

(
k∏
i=1

(Li ⊕ xi) +
k∏
i=1

(Li ⊕ xi ⊕ 1)
)
.

With abuse of notation, for x ∈ {0, 1} and independent samples ρa,j ∈ P({0, 1}) from η0, let

ua,L(x) ≡
∑

x∈{0,1}k

1{x1 = x}
(
1 − θL(x)

) k∏
j=2

ρa,j(xj) , uL ≡
∑

x∈{0,1}k

(
1 − θL(x)

) k∏
j=1

ρ0,j(xj) ,

where we consider L ∈ {0, 1}k to be fixed. Then, for a given sequence of literals La ∈ {0, 1}k
for 0 ≤ a ≤ d, let

P
(
δη0 , λ; (La)0≤a≤d

)
:= λ−1 logE′

(∑
x∈{0,1}

d∏
a=1

ua,La
(x)
)λ

−(k−1)αλ−1E logE′ (uL0

)λ
, (2.4)

where E′ is the expectation with respect to the independent samples ρa,j ∈ P({0, 1}) from
η0. Note that if La

i.i.d∼ Unif({0, 1}k), then Pθnae(δη0 , λ) = ELP
(
δη0 , λ; (La)0≤a≤d

)
holds, and

if La ≡ 0 for 0 ≤ a ≤ d, then Pθcol(δη0 , λ) = P
(
δη0 , λ; 0

)
holds. The following lemma then

clarifies the mechanism behind the identical satisfiability upper bound in Theorem 1.1.

APPROX/RANDOM 2024

47:10 Upper Bounds on the Colorability Threshold for Random Regular Graph

▶ Lemma 2.2. Consider ζ = δη0 for some η0 ∈ P([0, 1]) such that η0(dx) = η0(d(1 − x)).
Then, for any literals La ∈ {0, 1}k for 0 ≤ a ≤ d, the value P

(
δη0 , λ; (La)0≤a≤d

)
does not

depend on (La)0≤a≤d. Thus, Pθnae(δη0 , λ) = Pθcol(δη0 , λ) holds.

Proof. For fixed La ∈ {0, 1}k for 0 ≤ a ≤ d, note that the vectors
(
ua,L

a
(0), ua,L

a
(1)
)

are
independent for 0 ≤ a ≤ d. Thus, it suffices to show that for given L, L′ ∈ {0, 1}k and
1 ≤ a ≤ d,

uL
d= uL′ and

(
ua,L(0), ua,L(1)

) d=
(
ua,L′(0), ua,L′(1)

)
. (2.5)

To this end, let L′ = 0 and we first prove that uL
d= u0 holds. Since θL(x) = θ0(x⊕ L),

uL ≡
∑

x∈{0,1}k

(
1 − θL(x)

) k∏
j=1

ρ0,j(xj) =
∑

x∈{0,1}k

(
1 − θ0(x)

) k∏
j=1

ρ0,j(xj ⊕ Lj) .

Note that since (ρ0,j)1≤j≤k are i.i.d. samples from η0 and η0(dx) = η0(d(1 − x)) holds, the
sequence

(
ρ0,j(· ⊕ Lj)

)
1≤j≤k are also i.i.d. from η0. Hence, the equation above shows that

uL
d= u0 holds.
Next, we prove that

(
ua,L(0), ua,L(1)

) d=
(
ua,0(0), ua,0(1)

)
holds. Without loss of generality,

let a = 1. Again since θL(x) = θ0(x⊕ L),

u1,L(x) =
∑

x∈{0,1}k

1{x1 ⊕ L1 = x}
(
1 − θ0(x)

) k∏
j=2

ρ1,j(xj ⊕ Lj)

Now, observe that θ0(·) is invariant under global flip, i.e. θ0(x) = θ0(x⊕ 1). Thus, it follows
that

u1,L(x) =
∑

x∈{0,1}k

1{x1 = x}[1 − θ0(x)]
k∏
j=2

ρ1,j(xj ⊕ L1 ⊕ Lj) .

By the same reasons as above,
(
ρ1,j(· ⊕ L1 ⊕ Lj)

)
2≤j≤k have the same distribution as(

ρ1,j
)

2≤j≤k, which are i.i.d. from η0. Thus, we have that
(
u1,L(0), u1,L(1)

) d=
(
u1,0(0), u1,0(1)

)
.

Therefore, (2.5) holds, which concludes the proof. ◀

The following lemma relates Pθcol(ζk,d,β , β−1/2) = Pθnae(ζk,d,β , β−1/2), and ⋆Φ(d), which
plays a crucial role in proving Proposition 1.5. Recall the definition of ζk,d,β in (2.2) and
(2.3).

▶ Lemma 2.3. Pθcol(ζk,d,β , β−1/2) ≤ C+β1/2 ×⋆Φ(d) holds for some constant C ∈ R, which
does not depend on β > 0.

Proof. Throughout, let (ρa,j)a≥0,j≥0 denote i.i.d. samples from ηk,d,β defined in (2.3), and
let E′ (resp. P′) denote the expectation (resp. probability) with respect to (ρa,j)a≥0,j≥0.
Also, we use the generic notation C by a constant that does not depend on β > 0. Note that
since θcol and ηk,d,β are non-random, the outer expectation E in the definition of P(ζ, λ) in
(2.1) is redundant.

First, we bound the second term of the definition of Pθcol(ζk,d,β , β−1/2) in (2.1):

(k − 1)αβ1/2 logE′
[

(u0)β
−1/2]

= (k − 1)αβ1/2 logE′

[(
1 − (1 − e−β)

(k∏
j=1

ρ0,j(0) +
k∏
j=1

ρ0,j(1)
))β−1/2]

E. Chang, N. Kolhe, and Y. Sohn 47:11

Note that the expectation inside the log in the right hand side above is bounded below by

2−β−1/2
· P′
(

1 − (1 − e−β)
(k∏
j=1

ρ0,j(0) +
k∏
j=1

ρ0,j(1)
)

≥ 1
2

)
= 2−β−1/2

(1 − 2xk) ,

where x is the solution to the bp equation (1.1) and the equality holds for large enough
β ≥ β0 since for large β and k ≥ 3, (1 − e−β)

(∏k
j=1 ρ0,j(0) +

∏k
j=1 ρ0,j(1)

)
≥ 1

2 holds if

and only if either ρ0,j(1) = eβ

eβ+e−β holds for all 1 ≤ j ≤ k, or ρ0,j(1) = e−β

eβ+e−β holds for all
1 ≤ j ≤ k. Thus, it follows that

−(k − 1)αλ−1E logE′
[
(u0)λ

]
≤ C − β1/2(k − 1)α log

(
1 − 2xk

)
. (2.6)

Next, we estimate the first term of the definition of Pθcol(ζk,d,β , β−1/2) in (2.1), which equals

β1/2 logE′
[(∑

x∈{0,1}

d∏
a=1

ua(x)
)β−1/2]

= β1/2 logE′

(d∏
a=1

(
1 − (1 − e−β)

k∏
j=2

ρa,j(0)
)

+
d∏
a=1

(
1 − (1 − e−β)

k∏
j=2

ρa,j(1)
))β−1/2

(2.7)

We upper bound the expectation inside the log in the above expression by

2β
−1/2

· P′(A)+
(
3e−β)β−1/2

,

where

A :=

d∏
a=1

(
1 − (1 − e−β)

k∏
j=2

ρa,j(0)
)

+
d∏
a=1

(
1 − (1 − e−β)

k∏
j=2

ρa,j(1)
)

≥ 3e−β

 .

Define the events E0 and E1 involving (ρa,j)1≤a≤d,2≤j≤k as follows.

E0 is the event such that for each 1 ≤ a ≤ d, we have for some j ∈ {2, . . . , k} that
ρa,j(0) ̸= eβ

eβ+e−β .
E1 is the event such that for each 1 ≤ a ≤ d, we have for some j ∈ {2, . . . , k} that
ρa,j(1) ̸= eβ

eβ+e−β .

We now claim that for large enough β, the event A is included in E0 ∪ E1. To this
end, suppose that the event (E0 ∪ E1)c = Ec

0 ∩ Ec
1 holds. Then, for each x ∈ {0, 1}, for

some a ≡ a(x) ∈ {1, . . . , d} such that ρa,j(x) = eβ

eβ+e−β holds for all 2 ≤ j ≤ k. Thus, for
x ∈ {0, 1}, we have

d∏
a=1

(
1 − (1 − e−β)

k∏
j=2

ρa,j(x)
)

≤ 1 − (1 − e−β)
(

eβ

eβ + e−β

)k−1

≤ e−β + ke−2β <
3
2e

−β ,

where the last inequality holds for large enough β ≥ βk and we used (1−x)k−1 ≥ 1− (k−1)x
for x > 0 in the second inequality. Hence, summing over x ∈ {0, 1} gives that the event
A cannot hold, which proves our claim that A ⊂ E0 ∪ E1. Consequently, the term (2.7) is
bounded above by

β1/2 log
(

2β
−1/2

· P′(E0 ∪ E1
)

+ (3e−β)β
−1/2

)
≤ β1/2 logP′(E0 ∪ E1

)
+ C .

APPROX/RANDOM 2024

47:12 Upper Bounds on the Colorability Threshold for Random Regular Graph

Note that P′(E0 ∪ E1
)

can be calculated explicitly by

P′(E0 ∪ E1) = 2(1 − xk−1)d − (1 − 2xk−1)d = (1 − xk−1)d−1(1 − 2xk)
1 − x

,

where in the final equality, we used the fact that x is the solution to the equation (1.1).
Therefore, we have proven that

β1/2 logE′
[(∑

x∈{0,1}

d∏
a=1

ua(x)
)β−1/2]

≤ C + β1/2 (− log(1 − x) + (d− 1) log(1 − xk−1) + log(1 − 2xk)
)
. (2.8)

In conclusion, combining (2.6) and (2.8), and recalling the definition of ⋆Φ(d) in (1.2), we
have

Pθcol(ζk,d,β , β−1/2) ≤ C + β1/2⋆Φ(d) ,

which concludes the proof. ◀

Proof of Proposition 1.5. Given a nae-sat instance G, let SOL(G) ⊂ {0, 1}V denotes
the set of nae-sat solutions. Also, let Zβ,nae(G) denotes the partition function (1.8) for
θ = θnae(· ; β). Note that if x ∈ SOL(G), then θnae(xδa) = 0 for any a ∈ F , thus we have for
any β > 0 that

Zβ,nae(G) ≡
∑

x∈{0,1}V

∏
a∈F

(
1 − θnae(xδa;β)

)
≥ |SOL(G)| . (2.9)

On the other hand, since θnae(· ; β) satisfies the condition (1.7) with ε = e−β , we have by
Theorem 2.1 that

1
n
E
[

logZβ,nae(G)
]

≤ Pθnae(ζk,d,β , β−1/2) + on(1) = Pθcol(ζk,d,β , β−1/2) + on(1) ,

where the last equality is due to Lemma 2.2. By Lemma 2.3, the right hand side is further
bounded by

1
n
E
[

logZβ,nae(G)
]

≤ β1/2 · ⋆Φ(d) + C + on(1) ,

for some constant C that does not depend on n nor β. If ⋆Φ(d) < 0, then for large enough
β > 0, β1/2 · ⋆Φ(d) + C < −1 holds, thus n−1E

[
logZβ,nae(G)

]
< −1 holds for large enough

n. For such β = β0(k, d) > 0, we have by (2.9) and Lemma 1.3 that for large enough n,

P
(

|SOL(G)| ≥ 1
)

≤ P
(∣∣∣∣ 1n logZβ0,nae(G) − 1

n
E
[

logZβ0,nae(G)
]∣∣∣∣ ≥ 1

)
≤ e−cn ,

for some constant c that depends only on β0 > 0, which finishes the proof for the nae-sat
model.

Given a configuration model G, let Zβ,col(G) denote the partition function (1.8) for
θ = θcol(· ; β). Then, by the same reasoning, Theorem 2.1 and Lemma 2.3 shows that if
⋆Φ(d) < 0 then 1

nE
[

logZβ,col(G)
]
< −1 holds for large enough β = β0(k, d) > 0 and n

large enough. On the event that there exists a 2-coloring on G, Zβ,col(G) ≥ 1 holds, so
Lemma 1.3 again concludes the proof. ◀

E. Chang, N. Kolhe, and Y. Sohn 47:13

2.2 Proof of Lemma 1.3
Recall that G = (V, F,E) is generated from the configuration model, where the E is drawn
uniformly from Snd. Thus, E has the same law as sequentially drawing random clauses
a1, . . . ,am as follows. At times t ∈ {1, . . . ,m} clause at is drawn by connecting the k adjacent
half-edges to previously unmatched half-edges adjacent to variables. For 1 ≤ t ≤ m, let Ft be
the σ-algebra generated by a1, . . . ,at, and F0 ≡ ∅. Denote Mt ≡ E

[
logZ(G) | Ft

]
by the

associated Doob martingale. Note that if G = (V, F,E) and G′ = (V, F,E′) has the the same
set of edges except for those adjacent to two clauses a1 ̸= a2 ∈ F , then by our assumption of
θ in (1.7) and the definition of Z(G) in (1.8), it follows that ε2 ≤ Z(G)/Z(G′) ≤ ε−2 holds.
Thus, we have for every t ∈ {0, 1, . . . ,m− 1} that∣∣∣Mt+1 −Mt

∣∣∣ ≡
∣∣∣E[logZ(G) | Ft+1

]
− E

[
logZ(G) | Ft

]∣∣∣ ≤ 2 log
(
1/ε
)
, (2.10)

from which Lemma 1.3 follows.

Proof of Lemma 1.3. Note that Mm = logZ(G) and M0 = E
[

logZ(G)
]

holds and
(Mt)0≤t≤m is a martingale with bounded difference by (2.10). Therefore, the conclusion
follows from Azuma Hoeffding’s inequality. ◀

2.3 Proof of Lemma 1.7
The following notations are convenient for the proof of Lemma 1.7. For non-negative
quantities f = fd,k,n and g = gd,k,n, we use any of the equivalent notations f = Ok,d(g), g =
Ωk,d(f), f ≲k,d g and g ≳k,d f to indicate that there exists a constant Ck,d, which only
depends on k, d such that f ≤ Ck,d · g. We drop the subscripts d (resp. k, d) if the constant
Ck,d does not depend on d (resp. k, d). When f ≲k,d g and g ≲k,d f , we write f ≍k,d g.
Similarly when f ≲ g and g ≲ f , we write f ≍ g.

Note that EZcol is the sum over x ∈ {0, 1}V of the probabilities that x is a 2-coloring
on G. By symmetry, the probability of x ∈ {0, 1}V being a 2-coloring depends only on the
number nγ of nodes having color 1, which we denote by pγ . Thus, EZcol =

∑
γ

(
n
nγ

)
pγ ,

where the sum is over γ ∈ (0, 1) such that nγ ∈ Z. Moreover, we can express pγ as follows.
Let X1, . . . , Xm be i.i.d. Binom(k, γ) random variables and denote Pγ by the probability
with repect to (Xi)i≤m. Then, we have

pγ = Pγ
(
Xi /∈ {0, k} for all 1 ≤ i ≤ m

∣∣∣ m∑
i=1

Xi = kmγ
)

≤
Pγ
(
Xi /∈ {0, k} for all 1 ≤ i ≤ m

)
Pγ
(∑m

i=1 Xi = kmγ
) ≲k

√
m(1 − γk − (1 − γ)k)m , (2.11)

where the last inequality is due to a Stirling’s approximation. It follows that

EZcol ≤ nO(1)
∑
γ

exp
(
nFα(γ)

)
, where

Fα(γ) := H(γ) + α log
(
1 − γk − (1 − γ)k

)
. (2.12)

Here, H(γ) ≡ −γ log γ − (1 − γ) log(1 − γ) is the entropy of γ. Note that γ → γk + (1 − γ)k
is uniquely minimized at γ = 1/2. Further, the entropy H(γ) is strictly concave and
is maximized at γ = 1/2. Thus, γ → Fα(γ) is uniquely maximized at γ = 1/2 with
∂2Fα

∂γ2 (1/2) < 0. Since EZnae = exp
(
nFα(1/2)

)
, it follows from (2.12) that

EZcol ≤ nO(1) exp
(
nFα(1/2)

)
= nO(1) · EZnae . (2.13)

We now show that the polynomial factor nO(1) can actually be removed with a matching
lower bound.

APPROX/RANDOM 2024

47:14 Upper Bounds on the Colorability Threshold for Random Regular Graph

First, by (2.11) and the fact that γ → Fα(γ) is uniquely maximized at γ = 1/2 with strictly
negative second derivative, the contribution to EZcol from γ such that |γ − 1/2| ≥ n−1/3 is
negligible:

∑
|γ−1/2|≥n−1/3

(
n

nγ

)
pγ ≲k,d exp

(
− Ωk,d

(
n1/3)) · EZnae . (2.14)

Thus, we focus on the regime |γ − 1/2| ≤ n−1/3. Note that we can calculate pγ by summing
over the empirical distribution ν of (Xi)i≤m. Consider ν ∈ P({1, . . . , k − 1}) and let
pγ(j) :=

(
k
j

)
γj(1 − γ)k−j . Then,

pγ =

∑
ν 1
(∑

j jνj = kmγ
)
e−kmγλ(m

mν

)∏
j(pγ(j)eλj)mνj

Pγ
(∑m

i=1 Xi = kmγ
) ,

where
(
m
mν

)
≡ m!∏

j
(mνj)!

and we introduced a lagrange parameter λ ∈ R in the last equality.

Let

νγ,λ(x) := pγ(x)eλx∑k−1
j=1 pγ(j)eλj

for 1 ≤ x ≤ k − 1 ,

and denote Pγ,λ by the probability with respect to X̃1, . . . , X̃m
i.i.d.∼ νγ,λ. Then, it follows

that

pγ =
Pγ,λ

(∑m

i=1 X̃i = kmγ
)

Pγ

(∑m

i=1 Xi = kmγ
) exp

(
− m · Ξ(γ, λ)

)
, where Ξ(γ, λ) := kγλ − log

(k−1∑
j=1

pγ(j)eλj

)
.

(2.15)

In order to use the local central limit theorem, we take λ = λ(γ) such that Eγ,λX̃ = kγ,
where X̃ ∼ νγ,λ. The existence of such λ(γ) is guaranteed by the lemma below.

▶ Lemma 2.4. For large enough n and all γ such that |γ − 1/2| ≤ n−1/3, there exists
a unique λ = λ(γ) such that Eγ,λX̃ = kγ holds. Furthermore, we have λ(1/2) = 0 and∣∣λ(γ)

∣∣ ≲k n−1/3 holds uniformly over |γ − 1/2| ≤ n−1/3.

Proof. Note that we have ∂Ξ
∂λ (γ, λ) = kγ − Eγ,λX̃ by definition of νγ,λ and Ξ(γ, λ). Further,

we have that

∂Ξ
∂λ

(1
2 , 0

)
= k

2 − E 1
2 ,0X̃ = k

2 − E 1
2

[
X
∣∣X /∈ {0, k}

]
= 0 ,

where E 1
2

is with respect to X ∼ Binom(1/2). Since λ → log
(∑k−1

j=1 pγ(j)eλj
)

is strongly
convex, we have ∂2Ξ

∂λ2

(1
2 , 0
)
< 0. Thus, implicit function theorem shows that for γ ∈

(1/2 − ε, 1/2 + ε), where ε = ε(k) > 0 depends only on k, there exists λ = λ(γ) such that
∂Ξ
∂λ

(
γ, λ(γ)

)
= 0 holds, and that γ → λ(γ) is continuously differentiable. Therefore, for

large enough n and γ ∈ (1/2 − n−1/3, 1/2 + n1/3), there exists a unique λ = λ(γ) such that
Eγ,λ(γ)X̃ = kγ, and |λ(γ)| ≲k n−1/3 holds uniformly over γ ∈ (1/2 − n−1/3, 1/2 + n1/3). ◀

Having Lemma 2.4 in hand, we prove Lemma 1.7 by appealing to the local central limit
theorem.

E. Chang, N. Kolhe, and Y. Sohn 47:15

Proof of Lemma 1.7. The contribution to EZcol from γ such that |γ − 1/2| ≥ n−1/3 is
negligible by (2.14), thus we consider γ such that |γ − 1/2| ≤ n−1/3 holds. To this end,
we take λ = λ(γ) from Lemma 2.4 in equation (2.15). Then, by the local central limit
theorem [13],

pγ ≍
(Varγ

(
X
)

Varγ,λ(γ)
(
X̃
))1/2

· exp
(

−m · Ξ
(
γ, λ(γ)

))
, (2.16)

where X ∼ Binom(k, γ) and X̃ ∼ νγ,λ(γ). Lemma 2.4 further shows that
∣∣λ(γ)

∣∣ ≲k n−1/3,
thus we have

Varγ,λ(γ)
(
X̃
)

≍k Varγ
(
X
∣∣ 1 ≤ X ≤ k − 1

)
≍k Varγ(X) , (2.17)

where the final estimate holds because |γ − 1/2| ≤ n−1/3. Combining with (2.14), it follows
that

EZcol =
(
1 + on(1)

) ∑
|γ−1/2|≤n−1/3

(
n

nγ

)
pγ ≍k,d n

−1/2
∑

|γ−1/2|≤n−1/3

exp
(
nGα(γ)

)
, (2.18)

where

Gα(γ) := H(γ) − α · Ξ
(
γ, λ(γ)

)
.

Note that by comparing (2.16) and (2.17) with (2.11), we have Gα(γ) ≤ Fα(γ) for |γ−1/2| ≤
n−1/3. Also, note that for γ = 1/2, Gα(1/2) = Fα(1/2) holds since

Gα(1/2) = H(1/2) − α · Ξ(1/2, 0) = H(1/2) + α log
(
1 − γk − (1 − γ)k

)
,

where we used λ(1/2) = 0 by Lemma 2.4. Recalling that γ → Fα(γ) is uniquely maximized
at γ = 1/2 with strictly negative second derivative at the maximizer, it follows that the
same holds for γ → Gα(γ). Therefore, the sum in the right hand side of (2.18) can be
approximated by a Gaussian integration, which shows that

EZcol ≍k,d exp
(
nGα(1/2)

)
= EZnae .

This concludes the proof. ◀

3 Proof of Proposition 1.6

In this section, we prove Proposition 1.6 for k ≥ 4. The proof of Proposition 1.6 for k = 3
is available in the arXiv version [14]. The proof of Proposition 1.6 for k ≥ 4 can be split
into the following two lemmas. In Section 3.1, we prove Lemma 3.1 which guarantees the
existence and the uniqueness of the bp fixed point for k ≥ 4.

▶ Lemma 3.1. For k ≥ 4 and d ∈ [dlbd(k), dubd(k)], there exists a unique solution to
Ψd(x) = x in the range x ∈ [1

2 − 1
2k ,

1
2].

By Lemma 3.1, the function d → ⋆Φ(d) is well-defined. In Section 3.2, we prove Lemma 3.2
which guarantees that d⋆(k) is well-defined for k ≥ 4.

▶ Lemma 3.2. For k ≥ 4, the function d → ⋆Φ(d) is continuous for d ∈ [dlbd(k), dubd(k)].
Further, ⋆Φ(dlbd(k)) > 0 and ⋆Φ(dubd(k)) < 0 hold.

Proof of Proposition 1.6 for k ≥ 4. This is immediate from Lemma 3.1 and Lemma 3.2. ◀

APPROX/RANDOM 2024

47:16 Upper Bounds on the Colorability Threshold for Random Regular Graph

3.1 Proof of Lemma 3.1
Recall the variable bp recursion Ψ̇ and the clause bp recursion Ψ̂ defined in (1.12). To
prove the uniqueness of the bp fixed point, we show that the bp recursion Ψd ≡ Ψ̇ ◦ Ψ̂ is a
contraction for k ≥ 4.

▶ Lemma 3.3. For k ≥ 4 and d ∈ [dlbd(k), dubd(k)],
∣∣(Ψd)′(x)

∣∣ < 1 holds uniformly over
x ∈ [1

2 − 1
2k ,

1
2].

Proof. Throughout, we let x ∈ [1/2 − 1/2k, 1/2] and denote v = Ψ̂(x). We first consider
k ≥ 5. Observe that the derivative of the clause bp recursion can simply be bounded in
absolute value by

∣∣(Ψ̂)′(x)
∣∣ = (k − 1)xk−2

(1 − xk−1)2 ≤ (k − 1) · 2−k+2

(1 − 2−k+1)2 = 4(k − 1)
2k(1 − 2−k+1)2 , (3.1)

where the inequality holds since x → xk−2

(1−xk−1)2 is increasing. Similarly, we bound the
derivative of the variable bp recursion:∣∣(Ψ̇)′(v)

∣∣ = (d− 1)vd−2

(2 − vd−1)2 ≤ (d− 1)vd−2
0

(2 − vd−1
0)2

≤ (d− 1)vd−2
0

(2 − vd−2
0)2

, (3.2)

where we denoted v0 := Ψ̂(x0) for x0 = 1/2 − 1/2k. The first inequality holds because
x → Ψ̂(·) is decreasing on [1/2 − 1/2k, 1/2], and the last inequality holds since v0 < 1. To
this end, we upper bound vd−2

0 by

vd−2
0 =

(
1 − xk−1

0

1 − xk−1
0

)d−2

≤ (1 − xk−1
0)d−2 ≤ e−(d−2)xk−1

0 . (3.3)

Note that xk−1
0 =

(1
2
)k−1 (1 − 2

2k

)k−1 ≥
(1

2
)k−1

(
1 − 2(k−1)

2k

)
and d ≥ (2k−1 − 2)k log 2 hold,

thus we can lower bound (d− 2)xk−1
0 by

(d− 2)xk−1
0 ≥

(
k log 2 − 4k log 2 + 4

2k

)
·
(

1 − 2(k − 1)
2k

)
.

Thus, combining with (3.3) shows that

vd−2
0 ≤ 2−keεk , where εk := 2(k − 1)k log 2

2k + 4k log 2 + 4
2k

(
1 − 2(k − 1)

2k

)
. (3.4)

Plugging this bound into (3.2), we have

|(Ψ̇)′(v)| < (d− 1) vd−2
0

(2 − vd−2
0)2

≤ (2k−1k log 2 − 1) · 2−k · eεk

(2 − 2−keεk)2 .

Combining with the contraction of clause bp recursion in (3.1), we have

|(Ψd)′(x)| ≤ αk := 2k(k − 1) log 2
2k ·

(
1 − 1

2k−1k log 2

)
· eεk

(1 − 2−k+1)2(2 − 2−keεk)2 .

By comparing εk and εk+1 for k ≥ 5, it can be easily checked that k → εk is decreasing, and
the same holds for k → 2k(k−1) log 2

2k ·
(

1 − 1
2k−1k log 2

)
. Thus, k → αk is decreasing for k ≥ 5.

Furthermore, α5 can be calculated up to arbitrary precision (e.g. by Mathematica), which
satisfies α5 < 0.99 < 1. Consequently, |(Ψd)′(x)| < 1 holds for k ≥ 5.

E. Chang, N. Kolhe, and Y. Sohn 47:17

The case where k = 4 is more delicate, and the previous strategy of bounding the
derivative of clause and variable bp recursions separately no longer is successful. To this end,
we bound (Ψd)′(x) directly. If we denote v = Ψ̂k(x), then

∣∣(Ψd)′(x)
∣∣ =

∣∣(Ψ̂)′(x)| · |(Ψ̇)′(v)
∣∣ = (k − 1)(d− 1)vd−2

(2 − vd−1)2 · xk−1

(1 − xk−1)2 · 1
x
.

Since v ≡ Ψ̂k(x) ≡ 1−2xk−1

1−xk−1 , rearranging gives xk−1 = 1−v
2−v . Substituting this in for xk−1, we

have that∣∣(Ψd)′(x)
∣∣ = (k − 1)(d− 1) · v

d−2(2 − v)(1 − v)
(2 − vd−1)2 · 1

x
. (3.5)

We now claim that v → vd−2(2−v)(1−v)
(2−vd−1)2 is increasing for v ∈ [Ψ̂4(1/2), Ψ̂4(1/2 − 1/24)] and

d ∈ [24 log 2, 32 log 2] (recall that 24 log 2 > 16.7 ≡ dlbd(4) holds). Since v → (2 − vd−1)2 is
decreasing, it suffices to show that v → vd−2(2 − v)(1 − v) is increasing. Note that

d
dv

(
vd−2(2 − v)(1 − v)

)
= (dv2 − 3(d− 1)v+ 2(d− 2))vd−3 > 0 ⇐⇒ d >

4 − 3v
(2 − v)(1 − v) .

Note that v → 4−3v
(2−v)(1−v) is increasing since its derivative is given by 3v2−8v+6

(2−v)2(1−v)2 > 0. Thus,
to prove our claim, it suffices to check that for d0 := 24 log 2 and v0 = Ψ̂4(1/2 − 1/24) that
d0 >

4−3v0
(2−v0)(1−v0) holds. By a direct calculation, v0 = 3410/3753 < 0.91 and 24 log 2 > 16 >

4−3·0.91
(2−0.91)(1−0.91) holds, thus the claim that v → vd−2(2−v)(1−v)

(2−vd−1)2 is increasing is proven for d, v
in the regime of interest.

Note that x → v = Ψ̂4(x) is decreasing, thus (3.5) and our previous claim shows that for
all x0 ≤ x ≤ 1/2, where x0 = 1/2 − 1/24, we have

∣∣(Ψd)′(x)
∣∣ ≤ (d− 1)(k − 1)v

d−2
0 (2 − v0)(1 − v0)

(2 − vd−1
0)2

· 1
x0

,

where v0 = Ψ̂4(x0) = 3410/3753. We next show that the right hand side as a function of
d ∈ [24 log 2, 32 log 2] is decreasing: since d → (2 − vd−1

0)2 is increasing, it suffices to show
that d → (d− 1)vd−2

0 is decreasing. Note that

d
dd

(
(d− 1)vd−2

0

)
= vd−2

0

(
1 − (d− 1) log

(
1/v0

))
< 0 ⇐⇒ d >

1
log(1/v0) + 1 ,

and it can be verified that 24 log 2 > 16 > 1/ log(3753/3410) + 1 holds. Therefore, for k = 4,
it follows that for d0 = 24 log 2,

∣∣(Ψd)′(x)
∣∣ ≤ 3(d0 − 1)v

d0−2
0 (2 − v0)(1 − v0)

(2 − vd0−1
0)2

· 1
x0

.

The right hand side can be computed to arbitrary precision (e.g. by Mathematica), it can be
verified that 3(d0 − 1) v

d0−2
0 (2−v0)(1−v0)

(2−vd0−1
0)2 · 1

x0
< 0.9 < 1. This concludes the proof for the case

k = 4. ◀

In the proof of Lemma 3.3, we did not use the adjustment for dlbd(4) ≡ 16.7 > 24 log 2.
That is, max 1

2 − 1
24 ≤x≤ 1

2

∣∣(Ψd)′(x)
∣∣ < 1 holds for d ∈ [24 log 2, 32 log 2]. The adjustment

dlbd(4) ≡ 16.7 is needed for the following lemma, which guarantees the existence of the
solution to Ψd(x) = x.

APPROX/RANDOM 2024

47:18 Upper Bounds on the Colorability Threshold for Random Regular Graph

▶ Lemma 3.4. Ψd(1
2 − 1

2k) > 1
2 − 1

2k holds for k ≥ 4 for d ∈ [dlbd(k), dubd(k)].

Proof. Let v0 ≡ v0(k) = Ψ̂
(1

2 − 1
2k

)
as before. Then, from the definition of Ψ̇, Ψ̂ in (1.12),

Ψd(1
2 − 1

2k) > 1
2 − 1

2k is equivalent to vd−1
0 < 4

2k+2 , which we aim to show for k ≥ 4. We start
with the case k ≥ 5. We have shown in (3.4) that vd−2

0 ≤ 2−keεk , holds, and by an analogous
proof, vd−1

0 ≤ 2−keβk holds, where βk ≡ εk − 1
2k−1

(
1 − 2(k−1)

2k

)
. Thus, it suffices to show that

eβk

(
1 + 1

2k−1

)
< 4 , where βk ≡ 2(k − 1)k log 2

2k + 4k log 2 + 2
2k

(
1 − 2(k − 1)

2k

)
.

For k = 5, eβ5(1 + 1/24) can be computed to arbitrary precision (e.g. by Mathematica), and
it can be numerically verified that eβ5(1 + 1/24) < 3.7. Further, k → βk is decreasing by
comparing βk and βk+1, thus this concludes the proof for k ≥ 5.

Next, we consider the case k = 4. Since d → vd−1
0 is maximized at d = dlbd(4) ≡ 16.7,

it suffices to show that v15.7
0 ≤ 2

9 holds, where v0 ≡ Ψ̂4(1/2 − 1/24) = 3410/3753. Since
v15.7

0 = (3410/3753)15.7 can be computed to arbitrary precision (e.g. by Mathematica), it can
be checked that v15.7

0 = (3410/3753)15.7 < 0.2221 < 2
9 holds, so this concludes the proof. ◀

Proof of Lemma 3.1. By Lemma 3.4, Ψd(1
2 − 1

2k) > 1
2 − 1

2k holds for k ≥ 4. Note that
Ψd(1/2) < 1/2 holds since Ψ̇(x) < 1/2 holds for any x ≥ 0. Thus, since x → Ψd(x) is
continuous and differentiable, intermediate value theorem guarantees the existence of the
solution to Ψd(x) = x for x ∈ [1

2 − 1
2k ,

1
2]. Moreover,

∣∣(Ψd)′(x)
∣∣ < 1 holds uniformly over

x ∈ [1
2 − 1

2k ,
1
2] by Lemma 3.3, thus mean value theorem guarantees the uniqueness of the

solution to Ψd(x) = x for x ∈ [1
2 − 1

2k ,
1
2]. ◀

3.2 Proof of Lemma 3.2
Recall that ⋆Φ(d) is defined in (1.2) as ⋆Φ(d) ≡ Φ

(
d, x⋆(k, d)

)
, where x⋆(k, d) ∈ [1

2 − 1
2k ,

1
2]

is the solution to Ψd(x) = x, and we defined the function Φ(d, x) by

Φ(d, x) ≡ Φk(d, x) := − log(1−x)−d(1−k−1−d−1) log(1−2xk)+(d−1) log(1−xk−1) . (3.6)

To prove ⋆Φ
(
dlbd(k)

)
> 0 and ⋆Φ

(
dubd(k)

)
< 0, we show respectively in Lemmas 3.5 and

3.6 that Φ
(
dlbd(k), x

)
> 0 and Φ

(
dubd(k), x

)
< 0 hold uniformly over x ∈ [1

2 − 1
2k ,

1
2].

▶ Lemma 3.5. For k ≥ 4, Φ(dlbd(k), x) > 0 holds uniformly over x ∈ [1
2 − 1

2k ,
1
2].

Proof. Note that rearranging Φ(d, x) gives

Φ(d, x) = − log(1 − x) − d
(
(1 − k−1) log(1 − 2xk) − log(1 − xk−1)

)
+ log(1 − 2xk) − log(1 − xk−1)

≥ − log(1 − x) − d
(
(1 − k−1) log(1 − 2xk) − log(1 − xk−1)

)
,

(3.7)

where the inequality holds since log(1 − 2xk) ≥ log(1 −xk−1) holds for x ∈ [0, 1/2]. Note that
the first term in the right hand side x → − log(1 − x) is convex, so the linear approximation
at x = 1/2 shows that − log(1 − x) ≥ log 2 + 2(x − 1/2) holds. Further, the function
x → (1 − k−1) log(1 − 2xk) − log(1 − xk−1) is increasing since

d
dx

(
(1 − k−1) log(1 − 2xk) − log(1 − xk−1)

)
= (k − 1)xk−2(1 − 2x)

(1 − 2xk)(1 − xk−1) ≥ 0 .

E. Chang, N. Kolhe, and Y. Sohn 47:19

Thus, the right hand side in (3.7) for d = dlbd(k) can further be lower bounded by

Φ
(
dlbd(k), x

)
≥ log 2 + 2

(
x− 1/2

)
+ dlbd(k)

k
· log

(
1 − 2−k+1)

≥ log 2 − 2−k+1 + dlbd(k)
k

· log
(
1 − 2−k+1) =: F (k) , (3.8)

where we used x ≥ 1/2 − 1/2k in the last inequality. Using the inequality log(1 − a) ≥
−a− a2

2 − a3

2 for a = 2−k+1 ≤ 1
8 , we have, for k ≥ 5, that

F (k) = log 2−2−k+1+(2k−1−2) log 2·log(1−2−k+1) ≥ 1
2k

(
3 log 2 − 2 − 6 log 2

2k + 8 log 2
22k

)
.

For k ≥ 6, the right hand side above is positive since 3 log 2 − 2 − 3 log 2
32 > 0.01, thus

(3.8) shows that Φ
(
dlbd(k), x

)
> 0 holds for k ≥ 6 and x ∈ [1

2 − 1
2k ,

1
2]. For k ∈ {4, 5}, we

can explicitly calculate F (k) by F (4) ≡ log 2 − 1/8 + (16.7/4) log (7/8) > 0.01 > 0, and
F (5) ≡ log 2 − 1/16 + 14 log 2 · log (15/16) > 0.004 > 0, thus (3.8) again concludes the proof
for k ∈ {4, 5}. ◀

▶ Lemma 3.6. For k ≥ 4, Φ
(
dubd(k), x

)
< 0 holds uniformly over x ∈ [1

2 − 1
2k ,

1
2].

Proof. We first claim that for k ≥ 5, the function x → Φ
(
dubd(k), x

)
is increasing for

x ∈ [1
2 − 1

2k ,
1
2] and dubd(k) ≡ 2k−1k log 2. A direct calculation shows that

∂Φ
∂x

(
dubd(k), x

)
= 1

1 − x
− (2k−1k log 2 − 1)(k − 1) · xk−2(1 − 2x)

(1 − xk−1)(1 − 2xk) − 2xk−1

1 − 2xk

≥ 1
1
2 + 1

2k

− (2k−1k log 2 − 1)(k − 1) · xk−2(1 − 2x)
(1 − xk−1)(1 − 2xk) − 4

2k − 2 , (3.9)

where the inequality holds since x → (1−x)−1 increasing, so it is minimized at x = 1/2+1/2k,
and x → 2xk−1/(1 − 2xk) is increasing, so it is maximized at x = 1/2. Further, it is
straightforward to check that x → xk−2(1 − 2x) is decreasing for x ∈ [1

2 − 1
2k ,

1
2], thus it is

maximized at x = 1/2 − 1/2k. Also, x → (1 − xk−1)(1 − 2xk) is minimized at x = 1/2. Thus,
by plugging in these bounds, we can further bound

∂Φ
∂x

(
dubd(k), x

)
≥ 2 −

(
2

2k−1 + 1 + 4
2k − 2 + (2k−1k log 2 − 1)(k − 1)

22k−3 ·
(

1 − 1
2k−1

)k−4
)

≥ 2 −
(

2
2k−1 + 1 + 4

2k − 2 + (2k−1k log 2 − 1)(k − 1)
22k−3

)
=: 2 −G(k) .

(3.10)

Note that the function k → G(k) is increasing for k ≥ 5. Furthermore, using the bound
log 2 < 0.7, we can bound G(5) = 2

17 + 2
15 + 80 log 2−1

32 < 1.97 < 2. Therefore, ∂Φ
∂x

(
dubd(k), x

)
>

0 holds for k ≥ 5 and x ∈ [1
2 − 1

2k ,
1
2], which proves our first claim.

Consequently, for the case k ≥ 5, it suffices to show that Φ(2k−1k log 2, x) < 0 holds for
x = 1/2. A direct calculation gives

Φ
(

2k−1k log 2, 1
2

)
= log 2 + 2k−1 log 2 · log

(
1 − 1

2k−1

)
< 0 , (3.11)

where the inequality holds since log(1 − a) < −a holds for a ∈ (0, 1). This concludes the
proof for k ≥ 5.

APPROX/RANDOM 2024

47:20 Upper Bounds on the Colorability Threshold for Random Regular Graph

It remains to consider the case k = 4. For k = 4, we claim that x → Φ4
(
dubd(4), x) is

convex in the interval x ∈ [7
16 ,

1
2]. From the computation of ∂Φ

∂x

(
dubd(k), x

)
in (3.9), we can

calculate the second derivative by

∂2Φ
∂x2

(
dubd(4), x) = d

dx

(
1

1 − x
− 2x3

1 − 2x4

)
+3(32 log 2−1)· d

dx

(
x2(2x− 1)

(1 − x3)(1 − 2x4)

)
. (3.12)

The first term in the right hand side can be bounded by

d
dx

(
1

1 − x
− 2x3

1 − 2x4

)
= 1

(1 − x)2 − 6x2 + 4x6

(1 − 2x4)2 >
1

(1 − 7
16)2 −

6
(1

2
)2 + 4

(1
2
)6

(1 − 2
(1

2
)4)2

> 0 , (3.13)

where the final inequality is equivalent to 256
81 − 100

49 > 0. The second term can be calculated
as

d
dx

(
x2(2x− 1)

(1 − x3)(1 − 2x4)

)
= x(−16x8 + 10x7 + 4x5 − 4x4 − x3 + 6x− 2)

(1 − x3)2(1 − 2x4)2 .

Note that by neglecting the terms 10x7 + 4x5 above, we can lower bound

−16x8 + 10x7 + 4x5 − 4x4 − x3 + 6x− 2 > 6 · 7
16 − 2 −

(
1
2

)3
− 4

(
1
2

)4
− 16

(
1
2

)8
> 0 ,

thus d
dx

(
x2(2x−1)

(1−x3)(1−2x4)

)
> 0 holds for x ∈ [7

16 ,
1
2] as well. Therefore, combining with (3.12)

and (3.13) finishes the proof of our claim that x → Φ4
(
dubd(4), x) is convex in the interval

x ∈ [7
16 ,

1
2].

Thus, by convexity, x → Φ4
(
dubd(4), x) is maximized at the end points x ∈ {7/16, 1/2},

and it suffices to show that Φ4
(
dubd(4), 7/16) < 0 and Φ4

(
dubd(4), 1/2) < 0. For x = 7/16,

Φ4
(
dubd(4), 7/16) can be computed to arbitrary precision (e.g. by Mathematica), and it

can be checked that Φ4
(
dubd(4), 7/16) < −0.08 < 0. For x = 1/2, (3.11) shows that

Φ4
(
dubd(4), 1/2) < 0 holds. This concludes the proof for the case k = 4. ◀

Proof of Lemma 3.2. By definition, ⋆Φ(d) = Φ
(
d, x⋆(k, d)

)
holds, and (d, x) → Φ(d, x)

is clearly continuous. Thus, in order to show the continuity of ⋆Φ(·), it suffices to show
that d → x⋆(k, d) is continuous for any fixed k ≥ 4. To that end, note that the function
ψ(d, x) := Ψd(x) − x satisfies ∂ψ

∂x < 0 by Lemma 3.3. Since x⋆(k, d) is defined to be the root
of ψ(d, ·), this implies that d → x⋆(k, d) is continuous by the implicit function theorem. As
a consequence, we conclude that d → ⋆Φ(d) is continuous. Since ⋆Φ(dlbd(k)) > 0 holds by
Lemma 3.5 and ⋆Φ(dubd(k)) < 0 holds by Lemma 3.6, we conclude the proof. ◀

References
1 Dimitris Achlioptas, Arthur Chtcherba, Gabriel Istrate, and Cristopher Moore. The phase

transition in 1-in-k SAT and NAE 3-sat. In Proceedings of the Twelfth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’01, pages 721–722, Philadelphia, PA, USA, 2001.
Society for Industrial and Applied Mathematics. URL: http://dl.acm.org/citation.cfm?
id=365411.365760.

2 Dimitris Achlioptas and Cristopher Moore. On the 2-colorability of random hypergraphs. In
José D. P. Rolim and Salil Vadhan, editors, Randomization and Approximation Techniques in
Computer Science, pages 78–90, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

3 Dimitris Achlioptas and Cristopher Moore. Random k-SAT: two moments suffice to cross a
sharp threshold. SIAM J. Comput., 36(3):740–762, 2006. doi:10.1137/S0097539703434231.

4 Dimitris Achlioptas and Assaf Naor. The two possible values of the chromatic number of a
random graph. Ann. of Math. (2), 162(3):1335–1351, 2005. doi:10.4007/annals.2005.162.
1335.

http://dl.acm.org/citation.cfm?id=365411.365760
http://dl.acm.org/citation.cfm?id=365411.365760
https://doi.org/10.1137/S0097539703434231
https://doi.org/10.4007/annals.2005.162.1335
https://doi.org/10.4007/annals.2005.162.1335

E. Chang, N. Kolhe, and Y. Sohn 47:21

5 Dimitris Achlioptas, Assaf Naor, and Yuval Peres. Rigorous location of phase transitions in
hard optimization problems. Nature, 435(7043):759–764, 2005.

6 Dimitris Achlioptas and Yuval Peres. The threshold for random k-SAT is 2k log 2 − O(k). J.
Amer. Math. Soc., 17(4):947–973, 2004. doi:10.1090/S0894-0347-04-00464-3.

7 N. Alon and Z. Bregman. Every 8-uniform 8-regular hypergraph is 2-colorable. Graphs and
Combinatorics, 4(1):303–306, 1988. doi:10.1007/BF01864169.

8 Peter Ayre, Amin Coja-Oghlan, Pu Gao, and Noëla Müller. The satisfiability threshold for ran-
dom linear equations. Combinatorica, 40(2):179–235, 2020. doi:10.1007/s00493-019-3897-3.

9 Peter Ayre, Amin Coja-Oghlan, and Catherine Greenhill. Lower bounds on the chromatic num-
ber of random graphs. Combinatorica, 42(5):617–658, 2022. doi:10.1007/s00493-021-4236-z.

10 Victor Bapst and Amin Coja-Oghlan. The condensation phase transition in the regular k-SAT
model. In Approximation, randomization, and combinatorial optimization. Algorithms and
techniques, volume 60 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 22, 18. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2016.

11 Victor Bapst, Amin Coja-Oghlan, Samuel Hetterich, Felicia Raßmann, and Dan Vilenchik. The
condensation phase transition in random graph coloring. Comm. Math. Phys., 341(2):543–606,
2016. doi:10.1007/s00220-015-2464-z.

12 Béla Bollobás, Christian Borgs, Jennifer T. Chayes, Jeong Han Kim, and David B. Wilson.
The scaling window of the 2-SAT transition. Random Structures Algorithms, 18(3):201–256,
2001. doi:10.1002/rsa.1006.

13 A. A. Borovkov. Generalization and refinement of the integro-local stone theorem for sums
of random vectors. Theory of Probability & Its Applications, 61(4):590–612, 2017. doi:
10.1137/S0040585X97T988368.

14 Evan Chang, Neel Kolhe, and Youngtak Sohn. Upper bounds on the 2-colorability threshold
of random d-regular k-uniform hypergraphs for k ≥ 3. arXiv:2308.02075, 2023.

15 V. Chvatal and B. Reed. Mick gets some (the odds are on his side) (satisfiability). In Proceedings
of the 33rd Annual Symposium on Foundations of Computer Science, SFCS ’92, pages 620–627,
Washington, DC, USA, 1992. IEEE Computer Society. doi:10.1109/SFCS.1992.267789.

16 Amin Coja-Oghlan. Upper-bounding the k-colorability threshold by counting covers. Electron.
J. Combin., 20(3):Paper 32, 28, 2013.

17 Amin Coja-Oghlan, Charilaos Efthymiou, and Samuel Hetterich. On the chromatic number of
random regular graphs. J. Combin. Theory Ser. B, 116:367–439, 2016. doi:10.1016/j.jctb.
2015.09.006.

18 Amin Coja-Oghlan, Florent Krz̧akała, Will Perkins, and Lenka Zdeborová. Information-
theoretic thresholds from the cavity method. Adv. Math., 333:694–795, 2018. doi:10.1016/j.
aim.2018.05.029.

19 Amin Coja-Oghlan and Konstantinos Panagiotou. Catching the k-NAESAT threshold [extended
abstract]. In STOC’12—Proceedings of the 2012 ACM Symposium on Theory of Computing,
pages 899–907. ACM, New York, 2012. doi:10.1145/2213977.2214058.

20 Amin Coja-Oghlan and Konstantinos Panagiotou. Going after the k-sat threshold. In
Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, STOC
’13, pages 705–714, New York, NY, USA, 2013. Association for Computing Machinery. doi:
10.1145/2488608.2488698.

21 Amin Coja-Oghlan and Konstantinos Panagiotou. The asymptotic k-SAT threshold. Adv.
Math., 288:985–1068, 2016. doi:10.1016/j.aim.2015.11.007.

22 Amin Coja-Oghlan and Will Perkins. Spin systems on Bethe lattices. Communications in
Mathematical Physics, 372(2):441–523, 2019. doi:10.1007/s00220-019-03544-y.

23 Amin Coja-Oghlan and Dan Vilenchik. Chasing the k-colorability threshold. In 2013 IEEE
54th Annual Symposium on Foundations of Computer Science—FOCS ’13, pages 380–389.
IEEE Computer Soc., Los Alamitos, CA, 2013. doi:10.1109/FOCS.2013.48.

APPROX/RANDOM 2024

https://doi.org/10.1090/S0894-0347-04-00464-3
https://doi.org/10.1007/BF01864169
https://doi.org/10.1007/s00493-019-3897-3
https://doi.org/10.1007/s00493-021-4236-z
https://doi.org/10.1007/s00220-015-2464-z
https://doi.org/10.1002/rsa.1006
https://doi.org/10.1137/S0040585X97T988368
https://doi.org/10.1137/S0040585X97T988368
https://doi.org/10.1109/SFCS.1992.267789
https://doi.org/10.1016/j.jctb.2015.09.006
https://doi.org/10.1016/j.jctb.2015.09.006
https://doi.org/10.1016/j.aim.2018.05.029
https://doi.org/10.1016/j.aim.2018.05.029
https://doi.org/10.1145/2213977.2214058
https://doi.org/10.1145/2488608.2488698
https://doi.org/10.1145/2488608.2488698
https://doi.org/10.1016/j.aim.2015.11.007
https://doi.org/10.1007/s00220-019-03544-y
https://doi.org/10.1109/FOCS.2013.48

47:22 Upper Bounds on the Colorability Threshold for Random Regular Graph

24 Amin Coja-Oghlan and Lenka Zdeborová. The condensation transition in random hypergraph
2-coloring. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’12, pages 241–250. ACM, New York, 2012.

25 L. Dall’Asta, A. Ramezanpour, and R. Zecchina. Entropy landscape and non-gibbs solutions
in constraint satisfaction problems. Physical Review E, 77(3), March 2008. doi:10.1103/
physreve.77.031118.

26 Amir Dembo and Ofer Zeitouni. Large deviations techniques and applications, volume 38 of
Stochastic Modelling and Applied Probability. Springer-Verlag, Berlin, 2010. doi:10.1007/
978-3-642-03311-7.

27 Martin Dietzfelbinger, Andreas Goerdt, Michael Mitzenmacher, Andrea Montanari, Rasmus
Pagh, and Michael Rink. Tight thresholds for cuckoo hashing via XORSAT. In Samson
Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf der Heide, and Paul G.
Spirakis, editors, Automata, Languages and Programming, pages 213–225, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg.

28 Jian Ding, Allan Sly, and Nike Sun. Satisfiability threshold for random regular nae-sat. In
Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing, STOC
’14, pages 814–822, New York, NY, USA, 2014. Association for Computing Machinery. doi:
10.1145/2591796.2591862.

29 Jian Ding, Allan Sly, and Nike Sun. Proof of the satisfiability conjecture for large k. In
Proceedings of the Forty-seventh Annual ACM Symposium on Theory of Computing, STOC
’15, pages 59–68, New York, NY, USA, 2015. ACM. doi:10.1145/2746539.2746619.

30 Jian Ding, Allan Sly, and Nike Sun. Maximum independent sets on random regular graphs.
Acta Math., 217(2):263–340, 2016. doi:10.1007/s11511-017-0145-9.

31 Jian Ding, Allan Sly, and Nike Sun. Satisfiability threshold for random regular NAE-SAT.
Commun. Math. Phys., 341(2):435–489, 2016.

32 Jian Ding, Allan Sly, and Nike Sun. Proof of the satisfiability conjecture for large k. Annals
of Mathematics, 196(1):1–388, 2022. doi:10.4007/annals.2022.196.1.1.

33 Olivier Dubois and Jacques Mandler. The 3-XORSAT threshold. In Proceedings of the 43rd
Symposium on Foundations of Computer Science, FOCS ’02, pages 769–778, Washington, DC,
USA, 2002. IEEE Computer Society. URL: http://dl.acm.org/citation.cfm?id=645413.
652160.

34 Martin Dyer, Alan Frieze, and Catherine Greenhill. On the chromatic number of a random
hypergraph. Journal of Combinatorial Theory, Series B, 113:68–122, 2015. doi:10.1016/j.
jctb.2015.01.002.

35 Silvio Franz and Michele Leone. Replica bounds for optimization problems and diluted spin
systems. Journal of Statistical Physics, 111(3):535–564, 2003. doi:10.1023/A:1022885828956.

36 Yuzhou Gu and Yury Polyanskiy. Uniqueness of bp fixed point for the potts model and
applications to community detection. arXiv preprint, arXiv:2303.14688, 2023.

37 Francesco Guerra. Broken replica symmetry bounds in the mean field spin glass model. Com-
munications in Mathematical Physics, 233(1):1–12, 2003. doi:10.1007/s00220-002-0773-5.

38 Michael A. Henning and Anders Yeo. 2-colorings in k-regular k-uniform hypergraphs. European
Journal of Combinatorics, 34(7):1192–1202, 2013. doi:10.1016/j.ejc.2013.04.005.

39 Michael A. Henning and Anders Yeo. Not-all-equal 3-sat and 2-colorings of 4-regular 4-uniform
hypergraphs. Discrete Mathematics, 341(8):2285–2292, 2018. doi:10.1016/j.disc.2018.05.
002.

40 Svante Janson, Tomasz Luczak, and Andrzej Rucinski. Random graphs. Wiley-Interscience
Series in Discrete Mathematics and Optimization. Wiley-Interscience, New York, 2000. doi:
10.1002/9781118032718.

41 Richard M. Karp. Reducibility among Combinatorial Problems, pages 85–103. Springer US,
Boston, MA, 1972. doi:10.1007/978-1-4684-2001-2_9.

42 Lefteris M. Kirousis, Evangelos Kranakis, Danny Krizanc, and Yannis C. Stamatiou. Approx-
imating the unsatisfiability threshold of random formulas. Random Structures Algorithms,
12(3):253–269, 1998. doi:10.1002/(SICI)1098-2418(199805)12:3<253::AID-RSA3>3.3.CO;
2-H.

https://doi.org/10.1103/physreve.77.031118
https://doi.org/10.1103/physreve.77.031118
https://doi.org/10.1007/978-3-642-03311-7
https://doi.org/10.1007/978-3-642-03311-7
https://doi.org/10.1145/2591796.2591862
https://doi.org/10.1145/2591796.2591862
https://doi.org/10.1145/2746539.2746619
https://doi.org/10.1007/s11511-017-0145-9
https://doi.org/10.4007/annals.2022.196.1.1
http://dl.acm.org/citation.cfm?id=645413.652160
http://dl.acm.org/citation.cfm?id=645413.652160
https://doi.org/10.1016/j.jctb.2015.01.002
https://doi.org/10.1016/j.jctb.2015.01.002
https://doi.org/10.1023/A:1022885828956
https://doi.org/10.1007/s00220-002-0773-5
https://doi.org/10.1016/j.ejc.2013.04.005
https://doi.org/10.1016/j.disc.2018.05.002
https://doi.org/10.1016/j.disc.2018.05.002
https://doi.org/10.1002/9781118032718
https://doi.org/10.1002/9781118032718
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1002/(SICI)1098-2418(199805)12:3<253::AID-RSA3>3.3.CO;2-H
https://doi.org/10.1002/(SICI)1098-2418(199805)12:3<253::AID-RSA3>3.3.CO;2-H

E. Chang, N. Kolhe, and Y. Sohn 47:23

43 Florent Krz̧akała, Andrea Montanari, Federico Ricci-Tersenghi, Guilhem Semerjian, and
Lenka Zdeborová. Gibbs states and the set of solutions of random constraint satisfaction
problems. Proceedings of the National Academy of Sciences, 104(25):10318–10323, 2007.
doi:10.1073/pnas.0703685104.

44 Marc Lelarge and Mendes Oulamara. Replica bounds by combinatorial interpolation for
diluted spin systems. Journal of Statistical Physics, 173(3–4):917–940, February 2018. doi:
10.1007/s10955-018-1964-6.

45 Stephan Mertens, Marc Mézard, and Riccardo Zecchina. Threshold values of random k-
sat from the cavity method. Random Structures & Algorithms, 28(3):340–373, 2006. doi:
10.1002/rsa.20090.

46 M. Mézard, G. Parisi, and R. Zecchina. Analytic and algorithmic solution of random satisfiab-
ility problems. Science, 297(5582):812–815, 2002. doi:10.1126/science.1073287.

47 Marc Mézard and Andrea Montanari. Information, physics, and computation. Oxford Graduate
Texts. Oxford University Press, Oxford, 2009. doi:10.1093/acprof:oso/9780198570837.001.
0001.

48 Andrea Montanari, Feng Ruan, Youngtak Sohn, and Jun Yan. The generalization error of
max-margin linear classifiers: Benign overfitting and high-dimensional asymptotics in the
overparametrized regime. arXiv, 2019. arXiv:1911.01544.

49 Danny Nam, Allan Sly, and Youngtak Sohn. One-step replica symmetry breaking of random
regular NAE-SAT I. arXiv preprint, 2020. arXiv:2011.14270.

50 Danny Nam, Allan Sly, and Youngtak Sohn. One-step replica symmetry breaking of random
regular NAE-SAT. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer
Science (FOCS), pages 310–318, 2022. doi:10.1109/FOCS52979.2021.00039.

51 Danny Nam, Allan Sly, and Youngtak Sohn. One-step replica symmetry breaking of random
regular NAE-SAT II. Communications in Mathematical Physics, 405(3):61, 2024. doi:
10.1007/s00220-023-04868-6.

52 Dmitry Panchenko and Michel Talagrand. Bounds for diluted mean-fields spin glass
models. Probability Theory and Related Fields, 130(3):319–336, 2004. doi:10.1007/
s00440-004-0342-2.

53 Boris Pittel and Gregory B. Sorkin. The satisfiability threshold for k-XORSAT. Combin.
Probab. Comput., 25(2):236–268, 2016. doi:10.1017/S0963548315000097.

54 P. D. Seymour. On the two-coloring of hypergraphs. The Quarterly Journal of Mathematics,
25(1):303–311, January 1974. doi:10.1093/qmath/25.1.303.

55 Mariya Shcherbina and Brunello Tirozzi. Rigorous solution of the Gardner problem. Commu-
nications in Mathematical Physics, 234(3):383–422, 2003.

56 Allan Sly and Youngtak Sohn. Local geometry of NAE-SAT solutions in the condensation
regime. arXiv preprint, 2023. arXiv:2305.17334.

57 Allan Sly, Nike Sun, and Yumeng Zhang. The number of solutions for random regular NAE-
SAT. In Proceedings of the 57th Symposium on Foundations of Computer Science, FOCS ’16,
pages 724–731, 2016.

58 Allan Sly, Nike Sun, and Yumeng Zhang. The number of solutions for random regular
NAE-SAT. Probability Theory and Related Fields, 182(1-2):1–109, 2022. doi:10.1007/
s00440-021-01029-5.

59 Michel Talagrand. Mean Field Models for Spin Glasses: Volume I. Springer-Verlag, Berlin,
2010.

60 Qian Yu and Yury Polyanskiy. Ising model on locally tree-like graphs: Uniqueness of solutions
to cavity equations. arXiv preprint, 2022. arXiv:2211.15242.

APPROX/RANDOM 2024

https://doi.org/10.1073/pnas.0703685104
https://doi.org/10.1007/s10955-018-1964-6
https://doi.org/10.1007/s10955-018-1964-6
https://doi.org/10.1002/rsa.20090
https://doi.org/10.1002/rsa.20090
https://doi.org/10.1126/science.1073287
https://doi.org/10.1093/acprof:oso/9780198570837.001.0001
https://doi.org/10.1093/acprof:oso/9780198570837.001.0001
https://arxiv.org/abs/1911.01544
https://arxiv.org/abs/2011.14270
https://doi.org/10.1109/FOCS52979.2021.00039
https://doi.org/10.1007/s00220-023-04868-6
https://doi.org/10.1007/s00220-023-04868-6
https://doi.org/10.1007/s00440-004-0342-2
https://doi.org/10.1007/s00440-004-0342-2
https://doi.org/10.1017/S0963548315000097
https://doi.org/10.1093/qmath/25.1.303
https://arxiv.org/abs/2305.17334
https://doi.org/10.1007/s00440-021-01029-5
https://doi.org/10.1007/s00440-021-01029-5
https://arxiv.org/abs/2211.15242

Improved Bounds for High-Dimensional
Equivalence and Product Testing Using Subcube
Queries
Tomer Adar #

Technion – Israel Institute of Technology, Haifa, Israel

Eldar Fischer #

Technion – Israel Institute of Technology, Haifa, Israel

Amit Levi #

University of Haifa, Israel

Abstract
We study property testing in the subcube conditional model introduced by Bhattacharyya and
Chakraborty (2017). We obtain the first equivalence test for n-dimensional distributions that is
quasi-linear in n, improving the previously known Õ(n2/ε2) query complexity bound to Õ(n/ε2).
We extend this result to general finite alphabets with logarithmic cost in the alphabet size.

By exploiting the specific structure of the queries that we use (which are more restrictive than
general subcube queries), we obtain a cubic improvement over the best known test for distributions
over {1, . . . , N} under the interval querying model of Canonne, Ron and Servedio (2015), attaining
a query complexity of Õ((log N)/ε2), which for fixed ε almost matches the known lower bound of
Ω((log N)/ log log N). We also derive a product test for n-dimensional distributions with Õ(n/ε2)
queries, and provide an Ω(

√
n/ε2) lower bound for this property.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms

Keywords and phrases Distribution testing, conditional sampling, sub-cube sampling

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.48

Category RANDOM

Funding Eldar Fischer : Research supported by an Israel Science Foundation grant number 879/22.

1 Introduction

Property testing seeks to efficiently distinguish between objects that have some property and
objects that are ε-far from any object that has it, with respect to a predefined metric and a
proximity parameter ε. Property testing of functions, and in particular string testing, was
initiated in [18, 6]. The term “efficiently” usually refers to a sublinear amount of resources
for moderately-sized tasks, but for high-dimensional inputs practicality mandates to restrict
this amount further to the poly-logarithmic scale.

The study of distribution testing was implicitly initiated in [14] (motivated by a problem
in graph testing), and formally defined as the sampling model in [2, 1]. In this model, the
algorithm gets access to a sequence of independent unconditional samples from the input
distribution, and then decides whether to accept or reject based on them. A major topic of
investigation concerns testing that a distribution over {1, . . . , n} is the uniform one. A long
string of results, starting with the original [14] and culminating in [17], has reached the tight
bound of Θ(

√
n/ε2).

A square-root lower bound on one of the most basic of properties is impractical in many
real-world settings. For example, the square-root sample complexity of uniformity testing
is impractical when the input ranges over 100-bit binary strings, an example which is still

© Tomer Adar, Eldar Fischer, and Amit Levi;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 48; pp. 48:1–48:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tomer-adar@campus.technion.ac.il
https://orcid.org/0009-0004-2371-1339
mailto:eldar@cs.technion.ac.il
mailto:alevi@cs.haifa.ac.il
https://orcid.org/0000-0002-8530-5182
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.48
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

48:2 Improved Bounds for High-Dim. Testing Using Subcube Queries

smaller than real-world inputs. There are three approaches to overcome this problem: the
first, on which we expand below, is moving to stronger query models. The second is narrowing
the scope of the allowable inputs, such as product distributions and Bayesian networks [8].
The third is moving to a model where the metric is more lax (usually coupled with an even
weaker query model), such as the Huge Object Model defined in [15] that is concerned with
the earth-mover distance metric.

We focus here on the first (and most common) approach to the scaling problem, that of
considering a model with stronger queries. In the distribution testing setting, this usually
focuses on conditional sampling. Instead of drawing a sequence of independent unconditional
samples, we allow the algorithm to choose a subset of the possible outcomes and draw a
sample conditioned on belonging to it. The models within this paradigm differ in the subset
conditions they allow.

The first investigation of such a model was the fully conditional model [10, 9]. In this
model, the algorithm can choose any subset to condition on. This model is very powerful
but not realistic. If we are able to restrict the input distribution to any subset, we probably
already have access to an explicit description of the distribution and thus have no need to
sample it.

Further studies consider restricted forms of the conditional model. For example, [9]
considers two additional models: the pair model and the interval model. In the pair model,
the algorithm can still draw unconditional samples, and additionally it can draw conditional
samples from any subset of two elements. Uniformity testing in the pair model requires
Θ̃(1/ε2) samples. In the interval model, we test distributions over Ω = {1, . . . , N} (for some
N), and the algorithm can condition on interval sets, which are sets of the form {a ≤ x ≤ b}.
The lower bound for uniformity testing in the interval model is Ω̃(log N). The best known
upper bound is Õ((log N)3/ε2).

The subcube conditional model [4] is motivated by database analysis. In this model,
we test distributions over the set

∏n
i=1 Ωi, and the algorithm can query subcube subsets,

which are sets of the form
∏n

i=1 Ai where Ai ⊆ Ωi for every 1 ≤ i ≤ n. While not being
extremely restrictive, its queries correspond to selection by attribute values, which is common
in practice. Some of the prior work refers to a weaker variant of this model, where each Ai is
either trivial (Ai = Ωi) or a singleton (Ai = {ai} for some ai ∈ Ωi). In this paper we mainly
deal with the strong model, where general Ai ⊆ Ωi are allowed. In the most investigated
setting, the binary setting where Ωi = {0, 1} for all i, the two models are the same.

Uniformity testing [7, 12] can be done in the weak model using Õ(m21√n/ε2) queries
where m = maxi |Ωi|, and requires at least Ω(

√
mn/ε2) queries [3]. Other properties studied

under the subcube model include identity to some fixed distribution [4, 5] and having a
probability density function supported on a low-dimensional subspace [11].

Two related properties are of particular interest in distribution testing, the identity
property and the equivalence property. In the identity property, a reference distribution is
given to the algorithm in advance, and the task is to check whether the input distribution is
identical to it. The equivalence property (henceforth: Equivalence) has an input consisting
of two distributions, both of which accessible through the testing model, and the task is to
check whether they are equal to each other.

In the subcube conditional model, since the input distribution is defined over a set
of tuples, another natural property is that of being a product distribution (henceforth:
Product). A distribution over tuples is called a product if its entries are independently
distributed.

T. Adar, E. Fischer, and A. Levi 48:3

Our main upper bound result is a test for Equivalence that for the binary setting
(Ωi = {0, 1}) uses only Õ(n/ϵ2) subcube queries, which improves on the previously known
result of Õ(n2/ε2) from [4]. Additionally our result uses only prefix queries from one
distribution and marginal prefix queries from the other, which we define below and are rather
restricted forms of subcube queries. One can think of prefix queries as the queries that can
be made fast when the database is sorted according to a concatenation of its attributes in a
pre-defined order (functioning as its primary key). Importantly, the use of restricted queries
allows us to derive an improved test also for Product, and to generalize the test to general
Ω1, . . . , Ωn with a logarithmic cost in the alphabet size.

The restricted form of our queries also allows us to tighten the previously known upper
bound on equivalence testing (and through it the special case of uniformity testing) in the
interval conditional model, obtaining an upper bound of Õ(log N/ε2) interval queries, which
matches the lower bound for every fixed ε up to poly-double-logarithmic factors in N .

We complement our upper bound for Product with an Ω(
√

n/ε2) lower bound. The
question of whether we can go below O(n) for testing our properties (even for the binary
setting and a fixed ε) remains open.

2 Organization of the paper

In Section 3 we summarize our contributions. After some preliminaries in Section 4, we
provide the core of our main proofs, followed by the more technical details. In Section 5 we
provide the Equivalence testing upper bound in the binary setting, and a short proof of
the corollary about interval queries. In Section 6 we provide the Product testing lower
bound.

The technical part of the paper follows. In Section 7 we prove the technical lemmas
whose proofs were deferred from Section 5. Then we prove the theorems derived from this
upper bound: in Section 8 we extend the Equivalence test to the non-binary setting, and
in Section 9 we derive a test for Product. In Section 10 we prove the technical lemmas
from Section 6.

All upper bound proofs implicitly construct their algorithms. For reference, explicit
representations of the binary setting algorithms for Equivalence and Product are given
in the appendix.

3 Our results

We improve on the previously known result of Õ(n2/ε2) queries for equivalence testing of two
distributions over {0, 1}n [4]. Our methods can also supersede the Õ(n/ε) algorithm of [5]
which tests identity with a distribution given in advance that belongs to a very restricted
class of inputs (their parameter refers to KL-divergence, which indeed incurs a quadratic gap
when converted to total-variation distance). We provide more details on the latter below
(before Lemma 25).

▶ Theorem 20. Let τ , µ be two distributions over {0, 1}n, where τ is accessible through the
prefix oracle access and µ is accessible through the marginal prefix oracle access. For every
ε > 0 we can distinguish between τ = µ and dTV(τ, µ) > ε using Õ(n/ε2) queries.

The prefix queries in the statement above are a special case of subcube queries, but they
can also be seen as interval queries, allowing us to prove the following corollary:

APPROX/RANDOM 2024

48:4 Improved Bounds for High-Dim. Testing Using Subcube Queries

▶ Corollary 21. Let τ , µ be two distributions over {1, . . . , N}, both accessible through the
interval oracle. Then we can distinguish between τ = µ and dTV(τ, µ) > ε using Õ((log N)/ε2)
queries.

We show a lower bound for testing a distribution µ over {0, 1}n for being a product. To
the best of our knowledge, it is the first lower bound for product testing in the binary setting.
Our construction is similar to the lower bound for uniformity testing of [8].

▶ Theorem 26. Every ε-test for Product must make at least Ω
(√

n/ε2)
subcube queries.

We generalize our upper bound for equivalence testing to strings of size n over larger
alphabets. Our result is incomparable with the previously known result of Õ(n5

ε5 log log |Ω|) [4].
Note that the cited result refers to strings over a single alphabet (that is, Ωn), whereas our
result refers to strings over mixed alphabets (that is,

∏n
i=1 Ωi). Additionally, our result is

more efficient when |Ω| is not very large with respect to n.

▶ Theorem 40. Let µ and τ be two distributions over
∏n

i=1 Ωi, where Ω1, . . . , Ωn are all
finite. If µ is accessible through the marginal prefix oracle and τ is accessible through the prefix
oracle, then we can distinguish between τ = µ and dTV(τ, µ) > ε using Õ(

∑n
i=1 log2 |Ωi|/ε2)

queries.

We apply the same generalization for product testing as well. In the binary setting, it
also improves on the previously known result of Õ(n2/ε2) [4].

▶ Theorem 45. Let µ be a distribution over
∏n

i=1 Ωi. For every 0 < ε < 1, we can distinguish
between the case where µ is a product distribution and the case where it is ε-far from every
product distribution at the cost of Õ(

∑n
i=1 log |Ωi|/ε2) subcube queries. Moreover, if |Ωi| = 2

for every 1 ≤ i ≤ n, then all these queries are prefix queries.

4 Preliminaries

For brevity, for m ∈ N we let [m] denote the set {1, . . . , m}.

▶ Definition 1 (Bernoulli distribution). Let 0 ≤ p ≤ 1. The Bernoulli distribution with
parameter p, denoted by Ber(p), is the distribution over {0, 1} whose probability to draw 1 is
p.

▶ Definition 2 (Conditional distribution). Let µ be a distribution over Ω, and let B ⊆ Ω be
an event. The corresponding conditional distribution is denoted by µ|B and is defined by
µ|B(x) = 0 for x /∈ B and µ|B(x) = µ(x)/ Prµ[B] for x ∈ B.

▶ Definition 3 (Index-restricted distribution). Let µ be a distribution over
∏n

i=1 Ωi, and let
I ⊆ [n] be a set of indices. We use µ|I to denote the distribution that draws x ∼ µ, and
returns the restricted string x|I ∈

∏
i∈I Ωi.

Note that the correct way to parse the overloaded notation µ|BI is “(µ|B)|I”, that is, we
first apply the condition and then restrict the indices.

▶ Definition 4 (Common statistical divergence measures). Let µ and τ be two distributions
over a finite set Ω. We use two well known divergence measures, namely the total-variation
distance dTV(µ, τ) = 1

2
∑

x∈Ω |µ(x)− τ(x)| = maxE⊆Ω |µ(E)− τ(E)| and the KL-divergence
DKL(µ, τ) = Ex∼µ

[
log2

µ(x)
τ(x)

]
.

T. Adar, E. Fischer, and A. Levi 48:5

Here we define the query model for distributions over binary strings. The definitions for
general alphabets appear in Section 8.

▶ Definition 5 (Subcube oracle access). Let µ be an unknown distribution over {0, 1}n. The
subcube oracle has a set I ⊆ [n] and a string w ∈ {0, 1}I as input, and its output distributes
as µ|xI =w. For technical reasons, if Prµ[xI = w] = 0, then the oracle indicates an error.
Note that the answers of the oracle are fully independent of the answers that were given to
previous queries.

We note that the “error behavior” in the above definition does not really affect our results,
since all our upper bounds use only restrictions to guaranteed positive probability outcomes,
while our lower bounds use distributions that have no zero-probability elements.

▶ Definition 6 (Prefix oracle access). Let µ be an unknown distribution over {0, 1}n. The
prefix oracle is a restricted case of the subcube oracle, where I = [k] for some 0 ≤ k ≤ n− 1.

▶ Definition 7 (Marginal subcube oracle access). Let µ be an unknown distribution over
{0, 1}n. The marginal subcube oracle has a set I ⊆ [n], an index i ∈ [n] \ I and a string
w ∈ {0, 1}I as input, and its output is a single bit that distributes as µ|xI =w

i . For technical
reasons, if Prµ[xI = w] = 0, then the oracle indicates an error.

▶ Definition 8 (Marginal prefix oracle access). Let µ be an unknown distribution over {0, 1}n.
The marginal prefix oracle is a restricted case of the marginal subcube oracle, where I =[i−1].

We now define the interval querying model for which we derive a new bound.

▶ Definition 9 (Interval oracle access). Let µ be an unknown distribution over [N]. The
interval oracle has two elements 1 ≤ a ≤ b ≤ N as input, and its output distributes as
µ|{a,...,b}.

We next define our properties for distributions over general alphabet strings, and what it
means to test for a property.

▶ Definition 10 (Equivalence). A pair of distributions µ, τ over
∏n

i=1 Ωi belongs to the
equivalence property if µ = τ . The distance of a given pair (µ, τ) from Equivalence is
explicitly defined as dTV(µ, τ) instead of the natural infν(dTV(µ, ν) + dTV(τ, ν)). The two
quantities are easily seen to be identical using the triangle inequality.

▶ Definition 11 (Product). A distribution µ over
∏n

i=1 Ωi is called a product distribution
if there exist distributions µ1, . . . , µn over Ω1, . . . , Ωn respectively, for which µ ∼ µ1×· · ·×µn.
We denote by Product the set of all product distributions over

∏n
i=1 Ωi.

▶ Definition 12 (ε-test). For some property P of distributions (which is a set of distributions)
and ε > 0, we say that an algorithm A is an ε-test for P if:

For every input distribution µ ∈ P, A accepts with probability at least 2
3 .

For every input distribution µ for which dTV(µ, ν) > ε for all ν ∈ P, A rejects with
probability at least 2

3 .

5 Linear algorithm for Equivalence

To construct our improvement on the algorithm of [4], we first define some templates for
analyzing and comparing differences between distributions.

APPROX/RANDOM 2024

48:6 Improved Bounds for High-Dim. Testing Using Subcube Queries

▶ Definition 13 (Single-bit divergence). We call d : [0, 1] × [0, 1] → [0,∞) a single-bit
divergence if:

For every p, q ∈ [0, 1], d(p, q) = 0 if and only if p = q (Positivity).
For every p′ ≤ p ≤ q ≤ q′, d(p, q) ≤ d(p′, q′) and d(q, p) ≤ d(q′, p′) (Monotonicity).

Three useful single-bit divergences are TV(p, q) = |p−q|, KL(p, q) = p log2
p
q +(1−p) log2

1−p
1−q

and χ2(p, q) = (p−q)2

(p+q)(2−(p+q)) . Note that all three are derived from their probability-theoretic
counterparts for Ber(p) and Ber(q). We have two motivations to prefer this non-standard
form of χ2: first, the symmetry matches the idea of two unknown distributions, which is not
the case in standard χ2-tests, and second, it is bounded by 1, which makes the analysis more
similar to total-variation distance than to KL-divergence.

▶ Definition 14 (Slice-wise divergence). Let d be a single-bit divergence. For every n and
two distributions τ , µ over {0, 1}n, the slice-wise divergence of τ and µ with respect to d is:

∆d(τ, µ) =
n∑

i=1
E

w∼τ

[
d(τ |x[i−1]=w[i−1]

i (1), µ|x[i−1]=w[i−1]
i (1))

]
(note that the d-divergence is fed the probabilities of the two single-bit distributions to draw 1).

Recall the Õ(n5/poly(ε)) algorithm of [4], which is actually Õ(n2/ε2) for the binary
setting. As a motivation, the paper uses (and has a self-contained proof of) the following
bound:

dTV(τ, µ) ≤
n∑

i=1
E

w∼τ

[
dTV(τ |x[i−1]=w[i−1]

i , µ|x[i−1]=w[i−1]
i)

]
= ∆TV(τ, µ)

The algorithm then distinguishes between ∆TV(τ, µ) = 0 (which always holds if τ = µ) and
∆TV(τ, µ) > ε (which always holds if dTV(τ, µ) > ε).

To improve their test, inside the slice-wise divergence expression we substitute the single-
bit total-variation distance with the single-bit χ2-distance, and analyze the more convenient
∆χ2(τ, µ).

The following is immediate, and in fact holds for every slice-wise divergence:

▶ Observation 15. Let τ , µ be two distributions over {0, 1}n. If τ = µ then ∆χ2(τ, µ) = 0.

The following lemma, which we prove in Subsection 5.1, provides the conversion from the
total variation distance to the slice-wise chi-square divergence.

▶ Lemma 16. Let τ , µ be two distributions over {0, 1}n. If τ ≠ µ, then ∆χ2(τ, µ) ≥
(dTV(τ,µ))2

24 log(2n/dTV(τ,µ)) .

The following lemma, which we prove in Section 7, states that we can distinguish between
single bit distributions using linearly many samples with respect to the inverse of their
χ2-divergence.

▶ Lemma 17. Let p, q ∈ [0, 1] be two probabilities. Given unconditional sampling access to
Ber(p) and Ber(q), we can distinguish, with probability 2

3 , between the case where p = q and
the case where χ2(p, q) > ε, at the cost of O(1/ε) samples from each of them.

We use a common variant of the Levin’s work balance method:

T. Adar, E. Fischer, and A. Levi 48:7

▶ Lemma 18 ([16], optimization exercise in [13]). Let X be a non-negative random variable
that is bounded by 1. Assume that there exists some random variable Y such that for
every y ∈ supp(Y) and every ε′ > 0, we can distinguish between E[X|Y = y] = 0 and
E[X|Y = y] > ε′ using some black-box algorithm whose resource cost is O(1/ε′). Also,
assume that we can draw independent unconditional samples from Y at resource cost O(1)
per sample. Then we can distinguish between E[X] = 0 and E[X] > ε at a total resource cost
of O(ε−1 log2(1/ε)).

Using the above we can efficiently detect a large slicewise χ2 divergence between two
distributions.

▶ Lemma 19. Let τ , µ be two distributions over {0, 1}n. Then for every ρ > 0, we can
distinguish between ∆χ2(τ, µ) = 0 and ∆χ2(τ, µ) > ρ using O(n

ρ log2 n
ρ) prefix queries.

Proof. We normalize the divergence:

1
n

∆χ2(τ, µ) = 1
n

n∑
i=1

E
w∼τ

[
χ2(τ |x[i−1]=w[i−1]

i (1), µ|x[i−1]=w[i−1]
i (1))

]
= E

w∼τ
i∼[n]

[
χ2(τ |x[i−1]=w[i−1]

i (1), µ|x[i−1]=w[i−1]
i (1))

]
Then we apply Levin’s method, Lemma 18, with the following input. Y is a random

variable that receives a value (i, w) where i is uniformly drawn from [n] and w is drawn from
τ (independently of i). The parameter ε is set to ρ/n, and the random variable X is defined
as a function of Y = (i, w) (meaning that it is constant when conditioned on a specific value
of Y) by

X(i, w) = χ2 (
µ|x[i−1]=w[i−1]

i (1), τ |x[i−1]=w[i−1]
i (1)

)
The distinction between the cases X(Y) = 0 and X(Y) > ε′ is performed using O(1/ε′)
many queries (our resource cost) through the single-bit χ2-test of Lemma 17. ◀

Our main theorem follows immediately from the above statements:

▶ Theorem 20. Let τ , µ be two distributions over {0, 1}n, where τ is accessible through the
prefix oracle access and µ is accessible through the marginal prefix oracle access. For every
ε > 0 we can distinguish between τ = µ and dTV(τ, µ) > ε using Õ(n/ε2) queries.

Proof. Apply Lemma 19 using ρ = ε2

24 log(2n/ε) . Completeness follows from Observation 15
and soundness follows from Lemma 16. ◀

▶ Corollary 21. Let τ , µ be two distributions over {1, . . . , N}, both accessible through the
interval oracle. Then we can distinguish between τ = µ and dTV(τ, µ) > ε using Õ((log N)/ε2)
queries.

Proof. Without loss of generality, assume that N = 2ℓ for some integer ℓ (otherwise we
just pad the two distributions with zero-probability elements). For every i ≥ 0, let bini :
{0, . . . , 2i−1} → {0, 1}i and unbini : {0, 1}i → {0, . . . , 2i−1} be the mappings between small
integers and their representation as i-bit strings. That is, unbini(x1, . . . , xi) =

∑i
j=1 2i−jxi

and bini = (unbini)−1.
To apply our equivalence algorithm on distributions over [N], every t ∈ [N] is interpreted

as an ℓ-bit string (using the map t → binℓ(t − 1)). Then every prefix query τ |x|[i−1]=w

(respectively µ|x|[i−1]=w) is simulated using the interval query τ |{a,...,b} (respectively µ|{a,...,b}),
where a = 2N−iunbini−1(w)+1 and b = 2N−i(unbini−1(w)+1). Since the simulated algorithm
uses Õ(ℓ/ε2) prefix queries, the simulation uses Õ((log N)/ε2) interval queries. ◀

APPROX/RANDOM 2024

48:8 Improved Bounds for High-Dim. Testing Using Subcube Queries

5.1 Proof of Lemma 16
The proof works by comparing the TV-distance and the slice-wise chi-square divergence with
the KL-divergence, which is equal to its slice-wise version as per the following lemmas.

▶ Lemma 22 (Basic chain rule for DKL, folklore). Let µ and τ be distributions over Ω. Then
for every random variable X : Ω→ R, we have the equality DKL(µ, τ) = DKL(X(µ), X(τ)) +
Ex∼X(τ)

[
DKL

(
µ|X=x, τ |X=x

)]
.

▶ Lemma 23 (Chain rule for DKL, repeated form). Let µ and τ be distributions over {0, 1}n.
Then DKL(µ, τ) =

∑n
i=1 Ew∼µ

[
DKL(µ|x[i−1]=w[i−1]

i , τ |x[i−1]=w[i−1]
i)

]
= ∆KL(µ, τ).

Proof. We obtain this result by repeatedly applying the basic chain rule using induction. ◀

The following technical lemma, proved in Section 7, provides some connection between
the chi-square distance and the KL-divergence of Bernoulli distributions.

▶ Lemma 24. Let p, q ∈ [0, 1]. Then χ2(p, q) ≥ 1
12 KL(p, q)/ log max{ 1

q , 1
1−q}.

At this point we prove a version of Lemma 16 for a parameterized restricted case. We
then reduce the general case to this lemma using an appropriate parameter. We note here
that if we were to use the following parameterized lemma directly instead of Lemma 16, we
would have obtained a direct generalization of the binary setting part of [5, Theorem 4.1].

▶ Lemma 25. Let 0 < q < 1
2 . Assume that for every 1 ≤ i ≤ n and for every condition

w ∈ {0, 1}i−1, the prefix marginal µ|x[i−1]=w

i is equivalent to τ |x[i−1]=w

i or equivalent to
Ber(pi,w) for some q ≤ pi,w ≤ 1− q (or both). Then ∆χ2(τ, µ) ≥ 1

6 (dTV(τ, µ))2/ log q−1.

Proof. By Pinsker’s inequality and Lemma 23 we obtain:

2(dTV(τ, µ))2 ≤ DKL(τ, µ) =
n∑

i=1
E

w∼τ

[
KL

(
τ |x[i−1]=w[i−1]

i (1), µ|x[i−1]=w[i−1]
i (1)

)]
By our assumption, for every 1 ≤ i ≤ n, if DKL(τ |x[i−1]=w[i−1]

i , µ|x[i−1]=w[i−1]
i) ̸= 0 then the

probability of µ|x[i−1]=w[i−1]
i to draw 1 is between q and 1− q. By Lemma 24 we obtain:

2(dTV(τ, µ))2 ≤
n∑

i=1
E

w∼τ

[
χ2 (

τ |x[i−1]=w[i−1]
i (1), µ|x[i−1]=w[i−1]

i (1)
)
· 12 log q−1]

That is,

(dTV(τ, µ))2

6 log q−1 ≤
n∑

i=1
E

w∼τ

[
χ2 (

τ |x[i−1]=w[i−1]
i (1), µ|x[i−1]=w[i−1]

i (1)
)]

= ∆χ2(τ, µ) ◀

We could bound the KL-divergence of single bits using the χ2 distance only because we
assumed that the marginal probabilities of µ are not too close to 0 or 1 (unless they are
equal to their counterparts in τ). In the general case we cannot assume it, hence we need to
instead consider a distribution µ′ which is close to µ while satisfying this assumption.

We consider µ as a “probability tree”, where the root represents the empty string,
every edge represents an additional bit, and every leaf represents a complete sample. This
tree (and hence the distribution µ) is fully determined using probabilities of the form
Prx∼µ[xi = 1|x[i−1] = w], where 1 ≤ i ≤ n and w ∈ {0, 1}i−1.

T. Adar, E. Fischer, and A. Levi 48:9

We construct another distribution µ′ based on such a tree pattern. For every 1 ≤ i ≤ n

and w ∈ {0, 1}i−1, we set Prx∼µ′ [xi = 1|x[i−1] = w] as follows:

min
{

dTV(τ, µ)
2n

, Pr
x∼τ

[xi = 1|x[i−1] = w]
}

if Pr
x∼µ

[xi = 1|x[i−1] = w] <
dTV(τ, µ)

2n

1−min
{

dTV(τ, µ)
2n

, Pr
x∼τ

[xi = 0|x[i−1] = w]
}

if Pr
x∼µ

[xi = 1|x[i−1] = w] > 1− dTV(τ, µ)
2n

Pr
x∼µ

[xi = 1|x[i−1] = w] otherwise

Observe that for every 1 ≤ i ≤ n and w ∈ {0, 1}i−1, dTV
(
µ|x[i−1]=w

i , µ′|x[i−1]=w

i

)
≤ dTV(τ,µ)

2n .
Hence, dTV(µ, µ′) ≤ ∆TV(µ, µ′) ≤ 1

2 dTV(τ, µ). By the triangle inequality, dTV(τ, µ′) ≥
1
2 dTV(τ, µ).

Since the assumptions of Lemma 25 hold for µ′ (with q = 1
2n dTV(τ, µ)), we can now

conclude the proof of Lemma 16:

∆χ2(τ, µ) =
n∑

i=1
E

w∼τ

[
χ2 (

τ |x[i−1]=w[i−1]
i (1), µ|x[i−1]=w[i−1]

i (1)
)]

[Monotonicity of χ2] ≥
n∑

i=1
E

w∼τ

[
χ2 (

τ |x[i−1]=w[i−1]
i (1), µ′|x[i−1]=w[i−1]

i (1)
)]

[Lemma 25 with q = 1
2n dTV(τ, µ)] ≥ (dTV(τ, µ′))2

/
6 log 2n

dTV(τ, µ)

[dTV(τ, µ′) ≥ 1
2 dTV(τ, µ)] ≥ (dTV(τ, µ))2

/
24 log 2n

dTV(τ, µ) ◀

6 Lower bound for Product

This section is devoted to the following lower bound:

▶ Theorem 26. Every ε-test for Product must make at least Ω
(√

n/ε2)
subcube queries.

Let πn denote the uniform distribution over {0, 1}n. We show that distinguishing between
πn (which is in particular a product distribution) and a distribution that is ε-far from every
product distribution requires Ω̃(

√
n/ε2) many queries.

Before we present our construction, we cite the corresponding lower bound for uniformity
of a product distribution [8]:

▶ Lemma 27 ([8]). Let N be the following distribution over inputs: draw b1, . . . , bn ∼
{+1,−1} uniformly and independently, and return the distribution

∏n
i=1 Ber

(
1
2 + bi

ε√
n

)
.

Then the drawn input is always Ω(ε)-far from πn, and any unconditional sampling algorithm
that distinguishes between inputs drawn from N and πn must take at least Ω(

√
n/ε2) many

samples.

In our construction, instead of adding a random bias for each coordinate, we partition the
coordinates into pairs, and in each pair introduce a random “anti-product bias” as follows.

For b ∈ {0, +1,−1}, let νb be the following distribution over {0, 1}2:

νb(00) = 1
4 + bi

ε√
n

νb(01) = 1
4 − bi

ε√
n

νb(10) = 1
4 − bi

ε√
n

νb(11) = 1
4 + bi

ε√
n

That is, ν0 is the uniform distribution over two bits, and ν+1, ν−1 are non-product distribu-
tions over two bits.

APPROX/RANDOM 2024

48:10 Improved Bounds for High-Dim. Testing Using Subcube Queries

Let Y be the distribution over inputs that always returns the uniform distribution over
{0, 1}n, and let N be the following distribution over “bad” inputs over {0, 1}n: we partition
[n] into fixed pairs (for example, (2i− 1, 2i) for every 1 ≤ i ≤ ⌊n/2⌋). For every pair we draw
bi ∈ {+1,−1} uniformly and independently. The distribution of the ith pair is νbi . All pairs
are independent of each other. We assume that n is even, since for an odd n we can just
assume that the nth bit is distributed uniformly and independently of the rest.

The following lemma, whose proof appears in Section 10, states that N always draws a
distribution far from Product.

▶ Lemma 28. Every input distribution drawn from N is Ω(ε)-far from any product distribu-
tion.

We now prove the indistinguishability of N from the uniform distribution, starting with
the sampling model, to which we later show a reduction from the subcube conditional model.

▶ Lemma 29. An unconditional sampling algorithm that distinguishes between the uniform
distribution and inputs that are drawn from N must make Ω(

√
n/ε2) many queries.

Proof. Without loss of generality, assume that n is even. Consider the following bijection
over {0, 1}2: (x, y)→ (x⊕ y, y). For b ∈ {+1, 0,−1}, Let ν′

b be the distribution that draws
(x, y) ∼ νb and returns (x⊕ y, y). Observe that ν′

b is identical to the product distribution
Ber(1

2 + 2bε√
n

) × Ber(1
2). Let f : {0, 1}n → {0, 1}n be a bijection that applies the above

mapping for every pair individually.
Let N ′ be the distribution over inputs that draws µ ∼ N , and then returns the distribution

that draws x ∼ µ and returns f(x). Note also that the distribution that drawn x ∼ πn and
returns f(x) is identical to πn. Since f is a bijection, this means that the number of samples
needed to distinguish between the uniform distribution and N is exactly the same as the
number of samples needed to distinguish between the uniform distribution and N ′.

Note that the form of a distribution resulting from N ′ is
∏n/2

i=1

(
Ber

(
1
2 + 2biε√

n

)
× Ber

(1
2
))

.
The restriction of N ′ to odd indexes is identical to the construction of Lemma 27 (with
parameters

√
2ε and n/2), which requires at least Ω(

√
n/ε2) many unconditional samples to

distinguish between it and the uniform distribution. Hence, this is also a lower bound for
the number of samples needed to distinguish between the uniform distribution and inputs
drawn from N . ◀

▶ Lemma 30. Let b ∈ {0, +1,−1}. Then for every subcube restriction q ∈ {0, 1, ∗}2, we can
simulate a q-conditioned sample from νb by drawing a single unconditional sample from νb,
without having any knowledge about b.

Proof. Let q ∈ {0, +1, ∗}2 and let b ∈ {0, +1,−1}. We first draw an unconditional sample
x ∼ νb. There are three kinds of subcube restrictions:

Trivial: q ∈ {00, 01, 10, 11}. To simulate such a query, we simply return q, ignoring the
unconditional sample we have.
Unconditional: q = ∗∗. To simulate such a query, we simply return x.
Single restriction: q ∈ {0∗, 1∗, ∗0, ∗1}. We denote the parity of x by p = x|1 ⊕ x|2, and
construct the output as the concatenation of the two bits out1 and out2, based on the
following table:

q 0∗ 1∗ ∗0 ∗1
out1 0 1 p 1⊕ p

out2 p 1⊕ p 0 1

T. Adar, E. Fischer, and A. Levi 48:11

The correctness of the output in the trivial case and the unconditional case is trivial. We
prove the correctness of the single-restriction case only for q = 0∗, since the other cases are
analogous.

Pr
νb

[00|0∗] = Prνb
[00]

Prνb
[0∗] =

1
4 + biε√

n

1
4 + biε√

n
+ 1

4 −
biε√

n

= 1
2 +2 biε√

n
= Pr

νb

[00∨11] = Pr
x∼νb

[x|1⊕x|2 = 0] ◀

At this point we can prove Theorem 26.

Proof of Theorem 26. By Lemma 28, N draws an input distribution that is Ω(ε)-far from
any product distribution. Observe that since the structure of the pairs is known in advance
and since they are independent, we can simulate every q-subcube-query algorithm using a
q-unconditional-sample algorithm: for each query we draw a single sample and then use the
simulation procedure of Lemma 30 for every pair in itself.

Since an unconditional test requires Ω(
√

n/ε2) queries to distinguish inputs drawn from
N from the uniform distribution by Lemma 29, and every subcube query to the uniform
distribution or an input drawn from N can be simulated using a single unconditional query,
the lower bound holds for subcube algorithms as well. ◀

7 Technical proofs for Equivalence testing

Here we prove the lemmas deferred from Section 5. We start with some helper lemmas.

▶ Lemma 31. Let 0 ≤ p ≤ q ≤ 1 for which p + q ≤ 1 and let X be the sum of N independent
bits drawn from Ber(p). Then,

Pr[X ≥ 1
2(p + q)N] ≤ e− 1

12 χ2(p,q)

Proof. Let δ = q − p. If δ ≤ 2p then by Chernoff’s bound:

Pr[X ≥ 1
2(p + q)N] = Pr[X ≥ (1 + δ

2p
) E[X]]

≤ e
− δ2

12p2 pN = e− δ2
12p N ≤ e− (p−q)2

12(p+q)(2−(p+q)) N = e− 1
12 χ2(p,q)N

If δ > 2p then:

Pr[X ≥ 1
2(p + q)N] = Pr[X ≥ (1 + δ

2p
) E[X]]

≤ e− δ
6p pN = e− δ

6 N ≤ e− (q−p)2
6(p+q) ≤ e− 1

12 χ2(p,q)N ◀

▶ Lemma 32. Let 0 ≤ p ≤ q ≤ 1 for which p + q ≤ 1 and let X be the sum of N independent
bits drawn from Ber(q). Then,

Pr[X ≤ 1
2(p + q)N] ≤ e− 1

8 χ2(p,q) ≤ e− 1
12 χ2(p,q)

Proof. Let δ = q − p ≤ q. By Chernoff’s bound:

Pr[X ≤ 1
2(p + q)N] = Pr[X ≤ (1− δ

2q
) E[X]]

≤ e
− δ2

8q2 qN = e− δ2
8q N ≤ e− (p−q)2

8(p+q)(2−(p+q)) N = e− 1
8 χ2(p,q)N ◀

APPROX/RANDOM 2024

48:12 Improved Bounds for High-Dim. Testing Using Subcube Queries

▶ Lemma 33. Let p, q ∈ [0, 1]. Let X be the sum of N independent bits drawn from Ber(p)
and Y be the sum of N independent bits drawn from Ber(q). Then, with probability at least(

1− e− 1
12 χ2(p,q)N

)2
, the sign of X − Y matches the sign of p− q.

Proof. Without loss of generality, p + q ≤ 1 (otherwise use 1− q and 1− p instead of p and
q, noting that d(1− q, 1− p) = d(p, q) and that the sign of (1− q)− (1− p) matches the sign
of p− q).

If p = q then the lemma is vacuously correct. If p < q, then by Lemma 31,

Pr[X − Y < 0] = Pr[X < Y] ≥ Pr[X <
1
2(p + q)N] Pr[Y >

1
2(p + q)N]

≥
(

1− e
1

12 χ2(p,q)N
)2

The case where p > q is analogous, using Lemma 32. ◀

We recall and prove Lemma 17:

▶ Lemma 17. Let p, q ∈ [0, 1] be two probabilities. Given unconditional sampling access to
Ber(p) and Ber(q), we can distinguish, with probability 2

3 , between the case where p = q and
the case where χ2(p, q) > ε, at the cost of O(1/ε) samples from each of them.

Proof. We repeat the following procedure 64 times: let N = ⌈24/ε⌉. Also, let X be the sum
of N independent samples drawn from Ber(p) and Y be the sum of N independent samples
drawn from Ber(q). To conclude a single trial we check whether A > B or A < B (or neither)
holds.

Let A be the number of trials with X > Y and B be the number of trials with X < Y .
If |A|, |B| ≤ 40 we accept (p = q), and otherwise we reject (χ2(p, q) > ε).

If p = q, then by symmetry, E[X < Y] = E[X > Y] ≤ 1
2 . That is, E[A] = E[B] ≤ 32. By

Chernoff’s bound, Pr[A ≥ 41] < e−2·92/64 < 1
6 and Pr[B ≥ 41] < 1

6 . Hence, the probability
to accept is at least 1− 2

6 = 2
3 .

If χ2(p, q) > ε, then by Lemma 33, one of Pr[X < Y] and Pr[X > Y] is at least
(1− e− 1

12 χ2(p,q)N)2 ≥ (1− e−2)2 > 0.74. Without loss of generality, we assume that p < q.
In this case, E[A] > 47.36. By the Chernoff bound, the probability to reject is at least
1− Pr[A ≤ 40] ≥ 1− e−2·7.362/64 > 2

3 . ◀

▶ Lemma 34 (Well known). For p, q ∈ [0, 1], KL(p, q) ≤ (p−q)2

q(1−q) . More formally, in (0, 1)×
(0, 1), the ratio between these expressions is a non-negative continuous function that is
bounded by 1.

▶ Lemma 35 (Direct corollary). Let p, q ∈ [0, 1]. If p = aq for some real a, then

KL(aq, q) ≤ (a− 1)2

1− q
q

Finally, we recall and prove Lemma 24:

▶ Lemma 24. Let p, q ∈ [0, 1]. Then χ2(p, q) ≥ 1
12 KL(p, q)/ log max{ 1

q , 1
1−q}.

Proof. We actually prove that χ2(p, q)/KL(p, q) ≥ 1
12 log max{ 1

q , 1
1−q } for every p ∈ [0, 1] and

q ∈ (0, 1). For the edge cases of q (which we do not use in our proofs anyway except when
p = q), the bound remains correct by considering the limit of KL(p, q)/ log max{ 1

q , 1
1−q}.

T. Adar, E. Fischer, and A. Levi 48:13

Without loss of generality, q ≤ 1
2 . We can assume so since χ2(p, q) = χ2(1 − p, 1 − q),

KL(p, q) = KL(1− p, 1− q) and max{log 1/q, log 1/(1− q)} = max{log 1/(1− q), log 1/(1−
(1− q))}. Based on this assumption it is sufficient to show that χ2(p,q)

KL(p,q) ≥
1

12 log q−1 .
Let a = p/q (0 < a ≤ 1/q). If a ≥ 2:

χ2(aq, q) ≥ (a− 1)2

2(a + 1)q

KL(aq, q) ≤ p log p

q
≤ a log q−1 · q

χ2(aq, q)
KL(aq, q) ≥ (a− 1)2

2a(a + 1) log q−1 ≥
1

12 log q−1

If a ≤ 2:

χ2(aq, q) ≥ (a− 1)2

2(a + 1)q

KL(aq, q) ≤ (a− 1)2

1− q
q

χ2(aq, q)
KL(aq, q) ≥ 1− q

2(a + 1) ≥
1

12 log q−1

where the very last inequality uses the assumption that q ≤ 1
2 . ◀

8 Extending the Equivalence test to general alphabets

We extend the definitions of the prefix oracle to non-binary settings.

▶ Definition 36 (Subcube oracle access in non-binary strings). Let µ be an unknown distribution
over

∏n
i=1 Ωn, where Ω1, . . . , Ωn are all finite. The subcube oracle has as input a tuple

(A1, . . . , An) where Ai ⊆ Ωi for every 1 ≤ i ≤ n. The output distributes as µ|
∏n

i=1
Ai . For

technical reasons, if Prµ[
∏n

i=1 Ai] = 0, then the oracle indicates an error. Note that the
answers of the oracle are fully independent of the answers that were given to previous queries.

In the corresponding definition for a prefix oracle, we still demand that until the “break-off
index” i all conditions force single outcomes from the sets Ωj , while after the break-off index
there are no restrictions at all. However, at index i we allow conditions to any subset of Ωi

to take place. There is no such distinction in the binary case, where |Ωi| = 2 and hence all
non-trivial conditions are to a single outcome.

▶ Definition 37 (Prefix oracle access in non-binary settings). Let µ be an unknown distribution
over

∏n
i=1 Ωn, where Ω1, . . . , Ωn are all finite. The input of the prefix oracle consists of

an index 1 ≤ i ≤ n, which we refer to as the index of the prefix, elements aj ∈ Ωj for
every 1 ≤ j ≤ i − 1, and a condition A ⊆ Ωi. The output of the oracle distributes like
µ|{x:xi∈A∧x1=a1,...,xi−1=ai−1}.

▶ Definition 38 (Marginal subcube oracle access in non-binary settings). Let µ be an unknown
distribution over

∏n
i=1 Ωn, where Ω1, . . . , Ωn are all finite. The marginal subcube oracle has

as input an index i and a tuple (A1, . . . , An) where Aj ⊆ Ωj for every 1 ≤ j ≤ n. The output

distributes as µ|
∏n

j=1
Aj

i . For technical reasons, if Prµ[
∏n

i=1 Ai] = 0, then the oracle indicates
an error.

APPROX/RANDOM 2024

48:14 Improved Bounds for High-Dim. Testing Using Subcube Queries

▶ Definition 39 (Marginal prefix oracle access in non-binary settings). Let µ be an unknown
distribution over

∏n
i=1 Ωn, where Ω1, . . . , Ωn are all finite. The input of the marginal prefix

oracle consists of an index 1 ≤ i ≤ n, which we refer to as the index of the prefix, elements
aj ∈ Ωj for every 1 ≤ j ≤ i− 1, and a condition A ⊆ Ωi. The output of the oracle distributes
like µ|{x:xi∈A∧x1=a1,...,xi−1=ai−1}

i .

Based on these definitions, we state Theorem 40:

▶ Theorem 40. Let µ and τ be two distributions over
∏n

i=1 Ωi, where Ω1, . . . , Ωn are all
finite. If µ is accessible through the marginal prefix oracle and τ is accessible through the prefix
oracle, then we can distinguish between τ = µ and dTV(τ, µ) > ε using Õ(

∑n
i=1 log2 |Ωi|/ε2)

queries.

Before we prove Theorem 40, we need the following.

▶ Lemma 41 (Binary form of a composite distribution). Let µ be a distribution over
∏n

i=1 Ωi,
where Ω1, . . . , Ωn are non-empty finite sets. There exists a distribution µ∗ over the set
{0, 1}

∑n

i=1
⌈log2 |Ωi|⌉ that is equivalent to µ up to relabeling, for which every subcube (respect-

ively prefix) query to µ∗ can be simulated using a single subcube (respectively prefix) query
to µ, and every marginal subcube (respectively prefix) query to µ∗ can be simulated using a
single marginal subcube (respectively prefix) query to µ.

Proof. For every 1 ≤ i ≤ n, let fi : Ωi → {0, 1}⌈log2 |Ωi|⌉ be an arbitrary injective function
from Ωi to {0, 1}⌈log2 |Ωi|⌉. Let f :

∏n
i=1 Ωi → {0, 1}

∑n

i=1
⌈log2 |Ωi|⌉ be the concatenation

of these mappings. More precisely, f((x1, . . . , xn)) = concatenate(f1(x1), . . . , fn(xn)). Let
N =

∑n
i=1 ⌈log2 |Ωi|⌉.

For every 1 ≤ i ≤ n, we define a projection function gi : {0, 1}
∑n

j=1
⌈log2 |Ωi|⌉ → Ωi by

gi(x) = (fi)−1
(

x|{∑i−1
j=1

⌈log2 |Ωj |⌉+1,...,
∑i

j=1
⌈log2 |Ωj |⌉}

)
where gi(x) is defined arbitrarily if the corresponding binary string is not in fi’s image, as
this will be a zero-probability event. Observe that for every (x1, . . . , xn) ∈

∏n
i=1 Ωi and for

every 1 ≤ i ≤ n, xi = gi(f(x1, . . . , xn)).
Let µ∗ be the distribution over {0, 1}

∑n

i=1
⌈log2 |Ωi|⌉ that draws x ∼ µ and returns f(x).

Since f is an injective function, µ∗ is equivalent to µ up to relabeling.
For simulating subcube queries consider some I∗ ⊆ [N] and w∗ ∈ {0, 1}I∗ . For every 1 ≤

i ≤ n and x∗ ∈ {0, 1}N , let xi = gi(x∗) (that is, we decompose x∗ using x∗ = f(x1, . . . , xn)).
Also, for every 1 ≤ i ≤ n, let Ai(I∗, w∗) =

{
gi(s∗) : s∗ ∈ {0, 1}N ∧ s∗|I∗ = w∗}

. Based on
this composition, we obtain:

{
x∗ ∈ {0, 1}N : x∗|I∗ = w∗}

=
{

f(x1, . . . , xn) :
n∧

i=1
(xi ∈ Ai(I∗, w∗))

}

The last expression is the f -image of all elements in the µ-subcube condition
∏n

i=1 Ai(I∗, w∗).
Hence, every subcube query of µ∗ can be simulated using a single subcube query to µ.

Observe that this construction preserves prefix queries. That is, if a subcube query to µ∗

is a prefix query, then the simulated subcube query to µ is a prefix query as well. Note that
this argument holds for marginal queries as well, since we can extract the relevant bit of the
sampled coordinate. ◀

Theorem 40 now follows.

T. Adar, E. Fischer, and A. Levi 48:15

Proof of Theorem 40. Let µ and τ be two distributions over
∏n

i=1 Ωi, where Ω1, . . . , Ωn

are all finite. We use Lemma 41 to define two distributions µ∗, τ∗ that are identical to µ, τ

respectively up to relabeling (which is the same in both constructions). Based on this lemma:
dTV(τ∗, µ∗) = dTV(τ, µ), since µ∗, τ∗ are the same as µ, τ up to relabeling (which is the
same for both constructions µ→ µ∗ and τ → τ∗).
Every prefix query to τ∗ can be simulated using a single prefix query to τ .
Every marginal prefix query to µ∗ can be simulated using a single marginal prefix query
to µ.

Hence, we can distinguish between τ = µ and dTV(τ, µ) > ε using Theorem 20 with the input
(µ∗, τ∗, ε) by simulating every query to τ∗ or µ∗ through a single query to the corresponding
input distribution τ or µ. ◀

9 Upper bound for Product

We reduce a test for Product to a test for Equivalence, based on the following key
observation:

▶ Observation 42. Let µ be a distribution over
∏n

i=1 Ωi. If µ is ε-far from any product
distribution, then in particular it is ε-far from the product of its marginals,

∏n
i=1 µ|i.

In the binary setting, simulating a marginal prefix query to the product of marginals
is pretty straightforward and can be done using one unconditional query to µ, which is in
particular a prefix query:

▶ Observation 43. Let µ be a distribution over {0, 1}n, and let µ′ =
∏n

i=1 µ|i be the
product of µ’s marginals. Then we can simulate every marginal prefix query to µ′ using one
unconditional sample from µ (and keeping its ith entry).

In the general setting, we need the stronger subcube access. The reason is that when
taking a prefix marginal query at index i from the binary representation of µ′ =

∏n
j=1 µ|j , it

may be that that i is “in the middle” of the ⌈log |Ωj |⌉-bit representation of jth coordinate of
µ′, and then this query must translate to a non-trivial set Aj ⊆ Ωj when simulating it using
query access to µ.

▶ Observation 44. Let µ be a distribution over
∏n

i=1 Ωi, and let µ′ =
∏n

i=1 µ|i be the product
of µ’s marginals. Then we can simulate every marginal prefix query to µ′ using one subcube
query to µ.

At this point, we can prove Theorem 45.

▶ Theorem 45. Let µ be a distribution over
∏n

i=1 Ωi. For every 0 < ε < 1, we can distinguish
between the case where µ is a product distribution and the case where it is ε-far from every
product distribution at the cost of Õ(

∑n
i=1 log |Ωi|/ε2) subcube queries. Moreover, if |Ωi| = 2

for every 1 ≤ i ≤ n, then all these queries are prefix queries.

Proof. Let µ′ =
∏n

i=1 µ|i be the product of µ’s marginals. If µ is a product distribution then
µ′ = µ, and if µ is ε-far from every product distribution, then in particular dTV(µ, µ′) > ε.

Since µ is accessible through the subcube oracle, we can use Observation 44 to simulate
every marginal prefix query to µ′ at the cost of one subcube query to µ. If |Ωi| = 2 for
every 1 ≤ i ≤ n, then we can use an unconditional sample instead of a subcube query by
Observation 43.

Hence, we can reduce the ε-test of µ for Product to an ε-test of the equivalence of µ′

and µ, which we perform using Theorem 40. As noted above, this produces subcube queries
for general alphabets, and only prefix queries for the binary setting. ◀

APPROX/RANDOM 2024

48:16 Improved Bounds for High-Dim. Testing Using Subcube Queries

10 Technical proofs for the Product lower bound

Recall that we denote the uniform distribution over {0, 1}n by πn.
Before we prove Lemma 28, we need the following technical lemmas.

▶ Lemma 46. For a string y ∈ {0, 1}n, let C1(y) be the number of 1s in y. If n ≥ 70, then
Pry∼πn

[C1(y) > 1
2 n + 1

4
√

n] ≥ 1
4 .

Proof. We use the well-known bound
(

n
⌊n/2⌋

)
≤ 2n ·

√
2

πn (for all n ≥ 1) to obtain for n ≥ 70:

Pr
y∼πn

[∣∣∣∣C1(y)− 1
2n

∣∣∣∣ ≤ 1
4
√

n

]
=

⌊ 1
2 n+ 1

4
√

n⌋∑
k=⌈ 1

2 n− 1
4

√
n⌉

Pr
y∼πn

[C1(y) = k]

[Since
(

n
k

)
≤

(
n

⌊n/2⌋
)
] ≤

(
2 · 1

4
√

n + 1
)

2−n

(
n

⌊n/2⌋

)
≤

(
1
2
√

n + 1
) √

2√
πn
≤ 1

2

By symmetry reasons, if n ≥ 70 then:

Pr
y∼πn

[
C1(y) >

1
2n + 1

4
√

n

]
= 1

2 Pr
y∼πn

[∣∣∣∣C1(y)− 1
2n

∣∣∣∣ >
1
4
√

n

]
= 1

2

(
1− Pr

y∼πn

[∣∣∣∣C1(y)− 1
2n

∣∣∣∣ ≤ 1
4
√

n

])
≥ 1

4 ◀

▶ Lemma 47. Let 0 < δ < 1
4

√
n

and τ be a product distribution over {0, 1}n. For sufficiently
large n, if

∣∣Prτ [xi = 1]− 1
2
∣∣ > δ for every 1 ≤ i ≤ n, then the distance of τ from the uniform

distribution over {0, 1}n is at least 1
16 δ
√

n.

Proof. Without loss of generality, we can assume that Prτ [xi = 1] ≥ 1
2 for every 1 ≤ i ≤ n.

Otherwise, we can negate the “wrong” bits while preserving the distance from the uniform
distribution. Based on this assumption, we have a product distribution whose probability to
draw 1 at any individual index is at least 1+δ

2 .
Let τ ′ be the product distribution whose probability to draw 1 at any index is exactly

1+δ
2 . Observe that the distance of τ ′ from the uniform distribution is a lower bound of the

distance of τ from the uniform distribution.
Let y ∈ {0, 1}n be a string, and let C1(y) (respectively C0(y)) be the number of 1s

(respectively 0s) in y. If C1(y) ≥ 1
2 n + 1

4
√

n, then:

Prτ ′ [y]
Prπn [y] = (1 + δ)C1(y) · (1− δ)n−C1(y)

= (1 + δ)C1(y)−C0(y) · ((1 + δ)(1− δ))C0(y)

≥ (1 + δ)
√

n/2 · ((1 + δ)(1− δ)) 1
2 n− 1

4
√

n

= (1 + δ)
√

n/2 · (1− δ2) 1
2 n− 1

4
√

n

≥ (1 + δ)
√

n/2 · (1− δ2) 1
2 n

[(1 + a)b ≥ 1 + ab for b ≥ 1, |a| < 1] ≥
(

1 + 1
2δ
√

n

)
·
(

1− 1
2δ2n

)
[δ < 1

4
√

n
] ≥ 1 + 1

4δ
√

n

T. Adar, E. Fischer, and A. Levi 48:17

In particular,

Pry∼τ ′
[
C1(y) > 1

2 n + 1
4
√

n
]

Pry∼πn

[
C1(y) > 1

2 n + 1
4
√

n
] ≥ 1 + 1

4δ
√

n

Since Pry∼πn

[
C1(y) > 1

2 n + 1
4
√

n
]
≥ 1

4 by Lemma 46, we obtain that dTV(τ ′, πn) ≥
1
4 δ
√

n · 1
4 = 1

16 δ
√

n. ◀

We recall and prove Lemma 28:

▶ Lemma 28. Every input distribution drawn from N is Ω(ε)-far from any product distribu-
tion.

Proof. Without loss of generality, we assume that n is even. Let b1, . . . , bn/2 ∈ {+1,−1} be
the parameters of the construction, that is, the drawn input is µ =

∏n/2
i=1 νbi

. Recall that for
b ∈ {+1,−1}, Prνb

[x1 = 1] = Prνb
[x2 = 1] = 1

2 and Prνb
[x1 ⊕ x2 = 1] = 1

2 −
2bε√

n
. We assume

that n is sufficiently large so that ⌊n/6⌋ satisfies the constraints of Lemma 47.
For a given product distribution τ , for every 1 ≤ i ≤ n/2, let:

δi,0 = Pr
τ

[x2i = 1]− 1
2

δi,1 = Pr
τ

[x2i−1 = 1]− 1
2

δi,2 = Pr
τ

[x2i ⊕ x2i−1 = 1]− 1
2

Let I0 be the set of indexes for which |δi,0| > ε
10

√
n

. Let I1 be defined analogously for δi,1,
and let I2 = [n/2] \ (I0 ∪ I1) be the set of all other indexes. Since |I0|+ |I1|+ |I2| = n/2, at
least one of them contains at least 1

6 n elements.

Case I. |I0| ≥ 1
6 n. Let I = {2i : i ∈ I0}. Observe that µ|I is uniform over {0, 1}n/2, since

µ is the product of n/2 independent distributions over pairs whose marginals are 1
2 , and

every pair contributes exactly one index. According to Lemma 47,

dTV(τ, µ) ≥ dTV(τ |I , µ|I) ≥ 1
16 ·

ε

10
√

n
·
√

1
6n = 1

160
√

6
ε >

1
400ε

Case II. |I1| ≥ 1
6 n. Completely analogous to Case I. Again dTV(τ, µ) > 1

400 ε.

Case III. |I2| ≥ 1
6 n. For every i ∈ I2, |δi,0|, |δi,1| ≤ ε

10
√

n
. Hence,

|δi,2| =
∣∣∣∣Pr

τ
[x2i−1 ⊕ x2i = 1]− 1

2

∣∣∣∣ =
∣∣∣∣(1

2 − δi,0

) (
1
2 + δi,1

)
+

(
1
2 + δi,0

) (
1
2 − δi,1

)
− 1

2

∣∣∣∣
= 2|δi,0||δi,1| ≤

ε2

50n

Let I = {2i : i ∈ I2} ∪ {2i− 1 : i ∈ I2} Let f : {0, 1}I → {0, 1}|I2| be the function that
maps every pair in I2 to its parity bit. In other words, for every i ∈ I2, the bits x2i−1, x2i are
mapped to a single bit x2i−1 ⊕ x2i. Let µ′ (respectively τ ′) be the distribution over {0, 1}|I2|

that draws a sample x ∼ µ (respectively x ∼ τ) and returns f(x). Observe that both µ′ and
τ ′ are product distributions over {0, 1}|I2|, since the pairs are independent and every pair is
mapped into a single bit.

APPROX/RANDOM 2024

48:18 Improved Bounds for High-Dim. Testing Using Subcube Queries

Note that dTV(τ ′, π|I2|) ≤ ∆TV(τ ′, π|I2|) =
∑|I2|

i=1 dTV (τ ′|i, Ber(1/2)) ≤ |I2| · ε2

50n ≤
1

50 ε2.
In µ′, by definition of the νbs, all marginals have the form 1

2 ±
ε√
n

, hence by Lemma 47,

dTV(µ′, π|I2|) ≥
1
16 ·

ε√
n
·
√

1
6n = ε

16
√

6
≥ 1

40ε

By a data processing inequality and the triangle inequality,

dTV(µ, τ) ≥ dTV(µ′, τ ′) ≥ dTV(µ′, π|I2|)− dTV(τ ′, π|I2|) ≥
1
40ε− 1

50ε2 >
1

400ε ◀

References
1 Tugkan Batu, Eldar Fischer, Lance Fortnow, Ravi Kumar, Ronitt Rubinfeld, and Patrick

White. Testing random variables for independence and identity. In Proceedings 42nd IEEE
Symposium on Foundations of Computer Science, pages 442–451. IEEE, 2001.

2 Tugkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren D Smith, and Patrick White. Testing
that distributions are close. In Proceedings 41st Annual Symposium on Foundations of
Computer Science, pages 259–269. IEEE, 2000.

3 Arnab Bhattacharyya, Sutanu Gayen, Saravanan Kandasamy, and NV Vinodchandran. Testing
product distributions: A closer look. In Algorithmic Learning Theory, pages 367–396. PMLR,
2021.

4 Rishiraj Bhattacharyya and Sourav Chakraborty. Property testing of joint distributions using
conditional samples. CoRR, abs/1702.01454, 2017. arXiv:1702.01454.

5 Antonio Blanca, Zongchen Chen, Daniel Štefankovič, and Eric Vigoda. Complexity of high-
dimensional identity testing with coordinate conditional sampling. In The Thirty Sixth Annual
Conference on Learning Theory, pages 1774–1790. PMLR, 2023.

6 Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applications
to numerical problems. J. Comput. Syst. Sci., 47(3):549–595, 1993.

7 Clément L Canonne, Xi Chen, Gautam Kamath, Amit Levi, and Erik Waingarten. Random
restrictions of high dimensional distributions and uniformity testing with subcube conditioning.
In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
321–336. SIAM, 2021.

8 Clément L Canonne, Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. Testing bayesian
networks. In Conference on Learning Theory, pages 370–448. PMLR, 2017.

9 Clément L Canonne, Dana Ron, and Rocco A Servedio. Testing probability distributions using
conditional samples. SIAM Journal on Computing, 44(3):540–616, 2015.

10 Sourav Chakraborty, Eldar Fischer, Yonatan Goldhirsh, and Arie Matsliah. On the power of
conditional samples in distribution testing. In Proceedings of the 4th conference on Innovations
in Theoretical Computer Science, pages 561–580, 2013.

11 Xi Chen, Rajesh Jayaram, Amit Levi, and Erik Waingarten. Learning and testing junta
distributions with sub cube conditioning. In Conference on Learning Theory, pages 1060–1113.
PMLR, 2021.

12 Xi Chen and Cassandra Marcussen. Uniformity testing over hypergrids with subcube condi-
tioning. In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 4338–4370. SIAM, 2024.

13 Oded Goldreich. Introduction to property testing. Cambridge University Press, 2017.
14 Oded Goldreich and Dana Ron. On testing expansion in bounded-degree graphs. Studies

in Complexity and Cryptography. Miscellanea on the Interplay between Randomness and
Computation, pages 68–75, 2011.

15 Oded Goldreich and Dana Ron. Testing distributions of huge objects. TheoretiCS, 2, 2023.
16 Leonid A Levin. One-way functions and pseudorandom generators. In Proceedings of the

seventeenth annual ACM symposium on Theory of computing, pages 363–365, 1985.

https://arxiv.org/abs/1702.01454

T. Adar, E. Fischer, and A. Levi 48:19

17 Liam Paninski. A coincidence-based test for uniformity given very sparsely sampled discrete
data. IEEE Transactions on Information Theory, 54(10):4750–4755, 2008.

18 Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with applications
to program testing. SIAM Journal on Computing, 25(2):252–271, 1996.

A Explicit algorithms

We provide here explicit representations for the binary setting algorithms constructed in this
paper.

Levin’s work-balance method

For a random variable X that is bounded between 0 and 1, it distinguishes between E[X] = 0
and E[X] > ε. To do that, we use another random variable Y , for which we can distinguish
between E[X|Y = y] = 0 and E[X|Y = y] > ρ for every 0 < ρ < 1, at a cost of O(1/ρ).
Overall, the cost of the algorithm is O(log2 ε−1/ε). The original construction is found in [16]
and the following optimized version appears as an exercise in [13].

The black box is run a logarithmic number of times for every y that we draw (as opposed
to once in, for example, [13, Exercise 8.4]) since it refers here to a procedure with two-sided
error.

Algorithm 1 Levin’s work-balance producedure.

input Y – a random variable, accessible through unconditional sampling.
input ε – a threshold parameter.
input A random black box that, for every y ∈ supp(Y) and 0 < ε′ < 1:

completeness if E[X|Y = y] = 0, it accepts with at least probability 2/3.
soundness if E[X|Y = y] > ε′, it rejects with probability at least 2/3.
resource cost complexity O(1/ε′).

completeness If E[X] = 0, then the output is accept with probability at least 2/3.
soundness If E[X] > ε, then the output is reject with probability at least 2/3.
resource cost complexity O(log2 ε−1/ε).
for t from 1 to ⌈log2(2/ε)⌉ do

let ε′ ← 2−t.
for

⌈
23−tε−1⌉

times do
draw y ∼ Y .
set r ← 0.
for

⌈
64(log2 ε−1 + 2)

⌉
times do

run the black box with (y, ε′).
if the black box accepts then

set r ← r + 1.
else

set r ← r − 1.
if r < 0 then

return reject.
return accept.

APPROX/RANDOM 2024

48:20 Improved Bounds for High-Dim. Testing Using Subcube Queries

χ2-test of single-bit distributions

The following is the algorithm that detects the difference between two Bernoulli distributions
as it was described in Lemma 17.

Algorithm 2 χ2-test of single-distributions.

input Two Bernoulli distributions Ber(p) and Ber(q), accessible through samples.
completeness If p = q, then the algorithm accepts with probability at least 2/3.
soundness If χ2(p, q) > ε, then the algorithm rejects with probability at least 2/3.
complexity O(1/ε) samples.
let N ← ⌈16/ε⌉.
set A, B ← 0.
for 64 times do

draw N independent samples from Ber(p), let X be their sum.
draw N independent samples from Ber(q), let Y be their sum.
if X > Y then

set A← A + 1.
if X < Y then

set B ← B + 1.
if A ≤ 40 and B ≤ 40 then

return accept.
else

return reject.

Testing Equivalence

The proof of Theorem 20 translates to the following explicit algorithm.

Algorithm 3 ε-test for binary-alphabet Equivalence.

input n, ε > 0, two distributions µ, τ over {0, 1}n.
µ is accessible through the marginal prefix oracle.
τ is accessible through the prefix oracle.

completeness If τ = µ, then the output is accept with probability at least 2
3 .

soundness If dTV(τ, µ) > ε, then the output is reject with probability at least 2
3 .

let π be the uniform distribution over [n].
let Y be a random variable that distributes as π × τ .
let X be a random variable defined as a function of Y = (i, w):

X(i, w) = χ2 (
µ|x[i−1]=w[i−1]

i (1), τ |x[i−1]=w[i−1]
i (1)

)
let ρ← ε2

24 log(ε/2n) .
run Levin’s procedure (Algorithm 1), where its input consists of Y , ρ/n, and the black
box ((i, w), ε′)→ (Algorithm 2 with input µ|x[i−1]=w[i−1]

i , τ |x[i−1]=w[i−1]
i and ε′).

if Levin’s procedure accepts then
return accept.

else
return reject.

T. Adar, E. Fischer, and A. Levi 48:21

Testing Product

The proof of Theorem 45 translates in the binary setting to the following explicit algorithm.
Note that it is almost identical to Algorithm 3, since we only substitute the marginal prefix
oracle τ |x[i−1]=w[i−1]

i with the marginal oracle of µ.

Algorithm 4 ε-test for binary-alphabet Product.

input n, ε > 0, a distribution µ over {0, 1}n.
µ is accessible through the prefix oracle.

completeness If µ ∈ Product, then the output is accept with probability at least 2
3 .

soundness If min
τ∈Product

dTV(µ, τ)>ε, then the output is reject with probability at least
2
3 .
let π be the uniform distribution over [n].
let Y be a random variable that distributes as π × µ.
let X be a random variable defined as a function of Y = (i, w):

X(i, w) = χ2 (
µ|x[i−1]=w[i−1]

i (1), µ|i(1)
)

let ρ← ε2

24 log(ε/2n) .
run Levin’s procedure (Algorithm 1), where its input consists of Y , ρ/n, and the black
box ((i, w), ε′)→ (Algorithm 2 with input µ|x[i−1]=w[i−1]

i , µ|i and ε′).
if Levin’s procedure accepts then

return accept.
else

return reject.

APPROX/RANDOM 2024

Parallelising Glauber Dynamics
Holden Lee #

Department of Applied Mathematics and Statistics, The Johns Hopkins University,
Baltimore, MD, USA

Abstract
For distributions over discrete product spaces

∏n

i=1 Ω′
i, Glauber dynamics is a Markov chain that

at each step, resamples a random coordinate conditioned on the other coordinates. We show that
k-Glauber dynamics, which resamples a random subset of k coordinates, mixes k times faster in
χ2-divergence, and assuming approximate tensorization of entropy, mixes k times faster in KL-
divergence. We apply this to obtain parallel algorithms in two settings: (1) For the Ising model
µJ,h(x) ∝ exp(1

2 ⟨x, Jx⟩ + ⟨h, x⟩) with ∥J∥ < 1 − c (the regime where fast mixing is known), we
show that we can implement each step of ‹Θ(n/∥J∥F)-Glauber dynamics efficiently with a parallel
algorithm, resulting in a parallel algorithm with running time ‹O(∥J∥F) = ‹O(

√
n). (2) For the mixed

p-spin model at high enough temperature, we show that with high probability we can implement
each step of ‹Θ(

√
n)-Glauber dynamics efficiently and obtain running time ‹O(

√
n).

2012 ACM Subject Classification Theory of computation → Random walks and Markov chains

Keywords and phrases sampling, Ising model, parallel algorithm, Markov chain, Glauber dynamics

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.49

Category RANDOM

Related Version Full Version: https://arxiv.org/abs/2307.07131

Acknowledgements I want to thank Leo Du, Frederic Koehler, and Nicolas Loizou for helpful
discussions.

1 Introduction

A key problem in computer science and statistics is to sample from a probability distribution
given its probability mass function up to a constant of proportionality. The problem has
been studied both over discrete spaces (such as Ωn for a finite set Ω) and continuous spaces
(such as Rn); the goal is to give efficient algorithms for general classes of distributions, and in
particular, to obtain optimal scaling in the dimension n. In this work we focus on minimizing
the parallel running time, assuming a polynomial number of processors. In Rn, it is natural
to change multiple coordinates at a time using gradient-based algorithms such as Langevin
dynamics and Hamiltonian Monte Carlo; many results have given algorithms that require a
sublinear number of steps for log-concave distributions in various settings.

However, on discrete product spaces Ωn, the canonical algorithm, Glauber dynamics,
involves resampling coordinates one at a time, and hence requires at least n steps in general.
A natural attempt to speed up Glauber dynamics with parallel computation is to resample
k coordinates at a time. We establish that under general conditions, this simple idea does
indeed speed up Glauber dynamics by a factor of approximately k.

To obtain a parallel algorithm, the task remains to give a fast parallel method of resampling
k coordinates. We show that this can be done in the case of the Ising model µJ,h over {±1}n

when the interaction matrix J is bounded away from 1 in operator norm, ∥J∥ < 1− c, and
in the case of the mixed p-spin model at high enough temperature, both of which are known
to enjoy rapid mixing of standard Glauber dynamics.

© Holden Lee;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 49; pp. 49:1–49:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hlee283@jhu.edu
https://orcid.org/0000-0003-3534-8739
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.49
https://arxiv.org/abs/2307.07131
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

49:2 Parallelising Glauber Dynamics

The Ising model is a classical model from statistical physics which has probability mass
function on {±1}n given by

µJ,h(x) = 1
ZJ,h

exp
Å

1
2 ⟨x, Jx⟩+ ⟨h, x⟩

ã
, where ZJ,h =

∑
x∈{±1}n

exp
Å

1
2 ⟨x, Jx⟩+ ⟨h, x⟩

ã
.

The regime ∥J∥ < 1 is exactly where (based on information of the operator norm alone)
Glauber dynamics is known to have fast mixing [24, 8]. To sample k coordinates, we use
approximate rejection sampling with a product distribution and a further recursion for certain
“bad” sets. By taking k = ‹Θ(n/ ∥J∥F), we obtain an algorithm with parallel running time‹O(∥J∥F) = ‹O(

√
n).

The mixed p-spin model with coefficients β2, β3, . . . and external field h ∈ Rn is the
random measure on {±1}n given by1

µβ,g,h(x) ∝ exp(Hβ,g,h(x)),

where Hβ,g,h(x) =
∞∑

p=2

βp

√
p!

n
p−1

2

∑
1≤i1<···<ip≤n

gi1,··· ,ip
xi1 · · ·xip

+
n∑

i=1
hixi (1)

and gi1,...,ip
∼ N(0, 1). By taking k = Θ(

√
n), we obtain an algorithm with parallel running

time ‹O(
√

n).

1.1 Main results
Let µ be a distribution on

∏n
i=1 Ω′i. We define k-Glauber dynamics as the Markov chain which

given a sample x ∈
∏n

i=1 Ω′i, chooses a subset S ⊆ [n] uniformly at random among subsets of
size k, and resamples the coordinates in S conditional on coordinates in Sc, according to the
distribution of µ. Let Pµ,k denote its Markov kernel.

We show that under general conditions, k-Glauber dynamics mixes k times faster in both
χ2 and KL-divergence. We say that a Markov kernel P with stationary distribution µ satisfies
ρ-contraction in χ2-divergence if Dχ2(νP∥µ) ≤ ρDχ2(ν∥µ) and similarly for DKL; this can
be iterated to give a mixing time bound. See Section 2.2 for background on functional
inequalities (Poincaré inequality and approximate tensorization of entropy).

▶ Theorem 1.1 (k-Glauber mixes k times faster). Let µ be a distribution on Ω =
∏n

i=1 Ω′i,
and let 1 ≤ k ≤ n. Below, let C ≥ 1.
1. If µ satisfies a Poincaré inequality with constant Cn, then Pµ,k satisfies a Poincaré

inequality with constant O
(

Cn
k

)
, and satisfies (1− Ω

(
k

Cn

)
)-contraction in χ2-divergence.

2. If µ satisfies C-approximate tensorization of entropy (so that Pµ satisfies (1− Ω
(1

Cn

)
)-

contraction in KL-divergence), then Pµ,k satisfies (1 − Ω
(

k
Cn

)
)-contraction in KL-

divergence.
Here, the O(·) and Ω(·) hide only universal constants. The Poincaré inequality is equivalent
to contraction in χ2-divergence, so part (1) gives a Ω(k)-factor speedup to mixing in χ2. The
analogue of the Poincaré inequality for KL is a modified log-Sobolev inequality. Although we
need the slightly stronger notion of approximate tensorization of entropy to prove a speedup
to mixing in KL, we note that many works that establish a modified log-Sobolev inequality
do so using tensorization of entropy [12, 8]. See Section 2 for relevant background on mixing
for Markov chains.

1 The factor
√

p! arises as we index only over increasing sequences.

H. Lee 49:3

We prove Theorem 1.1 as Corollary 3.6 of the more general Theorem 3.5. We view k-
Glauber dynamics as randomly erasing k coordinates one by one, and then adding them back
one by one according to the right conditional distributions. This realizes k-Glauber dynamics
as a composition of down and up operators Dn→n−1 · · ·Dn−k+1→n−kUn−k→n−k+1 · · ·Un−1→n.
The assumptions give contraction of Dn→n−1, and our general theorem shows that the
contraction of each Dj→j−1 is at least as good as Dn→n−1 (except for an additive factor).
To do this, we realize Dj→j−1 as Dn→n−1 tensorized with erasure “noise” and projected, and
bound how the factor of contraction changes under these operations. We make an analogy
to bounding the Poincaré and log-Sobolev constants of a distribution µ on Rn convolved
with Gaussian noise, and the proximal sampler based on iteratively adding and removing
Gaussian noise (more specifically, sampling from the posterior distribution given a noisy
Gaussian observation of the sample from µ).

Algorithmically, the challenge with implementing k-Glauber dynamics is that naive
enumeration for the transition kernel takes 2k time, and hence we must find a way to use the
structure of the distribution to implement each step more efficiently. We show that in the case
of the Ising model, we can efficiently simulate k-Glauber dynamics for k = ‹O (n/

∥∥∥J�
∥∥∥

F

)
, to

obtain a parallel algorithm running in time ‹O (∥∥∥J�
∥∥∥

F

)
, where J� denotes J with diagonal

entries set to 02. Under the assumption that ∥J∥ < 1, this is always at most ‹O(
√

n).

▶ Theorem 1.2. Let c > 0. With appropriate choice of constants depending only on c, if J

is symmetric positive semi-definite with ∥J∥ ≤ 1− c, then ParallelIsingSampler (Algorithm 1)
with appropriate constants outputs a sample ε-close in TV distance from the Ising model
µJ,h and, with probability at least 1− ε, runs in time O

(
max

{∥∥∥J�
∥∥∥

F
, 1
}

poly log
(

n
ε

))
on

a parallel machine with poly(n) processors.

We note that our algorithm is a high-accuracy sampler: the only dependence on ε is a
poly-logarithmic dependence in the running time. Notably, the number of processors does
not depend on ε. We rely on the result [8] that gives optimal (O(n ln n)) mixing times for
the Ising model for ∥J∥ < 1 based on the theory of entropic independence.

The first attempt to implement k-Glauber dynamics is to approximate the conditional
distribution of k coordinates using a carefully chosen product distribution and use rejection
sampling. Using concentration results (the Hanson-Wright inequality), if

∥∥∥J�S×S

∥∥∥
F

is small
for the randomly chosen set S, then this succeeds with high probability. The complication
is that

∥∥∥J�S×S

∥∥∥
F

can sometimes be large. If this is the case, then we recurse on JS×S . By

controlling the expected size of
∥∥∥J�S×S

∥∥∥
F

, we show that the recursive calls form a subcritical
branching process and with high probability, add at most a polylogarithmic overhead to the
running time.

▶ Theorem 1.3. Consider the mixed p-spin model (1). There exists an absolute constant
δ > 0 such that if

∑
p≥2

√
p3 ln p · βp < δ and D(β) =

∑
p≥2

√
2pp3 ln p · βp <∞, then with

probability 1− exp(−Ω(n)) over g, given query access to Hβ,g,h, there is an algorithm which
outputs a sample ε-close in TV distance from µβ,g,h and, with probability at least 1− ε, runs
in time OD(β)

(√
n poly log

(
n
ε

))
on a parallel machine with poly

(
n
ε

)
processors.

2 While changing the diagonal entries of J does not change the Ising model, we need to allow J to have
nonzero diagonal entries in order to be positive semi-definite.

APPROX/RANDOM 2024

49:4 Parallelising Glauber Dynamics

Algorithm 1 Parallel Ising Sampler (ParallelIsingSampler).

1: Input: Interaction matrix J ∈ Rn×n, subset R of size m, external field h ∈ RR, error
parameter ε ∈ (0, 1

2).
2: Let εstep = ε

2nC4 .
3: if

∥∥∥J�R×R

∥∥∥
F
≤ c3

ln
(

2
εstep

)
+1

(J� denotes J with diagonal entries set to 0) then

4: y ← [QuadraticApproxRejectionSampler
(

H(x)= 1
2 ⟨x, JR×Rx⟩+⟨h, x⟩ , c3

ln
Å

2
εstep

ã
+1

, εstep

)
.

(See Algorithm 2.)
5: else

6: Let s =

 c1m(
ln
(

2
εstep

)
+1
)

ln(n
ε)
∥∥∥∥J�

R×R

∥∥∥∥
F

.

7: Let T =
⌊
C2 ln

(
n
ε

)
m
s

⌋
.

8: Draw y from the product distribution ν0(x) ∝ e⟨h,x⟩.
9: for t from 1 to T do

10: Choose S ⊆ R a random subset of size s.
11: z ←[ParallelIsingSampler(J, S, JS×R\SyR\S + hS , ε)
12: Set yS = z.
13: end for
14: end if
15: Output: y (Approximate sample from µJR×R,h).

Note that a recursion is not necessary in this algorithm. Intuitively, the mean-field nature
of the p-spin model ensures that with high probability all marginal distributions of O(

√
n)

coordinates are well-approximated by a product distribution. Though we do not investigate
this further, a recursive algorithm could potentially eliminate the poly(1/ε) dependence on
the number of processors as in Theorem 1.2. The proof of Theorem 1.3 is in Section 5 in the
full version.

We view our result on the Ising model and the p-spin model as proofs of concept for
parallelisation using k-Glauber dynamics, and hope it serves as a useful framework for
constructing parallel algorithms for other families of discrete distributions. As discussed in
the next section, using a different parallel algorithm, the work [35] obtains Theorem 1.2 but
not Theorem 1.3.

1.2 Related work
We note that our Theorem 1.1 can be viewed as a complement of “local-to-global” results for
mixing of the down-up walks [41, 1, 19], and is not implied by those results. Those results
aim to establish mixing of Glauber dynamics (or the down-up walk) from mixing of simpler
chains, while we start by assuming mixing of Glauber dynamics. In particular, [19] apply
the reverse strategy: for the spin systems on graphs they consider, they show that mixing of
θn-Glauber dynamics (for appropriate θ) implies mixing of Glauber dynamics.

When contraction of Glauber dynamics is derived directly from either spectral or entropic
independence using local-to-global arguments, then the same arguments can be used to
establish mixing of the k-Glauber (e.g., using k-uniform block factorization of entropy [19],
the analogue of approximate tensorization of entropy). However, this does not apply for
distributions for which mixing is established through other methods. The recent work [9]

H. Lee 49:5

shows that a Poincaré inequality implies spectral independence, but the bound obtained for
k-Glauber through spectral independence is lossy (resulting in a power of n). Our work can
be seen as giving a general conceptual reason why mixing for Glauber must imply mixing for
k-Glauber.

1.2.1 Continuous sampling
For log-concave distributions on Rn, a long line of works on the underdamped Langevin
algorithm and Metropolis-adjusted Langevin algorithm have led to high-accuracy sampling
using ‹O(n1/2) steps [3]. The randomized midpoint method for underdamped Langevin
dynamics allows sampling in the weaker Wasserstein metric in ‹O(n1/3) steps [45], and
can furthermore be fully parallelised to obtain ε error with poly

(
n
ε

)
processors. These

dependencies are assuming the condition number is O(1).
We note that the Ising model for ∥J∥ < 1 can be decomposed as a log-concave mixture

of product distributions [30, 10, 32], so these algorithms give an alternative approach to
parallel algorithms for the Ising model. However, this decomposition is highly specific to the
Ising model. Moreover, the Wasserstein guarantee is incompatible with a TV guarantee, and
the complexity of our approach scales with ∥J∥F .

1.2.2 Parallel algorithms for discrete sampling
Recent work [6, 4, 7] has investigated the question of obtaining fast parallel algorithms for
approximate sampling in settings where fast parallel algorithms for approximate counting
(or computing a partition function) exist. In particular, for distributions satisfying transport
stability and where the log-Laplace transform can be efficiently calculated (e.g., using the
efficient algorithm for computing partition functions), [7] gives a poly log(n/ε)-time algorithm
with poly(n/ε) many processors (i.e., a RNC algorithm). This includes problems such as
determinantal point processes and Eulerian tours. Notably they use the continuous algorithm
(randomized midpoint method, discussed above) even though the problem is discrete.

In the setting of Ising models, however, we do not have a fast parallel algorithm for
counting. Several works [26, 35] have studied the problem assuming the associated Dobrushin
influence matrix has bounded norm. By using simultaneous updates, [35] obtains a factor- n

C

speedup for distributions whose Dobrushin influence matrix has norm bounded by C, in
particular giving RNC algorithms when C = O(1) and the mixing time is O(n ln n). The
result of [35] can also give Theorem 1.2 with a different algorithm, but cannot be used to
derive Theorem 1.3. See Appendix A in the full version for details.

On the practical side, designers of Markov chain Monte Carlo algorithms in discrete
spaces have taken inspiration from continuous algorithms, for example, by using gradient
information to inform the proposal distribution and allow updating multiple coordinates at
once [29, 50, 42]. Theoretical guarantees for these algorithms remain to be understood.

1.2.3 Diffusion models and the proximal sampler
Stochastic localization [23] is a measure-valued stochastic process that converges to a point
mass, which is distributed according to a desired distribution µ. As a technique, it gives a way
of decomposing probability distributions that has been useful in proving functional inequalities
and mixing time [17, 18], and more recently, in constructing new, time-inhomogeneous
algorithms for sampling [22, 39].

Diffusion models [46, 47, 48] are a successful paradigm for generative modeling in machine
learning, where the task is to learn and then generate samples from a distribution where only
samples are given. Though the details may differ, they consist of a forward process which

APPROX/RANDOM 2024

49:6 Parallelising Glauber Dynamics

adds noise to the data; reversing the process can then generate a sample from random noise.
It has been observed [38] that a stochastic localization process can be viewed as the reverse
process of a diffusion model.

Our analysis of k-Glauber dynamics is inspired by the analysis of the proximal sampler
[34, 16, 25], which does alternating Gibbs sampling by adding Gaussian noise to the current
sample, and then “de-noising” by sampling from the posterior distribution; this fits in the
framework discussed above. In their analysis, [16] show that proximal sampler mixes at
least as fast as Langevin in terms of χ2 and KL-divergence. [25] show a ‹O(n1/2) dimension
dependence using a carefully chosen Gaussian proposal distribution to implement the posterior
sampling step. We view the k-Glauber dynamics as a discrete analogue of the proximal
Langevin algorithm, where the noise consists of erasing k coordinates, and our proof follows
this analogy. In our application, we also require a careful choice of product distribution for
the proposal.

2 Preliminaries

While many of the notions are generalizable, we will restrict ourselves to finite state spaces,
and identify all measures with their probability mass functions. For more background on
Markov chains, see [40].

2.1 Markov kernels
For finite sets A and B, a Markov kernel K from A to B is a function A × B → R≥0 or
equivalently, a matrix RA×B

≥0 , where the rows sum to 1. If µ is a measure on A, then µK is a
measure on B; if f is a function B → R, then Kf is a function A → R; these correspond
to matrix-vector multiplication. Composition of kernels K1 from A to B and K2 from B

to C gives a kernel K1K2 from A to C, which corresponds to matrix multiplication. For
f, g functions on A and µ a measure on A, let ⟨f, g⟩µ =

∑
x∈A µ(x)f(x)g(x). For a kernel

K : A×B → R≥0, given measures µ1, µ2 on A and B respectively, we think of K as a linear
map L2(µ1)→ L2(µ2); then its adjoint K∗ : B ×A→ R≥0 is a linear map L2(µ2)→ L2(µ1)
satisfying ⟨f, Kg⟩µ1

= ⟨K∗f, g⟩µ2
for any f ∈ L2(µ1), g ∈ L2(µ2).

▶ Definition 2.1. k-Glauber dynamics with stationary distribution µ on Ω is the Markov
chain where at each step, if the current sample is x, we choose a subset S uniformly at random
in
(Ω

k

)
(subsets of size k), and resample the coordinates in S according to µ(XS |XSc = xSc).

Let Pµ,k denote the transition operator. For k = 1, we simply call it Glauber dynamics, and
let Pµ denote the Markov kernel.

▶ Definition 2.2. Let 0 ≤ ℓ ≤ k ≤ n. Let µ be a distribution on
([n]

k

)
. Define the

down operator Dk→ℓ and up operator Uℓ→k as Markov kernels
([n]

k

)
×
([n]

ℓ

)
→ R≥0 and([n]

ℓ

)
×
([n]

k

)
→ R≥0, respectively, with

Dk→ℓ(A, B) = 1B⊆A
1(
k
ℓ

) Uℓ→k(B, A) = 1B⊆A
µ(A)∑

A′⊇B µ(A′) .

Let µℓ = µDk→ℓ for 0 ≤ ℓ ≤ k, and define the k ↔ ℓ down-up walk and ℓ↔ k up-down
walk by

P▽
k↔ℓ = Dk→ℓUℓ→k P△ℓ↔k = Uℓ→kDk→ℓ.

H. Lee 49:7

Note that Dk→ℓ does not depend on µ while Uℓ→k does; we suppress the dependency in
the notation. Note that Dk→ℓDℓ→m = Dk→m and Um→ℓUℓ→k = Um→k. As operators,
Dk→ℓ : L2(µℓ)→ L2(µk) and Uℓ→k : L2(µk)→ L2(µℓ) are adjoint.

▶ Definition 2.3. Let µ be a measure on Ω′ = Ω′1 × · · · × Ω′n. Define the homogenization
of µ to be the measure µhom over

(Ω
n

)
, where Ω =

⋃n
i=1 Ω′i × {i} and σ ∈ Ω′ is identified

with {(σ1, 1), . . . , (σn, n)}. (For short, we will write Ω =
⊔n

i=1 Ω′i in the following.) For any
property P defined for measures

(Ω
n

)
, we say that µ satisfies P if µhom satisfies P.

Under this identification, k-Glauber dynamics corresponds to the n↔ n−k down-up walk, as
the down step corresponds to erasing k coordinates and the up step corresponds to restoring
them with the correct conditional probabilities.

2.2 Functional inequalities
▶ Definition 2.4. Let M = (Ω, P) be an ergodic, reversible Markov chain with stationary
distribution µ. Define the associated Dirichlet form as the inner product

EP (f, g) = ⟨f, (I − P)g⟩µ = 1
2

∑
x,y∈Ω

µ(x)P (x, y)(f(x)− f(y))(g(x)− g(y))

When µ is a distribution on Ω =
∏n

i=1 Ω′i, we write Eµ = EPµ
; we will similarly make other

such replacements without comment.

▶ Definition 2.5. Keeping the assumptions above, we say that P satisfies a Poincaré
inequality with constant C if for all f : Ω→ R,

Varµ(f) ≤ CEP (f, f).

We say µ satisfies a Poincaré inequality with constant C if the Glauber dynamics with
stationary distribution µ, Pµ, satisfies a Poincaré inequality with constant C.

When P is self-adjoint (M is reversible), this is the same as saying that λ2(P) ≤ 1 − 1
C ,

where λk(·) denotes the kth largest eigenvalue.

▶ Definition 2.6. Let f : R≥0 → R≥0 be a strictly convex function with f(1) = 0. For
measures ν ≪ µ on Ω, define the f-divergence by

Df (ν∥µ) = Ex∼µf

Å
ν(x)
µ(x)

ã
.

In particular, define the χ2 and KL-divergences by Dχ2 = D(x−1)2 and DKL = Dx ln x.

▶ Definition 2.7. We say that Markov kernel P : Ω1 × Ω2 → R satisfies ρ-contraction in
f-divergence with respect to µ1 if for all ν1 ≪ µ1,

Df (ν1P∥µ1P) ≤ ρDf (ν1∥µ1).

Contraction in χ2 and KL-divergence is also referred to as variance or entropy contraction,
respectively.

▶ Proposition 2.8. Let P : Ω1×Ω2 → R≥0 be a Markov kernel. The following are equivalent,
for C ≤ 1:
1. P satisfies (1− C)2-contraction in χ2-divergence with respect to µ.
2. For all f : Ω1 → R,

VarµP (Pf) ≤ (1− C)2 Varµ(f).

APPROX/RANDOM 2024

49:8 Parallelising Glauber Dynamics

3. (For Ω1 = Ω2, P reversible) P satisfies a Poincaré inequality with constant 1
C .

4. (For P of the form P = DD∗, e.g., P▽
k↔k−1 = Dk→k−1Uk−1→k) D satisfies (1 − C)-

contraction in χ2-divergence.
5. (For P = DD∗) D∗ satisfies (1− C)-contraction in χ2-divergence.
Here, the adjoint is with respect to the measures µ and µD.

Proof sketch. See full version. ◀

▶ Definition 2.9. A measure µ on
([n]

k

)
satisfies C-approximate tensorization of entropy

if Dk→k−1 satisfies
(
1− 1

Ck

)
-contraction in KL-divergence, i.e., for any ν ≪ µ,

DKL(νDk→k−1∥µDk→k−1) ≤
Å

1− 1
Ck

ã
DKL(ν∥µ).

We have the following alternate characterization for a measure defined on a product space.
Define the entropy of a function f on a probability space by Entµ[f] = Eµ[f ln f] −
Eµ[f] lnEµ[f].

▶ Proposition 2.10 ([19, Lemma 2.7]). Let µ be a measure on Ω = Ω′1 × · · · × Ω′n. Then µ

satisfies C-approximate tensorization of entropy iff for all f : Ω→ R≥0,

Entµ[f] ≤ C

n∑
k=1

Eµ

[
Entµ(Xk=·|X∼k=x∼k)[f]

]
,

where ∼ k denotes the coordinates besides k.

▶ Remark 2.11. Proposition 2.8 shows that for contraction in χ2-divergence, nothing is lost
if we consider P▽

k↔k−1 or Dk→k−1, Uk−1→k separately. However, the distinction is important
for KL, as contraction of P▽

k↔k−1 may not imply contraction of Dk→k−1 or Uk−1→k separately;
hence the definition of approximate tensorization of entropy. Approximate tensorization
of entropy is stronger than the modified log-Sobolev inequality (which implies mixing for
P▽

k↔k−1), but weaker than the log-Sobolev inequality.

2.3 Additional notation
For f :

∏n
i=1 Ω′i → R, and x ∈

∏
i∈Sc Ω′i, define the restriction fx :

∏
i∈S Ω′i by fx(y) = f(x, y)

with (x, y) treated as an element of
∏n

i=1 Ω′i.
Let xi←b denote x with xi set to b. For f : {±1}n, let Di f(x) := 1

2 [f(xi←1)− f(xi←−1)]
and define ∇f : {±1}n → Rn by

∇f(x) = (D1 f(x), . . . , Dn f(x))

and ∇2f : {±1}n → Rn×n by (∇2f(x))i,j = Di Dj f(x) (note (∇2f(x))i,i = 0).
For x ∈ {±1}n and S ⊆ [n], let xS denote

∏
i∈S xi. For a function f : {±1}n → R, we

denote the degree d part of f by f (d), and define f≥d =
∑

p≥d f (p), etc., so that we have the
decomposition

f(x) =
n∑

p=0
f (p)(x) =

n∑
p=0

∑
|I|=p

aIxI

for some coefficients aI . We take f
(d)
x to mean that we take the restriction first and then the

degree-d part.
For a scalar-valued function f and x ∈ Rn, we let f(x) denote coordinate-wise evaluation.

H. Lee 49:9

3 k-Glauber mixes k times as fast

To show that k-Glauber mixes k times more quickly than Glauber dynamics, write Pµ =
Dn→n−1Un−1→n and Pµ,k = Dn→n−1 · · ·Dn−k+1→n−kUn−k→n−k+1 · · ·Un−1→n; the task is
then to show that Dj→j−1, j ≤ n are roughly at least as contractive as Dn→n−1. We note
that this is like the reverse of the usual “local-to-global” argument for high-dimensional
expanders [1] (and will be easier!). We also note this approach relates to inductive arguments
in prior work (e.g., [20, Lemma 11]).

Viewing the problem in this way, we note the similarity to the proximal sampler [16],
each step of which involves adding and removing Gaussian noise; they bound the contraction
in χ2 and KL-divergence of this process based on the Poincaré and log-Sobolev constants of
the original distribution.

As inspiration, we first recall the following fact, which bounds the Poincaré or log-Sobolev
constant of a convolution of two measures on Rn. (The convolution µ1 ∗ µ2 is defined as the
distribution of X + Y where X ∼ µ1 and Y ∼ µ2 are independent.) As we will not cover the
theory of functional inequalities over Rn, this is meant only as a suggestion of how we might
proceed. For details and generalizations, see [14].

▶ Lemma. Suppose that µ1, µ2 are distributions on Rn with Poincaré constants C1, C2,
respectively. Then µ1 ∗ µ2 has Poincaré constant bounded by C1 + C2. The same holds true
for the log-Sobolev constant. In particular, this holds true for µ2 being a Gaussian of variance
C1.

Proof sketch. Let Mm denote multiplication by m. Then µiM
−1
mi

has Poincaré constant
m2

i Ci. By tensorization, µ = µ1M−1
m1
⊗ µ2M−1

m2
has Poincaré constant max

{
C1m2

1, C2m2
2
}

.
Consider the projection π(x1, x2) = x1

m1
+ x2

m2
. When 1

m2
1

+ 1
m2

2
= 1, this can be realized as

projection onto the vector (1
m1

, 1
m2

), so the Poincaré constant does not increase: CP(µπ−1) ≤
CP(µ). Note that we exactly have µπ−1 = µ1 ∗ µ2. Choosing 1

m2
1

= C1
C1+C2

and 1
m2

2
= C2

C1+C2
gives the bound. The same argument works for the log-Sobolev constant. ◀

We will carry out the same steps as in this proof: define a tensorization operation which
preserves the Poincaré or approximate tensorization of entropy constant, and a projection
which can only improve it. As in the sketch above, it will help to weight the components
appropriately in the tensorization step.

To obtain the Dk→k−1 operator from the Dn→n−1 operator, we will tensorize with the
appropriate “noise” distribution, which in this case is that of erasing n− k coordiates. We
note that while bit-flip noise is the more natural analogue of gaussian noise, the “denoising”
step is more difficult to implement, while erasure noise connects more nicely with existing
notions.

3.1 Tensorization and projection
The following proposition is similar to classical results on preservation of functional inequalities
under tensorization, which corresponds to taking a product of Markov chains. However, we
need to work with operators between different spaces to obtain contraction for the down
operator, so we need the result given in Proposition 3.1 . As in Remark 2.11, nothing would be
lost for χ2-divergence if we considered the down-up walk – so we could use existing results – but
for KL we need to bound contraction for just the down operator. This is important because we
aim to bound contraction for P▽

n↔n−k = Dn→n−1 · · ·Dn−k+1→n−kUn−k→n−k+1 · · ·Un−1→n,
and in the case of KL, we cannot obtain this by bounding contraction for just operators of
the form P▽

k↔k−1 = Dk→k−1Uk−1→k.

APPROX/RANDOM 2024

49:10 Parallelising Glauber Dynamics

▶ Proposition 3.1 (Contraction under tensorization). Suppose that Pi is a Markov kernel
from Ωi to Ω′i, for i = 1, 2. Let Ii denote the identity kernel on Ωi and define P =
p(P1 ⊗ I2) + (1− p)(I1 ⊗ P2) as a Markov kernel from Ω1 × Ω2 to (Ω′1 × Ω2) ⊔ (Ω1 × Ω′2).

Let Df = DKL or Dχ2 . If Pi satisfies (1− κi)-contraction in f-divergence with respect
to µi, then P satisfies (1 − κ)-contraction in f-divergence with respect to µ1 ⊗ µ2, where
κ = min{pκ1, (1− p)κ2}. In particular, if p = κ2

κ1+κ2
, then κ = κ1κ2

κ1+κ2
= 1

κ−1
1 +κ−1

2
.

Proof. First consider KL-divergence. Let ν be a measure on Ω1 ×Ω2. Let Πi and Π′i denote
the projection kernels to Ωi and Ω′i respectively, for i = 1, 2 (i.e., taking marginals). We
calculate

B : = DKL(pν(P1 ⊗ I2) + (1− p)ν(I1 ⊗ P2)∥p(µ′1 × µ2) + (1− p)(µ1 × µ′2))
= pDKL(ν(P1 ⊗ I2)∥µ′1 × µ2) + (1− p)DKL(µ(I1 ⊗ P2)∥µ1 × µ′2), (2)

since the spaces Ω′1 × Ω2 and Ω1 × Ω′2 are disjoint. Now, by the chain rule of KL-divergence
and entropy contraction,

DKL(ν(P1 ⊗ I2)∥µ′
1 × µ2) = Ex2∼µ2DKL((ν(P1 ⊗ I2))(·|x2)∥µ′

1) +DKL(ν(P1 ⊗ I2)Π2∥µ2)
= Ex2∼µ2DKL(ν(·|x2)P1∥µ′

1) +DKL(νΠ2∥µ2)
≤ (1− κ1)Ex2∼µ2DKL(ν(·|x2)∥µ1) +DKL(νΠ2∥µ2).

By symmetry, the same calculation holds for the second term in (2), giving us

B ≤ p [(1− κ1)Ex2∼µ2DKL(ν(·|x2)∥µ1) +DKL(νΠ2∥µ2)]
+ (1− p) [(1− κ2)Ex1∼µ1DKL(ν(·|x1)∥µ2) +DKL(νΠ1∥µ1)] .

We wish to compare this with

A : = DKL(µ∥µ1 × µ2)
= Ex2∼µ2DKL(ν(·|x2)∥µ1)︸ ︷︷ ︸

C2,1

+DKL(νΠ2∥µ2)︸ ︷︷ ︸
C2

= Ex1∼µ1DKL(ν(·|x1)∥µ2)︸ ︷︷ ︸
C1,2

+DKL(νΠ1∥µ1)︸ ︷︷ ︸
C1

.

By convexity of KL-divergence, C1,2 ≥ C2 and C2,1 ≥ C1. Hence

B ≤ p((1− κ1)C2,1 + C2) + (1− p)((1− κ2)C1,2 + C1)
≤ max{(1− p)(1− κ2) + p, p(1− κ1) + (1− p)}[p(C2,1 + C2) + (1− p)(C1,2 + C1)]
= (1−min{(1− p)κ2, pκ1}) A.

Next consider χ2-divergence. It suffices to prove the following equivalent statement on
contraction of variance (Proposition 2.8): for any f : Ω1 × Ω2 → R, considering P ∗ =
p(P ∗1 ⊗ I2)⊕ (1− p)(I1 ⊗ P ∗2), we have

VarµP (P ∗f) ≤ (1− κ) Varµ(f),

which is equivalent to σ2(P ∗) ≤ 1− κ and hence to λ2(PP ∗)2 = σ2(PP ∗)2 ≤ (1− κ)2. Now
PP ∗ = p(P1P ∗1 ⊗ I2) + (1− p)(I1 ⊗ P2P ∗2) is exactly the transition matrix of the weighted
product of two Markov chains with λ2(PiP

∗
i) ≤ 1− κi, so it is well-known that

λ2(PP ∗) ≤ max{p + (1− p)(1− κ2), (1− p) + p(1− κ1)} = 1−max{(1− p)κ2, pκ1}.

(A quick way to see this is as follows: if {fi} are the eigenvectors of P1P ∗1 and {gj} are
the eigenvectors of P2P ∗2 , then {figj} are the eigenvectors of P ∗P , and the second largest
eigenvalue is when fi = 1 or gi = 1.) ◀

H. Lee 49:11

Though we do not do it here, the proofs can be put on the same footing and generalized
using the notion of f -entropy [14].

▶ Proposition 3.2 (Contraction under projection). Suppose that P is a Markov kernel from
Ω1 to Ω2, and µ1, µ2 are measures on Ω1, Ω2 such that µ1P = µ2. Let πi : Ωi → Ω′i be maps
and µ′i = µiπ

−1
i . Define the projected Markov kernel P ′ : Ω′1 × Ω′2 → R≥0 by

P ′(x′1, x′2) =
∑

x1 ∈ Ω1
π1(x1) = x′

1

∑
x2 ∈ Ω2

π2(x2) = x′
2

µ1(x1|π(x1) = x′1)P (x1, x2).

If P satisfies ρ-contraction in f-divergence with respect to µ1, then P ′ also satisfies ρ-
contraction in f -divergence with respect to µ′1.

In words, in the projected Markov chain, given x′1, we draw x1 projecting to x′1 from the
“prior”, move according to P , and then project back down; then the projected kernel always
has at least as much contraction as the original one. See e.g., [37] for the statement for the
Poincaré constant.

Proof. Let ν′1 ≪ µ′1 be a measure on Ω′1. Define ν1(x) = ν′1(π1(x))µ1(X = x|π1(X) = π1(x)).
Then Eµ1(·|π1(X)=x′

1)f
Ä

ν1(x)
µ1(x)

ä
= ν′

1(x′
1)

µ′
1(x′

1) , so

Df (ν′1∥µ′1) = Ex′
1∼µ′

1
f

Å
ν′1(x′1)
µ′1(x′1)

ã
= Df (ν1∥µ1).

By contraction of P and the data processing inequality,

Df ((ν1P)π−1
2 ∥µ′2) ≤ Df (ν1P∥µ2) ≤ ρDf (ν1∥µ1) = ρDf (ν′1∥µ′1).

Finally, note that (ν1P)π−1
2 = ν′1P ′ by definition of P ′. ◀

3.2 Contraction improves going down
We now show that for k < n, contraction in KL and χ2 for Dk→k−1 will only be better than
contraction of Dn→n−1, except up to an additive constant.

▶ Lemma 3.3. Let µ be the uniform distribution on
([n]

k

)
. Then Dk→k−1 has

(
1− 1

k

)
-

contraction in KL, and µ satisfies 1-approximate tensorization of entropy. Moreover, Dk→k−1
and Uk−1→k satisfy

Ä
1− n

k(n−k+1)

ä
-contraction in χ2.

We note that the down-up walk on the uniform distribution on
([n]

k

)
is a rescaling of the

Bernoulli-Laplace diffusion model, for which mixing and functional inequalities have been
extensively studied [21, 33, 27, 13, 43], and we have not attempted to find the best result for
KL.

Proof. Note that µ is log-concave, by the results of [5] and the fact that
([n]

k

)
is a matroid.

Then 1-approximate tensorization of entropy follows from [8, Theorem 5].
To note the improved bound for χ2, note first that the probability of staying at the

same set is 1
n−k+1 , so P▽

k↔k−1 = 1
n−k+1 I + n−k

n−k+1 P∨k↔k−1 where P∨k↔k−1 is the “non-lazy”
walk which swaps an occupied and non-occupied space at random. Hence I − P▽

k↔k−1 =
n−k

n−k+1 (I − P∨k↔k−1). This in turn satisfies

I − P∨k↔k−1 = n(n− 1)/2
k(n− k) ·

2
n− 1 · L

APPROX/RANDOM 2024

49:12 Parallelising Glauber Dynamics

where L is the generator of the Bernoulli-Laplace diffusion model with parameters (n, k) (a
random transposition occurs with rate 1). Here, the 2

n−1 is the scaling factor to convert to
a discrete-time walk and n(n−1)/2

k(n−k) takes into account that we are randomly choosing from
k(n−k) transpositions that move a particle to an unoccupied space, rather than an arbitrary
transposition. By [43], λmin(L) = 1. Hence the spectral gap for P▽

k↔k−1 is

n− k

n− k + 1 ·
n(n− 1)/2
k(n− k) ·

2
n− 1 = n

k(n− k + 1) . ◀

▶ Lemma 3.4. Let µ be a distribution on
∏n

i=1 Ω′i and µhom its homogenization on
(Ω

n

)
,

where Ω =
⊔n

i=1 Ω′i, and µm = µhomDn→m. Let Df = DKL or Dχ2 . For each k, let κk be
the largest number such that Dk := Dk→k−1 satisfies (1 − κk)-contraction in f-divergence
with respect to µk. Suppose that for the uniform distribution

([n]
k

)
that Dk→k−1 satisfies

(1− κBL,k)-contraction in f -divergence. Then

κk ≥
nκnκBL,k

nκn + kκBL,k
≥

{
nκn

k((n−k+1)κn+1) , Df = Dχ2

nκn

k(nκn+1) , Df = DKL.

Proof. Consider the kernel P = p(Dn ⊗ I([n]
k)) + (1 − p)(I(Ω

n) ⊗ Dk) from
(Ω

n

)
×
([n]

k

)
to(Ω

n−1
)
×
([n]

k

)
∪
(Ω

n

)
×
([n]

k−1
)
, where Dk denotes the down operator

([n]
k

)
×
([n]

k−1
)
→ R≥0. By

tensorization (Proposition 3.1), for p = κBL,k

κn+κBL,k
and κ = 1

κ−1
n +κ−1

BL,k

, P satisfies (1 − κ)-

contraction in f -divergence with respect to µn ⊗ Uniform
([n]

k

)
. Define the projections π1 :(Ω

n

)
×
([n]

k

)
→
(Ω

k

)
and π2 :

(Ω
n−1
)
×
([n]

k

)
∪
(Ω

n

)
×
([n]

k−1
)
→
(Ω

k−1
)
∪
(Ω

k

)
both as

π(S, A) = S ∩
⋃
i∈A

Ωi,

i.e., if S corresponds to x ∈
∏n

i=1 Ω′i, we keep only the coordinates in the set A ∈
([n]

k

)
.

We claim the projected kernel as defined in Proposition 3.2 is

P ′ =
Å

1− p(n− k)
n

ã
Dk︸ ︷︷ ︸

(I)

+ p(n− k)
n

I︸ ︷︷ ︸
(II)

from
(Ω

k

)
to
(Ω

k−1
)
∪
(Ω

k

)
. To see this, we first identify xA ∈

∏i∈A

=1 Ω′i with its homogenization
in
(Ω
|A|
)

(Definition 2.3). Then µ1(·|π1(x1) = xA) is the distribution of (x, A) where xAc is
distributed as µ(XAc = xAc |XA = xA). Under the transition P :
1. With probability p, we remove a coordinate i of x. In this case,

a. with probability k
n , i ∈ A, and projection by π2 then gives xA\{i} for a random index i.

b. with probability n−k
n , i ̸∈ A, and projection by π2.

2. With probability 1− p, we remove an element i of A, and projection gives xA\{i} for a
random i ∈ A.

Then (1a) and (2) give the term (I) and (1b) gives the term (II).
Because

Df

Å
νP ′∥

Å
1− p(n− k)

n

ã
µk−1 + p(n− k)

n
µk

ã
=
Å

1− p(n− k)
n

ã
DKL(νDk∥µk−1) + p(n− k)

n
DKL(ν∥µk)

H. Lee 49:13

(the component measures have disjoint support), we have that Dk satisfies (1−κk)-contraction
in f -divergence iff P ′ satisfies

Ä
1− κk

Ä
1− p(n−k)

n

ää
-contraction in f -divergence. Proposi-

tion 3.2 then gives us

κk

Å
1− κBL,k

κn + κBL,k
· n− k

n

ã
≥ 1

κ−1
n + κ−1

BL,k

=⇒ κk ≥
nκnκBL,k

nκn + kκBL,k
.

Plugging in the result of Lemma 3.3 then gives the result. ◀

▶ Theorem 3.5. Let µ be a distribution on Ω =
∏n

i=1 Ω′i, and consider the down and up
operators defined with respect to its homogenization µhom.
1. If Dn→n−1 satisfies (1 − 1

Cn)-contraction in χ2, then Dk→ℓ satisfies∏k
j=ℓ+1

Å
1− 1

j(C+ n−j+1
n)

ã
-contraction in χ2.

2. If Dn→n−1 satisfies (1 − 1
Cn)-contraction in KL (i.e., µ satisfies C-approximate tens-

orization of entropy), then Dk→ℓ and P▽
k↔ℓ satisfy

∏k
j=ℓ+1

Ä
1− 1

j(C+1)

ä
-contraction in

KL.
We note that our tensorization construction in Lemma 3.1 currently depends on µ being a
homogeneous distribution; it would be interesting to extend it beyond this case.

Proof. If Dn→n−1 satisfies
(
1− 1

Cn

)
-contraction in χ2-divergence, then by Lemma 3.4,

Dj→j−1 satisfies
Å

1− 1
j(C+ n−j+1

n)

ã
-contraction in χ2-divergence. If Dn→n−1 satisfies(

1− 1
Cn

)
-contraction in χ2-divergence, then we have

Ä
1− 1

j(C+1)

ä
-contraction in KL-

divergence. Because Dk→ℓ = Dk→k−1 · · ·Dℓ+1→ℓ, taking the product from ℓ + 1 to k

gives the result. ◀

From this, we can conclude that k-Glauber dynamics mixes at least Ω(k) times as fast
in χ2-divergence as Glauber dynamics, and assuming approximate tensorization of entropy,
mixes at least Ω(k) times as fast in KL-divergence.

▶ Corollary 3.6 (k-Glauber mixes k times as fast). Let µ be a distribution on Ω =
∏n

i=1 Ω′i.
1. If µ satisfies a Poincaré inequality with constant Cn, then

λ2(Pµ,k) ≤
Å

1− k

n + 1

ã 1
C+1

= 1− Ω
Å

max
ß

k

(C + 1)n, 1
™ã

and Pµ,k satisfies a Poincaré inequality with constant Ω
Ä

(C+1)n
k

ä
.

2. If µ satisfies C-approximate tensorization of entropy, then Pµ,k satisfies contraction in
KL-divergence with constantÅ

1− k

n + 1

ã 1
C+1

= 1− Ω
Å

max
ß

k

(C + 1)n, 1
™ã

.

Proof. Note that Pµ,k corresponds to P▽
n↔n−k after homogenization. For variance, we

recall Proposition 2.8 which relates the Poincaré constant of Pµ and Dn→n−1, and the
Poincaré constant of Pµ,k and Dn→n−k. The corollary then follows from Theorem 3.5 and
the calculation

APPROX/RANDOM 2024

49:14 Parallelising Glauber Dynamics

n∏
j=n−k+1

Å
1− 1

j(C + 1)

ã
≤ e
− 1

C+1

∑n

j=n−k+1
1
j ≤ e−

1
C+1 ln(n+1

n−k+1)

=
Å

1− k

n + 1

ã 1
C+1

= 1− Ω
Å

k

(C + 1)n

ã
. ◀

Our theorem also implies contraction for D2→1; this forms a kind of converse to local-to-
global arguments that start with contraction of D2→1 [2].

▶ Corollary 3.7. Let µ be a distribution on Ω =
∏n

i=1 Ω′i, and consider the down and up
operators defined with respect to its homogenization µhom.
1. If Dn→n−1 satisfies (1 − 1

Cn)-contraction in χ2, then D2→1 satisfies
Ä
1− 1

2(C+1)

ä
-

contraction in χ2 and λ2(P△1↔2) ≤ 1− 1
2(C+1) .

2. If Dn→n−1 satisfies (1− 1
Cn)-contraction in KL (i.e., µ satisfies C-approximate tensoriz-

ation of entropy), then D2→1 satisfies
Ä
1− 1

2(C+1)

ä
-contraction in KL.

Proof. This follows from substituting k = 2, ℓ = 1 into Theorem 3.5, appealing to Proposi-
tion 2.8 for the χ2 result. ◀

4 Parallel sampling for Ising models

To apply Corollary 3.6 to the Ising model for ∥J∥ < 1, we use the fact that the Ising model
satisfies approximate tensorization of entropy.

▶ Theorem 4.1. Suppose ∥J∥ < 1. Then µJ,h satisfies approximate tensorization of entropy
with constant 1

1−∥J∥ .

The proof is in Section 4.1. We first introduce a generic guarantee for approximate
rejection sampling in Section 4.2, based on establishing concentration for the difference of
the log-pdfs. In Section 4.3, we show that using an approximating product distribution –
chosen as the solution to a variational problem – is sufficient as a proposal distribution for
µJ,h when ∥J∥F is small enough, using the Hanson-Wright inequality. We put everything
together in Section 4.4, combining the speedup of k-Glauber dynamics, known mixing for
the Ising model, guarantee on the approximate rejection sampler, with a careful analysis of
the recursion in the algorithm.

4.1 Approximate tensorization of entropy for the Ising model
For ∥J∥ < 1, we prove approximate tensorization of entropy for the Ising model µJ,h

(Theorem 4.1) by using the fact that it holds for rank-1 Ising models and using the needle
decomposition in [24]. This is the same way that the modified log-Sobolev inequality is
proved in [24].

▶ Proposition 4.2 ([8, Proposition 32]). Suppose ∥u∥ < 1. Then µuu⊤,h satisfies approximate
tensorization of entropy with constant 1

1−∥u∥2 .

▶ Theorem 4.3 (Needle decomposition of Ising measures [24]). Consider an Ising model
µ = µJ,h on {±1}n with J ⪰ 0. Let f : {±1}n → R be any function. There exists a mixture
decomposition (depending on f)

µ(x) =
ˆ

µu,v(x) dπ(u, v)

where π is a probability measure on R2n such that:

H. Lee 49:15

1. π-almost surely, µu,v is a probability measure of the form

µu,v(x) = 1
Zu,v

exp
Å1

2 ⟨u, x⟩2 + ⟨v, x⟩
ã

,

i.e., a rank one Ising model (“needle”). Furthermore ∥u∥ ≤ ∥J∥.
2. Eµu,v f(X) = Eµf(X) π-almost surely.

Proof of Theorem 4.1. See full version. ◀

4.2 Approximate rejection sampling
Conditional distributions of the Ising model are again Ising models. We will show that with
large probability, if we pick a random subset of not-too-large size, then we can approximate
the distribution of those coordinates with a product distribution, and hence use the product
distribution as a proposal for approximate rejection sampling. We discuss further the choice
of product distribution (given in Algorithm 2) in Section 4.3.

First, we give a generic guarantee for the rejection sampling Algorithm 3, which can be
used whenever the log-ratio between desired and proposal distributions ln dP

dQ has sufficiently
decaying exponential tails. Note that because the normalizing constants are unknown,
we draw two samples and use one as a reference to decide whether to accept the other.
Lemma 4.4 appears as [25, Lemma 2] specialized to the distribution they consider, but holds
more generally. We give the proof for completeness.

Algorithm 2 Quadratic approximate rejection sampler (QuadraticApproxRejectionSampler).

1: Input: Hamiltonian H in the form H(x) = C + ⟨h, x⟩+ 1
2 ⟨x, Ax⟩+ H≥3(x), δ such that∥∥∥A�

∥∥∥
F
≤ δ < c3 and 0 ⪯ A ⪯ (1− c)I, error ε.

2: Let u0 = 0.
3: for t from 1 to T = Θ

Ä
1
c ln
Ä√

n
δ

ää
do

4: Let ut = A� tanh(h + ut−1).
5: end for
6: Let ĥ = uT .
7: Output: ApproxRejectionSampler(q(x) ∝ exp

(
⟨h + ĥ, x⟩, g(x) = H(x)− ⟨h + ĥ, x⟩,

(2
ε

) δ
c3−δ

)
(See Algorithm 3.)

Algorithm 3 Approximate rejection sampler (ApproxRejectionSampler).

1: Input: Oracle for sampling from Q, function g such that dP
dQ ∝ eg, error parameter c.

2: repeat (For parallel implementation, run ⌈c⌉ times simultaneously and take the first
success.)

3: Draw X, Z ∼ Q.
4: Let R = exp(g(X)− g(Z)).
5: Draw U ∼ Uniform([0, 1]).
6: until U ≤ 1

c R

7: Output: X.

▶ Lemma 4.4. Let “P be the distribution of the output of Algorithm 3. Then

dP

dQ
(X) = E[R|X]

ER

d“P
dQ

(X) = E[min{R, c}|X]
E[min{R, c}] .

APPROX/RANDOM 2024

49:16 Parallelising Glauber Dynamics

The acceptance probability is paccept = 1
cEmin{R, c} = 1

c (ER− E[(R− c)1R≥c]) and the TV
distance is bounded by

DTV(“P , P) ≤ E[(R− c)1R≥c]
ER

.

For c ≥ 1, the acceptance probability is at least 1
2c .

Proof. We calculate

E[R|X] = E[eg(X)−g(Z)|X] = eg(X)E[e−g(Z)]

E[R] = E[E[R|X]] = E[eg(X)]E[e−g(Z)],

so E[R|X]
E[R] = eg(X)

E[eg(X)] = dP
dQ (X). Note d“P

dQ (X) is the probability of acceptance given X divided
by the total probability of acceptance, which we calculate:

paccept(X) := P
ï
U ≤ 1

c
R|X
ò

= E
ï
min
ß

R

c
, 1
™
|X
ò

= 1
c
E[min{R, c}|X]

paccept = P
ï
U ≤ 1

c
R

ò
= E
ï
P
ï
U ≤ 1

c
R|X
òò

= 1
c
E[E[min{R, c}|X]] = 1

c
E[min{R, c}].

Dividing gives d“P
dQ = E[min{R,c}|X]

E[min{R,c}] . Then

DTV(“P , P) ≤ EX∼Q max
®

0,
dP

dQ
(X)− d“P

dQ
(X)
´

≤ EX∼Q max
ß

0,
E[R|X]
ER

− E[min{R, c}|X]
cpaccept

™
≤ EX∼Q max

ß
0,

E[R|X]
ER

− E[min{R, c}|X]
ER

™
because cpaccept ≤ ER

≤ EX∼Q
E[(R− c)1R≥c|X]

ER
= E[(R− c)1R≥c]

ER
.

Finally, note that P(R ≥ 1) ≥ 1
2 by symmetry, so paccept ≥ 1

cP(R ≥ 1) ≥ 1
2c . ◀

4.3 Concentration
To obtain concentration of the ratio in Lemma 4.4, we need a version of the Hanson-Wright
inequality. We first state the classical inequality.

▶ Theorem 4.5 (Hanson-Wright Inequality, [49, Theorem 6.2.1]). There is a constant c such
that the following holds. Let X = (X1, . . . , Xn) ∈ Rn be a random vector with independent,
mean-zero, K-sub-gaussian coordinates. Let A ∈ Rn×n be a matrix. Then for every t ≥ 0,

P (| ⟨X, AX⟩ − E ⟨X, AX⟩ | ≥ t) ≤ 2 exp
ñ
−c min

®
t2

K4 ∥A∥2
F

,
t

K2 ∥A∥

´ô
.

We will use the following version, which is a consequence of [44, Corollary 2] (by taking
Γ(f) = ∥∇f∥ and noting that product distributions on {±1}n satisfy a uniform modified
log-Sobolev inequality) and allows a general function f .

▶ Theorem 4.6 ([44]). There is a constant c such that the following holds. Let X =
(X1, . . . , Xn) ∈ {±1}n be a random vector with independent coordinates. Let f : {±1}n → R
be a function. Then for every t ≥ 0,

P (|f(X)− Ef(X)| ≥ t) ≤ 2 exp
ñ
−c min

®
t2

E[∥∇f∥2]
,

t

maxx∈{±1}n ∥∇2f∥F

´ô
.

H. Lee 49:17

Note the extra term E[∥∇f∥2] compared to Theorem 4.5 which requires the random variables
to be centered. This means that we cannot simply take Q = µh := µO,h and P = µJ,h for the
reason that E[∥∇x(⟨x, Ax⟩)∥2] can be Ω(n), while we need concentration to O(1). Instead,
in order to apply Theorem 4.6 for f = ln dP

dQ , we would like to ∇f to be centered, that is,
EQ∇f = 0. For this, we need to solve the variational problem

Eµh+h∗ A�x = h∗. (3)

We do this by fixed point iteration. Note this is a special case of “gradient” descent for
Lipschitz and strongly monotone operators [15, 36].

▶ Lemma 4.7 (Fixed point iteration). Let (X, d) be a metric space, c > 0, and suppose
F : X → X is (1−c)-Lipschitz (so it is a contraction mapping). Let x0 ∈ X and xt = F (t)(x0).
Then

d(F (xt), xt) ≤ (1− c)td(F (x0), x0)

and hence for t = Ω
Ä

1
c ln
Ä

d(F (x0),x0)
ε

ää
, we have d(F (xt), xt) ≤ ε.

Proof. We have d(F (xt), xt) = d(F (t+1)(x0), F (t)(x0)) ≤ (1− c)td(F (x0), x0) by induction.
Hence, it suffices to choose t such that t ln

Ä
1

1−c

ä
≥ ln

Ä
d(F (x0),x0)

ε

ä
, which gives the result. ◀

▶ Lemma 4.8. Suppose that A is symmetric positive semi-definite with A ⪯ (1− c)I. Let

F (u) = A� tanh(h + u).

Then for t = Ω
Ä

1
c log

Ä√
n

ε

ää
, we have that ĥ := F (t)(0) satisfies∥∥∥Eµ

h+“hA�x− ĥ
∥∥∥ ≤ ε. (4)

Proof. Note that all diagonal entries of A are contained in [0, 1− c], so −(1− c)I ⪯ A� ⪯
(1− c)I. Combining this with the fact that tanh is 1-Lipschitz, we obtain that F is (1− c)-
Lipschitz. Note that ∥F (0)− 0∥ ≤

√
n. The result then follows from Lemma 4.7 and the

fact that F (u) = Eµh+u
A�x. ◀

Using this, for small enough ∥A∥F , we can obtain the exponential tails necessary to bound
the TV-distance in Lemma 4.4. This fits in with the general fact that Ising models with small
∥J∥F are well-approximated by product distributions [31], giving approximation guarantees
for variational methods in this regime. We state the following lemma more generally with a
higher-order term, so that we can also apply it for the p-spin model.

▶ Lemma 4.9. There is a constant c3 such that the following holds. Suppose H(x) =
⟨h, x⟩+ 1

2 ⟨x, Ax⟩+ H≥3(x) where A is symmetric and H≥3(x) =
∑
|I|≥3 aIxI contains the

terms of degree ≥ 3. If δ < c3,

max
x∈{±1}n

∥∥∇2H(x)
∥∥

F
≤ δ and max

x∈{±1}n
∥∇H≥3(x)∥ ≤ δ,

then the output of QuadraticApproxRejectionSampler (Algorithm 2) is at most ε in TV distance
from µ, and the acceptance probability in the call to ApproxRejectionSampler is at least
1
2c = 1

2
(

ε
2
) δ

c3−δ .

In the special case that H≥3(x) = 0, the assumption simplifies to
∥∥∥A�

∥∥∥
F
≤ δ.

APPROX/RANDOM 2024

49:18 Parallelising Glauber Dynamics

Proof. Let

f(x) = H(x)−
¨
h + ĥ, x

∂
= 1

2 ⟨x, Ax⟩ −
¨
ĥ, x
∂

+ H≥3(x).

To use Theorem 4.6, we calculate E[∥∇f∥2]. First note that Ex∼Uniform({±1}n)∇2H≥3(x) = O

(because for any i, j ∈ [n] and |I| ≥ 3, we have Ex∼Uniform({±1}n)x
I\{i,j} = 0) so by Jensen’s

inequality∥∥∥A�
∥∥∥

F
=
∥∥∥A� + Ex∼Uniform({±1}n)∇2H≥3(x)

∥∥∥
F

≤ Ex∼Uniform({±1}n)

∥∥∥A� +∇2H≥3(x)
∥∥∥

F
≤ max

x∈{±1}n

∥∥∇2H(x)
∥∥

F
≤ δ.

Let x = Eµ
h+“hx. From Lemma 4.8 we have that the output ĥ of fixed point iteration satisfies∥∥∥A�x− ĥ
∥∥∥ ≤ δ. We then have

Eµ
h+“h [∥∇f∥2] = Eµ

h+“h ï∥∥∥A�x− ĥ +∇H≥3(x)
∥∥∥2
ò

≤ 2Eµ
h+“h ï∥∥∥A�(x− x) + A�x− ĥ

∥∥∥2
ò

+ 2Eµ
h+“h î∥∇H≥3(x)∥2ó

= 2Eµ
h+“h ï∥∥∥A�x− ĥ

∥∥∥2
+
∥∥∥A�(x− x)

∥∥∥2
+ ∥∇H≥3(x)∥2

ò
≤ 2
ï∥∥∥A�x− ĥ

∥∥∥2
+
∥∥∥A�

∥∥∥2

F
+ Eµ

h+“h ∥∇H≥3(x)∥2
ò
≤ 6δ2 (5)

using the fact that the entries of x− x are independent, mean 0, with variance at most 1.
Hence, by Theorem 4.6, f(X)− Ef(X) is O(δ)-sub-exponential, and so is f(Z)− f(X), and
there exists c3 so that

P (|f(Z)− f(X)| ≥ t) ≤ 2e−
c3t

δ .

Then for c =
(2

ε

) δ
c3−δ ,

E[(R− c)1R≥c] ≤
ˆ ∞

ln c

et · P(f(Z)− f(X) ≥ t) dt

≤
ˆ ∞

ln c

et2e−
c3t

δ dt ≤ 2
ˆ ∞

ln c

e−(c3
δ −1)t dt = 2c−(c3

δ −1) = ε. (6)

Moreover, by Jensen’s inequality, ER ≥ eE[f(Z)−f(X)] = 1. Hence by Theorem 4.6, the output
is at most ε in TV distance from µ and the acceptance probability is at least 1

2c . ◀

4.4 Analysis of the Parallel Ising Sampler
▶ Lemma 4.10. Let S ⊆ [n], fix xSc ∈ {±1}Sc , and let P be the distribution on {±1}S with
mass function p(x) = µJ,h(XS = x|XSc = xSc), and let Q be the product distribution in on
{±1}S with mass function q(x) ∝ exp (⟨JS×ScxSc + hS , x⟩). Then the following hold.
1. dP

dQ (x) ∝ exp
(1

2 ⟨x, JS×Sx⟩
)
.

2. DKL(P∥Q) ≤ ∥JS×S∥ · |S|.

Proof. Because xSc is constant, expanding the quadratic gives

µJ,h(XS = xS |XSc = xSc) ∝ exp
Å1

2(2 ⟨xS , JS×ScxSc⟩+ ⟨xS , JS×SxS⟩) + ⟨hS , x⟩
ã

.

Dividing by q(xS) gives (1).

H. Lee 49:19

For (2), we note that for x ∈ {±1}S ,
∣∣ 1

2 ⟨x, JS×Sx⟩
∣∣ ≤ 1

2 ∥JS×S∥ ∥x∥2 ≤ 1
2 ∥JS×S∥ |S|.

Hence

dP

dQ
(x) =

exp
(1

2 ⟨x, JS×Sx⟩
)

´
exp

(1
2 ⟨x, JS×Sx⟩

)
dQ(x)

≤ e
1
2∥JS×S∥|S|

e−
1
2∥JS×S∥|S|

= e∥JS×S∥|S|

and DKL(P∥Q) = EP ln dP
dQ ≤ ∥JS×S∥ |S|. ◀

▶ Lemma 4.11 (Bernstein’s inequality for supermartingales [28, (1.6)]). Let Xn be a martingale
adapted to Fn. Suppose that |Xn+1−Xn| ≤ L and E[|Xn+1−Xn|2|Fn] ≤ σ2 with probability
1. Then

P(Xn −X0 ≥ t) ≤ exp
Å
− t2

2(tL + nσ2)

ã
.

We are now ready to prove our main theorem on the parallel Ising sampler.

Proof of Theorem 1.2. We first note that all lines in Algorithm 1 take logarithmic time
with poly(n) processors (e.g., by a parallel implementation of matrix-vector multiplication).
Note that a random subset of specified size s can be selected by generating a random number
for each index, using a parallel sorting algorithm [11], and then selecting the smallest s

elements. We will ignore logarithmic overhead for the rest of the proof.
Running time is bounded with high probability. We consider a tree associated with a run
of the algorithm, where each node is labeled with a set, constructed as follows. Each node
represents a time that ParallelIsingSampler is called, and each leaf node represents a time
that ApproxRejectionSampler. Start with a root node v1 labeled with S1 = [n]. A node has T

children, where T is the number calculated in line 7 of the algorithm. Each node is labeled
with subset of indices marking out the submatrix JS×S it is given.

Now consider exploring the tree in the following breadth-first manner. We will define a list
Bt which will contain the vertices at the boundary of explored territory and a filtration Ft.
Let B0 = (v1) and F0 be the trivial σ-algebra. Given Bt and Ft, if Bt is non-empty, define
Bt+1 and Ft+1 as follows. Let vt+1 be the first vertex in the list Bt, and let Bt+1 be defined
from Bt by removing vt+1 from Bt and adding its children. Let St+1 denote the set of indices
associated with vt+1, considered as a set-valued random variable, and Ft+1 = σ(Ft, St+1).
Let Mt = |Bt|. We have M1 =

⌊
C2 ln

(
n
ε

)
n
s

⌋
, and wish to bound the first time τ such that

Mτ = 0. We redefine Mτ+k = −k (for sake of making Mt a supermartingale, as we will show
below).

For t ≥ 2, consider Mt −Mt−1|Ft−1. Let v denote the parent of vt, and suppose v is

associated with the set R, with |R| = m. Then |St| = s :=

 c1m(
ln
(

2
εstep

)
+1
)

ln(n
ε)
∥∥∥∥J�

R×R

∥∥∥∥
F

.

(We choose c1 ≤ 1
2 c3 to ensure that we always have s ≤ m.) Let Dt be the number of new

children added. If
∥∥∥J�St×St

∥∥∥
F
≤ c3 or s = 1, then vt is a leaf and Dt = 0. Now consider∥∥∥J�St×St

∥∥∥
F

> c3. In the current call to the algorithm, s′ =

 c1s(
ln
(

2
εstep

)
+1
)

ln(n
ε)
∥∥∥∥J�

St×St

∥∥∥∥
F

.

Then Dt ≤ C2 ln
(

n
ε

)
s
s′ ≤

C2

(
ln
(

2
εstep

)
+1
)

ln(n
ε)2

∥∥∥∥J�
St×St

∥∥∥∥
F

c1
. In either case, Mt−Mt−1 = Dt−1.

We have that

Dt ≤
C2
Ä
ln
Ä

2
εstep

ä
+ 1
ä

ln
(

n
ε

)2
∥∥∥J�St×St

∥∥∥
F
1

[∥∥∥J�St×St

∥∥∥
F

> c3

]
c1

. (7)

APPROX/RANDOM 2024

49:20 Parallelising Glauber Dynamics

Hence, by Cauchy-Schwarz and Chebyshev’s inequality,

E[Dt|Ft−1] ≤
C2
Ä
ln
Ä

2
εstep

ä
+ 1
ä

ln
(

n
ε

)2

c1
E
ï∥∥∥J�St×St

∥∥∥2

F
|Ft−1

ò1/2
·

P

∥∥∥J�St×St

∥∥∥
F

>
c3

ln
Ä

2
εstep

ä
+ 1

∣∣∣Ft−1

1/2

≤
C2
Ä
ln
Ä

2
εstep

ä
+ 1
ä

ln
(

n
ε

)2

c1
E
ï∥∥∥J�St×St

∥∥∥2

F
|Ft−1

ò1/2
·
E
ï∥∥∥J�St×St

∥∥∥2

F
|Ft−1

ò1/2

c3/
Ä
ln
Ä

2
εstep

ä
+ 1
ä

=
C2
Ä
ln
Ä

2
εstep

ä
+ 1
ä2

ln
(

n
ε

)2

c1c3
E
ï∥∥∥J�St×St

∥∥∥2

F
|Ft−1

ò
. (8)

Now because St is uniformly chosen at random from subsets of R of size s,

E
ï∥∥∥J�St×St

∥∥∥2

F
|Ft−1

ò
= E

S∼Uniform(R
s)

ï∥∥∥J�S×S

∥∥∥2

F

ò
=

∑
i,j∈R,i ̸=j

(s

m

)2
J2

ij =
(s

m

)2 ∥∥∥J�R×R

∥∥∥2

F
≤ 4c2

1Ä
ln
Ä

2
εstep

ä
+ 1
ä2

ln
(

n
ε

)2
, (9)

where we use the fact that J�ii = 0, all off-diagonal entries have probability
(

s
m

)2 of being
included in St, and s > 1. Combining (8) and (9) gives

E[Dt|Ft−1] ≤ 4C2c1

c3
.

Choosing c1 small enough (depending on C2, c3), we can ensure that E[Mt −Mt−1|Ft−1] =
E[Dt−1|Ft−1] ≤ − 1

2 , so that Mt + t
2 is a supermartingale for t ≥ 1. By Doob’s decomposition

we can write Mt = At + M ′
t where At+1 ≤ A1 − t

2 is a predictable decreasing sequence and
M ′

t is a martingale.
We now bound the variance. Using (7),

E[(M ′
t −M ′

t−1)2|Ft−1] ≤ E[D2
t |Ft−1]

≤
C2

2

Ä
ln
Ä

2
εstep

ä
+ 1
ä2

ln
(

n
ε

)4

c2
1

E
ï∥∥∥J�St×St

∥∥∥2

F
|Ft−1

ò
≤ 4C2

2 ln
(n

ε

)2
,

where we use the bound (9). Finally, |M ′
t+1 −M ′

t | ≤
C2

(
ln
(

2
εstep

)
+1
)

ln(n
ε)2

c1

∥∥∥J�
∥∥∥

F
with

probability 1. Let T0 be the T computed in line 7 in the first step of the algorithm. By
Bernstein’s inequality for martingales (Lemma 4.11), for t ≥ C ln4 (n

ε

)
max

{∥∥∥J�
∥∥∥

F
, 1
}
≥ T0

for an appropriate constant C (depending on C2, c1, C4),

P(Mt+1 > 0) = P ((Mt+1 −M1) > −T0) ≤ P
Å

M ′
t+1 −M ′

1 >
t

2 − T0

ã
≤ ε

2 .

This shows that with probability ≥ 1− ε
4 , there are at most tmax = C ln4 (n

ε

)
max{∥J∥F , 1}

nodes.
Finally, we note that in the call to ApproxRejectionSampler, the parameter needed to

obtain error εstep is

H. Lee 49:21

c =
Å 2

εstep

ã δ
c3−δ

=
Å 2

εstep

ã 1
log(2/εstep)

= e

and the acceptance probability is ≥ 1
2c = 1

2e .
The number of tries until acceptance is a geometric random variable, which is subexpo-

nential, so standard concentration bounds show that the total number of tries is at most
O(ln

(1
ε

)
) times the number of calls, with probability ≥ 1− ε

2 . Putting everything together,
we obtain O(max{∥J∥F , 1} poly log

(
n
ε

)
) running time with probability ≥ 1− ε.

Output is close in TV distance. Let A be a large constant to be determined.
Now consider coupling y = y(0) with a sequence of random variables y(1), . . ., defined

inductively as follows. Start with all vertices of the tree of recursive calls unmarked. Now
given y(t), choose a node (in a fixed manner) all of whose children are marked, and mark
it; then replace the output of that call to ParallelIsingSampler by a sample from the true
distribution. We now choose constants so that DTV(D(y(t)),D(y(t+1))) ≤ ε

nA . There are two
kinds of replacements to consider, a leaf node and a non-leaf node.

A leaf node corresponds to a call to ApproxRejectionSampler. If c3 is small enough and
C4 = A, then by Lemma 4.9 and 4.4, the output of ApproxRejectionSampler is within ε

nA of
the µJR×R,h.

A non-leaf node corresponds to T recursive calls to ParallelIsingSampler. Here we must
appeal to mixing for the Ising model. By Theorem 4.1, approximate tensorization of entropy
holds with constant 1

c . Hence by Theorem 3.6, there is a constant C ′0 such that if C0 = C ′0c,
then for any s, t · n

s steps of s-Glauber dynamics results in a distribution νt satisfying

DTV(νt∥µJ,h) ≤
…

1
2DKL(νt∥µJ,h) ≤

…
1
2DKL(ν0∥µJ,h)e−C0t.

With the product initialization, we have by Lemma 4.10(2) (applied to the whole matrix)
that DKL(ν0∥µJ,h) ≤ ∥J∥n ≤ 2n. Hence there exists a constant C ′2 such that if C2 = C ′2A/c,
then with T = C2 ln

(
n
ε

)
n
s steps, DTV(νT ∥µJ,h) ≤ ε

nA . By Lemma 4.10(1), for the Ising
model µJR×R,h the conditional distribution of XS given XR\S = yR\S is exactly the Ising
model µJS×S ,JS×R\SyR\S+hS

. Given that the conditional distributions are sampled exactly,
then the only error is that from not having fully mixed, which we set to be ε

nA .
This chain of coupled random variables establishes DTV(D(y),D(y(t))) ≤ tε

nA . Moreover,
for t > tmax, DTV(D(y(t)), µJ,h) ≤ ε

2 by our high-probability bound, as the root node in y(t)

will have been replaced with a perfect sample with probability ≥ 1− ε
2 . It remains to note

that tmax = C ln4 (n
ε

)
max{∥J∥F , 1} with C depending polynomially on A. Hence we can

choose A such that tmaxε
nA ≤ ε

2 , and this finishes the proof. ◀

References
1 Vedat Levi Alev and Lap Chi Lau. Improved analysis of higher order random walks and

applications. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, pages 1198–1211, 2020. doi:10.1145/3357713.3384317.

2 Yeganeh Alimohammadi, Nima Anari, Kirankumar Shiragur, and Thuy-Duong Vuong. Frac-
tionally log-concave and sector-stable polynomials: counting planar matchings and more. In
Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages
433–446, 2021. doi:10.1145/3406325.3451123.

3 Jason M Altschuler and Sinho Chewi. Faster high-accuracy log-concave sampling via algorithmic
warm starts. arXiv preprint, 2023. arXiv:2302.10249.

APPROX/RANDOM 2024

https://doi.org/10.1145/3357713.3384317
https://doi.org/10.1145/3406325.3451123
https://arxiv.org/abs/2302.10249

49:22 Parallelising Glauber Dynamics

4 Nima Anari, Callum Burgess, Kevin Tian, and Thuy-Duong Vuong. Quadratic speedups in
parallel sampling from determinantal distributions. In Proceedings of the 35th ACM Symposium
on Parallelism in Algorithms and Architectures, pages 367–377, 2023. doi:10.1145/3558481.
3591104.

5 Nima Anari, Shayan Oveis Gharan, and Cynthia Vinzant. Log-concave polynomials, entropy,
and a deterministic approximation algorithm for counting bases of matroids. In 2018 IEEE
59th Annual Symposium on Foundations of Computer Science (FOCS), pages 35–46. IEEE,
2018. doi:10.1109/FOCS.2018.00013.

6 Nima Anari, Nathan Hu, Amin Saberi, and Aaron Schild. Sampling arborescences in parallel.
arXiv preprint, 2020. arXiv:2012.09502.

7 Nima Anari, Yizhi Huang, Tianyu Liu, Thuy-Duong Vuong, Brian Xu, and Katherine Yu.
Parallel discrete sampling via continuous walks. In Proceedings of the 55th Annual ACM
Symposium on Theory of Computing, pages 103–116, 2023. doi:10.1145/3564246.3585207.

8 Nima Anari, Vishesh Jain, Frederic Koehler, Huy Tuan Pham, and Thuy-Duong Vuong.
Entropic independence i: Modified log-sobolev inequalities for fractionally log-concave distri-
butions and high-temperature ising models. arXiv preprint, 2021. arXiv:2106.04105.

9 Nima Anari, Vishesh Jain, Frederic Koehler, Huy Tuan Pham, and Thuy-Duong Vuong.
Universality of spectral independence with applications to fast mixing in spin glasses. arXiv
preprint, 2023. arXiv:2307.10466.

10 Roland Bauerschmidt and Thierry Bodineau. A very simple proof of the lsi for high temperature
spin systems. Journal of Functional Analysis, 276(8):2582–2588, 2019.

11 Dina Bitton, David J DeWitt, David K Hsaio, and Jaishankar Menon. A taxonomy of parallel
sorting. ACM Computing Surveys (CSUR), 16(3):287–318, 1984. doi:10.1145/2514.2516.

12 Antonio Blanca, Pietro Caputo, Zongchen Chen, Daniel Parisi, Daniel Štefankovič, and
Eric Vigoda. On mixing of markov chains: Coupling, spectral independence, and entropy
factorization. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 3670–3692. SIAM, 2022. doi:10.1137/1.9781611977073.145.

13 Alexandre Bristiel and Pietro Caputo. Entropy inequalities for random walks and permutations.
arXiv preprint, 2021. arXiv:2109.06009.

14 Djalil Chafaï. Entropies, convexity, and functional inequalities, on ϕ-entropies and ϕ-sobolev
inequalities. Journal of Mathematics of Kyoto University, 44(2):325–363, 2004.

15 George HG Chen and R Tyrrell Rockafellar. Convergence rates in forward–backward splitting.
SIAM Journal on Optimization, 7(2):421–444, 1997. doi:10.1137/S1052623495290179.

16 Yongxin Chen, Sinho Chewi, Adil Salim, and Andre Wibisono. Improved analysis for a
proximal algorithm for sampling. In Conference on Learning Theory, pages 2984–3014. PMLR,
2022. URL: https://proceedings.mlr.press/v178/chen22c.html.

17 Yuansi Chen. An almost constant lower bound of the isoperimetric coefficient in the kls
conjecture. Geometric and Functional Analysis, 31:34–61, 2021.

18 Yuansi Chen and Ronen Eldan. Localization schemes: A framework for proving mixing bounds
for markov chains. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer
Science (FOCS), pages 110–122. IEEE, 2022.

19 Zongchen Chen, Kuikui Liu, and Eric Vigoda. Optimal mixing of glauber dynamics: Entropy
factorization via high-dimensional expansion. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, pages 1537–1550, 2021. doi:10.1145/3406325.3451035.

20 Mary Cryan, Heng Guo, and Giorgos Mousa. Modified log-sobolev inequalities for strongly
log-concave distributions. In 2019 IEEE 60th Annual Symposium on Foundations of Computer
Science (FOCS), pages 1358–1370. IEEE, 2019. doi:10.1109/FOCS.2019.00083.

21 Persi Diaconis and Mehrdad Shahshahani. Time to reach stationarity in the bernoulli–laplace
diffusion model. SIAM Journal on Mathematical Analysis, 18(1):208–218, 1987.

22 Ahmed El Alaoui, Andrea Montanari, and Mark Sellke. Sampling from the sherrington-
kirkpatrick gibbs measure via algorithmic stochastic localization. In 2022 IEEE 63rd Annual

https://doi.org/10.1145/3558481.3591104
https://doi.org/10.1145/3558481.3591104
https://doi.org/10.1109/FOCS.2018.00013
https://arxiv.org/abs/2012.09502
https://doi.org/10.1145/3564246.3585207
https://arxiv.org/abs/2106.04105
https://arxiv.org/abs/2307.10466
https://doi.org/10.1145/2514.2516
https://doi.org/10.1137/1.9781611977073.145
https://arxiv.org/abs/2109.06009
https://doi.org/10.1137/S1052623495290179
https://proceedings.mlr.press/v178/chen22c.html
https://doi.org/10.1145/3406325.3451035
https://doi.org/10.1109/FOCS.2019.00083

H. Lee 49:23

Symposium on Foundations of Computer Science (FOCS), pages 323–334. IEEE, 2022. doi:
10.1109/FOCS54457.2022.00038.

23 Ronen Eldan. Thin shell implies spectral gap up to polylog via a stochastic localization scheme.
Geometric and Functional Analysis, 23(2):532–569, 2013.

24 Ronen Eldan, Frederic Koehler, and Ofer Zeitouni. A spectral condition for spectral gap: fast
mixing in high-temperature ising models. Probability theory and related fields, 182(3-4):1035–
1051, 2022.

25 Jiaojiao Fan, Bo Yuan, and Yongxin Chen. Improved dimension dependence of a proximal
algorithm for sampling. arXiv preprint, 2023. arXiv:2302.10081.

26 Weiming Feng, Thomas P Hayes, and Yitong Yin. Distributed metropolis sampler with optimal
parallelism. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 2121–2140. SIAM, 2021. doi:10.1137/1.9781611976465.127.

27 Yuval Filmus, Ryan O’Donnell, and Xinyu Wu. Log-sobolev inequality for the multislice, with
applications. Electronic Journal of Probability, 27:1–30, 2022.

28 David A Freedman. On tail probabilities for martingales. the Annals of Probability, pages
100–118, 1975.

29 Will Grathwohl, Kevin Swersky, Milad Hashemi, David Duvenaud, and Chris Maddison. Oops
i took a gradient: Scalable sampling for discrete distributions. In International Conference on
Machine Learning, pages 3831–3841. PMLR, 2021. URL: http://proceedings.mlr.press/
v139/grathwohl21a.html.

30 John Hubbard. Calculation of partition functions. Physical Review Letters, 3(2):77, 1959.
31 Vishesh Jain, Frederic Koehler, and Andrej Risteski. Mean-field approximation, convex

hierarchies, and the optimality of correlation rounding: a unified perspective. In Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 1226–1236,
2019. doi:10.1145/3313276.3316299.

32 Frederic Koehler, Holden Lee, and Andrej Risteski. Sampling approximately low-rank ising
models: Mcmc meets variational methods. In Conference on Learning Theory, pages 4945–4988.
PMLR, 2022. URL: https://proceedings.mlr.press/v178/koehler22a.html.

33 Tzong-Yow Lee and Horng-Tzer Yau. Logarithmic sobolev inequality for some models of
random walks. The Annals of Probability, 26(4):1855–1873, 1998.

34 Yin Tat Lee, Ruoqi Shen, and Kevin Tian. Structured logconcave sampling with a restricted
gaussian oracle. In Conference on Learning Theory, pages 2993–3050. PMLR, 2021. URL:
http://proceedings.mlr.press/v134/lee21a.html.

35 Hongyang Liu and Yitong Yin. Simple parallel algorithms for single-site dynamics. In
Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, pages
1431–1444, 2022. doi:10.1145/3519935.3519999.

36 Nicolas Loizou, Hugo Berard, Gauthier Gidel, Ioannis Mitliagkas, and Simon Lacoste-Julien.
Stochastic gradient descent-ascent and consensus optimization for smooth games: Conver-
gence analysis under expected co-coercivity. Advances in Neural Information Processing
Systems, 34:19095–19108, 2021. URL: https://proceedings.neurips.cc/paper/2021/hash/
9f96f36b7aae3b1ff847c26ac94c604e-Abstract.html.

37 Neal Madras and Dana Randall. Markov chain decomposition for convergence rate analysis.
Annals of Applied Probability, pages 581–606, 2002.

38 Andrea Montanari. Sampling, diffusions, and stochastic localization. arXiv preprint, 2023.
arXiv:2305.10690.

39 Andrea Montanari and Yuchen Wu. Posterior sampling from the spiked models via diffusion
processes. arXiv preprint, 2023. arXiv:2304.11449.

40 Ravi Montenegro and Prasad Tetali. Mathematical aspects of mixing times in markov
chains. Foundations and Trends® in Theoretical Computer Science, 1(3):237–354, 2006.
doi:10.1561/0400000003.

APPROX/RANDOM 2024

https://doi.org/10.1109/FOCS54457.2022.00038
https://doi.org/10.1109/FOCS54457.2022.00038
https://arxiv.org/abs/2302.10081
https://doi.org/10.1137/1.9781611976465.127
http://proceedings.mlr.press/v139/grathwohl21a.html
http://proceedings.mlr.press/v139/grathwohl21a.html
https://doi.org/10.1145/3313276.3316299
https://proceedings.mlr.press/v178/koehler22a.html
http://proceedings.mlr.press/v134/lee21a.html
https://doi.org/10.1145/3519935.3519999
https://proceedings.neurips.cc/paper/2021/hash/9f96f36b7aae3b1ff847c26ac94c604e-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/9f96f36b7aae3b1ff847c26ac94c604e-Abstract.html
https://arxiv.org/abs/2305.10690
https://arxiv.org/abs/2304.11449
https://doi.org/10.1561/0400000003

49:24 Parallelising Glauber Dynamics

41 Izhar Oppenheim. Local spectral expansion approach to high dimensional expanders part I:
Descent of spectral gaps. Discrete & Computational Geometry, 59(2):293–330, 2018. doi:
10.1007/s00454-017-9948-x.

42 Benjamin Rhodes and Michael Gutmann. Enhanced gradient-based mcmc in discrete spaces.
arXiv preprint, 2022. arXiv:2208.00040.

43 Justin Salez. A sharp log-Sobolev inequality for the multislice. Ann. H. Lebesgue, 4:1143–1161,
2021. doi:10.5802/ahl.99.

44 Holger Sambale and Arthur Sinulis. Modified log-sobolev inequalities and two-level concentra-
tion. arXiv preprint, 2019. arXiv:1905.06137.

45 Ruoqi Shen and Yin Tat Lee. The randomized midpoint method for log-concave sampling.
Advances in Neural Information Processing Systems, 32, 2019.

46 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep un-
supervised learning using nonequilibrium thermodynamics. In International Conference on
Machine Learning, pages 2256–2265. PMLR, 2015. URL: http://proceedings.mlr.press/
v37/sohl-dickstein15.html.

47 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. Advances in neural information processing systems, 32, 2019.

48 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. arXiv
preprint, 2020. arXiv:2011.13456.

49 Roman Vershynin. High-dimensional probability: An introduction with applications in data
science, volume 47. Cambridge university press, 2018.

50 Ruqi Zhang, Xingchao Liu, and Qiang Liu. A langevin-like sampler for discrete distributions.
In International Conference on Machine Learning, pages 26375–26396. PMLR, 2022. URL:
https://proceedings.mlr.press/v162/zhang22t.html.

https://doi.org/10.1007/s00454-017-9948-x
https://doi.org/10.1007/s00454-017-9948-x
https://arxiv.org/abs/2208.00040
https://doi.org/10.5802/ahl.99
https://arxiv.org/abs/1905.06137
http://proceedings.mlr.press/v37/sohl-dickstein15.html
http://proceedings.mlr.press/v37/sohl-dickstein15.html
https://arxiv.org/abs/2011.13456
https://proceedings.mlr.press/v162/zhang22t.html

Towards Simpler Sorting Networks
and Monotone Circuits for Majority
Natalia Dobrokhotova-Maikova #

Yandex, Tel Aviv, Israel

Alexander Kozachinskiy #

IMFD & CENIA, Santiago, Chile

Vladimir Podolskii #

Tufts University, Medford, MA, USA

Abstract
In this paper, we study the problem of computing the majority function by low-depth monotone
circuits and a related problem of constructing low-depth sorting networks. We consider both the
classical setting with elementary operations of arity 2 and the generalized setting with operations of
arity k, where k is a parameter. For both problems and both settings, there are various constructions
known, the minimal known depth being logarithmic. However, there is currently no known efficient
deterministic construction that simultaneously achieves sub-log-squared depth, simplicity, and has a
potential to be used in practice. In this paper we make progress towards resolution of this problem.

For computing majority by standard monotone circuits (gates of arity 2) we provide an explicit
monotone circuit of depth O(log5/3

2 n). The construction is a combination of several known and
not too complicated ideas. Essentially, for this result we gradually derandomize the construction of
Valiant (1984).

As one of the intermediate steps in our result we need an efficient construction of a sorting
network with gates of arity k for arbitrary fixed k. For this we provide a new sorting network
architecture inspired by representation of inputs as a high-dimensional cube. As a result we obtain
a simple construction that improves previous upper bound of 4 log2

k n to 2 log2
k n. We prove the

similar bound for the depth of the circuit computing majority of n bits consisting of gates computing
majority of k bits. Note, that for both problems there is an explicit construction of depth O(logk n)
known, but the construction is complicated and the constant hidden in O-notation is huge.

2012 ACM Subject Classification Theory of computation → Models of computation

Keywords and phrases Sorting networks, constant depth, lower bounds, threshold circuits

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.50

Category RANDOM

Funding Alexander Kozachinskiy: funded by the National Center for Artificial Intelligence CENIA
FB210017, Basal ANID, and by the Millennium Science Initiative Program – Code ICN17002.

1 Introduction

More than 50 years ago, Foster and Stockton [10] devised, in modern terms, an O(log n)-depth
Boolean circuits (with AND and OR gates of fan-in 2 and also NOT gates) that, given n

input bits, computes the binary representation of their sum. Their construction is explicit,
that is, the circuit can be computed in deterministic nO(1)-time. Moreover, it is relatively
simple, where the main trick is to compute in constant depth, for any 3 numbers, given in
binary, 2 numbers with the same sum, also given in binary. In about log3/2 n steps, we get
from n input bits to just two numbers, both O(log n)-bit long. After that, one can compute
their sum in depth O(log n), say,by the grade school algorithm.

© Natalia Dobrokhotova-Maikova, Alexander Kozachinskiy, and Vladimir Podolskii;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 50; pp. 50:1–50:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dobromayk@yandex.ru
https://orcid.org/0009-0006-9407-0481
mailto:kozmath@proton.me
https://orcid.org/0000-0002-9956-9023
mailto:podolskii.vv@gmail.com
https://orcid.org/0000-0001-7154-138X
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.50
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

50:2 Towards Simpler Sorting Networks and Monotone Circuits for Majority

An easy consequence of this [20] is that all symmetric Boolean functions (those whose
value is determined by the number of 1s in the input) are in the class NC1, that is, can be
computed by O(log n)-depth fan-in 2 Boolean circuits. It should be noted, however, that
in this construction, it is unavoidable to use NOT gates, even for symmetric functions that
are monotone, like the majority function, outputting 1 if and only if more than half of the
input bits are 1’s. This is because inside the construction we compute the sum of input bits
in binary, and the digits of this sum are non-monotone functions. Thus, if we want, say, a
monotone Boolean circuit (only fan-in 2 AND and OR gates with no NOT gates) for the
majority function that has depth O(log n), we need other ideas.

Monotone Boolean circuits of depth O(log n) for the majority function are known to exist,
but to this day, there is no explicit construction as simple as the construction of Foster and
Stockton. Namely, there are two constructions, one is extremely simple but randomized (due
to Valiant [32]), and the other is explicit but extremely involved (due to Ajtai, Komlós and
Szemerédy [1]).

One can represent the construction of Valiant as a ternary tree of depth C · log n, where
every node computes the majority of its three children [12]. As for the leafs, we simply put
a random input variable to every leaf in the tree, independently for different leafs. It is
relatively easy to show that, for every input x ∈ {0, 1}n and for a large enough absolute
constant C > 0, the probability that the tree computes the value of the majority function on
x is larger than 1 − 2−n. Thus, there exists a choice of putting input variables to leaves that
gives us a circuit, computing the majority function for all inputs.

Derandomizing the Valiant’s construction seems a tempting approach for constructing an
explicit O(log n)-depth monotone circuit for the majority function. Nevertheless, there has
been limited progress in this direction. Hoory, Magen and Pitassi [13] have improved the size
of the Valiant’s construction, but their construction is still randomized. In turn, Cohen et
al. [7] observed how to use hash functions to reduce the number of random bits to O(log n)
but at the cost of having the probability of error about 1/polylog(n), which is not enough
for the complete derandomization.

Using a completely different approach, Ajtai, Komlós and Szemerédy [1] constructed an
explicit (computable in deterministic polynomial time) O(log n)-depth monotone circuit for
the majority function. It is worth mentioning that the approach of [1] uses randomness
as well, however, they derandomize their construction on the later steps. In fact, they did
much more than that – they constructed an explicit sorting network with O(log n) layers. A
sorting network receives on input an array with n numbers and outputs the same array but
with numbers going in the non-decreasing order. In each layer, there is a fixed partition of
the entries of the array into pairs, where to each pair one applies a comparator, swapping
the numbers in a pair if they are not in the non-decreasing order. A sorting network can be
easily turned into a monotone circuit for the majority function whose depth is equal to the
number of layers of the network. This is because on binary inputs, the comparator can be
simulated with one AND gate and one OR gate. The value of the majority function then
can be found as the value of the median entry of the sorted array.

For sorting networks, there are several simple and practical constructions with Θ(log2 n)
layers [16, 2, 22]. The construction of Ajtai, Komlós and Szemerédy [1], usually referred to
as the AKS sorriting network, has O(log n) layers, which is asymptotically optimal. However,
despite some further simplifications by Paterson [24] and Seiferas [26], this construction is
famously very involved with a constant above 1000 before log n. As for the lower bounds,
there is a folklore (2 − o(1)) log2 n lower bound on the number of layers for networks sorting
n numbers. It was improved by Yao [34] and later by Kahale et al. [15] with the current
record about 3.27 log2 n.

N. Dobrokhotova-Maikova, A. Kozachinskiy, and V. Podolskii 50:3

For constructing just an explicit O(log n)-depth monotone circuit for the majority function,
we do not necessarily have to construct a sorting network. This gives us a hope that the
difficulty of the AKS construction can be avoided. In this paper, we make a progress in
this direction, giving the first explicit monotone circuit for the majority function that has
sub-O(log2 n) depth while not using the AKS methodology at all.

▶ Theorem 1. There is a polynomial time constructable monotone circuit for MAJn of
polynomial size and depth O(log5/3 n).

Our proof combines several relatively simple steps. The principle component is a partial
derandomization of the Valiant’s construction, using some ideas of Cohen et al. [7] but with
different setting of parameters. Next, we repeatedly apply two operations to the resulting
randomized circuit. The first operation is a brute-force derandomization, that searches
through all possible random bits of the randomized circuit. The second one is a composition
with a circuit for MAJn that consists of MAJk gates and has depth O(log2

k n). Existence
of such circuits is known [23, 8], but in this paper, we also give a new simple construction,
based on alternative ideas and with better constant before log2

k n.

In fact, all known construction of such circuits, including a new one from this paper,
come from sorting networks with comparators that can simultaneously sort k > 2 positions
of the array. We will call them k-sorting networks. They appear in the literature since the
70s, the setting is mentioned already in the Knuth’s book [16, Problem 5.3.4.54], followed
by numerous works [30, 23, 3, 21, 8, 18, 28, 11, 35]. They are usually studied to better
understand the structure of ordinary sorting networks (for example, a version of AKS sorting
network with improved constant relies on k-sorting network in intermediate constructions [6]).
In particular, k-sorting networks are closely related to recursive constructions of sorting
networks. Having a good construction of a k-sorting network, one can apply it to its own
comparators, getting a construction with smaller k, until eventually k becomes 2, and we get
an ordinary sorting network.

Chvátal shows in his lecture notes [6], the AKS sorting network also generalizes to this
setting, giving a construction of depth O(logk n). However, as with the AKS sorting network
itself, this construction is complicated and impractical. In fact, even constructing a k-network
of depth O(log2

k n) is significantly harder for general k than just for k = 2. Standard O(log2
2 n)

constructions for 2-sorting networks are based on divide and conquer approach, in which we
first recursively sort parts of input and then merge sorted parts together. For the case of
k-sorting networks to get a network of depth O(log2

k n) with the same approach merging step
needs to merge many parts simultaneously and this task becomes non-trivial [19, 27, 25, 5].
We are aware of just two constructions like that: Cypher and Sanz [8] gave a simple and
potentially practical k-sorting network of depth ≤ 5 log2

k n (for k ≥ log4 n) and Parker and
Parbery [23] gave a construction of depth ≤ 4 log2

k n (in case when n is an integral power of
k). As for the lower bounds, any k-sorting network with n inputs must have depth at least
logk n because otherwise outputs cannot be connected to all n inputs. Dobokhotova-Maikova
et al. [9] improved this bound to roughly 2 logk n. They also found optimal values of k for
small values of depth d. More specifically, for sorting networks of depth d = 1, 2 they show
that k cannot be smaller than n, for d = 3 the optimal value is k =

⌈
n
2

⌉
and for d = 4 the

optimal value is k = Θ(n2/3). These results indicate that small depth k-sorting networks
are not enough for iterative approach to sub-log-squared sorting network and we need either
good k-sorting network constructions of depth greater than 4 or additional ideas.

Our second result is a new architecture for k-sorting networks. An application of this
architecture is a k-sorting network of depth 2 log2

k n, improving the constant compared to
the results of [8, 23]. More precisely, we prove the following theorem.

APPROX/RANDOM 2024

50:4 Towards Simpler Sorting Networks and Monotone Circuits for Majority

▶ Theorem 2. For any n and for any k such that log k = ω(log log n) (or, to put it differently,
k is growing faster than any polylog(n)), there exists a k-sorting network of depth at most
(2 + o(1)) log2

k n. The sorting network can be computed in polynomial time.

The key idea behind this construction is to represent the input array as a hypercube of
high dimension and sort various sections of this cube. We note that the idea of representing
an array as a multidimensional structure is not new, for example, Leighton [19] in his
ColumnSort represented the array as a two dimensional table and Cypher and Sanz [8] use
a representation of larger dimension. In our construction it is important that we use the
dimension greater than 2 and that the sections of the cube that are used for sorting have
non-trivial intersection. On the conceptual level, the main novelty in our construction is the
notion of s-sorting. We call the array s-sorted if the whole array is sorted correctly apart
from some interval of length at most s. Most (if not all) log-squared-depth sorting network
constructions adopt the divide and conquer strategy. The O(log2

k n)-depth construction
in [23] is not an exception, to sort an array of size n, they split it into subarrays of size
n/k, sort them recursively and merge them afterward. However, merging k subarrays using
k-sorting network is relatively expensive. To improve over previous construction, we work
with s-sorted subarrays instead. We show how to merge them effectively (using the hypercube
idea) and then show how we can build a recursive construction based on them.

It is not hard to see that all outputs of a comparator with k inputs can be computed by
MAJ2k gates. This means that Theorem 2 yields an (2 + o(1)) log2

k n-depth circuit for MAJn,
consisting of MAJk gates, which is a final component for our construction in Theorem 1

To additionally illustrate applications of our construction, we consider constant depth
sorting networks and circuits for majority. We show that there is a depth-4 MAJk-circuit
for MAJn for k = O(n3/5). As another application we address the question of k-sorting
networks for k = O(n1/2). In [16] Knuth posed a problem of constructing a minimal depth
k-sorting network for the input of size k2. Parker and Parbery [23] gave a construction of
depth 9. We improve this to depth 8 at the cost of using comparators of size O(k) for k2

input size. The results of [9] show that the depth of such a network must be at least 5.
The rest of the paper is organized as follows. In Section 2 we provide necessary preliminary

information. In Section 3 we construct a monotone circuit for majority of depth O(log5/3 n).
In Section 4 we provide a new construction of k-sorting networks and deduce the corollaries.
In Section 5 we discuss some open problems.

2 Preliminaries

We use the standard notation [n] = {1, . . . , n}. We sometimes omit the base of the logarithms,
by default we assume that the base is 2.

2.1 Sorting Networks
A depth-d k-sorting network with n inputs consists of d + 1 arrays A1, . . . , Ad+1, each of
length n. Between any two arrays Ai and Ai+1 there is a layer of comparators (the first
layer is between A1 and A2, the second layer is between A2 and A3, and so on). A layer
of comparators is a partition of the set {1, 2, . . . , n} into subsets of size at most k called
comparators.

The input is given in an array A1 and all other arrays are computed by the network one
by one in the following way. If S ⊆ [n] is a comparator from the ith layer, then it is applied
to the entries {Ai[j] | j ∈ S}. It sorts their values in the non-decreasing order and puts the
results into the entries {Ai+1[j] ∈ Ai+1 | j ∈ S}. We say that a network is sorting if for any
input A1 the array Ad+1 is sorted.

N. Dobrokhotova-Maikova, A. Kozachinskiy, and V. Podolskii 50:5

We reserve the name sorting network for 2-sorting networks.
It is well known that to check that the sorting network sorts all possible inputs, it is

enough to check that it sorts just 0/1-inputs.

▶ Lemma 3 (Zero-one principle [16]). A network with n inputs sorts all integer sequences in
the non-decreasing order if and only if it sorts all sequences from {0, 1}n in the non-decreasing
order.

By this principle, when constructing sorting networks, we can assume that each input
cell receives either 0 or 1.

The following simple observation will be useful to us.

▶ Lemma 4. If the t largest or the t smallest entries in the array are positioned correctly
(i.e., in the last t cells and in the first t cells, respectively), then after the application of
several comparators they are still positioned correctly.

Proof. We can show by induction on i that the smallest and the largest entries do not move
if they are already positioned correctly. The key observation is that if some of these entries
are inputted into one of the comparators S, they will not be moved. ◀

2.2 From Sorting Networks to Majority Circuits
We use the standard notion of Boolean circuits (see, e.g. [14]). As inputs, we allow Boolean
variables and Boolean constants 0 and 1. The size of the circuit is the number of gates in it.

Given a k-sorting network we can get a circuit computing majority from it. More
specifically, restrict the inputs to the network to {0, 1}n and consider one k-comparator S.
Note that its kth output is equal to 1 if and only if there is at least one 1 in the input. In
other words, the kth output is equal to OR of input bits. Its (k − 1)th output is equal to 1 if
and only if there are at least two 1s in the input. More generally, it is easy to see that the
(k − i)th output of the k-comparator outputs a threshold function

THRi
k(x) =

{
1 if |x| > i,

0 otherwise,

where |x| denotes the weight of the vector x ∈ {0, 1}k, that is, the number of 1s in it. We
reserve the notation MAJk(x) for the function THRk/2

k (x).
We can substitute each comparator in the network by k majority functions. Note that by

adding several constants 0 or 1 as inputs to the gate we can convert any THRi
k function into

MAJk′ with k′ ≤ 2k.
Now, it remains to observe that the median bit in the output array computes exactly

MAJn. Thus, as a result, we get the following lemma.

▶ Lemma 5. Any k-sorting network of depth d and size s can be effectively converted into
a circuit of depth d and size ks consisting of MAJ2k gates and computing majority. In the
case k = 2, we get just a monotone circuit consisting of AND and OR.

2.3 Approximate Majority
By ε-approximate majority function MAJε

n we denote the partial function that outputs
MAJn of its input but is defined only on the inputs where the fraction of ones in it is bounded
away by ε from 1/2.

We need the following result by Viola [33] which can be viewed as a derandomization of
the Sipser–Lautemann theorem [29, 17]

APPROX/RANDOM 2024

50:6 Towards Simpler Sorting Networks and Monotone Circuits for Majority

▶ Theorem 6 ([33]). For any constant ε > 0, one can compute MAJε
n explicitly by a

monotone circuit of size poly(n) and depth O(log n).

(Monotonocity condition is implicit in [33] but easily observable from the construction).

2.4 t-Wise Independent Hash Functions
We need the notion of t-wise independent hash functions.

▶ Definition 7. For integers N and t such that t ≤ N , a family of function H =
{h : [N] → [N]} is t-wise independent if for all distinct x1, . . . , xt ∈ [N] the random variables
h(x1), . . . , h(xt) are independent and uniformly distributed in [N], when h ∈ H is drawn
uniformly.

▶ Theorem 8 ([31]). For every integer n and t such that t ≤ 2n there is a family of t-wise
independent functions H = {h : {0, 1}n → {0, 1}n} such that choosing a random function
from H takes nt random bits and evaluating a function from H takes time poly(n, t).

▶ Theorem 9 ([4]). Let X be the average of N t-wise independent random variables
X1, . . . , XN ∈ [0, 1] for even t. Then for any ε > 0 we have

Pr [|X − E[X]| ≥ ε] ≤ 1.1
(

t

Nε2

)t/2
.

3 Sub-log-squared Circuit for Majority

In this section, we provide a proof of Theorem 1.
Our goal is to compute MAJn by an explicit circuit of polynomial size and o(log2 n)

depth. We assume for convenience that n is odd (for even n we can consider a circuit for
n + 1 and substitute one variable by a constant). We start with some inferior circuit and
perform several operations that allow us to gradually improve the parameters. However, on
our way, we need to consider randomized circuits as well, and apart from size and depth,
we will also be interested in the number of random bits and the error probability. More
specifically, a circuit is an (s, d, r, err)-circuit for majority if its size is at most 2s, depth is at
most d, we can construct a circuit using at most r random bits and the error probability on
each input is at most 2−err. Here all parameters are functions in the number of inputs n (we
write err = ∞ when the circuit is correct with probability 1). All circuits we are going to
consider are effectively constructible: there is an algorithm that given the values of random
bits constructs a circuit in polynomial time in the size of the circuit.

Given a circuit with some parameters, we will use two operations to obtain new circuits.
We are introducing these operations in the next two lemmas. Their effect on the circuit is
summarized in the table below.

Initial circuit Brute-force derandomization Downward self-reduction

s(n) O(s(n) + r(n)) O(log n) + s(2k)

d(n) d(n) + O(r(n)) O

((
log2 n

log2 k

)2
d(2k)

)
r(n) 0 r(2k)

err(n) ∞ err(2k) − O(log n)

N. Dobrokhotova-Maikova, A. Kozachinskiy, and V. Podolskii 50:7

▶ Lemma 10 (Brute-force derandomization). If there is an (s, d, r, 2)-circuit C, then there is
an (O(s + r), d + O(r), 0, ∞)-circuit.

This lemma allows us to get rid of randomness but increases the depth and the size of
the circuit if r is large.

Proof. Consider a randomized circuit Cy(x), where x ∈ {0, 1}n is an input and y ∈ {0, 1}r

is the sequence of random bits. Assume Cy(x) has the parameters, as in the statement of the
lemma. Consider circuits Cy(x) for all possible values of y and observe that for any x the
fraction of circuits that output MAJn(x) is at least 1 − 1/4 = 3/4. Thus, if we feed Cy(x)
for all y into a circuit from Theorem 6 computing MAJε

2r , the output is exactly MAJn(x).
The size of the resulting circuit is at most 2r ·2s+poly(2r), where the first term corresponds

to computing Cy(x) for all y and the second term corresponds to computing MAJε
2r . Thus,

the size is 2O(s+r). Since all Cy(x) can be computed in parallel, the depth of the circuit is at
most d + O(r). The resulting circuit does not use random bits and is always correct. ◀

▶ Lemma 11 (Downward self-reduction). If there is an (s(n), d(n), r(n), err(n))-circuit C, then
for any k < n there is an (O(log n)+s(2k), O(log2

k n ·d(2k)), r(2k), err(2k)−O(log n))-circuit.

This operation increases the depth (if d(n) is sub-log-squared), but allows to reduce other
parameters.

Proof. Consider a k-sorting network of depth O(log2
k n), given by [23] or by our Theorem 2

(the latter allows only for limited values of k, but the values we will actually use in the
construction below are within the limits). By Lemma 5 this network gives us a monotone
circuit with the same parameters consisting of MAJ2k gates computing MAJn, denote this
circuit by C(x), where x ∈ {0, 1}n.

Consider a (s(2k), d(2k), r(2k), err(2k))-circuit Cy on k inputs, where y ∈ {0, 1}r(2k). Fix
y and substitute each MAJ2k gate in C by Cy. Denote the resulting circuit by Dy(x). This is
a standard monotone Boolean circuit, its size is poly(n) · 2s(2k), its depth is O(log2

k n · d(2k))
and the number of random bits is r(2k).

It remains to show that the error probability is not too large. For this fix some input
x ∈ {0, 1}n. Consider all MAJ2k gates in C(x) and denote their inputs when x is fed to C

by z1, z2, . . . , zt. Here t is the size of C and is polynomial in n.
For each zi the probability over random y that Cy(zi) computes MAJ2k(zi) incorrectly

is at most 2−err(2k). By union bound, with probability at least 1 − t2−err(2k) we have
Cy(zi) = MAJk(zi) for all i and thus Dy(x) computes MAJn(x) correctly. Thus, the
probability of error of the resulting circuit is at most

t · 2−err(2k) = 2−err(2k)+O(log n). ◀

Now we describe our starting circuit. Interestingly, it is constructed as a partial deran-
domization of Valiant’s construction.

▶ Lemma 12. There is an explicit circuit for majority with parameters
(O(log n), O(log n), O(log3 n), Ω(log2 n)).

We provide the proof of Lemma 12 in Section 3.1 below, but before that, we explain how
to finish the construction of the desired circuit for MAJn.

Starting with the circuit provided by Lemma 12, we first apply downward self-reduction
with the parameter k satisfying log k = C

√
log n for some big enough constant C > 0, then

we apply brute-force derandomization, and then we apply downward self-reduction again
with k satisfying log k = log2/3 n. We summarize the changes in the parameters after each
step in the table below.

APPROX/RANDOM 2024

50:8 Towards Simpler Sorting Networks and Monotone Circuits for Majority

Initial circuit Step 1 Step 2 Step 3

Self-reduction
with
log k =

√
log n

Brute-force
derandomization

Self-reduction
with
log k = log2/3 n

s(n) O(log n) O(log n) O(log3/2 n) O(log n)

d(n) O(log n) O(log3/2 n) O(log3/2 n) O(log5/3 n)

r(n) O(log3 n) O(log3/2 n) 0 0

err(n) Ω(log2 n) Ω(log n) ∞ ∞

▶ Remark 13. Note that with the two operations in hand, there are not that many options to
apply them to a given initial construction. It is not hard to check that applying downward
self-reduction two times in a row is not better than applying it once with the appropriate
value of k. Clearly, there is no need to apply the derandomization step twice. From this,
it is not hard to see that our sequence of operations is actually optimal. Once the optimal
sequence of operations is established, it is not hard to check that our choice of parameters in
downward self-reductions is optimal as well.

3.1 Proof of Lemma 12
In this subsection, we are going to prove Lemma 12. The high-level idea is to partially
derandomize Valiant’s construction. To make the presentation self-contained we first recall
the idea behind this construction.

Suppose we have independent random bits x, y, z that are equal to 1 with probability
p and consider MAJ3(x, y, z). It is not hard to see that it outputs 1 with probability
f(p) = p3 + 3p2(1 − p). Consider p = 1

2 + ε for some ε > 0 and denote ε′ = f(p) − 1
2 . Then

ε′ = f(p) − 1
2 = f(p) − f(1

2) = f ′(α)
(

p − 1
2

)
= f ′(α)ε

for some α ∈ [1
2 , p]. Note that f ′(p) = 6p − 6p2 = 6p(1 − p). It is easy to see that for

α ∈ [1
2 , 2

3] we have f ′(α) ≥ 4
3 . Thus, for ε ∈ [0, 1

6] we have ε′ ≥ 4
3 ε.

Now, we can use this in the following way. Consider MAJn for odd n and consider its
arbitrary input x. Without loss of generality, assume that MAJn(x) = 1. If we draw one
variable from x uniformly at random, it is equal to 1 with probability at least 1

2 + 1
n . Consider

a MAJ3 gate and feed to it three independently and uniformly drawn input variables. By
the analysis above the output of such a MAJ3 gate is equal to 1 with probability at least
1
2 + 4

3 · 1
n . Now we can repeat this: consider three such MAJ3 gates and feed their outputs

to another MAJ3 gates. The result is equal to 1 with probability 1
2 +

(4
3
)2 1

n . After O(log n)
many iterations, we get a O(log n)-depth randomized circuit consisting of MAJ3 gates that
output the correct value with probability at least 2

3 . Valiant’s argument further improves
this probability, but we will not need this part of the argument.

The randomized circuit above uses too many random bits. Now we are going to modify
the construction in a way, that uses randomness more efficiently. We will use some ideas
from [7].

N. Dobrokhotova-Maikova, A. Kozachinskiy, and V. Podolskii 50:9

Construct the following circuit consisting of MAJ3 gates. The circuit contains Θ(log n)
layers, each containing N = n3 gates. The bottom layer consists of input variables, each
repeated N

n = n2 times (it is redundant to copy variables several times, we do this exclusively
for the sake of uniformity of the construction). In other layers, each gate computes the
MAJ3 function of some gates from the previous layer. To assign the inputs to each gate, for
each layer j we draw three fresh (and independent of each other) t-wise independent hash
functions fj , gj , hj : [N] → [N] for t = Θ(log n). For a gate with number i in layer j we set
its inputs to be gates with numbers fj(i), gj(i) and hj(i) in layer (j − 1).

Before we finish the construction of the circuit, let us analyze the current part. Consider
some input x ∈ {0, 1}n, assume without loss of generality that MAJn(x) = 1. Denote by
1
2 + εi the fraction of gates on level i that output 1. For i = 1 we have ε1 ≥ 1

n .
Each gate on level i receives three independent inputs from the previous level. Thus, the

probability that it outputs 1 is at least 1
2 + 4

3 εi−1 (we have shown this above only for εi−1 ≤ 2
3 ,

but these values of εi−1 are enough for our construction as well). Thus, the expected fraction
of ones in level i is also at least 1

2 + 4
3 εi−1.

Now we would like to use concentration inequality to show that with high probability
the fraction of correct values is not much smaller than its expectation. Note that once the
outputs of the gates on level i − 1 are fixed, the outputs of the gates on level i are t-wise
independent.

Let ε = 1
6n and denote by Xi the output of i-th gate. Then by Theorem 9 we have

Pr
[∣∣∣∣∣∑

i

Xi/N − (1
2 + (4/3)εj−1)

∣∣∣∣∣ ≥ ε

]
≤ 1.1

(
t

Nε2

)t/2
= 2−Θ(log2 n).

By union bound the probability that on each level εj ≥ 4
3 εj−1 − ε is at least

1 − O(log n) · 2−Θ(log2 n) = 1 − 2−Θ(log2 n).

Thus, we can show by induction on j that with probability at least 1 − 2Θ(log2 n) we have

εj ≥ 4
3εj−1 − ε ≥ 7

6εj−1 + 1
6εj−1 − 1

6n
≥ 7

6εj−1,

where in the last inequality we use that by induction hypothesis we have εj−1 ≥
(7

6
)j−1 ·ε1 ≥

1
n .

Thus, just like in Valiant’s argument, after O(log n) iterations, with probability 1 −
2−Θ(log2 n), we have εj ≥ 2

3 . At this point, it remains to apply to the last layer a circuit from
Theorem 6.

It is easy to see that the size of the resulting circuit is poly(n), the depth is O(log n),
error probability is 2−Θ(log2 n). As for the random bits, note that in the construction we
need O(log n) t-wise independent hash functions from [N] to [N]. By Theorem 8 there are
families of such functions defined using O(t log N) random bits. In total we need

O(log n) · O(t log N) = O(log3 n)

random bits.
This finishes the proof of Lemma 12.

▶ Remark 14. Instead of applying a circuit for Approximate Majority to the last layer,
we could do the following: sample m = O(log2 n) gates from the last layer uniformly at
random and then compute the majority on these m gates using some simple circuit of depth
O(log2 m). By Chernoff’s inequality, this adds at most 2−Ω(m) = 2−Θ(log2 n) to the error
probability, and we need O(log3 n) random bits. In turn, the increase in depth and size is
negligible.

APPROX/RANDOM 2024

50:10 Towards Simpler Sorting Networks and Monotone Circuits for Majority

4 k-Sorting Network Construction

4.1 Proof Strategy
Before we proceed to the proof we would like to illustrate the idea considering some specific
value of k. For convenience, we assume that n is a perfect cube.

▶ Lemma 15. Assume that n = t3 for natural t. Then there is a depth-4 k-sorting network
with k = 2t2 = 2n2/3.

We present the proof using a geometric interpretation of an input array as a three-
dimensional cube. However, note that a similar result is implicit in [19] and it is essentially
the same construction, just stated in different terms. We also note that it is known that this
is the optimal (up to a constant factor) value of k for depth-4 sorting networks [9].

y

x

z

(a) Input array.

y

x

z

(b) Step 1: cut the cube into ver-
tical slices.

y

x

z

(c) Step 2: cut the cube into ver-
tical slices in the other direction.

y

x

z

(d) Step 3: cut the cube into horizontal slices
of width 2.

y

x

z

(e) Step 4: horizontal slices with a shift.

Figure 1 Sorting network for k = 2n2/3 (here n = 125, k = 50 and t = 5).

Proof.
Step 1 – construction. We represent entries of an input array as a 3-dimensional cube
with the side t (see Figure 1a). We place the first t2 entries of an array in the bottom layer
of the cube, the next t2 entries in the second layer of the cube and so on. In each layer the
entries are positioned row by row.

To be more precise, assume that the array A is enumerated as [a1, . . . , an]. We reenumerate
the same array as

[a111, a112, . . . , a11t, a121, . . . , a12t, . . . , attt].

N. Dobrokhotova-Maikova, A. Kozachinskiy, and V. Podolskii 50:11

That is, entries of an array are enumerated by sequences (x, y, z) ∈ {1, . . . , t}3 in the
lexicographic order. In Figure 1 axyz corresponds to a subcube with coordinates (x, y, z).

In the first layer of the sorting network we split the cube into vertical slices of width 1 and
feed each slice to a t2-comparator (see Figure 1b). To be more precise, for each i = 1, . . . , t

we feed entries axyi for all x, y into one comparator. On the second layer of the network
we split the cube into vertical slices of width 1 in another direction and feed each slice to
a t2-comparator (see Figure 1c). In other works, for each i = 1, . . . , t we feed entries axiz

for all x, z into one comparator. On the third layer we split the cube into horizontal slices
of width 2 (for odd t the last slice is of width 1) and feed the slices to comparators of arity
at most 2t2 (see Figure 1d). Finally, on the fourth layer of the network we split the cube
into horizontal slices of width 2 again, but now the first slice is of width 1 (for even t the
last slice is of width 1 as well). Thus, the slices on this layer are shifted compared to the
previous one (see Figure 1e).
Step 2 – correctness. It remains to prove that this sorting network sorts correctly. Consider
any input x ∈ {0, 1}n. Note that the cube consists of t2 vertical columns with t entries in
each column: each column Ayz is obtained by fixing y and z in axyz and considering all
possible x. We are interested in the weight wyz of each column, that is the number of 1s
in it. For the input A the weights of the columns can be any numbers from 0 to t. Now
consider the array after the first layer of the network. Note that now each vertical slice of
the first layer of the network is sorted. This means that in each of these slices in the first
several rows (from bottom to top) there are only 0s, then there might be a row containing
both 0s and 1s, and then all remaining rows contain 1s. In particular, the weights of two
columns in the same slice differ by at most 1.

Now consider the second layer of the network and consider two different slices Si =
{ax,i,z | x, z ∈ [t]} and Sj = {ax,j,z | x, z ∈ [t]}. Note that each of them contains exactly one
column from each slice of the first layer. We know that the weights of the columns in the
same slice of the first layer differ by at most 1. Thus, in total, the number of 1s in two slices
of the second layer differ by at most t. In other words, for each z the first slice contains the
column Aiz and the second slice contains the column Ajz. We know that on the input of the
second layer of the network |wiz − wjz| ≤ 1. Thus,

|
∑

z

wiz −
∑

z

wjz| ≤ t.

Denote by ri the number of rows in slice Si that consists of only 1s after the second layer of
the network. We just showed that the slice Si can have one more extra row of 1s, one less
row of 1s or something in between. Overall, for the number rj of rows consisting of 1s in Sj

we have |ri − rj | ≤ 1. As a result, the weights of columns in slices Si and Sj can differ by at
most 2. Since this is true for any i and j, we have that the weights of all columns in the
cube after the second layer of the sorting network differ by at most 2.

To put it another way, there is a horizontal slice of width 2, such that below this slice we
have only 0s and above this slice we have only 1s. Thus it remains to sort entries of this slice.
Note that on layers 3 and 4 of the network there is a comparator that sorts exactly this slice.
Note that by Lemma 4 all other comparators of layers 3 and 4 do not harm the sorting. ◀

This argument can be extended to the cubes of arbitrary dimension d. More specifically,
for n = td and for k = (d−1)td−1 we can represent entries of an input array as a d-dimensional
cube with side d, sort “vertical” slices (we need to fix one of the coordinates in d-dimensional
space as vertical) in all d − 1 directions and then sort horizontal slices. This results into

APPROX/RANDOM 2024

50:12 Towards Simpler Sorting Networks and Monotone Circuits for Majority

(d − 1) layers of the sorting network and for horizontal slices we need recursive calls for the
arrays of size approximately 2dtd−1. Actually, it is expensive to make two recursive calls for
horizontal layers, instead we use an additional trick to make just one recursive call.

Although our k-sorting network construction can be expressed in terms of high dimensional
hypercubes, we prefer to give a more general exposition, using a concept of s-sorted arrays.

4.2 Merging s-Sorted Arrays
The following definition plays a key role in our sorting network construction.

▶ Definition 16. A 0/1-array A of length n is s-sorted if there is an integer interval
I = {i, . . . , i + s − 1} ⊆ [n], such that A[j] = 0 for j < i and A[j] = 1 for j ≥ i + s. We call
I unsorted interval.

As an immediate corollary of Lemma 4, we get the following.

▶ Corollary 17. Suppose a sorting network gets an s-sorted array with unsorted interval I.
Then the output is also s-sorted with I as an unsorted interval.

We give a construction of a depth-1 sorting network that “merges” p arrays of length
n that are already s-sorted into one array which is (sp + O(np2/k))-sorted, where k is the
arity of the sorting network.

▶ Lemma 18. Assume that k ≥ tp for some integers t and p. Suppose we have p s-sorted
arrays of size n each. Assume additionally that n is divisible by t. Then there is a depth-1
k-sorting network that merges these arrays into one array of size np that is (sp + 2 np

t)-sorted.
If additionally we assume that s is divisible by n/t, then the resulting array is (sp+ np

t)-sorted.

Proof. Represent each array as a table with n
t columns and t rows. We assume the following

ordering on the entries of this table: to compare two entries, we first compare the indices of
their rows, and then the indices of their columns. Position the tables one under another in
a unified table with tp rows. Note that tp ≤ k and apply k-comparator to each column in
parallel. We claim that the resulting array in the large table is (sp + 2 np

t)-sorted.
To see that observe, that in each small table, an unsorted interval of length at most s

occupies at most
⌈

st
n

⌉
+ 1 rows (any other row either consists entirely of 0s or entirely of 1s).

In the large table, this gives us at most p
(⌈

st
n

⌉
+ 1

)
non-constant rows. After sorting each

column individually, 0-rows will move to the top, 1-rows will move to the bottom and all
other p

(⌈
st
n

⌉
+ 1

)
rows will be in between on them. They constitute an unsorted interval

and the size of it is at most

n

t
· p

(⌈
st

n

⌉
+ 1

)
.

For general s we can upper bound this as follows

n

t
· p

(⌈
st

n

⌉
+ 1

)
≤ n

t
· p

(
st

n
+ 2

)
= sp + 2np

t
.

If s is divisible by n/t, note that we can just drop the rounding operation and the size of
an unsorted interval is at most

n

t
· p

(⌈
st

n

⌉
+ 1

)
= n

t
· p

(
st

n
+ 1

)
= sp + np

t
. ◀

Applying previous lemma several times we get the following.

N. Dobrokhotova-Maikova, A. Kozachinskiy, and V. Podolskii 50:13

▶ Lemma 19. Consider arbitrary n and k and denote t = ⌊
√

k⌋. Then there is a k-sorting
network of depth ⌈logt n⌉ − 1 that on any input outputs an s-sorted array for s ≤ 2⌈logt n⌉n

t .

Proof. Denote d = ⌈logt n⌉ and observe that n ≤ td. Introduce the following notation:

ni =
{

ti+1 for i = 1, . . . , d − 2,

td−1p for i = d − 1,

where p is such that td−1(p − 1) < n ≤ td−1p. In particular, since p ≥ 2, we have p − 1 ≥ p/2
and

n > td−1(p − 1) ≥ td−1p/2.

For the convenience of presentation, we add td−1p − n dummy inputs equal to 1 to the end
of the array to make the size of the input to be equal to td−1p. By Lemma 4 these inputs
will never change their position and can be removed from the sorting network.

We start with an unsorted array as an input. Applying Lemma 18 several times, we get
the array consisting of blocks that are s-sorted for some s. More specifically, after level i of
the network we get the blocks of size ni that are si sorted for

si =
{

(i − 1)ti for i = 1, . . . , d − 2,

(d − 2)td−2p for i = d − 1.

On the first step we split the input into blocks of size t2 and apply comparators to them, the
resulting blocks are 0-sorted.

On the i-th step for i = 2, . . . , d − 1 we already have blocks of size ni−1 = ti from the
previous step that are si−1-sorted for si−1 = (i − 2)ti−1. Note that ni−1 = ti is divisible by
t and si−1 is divisible by ni/t = ti−1. We apply Lemma 18 and for i < d − 1 get blocks of
size ni−1t = ni that are s-sorted for s = si−1t + ni−1 = (i − 1)ti. For i = d − 1 we have just
p subarrays to merge and after the step we get the whole array of size td−1p that is s-sorted
for s = (d − 3)td−2p + td−1p

t = (d − 2)td−2p.
Finally, observe that

s ≤ (d − 2)td−2p ≤ d
2n

t

as desired. ◀

4.3 Computing Majority
Before constructing a sorting network we solve a simpler task of computing majority function.

▶ Theorem 20. For any n and for any k such that log k = ω(log log n) (or, to put it
differently, k is growing faster than any polylog(n)), there exists a MAJk-circuit for MAJn

of depth at most (2 + o(1)) log2
k n.

The rest of the section is devoted to the proof of Theorem 20.
First observe that to compute MAJn correctly by a monotone circuit it is enough to

compute it correctly on minterm and maxterm inputs: the computation on other inputs
follows by monotonicity. Thus, we can assume in our construction that the input contains
almost the same number of 0s and 1s. We will construct a sorting network that sorts all such
inputs correctly. From the sorting network we get the circuit of the same depth.

APPROX/RANDOM 2024

50:14 Towards Simpler Sorting Networks and Monotone Circuits for Majority

Suppose we need to sort an array of size n with approximately the same number of 0s
and 1s. We apply Lemma 19 to the array. This results in a Y -sorted array for Y = 2⌈logt n⌉n

t

for t = ⌊
√

k⌋. Since the number of 0s and 1s in the array is approximately equal, the smallest
n
2 − Y and the largest n

2 − Y elements are sorted correctly (otherwise, the length of the
unsorted interval is larger than Y). Thus, it remains to sort a specific interval of length 2Y

and we can do this recursively.
Overall, we get the following recursive relation.

T (n) ≤ ⌈logt n⌉ − 1 + T (2Y) ≤ logt n + T

(
4⌈logt n⌉n

t

)
.

To solve this recursive relation we use the following lemma.

▶ Lemma 21. Assume that log k = ω(log log n). Suppose that T (n) = const for n up to some
constant and

T (n) ≤ 2 logk n + C + T

(⌈
D(logk n)n√

k

⌉)
for some constants C and D > 0. Then T (n) ≤ (2 + o(1)) log2

k n.

Proof. To simplify the presentation, we ignore rounding of the argument of T first, and
address it later. Denote α =

√
k

D logk n .
We have

T (n) ≤ 2 logk n + C + T
(n

α

)
≤ 2 logk n + C + 2 logk

n

α
+ C + T

(n

α2

)
≤ 2

logα n∑
i=0

(
logk

n

αi
+ C

)
= 2 (logk n + (logk n − logk α) + (logk n − 2 logk α) + . . . + 0) + 2C logα n

≤ 2 logk n

logk α

logk n

2 + 2C logα n = log2
k n logα k + 2C logα n.

It is easy to see that the term 2C logα n is negligible, since α ≫ k1/3.
We analyze logα k factor separately:

logα k = log √
k

D logk n

k = log2 k

log2

√
k

D logk n

≤ log2 k
1
2 log2 k − D − log2 logk n

= log2 k
1
2 log2 k − D − log2 log2 n + log2 log2 k

.

For log k = ω(log log n) this term is 2 + o(1) and we have

T (n) ≤ (2 + o(1)) log2
k n.

To address the rounding operation, note that
⌈

n
α

⌉
≤ n

α + 1 ≤ 2n
α for n

α ≥ 1. Thus, in the
presence of rounding we will have

∑
i logk

2n
α in the calculation above instead of

∑
i logk

n
α .

This amounts to substituting D by 2D and does not change the result of the calculation
since D is an arbitrary constant. ◀

N. Dobrokhotova-Maikova, A. Kozachinskiy, and V. Podolskii 50:15

4.4 Constructing Sorting Network
In this section, we finish the proof of Theorem 2.

We adopt the same strategy as for the computation of majority. More specifically, we
apply Lemma 19 recursively to get s-sorted array for smaller and smaller s. However, now
our task is more tricky. In the proof of Theorem 20 when we get to an s-sorted array we
know exactly where the unsorted interval is located (in the middle of the array). However,
now we need to sort arbitrary input arrays and an unsorted interval can be anywhere.

We construct the network recursively. We assume that at the beginning of each step, we
have an s-sorted array (at the beginning of the process s = n). Denote the unsorted interval
by A, |A| ≤ s. Split the array into consecutive blocks B1, . . . , Bp of size s (the last block Bp)
might be smaller.

The recursive step consists of two stages. In the first stage, we split the array into blocks
B1 ∪ B2, B3, ∪B4, and so on, each block of size 2s (one last block might be smaller). In the
second stage, we split the array into blocks B1, B2 ∪ B3, B4 ∪ B5, and so on (again the last
block might be smaller than 2s). Before describing each of the stages, observe that either in
the first stage or in the second stage (or in both) the interval A falls completely into one of
the blocks. Indeed, A can intersect with at most two consecutive blocks Bi, Bi+1 and in one
of the stages, they form a single block.

In the first stage, we apply Lemma 19 to each of the blocks B1 ∪B2, B3, ∪B4, . . . separately.
As a result, each block is s′-sorted for s′ ≤

4⌈log⌊
√

k⌋ n⌉s

⌊
√

k⌋
. Moreover, if the block consisted of

only 0s and 1s, then it does not change.
If A is contained in one of the blocks of the first stage, we are already done: there is only

one initially unsorted block that by Lemma 19 after the step is s′-sorted. By Corollary 17
this property remains true after the additional comparators we apply for the other case.

If A is split between two blocks of the first stage, then after the stage we have two
consecutive unsorted blocks, each of them is s′-sorted. Denote unsorted parts by C1, C2.
Note that by Corollary 17 C1, C2 ⊆ A and thus, C1 and C2 fall into one block of the second
stage. It is tempting to apply Lemma 19 to the blocks of the second stage as well. However,
this application is too expensive and will not result in the desired bound.

Instead we do the following. We represent each block of the second stage (of size at most
2s) as a table with p = ⌈2s/k⌉ columns and k rows, filled in row by row from top to bottom.
For convenience, if the last row is not complete, add dummy variables equal to 1 to complete
the row.

Each of the intervals C1, C2 occupy at most ⌈s′/p⌉ + 1 rows. There might be another row
that contain a switch between blocks Bi and Bi+1. Each other row consist either entirely of
0s, or entirely of 1s. Denote the number of all 0 rows by a and the number of all 1 rows by b.

We apply a comparator to each column separately. As a result, each column will contain
a zeros in the beginning, b ones in the end and some part in between. The number of rows
in the middle part is at most 2 ⌈s′/p⌉ + 3. The number of entries in these rows is at most

s′′ = p(2 ⌈s′/p⌉ + 3) ≤ 2s′ + 5p ≤ 3s′

for large enough input size. Thus, after the second stage we get s′′-sorted array and we are
done with the recursion step.

Thus, we get that s′′ ≤ 12 ⌈logt n⌉s
t and we get the following recursive relation

T (n) ≤ logt n + T

(
12⌈logt n⌉n

t

)
.

We apply Lemma 21 again to get T (n) ≤ (2 + o(1)) log2
k n.

This finishes the proof of Theorem 2.

APPROX/RANDOM 2024

50:16 Towards Simpler Sorting Networks and Monotone Circuits for Majority

4.5 Other Applications
In this section we give two more examples of results that follow from our construction.

▶ Lemma 22. There is a MAJk-circuit of depth 4 computing MAJn for k = O(n3/5).

Proof. Denote r = ⌈n1/5⌉. For simplicity we pad the input with constants 0 and 1 to make
the size of the array r5 without changing the output of majority. We will use k-sorters for
k = 4r3.

As in the proof of Theorem 20 it is enough to compute MAJn on minterms and maxterms,
thus we can assume that there are approximately equal number of 0s and 1s in the input.

We will build a k-sorting network and the existence of the circuit follows. On the first
layer of the network we split the input into blocks of size r3 and sort them. On the second
layer we use Lemma 18 with p = r and t = r2. As a result we get blocks of size r4 that are
r2-sorted. On the third level we apply Lemma 18 again with the same values of p and t. As
a result we have that the whole input is now 2r3-sorted. On the last layer of the network
just as in the proof of Theorem 20 we apply 4r3-comparator to the middle of the array. ◀

In [16] Knuth posed a problem of constructing a minimal depth k-sorting network for the
input of size k2. Parker and Parbery [23] gave a construction of depth 9. Here we slightly
improve on this at the cost of using comparators of size O(k).

▶ Lemma 23. There is a k-sorting network of depth 8 that sorts an array of size n with
k = O(n1/2).

Proof. As usual pad an array with constants to make n = r4 for some integer r. Thus
k = O(r2).

We follow the same strategy as in Section 4.4. First we apply Lemma 19 that uses three
layers of network and results in a s-sorted array for s = O(r3). Then, we apply Lemma 19
again to the blocks of size O(r3) to get a network of depth 2 that results in each block being
O(r2)-sorted. Then we apply one more layer to merge unsorted intervals in different blocks
to get the array that is O(r2)-sorted. Finally, we again split the array into blocks, this time
of size O(r2) to complete the sorting using two layers. In total we use 3 + 2 + 1 + 2 = 8
layers. ◀

5 Conclusion

The obvious open problems are to come up with explicit constructions of sorting networks
and monotone circuits for majority of smaller depth. One specific problem is to extend our
O(log5/3 n) construction to sorting networks. The obstacle that we encountered is that there
is no randomized construction of a low-depth sorting network that we can use as a start.
Another interesting question is to extend our O(log5/3 n) construction to get a MAJk-circuit
for MAJn of depth O(log5/3

k n). Such a construction can be used instead of O(log2
k n)-depth

circuit in downward self-reduction to further improve the upper bound. Again, the obvious
obstacle is that it is not clear how to get a starting construction.

References
1 Miklós Ajtai, János Komlós, and Endre Szemerédi. Sorting in c log n parallel steps. Comb.,

3(1):1–19, 1983. doi:10.1007/BF02579338.

https://doi.org/10.1007/BF02579338

N. Dobrokhotova-Maikova, A. Kozachinskiy, and V. Podolskii 50:17

2 Kenneth E. Batcher. Sorting networks and their applications. In American Federation
of Information Processing Societies: AFIPS Conference Proceedings: 1968 Spring Joint
Computer Conference, Atlantic City, NJ, USA, 30 April - 2 May 1968, volume 32 of AFIPS
Conference Proceedings, pages 307–314. Thomson Book Company, Washington D.C., 1968.
doi:10.1145/1468075.1468121.

3 Richard Beigel and John Gill. Sorting n objects with a k-sorter. IEEE Trans. Computers,
39(5):714–716, 1990. doi:10.1109/12.53587.

4 Mihir Bellare and John Rompel. Randomness-efficient oblivious sampling. In 35th Annual
Symposium on Foundations of Computer Science, Santa Fe, New Mexico, USA, 20-22 November
1994, pages 276–287. IEEE Computer Society, 1994. doi:10.1109/SFCS.1994.365687.

5 Gianfranco Bilardi and Franco P. Preparata. A minimum area VLSI network for o(log n) time
sorting. In Richard A. DeMillo, editor, Proceedings of the 16th Annual ACM Symposium on
Theory of Computing, April 30 - May 2, 1984, Washington, DC, USA, pages 64–70. ACM,
1984. doi:10.1145/800057.808666.

6 V. Chvátal. Lecture notes on the new AKS sorting network. Technical report, Department of
Computer Science, Rutgers University, 1992.

7 Gil Cohen, Ivan Bjerre Damgård, Yuval Ishai, Jonas Kölker, Peter Bro Miltersen, Ran Raz,
and Ron D. Rothblum. Efficient multiparty protocols via log-depth threshold formulae –
(extended abstract). In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology –
CRYPTO 2013 – 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22,
2013. Proceedings, Part II, volume 8043 of Lecture Notes in Computer Science, pages 185–202.
Springer, 2013. doi:10.1007/978-3-642-40084-1_11.

8 Robert Cypher and Jorge L. C. Sanz. Cubesort: A parallel algorithm for sorting N data items
with s-sorters. J. Algorithms, 13(2):211–234, 1992. doi:10.1016/0196-6774(92)90016-6.

9 Natalia Dobrokhotova-Maikova, Alexander Kozachinskiy, and Vladimir V. Podolskii. Constant-
depth sorting networks. In Yael Tauman Kalai, editor, 14th Innovations in Theoretical
Computer Science Conference, ITCS 2023, January 10-13, 2023, MIT, Cambridge, Massachu-
setts, USA, volume 251 of LIPIcs, pages 43:1–43:19. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2023. doi:10.4230/LIPIcs.ITCS.2023.43.

10 Caxton C Foster and Fred D Stockton. Counting responders in an associative memory. IEEE
Transactions on Computers, 100(12):1580–1583, 1971.

11 Qingshi Gao and Zhiyong Liu. Sloping-and-shaking. Science in China Series E: Technological
Sciences, 40(3):225–234, 1997.

12 Oded Goldreich. On (valiant’s) polynomial-size monotone formula for majority. In Com-
putational Complexity and Property Testing: On the Interplay Between Randomness and
Computation, pages 17–23. Springer, 2020.

13 Shlomo Hoory, Avner Magen, and Toniann Pitassi. Monotone circuits for the majority
function. In Proceedings of the 9th international conference on Approximation Algorithms for
Combinatorial Optimization Problems, and 10th international conference on Randomization
and Computation, pages 410–425, 2006.

14 Stasys Jukna. Boolean Function Complexity – Advances and Frontiers, volume 27 of Algorithms
and combinatorics. Springer, 2012. doi:10.1007/978-3-642-24508-4.

15 Nabil Kahalé, Frank Thomson Leighton, Yuan Ma, C. Greg Plaxton, Torsten Suel, and
Endre Szemerédi. Lower bounds for sorting networks. In Frank Thomson Leighton and Allan
Borodin, editors, Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory
of Computing, 29 May-1 June 1995, Las Vegas, Nevada, USA, pages 437–446. ACM, 1995.
doi:10.1145/225058.225178.

16 Donald Ervin Knuth. The art of computer programming, Volume III, 2nd Edition. Addison-
Wesley, 1998. URL: https://www.worldcat.org/oclc/312994415.

17 Clemens Lautemann. Bpp and the polynomial hierarchy. Information Processing Letters,
17(4):215–217, 1983.

APPROX/RANDOM 2024

https://doi.org/10.1145/1468075.1468121
https://doi.org/10.1109/12.53587
https://doi.org/10.1109/SFCS.1994.365687
https://doi.org/10.1145/800057.808666
https://doi.org/10.1007/978-3-642-40084-1_11
https://doi.org/10.1016/0196-6774(92)90016-6
https://doi.org/10.4230/LIPIcs.ITCS.2023.43
https://doi.org/10.1007/978-3-642-24508-4
https://doi.org/10.1145/225058.225178
https://www.worldcat.org/oclc/312994415

50:18 Towards Simpler Sorting Networks and Monotone Circuits for Majority

18 De-Lei Lee and Kenneth E. Batcher. A multiway merge sorting network. IEEE Trans. Parallel
Distributed Syst., 6(2):211–215, 1995. doi:10.1109/71.342136.

19 Frank Thomson Leighton. Tight bounds on the complexity of parallel sorting. IEEE Trans.
Computers, 34(4):344–354, 1985. doi:10.1109/TC.1985.5009385.

20 David E Muller and Franco P Preparata. Bounds to complexities of networks for sorting and
for switching. Journal of the ACM (JACM), 22(2):195–201, 1975.

21 Toshio Nakatani, Shing-Tsaan Huang, Bruce W. Arden, and Satish K. Tripathi. K-way bitonic
sort. IEEE Trans. Computers, 38(2):283–288, 1989. doi:10.1109/12.16506.

22 Ian Parberry. The pairwise sorting network. Parallel Process. Lett., 2:205–211, 1992. doi:
10.1142/S0129626492000337.

23 Bruce Parker and Ian Parberry. Constructing sorting networks from k-sorters. Inf. Process.
Lett., 33(3):157–162, 1989. doi:10.1016/0020-0190(89)90196-8.

24 Michael S Paterson. Improved sorting networks with o (logn) depth. Algorithmica, 5(1):75–92,
1990.

25 Claus-Peter Schnorr and Adi Shamir. An optimal sorting algorithm for mesh connected
computers. In Juris Hartmanis, editor, Proceedings of the 18th Annual ACM Symposium on
Theory of Computing, May 28-30, 1986, Berkeley, California, USA, pages 255–263. ACM,
1986. doi:10.1145/12130.12156.

26 Joel Seiferas. Sorting networks of logarithmic depth, further simplified. Algorithmica, 53(3):374–
384, 2009.

27 Sandeep Sen, Isaac D. Scherson, and Adi Shamir. Shear sort: A true two-dimensional sorting
techniques for VLSI networks. In International Conference on Parallel Processing, ICPP’86,
University Park, PA, USA, August 1986, pages 903–908. IEEE Computer Society Press, 1986.

28 Feng Shi, Zhiyuan Yan, and Meghanad D. Wagh. An enhanced multiway sorting network
based on n-sorters. In 2014 IEEE Global Conference on Signal and Information Processing,
GlobalSIP 2014, Atlanta, GA, USA, December 3-5, 2014, pages 60–64. IEEE, 2014. doi:
10.1109/GlobalSIP.2014.7032078.

29 Michael Sipser. A complexity theoretic approach to randomness. In Proceedings of the fifteenth
annual ACM symposium on Theory of computing, pages 330–335, 1983.

30 S. S. Tseng and Richard C. T. Lee. A parallel sorting scheme whose basic operation sortsN
elements. Int. J. Parallel Program., 14(6):455–467, 1985. doi:10.1007/BF00991185.

31 Salil P. Vadhan. Pseudorandomness. Found. Trends Theor. Comput. Sci., 7(1-3):1–336, 2012.
doi:10.1561/0400000010.

32 Leslie G. Valiant. Short monotone formulae for the majority function. J. Algorithms, 5(3):363–
366, 1984. doi:10.1016/0196-6774(84)90016-6.

33 Emanuele Viola. On approximate majority and probabilistic time. Computational Complexity,
18:337–375, 2009.

34 Andrew Chi-Chih Yao. Bounds on selection networks. SIAM J. Comput., 9(3):566–582, 1980.
doi:10.1137/0209043.

35 Lijun Zhao, Zhiyong Liu, and Qingshi Gao. An efficient multiway merging algorithm. Science
in China Series E: Technological Sciences, 41(5):543–551, 1998.

https://doi.org/10.1109/71.342136
https://doi.org/10.1109/TC.1985.5009385
https://doi.org/10.1109/12.16506
https://doi.org/10.1142/S0129626492000337
https://doi.org/10.1142/S0129626492000337
https://doi.org/10.1016/0020-0190(89)90196-8
https://doi.org/10.1145/12130.12156
https://doi.org/10.1109/GlobalSIP.2014.7032078
https://doi.org/10.1109/GlobalSIP.2014.7032078
https://doi.org/10.1007/BF00991185
https://doi.org/10.1561/0400000010
https://doi.org/10.1016/0196-6774(84)90016-6
https://doi.org/10.1137/0209043

Consequences of Randomized Reductions from
SAT to Time-Bounded Kolmogorov Complexity
Halley Goldberg #

Simon Fraser University, Burnaby, Canada

Valentine Kabanets #

Simon Fraser University, Burnaby, Canada

Abstract
A central open question within meta-complexity is that of NP-hardness of problems such as MCSP
and MKtP. Despite a large body of work giving consequences of and barriers for NP-hardness of
these problems under (restricted) deterministic reductions, very little is known in the setting of
randomized reductions. In this work, we give consequences of randomized NP-hardness reductions
for both approximating and exactly computing time-bounded and time-unbounded Kolmogorov
complexity.

In the setting of approximate Kpoly complexity, our results are as follows.
1. Under a derandomization assumption, for any constant δ > 0, if approximating Kt complexity

within nδ additive error is hard for SAT under an honest randomized non-adaptive Turing
reduction running in time polynomially less than t, then NP = coNP.

2. Under the same assumptions, the worst-case hardness of NP is equivalent to the existence of
one-way functions.

Item 1 above may be compared with a recent work of Saks and Santhanam [39], which makes the
same assumptions except with ω(log n) additive error, obtaining the conclusion NE = coNE.

In the setting of exact Kpoly complexity, where the barriers of Item 1 and [39] do not apply, we
show:
3. If computing Kt complexity is hard for SAT under reductions as in Item 1, then the average-case

hardness of NP is equivalent to the existence of one-way functions. That is, “Pessiland” is
excluded.

Finally, we give consequences of NP-hardness of exact time-unbounded Kolmogorov complexity
under randomized reductions.
4. If computing Kolmogorov complexity is hard for SAT under a randomized many-one reduction

running in time tR and with failure probability at most 1/(tR)16, then coNP is contained in
non-interactive statistical zero-knowledge; thus NP ⊆ coAM. Also, the worst-case hardness of
NP is equivalent to the existence of one-way functions.

We further exploit the connection to NISZK along with a previous work of Allender et al. [7] to show
that hardness of K complexity under randomized many-one reductions is highly robust with respect
to failure probability, approximation error, output length, and threshold parameter.

2012 ACM Subject Classification Theory of computation → Computational complexity and crypto-
graphy

Keywords and phrases Meta-complexity, Randomized reductions, NP-hardness, Worst-case com-
plexity, Time-bounded Kolmogorov complexity

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.51

Category RANDOM

Related Version Full Version: https://eccc.weizmann.ac.il/report/2024/120/ [15]

Funding Halley Goldberg: Supported by NSERC CGS D.
Valentine Kabanets: Supported by NSERC Discovery research grant.

© Halley Goldberg and Valentine Kabanets;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 51; pp. 51:1–51:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:halley_goldberg@sfu.ca
mailto:kabanets@sfu.ca
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.51
https://eccc.weizmann.ac.il/report/2024/120/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

51:2 Consequences of Randomized Reductions from SAT to Kolmogorov Complexity

1 Introduction

Meta-complexity aims to determine the computational complexity of the tasks to compute
various intrinsic complexity measures of given binary strings. Two prominent examples of
such complexity measures are the minimum circuit size of a given truth table of a Boolean
function, and the minimum time-bounded Kolmogorov complexity (denoted Kt) of a given
binary string. The corresponding meta-complexity problems are the Minimum Circuit Size
Problem (MCSP):

given a binary string x ∈ {0, 1}2n and a parameter s ≤ 2n, decide if there is an n-input
boolean circuit of size at most s whose truth table equals x,

and the Minimum Kt Problem (MKtP):

given a binary string x ∈ {0, 1}n, and a parameter s ≤ n, decide if there is a binary
input w of length at most s such that some fixed universal Turing machine U on input
w prints x within t time steps.

The history of these two problems goes back to at least the 1950s and ’60s. In the
Soviet Union, during that period, those involved in “theoretical cybernetics” were keenly
interested in problems related to switching circuits and Kolmogorov’s new theory of the
complexity of strings. It was widely suspected that one could not avoid perebor (exhaustive
search) in the solution of the corresponding minimization problems. Levin’s interest in
perebor, culminating in his discovery of NP-completeness in the early 1970s, was motivated
in particular by questions about the complexity of time-bounded Kolmogorov complexity
[40]. Since then, both MCSP and MKtP have resisted categorization as efficiently decidable
or as NP-complete, a somewhat uncommon state of affairs for natural problems in NP.

In 2000, Kabanets and Cai took up the study of circuit minimization again, with a result
suggesting that NP-hardness of MCSP may be very difficult to resolve: if MCSP is NP-hard
under a deterministic many-one reduction such that output length depends only on input
length, then one gets the lower bound E ⊈ P/poly [32]. At least, if MCSP is NP-hard, then
showing its hardness would seem to require different techniques than those applied in the past,
barring any further major breakthroughs. A line of work has continued to push further in this
negative direction, progressively obtaining (1) “stronger” consequences, and (2) consequences
of NP-hardness under more powerful forms of reducibility. An example of the former is
a result of Murray and Williams, which obtains NP ⊈ P/poly from NP-hardness of MCSP
under log-time uniform AC0 reductions [35]. An example of the latter is a result of Hitchcock
and Pavan, which obtains EXP ̸= ZPP from NP-hardness of MCSP under deterministic
non-adaptive Turing reductions [27]. There are many more examples of this kind of work
relying essentially on the determinism of the reductions in question; see, e.g., [6, 38, 8, 26].1

In contrast to the negative line of work for deterministic reductions, there is a positive line
of work obtaining NP-hardness of variants of MCSP and MKtP that seem to come progressively
closer to the standard definitions of these problems. Examples include [29, 23, 30, 28]. A
common feature of these results is their employment of randomness in the NP-hardness
reductions. An impressive example of such a result is Hirahara’s recent proof of NP-hardness
of partial-function versions of MCSP and MKtP [23]. Additionally, from [5], MCSP is hard

1 One result of [26] deals with one-query randomized reductions to MCSPO working for every oracle
O, which may be seen as an exception. Other results of that work give consequences of deterministic
reductions to, for example, approximating circuit size and Levin’s Kt complexity.

H. Goldberg and V. Kabanets 51:3

for SZK (statistical zero-knowledge) under randomized reductions, which is the strongest
unconditional hardness known for MCSP. All of this begs the question whether randomness
is the key ingredient for the hardness of problems in meta-complexity: most barriers apply to
deterministic reductions, whereas most progress has been made via randomized reductions.

As for the negative direction for randomized reductions, there has been far less headway.
In fact, prior to this work, only two such results were known for MCSP and MKtP. Murray and
Williams ruled out NP-hardness of MCSP in the very restrictive setting of poly-logarithmic-
time randomized projections [35]. More recently, Saks and Santhanam showed that NE =
coNE if approximating Kt-complexity is NP-hard under randomized non-adaptive polynomial-
time reductions (with some caveats, including a derandomization assumption and that
the time-bound t in the superscript of Kt must be greater than the running time of the
reduction) [39].

Of course, any NP-hardness of MKtP or MCSP would be a major breakthrough for
complexity theory, including hardness under a non-black-box reduction. In that sense, the
kind of reduction in question is hardly important in itself. That being said, obtaining
consequences of restricted forms of reduction can certainly help guide the “search for NP-
hardness”. For example, a recent work of Ilango proved that approximating Kt within Ω(n)
additive error is NP-hard in the random oracle model [29]. As mentioned in that paper, the
reduction circumvents the barrier of [39] by requiring more time than the superscript t. As
with much of complexity theory, one can always take negative results as putting into focus
the space for positive progress.

In this paper, we advance in the negative direction for randomized reductions, obtaining
results with stronger consequences and from reductions to harder problems compared to
prior work.

2 Main Results

We show a number of consequences of the assumptions that there exist restricted randomized
NP-hardness reductions for the exact and approximate variants of the problem to determine
the (time-bounded) Kolmogorov complexity of a given binary string.

In addition to the problem MKtP introduced above, we shall also consider its time-
unbounded version, MKP, where given a binary string x ∈ {0, 1}n and a threshold parameter
s ≤ n, one needs to decide if there is a string w ∈ {0, 1}≤s such that a fixed universal TM
U(w) outputs x. We also consider the probabilistic variant of Kt, denoted by pKt, where
pKt(x) is defined as the minimum length s such that, for each of at least 2/3 of random
strings r, there exists some input wr ∈ {0, 1}≤s such that U(wr, r) outputs x within t time
steps. The corresponding Minimum pKt Problem is denoted by MpKtP. For g : N → N
and µ ∈ {K, pK}, Approxg-µt refers to the problem of approximating µt complexity of a
given x ∈ {0, 1}n to within a g(n) additive error. Approxg-K[s] refers to the problem of
approximating K complexity except with threshold parameter fixed to s.

2.1 Consequences of showing the NP-hardness of an approximation to
pKt or Kt

Informally, our first results show that NP-hardness of Approxnδ -pKt under honest non-adaptive
randomized reductions with runtime sufficiently smaller than t implies that

NP ⊆ coAM (and hence, the polynomial-time hierarchy collapses [12]), and
if, in addition, no one-way functions exist, then NP ⊆ BPP;

APPROX/RANDOM 2024

51:4 Consequences of Randomized Reductions from SAT to Kolmogorov Complexity

here “honest” reductions are those that make queries of length at least some polynomial of the
input to the reduction. We also get a similar result for Approxnδ -Kt, under a derandomization
assumption that E requires exponential-size nondeterministic circuits.

More precisely, we show that under the same NP-hardness assumptions, there is a black-
box non-adaptive reduction from SAT to inverting an auxiliary input one-way function.2
Moreover, this reduction is of a restricted form in which the oracle only needs to invert the
function on auxiliary input φ, where φ is the input to SAT; this is called a “fixed-auxiliary-
input reduction” [9]. The “γ-honesty” condition below means that all queries q ∈ {0, 1}∗

made by the reduction are such that |q| ≥ nγ , where n is the length of the input to the
reduction.

▶ Theorem 1 (Collapsing the Polynomial Hierarchy). For any constants δ, γ > 0, there is a
polynomial p such that, for any t, tR : N → N satisfying p(tR(n)) ≤ t(n) for all n ∈ N, we
have the following.
1. If Approxnδ -pKt is hard for SAT under a γ-honest non-adaptive randomized reduction

running in time tR, then there is a black-box non-adaptive fixed-auxiliary-input reduction
from SAT to inverting an auxiliary-input OWF. The latter implies that

NP ⊆ coAM.

2. Assume E ⊈ io-NSIZE[2o(n)]. If Approxnδ -Kt is hard for SAT under an honest non-adaptive
randomized reduction running in time tR, then

NP = coNP.

As a consequence of the above non-adaptive black-box reduction from SAT to inverting
an auxiliary-input one-way function, we further obtain from the hypothesis of Theorem 1
that the existence of a standard one-way function can be based on the worst-case hardness of
NP. That is, proving NP-hardness of Approxnδ -Kt (under restricted randomized reductions)
is as hard as achieving the “holy grail of cryptography”.

We obtain both adaptive black-box and non-adaptive BPP-black-box3 reductions from
SAT to the problem of inverting a standard OWF. The former follows immediately from our
Theorem 1 and a recent work of Nanashima [36], and the latter is implicit in [24], though we
provide a short, self-contained proof building on Theorem 1.

▶ Theorem 2 (Excluding Pessiland and Heuristica). For any constants δ, γ > 0, there is a
polynomial p such that, for any tR, t : N → N satisfying p(tR(n)) ≤ t(n) for all n ∈ N, we
have the following.
1. If Approxnδ -pKt is hard for SAT under a γ-honest non-adaptive randomized reduction run-

ning in time tR, then there exist both (I) a black-box adaptive randomized polynomial-time
reduction, and (II) a BPP-black-box non-adaptive randomized polynomial-time reduction,
from SAT to inverting a OWF. As a consequence, we get

NP ⊈ BPP ⇐⇒ ∃ OWF.

2. Assume E ⊈ io-NSIZE[2o(n)]. If Approxnδ -Kt is hard for SAT under an honest non-adaptive
randomized reduction running in time tR, then

NP ̸= P ⇐⇒ ∃ OWF.

2 We consider auxiliary input functions f = {fφ}φ∈{0,1}∗ as defined in [37].
3 As defined by [18], a BPP-black-box reduction R from a problem L to a problem L′ is an efficient oracle

Turing machine that correctly decides L, given any oracle A ∈ BPP such that A decides L′.

H. Goldberg and V. Kabanets 51:5

With a similar argument, we also get the following statement for Levin’s Kt complexity.

▶ Corollary 3. For any constant δ > 0, we have the following. Assume E ⊈ io-NSIZE[2o(n)].
If Approxnδ -Kt is hard for SAT under an honest non-adaptive randomized reduction, then
NP = coNP. Moreover, if no one-way functions exist, then NP = P.

2.2 Consequences of showing the NP-hardness of Kt

Though the conclusions of Theorems 1 and 2 are incomparable, one may find NP ⊆ coAM
unbelievable, in which case Theorem 2 would not appear to yield a promising route for
actually excluding Pessiland and Heuristica. Indeed, the earlier barrier result of [39] was
part of Hirahara’s motivation to introduce a harder “distributional” variant of Kt complexity
in a recent work [24], delineating an intact positive approach for excluding Impagliazzo’s
worlds via NP-hardness of meta-complexity.

As a counterpoint, building on a work of Liu and Pass [33], we show that NP-hardness of
exact Kt complexity would still suffice to exclude Pessiland while circumventing the barrier
of Theorem 1 (and [39]). As noted in [33], problems of exact and approximate Kt complexity
are qualitatively different: approximating Kt within ω(log n) additive error is unconditionally
easy on average (in the “error-prone” sense) over the uniform distribution, but the argument
fails in the setting of exact Kt. Thus, there is still room for optimism with regard to excluding
Pessiland via NP-hardness of standard Kt complexity.

▶ Theorem 4 (Excluding Pessiland). There is a polynomial p such that, for any t, tR : N → N
satisfying t(n) ≥ p(tR(n)) for all n ∈ N, we have the following.
1. If MpKtP is hard for SAT under an honest non-adaptive randomized reduction running

in time tR, then there is a black-box average-case reduction from SAT to inverting OWFs.
As a consequence, we get that

DistNP ⊈ HeurBPP ⇐⇒ ∃ OWF.

2. Assume E ⊈ io-NSIZE[2o(n)]. If MKtP is hard for SAT under an honest non-adaptive
randomized reduction running in time tR, then

DistNP ⊈ HeurP ⇐⇒ ∃ OWF.

2.3 Consequences of showing the NP-hardness of K
Finally, we show that NP-hardness of Kolmogorov complexity under randomized many-one
reductions would imply NP ⊆ coAM and a collapse of the polynomial hierarchy. To the
best of our knowledge, this is the first evidence against NP-hardness of exact Kolmogorov
complexity under randomized many-one reductions. We also get under the same assumption
that if NP ̸⊆ BPP then one-way functions exist.

▶ Theorem 5 (Collapsing the Polynomial Hierarchy). There is a polynomial p such that,
for any tR : N → N, we have the following. If MKP is hard for SAT under a randomized
polynomial time many-one reduction running in time tR(n) and with failure probability at
most 1/p(tR(n)), then

NP ⊆ coAM.

If, in addition, no one-way functions exist, then NP ⊆ BPP.

APPROX/RANDOM 2024

51:6 Consequences of Randomized Reductions from SAT to Kolmogorov Complexity

2.4 Robustness of reductions to K
In fact, we can get a stronger result than that stated above: namely, we show that if a
decidable language L reduces to MKP as in Theorem 5, then L ⊆ NISZK, where NISZK is
the class of promise problems admitting non-interactive statistical zero-knowledge proofs. In
particular, we prove the following.

▶ Theorem 6. For any polynomial tR and decidable language L, if MKP is hard for L under
a randomized many-one reduction running in time tR(n) and with failure probability at most
1/tR(n)16, then L ⊆ NISZK.

Since it is known that NISZK ⊆ SZK ⊆ AM ∩ coAM [17, 14, 1], where SZK is the class of
problems admitting statistical zero-knowledge proofs, Theorem 6 captures Theorem 5. It
also improves on the following statement implicit in a previous work of Allender et al. [7].

▶ Theorem 7 ([7]). For any decidable language L, if Approxω(log n)-K[n/2] is hard for L

under an honest randomized many-one reduction with failure probability at most 1/nω(1),
then L ⊆ NISZK.

Note that Theorem 6 improves on Theorem 7 in three respects: we do not require the
reduction to be honest, we do not require an ω(log n) approximation term, and we do not
require the threshold parameter to be fixed.

Combining the above with a converse provided in [7], we show that hardness of MKP under
randomized many-one reductions (with sufficiently small failure probability) is remarkably
robust with respect to approximation error, failure probability, honesty, and threshold
parameter (fixed or unfixed). For instance, if MKP is NP-hard under a tR(n)-time many-one
reduction with failure probability 1/poly(tR(n)), then it is also NP-hard under a polynomial-
time many-one reduction with exponentially small failure probability. More specifically,

▶ Theorem 8. There is a polynomial p such that for any decidable language L and polynomial
tR, the following are equivalent.
1. L ⊆ NISZK;
2. MKP is hard for L under a randomized many-one reduction running in time tR(n) and

with two-sided failure probability at most 1/p(tR(n));
3. Approxno(1)-K[n/2] is hard for L under an honest randomized many-one reduction with

one-sided failure probability at most 2−poly(n).

3 Related Work

Saks and Santhanam obtain a barrier result similar to our Theorem 1, Item 2, for the regime
of super-logarithmic additive error. Specifically, they prove the following.

▶ Theorem 9 ([39]). Assume E ⊈ io-NSIZE[2o(n)]. There is a polynomial p satisfying the
following. For any t, tR : N → N such that p(tR(n)) ≤ t(n), if Approxω(log n)-Kt is hard for
SAT under an honest, fixed query length, non-adaptive randomized reduction running in time
tR, then NE = coNE.

Here, “fixed query length” means that the lengths of all queries made in the reduction
are identical and depend only on the length of the input to the reduction, independent of
randomness. In comparison, at the cost of increasing the approximation error term from
ω(log n) to nδ for any constant δ > 0, we obtain the stronger (and presumably less believable)
consequence NP = coNP. Moreover, we do not require that the reduction have fixed query

H. Goldberg and V. Kabanets 51:7

length: in our case, the length of queries need not be the same, and they can depend on
the input and the randomness of the reduction. The honesty condition is identical in this
work and [39]. We also note that our proof techniques can be made to capture the regime of
ω(log n) additive error, in which case we recover the statement of [39] improved to reductions
without fixed query length.

Our Theorem 2 is related to a recent work of Hirahara [24], which introduces a “distribu-
tional” variant of Kt complexity, denoted dKt, defined as follows: for a string x ∈ {0, 1}∗, a
time bound t ∈ N, and a distribution D,

dKt(x | D) = min
s∈N

{
∃d ∈ {0, 1}s

∣∣∣ Pr
r∼D

[U(d, r) halts and outputs x within t steps] ≥ 2/3
}

.

Using the techniques of that work, it is possible to recover a part of our Theorem 2 exactly:
namely, the existence of a BPP-black-box non-adaptive reduction from SAT to inverting a
OWF. This is essentially due to the fact that if, for example, approximating Kt is NP-hard,
then approximating dKt is also NP-hard, since dKt captures Kt when the provided distribution
D always outputs the empty string. A probabilistic variant of dKt is also introduced in [24],
which similarly generalizes pKt.

However, our proof of Theorem 2 takes a partly different approach to that implicit in [24].
In particular, though both our proof and that work employ a non-black-box worst-case to
average-case reduction as in [19, 20, 16], the latter approach would use this kind of reduction
in two places: once to reduce NP to inverting an auxiliary-input one-way function, and once
to obtain NP ⊈ BPP =⇒ DistNP ⊈ AvgBPP. To accommodate the reduction to inverting an
auxiliary-input OWF, Hirahara introduces a new kind of mildly black-box reduction, which
is more restrictive than the standard notion of a class-specific black-box reduction [18]. In
contrast, as an intermediate step, we obtain a completely black-box non-adaptive reduction
from NP to inverting an auxiliary-input OWF. We employ a class-specific worst-to-average
reduction only to obtain NP ⊈ BPP =⇒ DistNP ⊈ AvgBPP.

As noted above, we could alternatively simply combine our Theorem 1 with [36] to obtain
the statement

NP ⊈ BPP =⇒ ∃OWF.

However, we provide in [15] a self-contained proof of a BPP-black-box non-adaptive reduction.
This is for completeness and to clarify the connection to Theorem 1.

Finally, we mention a few previous works related to our Theorem 5. Interestingly, by
Allender et al., computing Kolmogorov complexity is known to be hard for PSPACE under
deterministic adaptive Turing reductions [4]. This was improved by Hirahara to show that
Kolmogorov complexity is hard for EXPNP under deterministic adaptive Turing reductions and
hard for NEXP under randomized non-adaptive reductions [21]. Thus, Theorem 5 indicates a
sharp contrast between the power of randomized many-one reductions and more powerful
reductions with respect to the hardness of Kolmogorov complexity. Saks and Santhanam also
prove that NP-hardness of approximating Kolmogorov complexity within ω(log n) additive
error under honest randomized non-adaptive reductions would imply NP ⊆ coAM [39]. Note
that Theorem 5 does not assume honesty.

4 Techniques

In this section, we give an overview of the techniques used to prove our main results. Formal
details can be found in the full version of the paper [15].

APPROX/RANDOM 2024

51:8 Consequences of Randomized Reductions from SAT to Kolmogorov Complexity

4.1 Proof sketch of Theorem 1
As a warm-up, first consider the case of a deterministic length-increasing many-one reduction.
In particular, let R be such a reduction from SAT to Approxnδ -Kt mapping inputs φ ∈ {0, 1}n

to outputs (x, 1s) with |x| ≥ n2/δ and with the superscript t greater than the running time
of R. It is easy to see that, for any output (x, 1s) of R(φ),

Kt(x) ≤ |φ| + O(log n)
≤ |x|δ

≤ s + |x|δ.

This follows from the procedure that, given φ hard-coded, simulates R(φ) and returns its
output. Accordingly, a reduction of this kind cannot exist: since all of its outputs are
Yes-instances, it would imply φ ∈ SAT for every formula φ.

When moving to the more general case of a randomized many-one reduction, one can
think of R(φ) as a distribution over instances of Approxnδ -Kt, and a given output x is made
with probability according to R(φ). Observe that in the deterministic case, it held trivially
that with high probability over x ∼ R(φ),

Kt(x) ≲ s ⇐⇒ Pr[R(φ) = x] > β,

for any choice of β ∈ (0, 1). We would like to show that something similar is true in the
randomized setting. That is, there is still a correspondence between the Kt complexity of
outputs and their probability under R(φ). This means that Approxnδ -Kt (and thereby SAT)
will reduce to a problem of probability estimation.

There exists unconditionally a coAM protocol A that, given (φ, x, β) as input, accepts iff
Pr[R(φ) = x] is roughly greater than β, with high probability over x ∼ R(φ) [14, 11]; see also
[25, Appendix A]. Under our derandomization assumption, A can be implemented in coNP.
For simplicity, assume that every output (x, 1s) of R has the same threshold parameter s ∈ N,
so we may omit this part of the outputs. Define a parameter

β = 1
2s · poly(n) .

We claim that for every φ ∈ {0, 1}n, A(φ, x, β) will work well at deciding Approxnδ -Kt on
outputs x of R(φ).

On one hand, we will show that with high probability over x ∼ R(φ), if Kt(x) ≤ s, then
Pr[R(φ) = x] > β. The idea is to use a counting argument, giving an upper bound on x such
that Kt(x) ≤ s, to show that R(φ) must be “concentrated” on these inputs. In particular,
the probability over x ∼ R(φ) that Kt(x) ≤ s and Pr[R(φ) = x] ≤ β is roughly at most

2s · β = 1
poly(n) .

So, with high probability over x ∼ R(φ), if x is a Yes-instance of Approxnδ -Kt, then
Pr[R(φ) = x] > β, in which case A(φ, x, β) correctly outputs 1.

On the other hand, we will show that if an output x has probability greater than β

under R(φ), then x must have Kt complexity roughly upper-bounded by s. In the realm of
time-unbounded Kolmogorov complexity, we could rely on the well-known Coding Theorem
to prove a statement of this kind. Namely, for any samplable distribution D, it holds that

K(x) ≤ log(1/D(x)) + O(log n).

H. Goldberg and V. Kabanets 51:9

Similarly, if D is samplable given some non-uniform input φ, then

K(x) ≤ log(1/D(x)) + |φ| + O(log n).

Observe that our distribution R(φ) is samplable in polynomial time given φ as input. Thus,
if x is samplable with probability greater than β under R(φ), then it holds that

K(x) < log(1/β) + |φ| + O(log n)
≤ s + |φ| + O(log n)
≤ s + |x|δ.

Of course, bounding K-complexity does not suffice for our purposes. Instead, we apply a
recent work of Lu, Oliveira, and Zimand [34], which gives unconditionally a coding theorem
for probabilistic Kt complexity, denoted pKt. Specifically, we use a version of the coding
theorem for distributions samplable in polynomial time given an auxiliary non-uniform input.
For some polynomial psc and time-bound t0 = poly(n) at least the running time of R, this
yields

pKpsc(t0)(x) ≤ s + |φ| + O(log n).

Roughly speaking, pKt-complexity refers to the time-bounded Kolmogorov complexity
of a string in the presence of some uniform randomness. This notion is in some sense
intermediate between Kt complexity and K complexity. Moreover, under the derandomization
assumption E ⊈ io-NSIZE[2o(n)], pKt and Kt turn out to be nearly equal: for some polynomial
p0, Kp0(t)(x) ≤ pKt(x) + log p0(t) [16]. So, for t ≥ p0(psc(t0)), the above implies

Kt(x) ≤ s + |φ| + O(log n)
≤ s + |x|δ.

To summarize, with a sufficiently large t = poly(n) and a derandomization assumption, we
obtain an auxiliary-input coding theorem for Kt complexity. This yields the required converse,
namely, that high probability under R(φ) implies bounded Kt.4

We conclude that the coNP procedure A can be used to decide SAT. Therefore, NP ⊆
coAM = coNP.

To obtain Theorem 1 for honest reductions rather than polynomially length-increasing
reductions, we can simply rely on the “paddability” of SAT. That is, given a SAT-instance
φ ∈ {0, 1}n, it is trivial to append some terms to φ in a way that does not affect its
satisfiability but increases its length as desired. Since our assumed reduction R is honest, for
some constant γ > 0, for any query x of R(φ), it holds that |x| ≥ |φ|γ . If we let R′ be the
reduction that, on input φ ∈ {0, 1}n, pads to obtain φ′ ∈ {0, 1}nc/γ and then runs R(φ′) to
obtain x, we will now have |x| ≥ |φ′|γ = nc. To summarize, if there is an honest reduction
from SAT to some language L, then there is also a polynomially length-increasing reduction
from SAT to L.5

For the full statement of Theorem 1, we need techniques that can handle randomized
non-adaptive Turing reductions. We exploit the fact from [31] that the non-existence of
a one-way function would provide an algorithm A for probability estimation as described
above. In particular, for any distribution D ∈ PSAMP, for some poly-time computable

4 We note that the use of the coding theorem for pKt is the main reason why we need to require that the
runtime of our randomized NP-hardness reductions for Approxnδ -Kt must be polynomially smaller than
the parameter t.

5 A similar application of padding is in [24].

APPROX/RANDOM 2024

51:10 Consequences of Randomized Reductions from SAT to Kolmogorov Complexity

function f , there is an oracle algorithm A such that AI(x) outputs an estimate of Pr[D = x]
with high probability over x ∼ D, where I is any inverter for f . Thus, in the presence of a
non-adaptive reduction from SAT to Approxnδ -Kt, we also get a non-adaptive reduction from
SAT to the inversion of a one-way function. It was shown in [2, 3], with the construction of
a sophisticated protocol building on techniques from [13, 11], that such a reduction would
imply SAT ∈ coAM. However, as mentioned above, our distributions of interest R(φ) are
not in PSAMP, but require φ as a non-uniform input. Luckily, a result of [9] transposes [2]
to this non-uniform setting. Specifically, we have a reduction from SAT to the inversion of
an auxiliary-input function f = {fφ}φ∈{0,1}∗ , where on input φ to SAT, the reduction only
needs to invert f on auxiliary input φ; given this, [9] yields SAT ∈ coAM. This completes
our overview of the proof of Theorem 1.

4.2 Proof Sketch of Theorem 2
Our proof of Theorem 2 builds on that of Theorem 1, making use of a few more ideas to
obtain a reduction from NP to inversion of a standard OWF. The first idea is the fact that
any inverter for an appropriate function can be used as an errorless average-case inverter
for a desired auxiliary-input function. In particular, let f = {fφ}φ∈N be an auxiliary-input
function, and define g to be the function that randomly samples φ from a distribution D′

and then applies fφ to a uniformly random input z. It is not hard to show by an averaging
argument that any inverter for g works as an inverter for fφ with high probability over
φ ∼ D′. Moreover, crucially, if the inverter fails to invert some fφ, then it can be made to
output a special failure symbol ⊥ when given the auxiliary input φ, with high probability.
This is due to the fact that successful inversion can be verified in poly-time: given a candidate
pre-image y of some string z under fφ, simply run fφ(y) to verify; see [24, Theorem 10.3].
This, along with a reduction from SAT to inverting an auxiliary-input OWF, yields an
errorless randomized heuristic for SAT over any distribution D′ ∈ PSAMP.

The final piece of Theorem 2 is a worst-case to average-case reduction. The goal is to
obtain

(SAT, D′) ∈ AvgBPP =⇒ SAT ∈ BPP,

which will complete the proof given the discussion above. To that end, we employ tools
from [19] and follow-up works. A difficulty is that, from (SAT, D′) ∈ AvgBPP, the available
worst-case to average-case reductions only yield

Gapτ,nδ pKt ∈ BPP.

The promise-problem Gapτ,nδ pKt is potentially easier than Approxnδ -pKt, since it involves a
polynomial gap τ between time-bounds in Yes-instances and No-instances. As a result, the
gap version may not be NP-hard, so its easiness would not yield SAT ∈ BPP. Fortunately, by
a different application of the coding theorem for pKt, we are able to show that NP-hardness
of Approxnδ -pKt implies NP-hardness of Gapτ,nδ pKt. Roughly, with high probability over
the randomness of the reduction from SAT to Approxnδ -pKt, the pKt complexity of queried
strings will be somewhat close to their time-unbounded K complexity. Thus, granted the
leeway of the nδ approximation term, the difference in time-bounds between t and τ(t) does
not affect the correctness of the (slightly modified) reduction when we use Gapτ,nδ pKt as an
oracle in lieu of Approxnδ -pKt.

To summarize, an outline of the proof is as follows.
1. Arguing as in Theorem 1, we get a black-box non-adaptive fixed-auxiliary input reduction

from SAT to inverting an auxiliary-input function, f = {fφ}φ∈{0,1}∗ .

H. Goldberg and V. Kabanets 51:11

2. Under our assumption of the non-existence of OWFs, we get, for any polynomial-time
samplable distribution D, a PPT machine that inverts fφ with high probability over
φ ∼ D. Combined with step (1), this yields that (SAT, D) ∈ AvgBPP.

3. From the worst-case to average-case reduction of [19] (and subsequent works [22] and [16]),
for some distribution D′ ∈ PSAMP, there is a BPP-black-box non-adaptive randomized
polynomial-time reduction from Gapτ,O(log n)pKt to the average-case problem of solving
SAT over D′. That is,

(SAT, D′) ∈ AvgBPP =⇒ Gapτ,O(log n)pKt ∈ BPP

for a sufficiently large polynomial τ depending on the running time of the heuristic for
SAT. Combined with step (2), we get that Gapτ,O(log n)pKt ∈ BPP.

4. For a sufficiently large t, if Approxnδ -pKt is NP-hard, then Gapτ,O(log n)pKt is also NP-hard.
Combined with step (3), this yields NP ⊆ BPP.

4.3 Proof Sketch of Theorem 4
For the proof of Theorem 4 in the setting of exact pKt and Kt, the approach discussed above
does not work; recall that the approximation term nδ was critical at a number of points.
Thus, our starting point is the following statement from a recent work of Liu and Pass [33].

Assuming E ⊈ io-NSIZE[2o(n)], if {MKtP} × SAMP[tD(n)] ⊈ HeurP for some time
bound tD polynomially less than t, then one-way functions exist.

That is, the average-case hardness of MKtP with respect to any distribution samplable within
some polynomial running time smaller than t would suffice to imply one-way functions.

Our goal now is to show that if MKtP is NP-hard, then {MKtP}×SAMP[tD(n)] is “hard for
distributional NP”: namely, if MKtP is easy on average over every distribution D samplable
in time tD, then every distributional problem (L, D′) ∈ NP × PSAMP is likewise easy on
average. Combining this with the statement from [33], we would get

DistNP ⊈ HeurP =⇒ {MKtP} × SAMP[tD(n)] ⊈ HeurP
=⇒ ∃OWF.

To show the distributional NP-hardness of MKtP, we reduce from an arbitrary distributional
problem (L, D′) ∈ DistNP. Under the assumed NP-hardness of MKtP, there is a randomized
non-adaptive reduction R from L to MKtP. With a large enough choice of the polynomial t,
we can ensure that the reduction from L to MKtP runs in time polynomially less than t. In
particular, we get that the following distribution Q is samplable in time at most tD:

Sample x ∼ D′, and then output a sample from the query distribution of R(x).

From there, it is not too hard to show that, if H is a heuristic for MKtP working over Q, then
the algorithm RH (that simulates R and answers any oracle queries with H) is a heuristic
for L over D′. This yields the desired result.

4.4 Proof Sketch of Theorem 5
Finally, the proof of Theorem 5 proceeds along the lines of that of Theorem 1, but with
several important changes.6 The main challenge is that the Coding Theorem for K only gives
us an approximate equality between K(x) and log(1/D(x)) for x’s sampled from a distribution

6 As mentioned above, we actually give two different proofs of Theorem 5. We describe the first one here.

APPROX/RANDOM 2024

51:12 Consequences of Randomized Reductions from SAT to Kolmogorov Complexity

D. This was not a problem for Theorem 1 as it dealt with an approximate version of Kt,
and we could absorb some slack of the Coding Theorem into an approximation error of Kt.
But Theorem 5 is for the exact version of K, and we cannot apply the same strategy here.
Instead, we show that this slack can be absorbed by a different argument, crucially relying
on the fact that the randomized reductions R in the assumption of Theorem 5 are many-one
and have the error probability inverse-polynomially small in their runtime tR.

Namely, for φ ∈ {0, 1}n, consider the distribution of queries (x, 1s) made by the reduction
R(φ). We call such a query “heavy” if its probability (according to R(φ)) is at least
1/(poly(tR(n)) · 2s).

Our SAT algorithm (using a probability estimation protocol as in Theorem 1) essentially
behaves as follows:

On input φ, sample a query (x, 1s) according to R(φ), and accept if (x, 1s) is heavy.

For φ ̸∈ SAT (which is the difficult case to analyze), heavy queries will cause our SAT
algorithm to make a mistake by incorrectly accepting φ. We bound the error probability of
our SAT algorithm by upperbounding the total probability mass of such heavy queries.

Roughly speaking, we upperbound the total probability mass of “heavy” queries (x, 1s)
by

poly(tR(n)) · Pr[K(x) ≤ s].

Note that, since φ ̸∈ SAT, we have by the condition of correctness of the many-one reduction
R that R(φ) must place a very small γ probability on its queries that are Yes-instances of
MKP, i.e., Pr[K(x) ≤ s] ≤ γ. Hence, the error probability of our SAT algorithm is at most
poly(tR(n)) ·γ, which can be made sufficiently small if the error probability γ of the reduction
R is inverse-polynomially small in the runtime tR(n).

5 NP-hardness of (Kt vs. K) and (Kt vs. K)∗

In this section, we examine promise problems of the form (Kt vs. Kt′), for time bounds
t, t′ ∈ N, in comparison with the “partial function” versions (Kt vs. Kt′)∗ recently shown
NP-complete by Hirahara [23]. While NP-hardness of (Kt vs. K) would imply NP ⊆ coAM
via our proof techniques above, the consequence does not seem to follow in the partial
setting, as we discuss further below. We then show that NP-hardness via deterministic
Turing reductions of either (Kt vs. Kt′) or (Kt vs. Kt′)∗ (with appropriate settings of t and
t′) would imply NP = P. It follows that these problems are NP-intermediate with respect to
deterministic Turing reductions, provided the existence of one-way functions.

5.1 Randomized Reductions
We start with formal definitions of the partial version of Kt complexity and the promise
problems mentioned above.

▶ Definition 10 (Partial (Time-bounded) Kolmogorov Complexity). For a time bound t ∈ N, a
string x ∈ {0, 1, ∗}∗, and a complexity measure µ ∈ {pKt, Kt, K}, the partial (t-time-bounded,
probabilistic) Kolmogorov complexity of x, denoted (µ)∗(x), is equal to

min {µ(x′) | x′ consistent with x} ,

where a string x′ ∈ {0, 1}∗ is said to be consistent with x ∈ {0, 1, ∗}∗ if |x′| = |x| and, for
every index i ∈ [|x|] such that x[i] ̸= ∗, it holds that x[i] = x′[i].

H. Goldberg and V. Kabanets 51:13

▶ Definition 11 ((Kt vs. Kt′)). Let t, t′ : N → N. For µ1 ∈ {Kt, pKt} and µ2 ∈ {Kt′
, pKt′

, K},
(µ1 vs. µ2) is the following promise problem.

ΠY = {(x, 1s) | µ1(x) ≤ s}
ΠN = {(x, 1s) | µ2(x) > s}

(µ1 vs. µ2)∗ is defined analogously, with the partial complexity measures (µ1)∗ and (µ2)∗

in place of the standard (“complete function”) ones.

By a proof analogous to that of Theorem 5, we get the following statement.

▶ Lemma 12. Let t : N → N be arbitrary and tR : N → N a polynomial. If (Kt vs. K) is
NP-hard under a randomized many-one reduction running in time tR(n) and with failure
probability at most 1/(tR(n))7, then NP ⊆ coAM.

One may contrast Lemma 12 with Hirahara’s recent proof that (Kt vs. K)∗ is in fact NP-
hard under a randomized many-one reduction with the same properties. This suggests that
the techniques of [23] will not extend to the setting of standard (Kt vs. K) without leveraging
some more powerful notion of reducibility. Viewed another way, to obtain NP-hardness of
MKtP complexity under randomized many-one reductions, one would need techniques that
apply more narrowly to smaller-gap versions of the problem.

Note that the statement gives NP-hardness of MKtP∗ under a randomized reduction even
when t ∈ N is arbitrarily larger than the running time of the reduction. In the case of a
randomized reduction, it is not unreasonable to make the assumption that t ≫ tR, as is done
in [39] and in this work. This is because randomized reductions may easily sample strings
of maximum Kolmogorov complexity, so it is easy to generate No-instances of MKtP (or
MKtP∗) within time tR. Note that this would be impossible for a deterministic reduction.

▶ Lemma 13 (Implicit in [23]). There exists a polynomial tR : N → N such that for any
constant c ∈ N and any sufficiently large polynomial t : N → N, (Kt vs. K)∗ is NP-hard under
a randomized many-one reduction running in time tR(n) and with failure probability at most
1/tR(n)c.

Proof sketch. One needs to verify that the failure probability of the reduction is at most
1/nc for an arbitrary large constant c ∈ N. Recall that in the proof of [23] Lemma 8.3, the
reduction samples random strings fi ∼ {0, 1}λ·w(i) for i ∈ [n], where n ∈ N is the number
of variables in the input CMMSA instance, w : [n] → N is a weight function, and λ is some
fixed polynomial in n. The reduction succeeds provided, for every T ⊆ [n], for some constant
c ∈ N,

K(fT) ≥ λ · w(T) − c · |T | · log n. (1)

This is used in the “soundness” part of the proof to argue that the set B ⊆ [n] is not authorized.
In particular, one must prove that w(B) < θ from the fact that K(fB) ≤ o(λ · w(B)) + |M |,
where |M | is an arbitrary program of size λθ/2. To see that Eq. (1) is sufficient for this
purpose, observe that for any c ∈ N,

λ · w(B) − c · |B| · log n ≤ K(fB)
≤ o(λ · w(B)) + |M |

implies that

λ · w(B) ≤ c · |B| · log n + o(λ · w(B)) + |M |
≤ o(λ · w(B)) + |M |,

APPROX/RANDOM 2024

51:14 Consequences of Randomized Reductions from SAT to Kolmogorov Complexity

since c · |B| · log n ≤ cn log n = o(λ). Thus,

w(B) · λ · (1 − o(1)) ≤ |M |
≤ λ · θ/2,

which implies that w(B) < θ, as desired.
Now we will show that, for any c ∈ N, Eq. (1) holds with probability at least 1 − 1/nc−2.

First observe that by a standard counting argument, with probability 1 − 1/nc−2,

K(f[n]) ≥ λ · w([n]) − (c − 2) · log n.

Moreover,

K(f[n]) ≤ K(fT) + λ · w([n]\T) + 2 · |T | · log n,

since one may describe f[n] by describing fT , hard-wiring f[n]\T , and describing the set
T ⊆ [n] itself. Thus,

K(fT) ≥ K(f[n]) − λ · w([n]\T) − 2 · |T | · log n

≥ λ · w([n]) − (c − 2) · log n − λ · w([n]\T) − 2 · |T | · log n

≥ λ · w(T) − c · |T | · log n,

so the reduction does not fail in this case. ◀

One may wonder why the barrier of Lemma 12 does not apply to the partial Kt setting.
The primary issue is that a correspondence between the compressibility of queries and their
probability under the query distribution Qφ appears to be missing. As a result, we cannot
apply our central proof technique of reducing meta-complexity to a problem of probability
estimation.

Roughly speaking, there is a difference between the Kolmogorov complexity K(z) of the
description of a query z := (x, 1s) with x ∈ {0, 1, ∗}∗ and the partial complexity K∗(x) of
x. By the Coding Theorem for K, we still have an approximate correspondence between
the logarithm of the inverse probability of (the description of the query) z output by the
randomized reduction and the complexity K(z). However, K∗(x) can differ significantly from
K(z). For example, consider a string y = 0n, and let y′ be a uniformly random string in
{0, ∗}n. Since y′ is a uniformly random string over the binary alphabet {0, ∗}, it’s almost
certainly true that K(y′) ≥ n − O(log n). On the other hand, K∗(y′) ≤ K(y) ≤ O(log n).

More concretely, for example, consider a reduction from SAT to the problem of approxim-
ating (Kt)∗ (with a fixed threshold parameter s ∈ N). Here, the queries x ∈ {0, 1, ∗}∗ may
contain unspecified “∗” positions. On one hand, we can use a standard coding theorem (adap-
ted appropriately) to show that a query x having probability greater than β ≈ 1/(2s ·poly(n))
under the query distribution Qφ would imply that (Kt)∗(x) ≲ s.

However, the converse does not seem to hold. Previously we showed that, for strings
queried in the reduction, it was unlikely for a string to be both of low complexity and low
probability. This followed from a counting argument and a union bound: there are roughly at
most 2s strings x ∈ {0, 1}∗ with Kt(x) ≤ s, so the cumulative probability of strings with both
this property and Qφ(x) ≤ β is at most 1/poly(n). In the case of partial Kt, it is no longer
true that there are “few” strings of low complexity. In particular, any one short description
d ∈ {0, 1}s can witness (Kt)∗(x) ≤ s for 2n distinct strings x ∈ {0, 1, ∗}n (unlike standard
Kt, where one description only “maps” to one string). Thus, partial Kt complexity is not
readily connected to probability under efficiently samplable distributions, which was the key
connection exploited in the previous sections.

H. Goldberg and V. Kabanets 51:15

5.2 Deterministic Reductions
As another point of comparison, in Lemmas 15 and 16, we show that if either of (Kt vs. Kt′)
or (Kt vs. Kt′)∗ is NP-hard with respect to deterministic adaptive Turing reductions (for a
sufficiently large exponential function t′), then one obtains the stronger consequence that
NP = P. This implies that if one-way functions exist, (Kt vs. Kt′) and (Kt vs. Kt′)∗ are both
NP-intermediate with respect to deterministic Turing reductions.7

Note that Lemmas 15 and 16 hold for Turing reductions with arbitrary polynomial running
time (i.e., less than or greater than the time-bound t), and there is no honesty requirement.
After this, we show similar results for honest reductions and superpolynomial t′.

We will use the “dream-breaker” of Bogdanov et al. [10].

▶ Lemma 14 ([10]). Suppose NP ̸= P. There is an algorithm B and a universal constant
d with the following properties. Let A be any poly-time algorithm that attempts to solve
search-SAT and only errs by incorrectly outputting ⊥.8 For infinitely many n ∈ N, B(A, 1n)
outputs a formula φ ∈ {0, 1}n and a witness a such that φ(a) = 1 but A(φ) = ⊥. Moreover,
if A runs in time at most nb on inputs of length n, then B(A, 1n) runs in time at most (nb)d.

▶ Lemma 15. For every constant c, there is a constant c′ with the following property. Let
t, t′ : N → N be such that for all n ∈ N, t(n) ≤ nc and t′(n) ≥ 2c′n. Then (Kt vs. Kt′) is
NP-hard under deterministic polynomial-time Turing reductions iff NP = P.

Proof. Let M be a Turing reduction from search-SAT to (Kt vs. Kt′) running in time at
most nb on inputs of length n ∈ N. Define a machine M ′ that on input φ ∈ {0, 1}n simulates
M(φ) and answers its queries as follows. If the query (x, 1s) is such that s ≤ 4b log n and
s ≤ 2|x|, answer the query by brute force; otherwise simply accept the query. Note that M ′

runs in time at most n6bc.
Let B be the refuter of Lemma 14, and let n ∈ N and φ ∈ {0, 1}n be such that

B(M ′, 1n) = (φ, a) with M ′(φ) = ⊥ but φ(a) = 1.
Clearly, if a query (x, 1s) is such that s ≤ 4b log n or 2|x| < s, M ′ answers it correctly. We

now claim that for every query (x, 1s) of M ′(φ), it holds that Kt′(x) ≤ 4b log n. In particular,
one may compute x from advice (n, i), where x is the ith query of M ′(φ), in time at most(

n6bc
)d + n6bc < 2c′·|x|,

assuming 2|x| ≥ s > 4b log n and choosing c′ = 4cd, where d is the constant from Lemma 14.
For t′ : N → N such that t′(m) ≥ 2c′m, this implies

Kt′
(x) ≤ s.

Thus, M ′(φ) answers all of its queries correctly with respect to (Kt vs. Kt′), and

M ′(φ) = M (Kt vs. Kt′
)(φ) = search-SAT(φ),

a contradiction. ◀

The following statement for (Kt vs. Kt′)∗ indicates that Lemma 13 makes essential use of
randomness, unless NP = P.

7 Since either of these problems could be used to break a cryptographic PRG, the existence of OWFs
means they must not be efficiently decidable.

8 Note that any poly-time algorithm may be transformed into such an algorithm by verifying any candidate
satisfying assignment to the input before returning it.

APPROX/RANDOM 2024

51:16 Consequences of Randomized Reductions from SAT to Kolmogorov Complexity

▶ Lemma 16. For every constant c, there is a constant c′ with the following property. Let
t, t′ : N → N be such that for all n ∈ N, t(n) ≤ nc and t′(n) ≥ 2c′n. Then (Kt vs. Kt′)∗ is
NP-hard under deterministic polynomial-time Turing reductions iff NP = P.

Proof sketch. The proof is nearly identical to that of Lemma 15. One may still compute a
string consistent with x from advice (n, i) by simulating the reduction, obtaining the query
x, and replacing any ∗’s in x with 0’s. Let x̃ be the string x with all *’s replaced by 0’s. It is
easy to verify that (Kt′)∗(x) ≤ Kt′(x̃) ≤ 4b log n. ◀

Note that we could prove the above lemmas for (Kt vs. K) and (Kt vs. K)∗ (that is, with
time-unbounded K and K∗ in ΠN) without the use of a dreambreaker. If we additionally
assume that the NP-hardness reductions are honest, we obtain the same results but with t′

any superpolynomial function.

▶ Lemma 17. Let t : N → N be polynomial and t′ : N → N superpolynomial. (Kt vs. Kt′) is
NP-hard under honest deterministic polynomial-time Turing reductions iff NP = P.

Proof. Argue as in Lemma 15. Since the reduction is honest, we have

|x| ≥ nγ

for some constant γ > 0, for any string x queried in the reduction M . Recall that any such
x of M may be computed from advice (n, i) in time at most(

n6bc
)d + n6bc < n7bcd

≤ |x|7bcd/γ

< t′(|x|),

as desired. ◀

▶ Lemma 18. Let t : N → N be polynomial and t′ : N → N superpolynomial. (Kt vs. Kt′)∗ is
NP-hard under honest deterministic polynomial-time Turing reductions iff NP = P.

6 Open Questions

We have shown various consequences of (time-bounded) Kolmogorov complexity being NP-
hard under randomized notions of reducibility. Some of these consequences may be taken
optimistically (Theorem 4), while others may be viewed as barriers to the kinds of NP-
hardness in question (Theorems 1, 5), which include kinds of reduction that have previously
been used to show NP-hardness of variants of Kt complexity (e.g., [23]).

This work leaves open a number of directions; here, we indicate a few.
1. Can we remove the requirement, in Theorems 1, 2, and 4, that the time bound t in the

superscript be larger than the running time of the reduction? Recall that this requirement
was due to our use of the coding theorem for pKt.

2. Can we show consequences of randomized NP-hardness reductions to MKTP or MCSP
(i.e., minimization problems for Allender’s KT complexity or boolean circuit size)?

3. Can we extend Theorems 1, 2, or 4 to adaptive randomized Turing reductions? Note that
this kind of extension is unlikely in the case of Theorem 5, given the prior work discussed
in Section 3 [4, 21].

4. Can we improve Theorem 5 to hold for randomized many-one reductions with constant
failure probability? In particular, can we improve the “robustness” of many-one reductions
to K, as in Theorem 8, to hold for constant failure probability and exponentially small
failure probability?

H. Goldberg and V. Kabanets 51:17

References
1 William Aiello and Johan Håstad. Statistical zero-knowledge languages can be recognized in

two rounds. J. Comput. Syst. Sci., 42(3):327–345, 1991. doi:10.1016/0022-0000(91)90006-Q.
2 Adi Akavia, Oded Goldreich, Shafi Goldwasser, and Dana Moshkovitz. On basing one-way

functions on np-hardness. In Jon M. Kleinberg, editor, Proceedings of the 38th Annual ACM
Symposium on Theory of Computing, Seattle, WA, USA, May 21-23, 2006, pages 701–710.
ACM, 2006. doi:10.1145/1132516.1132614.

3 Adi Akavia, Oded Goldreich, Shafi Goldwasser, and Dana Moshkovitz. Erratum for: on basing
one-way functions on np-hardness. In Leonard J. Schulman, editor, Proceedings of the 42nd
ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8
June 2010, pages 795–796. ACM, 2010. doi:10.1145/1806689.1806798.

4 Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek, and Detlef Ron-
neburger. Power from random strings. SIAM J. Comput., 35(6):1467–1493, 2006. doi:
10.1137/050628994.

5 Eric Allender and Bireswar Das. Zero knowledge and circuit minimization. Inf. Comput.,
256:2–8, 2017. doi:10.1016/J.IC.2017.04.004.

6 Eric Allender and Shuichi Hirahara. New insights on the (non-)hardness of circuit minimization
and related problems. ACM Trans. Comput. Theory, 11(4):27:1–27:27, 2019. doi:10.1145/
3349616.

7 Eric Allender, Shuichi Hirahara, and Harsha Tirumala. Kolmogorov complexity characterizes
statistical zero knowledge. In Yael Tauman Kalai, editor, 14th Innovations in Theoretical
Computer Science Conference, ITCS 2023, January 10-13, 2023, MIT, Cambridge, Massachu-
setts, USA, volume 251 of LIPIcs, pages 3:1–3:19. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2023. doi:10.4230/LIPICS.ITCS.2023.3.

8 Eric Allender, Dhiraj Holden, and Valentine Kabanets. The minimum oracle circuit size
problem. Comput. Complex., 26(2):469–496, 2017. doi:10.1007/S00037-016-0124-0.

9 Benny Applebaum, Boaz Barak, and David Xiao. On basing lower-bounds for learning on
worst-case assumptions. In 49th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA, pages 211–220. IEEE
Computer Society, 2008. doi:10.1109/FOCS.2008.35.

10 Andrej Bogdanov, Kunal Talwar, and Andrew Wan. Hard instances for satisfiability and
quasi-one-way functions. In Andrew Chi-Chih Yao, editor, Innovations in Computer Science
- ICS 2010, Tsinghua University, Beijing, China, January 5-7, 2010. Proceedings, pages
290–300. Tsinghua University Press, 2010. URL: http://conference.iiis.tsinghua.edu.
cn/ICS2010/content/papers/23.html.

11 Andrej Bogdanov and Luca Trevisan. On worst-case to average-case reductions for NP
problems. SIAM J. Comput., 36(4):1119–1159, 2006. doi:10.1137/S0097539705446974.

12 Ravi B. Boppana, Johan Håstad, and Stathis Zachos. Does co-np have short interactive proofs?
Inf. Process. Lett., 25(2):127–132, 1987. doi:10.1016/0020-0190(87)90232-8.

13 Joan Feigenbaum and Lance Fortnow. Random-self-reducibility of complete sets. SIAM J.
Comput., 22(5):994–1005, 1993. doi:10.1137/0222061.

14 Lance Fortnow. The complexity of perfect zero-knowledge. Adv. Comput. Res., 5:327–343,
1989.

15 Halley Goldberg and Valentine Kabanets. Consequences of randomized reductions from SAT
to time-bounded Kolmogorov complexity. Electron. Colloquium Comput. Complex., TR24-120,
2024. URL: https://eccc.weizmann.ac.il/report/2024/120/.

16 Halley Goldberg, Valentine Kabanets, Zhenjian Lu, and Igor C. Oliveira. Probabilistic
Kolmogorov complexity with applications to average-case complexity. In Shachar Lovett,
editor, 37th Computational Complexity Conference, CCC 2022, July 20-23, 2022, Philadelphia,
PA, USA, volume 234 of LIPIcs, pages 16:1–16:60. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2022. doi:10.4230/LIPICS.CCC.2022.16.

APPROX/RANDOM 2024

https://doi.org/10.1016/0022-0000(91)90006-Q
https://doi.org/10.1145/1132516.1132614
https://doi.org/10.1145/1806689.1806798
https://doi.org/10.1137/050628994
https://doi.org/10.1137/050628994
https://doi.org/10.1016/J.IC.2017.04.004
https://doi.org/10.1145/3349616
https://doi.org/10.1145/3349616
https://doi.org/10.4230/LIPICS.ITCS.2023.3
https://doi.org/10.1007/S00037-016-0124-0
https://doi.org/10.1109/FOCS.2008.35
http://conference.iiis.tsinghua.edu.cn/ICS2010/content/papers/23.html
http://conference.iiis.tsinghua.edu.cn/ICS2010/content/papers/23.html
https://doi.org/10.1137/S0097539705446974
https://doi.org/10.1016/0020-0190(87)90232-8
https://doi.org/10.1137/0222061
https://eccc.weizmann.ac.il/report/2024/120/
https://doi.org/10.4230/LIPICS.CCC.2022.16

51:18 Consequences of Randomized Reductions from SAT to Kolmogorov Complexity

17 Oded Goldreich, Amit Sahai, and Salil P. Vadhan. Can statistical zero knowledge be made
non-interactive? or on the relationship of SZK and NISZK. In Michael J. Wiener, editor,
Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 15-19, 1999, Proceedings, volume 1666 of Lecture
Notes in Computer Science, pages 467–484. Springer, 1999. doi:10.1007/3-540-48405-1_30.

18 Dan Gutfreund and Amnon Ta-Shma. Worst-case to average-case reductions revisited. In
Moses Charikar, Klaus Jansen, Omer Reingold, and José D. P. Rolim, editors, Approxim-
ation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 10th
International Workshop, APPROX 2007, and 11th International Workshop, RANDOM 2007,
Princeton, NJ, USA, August 20-22, 2007, Proceedings, volume 4627 of Lecture Notes in
Computer Science, pages 569–583. Springer, 2007. doi:10.1007/978-3-540-74208-1_41.

19 Shuichi Hirahara. Non-black-box worst-case to average-case reductions within NP. In Mikkel
Thorup, editor, 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2018, Paris, France, October 7-9, 2018, pages 247–258. IEEE Computer Society, 2018. doi:
10.1109/FOCS.2018.00032.

20 Shuichi Hirahara. Non-disjoint promise problems from meta-computational view of pseudor-
andom generator constructions. In Shubhangi Saraf, editor, 35th Computational Complexity
Conference, CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference), volume
169 of LIPIcs, pages 20:1–20:47. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPICS.CCC.2020.20.

21 Shuichi Hirahara. Unexpected hardness results for kolmogorov complexity under uniform
reductions. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath,
and Julia Chuzhoy, editors, Proceedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 1038–1051.
ACM, 2020. doi:10.1145/3357713.3384251.

22 Shuichi Hirahara. Average-case hardness of NP from exponential worst-case hardness assump-
tions. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC ’21: 53rd Annual
ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021,
pages 292–302. ACM, 2021. doi:10.1145/3406325.3451065.

23 Shuichi Hirahara. Np-hardness of learning programs and partial MCSP. In 63rd IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31
- November 3, 2022, pages 968–979. IEEE, 2022. doi:10.1109/FOCS54457.2022.00095.

24 Shuichi Hirahara. Capturing one-way functions via np-hardness of meta-complexity. In Barna
Saha and Rocco A. Servedio, editors, Proceedings of the 55th Annual ACM Symposium on
Theory of Computing, STOC 2023, Orlando, FL, USA, June 20-23, 2023, pages 1027–1038.
ACM, 2023. doi:10.1145/3564246.3585130.

25 Shuichi Hirahara and Osamu Watanabe. Limits of minimum circuit size problem as oracle.
Electron. Colloquium Comput. Complex., TR15-198, 2015. arXiv:TR15-198.

26 Shuichi Hirahara and Osamu Watanabe. Limits of minimum circuit size problem as oracle.
In Ran Raz, editor, 31st Conference on Computational Complexity, CCC 2016, May 29
to June 1, 2016, Tokyo, Japan, volume 50 of LIPIcs, pages 18:1–18:20. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPICS.CCC.2016.18.

27 John M. Hitchcock and Aduri Pavan. On the np-completeness of the minimum circuit size
problem. In Prahladh Harsha and G. Ramalingam, editors, 35th IARCS Annual Conference
on Foundation of Software Technology and Theoretical Computer Science, FSTTCS 2015,
December 16-18, 2015, Bangalore, India, volume 45 of LIPIcs, pages 236–245. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPICS.FSTTCS.2015.236.

28 Rahul Ilango. Approaching MCSP from above and below: Hardness for a conditional variant
and AC0[p]. In Thomas Vidick, editor, 11th Innovations in Theoretical Computer Science
Conference, ITCS 2020, January 12-14, 2020, Seattle, Washington, USA, volume 151 of
LIPIcs, pages 34:1–34:26. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:
10.4230/LIPICS.ITCS.2020.34.

https://doi.org/10.1007/3-540-48405-1_30
https://doi.org/10.1007/978-3-540-74208-1_41
https://doi.org/10.1109/FOCS.2018.00032
https://doi.org/10.1109/FOCS.2018.00032
https://doi.org/10.4230/LIPICS.CCC.2020.20
https://doi.org/10.1145/3357713.3384251
https://doi.org/10.1145/3406325.3451065
https://doi.org/10.1109/FOCS54457.2022.00095
https://doi.org/10.1145/3564246.3585130
https://arxiv.org/abs/TR15-198
https://doi.org/10.4230/LIPICS.CCC.2016.18
https://doi.org/10.4230/LIPICS.FSTTCS.2015.236
https://doi.org/10.4230/LIPICS.ITCS.2020.34
https://doi.org/10.4230/LIPICS.ITCS.2020.34

H. Goldberg and V. Kabanets 51:19

29 Rahul Ilango. SAT reduces to the minimum circuit size problem with a random oracle. In 64th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2023, Santa Cruz, CA,
USA, November 6-9, 2023, pages 733–742. IEEE, 2023. doi:10.1109/FOCS57990.2023.00048.

30 Rahul Ilango, Bruno Loff, and Igor C. Oliveira. Np-hardness of circuit minimization for multi-
output functions. In Shubhangi Saraf, editor, 35th Computational Complexity Conference,
CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference), volume 169 of
LIPIcs, pages 22:1–22:36. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:
10.4230/LIPICS.CCC.2020.22.

31 Russell Impagliazzo and Leonid A. Levin. No better ways to generate hard NP instances
than picking uniformly at random. In 31st Annual Symposium on Foundations of Computer
Science, St. Louis, Missouri, USA, October 22-24, 1990, Volume II, pages 812–821. IEEE
Computer Society, 1990. doi:10.1109/FSCS.1990.89604.

32 Valentine Kabanets and Jin-yi Cai. Circuit minimization problem. In F. Frances Yao and
Eugene M. Luks, editors, Proceedings of the Thirty-Second Annual ACM Symposium on
Theory of Computing, May 21-23, 2000, Portland, OR, USA, pages 73–79. ACM, 2000.
doi:10.1145/335305.335314.

33 Yanyi Liu and Rafael Pass. One-way functions and the hardness of (probabilistic) time-
bounded kolmogorov complexity w.r.t. samplable distributions. In Helena Handschuh and
Anna Lysyanskaya, editors, Advances in Cryptology - CRYPTO 2023 - 43rd Annual Interna-
tional Cryptology Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20-24, 2023,
Proceedings, Part II, volume 14082 of Lecture Notes in Computer Science, pages 645–673.
Springer, 2023. doi:10.1007/978-3-031-38545-2_21.

34 Zhenjian Lu, Igor C. Oliveira, and Marius Zimand. Optimal coding theorems in time-bounded
kolmogorov complexity. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff,
editors, 49th International Colloquium on Automata, Languages, and Programming, ICALP
2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 92:1–92:14. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.ICALP.2022.92.

35 Cody D. Murray and Richard Ryan Williams. On the (non) np-hardness of computing circuit
complexity. In David Zuckerman, editor, 30th Conference on Computational Complexity, CCC
2015, June 17-19, 2015, Portland, Oregon, USA, volume 33 of LIPIcs, pages 365–380. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPICS.CCC.2015.365.

36 Mikito Nanashima. On basing auxiliary-input cryptography on np-hardness via nonadaptive
black-box reductions. In James R. Lee, editor, 12th Innovations in Theoretical Computer
Science Conference, ITCS 2021, January 6-8, 2021, Virtual Conference, volume 185 of
LIPIcs, pages 29:1–29:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:
10.4230/LIPICS.ITCS.2021.29.

37 Rafail Ostrovsky and Avi Wigderson. One-way fuctions are essential for non-trivial zero-
knowledge. In Second Israel Symposium on Theory of Computing Systems, ISTCS 1993,
Natanya, Israel, June 7-9, 1993, Proceedings, pages 3–17. IEEE Computer Society, 1993.
doi:10.1109/ISTCS.1993.253489.

38 Michael E. Saks and Rahul Santhanam. Circuit lower bounds from np-hardness of MCSP under
turing reductions. In Shubhangi Saraf, editor, 35th Computational Complexity Conference,
CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference), volume 169 of
LIPIcs, pages 26:1–26:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:
10.4230/LIPICS.CCC.2020.26.

39 Michael E. Saks and Rahul Santhanam. On randomized reductions to the random strings. In
Shachar Lovett, editor, 37th Computational Complexity Conference, CCC 2022, July 20-23,
2022, Philadelphia, PA, USA, volume 234 of LIPIcs, pages 29:1–29:30. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.CCC.2022.29.

40 Boris A. Trakhtenbrot. A survey of russian approaches to perebor (brute-force searches)
algorithms. IEEE Ann. Hist. Comput., 6(4):384–400, 1984. doi:10.1109/MAHC.1984.10036.

APPROX/RANDOM 2024

https://doi.org/10.1109/FOCS57990.2023.00048
https://doi.org/10.4230/LIPICS.CCC.2020.22
https://doi.org/10.4230/LIPICS.CCC.2020.22
https://doi.org/10.1109/FSCS.1990.89604
https://doi.org/10.1145/335305.335314
https://doi.org/10.1007/978-3-031-38545-2_21
https://doi.org/10.4230/LIPICS.ICALP.2022.92
https://doi.org/10.4230/LIPICS.CCC.2015.365
https://doi.org/10.4230/LIPICS.ITCS.2021.29
https://doi.org/10.4230/LIPICS.ITCS.2021.29
https://doi.org/10.1109/ISTCS.1993.253489
https://doi.org/10.4230/LIPICS.CCC.2020.26
https://doi.org/10.4230/LIPICS.CCC.2020.26
https://doi.org/10.4230/LIPICS.CCC.2022.29
https://doi.org/10.1109/MAHC.1984.10036

Trace Reconstruction from Local Statistical Queries
Xi Chen #

Columbia University, New York, NY, USA

Anindya De #

University of Pennsylvania, Philadelphia, PA, USA

Chin Ho Lee #

North Carolina State University, Raleigh, NC, USA

Rocco A. Servedio #

Columbia University, New York, NY, USA

Abstract
The goal of trace reconstruction is to reconstruct an unknown n-bit string x given only independent
random traces of x, where a random trace of x is obtained by passing x through a deletion channel.
A Statistical Query (SQ) algorithm for trace reconstruction is an algorithm which can only access
statistical information about the distribution of random traces of x rather than individual traces
themselves. Such an algorithm is said to be ℓ-local if each of its statistical queries corresponds to
an ℓ-junta function over some block of ℓ consecutive bits in the trace. Since several – but not all
– known algorithms for trace reconstruction fall under the local statistical query paradigm, it is
interesting to understand the abilities and limitations of local SQ algorithms for trace reconstruction.

In this paper we establish nearly-matching upper and lower bounds on local Statistical Query
algorithms for both worst-case and average-case trace reconstruction. For the worst-case problem,
we show that there is an Õ(n1/5)-local SQ algorithm that makes all its queries with tolerance
τ ≥ 2−Õ(n1/5), and also that any Õ(n1/5)-local SQ algorithm must make some query with tolerance
τ ≤ 2−Ω̃(n1/5). For the average-case problem, we show that there is an O(log n)-local SQ algorithm
that makes all its queries with tolerance τ ≥ 1/poly(n), and also that any O(log n)-local SQ algorithm
must make some query with tolerance τ ≤ 1/poly(n).

2012 ACM Subject Classification Mathematics of computing → Probabilistic inference problems

Keywords and phrases trace reconstruction, statistical queries, algorithmic statistics

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.52

Category RANDOM

Funding Xi Chen: Supported by NSF grants CCF-1703925, IIS-1838154, CCF-2106429 and CCF-
2107187.
Anindya De: Supported by NSF grants CCF-1926872, CCF-1910534 and CCF-2045128.
Chin Ho Lee: Supported by Madhu Sudan’s and Salil Vadhan’s Simons Investigator Awards while at
Harvard University.
Rocco A. Servedio: Supported by NSF grants IIS-1838154, CCF-2106429, CCF-2211238 and by the
Simons Collaboration on Algorithms and Geometry.

1 Introduction

In the trace reconstruction problem, the goal is to reconstruct an unknown string x ∈ {0, 1}n

given access to independent random traces of x, where a random trace of x is a string obtained
by passing x through a deletion channel that independently deletes each bit with probability
δ and concatenates the surviving bits. Trace reconstruction has been a well-studied problem
since the early 2000s [30, 29, 2], and some combinatorial variants of the problem were already
considered in the 1970s [26]. Over the past decade, a wide range of algorithmic results and
lower bounds have been established for many variants of the trace reconstruction problem,

© Xi Chen, Anindya De, Chin Ho Lee, and Rocco A. Servedio;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 52; pp. 52:1–52:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:xichen@cs.columbia.edu
https://orcid.org/0000-0001-5661-515X
mailto:anindyad@cis.upenn.edu
https://orcid.org/0000-0001-6795-8211
mailto:chinho.lee@ncsu.edu
https://orcid.org/0000-0001-5072-8110
mailto:rocco@cs.columbia.edu
https://orcid.org/0000-0003-2407-543X
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.52
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

52:2 Trace Reconstruction from Local Statistical Queries

including worst-case [32, 19, 36, 22, 10, 11], average-case [37, 23, 24, 38], and smoothed
analysis [13] versions, the low deletion rate regime [12], approximate trace reconstruction
[18, 8, 9, 14], coded trace reconstruction [16, 6], variants in which different bits of the
source string have different deletion probabilities [21], circular trace reconstruction [35], trace
reconstruction on trees [17, 5], population recovery variants [1, 33, 34], connections to other
problems such as mixture distribution learning [28], and more [20, 39].

The original, and arguably most fundamental, versions of the problem are the “worst-case”
and “average-case” versions with constant deletion rate δ ∈ (0, 1). In the worst-case problem
the source string x is an arbitrary (worst-case) element of {0, 1}n, and in the average-case
problem the source string x is selected uniformly at random from {0, 1}n; equivalently, an
average-case algorithm is only required to succeed for a 1 − on(1) fraction of all 2n possible
source strings x ∈ {0, 1}n. These two problems are the focus of our work, so in the rest
of this paper we consider worst-case and average-case trace reconstruction and we always
assume that the deletion rate δ is an arbitrary (known) constant in (0, 1).

Despite much effort, there are mildly exponential gaps between the best known upper
bounds and lower bounds for both worst-case and average-case trace reconstruction. Improv-
ing on earlier 2Õ(n1/2)-trace and 2Õ(n1/3)-trace algorithms of [25, 19, 36], in [11] Chase gave
an algorithm for worst-case trace reconstruction that uses 2Õ(n1/5) traces. The best known
lower bound, also due to Chase [10], is Ω̃(n3/2) traces (improving on earlier Ω̃(n5/4) and Ω(n)
lower bounds [22, 2]). For the average-case problem, improving on earlier exp(O((log n)1/2))-
trace and exp(O((log n)1/3))-trace algorithms [37, 23, 24], Rubinstein [38] recently gave
an exp(Õ((log n)1/5))-trace algorithm. The best known average-case lower bound, due to
Chase [10], is Ω̃((log n)5/2) traces, improving on an earlier Ω̃((log n)9/4) lower bound [22].

These substantial gaps naturally suggest the study of restricted classes of algorithms for
trace reconstruction, with the hope that it may be possible to obtain sharper results. This is
the starting point of our work: we propose to study the trace reconstruction problem from
the vantage point of statistical query algorithms. As our main contribution we obtain fairly
sharp upper and lower bounds on local statistical query algorithms for trace reconstruction,
as described below.

Statistical Query trace reconstruction algorithms. The Statistical Query (SQ) model [27]
was first introduced by Kearns as a means to obtain PAC learning algorithms that can
tolerate random classification noise. In the decades since then, the SQ model has emerged as
a major topic of study in its own right in computational learning theory and related fields
such as differential privacy and optimization. An attractive feature of the SQ model is that
it is powerful enough to capture state-of-the-art algorithms in a variety of different settings,
yet it is also amenable to proving unconditional lower bounds.

SQ algorithms can only access data through noisy estimates of the expected values of user-
generated query functions. In the context of trace reconstruction, an SQ oracle takes as input
a bounded query function q : {0, 1}n → [−1, 1] and a tolerance parameter τ ∈ (0, 1) that are
provided by the reconstruction algorithm. It returns a value P̂q which satisfies |P̂q − Pq| ≤ τ ,
where Pq is the expected value of q on a random trace, i.e. Pq := Ey∼Delδ(x)[q(y)].1 Thus an
SQ algorithm for trace reconstruction does not receive any actual traces of x; rather, it can
only use aggregate statistical information about the overall distribution of traces.

1 Since the length of each trace is at most n, we view each trace y as padded with a suffix of n − |y| zeros,
so the argument to q is actually y0n−|y|. This is equivalent to assuming that the n-bit source string x
is padded with an infinite suffix of 0-bits.

X. Chen, A. De, C. H. Lee, and R. A. Servedio 52:3

To the best of our knowledge, the current paper is among the first works that explicitly
considers the trace reconstruction problem from the perspective of statistical queries (see
also [15], which we discuss in more detail below). However, in hindsight the earliest nontrivial
algorithms for worst-case trace reconstruction [25, 19, 36] already made it evident that SQ
algorithms – in fact, SQ algorithms which use extremely simple query functions – could be
effective for trace reconstruction. The algorithms of [25, 19, 36] all work by using the traces
from Delδ(x) only to obtain high-accuracy estimates of the n values Ey∼Delδ(x)[yi] for i ∈ [n]
and then doing some subsequent computation on those estimated values; thus they correspond
to SQ algorithms in which each query function is simply a Boolean dictator function, i.e. a
1-junta. On the other hand, the highly efficient average-case trace reconstruction algorithms
of [37, 23, 24, 38], which use a sub-polynomial number of traces, involve various “alignment”
routines which attempt to identify locations in individual received traces that correspond
to specific locations in the source string. These algorithms seem to make essential use of
individual traces and do not seem to be compatible with the SQ model. So given that some,
but not all, known trace reconstruction algorithms correspond to SQ algorithms, it is of
interest to study both the abilities and limitations of SQ algorithms for trace reconstruction.

In this work we consider a natural class of SQ algorithms, which we call ℓ-local SQ
algorithms. An ℓ-local query function q : {0, 1}n → [−1, 1] is an ℓ-junta over some ℓ

consecutive bits of its input string, i.e. for all y, q satisfies q(y) = q′(yi, yi+1, . . . , yi+ℓ−1) for
some index i and some function q′ : {0, 1}ℓ → [−1, 1]. We say that an algorithm is an ℓ-local
SQ algorithm with tolerance τ0 if all of its calls to the SQ oracle are made with ℓ-local query
functions and the tolerance parameter for each call is at least τ0.

The results of [19, 36] already show that 1-local SQ algorithms with tolerance τ0 =
2−Õ(n1/3) can successfully perform worst-case trace reconstruction, and moreover [19, 36]
additionally show that tolerance τ0 = 2−Ω̃(n1/3) is required for any 1-local SQ worst-case
trace reconstruction algorithm. Thus, in analyzing the abilities and limitations of ℓ-local
algorithms for trace reconstruction for a particular value of ℓ, our goal is to determine the
tolerance which is necessary and sufficient for such algorithms to succeed in worst-case or
average-case trace reconstruction. A simple argument which we give in Section 2.1 shows that
any ℓ-local SQ algorithm (which may be adaptive) using tolerance τ0 can be converted to a
nonadaptive SQ algorithm that makes at most n2ℓ queries, all of which are ℓ-local “subword”
queries (defined in Section 2.1) of tolerance τ02−ℓ. Moreover, a standard argument shows
that any nonadaptive SQ algorithm which makes M statistical queries, each with tolerance
at least τ0, can be simulated in the obvious way by a standard trace reconstruction algorithm
that uses poly(log M, 1/τ0) independent traces from Delδ(x). Thus, we will be particularly
interested in identifying the value ℓ of the locality parameter for which tolerance (roughly)
2−ℓ is both necessary and sufficient for trace reconstruction. As we explain next, our main
results do precisely this, for both worst-case and average-case trace reconstruction.

1.1 Our results
We give upper and lower bounds on local SQ algorithms for both worst-case and average-case
trace reconstruction. Our upper and lower bounds match each other up to fairly small factors
for both the worst-case and average-case versions of the problem.

The worst-case problem. Our main lower bound is the following result, which gives a
lower bound on the tolerance for n1/5-local SQ algorithms performing worst-case trace
reconstruction:

APPROX/RANDOM 2024

52:4 Trace Reconstruction from Local Statistical Queries

▶ Theorem 1 (Worst-case lower bound, informal version of Theorem 6). Fix any constant
deletion rate 0 < δ < 1. For ℓ = Θ̃(n1/5), any ℓ-local SQ algorithm for worst-case trace
reconstruction must have tolerance τ0 = exp(−Ω̃(n1/5)).

Our algorithmic result for the worst-case problem shows that this lower bound is essentially
optimal:

▶ Theorem 2 (Worst-case upper bound, informal version of Theorem 15). Fix any constant
deletion rate 0 < δ < 1. There is a Õ(n1/5))-local SQ algorithm for the worst-case trace
reconstruction problem with tolerance τ0 = exp(−Õ(n1/5)).

The average-case problem. As mentioned earlier, the state-of-the-art average-case trace
reconstruction algorithms of [37, 23, 24, 38] do not seem to be compatible with the SQ model.
Recall that those algorithms use 2O((log n)c) traces, for c ∈ {1/5, 1/3, 1/2}, and thus any
SQ analogue of those algorithms would have tolerance ≈ 2−O((log n)c). We show that no
O(log n)-local (or even n0.49-local) SQ algorithm for average-case trace reconstruction can
succeed with such a coarse tolerance parameter:

▶ Theorem 3 (Average-case lower bound, informal version of Theorem 23). Fix any constant
deletion rate 0 < δ < 1. Any ℓ-local SQ algorithm for average-case trace reconstruction must
have tolerance τ0 ≤ ℓ/

√
n.

Finally, we give an average-case O(log n)-local SQ algorithm that has inverse polynomial
tolerance:

▶ Theorem 4 (Average-case upper bound, informal version of Theorem 25). Fix any constant
deletion rate 0 < δ < 1. There is an O(log n)-local SQ algorithm for average-case trace
reconstruction with tolerance τ0 = 1/poly(n).

Our results can be summarized as follows: As discussed immediately before Section 1.1, we
may say that an ℓ-local SQ algorithm with tolerance τ0 has overall complexity poly(n2ℓ, 1/τ0).
Theorems 1 and 2 together say that the optimal complexity of worst-case local SQ trace
reconstruction is 2Θ̃(n1/5), and Theorems 3 and 4 together say that the optimal complexity
of average-case local SQ trace reconstruction is nΘ(1).

1.2 Discussion and techniques
The worst-case setting. Theorem 1 and Theorem 2 should be contrasted with recent results
of Cheng et al. [15], which consider a restricted class of local SQ algorithms known as ℓ-mer
based algorithms. As defined by Mazooji and Shomorony [31], the ℓ-mer density map is a
certain vector of statistics about the frequency of length-ℓ subwords2 of the source string
x ∈ {0, 1}n. [31] gave an algorithm which, for constant deletion rate 0 < δ < 1/2, constructs
an ε-accurate (in ℓ∞ distance) estimate of the ℓ-mer density map using poly(n, 2ℓ, 1/ε) traces.
Cheng et al. [15] defined a trace reconstruction algorithm to be ℓ-mer based if it only uses the
ℓ-mer density map of x, and observed that the algorithm of [31] (see in particular Lemma 6
of [31] and its proof) only uses local statistical information about traces, and hence is a local
SQ algorithm.

2 Recall that a subword of x is a sequence of bits that occur consecutively in x, i.e. xixi+1 · · · xi+ℓ−1,
whereas a substring of x is a subsequence of bits that need not occur consecutively, i.e. xi1 xi2 · · · xiℓ .

X. Chen, A. De, C. H. Lee, and R. A. Servedio 52:5

The main result of Cheng et al. is a proof that any n1/5-mer based algorithm for worst-case
trace reconstruction must have tolerance τ0 = 2−Ω̃(n1/5). Our Theorem 1 generalizes this
result because it gives a lower bound for the entire class of n1/5-local SQ algorithms, which
includes the class of n1/5-mer based algorithms by the results described above. We remark
that Theorem 1 also has a shorter and simpler proof than Theorem 2 of [15].

At a high-level, we obtain Theorem 1 by a reduction to proving a 1-local SQ lower bound
on n-bit source strings that are “gappy.” These are strings in which every two 1s are separated
by ≫ n1/5 zeros (see Definition 8 for the precise definition). The intution here is that for a
gappy string, any n1/5-bit subword in its traces is very unlikely to contain two 1s, and so all
the useful information is contained in subword queries of Hamming weight at most 1, which
can then be further reduced to 1-bit queries. Then we can adapt the lower bound arguments
in [19] to gappy strings to obtain our lower bound.

Turning to Theorem 2, Cheng et al. observed that the 2Õ(n1/5)-trace algorithm of [11]
for worst-case trace reconstruction can be interpreted as a Õ(n1/5)-mer based algorithm
with tolerance τ0 = 2−Õ(n1/5). By the earlier observation of Cheng et al. mentioned in the
first paragraph and the [31] algorithm, which works provided that the deletion rate δ lies in
(0, 1/2), this means that Chase’s algorithm can be expressed as a Õ(n1/5)-local SQ algorithm
which has tolerance τ0 = 2−Õ(n1/5) when δ ∈ (0, 1/2). Our Theorem 15 is based on a similar
observation about Chase’s algorithm, but applied directly to the local SQ model without
going through the notion of k-mer statistics. Our approach is based on techniques and
arguments from [13]; using these techniques allows our argument to apply more generally to
the entire range of deletion rates δ ∈ (0, 1).

Average-case. The average-case lower bound of Theorem 3 is proved using a fairly simple
argument based on “hiding” a bit which might be either 0 or 1 in the middle of the source
string. We turn to the average-case upper bound.

The average-case SQ algorithm described in Theorem 4 is obtained by adapting an
algorithm for smoothed trace reconstruction to the SQ model. The [13] paper gives an
algorithm for “smoothed” trace reconstruction, which is a generalization of the average-case
trace reconstruction problem. While the algorithm of [13] only interacts with the input traces
by using them to form empirical estimates of subword frequencies in traces, it is not trivially
an SQ algorithm. This is because the [13] algorithm estimates these subword frequencies
across a range of different deletion probabilities δ, δ + ∆, δ + 2∆, . . . up to (δ + 1)/2. In the
usual (non-SQ) trace reconstruction setting where traces are available, it is trivial to simulate
access to Delδ′(x) given access to Delδ(x) for any δ′ > δ, simply by drawing y ∼ Delδ(x)
and deleting each bit of y independently with probability 1−δ′

1−δ . But in the SQ setting, we
only have access to statistical queries of traces drawn from Delδ(x) rather than individual
traces. We circumvent this issue by showing that any algorithm that makes ℓ-local statistical
queries with tolerance τ to Delδ′(x), for δ′ > δ, can be simulated by an algorithm that
makes only ℓ′-local statistical queries with tolerance τ ′ to Delδ(x), where (roughly speaking)
ℓ′ ≈ ℓ/(1 − δ′) and τ ′ = Θ(τ). With this ingredient in hand, the algorithm of [13] is easily
adapted to give Theorem 4.

1.3 Future work
Several natural questions suggest themselves for future work. Perhaps the foremost among
these is the following: Given Theorem 2, the current state-of-the-art unrestricted algorithm
for the general worst-case trace reconstruction problem is an Õ(n1/5)-local SQ algorithm.
Might it be the case that this is in fact an optimal algorithm for trace reconstruction? We

APPROX/RANDOM 2024

52:6 Trace Reconstruction from Local Statistical Queries

currently seem quite far from being able to resolve this (recall that the state of the art in
lower bounds for unrestricted worst-case trace reconstruction algorithms is only Ω̃(n3/2)
traces [11]).

A partial step towards answering the above bold question would be to establish lower
bounds on general SQ algorithms for worst-case trace reconstruction, i.e. SQ algorithms that
are not assumed to have bounded locality. It is difficult to imagine how queries that depend
on far-separated portions of an input trace could be useful, but proving this seems quite
challenging.

As a concrete first goal along these lines, a generalization of the notion of an ℓ-local SQ
is the notion of a size-s SQ. A size-s SQ is an SQ which asks for the expected value of some
s-junta function q′(yi1 , . . . , yis

) of a random trace y, but unlike an ℓ-local SQ the input bits
of the junta do not need to form a consecutive block of positions in y. Similar to Lemma 5, a
size-s SQ algorithm can be assumed without loss of generality to use only query functions of
the form 1 [yi1 , . . . , yis

] = w as (i1, . . . , is) ranges over
([n]

s

)
and w ranges over {0, 1}s. Even

the following goal appears to be quite challenging:

Show that any SQ algorithm for the worst-case trace reconstruction problem that
makes only size-2 queries must have tolerance τ = 1/nω(1).

We believe that this is an interesting target problem for future work.

2 Preliminaries

Notation. Given integers a ≤ b we write [a : b] to denote {a, . . . , b}. It will be convenient
for us to index a binary string x ∈ {0, 1}n using [0 : n − 1] as x = (x0, . . . , xn−1). We write
ln to denote natural logarithm and log to denote logarithm to the base 2. We write |x| to
denote the length of a string x.

We denote the set of non-negative integers by Z≥0. We write Dr(z) to denote the closed
disk in the complex plane of radius r centered at z ∈ C, and ∂Dr(z) to denote the circle
which is the boundary of that disk.

Subwords. Fix a string x ∈ {0, 1}n and an integer k ∈ [n]. A k-subword of x is a (contiguous)
subword of x of length k, given by (xa, xa+1, . . . , xa+k−1) for some a ∈ [0 : n − k]. Given
such a string x and integers 0 ≤ a < b ≤ n − 1, we write x[a : b] to denote the subword
(xa, xa+1, . . . , xb). For a string w ∈ {0, 1}k, let #(w, x) denote the number of occurrences of
w as a subword of x.

Distributions. We use bold font letters to denote probability distributions and random
variables, which should be clear from the context. We write “x ∼ X” to indicate that random
variable x is distributed according to distribution X.

Deletion channel and traces. Throughout this paper the parameter δ : 0 < δ < 1
denotes the deletion probability, and we write ρ to denote the retention probability ρ = 1 − δ.
Given a string x ∈ {0, 1}n, we write Delδ(x) to denote the distribution of the string
that results from passing x through the δ-deletion channel (so the distribution Delδ(x) is
supported on {0, 1}≤n), and we refer to a string drawn from Delδ(x) as a trace of x. Recall
that a random trace y ∼ Delδ(x) is obtained by independently deleting each bit of x with
probability δ and concatenating the surviving bits. 3

3 For simplicity in this work we assume that the deletion probability δ is known to the reconstruction
algorithm.

X. Chen, A. De, C. H. Lee, and R. A. Servedio 52:7

For x ∈ {0, 1}n (recall that we index the bits of x as (x0, . . . , xn−1)) we view a draw of a
trace y ∼ Del(x) as corresponding to a ρ-biased random draw of a subset R ⊆ [0 : n − 1],
where the elements of R are the bits that are retained in x to obtain y. So if the sorted
elements of R are R = {r0 < r1 < · · · < rm−1} for some m ≤ n, then the bits of the trace
y = (y0, y1, . . . , ym−1) are y0 = xr0 , y1 = xr1 , and so on.

2.1 Local Statistical Query algorithms
As described earlier, an ℓ-local query function q : {0, 1}n → [−1, 1] is a function

q(y) = q′(yi, yi+1, . . . , yi+ℓ−1)

for some index i and some function q′ : {0, 1}ℓ → [−1, 1], i.e. a real-valued bounded ℓ-junta
over consecutive input variables. An algorithm is an ℓ-local SQ algorithm with tolerance τ0
if all of its calls to the SQ oracle are made with ℓ-local query functions and the tolerance
parameter for each call is at least τ0.

Let us say that an ℓ-local query function is a subword query if it is of the form

q′(y) = 1 [(yi, . . . , yi+ℓ−1) = w] (1)

for some string w ∈ {0, 1}ℓ. The following simple lemma shows that without loss of generality,
every ℓ-local SQ algorithm makes at most n2ℓ (non-adaptive) queries, corresponding to all
possible length-ℓ subword queries:

▶ Lemma 5. Let A be an ℓ-local SQ algorithm with tolerance τ0 (note that A may make any
number of calls to the SQ oracle and may be adaptive, i.e. the choice of later queries may
depend on the responses received on earlier queries). Then there is an algorithm A′ with the
same behavior as A which makes n2ℓ queries (all possible length-ℓ subword queries), each
with tolerance τ0/2ℓ.

Proof. The algorithm A′ makes all n2ℓ subword queries of the form given in Equation (1),
where i ranges over [n] and w ranges over {0, 1}ℓ. It makes each such subword query with
tolerance parameter τ0/2ℓ. Let pi,w = Pry∼Del(x)[(yi, . . . , yi+ℓ−1) = w] and let p̂i,w be the
value received from the SQ oracle in response to the query (1), so |p̂i,w − pi,w| ≤ τ0/2ℓ.

Let (q, τ0) be any (query function, tolerance) pair that A may make in the course of
its execution. We show that a ±τ0-accurate estimate P̂q of Pq can be computed from the
responses to the n2ℓ queries of A′. This is easily seen to imply the lemma.

Since A is ℓ-local, the expected value Pq is

Pq = E
y∼Delδ(x)

[q′(yi, . . . , yi+ℓ−1)]

for some q′ : {0, 1}ℓ → [−1, 1] and some i ∈ [n]. Since

Pq =
∑

w∈{0,1}ℓ

pi,w · q′(w),

by setting P̂q to be

Pq =
∑

w∈{0,1}ℓ

p̂i,w · q′(w),

APPROX/RANDOM 2024

52:8 Trace Reconstruction from Local Statistical Queries

recalling that |q′(w)| ≤ 1 for all w, the triangle inequality gives

|P̂q − Pq| =

∣∣∣∣∣∣
∑

w∈{0,1}ℓ

(p̂i,w − pi,w) · q′(w)

∣∣∣∣∣∣ ≤ max
w

|q′(w)| ·
∑

w

|p̂i,w − pi,w| ≤
∑

w

τ0/2ℓ ≤ τ0

as desired. ◀

3 Worst-case lower bounds

In this section we prove the following lower bound on local SQ algorithms for the worst-case
trace reconstruction problem:

▶ Theorem 6 (Worst-case lower bound). Fix any constant deletion rate 0 < δ < 1. For a
suitable absolute constant c0, any c0n1/5/(log n)2/5-local SQ algorithm for worst-case trace
reconstruction must have tolerance τ0 < exp(−Ω(n1/5/(log n)2/5)).

Setup. Fix any 0 < δ < 1. For notational clarity let us write ℓ := c0n1/5/(log n)2/5. Given
an n-bit source string x, an index i ∈ [0 : n − 1], and an ℓ-bit string w, we define the value

px,i,w := Pr
y∼Delδ(x)

[(yi, . . . , yi+ℓ−1) = w], (2)

so px,i,w is the probability that a random trace of x has w as the subword starting in position
i. We refer to the vector (px,i,w)i∈[0:n−1],w∈{0,1}ℓ as the ℓ-subword signature of x.

We will prove the following:

▶ Lemma 7. For a suitable absolute constant c0, there are distinct n-bit strings a ≠ a′ ∈
{0, 1}n whose ℓ-subword signatures are very close to each other in ℓ∞-distance: more precisely,

For all i ∈ [0 : n − 1], w ∈ {0, 1}ℓ, we have |pa,i,w −pa′,i,w| ≤ exp(−2c0n1/5/(log n)2/5). (3)

To see why Lemma 7 implies Theorem 6, let A be any ℓ-local SQ algorithm with tolerance
exp(−c0n1/5/(log n)2/5). By Lemma 5, there is an algorithm A′ with the same behavior as
A which makes only subword queries for subwords of length ℓ, where each query of A′ has
tolerance exp(−c0n1/5/(log n)2/5)/2ℓ > exp(−2c0n1/5/(log n)2/5). By Equation (3), a query
for the value of px,i,w can be answered with the value qi,w = pa,i,w+pa′,i,w

2 whether the source
string x is a or a′. But this means that it is impossible for A to be an algorithm which
successfully solves the worst-case trace reconstruction problem.

In the rest of this section, we focus on establishing Lemma 7.
We require the following simple definition:

▶ Definition 8. Given t > 1, we say that a string x ∈ {0, 1}n is t-gappy if it is of the form

x = b00t−1b10t−1 · · · bn/t−10t−1

for some string b0, b1, . . . , bn/t−1 ∈ {0, 1}n/t.

Recall ρ = 1 − δ. Fix

t := 100 log(n)ℓ
ρ

= Θ(n1/5(log n)3/5). (4)

The two strings a, a′ whose existence is asserted by Lemma 7 will both be t-gappy. (We note
that the argument of Cheng et al. [15] also used gappy strings.)

X. Chen, A. De, C. H. Lee, and R. A. Servedio 52:9

One reason that gappy strings are useful for us because they make it very easy to handle
almost all of the ℓ-bit strings w ∈ {0, 1}ℓ that we need to consider in order to establish
Lemma 7. To see this, observe that any string w containing at least two ones is very unlikely
to be a length-ℓ subword of a random trace y: since the source string is t-gappy, we expect
consecutive ones in a random trace y to be at least ρt ≫ ℓ positions apart from each other.
More precisely, we have the following lemma:

▶ Lemma 9. Let x ∈ {0, 1}n be any t-gappy string, and let w ∈ {0, 1}ℓ be any string with at
least two ones. Then for any i ∈ [0 : n − 1] we have px,i,w ≤ 1/n49ℓ.

Proof. Fix 0 ≤ α < β ≤ ℓ − 1 to be any two positions in w such that wα = wβ = 1, and let
y ∼ Delδ(x). Observe that we have px,i,w ≤ Pr[yi+α = yi+β = 1].

Let R = {r0 < r2 < · · · < rm−1} ⊆ [0 : n − 1] be the ρ-biased random subset of
[0 : n − 1] consisting of the indices that are retained in x to obtain y. We may view the draw
of R as being carried out sequentially in independent stages 0, 1, . . . , where in each stage
s the element s is included in R with probability ρ. Fix any outcome of stages 0, 1, . . . up
until ri+α has been included in R. Even supposing that xri+α

= 1 (so that yi+α = 1), the
probability that xri+β

= 1 (which equals Pr[yi+β = 1]) is at most (writing k for β − α)∑
j≥1

Pr[exactly k of the jt indices in ri+α + 1, . . . , ri+α + jt are retained] (5)

=
∑
j≥1

(
jt

k

)
ρkδjt−k

≤
∑
j≥1

(ρjt)k · δjt/2 = (ρt)k
∑
j≥1

jkδjt/2 (since k ≤ jt/2)

≤ (ρt)ℓ
∑
j≥1

jℓ(1 − ρ)jt/2 (using k ≤ ℓ)

≤ (100 log(n)ℓ)ℓ
∑
j≥1

jℓe−50 log(n)ℓj . (by the choice of t, and using (1 − ρ)1/ρ ≤ e−1)

When j = 1 the first term of the sum
∑

j≥1 jℓe−50 log(n)ℓj is e−50 log(n)ℓ. The ratio of
successive terms of the sum is

(j + 1)ℓe−50 log(n)ℓ(j+1)

jℓe−50 log(n)ℓj
≤ 2ℓe−50 log(n)ℓ = (2/n50)ℓ ≪ 1/2.

So the sum
∑

j≥1 jℓe−50 log(n)ℓj is at most 2e−50 log(n)ℓ = 2/n50ℓ, and since 100 log(n)ℓ < n

for n sufficiently large, we get that (5) ≤ 1/n49ℓ. It follows that px,i,w ≤ Pr[yi+α = yi+β =
1] ≤ 1/n49ℓ as claimed. ◀

Given Lemma 9 it remains to argue about the ℓ + 1 strings w ∈ {0, 1}ℓ of Hamming
weight 0 or 1. We handle the weight-1 strings by reducing their analysis to the analysis of
one-bit strings as follows: fix any α ∈ [0 : ℓ − 1] and let w = eα ∈ {0, 1}ℓ be the string with
a single 1 coordinate in position α. The following lemma, which we prove using Lemma 9,
shows that for any gappy source string x the value of px,i,eα

is very close to the expected
value of a single location in a random trace. (A sharper bound could be obtained with a bit
more work, but the bound given by Lemma 10 is sufficient for our purposes.)

▶ Lemma 10. Let x ∈ {0, 1}n be any t-gappy string, and let w = eα ∈ {0, 1}ℓ be the string
containing a single 1 in coordinate α. Then for any i ∈ [0 : n − 1] we have∣∣∣∣ Pr

y∼Delδ(x)
[yi+α = 1] − px,i,eα

∣∣∣∣ ≤ 2ℓ−1/n49ℓ.

APPROX/RANDOM 2024

52:10 Trace Reconstruction from Local Statistical Queries

Proof. We have

Pr
y∼Delδ(x)

[yi+α = 1] =
∑

w∈{0,1}ℓ:wα=1

px,i,w, so

0 ≤ Pr
y∼Delδ(x)

[yi+α = 1] − px,i,eα
=

∑
w∈{0,1}ℓ:wα=1,|w|≥2

px,i,w ≤ (2ℓ−1 − 1)/n49ℓ

where the inequality is Lemma 9. ◀

The one remaining ℓ-bit string to consider is w = 0ℓ. However, if all 2ℓ − 1 other strings
have been handled successfully then this string is automatically handled as well:

▶ Lemma 11. Fix a, a′ ∈ {0, 1}n and i ∈ [0 : n − 1]. Suppose that for all w ∈ {0, 1}ℓ \ {0ℓ}
we have |pa,i,w − pa′,i,w| ≤ κ. Then |pa,i,0ℓ − pa′,i,0ℓ | ≤ (2ℓ − 1)κ.

Proof. This is an immediate consequence of
∑

w∈{0,1}ℓ px,i,w = 1, which holds for every x

and i. ◀

Thus, it suffices to construct two t-gappy strings a, a′ whose one-bit statistics are very
close:

▶ Lemma 12. For x ∈ {0, 1}n and i ∈ [0 : n − 1] define

px,i := Pr
y∼Delδ(x)

[yi = 1]. (6)

Suppose that a ≠ a′ ∈ {0, 1}n are two t-gappy strings such that for each i ∈ [0 : n − 1] we
have |pa,i − pa′,i| ≤ exp(−Ω(n1/5/(log n)2/5)). Then for all i ∈ [0 : n − 1], w ∈ {0, 1}ℓ we
have

|pa,i,w − pa′,i,w| ≤ 2ℓ · exp(−Ω(n1/5/(log n)2/5)) + 4ℓ/n49ℓ ≤ exp(−2c0n1/5/(log n)2/5).

Proof. Lemma 9 gives |pa,i,w − pa′,i,w| ≤ 1/n49ℓ for |w| ≥ 2. Lemma 10 and the assumption
on |pa,i −pa′,i| gives |pa,i,w −pa′,i,w| ≤ exp(−Ω(n1/5/(log n)2/5))+2ℓ/n49ℓ for |w| = 1. Given
these bounds, Lemma 11 gives |pa,i,0ℓ −pa′,i,0ℓ | ≤ 2ℓ ·exp(−Ω(n1/5/(log n)2/5))+4ℓ/n49ℓ. ◀

3.1 Establishing closeness of one-bit statistics
Let us write px = (px,0, . . . , px,n−1) to denote the n-dimensional vector in [0, 1]n whose
coordinates are given by Equation (6). From the results in the previous subsection it suffice
to prove the following:

▶ Lemma 13. There are two distinct t-gappy strings a, a′ ∈ {0, 1}n such that for all
i ∈ [0 : n − 1] we have ∥pa − pa′∥∞ ≤ exp(−Ω(n1/5/(log n)2/5)).

This is very similar to the main lower bound statement that was established in the two
works [19, 36] (independently of each other); those papers considered “one-bit statistics”
which correspond precisely to our px,i quantities, and showed that there are two distinct
strings x, x′ ∈ {0, 1}n (not restricted to be gappy) such that |px,i − px′,i| ≤ exp(−Ω(n1/3))
for all i ∈ [0 : n − 1]. In what follows we adapt their techniques to deal with t-gappy source
strings.

Following [19], given a pair of source strings a, a′ ∈ {0, 1}n we define the corresponding
deletion-channel polynomial (over C) to be

Pa,a′(z) :=
n−1∑
i=0

(pa,i − pa′,i) · zi. (7)

X. Chen, A. De, C. H. Lee, and R. A. Servedio 52:11

We have

∥pa − pa′∥∞ ≤ ∥pa − pa′∥1 ≤
√

n max
z∈∂D1(0)

|Pa,a′(z)|, (8)

where the second inequality is by Proposition 3.5 of [19] (the proof is a simple and standard
computation about complex polynomials). Thus our goal is to establish the existence of two
distinct t-gappy strings a ̸= a′ ∈ {0, 1}n for which maxz∈∂D1(0) |Pa,a′(z)| is small. To do this,
we begin by observing that since bit j of a source string ends up in location i of a trace with
probability

(
j
i

)
ρi+1δj−i, we have

pa,i = Pr
y∼Delδ(a)

[yi = 1] =
n−1∑
j=0

(
j

i

)
ρi+1δj−iaj , and hence pa,i −pa′,i =

n−1∑
j=0

(aj −a′
j)
(

j

i

)
ρi+1δj−i.

Hence (following [19, 36]) we get

Pa,a′(z) =
n−1∑
i=0

n−1∑
j=0

(aj − a′
j)
(

j

i

)
ρi+1δj−i

 zi = ρ
n−1∑
j=0

(aj − a′
j)δj

n−1∑
i=0

(
j

i

)(ρz

δ

)i

= ρ
n−1∑
j=0

(aj − a′
j)wj (taking w = 1 − ρ + ρz) (9)

where the last line used the binomial theorem and δ = 1 − ρ. Now, let us write the t-gappy
strings a, a′ as

a := b00t−1b10t−1 · · · bn/t0t−1, a′ := b′
00t−1b′

10t−1 · · · b′
n/t0t−1 (10)

for some b, b′ ∈ {0, 1}n/t. From Equation (9) we get that

Pa,a′(z) = ρ ·
n/t−1∑

j=0
(bj − b′

j)wjt (11)

(the structure afforded by Equation (11) is another reason why t-gappy strings are useful for
us). Since 0 < ρ = 1 − δ < 1 is a constant, recalling Equation (8) our goal is to establish the
existence of a string 0n/t ̸= v = (v0, . . . , vn/t−1) ∈ {−1, 0, 1}n/t such that

max
θ∈(−π,π]

∣∣∣∣∣∣
n/t−1∑

j=0
vj

(
(1 − ρ + ρeiθ)t

)j

∣∣∣∣∣∣ (12)

is small.
As described in Theorem 6.2 of [19], a result of Borwein and Erdélyi [3] (specifically, the

first proof of Theorem 3.3 in the “special case” on p. 11 of [3]) establishes the following:

▶ Theorem 14 ([3]). There are universal constants c1, c2, c3 > 0 such that the following
holds: For all 0 < a ≤ c1 there exists an integer 2 ≤ k ≤ c2/a2 and a nonzero vector
u ∈ {−1, 0, 1}k+1 such that maxw∈D6a(1) |

∑k
j=0 ujwj | ≤ exp(−c3/a).

Let m = n1/5/(log n)2/5 = 1/a, so a = 1/m = (log n)2/5/n−1/5. Recalling Equation (4),
we have that c2/a2 = c2m2 ≪ n/(2t), so we get that there exists a vector 0n/(2t) ≠ u ∈
{−1, 0, 1}n/(2t) such that

max
w∈D6/m(1)

∣∣∣∣∣∣
n/(2t)−1∑

j=0
ujwj

∣∣∣∣∣∣ ≤ exp(−c3m). (13)

APPROX/RANDOM 2024

52:12 Trace Reconstruction from Local Statistical Queries

Routine geometry shows that if |θ| ≤ 1
mt then |1 − (1 − ρ + ρeiθ)t| ≤ 6/m, so we get that

max
|θ|≤1/(mt)

∣∣∣∣∣∣
n/(2t)−1∑

j=0
uj

(
(1 − ρ + ρeiθ)t

)j

∣∣∣∣∣∣ ≤ exp(−c3m). (14)

Now we can describe our final desired string v ∈ {−1, 0, 1}n/t: it is obtained by padding
u with a prefix of n/(2t) many zeros. We thus have

(12) = max
θ∈(−π,π]

n/t−1∑
j=0

vj

(
(1 − ρ + ρeiθ)t

)j

= max
θ∈(−π,π]

A︷ ︸︸ ︷

(1 − ρ + ρeiθ)n/2 ·

B︷ ︸︸ ︷
n/(2t)−1∑

j=0
uj

(
(1 − ρ + ρeiθ)t

)j

 . (15)

Since |1 − ρ + ρeiθ| ≤ 1 for all θ ∈ (−π, π], we have that |A| is always at most 1 and |B| is
always at most n/(2t). We bound Equation (15) by considering two possible ranges for |θ|. If
|θ| ≤ 1/(mt), then since |A| ≤ 1, from Equation (14) we have that (15) ≤ 1·|B| ≤ exp(−c3m).
On the other hand, if |θ| > 1/(mt) then since |B| ≤ n/(2t) and ρ is a constant between 0
and 1, we get that |1 − ρ + ρeiθ| ≤ 1 − cρ

(mt)2 , and hence

(15) ≤ n

2t
· |A| ≤ n

2t
·
(

1 − cρ

(mt)2

)n/2
≤ exp(−c′

ρn/(mt)2)

for two constants cρ, c′
ρ > 0 that depend only on ρ. Since m = n1/5/(log n)2/5 and n/(mt)2 =

Θ(n1/5/(log n)2/5), for all θ ∈ (−π, π] we have that (12) ≤ exp(−Ω(n1/5/(log n)2/5)), so the
proof of Lemma 13 and hence of Theorem 6 is complete.

4 Worst-case upper bounds

In this section we will give a local SQ algorithm for worst-case trace reconstruction, proving
Theorem 2.

▶ Theorem 15 (Worst-case upper bound). Fix any constant deletion rate 0 < δ < 1. There is
a worst-case SQ trace reconstruction algorithm that makes only (O(n1/5 log5 n))-local queries
with tolerance τ = 2−O(n1/5 log5 n).

Overview. As discussed in the introduction, [15] showed that the state-of-the-art worst-case
trace reconstruction algorithm of Chase [11] can be interpreted as a Õ(n1/5)-mer based
algorithm, and further observed that the work [31] implicitly showed that for deletion rate
δ < 1/2, any k-mer based algorithm only relies on local statistics of random traces. The
same observation can also be inferred from the work [13]; more generally, that work implicitly
showed that for any deletion rate 0 < δ < 1 (not just δ < 1/2), Chase’s algorithm can be
interpreted as a local SQ algorithm. We obtain Theorem 15 by making this interpretation
explicit, without going through the notion of k-mer statistics.

In the case of δ < 1/2, the observation in [13, 31] is the following. Chase’s algorithm
is based on estimating (from below) a certain univariate polynomial Qx(z0) at some point
z0 inside the shifted complex disc D := { z−δ

1−δ : |z| ≤ 1}. Moreover, the degree-ℓ coefficient
of Qx can be estimated using ℓ-local statistics. When δ is bounded away from 1/2, these

X. Chen, A. De, C. H. Lee, and R. A. Servedio 52:13

works observed that the magnitude of the degree-ℓ term of Qx decays exponentially in ℓ, and
so the contribution from the high-degree terms is negligible and can be truncated from the
evaluation.

In the case of δ ≥ 1/2, a point in D can have magnitude 1 or more, and so the high-degree
terms in Qx need not decay in magnitude. Instead of evaluating the polynomial on some
point in D, [13] applies a result by Borwein, Erdélyi, and Kós [4] (see Lemma 18 below)
which shows that there exists a value t0 in the real interval [δ, 1

4 + 3
4 δ] such that Qx(t0) is

almost as large as Qx(z0), and as a result, we can estimate the truncation of Qx(t0) instead.

We now proceed to a detailed proof of Theorem 15. Let ℓ := 2n1/5. Our (O(n1/5 log5 n))-
local SQ algorithm in Theorem 15 is based on the following two lemmas. (Throughout this
section, it will be more convenient for us to phrase various quantities in terms of the retention
rate ρ = 1 − δ.) For a source string x ∈ {0, 1}n and an ℓ-bit pattern w ∈ {0, 1}ℓ, let Px,w(z, t)
be the following bivariate polynomial:

Px,w(z, t) :=
∑

0≤i1<···<iℓ≤n−1

ℓ∏
k=1

1 [xik
= wk] zi1 · tiℓ−i1−(ℓ−1).

▶ Lemma 16. For every deletion rate δ ∈ (0, 1), there is a constant Cρ such that the following
holds. For every distinct pair of source strings x, x′ ∈ {0, 1}n, there is a pattern w ∈ {0, 1}ℓ,
a point z0 ∈ {eiθ : |θ| ≤ n−2/5} ∪ [1 − ρ, 1 − 3

4 ρ], and a real value t0 ∈ [1 − ρ, 1 − 3
4 ρ], such

that

|Px,w(z0, t0) − Px′,w(z0, t0)| ≥ exp
(
−Cρn1/5 log5 n

)
.

▶ Lemma 17. For every deletion rate δ ∈ (0, 1), there exists an SQ algorithm that makes
Cρn1/5 log5 n-local queries with tolerance exp(−Cρn1/5 log5 n) such that for every w ∈ {0, 1}ℓ,
z ∈ {eiθ : |θ| ≤ n−2/5}∪ [1−ρ, 1− 3

4 ρ], and t ∈ [1−ρ, 1− 3
4 ρ] it outputs an estimate P̂x,w(z, t)

of Px,w(z, t) that is accurate to within ±0.1 · exp(−Cρn1/5 log5 n).

Our ℓ-local SQ algorithm (Proof of Theorem 15 assuming Lemmas 16 and 17)

Given an unknown source string x ∈ {0, 1}n, our reconstruction algorithm enumerates every
pair of distinct strings x1 ̸= x2 ∈ {0, 1}n. For each such pair, it considers the triple (w, z0, t0)
for that pair whose existence is given by Lemma 16. (Hence there are at most 22n many
such triples (w, z0, t0) considered in total.) Then it uses the SQ algorithm in Lemma 17 to
obtain an accurate estimate P̂x,w(z0, t0) of Px,w(z0, t0) for each w within an additive factor
of ±0.1 · exp(−Cρn1/5 log5 n), and outputs the x′ such that P̂x,w(z0, t0) and Px′,w(z0, t0) are
±0.5 · exp(−Cρn1/5 log5 n)-close to each other for every w, z0, t0. The correctness follows
immediately from Lemma 16, because if x′ ≠ x, then by that lemma there is some (w, z0, t0)
such that by the triangle inequality we have

|P̂x,w(z0, t0) − Px′,w(z0, t0)| ≥ |Px,w(z0, t0) − Px′,w(z0, t0)| − |P̂x,w(z0, t0) − Px,w(z0, t0)|

≥ 0.9 · exp(−Cρn1/5 log5 n).

4.1 Proof of Lemma 16
In this subsection we prove Lemma 16. We first recall the following result from [4].

▶ Lemma 18 (Theorem 5.1 in [4]). There are constants c1, c2 > 0 such that for every analytic
function f on the open unit disc {z : |z| < 1} with |f(z)| < 1

1−|z| and every a ∈ (0, 1], we
have

|f(0)|
c1
a ≤ exp(c2/a) sup

t∈[1−a,1− 3
4 a]

|f(t)|.

APPROX/RANDOM 2024

52:14 Trace Reconstruction from Local Statistical Queries

Note that polynomials with coefficients bounded by 1 are clearly analytic and satisfy the
condition that |f(z)| < 1

1−|z| on the open unit disc {z : |z| < 1}.
We note that in the actual statement in [4, Theorem 5.1], the interval containing t is

[1 − a, 1]. However, a close inspection of the proof reveals that the interval can be restricted
to be [1 − a, 1 − 3

4 a]. Specifically, their Theorem 5.1 is based on their Corollary 5.3, which in
turn is based on their Corollary 5.2, where the interval is taken to be [1 − a, 1 − a + 1

4 a]. A
self-contained proof using essentially the same argument can also be found in [13, Theorem 9].

We further note that the difference between [1 − a, 1] and [1 − 3
4 a] is crucial in showing

that the contribution of the high-degree terms of the relevant polynomial (Equation (16)) is
negligible. Had t been 1, then t−(1−ρ)

ρ = 1 and there would have been no exponential decay
in the high-degree terms.

Lemma 16 follows from two cases below.

Case 1: xi ̸= x′
i for some 0 ≤ i ≤ ℓ − 1

In this case, we consider the ℓ-bit pattern w := x[0 : ℓ−1]. Note that Px,w(0, 0)−Px′,w(0, 0) =
1 [x[0 : ℓ − 1] = w] − 1 [x′[0 : ℓ − 1] = w] = 1. We now apply Lemma 18 twice. The first
application is to the polynomial Q1(z1) := Px,w(z1, 0) − Px′,w(z1, 0), which implies that there
exists some z0 ∈ [1 − ρ, 1 − 3

4 ρ] such that

|Q1(z0)| ≥ e−c2/ρ|Q1(0)|c1/ρ = e−c2/ρ|Px,w(0, 0) − Px′,w(0, 0)|c1/ρ = e−c2/ρ.

We now apply Lemma 18 again to the polynomial

Q2(z2) := Px,w(z0, z2) − Px′,w(z0, z2)(
n
ℓ

) .

Note that all coefficients in Q2 have magnitude at most 1. This implies the existence of some
t0 ∈ [1 − ρ, 1 − 3

4 ρ] such that

|Px,w(z0, t0)−Px′,w(z0, t0)|=
(

n

ℓ

)
|Q2(t0)| ≥

(
n

ℓ

)
e−c2/ρ|Q2(0)|c1/ρ =

(
n

ℓ

)
e−c2/ρ

(
|Q1(z0)|(

n
ℓ

))c1/ρ

≥ e
− c2

ρ
− c1c2

ρ2(
n
ℓ

) c1
ρ

−1
≥ e−Ωρ(ℓ log n) = e−Ωρ(n1/5 log n),

where the last inequality used
(

n
ℓ

)
≥ (n/ℓ)ℓ, and the last equality follows from our choice of

ℓ = 2n1/5. To conclude, there exists some (z0, t0) ∈ [1 − ρ, 1 − 3
4 ρ]2 such that |Px,w(z0, t0) −

Px′,w(z0, t0)| ≥ Ωρ(
(

n
ℓ

)−c1/ρ).

Case 2: xi = x′
i for all 0 ≤ i ≤ ℓ − 1

For this case, [11, Corollary 6.1] (with the interval [1 − 2ρ, 1] replaced with [1 − ρ, 1 − 3
4 ρ])

can be restated, using Lemma 18 in a similar fashion as Case 1, as follows:

▶ Lemma 19 (Corollary 6.1 in [11], slightly rephrased and refined). For every ρ > 0, there exists
a constant Cρ such that the following holds. Let ℓ = 2n1/5. For every distinct x, x′ ∈ {0, 1}n

where xi = x′
i for every 0 ≤ i < ℓ − 1, there exists a pattern w ∈ {0, 1}ℓ, a z0 = eiθ for some

θ ∈ [−n−2/5, n−2/5] and a t0 ∈ [1 − ρ, 1 − 3
4 ρ] such that

|
∑

0≤i1<···<iℓ≤n−1

(ℓ∏
k=1

1 [xik = wk] −
ℓ∏

k=1

1
[
x′

ik
= wk

])
zi1

0 · t
iℓ−i1−(ℓ−1)
0 | ≥ exp

(
−Cρn1/5 log5 n

)
.

Combining the two cases proves Lemma 16.

X. Chen, A. De, C. H. Lee, and R. A. Servedio 52:15

4.2 Proof of Lemma 17
We now prove Lemma 17. We first state the following identity relating two multivariate
polynomials, each of which is defined in terms of an arbitrary f : {0, 1}ℓ → C. One of these
involves the evaluation of f on the ℓ-bit (not necessarily consecutive) substrings of the source
string x, and the other involves the expectation of f evaluated on the ℓ-bit substrings of a
random trace y ∼ Delδ(x). This identity has now appeared in several places such as [13, 11]
(see [13, Section 5.2] for a proof).

▶ Fact 20. For every f : {0, 1}ℓ → C, x ∈ {0, 1}n, ρ ∈ [0, 1], and z ∈ Cℓ,

ρℓ
∑

0≤i1<···<iℓ≤n−1
f(xi1 , . . . , xiℓ

)
(
(1 − ρ) + ρz1

)i1
ℓ∏

k=2

(
(1 − ρ) + ρzk

)ik−ik−1−1

=
∑

0≤j1<···<jℓ≤n−1
E

y∼Del1−ρ(x)

[
f(yj1 , . . . , yjℓ

)
]
zj1

1

ℓ∏
k=2

z
jk−jk−1−1
k .

Letting f(u1, . . . , uℓ) be the indicator function 1 [u = w] for some pattern w ∈ {0, 1}ℓ,
then performing a simple change of variable zi 7→ zi−(1−ρ)

ρ , and then identifying the variables
z3, . . . , zℓ with the variable z2, we obtain the following corollary.

▶ Corollary 21. For every ρ ∈ (0, 1], x ∈ {0, 1}n, w ∈ {0, 1}ℓ, and (z1, z2) ∈ C2,

Px,w(z1, z2) =

ρ−ℓ
∑

0≤j1<···<jℓ≤n−1

E
y∼Del1−ρ(x)

[ℓ∏
k=1

1
[
yjk

= wk

]](z1 − (1 − ρ)
ρ

)j1(z2 − (1 − ρ)
ρ

)jℓ−j1−(ℓ−1)
.

(16)

Let Q(z1, z2) be the bivariate polynomial on the right hand side of Equation (16). Observe
that for every fixed z1, viewing Q(z1, z2) as a univariate polynomial in z2, its z2-coefficient
of degree d (a univariate polynomial in z1) can be estimated using d-local SQs. We will first
prove that Q, as a univariate polynomial in the second variable z2, is close to its low-degree
truncation Q≤d (for a suitable choice of d), defined by

Q≤d(z1, z2) :=

ρ−ℓ
∑

0≤j1<···<jℓ≤n−1:
jℓ−j1−(ℓ−1)≤d

E
y

[ℓ∏
k=1

1
[
yjk

= wk

]](z1 − (1 − ρ)
ρ

)j1(z2 − (1 − ρ)
ρ

)jℓ−j1−(ℓ−1)
, (17)

when both z1, z2 belong to the domain in Lemma 16.

▷ Claim 22. Let C ′′
ρ be a constant, and d0 ≥ C ′′

ρ (ℓ + n1/5) + 2 log n. For every z ∈ {eiθ :
|θ| ≤ n−2/5}∪ [1 −ρ, 1− 3

4 ρ] and t ∈ [1 −ρ, 1− 3
4 ρ], we have |Q≤d0(z, t) −Q(z, t)| ≤ 4 · 2−d0/2.

Proof. It suffices to show that for every d ≥ d0, the homogeneous degree-d (in the variable t)
term of Q, that is,

ρ−ℓ
∑

0≤j1<···<jℓ≤n−1
0≤jℓ−j1−(ℓ−1)=d

E
[ℓ∏

k=1
1
[
yjk

= wk

]](z − (1 − ρ)
ρ

)j1(t − (1 − ρ)
ρ

)jℓ−j1−(ℓ−1)
, (18)

is bounded by 2−d/2, as then we have |Q(z, t) − Q≤d0(z, t)| ≤
∑

d>d0
2−d/2 = 4 · 2−d0/2, as

desired.

APPROX/RANDOM 2024

52:16 Trace Reconstruction from Local Statistical Queries

We now bound Equation (18) as follows. First, the expectation in each term of the
summation can be bounded by 1. Second, writing z as eiθ for some |θ| ≤ n−2/5, and using
|cos θ| ≥ 1 − θ2/2, we have

|z − (1 − ρ)|2 =
(
cos θ − (1 − ρ)

)2 + sin2 θ = 1 − 2(1 − ρ) cos θ + (1 − ρ)2

= 2(1 − ρ)(1 − cos θ) + ρ2 ≤ (1 − ρ)θ2 + ρ2.

Using |θ| ≤ n−2/5 and j1 ≤ n, when z = eiθ for some |θ| ≤ n−2/5 we have that

∣∣∣z − (1 − ρ)
ρ

∣∣∣j1
≤
(

1 + (1 − ρ)
(θ

ρ

)2
)j1/2

≤ eC′
ρn1/5

(19)

for some constant C ′
ρ. And when z ∈ [1 − ρ, 1 − 3

4 ρ] we have 0 ≤ z−(1−ρ)
ρ ≤ 1/4 and so

Equation (19) is again satisfied (with room to spare). Similarly, for t ∈ [1 − ρ, 1 − 3
4 ρ] we

have 0 ≤ t−(1−ρ)
ρ ≤ 1/4, and so |

(
t−(1−ρ)

ρ

)d

| ≤ 4−d.
Finally, the number of indices 0 ≤ j1 < · · · < jℓ ≤ n − 1 with jℓ − j1 − (ℓ − 1) = d is at

most n ·
((ℓ−2)+d

ℓ−2
)

≤ n · 2d+(ℓ−2). So the degree-d term (18) can be bounded by

ρ−ℓ · n · 2d+ℓ−2 · eC′
ρn1/5

· 4−d ≤ n · (2/ρ)ℓ · eC′
ρn1/5

· 2−d,

which is at most 2−d/2 whenever d ≥ C ′′
ρ (ℓ + n1/5) + 2 log n, for some constant C ′′

ρ . ◁

We now describe our local SQ algorithm to approximate the low-degree polynomial
Q≤d(z, t), for any (z, t) ∈ {eiθ : |θ| ≤ n−2/5} ∪ [1 − ρ, 1 − 3

4 ρ] × [1 − ρ, 1 − 3
4 ρ]. Set

d0 := C ′′
ρ n1/5 log5 n ≥ C ′′

ρ (ℓ + n1/5) + 2 log n. Our d0-local algorithm makes the following
d0-local queries:

E
y∼Del1−ρ(x)

[
1 [y[j : j + d0 − 1] = u]

]
for every u ∈ {0, 1}d0 and j ∈ {0, . . . , n − 1}.

Let p̂u,j be the estimate of E[1 [y[j : j + d0 − 1] = u]] that is received as a response to the
query. For every fixed tuple 0 ≤ j1 < · · · < jℓ ≤ n − 1 such that jℓ − j1 − (ℓ − 1) ≤ d0, using
the identity

E
[ℓ∏

k=1
1
[
yjk

= wk

]]
=

∑
u∈{0,1}d0 :∀k∈[ℓ]:ujk−j1+1=wk

E
[
1 [y[j1 : j1 + d0 − 1] = u]

]
,

which is a sum of 2d0−ℓ terms, the algorithm computes the estimate ̂pu,j1,...,jℓ
of

E
[∏ℓ

k=1 1
[
yjk

= wk

]]
(using the estimates p̂u,j1 of E[1 [y[j1 : j1 + d0 − 1] = u]]) by

̂pw,j1,...,jℓ
:=

∑
u∈{0,1}d0 :∀k∈[ℓ]:ujk−j1+1=wk

p̂u,j1 ,

for each w ∈ {0, 1}ℓ and tuple of indices 0 ≤ j1 < · · · < jℓ ≤ n−1 such that jℓ−j1−(ℓ−1) ≤ d0.
If the tolerance for each query is τ0, then the error of each estimate ̂pw,j1,...,jℓ

is ±2d0−ℓ · τ0.
Finally, the algorithm computes the estimate Q̂≤d0(z, t) of Q≤d0(z, t) using Equation (17), as

Q̂≤d0(z, t) := ρ−ℓ
∑

0≤j1<···<jℓ≤n−1:
jℓ−j1−(ℓ−1)≤d0

̂pw,j1,...,jℓ

(z − (1 − ρ)
ρ

)j1(t − (1 − ρ)
ρ

)jℓ−j1−(ℓ−1)
.

X. Chen, A. De, C. H. Lee, and R. A. Servedio 52:17

There are at most n ·
(

d0+(ℓ−1)
ℓ−1

)
≤ n · 2d0+(ℓ−1) such tuples. So the total error is n · 2d0+(ℓ−1) ·

2d0−ℓ · τ0 ≤ n · 22d0 · τ0.
By Claim 22, we have that for every (z, t) in the domain specified in Lemma 17

|Q̂≤d0(z, t) − Px,w(z, t)| = |Q̂≤d0(z, t) − Q(z, t)|

≤ |Q̂≤d0(z, t) − Q≤d0(z, t)| + |Q≤d0(z, t) − Q(z, t)|

≤ n · 22d0 · τ0 + 4 · 2−d0/2

= 22C′′
ρ n1/5 log5 nτ0 + exp(−C ′′

ρ n1/5 log5 n).

Setting the tolerance parameter τ0 to be exp(−Cρn1/5 log5 n) proves Lemma 17.

5 Average-case lower bounds

▶ Theorem 23 (Average-case lower bound). Fix any constant deletion rate 0 < δ < 1. Any
ℓ-local SQ algorithm for average-case trace reconstruction must have tolerance τ0 ≤ O(ℓ/

√
n).

Let x be an arbitrary fixed string in {0, 1}n and let x′ be the string obtained from x by
flipping the bit xn/2 in the middle. Let q : {0, 1}n → [−1, 1] be any ℓ-junta query (which is
not necessarily ℓ-local), i.e., there are 0 ≤ i1 < . . . < iℓ < n such that q(x) = q′(xi1 , . . . , xiℓ

)
for some q′ : {0, 1}ℓ → [−1, 1]. We will prove the following claim:

▷ Claim 24. Let Pq := Ey∼Delδ(x)[q(y)] and P ′
q := Ey∼Delδ(x′)[q(y)]. Then |Pq − P ′

q| ≤
O(ℓ/

√
n).

Proof. Let R be a ρ-biased random draw of a subset of [0 : n−1] with R = {r0, r1, . . . , rm−1}
for some m ≤ n. Given that the only difference between x and x′ is the middle bit, we have∣∣Pq − P ′

q

∣∣ ≤ 2 · PrR
[
rij

= n/2 for some j ∈ [ℓ]
]

≤ 2
∑
j∈[ℓ]

PrR
[
rij

= n/2
]

.

Since δ ∈ (0, 1) is a constant, PrR[ri = n/2] ≤ O(1/
√

n) for any i, from which the claim
follows. ◁

We now prove Theorem 23:

Proof. (of Theorem 23) Indeed we will show that any SQ algorithm for average-case trace
reconstruction that uses ℓ-junta queries with tolerance τ must satisfy τ ≤ O(ℓ/

√
n). To

see this, consider any SQ algorithm for trace reconstruction that uses ℓ-junta queries with
tolerance τ that is larger than the O(ℓ/

√
n) in Claim 24. It follows from Claim 24 that, for

any string x ∈ {0, 1}n, such an algorithm cannot distinguish between x and x′. As a result,
such an algorithm fails to reconstruct x ∼ {0, 1}n with probability at least 1/2. ◀

6 Average-case upper bounds

▶ Theorem 25 (Average-case upper bound). Fix any constant deletion rate 0 < δ < 1. There
is an SQ algorithm for average-case trace reconstruction that uses ℓ = O(log n)-local queries
with tolerance τ = 1/poly(n).

We will prove Theorem 25 by showing that the algorithm in [14] can be simulated with
local SQ queries. To do so, we will need to recall the smoothed analysis model.

APPROX/RANDOM 2024

52:18 Trace Reconstruction from Local Statistical Queries

▶ Definition 26. Let xworst be an unknown and arbitrary string in {0, 1}n and 0 < σ < 1 be
a “smoothening parameter.” Let x be generated by flipping every bit of xworst independently
with probability σ.

For parameters η, τ > 0, a (T, η, τ)-trace reconstruction algorithm in the smoothed
analysis model (with smoothening parameter σ) has the following guarantee: With probability
at least 1 − η (over the random generation of x from xworst), it is the case that the algorithm,
given access to independent traces drawn from Delδ(x), outputs the string x with probability
at least 1 − τ (over the random traces drawn from Delδ(x)). The time complexity as well as
the number of traces is bounded by T .

Observe that the average case trace reconstruction setting corresponds to the smoothed
analysis setting with σ = 1/2 and xworst set to the all zeros string (though any fixed choice of
xworst works equally well).

[14] gave a polynomial-time algorithm for trace reconstruction in the smoothed analysis
setting. Taking σ = 1/2, the main result of [14] gives the following:

▶ Theorem 27 (Theorem 1 in [14]). There is an algorithm for trace reconstruction which for
any η, τ and δ > 0, has the following guarantee: With probability 1−η over x drawn uniformly
at random from {0, 1}n, it is the case that the algorithm, given access to independent traces
drawn from Delδ(x), outputs the string x with probability at least 1 − τ (over the random
traces drawn from Delδ(x)). Its running time and sample complexity are upper bounded by

T =
(

n

η

)O
(

1
(1−δ) ·log

(
2

(1−δ)

))
.

We begin with a short description of the algorithm in [14] (page 27 of the Arxiv version of
[14]), giving only the level of detail necessary for the current paper. We set the following
parameters:

k = O(log(n/η)), κ =
(

1
n

·
(

1 − δ

2

)k)O(1/(1−δ))
, θ = (1 − δ)2/2,

d = C

θ

(
ln n + k ln C

θ

)
, ∆ = κ

2d2 · n ·
(

d+k−2
k−2

) . (20)

Set L to be the largest integer such that δ + L · δ ≤ (1 + δ)/2.
Given two strings x ∈ {0, 1}n and w ∈ {0, 1}k, [14] define a univariate polynomial

SWx,w(·). The precise formal definition of this polynomial is not important for us; rather,
the following relation (Equation 6 in the Arxiv version of [14]) is sufficient for our purposes:

E
y∼Delδ′ (x)

[#(w, y)] = (1 − δ′)k · SWx,w(δ′), (21)

where #(w, y) is the number of times w appears a subword of y. We remark to the reader
that #(w, y) is a sum of k-local query functions (we will elaborate on this shortly). The
algorithm in [14] proceeds as follows:
1. Define set S := {δ, δ + ∆, δ + 2∆, . . . , δ + L∆}.
2. For every w ∈ {0, 1}k and δ′ ∈ S, the algorithm computes ±κ-accurate estimates of

SWx,w(δ′), using Equation (21).
3. With these estimates of SWx,w(δ′) (for δ′ ∈ S and w ∈ {0, 1}k), the algorithm runs a

linear program followed by a greedy algorithm to reconstruct the original string.

X. Chen, A. De, C. H. Lee, and R. A. Servedio 52:19

In particular, excluding the part of Step (2) in which the estimates of SWx,w(δ′) are computed,
the rest of the reconstruction algorithm is deterministic and does not use the traces. Note
that the reason why the [14] algorithm does not immediately translate to a local SQ algorithm
for us is the following: in our model the permissible statistical queries are with respect to
y ∼ Delδ(x), whereas the [14] algorithm, as sketched above, uses estimates of probabilities
corresponding to statistical queries over y ∼ Delδ′(x) for various values of δ′ > δ.

Thus, to obtain a local SQ algorithm, it suffices to show that the values
{SWx,w(δ′)}δ′∈S, w∈{0,1}k can be estimated using local SQ queries corresponding to Delδ(x).
More precisely, we have the following claim whose proof is immediate from the description of
the above algorithm and (21).

▷ Claim 28. For any δ′ ∈ S, to compute SWx,w(δ′) to error κ, it is sufficient to estimate
the value of Ey∼Delδ′ (x)[#(w, y)] up to error τ ′, where

τ ′ :=
(

1
n

(
1 − δ

2

)k)O(1/(1−δ))
. (22)

Proof. We need to compute SWx,w(δ′) for δ′ ∈ S to error κ. By (21), it suffices to compute
Ey∼Delδ′ (x)[#(w, y)] to error κ · (1 − δ′)k; noting that δ′ ≤ (1 + δ)/2, the claim follows. ◁

The main technical lemma of this section is the following.

▶ Lemma 29. For the parameters defined as above, the following holds: Given the values
of all subword queries of length ℓ with tolerance τ ′/2 (with τ ′ defined in (22)) corresponding
to Delδ(x), we can compute SWx,w(δ′) for all δ′ ∈ S and w ∈ {0, 1}k to within error ±κ.
Here ℓ is defined to be

ℓ = Θ
(

k

1 − δ
· ln
(

2
1 − δ

)
+ ln n

(1 − δ)

)
.

Before proving this lemma, we observe that Theorem 25 follows immediately from the lemma:

Proof. (of Theorem 25) For any constant 0 < δ < 1 and η = n−Θ(1), by our choice of
parameters we have k = O(log n) (see (20)). With this choice, ℓ = O(log n) and τ ′ = n−Θ(1).
By Lemma 29, using the values of all subword queries of length ℓ (with tolerance τ ′/2), we
can compute SWx,w(δ′) for all δ′ ∈ S and w ∈ {0, 1}k to within error ±κ. By the guarantee
of the algorithm in [14], this suffices to recover x. Thus, we get Theorem 25. ◀

6.1 Proof of Lemma 29
We start with the following observation.

▶ Fact 30. For δ′ ≥ δ, let 0 ≤ βr = (1 − δ′)/(1 − δ) ≤ 1. Then Delδ′(x) = Delβr
(Delδ(x)).

In other words, we can simulate traces from the deletion channel Delδ′(·) by first getting a
trace from Delδ(·) and then passing it through the deletion channel Delβr

.

As stated earlier, we will assume that our original string x is padded with infinitely many
0-symbols to its right. This means that for any i, the ith position of the trace is well-defined.
We now consider the process of getting a trace y from Delδ′(x) given a trace z ∼ Delδ(x).
We will do this by thinking of Delβr (·) as a “selector process”. We start with the following
definition.

APPROX/RANDOM 2024

52:20 Trace Reconstruction from Local Statistical Queries

▶ Definition 31. For a parameter p ∈ (0, 1) and integers k > 0 and ℓ ≥ 0, we define the
distribution Hypernb(p, k, ℓ) as follows: Define an infinite random string w = (w0, . . .) in
{0, 1}∗ where each bit is independently 0 with probability p and 1 with probability (1 − p).
Let is be the location of the sth one in w. Then a sample from Hypernb(p, k, ℓ) is given by
(ik, . . . , ik+ℓ−1).

Finally, we say that an outcome from Hypernb(p, k, ℓ) is t-bounded if |ik+ℓ−1 − ik| ≤ t.

We note that for any fixed s, the process generating is is memoryless, in the sense that
for any fixed r and s (with r ≥ s), the random variable ir − is is distributed as a negative
binomial random variable.

With the above definition, we can now state the following claim:

▷ Claim 32. Fix δ′ ≥ δ, k ≥ 1, and ℓ ≥ 0. Let y ∼ Delδ′(x) and z ∼ Delδ(x). For
βr = (1 − δ′)/(1 − δ), let (ik, . . . , ik+ℓ−1) ∼ Hypernb(βr, k, ℓ). Then the distribution of
(yk, . . . , yk+ℓ−1) is identical to the distribution of (zik

, . . . , zik+ℓ−1).

Proof. The proof is essentially obvious from Fact 30 and Definition 31. In particular,
from Fact 30, given z ∼ Delδ(x), to get y ∼ Delδ′(x), we need to simulate the deletion
channel Delβr

on the string z. By definition of the deletion channel Delβr
, the location

of the positions (k, . . . , k + ℓ − 1) is given by (ik, . . . , ik+ℓ−1) sampled from Hypernb(p, k, ℓ).
This finishes the proof. ◁

We next need a lower bound on the probability that Hypernb(p, k, ℓ) is bounded. To
obtain this, we first state a tail bound on negative binomial random variables:

▷ Claim 33 ([7]). Let Negbin(m, p) be a negative binomially distributed random variable with
parameters m and p, i.e. it is the number of trials needed to get m heads from independent
coin tosses with heads probability p. Then E[Negbin(m, p)] = m/p and furthermore, for any
t > 1,

Pr
[
Negbin(m, p) > tm/p

]
≤ exp

(
− tm(1 − 1/t)2

2

)
.

From this we can obtain the following claim which lower bounds the probability that
Hypernb(βr, k, ℓ) is s-bounded.

▷ Claim 34. For any k, an outcome (ik, . . . , ik+ℓ−1) ∼ Hypernb(βr, k, ℓ) is s-bounded with
probability at least 1 − ξ for s = t(ℓ − 1)/βr, where ξ = exp(−t(ℓ − 1)/8) for t ≥ 2.

Proof. The gap ik+ℓ−1 − ik is a negative binomial random variable which is distributed as
Negbin(ℓ − 1, βr). Thus, by Claim 33, it follows that

Pr
[
ik+ℓ−1 − ik >

t(ℓ − 1)
βr

]
≤ exp

(
−t(ℓ − 1)(1 − 1/t)2

2

)
.

For t ≥ 2, we can simplify the upper bound as

Pr
[
ik+ℓ−1 − ik >

t(ℓ − 1)
βr

]
≤ exp

(
−t(ℓ − 1)

8

)
.

Defining ξ as exp(−t(ℓ−1)
8), we get the claim. ◁

We now state the following technical claim.

X. Chen, A. De, C. H. Lee, and R. A. Servedio 52:21

▷ Claim 35. Given the value of all ℓ-local subword queries for deletion channel Delδ(x)
with tolerance η, we can compute the value of all ℓ′-local subword queries for Delδ′(x) with
tolerance τ ′ where

η = τ ′/2; ℓ = C ·
(

ℓ′

1 − δ′ · ln
(

2
1 − δ

)
+ ln n

(1 − δ′)

)
, for a suitably large constant C.

Proof. Fix any w ∈ {0, 1}ℓ′ and consider the quantity

p′
x,k,w := Pr

y∼Delδ′ (x)
[(yk, . . . , yk+ℓ′−1) = w].

Then, by Claim 32, it follows that

p′
x,k,w := Pr

z∼Delδ(x),(ik,...,ik+ℓ′−1)∼Hypernb(βr,k,ℓ′)
[zi1 , . . . , zik+ℓ′−1 = w], (23)

where βr = (1 − δ′)/(1 − δ). Define the parameter t = C ·
(

1
1−δ · ln

(
2

1−δ

)
+ ln n

ℓ′(1−δ)

)
, where

the constant C is set so that exp
(

t(ℓ′−1)
8

)
= τ ′

2 . As ℓ = t(ℓ′ − 1)/βr, by Claim 34 we have

Pr[iℓ′+k−1 − iℓ′ > ℓ] ≤ exp
(

t(ℓ′ − 1)
8

)
= τ ′

2 . (24)

Now, define E as the event (over the samples (ik, . . . , ik+ℓ′−1)) that |ik+ℓ′−1 − ik| ≤ ℓ. We
now re-express

p′
x,k,w = Pr

z∼Delδ(x),(ik,...,ik+ℓ′−1)

[
zi1 , . . . , zik+ℓ′−1 = w ∧ E

]
+ Pr

z∼Delδ(x),(ik,...,ik+ℓ′−1)

[
zi1 , . . . , zik+ℓ′−1 = w ∧ E

]
.

From the bound (24), the second term is at most τ ′/2 in magnitude and thus,∣∣∣p′
x,k,w − Pr

z∼Delδ(x),(ik,...,ik+ℓ′−1)

[
zi1 , . . . , zik+ℓ′−1 = w ∧ E

]∣∣∣ ≤ τ ′/2.

Furthermore, for any particular outcome of (ik, . . . , ik+ℓ′−1) for which event E happens, the
quantity Prz∼Delδ(x)[zi1 , . . . , zik+ℓ′−1 = w] is a ℓ-local subword query. Since we have the
value of all ℓ-local subword queries up to error τ ′/2, we can compute p′

x,k,w to error τ ′. ◁

Proof. (of Lemma 29) By Claim 32, to compute SWx,w(δ′) to error ±κ, it suffices to compute
Ey∼Delδ′ (x)[#(w, y)] for every w ∈ {0, 1}ℓ′ up to error ±τ ′ where τ ′ is defined in (22). Now,
by Claim 35, for any given δ′ ≥ δ, to compute Ey∼Delδ′ (x)[#(w, y)] to error τ , it suffices to
have the value of all ℓ-local subword queries to error τ ′/2 where

ℓ = C ·
(

ℓ′

1 − δ′ · ln
(

2
1 − δ

)
+ ln n

(1 − δ′)

)
.

Since δ′ ≤ (1 + δ)/2, it follows that

ℓ ≤ C ·
(

2ℓ′

1 − δ
· ln
(

2
1 − δ

)
+ 2 ln n

(1 − δ)

)
.

Thus, if we have the value of all k-local subword queries to error τ ′/2, where k is set to

k = Θ
(

ℓ′

1 − δ
· ln
(

2
1 − δ

)
+ ln n

(1 − δ)

)
,

we can recover x. This finishes the proof. ◀

APPROX/RANDOM 2024

52:22 Trace Reconstruction from Local Statistical Queries

References
1 Frank Ban, Xi Chen, Adam Freilich, Rocco A. Servedio, and Sandip Sinha. Beyond trace

reconstruction: Population recovery from the deletion channel. In 60th IEEE Annual Sympo-
sium on Foundations of Computer Science (FOCS), pages 745–768. IEEE Computer Society,
2019.

2 Tuǧkan Batu, Sampath Kannan, Sanjeev Khanna, and Andrew McGregor. Reconstructing
strings from random traces. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2004, pages 910–918, 2004.

3 Peter Borwein and Tamás Erdélyi. Littlewood-type polynomials on subarcs of the unit circle.
Indiana University Mathematics Journal, 46(4):1323–1346, 1997.

4 Peter Borwein, Tamás Erdélyi, and Géza Kós. Littlewood-type problems on [0, 1]. Proc.
London Math. Soc. (3), 79(1):22–46, 1999. doi:10.1112/S0024611599011831.

5 Tatiana Brailovskaya and Miklós Z. Rácz. Tree trace reconstruction using subtraces. J. Appl.
Probab., 60(2):629–641, 2023. doi:10.1017/jpr.2022.81.

6 Joshua Brakensiek, Ray Li, and Bruce Spang. Coded trace reconstruction in a constant
number of traces. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science
(FOCS), pages 482–493, 2020. doi:10.1109/FOCS46700.2020.00052.

7 Daniel G. Brown. How I wasted too long finding a concentration inequality for sums
of geometric variables. Available at https://uwspace.uwaterloo.ca/bitstream/handle/
10012/17210/negbin.pdf?sequence=1, 2011.

8 Diptarka Chakraborty, Debarati Das, and Robert Krauthgamer. Approximate trace reconstruc-
tion via median string (in average-case). In 41st IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS), volume 213 of LIPIcs,
pages 11:1–11:23. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

9 Z. Chase and Y. Peres. Approximate trace reconstruction of random strings from a constant
number of traces. Available at arXiv:2107.06454, 2021.

10 Zachary Chase. New lower bounds for trace reconstruction. Ann. Inst. H. Poincaré Probab.
Statist., 57(2):627–643, 2021.

11 Zachary Chase. Separating words and trace reconstruction. In STOC ’21: 53rd Annual ACM
SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages
21–31. ACM, 2021.

12 Xi Chen, Anindya De, Chin Ho Lee, Rocco A. Servedio, and Sandip Sinha. Polynomial-time
trace reconstruction in the low deletion rate regime. In 12th Innovations in Theoretical
Computer Science Conference, volume 185, pages 20:1–20:20, 2021.

13 Xi Chen, Anindya De, Chin Ho Lee, Rocco A. Servedio, and Sandip Sinha. Polynomial-time
trace reconstruction in the smoothed complexity model. In Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms, pages 54–73, 2021.

14 Xi Chen, Anindya De, Chin Ho Lee, Rocco A. Servedio, and Sandip Sinha. Near-optimal
average-case approximate trace reconstruction from few traces. In Proceedings of the 2022
ACM-SIAM Symposium on Discrete Algorithms (SODA 2022), pages 779–821, 2022.

15 Kuan Cheng, Elena Grigorescu, Xin Li, Madhu Sudan, and Minshen Zhu. On k-mer-based and
maximum likelihood estimation algorithms for trace reconstruction. CoRR, abs/2308.14993,
2023. doi:10.48550/arXiv.2308.14993.

16 Mahdi Cheraghchi, Ryan Gabrys, Olgica Milenkovic, and João Ribeiro. Coded trace reconstruc-
tion. IEEE Trans. Inform. Theory, 66(10):6084–6103, 2020. doi:10.1109/TIT.2020.2996377.

17 Sami Davies, Miklós Z. Rácz, and Cyrus Rashtchian. Reconstructing trees from traces. In
Alina Beygelzimer and Daniel Hsu, editors, Conference on Learning Theory, COLT 2019,
25-28 June 2019, Phoenix, AZ, USA, volume 99 of Proceedings of Machine Learning Research,
pages 961–978. PMLR, 2019. URL: http://proceedings.mlr.press/v99/davies19a.html.

18 Sami Davies, Miklos Z. Rácz, Cyrus Rashtchian, and Benjamin G. Schiffer. Approximate trace
reconstruction: Algorithms. In IEEE International Symposium on Information Theory, 2021.

https://doi.org/10.1112/S0024611599011831
https://doi.org/10.1017/jpr.2022.81
https://doi.org/10.1109/FOCS46700.2020.00052
https://uwspace.uwaterloo.ca/bitstream/handle/10012/17210/negbin.pdf?sequence=1
https://uwspace.uwaterloo.ca/bitstream/handle/10012/17210/negbin.pdf?sequence=1
https://arxiv.org/abs/2107.06454
https://doi.org/10.48550/arXiv.2308.14993
https://doi.org/10.1109/TIT.2020.2996377
http://proceedings.mlr.press/v99/davies19a.html

X. Chen, A. De, C. H. Lee, and R. A. Servedio 52:23

19 Anindya De, Ryan O’Donnell, and Rocco A. Servedio. Optimal mean-based algorithms for
trace reconstruction. In Proceedings of the 49th ACM Symposium on Theory of Computing
(STOC), pages 1047–1056, 2017.

20 Elena Grigorescu, Madhu Sudan, and Minshen Zhu. Limitations of mean-based algorithms
for trace reconstruction at small distance. In IEEE International Symposium on Information
Theory, 2021.

21 Lisa Hartung, Nina Holden, and Yuval Peres. Trace reconstruction with varying deletion proba-
bilities. In Proceedings of the Fifteenth Workshop on Analytic Algorithmics and Combinatorics,
ANALCO 2018, New Orleans, LA, USA, January 8-9, 2018., pages 54–61, 2018.

22 Nina Holden and Russell Lyons. Lower bounds for trace reconstruction. Ann. Appl. Probab.,
30(2):503–525, 2020. doi:10.1214/19-AAP1506.

23 Nina Holden, Robin Pemantle, and Yuval Peres. Subpolynomial trace reconstruction for
random strings and arbitrary deletion probability. In Conference On Learning Theory, COLT
2018, Stockholm, Sweden, 6-9 July 2018, volume 75 of Proceedings of Machine Learning
Research, pages 1799–1840. PMLR, 2018.

24 Nina Holden, Robin Pemantle, Yuval Peres, and Alex Zhai. Subpolynomial trace reconstruction
for random strings and arbitrary deletion probability. Mathematical Statistics and Learning,
2(3/4):275–309, 2019.

25 Thomas Holenstein, Michael Mitzenmacher, Rina Panigrahy, and Udi Wieder. Trace reconstruc-
tion with constant deletion probability and related results. In Proceedings of the Nineteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, pages 389–398, 2008.

26 V. V. Kalashnik. Reconstruction of a word from its fragments. Computational Mathematics
and Computer Science (Vychislitel’naya matematika i vychislitel’naya tekhnika), Kharkov,
4:56–57, 1973.

27 M. Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the ACM,
45(6):983–1006, 1998.

28 Akshay Krishnamurthy, Arya Mazumdar, Andrew McGregor, and Soumyabrata Pal. Trace
reconstruction: Generalized and parameterized. In 27th Annual European Symposium on
Algorithms, ESA 2019, volume 144 of LIPIcs, pages 68:1–68:25. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2019.

29 Vladimir Levenshtein. Efficient reconstruction of sequences. IEEE Transactions on Information
Theory, 47(1):2–22, 2001.

30 Vladimir Levenshtein. Efficient reconstruction of sequences from their subsequences or
supersequences. Journal of Combinatorial Theory Series A, 93(2):310–332, 2001.

31 Kayvon Mazooji and Ilan Shomorony. Substring density estimation from traces. In IEEE
International Symposium on Information Theory, ISIT 2023, Taipei, Taiwan, June 25-30,
2023, pages 803–808. IEEE, 2023. doi:10.1109/ISIT54713.2023.10206758.

32 Andrew McGregor, Eric Price, and Sofya Vorotnikova. Trace reconstruction revisited. In
Proceedings of the 22nd Annual European Symposium on Algorithms, pages 689–700, 2014.

33 Shyam Narayanan. Population recovery from the deletion channel: Nearly matching trace
reconstruction bounds. CoRR, abs/2004.06828, 2020.

34 Shyam Narayanan. Improved algorithms for population recovery from the deletion channel.
In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021,
Virtual Conference, January 10 - 13, 2021, pages 1259–1278. SIAM, 2021. doi:10.1137/1.
9781611976465.77.

35 Shyam Narayanan and Michael Ren. Circular Trace Reconstruction. In 12th Innovations in
Theoretical Computer Science Conference (ITCS 2021), pages 18:1–18:18, 2021.

36 Fedor Nazarov and Yuval Peres. Trace reconstruction with exp(O(n1/3)) samples. In Proceed-
ings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017,
pages 1042–1046, 2017.

37 Yuval Peres and Alex Zhai. Average-case reconstruction for the deletion channel: Subpolynomi-
ally many traces suffice. In 58th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 228–239. IEEE Computer Society,
2017.

APPROX/RANDOM 2024

https://doi.org/10.1214/19-AAP1506
https://doi.org/10.1109/ISIT54713.2023.10206758
https://doi.org/10.1137/1.9781611976465.77
https://doi.org/10.1137/1.9781611976465.77

52:24 Trace Reconstruction from Local Statistical Queries

38 Ittai Rubinstein. Average-case to (shifted) worst-case reduction for the trace reconstruction
problem. In 50th International Colloquium on Automata, Languages, and Programming,
volume 261 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 102, 20. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2023. doi:10.4230/lipics.icalp.2023.102.

39 Jin Sima and Jehoshua Bruck. Trace reconstruction with bounded edit distance. In IEEE Inter-
national Symposium on Information Theory, 2021. Manuscript, available at arXiv:2102.05372.

https://doi.org/10.4230/lipics.icalp.2023.102
https://arxiv.org/abs/2102.05372

When Do Low-Rate Concatenated Codes
Approach The Gilbert–Varshamov Bound?
Dean Doron # Ñ

Ben-Gurion University of the Negev, Beersheba, Israel

Jonathan Mosheiff # Ñ

Ben-Gurion University of the Negev, Beersheba, Israel

Mary Wootters # Ñ

Stanford University, CA, USA

Abstract
The Gilbert–Varshamov (GV) bound is a classical existential result in coding theory. It implies that
a random linear binary code of rate ε2 has relative distance at least 1

2 − O(ε) with high probability.
However, it is a major challenge to construct explicit codes with similar parameters.

One hope to derandomize the Gilbert–Varshamov construction is with code concatenation: We
begin with a (hopefully explicit) outer code Cout over a large alphabet, and concatenate that with
a small binary random linear code Cin. It is known that when we use independent small codes for
each coordinate, then the result lies on the GV bound with high probability, but this still uses a
lot of randomness. In this paper, we consider the question of whether code concatenation with a
single random linear inner code Cin can lie on the GV bound; and if so what conditions on Cout are
sufficient for this.

We show that first, there do exist linear outer codes Cout that are “good” for concatenation in
this sense (in fact, most linear codes codes are good). We also provide two sufficient conditions for
Cout, so that if Cout satisfies these, Cout ◦ Cin will likely lie on the GV bound. We hope that these
conditions may inspire future work towards constructing explicit codes Cout.

2012 ACM Subject Classification Theory of computation → Error-correcting codes

Keywords and phrases Error-correcting codes, Concatenated codes, Derandomization, Gilbert-
Varshamov bound

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.53

Category RANDOM

Related Version Full Version: https://arxiv.org/abs/2405.08584

Funding Dean Doron: Supported in part by NSF-BSF grant #2022644.
Jonathan Mosheiff : Supported by an Alon Fellowship.
Mary Wootters: Partially supported by NSF grants CCF-2231157 and CCF-2133154.

Acknowledgements We thank Amnon Ta-Shma for helpful and interesting discussions, and col-
laboration at the beginning of this work. We thank Arya Mazumdar for pointing out [4] and for
helping us understand its implications. This work was done partly while the authors were visiting
the Simons Institute for the Theory of Computing.

1 Introduction

An error correcting code (or just a code) is a subset C ⊆ Σn, for some alphabet Σ. We
think of a code C being used to encode messages in Σk for k = log|Σ| |C|. That is, for any
m ∈ Σk, we can identify m with a codeword C(m) ∈ C.1 The idea is that encoding m into the

1 Here and throughout the paper, we will abuse notation and use C both as the code itself (a subset of
Σn) and also as an encoding map C : Σk → Σn.

© Dean Doron, Jonathan Mosheiff, and Mary Wootters;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 53; pp. 53:1–53:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:deand@bgu.ac.il
https://deandoron.github.io/
https://orcid.org/0000-0003-1862-8341
mailto:mosheiff@bgu.ac.il
https://mosheiff.carrd.co/
https://orcid.org/0000-0002-7947-1205
mailto:marykw@stanford.edu
https://sites.google.com/site/marywootters
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.53
https://arxiv.org/abs/2405.08584
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

53:2 When Do Concatenated Codes Approach The GV Bound?

codeword C(m) will introduce redundancy that can later be used to correct errors. In this
work we focus on linear codes C, which are codes where Σ = F is a finite field and C ⊆ Fn is
a linear subspace of Fn.

Two important properties of error correcting codes are the rate R and the relative distance
δ. For a code C ⊆ Σn, the rate is defined as R = log|Σ| |C|

n = k
n , and it quantifies how large the

code is. The rate is between 0 and 1, and typically we want it to be as close to 1 as possible;
this means that the encoding map does not introduce much redundancy. The (relative)
distance of C ⊆ Σn is defined as δ = 1

n minc̸=c′∈C ∆(c, c′), where ∆(·, ·) is Hamming distance.
Again, the relative distance is between 0 and 1, and again we typically want it to be as close
to 1 as possible; this means that the code can correct many worst-case errors.

These two quantities – rate and distance – are in tension. The larger the rate is, the
smaller the distance must be. For binary codes (that is, codes where Σ = F2), it is a major
open question to pin down the best trade-off possible between rate and distance. However,
we know that good trade-offs are possible: The best known possibility result in general is
the Gilbert–Varshamov (GV) bound (Theorem 2.1 in the full version).

In this paper we focus on low rate codes. In this parameter regime, the GV bound implies
that there exist binary linear codes with relative distance 1−ε

2 and rate Ω(ε2), for small ε > 0.
In fact, Varshamov’s proof shows that a random binary linear code achieves this with high
probability.

Constructing such codes explicitly, hopefully accompanied by an efficient decoding
algorithm, has been subject to extensive and fruitful research in the past decades (e.g., [24,
2, 3, 6, 11, 28, 7]), with several exciting breakthroughs in recent years. These breakthroughs
include explicit constructions of codes with distance δ = 1−ε

2 and rate R = Ω(ε2+o(1)), even
with efficient algorithms (see Section 1.1). However, there are still open questions. For
example, we do not know how to attain δ = 1−ε

2 and R = Ω(ε2) (without any o(1) term)
explicitly, and we do not have explicit constructions approaching the GV bound with rates
bounded away from zero. Motivated by these questions, we consider concatenated codes,
possibly with some randomness, which we discuss next.

Concatenated Codes, and Our Question

A natural candidate for explicit (for low randomness) codes on the GV bound are concatenated
linear codes. These codes are built out of two ingredients: a (hopefully explicit) linear outer
code Cout ⊆ Fn

q with dimension k for some large q; and a smaller inner binary linear code
Cin ⊆ Fn0

2 , with dimension k0 = log2 q. We define the concatenated code C = Cout◦Cin ⊆ Fn0·n
2

by first encoding a message m ∈ Fk
q (which can also be thought of as m ∈ Fk0·k

2) with Cout.
Then, we encode each symbol of the resulting codeword using Cin. That is, for a message m,

C(m) = (Cin(Cout(m)1), Cin(Cout(m)2), · · · , Cin(Cout(m)n)) ∈ Fn0·n
2 .

It is not hard to see that the rate of C is the product of the rates of Cin and Cout, and that
the distance of C is at least the product of the distances of Cin and Cout.

The natural approach to constructing a good concatenated code is to choose Cout and
Cin with the best known trade-offs: Since Cout is over a large alphabet, we know explicit
constructions of codes with optimal rate-distance trade-off2; and if n0 is sufficiently small,
we can find a Cin on the GV bound either deterministically by brute force or else with low
randomness, depending on the size of n0.

2 For codes over large alphabets, the best possible trade-off is the Singleton bound, or R = 1 − δ. This is
achievable, for example, by Reed–Solomon codes.

D. Doron, J. Mosheiff, and M. Wootters 53:3

However, in general this approach will not achieve the GV bound. If we do not assume
any additional properties of Cout and Cin, and simply use the concatenation properties, then
setting the parameters so that C = Cout ◦ Cin has distance 1−ε

2 , the rate of C will be at most
roughly ε3. This is known as the Zyablov bound [31] (see also [14]). As we discuss more in
Section 1.1, concatenation has been a popular approach to obtain fully explicit codes with
good rate-distance trade-offs, but none of these constructions are known to beat the Zyablov
bound.

Instead of using a single inner code, several works have focused on a related construction
originally due to Thommesen [29], which uses multiple inner codes. More precisely, this
construction uses i.i.d. random linear inner codes for each coordinate. It can be shown [29]
that the resulting code does lie on the GV bound with high probability, and if Cout is chosen
appropriately there are even efficient decoding algorithms for it [10, 27, 15]. However, this
approach relies heavily on the fact that the inner codes are independent, and as a result uses
a lot of randomness.

This state of affairs motivates the following question (also asked in the title of this paper):

▶ Question 1. Are there concatenated linear codes Cout ◦ Cin (with a single random linear
inner code Cin) that meet the GV bound with high probability over Cin?3 If so, are there
sufficient conditions on Cout that will guarantee this?

In this paper, we show that yes, there are concatenated codes that meet the GV bound,
and we also give two sufficient conditions on Cout for this to hold. Our existential result
is non-constructive, but it is our hope that our sufficient conditions will lead to explicit
constructions of appropriate Cout-s, which would lead to explicit (or at least pseudo-random,
depending on the alphabet size of Cout) concatenated codes on the GV bound.

▶ Remark 1 (Motivation for Question 1). Above, we have motivated Question 1 as an avenue
towards explicit or pseudo-random binary codes on the GV bound, and indeed this is our
original motivation. But we point out that Question 1 is also interesting in its own right.
Concatenated codes are a classical construction, going back to the 1960’s [9], and have been
used in many different settings over the decades. It seems like a fundamental question to
understand when these codes can attain the GV bound.

▶ Remark 2 (Focus on Linear Codes). In Question 1 and in this paper, we focus on linear
codes. This is because if we used, say, a uniformly random non-linear code as the inner code,
it would require exponentially more randomness than a random linear inner code, so this
does not seem like a hopeful avenue for derandomization. We note however that the question
is much easier for non-linear codes. For example, suppose that Cout is a Reed–Solomon code
of rate ε so that each symbol is additionally tagged with its evaluation point: that is, the
symbol corresponding to α ∈ Fq is (α, f(α)) ∈ F2

q. For the inner code, we use a completely
random (non-linear) code of rate ε. Then since all of the symbols in each outer codeword
are different by construction, each codeword is essentially uniformly random, and it is not
hard to show that the result is close to the GV bound in the sense that a code of rate O(ε2)
will have distance 1/2 − O(ε) with high probability. This same argument will not work
when Cin is linear, since the different symbols of codewords of Cout will still have F2-linear
relationships.

3 Of course, if the length of either the inner code or the outer code is 1, this question reduces to the
non-concatenated setting; we are interested in parameter regimes where n0 is non-trivial.

APPROX/RANDOM 2024

53:4 When Do Concatenated Codes Approach The GV Bound?

Our Contributions

Our main results are:
1. Existence of concatenated codes on the GV bound. We answer the first part of

Question 1: there are concatenated codes Cout ◦ Cin that achieve the GV bound, in a wide
variety of parameter regimes. In particular, we show that most codes Cout are actually
good:
▶ Theorem 3 (Informal; Theorem 4.2 in the full version). Suppose that Cout ⊆ Fn

q and
Cin ⊆ Fn0

2 are random linear codes of rate ε, so that q ≥ 2Ω(ε−3). Then C = Cout ◦ Cin has
rate ε2, and with high probability, the relative distance of C is at least 1/2 − O(ε).
While Theorem 3 seems intuitive (in the sense that a random linear code lies on the GV
bound with high probability, so why not concatenated random linear codes?), to the
best of our knowledge it has not appeared in the literature before, and the proof was
not obvious (to us).4 One challenge is that a codeword c ∈ Cout ◦ Cin is not uniformly
random in FN

2 . In particular, the natural strategy of “show that each non-zero codeword
has high weight with high probability and union bound” that is used to establish the
Gilbert–Varshamov bound will not work in this setting, as we do not have enough
concentration.

2. Sufficient conditions for Cout. Our existence result above uses a random linear code as
the outer code, which does not help in the quest for explicit constructions. However, our
proof techniques inspire two sufficient conditions on Cout. That is, if Cout satisfies these
conditions, then Cout ◦ Cin will meet the GV bound with high probability when Cin is a
random linear code. Our hope is that formalizing these will lead to explicit constructions
in the future.
We give an overview and intuition for our two sufficient conditions here. We note that
both conditions are only sufficient when the alphabet size q for Cout is suitably large
(exponential in 1/ poly(ε)); see Theorems 5.1 and 6.2 in the full version for details.

Sufficient Condition 1: A soft-decoding-like condition on C⊥
out. Our first

sufficient condition, formalized in Theorem 5.1 in the full version, is a soft-list-decoding-
like condition on C⊥

out. More precisely, we define a distribution D5 on the alphabet Fq;
the condition is that

Pr
x∼Dn

[x ∈ C⊥
out \ {0}] ≤ 1

qk
(1 + ∆) (1)

for some small ∆. Note that 1/qk is the probability that a completely random vector
is in C⊥

out, so this condition is saying that if the coordinates of x are drawn i.i.d. from
the same distribution D, then x not much more likely to be in C⊥ than in a uniformly
random vector. We show that if this holds, then Cout ◦ Cin lies on the GV bound with
high probability over the choice of a random linear inner code Cin.
It’s not hard to see (Remark 8 in the full version) that this condition holds in expectation
for a random linear code Cout, and in particular there exist linear codes Cout that have
this property.

4 We note that earlier work by Barg, Justesen and Thomessen [4] also addresses random linear outer codes
concatenated with an arbitrary (fixed) inner code, using very different techniques than we do. They do
not explicitly state a statement like Theorem 3 above, though it is plausible that their techniques could
be used to prove something similar. We discuss their techniques and the relationship to our work in
Section 1.1.

5 The distribution D is intuitively defined as follows. Let Cin be the inner code, and suppose that it has a
generator matrix G0 ∈ Fn0×k0

2 . Then to sample from D, we take a random sparse linear combination of
the rows of G0 (over F2), and interpret the result in Fk0

2 as an element of Fq, which we return.

D. Doron, J. Mosheiff, and M. Wootters 53:5

This condition is reminiscent of C⊥
out being list-decodable from soft information (e.g.,

[20]). In soft-list-decoding, one typically gets a distribution Di for each i ∈ [n],
interpreted as giving “soft information” about the i’th symbol. If one can show that a
vector drawn from D1 × · · · × Dn is unlikely to be in the code, this implies that there
are not too many codewords that are likely given the soft information we hare received.
However, there are several differences between existing work on soft list-decoding and
our work, notably that our distribution D is a particular one and is the same for all i,
and also there are some differences in the parameter settings.
This condition can also be seen as a soft form of list-recovery, where we have the same
list in each coordinate.6 In more detail, if the support of D is concentrated on a small
set S (which ours is for reasonable settings of n0, ε, see Remark 7 in the full version),
then the condition in Theorem 5.1 is related to asking that the number of codewords
that lie in the combinatorial rectangle given by S × S × · · · × S is about what it should
be. Unfortunately, the definition of “small” here does not seem to be small enough
for existing constructions of list-recoverable codes (for example folded RS codes or
multiplicity codes) to yield any results.
Sufficient Condition 2: Cout has good min-entropy. Our second sufficient
condition, formalized in Theorem 6.2, requires the codewords of Cout to be “smooth”,
meaning, roughly, that every nonzero codeword has a fairly uniform distribution of
symbols from Fq. To illustrate why a smoothness condition is desirable, let us consider
two extreme cases.
The bad extreme is when there exists a codeword c that is supported on very few
symbols, say even on a single symbol. If c = (σ, σ, . . . , σ) for some σ ∈ Fq, then
the relative weight of c ◦ Cin, for a random binary inner code Cin of rate ε, might be
1
2 − Ω(

√
ε), much worse than the 1

2 − O(ε) that we would want for the GV bound.
The good (possibly unrealistic) extreme is where each nonzero codeword of Cout has
a symbol distribution that is uniform over Fq. In this case it is not hard to see that
Cout ◦ Cin will be close to the GV bound with high probability over a random linear
code Cin. (For this, all we need is that Cin has about the “right” weight distribution,
which a random linear code will have with high probability).
The natural question is thus how smooth the codewords of Cout should be in order for
C to have distance 1

2 − O(ε). In Section 6 in the full version, we quantify this by the
smooth min-entropy of the codewords’ empirical distributions on symbols. We show
in Theorem 6.2 that if this smooth min-entropy is large enough for all c ∈ Cout, then
C = Cout ◦ Cin is likely to lie near the GV bound when Cin is a random linear binary
code.
How large is “large enough”? For this informal discussion, we give one example of
the parameter settings from Theorem 6.2: It is enough for every non-zero codeword
c ∈ Cout to have a symbol distribution that has Θ(εn) copies of the same symbol (say,
the zero symbol), while the remaining symbols in c are uniformly distributed over a
set of size only q1−ε. By some metrics this is still a fairly “spiky” distribution, but it
is “smooth enough” for our purposes.
Note that while our soft-decoding-like condition considers C⊥

out, our smooth min-entropy
condition here considers Cout itself.

6 Informally, a code C ⊆ Σn is said to be list-recoverable if for any small sets S1, . . . , Sn ⊆ Σ, there are
not too many codewords c ∈ C so that ci ∈ Si for many values of i.

APPROX/RANDOM 2024

53:6 When Do Concatenated Codes Approach The GV Bound?

1.1 Related Work

Explicit Concatenated Codes

Concatenation (with a single inner code) has been a common approach to obtain explicit
codes close to the GV bound. Here we mention a few such places this comes up. Choosing
Cout to be the Reed–Solomon code, and Cin to be the Hadamard code, gets a code of length
O(k2/ε2) for any dimension k [3], and replacing Reed–Solomon with the Hermitian code gets
length O((k/ε)5/4) [6]. Choosing a different AG code for Cout can result in non-vanishing
rate and in fact approach rate ε3 (see [28]). Moreover, concatenating Reed–Solomon with the
Wozencraft ensemble gives the Justesen code [19], having constant relative rate and constant
relative distance. Note that none of these concatenation-based constructions thus far have
beat the Zyablov bound.

Concatenated Codes with Random Linear Cout

Relevant to Theorem 3, [4] studies a random linear code Cout concatenated with a fixed inner
code Cin. (See also [5], which applies the same techniques for an application in compressive
sensing). The work [4] derives bounds on the distance of Cout ◦ Cin in terms of (moments of)
the weight distribution of Cin. These bounds imply that Cout ◦ Cin approaches the GV bound
in some cases, but doesn’t seem to immediately imply Theorem 3.

Before discussing their techniques more, we note that the biggest difference between
[4] and our work is that their question is about the behavior of random linear codes, and
so naturally their approach crucially uses the fact that Cout is random. In contrast, the
motivation for our work is to find deterministic sufficient conditions on Cout, and we invoke
a random linear outer code as a proof of concept that our approach is realizable.

Next, we briefly describe the techniques and implications of [4], relative to Theorem 3.
The key result of [4] is an expression of the limiting trade-off between the rate R and the
distance δ of Cout ◦ Cin, in terms of the function ϕ(τ) = lnEX [eτX], where X is the weight of
a random codeword from Cin and where τ ≤ 0 parameterizes the trade-off.7 They show that
this trade-off meets the GV bound when Cin is the identity (trivial) code, and investigate
how it behaves when Cin is a non-trivial code. Towards this, one can use their trade-off
to work out the Taylor series for R around δ = 1/2. It is not hard to see that under mild
conditions on Cin, the first two terms of this Taylor expansion vanish and hence we obtain
R = Θ(ε2) + OCin(ε3) when δ = 1/2 − ε, where the OCin(·) notation hides constants that
depend on Cin. This implies that if n0 is a constant, independent even of ε, then Cout ◦ Cin
approaches the GV bound. However, if n0 is growing relative to ε (which it is in our case,
as we take Cin to have rate ε), then the “constant” terms hiding in the OCin(ε3) term may
depend on n0, which in turn may depend on ε. It seems plausible that when Cin is a random
linear code, this dependence is mild8 and something like Theorem 3 could be established
with these techniques, but to the best of our knowledge such a proof has not appeared in the
literature and does not seem to follow immediately.

7 In more detail, this trade-off is given by R = 1
n0 ln(2) (τϕ′(τ) − ϕ(τ)) and δ = ϕ′(τ)

n0
, for τ ≤ 0.

8 In particular, as pointed out in [4], the first d⊥ − 1 terms of the Taylor series will agree with the GV
bound, where d⊥ is the dual distance of Cin, which for a random linear code Cin is quite large.

D. Doron, J. Mosheiff, and M. Wootters 53:7

Non-Concatenation-Based Explicit Constructions

As mentioned above, there have been several breakthroughs in the past few years obtaining
explicit constructions of binary codes near the GV bound, and even efficient algorithms
for them. In a breakthrough result, Ta-Shma [28] constructed explicit linear codes of
relative distance 1−ε

2 having rate ε2+o(1). Ta-Shma’s codes are also ε-balanced, i.e., ∆(x, y) ∈[1−ε
2 , 1+ε

2
]
, and thus give rise to explicit ε-biased sample spaces, which are ubiquitous in

pseudorandomness and derandomization. Works that followed gave efficient decoding of
Ta-Shma codes and their variants [1, 16, 17, 26, 18] (see also [7] for a different, randomized,
construction that slightly improves upon the rate of [28], and admits efficient decoding). We
note that these codes are graph-based, and do not in general have a concatenated structure.

Results with Multiple i.i.d. Inner Codes

Thommesen showed that when the outer code is a Reed–Solomon code, and it is concatenated
with n different random linear codes, one for each coordinate, chosen independently, then
the resulting code lies on the GV bound with high probability [29]. Guruswami and Indyk
devised efficient decoding algorithms for these codes, based on list-recoverability of the outer
code [10]. That work used a Reed–Solomon code as the outer code, which is list-recoverable
up to the Johnson bound. Later, Rudra [27] observed that the parameters could be improved
by swapping out the Reed–Solomon code for a code that can be list-recovered up to capacity,
for example a Folded Reed–Solomon code. Later work obtained nearly-linear-time decoding
algorithms by swapping out the outer code for a capacity-achieving list-recoverable code with
near-linear-time list-recovery algorithms [15, 21]. Codes with multiple i.i.d. inner codes have
also been studied in [32, 8].

We also mention the work of Guruswami and Rudra [13], who show that the same
construction (a list-recoverable code concatenated with n different i.i.d. random linear codes)
is list-decodable up to capacity with high probability. In the results [10, 27, 15, 21] mentioned
above, list-recovery of the outer code was needed for algorithms, not the combinatorial result
(which follows already from [29]). In contrast, in [13], the list-recoverability of the outer
code is needed for the combinatorial result itself. In that sense, the flavor is similar to our
sufficient condition in Section 5 in the full version, although the techniques are very different,
and in our work we only use one inner code.

Further Low-randomness Constructions of Binary Codes on GV Bound

If one’s goal is to explicitly construct a binary code that achieves that GV bound, at least
two types of partial results may be considered as subgoals. In the first class of results, one
seeks explicit codes whose rate vs. distance tradeoff is as close to the GV bound as possible.
This includes the works discussed in the first two paragraphs of Section 1.1 above. A second
path is to seek codes that fully attain the GV bound, and strive to minimize the amount of
randomness used in their construction.

Varshamov’s classic result [30] is that a random linear code likely achieves the GV bound.
Constructing such a code of length n and rate R requires sampling either a random generating
matrix or a random parity-check matrix, and thus O

(
min{R, 1 − R} · n2)

random bits are
needed. Two classical elementary constructions – the Wozencraft ensemble [22] and the
random Toeplitz Matrix construction (e.g., [14, Exercise 4.6]) – are able to reduce the needed
randomness to O(n).

So far, no codes achieving the GV bound using o(n) randomness are known. Moreover,
there is a certain natural obstacle, which we now describe, that needs to be tackled before
sublinear randomness can be achieved. Say that a random code C ⊆ Fn

2 is uniform if

APPROX/RANDOM 2024

53:8 When Do Concatenated Codes Approach The GV Bound?

every x ∈ Fn
2 \ {0} appears in the code with the same probability, namely, pR,n = 2Rn−1

2n−1 .
It is not hard to prove via a union bound that a uniform linear code achieves the GV
bound with high probability (this is exactly Varshamov’s observation). To the best of our
knowledge, every known GV-bound construction to date, including the linear randomness
constructions mentioned above, is uniform. Unfortunately, a uniform code ensemble with
sublinear randomness cannot exist as long as R is bounded away from 1. Indeed, to have
events that occur with probability pR,n, at least log2

1
pR,n

≈ (1 − R)n random bits are
required. Therefore, a code construction obtaining the GV bound with sublinear randomness
would have to do so without being uniform (see also [23, Section 5]). We have hope that our
sufficient conditions in Theorems 5.1 and 6.2 could be attained by non-uniform codes. For
example, as discussed above, the soft-decoding-like condition of Theorem 5.1 is reminiscent
of results on soft-list-decoding and soft-list-recovery, which in different parameter regimes
can even be achieved by deterministic codes.

A related line of work [12, 25, 23] attempts to construct codes that enjoy a broad class
of desirable combinatorial properties similar to those of random linear codes using as little
randomness as possible. Such properties include not just the GV bound, but also list
decodability up to the Elias bound (see [23]), list recoverability, and, more generally, local
similarity (see [23, Definition 2.14]) to a random linear code.

1.2 Technical Overview
In this section we give an overview of the main technical ideas. This section also serves as an
outline of the full version of the paper.

Section 3: A moment-based framework

In Section 3, we set up a framework that will be useful for the results in Section 4 and
Section 5. We describe this approach here.

Suppose that we are trying to encode a message m ∈ Fk
q with our concatenated code

C = Cout ◦ Cin, to obtain C(m) = w ∈ Fn·n0
2 . Each symbol of w is indexed by some α ∈ [n]

and some β ∈ [n0]; this symbol is equal to

(Cin(Cout(m)α))β = ⟨Cout(m)α, bβ⟩,

where bβ is the β’th row for a generator matrix G0 ∈ Fn0×k0
2 for Cin, and where the ⟨·, ·⟩

notation denotes the dot product over F2. This motivates the definition of a variable Xm ∈ R
defined by

Xm =
∑

α∈[n]

∑
β∈[n0]

(−1)⟨Cout(m)α,bβ⟩.

Indeed, Xm is the bias of w = C(m); the weight of w is at least 1
2 − O(εN) if and only if Xm

is at most O(εN). Thus, to show that the code C has distance at least 1
2 − O(εN), it suffices

to show that

max
m∈Fk

q \{0}
Xm = O(εN).

Our strategy will be to consider a large moment of Xm over the choice of a random
nonzero message m:

Em∼Fk
q \{0}[Xr

m]

D. Doron, J. Mosheiff, and M. Wootters 53:9

for some appropriate r. If we can show that this is smaller than (cεN)r/qk, then Markov’s
inequality will imply that

Pr
m∼Fk

q \{0}
[Xm ≥ cεN] ≤

Em∼Fk
q \{0}[Xr

m]
(cεN)r

<
1
qk

,

and in particular that there are no messages m so that Xm ≥ cεN .
In Lemma 3.3, we take a Fourier transform in order to re-write E[Xr

m] as a quantity
involving C⊥

out. This quantity can be thought of as follows. For every integer-valued matrix9

V ∈ Zn0×n
≥0 with entries that sum to r, we consider a vector gV ∈ Fn

q defined by considering
the matrix GT

0 · V ∈ Fk0×n
2 and then treating it as a vector gV ∈ Fn

q by identifying each of
the columns in Fk0

2 with elements of Fq. Then the quantity in Lemma 3.3 has to do with the
number of these vectors gV that are in C⊥

out. The exact expression doesn’t matter too much
for this informal discussion; instead we explain below how we use this re-writing to prove
Theorem 4.2 and Theorem 5.1.

Section 4: Most codes Cout are good

Theorem 4.2 informally says that if Cout is a random linear code, then with high probability
Cout ◦ Cin is near the GV bound. In the proof, we use our framework from Section 3, and
show that with high probability over Cout, the moment Em[Xr

m] is small for an appropriate
r. To do this, we need to count the number of matrices V described above that are likely
to land in C⊥

out. Since Cout is a random linear code, so is C⊥
out, and so the probability of any

particular non-zero gV landing in it is small (about 1/qk), while of course the probability
that 0 is contained in C⊥

out is 1. Thus, the challenge is understanding how many gV -s are
actually zero. There are two ways that a matrix V as described above could lead to gV = 0:
Either V = 0 mod 2, or else V is non-zero mod 2 but GT

0 V = 0. The first case can be
counted straightforwardly. For the second, we leverage the weight distribution that the inner
code Cin is likely to have. We note that this is the only place (in any of our arguments) that
we need Cin to be a random linear code: We just need it to have approximately the “right”
weight distribution.

Section 5: A soft-decoding-like sufficient condition

The expression that we get for Em[Xm
r] in Lemma 3.3 directly inspires our soft-decoding-like

sufficient condition in Theorem 5.1. One can view the task of counting the matrices V so
that gV ∈ C⊥

out as choosing a random V and asking about the probability that gV ∈ C⊥
out. If

the columns of V were independent, then this would be the same as choosing the coordinates
of gV i.i.d. from some distribution D. Thus we would get a requirement on Prx∼Dn [x ∈ C⊥

out],
similar to the condition in Equation (1) that we end up with.

Of course, the coordinates are not independent (because the total weight of V is fixed
to be r), but this can be solved. In more detail, we choose r to be a Poisson random
variable, which in this setting makes the columns of V independent. One hiccup is that
the “Poisson-ized” distribution turns out to be meaningfully different than the original
distribution, in the sense that it is much more likely that gV = 0 in the Poisson-ized version.
This means that the “natural” soft-decoding-like condition that one would get out of this is
not realizable: The probability that gV ∈ C⊥

out is much bigger than we want it to be, for any

9 In the actual quantity, the entries of this matrix are ordered, and we denote it V instead of V ; we ignore
the ordering in this discussion for simplicity.

APPROX/RANDOM 2024

53:10 When Do Concatenated Codes Approach The GV Bound?

Cout, just because gV is too likely to be zero. Fortunately, this seems to be the only obstacle:
as in Equation (1), we separate out the gV = 0 term (using the analysis from Section 4) to
arrive at a condition that is realizable. We explain why the condition is realizable – that is,
why there exists a Cout that meets it – in Remark 8.

Section 6: A smoothness condition on Cout

For our second sufficient condition, we depart from our moment-based framework and work
from first principles. Our main theorem in Section 6 is Theorem 6.2, which informally says
that if the elements of Cout have “smooth” enough distributions of symbols, in the sense that
they each have large enough min-entropy, that C = Cout ◦ Cin will lie near the GV bound with
high probability. The basic idea is to consider a worst-case assignment of symbols in Fq to
codewords in Cin; this assignment need not be linear and can depend on a particular codeword
c ∈ Cout. Such a worst-case assignment would simply assign the lowest-weight codewords
in Cin to the most frequent symbols in a codeword c ∈ Cout. Using the weight distribution
that Cin is likely to have, along with the min-entropy assumption, we can show that this
worst-case assignment will still result in codewords w ∈ C of weight at least 1

2 − O(ε).
We note that, unlike our sufficient condition from Section 5, we don’t have a proof of

feasibility for our smoothness condition. That is, as far as we know, there may not be any
linear code Cout that is smooth in this sense. However, as a proof of concept we mention
in Remark 9 that a random linear code will have a similar property with high probability.
Moreover, we find it plausible that codewords of algebraically structured codes (say, Folded
Reed–Solomon codes, Folded Multiplicity, or even large sub-codes of plain Reed–Solomon
codes), would satisfy this property, even if a random code does not.

References

1 Vedat Levi Alev, Fernando Granha Jeronimo, Dylan Quintana, Shashank Srivastava, and
Madhur Tulsiani. List decoding of direct sum codes. In Proceedings of the 31st Symposium on
Discrete Algorithms (SODA 2020), pages 1412–1425. ACM-SIAM, 2020.

2 Noga Alon, Jehoshua Bruck, Joseph Naor, Moni Naor, and Ron M. Roth. Construction of
asymptotically good low-rate error-correcting codes through pseudo-random graphs. Informa-
tion Theory, IEEE Transactions on, 38(2):509–516, 1992.

3 Noga Alon, Oded Goldreich, Johan H̊astad, and René Peralta. Simple constructions of almost
k-wise independent random variables. Random Structures & Algorithms, 3(3):289–304, 1992.

4 Alexander Barg, Jørn Justesen, and Christian Thommesen. Concatenated codes with fixed
inner code and random outer code. IEEE Transactions on Information Theory, 47(1):361–365,
2001.

5 Alexander Barg and Arya Mazumdar. Small ensembles of sampling matrices constructed
from coding theory. In 2010 IEEE International Symposium on Information Theory, pages
1963–1967. IEEE, 2010.

6 Avraham Ben-Aroya and Amnon Ta-Shma. Constructing small-bias sets from algebraic-
geometric codes. Theory of Computing, 9(5):253–272, 2013.

7 Guy Blanc and Dean Doron. New near-linear time decodable codes closer to the GV bound. In
Proceedings of the 37th Computational Complexity Conference (CCC 2022). Schloss-Dagstuhl-
Leibniz Zentrum für Informatik, 2022.

8 È L Blokh and Victor Vasilievich Zyablov. Existence of linear concatenated binary codes with
optimal correcting properties. Problemy Peredachi Informatsii, 9(4):3–10, 1973.

9 G. David Forney. Concatenated codes. Technical Report 440, Research Laboratory of
Electronics, MIT, 1965.

D. Doron, J. Mosheiff, and M. Wootters 53:11

10 Venkatesan Guruswami and Piotr Indyk. Efficiently decodable codes meeting gilbert-varshamov
bound for low rates. In Proceedings of the 15th Symposium on Discrete Algorithms (SODA
2004), pages 756–757. ACM-SIAM, 2004.

11 Venkatesan Guruswami and Piotr Indyk. Linear-time encodable/decodable codes with near-
optimal rate. IEEE Transactions on Information Theory, 51(10):3393–3400, 2005.

12 Venkatesan Guruswami and Jonathan Mosheiff. Punctured Low-Bias Codes Behave Like
Random Linear Codes. In Proceedings of the 63rd Annual Symposium on Foundations of
Computer Science (FOCS 2022), pages 36–45. IEEE, 2022.

13 Venkatesan Guruswami and Atri Rudra. The existence of concatenated codes list-decodable
up to the hamming bound. IEEE Transactions on information theory, 56(10):5195–5206, 2010.

14 Venkatesan Guruswami, Atri Rudra, and Madhu Sudan. Essential coding theory. URL:
http://www.cse.buffalo.edu/faculty/atri/courses/coding-theory/book.

15 Brett Hemenway, Noga Ron-Zewi, and Mary Wootters. Local list recovery of high-rate tensor
codes and applications. SIAM Journal on Computing, pages FOCS17–157, 2019.

16 Fernando Granha Jeronimo, Dylan Quintana, Shashank Srivastava, and Madhur Tulsiani.
Unique decoding of explicit ε-balanced codes near the Gilbert–Varshamov bound. In Proceed-
ings of the 61st Annual Symposium on Foundations of Computer Science (FOCS 2020), pages
434–445. IEEE, 2020.

17 Fernando Granha Jeronimo, Shashank Srivastava, and Madhur Tulsiani. Near-linear time
decoding of Ta-Shma’s codes via splittable regularity. In Proceedings of the 53rdth Annual
Symposium on Theory of Computing (STOC 2021), pages 1527–1536. ACM, 2021.

18 Fernando Granha Jeronimo, Shashank Srivastava, and Madhur Tulsiani. List decoding of
tanner and expander amplified codes from distance certificates. In Proceedings of the 64th
Annual Symposium on Foundations of Computer Science (FOCS 2023), pages 1682–1693.
IEEE, 2023.

19 Jørn Justesen. Class of constructive asymptotically good algebraic codes. IEEE Transactions
on Information Theory, 18(5):652–656, 1972.

20 Ralf Koetter and Alexander Vardy. Algebraic soft-decision decoding of reed-solomon codes.
IEEE Transactions on Information Theory, 49(11):2809–2825, 2003.

21 Swastik Kopparty, Nicolas Resch, Noga Ron-Zewi, Shubhangi Saraf, and Shashwat Silas. On list
recovery of high-rate tensor codes. IEEE Transactions on Information Theory, 67(1):296–316,
2020.

22 James L. Massey. Threshold decoding. Technical Report 410, Research Laboratory of
Electronics, MIT, 1963.

23 Jonathan Mosheiff, Nicolas Resch, Kuo Shang, and Chen Yuan. Randomness-efficient con-
structions of capacity-achieving list-decodable codes. arXiv preprint, 2024.

24 Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and
applications. SIAM Journal on Computing, 22(4):838–856, 1993.

25 Aaron (Louie) Putterman and Edward Pyne. Pseudorandom Linear Codes Are List-Decodable
to Capacity. In Proceedings of the 15th Innovations in Theoretical Computer Science Conference
(ITCS 2024), pages 90:1–90:21. Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2024.

26 Silas Richelson and Sourya Roy. Gilbert and Varshamov meet Johnson: List-decoding explicit
nearly-optimal binary codes. In Proceedings of the 64th Annual Symposium on Foundations of
Computer Science (FOCS 2023), pages 194–205. IEEE, 2023.

27 Atri Rudra. List decoding and property testing of error-correcting codes. University of
Washington, 2007.

28 Amnon Ta-Shma. Explicit, almost optimal, ε-balanced codes. In Proceedings of the 49th
Annual Symposium on Theory of Computing (STOC 2017), pages 238–251. ACM, 2017.

29 Christian Thommesen. The existence of binary linear concatenated codes with Reed–Solomon
outer codes which asymptotically meet the Gilbert–Varshamov bound. IEEE Transactions on
Information Theory, 29(6):850–853, 1983.

APPROX/RANDOM 2024

http://www.cse.buffalo.edu/faculty/atri/courses/coding-theory/book

53:12 When Do Concatenated Codes Approach The GV Bound?

30 Rom Rubenovich Varshamov. Estimate of the number of signals in error correcting codes.
Docklady Akad. Nauk, SSSR, 117:739–741, 1957.

31 Victor Vasilievich Zyablov. An estimate of the complexity of constructing binary linear cascade
codes. Problemy Peredachi Informatsii, 7(1):5–13, 1971.

32 Victor Vasilievich Zyablov. An estimate of the complexity of constructing binary linear cascade
codes. Problemy Peredachi Informatsii, 7(1):5–13, 1971.

Parallel Repetition of k-Player Projection Games
Amey Bhangale #

Department of Computer Science and Engineering, University of California, Riverside, CA, USA

Mark Braverman #

Department of Computer Science, Princeton University, NJ, USA

Subhash Khot #

Department of Computer Science, Courant Institute of Mathematical Sciences,
New York University, NY, USA

Yang P. Liu #

School of Mathematics, Institute for Advanced Study, Princeton, NJ, USA

Dor Minzer #

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract
We study parallel repetition of k-player games where the constraints satisfy the projection property.
We prove exponential decay in the value of a parallel repetition of projection games with a value
less than 1.

2012 ACM Subject Classification Theory of computation → Interactive proof systems

Keywords and phrases Parallel Repetition, Multiplayer games, Projection games

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.54

Category RANDOM

Funding Amey Bhangale: Supported by the Hellman Fellowship award.
Mark Braverman: Supported by the National Science Foundation under the Alan T. Waterman
Award, Grant No. 1933331.
Subhash Khot: Supported by the NSF Award CCF-2130816 and the Simons Investigator Award.
Yang P. Liu: Partially supported by NSF DMS-1926686.
Dor Minzer : Supported by NSF CCF award 2227876 and NSF CAREER award 2239160.

Acknowledgements We thank Kunal Mittal for helpful discussions at the early stage of this work.
We also thank anonymous reviewers for helpful suggestions

1 Introduction

We study k-player one-round games and the effect on the value of the game when we repeat
the game in parallel.

In a k-player game G, a verifier chooses k questions (x1, x2, . . . , xk) from a distribution µ

on the set of questions X1 × X2 × . . . × Xk and sends xi to player i. Player i responds to the
verifier’s question by sending an answer ai ∈ Ai without communicating with the other players.
The verifier accepts the answers based on a fixed predicate V ((x1, x2, . . . , xk), (a1, a2, . . . , ak)).
The value of the game, denoted by val(G), is the maximum, over the players’ strategies,
accepting probability of the verifier.

The n-fold parallel repetition of G, denoted by G⊗n, is defined as follows. The verifier
sends questions x⃗i = (xi

1, xi
2, . . . , xi

n) to the k players where for each j ∈ [n], (x1
j , x2

j , . . . , xk
j)

is sampled from the original distribution µ independently. The ith player responds with
answers a⃗i ∈ An

i . The verifier accepts the answers iff V ((x1
j , x2

j , . . . , xk
j), (a1

j , a2
j , . . . , ak

j)) = 1
for each j ∈ [n].

© Amey Bhangale, Mark Braverman, Subhash Khot, Yang P. Liu, and Dor Minzer;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 54; pp. 54:1–54:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ameyb@ucr.edu
https://orcid.org/0000-0002-3878-9241
mailto:mbraverm@cs.princeton.edu
https://orcid.org/0000-0003-1276-6081
mailto:khot@cs.nyu.edu
https://orcid.org/0009-0007-9246-4011
mailto:yangpatil@gmail.com
https://orcid.org/0000-0001-6717-0539
mailto:minzer.dor@gmail.com
https://orcid.org/0000-0002-8093-1328
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.54
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

54:2 Parallel Repetition of k-Player Projection Games

If val(G) = 1, then it is easy to observe that val(G⊗n) is also 1. Also, val(G⊗n) ⩾ val(G)n

as the players can achieve value val(G)n in the game G⊗n by simply repeating an optimal
strategy for the game G independently in all the n coordinates. The question of interest is
how does the quantity val(G⊗n) decay with n if the value of the game G is less than 1?

Verbitsky [30] showed that for any k-player game G, if val(G) < 1, then val(G⊗n) ⩽ 1
α(n)

where α(n) is an inverse Ackermann function. This result uses the Density Hales-Jewett
Theorem [15, 27] as a black box. For 2-player games, Raz [29] showed that if val(G) < 1, then
val(G⊗n) ⩽ 2−ΩG(n), where we use ΩG(·) to clarify that the constant depends on the game
G. There have been many improvements that improve the constants in the bounds, and even
get better bounds based on the value val(G) of the initial game [21, 28, 12, 7]. These results
on parallel repetition of 2-player games have found many applications in probabilistically
checkable proofs and hardness of approximation [4, 13, 23].

Mittal and Raz [26] showed that a strong parallel repetition theorem (i.e., the value of
G⊗n decays exponentially in n in a certain strong sense) for a particular class of more than
2-player games implies super-linear lower bounds for Turing machines in the non-uniform
model. For any k ⩾ 2, Dinur, Harsha, Venkat, and Yuen [10] showed that for a large class of
k-player games, called the connected games, the exponential decay indeed holds. The class of
connected games is defined as follows: define the graph HG, whose vertices are the ordered
k-tuples of questions to the k-players, and there is an edge between questions q and q′ if they
differ in the question to exactly one of the k players, and are the same for the remaining
k − 1 players. The game is said to be connected if the graph HG is connected.

A special 3-player (non-connected) game, called the GHZ Game [10], has received much
attention. The GHZ game, first introduced by Greenberger, Horne, and Zeilinger [19], is a
central game in the study of quantum entanglement. Holmgren and Raz [22] gave the first
polynomial decay in the parallel repetition of the GHZ game. Girish, Holmgren, Mittal, Raz,
and Zhan [16] later gave a simpler proof of the polynomial decay. Very recently, Braverman,
Khot, and Minzer [8], using a much simpler proof, improved these previous results and
showed an exponential decay in the GHZ game.

Girish, Holmgren, Mittal, Raz, and Zhan [17] considered the problem of parallel repetition
for 3-player games with binary questions and answers and showed polynomial decay for these
games. This was later improved by a subset of the authors [18] to all 3-player games over
binary questions and arbitrary answer lengths. They also study [17] player-wise connected
games G that are defined as follows. For each player i, define the graph Hi(G), whose vertices
are the possible questions for player i, and two questions x and x′ are connected by an edge
if there exists a vector y of questions for all other players, such that both (x, y) and (x′, y)
are asked by the verifier with non-zero probability. The game G is player-wise connected
if, for every i, the graph Hi(G) is connected. Girish et al. [17] showed polynomial decay
in the value of n-fold parallel repetition of all player-wise connected games. Observe that
the notion of player-wise connectedness is more general than the notion of connected games
defined above.

In this paper, we will study a special type of k-player games, that we refer to as projection
games. The formal definition is as follows.

▶ Definition 1. For any k ⩾ 2, a k-player game G is called a projection game if for every
k-tuple of question q = (x1, x2, . . . , xk), there is Dq ⩾ 1 and projections σi

q : Ai → [Dq]
for i ∈ [k], such that V ((x1, x2, . . . , xk), (a1, a2, . . . , ak)) is true iff σi

q(ai) = σi′

q (ai′) for any
i ̸= i′.

For every question q = (x1, x2, . . . , xk), consider a k-partite hypergraph Hq on the vertex
set (A1, A2, . . . , Ak) where (a1, a2, . . . , ak) is an hyperedge if and only if V ((x1, x2, . . . , xk),
(a1, a2, . . . , ak)) is true. Then, the projection property means that for every k-tuple of

A. Bhangale, M. Braverman, S. Khot, Y. P. Liu, and D. Minzer 54:3

questions q in the support of µ, each connected component in Hq is a complete k-partite
hypergraph. Note that this definition of projection games is slightly more general than the
usual notion of projection 2-player games [29, 28] where one of the maps σi

q (either σ1
q or σ2

q)
is an injective map.

Our main theorem shows that if the value of a projection game G is less than 1, then the
value of n-fold parallel repetition of G decays exponentially in n.

▶ Theorem 2. For any k ⩾ 2, a projection k-player game G and ε > 0, if val(G) = 1 − ε,
then val(G⊗n) ⩽ exp(−Ωε,G(n)).

Projection games are a natural subclass of general games. They played a key role in
the development [2, 3, 14] of Probabilistically Checkable Proofs (PCPs). In fact, parallel
repetition from 2-player projection games had been useful in proving many [20, 25, 24, 9, 11]
tight hardness of approximation results, starting with the work of Arora, Babai, Stern, and
Sweedyk [1], Bellare, Goldreich, and Sudan [4], and Håstad [23].

Feige [13] used a k-player projection game, and parallel repetition of the game, to show
almost tight hardness of approximating the Set-Cover problem. The decay in the value of a
parallel-repeated game, in that case, follows easily from the parallel-repetition theorem for
the 2-player game, as the subgame restricted to any two players has a value less than 1.

There are k-player projection games where the decay in the value of a parallel-repeated
game does not trivially follow from the parallel-repetition theorem for the 2-player game. To
give a concrete example, consider a simultaneous Max-3-SAT instance problem defined in [6]:
the instance consists of n variables X = {x1, x2, . . . , xn} and k instances, ϕ1, ϕ2, . . . , ϕk, of
Max-3-SAT defined over the same set of variables X. The verifier chooses a variable x ∈ X

at random and selects clauses Ci ∈ ϕi independently such that x ∈ Ci for all i ∈ [k]. The
verifier sends clause Ci to player i and expects a satisfying assignment from {0, 1}3 to Ci from
player i. The verifier checks if the assignments returned by the players agree on x. Consider
the scenario when it is possible to satisfy any (k − 1) out of k instances of Max-3-SAT
simultaneously, but there is no assignment to X that will satisfy all the k instances. In this
case, the value of the game is less than 1. For any k′-player subgame, where k′ < k, the
value of the subgame is 1. Therefore, we cannot use the parallel repetition of 2-player games
to conclude that the value of n-fold parallel repetition of projection games decays with n.

1.1 Proof outline
As mentioned in the introduction, Dinur, Harsha, Venkat, and Yuen [10] showed that for any
connected k-player games H with val(H) < 1, the exponential decay holds for the value of
H⊗n. We start with a k-player game G which is not connected to begin with. At a high
level, we transform the game G to another game H where H is connected. While doing such
a transformation, we want to make sure we have the following two properties.
1. If val(G) < 1, then val(H) < 1.
2. There is a way to relate val(G⊗n) with val(H⊗n), possibly with a small loss in the

constants in the exponent.
As H is connected, we have val(H⊗n) = exp(−ΩH(n)) and this will complete the proof.

There is a trivial transformation that makes any game connected – add all possible k-tuple
of questions, play the game G on the original questions, and accept all the newly added
questions by default. It is easy to see that if val(G) < 1, then the value of the transformed
game is less than 1. However, in this case, there does not seem to be an easy way to relate
val(G⊗n) to the value of n-fold parallel repetition of the transformed game.

APPROX/RANDOM 2024

54:4 Parallel Repetition of k-Player Projection Games

In order to overcome the issue, we make the game G connected gradually. More concretely,
we start with a game G0 = G and iteratively, we convert the game Gℓ to Gℓ+1 for ℓ = 0, 1, . . .

with the following three properties.
1. For every ℓ ⩾ 0, the game Gℓ is a k-player game with the questions from the set

X1 × X2 × . . . × Xk.
2. The game Gℓ+1 is richer than the game Gℓ. In our case, we would be interested in

increasing the support of distribution on questions, i.e., supp(µ(Gℓ+1)) ⊋ supp(µ(Gℓ))
(unless, of course, supp(µ(Gℓ)) is full).

3. We can relate the value of the game G⊗n
ℓ to the value of the game G⊗n

ℓ+1 up to a fixed
polynomial factor. Furthermore, val(Gℓ+1) < 1 if val(Gℓ) < 1.

Let us see that this is enough to prove our main theorem. Using properties 1 and 2, for some
t ⩾ 1, which only depends on the size of the game G, we can conclude that the game Gt

has full support and hence is connected. Using property 3, we have val(G⊗n) ≈ val(G⊗n
t)Ct ,

where Ct > 0 is a constant that only depends on t, and furthermore val(Gt) < 1 if val(G) < 1
to begin with. Finally, using the result by Dinur, Harsha, Venkat, and Yuen [10] on connected
games, we have, val(G⊗n

t) = exp(−Ωε,Gt
(n)), and hence val(G⊗n) = exp(−Ωε,t,G(n)) if

val(G) < 1.

The transformation Gℓ to Gℓ+1

The key idea is to use the path-trick from [5] to transform the game Gℓ (and G⊗n
ℓ) to another

game Gℓ+1 (and G⊗n
ℓ+1) such that the support of the transformed game is potentially larger

than the original game. We illustrate the idea of such a transformation in a 3-player game
Gℓ.

We start with the game Gℓ and let µ(Gℓ) be the distributions on the questions in Gℓ.
For every pair of question-triples q = (x, y, z) and q′ = (x′, y′, z′) from supp(µ(Gℓ)) such
that x = x′, we add a question triple Π3((q, q′)) := (x, y, z′) to the game Gℓ+1. Note
that in this case, we took two question-triples (q, q′) that share player 1’s question and
generate a question-triple in the new game with the first two players’ questions from q and
player 3’s question from q′. We now state the set of accepting assignments for Π3((q, q′)) as
follows. If q ̸= q′, then accept the question Π3((q, q′)) by default, otherwise accept Π3((q, q′))
according to the verifier from the original game Gℓ on the question q(= q′).1 We call such
a transformation T 1

3 – the superscript stands for the common player’s question from (q, q′)
and the subscript 3 stands for taking player 3’s question from q′ and rest of the questions
from q in generating the question-triple in the new game. Succinctly, we write Gℓ+1 as the
game T 1

3 (Gℓ). Likewise, we can define transformations T i
p for any 1 ⩽ i, p ⩽ 3.

We show the following key properties of these transformations.
1. If val(Gℓ) < 1, then val(T i

p (Gℓ)) < 1. Furthermore, T i
p (Gℓ) remains a projection game if

Gℓ is a projection game.
2. For every n ⩾ 1, val(G⊗n

ℓ) ⩽ val(T i
p (Gℓ)⊗n)1/2, if Gℓ is a projection game.

The first property is trivial – in the game T i
p (Gℓ), we are still playing the game Gℓ as a

subgame, and hence its value is less than 1 if val(Gℓ) < 1. For the furthermore part, we are
either accepting everything by default or using the same predicate as in the original game,
and hence, this transformation maintains the projection property of the game.

1 Note that the way the game Gℓ+1 is defined, the set of accepting answers for the same question-triple
changes based on the underlying pair of questions (q, q′). For simplicity, we ignore this issue in this
proof overview, and it will be handled in the main proof.

A. Bhangale, M. Braverman, S. Khot, Y. P. Liu, and D. Minzer 54:5

For the second property, we crucially use the projection property of the game Gℓ. We
show that for any strategy (α1, α2, α3), where αi : X n

i → An
i , for the game G⊗n

ℓ with value ε,
the same strategy gives value at least ε2 to the game T i

p (Gℓ). We illustrate this for the game
T 1

3 (Gℓ). Let µ be the distribution of questions from Gℓ and µ|1 be the marginal distribution
on player 1’s questions, we have

ε2 ⩽ E
(x,y,z)∼µ⊗n

[V ((x, y, z), (α1(x), α2(y), α3(z)))]2

=

 E
v∈µ⊗n|1

 E
(x,y,z)∼µ⊗n,

x=v

[V ((x, y, z), (α1(x), α2(y), α3(z)))

2

⩽ E
v∈µ⊗n|1

 E
(x,y,z)∼µ⊗n,

x=v

[V ((x, y, z), (α1(x), α2(y), α3(z)))

2

(Cauchy-Schwarz)

= E
v∈µ⊗n|1

E
(x,y,z)∼µ⊗n,

(x′,y′,z′)∼µ⊗n,
x=x′=v

[
V ((x,y,z),(α1(x),α2(y),α3(z)))·

V ((x′,y′,z′),(α1(x′),α2(y′),α3(z′)))

]

Now, if we look at the triple (x, y, z′) sampled according to the above distribution, then for
each j ∈ [n], we have that the triple (xj , yj , z′

j) is distributed according to the game T 1
3 (Gℓ)

independently. In the game, T 1
3 (Gℓ), for any j ∈ [n] such that (xj , yj , zj) ̸= (x′

j , y′
j , z′

j) the
new verfier is accepting by default. As for j ∈ [n] such that (xj , yj , zj) = (x′

j , y′
j , z′

j), the
new verifier is accepting according to the original verifier on the question (xj , yj , zj). In
this case, suppose (α1(x)j , α2(y)j , α3(z)j) and (α1(x′)j , α2(y′)j , α3(z′)j) are two satisfying
assignments to the same question (xj , yj , zj) according to the original game Gℓ with α1(x)j =
α1(x′)j (as x = x′), then because of the projection property of the game, we have that
(α1(x)j , α2(y)j , α3(z′)j)) must be a satisfying assignment for (xj , yj , zj). As in the game
T 1

3 (Gℓ)⊗n, we are precisely checking this for all such j ∈ [n], we get that the same strategy
(α1, α2, α3) gives

val(T 1
3 (Gℓ)⊗n) ⩾ ε2.

Putting everything together

Using the above two properties of the transformations T i
p , we conclude that if val(G) < 1,

then for any t ≥ 1 and vectors i⃗, p⃗ ∈ [3]t,

val(G⊗n) ⩽ val(T it
pt

(. . . (T i2
p2

(T i1
p1

(G))))⊗n)1/2t

, and T it
pt

(. . . (T i2
p2

(T i1
p1

(G))) < 1.

Finally, we show that there exist t ≥ 1 and vectors i⃗, p⃗ ∈ [3]t, where t depends on the size of
the game G, such that the game T it

pt
(. . . (T i2

p2
(T i1

p1
(G))) is connected (in fact, has full support).

This implies that

val(G⊗n) ⩽ val(T it
pt

(. . . (T i2
p2

(T i1
p1

(G))))⊗n)1/2t

⩽ exp(−Ωt,G(n)),

where the last inequality follows from the result of a parallel repetition theorem [10] on
connected games.

APPROX/RANDOM 2024

54:6 Parallel Repetition of k-Player Projection Games

2 Preliminaries

We start with a few notations. We use µ(G) to denote the distribution on the questions in
the game G. For i ∈ [k], let µ|i be the marginal distribution on the questions to player i.
For a k-tuple of questions q = (x1, x2, . . . , xk), we denote the question to player i by q|i, i.e.,
q|1 = x1, q|2 = x2, and so on. For an assignment α := (α1, α2, . . . , αk) to the game G, where
αi : Xi → Ai, and any question q = (x1, x2, . . . , xk), we use the notation α|q to denote the
assignment-tuple (α1(x1), α2(x2), . . . , αk(xk)).

The size of the game G is referred to as the quantity k · M ·
∏k

i=1 |Xi||Ai|. Here, the
probability of every atom in supp(µ(G)) is a multiple of 1/M , where M is a finite integer.
We note that as far as proving exponential decay in the n-fold repeated value of the game
G with val(G) < 1, the last assumption is without loss of generality. For instance, see [18,
Lemma 3.14] which lets us assume that the distribution of questions in G is uniform on the
support without loss of generality.

2.1 Parallel repetition of connected games
As mentioned earlier, Dinur, Harsha, Venkat, and Yuen [10] showed that for a large class of
k-player games, called connected games, the exponential decay indeed holds. Here, we define
the notion of connected games for k-player games formally.

▶ Definition 3 (Connected game). A game G is called connected if for every two ques-
tion pairs (x1, x2, . . . , xk) and (x′1, x′2, . . . , x′k) from supp(µ(G)), there is an ordered list
of questions from supp(µ(G)), ((x1

ℓ , x2
ℓ , . . . , xk

ℓ))t
ℓ=1 for some t ⩾ 1, such that the pairs

((x1, x2, . . . , xk), (x1
1, x2

1, . . . , xk
1)), ((x1

t , x2
t , . . . , xk

t), (x′1, x′2, . . . , x′k)), and ((x1
ℓ , x2

ℓ , . . . , xk
ℓ),

(x1
ℓ+1, x2

ℓ+1, . . . , xk
ℓ+1)) for all 1 ⩽ ℓ ⩽ t − 1 differ in only one out of the k questions.

We will relate the value of G⊗n, where G is a projection game, with a value of n-fold
parallel repetition of another game H that is connected. The following theorem shows
that for connected games with a value less than 1, the value of repeated games goes down
exponentially in n.

▶ Theorem 4 ([10]). For any k ⩾ 2 and ε > 0, if H is a connected k-player game with
val(H) = 1 − ε, then val(H⊗n) ⩽ exp(−Ωε,H(n)).

2.2 Variants of multiplayer games
In this section, we simplify the class of games that we study. Towards this, we define the
notion of loosely-connected games as follows.

▶ Definition 5 (Loosely-connected game). A game on the question set X1 × X2 × . . . × Xk

is loosely-connected if it is not possible to partition Xi = X ′
i ∪ X ′′

i for all i ∈ [k], so that all
k-tuple of questions from the support of µ(G) are in X ′

1 ×X ′
2 × . . .×X ′

k or X ′′
1 ×X ′′

2 × . . .×X ′′
k .

The following lemma states that we can assume without loss of generality that the game
G is loosely-connected.

▶ Lemma 6. If the exponential decay in the k-player parallel repetition holds for all projection
loosely-connected games, then it also holds for all projection games.

Proof. The proof of this lemma is similar to the proof of [18, Lemma 2.7]. We include the
proof of this lemma here for completeness.

A. Bhangale, M. Braverman, S. Khot, Y. P. Liu, and D. Minzer 54:7

Let G be any projection game that is not loosely-connected with val(G) = 1 − ε for some
ε > 0. Without loss of generality, we can assume that there are partitions Xi = X ′

i ∪ X ′′
i for

all i ∈ [k] such that all the questions from the support of µ(G) are from X ′
1 × X ′

2 × . . . × X ′
k

or X ′′
1 × X ′′

2 × . . . × X ′′
k , and furthermore, the game restricted to X ′

1 × X ′
2 × . . . × X ′

k (call it
G′) and X ′′

1 × X ′′
2 × . . . × X ′′

k (call it G′′) are loosely-connected individually. The verifier’s
distribution µ(G) on the question-tuples can be thought of as µ = (1 − δ)µ′ + δµ′′ where the
support of µ′ is from X ′

1 × X ′
2 × . . . × X ′

k and the support of µ′′ is from X ′′
1 × X ′′

2 × . . . × X ′′
k .

Now, since the value of the game G is at most 1−ε, we have min{val(G′), val(G′′)} ⩽ 1−ε.
Without loss of generality, suppose we have val(G′) ⩽ 1 − ε. Let the value of G⊗n be η. We
will show that the value of the game G′⊗n′ is also at least η − 2−Ωδ(n) for some n′ = Ωδ(n).
This will finish the proof of the lemma as we have val(G′⊗n′) ⩽ exp(−Ωε(n′)) using the fact
that G′ is a loosely-connected projection game.

Fix a strategy (α1, α2, . . . , αk) for G⊗n with value η. The k-tuple questions from G can
be alternatively sampled as follows. First sample a set T ⊆ [n] by adding i ∈ T independently
with probability (1 − δ). Then for each i ∈ T , sample a k-tuple question from the distribution
µ′ independently. Similarly, for each i /∈ T , sample a k-tuple question from the distribution
µ′′ independently. We have,

E
T ⊆1−δ[n]

(x⃗1|
T

,...,x⃗k|
T

)∼µ′′⊗|T |

E
(x⃗1|T ,...,x⃗k|T)∼µ′⊗|T |

[
V ((x⃗1, x⃗2, . . . , x⃗k), (α1(x⃗1), α2(x⃗2), . . . , αk(x⃗k)))

]
= η.

From this, by the Chernoff Bound and an averaging argument, it follows that there exists
T ⊆ [n] such that |T | ⩾ (1 − δ)n/2 and (y⃗1, y⃗2, . . . , y⃗k) ∼ µ′′⊗|T | such that

E
(x⃗1,x⃗2,...,x⃗k)∼µ′⊗|T |

[
V (((y⃗1, x⃗1), . . . , (y⃗k, x⃗k)), (α1((y⃗1, x⃗1)), . . . , αk((y⃗k, x⃗k))))

]
⩾ η − 2−Ωδ(n).

Here, the string (y⃗, x⃗) is formed by plugging y⃗ in the coordinates T and x⃗ in the coordinates
T . The distribution of the questions in the expectation above precisely corresponds to the
game G′⊗|T |. Thus, the strategy α′i(x⃗) := αi(y⃗, x⃗) for all i ∈ [k] gives the value at least
η − 2−Ωδ(n) for the game G′⊗|T |. ◀

We also consider a slight variation in the definition of k-player games, which we call
random-predicate k-player games, where we allow a verifier to use a random predicate instead
of a fixed predicate during verification.

▶ Definition 7 (Random-predicate game). A random-predicate game G is defined as follows.
There exists R ⩾ 1 such that the verifier chooses the k-tuple of questions (x1, x2, . . . , xk)
according to the distribution µ(G) on the set of questions and r ∈ [R] uniformly at random,
sends xi to player i. The player i responds with the answer ai. Finally, the verifier accepts
the answers based on a fixed predicate Vr((x1, x2, . . . , xk), (a1, a2, . . . , ak)). We denote such
games by (G, µ, [R]).

The following lemma states that for this variation of connected k-player games G the
exponential decay from [10] still holds.

▶ Lemma 8. For any connected random-predicate k-player game H and ε > 0, if val(H) =
1 − ε, then val(H⊗n) ⩽ exp(−Ωε,H(n)).

Proof. We can think of a random-predicate k-player game H as a (k + 1)-player game
H ′ as follows. In H ′, the verifier selects the questions (x1, x2, . . . , xk) from the game H

and r ∈ [R] uniformly at random. The verifier sends xi to players i for i ∈ [k], and

APPROX/RANDOM 2024

54:8 Parallel Repetition of k-Player Projection Games

sends r to player k + 1. The player i ∈ [k + 1] responds with the answer ai (ak+1 can be
anything). The verifier’s predicate in H ′ is V ((x1, x2, . . . , xk, r), (a1, a2, . . . , ak, ak+1)) :=
Vr((x1, x2, . . . , xk), (a1, a2, . . . , ak)).

It is easy to observe that if the game H ′ is connected then the game H is connected.
Furthermore, we have val(H⊗n) = val(H ′⊗n) for any n ⩾ 1. Using this, the lemma follows
from Theorem 4. ◀

We can also add the projection property to a random-predicate game. The formal
definition is as follows.

▶ Definition 9 (Random-predicate projection game). For any k ⩾ 2, a random-predicate
k-player game (G, µ, [R]) is called a random-predicate projection game if for every k-tuple of
question q = (x1, x2, . . . , xk) and r ∈ [R], there is Dq,r ⩾ 1 and projections σi

q,r : Ai → [Dq,r]
for i ∈ [k], such that Vr((x1, x2, . . . , xk), (a1, a2, . . . , ak)) is true iff σi

q,r(ai) = σi′

q,r(ai′) for
any i ̸= i′.

From this point onwards, we will incorporate the property of random-predicate whenever
we refer to projection games.

In our proof, we will encounter random-predicate games where the choice of the verifier’s
predicate Vr is not uniform and may depend on the question q. The following claim says
that we can assume that the distribution on verifier’s predicate is uniform from a set of
predicates and independent of the questions. This transformation preserves the support of
the question-distribution.

▷ Claim 10. Suppose G is a random-predicate k-player game where on the k-tuple of
question q ∈ X1 × X2 × . . . × Xk, the distribution on the verifier’s predicate Vr is sampled
according to some distribution νq over [R], then there is another game H with the same
distribution on the questions as in G such that the verifier for H samples a random predicate
Ṽm where m ∈ [M] is distributed uniformly over [M], and such that val(G⊗n) = val(H⊗n)
for all n ⩾ 1. Furthermore, a) M only depends on the size of the game G, and b) if G is a
random-predicate projection game, then H is also a random-predicate projection game.

Proof. Let M ∈ Z+ be a number such that for every question q from the game G, each atom
from supp(νq) has probability weight c/M for 1 ⩽ c ⩽ M . In the game G, for a question q if
νq(r) = c/M , then in game H, we make c copies Ṽi1(q, ·), Ṽi2(q, ·), . . . , Ṽic

(q, ·) of the verifier
predicate Vr(q, ·) for the same question q. Thus, for a given question q, the verifier in H

samples a random m ∈ [M] and decides based on the predicate Ṽm(q, ·).
The a) and b) from the furthermore part follow the above construction. ◁

3 Proof of Theorem 2

Throughout this section, we fix a random-predicate k-player projection game (G, µ, [R]),
succinctly written as G, on the questions from the set X1 × X2 × . . . × Xk and let µ(G) be
the distribution on the questions in G. Using Claim 10, we can assume without loss of
generality, that along with the k-tuple questions (x1, x2, . . . , xk) ∼ µ, the verifier selects
r ∈ [R] uniformly at random, and after getting answers (a1, a2, . . . , ak) from the players,
applies the predicate Vr((x1, x2, . . . , xk)), (a1, a2, . . . , ak)).

The key idea is to use the path-trick from [5] to relate the value of the game G (and G⊗n)
to another game H (and H⊗n) which is connected.

A. Bhangale, M. Braverman, S. Khot, Y. P. Liu, and D. Minzer 54:9

3.1 The path-trick and the i-links
In this section, we define the notion of a link which is analogous to the notion of the path-
trick [5] that was used in connection to studying dictatorship tests towards showing hardness
of approximation of constraint satisfaction problems.

Fix a player i ∈ [k]. An i-link from a game G is an ordered pair of original k-tuple of
questions from G with possible repetition. We will induce the following distribution on i-links
from G.

Pick a question v to player i according to the distribution of µ|i and sample two k-tuple
of questions q = (x1, x2, . . . , xk) and q′ = (y1, y2, . . . , yk), independently from µ but
conditioned on xi = yi = v and output (q, q′).

We denote the above distribution on the i-links with Li(G).
To see the utility of i-links, the following claim shows that the distribution Li(G⊗n) on

the i-links in G⊗n is the same as the product distribution on the i-links from G.

▷ Claim 11. For every game G, i ∈ [k], and n ⩾ 1, the following two distributions are
identical.
1. The distribution Li(G⊗n).
2. The distribution Di on the i-links from G⊗n defined as follows:

For each j ∈ [n], independently sample (qj , q′
j) from the distribution Li(G) where

qj = (x1
j , x2

j , . . . , xk
j) and q′

j = (y1
j , y2

j , . . . , yk
j).

Let q⃗ = (q1, q2, . . . , qn) and q⃗′ = (q′
1, q′

2, . . . , q′
n). Output (q⃗, q⃗′).

Proof. Note that q⃗ and q⃗′, sampled from Di, are the following k-tuple of questions

(x1
1, x1

2, . . . , x1
n) (y1

1 , y1
2 , . . . , y1

n)
(x2

1, x2
2, . . . , x2

n) (y2
1 , y2

2 , . . . , y2
n)

...
...

(xk
1 , xk

2 , . . . , xk
n)︸ ︷︷ ︸

q⃗

(yk
1 , yk

2 , . . . , yk
n)︸ ︷︷ ︸

q⃗′

For each j ∈ [n], the pair of k-tuple of questions (x1
j , x2

j , . . . , xk
j) and (y1

j , y2
j , . . . , yk

j) share
a common pivot question pj = xi

j = yi
j . This means that the question-pair (q⃗, q⃗′) share a

common n-tuple question p⃗ from player i, where we think of q⃗, q⃗′ as questions from the game
G⊗n. This precisely corresponds to the distribution Li(G⊗n). ◁

Consider the game G the assignments αi : Xi → Ai for i ∈ [k]. We say that the link
(q, q′) from the game G is r-consistent with respect to the global assignments (α1, α2, . . . , αk)
if q as well as q′ are satisfied by the predicate Vr on the assignments (α1, α2, . . . , αk).

▷ Claim 12. Let n ⩾ 1, (α1, α2, . . . , αk) be a strategy for (G, µ, [R]) with val(G) ⩾ ε.
Then with probability at least ε2, the link (q, q′) is r-consistent with the assignments
(α1, α2, . . . , αk), where the probability is over (q, q′) sampled according to Li(G) and r ∈ [R]
uniformly at random.

Proof. Fix the provers’ strategies αi : Xi → Ai for i ∈ [k] with value at least ε. We have,

E
(x1,x2,...,xk)∼µ,

r∈[R]

[Vr((x1, x2, . . . , xk), (α1(x1), α2(x2), . . . , αk(xk)))] ⩾ ε.

APPROX/RANDOM 2024

54:10 Parallel Repetition of k-Player Projection Games

Using the Cauchy-Schwarz inequality, we have,

ε2 ⩽ E
(x1,x2,...,xk)∼µ,

r∈[R]

[Vr((x1, x2, . . . , xk), (α1(x1), α2(x2), . . . , αk(xk)))]2

=

 E
v∈µ|i

r∈[R]

 E
(x1,x2,...,xk)∼µ

xi=v

[Vr((x1, x2, . . . , xk), (α1(x1), α2(x2), . . . , αk(xk)))

2

⩽ E
v∈µ|i

r∈[R]

 E
(x1,x2,...,xk)∼µ

xi=v

[Vr((x1, x2, . . . , xk), (α1(x1), α2(x2), . . . , αk(xk)))]

2

(Cauchy-Schwarz)

= E
v∈µ|i

r∈[R]

 E
(x1,x2,...,xk)∼µ,

(y1,y2,...,yk)∼µ,

xi=yi=v

[
Vr((x1, x2, . . . , xk), (α1(x1), α2(x2), . . . , αk(xk)))·
Vr((y1, y2, . . . , yk), (α1(y1), α2(y2), . . . , αk(yk)))

]
 .

The expression inside the expectation above is precisely the probability that the i-link
((x1, x2, . . . , xk), (y1, y2, . . . , yk)) sampled from the distribution Li(G) is r-consistent with
respect to the assignments (α1, α2, . . . , αk). This shows that

Pr
(q,q′)∼Li(G)

r∈[R]

[
(q, q′) is r-consistent with respect to the assignments (α1, α2, . . . , αk)

]
⩾ ε2,

and this completes the proof. ◁

3.2 The transformations T i
p

We are now ready to define the transformation on the game G that was alluded to at the
beginning of this section. We denote the transformed games by T i

p (G) for 1 ⩽ i, p ⩽ k.
The distribution on the k-tuple of questions in the game T i

p (G) is over X1 × X2 × . . . × Xk

which is defined as follows.
1. The verifier samples a link (q, q′) ∼ Li(G) where q = (x1, . . . , xk) and q′ = (y1, . . . , yk).
2. The verifier constructs a question-tuple by taking xp from q and (y1, . . . , yp−1, yp+1, . . . , yk)

from q′. Succinctly, we denote this operation as (y1, . . . , yp−1, xp, yp+1, . . . , yk) :=
Πp((q, q′)) (the p stands for taking player p’s question from the first question and
the remaining players’ questions from the second question).

Before we define the set of satisfying assignments in the transformed game, we first
define the set of r-consistent assignments, where r ∈ [R], to an i-link. An assignment to a
link (q, q′) is an assignment to both q and q′ (note that each k-tuple of question receives
a separate assignment from A1 × A2 × . . . × Ak). For an i-link (q, q′), we define the set of
r-consistent assignments to (q, q′) as follows. An r-consistent assignment to an i-link (q, q′)
is an assignment σ to the link such that

the verifier accepts σ|q on q and σ|q′ on q′ according to the predicate Vr, and
σ|q|i

= σ|q′|i
, i.e., σ gives the same value to the common question v to the player i from

q and q′.

A. Bhangale, M. Braverman, S. Khot, Y. P. Liu, and D. Minzer 54:11

Note that an i-link (q, q′) may share more than one common question with the players, but
the r-consistency only cares about the question to player i.

We now define the set of accepting assignments for a k-tuple of questions in the random-
predicate transformed game. The verifier chooses r ∈ [R] uniformly at random. Suppose a
k-tuple of questions q̃ = (z1, z2, . . . , zk) is coming from an i-link (q, q′), i.e., q̃ = Πp((q, q′)),
then

Case 1: If q ̸= q′, then accept by default.
Case 2: If q = q′, then q̃ = q. In this case, accept according to the verifier’s predicate Vr

from the game G on question q̃.

Note that the game T i
p (G) is a random-predicate k-player game (the accepting answers

for a question q̃ depends on the underlying sampled link as well as the sampled r ∈ [R]),
and as described, the distribution on the underlying predicate is not uniform among the set
of predicates. However, using Claim 10, without loss of generality, we can assume that the
underlying distribution on the predicate that the verifier applies in T i

p (G) is uniform from a
set of predicates (and independent of the questions). We need this as we will be applying a
series of these transformations on the original game, and the transformation above is only
defined on games where the verifier’s predicate is uniform and independent of the question q.

In the transformed game, the verifier either accepts all the answers or accepts answers
based on the predicates from the original game G. We have the following simple, but
important, fact.

▶ Fact 13. If G is a random-predicate k-player projection game, then for every i, p ∈ [k],
the game T i

p (G) is also a random-predicate projection game.

3.2.1 Properties of the transformations T i
p

We start with the first claim that shows that the value of the transformed games is less than
1 if the value of G is less than 1.

▷ Claim 14. Fix any k-player game (G, µ, [R]). For every ε ∈ (0, 1) and i, p ∈ [k], if
val(G) = 1 − ε, then val(T i

p (G)) = 1 − ε′ where ε′ > 0 that depends on ε and the size of the
game G.

Proof. First, observe that for every question-tuple q = (x1, x2, . . . , xk) from the game G,
the i-link (q, q) is present in the support of Li(G). Therefore, for every question-tuple
q = (x1, x2, . . . , xk) from the game T i

p (G) that is given by the i-link (q, q), the verifier of the
transformed game selects r ∈ [R] uniformly at random and uses the predicate Vr. Therefore,
the transformed game T i

p (G) is a convex combination of the original game G and another
game G′. Let µ̃ be the distribution on question-tuples in T i

p (G), then it can be written as
µ̃ = δµ + (1 − δ)µ′, where µ′ corresponds to the distribution of questions from game G′ and
δ ∈ (0, 1] that depends on the size of the game G. Thus,

val(T i
p (G)) ⩽ δ · val(G) + (1 − δ) = δ(1 − ε) + (1 − δ) = 1 − εδ < 1. ◁

The following claim relates the value of the original game with the value of the transformed
games. This claim crucially uses the fact that the original game G is a projection game.

▷ Claim 15. For any k-player projection game (G, µ, [R]), n ⩾ 1, and i, p ∈ [k], we have
val(T i

p (G)⊗n) ⩾ val(G⊗n)2.

APPROX/RANDOM 2024

54:12 Parallel Repetition of k-Player Projection Games

Proof. As the statement of the claim is symmetric with respect to p ∈ [k], we prove the claim
when p = 1. For other p, the proof is similar.

Using Claim 11, the game T i
1 (G)⊗n can be described as follows: Sample an i-link (q⃗, q⃗′)

from the distribution Li(G⊗n), sample r⃗ ∈ [R]n uniformly at random, and for every j ∈ [n]
such that qj = q′

j , apply the predicate Vrj
for the question Π1((qj , qj)).

Let’s fix the players’ strategy α := (α1, α2, . . . , αk) for the game G⊗n that gives the value
val(G⊗n). For an i-link (q⃗, q⃗′) from G⊗n, consider the assignments α|q⃗ and α|q⃗′ to the link
(q⃗, q⃗′). Using Claim 12, for a random r⃗ ∈ [R]n and a randomly selected i-link (q⃗, q⃗′), (q⃗, q⃗′)
is r⃗-consistent with respect to the global assignment α with probability at least val(G⊗n)2.
When this happens, we show that the assignment α satisfies the constraint on Π1((q⃗, q⃗′))
from the game T i

1 (G)⊗n. Indeed, pick any j ∈ [n] such that the jth coordinate of the link
(q⃗, q⃗′) is (qj , qj) (i.e, the same question-tuple). Here, the verifier is using the predicate Vrj

on
the question qj in the game T i

1 (G)⊗n. If the link (q⃗, q⃗′), is r⃗-consistent with respect to the
global assignment α, then we have the following

Vrj
((qj |1, qj |2, . . . , qj |k), (α1(q⃗|1)j , α2(q⃗|2)j , . . . , αk(q⃗|k)j)) = 1,

Vrj ((qj |1, qj |2, . . . , qj |k), (α1(q⃗′|1)j , α2(q⃗′|2)j , . . . , αk(q⃗′|k)j)) = 1.

In the game T i
1 (G)⊗n, the verifier is checking the following condition in the coordinate j.

Vrj ((qj |1, qj |2, . . . , qj |k), (α1(q⃗|1)j , α2(q⃗′|2)j , . . . , αk(q⃗′|k)j)) = 1.

As G and the predicates Vr satisfy the projection property, and q⃗|i = q⃗′|i because (q⃗, q⃗′) is an
i-link, we see that if (α1(q⃗|1)j , α2(q⃗|2)j , . . . , αk(q⃗|k)j) and (α1(q⃗′|1)j , α2(q⃗′|2)j , . . . , αk(q⃗′|k)j)
are the accepting answers for a question according to the predicate Vrj

, then it can be
seen easily that (α1(q⃗|1)j , α2(q⃗′|2)j , . . . , αk(q⃗′|k)j) is also an accepting answer for the same
question according to the same predicate Vrj

. This shows that the assignment α passes the
verifier’s check on all j ∈ [n] such that the jth coordinate of the link (q⃗, q⃗′) is (qj , qj). For
the other coordinates, the game T i

1 (G) always accepts.
Hence the same players’ strategy α gives val(T i

1 (G)⊗n) ⩾ val(G⊗n)2. ◁

Finally, we compose these transformations to get a connected game, starting with a loosely-
connected game. Towards this, for any string β ∈ ([k] × [k])m, where βj = (β1

j , β2
j) ∈ [k] × [k],

define the transformation T β(G) as the following transformation

T β1
m

β2
m

(. . . (T β1
2

β2
2

(T β1
1

β2
1

(G)))).

For a string β of length m, define a string βT as a T repeated copy of β. We have the
following claim.

▷ Claim 16. Let β be any permutation of the set [k] × [k]. For large enough T ⩾ 1, the
game T βT (G) is connected (in fact, has full support) if G is loosely-connected to begin with.
Furthermore, T ⩽

∏k
i=1 |Xi| which only depends on the size of the game G.

Proof. First, any transformation T i
p does not shrink the support of the questions of the

previous game. By looking closely at the transformation T i
p , we conclude the following:

if (x1, x2, . . . , xk) and (y1, y2, . . . , yk) are both in the support of µ(G) with xi = yi, then
the following question (y1, . . . , yp−1, xp, yp+1, . . . , yk) will be in the support of µ(T i

p (G)).
Using this, we also observe that if we start with any game H with the property that the
series of transformations T β(H) does not change the support of the questions, then no
future transformations will change the support on the questions (as β contains every possible
transformation T i

p).

A. Bhangale, M. Braverman, S. Khot, Y. P. Liu, and D. Minzer 54:13

From the above discussion, we conclude that after some finite (only depends on the size
of the game G) series of such transformations T βT (.), the support of the questions does
not increase after another series of transformations T β . We denote the saturated game by
Gfinal := T βT (G) and the underlying distribution on the questions by µfinal. We show that
µfinal has full support on X1 × X2 × . . . × Xk.

Suppose towards a contradiction, the support of µfinal is not full. For any tuple q of
length k and S ⊆ [k], define the tuple q|S by taking the S entries from q. Take the smallest
i ∈ [k] such that there is an i-tuple (z1, z2, . . . , zi) where (z1, z2, . . . , zi) ̸= q|[i] for any
q ∈ supp(µfinal). Let z⋆ := (z1, z2, . . . , zi−1). For each i ⩽ ℓ ⩽ k, define the following sets.

Sℓ = {x ∈ Xℓ | ∃q ∈ supp(µfinal) s.t. (z⋆, x) = q|[i−1]∪{ℓ}}.

In other words, Sℓ is a set of all x ∈ Xℓ that (z⋆, x) can be extended to a valid question tuple
from the game Gfinal. Note that by the definition of z⋆, Si ⊊ Xi and furthermore Si′ ̸= ∅ for
any i′ ⩾ i, as by the minimality of i, there is a valid question q in Gfinal such that q|[i−1] = z⋆,
and hence q|i′ ∈ Si′ for all i′ ⩾ i.

▷ Claim 17. There is no q ∈ supp(µfinal) such that q|i ∈ Si and for some i′ > i, q|i′ ∈ Si′ .

Proof. Suppose there is such a question q ∈ supp(µfinal) such that q|i ∈ Si and for some
i′ > i, q|i′ ∈ Si′ . Consider a question q′ = (z1, z2, . . . , zi−1, ∗, ∗, . . .) where q′|i′ = q|i′ . Note
that such a q′ is in the supp(µfinal) from the definition of the set Si′ . Furthermore, (q, q′)
is an i′-link in the game Gfinal. Therefore, the question Πi((q, q′)) will be present in the
game T i′

i (Gfinal). Recall that Πi((q, q′)) = (z1, z2, . . . , zi−1, q|i, ∗, . . .). However, the question
(z1, z2, . . . , zi−1, q|i, ∗, . . .) is not in supp(µfinal) as q|i ∈ Si. This means that the game Gfinal
is not saturated, which is a contradiction. ◁

This claim implies that Si′ ⊊ Xi′ for all i′ > i . Indeed, if Si′ = Xi′ for some i′ > i, then the
above claim shows that every question q ∈ supp(µfinal), q|i ∈ Si. Hence, Gfinal (and hence G)
is not a loosely-connected game.

This claim also implies that for every question q ∈ supp(µfinal) such that q|i ∈ Si, we have
q|i′ ∈ Si′ for every i′ > i. Consider the partition of the players’ question sets Xℓ = X ′

ℓ ∪ X ′′
ℓ

such that
For all ℓ ⩽ i − 1, X ′

ℓ = {zℓ}, and X ′′
ℓ = Xℓ \ X ′

ℓ ,
for all t ⩾ ℓ, X ′

ℓ = Sℓ, and X ′′
ℓ = Xℓ \ X ′

ℓ .

Because G (and hence Gfinal) is loosely connected, there must be a question q ∈ supp(µfinal)
such that q|i′ ∈ Si′ for every i′ ⩾ i and q|t = zt for some 1 ⩽ t ⩽ i − 1. Consider a question
q′ = (z1, z2, . . . , zi−1, ∗, ∗, . . .) such that q′ is in the supp(µfinal). Now, the pair of questions
(q′, q) is an t-link in the game Gfinal, furthermore, for a questions q′′ := Πi((q, q′)), we have
q′′ = (z1, z2, z3, . . . , zi−1, q|i, . . .) where q|i ∈ Si. As Gfinal is saturated, q′′′ ∈ supp(µfinal) but
this contradicts the definition of Si. ◁

3.3 Finishing the proof
Let us see why these claims above are enough to prove Theorem 2.

Proof of Theorem 2

We start with a projection game G with val(G) = 1−ε for some ε > 0. First, using Lemma 6,
we can assume without loss of generality that G is loosely-connected. Let (⃗i, p⃗) ∈ ([k]× [k])T k2

with (⃗i, p⃗) = βT , i.e., (it, pt) is the tth entry from the string βT , where β and T are from
Claim 16. Let T ′ = T · k2.

APPROX/RANDOM 2024

54:14 Parallel Repetition of k-Player Projection Games

Using Claim 15 on the (random-predicate) projection game G with i1, p1 ∈ [k], we have

val(G⊗n) ⩽ val(T i1
p1

(G)⊗n)1/2.

Fact 13 shows that T i1
p1

(G) is a projection game, and hence applying Claim 15 on the
projection game T i1

p1
(G) with i2, p2 ∈ [k], we get

val(T i1
p1

(G)⊗n) ⩽ val(T i2
p2

(T i1
p1

(G))⊗n)1/2.

Repeating this process T ′ times, we get

val(G⊗n) ⩽ val(T iT ′
pT ′ (. . . (T i2

p2
(T i1

p1
(G))))⊗n)1/2T ′

.

Using Claim 14 repeatedly, we have

val(T iT ′
pT ′ (. . . (T i2

p1
(T i1

p1
(G))))) ⩽ 1 − ε′,

where ε′ > 0, that only depends on ε, T ′, and the size of the game G. Finally, using Claim 16,
we have that the game T iT ′

pT ′ (. . . (T i2
p2

(T i1
p1

(G)))) is connected and hence by Lemma 8,

val(T iT ′
pT ′ (. . . (T i2

p2
(T i1

p1
(G))))⊗n) ⩽ exp(−Ωε,T,G(n)).

Overall, we get val(G⊗n) ⩽ exp(−Ωε,T,G(n)) and the proof is completed as T only depends
on the size of the original game G.

References
1 Sanjeev Arora, László Babai, Jacques Stern, and Z. Sweedyk. The Hardness of Approximate

Optima in Lattices, Codes, and Systems of Linear Equations. Journal of Computer and System
Sciences, 54(2):317–331, April 1997. doi:10.1006/jcss.1997.1472.

2 Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
verification and the hardness of approximation problems. J. ACM, 45(3):501–555, May 1998.
doi:10.1145/278298.278306.

3 Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: a new characterization of
np. J. ACM, 45(1):70–122, January 1998. doi:10.1145/273865.273901.

4 Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free bits, pcps, and nonapproximability
– Towards tight results. SIAM Journal on Computing, 27(3):804–915, 1998. doi:10.1137/
S0097539796302531.

5 Amey Bhangale, Subhash Khot, and Dor Minzer. On Approximability of Satisfiable k-CSPs:
II. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC
2023, pages 632–642, New York, NY, USA, 2023. Association for Computing Machinery.
doi:10.1145/3564246.3585120.

6 Amey Bhangale, Swastik Kopparty, and Sushant Sachdeva. Simultaneous approximation
of constraint satisfaction problems. In Automata, Languages, and Programming: 42nd In-
ternational Colloquium, ICALP 2015, Kyoto, Japan, volume 9134, pages 193–205, 2015.
doi:10.1007/978-3-662-47672-7_16.

7 Mark Braverman and Ankit Garg. Small value parallel repetition for general games. In
Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing, STOC
’15, pages 335–340, New York, NY, USA, 2015. ACM. doi:10.1145/2746539.2746565.

8 Mark Braverman, Subhash Khot, and Dor Minzer. Parallel repetition for the ghz game:
Exponential decay. In 2023 IEEE 64th Annual Symposium on Foundations of Computer
Science (FOCS), pages 1337–1341, 2023. doi:10.1109/FOCS57990.2023.00080.

9 Irit Dinur, Venkatesan Guruswami, Subhash Khot, and Oded Regev. A new multilayered pcp
and the hardness of hypergraph vertex cover. SIAM Journal on Computing, 34(5):1129–1146,
2005. doi:10.1137/S0097539704443057.

https://doi.org/10.1006/jcss.1997.1472
https://doi.org/10.1145/278298.278306
https://doi.org/10.1145/273865.273901
https://doi.org/10.1137/S0097539796302531
https://doi.org/10.1137/S0097539796302531
https://doi.org/10.1145/3564246.3585120
https://doi.org/10.1007/978-3-662-47672-7_16
https://doi.org/10.1145/2746539.2746565
https://doi.org/10.1109/FOCS57990.2023.00080
https://doi.org/10.1137/S0097539704443057

A. Bhangale, M. Braverman, S. Khot, Y. P. Liu, and D. Minzer 54:15

10 Irit Dinur, Prahladh Harsha, Rakesh Venkat, and Henry Yuen. Multiplayer Parallel Repetition
for Expanding Games. In 8th Innovations in Theoretical Computer Science Conference (ITCS
2017), volume 67, pages 37:1–37:16, Dagstuhl, Germany, 2017. doi:10.4230/LIPIcs.ITCS.
2017.37.

11 Irit Dinur, Oded Regev, and Clifford Smyth. The hardness of 3-uniform hypergraph coloring.
Combinatorica, 25(5):519–535, 2005. doi:10.1007/s00493-005-0032-4.

12 Irit Dinur and David Steurer. Analytical approach to parallel repetition. In Symposium on
Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages
624–633, 2014. doi:10.1145/2591796.2591884.

13 Uriel Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652, July
1998. doi:10.1145/285055.285059.

14 Uriel Feige, Shafi Goldwasser, Laszlo Lovász, Shmuel Safra, and Mario Szegedy. Interactive
proofs and the hardness of approximating cliques. Journal of the ACM (JACM), 43(2):268–292,
1996. doi:10.1145/226643.226652.

15 H. Furstenberg and Y. Katznelson. A density version of the hales-jewett theorem for k=3.
Discrete Mathematics, 75(1):227–241, 1989. doi:10.1016/0012-365X(89)90089-7.

16 Uma Girish, Justin Holmgren, Kunal Mittal, Ran Raz, and Wei Zhan. Parallel Repetition
for the GHZ Game: A Simpler Proof. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques (APPROX/RANDOM 2021), volume 207, pages
62:1–62:19, Dagstuhl, Germany, 2021. doi:10.4230/LIPIcs.APPROX/RANDOM.2021.62.

17 Uma Girish, Justin Holmgren, Kunal Mittal, Ran Raz, and Wei Zhan. Parallel repetition for
all 3-player games over binary alphabet. In Proceedings of the 54th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2022, pages 998–1009, New York, NY, USA, 2022.
Association for Computing Machinery. doi:10.1145/3519935.3520071.

18 Uma Girish, Kunal Mittal, Ran Raz, and Wei Zhan. Polynomial Bounds on Parallel Repe-
tition for All 3-Player Games with Binary Inputs. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022), volume
245, pages 6:1–6:17, Dagstuhl, Germany, 2022. doi:10.4230/LIPIcs.APPROX/RANDOM.2022.6.

19 Daniel M. Greenberger, Michael A. Horne, and Anton Zeilinger. Going beyond bell’s theorem.
In Menas Kafatos, editor, Bell’s Theorem, Quantum Theory and Conceptions of the Universe,
pages 69–72. Springer Netherlands, Dordrecht, 1989. doi:10.1007/978-94-017-0849-4_10.

20 Venkatesan Guruswami, Johan Hastad, and Madhu Sudan. Hardness of approximate hy-
pergraph coloring. SIAM Journal on Computing, 31(6):1663–1686, 2002. doi:10.1137/
S0097539700377165.

21 Thomas Holenstein. Parallel Repetition: Simplification and the No-Signaling Case. Theory of
Computing, 5(1):141–172, 2009. doi:10.4086/toc.2009.v005a008.

22 Justin Holmgren and Ran Raz. A parallel repetition theorem for the GHZ game. arXiv
preprint arXiv:2008.05059, 2020.

23 Johan Håstad. Some optimal inapproximability results. J. ACM, 48(4):798–859, July 2001.
doi:10.1145/502090.502098.

24 S. Khot. Hardness results for coloring 3-colorable 3-uniform hypergraphs. In The 43rd Annual
IEEE Symposium on Foundations of Computer Science, 2002. Proceedings., pages 23–32, 2002.
doi:10.1109/SFCS.2002.1181879.

25 Subhash Khot. Hardness results for approximate hypergraph coloring. In Proceedings of the
Thiry-Fourth Annual ACM Symposium on Theory of Computing, STOC ’02, pages 351–359, New
York, NY, USA, 2002. Association for Computing Machinery. doi:10.1145/509907.509962.

26 Kunal Mittal and Ran Raz. Block Rigidity: Strong Multiplayer Parallel Repetition Implies
Super-Linear Lower Bounds for Turing Machines. In 12th Innovations in Theoretical Computer
Science Conference (ITCS 2021), volume 185, pages 71:1–71:15, Dagstuhl, Germany, 2021.
doi:10.4230/LIPIcs.ITCS.2021.71.

27 DHJ Polymath. A new proof of the density Hales-Jewett theorem. Annals of Mathematics,
pages 1283–1327, 2012. doi:10.4007/annals.2012.175.3.6.

APPROX/RANDOM 2024

https://doi.org/10.4230/LIPIcs.ITCS.2017.37
https://doi.org/10.4230/LIPIcs.ITCS.2017.37
https://doi.org/10.1007/s00493-005-0032-4
https://doi.org/10.1145/2591796.2591884
https://doi.org/10.1145/285055.285059
https://doi.org/10.1145/226643.226652
https://doi.org/10.1016/0012-365X(89)90089-7
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.62
https://doi.org/10.1145/3519935.3520071
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.6
https://doi.org/10.1007/978-94-017-0849-4_10
https://doi.org/10.1137/S0097539700377165
https://doi.org/10.1137/S0097539700377165
https://doi.org/10.4086/toc.2009.v005a008
https://doi.org/10.1145/502090.502098
https://doi.org/10.1109/SFCS.2002.1181879
https://doi.org/10.1145/509907.509962
https://doi.org/10.4230/LIPIcs.ITCS.2021.71
https://doi.org/10.4007/annals.2012.175.3.6

54:16 Parallel Repetition of k-Player Projection Games

28 Anup Rao. Parallel Repetition in Projection Games and a Concentration Bound. SIAM
Journal on Computing, 40(6):1871–1891, 2011. doi:10.1137/080734042.

29 Ran Raz. A parallel repetition theorem. SIAM Journal on Computing, 27(3):763–803, 1998.
doi:10.1137/S0097539795280895.

30 Oleg Verbitsky. Towards the Parallel Repetition Conjecture. Theor. Comput. Sci., 157(2):277–
282, May 1996. doi:10.1016/0304-3975(95)00165-4.

https://doi.org/10.1137/080734042
https://doi.org/10.1137/S0097539795280895
https://doi.org/10.1016/0304-3975(95)00165-4

Faster Algorithms for Schatten-p Low Rank
Approximation
Praneeth Kacham # Ñ

Carnegie Mellon University, Pittsburgh, PA, USA
Google Research, New York, USA

David P. Woodruff # Ñ

Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
We study algorithms for the Schatten-p Low Rank Approximation (LRA) problem. First, we show
that by using fast rectangular matrix multiplication algorithms and different block sizes, we can
improve the running time of the algorithms in the recent work of Bakshi, Clarkson and Woodruff
(STOC 2022). We then show that by carefully combining our new algorithm with the algorithm of
Li and Woodruff (ICML 2020), we can obtain even faster algorithms for Schatten-p LRA.

While the block-based algorithms are fast in the real number model, we do not have a stability
analysis which shows that the algorithms work when implemented on a machine with polylogarithmic
bits of precision. We show that the LazySVD algorithm of Allen-Zhu and Li (NeurIPS 2016) can
be implemented on a floating point machine with only logarithmic, in the input parameters, bits
of precision. As far as we are aware, this is the first stability analysis of any algorithm using
O((k/

√
ε) poly(log n)) matrix-vector products with the matrix A to output a 1 + ε approximate

solution for the rank-k Schatten-p LRA problem.

2012 ACM Subject Classification Theory of computation → Mathematical optimization; Mathem-
atics of computing → Mathematical analysis

Keywords and phrases Low Rank Approximation, Schatten Norm, Rectangular Matrix Multiplication,
Stability Analysis

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.55

Category RANDOM

Related Version Full Version: https://arxiv.org/abs/2407.11959

Acknowledgements We would like to thank Cameron Musco, Christopher Musco, and Aleksandros
Sobczyk for helpful discussions. We thank a Simons Investigator Award and NSF CCF-2335411 for
partial support.

1 Introduction

Low Rank Approximation (LRA) is an important primitive in large scale data analysis.
Given an m× n matrix A, and a rank parameter k, the task is to find a rank-k matrix B

that minimizes ∥A − B∥ where ∥ · ∥ is some matrix norm. Typically, we also require that
the algorithms output a factorization B = XY such that X ∈ Rm×k and Y ∈ Rk×n. Such a
factorization lets us compute the product Bz with an arbitrary vector z in time O(k(n + m))
which can be significantly smaller than the nnz(A) time required to multiply a vector with
the original matrix A. Here nnz(A) denotes the number of non-zero entries of the matrix A.
Thus, replacing A with a low rank approximation can make downstream tasks much faster.
Additionally, if the matrix A has a low rank structure but is corrupted by noise, a low rank
approximation of A can recover the underlying structure under suitable assumptions on the
noise. We note that many low rank approximation algorithms, including ours, compute a
rank-k orthonormal matrix W such that ∥A(I −WW ⊤)∥ is small and then define X = AW

and Y = W ⊤.
© Praneeth Kacham and David P. Woodruff;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 55; pp. 55:1–55:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pkacham@google.com
http://www.praneethkacham.com
https://orcid.org/0000-0002-2207-4882
mailto:dwoodruf@cs.cmu.edu
https://www.cs.cmu.edu/~dwoodruf/
https://orcid.org/0000-0002-2158-1380
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.55
https://arxiv.org/abs/2407.11959
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

55:2 Schatten-p Low Rank Approximation

In this paper, the error metric we consider is given by the Schatten-p norm for p ≥ 1.
Given a matrix M , the Schatten-p norm of M denoted by ∥M∥Sp

is defined as (
∑

i σi(M)p)1/p

where σi(M) denotes the i-th singular value of M . Note that Schatten-2 norm is the same
as the Frobenius norm, denoted by ∥M∥F = (

∑
i,j M2

ij)1/2 and the Schatten-∞ norm is the
same as the operator norm, denoted by ∥M∥2 = maxx ̸=0 ∥Mx∥2/∥x∥2. In the presence of
outliers, the Schatten-1 norm,

∑
i σi(M), is considered to be more robust since the errors

introduced by the outliers are not “squared” as it is done in the case of the Frobenius norm.
The Schatten-p norm low rank approximation problem asks to find a rank-k matrix B

that minimizes ∥A−B∥Sp . As the Schatten-p norms are unitarily invariant, we have from
Eckart-Young-Mirsky’s theorem that ∥A − Ak∥Sp

= minrank-k B ∥A − B∥Sp
for all p ≥ 1,

where Ak is the matrix obtained by truncating the Singular Value Decomposition (SVD) of
A to only the top k singular values. This implies that a single matrix Ak is a best rank-k
approximation for A for all values of p. However, computing the SVD of an m× n matrix
takes O(min(mnω−1, nmω−1)) time (see Appendix A), where ω is the matrix multiplication
exponent. This time complexity is prohibitive when m and n are large. Thus, we relax the
requirements and ask for a rank-k matrix B satisfying ∥A−B∥Sp ≤ (1 + ε)∥A−Ak∥Sp in
the hope of obtaining faster algorithms than the SVD.

While a single matrix Ak is a best low rank approximation for A in all Schatten-p
norms, it is not the case for approximate solutions, i.e., if B is a rank-k matrix that satisfies
∥A − B∥Sp

≤ (1 + ε)∥A − Ak∥Sp
for some p, it may not be the case that ∥A − B∥Sq

≤
(1 + ε)∥A−Ak∥Sq for q ̸= p. Thus, many approximation algorithms for Schatten-p LRA are
tailored to the particular value p. There are two different lines of works for Schatten-p LRA
in the literature: (i) Sketching based algorithms of Li and Woodruff [9] and (ii) Iterative
algorithms of Bakshi, Clarkson and Woodruff [2]. We summarize the running times of the
algorithms in Table 1. The sketch-based algorithms are usually non-adaptive and the iterative
algorithms adaptively pick their matrix-vector product queries depending on the results in
the previous round which makes them powerful as we can see from the superior running time
over sketch-based algorithms when we desire solutions with small ε.

Sketching Algorithms. Li and Woodruff [9] gave (almost) input-sparsity time algorithms
for Schatten-p LRA, extending the earlier input-sparsity time algorithms for Frobenius norm
LRA from [4]. For p < 2, their algorithm runs in Õ(nnz(A) + max(m, n) · poly(k/ε)) time
and for p > 2, their algorithm runs in Õ(nnz(A) + max(m, n) ·min(m, n)αp poly(k/ε)) time,
where αp = (ω − 1)(1− 2/p). Note that for the current value of ω ≈ 2.37, their algorithm
runs in Ω(mn) time for p ≥ 7.4 and hence is not an “input-sparsity time” algorithm but
for all constant p, k, ε, their algorithm runs in o(min(mnω−1, nmω−1) time and therefore is
faster than computing the SVD.

Table 1 Running times for 1 + ε rank-k Schatten-p LRA algorithms for m × n matrices assuming
m ≥ n.

Time Complexity

Li and Woodruff [9] (p ∈ [1, 2)) O(nnz(A) log n) + Õp(mk2(ω−1)/p/ε(4/p−1)(ω−1))
+Õp(k2ω/p/ε(4/p−1)(2ω+2))

Li and Woodruff [9] (p > 2) O(nnz(A) log n) + Õp(nω(1−2/p)k2ω/p/ε2ω/(p+2))
+Õp(mn(ω−1)(1−2/p)(k/ε)2(ω−1)/p)

Bakshi et al. [2] O(p1/6ε−1/3 nnz(A)k log(n/ε) + mp(ω−1)/6kω−1ε−(ω−1)/3)

P. Kacham and D. P. Woodruff 55:3

Iterative Algorithms. Recently, Bakshi, Clarkson, and Woodruff [2] gave an iterative al-
gorithm for Schatten-p LRA. Their algorithm runs the Block Krylov iteration algorithm of
Musco and Musco [11] at two different block sizes for different number of iterations respectively.
They show that the algorithm succeeds in computing a low rank approximation at one of the
block sizes and show how to compute which block size succeeds in computing the approxima-
tion. For Schatten-p LRA, their algorithm requires O(kp1/6 poly(log n)/ε1/3) matrix-vector
products with the matrix A and hence can be implemented in Õ(nnz(A)kp1/6/ε1/3) time. At
a high level, their algorithm runs the Block Krylov iteration algorithm with block size k for
O(p1/6ε−1/3 poly(log n)) iterations and with block size O(p−1/3ε−1/3k) for O(√p poly(log n))
iterations. They set these parameters such that the algorithm requires an overall same number
of matrix-vector products with A at both block sizes. They argue that for a matrix with a
“flat” spectrum, the low rank approximation computed by the block size k algorithm is a
1 + ε approximation and for a matrix with a “non-flat” spectrum, the solution computed by
block size O(p−1/3ε−1/3k) algorithm is a 1 + ε approximation.

Comparison. As we can see from Table 1, the running times of these algorithms depend in
a quite complicated way on the parameters nnz(A), m, n, ε and p. Throughout the paper, we
assume that m = n, nnz(A) = n2 (i.e., the matrix A is dense) and k ≤ nc for a small constant
c so that k ≪ n. In some cases, where sparsity in the datasets cannot be well exploited, such
as when processing the datasets using GPUs, it is natural to analyze the time complexities
of the algorithms and compare the performances assuming that the inputs are dense.

For p ∈ [1, 2), we have that the time complexity of the algorithm of [9] is O(n2 log n +
n poly(k)/ε(4/p−1)(ω−1) + poly(k)/ε(4/p−1)(2ω+2)) and the time complexity of the algorithm
of [2] is O(ε−1/3n2k log(n) + n poly(k)/ε(ω−1)/3). We see that only when

1/ε > n
1

(4/p−1)(ω+1)−1/6 ,

the algorithm of [2] is faster than the sketching based algorithm of [9]. For ω ≈ 2.371 and
p = 1, the above is achieved only when 1/ε ≥ n≈0.1. Hence, in the high accuracy regime, the
algorithm of [2] is faster than that of the sketching based algorithm of [9]. For other values
of p ∈ [1, 2), ε has to be even smaller than 1/n0.1 for the algorithm of [2] to be faster than
the algorithm of [9].

For comparing the algorithms in the case p > 2, first we pick ε to be a constant and obtain
that the running time of the algorithm of [9] is O(n2 log n + n1+(ω−1)(1−2/p) poly(k)) and the
algorithm of [2] has a running time of O(p1/6n2k log(n)). Thus, as long as (ω−1)(1−2/p) ≤ 1,
the sketch-based algorithm is faster than the iterative algorithm. We call p such that
(ω − 1)(1− 2/p) ≤ 1, the crossover point from “sketch” to “iterative”. For the current value
of ω ≈ 2.371, the crossover point is ≈ 7.39.

Now consider the case of ε = 1/n and constant p. The iterative algorithm of [2] has a
running time of O(n2+1/3k log(n)) and the sketch based algorithm of [9] has a running time
of O(nω poly(k)) and thus offers no improvement over the naïve SVD algorithm. This again
shows that in the high precision regime, the small dependence on ε in the running time
of the algorithm of [2] is crucial to obtain better than O(nω) time algorithm. Overall, we
summarize the comparison between the algorithms in Table 2.

Our Improvements. We first improve the time complexity of the iterative algorithm of [2] for
all parameter regimes. While the focus of their paper was to minimize the number of matrix-
vector products required, we observe that by using fast rectangular matrix multiplication
algorithms, we can obtain even faster algorithms using their technique of running the block

APPROX/RANDOM 2024

55:4 Schatten-p Low Rank Approximation

Table 2 In the case of m = n, nnz(A) = n2 and k = no(1), the table lists which of the previous
works is asymptotically faster for the current value of ω ≈ 2.371. Iterative algorithm refers to the
algorithm of [2] and the Sketching algorithm refers to the algorithm of [9]. In the above, crossover
≈ 7.4.

Small ε (≈ 1/n) Large ε

p ∈ [1, 2) Iterative Sketching
2 < p < crossover Iterative Sketching
p > crossover Iterative Iterative

Krylov iteration algorithm at different block sizes. Fast rectangular matrix multiplication
algorithms let us obtain a different block-size vs iteration trade-off giving us faster algorithms.
This algorithm directly achieves the fastest running times for small ε since we improve upon
[2] in all regimes.

We saw above that for constant ε, the sketch based algorithm takes only O(n2 log n)
time when p ≲ 7.4 and hence cannot be improved upon over asymptotically by more than
polylog(n) factors in that regime. We show that using a combination of our fast iterative
algorithm and the algorithm of [9] gives an algorithm that runs in near-linear time1 for all
p ≲ 22 for appropriate ε values extending the values of p for which a Schatten-p LRA can be
computed in O(n2 log n) time, when the rank parameter k ≤ nc.

Our combined algorithm works as follows: to solve a sub-problem in the algorithm of [9],
we run our improved iterative algorithm for Schatten-p LRA with accuracy parameter ε = 1/n.
As our improved iterative algorithm has a better dependence on ε than earlier algorithms,
we obtain a faster algorithm for solving the sub-problem and hence obtain an O(n2 log n)
time algorithm for all p ≲ 22. Thus, improving the performance of iterative algorithms in
the small ε regime let us obtain faster algorithms overall in the large ε regime!

Numerically Stable Algorithms

While the algorithm of [2] and our modification give fast algorithms for Schatten-p Low
Rank Approximation, it is not known if the Block Krylov iteration algorithm is stable when
implemented on a floating point machine with O(log(n/ε)) bits of precision. It is a major
open question in numerical linear algebra to show if the Block Krylov iteration algorithm
is stable. Obtaining fast algorithms that provably work on finite precision machines is a
tricky problem in general. We note that until the recent work of Banks, Garza-Vargas,
Kulkarni and Srivastava [3], it was not clear if an eigendecomposition of a matrix could be
computed in Õ(nω) time on a finite precision machine. Building on these ideas, another recent
work [14] obtains fast and stable algorithms for the generalized eigenvalue problem. The
sketch-and-solve methods, such as the algorithm of [9], are usually stable as the operations
do not blow up the magnitude of the entries. As we note above, for large p, the algorithms in
[9] are not input-sparsity time and hence an important question is if there are any stable
input-sparsity time algorithms for large p. We answer this question in affirmative by showing
that the LazySVD algorithm of [1] can be stably implemented on a floating point machine
with O(log mκ/ε) bits of precision where κ = σ1(A)/σk+1(A). The LazySVD algorithm
computes a low rank approximation for all p ≥ 2.

1 Note the near-linear here means Õ(n2) as the input-matrix is assumed to have n2 nonzero entries.

P. Kacham and D. P. Woodruff 55:5

Similar to the Block Krylov iteration algorithm, LazySVD also needs O(k poly(log n)/
√

ε)
matrix-vector products with A. Additionally, the factorization output by LazySVD is simultan-
eously a 1+ε approximation for all p ≥ 2. To find a rank-k approximation of A, the LazySVD
algorithm first computes a unit vector v which is an approximation to the top eigenvector
of A⊤A. Then the algorithm deflates A⊤A and forms the matrix (I − vv⊤)A⊤A(I − vv⊤)
and proceeds to find an approximation to the top eigenvector of (I − vv⊤)A⊤A(I − vv⊤)
and so on for a total of k rounds. The authors show that the span of k vectors found
across all the iterations contains a 1 + ε approximation if the eigenvector approximations
satisfy an appropriate condition. Thus, to implement the LazySVD algorithm on a floating
point machine, we first need a stable routine that can compute approximations to the top
eigenvector of a given matrix. We show that such a routine can be implemented stably using
the Lanczos algorithm [12]. We additionally modify the LazySVD algorithm and show that
the modification allows us to compute matrix-vector products with the deflated matrix to a
good enough approximation which lets the Lanczos algorithm compute an approximation to
the top eigenvector of the deflated matrix. Our slight modification to LazySVD turns out to
be important in making the stability analysis go through.

The novelty of our stability analysis is that instead of showing each of the vectors
ṽ1, . . . , ṽk computed by a finite precision algorithm are close to the vectors v1, . . . , vk that
would be computed by an algorithm with unbounded precision, we essentially argue that for
all i, the projection matrices onto the subspaces spanned by ṽ1, . . . , ṽi and v1, . . . , vi are close
using induction. This change makes the stability analysis work with only a polylogarithmic
number of bits of precision whereas showing all ṽis are individually close to corresponding
vis would require polynomially many bits of precision.

1.1 Our Results
In the following, α denotes the constant such that an arbitrary n×n matrix can be multiplied
with an arbitrary n× nα matrix using O(n2+η) arithmetic operations for any constant η > 0.
The matrix multiplication exponent ω is the smallest constant such that an arbitrary n× n

matrix can be multiplied with an arbitrary n×n matrix using O(nω+η) arithmetic operations
for any constant η > 0. For simplicity, we ignore the constant η, and write as if the matrices
can be multiplied in O(nω) time. We define β := (ω − 2)/(1− α). Note that β ≤ 1.2

▶ Theorem 1 (Informal, Theorem 5). Given an n× n matrix A, a rank parameter k and an
accuracy parameter ε, there is an algorithm that outputs a rank-k orthonormal matrix W

that with probability ≥ 0.9 satisfies, ∥A(I −WW ⊤)∥Sp
≤ (1 + O(ε))∥A−Ak∥Sp

. If k ≤ ε ·nα,
then the algorithm runs in Õ(√pn2+η) time for any constant η > 0.

Combining the algorithm in the above theorem and the algorithm of [9], we obtain the
following result:

▶ Theorem 2 (Informal, Theorem 8). Given an n× n matrix A, a rank parameter k inde-
pendent of n and any constant η > 0, there is a randomized algorithm that runs in time
Õ((n1−2/p)2+η+(1−α)β/(1+2β) poly(1/ε) + n2) and outputs a rank-k projection Q̂ that satisfies
∥A(I − Q̂)∥p

Sp
≤ (1 + ε)∥A−Ak∥p

Sp
, with probability ≥ 0.9

The above theorem shows that for all p at most a suitable constant, the algorithm runs in
Õ(n2) time for ε > 1/ncp for a small enough constant cp and hence is faster than using the
algorithm of [9] or the algorithm in Theorem 1.

2 See Section 2.2.

APPROX/RANDOM 2024

55:6 Schatten-p Low Rank Approximation

The following result shows that our modification of LazySVD can be stably implemented
on a floating point machine.

▶ Theorem 3 (Informal, Theorem 11). Given an n × d matrix A with condition number
κ(A) = σ1(A)/σk+1(A), an accuracy parameter ε, a rank parameter k and probability
parameter η, if the machine precision εmach ≤ poly(εη/nκ(A)), then there is an algorithm
that outputs a d × k matrix Vk such that κ(Vk) ≤ 4 and with probability ≥ 1 − η, for all
p ∈ [2,∞],

∥A(I − Projcolspace(Vk))∥Sp
≤ (1 + O(ε))∥A−Ak∥Sp

,

and runs in time O(nnz(A)k√
ε

poly(log(dκ(A)/εη)) + d poly(k, log(dk/ηε))).

In the above theorem, Projcolspace(M) denotes the orthogonal projection matrix onto the
column space of M .

1.2 Implications to Practice
While the theoretical fast rectangular matrix multiplication algorithms are not practically
efficient, the message of this paper is that by optimizing for the number of matrix-vector
products as in [2], we are leaving a lot of performance on the table. In modern computing
architectures, multiplying an n× n and an n× b matrix is, for example, much faster than b

times the time required to multiply the n×n and an n×1 vector because of data locality and
the opportunities for parallelization. Thus, in the algorithm of [2], running the block size k

version for fewer iterations while increasing the larger block size b can give faster algorithms
in practice than using the parameters that optimize for the number of matrix-vector products.
We include a small experiment in the appendix which compares the time required to compute
the product of an n× n matrix with matrices that have different numbers of columns.

LazySVD with our stability analysis uses a similar number of matrix vector products as
the widely used Block Krylov iteration algorithm while requiring only polylogarithmic bits of
precision. While as mentioned above, block-based algorithms such as Block Krylov iteration
can be much faster than single-vector algorithms such as LazySVD and our modification of
it, it is only the case when the matrix is directly given to us. When the matrix is implicitly
defined in other ways (for e.g., as the Hessian of a neural network where we can efficiently
compute Jacobian-Vector products), the difference in performance between block-based
algorithms and single-vector algorithms is less pronounced. When guarantees of stability are
required, the fastest algorithms in practice for Low Rank Approximation should use some
combination of sketching as in [9] to reduce dimension stably and then use our modification
of LazySVD algorithm to find the necessary top k subspace.

2 Preliminaries

2.1 Notation
For a positive integer n, we use [n] to denote the set { 1, . . . , n }. We use the notation
Õ(f(n)) to denote O(f(n) poly(log(f(n)))) and Õq(f(n)) to hide the multiplicative factors
that depend only on the parameter q. For a vector x, we use ∥x∥2 = (

∑
i |xi|2)1/2 to denote

the Euclidean norm of x. Given an m× n matrix A, we use Ai,j to denote the entry in the
index (i, j) of A. We use Ai∗ to denote the i-th row of A and A∗j to denote the j-th column.
We identify the multiplication of an m× n matrix with an n× k matrix with the notation
[m, n, k]. For a matrix A, we use colspace(A) to denote the vector space {Ax | x ∈ Rn}. For

P. Kacham and D. P. Woodruff 55:7

any vector space V ∈ Rn, we use ProjV to denote the linear operator which maps a vector
x to the projection of x in the subspace V i.e., the nearest vector to x in V in terms of
Euclidean distance. If the columns of X are an orthonormal basis for V , then ProjV = XX⊤.

Let A = UΣV ⊤ be the singular value decomposition (SVD) of A and let σ1 ≥ · · · ≥ σn

(recall m ≥ n) denote the singular values of A. For k ≤ n, let Ak :=
∑k

i=1 σiU∗i(V ⊤)i∗ be
the matrix obtained by truncating the SVD of A to the top k singular values.

We use ∥A∥F to denote the Frobenius norm (
∑

i,j A2
i,j)1/2 and ∥A∥2 to denote the operator

norm maxx ̸=0 ∥Ax∥2/∥x∥2. For p ≥ 1, we define ∥A∥Sp
= (
∑n

i=1 σp
i)1/p to be the Schatten-p

norm. As ∥ · ∥Sp
defines a norm, we have ∥A + B∥Sp

≤ ∥A∥Sp
+ ∥B∥Sp

for any two m× n

matrices A and B. Additionally, we have ∥A⊤∥Sp = ∥A∥Sp and for any unitary matrices
U ′, V ′, we have ∥U ′AV ′∥Sp

= ∥A∥Sp
.

2.2 Fast Rectangular Matrix Multiplication
Let ω denote the best matrix multiplication exponent. The current upper bound on ω is
≈ 2.371 [5] and for γ < 1, let ω(γ) denote the exponent such that the product of an n× n

with an n × nγ matrix can be computed using O(nω(γ)+η) arithmetic operations for any
constant η > 0. There exists α > 0.31 [8, 6] such that for all γ < α, ω(γ) = 2 and for all
γ ≥ α,

ω(γ) ≤ 2 + (ω − 2)γ − α

1− α
.

See [7, 10] for the above bound on ω(γ). Recall β := ω−2
1−α . We now observe that n1−αn2 ≥ nω

since a matrix product of the form [n, n, n] can be computed using n1−α matrix products of
the form [n, n, nα]. Hence, 1− α ≥ ω − 2, which implies β ≤ 1.

3 Schatten-p LRA using Fast Matrix Multiplication

Algorithm 1 Block Krylov Iteration Algorithm [11].

Input: An n× n matrix A, rank parameter k, block size b and number q of iterations
Output: An orthonormal matrix Z ∈ Rn×k

1 Π ∼ N (0, 1)n×b

2 K ←
[
AΠ (AA⊤)AΠ · · · (AA⊤)qAΠ

]
// The Krylov Matrix

3 Orthonormalize columns of K to get an n× qb matrix Q

4 Compute M := Q⊤AA⊤Q

5 Set Uk to the top k singular vectors of M

6 return Z = QUk

3.1 Block Krylov Iteration Algorithm
The block Krylov Iteration algorithm of Musco and Musco [11] is stated as Algorithm 1. For
any b, let T (n, b) be the time to multiply an n× n matrix with an n× b matrix. The Block
Krylov iteration algorithm with rank parameter k, block size b ≥ k and iteration count q

(with bq ≤ n) runs in time at most (2q + 1)T (n, b) + n(qb)ω−1 + 3T (n, qb) + (qb)ω + T (n, k).3

3 Assuming that SVD of the qb × qb matrix M in Algorithm 1 can be computed in time O((qb)ω).

APPROX/RANDOM 2024

55:8 Schatten-p Low Rank Approximation

Using the fact that T (n, qb) ≤ qT (n, b) and qb ≤ n, we obtain that the time complexity of
the algorithm is O(qT (n, b) + n(qb)ω−1). We now have T (n, b) ≥ (b/n)nω since otherwise the
matrix product of the form [n, n, n] can be computed quicker than in nω time by computing
the n/b products of the form [n, n, b]. Hence, qT (n, b) ≥ qbnω−1 ≥ n(qb)ω−1 using qb ≤ n.
Thus, we obtain that the time complexity of the Block Krylov Iteration algorithm with
parameters k, b, q satisfying b ≥ k and bq ≤ n is O(qT (n, b)). We now state a few properties
of the Block Krylov algorithm that we use throughout the paper.
▶ Theorem 4. With a large probability over the Gaussian matrix Π, the following properties
hold for the matrix Z computed by Algorithm 1:
1. There is a universal constant c such that for all i ∈ [k],

σi(Z⊤A)2 ≥ ∥A⊤(Z)∗i∥2
2 ≥ σ2

i − (c log2 n/q2)σ2
k+1.

This follows from the per-vector error guarantee of Theorem 1 in [11].
2. If gap := (σk/σb+1)− 1 and q ≥ C log(n/ε)/

√
min(1, gap) for a large enough constant C,

then for all i ∈ [k], σi(Z⊤A)2 ≥ ∥A⊤(Z)∗i∥2
2 ≥ σ2

i − εσ2
k+1.

The second guarantee in the above theorem follows from the gap-dependent error bounds in
Theorem 11 in [11]. Note the logarithmic dependence of q on 1/ε.

Algorithm 2 Schatten-p Norm Subspace Approximation.

Input: An n× n matrix A, rank parameter k and an accuracy parameter ε

Output: Approximate Solution to the Schatten-p Norm Subspace Approximation
problem

1 q ←

√

p k ≤ ε · nα

max(√p, p
1

2(1+2β) (k/nαε)
β

1+2β) ε · nα ≤ k ≤ nα

max(√p, p
1

2(1+2β) /ε
β

1+2β) k ≥ nα

2 b′ ← ⌈(3/2) max(1, k/q2ε)⌉
3 Z1 ← BlockKrylov(A, rank = k, block size = k, iterations = O(q log(n))
4 Z2 ← BlockKrylov(A, rank = k, block size = b′ + k, iterations = O(√p log(n/ε))
5 W1 ← colspan(A⊤Z1)
6 W2 ← colspan(A⊤Z2)
7 W ← W2 if σ̂k ≥ (1 + 1/2p)σ̂b′+k and W1 otherwise // These approximations to

σk and σb′+k can be computed using the M matrix computed in
Algorithm 1

3.2 Main Theorem
▶ Theorem 5. Given an n× n matrix A, a rank parameter k and an accuracy parameter
ε, Algorithm 2 outputs a k dimensional orthonormal matrix W that with probability ≥ 0.9
satisfies, ∥A(I −WW ⊤)∥Sp

≤ (1 + O(ε))∥A−Ak∥Sp
. For any constant η > 0, the running

time of the algorithm is as follows:
1. For k ≤ εnα, the algorithm runs in time Õ(√pn2+η).
2. For εnα ≤ k ≤ nα, the algorithm runs in time

Õ(max(√pn2+η, p
1

2(1+2β) n2+η(k/nαε)β/(1+2β))).
3. For k ≥ nα, the algorithm runs in time Õ((p1/2ε−β)1/(1+2β)n2+η−αβkβ).
Assuming p is a constant independent of ε, the dependence on ε is at least better than ε−1/3

as β ≤ 1 which implies β/(1 + 2β) ≤ 1/3. The proof of this theorem is similar to that of [2].
We include the proof in the full version.

P. Kacham and D. P. Woodruff 55:9

4 Comparison with the Algorithm of Li and Woodruff [9]

For n × n matrices and p > 2, the algorithm of [9] for the Schatten-p norm Subspace
Approximation problem, shown in Algorithm 3 runs in time

O(n2 log n) + Õp

(
nω(1−2/p)k2ω/p

ε2ω/p+2 + n1+(ω−1)(1−2/p)(k/ε)2(ω−1)/p

)
. (1)

Let K = k + ε/η1 = k + n1−2/pk2/p/ε2/p. To obtain the above running time, they use a ridge
leverage score sampling algorithm to compute a matrix S with s = O(ε−2K log n) rows that
satisfies (2) with a large probability. The same guarantee can instead be obtained by using the
Sub-sampled Randomized Hadamard Transform (SRHT) [16] with s = O(ε−2K log n) rows
and the matrix-product SA can be computed in time O(n2 log n). To obtain the subspace
embedding guarantee for T as required in Algorithm 3, we can let the matrix T again be
an SRHT with r = O(ε−2s log n) columns and the product SAT can be computed in time
O(ns log s) = O(ε−2n(k + n1−2/pk2/p/ε2/p)).

The singular value decomposition of the matrix SAT can be computed in O(rsω−1) =
O(ε−2ω(k + n1−2/pk2/p/ε2/p)ω polylog(n)) time and a basis for the rowspace of W ⊤SA can
be computed in O(skn) time. Overall, for constant k and ε, the algorithm of [9] runs in time
Õ(n2 + (n1−2/p)ω). For p > 2ω/(ω − 2), their algorithm runs in n2+cp time for a constant
cp > 0 that depends on p. For the same parameters, our algorithm runs in Õ(n2) time and
hence we have an improvement. For k ≤ nα and ε = 1/n, their algorithm runs in time Ω(nω)
which means that computing the SVD of A is already faster whereas our algorithm runs in
time Õ(n2+ (1−α)β

1+2β) = o(nω) if ω > 2. Hence, our algorithm improves upon the algorithm of
[9] for a wide range of parameters. We note that computing the SVD of SAT turns out to
be the most expensive step for large p. In the next subsection, we show that our Algorithm 2
can be used to sidestep the computation of the SVD of SAT , thereby giving an even faster
algorithm.

We call p∗ = 2ω/(ω − 2), the crossover point. For p > p∗, our Algorithm 2 is faster than
the algorithm of [9]. For the current value of ω ≈ 2.37, p∗ ≈ 12.8. For p < p∗, the leading
order term in the time complexity of Algorithm 3 is O(n2 log n) for ε > n−cp for a constant
cp depending on p, and hence is faster than Algorithm 2.

Algorithm 3 Schatten-p Norm Low Rank Approximation for p > 2 [9].

Input: A matrix A ∈ Rm×n and an accuracy parameter ε

Output: A rank-k orthonormal projection Q satisfying
∥A(I −Q)∥Sp

≤ (1 + ε)∥A−Ak∥Sp

1 η1 ← O(ε1+2/p/k2/pn1−2/p)
2 S be a matrix with s rows that satisfies

(1− ε)A⊤A− η1∥A−Ak∥2
F · I ⪯ A⊤S⊤SA ⪯ (1 + ε)A⊤A + η1∥A−Ak∥2

F · I.

(2)
3 T ← Subspace embedding for s-dimensional subspaces with error O(ε)
4 W ← Top k left singular vectors of SAT

5 Z ← Matrix whose columns are an orthonormal basis for the row space of W ⊤SA

6 Q← ZZ⊤

APPROX/RANDOM 2024

55:10 Schatten-p Low Rank Approximation

4.1 Further Improving the running time of [9] using our algorithm
Given an n× n matrix A, p ≥ 1 and r ≤ n, let ∥A∥(p,r) = (

∑r
i=1 σi(A)p)1/p. We can show

that ∥ · ∥(p,r) is a norm over n× n matrices. As ∥ · ∥(p,r) is unitarily invariant, we have by
Eckart-Young-Mirsky’s theorem that ∥A−Ak∥(p,r) = minrank-k B ∥A−B∥(p,r). In Lemma 4.2
of [9], they show that for S satisfying (2), if Q̂ is a rank-k projection matrix with

∥SA(I − Q̂)∥(p,r) ≤ (1 + ε) min
rank-k

projections Q

∥SA(I −Q)∥(p,r), (3)

then ∥A(I − Q̂)∥p
Sp
≤ (1 + Cpε)∥A−Ak∥p

Sp
, for a constant Cp that only depends on p. They

show that the matrix Q returned by Algorithm 3 satisfies (3) and then conclude that the
matrix Q is a 1 + O(ε) approximation to the Schatten-p norm low rank approximation
problem. We will now argue that there is a faster algorithm for computing a projection that
satisfies (3). The algorithm does not require the computation of the SVD of the matrix SAT

and hence does not incur the Op,k,ε(n(1−2/p)ω) term in the running time. We first show that
a 1 + ε approximate solution to the Schatten-p norm subspace approximation problem, is a
1 + εn/r approximation to the (p, r) subspace approximation problem.

▶ Lemma 6. For an arbitrary m× n matrix A (m ≤ n), if Q̂ is a rank-k projection matrix
satisfying ∥A(I − Q̂)∥p

Sp
≤ (1 + ε)∥A− Ak∥p

Sp
and colspan(Q̂) ⊆ rowspan(A), then for any

r ≤ n,

∥A(I − Q̂)∥p
(p,r) ≤ (1 + ε ⌈(m− k)/r⌉)∥A−Ak∥p

(p,r).

Proof. Let Q̂ be a rank-k projection such that

∥A(I − Q̂)∥p
Sp
≤ (1 + ε) min

rank-k projections Q
∥A(I −Q)∥p

Sp
= (1 + ε)

n∑
i=k+1

σi(A)p.

Note that ∥A(I − Q̂)∥p
Sp

=
∑m−k

i=1 σi(A(I − Q̂))p since the matrix A(I − Q̂) has rank at
most m− k from our assumption that colspan(Q) ⊆ rowspan(A). Now, ∥A(I − Q̂)∥p

(p,r) =∑r
i=1 σi(A(I − Q̂))p and therefore,

∥A(I − Q̂)∥p
(p,r) = ∥A(I − Q̂)∥p

Sp
−

m−k∑
i=r+1

σi(A(I − Q̂))p

≤ (1 + ε)
m∑

i=k+1
σi(A)p −

m−k∑
i=r+1

σi(A(I − Q̂))p.

Since the matrix AQ̂ has rank at most k, by Weyl’s inequality, σi(A(I − Q̂)) ≥ σi+k(A)
which implies

∥A(I − Q̂)∥p
(p,r) ≤

k+r∑
i=k+1

σi(A)p + ε∥A − Ak∥p
Sp

+

(
m∑

i=k+r+1

σi(A)p −
m−k∑

i=r+1

σi(A(I − Q̂))p

)
≤ min

rank-k projections Q
∥A(I − Q)∥p

(p,r) + ε∥A − Ak∥p
Sp

.

Finally, using the fact that ∥A−Ak∥p
Sp
≤ ⌈(m− k)/r⌉∥A−Ak∥p

(p,r), we obtain

∥A(I − Q̂)∥p
(p,r) ≤ (1 + ε⌈(m− k)/r⌉)∥A−Ak∥p

(p,r). ◀

P. Kacham and D. P. Woodruff 55:11

Finally, we have the following lemma which shows how to find an approximate solution to
the (p, r) Low Rank Approximation problem.

▶ Lemma 7. Let A ∈ Rm×n be an arbitrary matrix with m ≤ n. Given parameters k, p, r

and ε, there is a randomized algorithm to find a rank-k projection Q̂, that with probability
≥ 9/10 satisfies,

∥A(I − Q̂)∥p
(p,r) ≤ (1 + ε)∥A−Ak∥p

(p,r).

For constant p and k ≤ mα and any constant η > 0, the randomized algorithm runs in time
Õ(m2+η+(1−α)β/(1+2β)kβ/(1+2β) poly(1/ε) + nm + nkω−1) and for k ≥ mα, the algorithm
runs in Õ(m2+η−αβ+ β

1+2β kβ poly(1/ε) + nm1−αβkβ + nkω−1) time.

Proof. First we note that

min
rank-k projections Q

∥A(I −Q)∥p
(p,r) = min

rank-k projections W
∥(I −W)A∥p

(p,r) = ∥A−Ak∥p
(p,r).

Let T be an SRHT matrix with O(ε−2m polylog(n)) rows. With a large probability, T is an
ε subspace embedding for the rowspace of matrix A. Then

(1− ε)AA⊤ ⪯ ATT ⊤A⊤ ⪯ (1 + ε)AA⊤

and further for all rank-k projections W ,

(1 − ε)(I − W)AA⊤(I − W) ⪯ (I − W)AT T ⊤A⊤(I − W) ⪯ (1 + ε)(I − W)AA⊤(I − W).

We then have for all i that σi((I − W)AT) = (
√

1± ε)σi((I − W)A). Therefore, ∥(I −
W)AT∥p

(p,r) = (1± ε)p/2∥(I −W)A∥p
(p,r) for all rank-k projections W . Let Algorithm 2 be

run on the matrix T ⊤A⊤ with rank parameter k and approximation parameter ε/pm. By
Theorem 5, we obtain a rank-k projection Ŵ satisfying

∥T ⊤A⊤(I − Ŵ)∥p ≤ (1 + ε/pm) min
rank-k projections W

∥T ⊤A⊤(I −W)∥p

Using, Lemma 6, we obtain that

∥T ⊤A⊤(I − Ŵ)∥p
(p,r) ≤ (1 + ε) min

rank-k projections W
∥T ⊤A⊤(I −W)∥p

(p,r).

By using the relation between ∥(I −W)AT∥p
(p,r) and ∥(I −W)A∥p

(p,r) for all projections W ,
we get

∥A⊤(I − Ŵ)∥p
(p,r) ≤

(1 + ε)p/2+1

(1− ε)p/2 min
rank-k projections W

∥A⊤(I −W)∥p
(p,r)

≤ (1 + O(εp))∥A−Ak∥p
(p,r).

Now, ∥A − A(ŴA)+(ŴA)∥p
(p,r) ≤ ∥A − ŴA∥p

(p,r) = ∥(I − Ŵ)A∥p
(p,r) ≤ (1 + O(εp))∥A −

Ak∥p
(p,r). Scaling ε, we obtain the result.

Runtime Analysis. The matrix AT can be computed in time O(mn log n). For constant
p, Algorithm 2 runs on the matrix T ⊤A in time Õ(m2+η+(1−α)β/(1+2β)kβ/(1+2β) poly(1/ε))
for k ≤ mα and in time Õ(m2+η−αβ+ β

1+2β kβ poly(1/ε)) for k ≥ mα. Finally, the rowspace of
Ŵ ⊤A can be computed in time O(nm + nkω−1) for k ≤ mα and O(nm1−αβkβ + nkω−1) for
k ≥ mα. ◀

APPROX/RANDOM 2024

55:12 Schatten-p Low Rank Approximation

Using the above lemma, we can find a rank-k projection Q̂ that satisfies

∥SA(I − Q̂)∥p
(p,r) ≤ (1 + ε)∥A−Ak∥p

(p,r)

in time Õ((n1−2/p)2+η+(1−α)β/(1+2β) poly(1/ε) + n2) for constant k improving on the Õ(n2 +
(n(1−2/p))ω poly(1/ε)) running time of [9] for the current value of ω since 2 + (1−α)β

1+2β =
2 + ω−2

1+2β < ω if β ̸= 0. We thus have the following theorem.

▶ Theorem 8. Given a dense n × n matrix A, a constant rank parameter k

and any constant η > 0, there is a randomized algorithm that runs in time
Õ((n1−2/p)2+η+(1−α)β/(1+2β) poly(1/ε) + n2) and outputs a rank-k projection Q̂ that, with
probability ≥ 9/10, satisfies ∥A(I − Q̂)∥p

Sp
≤ (1 + ε)∥A−Ak∥p

Sp
.

For this algorithm, the crossover point is p̃ = 4(1+2β)
ω−2 + 2 i.e., only when p > p̃, Algorithm 2

is faster than the algorithm in the above theorem for constant k and ε. For current values of
ω, α, we have p̃ ≈ 22. In particular, for constant k and ε > n−cp , for p ≲ 22, the algorithm
has a time complexity of only Õ(n2).

5 Stability of LazySVD

5.1 Finite Precision Preliminaries
Following the presentation of [12], we say that a floating point machine has precision εmach if
it can perform computations to relative error εmach. More formally, let fl(x◦y) be the result of
the computation x◦y on the floating point machine where ◦ ∈ {+,−,×,÷}. We say that the
floating point machine has a precision εmach if for all x and y, fl(x ◦ y) = (1 + δ)(x ◦ y) where
|δ| ≤ εmach. Additionally, we also require fl(

√
x) = (1 + δ)

√
x for some δ with |δ| ≤ εmach.

Ignoring overflow or underflow, a machine which implements the IEEE floating point standard
with ≥ log2(1/εmach) bits of precision satisfies the above requirements (see [12, Section 5]).
Given matrices A and B with at most n rows and columns, we can compute a matrix C, on
a floating point machine, that satisfies ∥C −A ·B∥2 ≤ εmach poly(n)∥A∥2∥B∥2 by directly
computing Cij as fl(

∑
k AikBkj).

5.2 Stability Analysis

Algorithm 4 LazySVD [1].

Input: A positive semidefinite matrix M ∈ Rd×d, k ≤ d, ε, εpca, η

Output: Vectors v1, . . . , vk

1 M0 ←M and V0 ← []
2 for s = 1, . . . , k do
3 v′

s ← AppxPCAε/2,εpca,η/k(Ms−1)
4 vs ← (I − Vs−1V ⊤

s−1)v′
s/∥(I − Vs−1V ⊤

s−1)v′
s∥2

5 Vs ← [Vs−1 vs]
6 Ms ← (I − VsV ⊤

s)M(I − VsV ⊤
s) // The matrix Ms is not computed as we

only need matrix vector products with Ms

7 return Vk

The LazySVD algorithm (Algorithm 4) of [1] crucially requires a routine called AppxPCA
that computes an approximation to the top eigen vector of the given positive semidefinite
matrix. While they use a particular AppxPCA algorithm in their results, any routine that
satisfies the following definition can be plugged into the LazySVD algorithm.

P. Kacham and D. P. Woodruff 55:13

▶ Definition 9 (AppxPCA). We say that an algorithm is AppxPCA with parameters ε, εpca and
η if given a positive semidefinite matrix M ∈ Rd×d with an orthonormal set of eigenvectors
u1, . . . , ud corresponding to eigenvalues λ1 ≥ · · · ≥ λd ≥ 0, the algorithm outputs a unit
vector w such that with probability ≥ 1− η,

∑
i∈[d]:λi≤(1−ε)λ1

⟨w, ui⟩2 ≤ εpca.

We now show that Lanczos algorithm can be used to stably compute a vector that satisfies
the AppxPCA guarantee.

▶ Lemma 10. If for any vector x, we can compute a vector y such that

∥y −Msx∥2 ≤ O(εmach poly(n)κ)∥Ms∥2∥x∥2

and if εmach ≤ poly(εpcaη/nκ), then we can compute a unit vector v such that
with probability ≥ 1 − η,

∑
i:λi(Ms)≤(1−ε)λ1(Ms)⟨v, ui(Ms)⟩2 ≤ ε. The algorithm uses

O(1√
ε

poly(log(d/εηεpca))) matrix vector products with Ms.

Proof. Let z be a d dimensional random vector with each coordinate being an independent
Gaussian random variable. Let Ms =

∑
i λiuiu

⊤
i be the eigendecomposition. Let r be the

largest index such that λr ≥ (1− ε)λ1. Consider the vector Mq
s z for a q we choose later. We

have

y = Mq
s z =

d∑
i=1

λq
i ⟨ui, z⟩ui.

Consider ⟨u1, z⟩. By 2-stability of Gaussian random variables, ⟨u1, z⟩ ∼ N(0, ∥u1∥2
2) =

N(0, 1). Hence with probability 1 − η, |⟨u1, z⟩| ≥ η. We also have that with probability
≥ 1 − η, for all i = 1, . . . , d |⟨ui, z⟩| ≤ O(

√
log d/η). Condition on these events. Now,

∥y∥2
2 =

∑d
i=1 λ2q

i ⟨ui, z⟩2 ≥ λ2q
1 ⟨u1, z⟩2 ≥ λ2q

1 η2. Define ŷ = y/∥y∥2. Let i > r so that
λi < (1− ε)λ1 by definition of r. We have

|⟨ui, ŷ⟩| = |⟨ui, y⟩|
∥y∥2

≤ λq
i |⟨u1, z⟩|

λq
1η

≤
λq

i

√
log d/η

λq
1η

≤ (1− ε)q C
√

log d/η

η
.

If q ≥ Cε−1 log(d/εpcaη) for a large enough constant C, we get |⟨ui, ŷ⟩| ≤ poly(εpca/d). Thus,∑d
i=r+1 |⟨ui, ŷ⟩|2 ≤ poly(εpca).
Now define f(x) = xq so that f(Ms)z = y and define ρ = λ1/q. From [13, Chapter 3]

there is a polynomial p(x) of degree
√

2q log 1/γ such that for all x ∈ [−ρ, λ1 + ρ],

|p(x)− xq| ≤ eγλq
1.

As we can compute matrix-vector products with Ms up to an additive error of
O(εmach poly(n)κ), using Theorem 1 of [12] as long as εmach ≤ ε′ρ/(poly(n)κ∥Ms∥2) ≤
ε′/ poly(n)κ, we can compute a vector y′ on a floating point machine, using

√
2q log 1/γ

iterations such that

∥y− y′∥2 = ∥(Ms)qz− y′∥2 ≤ ((7eγ
√

2q log 1/γ)λq
1 + ε′λq

1)∥z∥2

≤ O(γ
√

2q log 1/γ + ε′)λq
1
√

d.

where we used that ∥z∥2 ≤ O(
√

d) with high probability. As ∥y∥2 ≥ λq
1η, we further obtain

that

∥y− y′∥2 ≤ O(γ
√

2q log 1/γ + ε′)
√

d∥y∥2/η.

APPROX/RANDOM 2024

55:14 Schatten-p Low Rank Approximation

We set γ = poly(εpcaη/dq) and ε′ = poly(εpcaη/d) to obtain that ∥y − y′∥2 ≤
poly(εpca/d)∥y∥2. Thus,

∥ŷ− y′/∥y′∥2∥2 ≤ ∥y/∥y∥2 − y′/∥y′∥2∥2 ≤ poly(εpca/d).

On a floating point machine, we can normalize the vector y′ to obtain a vector ŷ′ such that
∥ŷ′∥2 = (1± εmach poly(d)) and ∥ŷ′ − y′/∥y′∥2∥2 ≤ εmach poly(d). By triangle inequality, we
then obtain ∥ŷ− ŷ′∥2 ≤ poly(ε/d) + εmach poly(d). Finally, for i > r

|⟨ui, ŷ′⟩| ≤ |⟨ui, ŷ⟩|+ ∥ŷ− ŷ′∥2 ≤ poly(εpca/d) + εmach poly(d)

which then implies that as long as εmach ≤ poly(εpca/d), we get
∑d

i=r+1⟨ui, ŷ⟩2 ≤ poly(εpca).
Thus, we overall obtain that if εmach ≤ poly(εpcaη/dκ), we can obtain a vector ŷ′

by running the Lanczos method for O(1√
ε

poly(log(d/εpcaηε))) iterations such that with
probability ≥ 1− η, ∥ŷ′∥2 = (1± εmach poly(d)) and∑

i:λi(Ms)≤(1−ε)λ1(Ms)

⟨ŷ′, ui⟩2 ≤ εpca.

Overall, the algorithm uses O(1√
ε

poly(log(d/εηε))) matrix vector products with Ms and
uses an additional O(d√

ε
poly(log(d/εpcaηε))) floating point operations. ◀

Finally, we modify the LazySVD algorithm (see Algorithm 5) to make it more stable when
implemented on a floating point machine. The modification preserves the semantics of the
algorithm in the real number model while allowing the stability analysis to go through. For
the matrices that we need to run the routine AppxPCA on, we show that we can compute very
accurate matrix-vector products so that the Lanczos algorithm can be used to approximate
the top eigenvector to obtain the following theorem:

▶ Theorem 11. Given an n× d matrix A with condition number κ(A) = σ1(A)/σk+1(A),
an accuracy parameter ε, a rank parameter k and probability parameter η, if εmach ≤
poly(εη/nκ(A)), there is an algorithm that outputs a d× k matrix Vk such that κ(Vk) ≤ 4
and for all p ∈ [2,∞],

∥A(I − Projcolspace(Vk))∥Sp ≤ (1 + O(ε))∥A−Ak∥Sp

and runs in time O(nnz(A)k√
ε

poly(log(dκ(A)/εη)) + d poly(k, log(dk/ηε))).

Algorithm 5 Modified LazySVD.

Input: A positive semidefinite matrix M ∈ Rd×d, k ≤ d, ε, εpca, η

Output: Vectors v′
1, . . . , v′

k

1 M0 ←M and V0 ← []
2 for s = 1, . . . , k do
3 v′

s ← AppxPCAε,εpca,η/k((I − Projcolspace(Vs−1))M(I − Projcolspace(Vs−1)))
4 Vs ← [Vs−1 v′

s]
5 return Vk

For convenience, we denote any algorithm that satisfies Definition 9 as AppxPCAε,εpca,η. We
abuse notation and say that if a unit vector w satisfies

∑
i∈[d]:λi(M)≤(1−ε)λ1(M)⟨w, ui(M)⟩2 ≤

εpca, then “w is AppxPCAε,εpca
(M)”.

P. Kacham and D. P. Woodruff 55:15

In [1], the authors show that if εpca = poly(ε, 1/d, λk+1/λ1), then with probability ≥ 1−η

(union bounding over the success of all k calls to the AppxPCA routine), the orthonormal
matrix Vk output by Algorithm 4 satisfies
1. ∥(I − VkV ⊤

k)M(I − VkV ⊤
k)∥2 ≤ λk+1(M)

(1−ε) ,
2. (1− ε)λk(M) ≤ v⊤

k Mvk ≤ 1
1−ε λk(M) and

3. for every p ≥ 1, ∥(I − VkV ⊤
k)M(I − VkV ⊤

k)∥Sp
≤ (1 + O(ε))(

∑d
i=k+1 λp

i)1/p.

Since, the modified algorithm (Algorithm 5) has the same semantics as Algorithm 4, the
properties 1 and 3 continue to hold for the modified LazySVD algorithm.

The advantage of the modification is that given any vector x, we can compute (I −
Projcolspace(Vs

))x very accurately on a floating point machine using stable algorithms for the
least squares problem, thereby obtaining a vector y on a floating point machine that is a
very good approximation to Msx = (I − Projcolspace(Vs))M((I − Projcolspace(Vs)))x for any
given x. Below we have a result that states the stability of solving the Least Squares problem
on a floating point machine.

▶ Theorem 12 (Theorem 19.1 of [15]). The algorithm for solving the least squares problem
minx ∥Ax − b∥2

2 using Householder triangulation is backwards stable in the sense that the
solution x̃ satisfies

∥(A + δA)x̃− b∥2
2 = min

x
∥(A + δA)x− b∥2

2

for some matrix δA satisfying ∥δA∥2 ≤ O(εmach∥A∥2).

Let x∗ = A+b and from the above theorem, we have x̃ = (A + δA)+b. Assuming εmach ≤
1/2κ(A), we have A + δA is full rank and therefore (A + δA)+ = ((A + δA)⊤(A + δA))−1(A +
δA)⊤ using which we obtain that ∥Ax̃ − Ax∗∥2 ≤ O(εmach poly(κ(A))∥b∥2). Note that
Ax∗ = Projcolspace(A)b. Thus, given a matrix A and a vector x, we can compute a vector y

on a floating point machine such that ∥y − Projcolspace(A)x∥2 ≤ O(εmach poly(κ(A), d)∥x∥2).
Finally, we can compute another vector y′ satisfying ∥y′ − (I − Projcolspace(A))x∥2 ≤

O(εmach poly(κ(A), d)∥x∥2). Thus, given any vector x, if operations are computed using
machine precision εmach and if we assume that for any arbitrary vector x, we can compute a
vector y satisfying ∥y −Mx∥2 ≤ εM∥M∥2∥x∥2, then given any vector x, we can compute
a vector y on a floating point machine satisfying ∥y −Msx∥2 ≤ O(εmach poly(κ(Vs), d) +
εM)∥M∥2∥x∥2.

We now bound κ(Vs). Assume that the vector v′
s satisfies ∥v′

s∥2 = (1± poly(d)εmach). If
the vector v′

s is AppxPCAε,εpca
(Ms−1), then

∥Projcolspace(Vs−1)v
′
s∥2

2 ≤
∑

i∈[d]:λi(Ms−1)≤(1−ε)λ1(Ms−1)

⟨v′
s, ui(Ms)⟩2 ≤ εpca

where the first inequality follows from the fact that colspace(Vs−1) is spanned by the
eigenvectors of Ms−1 corresponding to zero eigenvalues. Using the above inequality, we can
upper bound σmax(Vs) and lower bound σmin(Vs).

▶ Lemma 13. Suppose Vs−1 is a d × (s − 1) matrix such that σmax(Vs−1) = αs−1 and
σmin(Vs−1) = βs−1. Let v′

s be a vector with ∥v′
s∥2 = (1 ± poly(d)εmach) and satisfies

∥Projcolspace(Vs−1)v
′
s∥2

2 ≤ εpca. Let Vs = [Vs−1 v′
s]. Then σmax(Vs) ≤ max(σmax(Vs−1), 1 +

poly(d)εmach) +√εpca and

σmin(Vs) ≥
√

max(0, min(σmin(Vs−1)2, 1− poly(d)εmach)− σmax(Vs−1)√εpca).

APPROX/RANDOM 2024

55:16 Schatten-p Low Rank Approximation

Proof. Let Q be an orthonormal basis for the column space of Vs−1 and let Vs−1 = QR for
a matrix R with σmax(R) = σmax(Vs−1) = αs−1 and σmin(R) = σmin(Vs−1) = βs−1. We have
that ∥Q⊤v′

s∥2
2 = ∥QQ⊤v′

s∥2
2 = ∥Projcolspace(Vs−1)v

′
s∥2

2 ≤ εpca. Let x ∈ Rs be an arbitrary unit
vector. Let x1 ∈ Rs−1 and x2 ∈ R be such that x = (x1, x2). Now,

∥Vsx∥2
2 = ∥QRx1 + v′

sx2∥2
2 = ∥Rx1∥2

2 + x2
2∥v′

s∥2
2 + (2x2)x⊤

1 R⊤Q⊤v′
s

≤ α2
s−1∥x1∥2

2 + (1 + poly(d)εmach)x2
2 + (2|x2|)αs−1∥x1∥2

√
εpca

≤ max(α2
s−1, 1 + poly(d)εmach) + αs−1

√
εpca(∥x1∥2

2 + |x2|2)

which implies that ∥Vs∥2 ≤ max(αs−1, 1 + poly(d)εmach) +√εpca. Similarly,

∥Vsx∥2
2 = ∥QRx1 + v′

sx2∥2
2 = ∥Rx1∥2

2 + x2
2∥v′

s∥2
2 + (2x2)x⊤

1 R⊤Q⊤v′
s

≥ β2
s−1∥x1∥2

2 + (1− poly(d)εmach)x2
2 − 2|x2|∥x1∥2αs−1

√
εpca

≥ min(β2
s−1, 1− poly(d)εmach)− αs−1

√
εpca.

Hence, σmin(Vs) ≥
√

max(0, min(σmin(Vs−1)2, 1− poly(d)εmach)− σmax(Vs−1)√εpca). ◀

Conditioned on the event that ∥Projcolspace(Vs−1)v
′
s∥2

2 ≤ εpca and ∥v′
s∥2

2 = (1± poly(d)εmach)
for all s = 1, . . . , k, from the above lemma, we obtain that ∥Vs∥2 ≤ 1+poly(d)εmach +k

√
εpca.

If εpca ≤ 1/ poly(k) and εmach ≤ 1/ poly(d), then ∥Vs∥2 ≤ 2 for all s = 1, . . . , k which in turn
implies that for all s = 1, . . . , k, σmin(Vs) ≥

√
1− poly(d)εmach − 2k

√
εpca ≥ 1/2 assuming

εpca ≤ 1/ poly(k) and εmach ≤ 1/ poly(d).
Hence, κ(Vs) ≤ 4 for all s = 1, . . . , k in Algorithm 5 conditioned on the success of all the

calls to AppxPCA. Thus, we can assume that given any vector x, we can compute a vector
y on a floating point computer with precision εmach ≤ 1/ poly(d) such that ∥y −Msx∥2 ≤
O(εmach poly(d) + εM)∥M∥2∥x∥2.

Let A ∈ Rn×d be an arbitrary matrix with n ≥ d. Define M = A⊤A to be a d ×
d matrix. Given any vector x, we can compute a vector y satisfying ∥A⊤Ax − y∥2 ≤
O(εmach poly(n)∥A∥2

2∥x∥2). As ∥A∥2
2 = ∥M∥2, we thus have that for any x, we can compute

y satisfying O(εmachine poly(d)∥M∥2∥x∥2). Thus, εM as defined above can be taken as
εmach poly(d). Let κ = λ1(M)/λk+1(M). By definition of eigenvalues, for any matrix V with
at most k columns, we have ∥(I − Projcolspace(V))M(I − Projcolspace(V)))∥2 ≥ λk+1. Hence
for all s = 1, . . . , k, ∥Ms∥2 ≥ ∥M∥2/κ. Thus, given any vector x, we can compute a vector y

satisfying ∥y −Msx∥2 ≤ O(εmach poly(n)κ)∥Ms∥2∥x∥2.

Finally, we have the main theorem showing the stability of the LazySVD algorithm.

Proof of Theorem 11. Note that the algorithm in Lemma 10 satisfies the AppxPCAε,εpca,η

definition. Thus, if εpca ≤ poly(ε/dκ), by Theorem 4.1 of [1], Algorithm 5 when run on
the d × d matrix A⊤A outputs a matrix Vk such that with probability ≥ 1 − η, ∥(I −
Projcolspace(Vk))A⊤A(I − Projcolspace(Vk))∥2 ≤ 1

1−ε σk+1(A)2 and for all p′ ≥ 1,

∥(I − Projcolspace(Vk))A⊤A(I − Projcolspace(Vk))∥Sp′ ≤ (1 + O(ε))(
d∑

i=k+1
σi(A)2p′

)1/p′
.

Thus, we have ∥A(I − Projcolspace(Vk))∥2 ≤ (1 + O(ε))σk+1(A) and using the fact that
∥A⊤A∥p

Sp
= ∥A∥2p

S2p
, for all p ≥ 2, ∥A(I − Projcolspace(Vk))∥Sp ≤ (1 + O(ε))∥A − Ak∥p. We

additionally have κ(Vk) ≤ 4 from Lemma 13.

P. Kacham and D. P. Woodruff 55:17

Runtime Analysis. In each iteration of Algorithm 5, we require O(ε−1/2 poly(log(dκ/ηε)))
matrix vector products with the matrices A and A⊤. For iterations s = 1, . . . , k, we solve
O(ε−1/2 poly(log(dκ/ηε))) least squares problems on a fixed d× s matrix and different label
vectors. Thus, the overall time complexity of the algorithm is

O

(
nnz(A)k√

ε
poly(log(dκ/ηε)) + d poly(k, log(dκ/ηε))

)
. ◀

References
1 Zeyuan Allen-Zhu and Yuanzhi Li. LazySVD: Even faster SVD decomposi-

tion yet without agonizing pain. Advances in neural information processing
systems, 29, 2016. URL: https://proceedings.neurips.cc/paper/2016/hash/
c6e19e830859f2cb9f7c8f8cacb8d2a6-Abstract.html.

2 Ainesh Bakshi, Kenneth L Clarkson, and David P Woodruff. Low-rank approximation with
1/ε1/3 matrix-vector products. STOC 2022. arXiv:2202.05120, 2022. doi:10.48550/arXiv.
2202.05120.

3 Jess Banks, Jorge Garza-Vargas, Archit Kulkarni, and Nikhil Srivastava. Pseudospectral shat-
tering, the sign function, and diagonalization in nearly matrix multiplication time. Foundations
of Computational Mathematics, pages 1–89, 2023. doi:10.1007/s10208-022-09577-5.

4 Kenneth L. Clarkson and David P. Woodruff. Low-rank approximation and regression in input
sparsity time. J. ACM, 63(6):Art. 54, 45, 2017. doi:10.1145/3019134.

5 Ran Duan, Hongxun Wu, and Renfei Zhou. Faster matrix multiplication via asymmetric
hashing. FOCS 2023. arXiv:2210.10173, 2022. doi:10.48550/arXiv.2210.10173.

6 François Le Gall and Florent Urrutia. Improved rectangular matrix multiplication using
powers of the coppersmith-winograd tensor. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1029–1046. SIAM, 2018. doi:10.1137/
1.9781611975031.67.

7 François Le Gall. Faster algorithms for rectangular matrix multiplication. In 2012 IEEE
53rd annual symposium on foundations of computer science, pages 514–523. IEEE, 2012.
doi:10.1109/FOCS.2012.80.

8 François Le Gall. Faster rectangular matrix multiplication by combination loss analysis. In
Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 3765–3791. SIAM, 2024. doi:10.1137/1.9781611977912.133.

9 Yi Li and David Woodruff. Input-sparsity low rank approximation in schatten norm. In
International Conference on Machine Learning, pages 6001–6009. PMLR, 2020. URL: http:
//proceedings.mlr.press/v119/li20q.html.

10 Grazia Lotti and Francesco Romani. On the asymptotic complexity of rectangular matrix mul-
tiplication. Theoretical Computer Science, 23(2):171–185, 1983. doi:10.1016/0304-3975(83)
90054-3.

11 Cameron Musco and Christopher Musco. Randomized block krylov methods for stronger
and faster approximate singular value decomposition. Advances in neural information
processing systems, 28, 2015. URL: https://proceedings.neurips.cc/paper/2015/hash/
1efa39bcaec6f3900149160693694536-Abstract.html.

12 Cameron Musco, Christopher Musco, and Aaron Sidford. Stability of the Lanczos method
for matrix function approximation. In Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1605–1624. SIAM, Philadelphia, PA, 2018. doi:
10.1137/1.9781611975031.105.

13 Sushant Sachdeva and Nisheeth K Vishnoi. Faster algorithms via approximation theory.
Foundations and Trends® in Theoretical Computer Science, 9(2):125–210, 2014. doi:10.1561/
0400000065.

APPROX/RANDOM 2024

https://proceedings.neurips.cc/paper/2016/hash/c6e19e830859f2cb9f7c8f8cacb8d2a6-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/c6e19e830859f2cb9f7c8f8cacb8d2a6-Abstract.html
https://doi.org/10.48550/arXiv.2202.05120
https://doi.org/10.48550/arXiv.2202.05120
https://doi.org/10.1007/s10208-022-09577-5
https://doi.org/10.1145/3019134
https://doi.org/10.48550/arXiv.2210.10173
https://doi.org/10.1137/1.9781611975031.67
https://doi.org/10.1137/1.9781611975031.67
https://doi.org/10.1109/FOCS.2012.80
https://doi.org/10.1137/1.9781611977912.133
http://proceedings.mlr.press/v119/li20q.html
http://proceedings.mlr.press/v119/li20q.html
https://doi.org/10.1016/0304-3975(83)90054-3
https://doi.org/10.1016/0304-3975(83)90054-3
https://proceedings.neurips.cc/paper/2015/hash/1efa39bcaec6f3900149160693694536-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/1efa39bcaec6f3900149160693694536-Abstract.html
https://doi.org/10.1137/1.9781611975031.105
https://doi.org/10.1137/1.9781611975031.105
https://doi.org/10.1561/0400000065
https://doi.org/10.1561/0400000065

55:18 Schatten-p Low Rank Approximation

14 Aleksandros Sobczyk, Marko Mladenović, and Mathieu Luisier. Hermitian pseudospectral
shattering, cholesky, hermitian eigenvalues, and density functional theory in nearly matrix
multiplication time. arXiv preprint arXiv:2311.10459, 2023. doi:10.48550/arXiv.2311.
10459.

15 Lloyd N. Trefethen and David Bau, III. Numerical linear algebra. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, 1997. doi:10.1137/1.9780898719574.

16 Joel A Tropp. Improved analysis of the subsampled randomized hadamard transform. Advances
in Adaptive Data Analysis, 3(01n02):115–126, 2011. doi:10.1142/S1793536911000787.

A Time Complexity of SVD in the Real RAM model

Consider an m× n matrix A where m ≤ n. We can compute the matrix M = A⊤A in time
O(nmω−1), where ω is the matrix multiplication exponent. Using the eigendecomposition
algorithm of [3], we can then compute a matrix V and a diagonal matrix D satisfying
∥M − V DV −1∥2 ≤ ∥M∥2/ poly(n) in time Õ(mω). Although the matrix M is symmetric,
the matrix V output by the algorithm may not be orthonormal. In the real RAM model, we
can perform the following changes to their algorithm:
1. The Ginibre perturbation step is replaced with the symmetric Gaussian Orthogonal

Ensemble perturbation as mentioned in Remark 6.1 of [3].
2. In step 5 of the algorithm EIG in [3], after computing the orthonormal matrices Q̃+

and Q̃−, we modify Q̃− to an orthonormal basis of the column space of the matrix
(I − Q̃+Q̃⊤

+)Q̃−. This ensures that Q̃⊤
+Q̃− = 0, while preserving the properties of Q̃−

guaranteed by the algorithm DEFLATE. Note that the matrix Q̃− can be updated in time
Õ(nω) in the real RAM model.

Thus, the algorithm of [3] can be used to compute an orthonormal matrix V and a diagonal
matrix D such that ∥M − V DV ⊤∥2 ≤ ∥M∥2/ poly(n) in Õ(nmω−1) time in the real RAM
model.

If we define U = AV · D−1/2, then U, D1/2, V ⊤ is an approximate singular value de-
composition of the matrix A, where the matrices U, V are orthonormal up to a 1/ poly(n)
error. Since the matrix AV can be computed in Õ(nmω−1), we obtain that SVD of a well
conditioned matrix can be computed in Õ(nmω−1) time.

B An Experiment

We consider multiplying an n × n matrix with an n × d matrix while varying d. We set
n = 10,000 and vary d to take values in the interval [10, 100]. If td is the median amount of
time (over 5 repetitions) to compute the product of an n×n matrix with an n×d matrix, we
obtain a color map (Figure 1) of the values (j/i)/(tj/ti) for j ≥ i. If (j/i)/(tj/ti) is large then
tj is much smaller than ti(j/i) which is what we would expect if the matrix-multiplication
time scales linearly with the dimension.

The experiment was performed using NumPy on a machine with 2 cores. We see that fixing
an i, as we increase j, tj becomes smaller compared to ti · (j/i). Hence, it is advantageous
to run with larger block sizes if it means that it reduces the number of iterations for which
the smaller block size is to be run. In the proof of Theorem 5, we see that if we increase the
larger block to 4 times the original, then the number of iterations the smaller block size is to
be run decreases to 0.5x the original. Based on the characteristics of the machine, we can
obtain significant improvements over the parameters obtained by optimizing for matrix-vector
products.

https://doi.org/10.48550/arXiv.2311.10459
https://doi.org/10.48550/arXiv.2311.10459
https://doi.org/10.1137/1.9780898719574
https://doi.org/10.1142/S1793536911000787

P. Kacham and D. P. Woodruff 55:19

Figure 1 Color Map of (j/i)/(tj/ti).

APPROX/RANDOM 2024

Fast and Slow Mixing of the Kawasaki Dynamics
on Bounded-Degree Graphs
Aiya Kuchukova #

School of Mathematics, Georgia Institute of Technology, Atlanta, GA, USA

Marcus Pappik #

Hasso Plattner Institute, University of Potsdam, Germany

Will Perkins #

School of Computer Science, Georgia Institute of Technology, Atlanta, GA, USA

Corrine Yap #

School of Mathematics, Georgia Institute of Technology, Atlanta, GA, USA

Abstract
We study the worst-case mixing time of the global Kawasaki dynamics for the fixed-magnetization
Ising model on the class of graphs of maximum degree ∆. Proving a conjecture of Carlson, Davies,
Kolla, and Perkins, we show that below the tree uniqueness threshold, the Kawasaki dynamics
mix rapidly for all magnetizations. Disproving a conjecture of Carlson, Davies, Kolla, and Perkins,
we show that the regime of fast mixing does not extend throughout the regime of tractability for
this model: there is a range of parameters for which there exist efficient sampling algorithms for
the fixed-magnetization Ising model on max-degree ∆ graphs, but the Kawasaki dynamics can
take exponential time to mix. Our techniques involve showing spectral independence in the fixed-
magnetization Ising model and proving a sharp threshold for the existence of multiple metastable
states in the Ising model with external field on random regular graphs.

2012 ACM Subject Classification Mathematics of computing → Markov-chain Monte Carlo methods;
Theory of computation → Randomness, geometry and discrete structures

Keywords and phrases ferromagnetic Ising model, fixed-magnetization Ising model, Kawasaki
dynamics, Glauber dynamics, mixing time

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.56

Category RANDOM

Related Version Full Version: https://arxiv.org/abs/2405.06209 [36]

Funding Marcus Pappik: supported by the HPI Research School on Data Science and Engineering.
Will Perkins: supported in part by NSF grant CCF-2309708.
Corrine Yap: supported in part by NIH grant R01GM126554.

Acknowledgements The authors thank Zongchen Chen and Marcus Michelen for very helpful
discussions.

1 Introduction

The Ising model on a finite graph G = (V, E) is the following probability distribution on
Ω = {+1, −1}V :

µG,β,λ(σ) = λ|σ|+
eβmG(σ)

ZG(β, λ) (1)

where |σ|+ = |{σ−1(+1)}| is the number of vertices assigned a +1 spin under σ which we call
the size of σ, and mG(σ) is the number of monochromatic edges in G under the 2-coloring
given by σ ∈ Ω. The measure µG,β,λ is called the Gibbs measure on G with inverse temperature

© Aiya Kuchukova, Marcus Pappik, Will Perkins, and Corrine Yap;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 56; pp. 56:1–56:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aiya.kuchukova@math.gatech.edu
https://orcid.org/0009-0007-0299-6322
mailto:marcus.pappik@hpi.de
https://orcid.org/0000-0002-2480-3073
mailto:math@willperkins.org
https://orcid.org/0000-0002-7937-7016
mailto:math@corrineyap.com
https://orcid.org/0000-0003-3762-8865
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.56
https://arxiv.org/abs/2405.06209
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

56:2 Fast and Slow Mixing of the Kawasaki Dynamics

β ≥ 0 and external field λ ≥ 0. The normalizing constant ZG(β, λ) =
∑

σ∈Ω λ|σ|+
eβmG(σ)

is the partition function of the Ising model. Throughout this paper, we focus on the
ferromagnetic case, β ≥ 0, in which agreeing spins on edges are preferred.

Spin models on graphs are the source of many interesting computational problems.
Questions about the tractability of approximate counting (estimating the partition function)
and approximate sampling (from the Gibbs distribution) are studied extensively.

In the case of the ferromagnetic Ising model, Jerrum and Sinclair [35] showed that there
is a polynomial-time approximation algorithm on all graphs at all temperatures, and Randall
and Wilson [42] gave an efficient sampling algorithm.

In other cases, such as the anti-ferromagnetic Ising model (β < 0) and the hard-core model
of weighted independent sets, approximate counting and sampling can be computationally
hard (e.g., no polynomial-time algorithm exists unless NP=RP). For the class G∆ of graphs
of maximum degree ∆, these two models exhibit computational thresholds: as the activity or
external field parameter λ varies, there is a sharp threshold between tractability (efficient
approximate counting and sampling) and intractability (NP-hardness) [28, 46–48]. Moreover,
the critical value λc = λc(∆, β) is the phase transition point of the corresponding model on
the infinite ∆-regular tree T∆ (more precisely, it is the threshold for the uniqueness of Gibbs
measure on T∆, a notion which we discuss shortly). Thus there is a remarkable connection
between computational thresholds and statistical physics phase transitions. Even further,
the threshold λc has recently been shown to be a dynamical threshold: it is the threshold
for rapid mixing of the Glauber dynamics, a natural Markov chain for sampling from spin
models like the Ising or hard-core models, on graphs in G∆ [2, 15,41,48]. So in these cases,
three different thresholds (computational, dynamical, uniqueness on the tree) coincide.

A very similar picture has emerged for the model of a uniformly random independent set
of a given size. For the class of graphs G∆, there is a critical density αc(∆) so that if α < αc,
there are efficient algorithms to approximately count and sample independent sets of density
α, while if α > αc no such algorithms exist unless NP=RP [22]. Jain, Michelen, Pham, and
Vuong [33] recently proved that this computational threshold αc also marks the dynamical
threshold – for α < αc, the natural “down-up” random walk on independent sets of a given
size mixes rapidly. The threshold αc(∆) is closely connected to a uniqueness threshold on
the tree: it is the smallest expected density of an independent set in the hard-core model on
G ∈ G∆ at activity λc(∆).

Returning to the ferromagnetic Ising model (β ≥ 0), the picture is fundamentally different
and not completely understood. While there is no computational threshold (there are efficient
algorithms for all parameters) one can still ask about the relationship between uniqueness
and dynamical thresholds. The natural dynamics in this setting are the Glauber dynamics,
a Markov chain on the state space Ω with stationary distribution µG,β,λ which at each
step chooses a uniformly random vertex and updates its spin according to the conditional
distribution given the spins of its neighbors. For the case λ = 1 (“no external field”) the
dynamical threshold has been identified, and it coincides with the uniqueness threshold. For
∆ ≥ 3, let the critical inverse temperature of the Ising model on T∆ be denoted by

βu(∆) := ln
(

∆
∆ − 2

)
.

The value βu(∆) is the Gibbs uniqueness threshold for the Ising model (with λ = 1) on T∆
(see e.g. [6] and below in Section 2.1 for a precise definition). Mossel and Sly [40] proved that
for 0 ≤ β < βu and any λ, the Glauber dynamics are rapidly mixing for any G ∈ G∆. This
threshold in β is sharp due to the analysis of the random ∆-regular graph in [23, 31]: for
β > βu and λ = 1, the Glauber dynamics for the Ising model take exponential time to mix.

A. Kuchukova, M. Pappik, W. Perkins, and C. Yap 56:3

For general λ ≥ 0, in the regime β > βu, the threshold landscape is not as well understood.
Note that the model is symmetric around λ = 1 by swapping the role of + and − spins and
so for each threshold, its inverse is also a threshold; for clarity we will define thresholds for
the case λ ≥ 1. Let λu(∆, β) be the Gibbs uniqueness threshold of the ferromagnetic Ising
model on T∆; that is, λu is the smallest λ0 ≥ 1 so that there is a unique Gibbs measure for
the Ising model on T∆ with inverse temperature β and external field λ, for all λ > λ0 (again
see [6] and Section 2.1 for details). The value of λu can be given implicitly as the solution to
an equation involving ∆, β, and λ. Unlike in the above mentioned examples, while λu marks
a phase transition on the tree, it does not mark a computational transition (since sampling
from the ferromagnetic Ising model is tractable on all graphs and all parameters) and it has
not been established as a dynamical threshold (though this also has not been ruled out).
Below in Theorem 2 we show that the worst-case mixing time of Glauber dynamics over G∆
is exponential when | log λ| < log λu.

The complementary result (fast mixing of the Glauber dynamics for G ∈ G∆ when
| log λ| > log λu) is not known to hold. Instead, sufficient conditions for fast mixing have
been given that require λ to be somewhat larger than λu. An interesting insight is that
upper bounds on the dynamical threshold are often connected to zero-freeness of the map
λ 7→ ZG(β, λ) considered as a complex polynomial. Throughout this paper, we particularly
focus on the analytic threshold λa(∆, β), defined by the following requirement: for all G ∈ G∆,
every compact D ⊂ (λa(∆, β), ∞) and every partial spin assignment τU : U → {−1, +1},
U ⊂ V it holds that ZτU

G (β, λ) (the partition function restricted to configurations that are
consistent with τU) is non-zero for all λ in some uniform complex neighborhood of D. A
formal definition of λa is given in Section 2.5. In contrast to the uniqueness threshold,
λa(∆, β) has not been determined. It is known that λa(∆, β) ≥ λu(∆, β) and the best known
upper bound is

λa(∆, β) ≤ min
{

(∆ − 2)e2β − ∆
eβ(2−∆) , eβ∆

}
=: λ̄a . (2)

The first expression in the minimum of (2) was proven by Shao and Sun [44], and the second
bound of eβ∆ (which is smaller than the first expression for ∆ ≥ 4 and β large enough) was
proven by Shao and Ye [45].

It turns out that this analytic threshold λa is closely related to the dynamical threshold.
More precisely, Chen, Liu, and Vigoda [17] proved that the first bound in (2) can be
used to define a regime in which the ferromagnetic Ising model satisfies ℓ∞-independence
(see Section 2.4), a stronger version of spectral independence that implies rapid mixing of
Glauber dynamics. Their derivation of the threshold used techniques similar to those of
Shao and Sun [44] which resulted in coinciding bounds, but a more systematic connection
was provided by Chen, Liu and Vigoda in [16]. They showed that for a broad class of spin
systems, sufficiently strong zero-freeness assumptions imply ℓ∞-independence. With small
adjustments, we use their technique to argue that the ferromagnetic Ising model satisfies
ℓ∞-independence for all | log λ| > log λa(∆, β) (see Theorem 22).

The main focus of this paper is on dynamical thresholds of the fixed-magnetization Ising
model with inverse temperature β and magnetization η. The magnetization (per vertex) of

an Ising configuration σ is η(σ) :=
∑

v∈V (G)
σv

|V (G)| . A configuration σ of magnetization η has
size (number of +1 spins) exactly k = ⌊n η+1

2 ⌋. We denote by Ωk the configurations of size k.

APPROX/RANDOM 2024

56:4 Fast and Slow Mixing of the Kawasaki Dynamics

The fixed-magnetization Ising model with inverse temperature β ≥ 0 and magnetization
η ∈ [−1, 1] is then a probability distribution defined similarly to (1) but on Ωk, where
k = ⌊n η+1

2 ⌋, as

µ̂G,β,η(σ) = eβmG(σ)

ẐG,η(β)
,

where

ẐG,η(β) =
∑

σ∈Ωk

eβmG(σ)

is the fixed-magnetization partition function. Here we use floors to avoid restricting to values
of η where n η+1

2 is an integer. The distribution µ̂G,β,η is exactly that of µG,β,λ conditioned
on the event {σ ∈ Ωk}. Note that the external field plays no role in the fixed-magnetization
model since λ|σ|+ is constant on Ωk.

In statistical physics, the fixed-magnetization Ising model is the canonical ensemble while
the Ising model is the grand canonical ensemble. The fixed-magnetization model on lattices
is studied in, e.g., [13, 24], where interesting geometric behavior is described; the behavior of
the Kawasaki dynamics (the natural analogue of Glauber dynamics) on Zd has been studied
extensively in, e.g., [9–11, 38]. Here we focus on dynamical behavior over the class of all
graphs of maximum degree ∆.

To understand algorithmic and dynamical thresholds in the fixed-magnetization Ising
model, we need to define some further parameters. The mean magnetization of the + measure
on T∆ (explained in detail in Section 2.1) is

η+
∆,β,λ := tanh (L∗ + artanh(tanh(L∗) tanh(β/2)))

where L∗ is the largest solution to

L = log(λ) + (∆ − 1)artanh(tanh(L) tanh(β/2)) .

We are specifically interested in the following three quantities:

ηc(∆, β) = η+
∆,β,1 ηu(∆, β) = η+

∆,β,λu
ηa(∆, β) = η+

∆,β,λa
.

For β > βu, we have 0 < ηc < ηu ≤ ηa. It is not known if the last inequality is strict or not
(just as it is not known if λa = λu).

Carlson, Davies, Kolla, and Perkins [12] showed recently that the fixed-magnetization
Ising model exhibits quite different algorithmic behavior than the Ising model: it exhibits
a computational threshold. In particular, for β < βu and any η, as well as for β > βu and
|η| > ηc, there are efficient approximate counting and sampling algorithms for the Ising
model at fixed mean magnetization η on G∆, while for β > βu and |η| < ηc, there are no
such algorithms unless NP=RP. Thus βu and ηc mark the computational threshold in the
fixed-magnetization Ising model.

Here we study dynamical thresholds for the fixed-magnetization Ising model on G∆.
Given a distribution, one candidate for an efficient approximate sampling algorithm is a
Markov chain whose stationary distribution is our target distribution, but the efficiency of
this algorithm depends on the mixing time. Recall that the mixing time of a Markov chain is
the number of steps, in the worst-case over initial distribution, required for a Markov chain
to reach 1/4 total variation distance of its stationary distribution (see Section 2.4 for a formal
definition). As mentioned above, the natural dynamics associated to the fixed-magnetization

A. Kuchukova, M. Pappik, W. Perkins, and C. Yap 56:5

Ising model are the Kawasaki dynamics, which is a reversible Markov chain on Ωk. At each
step of the chain, a +1 vertex and a −1 vertex are chosen uniformly at random and have
their spins swapped with a probability depending on the ratio of the Ising probabilities of the
two configurations. This is sometimes referred to as the global Kawasaki dynamics, whereas
the local Kawasaki dynamics restrict to swapping spins of neighboring vertices.

Our main contributions concern the mixing time of the Kawasaki dynamics. Taking
∥µ − ν∥TV := supA∈A |µ(A) − ν(A)| to be the total variation distance between probability
distributions µ and ν on a probability space (Ω, A), the mixing time of a Markov chain on Ω
that has transition matrix P and stationary distribution π is

τmix := inf
{

t : max
x∈Ω

∥P t(x, ·) − π∥TV ≤ 1
4

}
.

Resolving one conjecture of Carlson, Davies, Kolla, and Perkins and disproving another
(part (i) and (ii) respectively of [12, Conjecture 1]), we establish thresholds in the mean
magnetization for fast and slow mixing of the Kawasaki dynamics on G∆.

▶ Theorem 1. For the Kawasaki dynamics, the following two statements hold:
(1) If 0 ≤ β < βu or if β > βu and |η| > ηa, then the Kawasaki dynamics for µ̂G,β,η have

mixing time O(|V (G)|2) for all G ∈ G∆.
(2) There exists a sequence of graphs Gn ∈ G∆ with |V (Gn)| → ∞ such that for β > βu and

|η| < ηu, the Kawasaki dynamics for µ̂G,β,η have mixing time exp (Ω(|V (Gn)|)) on G.

Fast mixing of the dynamics for all η when β < βu was conjectured in [12]. The slow
mixing for some η > ηc disproves the conjecture from [12] asserting the coincidence of the
algorithmic and dynamical thresholds. If it were established that λa(∆, β) = λu(∆, β) then
Theorem 1 would give the sharp dynamical threshold for the fixed-magnetization model. It
is an interesting question to understand the dynamical threshold in both the Ising model
and fixed-magnetization Ising model if instead it holds that λu < λa.

0 0.4 0.8 1.2
0

0.2

0.4

0.6

0.8

1

β

η

η̄a

ηu

ηc

βu

Fast

Theorem 1, (1)

Slow

Theorem 1, (2)

Figure 1 Sketch of the phase space for the fixed-magnetization model on G∆ when ∆ = 4, where
η̄a = η∆,β,λ̄a

.

A diagram of the computational and dynamical thresholds for the fixed-magnetization
Ising model is given in Figure 1.

APPROX/RANDOM 2024

56:6 Fast and Slow Mixing of the Kawasaki Dynamics

Towards the proof of Theorem 1,(2), we establish that the Glauber dynamics for the Ising
model on the random ∆-regular graph takes exponential time to mix when β > βu and λ is
in the non-uniqueness regime for T∆.

▶ Theorem 2. Fix ∆ ≥ 3, β > βu(∆), and | log λ| < log λu(∆, β). Let G be a uniformly
random ∆-regular graph on n vertices. Then with high probability as n → ∞, the mixing
time of the Glauber dynamics for the Ising model on G is eΘ(n).

This theorem complements the result of Can, van der Hofstad, and Kumagai [8] showing
that when | log λ| > log λu, with high probability over the random regular graph the mixing
time of the Glauber dynamics is O(n log n); they conjectured that the mixing time is
exponential when | log λ| < log λu, which Theorem 2 confirms.

Theorem 2 also fills in more of the picture for dynamical thresholds in the Ising model on
graphs in G∆; see Figure 2.

0 0.4 0.8 1.2 1.6 2
0

2

4

6

8

10

β

lo
gλ

log λ̄a

log λu

βu

Fast

Slow
Theorem 2

Figure 2 Sketch of the phase space for the Ising model Glauber dynamics on G∆ when ∆ = 4.

Before we give an overview of our proof techniques, we state some open questions. Our
first question is concerned with the relation between the analytic threshold and the uniqueness
threshold for the Ising model.

▶ Question 3. Does λa(∆, β) = λu(∆, β)?

If the answer is yes, then by the results above we would have a complete characterization of
the dynamical thresholds in the Ising and fixed magnetization Ising models on G∆.

Next we conjecture the following improvement of part (1) of Theorem 1.

▶ Conjecture 4. If 0 ≤ β < βu or if β > βu and |η| > ηa, then the Kawasaki dynamics for
µ̂G,β,η are optimally mixing: the mixing time is in O(|V (G)| · log(|V (G)|)) for all G ∈ G∆.

The analogous statement for independent sets is proved in [33] by proving a log-Sobolev
inequality for the down-up walk with constant Ω(1/n).

While we focus on global Kawasaki dynamics in this paper, we suggest that our results
also apply to the local dynamics. Note that for studying local Kawasaki dynamics, it makes
sense to assume that G is connected. In this case, we believe that a Markov chain comparison
argument as in [26] can be used to show that the mixing times of the local and global

A. Kuchukova, M. Pappik, W. Perkins, and C. Yap 56:7

dynamics only differ by a polynomial factor. While our slow mixing result for the global
dynamics uses identical copies of disjoint random graphs, our arguments should still apply if
they are connected with a sparse set of edges. As a consequence, both slow and rapid mixing
from Theorem 1 would carry over. A full proof of this is left for future work.

1.1 Overview of Techniques
The proofs of Theorems 1 and 2 involve several different ingredients, including local central
limit theorems, spectral independence, and first- and second-moment methods for spin models
on random graph. We give an overview of the techniques here.

1.1.1 Fast Mixing
At a high level, the proof of Theorem 1, (1) follows the strategy used by Jain, Michelen,
Pham, and Vuong [33] to show fast mixing for the down-up walk on independent sets of
density less than αc(∆).

In order to derive an upper bound on the mixing time of the Kawasaki dynamics for the
fixed-magnetization Ising model, we prove that the spectral gap of the associated transition
matrix is bounded below by Ω(1/n). To achieve this, we study a related down-up Ising walk
on Ωk while arguing that the respective spectral gaps of the Kawasaki dynamics and the
down-up walk are within a constant factor of each other. This allows us to make use of recent
literature that relates the spectral gap of a down-up walk to spectral independence [1, 2, 14].

Informally speaking, spectral independence captures the idea that for most pairs of
vertices v, w ∈ V , the spins assigned to v and w by a random configuration from µ̂G,β,η are
almost independent. While spectral independence for the Ising model has been studied before
by Chen, Liu, and Vigoda [17], no comparable result exists for the fixed-magnetization model.
To derive the required spectral independence property, we follow an approach introduced
in [33] to analyze the down-up walk for fixed-size independent sets. The idea is to choose λ

such that a random configuration from µG,β,λ has expected magnetization per vertex close
to η. We then view µ̂G,β,η as µG,β,λ conditioned on the desired magnetization.

We use this perspective to show that µ̂G,β,η satisfies ℓ∞-independence as follows:
(1) An extremal combinatorics result on the magnetization of the Ising model from [12]

shows that for any G ∈ G∆, the value of λ that achieves expected magnetization η

satisfies | log λ| > log λa if |η| > ηa. This allows us to use an approach by Chen, Liu, and
Vigoda [16] to derive O(1)-ℓ∞-independence for the Ising model for all such λ based on
our zero-freeness assumption.

(2) We next show that the probability under µG,β,λ of drawing a configuration with exactly
the correct magnetization is sufficiently large, and that this probability does not change
significantly after conditioning on the spin of a vertex. For the former, a lower bound
of Θ(1/

√
n) can be derived from existing local central limit theorems for the expected

number of +1 spins [12]. For the latter, we perform a similar analysis to [33] and use an
Edgeworth expansion to prove that conditioning on the spin of a vertex changes this
probability by at most O(n−3/2). For both results it is crucial that the Ising model
satisfies sufficiently strong zero-freeness assumptions for all considered λ.

The above discussion indicates how we obtain spectral independence for µ̂G,β,η. The bulk
of our work comes from leveraging this to derive a lower bound on the spectral gap of the
down-up walk. This requires us to prove that spectral independence also holds when an
arbitrary vertex set U ⊂ V with |U | < k is fixed (or pinned) to have spin +1. Such pinnings
interfere with the proof strategy above for several reasons. First of all, pinning vertices to +1

APPROX/RANDOM 2024

56:8 Fast and Slow Mixing of the Kawasaki Dynamics

decreases the λ that we need to choose to obtain the desired magnetization η. In particular,
if we aim for η > ηa, this might cause the required value of λ to leave the regime in which
zero-freeness (and ℓ∞-independence) for the Ising model is guaranteed. We circumvent this
by observing that the Kawasaki dynamics is symmetric under swapping +1 and −1 spins.
Hence, it suffices to consider η < −ηa, and an application of the FKG inequality ensures that
we only need to consider λ < 1/λa(∆, β) for all relevant pinnings.

The second difficulty is that once the number of free vertices k − |U | becomes sub-linear
in n, both the local central limit theorem and the Edgeworth expansion can fail. Similar
to [33], we solve this issue by using the localization framework by Chen and Eldan [14], which
allows us to factorize the spectral gap of the down-up walk into the spectral gaps of two
Markov chains that are easier to analyze. The first chain is a generalization of the down-up
walk that updates Θ(n) vertices in each step, and we can analyze its spectral gap based on
the spectral independence result described above using the local-to-global framework for
local spectral expanders [1, 2, 15,17]. The second walk is a simple down-up walk but with
a set of vertices U ⊂ V pinned to +1. In particular, we need to show that there is some
α > 0 (depending on β and ∆) such that for k − |U | ≤ αn, the spectral gap of such a pinned
down-up walk is bounded below by Ω(1/n).

For bounding the spectral gap of the pinned walk, we use a coupling argument. Specifically,
we construct a suitable metric on the state space such that the distance between two coupled
copies of the Markov chain contracts in expectation in each step. For the independent set
model studied in [33], such a contracting coupling is well known, appearing in the original
“path coupling” paper of Bubley and Dyer [7]. In contrast, for the fixed-magnetization Ising
model, no such result exists, and the default choice of coupling (sometimes called the identity
coupling) and metric (the number of vertices on which both configurations differ) does not
exhibit the desired contraction. Roughly speaking, this is because the ferromagnetism can
cause certain types of disagreements to increase the probability that new disagreements are
created. We overcome this problem by studying a refined metric, which assigns different
weights to “good” and “bad” disagreements in a way that guarantees that distances under
this new metric decrease in expectation under the coupling, thus establishing the desired
bound on the spectral gap.

1.1.2 Slow Mixing
For the slow mixing results, we leverage the connection between the Ising model on the
infinite tree T∆ and the behavior of the model on a uniformly random ∆-regular graph. In
the relevant range of parameters (β > βu, 1 < λ < λu) there are two distinct Ising Gibbs
measures on T∆, the “plus measure” and the “minus measure.” On the random graph these
two Gibbs measures manifest themselves as a dominant and subdominant metastable state:
sets of configurations for which the Glauber dynamics take exponential time to escape from.
The existence of multiple metastable states immediately shows slow mixing of the Glauber
dynamics (Theorem 2), and we then use this to construct a graph on which the Kawasaki
dynamics is slow mixing, proving Theorem 1,(2).

To do this, we exhibit the existence of a bottleneck in the state space of the model on a
∆-regular graph H constructed as the disjoint union of several copies of a random ∆-regular
graph. We define two different subsets of configurations of the fixed-magnetization Ising
model on H: in the set of configurations S1, each copy of the random graph comprising H

has magnetization η; in the set S2, some copies have magnetization approximately η+ > η

and some copies have magnetization approximately η− < η (chosen in such a way that their
average is η). We then show that a third set S3 separates S1 and S2 (under single-step

A. Kuchukova, M. Pappik, W. Perkins, and C. Yap 56:9

updates of the Kawasaki dynamics) and carries exponentially less probability mass in the
fixed-magnetization Ising model than either S1 or S2. Via a standard conductance argument
this proves exponentially slow mixing of the Kawasaki dynamics.

Bounds on the weights of the sets S1, S2, and S3 will follow from the existence of the
metastable states on the random graph. One metastable state consists of configurations with
magnetization close to η+

∆,β,λ and the other consists of configurations with magnetization
close to η−

∆,β,λ. That is, the two metastable states are in correspondence with the two distinct
extremal Gibbs measures on T∆ (which is why λ < λu is crucial).

Identifying the metastable states follows from determining which states (organized ac-
cording to their magnetizations) contribute significantly to the partition function ZG(β, λ)
of the Ising model on the random ∆-regular graph. A first guess about how much each
state contributes to ZG(β, λ) would be to take the expected contribution. The exponential
order of this expectation is captured by a function f∆,β,λ(η). From [29], we know that
the critical points of this function correspond to fixed points of a recursion on T∆, and
that the second-moment method can be used to lower bound the contribution of the state
with magnetization η, where η is the maximum of f∆,β,λ(η). This suffices to determine
the dominant state of the Ising model on the random graph (as was done in much greater
generality by Dembo and Montanari in [23]).

To identify subdominant metastable states, however, we need to analyze the contribution
of states with magnetization η when η is a local maximum of f∆,β,λ(η). For this we follow
the approach of [19] utilizing non-reconstruction in planted models. While their setting is
the q-state Potts model for q ≥ 3, many of their results can be translated to our context of
the external-field Ising model. We discuss their techniques in greater detail in Section 3.2
and in the full paper [36].

When we construct the graph H as the union of random graphs, we also must understand
how the behavior of the fixed-magnetization Ising model relates to that of the Ising model.
To do this, we give a new and simple argument in Section 3.2 to bound the probability of
hitting a given magnetization in the Ising model.

Interestingly, while the graph on which we show slow mixing is the union of random
regular graphs, the behavior of the Kawasaki dynamics on a single copy of the random
regular graph can be very different. Recently, Bauerschmidt, Bodineau, and Dagallier [4]
(see also [5]) showed that the local Kawasaki dynamics for the fixed-magnetization Ising
model mixes in time O(n log6 n) on random ∆-regular graphs at all magnetizations when
β < 1/(8

√
∆ − 1). In particular, when ∆ is sufficiently large this regime of fast mixing

includes parameters outside the tree uniqueness phase, i.e. inside the range of parameters
for which we prove exponentially-slow mixing in the worst case over graphs in G∆.

1.2 Outline
In Section 2, we collect preliminary results that will be used in our proofs. In Section 3 we
give a more detailed overview on our main steps for proving Theorem 1 and Theorem 2. In
particular, in Section 3.1, we discuss our fast-mixing result, Theorem 1,(1), and in Section 3.2
we discuss our slow-mixing results, Theorem 1,(2) and Theorem 2. All proofs and more
details can be found in the full version of the paper [36].

2 Preliminaries

Throughout the paper and unless otherwise stated, we will make the following assumptions:
∆ ≥ 3 is fixed, β ≥ 0, G = (V, E) ∈ G∆, and n = |V |.

APPROX/RANDOM 2024

56:10 Fast and Slow Mixing of the Kawasaki Dynamics

We will often switch between notation of η for the magnetization per vertex and k =
⌊ η+1

2 n⌋ for the number of +1 spins in such a configuration. We will thus abuse notation and
write µ̂G,β,k for µ̂G,β,η and ẐG,k(β) for ẐG,η(β) when it makes things more clear. We will
also on occasion drop G and β from the subscripts of our Gibbs measure notation as well as
the subscripts and argument of our partition function notation when G and β do not play a
role in the proofs.

2.1 Ising Model on the Infinite Tree
Let T∆ denote the infinite ∆-regular tree. Since it has infinitely many vertices, one cannot
define the Ising model on T∆ via (1). Instead, the Dobrushin-Lanford-Ruelle equations can
be used to define “infinite-volume Gibbs measures” for the Ising model and other spin models
on infinite graphs. This approach says that a probability measure µ on {±1}V (T∆) is a Gibbs
measure for the Ising model at inverse temperature β and external field λ if the conditional
measure on any finite set of vertices given a configuration on the complement is the Ising
model defined by (1) with the appropriate boundary conditions. See [30] for more details.

A main question about Gibbs measures on infinite graphs is whether for a given spe-
cification of parameters (i.e. β and λ in the Ising case) and a given infinite graph G there
is a unique Gibbs measure or multiple distinct Gibbs measures. The transition between
uniqueness and non-uniqueness as a parameter varies marks a phase transition.

Understanding uniqueness and non-uniqueness of the Ising model on T∆ is relatively
simple because of monotonicity and the FKG inequality. There are two extreme infinite-
volume Gibbs measures in the sense of maximizing or minimizing the probability that a fixed
vertex of T∆ gets a +1 spin: the “+ measure” on T∆ is the Gibbs measure realized by taking
a weak limit of finite-volume Gibbs measures on depth N truncations of T∆ with boundary
vertices assigned +1 spins; the “− measure” is the weak limit of finite-volume measures with
boundary vertices receiving −1 spins.

The quantities η+
∆,β,λ and η−

∆,β,λ are the respective expectations of σv (for any fixed v in
T∆) under these two Gibbs measures. The quantities can be calculated as solutions to fixed
point equations (see e.g. [6]), giving

η+
∆,β,λ = tanh (L∗ + artanh(tanh(L∗) tanh(β/2)))

where L∗ is the largest solution to

L = log(λ) + (∆ − 1)artanh(tanh(L) tanh(β/2)) .

The following proposition summarizes information about η+
∆,β,λ, η−

∆,β,λ and Gibbs unique-
ness that we will use (all follow from the results in [6]).

▶ Proposition 5. Fix ∆ ≥ 3.
There is uniqueness of Gibbs measure for the Ising model with parameters β, λ on T∆ if
and only if η+

∆,β,λ = η−
∆,β,λ.

For β ≤ βu(∆) = ln
(

∆
∆−2

)
, there is uniqueness for all λ.

For β > βu(∆) there is λu > 1 so that there is uniqueness if and only if | log λ| > log λu.
η+

∆,β,λ is continuous and strictly increasing in λ on the interval [1, ∞). In particular,
recall that ηc(∆, β) = η+

∆,β,1 and ηu(∆, β) = η+
∆,β,λu

; then for every η ∈ [ηc, ηu] there is
λ ∈ [1, λu] so that η+

∆,β,λ = η.

Finally, it will be important to bound the expected magnetization in the Ising model for
given β, λ and any G ∈ G∆. The bound is an extremal result proved in [12].

A. Kuchukova, M. Pappik, W. Perkins, and C. Yap 56:11

▶ Theorem 6 ([12, Theorem 3]). For G ∈ G∆, λ ≥ 1, and β ≥ 0,

Eσ∼µG,β,λ
[η(σ)] ≤ η+

∆,β,λ .

2.2 Pinned Models
For the fast-mixing argument, we will frequently consider pinned versions of our models,
meaning conditioned on some subset of vertices having been assigned a particular spin. For
U ⊂ V , we call a function τU : U → {+1, −1} a pinning on U . We write ΩτU = {σ ∈ Ω |
∀u ∈ U : σ(u) = τU (u)} for the set of Ising configurations on G that agree with τU on U .
The Ising partition function with pinning τU is defined as

ZτU

G (β, λ) =
∑

σ∈ΩτU

λ|σ|+
eβmG(σ),

and the Ising model under pinning τU is defined by Gibbs measure

µτU

G,β,λ(σ) = 1σ∈ΩτU λ|σ|+
eβmG(σ)

ZτU

G (β, λ) .

Note that for λ > 0, it holds that µτU

β,λ is a well-defined probability distribution with support
ΩτU . We allow for the case U = ∅, which is equivalent to the unpinned Ising model. Often,
τU will be the constant +1 function on U , in which case we write ΩU , ZU

G and µU
β,λ.

Analogously to the Ising model, we will also impose pinnings on the fixed-magnetization
model. To this end, set ΩτU

k = {σ ∈ Ωk : ∀u ∈ U : σ(u) = τU (u)} and define the
fixed-magnetization partition function with pinning τU as

ẐτU

G,k(β) =
∑

σ∈ΩτU
k

eβmG(σ).

The fixed-magnetization Ising model under pinning τU is a probability measure with support
ΩτU

k defined by

µ̂τU

G,β,k(σ) =
1σ∈ΩτU

k
eβmG(σ)

ẐτU

G,k(β)
.

Throughout the paper, we assume |τU |+ ≤ k so that the expression above is well-defined. As
with the Ising model, we write ΩU

k , ẐU
G,k and µ̂U

G,β,k when τU is the constant +1 function.

2.3 Kawasaki Dynamics, Down-up Walk, and Glauber Dynamics
Here we formally define the three Markov chains that we will analyze. Our main object of
study is the Kawasaki dynamics for the fixed-magnetization Ising model. For this, we fix a
size k where 1 ≤ k ≤ |V | − 1.

▶ Definition 7 (Kawasaki dynamics). The Kawasaki dynamics on Ωk is a Markov chain
Kβ,k = (Xt)t≥0 given by the following update rule:
1. Pick u ∈ X−1

t (+1) and w ∈ X−1
t (−1) uniformly at random, and set X ∈ Ωk such that

X(v) = Xt(w), X(w) = Xt(v), and X(u) = Xt(u) for u ̸= v, w.
2. Set Xt+1 = X with probability min

{
1,

µ̂G,β,k(X)
µ̂G,β,k(Xt)

}
, and set Xt+1 = Xt otherwise.

APPROX/RANDOM 2024

56:12 Fast and Slow Mixing of the Kawasaki Dynamics

In other words, the Kawasaki dynamics chooses two vertices with opposite spins and
swaps their spins with probability proportional to the change in monochromatic edges.

For proving fast mixing of the Kawasaki dynamics, we use the down-up walk on the +1
spins as a proxy for our analysis. Here we will also need to consider the Markov chain under
plus pinnings.

▶ Definition 8 (Down-up walk with plus pinnings). For U ⊂ V and with |U | < k we define the
+1-down-up walk on ΩU

k as a Markov chain PU
β,k = (Yt)t≥0, given by the following update

rule:
1. Pick v ∈ Y −1

t (+1) \ U uniformly at random and set W = Y −1
t (+1) \ {v}.

2. Draw Yt+1 from µ̂W
G,β,k.

We write Pβ,k if U = ∅.

The following observation is easy to check.

▶ Observation 9. Kβ,k and Pβ,k are ergodic and reversible with respect to µ̂β,k. Moreover,
there is a constant C ≥ 1 that only depends on ∆ and β such that for all σ1 ̸= σ2

1
C

· Pβ,k(σ1, σ2) ≤ Kβ,k(σ1, σ2) ≤ C · Pβ,k(σ1, σ2).

Lastly, we also consider the Glauber dynamics for the Ising model.

▶ Definition 10 (Glauber dynamics). The Glauber dynamics on Ω is a Markov chain (Xt)t≥0,
given by the following update rule:
1. Pick v ∈ V (G) uniformly at random.
2. For u ̸= v, set Xt+1(u) = Xt(u), and sample Xt+1(v) from the marginal distribution at v

conditioned on Xt+1(N(v)).

2.4 Mixing Times

Our goal in analyzing the Kawasaki dynamics is to understand the mixing time of this
Markov chain. Given two probability distributions µ and ν on probability space (Ω, A), let

∥µ − ν∥TV := sup
A∈A

|µ(A) − ν(A)|

be the total variation distance between µ and ν. For a Markov chain on Ω with transition
matrix P and unique stationary distribution π, we may then define

d(t) := max
x∈Ω

∥P t(x, ·) − π∥TV.

▶ Definition 11. The mixing time is

τmix = inf
{

t : d(t) ≤ 1
4

}
.

See, e.g., [37] for background on Markov chains and mixing times. We use several different
techniques to analyze the mixing time of the Kawasaki dynamics, which we now describe.

A. Kuchukova, M. Pappik, W. Perkins, and C. Yap 56:13

2.4.1 Upper Bounds on Mixing Time
A common way to upper-bound the mixing time of a reversible Markov chain P is by lower-
bounding its spectral gap, which can be defined via the following variational characterization.

▶ Definition 12. Let P be a transition matrix that is reversible with respect to π. We denote
by gap(P) the spectral gap (or Poincaré constant) of P , which is defined as the largest
constant γ such that γVarπ(f) ≤ EP (f, f) for any function f : Ω → R, where Varπ(f) is the
variance of f with respect to π and EP is the Dirichlet form of P , given by

EP (f, g) = 1
2

∑
x,y∈Ω

(f(x) − f(y))(g(x) − g(y))P (x, y)π(x) f, g : Ω → R.

Using this characterization of the spectral gap, we have the following observation.

▶ Observation 13. Suppose P1 and P2 are transition matrices that are both reversible with
respect to π. If there are constants α1, α2 > 0 such that α1 ·P1(x, y) ≤ P2(x, y) ≤ α2 ·P1(x, y)
for all x ̸= y, then α1 · gap(P1) ≤ gap(P2) ≤ α2 · gap(P1).

On account of Observation 9, this allows us to study the spectral gap of the down-up walk
Pβ,k instead of the Kawasaki dynamics Kβ,k.

An upper bound on the mixing time of an ergodic, reversible Markov chain with transition
matrix P can be obtained from its spectral gap via the following standard relationship
(see [37, Theorem 12.4]):

τmix ≤ gap(P)−1 · log
(

4
minx∈Ω π(x)

)
.

There are various ways to obtain bounds on the spectral gap of a Markov chain, one of
which is to construct a contracting coupling. For a transition matrix P , we say that a Markov
chain (Xt, Yt)t≥0 on Ω × Ω is a coupling of P with itself if each of the marginal processes
(Xt)t≥0 and (Yt)t≥0 is a Markov chain with transition matrix P . We use this notion to bound
the spectral gap.

▶ Theorem 14 ([37, Theorem 13.1]). Suppose Ω is finite and let (Xt, Yt)t≥0 be a coupling
of P with itself. If there is a constant c > 0 and a function ρ : Ω × Ω → R≥0 such that
ρ(x, y) = 0 if and only if x = y, and for all t ∈ Z≥0 it holds that

E[ρ(Xt+1, Yt+1) | Xt, Yt] ≤ (1 − c)ρ(Xt, Yt),

then the spectral gap of P is at least c.

We will use Theorem 14 to show that the down-up walk PU
β,k has a spectral gap of Ω(1/k)

whenever k − |U | ≤ αn for some α depending on ∆ and β. In particular, by the symmetry
of the Kawasaki dynamics under swapping all spins, this proves a spectral gap of Ω(1/k) for
Kβ,k if k ≤ αn or k ≥ (1 − α)n, but it does not cover the full regime of Theorem 1,(1).

To prove the full result of Theorem 1,(1), we prove that µ̂U
β,k satisfies spectral independence

for suitable k ∈ N and sets U ⊂ V . Spectral independence is a property of the stationary
distribution π of a Markov chain, and it was recently used to bound the spectral gap and
prove rapid mixing of various chains [1,2,14,15,17,33]. For the following discussion of spectral
independence, we restrict ourselves to distributions on Ω = 2V where V is some finite set
(e.g., the vertices of a graph). Note that this encompasses both the fixed-magnetization Ising

APPROX/RANDOM 2024

56:14 Fast and Slow Mixing of the Kawasaki Dynamics

model as well as the Ising model, by associating S ∈ Ω with the Ising configuration that maps
all vertices in S to +1. In this setting, we adopt the following notation: for a distribution π

on Ω, a subset S drawn from π, and v ∈ V , we write π(v) for the probability that v ∈ S and
π(v) for the probability that v /∈ S. We extend this to conditional probabilities, writing for
example π(v | u) for the probability that v ∈ S given u /∈ S.

▶ Definition 15. The influence matrix of a distribution π on 2V is the matrix Mπ ∈ Rn×n

with entries

Mπ[u, v] =
{

0 if π(u) = 0
π(v | u) − π(v) otherwise

Using this definition of Mπ, the definition of spectral independence of π is as follows.

▶ Definition 16. A probability distribution π on 2V is called C-spectrally independent (for
C ≥ 0) if the largest eigenvalue of Mπ is at most C.

Since directly bounding the largest eigenvalue of Mπ is usually challenging, a common
approach is to bound the ℓ∞-norm of Mπ instead. This leads to the stronger notion of
ℓ∞-independence.

▶ Definition 17. A probability distribution π on 2V is C-ℓ∞-independent (for C ≥ 0) if

∥Mπ∥∞ := max
u∈V

∑
v∈V

|Mπ[u, v]|

is at most C.

▶ Remark 18. There are various definitions of the pairwise influence matrix in the literature
[2,15,17]. For spin systems with two possible states for each vertex (such as the Ising model),
pairwise influence is commonly defined as Mπ[u, v] = π(v | u) − π(v | u). However, note that
switching between the two definitions only changes the spectral radius by some constant
factor, provided that π(v) is uniformly bounded away from 0 and 1. Since this is the case
for the Ising model, given that λ > 0, existing spectral independence results such as [17]
carry over to our definition. Moreover, Definition 15 is arguably more natural for canonical
ensembles, such as the fixed-magnetization Ising model, as it relates more directly to local
spectral expansion of the associated simplicial complex (see [36] for details).

There are different ways to derive bounds on the spectral gap of a Markov chain from
spectral independence. The most popular approach is the use of local-to-global theorems,
which are applicable whenever the Markov chain in question can be represented as a down-up
walk on a suitable weighted simplicial complex [1, 2, 15,17]. Local-to-global theorems allow
us to express the spectral gap of the down-up walk in terms of spectral gaps of local walks
on the complex, which can then be related to the spectrum of the pairwise influence matrix.

A more recent framework was introduced by Chen and Eldan [14] and uses localization
schemes. A localization scheme maps a probability distribution π on Ω to a localization
process – a random sequence of probability measures that interpolates between π and a
random Dirac measure. Via the localization process, a localization scheme gives rise to a
Markov chain with stationary distribution π. Provided that the localization process exhibits
a property called “approximate conservation of variance,” this can be used to bound the
spectral gap of the associated Markov chain. For a broad class of localization schemes,
approximate conservation of variance follows if all measures along the localization process
exhibit spectral independence. Since we are studying the fixed-magnetization Ising model, we

A. Kuchukova, M. Pappik, W. Perkins, and C. Yap 56:15

are particularly concerned with distributions π on Ωk. In this setting, the canonical choice
for a localization scheme is the subset simplicial-complex localization (see [14, Example 5]),
and the natural associated Markov chain is the down-up walk Pβ,k.

The main difficulty in applying the above frameworks in our setting is that they usually
assume O(1)-spectral independence of the pinned distributions µ̂U

β,k for all U ⊂ V with
0 ≤ |U | ≤ k − 1. Unfortunately, we will not be able to derive spectral independence for all
such U . Moreover, for the localization framework, it is not clear if the subset simplicial-
complex localization allows us to derive approximate conservation of variance from spectral
independence. To overcome these difficulties, we use an argument similar to that of Jain,
Michelen, Pham and Vuong [33]. We combine the techniques above as follows: first, we use
a localization scheme to show that for any ℓ ≤ k − 1, the spectral gap of Pβ,k is bounded
below by the product of the spectral gap of the pinned down-up walk PU

β,k for any U ⊂ V

with |U | = ℓ and the spectral gap of the (k, ℓ)-down-up walk, a modified version of Pβ,k that
resamples k − ℓ plus spins in each step. Choosing ℓ such that k − ℓ ≤ αn for some suitable
α > 0, we can use a coupling argument as discussed before to show that gap(PU

β,k) ∈ Ω(1/k)
for every U ⊂ V with |U | = ℓ. To lower-bound the spectral gap of the (k, ℓ)-down-up walk,
we use a local-to-global theorem by Chen, Liu and Vigoda [15]. This only requires us to
show that µ̂W

β,k satisfies O(1)-spectral independence for all W ⊂ V with k − |W | ≥ α′n for
some 0 < α′ < α. The range of k for which we can show this O(1)-spectral independence
leads to the magnetization range given in Theorem 1,(1).

2.4.2 Lower Bounds on Mixing Time

To prove slow mixing, we exhibit the existence of a bottleneck in the state space, a set of
configurations which separates two parts of the state space and carries an exponentially
smaller probability in the stationary distribution than either of the two parts. The following
lemma captures a simple form of this argument, often phrased in terms of conductance, for
proving lower bounds on the mixing times of Markov chains.

▶ Lemma 19. Let (Xt)t≥0 be a Markov chain on the state space Ω with stationary distribution
π. Suppose there exists disjoint sets S1, S2, S3 ⊂ Ω so that the following hold:

For the chain to pass from S2 to S1 it must pass through S3;
π(S1) ≥ π(S2)
π(S3) ≤ e−Ω(n)π(S2).

Then the mixing time of the chain (Xt) is exp(Ω(n)).

The statement is an immediate corollary of, e.g., [25, Claim 2.3].
To prove Theorem 2, we define S1, S2, S3 to be sets of configurations with certain

magnetizations. S1 will be those configurations whose magnetization per vertex is close to
that of the plus measure on T∆ (when λ > 1); S2 will be those whose magnetization per vertex
is close to that of the minus measure; and S3 will be configurations whose magnetization is
just larger than that of S2.

To prove Theorem 1,(2), we consider a graph H made up of disjoint copies of a random
regular graph. We define S1 to be the set of configurations with magnetization η on each copy;
S2 will be a set of configurations with magnetization η+ on some copies and η− on others,
for η− < η < η+, such that the overall magnetization is η. Again S3 will be a neighborhood
of S2. In both cases, the main work will be in verifying the conditions of Lemma 19.

APPROX/RANDOM 2024

56:16 Fast and Slow Mixing of the Kawasaki Dynamics

2.5 Thresholds for Zero-Freeness and Spectral Independence
The definition of λa(∆, β) is based on viewing the Ising partition function as a polynomial in
the (complex) variable λ. We write N (z, δ) for the open ball of radius δ > 0 around z ∈ C.

▶ Definition 20 (Absolute zero-freeness). Given β ≥ 0, ∆ ∈ N, λ > 0 and δ > 0, we say that
the Ising model is absolutely δ-zero-free at activity λ if for all graphs G ∈ G∆, all pinnings
τU with U ⊆ V and all λ′ ∈ N (λ, δ) it holds that ZτU

G (β, λ′) ̸= 0.

We now define λa(∆, β) as follows.

▶ Definition 21. For ∆ ∈ N and β ≥ βu(∆) we set λa(∆, β) to be the smallest λa ≥ 1 such
that for every compact set D ⊂ (λa, ∞) there is some δ > 0 such that for all λ ∈ D the Ising
model is absolutely δ-zero-free at λ.

An important implication of absolute zero-freeness is given in the following theorem. Its
proof follows a similar argument to those in [16] while using the ferromagnetism of the model
and Montel’s theorem (see [49]) to avoid the requirement of multivariate zero-freeness. The
proof can be found in the full version of the paper [36].

▶ Theorem 22. Fix β ≥ 0 and ∆ ∈ N. Let D ⊂ R>0 be compact and assume there is some
δ > 0 such that the ferromagnetic Ising model is absolutely δ-zero-free at every λ ∈ D. Then,
there is some constant C > 0, only depending on D, λ, β and ∆, such that for all λ ∈ D,
G ∈ G∆ and all pinnings τU it holds that µ̂τU

G,β,λ is C-ℓ∞-independent.

3 Main Statements and Proof Structure

We briefly state the most important steps for showing Theorem 1. All proofs and intermediate
steps are omitted and can be found in the full version of the paper [36].

3.1 Rapid Mixing
We start with discussing our proof of the rapid mixing result in part (1) of Theorem 1. The
structure of the entire proof is illustrated in Figure 3.

56:16 Fast and Slow Mixing of the Kawasaki Dynamics on Bounded-Degree Graphs

▶ Definition 21. For ∆ ∈ N and β ≥ βu(∆) we set λa(∆, β) to be the smallest λa ≥ 1 such553

that for every compact set D ⊂ (λa, ∞) there is some δ > 0 such that for all λ ∈ D the Ising554

model is absolutely δ-zero-free at λ.555

An important implication of absolute zero-freeness is given in the following theorem. Its556

proof follows a similar argument to those in [16] while using the ferromagnetism of the model557

and Montel’s theorem (see [48]) to avoid the requirement of multivariate zero-freeness. The558

proof can be found in the full version of the paper [35].559

▶ Theorem 22. Fix β ≥ 0 and ∆ ∈ N. Let D ⊂ R>0 be compact and assume there is some560

δ > 0 such that the ferromagnetic Ising model is absolutely δ-zero-free at every λ ∈ D. Then,561

there is some constant C > 0, only depending on D, λ, β and ∆, such that for all λ ∈ D,562

G ∈ G∆ and all pinnings τU it holds that µ̂τU

G,β,λ is C-ℓ∞-independent.563

3 Main Statements and Proof Structure564

We briefly state the most important steps for showing Theorem 1. All proofs and intermediate565

steps are omitted and can be found in the full version of the paper [35].566

3.1 Rapid Mixing567

We start with discussing our proof of the rapid mixing result in part (1) of Theorem 1. The568

structure of the entire proof is illustrated in Figure 3.569

ℓ∞-independence
for all pinnings

(grand canonical)

''

Absolute
zero-freeness

99

Edgeworth expansion

&&

ℓ∞-independence
for “small” pinnings

(canonical)

Local-to-global //
Ω(1)-spectral gap

of (k, l)-down-up walk
for “small” pinnings

Localization schemes

��

Strong LCLT
for “small” pinnings

77

Contractive
coupling

//
Ω(1/k)-spectral gap of
down-up walk for
“large” pinnings

Localization schemes. //
Ω(1/k)-spectral gap
for down-up walk

and Kawasaki dynamics

Figure 3 The structure of the rapid mixing proof

All results in this subsection are given in the context of the following assumptions.570

▶ Condition 23. 1. Let β ≥ 0, and let D ⊂ R>0 be compact such that there is some δ > 0571

for which the Ising model is absolutely δ-zero-free for all λ ∈ D. Further, let λ ∈ D.572

2. Let α ∈ [0, 1), let U ⊂ V with |U | ≤ αn and let τU be a pinning of U .573

3. Let σ ∼ µτU

β,λ and let X = |σ|+.574

Figure 3 The structure of the rapid mixing proof.

A. Kuchukova, M. Pappik, W. Perkins, and C. Yap 56:17

All results in this subsection are given in the context of the following assumptions.

▶ Condition 23.
1. Let β ≥ 0, and let D ⊂ R>0 be compact such that there is some δ > 0 for which the Ising

model is absolutely δ-zero-free for all λ ∈ D. Further, let λ ∈ D.
2. Let α ∈ [0, 1), let U ⊂ V with |U | ≤ αn and let τU be a pinning of U .
3. Let σ ∼ µτU

β,λ and let X = |σ|+.

Our first step is to show that zero-freeness implies a strengthened version of a local central
limit theorem for X via Edgeworth expansion. Using similar arguments as Jain, Michelen,
Pham and Vuong [33] for the hard-core model, we obtain the following result.

▶ Theorem 24. Suppose Condition 23 holds. Let d ∈ N and let ℓ ∈ R such that E[X] + ℓ ∈
Z≥0. Set s =

√
Var(X) and βj = κj(X)

j!sj for all j ∈ N, and write Hk(·) for the kth Hermite
polynomial. It holds that

µτU

β,λ(X − E[X] = ℓ) = e− ℓ2
2s2

√
2πs

1 +
∑
r≥3

Hr(ℓ/s)
∑

k3,...,k2d+1

2d+1∏
j=3

β
kj

j

kj !

 + O
(
n−d

)
where the inner sum is over tuples k3, . . . , k2d+1 ∈ Z≥0 such that

∑
j kj · j = r and

∑
j kj ·

j−2
2 ≤ d, and the implied constants depend only on ∆, β, δ, D, d and α.

Our next ingredient is to use zero-freeness to obtain a stability result for the cumulants
of X under adding vertices to the pinning. Writing κj(X) for the jth cumulant of X, we
have the following statement.

▶ Lemma 25. Suppose Condition 23 holds. Let v ∈ V \ U , and let τU ,+++v denote the pinning
on U ∪ {v} that maps v to +1 and all other vertices u ∈ U to τU (u). Let X+ = |σ′|+ for
σ′ ∼ µτU ,+++v

β,λ . For all j ∈ N it holds that |κj(X+) − κj(X)| = O(1) with implied constants
only depending on ∆, β, δ, D and j.

The analog of Lemma 25 for the hard-core model was proven in [33]. However, their arguments
are tailored to the hard-core model and do not apply in our setting. Instead, we provide a
more general argument based on an application of Montel’s theorem that is inspired by [43].

Using Theorem 24 and Lemma 25, we get the following stability result for the probability
of having exactly k vertices assigned to +1.

▶ Lemma 26. Suppose Condition 23 holds and assume further that |U | + 1 ≤ αn. Let
k ∈ Z≥0 be such that |E[X] − k| ≤ L for some L ∈ R≥0. For all v ∈ V \ U it holds that

µτU

β,λ(X = k) = Θ(n−1/2), (3)∣∣∣µτU

β,λ(X = k) − µτU

β,λ(X = k | σ(v) = +1)
∣∣∣ = O(n−3/2) (4)

with implied constants depending only on ∆, β, δ, D, L and α.

Next, recall that by Theorem 22 zero-freeness implies ℓ∞-independence for the ferromag-
netic Ising model. Combining this with Lemma 26 for a suitable λ, we get the following
ℓ∞-independence result for the fixed magnetization model.

▶ Theorem 27. Assume 0 ≤ β < βu(∆) and γ ∈ (0, 1/2], or β ≥ βu(∆) and γ ∈ (0, 1−ηa

2)
for ηa = ηa(∆, β). For all k := γn ∈ N, all α ∈ [0, γ) and U ⊂ V with |U | ≤ αn it holds that
µ̂U

β,k is C-ℓ∞-independent for a constant C depending only on ∆, β, γ and α.

APPROX/RANDOM 2024

56:18 Fast and Slow Mixing of the Kawasaki Dynamics

Using Theorem 27, we can apply a local-to-global theorem from [15] to show that for every
k − ℓ ∈ Θ(n) the spectral gap of the (k, ℓ)-down-up walk is in Ω(1). However, to get the
desired spectral gap for Pβ,k (and Kβ,k), we require one last ingredient, which is to show
that the spectral gap of the pinned down-up walk PU

β,k is in Ω(1/n) whenever k = γn and
U ⊂ V are such that k − |U | is small enough.

In the setting of fixed-size independent sets studied in [33], such a result was previously
known due to Theorem 14 and a path coupling by Bubley and Dyer [7]. In contrast, a
straightforward application of path coupling with the Hamming metric does not work in our
setting. Instead, we introduce a modified metric on the state space that takes into account
how likely a disagreement is to spread, which allows us to prove the following result.

▶ Lemma 28. Let G ∈ G∆ with n sufficiently large. There exists some α = α(∆, β) > 0
such that for all 0 < k ≤ n/2 and all U ⊂ V with 0 < k − |U | ≤ αn it holds that PU

β,k has
spectral gap Ω(1/k) with constants depending on β and ∆.

We can now proceed to sketch our proof of the rapid mixing part of Theorem 1. We first
note that the Kawasaki dynamics Markov chain is invariant under swapping all spins (i.e. the
mapping σ 7→ −σ), allowing us to focus on k ≤ n/2 (or equivalently the magnetization regime
η ≤ 0). Moreover, by Observation 9 it suffices to prove the desired spectral gap for the down-
up walk Pβ,k for the respective values of k. Using a localization schmeme, we argue that the
spectral gap of Pβ,k is bounded below by the product of infU∈(V

ℓ) gap(PU
β,k) and the spectral

gap of the (k, ℓ)-down-up walk. By Lemma 28, we know that infU∈(V
ℓ) gap(PU

β,k) ∈ Ω(1/k)
whenever ℓ is such that k − ℓ ≤ αn for some α = α(∆, β) > 0. Moreover, by Theorem 27 and
a local-to-global theorem from [15], we can derive a Ω(1) spectral gap for the (k, ℓ)-down-up
walk. Combining both concludes our rapid mixing proof.

3.2 Metastability and Slow Mixing
In this section we prove slow-mixing results for both the Ising Glauber dynamics and fixed
magnetization Kawasaki dynamics when β > βu(∆) and | log λ| < log λu and |η| < ηu

respectively. The structure of the proof is illustrated below in Figure 4.

Non-uniqueness on T∆
// Metastability on

random graphs
//

��

Slow mixing of
Kawasaki dynamics

Slow mixing of
Glauber dynamics

Figure 4 The structure of the slow mixing proof.

Note. As in the previous section, both perspectives of fixed magnetization per vertex η and
fixed size k will be useful in our arguments. We will use ZG,η(β, λ) (where we sometimes
drop the parameters β and λ for convenience) to denote the contribution to the Ising model
partition function ZG(β, λ) from configurations of magnetization η. The notation ZG,k(β, λ)
will mean the contributions to ZG(β, λ) from configurations of size k. When k = ⌊n η+1

2 ⌋, we
have ZG,η = ZG,k and will use the notations interchangeably.

A. Kuchukova, M. Pappik, W. Perkins, and C. Yap 56:19

Our goal is to understand how configurations of different magnetizations typically con-
tribute to the partition function ZG(β, λ) when G is a random ∆-regular graph. To start, we
shift to a slightly different model called the configuration model, which we will denote G. To
generate a graph from this model for a given ∆ and n, take ∆ copies of [n] and a uniformly
random perfect matching on the ∆n vertices, and then identify the copies corresponding
to the same vertex. This gives a random ∆-regular multigraph, and it is well-known that
properties holding with high probability for the configuration model also hold with high
probability for the uniform random ∆-regular graph when ∆ is constant [34].

We say the model has multiple metastable states if the function limn→∞
1
nE log ZG,η(β, λ)

has more than one local maximum as η varies. A first attempt at understanding this
phenomenon would be to look at the first moment, and understand the local maxima of

f∆,β,λ(η) := lim
n→∞

1
n

logEZG,η(β, λ) (5)

as a function of η (with the crucial distinction between the two functions being the interchange
of the expectation and logarithm).

Using computations similar to those found in [18, 19, 29], we can derive an expression
for f∆,β,λ(η). We then proceed by studying the the maxima of f∆,β,λ(η) as a one-variable
function with respect to η. By a result in [29] (following [27,41]), we know that the critical
points of f∆,β,λ(η) correspond exactly to fixed points of the tree recursion for the Ising model
on T∆, which are the solutions to the equation

R = λ(Reβ + 1)∆−1

(R + eβ)∆−1 . (6)

▶ Theorem 29 ([29, Theorem 9, Lemma 11]). There is a 1-to-1 correspondence between the
fixed points of the tree recursion given in (6) and the critical points of f∆,β,λ(η). Moreover,
the stable fixed points of the tree recursion given in (6) are in 1-to-1 correspondence with
Hessian local maxima of f∆,β,λ(η).

Recall that a fixed point is stable if the absolute value of the derivative at that point is less
than 1. A local maximum is a Hessian local maximum if the Hessian is negative definite at
that point. In particular, as our functions are univariate (after fixing ∆, β, λ), this is simply
saying that the second derivative is negative which implies the existence of a local maximum.

For the above theorem to be useful, we need to understand the solutions of (6).

▶ Proposition 30. For β > βu, the following hold:
(1) If | log λ| > log λu, then (6) has a unique fixed point. It is stable and hence corresponds

to the global maximizer of f∆,β,λ. This maximizer is η+
∆,β,λ = η−

∆,β,λ.
(2) If | log λ| = log λu, then (6) has two distinct fixed points, one of which is stable and

corresponds to the global maximizer of f∆,β,λ. The other corresponds to an inflection
point of f∆,β,λ.

(3) If | log λ| < log λu, then (6) has three distinct fixed points. The largest and the smallest
are both stable, corresponding to the only two local maxima of f∆,β,λ. When λ > 1,
η+

∆,β,λ is the unique global maximizer; when λ < 1, η−
∆,β,λ is the unique global maximizer;

when λ = 1 then η+
∆,β,λ, η−

∆,β,λ are both global maximizers.

Portions of this statement have been shown in, for example, [29, 30, 32], and we give a
complete proof in [36]. An illustration of f∆,β,λ(η) is given in Figure 5; the left plot appears
for λ > λu (Case 1 above) and the right plot appears for 1 < λ < λu (Case 3 above).

APPROX/RANDOM 2024

56:20 Fast and Slow Mixing of the Kawasaki Dynamics

0 0.4 0.8

1.6

1.65

1.7

1.75

η

f
(η

)

0 0.4 0.8
1.63

1.64

1.65

1.66

η

f
(η

)

Figure 5 Sketch of the function f∆,β,λ(η) for ∆ = 4, β = ln(2) + 0.1, and
(left) λ = 1.08, (right) λ = 1.01.

While the behavior described in part (3) suggests metastability, Proposition 30 is only
about the expected partition function, and we will need to show that multiple local maxima
exist with high probability over the random graph. This will involve showing a lower bound
on the partition function at the two local maxima and and upper bound everywhere else.

Via Markov’s inequality, the next statement gives a high probability approximate upper
bound on ZG,η(λ).

▶ Lemma 31. Fix β ≥ 0, λ > 0. With probability 1 − o(1) over the random ∆-regular graph
G on n vertices, it holds for every η that

ZG,η(λ) ≤ n2 · EZG,η(λ) .

We further prove lower bounds on ZG,η for values of η which are local maxima. For a
global maximum, this was proved in [29] via the second moment method.

▶ Theorem 32 ([29, Theorem 8]). Fix λ > 0 and suppose that η is a global maximizer of
f∆,β,λ. With probability 1 − o(1) over the random ∆-regular graph G on n vertices,

ZG,η(λ) ≥ 1
n
EZG,η(λ) .

We prove the following corresponding statement for the local maximizers.

▶ Proposition 33. Fix λ > 0 and suppose that η is a local maximizer of f∆,β,λ. For any
ζ > 0, with probability 1 − o(1) over the random ∆-regular graph G on n vertices,

ZG,η(λ) ≥ e−ζnE[ZG,η(λ)] .

The proof of Proposition 33 follows the template of Coja-Oghlan, Galanis, Goldberg, Ravelo-
manana, Štefankovič, and Vigoda [19] in proving metastability in the zero-field ferromagnetic
Potts model (which in turn used ideas from [3,21]). The argument involves various techniques
such as studying the planted model, Nishimori identities [20], and non-reconstruction of
broadcasting processes [19, 29, 39], and it is presented in the full paper [36]. We can now
sketch the proofs of our slow mixing results.

Slow mixing of Glauber Dynamics

We start with sketching our proof of Theorem 2. Let β > βu(∆), λ ∈ [1, λu), and G ∼ G.
Let η = η+

∆,β,λ, the mean magnetization of the root of T∆ under the + boundary conditions
with external field λ, and let η− = η−

∆,β,λ, the same but under the − boundary conditions.

A. Kuchukova, M. Pappik, W. Perkins, and C. Yap 56:21

As η and η− are global and local maximizers of f∆,β,λ, there are ϵ > 0 and δ > 0 so that:
1. E[ZG,η′(λ)] ≤ e−δnE[ZG,η(λ)] for all η′ such that |η′ − η| > ϵ.
2. E[ZG,η′(λ)] ≤ e−δnE[ZG,η−(λ)] for all η′ such that |η′ − η−| ∈ (ϵ, 2ϵ).

Next, we sketch how we construct the configuration sets S1, S2, S3 for applying Lemma 19,
where we assume here for simplicity that the magnetization η can actually be realized on G.
For ϵ > 0 as above, we set:

S1 : configurations with magnetization η

S2 : configurations with magnetization in [η− − ϵ, η− + ϵ]
S3 : configurations with magnetization in [η− − 2ϵ, η− − ϵ) ∪ (η− + ϵ, η− + 2ϵ].

First, note that the Glauber dynamics starting in S2 must pass through S3 to reach S1.
Abbreviating µG,β,λ as µ, we can use Lemma 31,Theorem 32 and Property 1 from above
to show that µ(S2) < µ(S1) a.a.s. over G. Similarly, using Proposition 30, Property 2 and
Proposition 33 yields µ(S3) ≤ e−Ω(n)µ(S2) a.a.s. Hence, applying Lemma 19, we conclude
that the mixing time of Glauber dynamics on G is exp(Ω(n)).

Slow Mixing of the Kawasaki Dynamics

We proceed with sketching the proof of part (2) of Theorem 1. Let β > βu(∆). We consider
a graph H consisting of m identical copies G1, G2, . . . Gm of a random ∆-regular graph G

from G, where is m is determined later based on η. We will separately consider the cases of
|η| ∈ (ηc, ηu) and |η| ≤ ηc, and assume without loss of generality that η > 0.

We start with the case η ∈ (ηc, ηu). By Proposition 5, there exists λη ∈ (1, λu) such that
η = η+

∆,β,λη
. For λ+ ∈ (λη, λu), set η+ = η+

∆,β,λ+
and η− = η−

∆,β,λ+
. In particular, note that

we may choose λ+ such that there are m, ℓ ∈ N with ℓ < m and mη = ℓη+ + (m − ℓ)η−,
where m is used for constructing H. Further, observe that η is the global maximizer of
f∆,β,λη

and that η+ and η− are the global and local maximizers of f∆,β,λ+ . Hence, there are
ϵ > 0 and δ > 0 so that:
1. E[ZG,η′(λη)] ≤ e−δnE[ZG,η(λη)] for all η′ such that |η′ − η| > ϵ.
2. E[ZG,η′(λ+)] ≤ e−δnE[ZG,η+(λ+)] for all η′ such that |η′ − η+| ∈ (ϵ, 2ϵ).
3. E[ZG,η′(λ+)] ≤ e−δnE[ZG,η−(λ+)] for all η′ such that |η′ − η−| ∈ (ϵ, 2ϵ).

As for proving slow mixing of Glauber dynamics, we aim for applying Lemma 19. To sketch
the construction of S1, S2, S3, we again assume here for simplicity that a magnetization
of η can be realized on each subgraph Gi. Given a configuration, we write ηGi

for the
magnetization on subgraph Gi. We then take the following subsets of configurations on H

with overall magnetization η:

S1 : ηGi
= η for all 1 ≤ i ≤ m,

S2 : ηGi
∈ [η+ − ϵ, η+ + ϵ] for all i ≤ ℓ and ηGi

∈ [η− − ϵ, η− + ϵ] for all i > ℓ,

S3 : ηGi
∈ [η+ − 2ϵ, η+ + ϵ] for all i ≤ ℓ and ηGi

∈ [η− − ϵ, η− + 2ϵ] for all i > ℓ, and
there exists i ≤ ℓ with ηGi ∈ [η+ − 2ϵ, η+ − ϵ] or i > ℓ with ηGi ∈ [η− + ϵ, η− + 2ϵ].

Note that the Kawasaki dynamics have to pass through S3 to get from S2 to S1. Moreover,
abbreviating µ̂H,β,k as µ̂, we can use Theorem 32, Lemma 31 and Property 1 to show that
µ̂(S1) ≥ µ̂(S2), and we can use Lemma 31, Properties 2 and 3, Theorem 32 and Proposition 33
to show that µ̂(S3) ≤ e−Θ(n)µ̂(S2) a.s.s. Hence, applying Lemma 19, we conclude that the
mixing time of Kawasaki dynamics on H is exp(Ω(n)).

APPROX/RANDOM 2024

56:22 Fast and Slow Mixing of the Kawasaki Dynamics

In the case that 0 < η ≤ ηc, we require a slightly different argument since we cannot apply
Proposition 5 to η. Instead, we argue that for all η ∈ (0, ηc] we can choose δ′ > 0 sufficiently
small such that for all η+ ∈ (ηc, ηc + δ′) and η− = η−

∆,β,λη+
it holds that η− < η < η+. In

particular, we may choose η+ such that mη = ℓη+ + (m − ℓ)η− for some m, ℓ ∈ N, ℓ < m.
We then define S1, S2, S3 (again with some slight simplification here) by

S1 : ηGi
∈ [η− − ϵ, η− + ϵ] for all i ≤ m − ℓ and ηGi

∈ [η+ − ϵ, η+ + ϵ] else,

S2 : ηGi
∈ [η+ − ϵ, η+ + ϵ] for all i ≤ ℓ and ηGi

∈ [η− − ϵ, η− + ϵ] else,

S3 : ηGi
∈ [η+ − 2ϵ, η+ + ϵ] for all i ≤ ℓ and ηGi

∈ [η− − ϵ, η− + 2ϵ] else, and there
exists i ≤ ℓ with ηGi ∈ [η+ − 2ϵ, η+ − ϵ] or i > ℓ with ηGi ∈ [η− + ϵ, η− + 2ϵ].

By symmetry, we have µ̂(S1) = µ̂(S2) and by the same arguments as before it holds that
µ̂(S3) ≤ e−Θ(n)µ̂(S2). Applying Lemma 19 then gives the desired result.

References
1 Vedat Levi Alev and Lap Chi Lau. Improved analysis of higher order random walks and

applications. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, pages 1198–1211, 2020. doi:10.1145/3357713.3384317.

2 Nima Anari, Kuikui Liu, and Shayan Oveis Gharan. Spectral independence in high-dimensional
expanders and applications to the hardcore model. SIAM Journal on Computing, 0(0):FOCS20–
1, 2021. doi:10.1137/20M1367696.

3 Victor Bapst and Amin Coja-Oghlan. Harnessing the Bethe free energy. Random structures &
algorithms, 49(4):694–741, 2016. doi:10.1002/rsa.20692.

4 Roland Bauerschmidt, Thierry Bodineau, and Benoit Dagallier. Kawasaki dynamics beyond
the uniqueness threshold. arXiv preprint arXiv:2310.04609, 2023. doi:10.48550/arXiv.2310.
04609.

5 Roland Bauerschmidt, Thierry Bodineau, and Benoit Dagallier. Stochastic dynamics and
the Polchinski equation: an introduction. arXiv preprint arXiv:2307.07619, 2023. doi:
10.48550/arXiv.2307.07619.

6 Rodney J Baxter. Exactly solved models in statistical mechanics. Elsevier, 2016.
7 Russ Bubley and Martin Dyer. Path coupling: A technique for proving rapid mixing in Markov

chains. In Proceedings 38th Annual Symposium on Foundations of Computer Science, pages
223–231. IEEE, 1997. doi:10.1109/SFCS.1997.646111.

8 Van Hao Can, Remco van der Hofstad, and Takashi Kumagai. Glauber dynamics for Ising
models on random regular graphs: cut-off and metastability. ALEA, 18(1):1441–1482, 2021.
doi:10.30757/ALEA.v18-52.

9 N Cancrini and F Martinelli. On the spectral gap of Kawasaki dynamics under a mixing
condition revisited. Journal of Mathematical Physics, 41(3):1391–1423, 2000. doi:10.1063/1.
533192.

10 N Cancrini, F Martinelli, and C Roberto. The logarithmic Sobolev constant of Kawasaki
dynamics under a mixing condition revisited. Annales de l’Institut Henri Poincare (B)
Probability and Statistics, 38(4):385–436, 2002. doi:10.1016/S0246-0203(01)01096-2.

11 Nicoletta Cancrini, F Cesi, and F Martinelli. The spectral gap for the Kawasaki dynamics at low
temperature. Journal of statistical physics, 95:215–271, 1999. doi:10.1023/A:1004581512343.

12 Charlie Carlson, Ewan Davies, Alexandra Kolla, and Will Perkins. Computational thresholds
for the fixed-magnetization Ising model. In Proceedings of the 54th Annual ACM SIGACT
Symposium on Theory of Computing, pages 1459–1472, 2022. doi:10.1145/3519935.3520003.

13 Raphaël Cerf and Ágoston Pisztora. On the Wulff crystal in the Ising model. Annals of
probability, pages 947–1017, 2000. doi:10.1214/aop/1019160324.

https://doi.org/10.1145/3357713.3384317
https://doi.org/10.1137/20M1367696
https://doi.org/10.1002/rsa.20692
https://doi.org/10.48550/arXiv.2310.04609
https://doi.org/10.48550/arXiv.2310.04609
https://doi.org/10.48550/arXiv.2307.07619
https://doi.org/10.48550/arXiv.2307.07619
https://doi.org/10.1109/SFCS.1997.646111
https://doi.org/10.30757/ALEA.v18-52
https://doi.org/10.1063/1.533192
https://doi.org/10.1063/1.533192
https://doi.org/10.1016/S0246-0203(01)01096-2
https://doi.org/10.1023/A:1004581512343
https://doi.org/10.1145/3519935.3520003
https://doi.org/10.1214/aop/1019160324

A. Kuchukova, M. Pappik, W. Perkins, and C. Yap 56:23

14 Yuansi Chen and Ronen Eldan. Localization schemes: A framework for proving mixing bounds
for Markov chains. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer
Science (FOCS), pages 110–122. IEEE, 2022. doi:10.1109/FOCS54457.2022.00018.

15 Zongchen Chen, Kuikui Liu, and Eric Vigoda. Optimal mixing of Glauber dynamics: Entropy
factorization via high-dimensional expansion. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, pages 1537–1550, 2021. doi:10.1145/3406325.3451035.

16 Zongchen Chen, Kuikui Liu, and Eric Vigoda. Spectral independence via stability and
applications to holant-type problems. In 2021 IEEE 62nd Annual Symposium on Foundations of
Computer Science (FOCS), pages 149–160. IEEE, 2022. doi:10.1109/FOCS52979.2021.00023.

17 Zongchen Chen, Kuikui Liu, and Eric Vigoda. Rapid mixing of Glauber dynamics up
to uniqueness via contraction. SIAM Journal on Computing, 52(1):196–237, 2023. doi:
10.1137/20M136685X.

18 Amin Coja-Oghlan, Charilaos Efthymiou, and Samuel Hetterich. On the chromatic number
of random regular graphs. Journal of Combinatorial Theory, Series B, 116:367–439, 2016.
doi:10.1016/j.jctb.2015.09.006.

19 Amin Coja-Oghlan, Andreas Galanis, Leslie Ann Goldberg, Jean Bernoulli Ravelomanana,
Daniel Štefankovič, and Eric Vigoda. Metastability of the Potts ferromagnet on random
regular graphs. Communications in Mathematical Physics, pages 1–41, 2023. doi:10.1007/
s00220-023-04644-6.

20 Amin Coja-Oghlan, Florent Krzakala, Will Perkins, and Lenka Zdeborová. Information-
theoretic thresholds from the cavity method. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, pages 146–157, 2017. doi:10.1145/3055399.3055420.

21 Amin Coja-Oghlan, Philipp Loick, Balázs F Mezei, and Gregory B Sorkin. The Ising antifer-
romagnet and max cut on random regular graphs. SIAM Journal on Discrete Mathematics,
36(2):1306–1342, 2022. doi:10.1137/20M137999X.

22 Ewan Davies and Will Perkins. Approximately counting independent sets of a given size in
bounded-degree graphs. SIAM Journal on Computing, 52(2):618–640, 2023. doi:10.1137/
21M1466220.

23 Amir Dembo and Andrea Montanari. Ising models on locally tree-like graphs. Ann. Appl.
Probab., 20(1):565–592, 2010. doi:10.1214/09-AAP627.

24 Roland Lvovich Dobrushin, Roman Koteckỳ, and Senya Shlosman. Wulff construction: a
global shape from local interaction, volume 104. American Mathematical Society Providence,
1992.

25 Martin Dyer, Alan Frieze, and Mark Jerrum. On counting independent sets in sparse graphs.
SIAM Journal on Computing, 31(5):1527–1541, 2002. doi:10.1137/S0097539701383844.

26 Martin Dyer, Leslie Ann Goldberg, Mark Jerrum, and Russell Martin. Markov chain comparison.
Probability Surveys, 3(none):89–111, 2006. doi:10.1214/154957806000000041.

27 Andreas Galanis, Qi Ge, Daniel Štefankovič, Eric Vigoda, and Linji Yang. Improved inapprox-
imability results for counting independent sets in the hard-core model. Random Structures &
Algorithms, 45(1):78–110, 2014. doi:10.1002/rsa.20479.

28 Andreas Galanis, Daniel Štefankovič, and Eric Vigoda. Inapproximability of the partition
function for the antiferromagnetic Ising and hard-core models. Combinatorics, Probability and
Computing, 25(4):500–559, 2016. doi:10.1017/S0963548315000401.

29 Andreas Galanis, Daniel Štefankovič, Eric Vigoda, and Linji Yang. Ferromagnetic Potts model:
Refined #BIS-hardness and related results. SIAM Journal on Computing, 45(6):2004–2065,
2016. doi:10.1137/140997580.

30 Hans-Otto Georgii. Gibbs measures and phase transitions, volume 9. Walter de Gruyter, 2011.
31 Antoine Gerschenfeld and Andrea Montanari. Reconstruction for models on random graphs.

In 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS’07), pages
194–204. IEEE, 2007. doi:10.1109/FOCS.2007.58.

APPROX/RANDOM 2024

https://doi.org/10.1109/FOCS54457.2022.00018
https://doi.org/10.1145/3406325.3451035
https://doi.org/10.1109/FOCS52979.2021.00023
https://doi.org/10.1137/20M136685X
https://doi.org/10.1137/20M136685X
https://doi.org/10.1016/j.jctb.2015.09.006
https://doi.org/10.1007/s00220-023-04644-6
https://doi.org/10.1007/s00220-023-04644-6
https://doi.org/10.1145/3055399.3055420
https://doi.org/10.1137/20M137999X
https://doi.org/10.1137/21M1466220
https://doi.org/10.1137/21M1466220
https://doi.org/10.1214/09-AAP627
https://doi.org/10.1137/S0097539701383844
https://doi.org/10.1214/154957806000000041
https://doi.org/10.1002/rsa.20479
https://doi.org/10.1017/S0963548315000401
https://doi.org/10.1137/140997580
https://doi.org/10.1109/FOCS.2007.58

56:24 Fast and Slow Mixing of the Kawasaki Dynamics

32 Heng Guo and Pinyan Lu. Uniqueness, spatial mixing, and approximation for ferromagnetic
2-spin systems. ACM Transactions on Computation Theory (TOCT), 10(4):1–25, 2018.
doi:10.1145/3265025.

33 Vishesh Jain, Marcus Michelen, Huy Tuan Pham, and Thuy-Duong Vuong. Optimal mixing of
the down-up walk on independent sets of a given size. In 2023 IEEE 64th Annual Symposium
on Foundations of Computer Science (FOCS), pages 1665–1681. IEEE, 2023. doi:10.1109/
FOCS57990.2023.00101.

34 Svante Janson, Tomasz Łuczak, and Andrzej Rucinski. Random graphs. John Wiley & Sons,
2011.

35 Mark Jerrum and Alistair Sinclair. Polynomial-time approximation algorithms for the Ising
model. SIAM Journal on computing, 22(5):1087–1116, 1993. doi:10.1137/0222066.

36 Aiya Kuchukova, Marcus Pappik, Will Perkins, and Corrine Yap. Fast and slow mixing of
the kawasaki dynamics on bounded-degree graphs. arXiv preprint arXiv:2405.06209, 2024.
doi:10.48550/arXiv.2405.06209.

37 David A Levin and Yuval Peres. Markov chains and mixing times, volume 107. American
Mathematical Soc., 2017.

38 Sheng Lin Lu and Horng-Tzer Yau. Spectral gap and logarithmic Sobolev inequality for
Kawasaki and Glauber dynamics. Communications in Mathematical Physics, 156(2):399–433,
1993. doi:10.1007/BF02098489.

39 Fabio Martinelli, Alistair Sinclair, and Dror Weitz. Fast mixing for independent sets, colorings,
and other models on trees. Random Structures & Algorithms, 31(2):134–172, 2007. doi:
10.1002/rsa.20132.

40 Elchanan Mossel and Allan Sly. Exact thresholds for Ising–Gibbs samplers on general graphs.
The Annals of Probability, 41(1):294–328, 2013. doi:10.1214/11-AOP737.

41 Elchanan Mossel, Dror Weitz, and Nicholas Wormald. On the hardness of sampling independent
sets beyond the tree threshold. Probability Theory and Related Fields, 143(3-4):401–439, 2009.
doi:10.1007/s00440-007-0131-9.

42 Dana Randall and David Wilson. Sampling spin configurations of an Ising system. In
Symposium on Discrete Algorithms: Proceedings of the tenth annual ACM-SIAM symposium
on Discrete algorithms, pages 959–960, 1999. doi:10.1145/314500.314945.

43 Guus Regts. Absence of zeros implies strong spatial mixing. Probability Theory and Related
Fields, pages 1–21, 2023. doi:10.1007/s00440-023-01190-z.

44 Shuai Shao and Yuxin Sun. Contraction: A unified perspective of correlation decay and
zero-freeness of 2-spin systems. Journal of Statistical Physics, 185:1–25, 2021. doi:10.1007/
s10955-021-02831-0.

45 Shuai Shao and Xiaowei Ye. From zero-freeness to strong spatial mixing via a christoffel-darboux
type identity. arXiv preprint arXiv:2401.09317, 2024. doi:10.48550/arXiv.2401.09317.

46 Allan Sly. Computational transition at the uniqueness threshold. In 2010 IEEE 51st Annual
Symposium on Foundations of Computer Science, pages 287–296. IEEE, 2010. doi:10.1109/
FOCS.2010.34.

47 Allan Sly and Nike Sun. Counting in two-spin models on d-regular graphs. Annals of Probability,
42(6):2383–2416, 2014. doi:10.1214/13-AOP888.

48 Dror Weitz. Counting independent sets up to the tree threshold. In Proceedings of the
thirty-eighth annual ACM symposium on Theory of computing, pages 140–149, 2006. doi:
10.1145/1132516.1132538.

49 Lawrence Zalcman. Normal families: new perspectives. Bulletin of the American Mathematical
Society, 35(3):215–230, 1998. doi:10.1090/S0273-0979-98-00755-1.

https://doi.org/10.1145/3265025
https://doi.org/10.1109/FOCS57990.2023.00101
https://doi.org/10.1109/FOCS57990.2023.00101
https://doi.org/10.1137/0222066
https://doi.org/10.48550/arXiv.2405.06209
https://doi.org/10.1007/BF02098489
https://doi.org/10.1002/rsa.20132
https://doi.org/10.1002/rsa.20132
https://doi.org/10.1214/11-AOP737
https://doi.org/10.1007/s00440-007-0131-9
https://doi.org/10.1145/314500.314945
https://doi.org/10.1007/s00440-023-01190-z
https://doi.org/10.1007/s10955-021-02831-0
https://doi.org/10.1007/s10955-021-02831-0
https://doi.org/10.48550/arXiv.2401.09317
https://doi.org/10.1109/FOCS.2010.34
https://doi.org/10.1109/FOCS.2010.34
https://doi.org/10.1214/13-AOP888
https://doi.org/10.1145/1132516.1132538
https://doi.org/10.1145/1132516.1132538
https://doi.org/10.1090/S0273-0979-98-00755-1

Stochastic Distance in Property Testing
Uri Meir # Ñ

Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel

Gregory Schwartzman # Ñ

JAIST, Japan

Yuichi Yoshida # Ñ

Principles of Informatics Research Division, National Institute of Informatics, Tokyo, Japan

Abstract
We introduce a novel concept termed “stochastic distance” for property testing. Diverging from
the traditional definition of distance, where a distance t implies that there exist t edges that can
be added to ensure a graph possesses a certain property (such as k-edge-connectivity), our new
notion implies that there is a high probability that adding t random edges will endow the graph with
the desired property. While formulating testers based on this new distance proves challenging in a
sequential environment, it is much easier in a distributed setting. Taking k-edge-connectivity as a
case study, we design ultra-fast testing algorithms in the CONGEST model. Our introduction of
stochastic distance offers a more natural fit for the distributed setting, providing a promising avenue
for future research in emerging models of computation.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near lin-
ear time algorithms; Mathematics of computing → Random graphs; Theory of computation →
Distributed algorithms

Keywords and phrases Connectivity, k-edge connectivity

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.57

Category RANDOM

Related Version Full Version: https://arxiv.org/abs/2407.14080

Funding Gregory Schwartzman: This work was supported by JSPS KAKENHI Grant Number
JP21K17703 and JP21H05850.
Yuichi Yoshida: This work was supported by JSPS KAKENHI Grant Number 20H05965 and
22H05001.

1 Introduction

Property testing has become a major focus in computational research over the years. One of
the main goals in this field is to quickly determine if a given structure has a specific property
or is far from having it. Traditionally, this “distance” from a property has been defined using
the Hamming distance, which counts the number of changes needed to give the structure
the desired property. But a question arises: Is this the best way to measure distance in all
situations, especially in emerging models of computation?

Consider the following motivating example. Distributed dynamic systems, such as peer-
to-peer networks, frequently experience changes in their structure as nodes (clients) join or
depart and edges may experience failures. For the sake of resilience against failures, it is
imperative for these systems to maintain a topology with certain advantageous features, like
k-edge-connectivity1. However, maintaining this throughout the evolution of the network

1 Going forward we simply write k-connectivity.

© Uri Meir, Gregory Schwartzman, and Yuichi Yoshida;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 57; pp. 57:1–57:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:urimeir.cs@gmail.com
https://sites.google.com/view/urimeir
https://orcid.org/0009-0003-4274-346X
mailto:greg@jaist.ac.jp
https://sites.google.com/view/gregoryschwartzman/
mailto:yyoshida@nii.ac.jp
https://research.nii.ac.jp/~yyoshida/
https://orcid.org/0000-0001-8919-8479
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.57
https://arxiv.org/abs/2407.14080
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

57:2 Stochastic Distance in Property Testing

may require resource-intensive corrections, which ideally should be minimized. Still, it might
be the case that some topologies are “easy” to correct, in the sense that simply adding a small
number of random edges to the graph will make the network topology k-connected. This
can be seen as a “low-cost” fixing operation, compared to executing an elaborate algorithm
that guarantees k-connectivity for every topology. A question arises: can we detect these
easy-to-fix topologies fast?

We take a first step in addressing the above and introduce a new distance measure which
we call stochastic distance. That is, we say that a graph G = (V, E) is t-stochastically-close
to a property P if it holds with high probability (w.h.p)2 that adding (roughly) t random
edges to G will make it have property P. Intuitively, the Hamming distance metric can be
seen as asking whether the input graph is close to at least one graph instance that has a
desired property, while our new distance measure asks whether the graph is close to many
instances that have the property.

To exemplify the usefulness of our new distance measure, we take the property of k-
connectivity as a case study. This is an extremely desirable graph property in the distributed
setting, as it guarantees that the system remains connected even under several edge failures.
In Section 3 we note that the simple case of connectivity already becomes hard to test in
the sequential setting. However, using the distributed power of the system we can design
extremely fast distributed testers for both connectivity and k-connectivity.

1.1 Our model and results
In the distributed setting, a network of nodes, which is represented by a communication
graph G = (V, E), aims to solve some graph problem with respect to G. Every node in G

has unique ID of O(log n) bits. Computation proceeds in synchronous rounds, in each of
which every vertex can send a message to each of its neighbors. The running time of the
algorithm is measured as the number of communication rounds it takes to finish. Our results
hold for the CONGEST model of distributed computation, where messages are limited to
O(log n) bits (where n = |V |).

A distributed 1-sided tester [5] for a property P (or simply a tester) has the following
guarantee. If the graph G has the property, then all nodes accept. If the graph is ϵ-far
from having the property, then with probability larger than 2/3 at least one node rejects.
This definition remains the same for both the Hamming distance metric and our stochastic
distance measure.

Note that ϵ ∈ (0, 1) indicates the distance from the property relative to the number of
edges in the graph (i.e., ϵ|E| in the general model) or to the possible number of edges in the
graph (i.e., ϵ

(
n
2
)

in the dense model). In our model every non-edge is added with probability
t/(

(
n
2
)

− |E|) (see Section 2 for an exact definition), therefore it is more natural to use t ∈ N
as the distance parameter rather than ϵ. That is, our testers decide whether the graph has a
certain property or if it is t-far from it. We state and prove the following two theorems3:

▶ Theorem 1. There exists a deterministic algorithm in the CONGEST model, that for a
parameter s ∈ N runs in O(s) rounds and distinguishes whether the graph G is connected, or
is Ω((n log n)/s)-stochastically-far.

2 With probability at least 1−n−c for some constant c > 1. The choice of c does not affect the asymptotics
of our results.

3 Where Õ subsumes factors logarithmic in n.

U. Meir, G. Schwartzman, and Y. Yoshida 57:3

▶ Theorem 2. There exists a randomized algorithm in the CONGEST model, that for
a parameter s ∈ N runs in Õ(s4) rounds and distinguishes w.h.p whether the graph G is
k-connected, or is Ω((kn log n)/s)-stochastically-far from being one.

Intuitively, the above states that the more random edges are added the easier it is to
check if the graph will become k-connected or not. That is, if s ≈ kn log n then checking
whether a constant number of random edges will make the graph k-connected is as hard as
checking if the graph is connected, which requires traversing the entire graph. If s = O(1),
then so many edges are added that the graph almost surely becomes k-connected. Our results
provide a smooth transition between these two cases.

Related work

In (non-distributed) property testing, the objective is to devise algorithms that can distinguish
between graphs satisfying a property P and graphs that are ϵ-far from having the property
with a high probability. Testing connectivity properties in the bounded-degree model, where
we have query access to the input graph via a list of incidence lists, has been extensively
studied, including k-connectivity [13, 21, 17], k-vertex-connectivity [22, 17], (k, l)-sparsity [14]
and supermodular-cut conditions [19].

The first distributed property testing algorithm was due to [3]. A thorough study of
distributed property testing was initiated in [5]. This was followed by a long line of work,
presenting new and improved testers for various properties [1, 9, 12, 11, 16, 10]. All of these
works consider the Hamming distance handed down from the sequential testing model.

k-connectivity received a large amount of attention in the distributed literature [20, 4, 8,
7, 6, 18, 2]. There is a large body of work that aims to find sparse connectivity certificates –
for a k-connected graph the goal is to find a k-connected subgraph that has O(kn) edges.
Another related problem is computing a k-edge-connected spanning subgraph (k-ECSS) –
for a k-connected graph the goal is to find the sparsest possible k-connected subgraph. We
note that both these problems assume that the input graph is k-connected, and are therefore
inherently different than the problem we consider.

2 Preliminaries

Distance from a property

We identify simple graphs G = (V = [n], E) with the
(

n
2
)
-dimensional characteristic vector

of their edge set E ⊆
(

V
2
)
, and use the Hamming metric over these vectors, defined by

dHAM(G, G′) =
∣∣∣{i ∈

(
V
2
)

: G(i) ̸= G′(i)}
∣∣∣, where G(i) is the ith entry in the vector G.

By extension, the distance of a graph G from a family of graphs G is:

dHAM(G, G) = min
G′∈G

dHAM(G, G′).

A property P is formally a family of graphs (e.g., all connected graphs). Given positive
integers n and t, we define the YES case of the corresponding testing problem to be all graphs
G = (V, E) in P over n vertices:

YES := {G ∈ {0, 1}(V
2) : G ∈ P}

We define the NO case, denoted NO′
t, to be all graphs G = (V, E) over n vertices with

Hamming distance at least t from YES:

NO′
t := {G ∈ {0, 1}(V

2) : dHAM(G, YES) ≥ t}

APPROX/RANDOM 2024

57:4 Stochastic Distance in Property Testing

Motivated by connectivity, in the following we only consider monotone non-decreasing
properties, for which it is easy to see that only additions count towards the distance from
the property (note that many properties in the literature are monotone non-increasing
instead. For these, one can replace additions with deletions). Formally, if P is a monotone
non-decreasing property, and G /∈ P is a graph that does not satisfy it, then for any
H ∈ P with dHAM(G, H) = dHAM(G, P), we have EG ⊆ EH (or alternatively, dHAM(G, H) =∣∣∣{i ∈

(
V
2
)

: G(i) = 0 ∧ H(i) = 1}
∣∣∣).

Stochastic distance

We define stochastic closeness to a property as follows:

▶ Definition 3 (Random addition of edges). For a graph G = (V, E), we choose a random
subset E′ of the edge set Ē =

(
V
2
)
\E, by adding each edge with probability t/

∣∣Ē∣∣ independently,
for parameter t ∈

[
0,

∣∣Ē∣∣]. We define the random graph Add(G, t) := (V, E ∪ E′). We say
that G′ = Add(G, t) is created from G by a random addition of edges with parameter t.

The parameter t should be understood intuitively as the (expected) number of random edges
required to make the graph have the property P w.h.p. Per our motivation, and in accordance
with previous results for testing connectivity, we allow ourselves the mild assumption that∣∣Ē∣∣ = Ω(n2) which clearly holds for any input relevant to our setting. The amount of edges
we aim to add, however, is always significantly smaller, t = o(n2). In particular it is always
the case that t ≤

∣∣Ē∣∣, as desired.

▶ Definition 4 (Stochastic closeness to a monotone property). For a monotone property P, a
graph G /∈ P over n vertices is said to be t-stochastically-close to satisfying P if the graph
G′ = Add(G, t) satisfies

Pr[G′ /∈ P] ≤ n−c

for some global constant c > 1. As shown in Appendix A, the constant c can be chosen
arbitrarily without affecting stochastic closeness by more than a constant factor.

We are now able to define the alternative set of NO instances:

NOt := {G ∈ {0, 1}(V
2) : G /∈ YES and G is not t-stochastically-close to P}

In this text our main focus is solving promise problems of type (YES, NOt), rather than
(YES, NO′

t).

Comparing the two notions of distance

As an illustrative example, consider two n-node graphs, both with exactly two connected
components: in G1 a constant-size component is disconnected from the rest of the graph,
while in G2 there are two components of the same size, n/2. While both graphs are exactly
one edge away from being connected (i.e, both have hamming distance 1). The situation is
quite different if edges are added randomly, instead of being handpicked, leading to different
stochastic distance. While a small number of edges (∼ log n) are already likely to connect
G2, the same amount has only probability o(1) to connect G1.

U. Meir, G. Schwartzman, and Y. Yoshida 57:5

3 Warm-up: Connectivity with Stochastic Distance

In this section we deal with the graph connectivity property for a network that is not
necessarily connected. This section aims to present the ideas used in the following section
about k-connectivity. We use the following terminology: when a graph is disconnected, write
G =

⋃m
i=1 Ci as the unique decomposition of G into its connected components C1, . . . , Cm,

with Ci = (Vi, Ei), and si := |Vi| for their sizes.
We make the following observation:

▶ Observation 5. Let G =
⋃m

i=1 Ci be a disconnected graph (i.e., m ≥ 2), and let s =
1
m

∑
i∈[m] si, then G is O(n

s)-close to being connected in Hamming distance.

Indeed, it holds that s = 1
m

∑
i∈[m] si = n/m, which means that m = n/s. As a single edge

can be used to connect two components, adding m − 1 = n/s − 1 edges suffices to connect
the graph.

The observation is also tight: there exist graphs that require exactly this number of
additions. Joined with a Markovian argument, one can deduce that for any graph that is far
from connectivity, there exists many small connected components. This is a key argument in
the analysis of existing connectivity testers (using Hamming distance) [13].

The main part of this section deals with proving a statement of similar taste for stochastic
distance. While the Hamming distance of a graph from being connected is dictated by the
average size of a connected component, for stochastic distance this is dictated by the minimum
size of a connected component. As a result, a graph that is far from being connected in
stochastic distance is only guaranteed to have one small connected component. Formally, we
prove the following lemma:

▶ Lemma 6. Let G =
⋃m

i=1 Ci be a disconnected graph (that is, m ≥ 2), with components
of sizes si = |Vi|. Then G is O((n log n)/s)-stochastically-close to being connected, where
s = mini∈[m]{si}.

Proof. Recall that when considering stochastic distance every non-edge is added with some
probability p. Consider the set of bad events {Bk}⌊m/2⌋

k=1 , where Bk is the event that there
exists a set of exactly k connected components Ci1 , . . . Cik

such that none of the edges
between

⋃k
j=1 Cij and the rest of the graph are added. The important observation is that

the graph stays disconnected if and only if one of these bad events occurs. We go on to
bound the probability of each of these bad events.

Fix k. Our goal is to bound Pr[Bk]. There are
(

m
k

)
ways to choose a subset of k

components. Fix one such choice i1, . . . ik and denote the set of vertices in these components
by U =

⋃k
j=1 Vij

. As each component is of size at least s, we have |U | ≥ ks, applying the same
reasoning to the remaining graph, made of the rest of the components: |V \ U | ≥ (m − k)s ≥
ks nodes (the second inequality holds since k ≤ m/2). Thus, we have ks ≤ |U | ≤ n − ks,
and consequently we get:

|U | · |V \ U | = |U | · (n − |U |) ≥ ks(n − ks).

where the inequality is true since f(x) = x(n − x) is unimodal and symmetric on the interval
[ks, n − ks]. The probability of U staying disconnected from V \ U is thus bounded by:

(1 − p)|U |(n−|U |) ≤ e−p|U |(n−|U |) ≤ e−pks(n−ks)

And by a union bound over all choices of U with k connected components, we get:

Pr[Bk] ≤
(

m

k

)
e−pks(n−ks) ≤ e−pks(n−ks)+k log m ≤ e−pksn+p(ks)2+k log n

APPROX/RANDOM 2024

57:6 Stochastic Distance in Property Testing

Thus, by taking p = 2(c + 2) log n/(sn), the expression in the exponent is bounded by:

−2(c + 2) log n · ksn

sn
+ 2(c + 2) log n(ks)2

sn
+ k log n = (2(c + 2)(ks/n − 1) + 1)k log n

≤ −(c + 1)k log n

where the inequality uses ks/n ≤ (m/2)s/n ≤ 1/2. This, in turn, bounds the probability
of the bad event by:

Pr[Bk] ≤ e−(c+1)k log n ≤
(

1
n

)−(c+1)k

Using a union bound over all values of k, we get

Pr

⌊m/2⌋∨
k=1

Bk

 ≤
⌊m/2⌋∑

k=1
n−(c+1)k ≤

∞∑
k=1

n−(c+1)k ≤ 2n−(c+1) ≤ n−c

where the second to last inequality uses the sum of an infinite geometric series with common
ratio n−(c+1) ≤ 1/2, and the last simply uses n ≥ 2.

Finally, we get that G is connected w.h.p. This implies that G is t-stochastically-close to
being connected, with t = O((n log n)/s) (recall that

∣∣Ē∣∣ = Ω(n2)). ◀

Tightness of Lemma 6

We focus on the smallest connected component, Vi of size si = s. There are at most s(n−s) ≤
sn potential edges to connect Vi to the rest of the graph. If we take p′ = c log n/(4sn), then
the probability none of them is added satisfies:

(1 − p′)s(n−s) ≥ (1 − p′)sn ≥ e−2p′sn = e−c log n/2 = n−c/2 > n−c,

where the second inequality uses 1 − x ≥ e−2x, which holds for x ∈ [0, 1/2].
Using the counter-positive of Lemma 6, a graph G that is O((n log n)/s)-stochastically-far

from being connected is guaranteed to have a connected component of size at most O(s).
It is clear that a sequential tester is ill-suited to detect such small witnesses. Indeed,

consider distinguishing the connected cycle over all n nodes, from a disconnected n-node
graph consisting of an n − 1 cycle and a single isolated node (chosen uniformly at random).
On the one hand, all disconnected graphs are as stochastically far as a graph can be from
connectivity (requiring roughly n log n random edge additions). Still, a sequential tester
would require Ω(n) queries to an oracle in order to detect the isolated node.

In the CONGEST model, however, an efficient testing procedure exists.

▶ Theorem 1. There exists a deterministic algorithm in the CONGEST model, that for a
parameter s ∈ N runs in O(s) rounds and distinguishes whether the graph G is connected, or
is Ω((n log n)/s)-stochastically-far.

Proof. Assume that the parameter s is known to all nodes in the network. Each node runs
a distributed DFS algorithm. Every execution is associated with an ID, which is simply
the ID of the root of the DFS tree. When multiple DFS executions visit the same node, all
execution are terminated, except that with the maximum ID. When a DFS execution visits
s nodes, it terminates and checks whether there is an outgoing edge from any visited node to
any unvisited node. If there is, then it accepts (i.e., the graph is connected), otherwise it
rejects (i.e., the graph is far from being connected). Correctness follows from Lemma 6. It is
clear that there is no congestion and that the algorithm terminates in O(s) iterations. ◀

U. Meir, G. Schwartzman, and Y. Yoshida 57:7

4 Stochastic Distance from k-Connectivity

This section deals with k-connectivity, for any k ≥ 1. We aim to characterize stochastic
distance of a graph in terms of cuts, focusing on a specific parameter-of-interest denoted by
sk(G): the smallest size of a vertex set that has a cut strictly smaller than k. In terms of
this parameter, the following can be shown:

▶ Theorem 7. Let G = (V, E) and s = sk(G), then G is O((k · n log n)/s)-stochastically-close
to being k-connected.

Similarly to Lemma 6, this theorem is tight, up to a factor of k. The rest of this section
deals with proving the above theorem. First the parameter sk(G) is formally defined and
discussed. Later, we generalize Lemma 6 to bound the number of random edge additions
required to increase the connectivity of a graph by one. In the last part we formally prove
Theorem 7.

4.1 Properties of minimal cuts
For any vertex set, U ⊆ V , we write the cut size of U as c(U) := |E(U, V \ U)|. We use
d(t) := t(n − t) for the potential amount of edges between any t vertices and the rest of the
graph, and for a specific vertex set, U , we slightly abuse notation and write d(U) = d(|U |).

For any parameter k ∈ N and graph G = (V, E), we define the collection of small cuts as
the cuts that are strictly smaller than k:

Sk(G) := {U ⊆ V : c(U) < k and U ̸= ∅}

A value of interest for us will be the size of the smallest set in such a collection. Formally we
define:

sk(G) := min
U∈Sk(G)

|U |

When the connectivity parameter k and the graph G are clear from context, we omit either
one or both (writing sk, s(G) or simply s instead). If the collection is empty for some k and
G, we define sk(G) = n. Note that sk(G) = n if and only if G is indeed k-connected.

We show that sk(G) has certain monotonicity properties with respect to the parameters
G and k. Indeed, by definition a larger value for k creates a larger collection of cuts, i.e.,
Sk(G) ⊆ Sk+1(G). On the other hand, adding edges to the graph can only increase the cut
of any given vertex set, U . Thus, any U with a small cut after additions, also had a small
cut before additions. Formally, if G ⊆ G′ (i.e., G = (V, E), G′ = (V, E′) and E ⊆ E′), we
have Sk(G′) ⊆ Sk(G). The minimum over elements in a collection can only decrease if we
add elements to the collection, and hence we have:

▶ Observation 8 (Monotonicity of sk(G)). The parameter sk(G) is monotone non-increasing
in k, and monotone non-decreasing in G.

Below, we will be interested in finding the smallest vertex set U in the collection Sk(G).
This element determines the value s. The following proposition shows a property of such a
set U that will be useful for the algorithm:

▶ Proposition 9. Fix k ∈ N and a graph G = (V, E). For any subset U ⊆ V with a cut less
than k (c(U) < k) and of minimal size (|U | = sk) the induced subgraph G[U] is connected.

APPROX/RANDOM 2024

57:8 Stochastic Distance in Property Testing

Proof. Assume otherwise, then we can break G[U] into its connected components: U =
⋃

i Ui.
Each such component has strictly less nodes than U . Moreover, we have:

c(Ui) = E(Ui, V \ Ui) = E(Ui, V \ U) ≤ E(U, V \ U) = c(U),

where the second equality holds since there are no edges between different components of U .
We conclude that each Ui has a cut of size at most c(U) < k, but their size is strictly smaller
than s, which leads to a contradiction. ◀

4.2 Increasing the connectivity by one
Using the notations of this section, the statement of Lemma 6 is that any graph that is
“0-connected” (i.e., disconnected) is O(n log(n)/s1)-stochastically-close to being 1-connected.
This is true since s1 is exactly the size of the smallest connected component in G.

We generalize this statement for k-connectivity:

▶ Lemma 10. Any (k − 1)-connected graph G with n ≥ 4k nodes is O(n log(n)/sk)-
stochastically-close to being k-connected.

Proof. For k = 1, the proof is complete due to Lemma 6. For k > 1, let G be a (k − 1)-
connected graph. Thus, all minimum cuts have k − 1 ≥ 1 edges (G is connected). We
estimate the number of random edges needed to make all sets in Sk(G) have a cut of size at
least k.

We identify minimum cut with a partition of V to U and V \ U (w.l.o.g, |U | ≤ ⌊n/2⌋).
As in Lemma 6 assume that every non-edge is added with probability p. Consider the event
BU that U remains with cut of size k − 1. That is, not a single edge was added between U

and V \ U . There are exactly d(U) − (k − 1) potential additions, and so:

Pr[BU] = (1 − p)d(U)−(k−1) = (1 − p)|U |(n−|U |)−(k−1) ≤ (1 − p)sk·n/4 ≤ e−sk·pn/4,

where the first inequality uses n − |U | ≥ n/2 , |U | ≥ sk(G) and k ≤ |U |n/4 to lower bound
the exponent.

By taking p = 4(c + 2) log n/(skn), this bound becomes

e−sk·pn/4 = e−(c+2) log n = n−(c+2)

We finish the proof by using a union bound over all minimum cuts. There are at most(
n
2
)

≤ n2 of them due to well known corollary of Karger’s Algorithm [15]. The probability
that G is not k-connected after the edge additions is at most∑

U∈Sk(G)

Pr[BU] ≤ n2 · n−(c+2) = n−c. ◀

4.3 Putting it all together
We are now ready to prove Theorem 7. Our proof considers an alternative addition process
which is easier to analyze. Intuitively, let p′ ≈ p/k and consider the following process.
“Repeat k times: add each edge to the graph independently with probability p′”. We formalize
the above and bound the required value of p′ for the alternative process, analyzing each of
the k iterations separately with Lemma 10. We finish up by relating the original addition
processes to the alternative one.

U. Meir, G. Schwartzman, and Y. Yoshida 57:9

Proof of Theorem 7. Denote by r < k the connectivity of G (if G is disconnected, then
r = 0). We consider k − r (at most k) iterations of additions, which we enumerate by
r + 1, . . . , k. We further denote by Gi the graph after iteration i (and Gr = G).

First we consider process (A), where at each iteration i ∈ {r + 1, . . . , k}, each edge is
independently added with probability

pi = 4(c + 3)n log n/si+1(Gi).

Applying Lemma 10 for each iteration i we have the following: The probability that Gi is
i-connected, given that Gi−1 is (i − 1)-connected is at least 1 − n−(c+1). Using a union bound
over all k − r ≤ n iterations, we have that with probability at least 1 − n−c, the final graph
Gk is k-connected.

Next, consider an adjusted process (B) that also works in iterations, but uses a fixed
value

p′ = 4(c + 3)n log n/sk(G).

Using the monotonicity of sk(G), we have

sk(G) = sk(Gr) ≤ si+1(Gr) ≤ si+1(Gi),

and thus pi ≤ p′ for all values of i.
Let us focus on a single non-edge of G, call it (u, v), and follow it through the entire

process. The probability (u, v) is added to Gk is higher in process (B) than it is in process
(A), since p′ ≥ pi for all i. On the other hand, this probability is at most p′k, by a union
bound over all iterations of process (B).

Lastly, consider process (C), a one-shot random addition, using

p = p′k = 4(c + 3)kn log n/sk(G).

The probability of every non-edge being added in process (C) is higher than it is in process
(B) which is in turn higher than process (A). By monotonicity of k-connectivity (as a graph
property), the probability that Gk is a k-connected graph is therefore also higher in process
(C) than it is in process (A), and is therefore at least 1 − n−c. ◀

The counter-positive of Theorem 7 means that any graph G which is O((k · n log n)/s)-
stochastically-far from being k-connected has a set W of at most s nodes with a cut smaller
than k. We call such set W an (s, k)-witness, or simply a witness when k and s are clear
from context.

5 Distributed algorithm for k-connectivity

In this section, we provide a distributed algorithm that detects an (s, k)-witness within
O(s4 log n) rounds in the CONGEST model w.h.p. We state with the following useful lemma4:

▶ Lemma 11 (Lemma 3.16 in [13]). Let W be an (s, k)-witness. Suppose that each edge in the
graph is independently assigned a uniformly distributed cost in [0, 1]. Then, with probability
at least Θ

(
s−2(1−1/k)), W contains a spanning tree such that every edge in the tree has cost

smaller than any edge in the cut E(W, V \ W).

4 The original lemma in [13] uses the notion of a j-extreme node set which is equivalent to our notion of a
(s, k)-witness.

APPROX/RANDOM 2024

57:10 Stochastic Distance in Property Testing

Specifically, if the tree guaranteed by the above lemma exists, the MST must also have
the same guarantees. Furthermore, as all edge costs are unique w.h.p., the MST is unique
w.h.p. When referring to the above lemma, it will be convenient to refer to a single tree, the
MST induced by the cost function (i.e., when referring to the spanning tree guaranteed by
Lemma 11, we always refer to an MST).

Given a starting vertex w and a size bound s, consider the following random process:
Input: start vertex u ∈ V , size bound s ∈ N.
Assign uniformly random weights to all edges: w : E → [0, 1].
Start with a singleton set W = {u}. As long as |W | < s, repeat the following:

Choose the smallest cut edge e = argmine∈E(W,V \W)w(e).
Update W to include the new node of e in V \ W .
If c(W) < k then declare W as an (s, k)-witness.

Lemma 11 implies that repeating the above procedure Θ̃(s2) times detects a witness
w.h.p.

In [13] a small amount of random nodes is sampled, and the above procedure is applied
for each of them. This is possible since any graph that is far from k-connectivity in Hamming
distance contains many witnesses. In our case, a graph that is stochastically far only
guarantees a single witness, and therefore it is costly to detect the witness in the standard
(query) model. We leverage the distributed nature of the system to apply the witness
detection procedure to all nodes in parallel.

Distributed implementation

The above algorithm admits a simple distributed implementation. First, we assign random
weights in [0, 1] to all edges in the graph, this guarantees that with some small probability
there exists a spanning tree within the witness component satisfying the guarantees of
Lemma 11. Assume this tree exists and denote this tree by T . It will be clear from our
algorithm that if this tree does not exist, the running time does not change however we may
simply not detect the witness component if it exists.

Every node grows a cluster as follows. Every cluster can be implemented via a tree
rooted at a leader node. All nodes in the cluster know for each neighbor whether it is in
the cluster or not. To pick the next edge to be added to the cluster the edge weights are
propagated along the tree towards the root, taking the minimum at every node. Finally,
the root propagates the minimum value to all nodes in the cluster and the corresponding
edge is added to the cluster. After each edge addition the cluster checks whether the current
cut size is smaller than k and terminates if this is the case (a witness is found). For ease
of analysis let us define an iteration as the step of adding a single edge (and vertex) to the
cluster. When running this procedure from multiple nodes we can have every cluster wait for
Θ(i) rounds to complete the i-th iteration. This will guarantee when running this procedure
from multiple nodes that the iterations are executed in lock-step. We execute this process
for s iterations. This results in a running time of O(s2) rounds.

In order to detect a witness component, we must execute the above algorithm to comple-
tion, starting from a node within the witness component. We do not know which nodes are
within the witness component before executing the algorithm, and running the procedure to
completion may cause congestion. To overcome this, we execute the procedure from all nodes
simultaneously, but prioritize executions that overlap according to a priority condition.

The priority of the cluster at iteration i is the largest edge cost that was added to the
cluster so far. Let us call this the max-edge value. Whenever multiple executions reach
the same node, executions with higher max-edge values are terminated (ties are broken via

U. Meir, G. Schwartzman, and Y. Yoshida 57:11

the cluster root IDs). As clusters add edges greedily according to edge weights, we know
that only edges from T will be added to clusters whose execution starts from the witness
component. That is, all edges in T will be added, at which point the small cut will be
detected and all nodes in the cluster will reject.

As we terminate executions that visit the same node, we never experience congestion.
It is sufficient to prove that at least one cluster execution that starts within the witness
component survives. As all edges in the tree have weights smaller than the cut edges this
means that the execution of clusters that start within the witness component is not affected
by clusters that start from outside the component. This is because they always have a lower
max-edge value due to guarantees on the weights of T . Furthermore, in every iteration
at least one cluster in the witness component is not terminated. That is, the cluster with
highest priority inside the witness component at iteration i must survive. We conclude that
there exists a cluster construction that start within the component and terminates within
O(s2) rounds. To get the guarantee of Lemma 11 w.h.p., we must repeat the process Õ(s2)
times. Thus, the final running time is Õ(s4). We state the following theorem:

▶ Theorem 2. There exists a randomized algorithm in the CONGEST model, that for
a parameter s ∈ N runs in Õ(s4) rounds and distinguishes w.h.p whether the graph G is
k-connected, or is Ω((kn log n)/s)-stochastically-far from being one.

References
1 John Augustine, Anisur Rahaman Molla, Gopal Pandurangan, and Yadu Vasudev. Byzantine

connectivity testing in the congested clique. In DISC, volume 246 of LIPIcs, pages 7:1–7:21.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

2 Marcel Bezdrighin, Michael Elkin, Mohsen Ghaffari, Christoph Grunau, Bernhard Haeupler,
Saeed Ilchi, and Václav Rozhon. Deterministic distributed sparse and ultra-sparse spanners
and connectivity certificates. In SPAA, pages 1–10. ACM, 2022.

3 Zvika Brakerski and Boaz Patt-Shamir. Distributed discovery of large near-cliques. Distributed
Comput., 24(2):79–89, 2011.

4 Keren Censor-Hillel and Michal Dory. Fast distributed approximation for TAP and 2-edge-
connectivity. Distributed Comput., 33(2):145–168, 2020.

5 Keren Censor-Hillel, Eldar Fischer, Gregory Schwartzman, and Yadu Vasudev. Fast distributed
algorithms for testing graph properties. Distributed Comput., 32(1):41–57, 2019.

6 Mohit Daga, Monika Henzinger, Danupon Nanongkai, and Thatchaphol Saranurak. Distributed
edge connectivity in sublinear time. In STOC, pages 343–354. ACM, 2019.

7 Michal Dory. Distributed approximation of minimum k-edge-connected spanning subgraphs.
In PODC, pages 149–158. ACM, 2018.

8 Michal Dory and Mohsen Ghaffari. A nearly time-optimal distributed approximation of
minimum cost k-edge-connected spanning subgraph. In SODA, pages 4296–4334. SIAM, 2023.

9 Guy Even, Orr Fischer, Pierre Fraigniaud, Tzlil Gonen, Reut Levi, Moti Medina, Pedro
Montealegre, Dennis Olivetti, Rotem Oshman, Ivan Rapaport, and Ioan Todinca. Three notes
on distributed property testing. In DISC, volume 91 of LIPIcs, pages 15:1–15:30. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2017.

10 Hendrik Fichtenberger and Yadu Vasudev. A two-sided error distributed property tester
for conductance. In MFCS, volume 117 of LIPIcs, pages 19:1–19:15. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2018.

11 Pierre Fraigniaud, Magnús M. Halldórsson, and Alexandre Nolin. Distributed testing of
distance-k colorings. In SIROCCO, volume 12156 of Lecture Notes in Computer Science, pages
275–290. Springer, 2020.

APPROX/RANDOM 2024

57:12 Stochastic Distance in Property Testing

12 Pierre Fraigniaud, Ivan Rapaport, Ville Salo, and Ioan Todinca. Distributed testing of excluded
subgraphs. In DISC, volume 9888 of Lecture Notes in Computer Science, pages 342–356.
Springer, 2016.

13 Oded Goldreich and Dana Ron. Property testing in bounded degree graphs. Algorithmica,
32(2):302–343, 2002.

14 Hiro Ito, Shin-Ichi Tanigawa, and Yuichi Yoshida. Constant-time algorithms for sparsity
matroids. In International Colloquium on Automata, Languages, and Programming, pages
498–509. Springer, 2012.

15 David R. Karger. Global min-cuts in rnc, and other ramifications of a simple min-cut algorithm.
In SODA, pages 21–30. ACM/SIAM, 1993.

16 Reut Levi, Moti Medina, and Dana Ron. Property testing of planarity in the CONGEST
model. Distributed Comput., 34(1):15–32, 2021.

17 Y Orenstein. Testing properties of directed graphs. Master’s thesis, School of Electrical
Engineering, 2010.

18 Merav Parter. Small cuts and connectivity certificates: A fault tolerant approach. In DISC,
volume 146 of LIPIcs, pages 30:1–30:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2019.

19 Shin-Ichi Tanigawa and Yuichi Yoshida. Testing the supermodular-cut condition. Algorithmica,
71(4):1065–1075, 2015.

20 Ramakrishna Thurimella. Sub-linear distributed algorithms for sparse certificates and bicon-
nected components. J. Algorithms, 23(1):160–179, 1997.

21 Yuichi Yoshida and Hiro Ito. Testing k-edge-connectivity of digraphs. Journal of systems
science and complexity, 23:91–101, 2010.

22 Yuichi Yoshida and Hiro Ito. Property testing on k-vertex-connectivity of graphs. Algorithmica,
62(3-4):701–712, 2012.

A Robustness of Stochastic Closeness

The following claim is used to show robustness of stochastic closeness (Definition 4) with
respect to the choice of the global constant c. Intuitively speaking, by repeating the random
addition only a constant number of times, the probability of not attaining the property P
can be reduced to any small polynomial.

▷ Claim 12. Fix a monotone property P , a graph G /∈ P over n vertices, and constant c > 1.
If for some t ∈

[
0,

∣∣Ē∣∣], it holds that

Pr[Add(G, t) /∈ P] ≤ n−c,

then for any m ∈ N such that mt ∈
[
0,

∣∣Ē∣∣], it holds that

Pr[Add(G, mt) /∈ P] ≤ n−mc.

Proof. Recall that in the randomly augmented graph Add(G, t) each edge e ∈ Ē is added
independently with probability t/|Ē|. Let G1, . . . , Gm be m independent copies of Add(G, t).
By definition, we have

Pr
[

m∧
i=1

Gi /∈ P

]
=

m∏
i=1

Pr[Gi /∈ P] ≤ n−mc.

U. Meir, G. Schwartzman, and Y. Yoshida 57:13

Define G′ =
⋃m

i=1 Gi, the union of all m randomly augmented graphs. G′ trivially contains
all edges of G. On the one hand, the probability that each edge e ∈ Ē appears in G′ is at
most (mt)/|Ē|, by a union bound over the m attempts to add it. Since the property P is
monotone, we have

Pr[Add(G, mt) /∈ P] ≤ Pr[G′ /∈ P].

On the other hand, G′ is a supergraph of Gi for all i ∈ [m]. Using again the monotonicity of
P, we can write

Pr[G′ /∈ P] = Pr
[

m∧
i=1

G′ /∈ P

]
≤ Pr

[
m∧

i=1
Gi /∈ P

]
≤ n−mc,

which concludes the proof. ◁

APPROX/RANDOM 2024

Expanderizing Higher Order Random Walks
Vedat Levi Alev #

Hebrew University of Jerusalem, Israel

Shravas Rao #

Portland State University, Portland, OR, United States of America

Abstract

We study a variant of the down-up (also known as the Glauber dynamics) and up-down walks over
an n-partite simplicial complex, which we call expanderized higher order random walks – where the
sequence of updated coordinates correspond to the sequence of vertices visited by a random walk
over an auxiliary expander graph H. When H is the clique with self loops on [n], this random
walk reduces to the usual down-up walk and when H is the directed cycle on [n], this random walk
reduces to the well-known systematic scan Glauber dynamics. We show that whenever the usual
higher order random walks satisfy a log-Sobolev inequality or a Poincaré inequality, the expanderized
walks satisfy the same inequalities with a loss of quality related to the two-sided expansion of the
auxillary graph H. Our construction can be thought as a higher order random walk generalization
of the derandomized squaring algorithm of Rozenman and Vadhan (RANDOM 2005).

We study the mixing times of our expanderized walks in two example cases: We show that when
initiated with an expander graph our expanderized random walks have mixing time (i) O(n log n)
for sampling a uniformly random list colorings of a graph G of maximum degree ∆ = O(1) where
each vertex has at least (11/6 − ε)∆ and at most O(∆) colors, (ii) Oh

(
n log n

(1−∥J∥op)2

)
for sampling the

Ising model with a PSD interaction matrix J ∈ Rn×n satisfying ∥J∥op ≤ 1 and the external field
h ∈ Rn– here the O(•) notation hides a constant that depends linearly on the largest entry of h. As
expander graphs can be very sparse, this decreases the amount of randomness required to simulate
the down-up walks by a logarithmic factor.

We also prove some simple results which enable us to argue about log-Sobolev constants of higher
order random walks and provide a simple and self-contained analysis of local-to-global Φ-entropy
contraction in simplicial complexes – giving simpler proofs for many pre-existing results.

2012 ACM Subject Classification Theory of computation → Random walks and Markov chains;
Theory of computation → Expander graphs and randomness extractors; Theory of computation →
Generating random combinatorial structures

Keywords and phrases Higher Order Random Walks, Expander Graphs, Glauber Dynamics, Deran-
domized Squaring, High Dimensional Expansion, Spectral Independence, Entropic Independence

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.58

Category RANDOM

Related Version Full version.: https://arxiv.org/abs/2405.08927 [4]

Funding Vedat Levi Alev: Supported by the ERC grant of Alex Lubotzky (European Union’s Horizon
2020/882751), the ISF grant 2669/21 and ERC grant 834735 of Gil Kalai, and ISF grant 2990/21 of
Ori Parzanchevski.
Shravas Rao: This material is based upon work supported by the National Science Foundation under
Award No. 2348489.

Acknowledgements We would like to thank Fernando Granha Jeronimo for many insightful discus-
sions concerning expander graphs and anonymous referees for their many insightful comments.

© Vedat Levi Alev and Shravas Rao;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 58; pp. 58:1–58:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vedatle.alev@mail.huji.ac.il
https://orcid.org/0009-0008-0340-6029
mailto:shravas@pdx.edu
https://orcid.org/0000-0001-7339-4360
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.58
https://arxiv.org/abs/2405.08927
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

58:2 Expanderizing Higher Order Random Walks

1 Introduction

Let U1, · · · , Un be a collection of finite sets. The down-up walk P↓↑ on Ω ⊂ U1 × · · · Un with
respect to a given distribution π : Ω → R≥0, also known as the Glauber dynamics on Ω
according to π, is the following simple process: Starting from an arbitrary tuple ω(0), we
obtain the (t+1)-st tuple ω(t+1) visited by this random walk from the t-th tuple ω(t) as follows,

Update Rule for the Down-Up Walk, P↓↑

1. sample a uniformly random coordinate i ∼ uni[n],
2. sample a random tuple ω(t+1) ∼ π conditional on ω

(t+1)
j = ω

(t)
j for all

j ∈ [n] \ {i}.

The following variant of the down-up walk, called the systematic scan Pscan on Ω according
to π, is a variant of the down-up walk P↓↑ which uses less randomness and is easier to
implement in practice: starting from an arbitrary tuple ω(0), we obtain the (t + 1)-st tuple
ω(t+1) visited by this random walk from the t-th tuple ω(t) as follows,

Update Rule for the Systematic Scan, Pscan

1. set i = t + 1 (mod n),
2. sample a random tuple ω(t+1) ∼ π conditional on ω

(t+1)
j = ω

(t)
j for all

j ∈ [n] \ {i}.

In both cases, the coordinate i that is sampled on the first step of the update can be thought
as a vertex visited by the simple random walk on a graph. For the down-up walk, this
is a random walk on the clique with self-loops, whereas for the systematic scan this is a
(deterministic) walk on the directed cycle.

The main object of study in this paper will be the so-called expanderized down-up walk
Q↓↑ on Ω with respect to the distribution π : Ω → R>0 and the k-regular graph H = ([n], E)
for some constant k. Starting this random-walk from an arbitrary coordinate i(0) ∈ [n] and
an arbitrary tuple ω(0), we obtain the (t + 1)-st coordinate i(t+1) and tuple ω(t+1) according
to the following update rule,

Update Rule for the Expanderized Down-Up Walk Q↓↑

1. sample a random neighbor s of i(t) in H,
2. sample a random tuple ω(t+1) ∼ π conditional on ω

(t+1)
j = ω

(t)
j for all j ∈

[n] \ {s},
3. set i(t+1) to be a random neighbor of s in H.

We notice that according to the above update rule when i(0) is sampled uniformly at random
and H equals the clique with self-loops on [n] the evolution of ω(t) is as dictated by the
down-up walk P↓↑. Similarly, when i(0) = 1 and H is the directed cycle,1 the evolution of
ω(t) is as dictated by the systematic scan Pscan.

1 To be more precise, H needs to be a directed cycle of length 2n, in which the vertices corresponding to
the coordinates and dummy vertices are interleaved.

V. L. Alev and S. Rao 58:3

The main contribution of this paper is an analysis of the expanderized down-up walk
assuming, (i) the graph H is a spectral expander2 and (ii) the down-up walk P↓↑ satisfies
some kind of isoperimetric inequality, e.g. a log-Sobolev inequality or a Poincaré inequality.
Indeed our methods allow us to extend our results to all down-up and up-down walks.

Motivation and Contributions. The systematic scan Pscan is a random walk of great
practical and theoretical interest. Yet, rapid mixing results for this walk are only known
under restricted circumstances [18, 33, 23, 24, 51, 29] and it is very hard to directly relate the
rapid mixing of P↓↑ to that of Pscan. A particularly useful framework for establishing rapid
mixing for the down-up walk is the method of high-dimensional expansion, in particular the
frameworks of spectral independence and entropic independence [2, 9, 16, 17, 14, 7, 6, 8]
which led to many breakthrough results in the field of sampling algorithms.

In [3], an attempt was made to study the mixing of the systematic scan3 using techniques
of high-dimensional expansion – while their techniques allowed them to establish rapid
mixing results for constant dimensional partite simplicial complexes, their result is too
restrictive to take advantage of mixing results obtained through spectral independence or
entropic independence. As a step towards directly being able to take advantage of the
mixing results for P↓↑, which could potentially be obtained through the high-dimensional
expansion framework, we introduce our expanderized down-up walks Q↓↑. As expander
graphs have proven themselves very successful at approximating dense objects, we hope –
and indeed also prove – that transfering mixing time bounds from the usual down-up walks
to our expanderized walks to be an easier task than establishing mixing times for Pscan. As
expander graphs can be very sparse, our expanderized walks can be thought as replacing the
sparse object used in the definition of the systematic scan Pscan, i.e. the directed cycle, with
another sparse yet highly connected object – an expander graph with constant degree.

In spirit, the expanderized walks can be thought as a higher order random walk analogue
of the derandomized squaring algorithm introduced in [52]. This algorithm was introduced
to simplify the seminal result of [49] concerning the existence of a logspace algorithm for
deciding undirected connectivity. The derandomized squaring operation uses an auxiliary
k-regular expander graph H on the vertex set [d] to approximate the square of a graph
d-regular graph G on [n]. Whereas the actual square G2 is a d2-regular graph, by picking
k = O(1) one can ensure that the derandomized square is O(d)-regular, i.e. a much sparser
object. This result rests on the observation that the actual square G2 is obtained from
the graph G by attaching a clique to every vertex – replacing this clique with an expander
graph suffices to ensure that the resulting derandomized square is closed to the actual square.
Fortunately, the same intuition also leads to proofs showing that the expanderized walks
approximate the standard walks well.

We show that we can use our expanderized walks to have more randomness efficient
versions of several Markov chains of interest for sampling list colorings [10, 41] and for
sampling from Ising Models [27, 7, 40], under assumptions ensuring bounded marginals.
In these settings, our expanderized walks have the same asymptotic mixing time but use
fewer random bits. To help us with our goals we also prove some simple estimates for the
log-Sobolev constants of higher order random walks and provide a self-contained analysis of
local-to-global Φ-entropy contraction.

2 i.e. all non-trivial eigenvalues of H are bounded away from 1
3 More formally, n successive steps of the systematic scan, which the authors call the sequential sweep

Pseq.

APPROX/RANDOM 2024

58:4 Expanderizing Higher Order Random Walks

Related Work. High dimensional expansion has proven itself to be a very successful research
program for establishing mixing times for down-up walks. For example [36, 21, 37, 20, 2]
use spectral local-to-global arguments for establishing spectral gap bounds for these walks.
In conjunction with the spectral independence framework, due to [9, 15, 30], these results
paved the way for many new in the field of random sampling: rapid mixing of the down-up
walk for the hardcore model in the uniqueness regime [9], rapid mixing of the down-up walk
for sampling graph colorings in correlation decay regime [30, 15], optimal mixing for many
Markov chains of interest[17, 10, 41]. For more information regarding spectral independence,
we refer the reader to the excellent survey [54] and the dissertation [42]. In [6, 8, 17, 32]
local-to-global strategies for establishing entropic contraction bounds was studied. In [14] a
connection between these local-to-global methods and the stochastic localization framework
of [25] was explored. We refer to the works [39, 26, 13, 38, 28, 27] and references therein for
applications of the stochastic localization framework. Our inductive strategy for establishing
Φ-entropy contraction on simplicial complexes is heavily inspired by the presentation in [14].
In [40] mixing estimates about the walk P↓↑

n↔n−1 is used to obtain estimates for P↓↑
n↔ℓ for all

ℓ < n − 1. The key intuition behind this work is the observation that the down move of the
down-up walk is (passively) utilizing an expander, the down-move of the down-up walk of
the so-called Bernoulli-Laplace model, and that one can use the expansion of this walk to
show that once ℓ decreases the mixing times estimates get better and better. Morally, this is
very similar to our idea of picking the replacement-indices for our expanderized walks via
an expander walk as opposed to sampling them uniformly at random. For other classical
techniques which can be used to bound mixing times of Markov chains, we refer the reader
to the texts [1, 46, 55].

In contrast with down-up walks, results establishing rapid mixing for the random walk
Pscan are fewer [18, 33, 23, 51] and mostly rely on estimates on the Dobrushin matrix [22]. [3]
studied the mixing time of this random walk using techniques of high dimensional expansion,
however their techniques fell short of establishing mixing time bounds under the assumption
of spectral independence.

The work of [29] is also related to our work in spirit. In this work, the authors show
that under suitable assumptions a wide array of random walks, including the single site
systematic scan Pscan and the down-up walk P↓↑, can be derandomized, i.e. they devise
efficient deterministic counting algorithms on the basis of rapid mixing results for these
chains. It is an interesting question whether one can carefully pick the expander graph H , to
make this derandomization task more efficient.

As mentioned above our expanderized random walks are heavily inspired by the deran-
domized squaring algorithm of [52]. This algorithm was initially used to give an alternative
and simpler proof of the seminal result of [49] concerning the derandomization of the com-
plexity class SL and establishing SL = L. Concretely, both [49] and the subsequent work
of [52] show the existence of a deterministic logspace algorithm deciding undirected graph
connectivity. Since then, the derandomized squaring algorithm has also found other uses in
derandomization, e.g. [47, 48]. We conclude by noting that the inital algorithm of [49] was
based on the zigzag product construction [50], which has also inspired research in the field
of high dimensional expansion [35]. For more information on expander graphs, we refer the
reader to the excellent survey [34].

V. L. Alev and S. Rao 58:5

2 Preliminaries

2.1 Linear Algebra
We will denote functions and vectors by bold faces, i.e. f ∈ RV . The indicator function of
i ∈ V will be denoted by 1i, i.e. 1i(j) = 0 for all j ̸= i and 1i(i) = 1. For A ⊆ V , we will
write 1A =

∑
a∈A 1a. We will adopt the convention of using π, ν, µ : V → R≥0 for various

probability distributions over V .
Let f , g ∈ RV and a measure π : V → R>0 be given. We will use the notations ⟨f , g⟩π

and ∥f∥π to denote the inner-product and the norm with respect to the distribution π, i.e.

⟨f , g⟩π = E
x∼π

f(x)g(x) =
∑
x∈V

π(x) · f(x)g(x) and ∥f∥2
π = ⟨f , f⟩π. (1)

Given f , g ∈ Rn we will write ⟨f , g⟩ℓ2
for the inner-product between f and g in the counting

measure, i.e. ⟨f , g⟩ℓ2
=
∑n

i=1 f(i)g(i). We will also write ∥f∥ℓ1
, ∥f∥ℓ2

, and ∥f∥ℓ∞
for the

ℓ1, ℓ2, and ℓ∞ norms of f respectively. Formally,

∥f∥2
ℓ2

=
n∑

i=1
f(i)2 ; ∥f∥ℓ1

=
n∑

i=1
|f(i)| ; and ; ∥f∥ℓ∞

= max
i∈[n]

|f(i)|.

Matrices and Eigenvalues
In this section, we will recall some results concerning eigenvalues and eigenvectors of matrices.

Serif faces will be used to denote matrices, i.e. A, B ∈ RU×V . We will call a matrix
B ∈ RU×V row stochastic if rows of B sum up to 1 and B contains no negative entries.
Formally,

for all u ∈ U, v ∈ V B(u, v) ≥ 0 and B1 = 1. (row stochastic)

Let B ∈ RU×V and distributions πU : U → R>0 and πV : V → R>0 be given. The adjoint
B∗ of B with respect to the measures πU and πV is the unique matrix which satisfies the
following equation,

⟨f , Bg⟩πU
= ⟨B∗f , g⟩πV

for all f ∈ RU , g ∈ RV . (adjoint)

If U = V and πU = πV , the operator B is called self-adjoint when B∗ = B. If B is a
row-stochastic matrix, we will call B∗ the time-reversal of B with respect to πU , πV and say
that B is reversible if B = B∗. It is well known that the operator B∗ ∈ RV ×U is uniquely
determined by the choice of B ∈ RU×V and the inner-products defined by πU and πV (see
e.g. [53, p. 318]),

▶ Proposition 1. Let B ∈ RU×V be arbitrary. We write B∗ for the adjoint operator to B
with respect to the inner-products defined by the distributions πU and πV . Then,

B∗(y, x) = B(x, y) · πU (x)
πV (y) for all x ∈ U, y ∈ V.

We also recall the following standard fact which is an immediate consequence of Proposi-
tion 1,

▶ Proposition 2. If B ∈ RU,V is a row-stochastic matrix satisfying πU B = πV , then the
adjoint matrix B∗ with respect to πU , πV is also row-stochastic and satisfies πV B∗ = πU .

APPROX/RANDOM 2024

58:6 Expanderizing Higher Order Random Walks

It is well known that a self-adjoint matrix A ∈ RV ×V has |V | real eigenvalues. We will
write, λ1(A) ≥ λ2(A) ≥ · · · ≥ λ|V |(A) := λmin(A) for the sequence of eigenvalues of A sorted
in decreasing order. We say that the matrix is positive semi-definite, henceforth PSD, if it is
self-adjoint and satisfies λmin(A) ≥ 0.

Given a matrix A ∈ RV ×V and a distribution µ : V → R>0, we will write ∥A∥op,µ for the
operator norm of A, defined in the following manner

∥A∥op,µ := max
{ ∥Af∥µ

∥f∥µ

∣∣∣∣ f ∈ RV and f ̸= 0
}

. (operator norm)

If A is self-adjoint with respect to the measure µ, we have ∥A∥op,µ = max{λ1(A), |λmin(A)|}.
Similarly when A ∈ RV ×V is a reverisble row-stochastic matrix, with stationary measure

µ. We will write λ(A) for the two-sided expansion of A. Formally,

λ(A) = max{λ2(A), |λmin(M)|}. (two-sided expansion)

When A represents the simple random walk over an undirected graph H = (V, E), i.e.

A(i, j) = 1[{i, j} ∈ E]
deg(i) for all i, j ∈ V,

we will simply write λ(H) instead of λ(A). For convenience, we recall

▶ Observation 3. Let H = (V, E) be a k-regular graph and suppose A represents the random
walk over H. Then, uniV A = uniV , i.e. the uniform distribution on V is stationary for A.

We note that there exist infinite families of graphs such that every graph H in the family
has constant degree and λ(H) bounded above by a constant bounded above by 1 [43, 44]. In
this paper, we will consider families that contain graphs on n vertices for every sufficiently
large n. Such constructions were given in [5], and in particular were based on the infinite
families from [43, 44]. We refer the reader to the excellent survey [34] for more information
on expander graphs.

We will also make use of the following simple result,

▶ Lemma 4. Let a matrix A ∈ RU×V and measures µU : U → R>0 and µV : V → R>0
be given, such that µU A = µV . Assume without loss of generality that |U | ≤ |V |, then
λj(AA∗) = λj(A∗A) for all j = 1, . . . , |U |, where A∗ is the adjoint of A with respect to the
measures µU and µV .

2.2 Probability Distributions
Throughout the paper, we will assume Ω (or X(n)) to be a set of n-tuples for some n ≥ 1.
Given a set S ⊂ [n], the projection of Ω on S is denoted by Ω[S] , i.e.

Ω[S] = {(ωs)s∈S : (ω1, . . . , ωn) ∈ Ω}. (projection)

Let µ : Ω → R≥0 be a distribution. For ωS ∈ Ω[S], the notations ΩωS
and µ(ωS) will be

used for the ωS-pinning of Ω and µS respectively, where

ΩωS
= {ω̄ ∈ Ω[Sc] : ωS ⊕ ω̄ ∈ Ω} and µ(ωS)(ω̄) = µ(ωS ⊕ ω̄)∑

ω̃∈Ω[Sc] µ(ωS ⊕ ω̃) , (ωS-pinning)

V. L. Alev and S. Rao 58:7

We recall that the total variation distance ∥µ − ν∥tv between two distributions µ, ν : Ω →
R≥0 is defined as follows,

∥µ − ν∥tv = 1
2 ·
∑
ω∈Ω

|µ(ω) − ν(ω)| (total variation distance)

Finally, we talk about some conventions that we will use throughout the paper: (i) We
will be using the notation uniA to denote the uniform distribution over various finite sets A.
(ii) When we want to emphasize that the a distribution µ : Ω → R≥0 has full support, we
will simply write µ : Ω → R>0.

Finally we recall that the product distribution µ⊗ν ∈ △Ω×Ω′ , given µ ∈ △Ω and ν ∈ △Ω′

is defined by: (µ ⊗ ν)(ω, ω′) = µ(ω) · ν(ω′) for all ω ∈ Ω, ω′ ∈ Ω.

2.3 Functional Inequalities, Isoperimetric Constants, and Mixing Times
Given a distribution µ ∈ △Ω and a convex function Φ : R≥0 → R≥0 Φ-entropy functional
EntΦ

µ (•) is defined by the equation,

EntΦ
µ (f) = E

ω∼µ
Φ(f(ω)) − Φ

(
E

ω∼πn

f(ω)
)

for all f ∈ RΩ
≥0 (Φ-entropy)

We also recall that for the special choices of Φ(t) = t log t and Φ(t) = t2, the Φ-entropy
equals the variance functional Varµ(•) and entropy functional Entµ(•) respectively.

Entµ(f) = E
ω∼µ

[f(ω) log f(ω)] −
(

E
ω∼µ

f(ω)
)

log
(

E
ω∼µ

f(ω)
)

, (entropy)

Varµ(f) = E
ω∼µ

f(ω)2 −
(

E
ω∼µ

f(ω)
)2

. (variance)

Let P ∈ RΩ×Ω be a reversible Markov chain, with stationary measure of π. A Poincaré
inequality for P is an inequality of the form,

C · Varπ(f) ≤ ⟨f , (I − P)f⟩π for all f ∈ RΩ. (Poincaré inequality)

The largest constant C > 0 for which this inequality holds, is called the Poincaré constant or
the spectral gap of P and is denoted by gap(P). This nomenclature is due to the following
well-known consequence of the Courant-Fischer-Weyl Principle,

gap(P) = min
{

⟨f , (I − P)f⟩π

Varπ(f)

∣∣∣∣ Varπ(f) ̸= 0
}

= 1 − λ2(P). (spectral gap)

The log-Sobolev (LSI) inequality for a reversible random walk P ∈ RΩ×Ω with stationary
measure π is defined to be,

C · Entπ(f2) ≤ ⟨f , (I − P)f⟩π for all f ∈ RΩ
≥0. (LSI)

The largest constants C ≥ 0 for which LSI holds is called the log-Sobolev constant of P
respectively and is denoted by ls(P). Formally,

ls(P) = inf
{

⟨f , (I − P)f⟩π

Entπ(f2)

∣∣∣∣ Entπ(f) ̸= 0, f ∈ RΩ
≥0

}
. (2)

APPROX/RANDOM 2024

58:8 Expanderizing Higher Order Random Walks

▶ Lemma 5 ([19]). Let π : Ω → R>0 be a probability distribution and write Jπ = 1 · π, i.e. Jπ

is the walk with stationary measure π which mixes in a single step.
Then, ls(Jπ) ≥ 1−2π⋆

log(π−1
⋆ −1) if | supp(π)| > 2 else ls(Jπ) = 1. More generally for

any reversible Markov chain M ∈ RΩ×Ω and stationary distribution π, we have ls(M) ≥
1−2π⋆

log(π−1
⋆ −1) · gap(M) if | supp(π)| > 2 else ls(Jπ) = gap(M).

For a convex function Φ : R≥0 → R≥0, we also define the Φ-entropy contraction constant
cfΦ(P) of a Markov chain P ∈ RΩ1×Ω2 satisfying π1P = π2 for some choice of measures
π1 ∈ △Ω1 , π2 ∈ △Ω2 , as the solution to the following variational problem,

cfΦ(P) = 1 − sup
{

EntΦ
π1

(Pf)
EntΦ

π2
(f)

∣∣∣∣∣ f ∈ RΩ
≥0, EntΦ

π2
(f) ̸= 0

}
. (Φ-entropy contraction)

We note that cfΦ(P) cruicially depends on the choice of distributions π1, π2. Since for
our purposes the choice of measures π1 and π2 will always be clear, we will supress this
dependency.

It is equivalent to define cfΦ(P) as the largest constant C ∈ R≥0 such that the inequality,

EntΦ
π1

(Pf) ≤ (1 − C) · EntΦ
π2

(f),

is valid for each f ∈ RΩ2
≥0. When Φ(t) = t log t, we will simply write ec(P) in place of cfΦ(P).

Similarly, for the choice of Φ(t) = t2, it is easy to observe that cfΦ(P) = gap(P∗P).
We will also need the following consequence of Jensen’s inequality.

▶ Lemma 6 (Data Processing Inequality). Let P ∈ RΩ1×Ω2 be a row-stochastic matrix,
satisfying π1P = π2 for probability distributions π1 : Ω1 → R>0 and π2 : Ω2 → R>0. Then,
for any convex function Φ : R≥0 → R≥0, we have: EntΦ

π1
(Pf) ≤ EntΦ

π2
(f) for all f ∈ RΩ2

≥0.

▶ Lemma 7 (Proposition 6, [45]). Let P ∈ RΩ1×Ω2 satisfying µ1P = µ2, for distributions
µ1 : Ω1 → R>0 and µ2 : Ω → R>0. We have, ec(P) ≥ ls(P∗P).

The ε-mixing time τmix(P, ε) of the random walk is the least time point t ∈ N, such
that the distribution µ(t) = µ(0)Pt of the random walk P is guaranteed to be ε-close to the
stationary distribution π in the total variation distance regardless of the initial distribution
µ(0). In particular,

τmix(P, ε) = min
{

t ∈ N |
∥∥∥µ(t) − π

∥∥∥
tv

≤ ε for all µ(0) ∈ △Ω

}
(ε-mixing time)

It is well known that the functional inequalities and the corresponding isoperimetric constants
introduced previously can be used to bound mixing times. We recall in particular,

▶ Theorem 8 ([11]). There exists a universal constant C such that, for any reversible random
walk P ∈ RΩ×Ω with stationary distribution π : Ω → R>0, i.e. πP = π. We have

τmix(P, ε) ≤ C

ec(P) ·
(

log log 1
minω∈Ω π(ω) + log ε−1

)
.

where the constant C does not depend on the pair (P, π).

2.4 (Partite) Simplicial Complexes
A simplicial complex is a downward closed collection of subsets of a finite set U . Formally,
X ⊂ 2U and whenever β ∈ X for all α ⊂ β we have α ∈ X. The rank of a face α is |α|.
Given some j, we will adopt the notation X(j) to refer to the collection faces of X of rank j

V. L. Alev and S. Rao 58:9

and the notation X(≤j) to refer to the collection of faces of X of rank at most j. We say X

is a simplicial complex of rank n if the largest rank of any face α ∈ X is n. We note that by
definition X(0) = {∅}.

We say that a simplicial complex X of rank n is pure, if any face α ∈ X(j) for any j < n

is contained in another face β ∈ X(n). Equivalently, in a pure simplicial complex the only
inclusion maximal faces are those of maximal rank. In this article, we will only deal with
pure simplicial complexes.

A rank-n pure simplicial complex X is called n-partite if we can partition X(1) into
disjoint sets X[1], . . . , X[n] such that

for all β ∈ X(n) and for all i = 1, . . . , n we have |β ∩ X[i]| = 1. (n-partiteness)

We will call the sets X[1], . . . , X [n] the sides of the complex X. Equivalently, every element
of a rank-n face β ∈ X[n] comes from a distinct side X[i]. We observe that a bipartite graph
is a 2-partite simplicial complex.

To keep our nomenclature simple, we will simply refer to a pure n-partite simplicial
complex of rank n as an n-partite simplicial complex, i.e. we will not consider n-partite
complexes which are not pure.

For a face α ∈ X we introduce the notation, type(α) = {i ∈ [n] : α ∩ X[i] ̸= ∅} for the
type of the face α, i.e. the collection of sides of X that α intersects.

For any i ∈ [n] and β ∈ X(n) we will write βi ∈ X(1) for the unique element of β

satisfying {βi} = β ∩ X[i]. We will refer to βi as the i-th coordinate of β. We will also write
βT = {βt : t ∈ T} for all T ⊂ [n]. We extend this notation to arbitrary faces α ∈ X and
T ⊂ type(α). In keeping with the view that a face α ∈ X with type(α) = {t1, . . . , tk} can be
represented as a tuple (at1 , · · · , atk

), we will favour the notation α ⊕ α′ to denote the union
of two faces α, α′ ∈ X with type(α) ∩ type(α′) = ∅ over the usual notation α ∪ α′.

We observe that for facets β ∈ X(n), i.e. faces of maximal rank, we have type(β) = [n].
Given, α ∈ X we recall that the link Xα is defined as,Xα = {(β \ α) ∈ X : β ∈ X, β ⊃ α}.

For T ⊂ [n], we will also introduce the notation X[T] to refer to all faces of X of type T .

Weighted Simplicial Complexes

A weighted simplicial complex (X, π) of rank n is a pure simplicial complex of rank n where
π := πn : X(n) → R≥0 is a probablity distribution with full support.

For j ∈ [0, n − 1], we inductively define the probability distributions πj : X(j) → R as

πj(α) = πj(α) = 1(
n
j

) ∑
β⊃α,

β∈X(n)

πn(β). (3)

Similarly, given a face α ∈ X(j), we define the distribution π(α) on X
(n−j)
α by conditioning

π on the containment of α. Of particular importance to us will be the link graph Mα ∈
RX(1)

α ×X(1)
α given any α ∈ X(≤n−2). We recall that for all distinct pairs of vertices x, y ∈ X

(1)
α ,

we have

Mα(x, y) = π(α∪{x})(y) = Prω∼πn
[ω ⊃ α ∪ {x, y} | ω ⊃ α ∪ {x}]

n − |α| − 1 , (link)

and Mα(x, x) = 0 for all x ∈ X
(1)
α .

APPROX/RANDOM 2024

58:10 Expanderizing Higher Order Random Walks

2.5 Higher Order Random Walks on Simplicial Complexes
Let (X, π) be a simpicial complex of rank n. The up-down walk P↑↓

ℓ↔n := UpDownℓ↔n(X, π)
between the ℓ-th and n-th levels, X(ℓ) and X(n) respectively, is defined as the following
random walk on X(ℓ): Starting from an arbitrary face ω̂(0) ∈ X(ℓ) for all t ≥ 1 move from
ω̂(t−1) to ω̂(t) according to the following simple rule,

Update Rule For the Up-Down Walk, P↑↓
ℓ↔n

sample ω ∼ πn, conditional on ω ⊃ ω̂(t−1),
draw a uniformly subset among all the subsets of ω of size ℓ, and output
it as ω̂.

Similarly, the down-up walk P↓↑
n↔ℓ between the n-th and ℓ-th levels, X(n) and X(ℓ)

respectively, as the following random walk X(n): Starting from an arbitrary ω(0) ∈ X(n) and
moves from ω(t−1) to ω(t) according to the following simple rule,

Update Rule for the Down-Up Walk, P↓↑
n↔ℓ

draw a subset ω̂ of ω of size ℓ, uniformly at random,
draw a subset ω ∼ π conditioned on containing ω̂, and output it as ω(t).

It is well known, [2, 21, 20], that the random walks P↓↑
n↔ℓ and P↑↓

ℓ↔n can be decomposed
as a product of random down- and up-movements on X. Formally, for 0 ≤ ℓ ≤ k ≤ n, we
define the up-walk P↑

ℓ→k := Upℓ→k(X, π) and the down-walk P↓
k→ℓ := Downk→ℓ(X, π) as the

following random walks,

P↑
ℓ→k(ω̂, ω) = π

(ω̂)
k−ℓ(ω) =

1[ω ⊃ ω̂] · Pr
ω̃∼πn

[ω̃ ⊃ ω | ω̃ ⊃ ω̂](
n−ℓ
k−ℓ

) , (up-walk)

P↓
k→ℓ(ω, ω̂) = 1[ω̂ ⊂ ω](

k
ℓ

) . (down-walk)

▶ Proposition 9 (Folklore). Let (X, π) be a simplical complex of rank n, then writing P↓↑
n↔ℓ :=

DownUpn↔ℓ(X, π), P↑↓
ℓ↔n := P↑↓

ℓ↔n(X, π), P↑
ℓ→n = Upℓ→n(X, π), and P↓

n→ℓ = Downn→ℓ(X, π)
for the down-up, up-down, up- and down-walks between the n-th and ℓ-th levels of X respect-
ively, we have
1.
(

P↑
ℓ→n

)∗
= P↓

n→ℓ, i.e. the operators P↑
ℓ→n and P↓

n→ℓ are adjoint operators with respect to
the measures πn and πℓ,

2. P↑↓
ℓ↔n = P↑

ℓ→nP↓
n→ℓ – in particular the operator P↑↓

ℓ↔n is PSD,
3. P↓↑

n↔ℓ = P↓
n→ℓP

↑
ℓ→n – in particular the operator P↓↑

n↔ℓ is PSD.
For any ω̂ ∈ X and any 0 ≤ ℓ ≤ n′ = n − |ω̂|, we will write P↑

ω̂,ℓ→n′ , P↓
ω̂,n′→ℓ, P↑↓

ω̂,ℓ↔n′ ,

and P↓↑
ω̂,n′↔ℓ for the corresponding up, down, up-down, and down-up walks in the complex

(Xω̂, πω̂).

2.6 Local to Global Analysis
Given a simplicial complex (X, π) of rank n, we define the local Φ-entropy contraction factor
lcΦ(ω̂) for any ω̂ ∈ X(≤r−2) as follows,

lcΦ(ω̂) := sup

 EntΦ
π

(ω̂)
1

(P↑
ω̂,1→n′g)

EntΦ
π

(ω̂)
n′

(g)

∣∣∣∣∣∣ g ∈ RX
(n′)
ω̂ and n′ = n − |ω̂|.

 (4)

V. L. Alev and S. Rao 58:11

Equivalently, lcΦ(ω̂) ∈ R>0 is the smallest constant satisfying the equality

EntΦ
πω̂

1
(P↑

ω̂,1→n′g) ≤ lcΦ(ω̂) · EntΦ
π

(ω̂)
n′

(g) for all g ∈ RX
(n′)
ω̂ where n′ = n − |ω̂|.

When Φ(t) = t log t, we will simply write lec(ω̂) in place of lcΦ(ω̂). We also make the
following observation for the special case Φ(t) = t2, i.e. when EntΦ

• (•) equals the variance
functional Var•(•). The following proposition is well understood,

▶ Proposition 10. 4 Let (X, π) be a simplicial complex of rank n. Then, for the choice of
Φ(t) = t2, for any ω̂ ∈ X(≤n−2) we have

lcΦ(ω̂) = 1
n − |ω̂|

+ n − |ω̂| − 1
n − |ω̂|

· λ2(Mω̂),

where Mω̂ is the link graph of ω̂.

A crucial tool we will be using in Section 4 is the so called Garland method, due to [31].
To this end, we define the localization f |ω̂ ∈ RXω̂(k−j) of a function f ∈ RX(k) on a link
ω̂ ∈ X(j) for j ≤ k as the following function,

f |ω̂(α) = f(ω̂ ⊔ α) for all α ∈ X
(k−j)
ω̂ . (localization)

We first observe that by appealing to the chain rule for the Φ-entropy, one can obtain a
convenient expression for it in terms of localizations.

▶ Lemma 11 (Chain Rule for Φ-Entropy). 5 Let (X, π) be a simplicial complex of rank n. For
all 0 ≤ ℓ ≤ r ≤ n and non-negative f ∈ RX(r)

≥0 , we have

EntΦ
πr

(f) = E
ω̂∼πℓ

EntΦ
π

(ω̂)
r−ℓ

(f |ω̂) + Entπℓ

(
P↑

ℓ→rf
)

,

where P↑
ℓ→r := Upℓ→r(X, π) is the up-walk on X

We also recall the following identities,

▶ Lemma 12. Let (X, π) be a simplicial complex of rank n. Writing P↓↑
n↔r =

DownUpn↔r(X, π), P↑↓
n−1 = UpDownn−1↔n(X, π), and Mω̂ for the link of the face ω̂ ∈ X(≤n−2),

for all f ∈ RX(n) and ℓ ≤ r ≤ n, we have
1. ⟨f , f⟩πn

= Eω̂∼πℓ
⟨f |ω̂, f |ω̂⟩

π
(ω̂)
n−ℓ

,

2.
〈
f , P↓↑

n↔rf
〉

πn
= Eω̂∼πℓ

〈
f |ω̂, P↓↑

ω̂,n−ℓ↔r−ℓf |ω̂
〉

π
(ω̂)
n−ℓ

,

3.
〈

f , P↑↓
n−1f

〉
πn

= Eω̂∼πn−2

(〈
f |ω̂,

(I
n + n−1

n · Mω̂

)
f |ω̂
〉

π
(ω̂)
1

)
We recall the following result due to [40],

▶ Lemma 13 (Theorem 3.5, [40]). Let (X, π) be an n-partite simplicial complex and let
0 ≤ k < n. If ec(P↑

n−1→n) ≥ (Cn)−1 for some C ∈ R>0, then ec
(

P↑
k→k+1

)
≥ 1

(k+1)(C+1) .

4 We provide a proof for this statement in the full version of our paper, [4]
5 A proof is supplied in the full version of our paper, [4]

APPROX/RANDOM 2024

58:12 Expanderizing Higher Order Random Walks

3 Expanderized Random Walks

Let (X, π) be an n-partite simplicial complex. For any ℓ ≤ n, the up-down walk P↑↓
ℓ↔n :=

UpDownℓ↔n(X, π) on the ℓ-th level X(ℓ) of X introduced in Section 2.5 admits the following
alternative description: Starting from an arbitrary face ω̂(0) ∈ X(ℓ) move from ω̂(t−1) to ω̂(t)

according to the following simple rule,

Update Rule for the Up-Down Walk, P↑↓
ℓ↔n

sample ω ∼ π, conditional on ω ⊃ ω̂(t−1),
sample S ∼ uni([n]

ℓ),
output ω̂(t) = ωS .

We will expanderize the up-down walk P↑↓
ℓ↔n in the following manner: Given a k-regular

labelled graph H on the vertex set
([n]

ℓ

)
, we will denote the a-th neighbor of vertex v by

OutH(v, a). We define the expanderized up-down walk Q↑↓
ℓ↔n = UpDownℓ↔n(X, π, H) as the

walk which starts from an arbitrary face ω̂(0) and moves from ω̂(t−1) to ω̂(t) according to the
following simple rule,

Update Rule for the Expanderized Up-Down Walk, Q↑↓
ℓ↔n

sample ω ∼ π, conditional on ω ⊃ ω̂(t−1),
sample a ∼ uni[k] and set S = OutH(type(ω̂(t−1)), a),a
output ω̂(t) = ωS .

a Where we recall that the type of ω̂ is the sides of the simplicial complex that ω̂
intersects

Similarly, the down-up walk P↓↑
n↔ℓ between the n-th level X(n) and the ℓ-th level X(ℓ)

of an n-partite simplicial complex (X, π) introduced in Section 2.5 admits the following
alternative description: Start from ω(0) ∈ X(n) and move from ω(t−1) to ω(t) according to
the following simple rule,

Update Rule for the Down-Up Walk, P↓↑
n↔ℓ

sample S ∼ uni([n]
ℓ) uniformly at random,

set ω̂ = ωS ,
set ω(t) to be a random face drawn from π, conditional on containing ω̂.

Similarly, we define the expanderized down-up walk Q↓↑
n↔ℓ = DownUpn↔ℓ(X, π, H) to be the

random walk on X(n) ×
([n]

ℓ

)
, starting from an arbitrary face-subset pair (ω(0), S(0)) and

move from (ω(t−1), S(t−1)) to (ω(t), S(t)) according to the following simple rule,

Update Rule for the Expanderized Down-Up Walk, Q↓↑
n↔ℓ

sample a ∼ uni[k] and set S′ = OutH(S(t−1), a),
set ω̂ = ωS′ ,
set ω(t) ∼ π to be a random face conditional on containing ω̂,
sample b ∼ uni[k] and set S(t) = OutH(S(t−1), b),
output (ω(t), S(t)).

V. L. Alev and S. Rao 58:13

For convenience we also define the expanderized down- and up-walks given a degree regular
labelled graph H = (

([n]
ℓ

)
, E)

Q↓
n→ℓ = Downn→ℓ(X, π, H) ∈ R(X(n)×([n]

ℓ))×X(ℓ)
and Q↑

ℓ→n = Upℓ→[n](X, π, H) ∈ RX(ℓ)×(X(n)×([n]
ℓ)),

as follows,

Q↓
n→ℓ((ω, S), ω̂) = 1[S ∼H type(ω̂)]

k
· 1[ω ⊃ ω̂] for all ω ∈ X(n), ω̂ ∈ X(ℓ), S ∈

(
[n]
ℓ

)
,

and Q↑
ℓ→n =

(
Q↓

n→ℓ

)∗
where the adjoint is taken with respect to the distributions πn ⊗uni([n]

ℓ)
and πℓ, i.e.

Q↑
ℓ→n(ω̂, (ω, S)) = 1[S ∼H type(ω̂)]

k
· Pr

ω̃∼πn

[ω̃ = ω | ω ⊃ ω̂] for all ω ∈ X(n), ω̂ ∈ X(ℓ), S ∈
(

[n]
ℓ

)
,

and the notation T ∼H S is used to denote the adjacency relation in the graph H , i.e. {S, T} ∈
E(H).

We summarize the random movements described by the expanderized up- and down-walks
in words as follows: The expanderized down-walk Q↓

n→ℓ first samples a random neighbor of T

of S in
([n]

ℓ

)
, and then restricts the coordinates of ω to T , i.e. moves to ωT . The expanderized

up-walk Q↑
ℓ→n on the other hand first samples a facet ω ∈ X(n) from π conditional on

containing ω̂ and after picking a random neighbor S of type(ω̂) in H moves to (ω, S).

▶ Proposition 14. For any n-partite pure simplicial complex (X, π) and a k-regular labelled
graph H = (

([n]
ℓ

)
, E), writing Q↓

n→ℓ = Downn→ℓ(X, π, H) and Q↑
ℓ→n = Upℓ→n(X, π, H) we

have,(
πn ⊗ uni([n]

ℓ)
)

Q↓
n→ℓ = πℓ and πℓQ↑

ℓ→n = πn ⊗ uni([n]
ℓ).

Proof. Let (ω, S) ∼ πn ⊗ uni([n]
ℓ) be a random sample. Notice that a random neighbor of S

in H is still distributed uniformly at random as the uniform distribution stationary for the
random walk over a k-regular graph, q.v. Observation 3. Thus, conditional on ω, a single
step of Q↓

n ends up restricting ω to a random set of coordinates S – this precisely yields the
distribution πℓ, q.v. Equation (3).

The second statement follows since Q↑
ℓ→n is the adjoint operator, q.v. Proposition 1. ◀

The following is easy to verify,

▶ Corollary 15. For any n-partite simplicial complex (X, π) and k-regular labelled graph
H =

(([n]
ℓ

)
, E)

)
,

UpDownℓ↔n(X, π, H2) = Upℓ→n(X, π, H) · Downn→ℓ(X, π, H),
DownUpn↔ℓ(X, π, H) = Downn→ℓ(X, π, H) · Upℓ→n(X, π, H).

We now summarize several useful properties of the expanderized up- and down-walks,

▶ Corollary 16. Let (X, π) be an n-partite complex and H = (
([n]

ℓ

)
, E) a k-regular graph.

For any ℓ ≤ n, writing Q↑↓
ℓ↔n = UpDownℓ↔n(X, π, H2), Q↓↑

n↔ℓ = DownUpn↔ℓ(X, π, H) Q↓
n→ℓ =

Downn→ℓ(X, π, H) and Q↑
ℓ→n = Upℓ→n(X, π, H) we have,

1. (πn ⊗ uni([n]
ℓ))Q↓↑

n↔ℓ = πn ⊗ uni([n]
ℓ), i.e. πn ⊗ uni([n]

ℓ) is the stationary distribution of

Q↓↑
n↔ℓ,

2. πℓQ↑↓
ℓ↔n = πℓ, i.e. πℓ is the stationary distribution of Q↑↓

ℓ↔n.

APPROX/RANDOM 2024

58:14 Expanderizing Higher Order Random Walks

3. Q↓↑
n↔ℓ and Q↑↓

ℓ↔n are PSD operators.
4. Q↑↓

ℓ↔n and Q↓↑
n↔ℓ are self-adjoint operators.

Since in our proofs it will be more convenient to use Q↑↓
ℓ↔n := UpDownℓ↔n(X, π, H) directly,

initialized with H and not H2, we also note the following.

▶ Proposition 17. 6 Let (X, π) be an n-partite complex and H = (
([n]

ℓ

)
, E) a k-regular graph.

Then, the expanderized up-down walk Q↑↓
ℓ↔n := UpDownℓ↔n(X, π, H) has the stationary

distribution πℓ and is reversible.

Now, we present the results we prove for expanderized random walks. Our first result
shows that the expanderized up-down walk approximates the usual up-down walk in the
operator norm,

▶ Theorem 18. Let (X, π) be an n-partite simplicial complex and let H be a k-regular labelled
graph on the vertex set

([n]
ℓ

)
. Writing Q↑↓

ℓ↔n := UpDown(X, π, H) and P↑↓
ℓ↔n := UpDown(X, π)

for the expanderized- and the regular up-down walks on X(ℓ), we have∥∥∥Q↑↓
ℓ↔n − (1 − λ(H)) · P↑↓

ℓ↔n

∥∥∥
op,πℓ

≤ λ(H).

We present the proof of Theorem 18 in Section 3.1. Theorem 18 immediately implies the
following bounds for the spectral gap of expanderized walks,

▶ Corollary 19. 7 Let (X, π) be an n-partite simplicial complex and let H be a k-regular labelled
graph on the vertex set

([n]
ℓ

)
. Writing Q↑↓

ℓ↔n := UpDown(X, π, H), P↑↓
ℓ↔n = UpDownℓ↔n(X, π),

Q↓↑
n↔ℓ = DownUp(X, π, H), and P↓↑

n↔ℓ = DownUpn↔ℓ(X, π), we have

gap
(

Q↑↓
ℓ↔n

)
≥ gap

(
P↑↓

ℓ↔n

)
· gap⋆(H),

gap
(

Q↓↑
n↔ℓ

)
≥ gap

(
P↓↑

n↔ℓ

)
· gap⋆(H2),

where gap⋆(G) = 1 − λ(G) and λ(G) denotes the two-sided expansion of the graph G.

Unfortunately, a bound on the spectral gap is in many settings not enough to obtain optimal
mixing time bounds. We show however, that Theorem 18 allows us to transfer log-Sobolev
inequalities (LSI) for the usual up-down walks to the expanderized up-down walks,

▶ Corollary 20. Let (X, π) be an n-partite simplicial complex and let H be a k-regular
labelled graph on the vertex set

([n]
ℓ

)
. Writing Q↑↓

ℓ↔n := UpDownℓ↔n(X, π, H) and P↑↓
ℓ↔n :=

UpDownℓ↔n(X, π) for the up-down walk on X(ℓ), we have

ls
(

Q↑↓
ℓ↔n

)
≥ ls

(
P↑↓

ℓ↔n

)
· gap⋆(H),

where gap⋆(H) = 1 − λ(H) and λ(H) denotes the two-sided expansion of the graph H.

We will prove Corollary 20 in Section 3.2. We state a convenient corollary of Corollary 20
which immediately follows from Lemma 7, Corollary 16, and the data processing inequality
Lemma 6,

6 As Corollary 16 reaches the same end by replacing H with H2 we will omit this proof and refer the
reader to the full version of our paper [4]

7 Since this result does not get used in our applications, we refer the reader to the full-version of our
paper [4] for a proof.

V. L. Alev and S. Rao 58:15

▶ Corollary 21. Let (X, π) be an n-partite simplicial complex and let H be a k-regular
labelled graph on the vertex set

([n]
ℓ

)
. Then, writing Q↓

n↔ℓ = Downn→ℓ(X, π, H) and P↑↓
ℓ↔n =

UpDownℓ↔n(X, π) we have,

ec(Q↓
n↔ℓ) ≥ ls(P↑↓

ℓ↔n) · gap⋆(H2).

In particular, we have for Q↑↓
ℓ↔n := UpDownℓ↔n(X, π, H2) and Q↓↑

n↔ℓ =
DownUpn↔ℓ(X, π, H),

ec(Q↑↓
ℓ↔n) ≥ ls(P↑↓

ℓ↔n) · gap⋆(H2) and ec(Q↓↑
n↔ℓ) ≥ ls(P↑↓

ℓ↔n) · gap⋆(H2),

where gap⋆(H2) = 1 − λ(H2) and λ(H2) denotes the two-sided expansion of the graph H2.

As we will see in Section 5, Corollary 21 will indeed allow us to prove optimal mixing time
bounds for the expanderized walks in many cases of interest.

3.1 Closeness in Operator Norm: Proof of Theorem 18
Proof of Theorem 18 . For convenience, we will write Q↑↓ := Q↑↓

ℓ↔n and P↑↓ := P↑↓
ℓ↔n.

Let M denote the random-walk matrix of the graph H where each transition occurs with
the probability 1/k and J the random-walk matrix of the clique over

([n]
ℓ

)
with self-loops,

i.e. J = 11⊤/
([n]

ℓ

)
. We will write, λ := λ(M).

Let S ∈
([n]

ℓ

)
be arbitrary and suppose some ω̄ ∈ X(ℓ) is given such that type(ω̄) = S.

For all f ∈ RX(ℓ) , we have

[Q↑↓f](ω̄) =
∑

ω̂∈X[Sc]

Pr
ω∼π

[ωSc = ω̂ | ωS = ω̄] ·
∑

a∈[k]

f
(
(ω̄ ⊕ ω̂)OutH (S,a)

)
k

.

Similarly, we have

[P↑↓f](ω̄) =
∑

ω̂∈X[Sc]

Pr
ω∼π

[ωSc = ω̂ | ωS = ω̄]
∑

T ∈([n]
ℓ)

f((ω̄ ⊕ ω̂)T)(
n
ℓ

) .

For any given facet ω ∈ X(n) we define the function gω ∈ R([n]
ℓ) as, gω(T) = f(ωT).

We have,

[Mgω](T) =
∑

a∈[k]

f
(
ωOutH (T,a)

)
k

and [Jgω](i) =
∑

T ∈([n]
ℓ)

f(ωT)(
n
ℓ

) .

Thus, we have

[Q↑↓f](ω̄) =
∑

ω̂∈X[Sc]

Pr
ω∼π

[ωSc = ω̂ | ωS = ω̄] · [Mgω̄⊕ω̂](S), (5)

[P↑↓f](ω̄) =
∑

ω̂∈X[Sc]

Pr
ω∼π

[ωSc = ω̂ | ωS = ω̄] · [Jgω̄⊕ω̂](S). (6)

In particular combining Equation (5) and Equation (6) and noticing that for ω ∼ π the law
of ωSc conditional on ωS = ω̄ is given by π

(ω̂)
n−ℓ,

APPROX/RANDOM 2024

58:16 Expanderizing Higher Order Random Walks

∥∥(Q↑↓ − (1 − λ)P↑↓)f
∥∥2

πℓ
= E

ω̄∼πℓ

(
E

ω̂∼π
(ω̄)
n−ℓ

[
[Mgω̄⊕ω̂](type(ω̄)) − (1 − λ)[Jgω̄⊕ω̂](type(ω̄))

])2

,

≤ E
ω̄∼πℓ

E
ω̂∼π

(ω̄)
n−ℓ

[(
[Mgω̄⊕ω̂](type(ω̄)) − (1 − λ)[Jgω̄⊕ω̂](type(ω̄))

)2
]
.

where the last inequality is obtained by appealing to Jensen’s inequality and the convexity
of t → t2.

Now, we observe the law of ω̄ ⊕ ω̂ obtained by first sampling ω̄ ∼ πℓ and then ω̂ ∼ π(ω̄) is
given by π. Furthermore, any ω ∈ X(n) occurs exactly

([n]
ℓ

)
times in the expectation above –

once for each S ∈
([n]

ℓ

)
acting as type(ω̄), which happens with probability

(
n
ℓ

)−1. Thus,

∥∥(Q↑↓ − (1 − λ)P↑↓)f
∥∥2

πℓ
≤ E

ω∼πn

 E
S∼uni([n]

ℓ)
([(M − (1 − λ)J)gω](S))2

,

≤ E
ω∼πn

[
λ2 · ∥gω∥2

uni([n]
ℓ)

]
where the last inequality is due to ∥M − (1 − λ)J∥op,uni([n]

ℓ)
≤ λ as λ(M) ≤ λ!

Now, we finally note

E
ω∼π

[
∥gω∥2

uni([n]
ℓ)

]
= E

ω∼π

 1(
n
ℓ

) ∑
S∈([n]

ℓ)
f(ωS)2

 = E
ω̄∼πℓ

f(ω̄)2 = ∥f∥2
πℓ

,

The last equality is due to the observation that first sampling ω ∼ π and then outputting
ωS for S ∼ uni([n]

ℓ) picked uniformly at random amounts to simply sampling ω̄ ∼ πℓ,
q.v. Equation (3).

In particular,∥∥(Q↑↓ − (1 − λ)P↑↓)f
∥∥

πℓ
≤ λ · ∥f∥πℓ

.

As f was picked arbitrarily, this allows us to conclude the proof of our theorem by appealing
to the definition of the operator norm. ◀

3.2 Log-Sobolev Bound: Proof of Corollary 20
Proof of Corollary 20. Let f ∈ RX(ℓ)

≥0 be an arbitrary function satisfying Entπℓ
(f2) ̸= 0. We

have,〈
f ,
(
I − Q↑↓

ℓ↔n

)
f
〉

πℓ

Entπℓ (f)2 =

〈
f ,
(
I − (1 − λ(H)) · P↑↓

ℓ↔n

)
f
〉

πℓ

Entπℓ (f2)
+

〈
f ,
(
(1 − λ(H))P↑↓

ℓ↔n − Q↑↓
ℓ↔n

)
f
〉

πℓ

Entπℓ (f2)
.

Notice that by Theorem 18, we should have〈
f ,
(

(1 − λ(H))P↑↓
ℓ↔n − Q↑↓

ℓ↔n

)
f
〉

πℓ

≥ −λ(H) · ⟨f , If⟩πℓ
.

Thus,〈
f ,
(

I − Q↑↓
ℓ↔n

)
f
〉

πℓ

Entπℓ
(f)2 ≥

〈
f ,
(

I −
(

(1 − λ(H)) · P↑↓
ℓ↔n + λ(H) · I

))
f
〉

πℓ

Entπℓ
(f2)

,

≥ ls
(

(1 − λ(H)) · P↑↓
ℓ↔n + λ(H) · I

)
,

= ls(P↑↓
ℓ↔n) · gap⋆(H),

V. L. Alev and S. Rao 58:17

where the last inequality is obtained by noticing:

⟨f , (I − (a · I + (1 − a)P))f⟩µ = (1 − a) · ⟨f , (I − P)f⟩µ,

and the variational formula for the log-Sobolev constant (Equation (2)) . Appealing to the
definition of the log-Sobolev inequality (LSI) once again yields the result. ◀

4 Functional Inequalities on Simplical Complexes

In this section, we will prove several functional inequalities involving the down-up walk P↓↑
n↔ℓ.

For convenience we define the set Cℓ(X) as the set of ℓ-chains in X, i.e. the collection of
sequences

∅ := ω(0) ⊊ ω(1) ⊊ · · · ⊊ ω(ℓ) ∈ X(ℓ),

such that ω(i) ∈ X(i) for all i = 0, . . . , ℓ. Similarly, for x ∈ X(1) we define Cℓ(x) as the set of
ℓ-chains in X starting from x ∈ X(1), i.e. the collection of sequences

x =: ω(1) ⊊ ω(2) ⊊ · · · ⊊ · · · ⊊ ω(ℓ),

such that ω(i) ∈ X(i) for all i = 0, . . . , ℓ.

▶ Theorem 22. For all n-partite simplicial complexes (X, π) and convex Φ : R≥0 → R≥0,
we have:

cfΦ(P↑
ℓ→n) ≥ min

ℓ−1∏
j=0

(1 − lcΦ(ω(j)))

∣∣∣∣∣∣∅ =: ω(0) ⊊ ω(1) ⊊ · · · ⊊ ω(ℓ) ∈ Cℓ(X)

. (7)

In particular, writing lc(i)
Φ (X, π) = maxω̂∈X(i) lcΦ(ω̂), we have

cfΦ

(
P↑

ℓ→n

)
≥

ℓ−1∏
j=0

(
1 − lc(j)

Φ (X, π)
)

.

As mentioned before our proof is inspired by the exposition in [14] and follows the Garland
method, [31]. After submitting our results to arxiv, it came to our attention that the same
proof technique for proving a weaker version of Theorem 22 already appeared in [42] in the
context of variance contraction. We will list a few immediate consequences of Theorem 22.
The following bound is immediate given Proposition 10 and Theorem 22,

▶ Corollary 23 (Spectral Gap Bound). Let (X, π) be a simplicial complex of rank n. We have,

gap(P↓↑
n↔ℓ) ≥ n − ℓ

n
· min

{
ℓ−1∏
i=0

gap(Mzi)

∣∣∣∣∣ ∅ =: ω(0) ⊊ ω(1) ⊊ · · · ⊊ ω(ℓ) ∈ Cℓ−1(X)
}

. (8)

In particular, writing gapk(X, π) := minx∈X(k) gap(Mx) we have

gap(P↓↑
n↔ℓ) ≥ n − ℓ

n
·

ℓ−1∏
i=0

gapi(X, π).

We also prove a useful lemma that shows we can directly relate the entropy contraction
constant to the log-Sobolev constant of the down-up walk,

APPROX/RANDOM 2024

58:18 Expanderizing Higher Order Random Walks

▶ Lemma 24. Let (X, π) be a simplicial complex of rank n. For any ω̂ ∈ X, we set

π⋆
ω̂,k = min

ω̃∈X
(k)
ω̂

π
(ω̂)
k (ω̃), gapn−2(X, π) = min

ω̂∈X(n−2)
gap(Mω̂), and

Cω̂,k =

1 π⋆

ω̂,k > 1/2,
1−2π⋆

ω̂,k

log
((

π⋆
ω̂,k

)−1
−1
) otherwise.

where Mω̂ is the link of ω̂ and gap(•) denotes the spectral gap. We have,

ls(P↓↑
n↔ℓ) ≥ min

{
Cω(ℓ),n−ℓ

∣∣ ω(ℓ) ∈ X(ℓ)} · ec
(
P↑

ℓ→n

)
,

ls(P↑↓
n−1) ≥ n − 1

n
· min

{
Cω(n−2),1

∣∣ ω(n−2) ∈ X(n−2)} · gapn−2(X, π) · ec(P↑
n−2→n−1).

In particular, writing leci(X, π) := minω̂∈X(i) lec(ω̂) and Cℓ,k = minω̂∈X(ℓ) Cω̂,k,

ls(P↓↑
n↔ℓ) ≥ Cℓ,n−ℓ ·

ℓ−1∏
i=0

(1 − leci(X, π))

We will prove this result in Section 4.2.

4.1 Proof of Φ-Entropy Contraction Bounds, Theorem 22
Proof of Theorem 22. For ℓ = 0, the LHS is equal to 0, thus we see the product in
Equation (7) is taken over an empty set and equals 1. Thus, equality holds in this case with
cfΦ(P↑

0→n) = 1. We proceed by induction on the rank of the simplicial complex. We have
by the chain rule for Φ-entropy (Lemma 11),

EntΦ
πℓ

(P↑
ℓ→nf) = E

x∼π1
EntΦ

π
(x)
ℓ−1

(P↑
x,ℓ−1→n−1f |x) + EntΦ

π1
(P↑

1→nf),

where we have used (i) (P↑
ℓ→nf)x(ω) = [P↑

x;ℓ−1→n−1f |x](ω \ x) and (ii) that P↑
ℓ→n is row-

stochastic, i.e. E(P↑
ℓ→nf) = Ef . Let c := minx∼X(1) cfΦ(P↑

x,ℓ−1→n−1). By the induction
hypothesis,

c ≥ min

ℓ−1∏
j=1

(1 − lcΦ(ω(j)))

∣∣∣∣∣∣x ∈ X(1), x =: ω(1) ⊊ ω(2) ⊊ · · · ⊊ ω(ℓ−1) ∈ Cℓ−1(x)

. (9)

Hence, we obtain,

EntΦ
πℓ

(P↑
ℓ→nf) ≤ (1 − c) E

x∼π1
EntΦ

π
(x)
n−1

(f |x) + EntΦ
π1

(P↑
1→nf).

Now, using the chain-rule (Lemma 11) for Φ-entropy once more, we have
Ex∼π1 EntΦ

π
(x)
n−1

(f |x) = EntΦ
πn

(f) − Entπ1(P↑
1→nf). Substituting this in the inequality above,

we obtain:

EntΦ
πℓ

(P↑
ℓ→nf) ≤ (1 − c) ·

(
EntΦ

πn
(f) − EntΦ

π1
(P↑

1→nf)
)

+ EntΦ
π1

(P↑
1→nf),

= (1 − c) · EntΦ
πn

(f) + c · EntΦ
π1

(P↑
1→nf).

Now, using EntΦ
π1

(P↑
1→nf) ≤ lcΦ(∅) · EntΦ

πn
(f) we obtain

EntΦ
πℓ

(P↑
ℓ→nf) ≤ (1 − c · (1 − lcΦ(∅))) · EntΦ

πn
(f).

The statement now follows from Equation (9) and the definition of the Φ-entropy contraction
factor. ◀

V. L. Alev and S. Rao 58:19

4.2 Proof of the log-Sobolev Inequality, Lemma 24
Proof of Lemma 24. We follow a similar strategy to what we have followed to establish
Theorem 22. We have,〈

f ,
(
I − P↓↑

n↔ℓ

)
f
〉

πn
= ⟨f , f⟩πn

−
〈
P↑

ℓ→nf , P↑
ℓ→nf

〉
πℓ

,

= E
ω̂∼πℓ

[
⟨f |ω̂, f |ω̂⟩

π
(ω̂)
n−ℓ

− E
ω̂∼πℓ

〈
P↑

ω̂,0→n−ℓf |ω̂, P↑
ω̂,0→n−ℓf |ω̂

〉
π

(ω̂)
n−ℓ

]
,

= E
ω̂∼πℓ

[〈
f |ω̂,

(
I − P↓↑

ω̂,n−ℓ↔0

)
f |ω̂
〉

π
(ω̂)
n−ℓ

]
,

= E
ω̂∼πℓ

[〈
f |ω̂,

(
I − J

π
(ω̂)
n−ℓ

)
f |ω̂
〉

π
(ω̂)
n−ℓ

]
,

where we have used Items (1) and (2) of Lemma 12 to obtain the second equality and have
written Jµ = 1µ for the clique with respect to µ.

Now, by Lemma 5, we have ls
(

J
π

(ω̂)
n−ℓ

)
≥ Cω̂,n−ℓ – where Cω̂,n−ℓ is defined as in the

statement of Lemma 24. Thus, writing Cℓ,n−ℓ := minω̂∈X(ℓ) Cω̂,n−ℓ, we have〈
f ,
(
I − P↓↑

n↔ℓ

)
f
〉

πn
≥ Cℓ,n−ℓ · E

ω̂∼πℓ

Ent
π

(ω̂)
n−ℓ

(
f2|ω̂

)
, ≥ Cℓ,n−ℓ ·

(
Entπn (f2) − Entπℓ

(
P↑

ℓ→nf2))
where we have used the chain rule for entropy, Lemma 11, to obtain the last statement.

Now, using the definition of Φ-entropy contraction, i.e. writing for Φ(t) = t · log t,

Entπℓ

(
P↑

ℓ→nf2
)

≤
(

1 − ec
(

P↑
ℓ→n

))
· Entπn

(
f2).

Thus,〈
f ,
(

I − P↓↑
n↔ℓ

)
f
〉

πn

≥ Cℓ,n−ℓ · ec
(

P↑
ℓ→n

)
· Entπn

(
f2).

Now, the first statement follows by appealing to the definition of the log-Sobolev inequality
(LSI) and the log-Sobolev constant (Equation (2)). The second statement concerning P↓↑

n↔ℓ

now immediately follows from Theorem 22.
To obtain the log-Sobolev inequality for P↑↓

n−1, we make use of Items (1) and (3) in
Lemma 12 and proceed as above. We have,〈

f ,
(

I − P↑↓
n−1

)
f
〉

πn−1
= n − 1

n
· E

ω̂∼πn−2

[
⟨f |ω̂, (I − Mω̂)f |ω̂⟩

π
(ω̂)
1

]
Now, appealing to Lemma 5, we obtain ls(Mω̂) ≥ gap(Mω̂) · Cω̂,1 for all ω̂ ∈ X(n−2). Thus,〈

f ,
(
I − P↑↓

n−1
)
f
〉

πn−1
≥ n − 1

n
· Cn−2,1 · gapn−2(X, π) · E

ω̂∼πn−2
Ent

π
(ω̂)
1

(f2|ω̂),

= n − 1
n

· Cn−2,1 · gapn−2(X, π) ·
(
Entπn−1 (f2) − Entπℓ

(
P↑

n−2→n−1f2)),
= n − 1

n
· Cn−2,1 · gapn−2(X, π) · ec

(
P↑

n−2→n−1
)

· Entπn−1 (f2), (10)

where we have appealed to the chain rule for entropy, Lemma 11, to obtain the first
equality. ◀

5 Application: Sampling Using the Expanderized Walks

In the present section, present our results concerning the rapid mixing of the expanderized
walks for sampling (i) list-colorings and (ii) Ising models with bounded interaction matrix.
First, we describe the random sampling problems we are interested in mention the state of

APPROX/RANDOM 2024

58:20 Expanderizing Higher Order Random Walks

the art sampling results we are interested in expanderizing, and state our results and present
a proof of the list coloring chain. Due to space considerations, we only present the proof
of our list-coloring result here in Section 5.1 and refer the reader to the full version of our
paper in [4] for the proof of our mixing time estimate for the Ising Model.

A list coloring instance (G, L) consists of a graph G = (V, E) and a collection of colours
L = (L(v))v for every vertex. A valid list coloring of (G, L) is then a set of pairs {(v, c(v))}v∈V

satisfying the following two conditions,
1. c(v) ∈ L(v) for all vertices v ∈ L,
2. c(u) ̸= c(v) for all edges {u, v} ∈ E.
We will write (X(G,L), uni(G,L)) for the simplicial complex of proper list coloring of (G, L)
weighted by the uniform distribution (G, L) on all list colorings, i.e.

X(G,L) =

{
α ⊂

⊔
v∈V

{v} × L(v)

∣∣∣∣∣ there is a proper list coloring χ of (G, L) such that α ⊂ χ

}
.

We will show that the expanderized walks rapidly mix when sampling list colorings of bounded
degree graphs. Further, the lower bound in the number of colors matches with the state of
the art – see [12, 41, 10].

▶ Theorem 25. Let (G, L) be a list-coloring instance where G = (V, E) is a graph on n

vertices of maximum degree ∆ ≤ O(1) and Hn be a labelled graph on [n] of constant two-
sided expansion λ(Hn) bounded away from 1. Then, for some absolute constant ε ≈ 10−5,8
and any K = O(1), if (11/6 + K)∆ ≥ |L(v)| ≥ (11/6 − ε) · ∆ for all vertices v ∈ V ,
the mixing time of the expanderized walks Q↑↓

n−1 = UpDownℓ↔n(X(G,L), uni(G,L), H2) and
Q↓↑

n = DownUpn↔ℓ(X(G,L), uni(G,L), H) satisfies,

τmix(Q↑↓
n−1, ε) ≤ C1 · n

(
log n + log ε−1) and τmix(Q↓↑

n , ε) ≤ C2 · n
(
log n + log log ε−1),

where C1 and C2 are universal constants not depending on n but on ∆.

▶ Remark 26. By [5], we can pick a constant degree graph as the graph Hn in the statement of
Theorem 25. Thus, a single step of the random walk can be implemented using O(1)-random
bits – making the total number of random bits used in the random walk O(n log n). In
contrast, the standard down-up walk or the up-down walk requires O(log n) random bits to
perform a single step, and O(n log2 n) random bits in total.

We recall that the Ising model µJ,h : {+1, −1}n → R≥0 with interaction matrix J ∈ Rn×n

and external field h ∈ Rn from statistical physics is a probability distribution on the
hypercube satisfying,

µJ,h(x) =
exp
(

1
2 ⟨x, Jx⟩ℓ2

+ ⟨h, x⟩ℓ2

)
Z(J, h) where Z(J, h) =

∑
x∈{+1,−1}n

exp
(1

2 ⟨x, Jx⟩ℓ2
+ ⟨h, x⟩ℓ2

)
(11)

We notice that we can identify any x ∈ {+1, −1}n with a value by using the encoding,

x± = {(i, x(i)) | i ∈ [n]}.

Thus, we define the simplicial complex (X(J,h), µJ,h), where

X(J,h) = {α ⊂ [n] × {±1} | for each i ∈ [n], α contains at most one element (i, x)}.

We show that our expanderize walks mix rapidly assuming that the external field h ∈ Rn

is well-behaved, i.e. ∥h∥ℓ∞ does not grow with n,

8 See [12].

V. L. Alev and S. Rao 58:21

▶ Theorem 27. Let (X(J,h), µJ,h) be the simplicial complex defined above corresponding to
the Ising model defined by the interaction matrix J ∈ Rn×n and external field h ∈ Rn and
Hn a constant degree graph whose two-sided expansion is a constant bounded away from 1.
Under the assumption that J is PSD and satisfies ∥J∥op ≤ 1, the following hold,

τmix(Q↑↓
n−1, ε) ≤

O
(
∥h∥ℓ∞

)
· n

(1 − ∥J∥op)2

(
log(n + ∥h∥ℓ1

) + log ε−1) and

τmix(Q↓↑
n , ε) ≤

O
(
∥h∥ℓ∞

)
· n

(1 − ∥J∥op)2

(
log(n + ∥h∥ℓ1

) + log ε−1),
where the O(•) notation hides a universal constant not depending on n, J, or h. Furthermore,
the term (1 − ∥J∥op)2 in the denominator can be replaced with (1 − ∥J∥op)(1 − θ) if the
maximum operator norm of any two-by two principal submatrix of J is θ.

▶ Remark 28. By [5], we can pick a constant degree graph as the graph Hn in the statement
of Theorem 27. Thus, ignoring numerical difficulties in simulating biased coins, a single step
of the random walk can be implemented using O(1)-random bits – making the total number
of random bits used in the random walk O(n log n) when ∥h∥ℓ∞

= O(1). In contrast, the
standard down-up walk or the up-down walk requires O(log n) random bits to perform a
single step and O(n log2 n) random bits in total.

5.1 List Coloring of Bounded Degree Graphs
We make the following observations about the complex associated to proper list colorings,

▶ Proposition 29 (Folklore). 9 Let (G = (V, E), L) be a list-coloring instance. Let K+, K− ∈
N be parameters satisfying deg(v) + K+ ≥ |L(v)| ≥ deg(v) + K− for all v ∈ V . Then, writing
(Y, π) := (X(G,L), uni(G,L)) we have,

λ2(Mχ̂) ≤ 1
K−

for all χ̂ ∈ Y (n−2),

where Mχ̂ is the link of the face χ̂.
Similarly, for any χ̂ ∈ Y (n−2), we have min(u,c)∈Y

(1)
χ̂

π
(χ̂)
1 (u, c) ≥ K−

(∆+K+)2 where ∆ =
maxv∈V deg(v).

We recall the following result of [41, 10],

▶ Theorem 30 (Theorem 1.2, [41]). Let (G, L) be a list-coloring instance where G = (V, E)
is a graph on n vertices of maximum degree ∆ ≤ O(1). Then, for some absolute constant
ε ≈ 10−5,10 if |L(v)| ≥ (11/6 − ε) · ∆ for all vertices v ∈ V , then the spectral gap and the log-
Sobolev constants (Equation (2)) of the down-up walk P↓↑

n = DownUpn↔n−1(X(G,L), uni(G,L))
on the collection of proper list colorings is Ω(n−1).

Then, the following corollary immediately follows by Lemma 7 and Proposition 9,

▶ Corollary 31. Let (G, L) be a list-coloring instance where G = (V, E) is a graph on n vertices
of maximum degree ∆ ≤ O(1). Then, for some absolute constant ε ≈ 10−5, if |L(v)| ≥ (11/6−
ε) · ∆ for all vertices v ∈ V , then the up-operator P↑

n−1→n = Upn−1→n

(
X(G,L), uni(G,L)

)
on

the collection of proper list colorings of (G, L) satisfies ec(P↑
n−1→n) ≥ Ω(n−1).

9 See the full version of this paper [4] for a proof.
10 See [12]

APPROX/RANDOM 2024

58:22 Expanderizing Higher Order Random Walks

Proof of Theorem 25. Notice that by Lemma 13, Corollary 31 implies that ec(P↑
n−2→n−1) ≥

Ω(n−1) since by Proposition 29 when ∆ = O(1), Cn−2 = Ω(1), we have
gapn−2(X(G,L), uni(G,L)) = Ω(1), by invoking Lemma 24 we obtain that the up-down walk
P↑↓

n−1 = UpDownn−1↔n(X(G,L), uni(G,L)) satisfies, ls(P↑↓
n−1) ≥ Ω(n−1). Then, by Corollary 21

and the assumption that the two-sided expansion λ(Hn) is a constant bounded away from
1, we obtain ec(Q↑↓

n), ec(Q↓↑
n−1) ≥ Ω(n−1). The result, concerning mixing times follows

using Theorem 8 and the observation that the state space for both walks is of size at most
n · ((K + 11/6) · ∆)n. ◀

References
1 David Aldous and James Fill. Reversible Markov chains and random walks on graphs, 1995.
2 Vedat Levi Alev and Lap Chi Lau. Improved analysis of higher order random walks and

applications. In STOC, pages 1198–1211, 2020.
3 Vedat Levi Alev and Ori Parzanchevski. Sequential sweeps and high dimensional expansion.

CoRR, abs/2312.02089, 2023. doi:10.48550/arXiv.2312.02089.
4 Vedat Levi Alev and Shravas Rao. Expanderizing higher order random walks, 2024. arXiv:

2405.08927.
5 Noga Alon. Explicit expanders of every degree and size. Combinatorica, 41(4):447–463, 2021.

doi:10.1007/s00493-020-4429-x.
6 Nima Anari, Vishesh Jain, Frederic Koehler, Huy Tuan Pham, and Thuy-Duong Vuong.

Entropic independence ii: optimal sampling and concentration via restricted modified log-
sobolev inequalities. arXiv preprint, 2021. arXiv:2111.03247.

7 Nima Anari, Vishesh Jain, Frederic Koehler, Huy Tuan Pham, and Thuy-Duong Vuong.
Entropic independence: optimal mixing of down-up random walks. In Proceedings of the 54th
Annual ACM SIGACT Symposium on Theory of Computing, pages 1418–1430, 2022.

8 Nima Anari, Vishesh Jain, Frederic Koehler, Huy Tuan Pham, and Thuy-Duong Vuong.
Universality of spectral independence with applications to fast mixing in spin glasses. CoRR,
abs/2307.10466, 2023. doi:10.48550/arXiv.2307.10466.

9 Nima Anari, Kuikui Liu, and Shayan Oveis Gharan. Spectral independence in high-dimensional
expanders and applications to the hardcore model. CoRR, abs/2001.00303, 2020. arXiv:
2001.00303.

10 Antonio Blanca, Pietro Caputo, Zongchen Chen, Daniel Parisi, Daniel Štefankovič, and
Eric Vigoda. On mixing of markov chains: Coupling, spectral independence, and entropy
factorization. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 3670–3692. SIAM, 2022.

11 Antonio Blanca, Pietro Caputo, Daniel Parisi, Alistair Sinclair, and Eric Vigoda. Entropy
decay in the swendsen–wang dynamics on zd. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, pages 1551–1564, 2021.

12 Sitan Chen, Michelle Delcourt, Ankur Moitra, Guillem Perarnau, and Luke Postle. Improved
bounds for randomly sampling colorings via linear programming. In SODA, pages 2216–2234,
2019. doi:10.1137/1.9781611975482.134.

13 Yuansi Chen. An almost constant lower bound of the isoperimetric coefficient in the kls
conjecture. Geometric and Functional Analysis, 31:34–61, 2021.

14 Yuansi Chen and Ronen Eldan. Localization schemes: A framework for proving mixing bounds
for markov chains. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer
Science (FOCS), pages 110–122. IEEE, 2022.

15 Zongchen Chen, Andreas Galanis, Daniel Stefankovic, and Eric Vigoda. Rapid mixing for
colorings via spectral independence. CoRR, abs/2007.08058, 2020. arXiv:2007.08058.

16 Zongchen Chen, Kuikui Liu, and Eric Vigoda. Rapid mixing of Glauber dynamics up to
uniqueness via contraction. arXiv preprint, 2020. arXiv:2004.09083.

https://doi.org/10.48550/arXiv.2312.02089
https://arxiv.org/abs/2405.08927
https://arxiv.org/abs/2405.08927
https://doi.org/10.1007/s00493-020-4429-x
https://arxiv.org/abs/2111.03247
https://doi.org/10.48550/arXiv.2307.10466
https://arxiv.org/abs/2001.00303
https://arxiv.org/abs/2001.00303
https://doi.org/10.1137/1.9781611975482.134
https://arxiv.org/abs/2007.08058
https://arxiv.org/abs/2004.09083

V. L. Alev and S. Rao 58:23

17 Zongchen Chen, Kuikui Liu, and Eric Vigoda. Optimal mixing of glauber dynamics: Entropy
factorization via high-dimensional expansion. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, pages 1537–1550, 2021.

18 Persi Diaconis and Arun Ram. Analysis of systematic scan metropolis algorithms using
iwahori-hecke algebra techniques. Michigan Mathematical Journal, 48(1):157–190, 2000.

19 Persi Diaconis, Laurent Saloff-Coste, et al. Logarithmic Sobolev inequalities for finite Markov
chains. The Annals of Applied Probability, 6(3):695–750, 1996.

20 Yotam Dikstein, Irit Dinur, Yuval Filmus, and Prahladh Harsha. Boolean function analysis
on high-dimensional expanders. In APPROX/RANDOM, pages 38:1–38:20, 2018. doi:
10.4230/LIPIcs.APPROX-RANDOM.2018.38.

21 Irit Dinur and Tali Kaufman. High dimensional expanders imply agreement expanders. In
FOCS, pages 974–985, 2017. doi:10.1109/FOCS.2017.94.

22 Roland L Dobrushin. Prescribing a system of random variables by conditional distributions.
Theory of Probability & Its Applications, 15(3):458–486, 1970.

23 Martin Dyer, Leslie Ann Goldberg, and Mark Jerrum. Systematic scan for sampling colorings.
The Annals of Applied Probability, 16(1):185–230, 2006.

24 Martin Dyer, Leslie Ann Goldberg, and Mark Jerrum. Dobrushin conditions and systematic
scan. Combinatorics, Probability and Computing, 17(6):761–779, 2008.

25 Ronen Eldan. Thin shell implies spectral gap up to polylog via a stochastic localization scheme.
Geometric and Functional Analysis, 23(2):532–569, 2013.

26 Ronen Eldan. Taming correlations through entropy-efficient measure decompositions with
applications to mean-field approximation. Probability Theory and Related Fields, 176(3):737–
755, 2020.

27 Ronen Eldan, Frederic Koehler, and Ofer Zeitouni. A spectral condition for spectral gap: fast
mixing in high-temperature ising models. Probability theory and related fields, 182(3):1035–1051,
2022.

28 Ronen Eldan and Omer Shamir. Log concavity and concentration of lipschitz functions on the
boolean hypercube. Journal of functional analysis, 282(8):109392, 2022.

29 Weiming Feng, Heng Guo, Chunyang Wang, Jiaheng Wang, and Yitong Yin. Towards
derandomising markov chain monte carlo. In 64th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023, pages 1963–1990.
IEEE, 2023.

30 Weiming Feng, Heng Guo, Yitong Yin, and Chihao Zhang. Rapid mixing from spectral
independence beyond the boolean domain. arXiv preprint, 2020. arXiv:2007.08091.

31 Howard Garland. p-adic curvature and the cohomology of discrete subgroups of p-adic groups.
Annals of Mathematics, pages 375–423, 1973.

32 Heng Guo and Giorgos Mousa. Local-to-global contraction in simplicial complexes, 2021.
arXiv:2012.14317.

33 Thomas P Hayes. A simple condition implying rapid mixing of single-site dynamics on
spin systems. In 2006 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’06), pages 39–46. IEEE, 2006.

34 Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications.
Bulletin of the American Mathematical Society, 43(4):439–561, 2006.

35 Eyal Karni and Tali Kaufman. High dimensional expansion using zig-zag product. arXiv
preprint, 2020. arXiv:2001.08829.

36 Tali Kaufman and David Mass. High dimensional random walks and colorful expansion. In
ITCS, pages 4:1–4:27, 2017. doi:10.4230/LIPIcs.ITCS.2017.4.

37 Tali Kaufman and Izhar Oppenheim. High order random walks: Beyond spectral gap. In
APPROX/RANDOM, pages 47:1–47:17, 2018. doi:10.4230/LIPIcs.APPROX-RANDOM.2018.
47.

38 B Klartag and V Milman. The slicing problem by bourgain. In Analysis at Large: Dedicated
to the Life and Work of Jean Bourgain, pages 203–231. Springer, 2022.

APPROX/RANDOM 2024

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.38
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.38
https://doi.org/10.1109/FOCS.2017.94
https://arxiv.org/abs/2007.08091
https://arxiv.org/abs/2012.14317
https://arxiv.org/abs/2001.08829
https://doi.org/10.4230/LIPIcs.ITCS.2017.4
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.47
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.47

58:24 Expanderizing Higher Order Random Walks

39 Bo’az Klartag. Eldan’s stochastic localization and tubular neighborhoods of complex-analytic
sets. The Journal of Geometric Analysis, 28:2008–2027, 2018.

40 Holden Lee. Parallelising glauber dynamics. arXiv preprint, 2023. arXiv:2307.07131.
41 Kuikui Liu. From coupling to spectral independence and blackbox comparison with the

down-up walk. arXiv preprint, 2021. arXiv:2103.11609.
42 Kuikui Liu. Spectral Independence a New Tool to Analyze Markov Chains. PhD thesis,

University of Washington, 2023.
43 Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. Explicit expanders and the ramanujan

conjectures. In STOC, pages 240–246, 1986. doi:10.1145/12130.12154.
44 G. A. Margulis. Explicit group-theoretic constructions of combinatorial schemes and their ap-

plications in the construction of expanders and concentrators. Problemy Peredachi Informatsii,
24(1):51–60, 1988.

45 Laurent Miclo. Remarques sur l’hypercontractivité et l’évolution de l’entropie pour des chaînes
de Markov finies. Springer, 1997.

46 Ravi Montenegro and Prasad Tetali. Mathematical aspects of mixing times in Markov
chains. Foundations and Trends in Theoretical Computer Science, 1(3), 2005. doi:10.1561/
0400000003.

47 Jack Murtagh, Omer Reingold, Aaron Sidford, and Salil Vadhan. Derandomization beyond
connectivity: Undirected laplacian systems in nearly logarithmic space. In 2017 IEEE 58th
Annual Symposium on Foundations of Computer Science (FOCS), pages 801–812. IEEE, 2017.

48 Jack Murtagh, Omer Reingold, Aaron Sidford, and Salil Vadhan. Deterministic approximation
of random walks in small space. Theory of Computing, 17(1), 2021.

49 Omer Reingold. Undirected connectivity in log-space. Journal of the ACM (JACM), 55(4):1–24,
2008.

50 Omer Reingold, Salil P. Vadhan, and Avi Wigderson. Entropy waves, the zig-zag graph
product, and new constant-degree expanders and extractors. In FOCS, pages 3–13, 2000.
doi:10.1109/SFCS.2000.892006.

51 Gareth O Roberts and Jeffrey S Rosenthal. Surprising convergence properties of some simple
gibbs samplers under various scans. International Journal of Statistics and Probability, 5(1):51–
60, 2015.

52 Eyal Rozenman and Salil Vadhan. Derandomized squaring of graphs. In International Workshop
on Approximation Algorithms for Combinatorial Optimization, pages 436–447. Springer, 2005.

53 Laurent Saloff-Coste. Lectures on finite Markov chains. In Lectures on probability theory and
statistics, pages 301–413. Springer, 1997.

54 Daniel Stefankovic and Eric Vigoda. Lecture notes on spectral independence and bases of
a matroid: Local-to-global and trickle-down from a markov chain perspective, 2023. arXiv:
2307.13826.

55 EL Wilmer, David A Levin, and Yuval Peres. Markov chains and mixing times. American
Mathematical Soc., Providence, 2009.

https://arxiv.org/abs/2307.07131
https://arxiv.org/abs/2103.11609
https://doi.org/10.1145/12130.12154
https://doi.org/10.1561/0400000003
https://doi.org/10.1561/0400000003
https://doi.org/10.1109/SFCS.2000.892006
https://arxiv.org/abs/2307.13826
https://arxiv.org/abs/2307.13826

Ramsey Properties of Randomly Perturbed
Hypergraphs
Elad Aigner-Horev # Ñ

School of Computer Science, Ariel University, Israel

Dan Hefetz # Ñ

School of Computer Science, Ariel University, Israel

Mathias Schacht # Ñ

Fachbereich Mathematik, Universität Hamburg, Germany

Abstract
We study Ramsey properties of randomly perturbed 3-uniform hypergraphs. For t ≥ 2, write K̃

(3)
t to

denote the 3-uniform expanded clique hypergraph obtained from the complete graph Kt by expanding
each of the edges of the latter with a new additional vertex. For an even integer t ≥ 4, let M denote
the asymmetric maximal density of the pair (K̃(3)

t , K̃
(3)
t/2). We prove that adding a set F of random

hyperedges satisfying |F | ≫ n3−1/M to a given n-vertex 3-uniform hypergraph H with non-vanishing
edge density asymptotically almost surely results in a perturbed hypergraph enjoying the Ramsey
property for K̃

(3)
t and two colours. We conjecture that this result is asymptotically best possible

with respect to the size of F whenever t ≥ 6 is even. The key tools of our proof are a new variant of
the hypergraph regularity lemma accompanied with a tuple lemma providing appropriate control
over joint link graphs. Our variant combines the so called strong and the weak hypergraph regularity
lemmata.

2012 ACM Subject Classification Mathematics of computing → Random graphs; Mathematics of
computing → Hypergraphs

Keywords and phrases Ramsey Theory, Smoothed Analysis, Random Hypergraphs

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.59

Category RANDOM

Related Version Full Version: https://arxiv.org/abs/2311.01750 [7]

1 Introduction

1.1 Ramsey properties of random hypergraphs
Given a distribution R over n-vertex hypergraphs, as well as an n-vertex hypergraph H,
referred to as the seed hypergraph, unions of the form H∪R with R ∼ R define a distribution
over the super-hypergraphs of H , denoted by H ∪ R. The hypergraphs H ∪ R are referred to
as random perturbations of H. The study of the properties of such hypergraph distributions
has its origins in the seminal work of Spielman and Teng [52, 53] who coined the term
Smoothed Analysis whilst investigating the performance of algorithms on randomly perturbed
inputs.

Recently, the paradigm of Smoothed Analysis, originating from Theoretical Computer
Science, has captured the attention of numerous researchers in Combinatorics. In the latter
avenue, two dominant strands of results have emerged. One strand pertains to the study of the
thresholds for the emergence of various spanning and nearly-spanning configurations within
such structures (see, e.g., [3, 4, 5, 6, 10, 11, 12, 13, 21, 28, 34, 35, 41]). The second strand
pertains to the extremal and Ramsey-type properties (see, e.g., [1, 2, 6, 8, 18, 19, 20, 36, 46])
of such hypergraphs. Our result lies in the latter vein. We recall the arrow notation

© Elad Aigner-Horev, Dan Hefetz, and Mathias Schacht;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 59; pp. 59:1–59:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:horev@ariel.ac.il
https://aigner-horev.wixsite.com/eigen
https://orcid.org/0000-0002-9207-0596
mailto:danhe@ariel.ac.il
https://dannyhefetz.wixsite.com/homepage
https://orcid.org/0000-0001-8923-3879
mailto:schacht@math.uni-hamburg.de
https://www.math.uni-hamburg.de/home/schacht/
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.59
https://arxiv.org/abs/2311.01750
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

59:2 Ramsey Properties of Randomly Perturbed Hypergraphs

G −→ (H1, H2) , signifying the validity of the asymmetric Ramsey statement that every
2-colouring of the edges of G yields a monochromatic copy of H1 in the first colour or a
monochromatic copy of H2 in the second colour. Moreover, in the symmetric case when
H1 = H2 = H we simply write G −→ (H).

Ramsey properties of randomly perturbed graphs were first investigated by Krivelevich,
Sudakov, and Tetali [36]. In that work it was shown that n−2/(t−1) is the threshold for
the asymmetric Ramsey property G ∪ G(n, p) −→ (K3,Kt), whenever G is an n-vertex
graph of edge density d ∈ (0, 1/2) independent of n. The general problem, put forth by
Krivelevich et al., of determining the threshold for the property G ∪ G(n, p) −→ (Ks,Kt),
whenever G is dense and s, t ≥ 4, was recently (essentially) resolved by Das and Treglown [20].
Those authors showed that n−1/m2(Kt,K⌈s/2⌉) is the threshold for the property G∪G(n, p) −→
(Ks,Kt), when G is a dense n-vertex graph and t ≥ s ≥ 5, where m2(H1, H2) denotes the
asymmetric maximal 2-density of two graphs H1 and H2 (see equation (2) for the definition).
For other values of t and s we also refer to the work of Das and Treglown [20, Theorem 1.7
and Theorem 5(ii)] and for the special case s = t = 4 in addition to the work of Powierski [46,
Theorem 1.8].

The aforementioned Ramsey-type results for randomly perturbed dense graphs are
formulated for 2-colourings only. This restriction is well-justified. Indeed, suppose that more
than two colours are available. The colouring in which the seed is coloured using one colour
and the random perturbation is coloured using all the remaining colours, reduces the problem
to that of studying the Ramsey property at hand for truly random hypergraphs.

The earlier results [20, 36, 46], as well as our result, stated in Theorem 1 below, are
affected by and closely related to research on Ramsey properties in random graphs and
hypergraphs (see, e.g., [17, 26, 27, 29, 30, 31, 38, 39, 40, 42, 44, 45, 47, 48, 49, 50]). For
random graphs, the thresholds for symmetric Ramsey properties are well-understood due
to work of Rödl and Ruciński [47, 49]. Minor exceptions for F being a star forest aside,
this work asserts that n−1/m2(F) is the threshold for the property G(n, p) −→ (F), where
m2(F) denotes the maximal 2-density of the given graph F (see equation (1) below). The
1-statement of the threshold was extended to random k-uniform hypergraphs by Conlon and
Gowers [17] and by Friedgut, Rödl, and Schacht [26]. However, a complete characterisation
of the exceptional cases is not yet available and for the progress towards the 0-statement we
refer to the work of Nenadov et al. [44] and Gugelmann et al. [27].

The thresholds of asymmetric Ramsey properties in random graphs are the subject of
the Kohayakawa–Kreuter conjecture [30]. The 1-statement stipulated by this conjecture has
been fairly recently verified by Mousset, Nenadov, and Samotij [42] and progress has been
made with respect to the corresponding 0-statement by several researchers [27, 29, 38, 40].
Following some progress [14, 37, 42], the conjecture was finally fully resolved by Christoph,
Martinsson, Steiner, and Wigderson [15].

1.2 Main result
We study Ramsey properties of randomly perturbed hypergraphs; stating our results requires
preparation. A hypergraph H is said to be linear if |e ∩ f | ≤ 1 holds whenever e, f ∈ E(H)
are distinct. Amongst the linear hypergraphs, expanded cliques are of special interest. Given
t ≥ 2 and k ≥ 2, the k-uniformly expanded clique of order t, denoted by K̃(k)

t , is the k-uniform
hypergraph with vertex set of size t+

(
t
2
)
(k − 2) obtained from the complete graph Kt by

expanding every edge of Kt by k− 2 new vertices; in particular, K̃(2)
t = Kt holds. Expanded

cliques have attracted some attention in the literature and related extremal and Ramsy-type
questions were addressed by Mubayi [43] and by Conlon, Fox, and Rödl [16].

E. Aigner-Horev, D. Hefetz, and M. Schacht 59:3

Two natural measures of density, arising in the context of random hypergraphs, are the
maximum density of a k-uniform H = (V,E), denoted m(H), and its maximum k-density,
denoted mk(H). The former is given by

m(H) = max
{
e(F)
v(F) : F ⊆ H and v(F) ≥ 1

}
and the latter is defined by

mk(H) = max
{
dk(F) : F ⊆ H

}
, where dk(F) =

0, if e(F) = 0,
1
k , if e(F) = 1, v(F) = k,
e(H)−1
v(H)−k , otherwise.

(1)

It is well known that n−1/m(H) is the threshold for the appearance of H as a subhypergraph in
the binomial random k-uniform hypergraph H(k)(n, p). For H(k)(n, p) to satisfy the Ramsey
property for H a.a.s. it is reasonable to expect that many intermingled copies of H are
required; this as to create colour restrictions forcing the Ramsey property for H. Indeed,
for (hypergraph) cliques it is necessary that many cliques sharing a single hyperedge would
appear a.a.s. in H(k)(n, p). This results in the higher threshold n−1/mk(H) being encountered
for Ramsey properties.

For asymmetric Ramsey properties, another notion of hypergraph density arises. This
notion traces back to the work of Kohayakawa and Kreuter [30]. Given two k-uniform
hypergraphs H1 and H2, each with at least one edge and satisfying mk(H1) ≥ mk(H2), the
asymmetric maximal k-density of H1 and H2 is given by

mk(H1, H2) = mk(H2, H1) = max
{

e(F)
v(F) − k + 1/mk(H2) : F ⊆ H1 and e(F) ≥ 1

}
, (2)

where here we do not mean that mk(·, ·) is symmetric only that in our notation we do
not keep track over the location in which H1, the hypergraph with the potentially higher
mk(·)-density is higher, is placed. The equality mk(H,H) = mk(H) is easy to verify.

With the above notation in place, our main contribution can be stated; this can be viewed
as a hypergraph extension of the aforementioned results of Das and Treglown [20]. Below we
always tacitly assume that Hn and H(3)(n, p) share the same vertex set.

▶ Theorem 1 (Main result). For every d > 0 and every even integer t ≥ 4, there exists a
constant C > 0 such that for every sequence of 3-uniform n-vertex hypergraphs (Hn)n∈N with
e(Hn) ≥ dn3 for every n ∈ N we have

lim
n−→∞

P
(
Hn ∪ H(3)(n, p) −→ (K̃(3)

t)
)

= 1,

whenever p = p(n) ≥ Cn− 1
M for M = m3(K̃(3)

t , K̃
(3)
t/2).

Our proof of Theorem 1 relies on two main technical results, which are related to the
regularity method for hypergraphs. We present these results in Section 1.3-1.4 below.

The proof of Theorem 1 presented here can be adapted for k-uniform hypergraphs and
the asymmetric Ramsey properties Hn ∪H(k)(n, p) −→ (K̃(k)

s , K̃
(k)
t) with t ≥ s. For the sake

of brevity, we restrict ourselves to 3-uniform hypergraphs and the symmetric case for even t.
In particular, from here on, unless stated otherwise, we use the term hypergraph to mean a
3-uniform hypergraph. We conjecture that Theorem 1 uncovers the threshold for the Ramsey
property in question.

APPROX/RANDOM 2024

59:4 Ramsey Properties of Randomly Perturbed Hypergraphs

▶ Conjecture 2. For every even integer t ≥ 6 there exist constants d, c > 0, and there exists
a sequence of 3-uniform n-vertex hypergraphs (Hn)n∈N with e(Hn) ≥ dn3 for every n ∈ N

such that

lim
n−→∞

P
(
Hn ∪ H(3)(n, p) −→ (K̃(3)

t)
)

= 0 ,

whenever p ≤ cn−1/M for M = m3
(
K̃

(3)
t , K̃

(3)
t/2
)
.

Conjecture 2 may hold for t = 4 as well. However, this value is excluded due to the distinct
behaviour seen in the graph case [20, 46]. The proof of Theorem 1 presented here extends for
the asymmetric Ramsey property H −→ (K̃(3)

t , K̃
(3)
s) for sufficiently large integers t ≥ s and

M replaced by m3
(
K̃

(3)
t , K̃

(3)
⌈s/2⌉

)
. It seems plausible that the corresponding generalisation of

Conjecture 2 may also hold.

1.3 A tuple lemma for link graphs
A key feature of the regularity method of graphs is the control over joint neighbourhoods
in the regular environment provided by Szemerédi’s regularity lemma (see, e.g., Lemma 8
below). For the proof of Theorem 1, we establish a similar lemma in the context of the
regularity method for hypergraphs.

For a vertex v in a hypergraph H = (V,E), define the link graph LH(v) of v to have
vertex set V ∖ {v} and edge set comprised of those pairs of vertices which together with v

form a hyperedge in H, i.e., E(LH(v)) = {uw : uvw ∈ E}. In particular, e(LH(v)) is the
vertex degree of v in H and is also denoted by degH(v). Given a graph G with vertex set
V (G) = V we define the link graph of v supported on G by

LH(v,G) = E
(
LH(v)

)
∩ E(G) .

Link graphs are a natural hypergraph extension of vertex neighbourhoods in the context
of graphs. A tuple lemma for hypergraphs would have to control the sizes of the intersections
of link graphs. In that, given a set of vertices U ⊆ V , we seek to control the sizes of the joint
link graph and the joint link graph supported by G given by

LH(U) =
⋂

u∈U

LH(u) and LH(U,G) =
⋂

u∈U

LH(u,G) ,

respectively. For a random hypergraph H = (V,E) with edge density d, one would expect
|LH(U)| ∼ d|U |(|V |

2
)

to hold with high probability. Our tuple lemma asserts that in the regular
environment for hypergraphs this random intuition can be transferred to the deterministic
situation. (We defer the definitions concerning regular hypergraphs to Section 2.)

▶ Proposition 3 (Tuple lemma for joint links). For every t ≥ 2 and ε, d3 > 0, there exists a
δ3 > 0 such that for every d2 > 0 there exist δ2 > 0 and r ≥ 1 such that the following holds.

Let H = (X ∪· Y ∪· Z,EH) be a tripartite hypergraph which is (δ3, d3, r)-regular with respect
to a (δ2, d2)-triad P = (X ∪· Y ∪· Z,EP). Then, all but at most 2ε|X|t of the t-tuples of
vertices X ′ = {x1, . . . , xt} ⊆ X satisfy∣∣LH(X ′, P) − dt

3d
2t+1
2 |Y ||Z|

∣∣ ≤ εd2t+1
2 |Y ||Z| . (3)

Due to space limitations, our proof of Proposition 3 is omitted and can be found in [7] - the
full version of this extended abstract - the former extends to all hypergraph uniformities.
Alternatives to Proposition 3 exerting some control over the sizes of joint link graphs of
vertex tuples whilst relying on weaker versions of the hypergraph regularity do exist. Such
alternatives are established in the extended account [7].

E. Aigner-Horev, D. Hefetz, and M. Schacht 59:5

1.4 A variant of the hypergraph regularity lemma
The second main technical lemma is a new variant of the hypergraph regularity lemma
established in [51]. The necessary definitions are deferred to Section 2.

▶ Proposition 4 (Variant of the regularity lemma for hypergraphs). For every δ3 > 0 and
functions δ2 : N −→ (0, 1], r : N2 −→ N, and constants ℓ0, t0, and s ∈ N, there exist n0 and
T ∈ N such that for every n ≥ n0 and every family (H1, . . . ,Hs) of n-vertex hypergraphs
satisfying V = V (H1) = · · · = V (Hs), there are integers t and ℓ satisfying t ≥ t0 and ℓ ≥ ℓ0,
a vertex partition V with V1 ∪· · · · ∪· Vt = V and an ℓ-equitable partition B with respect to V
such that the following properties hold.
(R.1) |V1| ≤ |V2| ≤ · · · ≤ |Vt| ≤ |V1| + 1,
(R.2) for all 1 ≤ i < j ≤ t and α ∈ [ℓ], the bipartite 2-graph Bij

α is (δ2(ℓ), 1/ℓ)-regular,
(R.3) Hi is δ2(ℓ)-weakly regular with respect to V for every i ∈ [s], and
(R.4) Hi is (δ3, r(t, ℓ))-regular with respect to B for every i ∈ [s].

Due to space limitations, our proof of Proposition 4 is omitted and can be found in [7]
- the full version of this extended abstract. In Proposition 4 there is a combination of the
environment of the hypergraph regularity lemma [51] (see Lemma 10) and the so-called weak
hypergraph regularity lemma (see Lemma 9 below), which is the straightforward extension
of Szemerédi’s regularity for graphs. A lemma of similar spirit can be found in the work of
Allen, Parczyk, and Pfenninger [9].

In the sequel, these hypergraph regularity lemmata are distinguished by referring to these
as the Strong Lemma and Weak Lemma, respectively. The difference between the Strong
Lemma and Proposition 4 is Property (R.3). The former, when applied to dense hypergraphs,
provides access to triads P set over a vertex set, say, X ∪· Y ∪· Z with respect to which the
regularised hypergraphs is (δ3, d, r)-regular. This, in turn, provides ζ-weak regularity control
for ζ = δ

1/3
3 , by which we mean the ability to control the hyperedge distribution of the

hypergraphs along sets X ′ ⊆ X, Y ′ ⊆ Y , and Z ′ ⊆ Z satisfying |X ′| ≥ ζ|X|, |Y ′| ≥ ζ|Y |,
and |Z ′| ≥ ζ|Z|.

The added Property (R.3), however, provides weak regularity control over vertex sets
with much smaller density. In fact, there the control δ2 is allowed to be a function of ℓ and
the quantification of the Strong Lemma leads to δ3 ≫ ℓ−1.

Organisation
Theorem 1 is proved in Section 3. Various required preliminaries are collected in Section 2.
As mentioned above, the proofs of Propositions 3 and 4 are omitted from this account due
to space limitations and can be seen in [7] - the full version of this account.

Notational remark
Throughout, we often write the enumeration of a result in the subscripts of the constants
that it presides over. For instance, the constant t0 in Proposition 4 becomes t4 and the
constant δ3 in the same lemma is written δ

(3)
4 and so on. This aids in keeping track of the

various constants encountered throughout the proofs.

2 Preliminaries

Let V be a finite set. A partition U of V given by V = U1 ∪· · · · ∪· Ur is said to be equitable if
|U1| ≤ |U2| ≤ · · · ≤ |Ur| ≤ |U1| + 1. Given an additional partition of V , namely V, of the
form V = V1 ∪· · · · ∪· Vℓ, we say that V refines U , and write V ≺ U , if for every i ∈ [ℓ] there

APPROX/RANDOM 2024

59:6 Ramsey Properties of Randomly Perturbed Hypergraphs

exists some j ∈ [r] such that Vi ⊆ Uj holds. For k ≥ 2, write K(k)(U) to denote the complete
|U|-partite k-uniform hypergraph whose vertex set is V and whose edge set is given by all
sets of V (k) = {K ⊆ V : |K| = k} meeting every member of U (termed cluster hereafter) in
at most one vertex. If U = {U,U ′} consists of only two clusters, then we abbreviate K(2)(U)
to K(2)(U,U ′). We write K(2)(V) to denote the complete graph whose vertex set is V .

2.1 Graph regularity
Let d, δ > 0 be given. A bipartite 2-graph G = (X ∪· Y,E) is said to be (δ, d)-regular if

eG(X ′, Y ′) = d|X ′||Y ′| ± δ|X||Y |

holds1 for every X ′ ⊆ X and Y ′ ⊆ Y . If d coincides with the edge density of G, i.e. d = e(G)
|X||Y | ,

then we abbreviate (δ, d)-regular to δ-regular. It follows directly from the definition that G is
a (δ, d)-regular bipartite graph if, and only if, its (bipartite) complement is (δ, 1 − d)-regular.

A tripartite 2-graph P with vertex set V (P) = X ∪· Y ∪· Z is said to be a (δ, d)-triad, if
P [X,Y], P [Y,Z], and P [X,Z] are all (δ, d)-regular. For a 2-graph G, let K3(G) denote the
family of members of V (G)(3) spanning a triangle in G. We shall employ the well known
triangle countling lemma (see, e.g., [25, Fact A]).

▶ Lemma 5 (Triangle counting lemma). Let d > 0, let 0 < δ < d/2, and let P be a (δ, d)-triad
with vertex set V (P) = X ∪· Y ∪· Z. Then,

(1 − 2δ)(d− δ)3|X||Y ||Z| ≤ |K3(P)| ≤ ((d+ δ)3 + 2δ)|X||Y ||Z|.

In particular, if d ≤ 1/2, then

|K3(P)| = (d3 ± 4δ)|X||Y ||Z| (4)

holds. ⌟

We shall also use the variant of the triangle counting lemma with only two of the bipartite
graphs being regular and its proof is included for completeness.

▶ Lemma 6. Let P = (X ∪· Y ∪· Z,EP) be a tripartite 2-graph such that P [X,Y] and P [X,Z]
are both (δ, d)-regular. In addition, let X ′ ⊆ X be a set of size |X ′| ≥ δ|X|. Then,

(d− δ)d|X ′|e(P [Y,Z]) − 2δ|X||Y ||Z| ≤ |K3(P,X ′)| ≤ (d+ δ)d|X ′|e(P [Y, Z])+ 2δ|X||Y ||Z|

holds, where K3(P,X ′) denotes the set of triangles of P meeting X ′.

Proof. Let Y ′ ⊆ Y consist of all vertices y ∈ Y satisfying degP (y,X ′) ≥ (d − δ)|X ′|; note
that |Y ′| ≥ (1 − δ)|Y | holds by Lemma 8. We may then write

|K3(P,X ′)| ≥
∑

y∈Y ′

(
d(d− δ)|X ′| degP (y, Z) − δ|X||Z|

)

= d(d− δ)|X ′|

∑
y∈Y

degP (y, Z) −
∑

y∈Y ∖Y ′

degP (y, Z)

−
∑

y∈Y ′

δ|X||Z|

≥ d(d− δ)|X ′|e(P [Y,Z]) − d(d− δ)δ|X||Y ||Z| − δ|X||Y ||Z|
≥ d(d− δ)|X ′|e(P [Y,Z]) − 2δ|X||Y ||Z|.

1 Given x, y, z ∈ R, we write x = y ± z if y − z ≤ x ≤ y + z.

E. Aigner-Horev, D. Hefetz, and M. Schacht 59:7

Next, we prove the upper bound. Let Y ′′ ⊆ Y consist of all vertices y ∈ Y satisfying
degP (y,X ′) ≤ (d + δ)|X ′|; note that |Y ′′| ≥ (1 − δ)|Y | holds by Lemma 8. We may then
write

|K3(P,X ′)| ≤
∑

y∈Y ′′

(
d(d+ δ)|X ′| degP (y, Z) + δ|X||Z|

)
+

∑
y∈Y ∖Y ′′

|X ′||Z|

≤ d(d+ δ)|X ′|

∑
y∈Y

degP (y, Z) −
∑

y∈Y ∖Y ′′

degP (y, Z)

+
∑

y∈Y ′′

δ|X||Z| +
∑

y∈Y ∖Y ′′

|X||Z|

≤ d(d+ δ)|X ′|e(P [Y,Z]) + 2δ|X||Y ||Z| . ◀

The next lemma is commonly referred to as the Slicing Lemma (see, e.g., [33, Fact 1.5]).

▶ Lemma 7 (Slicing lemma). Let d = d7, let δ = δ7 > 0, and let G = (A ∪· B,E) be a
(δ, d)-regular bipartite graph. Let δ ≤ α = α7 ≤ 1, and let A′ ⊆ A and B′ ⊆ B be sets of sizes
|A′| ≥ α|A| and |B′| ≥ α|B|. Then, G[A′, B′] is (δ′, d′)-regular where δ′ = max{δ/α, 2δ}
and d′ = d± δ. ⌟

The tuple property of dense regular bipartite graphs, also referred to as the intersection
property, reads as follows (see [33, Fact 1.4]).

▶ Lemma 8 (Tuple lemma for graphs). Let G = (X ∪· Y,E) be a δ-regular bipartite graph of
edge density d > 0. Then, all but at most 2δℓ|X|ℓ of the tuples {x1, . . . , xℓ} ⊆ X satisfy

|NG(x1, . . . , xℓ, Y
′)| = |{y ∈ Y ′ : xiy ∈ E(G) for all i ∈ [ℓ]}| = (d± δ)ℓ|Y ′|, (5)

whenever Y ′ ⊆ Y satisfies (d− δ)ℓ−1|Y ′| ≥ δ|Y |. ⌟

2.2 Hypergraph regularity
A direct generalisation of the notion of δ-regularity, defined in the previous section for
2-graphs, reads as follows. Let d, δ > 0. A tripartite hypergraph H = (X ∪· Y ∪· Z,E) is said
to be (δ, d)-weakly regular if

eH(X ′, Y ′, Z ′) = d|X ′||Y ′||Z ′| ± δ|X||Y ||Z|

holds whenever X ′ ⊆ X, Y ′ ⊆ Y , and Z ′ ⊆ Z. If d = e(H)
|X||Y ||Z| , then we abbreviate

(δ, d)-weakly regular to δ-weakly regular.
Given a partition V of a finite set V defined by V = V1 ∪· · · · ∪· Vt, a hypergraph H with

V (H) = V is said to be δ-weakly regular with respect to V if H[X,Y, Z]2 is δ-weakly regular
with respect to all but at most δ

(
t
3
)

triples {X,Y, Z} ∈ V(3). We state the straightforward
adaptation of Szemerédi’s graph regularity lemma [32, 33, 54].

▶ Lemma 9 (Weak hypergraph regularity lemma). For every δ = δ9 > 0 and positive integers
s = s9, t = t9, and h = h9 satisfying t ≥ h, there exist positive integers n0 and T = T9
such that the following holds whenever n ≥ n0. Let (H1, . . . ,Hs) be a sequence of n-vertex
hypergraphs, all on the same vertex set, namely V , and let U = U9 be a vertex partition of

2 H[X, Y, Z] is the subgraph of H over X∪· Y ∪· Y whose edge set is {{x, y, z} ∈ E(H) : x ∈ X, y ∈ Y, z ∈ Z}.

APPROX/RANDOM 2024

59:8 Ramsey Properties of Randomly Perturbed Hypergraphs

V given by V = U1 ∪· . . . ∪· Uh. Then, there exists an equitable vertex partition V, given by
V = V1 ∪· V2 ∪· · · · ∪· Vt′ , where t ≤ t′ ≤ T , such that V ≺ U and, moreover, Hi is δ-weakly
regular with respect to V for every i ∈ [s]. ⌟

We proceed to the statement of the Strong hypergraph Regularity Lemma for hyper-
graphs following the formulation seen in [51]. Given a 2-graph G, the relative density of a
hypergraph H with vertex set V (H) = V (G), with respect to G is given by

d(H|G) = |E(H) ∩ K3(G)|
|K3(G)| . (6)

For δ, d > 0 and a positive integer r, a tripartite hypergraph H = (X ∪· Y ∪· Z,EH) is said to
be (δ, d, r)-regular with respect to a tripartite 2-graph P = (X ∪· Y ∪· Z,EP) if∣∣∣∣∣∣∣ r⋃

i=1
(EH ∩ K3(Qi))

∣∣∣− d
∣∣∣ r⋃

i=1
K3(Qi)

∣∣∣∣∣∣∣ ≤ δ
∣∣K3(P)

∣∣ (7)

holds for every family of, not necessarily disjoint, subgraphs Q1, . . . , Qr ⊆ P satisfying∣∣∣∣ r⋃
i=1

K3(Qi)
∣∣∣∣ ≥ δ

∣∣K3(P)
∣∣ > 0 .

Let V be a finite set and let V be a partition V1 ∪· . . . ∪· Vh of V , where h is some positive
integer. Given an integer ℓ ≥ 1, a partition B of K(2)(V) is said to be ℓ-equitable with respect
to V if it satisfies the following conditions:
(B.1) every B ∈ B satisfies B ⊆ K(2)(Vi, Vj) for some distinct i, j ∈ [h]; and
(B.2) for any distinct i, j ∈ [h], precisely ℓ members of B partition K(2)(Vi, Vj).
We view partitions of K(2)(V) as partitions of V (2) under the agreement3 that the set
{K(2)(Vi) : i ∈ [h]} of complete graphs is added to the former; such an addition of cliques
does not hinder the equitability notion defined in (B.2); it does violate (B.1), but this will
not harm our arguments. Moreover, it is under this agreement that we say that a partition
of V (2) refines a partition of K(2)(V).

For distinct indices i, j ∈ [h], the partition of K(2)(Vi, Vj) induced by B is denoted by

Bij = {Bij
α = (Vi ∪· Vj , E

ij
α) : α ∈ [ℓ]} .

The triads of B are the tripartite 2-graphs having the form

Bijk
αβγ = (Vi ∪· Vj ∪· Vk, E

ij
α ∪· Eik

β ∪· Ejk
γ),

where i, j, k ∈ [h] are distinct and α, β, γ ∈ [ℓ]. Recall that a triad is called a (δ, d)-triad
if each of the three bipartite graphs comprising it is (δ, d)-regular. A hypergraph H with
vertex set V (H) = V is said to be (δ, r)-regular with respect to B if∣∣∣∣∣

{ ⋃
1≤i<j<k≤h

α,β,γ∈[ℓ]

K3(Bijk
αβγ) : Hijk is not

(
δ, d(H|Bijk

αβγ), r
)
-regular w.r.t. Bijk

αβγ

}∣∣∣∣∣ ≤ δ|V |3 ,

where Hijk = H[Vi ∪· Vj ∪· Vk]. A formulation of the Strong Lemma [51, Theorem 17] for
hypergraphs, reads as follows.

3 We appeal to this agreement in our proof of Proposition 4 omitted from this account and which can be
found in [7].

E. Aigner-Horev, D. Hefetz, and M. Schacht 59:9

▶ Lemma 10 (Strong hypergraph regularity lemma). For all 0 < δ3 ∈ R, δ2 : N −→ (0, 1],
r : N2 −→ N, and s, t, ℓ ∈ N, there exist n0, T ∈ N such that for every n ≥ n0 and every
sequence of n-vertex hypergraphs (H1, . . . ,Hs), satisfying V = V (H1) = · · · = V (Hs), there
are t′, ℓ′ ∈ N satisfying t ≤ t′ ≤ T and ℓ ≤ ℓ′ ≤ T , a vertex partition V = V1 ∪· · · · ∪· Vt′ ,
namely V, and an ℓ′-equitable partition B with respect to V such that the following properties
hold.
(S.1) |V1| ≤ |V2| ≤ · · · ≤ |Vt′ | ≤ |V1| + 1;
(S.2) for all 1 ≤ i < j ≤ t′ and α ∈ [ℓ′], the bipartite 2-graph Bij

α is (δ2(ℓ′), 1/ℓ′)-regular;
and

(S.3) Hi is (δ3, r(t′, ℓ′))-regular with respect to B for every i ∈ [s]. ⌟

3 Monochromatic expanded cliques

In this section, we prove Theorem 1. The required Ramsey properties of H(3)(n, p) are
collected in Section 3.1; a proof of Theorem 1 can be found in Section 3.2. For an integer
t ≥ 3, the t vertices of K̃(k)

t having their 1-degree strictly larger than one are called the
branch-vertices of K̃(k)

t . Set

v(t) = v(K̃(3)
t) and e(t) = e(K̃(3)

t).

3.1 Properties of random hypergraphs
The main goal of this section is to state Proposition 11 which is an adaptation of [20,
Theorem 2.10]. This proposition collects the Ramsey properties of H(3)(n, p) that will be
utilised throughout our proof of Theorem 1.

A k-graph H is said to be balanced if mk(H) = dk(H) holds; if all proper subgraphs F of
H satisfy mk(F) < mk(H), then H is said to be strictly balanced. It is not hard to verify
that expanded cliques are strictly balanced. In particular,

mk

(
K̃

(k)
t

)
=

(
t
2
)

− 1
t+ (k − 2)

(
t
2
)

− k

holds for any k ≥ 2 and t ≥ 3. In the special case k = 3 we obtain

m3
(
K̃

(k)
t

)
= t2 − t− 2
t2 + t− 6 = 1 − 2t− 4

t2 + t− 6 < 1, (8)

that is, 3-uniformly expanded cliques are sparse. Note that this is in contrast to graph cliques
(on at least 3 vertices) whose 2-density is larger than one. For a simpler notation we set an
integer t ≥ 2

m(t) = m(K̃(3)
t) and Mt = m3(K̃(3)

t) .

Similarly for integers t1, t2 ≥ 2 we set

Mt1,t2 = Mt2,t1 = m3
(
K̃

(3)
t1
, K̃

(3)
t2

)
.

Let H1 and H2 be two k-graphs, each with at least one edge and such that mk(H1) ≥
mk(H2). If mk(H1) = mk(H2), then mk(H1, H2) = mk(H1); otherwise mk(H2) <

mk(H1, H2) < mk(H1) holds. The k-graph H1 is said to be strictly balanced with re-
spect to mk(·, H2) if no proper subgraph F ⊊ H1 maximises (2). For instance, it is not hard
to verify that K̃(3)

t is strictly balanced with respect to m3(·, K̃(3)
t/2), assuming t ≥ 4 is even.

APPROX/RANDOM 2024

59:10 Ramsey Properties of Randomly Perturbed Hypergraphs

Let F and F ′ be k-graphs and let µ = µ(n) be given. An n-vertex k-graph H is said to be
(F, µ)-Ramsey if H [U] −→ (F)2 holds for every U ⊆ V (H) is of size |U | ≥ µn. Similarly, H is
said to be (F, F ′, µ)-Ramsey if H[U] −→ (F, F ′) holds for every U ⊆ V (H) of size |U | ≥ µn.
Given F ⊆

([n]
v(F)

)
and F ′ ⊆

([n]
v(F ′)

)
, we say that H is (F, F ′)-Ramsey with respect to (F ,F ′)

if any 2-colouring of E(H) yields a monochromatic copy K of F (in the first colour) with
V (K) /∈ F or a monochromatic copy K ′ of F ′ (in the second colour) with V (K ′) /∈ F ′.

▶ Proposition 11. Let t ≥ 4 be an even integer. The binomial random hypergraph H ∼
H(3)(n, p) a.a.s. satisfies the following properties.
(P.1) There are constants γ11 = γ11(t) and C

(1)
11 = C

(1)
11 (t) such that if F1 ⊆

([n]
v(t)
)

and
F2 ⊆

([n]
v(t/2)

)
satisfy |F1| ≤ γ11n

v(t) and |F2| ≤ γ11n
v(t/2), then H is (K̃(3)

t , K̃
(3)
t/2)-

Ramsey with respect to (F1,F2), whenever p = p(n) ≥ C
(1)
11 n

−1/Mt,t/2 .
(P.2) For every fixed µ > 0, there exists a constant C(2)

11 = C
(2)
11 (µ, t) such that H is

(K̃(3)
t−1, µ)-Ramsey, whenever p = p(n) ≥ C

(2)
11 n

−1/Mt−1 .

(P.3) For every fixed µ > 0, there exists a constant C(3)
11 = C

(3)
11 (µ, t) such that H is

(K̃(3)
t , K̃

(3)
t/2, µ)-Ramsey, whenever p = p(n) ≥ C

(3)
11 n

−1/Mt,t/2 .

▶ Remark 12. A straightforward albeit somewhat tedious calculation shows that Mt,t/2 ≥ Mt−1
holds for every even integer t ≥ 4. It thus follows that Properties (P.1) and (P.3) are the most
stringent in terms of the bound these impose on p. Hence, if p = p(n) ≥ max

{
C

(1)
11 , C

(3)
11

}
·

n−1/Mt,t/2 , then a.a.s. H satisfies Properties (P.1), (P.2), and (P.3) simultaneously.

Property (P.1) is modelled after [20, Theorem 2.10(i)]; Properties (P.2) and (P.3) are both
specific instantiations of [20, Theorem 2.10(ii)]. The aforementioned results of [20] handle
2-graphs only. Nevertheless, proofs of Properties (P.1-3) can be attained by straightforwardly
adjusting the proofs of their aforementioned counterparts in [20, Theorem 2.10] so as to
accommodate the transition from 2-graphs to hypergraphs. Theorem 2.10 in [20] requires
that the maximal 2-densities of the two (fixed) configurations would both be at least one; this
can be omitted in our setting. Indeed, this condition is imposed in [20, Theorem 2.10] in order
to handle setting (a) in that theorem where the maximal 2-densities of the two configurations
coincide; by (8), this is not an issue in our case. The fact that K̃(3)

t is strictly balanced with
respect to m3(·, K̃(3)

t/2) is required by setting (b) appearing in [20, Theorem 2.10].

3.2 Proof of Theorem 1

We commence our proof of Theorem 1 with a few observations facilitating our arguments;
proofs of these observations are included for completeness.

▶ Observation 13. Let d ∈ (0, 1], let G = (A ∪· B,E) be a bipartite graph satisfying e(G) ≥
d|A||B|, and let k ≤ d|B|/2 be a positive integer. Then, |{v ∈ A : degG(v) ≥ k}| ≥ d|A|/2.

Proof. Let Ak = {v ∈ A : degG(v) ≥ k} and suppose for a contradiction that |Ak| < d|A|/2.
Then,

e(G) < k|A| + |Ak||B| < d|A||B|/2 + d|A||B|/2 ≤ e(G)

which is clearly a contradiction. ◀

E. Aigner-Horev, D. Hefetz, and M. Schacht 59:11

The next lemma captures the phenomenon of supersaturation (first 4 recorded in [22, 23,
24]) for bipartite graphs; to facilitate future references, we phrase this lemma with the host
graph being bipartite as well.

▶ Lemma 14. For every bipartite graph K and every d ∈ (0, 1), there exists a constant
ζ = ζ14 > 0 and a positive integer n0 such that every n-vertex bipartite graph G = (A∪· B,E)
satisfying n ≥ n0, |A| ≤ |B| ≤ |A| + 1, and e(G) ≥ d|A||B| contains at least ζnv(K) distinct
copies of K.

▶ Observation 15. For every graph K and every d ∈ (0, 1), there exists a constant ξ = ξ15 > 0
and an integer n0 such that the following holds whenever n ≥ n0. If an n-vertex graph G

contains dnv(K) distinct copies of K, then it contains at least ξn pairwise vertex-disjoint
copies of K.

Proof. Any given copy of K meets O
(
nv(K)−1) copies of K. ◀

Proof of Theorem 1. Given d, t, and H as in the premise of Theorem 1, set

0 < d3 ≪ d and 0 < ε ≪ min
{
d

v(t/2)
3 , γ11(t)

}
. (9)

The Tuple Property (Theorem 3) applied with t3 = v(t/2), ε3 = ε, and d
(3)
3 = d3, yields the

existence of a constant

0 < δ3 = δ
(3)
3 (v(t/2), ε, d3) ≪ d3 (10)

as well as the functions

δ̃2(x) = δ
(2)
3 (x, t3, ε, d3, δ3) and r(x) = r3(x, t3, ε, d3, δ3),

where δ̃2 : R −→ (0, 1] and r : N −→ N. Define δ2 : N −→ (0, 1] such that

0 < δ2(x) ≪ min
{
δ̃2(x), d

2v(t/2)
3

v(t/2) · x6·(2v(t/2)+1)

}
(11)

holds for every x ∈ N. Lemma 4, applied with

H1 = · · · = Hs = H, δ
(3)
4 = δ3, δ

(2)
4 = δ2, r4 = r5, ℓ4 ≫ d−1

3 , and t4 ≫ d−1, (12)

yields the existence of constants T4, t̃, ℓ ∈ N satisfying t4 ≤ t̃ ≤ T4 and ℓ4 ≤ ℓ ≤ T4, along
with partitions V = V1 ∪· · · · ∪· V

t̃
= V (H) and (Pij)1≤i<j≤t̃

satisfying Properties (R.1-4). Set
auxiliary constants

d2 = 1/ℓ and η = d
v(t/2)
3 d

2v(t/2)+1
2
2 (13)

and fix

0 < µ ≪ ξ15(ζ14(η/2)) · d3+2v(t/2)
3 · d10+4v(t/2)

2
v(t/2)2 · T4

. (14)

4 Rademacher (1941, unpublished) was first to prove that every n-vertex graph with ⌊n2/4⌋ + 1 edges
contains at least ⌊n/2⌋ triangles

APPROX/RANDOM 2024

59:12 Ramsey Properties of Randomly Perturbed Hypergraphs

We claim that there exist three distinct clusters X,Y, Z ∈ V along with a (δ2(ℓ), d2)-triad
P = P ijk

αβγ , with i, j, k, α, β, γ appropriately defined, satisfying V (P) = X ∪· Y ∪· Z such that
H[X ∪· Y ∪· Z] is δ2(ℓ)-weakly-regular and, moreover, H [X ∪· Y ∪· Z] is (δ3, d3, r)-regular with
respect to P . To see this, note first that at most t̃

(⌈n/̃t⌉
3
)

≤ n3

t̃2 ≪ dn3 edges of H reside
within the members of V , where the last inequality relies on t̃ ≥ t4 ≫ d−1, supported by (12).
Second, by Property (R.3), the number of edges of H captured within δ2(ℓ)-weakly-irregular
triples (Vi, Vj , Vk), where i, j, k ∈ [t̃], is at most δ2(ℓ) · t̃3 ·

(
n

t̃
+ 1
)3

≤ 2δ2(ℓ)n3 ≪ dn3, where
the last inequality holds by (9) and (11). Third, by Property (R.4), the number of edges
of H residing6 in (δ3, d(H|P ijk

αβγ), r)-irregular triads P ijk
αβγ is at most δ3n

3 ≪ dn3, where the
last inequality holds by (9) and (10). Fourth and lastly, it follows by the Triangle Counting
Lemma (Lemma 5) and by (6), that the number of edges of H found in (δ2(ℓ), d2)-triads
P ijk

αβγ , where i, j, k ∈ [t̃] and α, β, γ ∈ [ℓ], satisfying d(H|P ijk
αβγ) < d3 is at most

t̃3ℓ3d3
(
d3

2 + 4δ2(ℓ)
)(n

t̃
+ 1
)3

≤ 2d3
(
ℓ3d3

2 + 4ℓ3δ2(ℓ)
)
n3 (13)= (2 + 8ℓ3δ2(ℓ))d3n

3 ≪ dn3,

where the last inequality holds by (9) and (11).
It follows that at least dn3/2 edges of H are captured in (δ2(ℓ), d2)-triads with respect

to which H is (δ3, d3, r)-regular and such that H is δ2(ℓ)-weakly-regular with respect to the
three members of V defining the vertex-sets of these triads. The existence of X,Y, Z ∈ V and
P as defined above is then established. Throughout the remainder of the proof, we identify
H with H[X ∪· Y ∪· Z].

Let F ⊆
(

X
v(t/2)

)
be the family of all sets {x1, . . . , xv(t/2)} ⊆ X satisfying∣∣∣∣∣∣

⋂
j∈[v(t/2)]

LH(xj , P)

∣∣∣∣∣∣ <
(
d

v(t/2)
3 − ε

)
d

2v(t/2)+1
2 |Y ||Z|. (15)

Then,

|F| ≤ ε|X|v(t/2) (9)
≪ γ11(t)|X|v(t/2)

holds by (3). This application of the Tuple Lemma is supported by our choice ℓ4 ≫ d−1
3 ,

seen in (12), ensuring that d2 ≪ d3 holds and thus fitting the quantification of the Tuple
Lemma. With foresight (see (C.1) and (C.2) below), let

C = max
{
C

(1)
11 (t), C(2)

11 (µ, t), C(3)
11 (µ, t)

}
· t̃1/Mt,t/2

and put

p = p(n) = C max
{
n−1/Mt,t/2 , n−1/Mt−1

}
= Cn−1/Mt,t/2 ;

for the last equality consult Remark 12. Proposition 11 then asserts that the following
properties are all satisfied simultaneously a.a.s. whenever R ∼ H(3)(n, p); in the following
list of properties, whenever an asymmetric Ramsey property is stated, the first colour is
assumed to be red and the second colour is assumed to be blue.

6 Supported by triangles of such triads.

E. Aigner-Horev, D. Hefetz, and M. Schacht 59:13

(C.1) R[X] is (K̃(3)
t , K̃

(3)
t/2)-Ramsey with respect to (∅,F);

(C.2) R[X] is (K̃(3)
t/2, K̃

(3)
t)-Ramsey with respect to (F ,∅);

(C.3) R is (K̃(3)
t−1, µ)-Ramsey;

(C.4) R is (K̃(3)
t , K̃

(3)
t/2, µ)-Ramsey;

(C.5) R is (K̃(3)
t/2, K̃

(3)
t , µ)-Ramsey.

Fix R ∼ H(3)(n, p) satisfying Properties (C.1-5) and set Γ = H ∪R.
Let ψ be a red/blue colouring of E(Γ) and suppose for a contradiction that ψ does not

yield any monochromatic copy of K̃(3)
t . For every v ∈ V (H), let L(r)

H (v) denote the red link
graph of v in H under ψ, that is, L(r)

H (v) is a spanning subgraph of LH(v) consisting of the
edges of LH(v) that together with v yield a red edge of H under ψ. Similarly, let L(b)

H (v)
denote the blue link graph of v in H under ψ. Note that, for any fixed vertex v, these two
link subgraphs are edge-disjoint.

We say that blue (respectively, red) is a majority colour of ψ in H if |{e ∈ E(H) :
ψ(e) is blue}| ≥ |{e ∈ E(H) : ψ(e) is red}| (respectively, |{e ∈ E(H) : ψ(e) is red}| ≥ |{e ∈
E(H) : ψ(e) is blue}|).

▷ Claim 16. If blue is a majority colour of ψ in H , then e
(
L

(r)
H (v)

)
≤ η

2v(t/2) · |Y ||Z| holds
for every v ∈ X.

Proof. Suppose for a contradiction that there exists a vertex v ∈ X which violates the assertion
of the claim. The Triangle Counting Lemma (Lemma 5) coupled with the assumption of
H being (δ3, d3, r)-regular with respect to the (δ2(ℓ), d2)-triad P (take Q1 = · · · = Qr = P

in (7)) collectively yield

e(H) ≥ (d3 − δ3)|K3(P)|
(4)
≥ (d3 − δ3)

(
d3

2 − 4δ2(ℓ)
)

|X||Y ||Z|

≥
(
d3d

3
2 − δ3d

3
2 − 4d3δ2(ℓ)

)
|X||Y ||Z|

≥ d3d
3
2

2 |X||Y ||Z|, (16)

where the last inequality is owing to δ3 ≪ d3 and δ2(ℓ) ≪ d3
2 supported by (10) and (11),

respectively. Blue being the majority colour implies that at least d3d3
2

4 |X||Y ||Z| of the edges
of H are blue and thus there exists a vertex u ∈ Z satisfying e

(
L

(b)
H (u)

)
≥ d3d3

2
4 |X||Y |; note

that L(b)
H (u) ⊆ X × Y . Set

Av =
{
z ∈ Z : deg

L
(r)
H

(v)(z) ≥ t
}

⊆ Z and Au =
{
x ∈ X : deg

L
(b)
H

(u)(x) ≥ t
}

⊆ X.

Then,

|Av| ≥ η

4v(t/2) |Z|
(11)
≥ δ2(ℓ)|Z| and |Au| ≥ d3d

3
2

8 |X|
(11)
≥ δ2(ℓ)|X| (17)

both hold by Observation 13. Since H is δ2(ℓ)-weakly-regular, it follows that

eH(Au, Y, Av)
(16)
≥
(
d3d

3
2

2

)
· |Au||Y ||Av| − δ2(ℓ)|X||Y |Z|

(17)
≥
(
d3d

3
2

2

)
·
(

η

4v(t/2)

)
·
(
d3d

3
2

8

)
|X||Y ||Z| − δ2(ℓ)|X||Y |Z|

APPROX/RANDOM 2024

59:14 Ramsey Properties of Randomly Perturbed Hypergraphs

=
(

d2
3d

6
2η

64v(t/2) − δ2(ℓ)
)

· |X||Y ||Z|

(11)
≥
(

d2
3d

6
2η

65v(t/2)

)
· |X||Y ||Z|. (18)

If red is a majority colour seen along EH(Au, Y, Av), then there exists a vertex v′ ∈ Av ⊆ Z

satisfying∣∣∣E (L(r)
H (v′)

)
∩ (Au × Y)

∣∣∣ (18)
≥
(

d2
3d

6
2η

130v(t/2)

)
|X||Y | ≥

(
d2

3d
6
2η

130v(t/2)

)
|Au||Y |.

Consequently, the set

Au,v′ =
{
x ∈ Au : deg

L
(r)
H

(v′)(x) ≥ t
}

⊆ Au ⊆ X

satisfies

|Au,v′ | ≥
(

d2
3d

6
2η

260v(t/2)

)
|Au|

(17)
≥
(

d2
3d

6
2η

260v(t/2)

)
·
(
d3d

3
2

8

)
|X|

≥
(

d3
3d

9
2η

2100v(t/2)

)
·
⌊
n

t̃

⌋
(14)
≥ µn,

where the first inequality holds by Observation 13. We may then write that Γ[Au,v′] −→
(K̃(3)

t−1)2 owing to R being (K̃(3)
t−1, µ)-Ramsey, by Property (C.3). Let K be a copy of

K̃
(3)
t−1 appearing monochromatically under ψ within Γ[Au,v′]. Let x1, . . . , xt−1 denote the

branch vertices of K. It follows by the definition of Au,v′ that there are distinct vertices
y1, . . . , yt−1 ∈ Y such that {xi, yi, v

′} is a red edge of H for every i ∈ [t− 1]. Similarly, since
Au,v′ ⊆ Au, there are distinct vertices y′

1, . . . , y
′
t−1 ∈ Y such that {xi, y

′
i, u} is a blue edge

of H for every i ∈ [t − 1]. Therefore, if K is red, then it can be extended into a red copy
of K̃(3)

t including v′; if, on the other hand, K is blue, then it can be extended into a blue
copy of K̃(3)

t including u. In either case, a contradiction to the assumption that ψ admits no
monochromatic copies of K̃(3)

t is reached.
It remains to consider the complementary case where blue is a majority colour in

EH(Au, Y, Av). The argument in this case parallels that seen in the previous one with the
sole cardinal difference being that instead of finding a monochromatic copy of K̃(3)

t−1 in a
subset of Au ⊆ X, such a copy is found in a subset of Av ⊆ Z. An argument for this case is
provided for completeness. If blue is a majority colour seen along EH(Au, Y, Av), then there
exists a vertex u′ ∈ Au ⊆ X satisfying∣∣∣E (L(b)

H (u′)
)

∩ (Y ×Av)
∣∣∣ (18)

≥
(

d2
3d

6
2η

130v(t/2)

)
|Y ||Z| ≥

(
d2

3d
6
2η

130v(t/2)

)
|Y ||Av|.

Consequently, the set

Av,u′ =
{
z ∈ Av : deg

L
(b)
H

(u′)(z) ≥ t
}

⊆ Av ⊆ Z

satisfies

|Av,u′ | ≥
(

d2
3d

6
2η

260v(t/2)

)
|Av|

E. Aigner-Horev, D. Hefetz, and M. Schacht 59:15

(17)
≥
(

d2
3d

6
2η

260v(t/2)

)
·
(

η

4v(t/2)

)
|Z|

≥
(

d2
3d

6
2η

2

1100v(t/2)2

)
·
⌊
n

t̃

⌋
(14)
≥ µn,

where the first inequality holds by Observation 13. Then, Γ[Av,u′] −→ (K̃(3)
t−1)2 owing to R

being (K̃(3)
t−1, µ)-Ramsey, by Property (C.3). A monochromatic copy of K̃(3)

t−1 appearing in
Γ[Av,u′] can be either extended into a red copy of K̃(3)

t including the vertex v or into a blue
such copy including u′. In either case, a contradiction to the assumption that ψ admits no
monochromatic copy of K̃(3)

t is reached. ◁

The following counterpart of Claim 16 holds as well.

▷ Claim 17. If red is a majority colour of ψ in H, then e
(
L

(b)
H (v)

)
≤ η

2v(t/2) · |Y ||Z| holds
for every v ∈ X.

Proceeding with the proof of Theorem 1, assume first that blue is a majority colour
of ψ in H. By Property (C.1), either there is a red copy of K̃(3)

t (within X) or there is
a blue copy of K̃(3)

t/2 within X not supported on F . If the former occurs, then the proof
concludes. Assume then that K ⊆ Γ[X] is a blue copy of K̃(3)

t/2 such that V (K) /∈ F , and
write LH(K,P) =

⋂
x∈V (K) LH(x, P) to denote the joint link graph of the members of V (K)

supported on P . Then,

e(LH(K,P)) ≥
(
d

v(t/2)
3 − ε

)
d

2v(t/2)+1
2 |Y ||Z|,

holds by (15). Remove E(L(r)
H (x)) from E(LH(K,P)) for every x ∈ V (K); that is, remove

any edge in LH(K,P) that together with a vertex of K gives rise to a red edge of H with
respect to ψ. By Claim 16, at most∑

x∈V (K)

e
(
L

(r)
H (x)

)
≤ v(t/2) · η

2v(t/2) |Y ||Z| = η

2 |Y ||Z|

edges are thus discarded from LH(K,P), leaving at least

[(
d

v(t/2)
3 − ε

)
d

2v(t/2)+1
2 − η

2

]
|Y ||Z|

(9)
≥

(
d

v(t/2)
3 d

2v(t/2)+1
2
2 − η

2

)
|Y ||Z|

(13)=
(
η − η

2

)
|Y ||Z|

= η

2 |Y ||Z|

edges in the residual joint link graph of K, denoted L′
H(K,P). It follows by Lemma 14 and

Observation 15 that L′
H(K,P) contains at least

ξ15(ζ14(η/2))2n
T4

(14)
≥ µn

vertex-disjoint copies of the bipartite graph K1,t/2. Let S ⊆ V (L′
H(K,P)) consist of the

centre-vertices of all said copies of K1,t/2. Property (C.4) coupled with |S| ≥ µn collectively
assert that Γ[S] −→ (K̃(3)

t , K̃
(3)
t/2). If the first alternative occurs, then there is a red copy

APPROX/RANDOM 2024

59:16 Ramsey Properties of Randomly Perturbed Hypergraphs

of K̃(3)
t and thus the proof concludes. Suppose then that the second alternative takes

place so that a blue copy K ′ of K̃(3)
t/2 arises in Γ[S]. Let u1, . . . , ut/2 denote the branch-

vertices of K ′ and let x1, . . . , xt/2 denote the branch-vertices of K. It follows by the
definitions of L′

H(K,P) and S that there are t2/4 distinct vertices {wij : i, j ∈ [t/2]} ⊆
V (L′

H(K,P))∖ {u1, . . . , ut/2, x1, . . . , xt/2} such that {ui, xj , wij} forms a blue edge of H for
every i, j ∈ [t/2]. We conclude that Γ admits a copy of K̃(3)

t which is blue under ψ.
Next, assume that red is a majority colour seen for ψ in H. Replacing the appeals to

Claim 16, Properties (C.1) and (C.4) in the argument above with appeals to Claim 17 and
Properties (C.2), and (C.5), respectively, leads to the rise of a monochromatic copy of K̃(3)

t

in Γ under ψ in this case as well. ◀

References
1 E. Aigner-Horev, O. Danon, D. Hefetz, and S. Letzter. Large rainbow cliques in randomly

perturbed dense graphs. SIAM J. Discrete Math., 36(4):2975–2994, 2022.
2 E. Aigner-Horev, O. Danon, D. Hefetz, and S. Letzter. Small rainbow cliques in randomly

perturbed dense graphs. European J. Combin., 101:Paper No. 103452, 34 pages, 2022.
3 E. Aigner-Horev and D. Hefetz. Rainbow hamilton cycles in randomly colored randomly

perturbed dense graphs. SIAM J. Discrete Math., 35(3):1569–1577, 2021.
4 E. Aigner-Horev, D. Hefetz, and M. Krivelevich. Minors, connectivity, and diameter in

randomly perturbed sparse graphs. Arxiv preprint, 2022. arXiv:2212.07192.
5 E. Aigner-Horev, D. Hefetz, and M. Krivelevich. Cycle lengths in randomly perturbed graphs.

Random Structures & Algorithms, 63(4):867–884, 2023.
6 E. Aigner-Horev, D. Hefetz, and A. Lahiri. Rainbow trees in uniformly edge-colored graphs.

Random Structures & Algorithms, 62(2):287–303, 2023.
7 E. Aigner-Horev, D. Hefetz, and M. Schacht. Ramsey properties of randomly perturbed

hypergraphs. Arxiv preprint, 2024. arXiv:2311.01750.
8 E. Aigner-Horev and Y. Person. Monochromatic Schur triples in randomly perturbed dense

sets of integers. SIAM J. Discrete Math., 33(4):2175–2180, 2019.
9 P. Allen, O. Parczyk, and V. Pfenninger. Resilience for tight Hamiltonicity. Arxiv preprint,

2021. arXiv:2105.04513.
10 J. Balogh, A. Treglown, and A. Z. Wagner. Tilings in randomly perturbed dense graphs.

Combin. Probab. Comput., 28(2):159–176, 2019.
11 W. Bedenknecht, J. Han, Y. Kohayakawa, and G. O. Mota. Powers of tight hamilton cycles in

randomly perturbed hypergraphs. Random Structures & Algorithms, 55(4):795–807, 2019.
12 J. Böttcher, J. Han, Y. Kohayakawa, R. Montgomery, O. Parczyk, and Y. Person. Universality

for bounded degree spanning trees in randomly perturbed graphs. Random Structures &
Algorithms, 55(4):854–864, 2019.

13 J. Böttcher, R. Montgomery, O. Parczyk, and Y. Person. Embedding spanning bounded degree
graphs in randomly perturbed graphs. Mathematika, 66(2):422–447, 2020.

14 C. Bowtell, R. Hancock, and J. Hyde. Proof of the Kohayakawa–Kreuter conjecture for the
majority of cases. Arxiv preprint, 2023. arXiv:2307.16760.

15 M. Christoph, A. Martinsson, R. Steiner, and Y. Wigderson. Resolution of the Kohayakawa-
Kreuter conjecture. Arxiv preprint, 2024. arXiv:2402.03045.

16 D. Conlon, J. Fox, and V. Rödl. Hedgehogs are not colour blind. J. Combinatorics, 8(3):475–
485, 2017.

17 D. Conlon and W. T. Gowers. Combinatorial theorems in sparse random sets. Ann. of Math.,
184(2):367–454, 2016.

18 S. Das, C. Knierim, and P. Morris. Schur properties of randomly perturbed sets. Arxiv
preprint, 2022. arXiv:2205.01456.

19 S. Das, P. Morris, and A. Treglown. Vertex Ramsey properties of randomly perturbed graphs.
Random Structures & Algorithms, 57(4):983–1006, 2020.

https://arxiv.org/abs/2212.07192
https://arxiv.org/abs/2311.01750
https://arxiv.org/abs/2105.04513
https://arxiv.org/abs/2307.16760
https://arxiv.org/abs/2402.03045
https://arxiv.org/abs/2205.01456

E. Aigner-Horev, D. Hefetz, and M. Schacht 59:17

20 S. Das and A. Treglown. Ramsey properties of randomly perturbed graphs: cliques and cycles.
Combin. Probab. Comput., 29(6):830–867, 2020.

21 A. Dudek, C. Reiher, A. Ruciński, and M. Schacht. Powers of Hamiltonian cycles in randomly
augmented graphs. Random Structures & Algorithms, 56(1):122–141, 2020.

22 P. Erdős. Some theorems on graphs. Riveon Lematematika, 9:13–17, 1955.
23 P. Erdős. On a theorem of rademacher-turán. Illinois J. Math., 6:122–127, 1962.
24 P. Erdős. On the number of complete subgraphs contained in certain graphs. Magyar Tud.

Akad. Mat. Kutató Int. Közl., 7:459–464, 1962.
25 P. Frankl and V. Rödl. Extremal problems on set systems. Random Structures & Algorithms,

20(2):131–164, 2002.
26 E. Friedgut, V. Rödl, and M. Schacht. Ramsey properties of random discrete structures.

Random Structures & Algorithms, 37(4):407–436, 2010.
27 L. Gugelmann, R. Nenadov, Y. Person, N. Škorić, A. Steger, and H. Thomas. Symmetric and

asymmetric ramsey properties in random hypergraphs. Forum Math. Sigma, 5:Paper No. e28,
47 pages, 2017.

28 J. Han and Y. Zhao. Hamiltonicity in randomly perturbed hypergraphs. J. Combin. Theory
Ser. B, 144:14–31, 2020.

29 J. Hyde. Towards the 0-statement of the Kohayakawa–Kreuter conjecture. Arxiv preprint,
2021. arXiv:2105.15151.

30 Y. Kohayakawa and B. Kreuter. Threshold functions for asymmetric ramsey properties
involving cycles. Random Structures & Algorithms, 11(3):245–276, 1997.

31 Y. Kohayakawa, M. Schacht, and R. Spöhel. Upper bounds on probability thresholds for
asymmetric Ramsey properties. Random Structures & Algorithms, 44(1):1–28, 2014.

32 J. Komlós, M. Shokoufandeh, A. Simonovits, and E. Szemerédi. The regularity lemma and
its applications in graph theory. In Theoretical aspects of computer science, volume 2292 of
Lecture Notes in Comput. Sci., pages 84–112. Springer, Berlin, 2002.

33 J. Komlós and M. Simonovits. Szemerédi’s regularity lemma and its applications in graph
theory. In Combinatorics, Paul Erdős is eighty, Vol. 2, volume 2 of Bolyai Soc. Math. Stud.
János Bolyai Math. Soc., Budapest, 1996.

34 M. Krivelevich, M. Kwan, and B. Sudakov. Cycles and matchings in randomly perturbed
digraphs and hypergraphs. Combin. Probab. Comput., 25(6):909–927, 2016.

35 M. Krivelevich, M. Kwan, and B. Sudakov. Bounded-degree spanning trees in randomly
perturbed graphs. SIAM J. Discrete Math., 31(1), 2017.

36 M. Krivelevich, B. Sudakov, and Prasad Tetali. On smoothed analysis in dense graphs and
formulas. Random Structures & Algorithms, 29(2):180–193, 2006.

37 E. Kuperwasser, W. Samotij, and Y. Wigderson. On the kohayakawa–kreuter conjecture.
Arxiv preprint, 2023. arXiv:2307.16611.

38 A. Liebenau, L. Mattos, W. Mendonça, and J. Skokan. Asymmetric Ramsey properties of
random graphs involving cliques and cycles. Random Structures & Algorithms, 62(4):1035–1055,
2023.

39 T. Łuczak, A. Ruciński, and B. Voigt. Ramsey properties of random graphs. J. Combin.
Theory Ser. B, 56(1):55–68, 1992.

40 M. Marciniszyn, J. Skokan, , R. Spöhel, and A. Steger. Asymmetric Ramsey properties of
random graphs involving cliques. Random Structures & Algorithms, 34(4):419–453, 2009.

41 A. McDowell and R. Mycroft. Hamilton ℓ-cycles in randomly perturbed hypergraphs. Electron.
J. Combin., 25(4):Paper No. 4.36, 30 pages, 2018.

42 F. Mousset, R. Nenadov, and W. Samotij. Towards the Kohayakawa–Kreuter conjecture on
asymmetric Ramsey properties. Combin. Probab. Comput., 29(6):943–955, 2020.

43 D. Mubayi. A hypergraph extension of turán’s theorem. J. Combin. Theory Ser. B, 96(1):122–
134, 2006.

44 R. Nenadov, Y. Person, N. Škorić, and A. Steger. An algorithmic framework for obtaining
lower bounds for random Ramsey problems. J. Combin. Theory Ser. B, 124:1–38, 2017.

APPROX/RANDOM 2024

https://arxiv.org/abs/2105.15151
https://arxiv.org/abs/2307.16611

59:18 Ramsey Properties of Randomly Perturbed Hypergraphs

45 Rajko. Nenadov and A. Steger. A short proof of the random Ramsey theorem. Combin.
Probab. Comput., 25(1):130–144, 2016.

46 E. Powierski. Ramsey properties of randomly perturbed dense graphs. Arxiv preprint, 2019.
arXiv:1902.02197.

47 V. Rödl and A. Ruciński. Lower bounds on probability thresholds for ramsey properties. In
Combinatorics, Paul Erdős is eighty, Vol. 1, Bolyai Soc. Math. Stud., pages 317–346. János
Bolyai Math. Soc., Budapest, 1993.

48 V. Rödl and A. Ruciński. Random graphs with monochromatic triangles in every edge coloring.
Random Structures & Algorithms, 5(2):253–270, 1994.

49 V. Rödl and A. Ruciński. Threshold functions for Ramsey properties. J. Amer. Math. Soc.,
8(4):917–942, 1995.

50 V. Rödl and A. Ruciński. Ramsey properties of random hypergraphs. J. Combin. Theory Ser.
A, 81(1):1–33, 1998.

51 V. Rödl and M. Schacht. Regular partitions of hypergraphs: regularity lemmas. Combin.
Probab. Comput., 16(6):833–885, 2007.

52 D. Spielman and S. Teng. Smoothed Analysis of algorithms: why the simplex algorithm
usually takes polynomial time. Journal of the ACM, 51:385–463, 2004.

53 D. Spielman and S. Teng. Smoothed analysis: an attempt to explain the behavior of algorithms
in practice. Communications of the ACM, 52:76–84, 2009.

54 E. Szemerédi. Regular partitions of graphs. In Problèmes combinatoires et théorie des graphes,
volume 260 of Colloq. Internat. CNRS, pages 399–401. CNRS, Paris, 1978.

https://arxiv.org/abs/1902.02197

Nearly Optimal Local Algorithms for Constructing
Sparse Spanners of Clusterable Graphs
Reut Levi #

Efi Arazi School of Computer Science, Reichman University, Herzliya, Israel

Moti Medina #

Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel

Omer Tubul #

Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel

Abstract
In this paper, we study the problem of locally constructing a sparse spanning subgraph (LSSG),
introduced by Levi, Ron, and Rubinfeld (ALGO’20). In this problem, the goal is to locally decide
for each e ∈ E if it is in G′ where G′ is a connected subgraph of G (determined only by G and the
randomness of the algorithm). We provide an LSSG that receives as a parameter a lower bound,
ϕ, on the conductance of G whose query complexity is Õ(

√
n/ϕ2). This is almost optimal when ϕ

is a constant since Ω(
√
n) queries are necessary even when G is an expander. Furthermore, this

improves the state of the art of Õ(n2/3) queries for ϕ = Ω(1/n1/12).
We then extend our result for (k, ϕin, ϕout)-clusterable graphs and provide an algorithm whose

query complexity is Õ(
√
n + ϕoutn) for constant k and ϕin. This bound is almost optimal when

ϕout = O(1/
√
n).

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms; Mathematics of computing → Graph algorithms; Theory of computation → Graph
algorithms analysis

Keywords and phrases Locally Computable Algorithms, Sublinear algorithms, Spanning Subgraphs,
Clusterbale Graphs

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.60

Category RANDOM

Funding Reut Levi: The author was supported by the Israel Science Foundation under Grant
1867/20.
Moti Medina: The author was supported by the Israel Science Foundation under Grants 867/19 and
554/23.
Omer Tubul: The author was supported by the Israel Science Foundation under Grants 867/19 and
554/23.

1 Introduction

When dealing with huge graphs, several practical constraints arise: (i) Memory Limitations:
It is often impractical or infeasible to store the entire graph in the local memory of a
processing unit. (ii) Algorithmic Efficiency: Due to the graph’s size, running linear-time
(or even slower) algorithms becomes challenging. (iii) Parallel Computation: Relying on a
single processing unit for computations can be inefficient. The Centralized Local model,
also called Locally Computable Algorithms (LCA), was introduced by Rubinfeld et al. [27]
to address these challenges. This model treats the input graph as if it is stored in a
(likely distributed) database. External processing units can query this database to perform
computations efficiently. The system prohibits shared memory or communication between

© Reut Levi, Moti Medina, and Omer Tubul;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 60; pp. 60:1–60:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:reut.levi1@idc.ac.il
https://orcid.org/0000-0003-3167-1766
mailto:moti.medina@biu.ac.il
https://orcid.org/0000-0002-5572-3754
mailto:tubulom@biu.ac.il
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.60
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

60:2 Nearly Opt. Local Algs. for Constructing Sparse Spanners of Clusterable Graphs

querying processes to reduce coordination overhead. Instead, shared randomness accompanies
input access. The approach involves running sublinear-time algorithms to extract global
graph properties or locally examining the input graph as needed by applications.

One of the problems studied in this model is locally constructing a sparse spanning
subgraph of a connected input graph. It was introduced and formalized by Levi, Ron, and
Rubinfeld [17] as follows.

▶ Definition 1 ([17]). An algorithm A is a Local Sparse Spanning Graph (LSSG) algorithm
if, given n ≥ 1, ε > 0, a sequence of random bits r ∈ {0, 1}∗ and query access to the
incidence-lists representation of a connected graph G = (V,E) over n vertices, 1 it provides
oracle access to a subgraph G′ = (V,E′) of G such that:
(1) G′ is connected, and
(2) |E′| ≤ (1 + ε) · n with probability at least 1 − 1/Ω(n), where E′ is determined by G and

r. 2 3

As observed in [17], if we insist that G′ should have the minimum number of edges
sufficient to span G, namely, that G′ be a spanning tree, then the task cannot be performed
by an LCA in general without inspecting almost all of G. On the other hand, even under the
above relaxation, [17] showed that this task requires Ω(

√
n) queries. 4 They complimented

this negative result with an almost tight upper bound that works under the promise that the
input graph expands extremely fast. In particular, their algorithm is tight when the growth
rate of their graph is Ω(d) for small sets (of size roughly

√
n), where d is the maximum vertex

degree. In fact, their result achieves a sublinear query complexity only when the growth rate
(on small sets) is at least d1/2+1/ log n. 5 This raises the question whether it is possible to
obtain a similar result also for graphs whose growth rate is just a small constant? (which, in
particular, may not depend on d). Namely, for graphs, which are just good expanders. We
answer this question affirmatively by showing almost tight results for expanders. Moreover,
our upper bound works for general graphs and receives as a parameter a lower bound on the
conductance of the graph, defined as follows.

▶ Definition 2 (Graph Conductance). Let G = (V,E) be an undirected graph with maximum
vertex degree d. Let S ⊆ V denote a nonempty subset of V , then the conductance of S w.r.t.
G is ϕG(S) def= e(S,V \S)

d|S| , where e(A,B) def= |{{a, b} ∈ E | a ∈ A, b ∈ B}|, for A,B ⊆ V . The
conductance of G, ϕ(G) is then defined as

ϕ(G) def= min
S⊆V

|S|≤|V |/2

ϕG(S) . (1)

To explain why conductance comes into play in our algorithm, we first describe a common
paradigm for constructing sparse spanning subgraphs and spanners. In many cases, the
paradigm is to select a random set of vertices, also referred to as centers, and to partition the
vertices of the graphs into Voronoi cells according to this selection of centers. Usually, it is
easy to span the Voronoi cells (assuming the centers are selected u.a.r.), and the challenging

1 Namely, the algorithm can query each vertex v ∈ V and an index i, who is the ith neighbor of v (where
if v has less than i neighbors, then a special symbol is returned, e.g., “no neighbor”).

2 E′ is determined only by G and r and not from, e.g., the queries made to the oracle or their order.
3 We say that an event occurs with high probability (w.h.p) if it occurs with probability at least 1−1/Ω(n).
4 One way to show this is by reducing the problem of testing cycle-freeness to the LSSG problem.
5 To illustrate this drawback, note that even for d = 5 and growth rate = 2 their algorithm is not

guaranteed to be sublinear.

R. Levi, M. Medina, and O. Tubul 60:3

part is to preserve the connectivity between Voronoi cells. This is also the approach taken
by [17] (and generalized in [12, 23, 2]). To bypass the challenging part of connecting the
Voronoi cells, we aim to choose centers that are initially connected and distributed nearly
uniformly. To this end, we select the centers by performing random walks from a single
vertex and taking the endpoints of these walks to be the set of centers. We set the length of
the random walks to be at least the mixing time of the graph, which, in turn, depends on
the conductance of the graph, so the selected centers are distributed almost uniformly. We
then add the edges traversed by the random walks to our constructed subgraph, so it only
remains to span the Voronoi cells (which can be done efficiently, assuming the centers are
distributed almost uniformly).

Since every graph can be partitioned into expanders (see, e.g., [22]), one may wonder if
this approach can be extended to work in general graphs. To make this question concrete,
consider an input graph composed of two expanders (of equal size) connected with a single
edge between them. While the inner conductance of each expander is high, the overall
conductance of the graph is O(1/n), and consequently, the mixing time of the graph is high.
So, the question that might come to mind is whether it is possible to extend the approach
mentioned above so the length of the random walks will depend on the inner-conductance
of the expanders (which is a constant) and not on the conductance of the entire graph.
This question becomes more interesting as the connectivity between the expanders, which is
referred to as the outer-conductance of the expanders, grows but not to the extent in which
the overall conductance is high. We show that our approach can be extended to support a
wide range of inner-conductance and outer-conductance. More specifically, we extend our
result to clusterable graphs as defined in the work of Gharan and Trevisan [9] and Czumaj,
Peng, and Sohler [6].

▶ Definition 3 (Graph Clusterability. Based by [6]). Let G = (V,E) be an undirected graph
with maximum degree d. Let n def= |V |. For any S ⊆ V , let G[S] be the induced subgraph
of G on the vertex set S. We say that a graph G is (k, ϕ)-clusterable, where k ∈ {1, . . . , n},
ϕ ∈ [0, 1], if there exists a partition of V into h sets C1, . . . , Ch s.t. 1 ≤ h ≤ k, and that
for each i ∈ {1, . . . , h} it holds that ϕ(G[Ci]) ≥ ϕ. We refer to each Ci as a ϕ-cluster and
the corresponding partition to h clusters as an (h, ϕ)-clustering. Similarly, We say that a
graph G is (k, ϕin, ϕout)-clusterable, if for each i ∈ {1, . . . , h} it holds that ϕ(G[Ci]) ≥ ϕin
and ϕG(Ci) ≤ ϕout. We refer to each Ci as a (ϕin, ϕout)-cluster. 6

Aside from connectivity, another desirable property of G′ is that it will preserve the
pairwise distances between vertices. In particular, we say that the subgraph G′ is an α-
spanner of G if for every u, v ∈ V , distG′(u, v) ≤ α · distG(u, v) where distG′(u, v) and
distG(u, v) denote the length of the shortest path from u to v in G′ and G, respectively. We
refer to α as the stretch factor of the spanner G′.

In the next section, we state the performances of our upper bounds in terms of their
query complexity, the number of random bits they use, and the stretch factor of the obtained
spanning subgraph, G′.

1.1 Our Results
Our first result is an LSSG that receives as a parameter a lower bound, ϕ, on the conductance
of the graph, whose query complexity is Õ(

√
n/ϕ2) for constant d, as stated next.

6 Note that requiring ϕ > 0 implies that each induced cluster of G is also connected.

APPROX/RANDOM 2024

60:4 Nearly Opt. Local Algs. for Constructing Sparse Spanners of Clusterable Graphs

▶ Theorem 4. There is an LSSG algorithm that given query access to a connected graph
G = (V,E) and a lower bound ϕ on ϕ(G), provides access to G′ = (V,E′) such that the
following holds. (1) The graph G′ is a connected subgraph of G and with high probability
|E′| = n + O

(√
n log2 n

ϕ2

)
. Moreover, the stretch factor of G′ is O

(
log n

ϕ2

)
. (2) The query

complexity of the algorithm is O
(√

n ·
(

log2 n
ϕ2 + d2

))
, and (3) the number of random bits it

uses is O
(

log d·log2 n
ϕ2

)
, where d is a bound on the maximum degree of G.

Therefore, for constant ϕ and constant d this upper bound is tight, up to polylogar-
ithmic factors in n. Moreover, it improves the state-of-the-art upper bound for general
bounded-degree graph of Õ(n2/3) queries by Lenzen and Levi [12] if and only if ϕ > n−1/12.
Consequently, we may assume that ϕ > n−1/12 throughout this paper. As a result, we obtain
that |E′| = n+ o(n), which makes G′ an ultra-sparse spanner of stretch O(log n/ϕ2).

Our next main result is stated in the next theorem.

▶ Theorem 5. There is an LSSG algorithm that given query access to a connected (k, ϕin, ϕout)-
clusterable graph G = (V,E), where each cluster is of size at least β · n, provides access to
G′ = (V,E′) such that the following holds. (1) The graph G′ is a connected subgraph of G and
with high probability |E′| ≤ n(1 + ε). Moreover, the stretch factor of G′ is Θ

(
log n
ϕ2

in

)
. (2) The

query complexity of the algorithm is O
(
log2 n · (βϕout)−1 + n log2 n · k3d3ϕout(εϕin)−1)

, and
(3) the number of random bits it uses is O

(
log d·log2 n

ϕ2
in

)
, where d is a bound on the maximum

degree of G.

For instances where ϕin, k, β, ε, and d are constants, we obtain the following corollary.

▶ Corollary 6. There is an LSSG algorithm that given query access to a connected
(Θ(1),Θ(1), ϕout)-clusterable graph G = (V,E), where each cluster is of size at least β · n,
provides access to G′ = (V,E′) such that the following holds. (1) The graph G′ is a connected
subgraph of G and with high probability |E′| ≤ n(1 + ε). Moreover, the stretch factor of G′ is
Θ(log n). (2) The query and time complexity of the algorithm is Õ(

√
n+ ϕoutn), and (3) the

number of random bits it uses is O(log2 n).

Namely, our algorithm is nearly tight in this case as long as ϕout = O(1/
√
n) and improves

over the state-of-the-art for ϕout = O(1/n1/3).

1.2 Overview of Our Algorithms
1.2.1 The case of a single cluster
We begin by describing our algorithm for k = 1 for the case where the graph is rapidly mixing,
namely, that its mixing time, τ , is O(log n). We first describe the algorithm from a global
point of view. The algorithm picks an arbitrary vertex as a primary-center. It then performs
Θ̃(

√
n) lazy random walks of length τ from that center, where τ denotes the mixing time of

the graph. The end-vertex of each one of these walks is added to the set of secondary centers.
The edges traversed by these random walks are added to E′. Consequently, there is a path of
length at most 2τ between every pair of secondary centers. In the second step, the graph’s
vertex set is partitioned into Voronoi-cells with respect to the selected secondary centers.
Namely, each vertex joins the cell of its closest secondary center (breaking ties by ids). A
spanning tree of each Voronoi-cell is then added to the spanner. The specific spanning tree
added is rooted at the secondary center, where the path from each vertex to the root has the

R. Levi, M. Medina, and O. Tubul 60:5

least lexicographical order. As shown by [17], it is possible to reconstruct the edges incident
to a vertex v in this tree at the same cost as performing the BFS exploration to find the
secondary center of v. The resulting subgraph clearly spans the graph: for a pair of vertices
u and v in the same Voronoi cell, there is a path between u and the respective secondary
center of the cell and likewise for v; If u and v are not in the same Voronoi cell, then their
secondary centers are connected to the primary-center by paths of length at most τ . Thus
the stretch-factor of the spanner is O(τ + ℓ) where ℓ is an upper bound on the diameter of
the Voronoi-cells, which is bounded by O(log n/ϕ2).

The local implementation proceeds as follows. On query {u, v}, the local algorithm
simulates the first step of the global algorithm and returns YES if {u, v} is an edge traversed
by one of the random walks performed by the algorithm. Otherwise, it performs a BFS, layer
by layer (that is, it reveals an entire layer in each step) from u until it finds the secondary
center of u, likewise for v. If the centers of u and v are different, then the algorithm returns
NO. Otherwise, it returns YES iff {u, v} is an edge of the tree selected to span the Voronoi-cell
of u and v (as described above).

The query and time complexity of performing the first step of the local algorithm is
clearly Õ(

√
n · τ). For the second step, since the length of the random walks performed

in the first step is τ , the Θ(
√
n) secondary centers are distributed almost uniformly in the

graph. Therefore, with high probability, each vertex in the graph sees a secondary center
after exploring Õ(

√
n) vertices. If this is not the case, we can afford to add all the edges

incident to v to E′ without harming the sparsity of G′ while preserving the connectivity
of G′.

1.3 The case of k-clusterable graphs
We next describe our algorithm for k-clusterable graphs for the case that the mixing time of
each cluster is O(log n), namely, that ϕin is a constant, and ϕout is O(1/

√
n). The first phase

of the algorithm is similar to the algorithm for a single cluster. The only difference is that we
start with Θ(log n) primary-centers (chosen uniformly at random) rather than a single one.
Thus, with high probability we hit every cluster with at least one primary-center. Therefore,
after the first phase, our spanner consists of edges of Θ̃(

√
n) random walks, traversed from

each one of the primary centers, and the edges of the spanning trees of the Voronoi-cells
which are constructed with respect to the set of secondary centers (which are now originated
from several primary centers). Let us call the set of secondary centers originating from the
same primary-center and their respective Voronoi-cells an artificial-cluster. Clearly, after the
first step of the algorithm, the spanner spans each of the artificial clusters (from the same
reasoning as above). Our goal is to ensure that every pair of artificial-clusters with an edge
in their cut in the original graph will have an edge in their cut in the spanner. To this end,
we sample u.a.r. a set of Θ(log n/ϵ) edges and add these edges to the spanner. Let us denote
this set of edges by T . For every pair of artificial-clusters whose cut does not intersect the
set T , we add all the edges in their cut to the spanner. The rationale is that if the respective
cut is large, it will intersect T ; otherwise, we can afford to add its edges to the spanner.

The analysis. The challenging part in analyzing this algorithm is to show that the secondary
centers are distributed (almost) uniformly in each one of the clusters. This is crucial for
proving that the query complexity remains Õ(

√
n). More specifically, this is crucial for

claiming that with high probability, each vertex sees a secondary center after exploring
Õ(

√
n) vertices. This is where the requirement on the outer-conductance of each cluster

comes into play. We show that if the outer-conductance is O(1/
√
n) then for a constant

APPROX/RANDOM 2024

60:6 Nearly Opt. Local Algs. for Constructing Sparse Spanners of Clusterable Graphs

fraction of the vertices in the cluster, v, the end-vertex of a random walk from v of length
O(log n) is likely to be any vertex in the cluster w.p. at least Ω(1/n) except for a small set
of vertices of size O(

√
n). This is sufficient to upper bound the query complexity of the BFS

exploration to find the center.

1.4 Related Work

1.4.1 LSSG Algorithms
The problem of finding a sparse spanning subgraph in the Centralized Local model was first
studied in [16, 17], where the authors show a lower bound of Ω(

√
n) queries for constant ε

and ∆ (see also survey by Rubinfeld [26]). They also present an upper bound with nearly
tight query complexity for graphs with very good expansion properties.

In [17], the authors also provide an efficient algorithm for minor-free graphs that was later
improved in [19]. The algorithm presented in [19] achieves a polynomial query complexity in
∆ and 1/ε and is independent of n. The stretch factor of this algorithm is also independent
of n and depends only on ∆, 1/ε, and the size of the excluded minor h. A more general
family of graphs, hyperfinite graphs, is studied in [14]. They show an upper bound (which
builds on an algorithm in [17]) that has a query complexity that is independent of n (however,
super-exponential in 1/ε). Informally, both minor-free graphs and hyperfinite graphs are
families of graphs that are, roughly speaking, sufficiently non-expanding everywhere. On
the other hand, they show that, for a family of graphs with expansion properties that are
slightly better, any local algorithm must have a query complexity that depends on n.

The first LSSG algorithm for general (bounded degree) graphs was introduced in [12],
presenting a query complexity of Õ(n2/3 · poly(1/ε, d)) and a stretch factor of O(log2 n ·
poly(d/ε)). Recently, Bodwin and Fleischmann [4] introduced an Adjacency Oracle for a
Spanning Subgraph of (1 + ε)n edges for general (non-bounded degree) graphs that works in
Õ(n/ε) time, hence sublinear in the number of edges on a dense graph. Adjacency Oracles
are closely related to LCA, except that Adjacency Oracles are allowed to perform a centralized
pre-processing but demand a query time of Õ(1). Their Adjacency Oracle implies an LSSG
algorithm for general (non-bounded degree) graphs in Õ(n) time, which works by constructing
an Adjacency Oracle and uses it once for each query.

For more related work on LCAs for spanners, graph clustering, and LCAs for other graph
problems, see Appendix A.

2 Preliminaries

In this section, we describe our main technical tools. Omitted proofs appear in Appendix B.

Notation. Throughout this paper, we consider a bounded degree (undirected) simple
graph G = (V,E), where V = [n] and its maximum degree is d = maxv∈V dG(v), where dG(v)
denotes the degree of v w.r.t. the graph G. The identifier (ID in short) of a vertex v ∈ V is
simply v. For each A ⊆ V , we define NG(A) to be the number of neighbors of A outside of
A in G, i.e., NG(A) def= |{v ∈ V \ A | {u, v} ∈ E, u ∈ A}|. When the graph G is clear from
the context, we omit the subscript G. For a vertex v, we call the set of vertices of distance
at most ℓ from v the ℓ-ball around v. Let Γh(v) denote the minimum size ball around v that
contains at least h vertices. Since the maximum degree of the graph is bounded by d, it
holds that h ≤ |Γh(v)| ≤ (h− 1)d.

R. Levi, M. Medina, and O. Tubul 60:7

The total order over the vertices induces a total order (ranking) ρ over the edges of
the graph in the following straightforward manner: for any {u, v}, {u′, v′} ∈ E, ρ({u, v}) <
ρ({u′, v′}) if and only if min{u, v} < min{u′, v′} or min{u, v} = min{u′, v′} and max{u, v} <
max{u′, v′}. The total order over the vertices also induces an order over those vertices visited
by a Breadth First Search (BFS) starting from any given vertex v, and whenever we refer to
a BFS, we mean that it is performed according to this order. Instead of writing log2(·), we
use log(·). We use Õ for Õ(x) = O(x) · poly(log x).

2.1 Mixing-Time of Regular Graphs
Let G = (V,E) be an undirected and d-regular graph (where self-loops and multiple edges are
allowed). The Adjacency Matrix of G, denoted by A(G) is real and symmetric and so it has n
real eigenvalues λ1 ≥ λ2 . . . ,≥ λn where λ1 = d and λ1 > λ2 iff G is connected. A d-regular
graph on n vertices is called an (n, d, α)-graph if |λ2|, |λn| ≤ αd. Define λ(G) = max(|λ2|, |λn|)
and α(G) = λ(G)/d. Thus, every d-regular graph on n vertices is an (n, d, α(G))-graph.
Let Â(G) = 1

dA(G) denote the normalized adjacency matrix of G. Note that Âtp⃗ is the
distribution on the vertices resulting from random walks of length t w.r.t. the initial vertex
distribution p⃗. We shall use the following (folklore; see, e.g., [11, 10]) theorem and lemmas.

▶ Theorem 7. Let G be an (n, d, α)-graph with the normalized adjacency matrix Â. Then
for any distribution vector p⃗ and any positive integer t: ∥Âtp⃗ − u⃗∥1 ≤

√
n · αt , where u⃗

denotes the uniform distribution vector, i.e., u⃗ def= 1
n · 1⃗.

One can obtain from Theorem 7 an upper bound, t, such that random walks of length at
least t (independent of the initial vertex distribution) yield a distribution on the vertices
that is almost uniform. We denote this upper bound by τ(G) and refer to it as the mixing
time of G. When the graph G is evident from the context, we denote the mixing time by τ .

▶ Corollary 8. Let G be an (n, d, α)-graph with the normalized adjacency matrix Â. For
any τ ≥ log(2n3/2)

log(1/α) and for any distribution vector p⃗ it holds that (Âτ p⃗)i ∈
[1

2n ,
3

2n

]
, for every

i ∈ [n].

2.2 Mixing-Time of General Bounded Degree Graphs
Given a d-bounded degree graph G = (V,E), we would like to relate its mixing time to
ϕ(G). For this purpose, we define (G)2d

reg = (V,R) where R contains all the edges in E and
self-loops. In particular we add 2d− dG(v) self-loops to each vertex v ∈ V . Thus, (G)2d

reg is a
2d-regular graph. When d is clear from the context, we use (G)reg to denote (G)2d

reg.
We shall use the following classical results to relate ϕ(G) and the mixing-time of (G)reg.

▶ Theorem 9 (Perron-Frobenius, Symmetric Case (see e.g., [30])). Let G be a connected
(weighted) graph. Let A(G) be its adjacency matrix, and let λ1 ≥ λ2 ≥ · · · ≥ λn be its
eigenvalues. Then,
(1) λ1 has a strictly positive eigenvector,
(2) λ1 ≥ −λn, and
(3) λ1 > λ2.

▶ Lemma 10 (Cheeger’s Inequality [5]). Let G be a d-regular graph with eigenvalues λ1 ≥
λ2 . . . ,≥ λn. Then, d−λ2

2d ≤ ϕ(G) ≤
√

2d(d−λ2)
d .

We first prove (following [29, P. 106]) that the maximum eigenvalue in absolute value of
A((G)reg) is λ2.

APPROX/RANDOM 2024

60:8 Nearly Opt. Local Algs. for Constructing Sparse Spanners of Clusterable Graphs

▷ Claim 11. Let G be a connected, d-bounded degree graph. Let {λi}i denote the eigenvalues
of A((G)reg), then max(|λ2|, |λn|) = λ2.

The following claim, combined with Corollary 8 provides an upper bound on the mixing-
time of (G)reg.

▷ Claim 12. Let G = (V,E) be a connected d-bounded degree graph on n vertices, then
(G)reg is an

(
n, 2d,

(
1 − ϕ2(G)

2

))
-graph.

The next Corollary follows from Corollary 8 and Claim 12.

▶ Corollary 13. Let G = (V,E) be a connected d-bounded degree graph on n vertices and
let v ∈ V . If we perform a random-walk in (G)reg, starting from v, of length at least
τ(G) def= log(2n3/2)

log
((

1− ϕ2(G)
2

)−1
) , then the probability this walk ends in u is at least 1/(2n) for every

u ∈ V .

3 LSSG for a Single Cluster

In this section, we prove Theorem 4, in particular, we present and prove correct our LSSG
algorithm for the case where the input graph is a single cluster, i.e., a (1, ϕ)-clusterable
graph. As such, our algorithm receives ϕ as a parameter where ϕ is a lower bound on the
conductance of the input graph. We first describe our algorithm from a global point of view
(Subsection 3.1) and then explain how this global algorithm can be implemented locally
(Subsection 3.3).

3.1 The Global Algorithm for a Single Cluster

The algorithm has two stages. In the first stage, it picks an arbitrary vertex, P, as the
primary-center. It then performs r def= Θ̃(

√
n) s-wise independent lazy random walks from

P and takes the end-vertices of these walks to be the set of secondary centers (Steps 4-5).
As defined in Section 2, when performing a lazy random walk, in each step, an edge is
selected uniformly and independently with probability 1/2d (recall that we add 2d− dG(v)
self-loops to each vertex v to obtain a 2d-regular graph). The edges traversed by the random
walks (which are not self-loops) are added to the spanner (Step 6). This guarantees that
all the secondary centers are connected in the spanner. The length of the random walks τ
is determined by Corollary 8 to ensure that the secondary centers are distributed almost
uniformly in V .

In the second stage, the algorithm constructs spanning trees of the Voronoi cells, which are
defined w.r.t. the secondary centers (Steps 7-8). Since the secondary centers are distributed
almost uniformly in V , with high-probability, all vertices v ∈ V will have a secondary center
in Γh(v) where h def=

√
n. If this is not the case (i.e., no secondary center is found in Γh(v)),

then all the edges incident to v are added to the spanner (Step 9). Note that removing Step 9
yields an LSSG algorithm that spans G w.h.p., while including it yields an algorithm that
outputs a spanning subgraph with probability 1.

R. Levi, M. Medina, and O. Tubul 60:9

Algorithm 1 Globally Computing a Sparse Spanning Subgraph.
Input: A graph G = (V,E) with conductance at least ϕ and maximum degree bounded by

d.
Output: G′ = (V,E′) is a sparse spanning subgraph of G w.h.p.

1 E′ ← ∅.
2 Select a primary-center P ∈ V arbitrarily.
3 Let r def= Θ(

√
n · log n), h def=

√
n, s def= Θ(log n), τ def= Θ

(log n
ϕ2

)
.

4 Perform r s-wise independent lazy random walks R def= {ρ1, . . . , ρr} where
ρi = (v(i)

1 = P, . . . , v(i)
τ).

5 Let S denote the set of secondary centers defined as follows S def=
⋃

i∈[r]{v
(i)
τ }. // The

end-vertices of the random-walks are selected to be the set of secondary centers.
6 E′ ← E(R) ∩ E. // where E(R) denotes the edge set of the random walks in R. Add

all the edges traversed by the random walks (that are not self-loops) in R to
the set E′.

7 Every vertex v ∈ V assigns itself to the closest secondary center in Γh(v) denoted by σ(v)
(break ties by choosing the one with the smallest ID). If Γh(v) ∩ S = ∅ then set σ(v) = ⊥.

8 For each s ∈ S, let Vor(s) def= {v ∈ V | σ(v) = s}. Let STree(s) denote the BFS tree that
spans Vor(s). E′ ← E′ ∪ STree(s).

9 Add to E′ all the edges incident to vertices, v, such that σ(v) = ⊥.
10 return G′ = (V,E′).

3.2 Correctness of the Global Algorithm for a Single Cluster
To prove the correctness of the global algorithm, we claim that w.h.p. when the algorithm
stops, there is a path in G′ from each vertex to a secondary center and that this path is
short; We begin by proving that w.h.p., every vertex v ∈ V has a secondary center in Γh(v).
We shall use the following concentration bound, which applies for s-wise independent random
variables defined as follows. 7

▶ Definition 14 (s-wise independence). A set of discrete random variables X1, . . . , Xn are
called s-wise independent if for any set I ⊆ {1, . . . , n} with |I| ≤ s and any values xi we
have Pr[

∧
i∈I(Xi = xi)] =

∏
i∈I Pr[Xi = xi].

Note that the random walks that the algorithm performs are also random variables. In
particular, this is a set of s-wise independent random walks, i.e., any subset of size at most s
of walks (out of the r walks that the algorithm performs) are mutually independent.

▶ Theorem 15 (Theorem 5(III) in [28]). If X is a sum of s-wise independent random variables,
each of which is in the interval [0, 1] with µ = E(X), then For δ ≤ 1 and s ≤ ⌊δ2µe−1/3⌋, it
holds that Pr[|X − µ| ≥ δµ] ≤ e−⌊s/2⌋.

▷ Claim 16. With high probability, for every u ∈ V , Γh(u) ∩ S ̸= ∅.

Proof. Fix P and let v be a vertex in V . Consider a random walk on (G)reg (or alternatively,
a lazy random-walk on G) that starts at P . By Corollary 13, when performing a random-walk
from P of length τ in (G)reg, the probability that v is the end-vertex of the random walk is at

7 Having bounded independence reduces the number of random bits used by the local implementation of
this algorithm, as shown in the next section.

APPROX/RANDOM 2024

60:10 Nearly Opt. Local Algs. for Constructing Sparse Spanners of Clusterable Graphs

least 1
2n . Let Ev

i denote the event that the i-th random walk ended at v, namely the event that
v

(i)
τ = v, and let Xv

i denote the indicator variable for this event. Thus, Pr[Ev
i] = E[Xv

i] ≥ 1
2n .

Let H ⊆ V be a set of cardinality h and let EH
i denote the event that the i-th random walk

ended at H . Let XH
i denote the indicator variable for this event. Since the events {Ev

i }v∈V are
disjoint (i.e. mutually exclusive) we obtain that E[XH

i] = Pr[EH
i] =

∑
v∈H Pr[Ev

i] ≥ h
2n . By

linearity of expectation, E
[∑

i∈[r] X
H
i

]
≥ hr

2n = Θ(log n), where the last equality follows since
h =

√
n. Since we perform r s-wise independent random walks from P , the random variables

{XH
i }i∈[r] are also s-wise independent. Set Y def=

∑
i∈[r] X

H
i and µ

def= E[Y] = Θ(log n).

By Theorem 15 ,Pr[|Y − µ| ≥ µ/2] ≤ e−⌊s/2⌋ where s def= ⌊ 1
4

(
hr
2n

)
e−1/3⌋ ≤ ⌊ 1

4µe
−1/3⌋. If

|Y − µ| < µ/2, then Y > µ/2 ≥ 1. Thus, the probability that none of the r random-walks
ends in H is at most e−⌊s/2⌋ = 1/nc, where c is determined by the exact setting of r. Hence,
by the union bound over all vertices, we obtain that with high probability Γh(v) ∩ S ̸= ∅ for
every v ∈ V . ◁

The following claim (the proof of which appears in Appendix C) argues that BFS trees are
of height logarithmic in the number of their vertices.

▷ Claim 17. Let G = (V,E) be a d-bounded degree graph and let ϕ be a lower bound on
ϕ(G). For any v ∈ V and x ≤ |V |/2, the ℓ-ball centered at v contains at least x vertices
provided that ℓ ≥ log x

log(1+ϕ) .

Claim 17 implies that the paths’ length from every vertex to its secondary center is
logarithmic in n, formalized as follows.

▶ Corollary 18. Let s ∈ S. Then the depth of STree(s) is at most log h
log(1+ϕ) .

We now prove the main theorem of this section, which bounds the stretch factor and size
of the graph, G′ = (V,E′) obtained by Algorithm 1. In particular, for constant ϕ it follows
that |E′| = n+ o(n), and the stretch is Θ(log n).

▶ Theorem 19. Algorithm 1 computes a Sparse Spanning Graph of G, G′ = (V,E′), such
that:
(1) The attained stretch is Θ

(
log n

ϕ2

)
, and

(2) |E′| = n+O
(√

n log2 n
ϕ2

)
with high probability.

Proof. We first prove Item 1 of the claim. Consider an edge {u, v} which belongs to E but
not to E′. We first note that it follows that both σ(u) ̸= ⊥ and σ(v) ̸= ⊥ because otherwise
{u, v} is added to E′ in Step 9. If u and v belong to the same Voronoi cell then the distance
between them in G′ is at most 2 log

√
n

log(1+ϕ) (since, by Corollary 18, the distance from every
vertex to its secondary center is at most log

√
n

log(1+ϕ)). If u and v do not belong to the same
Voronoi cell, then the distance in G′ between their respective centers, σ(u) and σ(v) is at
most 2τ (because the distance in G′ between every secondary center to P is at most τ),
where τ def= log(2n3/2)

log
((

1− ϕ2
2

)−1
) . Thus, in this case the distance in G′ between u and v is at most

2 ·
(
τ + log

√
n

log(1+ϕ)

)
. Since for all x ≥ 0 it holds that x− x2/2 ≤ ln(1 + x), it follows that the

attained stretch is Θ
(

log n
ϕ2

)
, as claimed.

Item 2 of the claim follows from the construction. More specifically, at Step 6, we add at
most r · τ edges to E′. In Step 8, we add at most n − 1 edges since the Voronoi cells are
vertex-disjoint. Finally, by Claim 16, with high probability, in Step 9, we do not add any
edges to E′. ◀

R. Levi, M. Medina, and O. Tubul 60:11

3.3 Details of the Implementation of the Local Algorithm for a Single
Cluster

In this section, we describe how to implement Algorithm 1 locally. We also bound the query
and time complexity of the local algorithm as well as the total number of bits it uses. We
conclude this section with the proof of Theorem 4.

Performing lazy random-walks in G. Performing a lazy-random walk of length ℓ in G

requires at most ℓ probes to G. In each step, we select an index uniformly at random from
i ∈ [2d] and perform a neighbor-query (v, i) to reveal the ith neighbor of v, where v denotes
the ID of the current vertex. 8 If the probe returns a vertex ID, then we move to that
neighbor; otherwise, the walk stays at v. We note that performing a lazy-random walk in G

is equivalent to performing a random walk in (G)reg.

Bounding the Number of Random Bits. Following [23], we shall use the classical result
from [31] for obtaining random bits with bounded independence in a local manner.

▶ Definition 20. For N,M, s ∈ N such that s ≤ N , a family of functions H = {h :
[N] → [M]} is s-wise independent if for all distinct x1, ..., xs ∈ [N], the random variables
h(x1), ..., h(xs) are independent and uniformly distributed in [M] when h is chosen randomly
from H.

▶ Lemma 21 (Corollary 3.34 in [31]). For every γ, β, s ∈ N, there is a family of s-wise
independent functions Hγ,δ = {h : {0, 1}γ → {0, 1}δ} such that choosing a random function
from Hγ,δ takes s · max{γ, δ} random bits, and evaluating a function from Hγ,δ takes time
poly(γ, δ, s).

▷ Claim 22. Performing r s-wise independent random walks from P in (G)reg can be imple-
mented by using O(log n(log n+ τ log d)) random bits and time-complexity r · poly(τ, log n).

Proof. Performing a single random-walk in (G)reg of length τ from P requires O(τ log d)
random bits (since we are performing τ steps and in each step, we are selecting an edge
u.a.r. out of 2d edges). Let γ def= Θ(log r) denote the number of bits that are required to
indicate the index of the random walk in [r] and let δ def= Θ(τ log d) denote the number of
random bits that are required for performing a single walk. To perform r s-wise independent
random walks, it suffices to choose a random function from a family of s-wise independent
functions, Hγ,δ which takes as parameter the index of the random walk and returns δ bits.
By Lemma 21 this can be done by using s · max{γ, δ} = O(log n(log n + τ log d)) random
bits. Furthermore, the time complexity of retrieving the bits for performing a single random
walk is poly(γ, δ, s) = poly(τ, log n). The claim follows. ◁

Locally Computing a Sparse Spanning Subgraph. On query {u, v}, the local algorithm
first performs the random walks as listed in Algorithm 1, Step 4. If {u, v} ∈ E(R), then
the algorithm returns YES. Otherwise, its finds σ(u) and σ(v). If either σ(u) = ⊥ or
σ(v) = ⊥ then it returns YES. Otherwise, if σ(u) = σ(v), then the algorithm returns YES
iff {u, v} ∈ STree(σ(v)). Otherwise, if σ(u) ̸= σ(v), the algorithm returns NO. Finding σ(v)

8 A common assumption in LCA in general and hence also in LSSG’s is that the algorithm knows n.
Similarly, as in [17], for bounded-degree graphs, the bound on the maximum vertex degree d of the
graph instance at hand is also known to the LSSG algorithm.

APPROX/RANDOM 2024

60:12 Nearly Opt. Local Algs. for Constructing Sparse Spanners of Clusterable Graphs

can be done by making O(hd2) queries. To see this, observe that the number of vertices we
explore by performing a BFS, layer by layer, until we first see at least h vertices is at most
(h− 1)d. The subgraph induced on these vertices contains at most hd2 edges, thus the query
and time complexity of this step is indeed O(hd2) 9. Checking if {u, v} ∈ STree(σ(v)) can
be implemented at the same cost. To see this, observe that when we find σ(v) as described
above, then we also reveal all the shortest paths between v and σ(v) in G. Since we can
decide which one of these paths is the path between v and σ(v) in STree(σ(v)), we can decide
if {u, v} belongs to this path at the same cost of finding σ(v) and σ(u) 10. This concludes
the description of the local implementation of Algorithm 1. We are now ready to prove
Theorem 4.

Proof of Theorem 4. The correctness of the algorithm, that is, Item (1), follows from The-
orem 19. As described above (in the analysis of the local implementation), the algorithm
makes r · τ + hd2 = O

(√
n ·

(
log2 n

ϕ2 + d2
))

graph queries. By Claim 22 the local imple-

mentation of Algorithm 1 uses O(log n(log n+ τ log d)) = O
(

log d·log2 n
ϕ2

)
random bits, which

concludes the proof of the theorem. ◀

4 LSSG for Clusterbale Graphs

In this section, we prove Theorem 5. First, we describe our LSSG algorithm that works under
the promise that the input graph is a connected (k, ϕin, ϕout)-clusterable graph where each
cluster is of size at least βn.

4.1 The Global Algorithm for Clusterable graphs
The listing of our global algorithm appears as Algorithm 2. We next describe how it proceeds,
step by step. All the parameters we will mention are defined in Step 2 of the algorithm.
Initially, the set of edges of the spanner, E′, is empty (Step 1). The algorithm begins with
selecting p primary-centers uniformly at random from V (Step 3). It then performs r s-wise
independent lazy-random walks from each primary center (Step 4). It picks the endpoints of
these random-walks to be the set of secondary-centers (Step 5). Additionally, all the edges
traversed by these random walks are added to E′ (Step 4). After that, the vertices of the
graph are partitioned as follows. Each one of the vertices, v, joins the cell of the secondary
center, which is closest to v in Γh(v), breaking ties by ID (Step 6). If Γh(v) does not include
a secondary center, then all the edges that are incident to v are added to E′ (Step 9). In
Step 10 the algorithm picks t random pairs from V × [d]. For each such pair, (v, i), such
that v has an i-th neighbor, the edge {u, v} is added to E′ where u is the i-th neighbor of v
(Step 10). We define an artificial-cluster to be a maximal set of vertices that agree on their
primary-center (see formal definition in Step 7). For every pair of artificial-clusters such that
E′ does not include an edge from their cut, all the edges in the corresponding cut are added
to E′ (Step 11). This concludes the description of the algorithm.

4.2 Correctness of the Global Algorithm for Clusterable Graphs
To prove the correctness of the algorithm, we need to show that the obtained subgraph
spans the graph with a logarithmic stretch and that it is sparse. Proving that the obtained
subgraph spans the graph is relatively straightforward and follows by the design of the

9 This procedure appears in [17] as Algorithm Find-Center.
10 See more details in algorithm Get BFS outgoing-edges endpoints in [17].

R. Levi, M. Medina, and O. Tubul 60:13

Algorithm 2 Globally Computing a Sparse Spanning Subgraph of a Clusterbale Graph.
Input: A connected (k, ϕin, ϕout)-clusterbale graph G = (V,E) where each cluster is of size

at least β|V |.
Output: G′ = (V,E′) is a sparse spanning subgraph of G w.h.p.

1 E′ ← ∅.

2 Let p def= Θ(β−1 log n), r def= Θ(log n
τϕout

), s def= Θ(log n), τ def= Θ
(

log n

ϕ2
in

)
, and h

def= Θ(kτϕoutn).

3 Select p primary-centers P def= {ψ1, . . . , ψp} u.a.r. in V .
4 From each primary-center, ψ ∈ P , perform r s-wise independent lazy random-walks. Add all

the edges in E traversed by these random walks to E′.
5 Let S denote the set of endpoints of these random-walks. We refer to S as the set of

secondary centers. We say that the primary-center of v ∈ S is ψ if the random-walk that
ended in v started at ψ (break ties by choosing the one with the smallest ID).

6 Every vertex v ∈ V assigns itself to the closest secondary center in Γh(v) denoted by σ(v)
(break ties by choosing the one with the smallest ID). If Γh(v) ∩ S = ∅ then set σ(v) = ⊥.

7 The primary-center of v is set to be the primary-center of σ(v). The artificial-cluster of v is
defined to be the set of all vertices whose primary-center equals the primary-center of v.

8 For each s ∈ S, let Vor(s) def= {v ∈ V | σ(v) = s}. Let STree(s) be a spanning tree of Vor(s).
E′ ← E′ ∪ STree(s).

9 Add to E′ all the edges that are incident to vertices, v, such that σ(v) = ⊥.
10 Select t def= Θ

(
ε−1k2d log n

)
pairs u.a.r. from V × [d]. Let T denote the set of edges that

correspond to these pairs (an edge {u, v} corresponds to the pair (v, i) if u is the i-th
neighbor of v). E′ ← E′ ∪ T .

11 Add to E′ all the edges between artificial-clusters not connected by an edge in T .
12 return G′ = (V,E′).

algorithm. Both the proof of the low stretch and sparsity of the obtained spanner appears in
Theorem 28, where for the sparsity proof, we need to show that the number of edges that
we add in Steps 4, and 8-11 is not too much. The proof that the obtained spanner is of a
low stretch is the main technical challenge of this section. To this end, it is sufficient to
show that w.h.p. for every v ∈ V , Γh(v) includes a secondary-center (see Claim 26). To this
end, we next analyze the distribution of the endpoints of the lazy-random walks that the
algorithm performs.

For any subset C ⊆ V , we slightly abuse notation and denote by (C)reg the 2d-regular
graph (G[C])reg, where G[C] is the subgraph induced on C in G.

Throughout this section, G = (V,E) is a (k, ϕin, ϕout)-clusterable graph, C ⊆ V is a
(ϕin, ϕout)-cluster of G and S is the set of self-loops that are added to (C)reg due to the edges
in the cut between C and V \C. Namely, for each v ∈ C, S contains e({v}, V \C) self-loops
of v.

For every u, v ∈ C, let pℓ,v(u) denote the probability that an ℓ-length random-walk that
starts at v in (C)reg ends at u. Thus

∑
u∈C p

ℓ,v(u) = 1. We let pℓ,v
bad(u) denote the probability

that an ℓ-length random-walk in (C)reg that starts at v ends in u and traverses an edge of S.
Let pℓ,v

good(u) def= pℓ,v(u) − pℓ,v
bad(u).

▷ Claim 23. For at least half of the vertices v ∈ C, it holds that
∑

u∈C p
ℓ,v
bad(u) ≤ ℓϕout. We

call such a vertex, v, useful.

Proof. We prove that if we perform an ℓ-length random-walk, ρ, in (C)reg from a vertex v
selected u.a.r. from C, then the probability that ρ traverses an edge from S is at most ℓϕout/2.
In other words, we will show that E[

∑
u∈C p

ℓ,v
bad(u)] ≤ ℓϕout/2, where the expectation is taken

over v which is selected u.a.r. from C. The claim will then follow by Markov’s inequality.

APPROX/RANDOM 2024

60:14 Nearly Opt. Local Algs. for Constructing Sparse Spanners of Clusterable Graphs

Since (C)reg is 2d-regular and v is selected u.a.r. from C, all the vertices in ρ are
distributed uniformly at random from C as well (since Pu⃗ = u⃗ for every doubly-stochastic
matrix P). The probability of traversing an edge from S when we select a vertex u.a.r. from
C and then take a single step from this vertex is |S|

2d|C| . This is simply because each one of
the edges in S is traversed with probability 1

|C| · 1
2d (recall that the edges in S correspond

to self-loops). Thus, by union bound, the probability of traversing an edge from S in one
of the ℓ steps of the random walk is at most ℓ|S|

2d|C| . Since |S|
d|C| ≤ ϕout we obtain that this

probability is at most ℓϕout/2, as desired. ◁

The following claim relates random-walks in (G)reg to random-walks in (C)reg.

▷ Claim 24. If we perform an ℓ-length random-walk in (G)reg from v ∈ C then the probability
that this random walk ends at u ∈ C is at least pℓ,v

good(u).

Proof. Recall that pℓ,v
good(u) is the probability that an ℓ-length random-walk in (C)reg that

starts at v ends in u and does not traverse an edge of S. The edge set of (C)reg includes
parallel self-loops. If we identify each edge by its endpoints and the labels of its ports, then
we get that from each vertex v ∈ C, there are exactly (2d)ℓ distinct paths of length ℓ in
(C)reg. Let P v denote the set of these paths. When we perform a random walk in (C)reg
from v, each path in P v occurs with probability 1/(2d)ℓ. Moreover, for every u ∈ C, let P v

u

denote the set of paths in P v that end at u and do not traverse an edge from S. Each path in
P v

u contributes 1/(2d)ℓ to pℓ,v
good(u) and each path in P v \ P v

u contributes 0. Assume, w.l.o.g.,
that (C)reg is obtained from G by first converting G to (G)reg and then replacing the edges
in the cut E(C, V \ C) with self-loops. This way, every self-loop in (C)reg which does not
belong to S also appears in (G)reg (when taking into account the port numbers). Thus, if we
perform a random-walk in (G)reg from v, each path from P v

u occurs with probability 1/(2d)ℓ

as well. The claim follows. ◁

▷ Claim 25. Let v be a vertex which is useful w.r.t. C. For all u ∈ C, except for at most
4τϕout|C| vertices, it holds that a τ -length random-walk in (G)reg from v ends at u with
probability at least (4n)−1.

Proof. Let v be a vertex, which is useful w.r.t. C, and let ℓ ∈ N. By Claim 23,∑
u∈C p

ℓ,v
bad(u) ≤ ℓϕout. Therefore E[pℓ,v

bad(u)] ≤ ℓϕout
|C| , where the expectation is taken over u

selected u.a.r. from C. Thus, by Markov’s inequality for at most γ-fraction of the vertices
u ∈ C it holds that pℓ,v

bad(u) > ℓϕout
γ|C| .

By replacing ℓ with τ and γ with 4τϕout we obtain that for at least (1 − 4τϕout)-fraction
of the vertices u ∈ C it holds that pτ,v

good(u) ≥ pτ,v(u) − 1
4|C| . Since C is a (ϕin, ϕout)-cluster

in G it follows from Corollary 13 that pτ,v(u) ≥ 1/(2|C|) for every u. Thus it holds that
pτ,v

good(u) ≥ 1/(4|C|) ≥ 1/(4n). Hence, the claim follows from Claim 24. ◁

▷ Claim 26. Let G = (V,E) be a connected (k, ϕin, ϕout)-clusterable graph and let C1, . . . , Cf

be a partition of G into f ≤ k (ϕin, ϕout)-clusters. If for every i ∈ [f], Ci ∩ P contains a
useful vertex w.r.t. Ci, then w.h.p. for every v ∈ V , Γh(v) ∩ S ̸= ∅.

Proof. Let G = (V,E) be a connected (k, ϕin, ϕout)-clusterable graph and let C1, . . . , Cf be
a partition of G into f ≤ k (ϕin, ϕout)-clusters. Assume for every i ∈ [f], Ci ∩ P contains
a useful vertex, ui, w.r.t. Ci. Let H be a set of vertices of cardinality at least h and
let γ = 4τϕout where h and τ are as defined in Step 2 of Algorithm 2. By Claim 25, for
every i ∈ [f] and for all vertices u ∈ Ci except for at most γ|Ci| it holds that an τ -length
random-walk in (G)reg from ui ends at u with probability at least (4n)−1. Let us call these
vertices good w.r.t Ci.

R. Levi, M. Medina, and O. Tubul 60:15

Let Cj be the dominant cluster in H . Namely, the cluster which maximizes the intersection
with H . By an averaging argument Cj ∩H ≥ h/k ≥ 5τϕoutn, where the last inequality holds
for an appropriate setting of h. Since the number of vertices in Cj which are not good (w.r.t.
Cj) is at most γ|Cj | ≤ 4τϕoutn, we obtain that the number of good vertices in Cj is at least
τϕoutn. From this point, the rest of the proof is similar to the proof of Claim 16. For v ∈ V ,
let Ev

i denote the event that the i-th random walk from uj ended at v and let Xv
i denote

the indicator variable for this event. Thus, for every good vertex, v, w.r.t. Cj holds that
Pr[Ev

i] = E[Xv
i] ≥ 1

4n . Let EH
i denote the event that the i-th random walk from uj ended at

H . Let XH
i denote the indicator variable for this event. Since the events {Ev

i }v∈V are disjoint
(i.e. mutually exclusive) we obtain that E[XH

i] = Pr[EH
i] =

∑
v∈H Pr[Ev

i] ≥ τϕoutn
4n = τϕout

4 .
By linearity of expectation, E

[∑
i∈[r] X

H
i

]
≥ r · τϕout

4 = Θ(log n). Since we perform r

s-wise independent random walks from uj , the random variables {XH
i }i∈[r] are also s-

wise independent. Set Y
def=

∑
i∈[r] X

H
i and µ

def= E[Y] = Θ(log n). By Theorem 15

,Pr[|Y − µ| ≥ µ/2] ≤ e−⌊s/2⌋ where s def= ⌊ 1
4

(
r·τϕout

4

)
e−1/3⌋ ≤ ⌊ 1

4µe
−1/3⌋. If |Y − µ| < µ/2,

then Y > µ/2 ≥ 1. Thus, the probability that none of the r random-walks ends in H is at
most e−⌊s/2⌋ = 1/nc, where c is determined by the exact setting of r. Thus, by union bound
over all vertices, we obtain that with high probability Γh(v) ∩ S ̸= ∅ for every v ∈ V . ◁

We say that a pair of artificial-clusters are heavy if the number of edges in their edge-cut
is at least εn/(2k2).

▷ Claim 27. With high probability, T contains an edge from the cut of every pair of heavy
artificial-clusters.

Proof. Let C1 and C2 be a heavy pair of artificial-clusters. By definition, the number of
edges in their cut is at least εn/(2k2). Thus the probability that a pair chosen u.a.r. from
V × [d] hits this cut is at least εn

2k2 · 1
dn = ε

2k2d . Thus, the claim follows by union bound over
all pairs of artificial-clusters and the setting of t. ◁

We are now ready to prove the correctness of the global algorithm, as stated in the next
theorem.

▶ Theorem 28. Under the promise that the input graph, G = (V,E), is a connected
(k, ϕin, ϕout)-clusterable graph, with clusters of size at least βn, Algorithm 2 computes a
sparse spanning subgraph of G, G′ = (V,E′), such that:
1. The attained stretch is Θ

(
log n
ϕ2

in

)
, and

2. |E′| ≤ n(1 + ε) with high probability.

Proof. Let G = (V,E) be a connected (k, ϕin, ϕout)-clusterable graph and let C1, . . . , Cf be
a partition of G into f ≤ k (ϕin, ϕout)-clusters of size at least βn. We begin by proving Item 1
of the claim. Let E1 denote the event that for every i ∈ [f], Ci ∩ S contains a useful vertex
w.r.t. Ci. Fix i ∈ [f]. By definition (see Claim 23), at least half of the vertices in Ci are
useful. Since |Ci| ≥ βn, the probability that v which selected u.a.r. from V is a useful vertex
of Ci is at least β/2. Therefore w.p. at least 1 − 1/nc, P contains a useful vertex w.r.t. Ci

where c is determined by the exact setting of p. Thus, by union bound over all i ∈ [f], w.h.p.
E1 occurs.

Let E2 denote the event that for every v ∈ V , Γh(v) ∩ S ̸= ∅. Conditioned on E1, by
Claim 26 w.h.p. E2 occurs.

Consider an edge {u, v} which belongs to E but not to E′. We first note that it follows
that both σ(u) ̸= ⊥ and σ(v) ̸= ⊥ because otherwise {u, v} is added to E′ in Step 9. From
Claim 17 it follows that for every v ∈ V such that σ(v) ̸= ⊥ the distance from v to σ(v) is at

APPROX/RANDOM 2024

60:16 Nearly Opt. Local Algs. for Constructing Sparse Spanners of Clusterable Graphs

most log h
log(1+ϕin) . To see this, observe that the ℓ-ball centered at v in G[C] is contained ℓ-ball

centered at v in G where C denotes the cluster of v according to the partition mentioned
above (in other words the neighborhood of v expands in G at least as fast as it does in G[C]).
Thus, if u and v belong to the same Voronoi cell, then the distance between them in G′

is at most 2 log h
log(1+ϕin) . If u and v belong to the same artificial-cluster then the distance in

G′ between their respective centers, σ(u) and σ(v) is at most 2τ (because the distance in
G′ between a secondary center to its primary center is at most τ). Thus, in this case the
distance in G′ between u and v is at most 2 ·

(
τ + log h

log(1+ϕin)

)
. Finally, if u and v belong to

different artificial-clusters then by Steps 10 and 11 there exists {u′, v′} ∈ E′ such that u′ and
u are in the same artificial-cluster and likewise for v and v′. Thus, by the above the distance
in G′ between u and v is at most 2 ·

(
2 ·

(
τ + log h

log(1+ϕin)

))
+ 1, where τ def= log(2n3/2)

log
((

1−
ϕ2

in
2

)−1) .

Since for all x ≥ 0 it holds that x− x2/2 ≤ ln(1 + x) and since w.l.o.g. h ≤ n, it follows that
the attained stretch is Θ

(
log n
ϕ2

in

)
, as claimed.

Item 2 of the claim follows from the construction. More specifically, at Step 4 we add at
most p · r · τ = Θ(ϕ−1

outβ
−1 log2 n) edges to E′. This is o(n) since we may assume that our

query complexity is Õ(n2/3) = o(n) (otherwise we may run the algorithm by Lenzen and
Levi [12]). In Step 8, we add at most n− 1 edges due to the fact that the Voronoi cells are
vertex-disjoint. Conditioned on E2, which occurs w.h.p., in Step 9 we do not add any edges
to E′. In Step 10 we add at most t edges to E′. Let E3 denote the event that T contains
an edge from the edge-cut of every pair of artificial-clusters. By Claim 27 w.h.p. E3 occurs.
Finally, Conditioned on E3, in Step 11 we add at most k2 · ε · n/(2k2) = εn/2 edges to E′.
The claim follows. ◀

4.3 Details of the Local Algorithm
In this section, we describe how to implement Algorithm 2 locally. The local implementation
of all the steps of the algorithm is similar to the local implementation of the analogous
steps of Algorithm 1 (with different parameters). The only new ingredient in the local
implementation is the implementation of Step 11. Next, we describe how this step can be
implemented locally. On query {u, v}, if u and v belong to the same artificial-cluster, then
we proceed as before. Namely, we return YES if and only if u and v belong to the same
Voronoi cell and {u, v} belongs to the tree that spans the cell. If u and v belong to different
artificial-clusters then we consider three cases. The first case we consider is when {u, v} ∈ T ,
the sample of edges selected in Step 10. In this case, we would like to return YES on the
query {u, v}. The second case is when {u, v} /∈ T but there exists {u′, v′} ∈ T such that u
and u′ are in the same artificial-cluster and likewise for v and v′. In this case, we would
like to return NO. Otherwise, we would like to return YES. Therefore, we can decide if to
return YES or NO if we find for each edge in T the identities of the artificial-clusters (i.e.,
the IDs of the primary centers of the corresponding artificial-clusters) of its endpoints. This
is accomplished as follows. For each one of the pairs, (v, i), selected in Step 10, we perform a
neighbor query to obtain the i-th neighbor of v. If such a neighbor exists then let us denote
it by u. We then find σ(v) and σ(u) by making O(hd2) queries. This also reveals to which
artificial-cluster v belongs and likewise for u. This allows us to obtain the list of pairs of
artificial-clusters that already have an edge from their cut in T . Thus, on query {u, v} where
u and v belong to different artificial-clusters which are not on that list, the algorithm will
return YES. Overall, implementing this check requires O(thd2) queries and Õ(thd2) time.
We conclude that the query complexity of the algorithm is dominated by the implementation
of Step 4 which requires O(prτ) = O(log2 n/(βϕout)) queries and Step 11 which requires
O(thd2) = O(ϕ−1

in ε
−1k3d3ϕout · n log2 n) queries.

R. Levi, M. Medina, and O. Tubul 60:17

In this next claim, we bound the number of random bits that our algorithm uses.

▷ Claim 29. Performing r s-wise independent random walks from each ψ ∈ P in (G)reg
can be implemented by using O(log n(log n + τ log d)) random bits and time-complexity
r · poly(τ, log n).

Proof. As claimed in the proof of Claim 22, performing a single random-walk in (G)reg of
length τ from any vertex requires τ log(2d) random bits. If we choose a random function from
a family of s-wise independent functions, Hγ,β = {h : {0, 1}γ → {0, 1}β}, where γ = log(p · r)
is the number of bits that are required to indicate the index of the vertex in P and the index
of the walk in [r] and β = τ log(2d) is the number of bits that are required for performing
the walk then we obtain that the total number of random bits that the algorithm uses for
performing the walks is s ·max{γ, β} = O(log n(log n+τ log d)). We obtain the desired result
since performing a single random walk requires poly(γ, β, s) = poly(τ, log n) time. ◁

We are now ready to prove Theorem 5.

▶ Theorem 5. There is an LSSG algorithm that given query access to a connected (k, ϕin, ϕout)-
clusterable graph G = (V,E), where each cluster is of size at least β · n, provides access to
G′ = (V,E′) such that the following holds. (1) The graph G′ is a connected subgraph of G and
with high probability |E′| ≤ n(1 + ε). Moreover, the stretch factor of G′ is Θ

(
log n
ϕ2

in

)
. (2) The

query complexity of the algorithm is O
(
log2 n · (βϕout)−1 + n log2 n · k3d3ϕout(εϕin)−1)

, and
(3) the number of random bits it uses is O

(
log d·log2 n

ϕ2
in

)
, where d is a bound on the maximum

degree of G.

Proof of Theorem 5. The correctness of the algorithm, i.e., Item (1), follows from The-
orem 19. The query complexity of the algorithm is analyzed in the description of the
local implementation that appears above. Finally, by Claim 22 the local implementation of
Algorithm 1 uses O(log n(log n+ τ log d)) = O

(
log d·log2 n

ϕ2

)
random bits, as claimed. This

concludes the proof of the theorem. ◀

To obtain Corollary 6 from Theorem 5, we observe that we can take the upper bound on
ϕout to be the maximum between ϕout and 1/

√
n. More specifically, if we consider k, d, ϕin, ε

and β to be constants then the query complexity is Õ(1/ϕout + nϕout). Since 1/ϕout > nϕout
only when ϕout < 1/

√
n we only need to show that the query complexity in this case is

Õ(
√
n). Indeed, since ϕout is only an upper bound on the outer-conductance, we may take

ϕout = 1/
√
n in this case and obtain the desired complexity.

▶ Corollary 6. There is an LSSG algorithm that given query access to a connected
(Θ(1),Θ(1), ϕout)-clusterable graph G = (V,E), where each cluster is of size at least β · n,
provides access to G′ = (V,E′) such that the following holds. (1) The graph G′ is a connected
subgraph of G and with high probability |E′| ≤ n(1 + ε). Moreover, the stretch factor of G′ is
Θ(log n). (2) The query and time complexity of the algorithm is Õ(

√
n+ ϕoutn), and (3) the

number of random bits it uses is O(log2 n).

References
1 Noga Alon, Ronitt Rubinfeld, Shai Vardi, and Ning Xie. Space-efficient local computation

algorithms. In Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete
Algorithms, pages 1132–1139. SIAM, 2012.

APPROX/RANDOM 2024

60:18 Nearly Opt. Local Algs. for Constructing Sparse Spanners of Clusterable Graphs

2 Rubi Arviv, Lily Chung, Reut Levi, and Edward Pyne. Improved local computation algorithms
for constructing spanners. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM 2023). Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2023.

3 Amartya Shankha Biswas, Ruidi Cao, Edward Pyne, and Ronitt Rubinfeld. Average-case local
computation algorithms. arXiv preprint arXiv:2403.00129, 2024.

4 Greg Bodwin and Henry Fleischmann. Spanning adjacency oracles in sublinear time. In
15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Schloss-Dagstuhl-
Leibniz Zentrum für Informatik, 2024.

5 Jeff Cheeger. A lower bound for the smallest eigenvalue of the laplacian. Problems in analysis,
625(195-199):110, 1970.

6 Artur Czumaj, Pan Peng, and Christian Sohler. Testing cluster structure of graphs. In
Proceedings of the forty-seventh annual ACM symposium on Theory of Computing, pages
723–732, 2015.

7 Guy Even, Moti Medina, and Dana Ron. Best of two local models: Centralized local
and distributed local algorithms. Information and Computation, 262:69–89, 2018. doi:
10.1016/j.ic.2018.07.001.

8 Uriel Feige, Yishay Mansour, and Robert E Schapire. Learning and inference in the presence
of corrupted inputs. Journal of Machine Learning Research, 40(2015), 2015.

9 Shayan Oveis Gharan and Luca Trevisan. Partitioning into expanders. In Proceedings of the
twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, pages 1256–1266. SIAM,
2014.

10 Oded Goldreich. Basic facts about expander graphs. Studies in Complexity and Cryptography.
Miscellanea on the Interplay between Randomness and Computation: In Collaboration with
Lidor Avigad, Mihir Bellare, Zvika Brakerski, Shafi Goldwasser, Shai Halevi, Tali Kaufman,
Leonid Levin, Noam Nisan, Dana Ron, Madhu Sudan, Luca Trevisan, Salil Vadhan, Avi
Wigderson, David Zuckerman, pages 451–464, 2011.

11 Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications.
Bulletin of the American Mathematical Society, 43(4):439–561, 2006.

12 Christoph Lenzen and Reut Levi. A centralized local algorithm for the sparse spanning
graph problem. In 45th International Colloquium on Automata, Languages, and Programming
(ICALP 2018). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.

13 Reut Levi and Moti Medina. A (centralized) local guide. Bulletin of the EATCS, 122:60–92,
2017. URL: http://eatcs.org/beatcs/index.php/beatcs/article/view/495.

14 Reut Levi, Guy Moshkovitz, Dana Ron, Ronitt Rubinfeld, and Asaf Shapira. Constructing near
spanning trees with few local inspections. Random Structures & Algorithms, 50(2):183–200,
2017.

15 Reut Levi and Dana Ron. A quasi-polynomial time partition oracle for graphs with an excluded
minor. ACM Transactions on Algorithms (TALG), 11(3):1–13, 2015.

16 Reut Levi, Dana Ron, and Ronitt Rubinfeld. Local algorithms for sparse spanning graphs. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2014). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2014.

17 Reut Levi, Dana Ron, and Ronitt Rubinfeld. Local algorithms for sparse spanning graphs.
Algorithmica, 82(4):747–786, 2020.

18 Reut Levi, Ronitt Rubinfeld, and Anak Yodpinyanee. Local computation algorithms for graphs
of non-constant degrees. Algorithmica, 4(77):971–994, 2016.

19 Reut Levi and Nadav Shoshan. Testing hamiltonicity (and other problems) in minor-free
graphs. In Mary Wootters and Laura Sanità, editors, Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2021, August
16-18, 2021, University of Washington, Seattle, Washington, USA (Virtual Conference), volume
207 of LIPIcs, pages 61:1–61:23. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

https://doi.org/10.1016/j.ic.2018.07.001
https://doi.org/10.1016/j.ic.2018.07.001
http://eatcs.org/beatcs/index.php/beatcs/article/view/495

R. Levi, M. Medina, and O. Tubul 60:19

20 Yishay Mansour, Aviad Rubinstein, Shai Vardi, and Ning Xie. Converting online algorithms to
local computation algorithms. In Automata, Languages, and Programming: 39th International
Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part I 39, pages
653–664. Springer, 2012.

21 Yishay Mansour and Shai Vardi. A local computation approximation scheme to maximum
matching. In International Workshop on Approximation Algorithms for Combinatorial Optim-
ization, pages 260–273. Springer, 2013.

22 Guy Moshkovitz and Asaf Shapira. Decomposing a graph into expanding subgraphs. Random
Struct. Algorithms, 52(1):158–178, 2018. doi:10.1002/RSA.20727.

23 Merav Parter, Ronitt Rubinfeld, Ali Vakilian, and Anak Yodpinyanee. Local computation
algorithms for spanners. Innovations in Theoretical Computer Science (ITCS), 2019.

24 Pan Peng. Robust clustering oracle and local reconstructor of cluster structure of graphs. In
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
2953–2972. SIAM, 2020.

25 Dana Ron Reut Levi and Ronitt Rubinfeld. A local algorithm for constructing spanners in
minor-free graphs. Klaus Jansen, Claire Mathieu, José DP Rolim, and Chris Umans, editors,
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM, pages 7–9, 2016.

26 Ronitt Rubinfeld. Can we locally compute sparse connected subgraphs? In Computer Science–
Theory and Applications: 12th International Computer Science Symposium in Russia, CSR
2017, Kazan, Russia, June 8-12, 2017, Proceedings 12, pages 38–47. Springer, 2017.

27 Ronitt Rubinfeld, Gil Tamir, Shai Vardi, and Ning Xie. Fast local computation algorithms.
In Proceedings of The Second Symposium on Innovations in Computer Science (ICS), pages
223–238, 2011.

28 Jeanette P Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff–hoeffding bounds for
applications with limited independence. SIAM Journal on Discrete Mathematics, 8(2):223–250,
1995.

29 Alistair Sinclair and Mark Jerrum. Approximate counting, uniform generation and rapidly
mixing markov chains. Information and Computation, 82(1):93–133, 1989.

30 Daniel Spielman. Spectral and algebraic graph theory. Yale lecture notes, draft of December,
4:47, 2019.

31 Salil P Vadhan et al. Pseudorandomness. Foundations and Trends® in Theoretical Computer
Science, 7(1–3):1–336, 2012.

A Other Related Work

A.1 LCAs for Spanners

A desirable property for a spanning subgraph is that it also preserves, up to a predetermined
multiplicative factor α ≥ 1 (a.k.a the stretch factor), the pairwise distances of the vertices
in the original graph. Such a spanning subgraph is called an α-spanner. In [15, 25]
poly(h log (d)/ε)-spanners for minor-free graphs are presented. For general (bounded degree)
graphs, the algorithm of [12] outputs an O(log2 n · poly(d/ε))-spanner. Their result is later
extended by Parter et al. [23], who presented an algorithm that constructs an O(k2)-spanner,
independent of both n and d, but has O(n1+1/k) edges. The query complexity of [23] is
O(n2/3d4), and is later improved by Arviv et al. [2] to O(n2/3d2). A recent work by Biswas,
Cao, Pyne, and Rubinfeld [3] presents several LCAs that receive random graphs (i.e., Erdős-
Rényi or Preferential Attachment graph) as an input and gives access to a sparse spanner of
that graph.

APPROX/RANDOM 2024

https://doi.org/10.1002/RSA.20727

60:20 Nearly Opt. Local Algs. for Constructing Sparse Spanners of Clusterable Graphs

A.2 Graph Clustering

In the Property Testing model, Czumaj et al. [6] introduce an algorithm for testing the
clusterability of a graph. In the Property Testing model, an algorithm accepts (with constant
probability) any graph that is (k, ϕ)-clusterable and rejects graphs that are ε far from
being (k, ϕ∗)-clusterable, i.e., εdn edges are required to be either added or removed from
the input graph so that it becomes (k, ϕ∗)-clusterable, where ϕ∗ = O(ϕ2ε2

log n). The query
complexity of their algorithm is Õ(

√
n · poly(ϕ, k, 1/ε)) and with a success probability of

at least 2/3. Peng [24] uses similar ideas as [6] to construct a clustering oracle that given
an input graph that is ε-close from being

(
k, ϕ,O

(
εϕ

k3 log n

))
-clusterable gives w.h.p. query

access to the adjacency list of a
(
k, ϕ

2 , O
(√

εϕ1.5

k3 log n

))
-clusterable graph with preprocessing and

query complexity of O
(√

n · poly(k log n
ϕε)

)
, and with at most O

(
k
√

ε
ϕ · n

)
outliers (vertices

that are not associated with any cluster).

A.3 LCAs for Other Graph Problems

The model of local computation algorithms (LCA) (sometimes also referred to as The
Centralized-Local model (CentLocal)) as used in this work, was defined by Rubinfeld et al. [27]
(see also [1] and survey in [13]). Such algorithms for maximal independent set, hypergraph
coloring, k-CNF, approximated maximum matching and approximated minimum vertex cover
for bipartite graphs are given in [27, 1, 20, 21, 7, 18, 8].

B Omitted Proofs of Section 2

Proof of Coro. 8. By Theorem 7, for any distribution vector p⃗ it holds that ∥Âτ p⃗− u⃗∥1 ≤
√
n · α

log(2n3/2)
log(1/α) = 1

2n . If there exists an index i such that either (Âτ p⃗)i <
1

2n or (Âτ p⃗)i >
3

2n

then
∣∣∣(Âτ p⃗)i − 1

n

∣∣∣ > 1
2n , which implies that ∥Âτ p⃗− u⃗∥1 >

1
2n , in contradiction to the above

Equation. ◀

Proof of Claim 11. Since (G)reg is 2d-regular it holds that λ1 = 2d. Let {λ̂i}i denote the
eigenvalues of Â where Â = 1

2dA((G)reg). By Theorem 9, it follows that λ̂1 = 1 > λ̂2, . . . ,≥
λ̂n ≥ −1. Since Âi,j ≥ 0 and Âj,j ≥ 1

2 it holds that the matrix M
def= 2Â − I, where I is

the identity matrix, is non-negative. Hence, M corresponds to a weighted connected graph.
Moreover, the eigenvalues of M , {µi}i satisfy µi = 2λ̂i − 1. 11 In particular, µ1 = 1. Thus,
Theorem 9 applied on M implies that µi ≥ µn ≥ −1 for all 1 ≤ i ≤ n. Thus, 2λ̂i − 1 ≥ −1
and hence λ̂i ≥ 0 for all 1 ≤ i ≤ n. Since λi = 2dλ̂i, it follows that |λ2| > |λn|. The claim
follows. ◁

Proof of Claim 12. We first observe that ϕ(G) = ϕ((G)reg). Since (G)reg is 2d-regular, by
Cheeger’s Inequality it holds that λ2 ≤ 2d ·

(
1 − ϕ2(G)

2

)
. Thus the claim follows from

Claim 11. ◁

11 To see why µi = 2λ̂i−1, multiply the eigenvector that corresponds to λ̂i, νi, by M which gives 2λ̂iνi−νi.

R. Levi, M. Medina, and O. Tubul 60:21

C Omitted Proofs of Section 3

Proof of Claim 17. Let v be a vertex in G. By Equation (1), for any subset S ⊆ V of size
at most |V |/2 it holds that e(S, V \ S) ≥ ϕ · d · |S|. In particular, if S is the set of vertices
of the j-ball centered at some vertex v then the j + 1-ball centered at v contains at least
|S| +ϕ|S| = (1 + ϕ)|S| vertices. Thus, after exploring ℓ layers of the BFS rooted at v at least
one of the following holds: either we explored more than |V |/2 vertices, or we explored at
least (1 + ϕ)ℓ vertices. Thus we explore at least x vertices for any ℓ such that (1 + ϕ)ℓ ≥ x.
The claim follows. ◁

APPROX/RANDOM 2024

When Can an Expander Code Correct Ω(n) Errors
in O(n) Time?
Kuan Cheng # Ñ

Center on Frontiers of Computing Studies, School of Computer Science, Peking University, China

Minghui Ouyang #

School of Mathematical Sciences, Peking University, China

Chong Shangguan # Ñ

Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, China
Frontiers Science Center for Nonlinear Expectations, Ministry of Education, Qingdao, China

Yuanting Shen #

Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, China

Abstract
Tanner codes are graph-based linear codes whose parity-check matrices can be characterized by a
bipartite graph G together with a linear inner code C0. Expander codes are Tanner codes whose
defining bipartite graph G has good expansion property. This paper is motivated by the following
natural and fundamental problem in decoding expander codes:

What are the sufficient and necessary conditions that δ and d0 must satisfy, so that every
bipartite expander G with vertex expansion ratio δ and every linear inner code C0 with minimum
distance d0 together define an expander code that corrects Ω(n) errors in O(n) time?

For C0 being the parity-check code, the landmark work of Sipser and Spielman (IEEE-TIT’96)
showed that δ > 3/4 is sufficient; later Viderman (ACM-TOCT’13) improved this to δ > 2/3 − Ω(1)
and he also showed that δ > 1/2 is necessary. For general linear code C0, the previously best-known
result of Dowling and Gao (IEEE-TIT’18) showed that d0 = Ω(cδ−2) is sufficient, where c is the
left-degree of G.

In this paper, we give a near-optimal solution to the above question for general C0 by showing
that δd0 > 3 is sufficient and δd0 > 1 is necessary, thereby also significantly improving Dowling-Gao’s
result. We present two novel algorithms for decoding expander codes, where the first algorithm is
deterministic, and the second one is randomized and has a larger decoding radius.

2012 ACM Subject Classification Theory of computation → Pseudorandomness and derandomiza-
tion; Theory of computation → Expander graphs and randomness extractors; Theory of computation
→ Error-correcting codes; Mathematics of computing → Coding theory; Mathematics of computing
→ Combinatoric problems

Keywords and phrases expander codes, expander graphs, linear-time decoding

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.61

Category RANDOM

Related Version Full Version: https://arxiv.org/abs/2312.16087 [10]

Funding The research of Chong Shangguan is supported by the National Key Research and De-
velopment Program of China under Grant No. 2021YFA1001000, the National Natural Science
Foundation of China under Grant Nos. 12101364 and 12231014, and the Natural Science Foundation
of Shandong Province under Grant No. ZR2021QA005.

Acknowledgements M. Ouyang would like to thank Extremal Combinatorics and Probability Group
(ECOPRO), Institute for Basic Science (IBS, Daejeon, South Korea) for hosting his visit at the end
of 2023.

© Kuan Cheng, Minghui Ouyang, Chong Shangguan, and Yuanting Shen;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 61; pp. 61:1–61:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ckkcdh@pku.edu.cn
https://www.kuancheng88.com/
https://orcid.org/0000-0002-8972-1749
mailto:ouyangminghui1998@gmail.com
https://orcid.org/0000-0002-3439-3653
mailto:theoreming@163.com
https://faculty.sdu.edu.cn/shangguanchong/en/index.htm/
https://orcid.org/0000-0002-3206-3968
mailto:shenyting121@163.com
https://orcid.org/0000-0002-1569-0580
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.61
https://arxiv.org/abs/2312.16087
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

61:2 When Can an Expander Code Correct Ω(n) Errors in O(n) Time?

1 Introduction

Graph-based codes are an important class of error-correcting codes that have received
significant attention from both academia and industry. They have a long history in coding
theory, dating back to Gallager’s [19] celebrated low-density parity-check codes (LDPC codes
for short). LDPC codes are a class of linear codes whose parity-check matrices can be
characterized by low-degree (sparse) bipartite graphs, called factor graphs. Gallager analyzed
the rate and distance of LDPC codes, showing that with high probability, randomly chosen
factor graphs give rise to error-correcting codes attaining the Gilbert-Varshamov bound. He
also presented an iterative algorithm to decode these codes from errors caused by a binary
symmetric channel. Since the 1990s, LDPC codes have received increased attention due to
their practical and theoretical performance (see [12, 14, 22, 35, 38, 42, 43]).

As a generalization of the LDPC codes, Tanner [49] introduced the so-called Tanner codes,
as formally defined below. Let c, d, n be positive integers and L := [n], where [n] = {1, . . . , n}.
Given a (c, d)-regular bipartite graph G with bipartition V (G) = L∪R and a [d, k0, d0]-linear
code C0

1, the Tanner code T (G, C0) ⊆ Fn
2 is the collection of all binary vectors x ∈ Fn

2
with the following property: for every vertex u ∈ R, xN(u) is a codeword of the inner
code C0, where N(u) ⊆ L is the set of neighbors of u and xN(u) = (xv : v ∈ N(u)) ∈ Fd

2
denotes the length-d subvector of x with coordinates restricted to N(u); in other words,
T (G, C0) := {x ∈ Fn

2 : xN(u) ∈ C0 for every u ∈ R}.
Expander codes are Tanner codes whose defining bipartite graphs have good expansion

properties, namely, they are bipartite expanders. To be precise, for real numbers α, δ ∈ (0, 1],
a (c, d)-regular bipartite graph G with bipartition V (G) = L ∪ R with L = [n] is called a
(c, d, α, δ)-bipartite expander if for each subset S ⊆ L with |S| ≤ αn, S has at least δc|S|
neighbors in R, i.e., |N(S)| := | ∪v∈S N(v)| ≥ δc|S|. As each S ⊆ L can have at most c|S|
neighbors in R, being a (c, d, α, δ)-bipartite expander means that every bounded size subset
in L has as many neighbors in R as possible, up to a constant factor.

Sipser and Spielman [46] studied the Tanner code T (G, C0) with G being a bipartite
expander and C0 being a parity-check code. For simplicity, let Par = {(x1, . . . , xd) :∑d

i=1 xi = 0} denote the parity-check code in Fd
2. They remarkably showed that the

expansion property of G can be used to analyze the minimum distance and the decoding
complexity of T (G, Par). Roughly speaking, they showed that for every bipartite expander
G with sufficiently large expansion ratio δ > 1/2, T (G, Par) has minimum distance at least
αn, which further implies that T (G, Par) defines a class of asymptotically good codes. More
surprisingly, they showed that if the expansion ratio is even larger, say δ > 3/4, then for every
such G, T (G, Par) admits a linear-time decoding algorithm that corrects a linear number of
errors in the adversarial noise model. Spielman [48] showed that expander codes can be used
to construct asymptotically good codes that can be encoded and decoded both in linear time.

Besides the construction based on vertex expansion, [48] also provides a construction
based on spectral expansion. This construction again inherits the general structure of
Tanner code, i.e., it combines of an underlying bipartite graph and an inner code. The main
difference is that the underlying graph is an edge-vertex incidence graph of a (non-bipartite)
spectral expander. Spectral expander codes also have linear time encoding and decoding,
and their (rate & distance) parameters are different from those of vertex expander codes. In
this paper, we mainly focus on vertex expander codes. The reader is referred to references
[5, 26, 34, 36, 37, 41, 47, 52, 53] for more details on spectral expanders.

1 The reader is referred to Section 1.2 for basic definitions on graphs and codes.

K. Cheng, M. Ouyang, C. Shangguan, and Y. Shen 61:3

Given the strong performance of expander codes, they have been of particular interest
in both coding theory and theoretical computer science, and have been studied extensively
throughout the years. For example, [23, 45] utilized expander codes to obtain near MDS
codes with linear-time decoding. A line of research [2, 9, 16, 18, 44, 50, 51, 52] improved
the distance analysis and decoding algorithm for expander codes in various settings. Very
recently, a sequence of works applied expander codes on quantum LDPC and quantum
Tanner code construction, finally achieving asymptotically good constructions and linear-time
decoding [6, 7, 15, 17, 21, 24, 27, 29, 30, 31, 32, 33, 39, 40].

Given the discussion above, it is natural to suspect that the expansion ratio δ plays a
prominent role in analyzing the properties of T (G, Par). More precisely, one can formalize
the following question. We always assume c, d, α, δ are constants while n tends to infinity.

▶ Question 1. What is the minimum δ > 0 such that every (c, d, α, δ)-bipartite expander
G with V (G) = L ∪R and |L| = n defines an expander code T (G, Par) ⊆ Fn

2 that corrects
Ωc,d,α,δ(n) errors in Oc,d,α,δ(n) time?

This question has already attracted considerable attention. Sipser and Spielman [46]
used the bit-flipping algorithm (developed on the original algorithm of Gallager [19]) to
show that δ > 3/4 is sufficient to correct (2δ − 1)αn errors in O(n) time. Using linear
programming decoding, Feldman, Malkin, Servedio, Stein and Wainwright [18] showed that
δ > 2

3 + 1
3c sufficient to correct 3δ−2

2δ−1 α · n errors, while at the cost of a poly(n) decoding time.
Viderman [50] introduced the “Find Erasures and Decode” algorithm to show that δ > 2

3 −
1
6c

is sufficient to correct Ω(n) errors in O(n) time. Moreover, he also shows that there exists a
(c, d, α, 1/2)-bipartite expander G such that T (G, Par) only has minimum distance two, and
therefore cannot correct even one error. Viderman’s impossibility result implies that δ > 1/2
is necessary for the assertion of Question 1 holding for every (c, d, α, δ)-bipartite expander.

The above results only consider the case where the inner code C0 is a parity-check code.
Therefore, it is tempting to think about whether one can benefit from a stronger inner code
C0. Let us call a code good if it can correct Ω(n) errors in O(n) time. Chilappagari, Nguyen,
Vasic and Marcellin [11] showed that if G has expansion radio δ > 1/2 and C0 has minimum
distance d(C0) ≥ max{ 2

2δ−1 − 3, 2}, then every such Tanner code T (G, C0) is good. The
above result implies that for ϵ → 0 and δ = 1/2 + ϵ, d(C0) = Ω(ϵ−1) is sufficient to make
every Tanner code T (G, C0) good. Very recently, Dowling and Gao [16] significantly relaxed
the requirement on δ by showing that for every δ > 0,

d(C0) ≥ Ω(cδ−2) (1)

is sufficient2 to make every Tanner code T (G, C0) good, and be able to correct αn errors. In
particular, their result implies that, as long as the minimum distance of C0 is large enough,
any tiny positive expansion ratio is sufficient to construct a good Tanner code.

Putting everything together, it is interesting to understand how the expansion ratio δ of
G and the minimum distance d0 of C0 affect the goodness of the Tanner code. We have the
following generalized version of Question 1.

▶ Question 2. What are the sufficient and necessary conditions that δ and d0 must satisfy,
so that every (c, d, α, δ)-bipartite expander G with V (G) = L ∪R, |L| = n, and every inner
linear code C0 ⊆ Fd

2 with d(C0) ≥ d0, together define an expander code T (G, C0) ⊆ Fn
2 that

corrects Ωc,d,α,δ(n) errors in Oc,d,α,δ(n) time?

2 More precisely, d(C0) ≥ 2t + c(t − 1)2 − 1 with t > 1
δ .

APPROX/RANDOM 2024

61:4 When Can an Expander Code Correct Ω(n) Errors in O(n) Time?

The main purpose of this paper is to provide a near-optimal solution to the above question,
as presented in the next subsection. On the negative side, we show that when d0δ ≤ 1,
there exists an extension of Viderman’s construction, yielding expander codes of constant
distance (see Proposition 4 below). Therefore, d0δ > 1 is a necessary condition for a general
expander code T (G, C0) to be considered good (compared to the δ > 1

2 condition in the
case of T (G, Par)). On the positive side, we show that d0δ > 3 is sufficient to make every
expander code good (see Theorem 3 below for details). Our result only loses a multiplicity
by three compared to the above necessary result.

1.1 Main results
Deterministic decoding of expander codes

Our main result, which significantly improves on (1), is presented as follows.

▶ Theorem 3. Let G be a (c, d, α, δ)-bipartite expander and C0 be a [d, k0, d0]-linear code,
where c, d, α, δ, d0, k0 are positive constants. If δd0 > 3, then there exists a linear-time decoding
algorithm for the Tanner code T (G, C0) that can correct γn errors, where γ = 2α

d0(1+0.5cδ) .

Theorem 3 shows that δd0 > 3 is sufficient to make every Tanner code T (G, C0) good.
On the other hand, the next proposition shows that for every d0 ≥ 2, δd0 > 1 is necessary.

▶ Proposition 4. For every d, d0 ≥ 2 and n ≥ 10d0, there exist constants 0 < α < 1, c ≥ 3
and a (c, d, 0.9α, 1

d0
)-bipartite expander G with V (G) = L∪R and |L| = n such that for every

[d, k0, d0]-linear code C0, T (G, C0) has minimum Hamming distance at most d0.

Theorem 3 and Proposition 4 together show that our requirement δd0 = Ω(1) is in
fact almost optimal for Question 2. Moreover, we have the following conjecture on the
fundamental trade-off between δ and d0.

▶ Conjecture 5. If δd0 > 1, then for every (c, d, α, δ)-bipartite expander G and every inner
code C0 ⊆ Fd

2 with d(C0) ≥ d0, the expander code T (G, C0) ⊆ Fn
2 can correct Ωc,d,α,δ(n)

errors in Oc,d,α,δ(n) time.

Due to space limit, we will omit the proof of the linear-running time of our algorithm, as
well as the proof of Proposition 4. They can be found in the full version of this paper [10].

Randomized decoding of expander codes

Another important direction in the study of expander codes is to understand the maximum
number of errors that can be corrected in a linear-time decoding algorithm. Chen, Cheng, Li,
and Ouyang [9] obtained a quite satisfactory answer to this problem for T (G, Par). They
showed that for every δ > 1/2 and (c, d, α, δ)-bipartite expander G, T (G, Par) has minimum
distance at least α

2(1−δ) · n− O(1), and this is tight up to a 1− o(1) factor. Moreover, for
δ > 3

4 , they also gave a linear-time decoding algorithm which corrects 3α
16(1−δ) · n errors. A

similar problem for general expander codes T (G, C0) was studied by [16].
Our decoding algorithm for Theorem 3 is deterministic and corrects γn errors in linear

time. Theorem 6 shows that one can correct more errors by using a randomized algorithm.

▶ Theorem 6. Let G be a (c, d, α, δ)-bipartite expander and C0 be a [d, k0, d0]-linear code,
where c, d, α, δ, d0, k0 are positive constants. If δd0 > 3, then there exists a linear-time
randomized decoding algorithm for Tanner code T (G, C0) such that if the input has at most
αn errors from a codeword, then with probability 1−exp {−Θc,δ,d0 (n)}, the decoding algorithm
can output the correct codeword.

K. Cheng, M. Ouyang, C. Shangguan, and Y. Shen 61:5

1.2 Notations and definitions

A graph is a pair G = (V, E), where V is a set whose elements are called vertices and E

is a set of 2-subsets of V , whose elements are called edges. For a vertex u ∈ V , the set of
neighbors of u in G is denoted by N(u) := {v ∈ V : {u, v} ∈ E}. For a subset S ⊆ V (G),
let N(S) = ∪u∈SN(u) be the set of all the neighbors of the vertices in S. A graph G is
bipartite if V (G) admits a bipartition V (G) = L ∪ R such that both L and R contain no
edge. Furthermore, G is (c, d)-regular if every vertex v ∈ L has exactly c neighbors in R and
every vertex u ∈ R has exactly d neighbors in L.

Let F2 = {0, 1} denote the finite field of size 2. A code C is simply a subset of Fn
2 .

For two vectors x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Fn
2 , the Hamming distance between

x and y, denoted by dH(x, y), is the number of coordinates where x and y differ, that is,
dH(x, y) = |{i ∈ [n] : xi ̸= yi}|. The minimum distance of a code C ⊆ Fn

2 , denoted by d(C),
is the minimum of dH(x, y) among all distinct x, y ∈ C. Let wt(x) denote the number of
nonzero coordinates of x. A code C ⊆ Fn

2 is said to be an [n, k, d(C)]-linear code if it is a
linear subspace in Fn

2 with dimension k and minimum distance d(C). It is well-known that
for every linear code C, d(C) = min{wt(x) : x ∈ C \ {0}}.

Throughout, let G be a (c, d, α, δ)-bipartite expander, and C0 be a [d, k0, d0] linear code.
Let T (G, C0) be the Tanner code defined by G and C0. Let Check be the error-detection
algorithm of C0, which checks whether a vector in Fd

2 is a codeword of C0. Assume that Check
takes h0 time. Similarly, let Decode be the correct-correction algorithm for C0, which corrects
up to ⌊d0−1

2 ⌋ errors. Assume that Decode takes t0 time. Note that h0, t0 are constants
depending only on C0 but not on n.

Conventionally speaking, let us call the vertices in L variables and the vertices in R

constraints. Given a vector x ∈ Fn
2 , which is corrupted from some codeword y ∈ T (G, C0),

let us call a constraint u ∈ R satisfied if xN(u) ∈ C0, otherwise call it unsatisfied.

1.3 Some related works

Below, we briefly review two previous works [16, 46] that are closely related to our decoding
algorithms for Theorems 3 and 6. Let us start from the decoding algorithm of Sipser and
Spielman [46]. We summarize as follows the so-called iterated decoding or message-passing
algorithm of [46] that decodes T (G, Par).

Let y ∈ T (G, Par) be the correct codeword that we want to decode from the received
vector x. In the first round, the algorithm runs Check(xN(u)) for every u ∈ R. If a
constraint u is unsatisfied, then it sends a “flip” message to every variable in N(u) ⊆ L.
Sipser and Spielman showed that as long as the expansion ratio of G is sufficiently large
(δ > 3/4) and the number of corruptions in x is sufficiently small but not identically zero
(that is, 1 ≤ dH(x, y) ≤ (2δ− 1)α ·n), then there must exist a variable v ∈ L that receives
> c/2 flip messages, which implies that more than half constraints in N(v) are unsatisfied.
The algorithm then flips xv and updates x and the status of the constraints in N(v).
Note that since Par is the parity-check code, flipping xv makes all satisfied constraints in
N(v) unsatisfied and all unsatisfied constraints in N(v) satisfied. Therefore, by flipping
xv one can strictly reduce the number of unsatisfied constraints.
The algorithm then runs the above process repeatedly. As long as there are still unsatisfied
constraints, it finds the desired v ∈ L so that flipping xv strictly reduces the number of
unsatisfied constraints. As there are at most |R| = cn/d unsatisfied constraints, the above
process must stop in O(n) rounds and therefore yields an O(n) time decoding algorithm.

APPROX/RANDOM 2024

61:6 When Can an Expander Code Correct Ω(n) Errors in O(n) Time?

Dowling and Gao [16] extend Sipser and Spielman’s algorithm from T (G, Par) to the
more general setting T (G, C0) by making use of the minimum distance of C0. Their algorithm
works for linear codes defined on any finite field, but we will describe it only for F2.

The algorithm begins by setting a threshold t ≤ ⌊d0−1
2 ⌋ and then runs Decode(xN(u)) for

every u ∈ R. If a constraint u ∈ R satisfies 1 ≤ dH(Decode(xN(u)), xN(u)) ≤ t− 1, then
it sends a “flip” message to every variable v ∈ N(u) with Decode(xN(u))v ̸= xv. Note
that Decode(xN(u)) ∈ Fd

2 is a codeword in C0. The algorithm then flips all xv for those v

receiving at least one flip, and then updates x. [16] showed that as long as the minimum
distance d0 of C0 is sufficiently large (see (1)), then flipping all variables that receive at
least one flip can reduce the number of corrupted variables in x by some positive fraction.
In the next steps, the algorithm runs the above process repeatedly. As the number of
corrupted variables is at most O(n), the algorithm will stop in O(log n) rounds. Crucially,
in order to show that the running time of the algorithm is still linear-order but not of
order n log n, the authors proved that the running time of every single round is within
a constant factor of the number of corrupted variables at the beginning of this round.
As the numbers of corrupted variables form a decreasing geometric sequence with the
leading term at most n, the total running time, which is within a constant factor of the
sum of this geometric sequence, is also O(n).

Lastly, it is worth mentioning that there are several very recent works on the explicit
constructions of bipartite graphs with good vertex expansion properties, including the lossless
expanders [8, 13, 20] and the unique-neighbor expanders [1, 3, 4, 25, 28].

1.4 Key new ideas in our work
In this subsection, we briefly introduce the key new ideas in our work. Let us focus on the
deterministic decoding algorithm that proves Theorem 3. Let us begin by analyzing the
following two possible places where the previous algorithm in [16] could be improved.

In every decoding round of the above algorithm, the constraints in R which satisfy
1 ≤ dH(Decode(xN(u)), xN(u)) ≤ t− 1 (and hence send at least one and at most t− 1 flips
to L) in fact have two statuses, as detailed below. Let A be the set of constraints u ∈ R

that sends at least one flip and Decode(xN(u)) computes the correct codeword in C0 (i.e.,
Decode(xN(u)) = yN(u)); let B be the set of constraints u ∈ R that sends at least one flip
and Decode(xN(u)) computes an incorrect codeword in C0 (i.e., Decode(xN(u)) ̸= yN(u)).

Two possible places where the previous algorithm could be improved

(i) It could be the case that every constraint u ∈ A satisfies dH(Decode(xN(u)), xN(u)) = 1
and hence sends only one correct flip to L; in the meanwhile, every constraint u ∈ B

may satisfy dH(Decode(xN(u)), xN(u)) = t − 1 and sends as many as t − 1 flips to L,
which could be all wrong. In this case, the constraints in R altogether send |A| correct
flips and (t− 1)|B| wrong flips to the variables in L.

(ii) Unfortunately, the situation could be worse. Since our bipartite graph G is (c, d)-regular,
it could be the case that the neighbors of the constraints in A are highly concentrated
(e.g., all |A| correct flips are received by as few as |A|/c variables in L), and the neighbors
of the constraints in B are highly dispersed (e.g., all (t− 1)|B| possibly wrong flips are
received by as many as (t − 1)|B| variables in L). Consequently, a small number of
corrupted variables but a large number of correct variables in L receive flip messages.

Given the two issues above, if we flip all variables that receive at least one flip, then
in the worst case, we could correct |A|/c old corrupt variables but produce (t− 1)|B| new
corrupt variables. Recall that to make the algorithm in [16] work, in each round, we need

K. Cheng, M. Ouyang, C. Shangguan, and Y. Shen 61:7

to reduce the number of corrupted variables by at least a positive fraction, which implies
that in the worst case it is necessary to have |A|/c ≥ (t− 1)|B|. Together with some lower
bound on |A| and upper bound on |B| (see [16] for details), one can prove that in such worst
scenario (1) is necessary for Dowling and Gao’s algorithm to work.

Our new algorithm begins by noting that we could indeed fix the two problems mentioned
above. To do so, we introduce several new ideas as briefly presented below.

Key new ideas in our work

Let F := {i ∈ [n] : xi ̸= yi} be the set of corrupt variables in x. Similarly to [16], our
new algorithm begins by setting a threshold t = ⌊ 1

δ ⌋ and then runs Decode(xN(u)) for every
u ∈ R.
(a) To fix the first problem, if a constraint u ∈ R satisfies 1 ≤ dH(Decode(xN(u)), xN(u)) ≤

t−1, then instead of sending a flip message to every v ∈ N(u) with Decode(xN(u))v ̸= xv,
the new algorithm just arbitrarily picks exactly one such variable v, and sends a flip
message to only this specific v. So, every constraint in A ∪B sends exactly one flip to L.

(b) To fix the second problem, we associate each v ∈ L with a counter τv ∈ {0, 1, . . . , c}
that counts the number of flips received by v. For each m ∈ [c], let Sm denote the set
of variables that receive exactly m flips. Then, instead of flipping every variable that
receives at least one flip, i.e., instead of flipping ∪c

m=1Sm, we only flip Sm for some
m ∈ [c]. Crucially, we show that if the number |F | of corrupt variables is not too large,
then there must exist some m ∈ [c] such that |Sm| has the same order as |F |, and
more importantly, a (1/2 + κ)-fraction of variables in |Sm| are corrupted (and therefore
can be corrected by the flipping operation), where κ is an absolute positive constant.
Therefore, it follows that by flipping all variables in Sm, one can reduce |F | by some
positive fraction.

Note that the details of (a) and (b) can be found in Section 3.2, where we call the algorithm
corresponding to (a) and (b) “EasyFlip” and write EasyFlip(x, m) as the output of the
EasyFlip if x is the input vector and Sm is flipped (see Algorithm 2).

However, there is still a gap that needs to be fixed, that is, how to find the required
Sm? A plausible solution is to run EasyFlip(x, m) for every m ∈ [c]. This would roughly
increase the total running time by a c factor, which will still be O(n), provided that the
original running time is O(n). Unfortunately, by doing so we still cannot precisely identify the
required Sm, as in general we do not know how to count the number of corrupted variables
in some corrupted vector. We will fix this issue by introducing our third key new idea:
(c) Note that what we can explicitly count in each round of the algorithm is the number of

unsatisfied constraints. Roughly speaking, our strategy is to run EasyFlip iteratively for
a large but still constant number of times and then pick the final output that significantly
reduces the number of unsatisfied constraints.
More precisely, assume that we will run EasyFlip iteratively for s rounds. Let x0 := x

and write x1 := EasyFlip(x0, m1) as the output of the 1st EasyFlip invocation where the
variables in Sm1 are flipped for some m1 ∈ [c]; more generally, for k ∈ [s], write xk :=
EasyFlip(xk−1, mk) as the output of the kth EasyFlip invocation where the variables in
Smk

is flipped for some mk ∈ [c]. Note that in Algorithm 3 we call the above iterated
invocations of EasyFlip as “DeepFlip”, and write xk := DeepFlip(x, (m1, . . . , mk)) as the
output of the kth EasyFlip invocation. For 0 ≤ k ≤ s, let F k ⊆ L and Uk ⊆ R denote
the sets of corrupted variables and unsatisfied constraints caused by xk, respectively. We
prove that there are constants 0 < ϵ≪ ϵ′ ≪ ϵ′′ < 1 such that the following two wordy
but useful observations hold:

APPROX/RANDOM 2024

61:8 When Can an Expander Code Correct Ω(n) Errors in O(n) Time?

(c1) If the number of corrupted variables is reduced dramatically then the number of
unsatisfied constraints is reduced significantly, i.e., if for some k ∈ [s], |F k| ≤ ϵ|F 0|,
then |Uk| ≤ ϵ′|U |;

(c2) If the number of unsatisfied constraints is reduced significantly, then the number of
corrupted variables must be reduced by a least a constant fraction i.e., if for some
k ∈ [s], |Uk| ≤ ϵ′|U0|, then |F k| ≤ ϵ′′|F |.

In the following, we will briefly argue how we will make use of the two observations (c1)
and (c2). Recall that in (b) we have essentially guaranteed that for every k ∈ [s], there
exists some m∗

k ∈ [c] such that by flipping Sm∗
k

in EasyFlip, one could reduce the number of
corrupted variables by an η-fraction for some η ∈ (0, 1). It follows that if we run DeepFlip
iteratively for (m1, . . . , ms) = (m∗

1, . . . , m∗
s), then we have |F s| ≤ (1 − η)s|F | < ϵ|F |,

provided that s > log(1−η)−1 ϵ−1 is sufficiently large (but still a constant independent
of n). Therefore, if we run DeepFlip thoroughly for all (m1, . . . , ms) ∈ [c]s, then by
(c1) there must exist at least one3 xk := DeepFlip(x, (m1, . . . , mk)) with k ≤ s such
that |Uk| ≤ ϵ′|U |. Moreover, using the last inequality, such xk and (m1, . . . , mk) can
be explicitly identified. Now, by (c2) we can conclude that the number of corrupted
variables is indeed reduced by at least a constant fraction.

Note that the above brute-force search only increases the total running time by at most a
cs factor. The details of (c) and the analysis of DeepFlip can be found in Section 3.3 and
Algorithm 3. Moreover, we call the algorithm that runs DeepFlip(x, (m1, . . . , ms)) thoroughly
for all (m1, . . . , ms) ∈ [c]s as “HardSearch”, and is discussed in Section 3.4 and Algorithm 4.
The discussion above basically shows that every HardSearch invocation could reduce the
number of corrupted variables by a constant fraction.

Running HardSearch iteratively for O(log n) rounds, the total number of corrupted
variables will be smaller than ⌊d0−1

2 ⌋, which can be easily corrected by running Decode for
every u ∈ R. The main algorithm that puts everything together is called “MainDecode”, and
is presented in Section 3.1 and Algorithm 1.

To show that the total running time is still linear in n, we adopt an argument similar to
that in the previous works (e.g., [16]). We show that the running time of every HardSearch
invocation is within a constant factor of the number of corrupted variables at the beginning
of this invocation.

Lastly, we would like to mention that our randomized decoding algorithm (see Algorithm 5),
which proves Theorem 6 and has a larger decoding radius than the deterministic algorithm,
basically follows from the same framework mentioned above. Loosely speaking, the high-level
idea of the randomized algorithm is to reduce the number of corruptions to a moderate size
that can be handled by the deterministic algorithm. For that purpose, we design a random
flip strategy which can be summarized as follows.

Recall that for every m ∈ [c], Sm denotes the set of all variables that receive exactly
m flips. First, for every constraint u ∈ R satisfying 1 ≤ dH(Decode(xN(u)), xN(u)) ≤ t, we
arbitrarily pick exactly one variable v ∈ N(u) with Decode(xN(u))v ̸= xv and send a flip
message to this specific v. Then, we collect all suspect variables that receive at least one
flip. Subsequently, we design a random sampling procedure to select a subset of ∪m∈[c]Sm to
flip. We show that this procedure can ensure, with high probability, that this subset has
more corrupted variables than correct variables, as long as the total number of corruptions
is at most αn. By applying this strategy iteratively, we can show that in each iteration,
the number of corruptions will be reduced by a positive fraction. Then, after running a

3 Clearly, DeepFlip(x, (m∗
1, . . . , m∗

s)) gives a candidate for such xk.

K. Cheng, M. Ouyang, C. Shangguan, and Y. Shen 61:9

constant number of iterations, the number of corrupted bits can be reduced to a range that
the deterministic algorithm can handle. At this point, the deterministic algorithm is invoked
to correct all remaining corrupted variables. Moreover, as n increases, the fail probability of
each iteration tends to 0. So the overall random algorithm will succeed with high probability.

2 An auxiliary lemma

Given two subsets S, T ⊆ V (G), let E(S, T) denote the set of edges with one endpoint in S

and another endpoint in T . For every positive integer t, let
N≤t(S) = {u ∈ V (G) : 1 ≤ |N(u) ∩ S| ≤ t},
Nt(S) = {u ∈ V (G) : |N(u) ∩ S| = t},
and N≥t(S) = {u ∈ V (G) : |N(u) ∩ S| ≥ t}.

We will make use of the following crucial property of bipartite expander graphs.

▶ Proposition 7 (Folklore). Let G be a (c, d, α, δ)-bipartite expander. Then, for every set
S ⊆ L with |S| ≤ αn and every integer t ∈ [d], we have that|N≤t(S)| ≥ δ(t+1)−1

t · c|S|.

3 Deterministic decoding: Decoding Ω(n) corruptions in O(n) time

We need to set some parameters. Suppose that d0 > 3
δ − 1. Let t = ⌊ 1

δ ⌋. Take ϵ0 > 0 such
that d0 > 3

δ −1 + 2ϵ0 and ⌊ 1
δ + ϵ0⌋ = ⌊ 1

δ ⌋. For every 0 < ϵ1 < ϵ0δ2

100 , let ϵ2 = ϵ1
c+1 ·

δ(t+1)−1
t > 0

and ϵ3 = ϵ2

(
2(1− ϵ1)

(
1
2 + ϵ0δ2

2

)
− 1

)
> 0. It is not hard to check that ϵ1, ϵ2 and ϵ3

are all well-defined. Lastly, let ϵ4 = δd0−1
d0−1 · (1 − ϵ3), ℓ =

⌈
log1−ϵ3

(⌊
d0−1

2
⌋ 1

γn

)⌉
and

s0 =
⌈
log1−ϵ3

(
ϵ4

δd0−1
d0−1

)⌉
.

3.1 The main decoding algorithm – MainDecode
Given a corrupt vector x ∈ Fn

2 with at most γn corruptions, our main decoding algorithm
(see Algorithm 1 below) works as follows. The algorithm is divided into two parts. In the first
part (see steps 2-10 below), it invokes HardSearch (see Algorithm 4 below) recursively for ℓ

rounds, where in every round the number of corrupt variables is reduced by a (1−ϵ3)-fraction.
After ℓ executions of HardSearch, the number of corrupt variables is reduced to at most
⌊d0−1

2 ⌋. Then, in the second part of the algorithm (see steps 11-13 below), the decoder of
the inner code C0 is applied to finish decoding.

The next two lemmas justify the correctness and the linear running time of MainDecode.

▶ Lemma 8.
(i) Let x be the input vector of HardSearch and let F be the set of corrupt variables of x.

Let x′ := HardSearch(x) and F ′ be the set of corrupt variables of x′. If |F | ≤ γn, then
|F ′| ≤ (1− ϵ3) · |F |.

(ii) In step 11 of MainDecode, the number of corrupt variables in xℓ is at most ⌊d0−1
2 ⌋.

▶ Lemma 9.
(i) Let x be the input vector of HardSearch and let F be the set of corrupt variables of x.

If |F | ≤ γn, then the running time of HardSearch is at most O(n + |F |).
(ii) Furthermore, if the number of corrupt variables in the input vector of MainDecode is

at most γn, then the running time of MainDecode is O(n).

APPROX/RANDOM 2024

61:10 When Can an Expander Code Correct Ω(n) Errors in O(n) Time?

Algorithm 1 Main decoding algorithm for expander codes – MainDecode.

Input: G, C0, x ∈ Fn
2

Output: x′ ∈ Fn
2

1 Set i = 1 and x0 = x;
2 for 1 ≤ i ≤ ℓ do
3 U i−1 ← {u ∈ R : xi−1

N(u) /∈ C0};
4 if |U i−1| = 0 then
5 return x′ ← xi−1;
6 else
7 xi ← HardSearch(xi−1);
8 i← i + 1 ;
9 end

10 end
11 for every u ∈ R such that xℓ

N(u) /∈ C0 do
12 xℓ

N(u) ← Decode(xℓ
N(u))

13 end
14 return x′ ← xℓ;

Proof of Theorem 3. Let y ∈ T (G, C0) be a codeword and x ∈ Fn
2 be a corrupted vector.

Let F = {i ∈ [n] : xi ̸= yi} be the set of corrupt variables of x with respect to y. To prove
the theorem, it suffices to show that as long as |F | ≤ γn, MainDecode finds y correctly in
linear time. We will analyze the following two cases:

If the algorithm returns xi for some 0 ≤ i ≤ ℓ − 1, then as |U i| = 0, we must have
xi ∈ T (G, C0). Let F i be the set of the corrupt variables of xi. Then it follows by
Lemma 8 (i) that d(xi, y) = |F i| ≤ (1 − ϵ3)i|F | ≤ (1 − ϵ3)iγn < d(T (G, C0)), which
implies that xi = y.
If the algorithm does not return xi for any 0 ≤ i ≤ ℓ− 1, then it follows by Lemma 8 (ii)
that d(xℓ, y) ≤ ⌊d0−1

2 ⌋. Therefore, one can find y by running Decode for every u ∈ R.
Moreover, by Lemma 9 the running time of MainDecode is O(n). ◀

The remaining part of this section is organized as follows. In Section 3.2 below, we will
introduce the basic building block of deterministic decoding – EasyFlip, which also corresponds
to items (a) and (b) in Section 1.4. In Section 3.3 we will introduce the algorithm DeepFlip,
which runs EasyFlip iteratively for a constant number of times. DeepFlip corresponds to
item (c) in Section 1.4. In Section 3.4 we will introduce HardSearch, which is designed by
running DeepFlip thoroughly for all choices of (m1, . . . , ms) until the number of unsatisfied
constraints is significantly reduced. The proof of Lemma 8 is also presented in Section 3.4.

3.2 The basic building block of deterministic decoding – EasyFlip

In this subsection, we will present the algorithm EasyFlip (see Algorithm 2 below), which is
the basic building block of our deterministic decoding. It contains the following two parts:

EasyFlip (i): in the first part (see steps 1-6 below), it invokes Decode for each constraint
u ∈ R and sends flips to some variables v ∈ L;
EasyFlip (ii): in the second part (see steps 7-11 below), it counts the number of flips
received by each variable in L and flips all variables that receive exactly m flips.

K. Cheng, M. Ouyang, C. Shangguan, and Y. Shen 61:11

Algorithm 2 Flip all variables receiving exactly m flips – EasyFlip.

Input: G, C0, x ∈ Fn
2 , and m ∈ [c]

Output: x′ ∈ Fn
2

1 for every u ∈ R do
2 ω ← Decode(xN(u));
3 if 1 ≤ dH(ω, xN(u)) ≤ t then
4 send a “flip” to an arbitrary vertex v ∈ N(u) with ωv ̸= xv

5 end
6 end
7 for every v ∈ L do
8 if v receives exactly m flips then
9 flip xv

10 end
11 end
12 return x′ ← x

Our goal is to show that there must exist an integer m ∈ [c] such that by flipping all
variables v ∈ L that receive exactly m flips, one can reduce the number of corrupt variables
in x′ by a (1− ϵ3)-fraction, as compared with x. Note that for this moment, it suffices to
prove the existence of such an m and we do not need to find it explicitly. In fact, later we
will find the required m by exhaustive search.

We make the discussion above precise by the following lemma.

▶ Lemma 10. Let x be the input vector of EasyFlip and let F be the set of corrupt variables
of x. If |F | ≤ αn, then there exists an integer m ∈ [c] such that the following holds. Let
x′ = EasyFlip(x, m) be the output vector of EasyFlip and F ′ be the set of corrupt variables
of x′. Then |F ′| ≤ (1− ϵ3)|F |.

3.2.1 Proof of Lemma 10
Let us first introduce some notation and easy inequalities. Let y ∈ T (G, C0) be the correct
codeword that we want to decode from x. Let A be the set of constraints u ∈ R that sends a
flip and Decode(xN(u)) computes the correct codeword in C0 (that is, Decode(xN(u)) = yN(u)).
Similarly, let B be the set of constraints u ∈ R that sends a flip and Decode(xN(u)) computes
an incorrect codeword in C0 (i.e., Decode(xN(u)) ̸= yN(u)).

By the definitions of A and N≤t(F), it is easy to see that

A = {u ∈ R : 1 ≤ |N(u) ∩ F | ≤ t} = N≤t(F). (2)

Therefore, it follows by (2) and Proposition 7 that

|A| ≥ δ(t + 1)− 1
t

· c|F |. (3)

Moreover, since a constraint u ∈ R computes an incorrect codeword in C0 only if it sees at
least d0 − t corrupt variables in its neighbors (recall that d(C0) ≥ d0), we have that

B = {u ∈ R : |N(u) ∩ F | ≥ d0 − t and ∃ ω ∈ C0 s.t. 1 ≤ dH(ω, xN(u)) ≤ t} ⊆ N≥d0−t(F). (4)

By counting the number of edges between F and N(F), we see that

(d0 − t)|B| ≤ |E(F, B)| ≤ |E(F, N(F))| = c|F |,

APPROX/RANDOM 2024

61:12 When Can an Expander Code Correct Ω(n) Errors in O(n) Time?

which implies that

|B| ≤ c|F |
d0 − t

. (5)

Consider the following two equalities,

d∑
k=1

k · |Nk(F)| = c|F | and
d∑

k=1
|Nk(F)| = |N(F)| ≥ δc|F |.

By multiplying the second by 1
δ + ϵ0 and subtracting the first one, we have

t∑
k=1

(1
δ

+ ϵ0 − k)|Nk(F)| −
d∑

k=t+1

(k − 1
δ

− ϵ0)|Nk(F)| ≥
((1

δ
+ ϵ0

)
δ − 1

)
c|F | ≥ ϵ0δc|F |,

Moreover, it follows by (2) and (4) that

t∑
k=1

(1
δ

+ ϵ0 − k)|Nk(F)| −
d∑

k=t+1
(k − 1

δ
− ϵ0)|Nk(F)|

≤
t∑

k=1
(1
δ

+ ϵ0 − k)|Nk(F)| −
d∑

k=d0−t

(k − 1
δ
− ϵ0)|Nk(F)|

≤ (1
δ

+ ϵ0 − 1)|N≤t(F)| − (d0 − t− 1
δ
− ϵ0)|N≥d0−t(F)|

≤ (1
δ

+ ϵ0 − 1)|A| − (d0 − t− 1
δ
− ϵ0)|B|.

As d0 > 3
δ − 1 + 2ϵ0 and t = ⌊ 1

δ ⌋, we have d0 − t− 1
δ − ϵ0 > 1

δ + ϵ0 − 1. Combining the
above two inequalities, one can infer that

ϵ0δc|F | ≤ (1
δ

+ ϵ0 − 1)|A| − (d0 − t − 1
δ

− ϵ0)|B| ≤ (1
δ

+ ϵ0 − 1)(|A| − |B|) ≤ 1
δ

(|A| − |B|),

which implies that

|A| − |B| ≥ ϵ0δ2c|F |. (6)

On the other hand, since A and B are disjoint subsets of N(F), we have that

|A|+ |B| ≤ |N(F)| ≤ c|F |. (7)

For every integer m ∈ [c], let Sm be the set of variables in L that receive exactly m flips.
Then the variables in Sm receive a total number of m|Sm| flips. In EasyFlip, every constraint
in A ∪B sends exactly one flip to L. The total number of flips sent by constraints in R and
received by variables in L is exactly

|A|+ |B| =
c∑

m=1
m|Sm|. (8)

Let Z be the set of correct variables that receive at least one flip, i.e., Z = (∪c
m=1Sm) \F .

Observe that the set F ′ of corrupt variables in the output vector x′ consists of corrupt
variables not flipped by EasyFlip, which is F \Sm, and correct variables that are erroneously
flipped by EasyFlip, which is Sm ∩ Z. Therefore,

F ′ = (F \ Sm) ∪ (Sm ∩ Z). (9)

K. Cheng, M. Ouyang, C. Shangguan, and Y. Shen 61:13

Let αm be the fraction of corrupt variables in Sm. Then we have that

αm = |Sm ∩ F |
|Sm|

and 1− αm = |Sm ∩ Z|
|Sm|

. (10)

Let βm denote the fraction of flips sent from A to Sm among all flips received by Sm, i.e.,

βm = the number of flips sent from A to Sm

m|Sm|
. (11)

The following inequality is crucial in the analysis of EasyFlip.

▷ Claim 11. For every m ∈ [c], αm ≥ βm.

Proof. As every variable in Sm receives the same number of m flips, by (10) the number
of flips received by Sm \ F is (1 − αm)m|Sm|. Moreover, by (11) the number of flips sent
from B to Sm is (1 − βm)m|Sm|. Since the constraints in A always compute the correct
codewords in C0, they always send correct flips to their neighbors in L. Therefore, the
flips received by Sm \ F (which are the wrong flips) must be sent by B, which implies that
(1− αm)m|Sm| ≤ (1− βm)m|Sm|, where the inequality follows from the fact that B could
also send flips to Sm ∩ F (which are the correct flips). Thus, αm ≥ βm, as needed. ◁

The following result shows that there exists an integer m ∈ [c] such that there exists a
large set Sm that contains many corrupt variables.

▷ Claim 12. If |F | ≤ αn, then there exists an integer m ∈ [c] such that αm ≥ (1− ϵ1) |A|
|A|+|B|

and |Sm| ≥ ϵ2|F |.

Proof. Suppose for the sake of contradiction that for every m ∈ [c], we have either αm <

(1 − ϵ1) |A|
|A|+|B| or |Sm| < ϵ2|F |. Then, by counting the number of flips sent from A to L

(which is exactly |A|), we have that

|A| =
c∑

m=1
βmm|Sm| ≤

c∑
m=1

αmm|Sm| < (1− ϵ1) |A|
|A|+ |B|

c∑
m=1

m|Sm|+
c∑

m=1
mϵ2|F |

= (1− ϵ1)|A|+ c(c + 1)
2 · ϵ2|F |,

where the first inequality follows from Claim 11, the second inequality follows from our
assumption on αm and |Sm|, and the last equality follows from (8).

Rearranging gives that |A| < ϵ2(c+1)
2ϵ1

· c|F | = δ(t+1)−1
2t · c|F |, contradicting (3). ◁

Next, we will show that by flipping all the variables in Sm, where m satisfies the conclusion
of Claim 12, one can reduce the size of the set of corrupt variables by a (1 − ϵ3)-fraction,
thereby proving Lemma 10.

Proof of Lemma 10. Let m ∈ [c] satisfy the conclusion of Claim 12. Combining the two
inequalities (6) and (7), one can infer that

|A|
|A|+ |B| = 1

2 + |A| − |B|
2(|A|+ |B|) ≥

1
2 + + ϵ0δ2c|F |

2c|F |
= 1

2 + ϵ0δ2

2 . (12)

Therefore, it follows by (12) that

αm ≥ (1− ϵ1) |A|
|A|+ |B| ≥ (1− ϵ1)

(
1
2 + ϵ0δ2

2

)
. (13)

APPROX/RANDOM 2024

61:14 When Can an Expander Code Correct Ω(n) Errors in O(n) Time?

It follows by (9) that

|F ′| = (|F | − |Sm ∩ F |) + |Sm ∩ Z| = |F | − (2αm − 1)|Sm|

≤ |F | −
(

2(1− ϵ1)
(

1
2 + ϵ0δ2

2

)
− 1

)
|Sm| = |F | − (ϵ3/ϵ2)|Sm| ≤ |F | − ϵ3|F |,

as needed, where the second equality follows by (10), the first inequality follows by (13), the
last equality follows by the definition of ϵ3 and the last inequality follows by Claim 12. ◀

We will conclude by the following inequality, which shows that for an arbitrary m ∈ [c],
flipping Sm would not significantly increase the number of corrupt variables.

▷ Claim 13. For arbitrary x ∈ Fn
2 and m ∈ [c], let x′ := EasyFlip(x, m). Let F and F ′ be

the sets of corrupt variables of x and x′, respectively. Then |F ′| ≤ (1 + c
d0−t)|F |.

Proof. Since the constraints in A always compute the correct codewords in C0, they always
send correct flips to their neighbors in L. Therefore, the wrong flips must be sent by B.
Therefore, in the worst case (i.e., assuming that A = ∅), we have that

|F ′| ≤ |F |+ |B| ≤
(

1 + c

d0 − t

)
|F |,

where the second inequality follows from (5). ◁

3.3 Running EasyFlip iteratively for a constant number of times –
DeepFlip

In this subsection, we will present and analyze DeepFlip (see Algorithm 3 below), which is de-
signed by running EasyFlip iteratively for s times for a particular choice of (m1, . . . , ms) ∈ [c]s.
By iteratively we mean a sequence of operations x0 := x, x1 := EasyFlip(x0, m1), . . . , xs =
EasyFlip(xs−1, ms).

Algorithm 3 Running EasyFlip iteratively for a particular choice (m1, . . . , ms) ∈ [c]s –
DeepFlip.

Input: G, C0, x ∈ Fn
2 , and (m1, . . . , ms) ∈ [c]s

Output: xs ∈ Fn
2 or ⊥

1 Set k = 1 and x0 = x;
2 for 1 ≤ k ≤ s do
3 xk ← EasyFlip(xk−1, mk);
4 Uk ← {u ∈ R : xk

N(u) /∈ C0};
5 if |Uk| > (1− ϵ3)k · cγn then
6 return ⊥
7 else
8 k ← k + 1
9 end

10 end
11 return xs

Our goal is to show that as long as the number of corrupt variables in x is not too large,
by running EasyFlip iteratively for a large enough (but still constant) number of times, there
exists a vector (m1, . . . , ms) ∈ [c]s such that the number of corrupt variables in the final

K. Cheng, M. Ouyang, C. Shangguan, and Y. Shen 61:15

output xs is at most a (1 − ϵ3)-fraction of the number of corrupt variables in the initial
input x. Most importantly, later we will show that such a vector (m1, . . . , ms) can be found
explicitly and efficiently.

The above assertion will be made precise by the following lemma.

▶ Lemma 14. Let x be the input vector of DeepFlip and let F be the set of corrupt variables
of x. If |F | ≤ γn, then for every s ≥ s0 there exists a nonempty subset M ⊆ [c]s such that
the following holds for every (m1, . . . , ms) ∈M . Let xs :=DeepFlip(x, (m1, . . . , ms)) be the
output vector of DeepFlip and F s be the set of corrupt variables of xs. Then |F s| ≤ (1−ϵ3)|F |.

3.3.1 Proof of Lemma 14
Given (m1, . . . , ms) ∈ [c]s and x0 := x, for each k ∈ [s], let xk :=EasyFlip(xk−1, mk). With
this notation, xs = EasyFlip(xs−1, ms) = DeepFlip(x, (m1, . . . , ms)), is exactly the output
vector of DeepFlip. Let F be the set of corrupt variables in x and U be the set of unsatisfied
constraints with respect to x. Sometimes, we will also use F 0 := F and U0 := U . For k ∈ [s],
define F k and Uk similarly with x replaced by xk. Then

N≤d0−1(F) ⊆ U ⊆ N(F), (14)

where the first inclusion holds since d(C0) = d0.
The following lemma can be viewed as an “idealized” version of Lemma 14.

▶ Lemma 15. With the above notation, the following holds. If |F | ≤ αn, then there exists a
vector (m1, . . . , ms) ∈ [c]s such that

(i) |F s| ≤ (1− ϵ3)s|F |;
(ii) for each k ∈ [s], |Uk| ≤ (1− ϵ3)k · c|F |;
(iii) |Us| ≤ (1− ϵ3)s · d0−1

δd0−1 · |U |.

Proof. As |F | ≤ αn, by Lemma 10, there exists m1 ∈ [c] such that x1 = EasyFlip(x, m1)
satisfies |F 1| ≤ (1− ϵ3)|F | ≤ αn. Continuing this process, it follows by Lemma 10 that for
each k ∈ [s], there exists mk ∈ [c] such that xk = EasyFlip(xk−1, mk) satisfies

|F k| ≤ (1− ϵ3)|F k−1| ≤ (1− ϵ3)k|F | ≤ αn. (15)

Such a vector (m1, . . . , ms) ∈ [c]s clearly satisfies property (i).
To prove (ii), note that it follows by (14) and (15) that for each k ∈ [s],

|Uk| ≤ |N(F k)| ≤ c|F k| ≤ (1− ϵ3)k · c|F |.

To prove (iii), as |F | ≤ αn, applying Proposition 7 in concert with (14) gives that
δd0−1
d0−1 · c|F | ≤ |N≤d0−1(F)| ≤ |U |. Combining the equation above and (i) gives that
|Us| ≤ c|F s| ≤ (1− ϵ3)s · c|F | ≤ (1− ϵ3)s · d0−1

δd0−1 · |U |, completing the proof of (iii). ◀

Lemma 15 (i) indicates that there exists an “ideal” choice, say (m∗
1, . . . , m∗

s) ∈ [c]s, such
that if |F | ≤ αn, then after the execution of EasyFlip iteratively for s times (directed
by (m∗

1, . . . , m∗
s)), the number of corrupt variables in the final output xs is at most a

(1− ϵ3)s-fraction of the number of corrupt variables in the initial input x0 = x.
Unfortunately, in general, there is no way to compute the number of corrupt variables

in the input and output of each execution of EasyFlip. From this perspective, there is no
easy way to explicitly find the ideal (m∗

1, . . . , m∗
s) ∈ [c]s. However, Lemma 15 (iii), which is

a consequence of Lemma 15 (i), essentially shows that if the number of corrupt variables

APPROX/RANDOM 2024

61:16 When Can an Expander Code Correct Ω(n) Errors in O(n) Time?

reduces dramatically, then the number of unsatisfied constraints also reduces significantly -
fortunately, it is clear that this quantity can be computed in linear time! The analysis of our
deterministic decoding algorithm relies heavily on this observation.

The above discussion motivates the following definition.

▶ Definition 16. Given the input vector x of DeepFlip, let M be the set consisting of all
vectors (m1, . . . , ms) ∈ [c]s which satisfy the following two properties:
(a) for each k ∈ [s], |Uk| ≤ (1− ϵ3)k · cγn;
(b) |Us| ≤ ϵ4|U |, where ϵ4 = δd0−1

d0−1 · (1− ϵ3).

The following result is an easy consequence of Lemma 15.

▷ Claim 17. If |F | ≤ γn and s ≥ s0, then M ̸= ∅.

Proof. Since |F | ≤ γn < αn, there exists a vector (m1, . . . , ms) ∈ [c]s that satisfies Lemma 15.
By substituting |F | ≤ γn into Lemma 15 (ii), it is easy to see that such a vector also satisfies
Definition 16 (a). Moreover, by substituting s ≥ s0 =

⌈
log1−ϵ3

(
ϵ4

δd0−1
d0−1

)⌉
into Lemma 15

(iii), it is not hard to see that Definition 16 (b) also holds. Therefore, M ̸= ∅, as needed. ◁

As briefly mentioned above, in general one cannot explicitly find the ideal (m∗
1, . . . , m∗

s) ∈
[c]s which dramatically reduces the number of corruptions. Instead, under a stronger
condition |F | ≤ γn (recall that Lemma 15 assumes |F | ≤ αn), Lemma 14 shows that for
every (m1, . . . , ms) ∈ M , xs = DeepFlip(x, (m1, . . . , ms)) reduces the number of corrupt
variables of x by a (1− ϵ3)-fraction, which makes every member of M an acceptable (which
may be not ideal) choice for DeepFlip.

Now we are ready to present the proof of Lemma 14.

Proof of Lemma 14. First of all, we would like to show that Lemma 14 is well defined,
namely, for every |F | ≤ γn and (m1, . . . , ms) ∈M , DeepFlip(x, (m1, . . . , ms)) does not return
⊥. Indeed, as (m1, . . . , ms) ∈ M , by Definition 16 (a) we have that for every 1 ≤ k ≤ s,
|Uk| ≤ (1− ϵ3)k · cγn, which implies that Uk always passes the test in step 5 of Algorithm 3.
Therefore, under the assumption of Lemma 14, the output of DeepFlip is a vector xs ∈ Fn

2 .
To prove the lemma, assume for the moment that |F s| ≤ αn. Given the correctness of

this assertion, applying Proposition 7 in concert with (14) gives that

δd0 − 1
d0 − 1 · c|F

s| ≤ |N≤d0−1(F s)| ≤ |Us|.

Moreover, by combining the above equation and Definition 16 (b), we have

δd0 − 1
d0 − 1 · c|F

s| ≤ |Us| ≤ ϵ4|U | ≤
δd0 − 1
d0 − 1 · (1− ϵ3) · c|F |,

which implies that |F s| ≤ (1− ϵ3)|F |, as needed.
Therefore, it remains to show that |F s| ≤ αn. We will prove by induction that for each

0 ≤ k ≤ s, |F k| ≤ αn
1+c/(d0−t) ≤ αn. For the base case k = 0, it follows by assumption that

|F 0| ≤ γn < αn
1+c/(d0−t) as d0 ≥ 3, δd0 > 3 and t = ⌊ 1

δ ⌋. Suppose that for some k ∈ [s]
we have |F k−1| ≤ αn

1+c/(d0−t) . Since xk =EasyFlip(xk−1, mk), it follows by Claim 13 that
|F k| ≤ (1 + c

d0−t)|F k−1| ≤ αn. Therefore, we have

δd0 − 1
d0 − 1 · c|F

k| ≤ |N≤d0−1(F k)| ≤ |Uk| ≤ (1− ϵ3)k · cγn ≤ cγn,

K. Cheng, M. Ouyang, C. Shangguan, and Y. Shen 61:17

where the first inequality follows from Proposition 7, the second inequality follows from
(14), and the third inequality follows from Definition 16 (a). The last equation implies that
|F k| ≤ d0−1

δd0−1 γn < d0
2 γn ≤ αn

1+c/(d0−t) , as needed, where the second inequality follows from
the assumption δd0 > 3 and the last inequality follows from the definition of γ in Theorem 3,
δd0 > 3 and t = ⌊ 1

δ ⌋. The proof of the lemma is thus completed. ◀

3.4 Running DeepFlip thoroughly until significantly reducing the number
of unsatisfied constraints – HardSearch

In this subsection, we describe and analyze HardSearch (see Algorithm 4 below). Given an
input vector x ∈ Fn

2 with at most γn corruptions, HardSearch runs DeepFlip(x, (m1, . . . , ms))
over all choices of (m1, . . . , ms) ∈ [c]s until it finds one, say (m′

1, . . . , m′
s), such that the

number of unsatisfied constraints with respect to DeepFlip(x, (m′
1, . . . , m′

s)) is at most an
ϵ4-fraction of the number of unsatisfied constraints with respect to x. Then Lemma 8 shows
that the number of corruptions in x′ is at most a (1−ϵ3)-fraction of the number of corruptions
in x. Therefore, running HardSearch iteratively for ℓ rounds gives us a (1− ϵ3)ℓ-reduction
on the number of corruptions.

Algorithm 4 Running DeepFlip over all (m1, . . . , ms) ∈ [c]s until finding an “acceptable”
one – HardSearch.

Input: G, C0, x ∈ Fn
2 , and s = s0

Output: x′ ∈ Fn
2

1 U ← {u ∈ R : xN(u) /∈ C0};
2 for every (m1, . . . , ms) ∈ [c]s do
3 x′ ← DeepFlip(x, (m1, . . . , ms));
4 if x′ ̸= ⊥ then
5 U ′ ← {u ∈ R : x′

N(u) /∈ C0};
6 if |U ′| ≤ ϵ4|U | then
7 return x′

8 end
9 end

10 end

3.4.1 Proof of Lemma 8
To prove (i), let M be the set of vectors in [c]s which satisfy the two conditions in Definition 16
with respect to F and s, where |F | ≤ γn and s = s0. By our choices of F and s, it
follows by Claim 17 that M ̸= ∅. By Lemma 14, as long as HardSearch finds a vector
(m1, . . . , ms) ∈ M , it would output a vector x′ = DeepFlip(x, (m1, . . . , ms)) such that
|U ′| ≤ ϵ4|U |4 and |F ′| ≤ (1− ϵ3)|F |, as needed.

It remains to prove (ii), which is an easy consequence of (i). Let F i be the set of
corruptions in xi for all 0 ≤ i ≤ ℓ. Then by (i) for every 0 ≤ i ≤ ℓ − 1, we have either
xi ∈ T (G, C0) (if |U i| = 0) or |F i+1| ≤ (1 − ϵ3)|F i| (if |U i| ̸= 0). Therefore, after at
most ℓ =

⌈
log1−ϵ3

(⌊
d0−1

2
⌋ 1

γn

)⌉
iterative executions of HardSearch, the number of corrupt

variables is at most (1− ϵ3)ℓγn ≤
⌊

d0−1
2

⌋ 1
γn · γn =

⌊
d0−1

2
⌋
, as needed.

4 This holds since (m1, . . . , ms) ∈ M satisfies Definition 16 (b).

APPROX/RANDOM 2024

61:18 When Can an Expander Code Correct Ω(n) Errors in O(n) Time?

4 Randomized decoding: Reduce large corruptions to a moderate size

In this section, we present our randomized decoding for Tanner codes which can correct
more errors. The general strategy is as follows. First, we use a voting process to derive a
set S := ∪m∈[c]Sm of candidate variables to flip. More precisely, each constraint u ∈ R that
satisfies 1 ≤ dH(Decode(xN(u)), xN(u)) ≤ t sends exactly one flip to an arbitrary variable
v ∈ N(u) with Decode(xN(u))v ̸= xv. We then design a special sampling process to pick a
large fraction of variables from S and flip them. This process can, with high probability,
reduce the number of corrupted variables by a positive fraction. We repeat the above
random process until the number of corrupted variables drops below γn, in which case our
deterministic decoding MainDecode in Algorithm 1 can work correctly, or we run out of time
and stop. Finally, we use MainDecode to get the codeword.

Let γ be the relative decoding radius of Theorem Theorem 3. The exact randomized
decoding is given as Algorithm 5, which yields the following result.

Algorithm 5 Randomized Decoding.

Input: x ∈ Fn
2 with at most α fraction errors

Output: a codeword in T (G, C0) or ⊥
1 Set t = ⌊ 1

δ ⌋;

2 for ℓ = 1, . . . ,

⌈
log γ

α

log
(

1− 3ϵ(δ(t+1)−1)
4t

)⌉
do

3 for every u ∈ R do
4 ω ← Decode(xN(u));
5 if 1 ≤ dH(ω, xN(u)) ≤ t then
6 send a “flip” message to the vertex v ∈ N(u) with the smallest index such

that ωv ̸= xv

7 end
8 end
9 ∀m ∈ [c], Sm ← {v ∈ L : v receives m “flip” messages};

10 S ←
⋃

m Sm;
11 Randomly pick P ⊆ S: for every m ∈ [c], for each variable in Sm, pick it with

probability m
2c , using independent randomness;

12 Flip all bits in P ;
13 U ← {u ∈ R : xN(u) /∈ C0};
14 if |U | ≤

(
δ − 1

d0

)
cγn then

15 return MainDecode(x)
16 end
17 end
18 return ⊥

The following two lemmas demonstrate the correctness and linear running time of
Algorithm 5, respectively5.

▶ Lemma 18. If the input has distance at most αn from a codeword, then with probability
1− exp {−Θc,δ,d0(n)}, Algorithm 5 outputs the correct codeword.

5 We only prove Lemma 18. The proof of Lemma 19 can be found in the full version of this paper [10]

K. Cheng, M. Ouyang, C. Shangguan, and Y. Shen 61:19

▶ Lemma 19. If the input has distance at most αn from a codeword, then Algorithm 5 runs
in linear time.

Assuming the correctness of the above lemmas, we can prove Theorem 6 as follows.

Proof of Theorem 6. If the input word has at most αn errors, then by Lemma 18, with
probability 1− exp {−Θc,δ,d0(n)}, the decoding outputs the correct codeword. Furthermore,
the running time is linear by Lemma 19. ◀

4.1 Proof of Lemma 18
Recall that we defined A as the set of constraints u ∈ R that sends a flip and Decode(xN(u))
computes the correct codeword in C0 (see (2)), and B to be the set of constraints u ∈ R

that sends a flip and Decode(xN(u)) computes an incorrect codeword in C0 (see (4)). Also,
recall we let αm denote the fraction of corrupt variables in Sm (see (10)) and we let βm

denote the fraction of flips sent from A to Sm among all flips received by Sm (see (11)). Now
we let M := A ∪B.

First, we bound the size of P in an arbitrary iteration.

▷ Claim 20. For every constant ϵ > 0, with probability ≥ 1− exp {−Θc,ϵ(|M |)}, the size of
P is in

[
(1− ϵ) |M |

2c , (1 + ϵ) |M |
2c

]
.

Proof. In Algorithm 5, for every m ∈ [c], each variable in Si is picked independently with
probability m

2c . For each v ∈ S, let Xv be the indicator random variable of the event that the
variable v is picked. So for every v ∈ Sm, Pr[Xv = 1] = m

2c . Let X =
∑

v∈S Xv. It is easy to
see that X = |P |. By the linearity of expectation, we have that

EX =
∑
v∈S

EXv =
∑

m∈[c]

m

2c
|Sm| =

|M |
2c

.

By Hoeffding’s inequality,

Pr
[

X ∈
[

(1 − ϵ) |M |
2c

, (1 + ϵ) |M |
2c

]]
≥ 1 − 2 exp

{
−

2
(
ϵ |M|

2c

)2

|S|

}
≥ 1 − 2 exp

{
− ϵ2|M |

2c2

}
,

where the second inequality follows from the fact that |S| ≤ |M |. ◁

Next, we show that P contains significantly more corrupted variables than correct
variables.

▷ Claim 21. There exists a constant ϵ such that with probability ≥ 1− exp {−Θc,ϵ(|M |)},
the number of corrupted variables in P is at least (1/2 + ϵ) |M |

2c .

Proof of Claim 21. For every v ∈ S, let Yv be the indicator random variable of the event
that Xv = 1 and v ∈ F . Let Y =

∑
v∈S Yv. By definition, Y = P ∩ F . Note that for every

v /∈ S ∩ F , Pr [Yv = 1] = 0. By the linearity of expectation, we have that

EY =
∑
v∈S

EYv =
∑

m∈[c]

∑
v∈Sm

EYv =
∑

m∈[c]

∑
v∈Sm∩F

m

2c
=

∑
m∈[c]

m

2c
αm|Sm| ≥

∑
m∈[c]

m

2c
βm|Sm|,

(16)

where the inequality follows from Claim 11.

APPROX/RANDOM 2024

61:20 When Can an Expander Code Correct Ω(n) Errors in O(n) Time?

By the definition of βm, mβm|Sm| = |{ The number of “flips” sent from A to Sm}|.
Hence, one can infer that

EY ≥
∑

m∈[c]

|{ The number of “flips” sent from A to Sm}|
2c

= |{ The number of “flips” sent from A to S}|
2c

= |A|2c
,

where the last equality is due to that each constraint in R can only send at most 1 message.
Set ϵ = ϵ0δ2

4 > 0. It follows by (12) that |A| ≥
(

1
2 + ϵ0δ2

2

)
|M | =

(1
2 + 2ϵ

)
|M |. Thus, we

can infer that EY ≥ |A|
2c ≥

(1
2 + 2ϵ

) |M |
2c .

By Hoeffding’s inequality,

Pr
[
Y ≤

(
1
2 + ϵ

)
|M |
2c

]
≥ 1− exp

−
2

(
ϵ |M |

2c

)2

|S|

 ≥ 1− exp
{
−ϵ2|M |

2c2

}
,

where the second inequality follows from that |S| ≤ |M |. ◁

The following claim shows that as long as the number of unsatisfied constraints is small
enough, we can ensure that the number of corrupt variables is at most γn. Hence, we can
handle the matter with Algorithm 1.

▷ Claim 22. If |U | ≤
(

δ − 1
d0

)
cγn and |F | ≤ αn, then |F | ≤ γn.

Proof. Suppose that γn < |F | ≤ αn. By Proposition 7, we have that

|U | ≥ δd0 − 1
d0 − 1 c|F | >

(
δ − 1

d0

)
cγn,

which is a contradiction. ◁

Now, we can give the proofs of Lemma 18 and Lemma 19, respectively, as follows.

Proof of Lemma 18. In each iteration, consider the case that the number of errors |F | is
at most αn. If |U | ≤

(
δ − 1

d0

)
cγn, then by Claim 22, |F | ≤ γn. Therefore, it follows by

Theorem 3 that when δd0 > 3, all errors can be corrected. Otherwise, we claim that the
number of corrupt variables can be decreased by a constant fraction in this iteration.

Recall that M = A ∪B ⊆ U . It follows by (3) that

|M | = |A|+ |B| ≥ δ(t + 1)− 1
t

c|F |. (17)

Note that by Claim 21, with probability 1− exp{−Θc,δ,d0(n)}, the number of corruptions
in P is at least (1/2 + ϵ) |M |

2c where ϵ > 0 is a constant. Also note that by Claim 20, with
probability 1−exp{−Θc,δ,d0(n)}, the size of P is in

[
(1− ϵ/2) |M |

2c , (1 + ϵ/2) |M |
2c

]
. When both

of these events occur, by flipping all variables in P , the number of corruptions is reduced
by at least 3ϵ|M |

4c . It follows by (17) that 3ϵ|M |
4c ≥ 3ϵ(δ(t+1)−1)

4t |F |. This shows the number of
corrupt variables indeed is decreased by a constant fraction in this iteration.

As a result, after at most log γ
α

log
(

1− 3ϵ(δ(t+1)−1)
4t

) iterations, the number of corruptions is at

most γn. Then the decoding can call Algorithm 1 to correct all errors. ◀

K. Cheng, M. Ouyang, C. Shangguan, and Y. Shen 61:21

References
1 Noga Alon and Michael Capalbo. Explicit unique-neighbor expanders. In The 43rd Annual

IEEE Symposium on Foundations of Computer Science, 2002. Proceedings., pages 73–79. IEEE,
2002.

2 Sanjeev Arora, Constantinos Daskalakis, and David Steurer. Message-passing algorithms and
improved lp decoding. IEEE Trans. Inf. Theory, 58(12):7260–7271, 2012. doi:10.1109/TIT.
2012.2208584.

3 Ron Asherov and Irit Dinur. Bipartite unique neighbour expanders via ramanujan graphs.
Entropy, 26(4):348, 2024.

4 Oren Becker. Symmetric unique neighbor expanders and good ldpc codes. Discrete Applied
Mathematics, 211:211–216, 2016.

5 Avraham Ben-Aroya and Amnon Ta-Shma. A combinatorial construction of almost-ramanujan
graphs using the zig-zag product. In Proceedings of the fortieth annual ACM symposium on
Theory of computing, pages 325–334, 2008.

6 Nikolas P. Breuckmann and Jens Niklas Eberhardt. Balanced product quantum codes. IEEE
Trans. Inf. Theory, 67(10):6653–6674, 2021. doi:10.1109/TIT.2021.3097347.

7 Nikolas P Breuckmann and Jens Niklas Eberhardt. Quantum low-density parity-check codes.
PRX Quantum, 2(4):040101, 2021.

8 Michael Capalbo, Omer Reingold, Salil Vadhan, and Avi Wigderson. Randomness conductors
and constant-degree lossless expanders. In Proceedings of the thiry-fourth annual ACM
symposium on Theory of computing, pages 659–668, 2002.

9 Xue Chen, Kuan Cheng, Xin Li, and Minghui Ouyang. Improved decoding of expander codes.
IEEE Trans. Inf. Theory, 69(6):3574–3589, 2023. doi:10.1109/TIT.2023.3239163.

10 Kuan Cheng, Minghui Ouyang, Chong Shangguan, and Yuanting Shen. Improved decoding
of expander codes: fundamental trade-off between expansion ratio and minimum distance of
inner code. arXiv preprint, 2023. arXiv:2312.16087.

11 Shashi Kiran Chilappagari, Dung Viet Nguyen, Bane Vasic, and Michael W. Marcellin. On
trapping sets and guaranteed error correction capability of LDPC codes and GLDPC codes.
IEEE Trans. Inf. Theory, 56(4):1600–1611, 2010. doi:10.1109/TIT.2010.2040962.

12 Sae-Young Chung, G David Forney, Thomas J Richardson, and Rüdiger Urbanke. On the design
of low-density parity-check codes within 0.0045 db of the shannon limit. IEEE Communications
letters, 5(2):58–60, 2001.

13 Itay Cohen, Roy Roth, and Amnon Ta-Shma. Hdx condensers. In 2023 IEEE 64th Annual
Symposium on Foundations of Computer Science (FOCS), pages 1649–1664. IEEE, 2023.

14 Alexandros G. Dimakis, Roxana Smarandache, and Pascal O. Vontobel. Ldpc codes for
compressed sensing. IEEE Trans. Inf. Theory, 58(5):3093–3114, 2012. doi:10.1109/TIT.2011.
2181819.

15 Irit Dinur, Min-Hsiu Hsieh, Ting-Chun Lin, and Thomas Vidick. Good quantum LDPC codes
with linear time decoders. In Barna Saha and Rocco A. Servedio, editors, Proceedings of the
55th Annual ACM Symposium on Theory of Computing, STOC 2023, Orlando, FL, USA,
June 20-23, 2023, pages 905–918. ACM, 2023. doi:10.1145/3564246.3585101.

16 Michael Dowling and Shuhong Gao. Fast decoding of expander codes. IEEE Trans. Inf.
Theory, 64(2):972–978, 2018. doi:10.1109/TIT.2017.2726064.

17 Shai Evra, Tali Kaufman, and Gilles Zémor. Decodable quantum LDPC codes beyond
the

√
n distance barrier using high dimensional expanders. CoRR, abs/2004.07935, 2020.

arXiv:2004.07935.
18 Jon Feldman, Tal Malkin, Rocco A. Servedio, Cliff Stein, and Martin J. Wainwright. Lp

decoding corrects a constant fraction of errors. IEEE Trans. Inf. Theory, 53(1):82–89, 2007.
doi:10.1109/TIT.2006.887523.

19 Robert Gallager. Low-density parity-check codes. IRE Transactions on information theory,
8(1):21–28, 1962.

APPROX/RANDOM 2024

https://doi.org/10.1109/TIT.2012.2208584
https://doi.org/10.1109/TIT.2012.2208584
https://doi.org/10.1109/TIT.2021.3097347
https://doi.org/10.1109/TIT.2023.3239163
https://arxiv.org/abs/2312.16087
https://doi.org/10.1109/TIT.2010.2040962
https://doi.org/10.1109/TIT.2011.2181819
https://doi.org/10.1109/TIT.2011.2181819
https://doi.org/10.1145/3564246.3585101
https://doi.org/10.1109/TIT.2017.2726064
https://arxiv.org/abs/2004.07935
https://doi.org/10.1109/TIT.2006.887523

61:22 When Can an Expander Code Correct Ω(n) Errors in O(n) Time?

20 Louis Golowich. New explicit constant-degree lossless expanders. In Proceedings of the 2024
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 4963–4971. SIAM,
2024.

21 Shouzhen Gu, Christopher A. Pattison, and Eugene Tang. An efficient decoder for a linear
distance quantum LDPC code. In Barna Saha and Rocco A. Servedio, editors, Proceedings of
the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, Orlando, FL, USA,
June 20-23, 2023, pages 919–932. ACM, 2023. doi:10.1145/3564246.3585169.

22 Venkatesan Guruswami. Iterative decoding of low-density parity check codes (a survey). arXiv
preprint cs/0610022, 2006.

23 Venkatesan Guruswami and Piotr Indyk. Near-optimal linear-time codes for unique decoding
and new list-decodable codes over smaller alphabets. In John H. Reif, editor, Proceedings on
34th Annual ACM Symposium on Theory of Computing, May 19-21, 2002, Montréal, Québec,
Canada, pages 812–821. ACM, 2002. doi:10.1145/509907.510023.

24 Matthew B. Hastings, Jeongwan Haah, and Ryan O’Donnell. Fiber bundle codes: breaking the
n1/2 polylog(n) barrier for quantum LDPC codes. In Samir Khuller and Virginia Vassilevska
Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing,
Virtual Event, Italy, June 21-25, 2021, pages 1276–1288. ACM, 2021. doi:10.1145/3406325.
3451005.

25 Jun-Ting Hsieh, Theo McKenzie, Sidhanth Mohanty, and Pedro Paredes. Explicit two-sided
unique-neighbor expanders. In Proceedings of the 56th Annual ACM Symposium on Theory of
Computing, pages 788–799, 2024.

26 Tali Kaufman and Izhar Oppenheim. Construction of new local spectral high dimensional
expanders. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing, pages 773–786, 2018.

27 Tali Kaufman and Ran J. Tessler. New cosystolic expanders from tensors imply explicit quantum
LDPC codes with Ω(

√
n logk n) distance. In Samir Khuller and Virginia Vassilevska Williams,

editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual
Event, Italy, June 21-25, 2021, pages 1317–1329. ACM, 2021. doi:10.1145/3406325.3451029.

28 Swastik Kopparty, Noga Ron-Zewi, and Shubhangi Saraf. Simple constructions of unique
neighbor expanders from error-correcting codes. arXiv preprint, 2023. arXiv:2310.19149.

29 Anthony Leverrier, Jean-Pierre Tillich, and Gilles Zémor. Quantum expander codes. In
Venkatesan Guruswami, editor, IEEE 56th Annual Symposium on Foundations of Computer
Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 810–824. IEEE Computer
Society, 2015. doi:10.1109/FOCS.2015.55.

30 Anthony Leverrier and Gilles Zémor. Quantum tanner codes. In 63rd IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31 - November
3, 2022, pages 872–883. IEEE, 2022. doi:10.1109/FOCS54457.2022.00117.

31 Anthony Leverrier and Gilles Zémor. Decoding quantum tanner codes. IEEE Trans. Inf.
Theory, 69(8):5100–5115, 2023. doi:10.1109/TIT.2023.3267945.

32 Anthony Leverrier and Gilles Zémor. Efficient decoding up to a constant fraction of the code
length for asymptotically good quantum codes. In Nikhil Bansal and Viswanath Nagarajan,
editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA
2023, Florence, Italy, January 22-25, 2023, pages 1216–1244. SIAM, 2023. doi:10.1137/1.
9781611977554.CH45.

33 Ting-Chun Lin and Min-Hsiu Hsieh. Good quantum ldpc codes with linear time decoder from
lossless expanders. arXiv preprint, 2022. arXiv:2203.03581.

34 Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. Ramanujan graphs. Combinatorica,
8(3):261–277, 1988.

35 Michael G Luby, Michael Mitzenmacher, Mohammad Amin Shokrollahi, and Daniel A Spielman.
Efficient erasure correcting codes. IEEE Trans. Inf. Theory, 47(2):569–584, 2001.

36 GA Margulis. Explicit constructions of expanders (russian), problemy peredaci informacii 9
(1973), no. 4, 71–80. MR0484767, 1973.

https://doi.org/10.1145/3564246.3585169
https://doi.org/10.1145/509907.510023
https://doi.org/10.1145/3406325.3451005
https://doi.org/10.1145/3406325.3451005
https://doi.org/10.1145/3406325.3451029
https://arxiv.org/abs/2310.19149
https://doi.org/10.1109/FOCS.2015.55
https://doi.org/10.1109/FOCS54457.2022.00117
https://doi.org/10.1109/TIT.2023.3267945
https://doi.org/10.1137/1.9781611977554.CH45
https://doi.org/10.1137/1.9781611977554.CH45
https://arxiv.org/abs/2203.03581

K. Cheng, M. Ouyang, C. Shangguan, and Y. Shen 61:23

37 Moshe Morgenstern. Existence and explicit constructions of q+ 1 regular ramanujan graphs
for every prime power q. Journal of Combinatorial Theory, Series B, 62(1):44–62, 1994.

38 Jonathan Mosheiff, Nicolas Resch, Noga Ron-Zewi, Shashwat Silas, and Mary Wootters. Ldpc
codes achieve list decoding capacity. In 2020 IEEE 61st Annual Symposium on Foundations
of Computer Science (FOCS), pages 458–469, 2020. doi:10.1109/FOCS46700.2020.00050.

39 Pavel Panteleev and Gleb Kalachev. Asymptotically good quantum and locally testable
classical LDPC codes. In Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th
Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022,
pages 375–388. ACM, 2022. doi:10.1145/3519935.3520017.

40 Pavel Panteleev and Gleb Kalachev. Quantum LDPC codes with almost linear minimum
distance. IEEE Trans. Inf. Theory, 68(1):213–229, 2022. doi:10.1109/TIT.2021.3119384.

41 Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy waves, the zig-zag graph product,
and new constant-degree expanders and extractors. In Proceedings 41st Annual Symposium on
Foundations of Computer Science, pages 3–13. IEEE, 2000.

42 Thomas J Richardson, Mohammad Amin Shokrollahi, and Rüdiger L Urbanke. Design of
capacity-approaching irregular low-density parity-check codes. IEEE Trans. Inf. Theory,
47(2):619–637, 2001.

43 Thomas J Richardson and Rüdiger L Urbanke. The capacity of low-density parity-check codes
under message-passing decoding. IEEE Trans. Inf. Theory, 47(2):599–618, 2001.

44 Noga Ron-Zewi, Mary Wootters, and Gilles Zémor. Linear-time erasure list-decoding of
expander codes. IEEE Trans. Inf. Theory, 67(9):5827–5839, 2021. doi:10.1109/TIT.2021.
3086805.

45 Ron M. Roth and Vitaly Skachek. Improved nearly-mds expander codes. IEEE Trans. Inf.
Theory, 52(8):3650–3661, 2006. doi:10.1109/TIT.2006.878232.

46 Michael Sipser and Daniel A Spielman. Expander codes. IEEE Trans. Inf. Theory, 42(6):1710–
1722, 1996.

47 Vitaly Skachek. Minimum distance bounds for expander codes. In 2008 Information Theory
and Applications Workshop, pages 366–370. IEEE, 2008.

48 DA Spielman. Linear-time encodable and decodable error-correcting codes. IEEE Trans. Inf.
Theory, 42(6):1723–1731, 1996.

49 R Tanner. A recursive approach to low complexity codes. IEEE Trans. Inf. Theory, 27(5):533–
547, 1981.

50 Michael Viderman. Linear-time decoding of regular expander codes. ACM Transactions on
Computation Theory (TOCT), 5(3):1–25, 2013.

51 Michael Viderman. LP decoding of codes with expansion parameter above 2/3. Inf. Process.
Lett., 113(7):225–228, 2013. doi:10.1016/J.IPL.2013.01.012.

52 Gilles Zémor. On expander codes. IEEE Trans. Inf. Theory, 47(2):835–837, 2001. doi:
10.1109/18.910593.

53 Gillés Zémor. On expander codes. IEEE Transactions on Information Theory, 47(2):835–837,
2001.

APPROX/RANDOM 2024

https://doi.org/10.1109/FOCS46700.2020.00050
https://doi.org/10.1145/3519935.3520017
https://doi.org/10.1109/TIT.2021.3119384
https://doi.org/10.1109/TIT.2021.3086805
https://doi.org/10.1109/TIT.2021.3086805
https://doi.org/10.1109/TIT.2006.878232
https://doi.org/10.1016/J.IPL.2013.01.012
https://doi.org/10.1109/18.910593
https://doi.org/10.1109/18.910593

Coboundary and Cosystolic Expansion Without
Dependence on Dimension or Degree
Yotam Dikstein # Ñ

Institute for Advanced Study, Princeton, NJ, USA

Irit Dinur # Ñ

Weizmann Institute of Science, Rehovot, Israel

Abstract
We give new bounds on the cosystolic expansion constants of several families of high dimensional
expanders, and the known coboundary expansion constants of order complexes of homogeneous
geometric lattices, including the spherical building of SLn(Fq). The improvement applies to the
high dimensional expanders constructed by Lubotzky, Samuels and Vishne, and by Kaufman and
Oppenheim.

Our new expansion constants do not depend on the degree of the complex nor on its dimension,
nor on the group of coefficients. This implies improved bounds on Gromov’s topological overlap
constant, and on Dinur and Meshulam’s cover stability, which may have applications for agreement
testing.

In comparison, existing bounds decay exponentially with the ambient dimension (for spherical
buildings) and in addition decay linearly with the degree (for all known bounded-degree high
dimensional expanders). Our results are based on several new techniques:

We develop a new “color-restriction” technique which enables proving dimension-free expansion
by restricting a multi-partite complex to small random subsets of its color classes.
We give a new “spectral” proof for Evra and Kaufman’s local-to-global theorem, deriving better
bounds and getting rid of the dependence on the degree. This theorem bounds the cosystolic
expansion of a complex using coboundary expansion and spectral expansion of the links.
We derive absolute bounds on the coboundary expansion of the spherical building (and any order
complex of a homogeneous geometric lattice) by constructing a novel family of very short cones.

2012 ACM Subject Classification Theory of computation → Expander graphs and randomness
extractors

Keywords and phrases High Dimensional Expanders, HDX, Spectral Expansion, Coboundary
Expansion, Cocycle Expansion, Cosystolic Expansion

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.62

Category RANDOM

Related Version Full Version: https://arxiv.org/abs/2304.01608 [10]

Funding Both authors were supported by Irit Dinur’s ERC grant 772839, and ISF grant 2073/21
when working on this project.
Yotam Dikstein: This material is based upon work supported by the National Science Foundation
under Grant No. DMS-1926686.

Acknowledgements We are deeply grateful to Lewis Bowen for his important feedback on our paper,
which greatly improved its clarity and readability.

1 Introduction

High dimensional expansion, which is a generalization of graph expansion to higher dimen-
sional objects, is an active topic in recent years. The importance of graph expansion across
many areas of computer science and mathematics, suggests that high dimensional expansion

© Yotam Dikstein and Irit Dinur;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 62; pp. 62:1–62:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yotam.dikstein@gmail.com
https://sites.google.com/view/yotam-dikstein
https://orcid.org/0000-0002-6248-6574
mailto:irit.dinur@weizmann.ac.il
https://www.wisdom.weizmann.ac.il/~dinuri/
https://orcid.org/0000-0002-4335-5237
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.62
https://arxiv.org/abs/2304.01608
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

62:2 Coboundary and Cosystolic Expansion Without Dependence on Dimension or Degree

may also come to have significant impact. So far we have seen several exciting applications
including analysis of convergence of Markov chains [1], and constructions of locally testable
codes and quantum LDPC codes [16, 55].

Several notions of expansion that are equivalent in graphs, such as convergence of random
walks, spectral expansion, and combinatorial expansion, turn out to diverge into two main
notions in higher dimensions.

The first is the notion of local link expansion which has to do with the expansion of the
graph underlying each of the links of the complex; where a link is a sub-complex obtained
by taking all faces that contain a fixed lower-dimensional face. This notion is qualitatively
equivalent to convergence of random walks, it implies agreement testing, and it captures
a spectral similarity between a (possibly sparse) high dimensional expander and the dense
complete complex. It allows a spectral decomposition of functions on the faces of the complex
in the style of Fourier analysis on the Boolean hypercube, see [13, 41, 31, 3, 25].

The second notion is coboundary and cosystolic expansion. Here we look at the complex
not only as a combinatorial object but also as a sequence of linear maps, called coboundary
maps, defined by the incidence relations of the complex. The i-th coboundary map δi maps
a function on the i-faces to a function on the i + 1-faces, C0 δ0→ C1 δ1→ · · · δd−1→ Cd where
Ci = Ci(X,F2) = {f : X(i) → F2} is the space of functions on i faces with coefficients in
F2 (we will consider general groups of coefficients, beyond F2). These functions are called
i-chains. The coboundary map δi is defined in a very natural way: the value of δf(s) for any
s ∈ X(i+ 1) is the sum of f(t) for all s ⊃ t ∈ X(i) (the precise definition is in Section 2).

Coboundary (or cosystolic1) expansion captures how well the coboundary map tests its
own kernel, in the sense of property testing. Given f ∈ Ci such that δf ≈ 0, coboundary
expansion guarantees existence of some g ∈ ker δi such that f ≈ g. More precisely, a complex
is a β coboundary (or cosystolic) expander if

wt(δf) ⩾ β · min
g∈Kerδ

dist(f, g)

where wt(δf) is the hamming weight of δf . We denote by hi(X) the largest value of β that
satisfies the above inequality for all f .

Whereas for i = 0 coboundary expansion coincides with the combinatorial definition of
edge expansion, for larger i, it may appear at first glance to be quite mysterious. However,
this definition is far from being a merely syntactical generalization of the i = 0 case and
turns out to provide a rich connection between topological and cohomological concepts and
between several important concepts in TCS, which we describe briefly below.

The study of coboundary and cosystolic expansion was initiated independently by Linial,
Meshulam and Wallach [45], [51] in their study of connectivity of random complexes, and by
Gromov [29] in his work on the topological overlapping property. Kaufman and Lubotzky [36]
were the first to realize the connection between this definition and property testing. This
point of view is important in the recent breakthroughs constructing locally testable codes
and quantum LDPC codes [16, 55] (see also earlier works [23]).

Moreover, the coboundary maps come from a natural way to associate a (simplicial)
complex to a constraint satisfaction problem. Attach a Boolean variable to each i-face, and
view the (i + 1)-faces as parity constraints. The value that an assignment f : X(i) → F2

1 The difference between coboundary and cosystolic expansion is just whether the cohomology is 0 or not
(i.e. whether Kerδi+1 = Imδi). This distinction is not important for this exposition and the expansion
inequality is the same in both cases.

Y. Dikstein and I. Dinur 62:3

gives on s ∈ X(i+ 1) is δf(s). This connection to CSPs has been harnessed towards showing
that the CSPs derived from certain cosystolic expanders are hard to refute for resolution and
for the sum of squares hierarchy, [17, 33].

In addition, cosystolic expansion of 1-chains (with non-abelian coefficients) of a complex
has been connected to the stability of its topological covers [20]. Informally, a complex is
cover-stable if slightly faulty simplicial covers are always “fixable” to valid simplicial covers.
Perhaps surprisingly, this is related to agreement testing questions, particularly in the small
1% regime, which is a basic PCP primitive and part of the initial motivation for this work.
We discuss agreement testing and its relation to coboundary expansion in more detail further
below in this introduction.

In light of all of the above, we believe that cosystolic expansion is a fundamental notion
that merits a deeper systematic study. Along with the aim of exploring its various implications,
a more concrete research goal would be to give strong bounds, and ultimately nail down
exactly, the correct expansion values for the most important and well-studied high dimensional
expanders. We mention that to the best of our knowledge even for the simplest cases, such
as expansion of k-chains in the n-simplex, exact expansion values are not yet completely
determined.

In this work we provide new bounds for the coboundary expansion of the spherical
building, and the cosystolic expansion of known bounded-degree high dimensional expanders
including the complexes of [49, 48, 42].

Two of the most celebrated results in this area are the works of [35] and [22] showing that
the bounded-degree families of Ramanujan complexes of [48] are cosystolic expanders. These
works introduce an elegant local-to-global criterion, showing that if the links are coboundary
expanders, and further assuming spectral expansion, then the entire complex is a cosystolic
expander.

The estimates proven by [35, 22] for the coboundary expansion parameters are roughly
hk(X) ⩾ min

(
1
Q , (d!)−O(2k)

)
. Here X is a d dimensional LSV complex and Q is the maximal

degree of a vertex which is roughly equal to 1/λO(d2) in these complexes, where λ is the
spectral bound on the expansion of the links. Subsequent works by Kaufman and Mass
[37, 38, 39], improved this bound to

hk(X) ⩾ min
(

1
Q
, (d!)−O(k)

)
. (1)

We completely get rid of the dependence on the ambient dimension d and on the maximal
degree Q, and prove

▶ Theorem 1. For every integer d > 1 and every small enough λ > 0 let X be a d-dimensional
LSV complex whose links are λ-one-sided expanders. For every group 2 Γ, every small enough
λ > 0 and every integer k < d− 1, hk(X,Γ) ⩾ exp(−O(k6 log k)).

Our bounds for hk only depend on the dimension k of the chains, so for k = 1 they are
absolute constants. For larger k we still suffer an exponential decay. We do not know what
the correct bound should be and whether dependence on k is at all necessary.

The case of k = 1 is interesting even in complexes whose dimension is d ≫ 1, because h1

controls the cover stability of the complex, as shown in [20]. Our bounds also immediately
give an improvement for the topological overlap constants, when plugged into the Gromov
machinery [30, 21, 22]. We elaborate on both of these applications later below.

2 The theorem holds for every group Γ for which cohomology is defined, namely, abelian groups for k > 1
and any group for k = 1.

APPROX/RANDOM 2024

62:4 Coboundary and Cosystolic Expansion Without Dependence on Dimension or Degree

The result is proven by enhancing the local-to-global criterion of [22], and introducing a
variant of the local correction algorithm that makes local fixes only if they are sufficiently
cost-effective. This is inspired by and resembles the algorithms in [22, 16, 55].

Our analysis is novel and departs from previous proofs: instead of relying on the so-called
“fat machinery” of [22] (and its adaptations [37, 38]), our proof is 100% fat free and relies on
the up/down averaging operators on real-valued functions. Our main argument is to show
that, for a function h that is the indicator of the support of a (locally minimal) k-chain,

∥D · · ·Dh∥2 ≳ · · · ≳ ∥DDh∥2 ≳ ∥Dh∥2 ≳ ∥h∥2,

where D is the down averaging operator, and we write a ≳ b whenever a ⩾ Ω(b). From here
we easily derive a lower bound on ∥h∥2 showing that either the correction algorithm has
found a nearby cocycle, or else the coboundary of our function was initially very large to
begin with.

This method gives universal bounds on the cosystolic expansion of any complex whose
links have both sufficient coboundary-expansion and sufficient local spectral expansion,

▶ Theorem 2. Let β, λ > 0 and let k > 0 be an integer. Let X be a d-dimensional simplicial
complex for d ⩾ k + 2 and assume that X is a λ-one-sided local spectral expander. Let Γ be
any group. Assume that for every non-empty r ∈ X, Xr is a coboundary expander and that
hk+1−|r|(Xr,Γ) ⩾ β. Then

hk(X,Γ) ⩾ βk+1

(k + 2)! · 4 − eλ.

Here e ≈ 2.71 is Euler’s number.

Armed with an improved local-to-global connection, we derive Theorem 1 from Theorem 2
by further strengthening the coboundary expansion of the links of the LSV complexes,
namely spherical buildings. The best previously known bound on coboundary expansion
of k-cochains in spherical buildings is due to [30] and [47]. They proved a lower bound of((

d+1
k+1

)
(d+ 2)!

)−1
. This decays exponentially with the ambient dimension d, and with the

cochain level k. We remove the dependence on d by developing a new technique which we
call “color-restriction”. The d-dimensional spherical buildings are colored, namely, they are
d+1-partite. For a set of ℓ colors F ⊂ [d+1], the color restriction XF is the complex induced
on vertices whose color is contained in F . The restriction to the the colors of F reduces the
dimension of X from d to ℓ− 1. We say that a color restriction XF is a β-local coboundary
expander, if XF is a β-coboundary expander, and the same holds for the intersection of XF

with links (neighbourhoods) of faces whose color is disjoint from F . We show that if a typical
color-restriction is a local coboundary expander, then the entire complex is a coboundary
expander, and the expansion is independent of the dimension. Namely,

▶ Theorem 3. Let k, ℓ, d be integers so that k + 2 ⩽ ℓ ⩽ d and let β, p ∈ (0, 1]. Let X be a
(d+ 1)-partite d-dimensional simplicial complex so that

P
F ∈([d+1]

ℓ)

[
XF is a β-locally coboundary expander

]
⩾ p.

Then hk(X) ⩾ pβk+1

e(k+2)! .

Y. Dikstein and I. Dinur 62:5

Finally, to prove that the spherical building satisfies the conditions of this theorem, we
need to show that a typical random color-restriction is a good coboundary expander. For
this we rely on the “cone machinery” developed by Gromov [30], Kozlov and Meshulam [44],
and Kaufman and Oppenheim [42]. We construct in the full version of this paper [10], a
novel family of short cones, thus proving the following.

▶ Theorem 4. Let k ⩾ 0. There is an absolute constant βk = exp(−O(k5 log k)) ⩾ 0 so
that the following holds. Let X be the SLn(Fq)-spherical building for any integer n ⩾ k + 1
and prime power q. Let Γ be any group. Then X is a coboundary expander with constant
hk(X,Γ) ⩾ βk.

In fact, we prove a more general version of this theorem, that holds for the order complex of
any homogeneous geometric lattice, see the full version of this paper [10].

Most earlier works on cosystolic expansion focus on F2 coefficients (see [37] and [20] for
two exceptions). This is an important case especially in light of Gromov’s result connecting
F2-expansion and topological overlap. However, expansion (of 1-chains) with respect to more
general coefficients is necessary for results on topological covers and in turn for agreement
testing. The theorems stated above show expansion of k-chains with respect to coefficients
not only in F2 but in general abelian groups Γ, and when k = 1 also for non abelian groups
Γ. In other words, the theorems hold for all groups of coefficients where the cohomology is
defined.

Finally, we end with an upper bound. While most of our work is focused on lower bounds
for coboundary and cosystolic expansion, we show in the full version of this paper [10] that
families of dense simplicial complexes cannot have cosystolic expansion greater than 1 + o(1).
This implies that high degree, in some weak sense, limits cosystolic expansion. It is interesting
to compare this to a result of Kozlov and Meshulam that shows upper bounds on coboundary
expansion of complexes with bounded degree [44].

1.1 Applications of cosystolic expansion
We describe two applications of cosystolic expansion for deriving topological properties of
simplicial complexes.

Topological overlap

Cosystolic expansion was studied by [30] to give a combinatorial criterion for the topological
overlapping property. Let f : X → Rk be continuous mapping (with respect to the natural
topology on X), i.e. f realizes X in Rk. A point p ∈ Rk is called c-heavily covered if

P
s∈X(k)

[p ∈ f(s)] ⩾ c.

A well known result by [24] showed that for every affine map from the complete 2-dimensional
complex to the plane, there exists a 1

27 -heavily covered point. Gromov’s greatly generalized
this theorem to all continuous functions (instead of only affine functions), all dimensions
k (instead of k = 2) and complexes that are cosystolic expanders (instead of the complete
complex), with c that depends on the dimension of the map k, as well as the cosystolic
expansion constant. For a precise statement, see the full version of this paper [10].

The motivation for [22] was to show that there exists families of bounded degree simplicial
complexes which have this property. They use [48] complexes and achieve a lower bound of
c ⩾ min(1

Q , (d!)−O(2k)), which comes from their bound on cosystolic expansion. This bound
has been improved as a corollary of [39] to min(1

Q , (d!)−O(k)). Here again, d is the dimension
of X, which may be much larger than k, and Q is the maximal degree of a vertex in X.

APPROX/RANDOM 2024

62:6 Coboundary and Cosystolic Expansion Without Dependence on Dimension or Degree

Plugging in our bounds into Gromov’s theorem gives the bound c ⩾ exp(−O(k7 log k))
for the topological overlapping property. This bound is free of the ambient dimension and of
the degree.

Cover stability

The second author and Meshulam studied a topological locally testable property called cover
stability [20]. This property is equivalent to cosystolic expansion of 1-chains. A covering map
between two simplicial complexes X,Y is a surjective t-to-1 simplicial map3 ρ : Y (0) → X(0)
such that for every ũ ∈ Y (0) and ρ(ũ) = u ∈ X(0), it holds that the links of ũ, u are
isomorphic Yũ

∼= Xu.
Graph covers (also known as lifts) have been quite useful in construction of expander

graphs. Bilu and Linial showed that random covers of Ramanujan graphs are almost
Ramanujan [6]. A celebrated result by [50] used these techniques to construct bipartite
Ramanujan graphs of every degree. Recently, [9] showed that random covers could also be
applied for constructing new simplicial complexes that are local spectral expanders.

Dinur and Meshulam [20] show that there exists a test that for any simplicial complex
X and an alleged cover given by a simplicial map ρ : Y → X samples q points (ui, ρ(ui))
and measures how close ρ is to an actual covering map. The query complexity of the test is
q = 3t points. Its soundness is affected by the cosystolic expansion of 1-chains. Using our
new bounds on cosystolic expansion, we show that the complexes constructed in [48] or in
[42] are cover-stable, i.e. that there exists some universal constant c > 0, such that for every
ρ : Y (0) → X(0)

P
(ui,ρ(ui))q

i=1

[test fails] ⩾ c · min {dist(ρ, ψ) | ψ : Y (0) → X(0) is a cover} ,

where the distance is Hamming distance.

Agreement testing

Coboundary expansion found an exciting new application in agreement testing [28, 11, 5].
An agreement test is a consistency test that originated as a component in low degree testing
[58, 2, 56], but has been extensively studied ever since (see e.g. [26, 34, 18]). This test is a
crucial component in many PCP constructions [57, 26, 15, 34, 19]. Given a set of partial
functions on a set, an agreement test is a way to test whether these functions are correlated
with some function that defined on the whole vertex set. The works [28, 11, 5] mentioned
above use coboundary expansion to characterize when an agreement test is sound. Via this
characterization they analyze agreement tests on high dimensional expanders. Continuing
this line of works, [12, 14, 4] use theorems and tools developed in a preliminary version of
this paper, to lower bound coboundary expansion of new high dimensional expanders, and
with these lower bounds they obtain new agreement tests. These include the first agreement
tests where the underlying complex family is bounded degree in the so called “list decoding
regime” (the regime that is relevant to high-soundness PCPs such as the parallel repetition
PCP [57, 34]).

3 simplicial means that every i-face in Y is sent to an i-face in X.

Y. Dikstein and I. Dinur 62:7

1.2 Related work

Coboundary and Cosystolic expansion was defined by Linial, Meshulam and Wallach [45],
[51], and indpendently by Gromov [30]. Gromov studied cosystolic expansion as a proxy for
showing the topological overlapping property. Linial, Meshulam and Wallach were interested
in analyzing high dimensional connectivity of random complexes.

Kaufman, Kazhdan and Lubotzky [35] introduced an elegant local to global argument
for proving cosystolic expansion of 1-chains in the bounded-degree Ramanujan complexes of
[49, 48]. This was significantly extended by Evra and Kaufman [22] to cosystolic expansion
in all dimensions, thereby resolving Gromov’s conjecture about existence of bounded degree
simplicial complexes with the topological overlapping property in all dimensions. Kaufman
and Mass [37, 38] generalized the work of Evra and Kaufman from F2 to all other groups
as well, and used this to construct lattices with good distance. The best previously known
bound for LSV complexes (1) was shown by Kaufman and Mass in [39].

Following ideas that appeared implicitly in Gromov’s work, Lubotzky Mozes and Meshulam
analyzed the expansion of many “building like” complexes [47]. Kozlov and Meshulam [44]
abstracted the main lower bound in [47] to the definition of cones (which they call chain
homotopies), in order to analyze the coboundary expansion of geometric lattices and other
complexes. Their work also connects coboundary expansion to other homological notions, and
gives an upper bound to the coboundary expansion of bounded degree simplicial complexes.
In [42], Kaufman and Oppenheim defined the notion of cones in order to analyze the cosystolic
expansion of their high dimensional expanders (see [40]). In addition, they also come up
with a criterion for showing that complexes admit short cones. They prove lower bounds on
the cosystolic expansion of their complexes for 0- and 1-chains. The case of k-chains with
k ⩾ 2 is still open.

Several works tried to define quantum LDPC codes as cohomologies of simplicial complexes.
Cosystolic expansion is used for analyzing the distance of the quantum code. Works by
Evra, Kaufman and Zémor [23] and by Kaufman and Tessler [43] used cosystolic expansion
in Ramanujan complexes to construct quantum codes that beat the

√
n-distance barrier.

This continued in a sequence of works [54, 32, 7] which culminated in the breakthrough
work of [55] that construct quantum LDPC codes with constant rate and distance. This
later code is a cohomology of a certain chain complex, albeit not a simplicial complex; and
it is analyzed essentially through the cosystolic expansion. Developing new techniques for
cosystolic expansion can be potentially useful in this domain as well.

1.3 Open questions

The works by [47], [44] and [42] analyze a variety of symmetric complexes (that support a
transitive group action). Could one combine our “color restriction” technique with the cone
machinery to get lower bounds independent of degree and dimension on these complexes
as well? There are a number of concrete constructions of local spectral high dimensional
expanders that have excellent local spectral properties [8, 46, 27, 52, 9]. Are any of them
cosystolic expanders?

Another intriguing direction of research is to develop additional techniques for analyzing
coboundary or cosystolic expansion. The current techniques are limited to complexes that
either have a lot of symmetry, or have excellent local expansion properties. Are there other
complexes with these properties?

APPROX/RANDOM 2024

62:8 Coboundary and Cosystolic Expansion Without Dependence on Dimension or Degree

Our expansion bounds still have a dependence on the level (k) of the chains. In the
complete complex, for instance, this is not necessary. The complete complex is a β = 1 + o(1)
coboundary expander for all k-chains [47]. It is not clear whether a dependence on k is
necessary even in the spherical building. Which complexes have coboundary expansion that
does not decay with the size of the chains?

Finally, the notion of coboundary and cosystolic expansion is closely related to locally
testable codes and quantum LDPC codes. They also have connections to agreement expanders.
It is interesting to find additional applications for these expanders.

1.4 Overview of the proof of Theorem 1
We start with a complex X that is a finite quotient of the affine building, as constructed
by [48]. Our goal is to lower bound the cosystolic expansion of X. The proof has three
components:

(Theorem 2) A new local-to-global argument that derives cosystolic expansion of the
complex from coboundary and spectral expansion of its links.
(Theorem 3) A general color restriction technique that reduces the task of analyzing the
coboundary expansion of a partite complex, to that of analyzing the local coboundary
expansion of random color restrictions of it.
(Theorem 4) Bounds on random color restrictions of (links of) the spherical building.
Towards this end we construct a novel family of short cones for the spherical building
(not based on apartments as in previous works [47]).

Below we give a short overview of each of these steps. For simplicity we assume in this
subsection that Γ = F2, which captures the main ideas.

The local to global argument, Theorem 2

Let X be our simplicial complex. We describe a correction algorithm, that takes as input
a k-chain f : X(k) → F2, with small coboundary P [δf ̸= 0] = ε and outputs a k-chain
f̃ : X(k) → F2 close to f that has no coboundary, i.e. δf̃ = 0. For this overview, we focus
on k = 1, i.e. f is a function on edges, which already exhibits the main ideas.

Let η > 0 be some predetermined parameter. Our algorithm locally fixes “stars” of lower
dimensional faces, that is, sets Stark(r) = {s ∈ X(k) | s ⊇ r} for r ∈ X(j) (when j ⩽ k).
The fix takes place only if it is sufficiently useful: whenever it decreases the weight of δf by
at least η P [Stark(r)]. In the case at hand, k = 1, so r is either a vertex or an edge, so
1. If r ∈ X(1), Star1(r) = {r} and a fix just means changing the value of f(r).
2. If r ∈ X(0), Star1(r) = {ru}u∼r are all edges adjacent to r. Here a fix means changing

the values of all {f(ru) | u ∼ r} simultaneously.

▶ Algorithm 5.
1. Set f0 := f . Set i = 0.
2. While there exists a vertex or edge r ∈ X(0) ∪X(1) so that Stark(r) has an assignment

that satisfies a η P [Stark(r)]-fraction of faces more than the current assignment.
Let fixr : Stark(r) → Γ be an optimal assignment to Stark(r).

Set fi+1(s) =
{
fi(t) r ̸⊆ s

fixr(s) r ⊆ s
.

Set i:=i+1.
3. Output the final function f̃ := fi.

Y. Dikstein and I. Dinur 62:9

The fact that we correct f locally only if the fix satisfies η fraction more triangles will promise
that dist(f, f̃) ⩽ 1

ηwt(δf). The output of the algorithm, f̃ , is not necessarily locally minimal
in the sense of [35, 22], but it is “η-locally-minimal”.

Notation: For functions g, h : X(ℓ) → R we denote by ⟨g, h⟩ = Er∈X(ℓ) [g(r)h(r)] the
usual inner product. For ℓ = 1, 2, denote by Dℓ the down operator that takes h : X(2) → R
and outputs Dℓh : X(2 − ℓ) → R via averaging. Namely Dℓh(r) is the average of h(s) over
s ⊇ r, Es⊇r [h(s)].

Let h : X(2) → R indicate the support of a δf̃ , so h(t) = 1 iff δf̃ ≠ 0. Our main argument
is to show

∥D3h∥2 ≳ ∥D2h∥2 ≳ ∥Dh∥2 ≳ ∥h∥2.

Eventually D3h = E[h]2 is just a constant function. This shows that (E[h])2 = const · E[h]
which implies that either the algorithm corrected f to a cosystol, i.e. h = 0, or that h has
large weight, which implies that δf had large weight to begin with.

Let us show for example that ∥D3h∥2 ≳ ∥D2h∥2 given that ∥D2h∥2 ≳ ∥Dh∥2 ≳ ∥h∥2.
To do so, we define an auxiliary averaging operator N based on a random walk from vertices
to triangles, and use the fact that in local spectral expanders,

∥D3h∥2 ≈ ⟨Nh,D2h⟩. (2)

The operator N : ℓ2(X(2)) → ℓ2(X(0)) is defined by Nh(v) = Es [h(s)], where s is sampled
according to the following walk: Given v ∈ X(0), sample some t ∈ X(3) such that v ∈ t, and
then go to the triangle s = t \ {v}. We mention that the concept of localizing over such a
distribution has appeared in [39]. The proof of (2) follows by localizing the expectation to
the links and relying on the link expansion as in [53], [13, Claim 8.8] and in [41].

The key lemma in the proof shows that if there are many faces s′ ⊇ v0 such that h(s′) = 1,
then there are many s such that v /∈ s, {v} ∪ s = t ∈ X(3), where h(s) = 1. More precisely,
we will show that for every v ∈ X(0) it holds that

Nh(v) ≳ β(D2h(v) − η)4. (3)

This immediately implies that

⟨Nh,D2h⟩ = E
v

[
D2h(v)Nh(v)

]
(3)
≳ β(E

v

[
(D2h(v))2]

− η E
v

[
D2h(v)

]
)

≳ β∥D2h∥2 − βη∥h∥2

≳ β∥D2h∥2.

The second inequality follows from Ev

[
D2h(v)

]
= Es [h(s)] = ∥h∥2. The last inequality

follows from the assumption that ∥h∥2 = O(∥D2h∥2). Combining this with (2) gives us the
desired inequality.

Let us understand what is written in (3). On the right-hand side, D2h(v) =
Pxy∈Xv(1) [h(vxy) = 1] is the fraction of triangles vxy containing v, such that δf̃(vxy) ̸= 0.
On the left-hand side, Nh(v) is the fraction of s that complete v to some t = v ∪ s ∈ X(3),
so that δf̃(s) ̸= 0. For such an s = uxy,

0 = δδf̃(vuxy) = δf̃(uxy) + (δf̃(vux) + δf̃(vuy) + δf̃(vxy)). (4)

Set g : Xv(1) → F2 to be g(xy) = δf̃(vxy), and note that g has the following properties:

APPROX/RANDOM 2024

62:10 Coboundary and Cosystolic Expansion Without Dependence on Dimension or Degree

1. By (4), δf̃(uxy) = 1 ⇐⇒ δg(uxy) = 1.
2. P [g ̸= 0] = Ps∋v

[
δf̃(s) ̸= 0

]
= D2h(v).

3. η-local-minimality: which is dist(g,B1(Xv)) ⩾ P [g ̸= 0] − η, where B1(Xv) =
{δψ | ψ : Xv(0) → F2} is the set of coboundaries.

We explain the third item. Assume towards contradiction that dist(g,B1(Xv)) < P [g ̸= 0]−η
and let δψ be a coboundary closest to g. Then by changing the values of f̃ on Star(v) to
be f̃ ′(vu) := f̃(vu) + ψ(u), we have that whenever g(xy) = δψ(xy), then the fixed function
satisfies δf̃ ′(vxy) = 0. I.e.

dist(g, δψ) = P
vxy

[
δf̃ ′(vxy) = 0

]
< P

vxy

[
δf̃(vxy) = 0

]
− η.

This is a contradiction to the η-local minimality of f̃ which is guaranteed by the algorithm.
Here is where the coboundary expansion of Xv comes into play. By coboundary expansion,

we have that P [δg(uxy) = 1] ⩾ β dist(g,B1(Xv)). By combining the above we will get that

Nh(v) = P
uxy∈Xv(2)

[
δf̃(uxy) ̸= 0

]
⩾ β(P

xy∈Xv(1)
[g(xy) ̸= 0] − η) = β(D2h(v) − η).

The “color restriction” technique, Theorem 3

For this overview, assume that k = 2 The full details are in the full version of this paper [10].
Let Y be a d-dimensional (d+ 1)-partite complex so that a p-fraction of its color restrictions
Y F are β-local-coboundary expanders. We begin with a 2-chain f : Y (2) → F2 with small
coboundary, namely Ps∈Y (3) [δf(s) ̸= 0] = ε. We need to find a 1-chain g : Y (1) → F2 so
that dist(f, δg) ⩽ O(ε

β3p).
We first select a random color restriction, i.e. a set of colors so that Y F is a local

coboundary expander, that the weight of δf when restricted to triangles whose colors are
in F is close to weight of δf on all Y . Averaging arguments guarantee that such F exists.
Using this F , we construct g in three steps. In the first step we define g on edges with both
endpoints colored in F , uv ∈ Y F . In the second step we define g on edges with one endpoint
colored in F , i.e. uv ∈ Y (1) where u ∈ Y F and v /∈ Y F . In the third step we define g on
edges uv ∈ X(1) with neither endpoints colored in F , i.e. where u, v /∈ Y F . Every step
uses the values of g that were constructed in the step before. For k > 2 the (k − 1)-chain is
constructed following a similar sequence of k + 1 steps.
1. We start with the values of g on edges vu ∈ Y F (1). By the choice of F , the weight of δf

inside Y F is roughly ε. Local coboundary expansion implies that there exists a 1-chain
g0 whose coboundary is close to f on Y F . We set g(uv) = g0(uv) for all uv ∈ Y F (1).

2. Next we define g on edges vu so that v /∈ Y F and u ∈ Y F . Fix some v /∈ Y F . Let
Y F

v =
{
s ∈ Y F

∣∣ s ∪ v ∈ Y
}

. This is the color restriction of the link of v. We wish to set
values for g(vu) for all edges vu such that u ∈ Y F

v (0). We describe a system of equations
that we use to set the values of g on the edges vu so as to satisfy a maximal number of
equations. For every u1u2 ∈ Y F

v (1), the triangle vu1u2 defines an equation:

f(vu1u2) + g(u1u2) = g(u1v) + g(u2v). (5)

Note that the left-hand side of the equation is known since we have the values of f on
all triangles, and we already constructed g for edges u1u2 ∈ Y F (1). So the above is an
equation with two unknowns. We set g(vu) simultaneously for all u ∈ Y F

v (1) to be an
assignment that satisfies the largest fraction of equations (ties broken arbitrarily).
The idea behind this step is the following. Obviously, we’d like that f(vu1u2) = g(u1u2) +
g(u1v) + g(u2v) for as many triangles as possible, so it makes sense to define g to satisfy

Y. Dikstein and I. Dinur 62:11

Figure 1 Tiling a cycle.

the largest amount of equations (5). Let hv : Y F
v (1) → F2 be the left-hand side of (5), i.e.

hv(u1u2) = f(vu1u2) + g(u1u2). We want to find an assignment gv : Y F
v (0) → F2 so that

hv(u1u2) = gv(u1) + gv(u2) for as many equations (5) as possible (and set g(vu) = gv(u)).
Finding a solution gv : Y F

v (0) → F2 that satisfies (5) is equivalent finding gv so that
hv(u1u2) = δgv(u1u2). Hence, to find an assignment that satisfies most of the equations
is the same showing that hv is close to a coboundary. In the analysis we show that
δhv ≈ 0. This together with the local coboundary expansion of Y F (which says that
h1(Y F

v ,F2) ⩾ β) will show that indeed we can find satisfying {gv}v /∈Y F so that f ≈ δg

where the distance is over edges uv where v /∈ Y F , u ∈ Y F .
3. Finally we need to define the values of g on edges vu so that v, u /∈ Y F . Let vu be such

an edge. Every triangle uvw where w ∈ Y F
vu(0) defines a constraint on g(vu):

f(uvw) + g(uw) + g(vw) = g(uv). (6)

As in the previous case, f(uvw) is known, and g(uw), g(vw) were determined in step 2. We
set g(vu) = maj

{
f(uvw) + g(uw) + g(vw)

∣∣ w ∈ Y F
uv(0)

}
. Ties are broken arbitrarily.

Here we use the local coboundary expansion of Y F in a way similar to the previous step,
to show that indeed f ≈ ∂g.

New bounds on color-restrictions of the spherical building via cones, Theorem 4

In order to apply the color restriction technique we need to show that for a d-dimensional
spherical building, many color restrictions are coboundary expanders5. For this overview
we assume that k = 1 and |F | = 5. Let us see how to bound coboundary expansion by
constructing short cones.

It turns out easier to do so when the set of colors is a set of colors that are geometrically
increasing (e.g. for k = 1 we need colors F = {i1, i2, ..., i5} so that ij ⩾ 10ij−1). The fraction
of such sets of colors F is a constant that doesn’t depend on d (it may depend on k). For
example, there is a constant probability that we select colors F so that for j = 1, 2, .., 5,

d
1016−3j ⩽ ij <

2d
1016−3j , since each of these intervals are a constant fraction of the interval

[1, 2, ..., d]. When these inequalities hold then ij ⩾ 10ij−1.
Denote by Y the SLd(Fq)-spherical building. Let Y F be a complex induced by the

subspaces of dimensions (i.e., colors) F = {i1, i2, ..., i5} so that ij ⩾ 10ij−1). Using the cone
technology described in the full version of this paper [10], showing the Y F is a coboundary
expander reduces to showing that there is a short 1-cone on Y F . A 1-cone consists of three
things:

5 In fact, we need to show that the links of the color restrictions are also coboundary expanders, but we
ignore this point in the overview for brevity.

APPROX/RANDOM 2024

62:12 Coboundary and Cosystolic Expansion Without Dependence on Dimension or Degree

1. A vertex v ∈ X(0) (sometimes called the apex).
2. For every u, a path pu from the apex v to u in Y F (1).
3. For every edge uw ∈, a tiling by triangles tuw ⊂ Y F (2) of the cycle that consists of the

path pu from v to u, the edge uw and the path pw from w back to v. Denote this cycle by
pu ◦ uw ◦ pw. Here a tiling is a set of triangles whose boundary is the edges of the cycle.

We give a formal and general definition of cones in the full version of this paper [10]. The
radius of a cone is rad((v, {pu}u∈Y F (0), {tuw}uw∈Y F (1))) = maxuw∈X(1)|tuw|.

We start by choosing an apex v = v0 of dimension i1 arbitrarily. Next we choose our
paths to be as short as possible, and to consist of subspaces of dimension as low as possible.
Explicitly we do the following.
1. For u adjacent to v0, set pu = (v0, u).
2. For u of the same dimension as v0 we find some w of dimension i2 so that w is a neighbour

of v0 and u, and set pu = (v0, w, u). This is always possible since the dimension of u+ v0
is at most 2i1, so we can take any w of dimension i2 ⩾ 2i1 that contains the sum of spaces.
(Notice how the fact that dimensions are geometrically increasing is important here).

3. For other u ∈ Y F (0), we first take some w2 ⊆ u of dimension i1. Then we find some w1
who is a neighbour of v0 and of w2 and we set pu = (v0, w1, w2, u).

Constructing tw1w2 requires more care. Let us first consider the easier case. If
dim(w1), dim(w2) ⩽ i4 then the cycle pw1 ◦ w1w2 ◦ pw2 contains at most 7 vertices, all
of dimension ⩽ i4. In particular, the sum of all the vertices/subspaces is of dimension at
most 7i4 ⩽ i5, so there is a vertex u∗ of dimension i5 that contains all the vertices in the
cycle. The set of triangles u∗xy for all edges xy in the cycles is indeed a tiling of the cycle.

In the general case, it could be that the dimension of (say) w1 is i5. For example, assume
that dim(w1) = i5, dim(w2) = i4 (in particular w2 ⊆ w1. It is useful to read this description
while looking at Figure 1. In this case, we first find a tiling that “shifts” the cycle to a cycle
of low dimension vertices. More explicitly, we find some w′

2 ⊆ w2 of dimension i3, that is
also connected to w’s neighbours in the cycle. These neighbours are w1 (and any subspace
of w2 is connected to it), and some u′

2 of dimension ⩽ i2, so we can indeed find some w′
2

that is connected to u and u′
2 of dimension i3. We tile the cycle with w2w

′
2u

′
2, w2w

′
2w1. This

exchanges w2 with w′
2 in the untiled cycle. We perform a similar vertex-switch, for w1 as

well, finding some w′
1 of dimension i4 that is connected to w1 neighbours in the untiled cycle.

After these two steps, we can find a u∗ that is connected to all the (now low-dimensional)
cycle as in the previous case.

1.5 Organization of this paper and the full version
Section 2 contains preliminaries. We prove Theorem 2 that connects coboundary expansion
in links to cosystolic expansion in Section 3 via the local correction algorithm. We develop
the “color restriction” technique and prove Theorem 3 in the full version of this paper [10].
We analyze the expansion of the spherical building and other homogeneous geometric lattices
in the full version of this paper [10]. In the full version [10], we also tie everything up and
prove Theorem 1, as well as present the aforementioned applications of this bound. We also
give there an upper bound on the cosystolic expansion of dense complexes.

2 Preliminaries and notation

For a more thorough preliminary section, see the full version of the paper [10].

Y. Dikstein and I. Dinur 62:13

Simplicial complexes

A pure d-dimensional simplicial complex X is a set system (or hypergraph) consisting of
an arbitrary collection of sets of size d + 1 together with all their subsets. The sets of
size i + 1 in X are denoted by X(i), and in particular, the vertices of X are denoted by
X(0). We will sometimes omit set brackets and write for example uvw ∈ X(2) instead of
{u, v, w} ∈ X(2). As convention X(−1) = {∅}. Unless it is otherwise stated, we always
assume that X is finite. Let X be a d-dimensional simplicial complex. Let k ⩽ d. We
denote the set of oriented k-faces in X by

→
X(k) = {(v0, v1, ..., vk) | {v0, v1, ..., vk} ∈ X(k)}.

For s = (v0, v1, ..., vk) ∈
→
X(k) we denote set(s) = {vi}k

i=0, but when its clear from context
we abuse notation and write s for its underlying set instead of set(s). For an oriented face
s ∈

→
X(k) and an index i ∈ {0, 1, ..., k}, we denote by si the face obtained by removing the

i-th vertex of s.
Finally, Let s = (v0, ..., vi), and t = (u0, ..., uj). We denote by the concatenation

s ◦ t = (v0, v1, ..., vi, u0, u1, ..., uj).

Probability over simplicial complexes

Let X be a simplicial complex and let Pd : X(d) → (0, 1] be a density function on X(d)
(i.e.

∑
s∈X(d) Pd(s) = 1). This density function induces densities on lower level faces

Pk : X(k) → (0, 1] by Pk(t) = 1
(d+1

k+1)
∑

s∈X(d),s⊃t Pd(s). We can also define a probability over

directed faces, where we choose an ordering uniformly at random. Namely, for s ∈
→
X(k),

Pk(s) = 1
(k+1)! Pk(set(s)). When it’s clear from the context, we omit the level of the faces,

and just write P[T] or Pt∈X(k) [T] for a set T ⊆ X(k).

2.1 Coboundary and cosystolic expansion

Asymmetric functions

Let X be a d-dimensional simplicial complex. Let −1 ⩽ k ⩽ d be an integer. Let Γ be a
group. A function f :

→
X(k) → Γ is asymmetric if for every (v0, v1, ..., vk) ∈

→
X(k), and every

permutation π : [k] → [k] it holds that

f(v0, v1, ..., vk) = f(vπ(0), vπ(1), ..., vπ(k))sign(π).

We denote the set of these functions by Ck(X,Γ). We note that by fixing some order to
the vertices X(0) = {v0, v1, ..., vn}, there is a bijection between functions f : X(k) → Γ and
asymmetric functions

→
f :

→
X(k) → Γ. Given f : X(k) → Γ and a set s = {vi0 , vi1 , ..., vik

} so
that i0 < i1 < ... < ik, we set

→
f (vπ(i0), vπ(i1), ..., vπ(ik)) = f(s)sign(π).

Let f :
→
X(k) → Γ. The weight of f is wt(f) = Pt∈X(k) [f(t) ̸= 0]. For two functions

f, g :
→
X(k) → Γ the distance between f and g is dist(f, g) = wt(f−g) = Pt∈X(k) [f(t) ̸= g(t)].

Cohomology

Let Γ be an abelian group. The coboundary operator δk : Ck(X,Γ) → Ck+1(X,Γ) is defined
by δkf(s) =

∑k
i=0(−1)if(si). It is a direct calculation to verify that for any asymmetric

function f ∈ Ck the function δkf is indeed an asymmetric function, and that δk+1 ◦ δk = 0.

APPROX/RANDOM 2024

62:14 Coboundary and Cosystolic Expansion Without Dependence on Dimension or Degree

Let Bk(X,Γ) = Im(δk−1) be the space of coboundaries. Let Zk(X,Γ) = Ker(δk) be the
space of cosystols. As δk+1 ◦ δk = 0, it holds that Bk(X,Γ) ⊆ Zk(X,Γ). The k-cohomology
is Hk(X,Γ) = Zk(X,Γ)/Bk(X,Γ).

Coboundary expansion

For a function f :
→
X(k) → Γ let dist(f,Bk) = ming∈Ck−1 dist(f, δg), be the minimal distance

between f and a coboundary. The k-th coboundary constant of a complex X (with respect
to an abelian group Γ) is hk(X,Γ) = minf∈Ck\Bk

wt(δf)
dist(f,Bk) where Bk = Bk(X,Γ). Note that

hk(X,Γ) > 0 if and only if Hk = 0.

Cosystolic expansion

A very related high dimensional notion of expansion is cosystolic expansion. The k-th
cosystolic expansion constant of X (with respect to an abelian group Γ) is

hk(X,Γ) = min
f∈Ck\Zk

wt(δf)
dist(f, Zk) ,

where Zk = Zk(X,Γ). Notice that when Bk(X,Γ) = Zk(X,Γ), namely, when Hk = 0, this
coincides with the definition of coboundary expansion, and this justifies using the same
notation hk, where the term coboundary expansion (as opposed to cosystolic expansion) is
taken to indicate Hk = 0.

Another useful way to understand the constant is the following. hk(X,Γ) ⩾ β if and
only if for every f :

→
X(k) → Γ there is some h ∈ Zk(X,Γ) so that β dist(f, h) ⩽ wt(δf). We

note that in the work of [22] cosystolic expanders were also required to have no small weight
f ∈ Zk(X,Γ) \Bk(X,Γ). We don’t focus on this notion in our work.

Non abelian coboundary and cosystolic expansion

For k = 0, 1 we can define the cohomology with respect to non abelian groups as well. Let
Γ be a non abelian group. As before, for every k we can define Ck(X,Γ). We define the
coboundary operators as follows:
1. δ−1 : C−1(X,Γ) → C0(X,Γ) is δ−1h(v) = h(∅).
2. δ0 : C0(X,Γ) → C1(X,Γ) is δ0h(vu) = h(v)h(u)−1.
3. δ1 : C1(X,Γ) → C2(X,Γ) is δ1h(vuw) = h(vu)h(uw)h(wv).
It is easy to check that δk+1 ◦ δkf = e where e ∈ Γ is the unit. The definitions for hk(X,Γ)
and coboundary expansion are the same as in the abelian case for k = 0, 1.

2.2 Local properties of simplicial complexes
Links of faces

Let X be a d-dimensional simplicial complex. Let k < d and s ∈ X(k). The link of s is a
d−k− 1-dimensional simplicial complex defined by Xs = {t \ s | t ∈ X, t ⊇ s}. We point out
that the link of the empty set is X∅ = X. Let s ∈ X(k) for some k ⩽ d. The density function
Pd on X induces on the link is Ps

d−k−1 : X(d− k − 1) → (0, 1] where Ps
d−k−1[t] = P[t∪s]

P[s](d+1
k+1)

.
We usually omit s in the probability, and for T ⊆ Xs(k) we write Pt∈Xs(k) [T] instead.

High dimensional local spectral expanders

Let X be a d-dimensional simplicial complex. Let k ⩽ d. The k-skeleton of X is X⩽k =⋃k
j=−1 X(j). In particular, the 1-skeleton of X is a graph.

Y. Dikstein and I. Dinur 62:15

▶ Definition 6 (Spectral expander). Let G = (V,E) be a graph (that is, a 1-dimensional
simplicial complex). Let A be its normalized adjacency operator, i.e. for every f : V → R,
Af : V → R is the function Af(v) = Euv∈E [f(u)]. Let 1 = λ1 ⩾ λ2 ⩾ ... ⩾ λ|V | ⩾ −1 be the
eigenvalues of A.

Let λ ⩾ 0. We say that G is a λ-one sided spectral expander if λ2 ⩽ λ. We say that G is
a λ-two sided spectral expander if λ2 ⩽ λ and λ|V | ⩾ −λ.

▶ Definition 7 (high dimensional local spectral expander). Let X be a d-dimensional simplicial
complex. Let λ ⩾ 0. We say that X is a λ-one sided (two sided) local spectral expander if for
every s ∈ X⩽d−2, the 1-skeleton of Xs is a λ-one sided (two sided) spectral expander.

3 Cosystolic expansion

In this section we prove that local spectral expanders whose links are coboundary expanders
are cosystolic expanders, that is, Theorem 2.

In fact, we prove a slightly more general statement, allowing for different coboundary
expansion in every level.

▶ Theorem 8. Let k > 0 be an integer and let β0, β1, β2, ..., βk ∈ (0, 1] and λ > 0. Let X be
a d-dimensional simplicial complex for d ⩾ k + 2 and assume that X is a λ-one-sided local
spectral expander. Let Γ be any group. Assume that for every 0 ⩽ ℓ ⩽ k and r ∈ X(ℓ), Xr is

a coboundary expander and that hk−ℓ(Xr,Γ) ⩾ βk−ℓ. Then hk(X,Γ) ⩾
∏k

ℓ=0
βℓ

(k+2)!·4 − eλ.

Here e ≈ 2.71 is Euler’s number. Obviously, Theorem 2 follows from Theorem 8 by setting
βℓ = β for every ℓ = 0, 1, 2, ..., k. The following proposition, that is important for the
topological overlapping property will also be proven via similar arguments.

▶ Proposition 9. Let k > 0 be an integer and let β0, β1, β2, ..., βk−1 ∈ (0, 1] and λ > 0.
Let X be a d-dimensional simplicial complex for d ⩾ k + 1 and assume that X is a λ-one-
sided local spectral expander. Let Γ be any group. Assume that for every 0 ⩽ ℓ ⩽ k − 1
and r ∈ X(ℓ), Xr is a coboundary expander and that hk−ℓ(Xr,Γ) ⩾ βk−ℓ−1. Then every

g ∈ Zk(X,Γ) \Bk(X,Γ), has wt(g) ⩾
∏k−1

ℓ=0
βℓ

(k+1)! − eλ.

We remark that the when Γ is non abelian, these statements make sense only when k = 1.
Turning back to Theorem 8, we present a correction algorithm. We will show that when
f ∈ Ck(X,Γ) has a small coboundary, then the algorithm below returns some f̃ ∈ Zk(X,Γ)
that is close to f .

▶ Algorithm 10. Input: A function f :
→
X(k) → Γ, a parameter η ⩽ 1. Output: A function

f̃ :
→
X(k) → Γ.

1. Set f0 := f . Set i = 0.
2. While there exists ℓ ⩽ k, and a face r ∈

→
X(ℓ) so that Stark(r) = {s ∈ X(k) | r ⊆ s}

has an assignment that satisfies a η P [Stark(r)]-fraction of faces more than the current
assignment, do:

Let fixr : Stark(r) → Γ be an optimal assignment to Stark(r), satisfying the maximal
number of k + 1-faces containing r.

Set fi+1(s) =
{
fi(s) r ̸⊆ s

fixr(s) r ⊆ s
.

Set i:=i+1.
3. Output f̃ := fi.

APPROX/RANDOM 2024

62:16 Coboundary and Cosystolic Expansion Without Dependence on Dimension or Degree

3.1 Properties of Algorithm 10
Before proving Theorem 8 we record some properties of Algorithm 10.

▷ Claim 11. Algorithm 10 halts on every input.

▷ Claim 12. Let f :
→
X(k) → Γ and let η ⩽ 1. Let f̃ :

→
X(k) → Γ be the output of

Algorithm 10 on (f, η). Then η dist(f, f̃) ⩽ wt(δf).

These claims are elementary, they proven in full in the full version of this paper [10].

3.2 Local minimality
▶ Definition 13 (Restriction). Let g ∈ Ck(X,Γ) and let r ∈ X(ℓ) for some 0 ⩽ ℓ ⩽ k − 1.
The restriction of g to r is the function gr ∈ Ck−ℓ−1(Xr,Γ) is defined by gr(p) = g(r ◦ p).

▶ Definition 14 (Local minimality). Let η ⩾ 0 and let g ∈ Ck(X,Γ). We say that g is
η-locally minimal, if for every 0 ⩽ ℓ ⩽ k − 1, every r ∈ X(ℓ), and every h ∈ Ck−ℓ−2(Xr,Γ)
it holds that wt(gr) ⩽ wt(gr + δh) + η.

▶ Definition 15 (Non abelian local minimality). If Γ is non-abelian we need the correct analogy
to adding coboundaries. The definition of η-minimality is as follows. If k = 1, we say that g is
η-locally minimal if for every v ∈ X(0), and every γ ∈ Γ, it holds that wt(gv) ⩽ wt(γ ·gv)+η.
If k = 2, we say that g is η-locally minimal if:
1. For every edge uv and every γ ∈ Γ, it holds that wt(guv) ⩽ wt(γ · guv) + η.
2. For every vertex v and every function h : Xv(0) → Γ, it holds that wt(gv) ⩽ wt(gh

v) + η,
where gh

v (uw) = h−1(u)gv(uw)h(w).

The following claim is standard and is proven in the full version of this paper [10]

▷ Claim 16. Let f :
→
X(k) → Γ and let η ⩽ 1. Let f̃ :

→
X(k) → Γ be the output of

Algorithm 10 on (f, η). Then δf̃ is η-locally minimal.

3.3 Locally minimal cosystols are heavy
The following lemma states that non-zero functions that are locally minimal must have large
weight.

▶ Lemma 17. Let β0, ..., βk−1 and λ be as in Theorem 8. Let X be such that for every 0 ⩽
ℓ ⩽ k− 1 and every s ∈ X(ℓ) it holds that Xs is a coboundary expander and hk−ℓ−1(Xs,Γ) ⩾
βk−ℓ−1. Assume further that X is a λ-local spectral expander. Let g ∈ Zk(X,Γ) be non-zero
and η-locally minimal. Then

wt(g) ⩾
∏k−1

ℓ=0 βℓ

(k + 1)! − e(η + λ). (7)

Additionally, for the case of non-abelian Γ, when k = 2, (7) holds for η-locally minimal
and non-zero g = δf , for any f ∈ C1(X,Γ).

The last remark regarding k = 2 is needed since Z2(X,Γ) is not defined for non-abelian
groups Γ. This lemma implies Theorem 2 and Proposition 9 directly.

Y. Dikstein and I. Dinur 62:17

Proof of Theorem 8, given Lemma 17. Fix η =
∏k

ℓ=0
βℓ

4((k+2)!) . Let f̃ be the output of Al-

gorithm 10 for some function f and η. If wt(δf) ⩾
∏k

ℓ=0
βℓ

4(k+2)! − eλ there is nothing to prove,

so we assume that wt(δf) <
∏k

ℓ=0
βℓ

4(k+2)! − eλ. Then δf̃ ∈ Zk+1(X,Γ) is an η-locally minimal
function so that wt(δf̃) ⩽ wt(δf). Hence by Lemma 17 (applied with k + 1 instead of k),
δf̃ = 0 and f̃ is a cosystol. By Claim 12, η dist(f, f̃) ⩽ wt(δf), and we are done. ◀

Proof of Proposition 9, given Lemma 17. For every r ∈ X(j) and h ∈ Ck−j−1(Xr,Γ), we
define h↑ : X(k) → Γ by

h↑(s) =
{
h(p) s = r ◦ p
0 r ̸⊆ s.

.

It is easy to see that gr + δh = (g + δh↑)r.
Now let 0 ̸= g ∈ Zk(X,Γ) \ Bk(X,Γ) be minimal among all Zk(X,Γ) \ Bk(X,Γ). By

the above, g is also 0-locally minimal (since otherwise we could have found some non-zero

coboundary δh↑ to add to g and decrease its weight). Thus wt(g) ⩾
∏k−1

ℓ=0
βℓ

(k+1)! − eλ as required.
We remark that the case where Γ is non-abelian and k = 1 is similar. Given g ∈

Z1(X,Γ) \B1(X,Γ) that is non-zero and has minimal weight over all such functions. First
we establish that it is locally minimal. Indeed, assume towards contradiction that there is
some vertex v ∈ X(0) and γ ∈ Γ so that wt(gv) < wt(γgv). Then the function

g′(xy) =

γg(xy) x = v

g(xy)γ−1 y = v

g(xy) otherwise

.

is also a cosystol. Taking some triangle vuw ∈ X(2) that contains v, the value of

δg′(vuw) = γδg(vuw)γ−1 = e

(the identity in Γ). For any triangle uwx that doesn’t contain v we have that δg′(uwx) =
δg(uwx) = e. On the other hand, wt(g′) < wt(g) so g′ is trivial, which implies that g = δh

where h(v) = γ and h(u) = e. A contradiction to the fact that g /∈ B1(X,Γ). ◀

The remainder of this section is devoted to proving Lemma 17. For this we need to define
averaging operators that play a crucial role in the theory behind local-spectral expanders.
We will only define what we need so for a more thorough exposition see e.g. [13]. Let
ℓ2(X(j)) be the Hilbert space of all functions f : X(j) → R where the inner product is
⟨f, g⟩ = Er∈X(j) [f(r)g(r)]. Let Dk : ℓ2(X(k)) → ℓ2(X(k − 1)) be the following operator

Dkf(s) = E
t⊇s

[f(t)] .

This operator’s adjoint is Uk−1 : ℓ2(X(k − 1)) → ℓ2(X(k)) that is defined by

Uk−1f(t) = E
s⊆t

[f(s)] .

As a shorthand we write Dℓ
k = Dk−ℓ+1Dk−ℓ+2...Dk for ℓ ⩾ 1 (and the same for U). For

ℓ = 0 D0
k = U0

k = Id. We record that Dℓ
kf is a function whose domain is X(k − ℓ), and that

U ℓ
kf is a function whose domain is X(k + ℓ).

APPROX/RANDOM 2024

62:18 Coboundary and Cosystolic Expansion Without Dependence on Dimension or Degree

Let j ⩽ k < d. The operator Nk→j : ℓ2(X(k)) → ℓ2(X(j)) is defined by

Nk→jf(r) = E
t∈X(k+1),t⊇r

[
E

s⊆t,r ̸⊆s
[f(s)]

]
.

Let us spell out this expression. We average over f(s) where s is chosen according to the
following rule. We first sample some t ⊇ r in X(k + 1), and then we sample s ⊆ t given that
it does not contain r.

When j, k is clear from the context we simply write D,U,N .
The following is an operator norm inequality that is similar to [13], but for the one-sided

case. We prove it in the full version of this paper [10].

▷ Claim 18. Let X be a λ-one-sided local spectral expander. Then Uk−j
j Nk→j ⪯

Uk−j+1
j−1 Dk−j+1

k + λId for every j ⩽ k.

Here A ⪯ B for self adjoint operators A,B means that B −A is positive semi-definite, that
is, ⟨(B −A)h, h⟩ ⩾ 0 for every function h in the domain of A,B.

Proof of Lemma 17. Let h = 1g ̸=0. We will prove that wt(g) = E[h] ⩾
∏k−1

ℓ=0
βℓ

(k+1)! − e(η + λ).
We do this by showing that
1. ∥Dkh∥2 ⩾ 1

k+1 ∥h∥2 − λ∥h∥2.

2. For 0 ⩽ j < k, ∥Dk−j+1
k h∥2 ⩾ βk−j−1

j+1 · ∥Dk−j
k h∥2 −

(
βk−j−1η

j+1 + λ
)

∥h∥2.

We note that Dk+1h is a constant (as λ-local spectral expansion says in particular that
the complex is connected) - the average of h on all faces. Hence ∥Dk+1h∥2 = E[h]2. By
iteratively applying these inequalities we get that

E[h]2 = ∥Dk+1h∥2

⩾ βk−1∥Dkh∥2 − (βk−1η + λ) ∥h∥2

⩾
βk−1βk−2

2 ∥Dk−1h∥2 − βk−1

(
βk−2η

2 + λ

)
∥h∥2 − (βk−1η + λ) ∥h∥2

...

⩾ ∥h∥2 ·

∏k−1
ℓ=0 βℓ

(k + 1)! − η
k−1∑
j=0

βj

(k − j + 1)! − λ

1 +
k−1∑
j=0

βj

(k − j + 1)!

 .

By assuming βj ⩽ 1, we upper bound
∑k−1

j=0
βj

(k−j+1)! ⩽
∑∞

j=0
1
j! = e, and get E[h]2 ⩾

∥h∥2 ·
∏k−1

ℓ=0
βℓ

(k+1)! − e(η + λ). As ∥h∥2 = E[h] the lemma follows.

Let us begin with the first item. we call s ∈ X(k) active if h(s) = 1. By assumption,
g ∈ Zk(X,Γ), i.e.

δg(t) =
k+1∑
i=0

(−1)ig(ti) = 0.

Thus if t ∈ X(k + 1) contains an active s = ti1 , then it must also contain a second active

Y. Dikstein and I. Dinur 62:19

s′ = ti2
6. This implies that Nk→kh(s) ⩾ 1

k+1h(s), and so

⟨h,Nk→kh⟩ = E
t
[h(t)Nk→kh(t)] ⩾ 1

k + 1∥h∥2.

By Claim 18 Nk→k ⪯ UD + λId, so

1
k + 1∥h∥2 ⩽ ⟨Nk→kh, h⟩ ⩽ ⟨UDh, h⟩ + λ∥h∥2 = ∥Dh∥2 + λ∥h∥2

so the first item is proven.
Next, we will prove the second item. As before, we will show that

⟨Uk−jNk→jh, h⟩ ⩾ βk−j−1

j + 1 · (∥Dk−jh∥2 − η∥h∥2). (8)

Then we rely on Claim 18

∥Dk−j+1h∥2 ⩾ ⟨Uk−jNk→jh, h⟩ − λ∥h∥2. (9)

Combining these inequalities completes the proof.
We now state the following claim, which is proven using the coboundary expansion of Xr

where r is a j-face.

▶ Lemma 19 (Key lemma). Let r ∈ X(j). Then

Nk→jh(r) ⩾ βk−j−1

j + 1 (Dk−jh(r) − η).

From this pointwise inequality, (8) follows easily:

⟨Uk−jNk→jh, h⟩ = ⟨Nk→jh,D
k−jh⟩ ⩾ E

r

[
Dk−jh(r) · βk−j−1

j + 1 · (Dk−jh(r) − η)
]

= βk−j−1

j + 1 · (∥Dk−jh∥2 − η∥h∥2) (10)

◀

We will prove Lemma 19 under the assumption that Γ is abelian since additive notation
is more convenient. For non-abelian groups, see Remark 20.

Proof of Lemma 19. First, let us understand the meaning of the inequality in Lemma 19.
Recall that Nk→jh(r) is an average of h(s) over faces s ∈ X(k) so that r, s ⊆ t for some
t ∈ X(k + 1) and r ̸⊆ s. As h is an indicator function this is the same as writing

Nk→jh(r) = P
t,s

[h(s) = 1] ,

where t, s are as above. On the other side of the inequality there is Dk−jh(r) = Ps⊇r [h(s) = 1].
Hence, we need to show that if there are many active faces that contain r, there must also
be many active faces that “complete” r to a (k + 1)-face.

We first note that

Nk→jh(r) = P
t,s

[h(s) = 1] ⩾ 1
j + 1 P

t
[∃s ⊆ t h(s) = 1 and r ̸⊆ s] , (11)

so we shall actually lower bound Pt [∃s ⊆ t h(s) = 1 and r ̸⊆ s].

6 in the case where Γ is non-abelian and g = δf ∈ C2(X, Γ), even though δg(abcd) is not defined, one still
observes that δf(abc) = δf(acd) = δf(abd) = e implies that δf(bcd) = 0 so the same conclusion holds.

APPROX/RANDOM 2024

62:20 Coboundary and Cosystolic Expansion Without Dependence on Dimension or Degree

As g ∈ Zk(X,Γ), for every t = r ◦ p ∈ X(k + 1)

0 = δg(r ◦ p) =
j∑

i=0
(−1)ig(ri ◦ p) + (−1)j

k−j∑
i=0

(−1)ig(r ◦ pi). (12)

And in particular

k−j∑
i=0

(−1)ig(r ◦ pi) ̸= 0 ⇐⇒
j∑

i=0
(−1)ig(ri ◦ p) ̸= 0. (13)

Recall that the restriction of g is gr : Xr(k − j − 1) → Γ, defined by gr(p) = g(r ◦ p). As we
can see, δgr(p) is the left-hand side of (13). Thus

P
t

[∃s ⊆ t h(s) = 1 and r ̸⊆ s] ⩾ P
t=r◦p

[
k−j∑
i=0

(−1)ig(r ◦ pi) ̸= 0
]

(14)

= P
p∈Xr(k−j)

[δgr(p) ̸= 0] . (15)

By assumption Xr is a βk−j−1-coboundary expander, this is at least βk−j−1 ·
dist(gr, B

k−j−1(Xr,Γ)).
To conclude we need to show that

dist(gr, B
k−j−1(Xr,Γ)) ⩾ P

s⊇r
[g(s) ̸= 0] − η. (16)

But

dist(gr, B
k−j−1(Xr,Γ)) = min

f∈Ck−j−2(Xr,Γ)
{wt(gr + δf)} ⩾ wt(gr) − η. (17)

where the inequality follows from η-minimality of g. As wt(gr) = Ps⊇r [h(s) = 1] we have
proven

Nk→jh(r) ⩾ βk−j−1

j + 1 dist(gr, B
k−j−1(Xr,Γ)) ⩾ βk−j−1

j + 1

(
P

s⊇r
[h(s) = 1] − η

)
. ◀

▶ Remark 20 (The non-abelian case). The first place where we need to accommodate for the
non-commutativity is in the derivation of (14). Let us understand how to substitute (12)
which implies (13), for non-abelian groups.

If for example, if r ∈ X(0) and g ∈ Z1(X,Γ), and ruw ∈ X(2) we can write

e = δg(ruw) = g(ru)g(uw)g(wr)

instead of (12). This implies that

g(uw) = g(ur)g(rw) (18)

or

g(rw)g(uw)g(wr) = g(rw)·(g(ur)g(rw))·g(wr) = g(rw)g(ru)−1 = gr(w)gr(u)−1 = δgr(wu)

where in the first equality we plugged in the first part of (18) and in the second to last
equality we plugged in the second part of (18). Since the left hand side is a conjugation of
g(uw), we deduce that g(uw) ̸= e ⇐⇒ δgr(uw) ̸= e. This is the same conclusion as we get
in (12). The case where r ∈ X(1) is similar.

Y. Dikstein and I. Dinur 62:21

If k = 2 we cannot even define (12) since the coboundary map is not defined. Still, let us
see that a similar conclusion to (13) holds. Let g = δf ∈ C2(X,Γ). Let r = ab ∈ X(1) and
t = abcd ∈ X(3). Denote by γ = f(ab)f(bc)f(cd). Then

γ−1δgr(cd)γ = γ−1g(rc)g(rd)−1γ

= γ−1g(abc)g(adb)γ

= f(dc) ·
✭✭✭✭✭✭✭✭✭✭
(f(cb)f(ba)f(ab)f(bc)) · f(ca)f(ad)f(db) ·✭✭✭✭✭✭(f(ba)f(ab)) · f(bc)f(cd)

= (f(dc)f(ca)f(ad))(f(db)f(bc)f(cd))
= δf(dca)δf(dbc)

= g(dca)g(dcb)−1.

In particular, we deduce that g(dca)g(dcb)−1 ̸= e ⇐⇒ δgr(cd) ̸= e, and (14) now becomes

P
t

[∃s ⊆ t h(s) = 1 and r ̸⊆ s] ⩾ P
t=r◦cd

[
g(dca)g(dcb)−1 ̸= 0

]
= P

cd∈Xr(1)
[δgr(cd) ̸= 0] . (19)

Similarly, when r = a ∈ X(0) and t = abcd we observe similarly that

f(ab)g(bcd)f(ba) = f(ab)(f(bc)f(cd)f(db))f(ba)
= f(ab)f(bc) · (f(ca)f(ac)) · f(cd) · (f(da)f(ad)) · f(db)f(ba)
= δf(abc)δf(acd)δf(adb)
= ga(bc)ga(cd)ga(db)
= δga(bcd),

and in particular

P
t

[∃s ⊆ t h(s) = 1 and r ̸⊆ s] ⩾ P
t=a◦bcd

[g(bcd) ̸= e] = P
bcd∈Xa(2)

[δga(bcd) ̸= e] . (20)

The second equality we need to modify is (17). For example, take an η-locally minimal
g ∈ C2(X,Γ), a vertex r ∈ X(0), and δh ∈ B1(Xr,Γ) that is a closest coboundary to
gr ∈ C1(Xr,Γ). Then

dist(gr, δh) = P
[
gr(vu) ̸= h(v)h(u)−1]

= wt(gh
r) ⩾ wt(gr) − η.

The case where r ∈ X(1) is similar.

References
1 Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant. Log-concave polynomials

II: high-dimensional walks and an FPRAS for counting bases of a matroid. In Moses Charikar
and Edith Cohen, editors, Proceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 1–12. ACM,
2019. doi:10.1145/3313276.3316385.

2 Sanjeev Arora and Madhu Sudan. Improved low degree testing and its applications. In
Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, pages
485–495, El Paso, Texas, 1997.

3 Mitali Bafna, Max Hopkins, Tali Kaufman, and Shachar Lovett. High dimensional expanders:
Eigenstripping, pseudorandomness, and unique games. In Joseph (Seffi) Naor and Niv
Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2022, Virtual Conference / Alexandria, VA, USA, January 9 - 12, 2022, pages 1069–
1128. SIAM, 2022. doi:10.1137/1.9781611977073.47.

4 Mitali Bafna, Noam Lifshitz, and Dor Minzer. Constant degree direct product testers with
small soundness, 2024. arXiv:2402.00850.

APPROX/RANDOM 2024

https://doi.org/10.1145/3313276.3316385
https://doi.org/10.1137/1.9781611977073.47
https://arxiv.org/abs/2402.00850

62:22 Coboundary and Cosystolic Expansion Without Dependence on Dimension or Degree

5 Mitali Bafna and Dor Minzer. Characterizing direct product testing via coboundary expansion.
In Proceedings of the 56th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2024, 2024.

6 Yehonatan Bilu and Nathan Linial. Lifts, discrepancy and nearly optimal spectral gap.
Combinatorica, 26(1439-6912):495–519, 2006. doi:10.1007/s00493-006-0029-7.

7 Nikolas P. Breuckmann and Jens N. Eberhardt. Balanced product quantum codes. IEEE Trans-
actions on Information Theory, 67(10):6653–6674, 2021. doi:10.1109/TIT.2021.3097347.

8 Michael Chapman, Nathan Linial, and Peled Yuval. Expander graphs — both local and global.
Combinatorica, 40:473–509, 2020. doi:10.1007/s00493-019-4127-8.

9 Yotam Dikstein. New high dimensional expanders from covers. In Proceedings of the 55th
Annual ACM Symposium on Theory of Computing, STOC 2023, pages 826–838, New York,
NY, USA, 2023. Association for Computing Machinery. doi:10.1145/3564246.3585183.

10 Yotam Dikstein and Irit Dinur. Coboundary and cosystolic expansion without dependence on
dimension or degree, 2023. arXiv:2304.01608.

11 Yotam Dikstein and Irit Dinur. Agreement theorems for high dimensional expanders in the
small soundness regime: the role of covers. In Proceedings of the 56th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2024, 2024.

12 Yotam Dikstein and Irit Dinur. Swap cosystolic expansion. In Proceedings of the 56th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2024, 2024.

13 Yotam Dikstein, Irit Dinur, Yuval Filmus, and Prahladh Harsha. Boolean function analysis on
high-dimensional expanders. In Proc. 20th International Workshop on Randomization and
Computation (RANDOM), volume 116, pages 37:1–37:21, Princeton, NJ, 2018. RANDOM/AP-
PROX. doi:10.4230/LIPIcs.APPROX/RANDOM.2018.37.

14 Yotam Dikstein, Irit Dinur, and Alexander Lubotzky. Low acceptance agreement tests via
bounded-degree symplectic hdxs, 2024. arXiv:2402.01078.

15 Irit Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):12, 2007. doi:10.1145/
1236457.1236459.

16 Irit Dinur, Shai Evra, Ron Livne, Alexander Lubotzky, and Shahar Mozes. Locally testable
codes with constant rate, distance, and locality. In Stefano Leonardi and Anupam Gupta,
editors, STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome,
Italy, June 20 - 24, 2022, pages 357–374. ACM, 2022. doi:10.1145/3519935.3520024.

17 Irit Dinur, Yuval Filmus, Prahladh Harsha, and Madhur Tulsiani. Explicit sos lower bounds
from high-dimensional expanders. In 12th Innovations in Theoretical Computer Science (ITCS
2021), 2020. URL: https://arxiv.org/abs/2009.05218.

18 Irit Dinur and Tali Kaufman. High dimensional expanders imply agreement expanders. In
Proc. 58th IEEE Symp. on Foundations of Comp. Science (FOCS), pages 974–985, 2017.
doi:10.1109/FOCS.2017.94.

19 Irit Dinur and Or Meir. Derandomized parallel repetition via structured pcps. Comput.
Complex., 20(2):207–327, 2011. doi:10.1007/s00037-011-0013-5.

20 Irit Dinur and Roy Meshulam. Near coverings and cosystolic expansion. Archiv der Mathematik,
118(5):549–561, May 2022. doi:10.1007/s00013-022-01720-6.

21 Dominic Dotterrer, Tali Kaufman, and Uli Wagner. On expansion and topological overlap.
Geometriae Dedicata, 195:307–317, 2018.

22 Shai Evra and Tali Kaufman. Bounded degree cosystolic expanders of every dimension.
In Proc. 48th ACM Symp. on Theory of Computing (STOC), pages 36–48, 2016. doi:
10.1145/2897518.2897543.

23 Shai Evra, Tali Kaufman, and Gilles Zémor. Decodable quantum LDPC codes beyond the
square root distance barrier using high dimensional expanders. In Sandy Irani, editor, 61st IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA,
November 16-19, 2020, pages 218–227. IEEE, 2020. doi:10.1109/FOCS46700.2020.00029.

24 Z. Furedi and J. Komlos. The eigenvalues of random symmetric matrices. Combinatorica,
1:233–241, 1981. doi:10.1007/BF02579329.

https://doi.org/10.1007/s00493-006-0029-7
https://doi.org/10.1109/TIT.2021.3097347
https://doi.org/10.1007/s00493-019-4127-8
https://doi.org/10.1145/3564246.3585183
https://arxiv.org/abs/2304.01608
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2018.37
https://arxiv.org/abs/2402.01078
https://doi.org/10.1145/1236457.1236459
https://doi.org/10.1145/1236457.1236459
https://doi.org/10.1145/3519935.3520024
https://arxiv.org/abs/2009.05218
https://doi.org/10.1109/FOCS.2017.94
https://doi.org/10.1007/s00037-011-0013-5
https://doi.org/10.1007/s00013-022-01720-6
https://doi.org/10.1145/2897518.2897543
https://doi.org/10.1145/2897518.2897543
https://doi.org/10.1109/FOCS46700.2020.00029
https://doi.org/10.1007/BF02579329

Y. Dikstein and I. Dinur 62:23

25 Jason Gaitonde, Max Hopkins, Tali Kaufman, Shachar Lovett, and Ruizhe Zhang. Eigenstrip-
ping, spectral decay, and edge-expansion on posets. In Amit Chakrabarti and Chaitanya Swamy,
editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2022, September 19-21, 2022, University of Illinois, Urbana-
Champaign, USA (Virtual Conference), volume 245 of LIPIcs, pages 16:1–16:24. Schloss Dag-
stuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.APPROX/RANDOM.2022.16.

26 Oded Goldreich and Shmuel Safra. A combinatorial consistency lemma with application to
proving the PCP theorem. In RANDOM: International Workshop on Randomization and
Approximation Techniques in Computer Science. LNCS, 1997.

27 Louis Golowich. Improved Product-Based High-Dimensional Expanders. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2021), volume 207, 2021. doi:10.4230/LIPIcs.APPROX/RANDOM.2021.38.

28 Roy Gotlib and Tali Kaufman. List agreement expansion from coboundary expansion, 2022.
arXiv:2210.15714.

29 M. Gromov. Random walk in random groups. Geom. Funct. Anal., 13:73–146, 2003. doi:
10.1007/s000390300002.

30 M. Gromov. Singularities, expanders and topology of maps. part 2: from combinatorics to
topology via algebraic isoperimetry. Geom. Funct. Anal., 20:416–526, 2010. doi:10.1007/
s00039-010-0073-8.

31 Tom Gur, Noam Lifshitz, and Siqi Liu. Hypercontractivity on high dimensional expanders.
In Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th Annual ACM SIGACT
Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 176–184. ACM,
2022. doi:10.1145/3519935.3520004.

32 Matthew B. Hastings, Jeongwan Haah, and Ryan O’Donnell. Fiber bundle codes: breaking the
n1/2 polylog(n) barrier for quantum LDPC codes. In Samir Khuller and Virginia Vassilevska
Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing,
Virtual Event, Italy, June 21-25, 2021, pages 1276–1288. ACM, 2021. doi:10.1145/3406325.
3451005.

33 Max Hopkins and Ting-Chun Lin. Explicit lower bounds against \ omega (n)-rounds of
sum-of-squares. arXiv preprint arXiv:2204.11469, 2022.

34 Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. New direct-product testers and
2-query pcps. SIAM Journal on Computing, 41(6):1722–1768, 2012.

35 Tali Kaufman, David Kazhdan, and Alexander Lubotzky. Ramanujan complexes and bounded
degree topological expanders. In Proc. 55th IEEE Symp. on Foundations of Comp. Science
(FOCS), pages 484–493, 2014. doi:10.1109/FOCS.2014.58.

36 Tali Kaufman and Alexander Lubotzky. High dimensional expanders and property testing. In
Innovations in Theoretical Computer Science, ITCS’14, Princeton, NJ, USA, January 12-14,
2014, pages 501–506, 2014.

37 Tali Kaufman and David Mass. Good distance lattices from high dimensional expanders.
(manuscript), 2018. arXiv:1803.02849.

38 Tali Kaufman and David Mass. Unique-Neighbor-Like Expansion and Group-Independent
Cosystolic Expansion. In Hee-Kap Ahn and Kunihiko Sadakane, editors, 32nd International
Symposium on Algorithms and Computation (ISAAC 2021), volume 212 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 56:1–56:17, Dagstuhl, Germany, 2021. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ISAAC.2021.56.

39 Tali Kaufman and David Mass. Double Balanced Sets in High Dimensional Expanders.
In Amit Chakrabarti and Chaitanya Swamy, editors, Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022), volume
245 of Leibniz International Proceedings in Informatics (LIPIcs), pages 3:1–3:17, Dagstuhl,
Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.
APPROX/RANDOM.2022.3.

40 Tali Kaufman and Izhar Oppenheim. Construction of new local spectral high dimensional
expanders. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 773–786, 2018.

APPROX/RANDOM 2024

https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.16
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.38
https://arxiv.org/abs/2210.15714
https://doi.org/10.1007/s000390300002
https://doi.org/10.1007/s000390300002
https://doi.org/10.1007/s00039-010-0073-8
https://doi.org/10.1007/s00039-010-0073-8
https://doi.org/10.1145/3519935.3520004
https://doi.org/10.1145/3406325.3451005
https://doi.org/10.1145/3406325.3451005
https://doi.org/10.1109/FOCS.2014.58
https://arxiv.org/abs/1803.02849
https://doi.org/10.4230/LIPIcs.ISAAC.2021.56
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.3
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.3

62:24 Coboundary and Cosystolic Expansion Without Dependence on Dimension or Degree

41 Tali Kaufman and Izhar Oppenheim. High order random walks: Beyond spectral gap. Comb.,
40(2):245–281, 2020. doi:10.1007/s00493-019-3847-0.

42 Tali Kaufman and Izhar Oppenheim. Coboundary and cosystolic expansion from strong
symmetry. In 48th International Colloquium on Automata, Languages, and Programming,
ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of
LIPIcs, pages 84:1–84:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:
10.4230/LIPIcs.ICALP.2021.84.

43 Tali Kaufman and Ran J. Tessler. New cosystolic expanders from tensors imply explicit
quantum LDPC codes with Ω(

√
n logk n) distance. In STOC ’21: 53rd Annual ACM SIGACT

Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 1317–1329.
ACM, 2021. doi:10.1145/3406325.3451029.

44 Dmitry N Kozlov and Roy Meshulam. Quantitative aspects of acyclicity. Research in the
Mathematical Sciences, 6(4):1–32, 2019.

45 Nathan Linial and Roy Meshulam. Homological connectivity of random 2-complexes. Combin-
atorica, 26:475–487, 2006. doi:10.1007/s00493-006-0027-9.

46 Siqi Liu, Sidhanth Mohanty, and Elizabeth Yang. High-Dimensional Expanders from Expanders.
In Thomas Vidick, editor, 11th Innovations in Theoretical Computer Science Conference
(ITCS 2020), volume 151 of Leibniz International Proceedings in Informatics (LIPIcs), pages
12:1–12:32, Dagstuhl, Germany, 2020. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.ITCS.2020.12.

47 Alexander Lubotzky, Roy Meshulam, and Shahar Mozes. Expansion of building-like complexes.
Groups, Geometry, and Dynamics, 10(1):155–175, 2016.

48 Alexander Lubotzky, Beth Samuels, and Uzi Vishne. Explicit constructions of Ramanujan
complexes of type Ãd. European J. Combin., 26(6):965–993, 2005. doi:10.1016/j.ejc.2004.
06.007.

49 Alexander Lubotzky, Beth Samuels, and Uzi Vishne. Ramanujan complexes of type Ãd. Israel
J. Math., 149(1):267–299, 2005. doi:10.1007/BF02772543.

50 Adam W. Marcus, Daniel A. Spielman, and Nikhil Srivastava. Interlacing families i: Bipartite
ramanujan graphs of all degrees. Annals of Mathematics, 182:307–325, 2015. doi:10.4007/
annals.2015.182.1.7.

51 Roy Meshulam and N. Wallach. Homological connectivity of random k-dimensional complexes.
Random Struct. Algorithms, 34(3):408–417, 2009. doi:10.1002/rsa.20238.

52 Ryan O’Donnell and Kevin Pratt. High-dimensional expanders from chevalley groups. In
Shachar Lovett, editor, 37th Computational Complexity Conference, CCC 2022, July 20-23,
2022, Philadelphia, PA, USA, volume 234 of LIPIcs, pages 18:1–18:26. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.CCC.2022.18.

53 Izhar Oppenheim. Local spectral expansion approach to high dimensional expanders part
I: Descent of spectral gaps. Discrete Comput. Geom., 59(2):293–330, 2018. doi:10.1007/
s00454-017-9948-x.

54 Pavel Panteleev and Gleb Kalachev. Quantum LDPC codes with almost linear minimum
distance. IEEE Transactions on Information Theory, pages 1–1, 2021. doi:10.1109/TIT.
2021.3119384.

55 Pavel Panteleev and Gleb Kalachev. Asymptotically good quantum and locally testable
classical LDPC codes. In Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th
Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022,
pages 375–388. ACM, 2022. doi:10.1145/3519935.3520017.

56 R. Raz and S. Safra. A sub-constant error-probability low-degree test, and a sub-constant
error-probability PCP characterization of NP. In Proc. 28th ACM Symp. on Theory of
Computing, pages 475–484, 1997.

57 Ran Raz. A parallel repetition theorem. SIAM Journal on Computing, 27(3):763–803, June
1998.

58 Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with applications
to program testing. SIAM J. Comput., 25(2):252–271, 1996.

https://doi.org/10.1007/s00493-019-3847-0
https://doi.org/10.4230/LIPIcs.ICALP.2021.84
https://doi.org/10.4230/LIPIcs.ICALP.2021.84
https://doi.org/10.1145/3406325.3451029
https://doi.org/10.1007/s00493-006-0027-9
https://doi.org/10.4230/LIPIcs.ITCS.2020.12
https://doi.org/10.1016/j.ejc.2004.06.007
https://doi.org/10.1016/j.ejc.2004.06.007
https://doi.org/10.1007/BF02772543
https://doi.org/10.4007/annals.2015.182.1.7
https://doi.org/10.4007/annals.2015.182.1.7
https://doi.org/10.1002/rsa.20238
https://doi.org/10.4230/LIPIcs.CCC.2022.18
https://doi.org/10.1007/s00454-017-9948-x
https://doi.org/10.1007/s00454-017-9948-x
https://doi.org/10.1109/TIT.2021.3119384
https://doi.org/10.1109/TIT.2021.3119384
https://doi.org/10.1145/3519935.3520017

Rapid Mixing of the Down-Up Walk on Matchings
of a Fixed Size
Vishesh Jain #

Department of Mathematics, Statistics, and Computer Science,
University of Illinois Chicago, Chicago, IL, USA

Clayton Mizgerd #

Department of Mathematics, Statistics, and Computer Science,
University of Illinois Chicago, Chicago, IL, USA

Abstract
Let G = (V, E) be a graph on n vertices and let m∗(G) denote the size of a maximum matching in
G. We show that for any δ > 0 and for any 1 ≤ k ≤ (1 − δ)m∗(G), the down-up walk on matchings
of size k in G mixes in time polynomial in n. Previously, polynomial mixing was not known even for
graphs with maximum degree ∆, and our result makes progress on a conjecture of Jain, Perkins,
Sah, and Sawhney [STOC, 2022] that the down-up walk mixes in optimal time O∆,δ(n log n).

In contrast with recent works analyzing mixing of down-up walks in various settings using
the spectral independence framework, we bound the spectral gap by constructing and analyzing a
suitable multi-commodity flow. In fact, we present constructions demonstrating the limitations of
the spectral independence approach in our setting.

2012 ACM Subject Classification Mathematics of computing → Markov-chain Monte Carlo methods

Keywords and phrases Down-up walk, Matchings, MCMC

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.63

Category RANDOM

Funding Vishesh Jain: NSF CAREER award DMS-2237646
Clayton Mizgerd: NSF award ECCS-2217023

Acknowledgements We thank Huy Tuan Pham for helpful discussions and anonymous referees for
several useful suggestions.

1 Introduction

Sampling and counting matchings in graphs is a central and well-studied problem. An early
success in this direction is the classical algorithm of Kasteleyn for counting the number of
perfect matchings in a planar graph [18]. Starting with the foundational work of Valiant [23],
it was established that Kasteleyn’s algorithm is exceptional in the sense that it is #P-hard to
(exactly) count the number of perfect matchings, even for restricted classes of input graphs
such as bipartite graphs and graphs of bounded degree. In fact, perhaps quite surprisingly,
the more general problem of counting matchings of a given size is #P-hard, even restricted
to the class of planar graphs [15].

Given the above hardness results, the best one can hope for is fully polynomial-time
(possibly randomized) approximation schemes. In particular, in connection with fully
polynomial-time randomized approximation schemes (FPRAS) for the number of matchings
(possibly of a given size), as well as being an important problem in its own right, much work
has been devoted to the problem of approximately sampling from various distributions on
matchings of a graph. The celebrated work of Jerrum and Sinclair [16] showed that for the
monomer-dimer model at activity λ (i.e. the distribution on matchings where the probability

© Vishesh Jain and Clayton Mizgerd;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 63; pp. 63:1–63:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:visheshj@uic.edu
https://orcid.org/0000-0002-7275-3218
mailto:cmizge2@uic.edu
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.63
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

63:2 Rapid Mixing of the Down-Up Walk on Matchings of a Fixed Size

of a matching M is proportional to λ|M |; λ is known as the activity), the Glauber dynamics
mixes in time polynomial in n and λ. For graphs G = (V, E) of bounded degree and λ = O(1),
the optimal mixing time O(|E| log n) was obtained by Chen, Liu, and Vigoda [6].

By combining with a rejection sampling procedure, both of these works give polynomial
time algorithms to approximately sample from the uniform distribution on matchings of
size k ≤ (1 − δ)m∗(G) for any fixed δ > 0, where m∗(G) denotes the matching number of G

i.e. the size of a largest matching in G; approximately sampling from the uniform distribution
on perfect matchings of a graph remains a major open problem, although in the bipartite
case, this was famously resolved by Jerrum, Sinclair, and Vigoda [17]. For the class of
bounded degree graphs, an algorithm with near-optimal run time was provided by a recent
work of Jain, Perkins, Sah, and Sawhney [14]; they gave an algorithm which, given a graph
G of maximum degree ∆, an integer 1 ≤ k ≤ (1 − δ)m∗(G), and a parameter ε > 0, outputs
a random matching M of size k in time Õ∆,δ(n)1 such that the total variation distance is
less than ε between the distribution on M and the uniform distribution on Mk(G): the
matchings in G of size k.

Despite this progress, the mixing time of perhaps the simplest random walk on Mk(G) –
the so-called down-up walk – is not understood. By the down-up walk for matchings of size
k, we refer to the following chain:
1. Denote the state at time t by Mt ∈ Mk.
2. Choose e ∈ Mt and e′ ∈ E uniformly at random.2

3. Let M ′ := Mt ∪ {e′} \ {e}. If M ′ ∈ Mk, then Mt+1 = M ′. Else, Mt+1 = Mt.
It is clear that the down-up walk is reversible with respect to the uniform distribution on
Mk so that whenever it is ergodic (this need not be the case; for instance, consider the
uniform distribution on perfect matchings of an even cycle), it converges to the uniform
distribution on Mk. It is believed that for any fixed δ > 0 the down-up walk on Mk mixes
in polynomial time for all 1 ≤ k ≤ (1 − δ)m∗(G).3 In fact, it was conjectured by Jain,
Perkins, Sah, and Sawhney [14, Conjecture 1.4] that for graphs G of maximum degree ∆
and 1 ≤ k ≤ (1 − δ)m∗(G), the ε-total-variation mixing time of the down-up walk on Mk(G)
is O∆,δ(n log(n/ε)), which would be optimal up to the implicit constants.

The main result of this note establishes that the down-up walk on Mk(G) mixes in
polynomial time for all 1 ≤ k ≤ (1 − δ)m∗(G). While our mixing time is unfortunately not
sharp enough to resolve the aforementioned conjecture from [14], our result has the benefit
of being applicable to arbitrary graphs (as opposed to graphs of bounded degree).

▶ Theorem 1. Let δ ∈ (0, 1). For a graph G = (V, E) on n vertices and m edges, and an
integer 1 ≤ k ≤ (1 − δ)m∗(G), the down-up walk on matchings of size k has ε-mixing time
O(n4/δm4k log(1/ε)).

▶ Remark 2. Restricted to the class of graphs of maximum degree ∆, our proof gives the
improved ε-mixing time bound of O∆,δ(n6k log(1/ε)) by Equation (7) and Equation (1). We
leave it as a very interesting open problem whether the mixing time can be improved to
Õ∆,δ(n) in this case (as was conjectured in [14]).

1 Õ hides polylogarithmic factors in n and 1/ε.
2 Another convention is to choose e′ uniformly at random among those edges for which Mt∪{e′}\{e} ∈ Mk;

in our setting, this would only have the effect of leading to a constant factor speed-up in the mixing
time.

3 Some restriction on the range of k is needed since, as just mentioned, the down-up walk is not even
ergodic in general.

V. Jain and C. Mizgerd 63:3

Our proof is based on bounding the spectral gap using a carefully constructed flow. It is
natural to ask whether the powerful spectral independence framework (developed in [3]) can
be used to derive a similar result; in Section 3, we present examples showing that there are
serious barriers to this, even for the class of bounded degree graphs. Roughly, the main point
is that the condition k ≤ (1 − δ)m∗(G) is not closed under pinnings (even if we take pinnings
at random); this is not the case for the parameter range of independent sets considered
in [13] and is key to making the spectral independence approach amenable in their setting.

1.1 Related work
For the down-up walk, notice that even the case when G is itself a matching is already
interesting; in this case, the down-up walk coincides with the classical and well-studied
Bernoulli-Laplace chain to sample from the uniform distribution on

([n]
k

)
(e.g. [10, 19]).

As discussed earlier, there are polynomial time algorithms, based on the rapid mixing of
Glauber dynamics for the monomer-dimer model, to approximately sample from the uniform
distribution on Mk(G), 1 ≤ k ≤ (1 − δ)m∗

k(G); instead of combining rejection sampling with
the Glauber dynamics, one may also combine rejection sampling with a local random walk
to sample from the uniform distribution on the union of matchings of size k and k − 1 (the
rapid mixing of this walk is shown in [8]). For bipartite graphs [17] and planar graphs [1],
there are polynomial time algorithms to approximately sample from the uniform distribution
on Mk(G) for all 1 ≤ k ≤ m∗(G).

Perhaps most relevant to this note is recent work of Jain, Michelen, Pham, and Vuong [13]
which established optimal mixing of the down-up walk on independent sets of a given size
1 ≤ k ≤ (1 − δ)αc(∆)n, for the class of n vertex graphs G with maximum degree ∆ (using
the spectral independence framework). Here, αc(∆) is a function such that the problem
of (approximately) sampling independent sets of size k > αc(∆)n on n vertex graphs with
maximum degree ∆ is computationally intractable, unless NP = RP; this was shown by
Davies and Perkins [9]. In the same paper, Davies and Perkins showed that by combining
the rapid mixing of the Glauber dynamics for the hard-core model in the tree uniqueness
regime ([3, 6]) with a rejection sampling step, one can obtain a polynomial time algorithm to
approximately sample from the uniform distribution on independent sets of size k provided
that 1 ≤ k ≤ (1 − δ)αc(∆)n; this is entirely analogous to how [16, 6] imply polynomial time
approximate samplers for the uniform distribution on Mk(G) for 1 ≤ k ≤ (1 − δ)m∗(G).
Davies and Perkins conjectured [9, Conjecture 5] that the down-up walk for independent sets
mixes in polynomial time provided that 1 ≤ k ≤ (1 − δ)αc(∆)n and this was resolved (in a
stronger form) by [13]; our work may be viewed as resolving the analog of the conjecture of
Davies and Perkins for matchings.

Finally, we remark that there is a large body of literature in probability concerned with
the mixing of analogous walks for product(-like) domains with conservation laws (in our
setting, the size of the matching is a conserved quantity); see, e.g., [5, 12] and the references
therein. In our setting, the base measure (the natural choice is the monomer-dimer model
at a suitable activity) is significantly more complicated and very far from being a product
distribution, although we remark works are often able to exploit product structure and other
symmetries to obtain rather precise results.

1.2 Organization
In Section 2, we present the proof of Theorem 1. In Section 3, we discuss barriers to a
potential spectral independence approach for proving Theorem 1. In each (sub)section, we
begin with an overview of the proof and some motivation.

APPROX/RANDOM 2024

63:4 Rapid Mixing of the Down-Up Walk on Matchings of a Fixed Size

2 Proof of Theorem 1

2.1 Preliminaries
Let P denote the transition matrix of an ergodic Markov chain on the finite state space
Ω, which is reversible with respect to the (unique) stationary distribution π. Let E(P) =
{(x, y) ∈ Ω × Ω : P (x, y) > 0} denote the “edges” of the transition matrix. Recall that the
Dirichlet form is defined for f, g : Ω → R by

EP (f, g) := 1
2

∑
x,y∈Ω

π(x)P (x, y)(f(x) − f(y))(g(x) − g(y)).

The spectral gap α is defined to be the largest value such that for all φ : Ω → R,

α Varπ[φ] ≤ EP (φ, φ).

The (total-variation) mixing time is defined by

τmix = max
x∈Ω

min{t : d(P tx, π)TV < 1/4},

where d(·, ·)TV denotes the total variation distance between probability distributions.4 The
following relationship between the spectral gap and the mixing time is standard (see, e.g. [20]):

τmix ≤ α−1 log
(

1
minx∈Ω π(x)

)
. (1)

In order to bound the spectral gap of the down-up walk, we will use the technology of
multicommodity flows ([22, 11]).

▶ Definition 3. Consider the undirected graph H = (Ω, E(P)). For x, y ∈ Ω, let Qxy denote
the set of all simple paths from x to y in H. Let Q =

⋃
x,y Qxy. A flow is a function

f : Q → R≥0 such that
∑

q∈Qxy
f(q) = π(x)π(y). Given a flow f , we define its cost by

ρ(f) = max
(x,y)∈E(P)

1
π(x)P (x, y)

∑
q∋(x,y)

f(q),

and its length by

ℓ(f) = max
q:f(q)>0

|q|,

where |q| denotes the number of edges in the path q.

It was shown in [22, 11] that any flow gives a lower bound on the spectral gap.

▶ Theorem 4. Let P be a reversible ergodic Markov chain and f be a flow. Then the spectral
gap α satisfies

α ≥ 1/(ρ(f)ℓ(f)).

For each t ∈ E(P), let paths(t) = {q ∋ t : f(q) > 0}. A common tool (see, e.g., [22])
for bounding ρ(f) is a flow encoding, which is a collection of maps ηt : paths(t) → Ω for all
t ∈ E(P). If all the maps are poly(n)-to-one and the measure π is “fairly tame” (the uniform
measure on Ω automatically satisfies this condition), then this gives an inverse polynomial
bound on the spectral gap.

4 Note that the quantity 1/4 is fairly arbitrary here. Replacing 1/4 with ε increases the mixing time by
at most a factor of log2(ε−1).

V. Jain and C. Mizgerd 63:5

2.2 Constructing a flow
Recall that 1 ≤ k ≤ (1 − δ)m∗(G) and Ω denotes the set of matchings in G of size exactly
k. Given two matchings x, y ∈ Ω, our flow will be constructed by uniformly distributing
the demand π(x)π(y) over a collection of carefully constructed paths. Compared to the
construction of a flow in [16], we face two challenges:

First, since we are not working with perfect matchings (or matchings which are a constant
additive size away from being perfect), using just one path to route all the flow for each
pair of matchings in the natural fashion results in a flow with exponentially high cost.
To get around this issue, we use the (standard) idea of distributing the flow uniformly
among essentially all possible paths, as is done for the Bernoulli-Laplace model (see [22])
and also for a random walk on the union of matchings of size k and k − 1 [8].
Second – and this is the main new ingredient in our construction – our state space
consists of matchings of a fixed size, whereas all previous walks and flow constructions
(e.g. [16, 8]) required working with matchings of at least two adjacent sizes. In order to
route flow along such paths while still incurring only polynomial cost, we divide pairs of
matchings into a “good” set and a “bad” set depending on the combinatorial structure
of the symmetric difference. For the good set, it is fairly simple to construct a flow,
incorporating the above idea of distributing the flow uniformly among all possible paths.
For a pair in the bad set (x, y), we show that there is a nearby good pair (x̃, y), in the
sense that x can be transformed into x̃ using a short path. The fact that we can transform
x to a suitable x̃ with a short path is key to bounding the cost of the flow, and this is
where we use that k ≤ (1 − δ)m∗(G).

Let x ⊕ y denote the symmetric difference (x \ y) ∪ (y \ x). Since x and y are each
matchings and so have maximum degree 1, x ⊕ y is a disjoint union of paths and even-length
cycles. For the sake of analysis, place arbitrary total orders on the set of even length paths in
G and the set of even length cycles in G. Associate to each cycle one arbitrary distinguished
vertex and to each odd-length path one arbitrary distinguished endpoint. These will all
remain fixed for the remainder of the paper.

We partition Ω2 := Ω × Ω into (Ω2)g ∪ (Ω2)b where

(Ω2)b = {(x, y) : x ⊕ y contains a cycle and no odd-length paths},

(Ω2)g = Ω2 \ (Ω2)b.

We will first describe the collection of paths between the “good pairs” (Ω2)g. Later, we will
leverage this collection on paths along with an additional idea to obtain a suitable collection
of paths between the “bad pairs” (Ω2)b.

Good pairs

Let (x, y) ∈ (Ω2)g. The symmetric difference x ⊕ y consists of even length paths, even length
cycles, odd length paths with more edges in y (which are necessarily x-augmenting paths),
and odd length paths with more edges in x (which are necessarily y-augmenting paths).
We have an induced ordering on the even paths and the cycles from our total order. Since
|x| = |y|, x ⊕ y contains the same number of x-augmenting and y-augmenting paths; suppose
there are 2j total odd-length paths. Let σx, σy be permutations of the sets of x-augmenting,
y-augmenting paths respectively. For each such choice of (σx, σy), we construct a path as
follows from x to y in Ω. Before proceeding to the formal details, let us briefly describe the
procedure: we first change x to y along all even paths. We then change x to y along the

APPROX/RANDOM 2024

63:6 Rapid Mixing of the Down-Up Walk on Matchings of a Fixed Size

first x-augmenting path σx(1); at the end of such a path, there is an additional y-edge to
be added, which gives us the necessary room to switch from x to y along all cycles, while
still remaining in Ω. At the end of the cycle processing stage, there is an additional y-edge
to be added; we pair this up with switching x to y along the first y-augmenting path σy(1).
Finally, we switch x to y along pairs of x-augmenting and y-augmenting paths σx(i), σy(i) in
the natural fashion.

Formally, set M0 = x and proceed as follows:
1. Process all even length paths in order. To process an even path, enumerate the edges

e1, e2, . . . , e2ℓ such that ei ∩ ei+1 ̸= ∅ and e1 ∈ y. This places all odd edges in y and the
evens in x. Suppose t steps have been taken. First make the transition Mt+1 = Mt∪e1\e2,5
then Mt+2 = Mt+1 ∪ e3 \ e4, and continue until Mt+ℓ = Mt+ℓ−1 ∪ e2ℓ−1 \ e2ℓ. After
processing all even paths, if we have reached y, terminate.

2. Process the first x-augmenting path p = σx(1). Let e∗ ∈ p be the edge incident to the
distinguished endpoint. Process p \ e∗ as an even path as in step (1), leaving only e∗ to
be added.

3. Process all cycles in order. For a cycle c, let e (respectively e′) be the edge in c ∩ x

(respectively c ∩ y) incident to the distinguished vertex of c. First, let Mt+1 = Mt ∪ e∗ \ e

to complete the previous path and puncture the cycle. Now, process c \ {e, e′} as an even
path as in step (1). Label e∗ := e′ and process the next cycle in the same way. At the
end of this step, some e∗ will remain.

4. Process the first y-augmenting path p = σy(1). Let e ∈ p be the edge incident to the
distinguished endpoint. Begin with Mt+1 = Mt ∪ e∗ \ e, then process p \ e as an even
path as in step (1).

5. Process any remaining x-augmenting and y-augmenting paths in pairs p = σx(i), p′ = σy(i).
Let e (respectively e′) denote the edges incident to the distinguished endpoints of p

(respectively p′). First process p\e as an even path, then exchange Mt+1 = Mt ∪ e \ e′,
then process p′\e′ as an even path.

This defines a unique path from x to y for any two permutations σx, σy, and so gives
(j!)2 total paths x → y. We uniformly distribute the demand π(x)π(y) = 1/|Ω2| by setting
f(q) = 1/(|Ω|2(j!)2) for each path q thus defined.

Bad pairs

Given (x, y) ∈ (Ω2)b, we will route the flow through (Ω2)g by choosing some suitable
(x̃, y) ∈ (Ω2)g and adding a suitable prefix to all paths (as above) from x̃ to y. Since
|x| ≤ (1 − δ)m∗(G), x has some augmenting path p of length at most 2δ−1. This follows
from the pigeonhole principle: for M∗ a maximum matching in G, x ⊕ M∗ is a graph with at
most 2m∗(G) non-isolated vertices and at least δm∗(G) disjoint x-augmenting paths, so that
there must be an x-augmenting path of length at most 2δ−1. Consider now x+ := x ⊕ p; this
is a matching of size k + 1. We claim that there exists some e ∈ x+ such that for x̃ := x+ \ e

satisfies (x̃, y) ∈ (Ω2)g. To see this, note that since |x+| > |y|, x+ ⊕y contains a y-augmenting
path p′. If x+ ⊂ p′, then x+ ⊕ y cannot contain a cycle, as p′ is an alternating path between
edges in x+ and in y, and |x+| = |y| + 1, and so y ⊂ p′ as well. Thus x+ ⊕ y = p′ is a single
path and contains no cycles, so we may choose any e ∈ x+ and (x̃, y) ∈ (Ω2)g. Otherwise, by
choosing any edge e ∈ x+ \ p′, we guarantee x̃ ⊕ y has odd-length paths (in particular, p′)
and so (x̃, y) ∈ (Ω2)g.

5 As a slight abuse of notation, when m is a matching, we will write m ∪ e to mean m ∪ {e} and similarly
m \ e instead of m \ {e}.

V. Jain and C. Mizgerd 63:7

For every pair (x, y) ∈ (Ω2)b, we make a fixed (but otherwise arbitrary) choice of p (an
x-augmenting path of length at most 2δ−1) and e as above. For a path q̃ ∈ Qx̃y, we define
q ∈ Qxy as follows.
1. Process p as an x-augmenting path (see previous step 2), leaving some e∗ to be added.
2. Make the exchange Mt+1 = Mt ∪ e∗ \ e, arriving at x̃.
3. Follow the path q̃.

We assign f(q) = f(q̃) so that the same amount of flow is routed from x to y as from x̃

to y. We remark that choosing an augmenting path of length Oδ(1) is crucial for bounding
the cost of the flow below.

2.3 Flow encoding
For t ∈ E(P), we now bound f(t) :=

∑
q∋t f(q) using the method of flow encodings. Recall

that paths(t) = {q ∋ t : f(q) > 0}. Fix some transition t = (z, z′) ∈ E(P). We will partition
paths(t) into three sets and bound the contribution to f(t) from each of the three using a
“partial flow encoding”. We have the “good” paths pathsg(t) consisting of paths q ∈ paths(t)
whose endpoints are in (Ω2)g. Recall that the paths in (Ω2)b consist of two phases: the prefix
from x → x̃, and then a good path from x̃ → y. Denote by pathsa(t) those paths which use
the transition t in the prefix x → x̃, and by pathsb(t) those paths which use the transition t

in the path from x̃ → y. We will frequently need the set of short paths in G

Pδ :=
{

(v1v2 · · · vℓ) : {vi, vi+1} ∈ E(G), ℓ ≤ 2/δ
}

.

We will construct Ω × Pδ-valued functions ηg, ηb, ηa on these subsets of paths(t).

Construction of ηg

We first construct ηg : pathsg(t) → Ω × Pδ. Let t = (z, z′) ∈ E(P). For a path q, let q−, q+

be the endpoints. Let m = q− ⊕ q+ ⊕ (z ∪ z′). It is easily checked that m is a matching
of size k − 1 and that m′ ⊕ (z ∪ z′) = q− ⊕ q+ (the same construction is used in [16]).
For consistency, we further map m into an element of Ω × Pδ using a fixed (but otherwise
arbitrary) m′-augmenting path p ∈ Pδ. The existence of a short m-augmenting path is
guaranteed by the fact that |m| < (1 − δ)m∗(G). Formally, we have

ηg : pathsg(t) → Ω × Pδ

q 7→ (q− ⊕ q+ ⊕ (z ∪ z′) ⊕ p, p).

Note that given the image (m ⊕ p, p), we take (m′ ⊕ p) ⊕ p to recover m, which then recovers
q− ⊕ q+ as before. We can now reindex the sum∑

q∈pathsg(t)

f(q) =
∑

(m,p)∈Ω×Pδ

∑
q∈η−1

g (m,p)

f(q).

The endpoints of every q ∈ η−1
g (m, p) have the same symmetric difference as noted above.

Let this symmetric difference have 2j odd-length paths. By our construction of the flow,
f(q) = |Ω|−2(j!)−2 for all q ∈ η−1

g (m, p). We now count how many paths use the transition
(z, z′) based on which G-paths it is processing. This requires some case analysis, but
ultimately, is based on blending the analysis of the flow encoding for the Glauber dynamics
for the monomer-dimer model in [16] with the flow encoding for the Bernoulli-Laplace
model [22].

APPROX/RANDOM 2024

63:8 Rapid Mixing of the Down-Up Walk on Matchings of a Fixed Size

Case I: If (z, z′) is processing even length paths, then we can use our total order on even
length paths to identify which parts of each cycle belong to q− and to q+. We know that
we have not yet begun processing odd paths or cycles, so the parts in z belong to q− and
those outside z belong to q+. We thus know q− and q+ and so there are exactly (j!)2

paths using (z, z′).
Case II: If (z, z′) finishes processing an odd-length G-path and begins processing a cycle,

then we know the odd G-path is the first such processed, and by the same reasoning
as before, we can deduce the endpoints q− and q+. We also know σx(1) is the path
intersecting z ⊕ z′. The remainder of σx and the entirety of σy is free, so there are (j!)2/j

paths using (z, z′).
Case III: If (z, z′) is processing entirely cycles, then z has a perfect matching on j + 1 of the

odd-length paths and the interior edges on j − 1 of the odd-length paths. One of these
G-paths has already been augmented, and then there will be a path for every ordering of
the remaining G-paths. Thus there are (j + 1)j!(j − 1)! = (1 + 1/j)(j!)2 paths.

Case IV: If (z, z′) finishes a cycle and begins an odd-length path, then z has a perfect
matching on j + 1 odd paths (one of which is being de-augmented in (z, z′)) and the
interior edges on j − 1 odd paths. The path touched by z ⊕ z′ is σy(1). We must choose
one of the remaining j perfectly matched paths to be σx(1), and then the remainder of
σx, σy are free on the sets of j − 1 interior, perfect paths respectively. There are thus
j((j − 1)!)2 = (j!)2/j paths using (z, z′).

Case V: If (z, z′) is augmenting an odd-length path, then of the other 2j − 1 paths, z is
perfect on j and interior on j − 1. Suppose 2r paths have already been processed. Then
we may choose the already-augmented paths (

(
j
r

)
choices), the already-de-augmented

paths (
(

j−1
r

)
choices), the order for each ((r!)2 choices), and the order for the remaining

augmentations and de-augmentations ((j − r)!(j − 1 − r)! choices). This gives j!(j − 1)!
paths through (z, z′) that have already processed r pairs of G-paths. We now sum over
0 ≤ r ≤ j − 1 to get j(j!)(j − 1)! = (j!)2 total paths through (z, z′).

Case VI: If (z, z′) is de-augmenting an odd-length path, then by the same logic but with
j − 1 perfect paths and j interior paths, we again have (j!)2 total paths.

Case VII: If (z, z′) finishes augmenting one odd path and begins de-augmenting the next,
then we know these G-paths occur adjacently in the path q. Then by the same reasoning
as Case V but with j − 1 perfect paths and j − 1 interior paths, we will get (j!)2/j total
paths through (z, z′).

In all cases, we have at most (1+1/j)(j!)2 ≤ 2(j!)2 paths in η−1
g (m, p) that use the transition

(z, z′). As each has weight f(q) = |Ω|−2(j!)−2, this means the inner sum is at most 2/|Ω|2
and so we can bound∑

q∈pathsg(t)

f(q) =
∑

(m,p)∈Ω×Pδ

∑
q∈η−1

g (m,p)

f(q) ≤
∑

(m,p)∈Ω×Pδ

2
|Ω|2

= 2|Pδ|
|Ω|

. (2)

Construction of ηb

Recall that pathsb(t) are those paths that use the transition t as part of following a “good”
path from x̃ to y. Thus we may instead choose the good path q that is routed through t,
and then count how many starting points x could route through q− (the starting point of q)
to get to q+ (the ending point of q). By the construction of our paths, this requires x ⊕ q−

to be a single short augmenting G-path in Pδ together with a single edge in E(G). These

V. Jain and C. Mizgerd 63:9

together will uniquely determine the total path x → q+. Thus each good path through t is
used in at most |Pδ| |E(G)| bad paths, and the value of f is unchanged by the prefix, so we
may bound using Equation (2)∑

q∈pathsb(t)

f(q) ≤
∑

q̃∈pathsg(t)

|Pδ| |E(G)|f(q̃) ≤ 2|Pδ|2|E(G)|
|Ω|

. (3)

Construction of ηa

Finally, for t = (z, z−) and q ∈ pathsa(t), let p be the G-path that is augmented during the
prefix. Then, define the function

ηa : pathsa(t) → Ω × Pδ

q 7→ (q+, p).

Suppose q ∈ η−1
a (m, p) for some matching m ∈ Ω and G-path p ∈ Pδ and let t = (z, z−).

Then we know that q+ = m, and we know that q− consists of z \p and the interior alternating
edges of p. Thus all paths in η−1

a (m, p) have the same endpoints, and so their total flow is at
most the net flow between those two points, which is |Ω|−2. We can then calculate∑

q∈pathsa(t)

f(q) =
∑

(m,p)∈Ω×Pδ

∑
q∈η−1

a (m,p)

f(q) ≤
∑

(m,p)∈Ω×Pδ

1
|Ω|2

= |Pδ|
|Ω|

. (4)

Bounding the cost of the flow

Using Equation (2), Equation (3), and Equation (4), for any transition t ∈ E(P),∑
q∈paths(t)

f(q) =
∑

q∈pathsg(t)

f(q)+
∑

q∈pathsb(t)

f(q)+
∑

q∈pathsa(t)

f(q) ≤ 3|Pδ| + 2|Pδ|2|E(G)|
|Ω|

. (5)

Since π(z) = 1/|Ω| for all z ∈ Ω and P (z, z′) ≥ 1/(k|E(G)|) (since the possible transitions
from z consist of removing one of k edges and adding one of |E(G)| edges), we get that

ρ(f) ≤ |Ω| · k|E(G)| · 3|Pδ| + 2|Pδ|2|E(G)|
|Ω|

≤ 3k|E(G)|2|Pδ|2.

Finally, let ∆ denote the maximum degree of G and note that |Pδ| ≤ 2n∆2/δ−1 to get that

ρ(f) ≤ 12k|E(G)|2 · n2∆4/δ−2. (6)

2.4 Rapid mixing
We will use Theorem 4 to bound the spectral gap via the flow f defined in Section 2.2. Note
that the down-up walk is reversible with respect to the uniform distribution, aperiodic since
P (x, x) > 0, and irreducible (for instance, by using the paths used in our flow f). Therefore,
the assumptions of Theorem 4 are satisfied. To bound the maximum length ℓ(f) of any
path used in our flow, note that by construction, any edge in G is included in at most three
exchanges. Hence, ℓ(f) ≤ 3|E(G)|. Combining this with Equation (6), we see that the
spectral gap α of the down-up walk satisfies

α−1 ≤ 36k|E(G)|3 · n2∆4/δ−2. (7)

Finally, the mixing time bound in Theorem 1 follows from Equation (1) by noting that
log |Ω| ≤ log 2|E(G)| ≤ |E(G)|.

APPROX/RANDOM 2024

63:10 Rapid Mixing of the Down-Up Walk on Matchings of a Fixed Size

3 Barriers to the spectral independence approach

For a distribution π on
([n]

k

)
, we define the (signed) pairwise influence matrix Mπ ∈ Rn×n by

Mπ(i, j) =
{

0 if j = i,

Pπ[j | i] − Pπ[j | i] otherwise.
,

where Pπ[i] = PS∼π[i ∈ S] and Pπ[i] = PS∼π[i /∈ S]. We say that π is η-spectrally
independent (at link ∅) if λmax(Mπ) ≤ η and that π is η-ℓ∞-independent (at link ∅) if
maxi∈[n]

∑n
j=1 |Mπ(i, j)| ≤ η. Note that the latter condition implies the former.

We begin by noting that for the class of bounded degree graphs, for k bounded away from
the matching number, the uniform distribution on matchings of size k is O(1)-ℓ∞-independent.

▶ Proposition 5. Let G = (V, E) be a graph on n vertices with maximum degree ∆. Let
δ > 0 and for 1 ≤ k ≤ (1 − δ)m∗(G), let π be the uniform distribution on matchings of G of
size k. Then π is Oδ,∆(1)-ℓ∞-independent (at link ∅).

Proof. For k = o(n), this is implied by a coupling argument (e.g. [21]). For k = Ω(n), the
proof follows from the same argument as in the proof of [13, Theorem 8]: the differences
are that we compare to the monomer-dimer model at activity λ = Oδ,∆(1) using [14,
Lemma 4.1], replace [13, Theorem 9] by [6, Theorem 2.10], and replace [13, Theorem 15]
by a suitable multivariate zero-free region for the matching polynomial (e.g. [7]). We omit
further details. ◀

Given Proposition 5, one might hope to obtain an inverse polynomial bound on the
spectral gap of the down-up walk (at least for the class of bounded degree graphs) using
the powerful spectral independence framework as is done, for instance, in the case of the
down-up walk on independent sets of a fixed size in [13]; we refer the reader to [3] for an
introduction to this framework. In order to do this, we need to show that the distribution
remains Oδ,∆(1)-spectrally independent under any pinning. In our situation, a pinning τ

is a matching of size ℓ < k. We would then consider Ωτ = {m ∈ Ω : τ ⊂ m} under the
distribution induced by π (uniform, in our case), and show Oδ,∆(1)-spectral independence of
this space. We note that there is a more powerful “average-case” version of this argument,
which (roughly) allows us to consider typical pinnings obtained by starting from some fixed
matching of size k and pinning a random subset of k − ℓ edges to be included (see [4, 2]).
We present barriers to this approach.

We observe that such an approach cannot work for the down-up walk. Indeed, if it were to
work, then one would also be able to show that the down-up walk has inverse polynomial
spectral gap for the induced uniform distribution on size ℓ matchings obtained by starting
with an arbitrary matching of size k and pinning a uniform subset of k − ℓ edges to belong
to the matching. However, as we discuss below, it is easy to construct an example where
even for polynomially large ℓ, with high probability, the down-up walk is not even ergodic
(Claim 7).
In the above example, the failure of ergodicity may be circumvented by using an O(1)-step
down-up walk. However, it is still the case that proving mixing of the O(1)-step down-up
walk using the (average) spectral independence framework necessitates proving mixing for
the O(1)-step down-up walk for the aforementioned induced distributions on matchings
of size ℓ. We present a construction (Claim 6) showing that these induced distributions
can correspond to the uniform distribution on size ℓ matchings in pretty arbitrary graphs

V. Jain and C. Mizgerd 63:11

with matching number ℓ(1 + o(1)); hence, there does not seem to be a way to use this
machinery without basically showing that O(1)-step down-up walks mix rapidly for
(almost) maximum matchings in arbitrary bounded-degree graphs, which is a major open
problem.

Our examples will follow the same general template. To set up some notation, given a
graph G = (V, E) and a pinning τ (a matching τ in G), define the residual graph Gτ to be
the induced subgraph

Gτ = G[V (Gτ)],

where

V (Gτ) = V (G) \
⋃
e∈τ

e.

Sampling from the uniform distribution on matchings in G of size k, conditioned on pinning
τ to be in the matching, is equivalent to finding a matching of size k − |τ | in Gτ .

We are now ready to construct our examples. Fix some 0 < δ < 1/5 the desired gap from
maximality, as in the statement of Theorem 1. We define a graph G = (V, E) where |V | = n

as follows: G consists of δn/2 disjoint copies of P9 (the path with 10 vertices and 9 edges)
and an arbitrary graph G′ on the remaining (1 − 5δ)n vertices such that G′ has a perfect
matching. Let M be the matching given by taking the union of a perfect matching M ′ in G′

with the interior alternating edges on each P9; note that |M | = n/2 − δn/2 = (1 − δ)m∗(G).
We will be considering pinning a uniform random subset of M of a fixed size.

▷ Claim 6. For a random pinning τ of size (1 − λ)|M |, the ratio

E
[
1 − |M | − |τ |

m∗(Gτ)

]
= O(δλ4).

The implication of this claim is that, while we started with the uniform distribution on
matchings of size at most (1 − δ) of the maximum matching in G, we now need to deal with
the uniform distribution on matchings of size at least (1 − δλ4) times the maximum matching
in Gτ .

Proof. Let τ be a random pinning of size (1 − λ)|M |. Let Xτ be the number of P9s that τ

does not intersect. Then by linearity of expectation,

E[Xτ] = δn

2 Pr[τ avoids a fixed P9] = O(δnλ5). (8)

The key observation here is that once we have pinned any edge in M ∩ P9 for some copy of
P9, we have split P9 into two even paths and are demanding a maximum matching on each
of those. Hence, by construction, we see that m∗(Gτ) = |M | − |τ | + Xτ . We now compute

E
[
1 − |M | − |τ |

m∗(Gτ)

]
= 1 − E

[
|M | − |τ |

|M | − |τ | + Xτ

]
≤ 1 − |M | − |τ |

|M | − |τ | + E[Xτ]

≤ E[Xτ]
λ|M |

= O(δλ4),

where the first line uses Jensen’s inequality and the second line uses Equation (8). ◀

In the above construction, take G′ to be a disjoint union of (1 − 5δ)n/4 copies of C4 (the
4-cycle) and accordingly, take M ′ to be a union of perfect matchings on each C4.

APPROX/RANDOM 2024

63:12 Rapid Mixing of the Down-Up Walk on Matchings of a Fixed Size

▷ Claim 7. For a random pinning τ of size n/2 − n2/3, with high-probability, the down-up
walk on matchings of size |M | − τ on the induced graph Gτ is not ergodic.

Proof. It suffices to show that for a random pinning τ of size n/2−n2/3, with high probability,
(i) τ intersects every P9, (ii) τ fails to intersect some C4.

For (i), by a union bound and direct computation, we get that

P[τ avoids some P9 ∩ M] ≤ δn

2 P[τ avoids a fixed P9 ∩ M] = O(δn−1/3).

For (ii), we get that

P[τ intersects all C4] = P[τ c contains no C4 ∩ M]

≤ nO(1)P[τ c does not contain a fixed C4 ∩ M](1−5δ)n/4

≤ exp(−Θ(n1/3)),

where the second follows by comparing probabilities between the independent model of
density Θ(n−1/3) and the slice model and the last line follows by direct computation. The
union bound now shows that with high probability, (i) and (ii) simultaneously hold. ◁

References
1 Yeganeh Alimohammadi, Nima Anari, Kirankumar Shiragur, and Thuy-Duong Vuong. Frac-

tionally log-concave and sector-stable polynomials: counting planar matchings and more. In
Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages
433–446, 2021.

2 Nima Anari, Vishesh Jain, Frederic Koehler, Huy Tuan Pham, and Thuy-Duong Vuong.
Universality of spectral independence with applications to fast mixing in spin glasses. In
Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 5029–5056. SIAM, 2024.

3 Nima Anari, Kuikui Liu, and Shayan Oveis Gharan. Spectral independence in high-dimensional
expanders and applications to the hardcore model. In IEEE Symposium on Foundations of
Computer Science, 2020.

4 Nima Anari, Yang P Liu, and Thuy-Duong Vuong. Optimal sublinear sampling of spanning
trees and determinantal point processes via average-case entropic independence. In 2022 IEEE
63rd Annual Symposium on Foundations of Computer Science (FOCS), pages 123–134. IEEE,
2022.

5 Pietro Caputo. Spectral gap inequalities in product spaces with conservation laws. In Stochastic
analysis on large scale interacting systems, volume 39, pages 53–89. Mathematical Society of
Japan, 2004.

6 Zongchen Chen, Kuikui Liu, and Eric Vigoda. Optimal mixing of glauber dynamics: Entropy
factorization via high-dimensional expansion. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, pages 1537–1550, 2021.

7 Zongchen Chen, Kuikui Liu, and Eric Vigoda. Spectral independence via stability and
applications to holant-type problems. In 2021 IEEE 62nd Annual Symposium on Foundations
of Computer Science (FOCS), pages 149–160. IEEE, 2022.

8 Paul Dagum, Michael Luby, Milena Mihail, and U Vazirani. Polytopes, permanents and graphs
with large factors. In [Proceedings 1988] 29th Annual Symposium on Foundations of Computer
Science, pages 412–421. IEEE Computer Society, 1988.

9 Ewan Davies and Will Perkins. Approximately counting independent sets of a given size
in bounded-degree graphs. In 48th International Colloquium on Automata, Languages, and
Programming (ICALP), volume 198, pages 62:1–62:18, 2021.

V. Jain and C. Mizgerd 63:13

10 Persi Diaconis and Mehrdad Shahshahani. Time to reach stationarity in the bernoulli–laplace
diffusion model. SIAM Journal on Mathematical Analysis, 18(1):208–218, 1987.

11 Persi Diaconis and Daniel Stroock. Geometric bounds for eigenvalues of markov chains. The
annals of applied probability, pages 36–61, 1991.

12 Yuval Filmus, Ryan O’Donnell, and Xinyu Wu. Log-sobolev inequality for the multislice, with
applications. Electronic Journal of Probability, 27:1–30, 2022.

13 Vishesh Jain, Marcus Michelen, Huy Tuan Pham, and Thuy-Duong Vuong. Optimal mixing of
the down-up walk on independent sets of a given size. In 2023 IEEE 64th Annual Symposium
on Foundations of Computer Science (FOCS), pages 1665–1681. IEEE, 2023.

14 Vishesh Jain, Will Perkins, Ashwin Sah, and Mehtaab Sawhney. Approximate counting and
sampling via local central limit theorems. In Proceedings of the 54th Annual ACM SIGACT
Symposium on Theory of Computing, pages 1473–1486, 2022.

15 Mark Jerrum. Two-dimensional monomer-dimer systems are computationally intractable.
Journal of Statistical Physics, 48:121–134, 1987.

16 Mark Jerrum and Alistair Sinclair. Approximating the permanent. SIAM Journal on Comput-
ing, 18(6):1149–1178, 1989.

17 Mark Jerrum, Alistair Sinclair, and Eric Vigoda. A polynomial-time approximation algorithm
for the permanent of a matrix with nonnegative entries. Journal of the ACM (JACM),
51(4):671–697, 2004.

18 Pieter Kasteleyn. Graph theory and crystal physics. Graph Theory and Theoretical Physics,
pages 43–110, 1967.

19 Tzong-Yow Lee and Horng-Tzer Yau. Logarithmic sobolev inequality for some models of
random walks. The Annals of Probability, 26(4):1855–1873, 1998.

20 David A Levin and Yuval Peres. Markov chains and mixing times, volume 107. American
Mathematical Soc., 2017.

21 Kuikui Liu. From coupling to spectral independence and blackbox comparison with the
down-up walk. arXiv preprint, 2021. arXiv:2103.11609.

22 Alistair Sinclair. Improved bounds for mixing rates of markov chains and multicommodity
flow. Combinatorics, probability and Computing, 1(4):351–370, 1992.

23 Leslie G Valiant. The complexity of computing the permanent. Theoretical computer science,
8(2):189–201, 1979.

APPROX/RANDOM 2024

https://arxiv.org/abs/2103.11609

On the Communication Complexity of Finding a
King in a Tournament
Nikhil S. Mande # Ñ

University of Liverpool, UK

Manaswi Paraashar # Ñ

University of Copenhagen, Denmark

Swagato Sanyal #

Indian Institute of Technology Kharagpur, India

Nitin Saurabh #

Indian Institute of Technology Hyderabad, India

Abstract
A tournament is a complete directed graph. A source in a tournament is a vertex that has no
in-neighbours (every other vertex is reachable from it via a path of length 1), and a king in a
tournament is a vertex v such that every other vertex is reachable from v via a path of length at
most 2. It is well known that every tournament has at least one king. In particular, a maximum
out-degree vertex is a king. The tasks of finding a king and a maximum out-degree vertex in a
tournament has been relatively well studied in the context of query complexity. We study the
communication complexity of finding a king, of finding a maximum out-degree vertex, and of finding
a source (if it exists) in a tournament, where the edges are partitioned between two players. The
following are our main results for n-vertex tournaments:

We show that the communication task of finding a source in a tournament is equivalent to the
well-studied Clique vs. Independent Set (CIS) problem on undirected graphs. As a result, known
bounds on the communication complexity of CIS [Yannakakis, JCSS’91, Göös, Pitassi, Watson,
SICOMP’18] imply a bound of Θ̃(log2 n) for finding a source (if it exists, or outputting that
there is no source) in a tournament.
The deterministic and randomized communication complexities of finding a king are Θ(n). The
quantum communication complexity of finding a king is Θ̃(

√
n).

The deterministic, randomized, and quantum communication complexities of finding a maximum
out-degree vertex are Θ(n log n), Θ̃(n) and Θ̃(

√
n), respectively.

Our upper bounds above hold for all partitions of edges, and the lower bounds for a specific partition
of the edges.

One of our lower bounds uses a fooling-set based argument, and all our other lower bounds follow
from carefully-constructed reductions from Set-Disjointness. An interesting point to note here is
that while the deterministic query complexity of finding a king has been open for over two decades
[Shen, Sheng, Wu, SICOMP’03], we are able to essentially resolve the complexity of this problem in
a model (communication complexity) that is usually harder to analyze than query complexity.

2012 ACM Subject Classification Theory of computation → Communication complexity; Theory of
computation → Quantum complexity theory; Theory of computation → Graph algorithms analysis

Keywords and phrases Communication complexity, tournaments, query complexity

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.64

Category RANDOM

Related Version Full Version URL: https://arxiv.org/abs/2402.14751 [36]

Funding Manaswi Paraashar : M.P. is supported by ERC grant (QInteract, Grant Agreement No
101078107).

© Nikhil S. Mande, Manaswi Paraashar, Swagato Sanyal, and Nitin Saurabh;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 64; pp. 64:1–64:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nikhil.mande@liverpool.ac.uk
https://mande-nikhil.github.io/
https://orcid.org/0000-0002-9520-7340
mailto:manaswi.isi@gmail.com
https://sites.google.com/view/manaswi-paraashar/home
https://orcid.org/0009-0005-3805-5095
mailto:swagato@cse.iitkgp.ac.in
mailto:nitin@cse.iith.ac.in
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.64
https://arxiv.org/abs/2402.14751
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

64:2 On the Communication Complexity of Finding a King in a Tournament

Nitin Saurabh: N.S. was supported by the seed grant (SG/IITH/F285/2022-23/SG-123) from IIT
Hyderabad.

Acknowledgements We thank an anonymous reviewer for pointing out that Theorem 5 implies a
better quantum communication upper bound for finding a king than the bound given in an earlier
version of our paper.

1 Introduction

Graph problems have been very widely studied through the lens of query and communication
complexity. In the most natural query setting, an algorithm has query access to an oracle
that on being input a pair of vertices, outputs whether or not an edge exists between those
vertices. In the basic communication complexity setup for graph problems, two parties,
say Alice and Bob, are given the information about the edges in E1 and E2, respectively,
where E1 and E2 are disjoint subsets of all possible edges in the underlying graph. Their
task, just as in the query model, is to jointly solve a known graph problem on the graph
formed by the edges in E1 ∪ E2. Several interesting results are known in these basic query
and communication settings in the deterministic, randomized, and quantum models, see, for
example, [5, 27, 19, 29, 40, 9, 11] and the references therein.

A prime example of a graph problem whose query complexity and communication
complexities have been widely studied is Graph Connectivity. The randomized and quantum
communication complexities of this problem are known to be O(n log n) and Ω(n). This gap
has been open for a long time, and the question of closing it has been explicitly asked [29, 27].
On the other hand, its deterministic communication complexity is known to be Θ(n log n) [27].

A graph problem that has been extensively studied in the context of communication
complexity is the Clique vs. Independent Set (CIS) problem [47, 25, 26, 8]. The CIS problem
is so fundamental that it makes an appearance in the first chapter of standard textbooks
on communication complexity [32, 41] (in fact, it is defined on the first page of the latter
textbook). The CIS problem is parametrized by a graph G = ([n], E), known to both
Alice and Bob. Alice is given C ⊆ [n] that forms a clique in G, Bob is given I ⊆ [n] that
forms an independent set in G, and their task is to determine whether or not C ∩ I = ∅.
Note that if C ∩ I ̸= ∅, then it must be the case that |C ∩ I| = 1. It was long known
that the communication complexity of CIS is O(log2 n) for all graphs G. More than two
decades after this upper bound was discovered, a near-matching lower bound of Ω̃(log2 n)
was shown to hold for a particular G, in a culmination of a long line of ground-breaking
work [31, 28, 3, 45, 25, 26].

▶ Theorem 1 ([47], [26, Theorem 1.2]). Let G be an n-vertex graph. Then, Dcc(CISG) =
O(log2 n). Furthermore, there exists an n-vertex graph G such that Dcc(CISG) = Ω̃(log2 n).

This lower bound on the communication complexity of CIS also gives the currently-best-
known lower bound for the exponent in the famous log-rank conjecture [35]. We remark that
the upper bound above also holds if the task is to output the label of the unique intersection
of C and I if C ∩ I ̸= ∅.

While not as well-studied as the undirected case, communication complexity of directed
graph problems has also received some attention in the past (see, for example, [29, 6, 13]).
In this work, we consider tournaments, which are directed graphs with exactly one directed
edge between each pair of vertices (i.e. the underlying undirected graph is complete). We
adopt the natural communication complexity setting where Alice knows the orientation of a
subset E of the edges, Bob knows the orientation of the remaining edges, and their goal is to
jointly solve a known task on the tournament.

N. S. Mande, M. Paraashar, S. Sanyal, and N. Saurabh 64:3

A source of a tournament is a vertex with no in-neighbour. The first problem that we
study is source-finding: finding the source of a tournament (if it exists, and reporting that no
source exists otherwise). The source-finding problem has recently played a central role in the
recent breakthrough by Chattopadhyay, Mande and Sherif that refuted the log approximate-
rank conjecture [15] which is the randomized analog of the famous log-rank conjecture [35] of
communication complexity. It was as also used in the follow-up results [4, 46] that refuted the
quantum version of this conjecture. Source-finding has been studied in the context of query
complexity and voting theory (see [18] and the references therein). In fact, the problem of
finding a source in a tournament (in the bounded-round communication complexity setting)
has been studied by Chakrabarti et al. [13, Sections 3, 4] with applications to streaming
lower bounds. In a recent preprint, Ghosh and Kuchlous [24] studied the communication
complexity of source-finding in general graphs. Interestingly, they showed that source-finding
in general directed graphs can be exponentially harder than source-finding in tournaments
as demonstrated by our results (Corollary 3).

We denote the source-finding problem in the specific communication setting discussed
above by SRCE (recall that E is the set of edges whose orientation is known to Alice).
Perhaps surprisingly, we show that this task is equivalent to the CIS problem on undirected
graphs.

▶ Theorem 2.
For all n-vertex graphs G = ([n], E), Dcc(CISG) ≤ Dcc(SRCE) + O(log n).
For all subsets of edges E of the complete n-vertex graph, there exists an n-vertex graph
G such that Dcc(SRCE) ≤ Dcc(CISG).

Using known near-tight bounds on the communication complexity of CIS (Theorem 1),
Theorem 2 immediately yields the following corollary which gives near-tight bounds on the
communication complexity of finding a source in a tournament.

▶ Corollary 3. For all subsets E of the edges of the complete n-vertex graph, the deterministic
communication complexity of finding a source of a tournament if it exists, or outputting that
there is no source is

Dcc(SRCE) = O(log2 n).

Furthermore, there exists a subset E of edges of the complete n-vertex graph such that the
deterministic communication complexity of finding a source is

Dcc(SRCE) = Ω̃(log2 n).

We believe that this equivalence between SRC and CIS will generate further insights into
relationships among complexity measures in query and communication settings that are yet
to be resolved. Recall that the source-finding function was also recently used to refute the
randomized and quantum versions of the log-rank conjecture [15, 4, 46]. In particular, these
works showed that the randomized and quantum communication complexities of finding a
source in a tournament is polynomially large in the input size. However, in their settings,
Alice and Bob each know a bit per edge, and that edge’s direction is determined by the
bitwise XOR of Alice and Bob’s bits for that edge. In view of this, Corollary 3 demonstrates
a fundamental difference between the communication complexities of the source-finding
problem when the edge directions are partitioned between Alice and Bob, and when Alice
and Bob jointly have partial information about each edge.

Motivated to find a “most-dominant vertex” in a tournament, Landau defined the notion
of a king in a tournament [34]. A king in a tournament is a vertex v such that every other
vertex w is either reachable via a path of length 1 or length 2 from v. While it is easy

APPROX/RANDOM 2024

64:4 On the Communication Complexity of Finding a King in a Tournament

to see that there are tournaments that do not have a source, it is also easy to show that
every tournament has a king [34, 38]. If a tournament has a source, then it is a unique king
in the tournament. In view of this, a natural variant of SRCE (and hence CIS, in view of
Theorem 2) is the communication task of finding a king in a tournament.

We remark here that the deterministic query complexity of finding a king in an n-vertex
tournament is still unknown, and the state-of-the-art bounds are Ω(n4/3) and O(n3/2),
and are from over 2 decades ago [44]. Recently, [37] essentially resolved the randomized
and quantum query complexities of this problem: they showed that the randomized query
complexity of finding a king in an n-vertex tournament is Θ̃(n), and the quantum query
complexity is Θ̃(

√
n). The complexity of finding a king and natural variants of it have also

been fairly well-studied in different contexts [44, 2, 10, 33].
We consider the communication complexity of finding a king in an n-vertex tournament,

denoting this task by KINGn. Perhaps surprisingly, while resolving the query complexity of
finding a king in a tournament seems hard, we are able to essentially resolve its asymptotic
deterministic, randomized, and quantum communication complexities.

▶ Theorem 4. For all disjoint partitions E1, E2 of the edges of a tournament, the determin-
istic, randomized, and quantum communication complexities of finding a king (where Alice
knows the edge directions of edges in E1 and Bob knows the edge directions of edges in E2)
are as follows:

Dcc(KINGn) = O(n), Rcc(KINGn) = O(n), Qcc(KINGn) = O(
√

n log n).

Furthermore, there exists a disjoint partition E1, E2 such that the deterministic, randomized,
and quantum communication complexities of finding a king are as follows:

Dcc(KINGn) = Ω(n), Rcc(KINGn) = Ω(n), Qcc(KINGn) = Ω(
√

n).

In order to show our deterministic and randomized upper bounds, we give a O(n) cost
deterministic protocol. Our quantum upper bound follows from the upper bound in Theorem 5
(the upper bound in Theorem 5 is for the problem of finding a vertex of maximum out degree
in the same setting, which is always a king [34]). Our lower bounds follow from a carefully
constructed reduction from Set-Disjointness. We sketch our proofs in Section 1.1.

Interestingly, our lower bounds actually hold for tournaments that are promised to have
exactly 3 kings. It is well known that a tournament cannot have exactly 2 kings [38]. Thus,
the only “easier” case than this promised one is that where the input tournament is promised
to have exactly one king. This case is handled in Corollary 3 (it is easy to see that a
tournament has a unique king iff the unique king is a source in the tournament).

It is folklore [34] that a vertex with maximum out-degree in a tournament is also a king
in the tournament. Thus, another natural question that arises is: what is the complexity of
finding a maximum out-degree vertex? The deterministic and randomized query complexity
of this task is known to be Θ(n2), and its quantum query complexity is between Ω(n) and
O(n3/2) [7, 37]. Let MODn denote the search problem of finding a maximum out-degree
vertex in an n-vertex tournament. We study the communication complexity of MODn, again
in the natural setting where the edges of the tournament are partitioned between Alice and
Bob. We show the following:

▶ Theorem 5. For all disjoint partitions E1, E2 of the edges of a tournament, the determin-
istic, randomized, and quantum communication complexities of finding a maximum out-degree
vertex (where Alice knows the edge directions of edges in E1 and Bob knows the edge directions
of edges in E2) are as follows:

Dcc(MODn) = O(n log n), Rcc(MODn) = O(n log log n), Qcc(MODn) = O(
√

n log n).

N. S. Mande, M. Paraashar, S. Sanyal, and N. Saurabh 64:5

Furthermore, there exist disjoint partitions such that the deterministic, randomized, and
quantum communication complexities of finding a maximum out-degree vertex are as follows:1

Dcc(MODn) = Ω(n log n), Rcc(MODn) = Ω(n), Qcc(MODn) = Ω(
√

n).

We direct the reader’s attention to the similarity between our communication complexity
bounds for MODn and known bounds for the communication complexity of Graph Connectiv-
ity mentioned earlier in this section: just like in that case we are able to give tight bounds
on the deterministic communication complexity, but our bounds are loose by logarithmic
factors in the randomized and quantum settings.2 Our randomized and quantum lower
bounds follow using exactly the same reduction from Set-Disjointness as in Theorem 4. Our
deterministic lower bound follows by a carefully constructed fooling set lower bound. We
give a sketch of our proofs in Section 1.1.

While most of the relevant literature of finding kings in tournaments deals with minimizing
the number of queries to find a king (which is equivalent to minimizing the depth of a decision
tree that solves KING), none deal with minimizing the size complexity of a decision tree that
solves KING. Logarithm of decision tree size complexity is characterized, upto a log factor
in the input size, by the rank of the underlying relation (see [36] for definition of size), and
these are measures that have gained a significant interest in the past few years in various
contexts (see, for instance, [14, 17, 16] and the references therein). While the decision tree
depth complexity of KINGn lies between Ω(n4/3) and O(n3/2), we show a tight bound of
n− 1 on rank(KINGn), which implies and Ω(n) lower bound and an O(n log n) upper bound
on the logarithm of decision tree size for KINGn. We omit the statement of this result and
its proof due to lack of space, and refer the reader to the full version of the paper [36].

1.1 Sketch of proofs of main results
1.1.1 Equivalence of source-finding and CIS
We first sketch the proof of Theorem 2, which is the equivalence of finding a source in a
tournament and the Clique vs. Independent Set problem. Below is a sketch of the proof
of the first part of this theorem. Consider a graph G = ([n], E), and an input C, I to the
Clique vs. Independent Set problem. Here Bob is given C ⊆ [n] which is a clique in G, and
Alice is given I ⊆ [n] which is an independent set in G (we switch the order of inputs for
convenience). Alice and Bob construct the following instance to the source-finding problem:

Alice has the edge directions of all edges in E, and Bob has the remaining edge directions
in E.
Alice constructs her edge directions such that all vertices in I have in-degree 0 with
respect to her edge directions in E. This is easy to do since there are no edges between
any pair of vertices in I. She also ensures that all vertices in [n] \ I have in-degree at
least 1, with respect to her edge directions in E. She can ensure this if G is a connected
graph. (see Section 3.)
Just as the above, Bob ensures that all vertices in C have in-degree 0 w.r.t. E, and all
vertices in [n] \ C have in-degree at least 1 w.r.t. E.

1 The edge partition we use to prove our deterministic lower bound is different from the partition we use
to prove our randomized and quantum lower bounds.

2 After a full version of our work appeared in the public domain [36], Ghosh [23] communicated to us a
proof of a matching randomized Ω(n log log n) lower bound in Theorem 5, showing that our randomized
upper bound is tight.

APPROX/RANDOM 2024

64:6 On the Communication Complexity of Finding a King in a Tournament

Using the properties above, it is not hard to show that s = C ∩ I iff s is a source in the
tournament jointly constructed by Alice and Bob above. This concludes the reduction from
CIS to source-finding.

In the other direction, if Alice is given edge directions for the subset E of edges of the
complete n-vertex graph, then the underlying graph G that Alice and Bob construct for the
CIS problem is G = ([n], E). For the purpose of this reduction, we assume that Alice has
an independent set as input to CIS, and Bob has a clique. Alice considers her input, an
independent set, I to the CIS problem to be the set of all vertices with in-degree 0 w.r.t. E

(note that these vertices must form an independent set in G), and Bob constructs his input
clique C to be all vertices with in-degree 0 w.r.t. his edges (these form a clique w.r.t. E, and
hence in G). Note that a source in the initial tournament, if it exists, must be a vertex in
I ∩C since it must have in-degree 0 both w.r.t. Alice’s and w.r.t. Bob’s edges. Moreover this
is the only way in which I intersection C is non-empty. In other words, I ∩ C ≠ ∅ iff there
is a source in the initial tournament. This concludes the reduction from source-finding to
CIS, and hence Theorem 2. Known upper bounds and lower bounds on the communication
complexity of the Clique vs. Independent Set problem (Theorem 1) then yield Corollary 3.

Some of our proofs of the lower bounds in Theorems 4 and 5 follow the same outline.
In the next section, we sketch our upper bounds, and we sketch our lower bounds in the
following section.

1.1.2 Upper bounds

We start with ideas behind the upper bounds in Theorem 4. Throughout this paper, we
will view a n-vertex tournament as a string G ∈ {0, 1}(

n
2), where the indices are labeled by

pairs {i < j ∈ [n]} and Gi,j = 1 means the edge between vertices i and j is directed from i

to j. Recall that the goal is to construct a communication protocol for finding a king in a
tournament G ∈ {0, 1}(

n
2) whose edges are partitioned into E1 (with Alice) and E2 (with

Bob).
Consider the deterministic communication model. At a high level, our protocol proceeds

in rounds, and in each round Alice and Bob reduce the problem to king-finding in a smaller
subtournament. In the beginning of each round assume without loss of generality that Alice
has a larger number of edges. Alice sends Bob the label of a vertex v with maximum number
of out-neighbours in E1 along with the in-neighbourhood of v in E1 as a bit-string (one bit for
every other vertex u in the current subtournament for which Alice knows the direction of the
edge between u and v). Upon receiving v, Bob also sends the in-neighbourhood of v in E2 as a
bit-string. Thus both players know the entire in-neighbourhood of v in the entire tournament
by the end of the round. The communication cost so far is at most 2n + log n = O(n), where
n is the number of vertices in the current tournament. The players now reduce to finding a
king in the in-neighbourhood of v, since by [38] (also see Lemma 11), this would give a king in
the tournament G. Since |E1| ≥ |E2|, the number of out-neighbours of v is at least (n− 1)/4.
This yields a communication protocol of cost T (n) that is described by a recurrence of the
form T (n) ≤ T (3n/4) + O(n), which is easily seen to give a solution of T (n) = O(n). For
the quantum upper bound, we note that a maximum out-degree vertex is always a king [34].
Our O(

√
n log n) quantum upper bound for finding a king then immediately follows from

Theorem 5, which we describe shortly.
We now sketch proofs of the upper bounds in Theorem 5. Our upper bounds follow from

communication protocols for the following problem: Alice and Bob are given A ∈ [n]n and
B ∈ [n]n, respectively. Their goal is to output an index i ∈ [n] that maximizes ai +bi. We call

N. S. Mande, M. Paraashar, S. Sanyal, and N. Saurabh 64:7

this communication problem MAXSUMn,n. The reduction from MODn to MAXSUMn,n is easy
to see: Alice and Bob construct A, B to be the vector of out-degrees of all vertices w.r.t. their
edges. Thus a deterministic communication protocol of cost O(n log n) immediately follows
for MODn: Alice sends A to Bob, who then computes an answer. We now sketch the
randomized upper bound. Let S = (s1, . . . , sn) where si = ai + bi. The first observation is
that deciding si ≥ sj is equivalent to deciding ai − aj ≥ bj − bi. The latter can be done with
cost O(log log n) and error at most 1/3 by using the communication protocol of Greater-Than
due to [39, Theorem 1] (see Theorem 21). Thus Alice and Bob have access to a “noisy”
oracle that decides whether si ≥ sj , for all i, j ∈ [n], independently with probability at least
2/3. Finding arg maxi∈[n] si with error probability 1/3 can be done by making O(n) such
queries (due to [21], see Theorem 20). This gives a protocol with an overall communication
cost of O(n log log n). The quantum communication protocol is an application of a result
of [12], along with a quantum query upper bound for computing argmax (see Theorem 15),
see Section 5 for details.

1.1.3 Lower bounds
Our intuition for the lower bounds is that a “hard” partition of edges between Alice and
Bob should be such that every vertex has an equal number of incident edges with Alice and
with Bob. One such natural partition of the edges is as follows: Alice receives the complete
tournament restricted to the first n/2 vertices and the complete tournament restricted to
the last n/2 vertices, and Bob receives all of the edges between these vertices. While we
are unable to use this partition of edges to prove a lower bound for KINGn, we do use it
to show a deterministic lower bound for MODn. Our approach to showing a deterministic
communication lower bound for MODn is to construct a large fooling set (see Lemma 19).
More precisely, for a permutation σ ∈ S, where S is a suitably chosen large (size 2Ω(n log n))
subset of Sn, we construct inputs Aσ, Bσ to Alice and Bob such that vertex 1 is a unique
maximum out-degree vertex for all σ ∈ S. We also ensure that “cross-inputs” (Aσ, Bσ′) with
σ ̸= σ′ lead to vertex 1 not being a maximum out-degree vertex as long as σ and σ′ are far
away in the ℓ∞ norm, which we force to be true for all permutations in S by our construction.
We refer the reader to Section 5 for technical details.

While we are unable to make the same reduction work to show the communication
lower bounds for KINGn (and for good reason, since this argument gives an Ω(n log n) lower
bound, and there is an O(n) upper bound for the communication complexity of KINGn) and
randomized and quantum communication lower bounds for MODn, our partition constructed
there has a similar flavor to that above. A key intermediate function that we consider
for showing our remaining lower bounds is a variant of KING inspired by the well-studied
Indexing function. Aptly, we name our variant IndexKING, defined below. For a tournament
G ∈ {0, 1}(

n
2) with vertex set [n], and a set S ⊆ [n], we use the notation G|S to denote the

subtournament of G induced on the vertices in S.

▶ Definition 6. Let n > 0 be a positive integer. Define the IndexKINGn communication
problem as follows: Alice is given a set S ⊆ [n] and Bob is given a tournament G ∈ {0, 1}(

n
2)

on n vertices. Their goal is to output a king in G|S.

We consider the restriction of IndexKING to those inputs where Bob’s tournament is a
transitive tournament (see Definition 12). We denote this variant by t-IndexKING. A moment’s
observation (see Observation 8) reveals that this problem is equivalently formulated as follows.
We name this version the Permutation Maximum Finding problem, defined below, and we
believe that this problem is of independent interest.

APPROX/RANDOM 2024

64:8 On the Communication Complexity of Finding a King in a Tournament

▶ Definition 7 (Permutation Maximum Finding). Let n > 0 be a positive integer. In the
Permutation Maximum Finding problem, PMFn, Alice is given as input a subset S of [n],
Bob is given a permutation σ ∈ Sn, and their goal is to output

PMFn(S, σ) =
{
⊥ S = ∅
arg maxj∈S σ(j) S ̸= ∅.

Unless explicitly mentioned otherwise, we assume that Alice’s input S to PMFn is always a
non-empty set. In other words, in the PMF problem, Alice is given a subset of [n], Bob is
given a ranking of all elements in [n] (here, σ(i) denotes the rank of i), and their goal is to
find the element in Alice’s set that has the largest rank.

▶ Observation 8. Let n > 0 be a positive integer. Then, cost(PMFn) = cost(t-IndexKINGn),
where cost ∈ {Dcc, Rcc, Qcc}.3

We refer the reader to the full version [36] for a proof.
We show that Set-Disjointness reduces to PMF (see Lemma 28 and its proof). The

lower bound results for PMF follow from known results for communication complexity of
Set-Disjointness (see Theorem 17).

Next we reduce from PMFn to KING. Our reduction ensures that an instance (S, σ) to
PMFn gives us a tournament GS,σ with the following properties:

The tournament has 3n vertices, partitioned into V1, V2, V3, of n vertices each, each
labeled by elements of [n]. The internal edges (edges in

(
V1
2

)
,
(

V2
2

)
and

(
V3
2

)
) in each of the

partitions are with Bob, and these correspond to transitive tournaments defined by σ.
The remaining “cross” edges are all with Alice, and the directions of these are determined
by S (see Figure 1 for details).
The tournament GS,σ has exactly three kings (which are also the three unique maximum
out-degree vertices), one in each Vi, and each of these is labeled by PMFn(S, σ).

Thus finding a king or a maximum out-degree vertex in GS,σ amounts to Alice and Bob
solving PMFn, which we’ve already sketched to be hard via a reduction from Set-Disjointness.
An interesting point to note is that this actually shows a lower bound on the communication
complexity of finding a king, even when the input tournament is promised to have exactly three
kings. Recall that we showed that finding a king can be done with O(log2 n) deterministic
communication when an input is promised to have exactly one king (Corollary 3). Also it is
easy to show using Lemma 11 that there are no tournaments with exactly two kings. Thus,
the “easiest” non-trivial case of a promised tournament with exactly three kings is already
hard for communication.

2 Preliminaries

Let [n] = {1, . . . , n}. We use the notation polylog(n) to denote O(log(n)c) for some fixed
constant c. For f : N → N, we use the notation Õ(f) to denote O(f logc1 f) and Ω̃(f) to
denote Ω(f/(logc2 f)), for some constants c1, c2.

A tournament G ∈ {0, 1}(
n
2) is a complete directed graph on n-vertices. For v, w ∈ [n]

such that v < w, if Gv,w = 1 then there is an out-edge from v to w, i.e. v → w (otherwise
there is an out-edge from w to v). In this case we say that v 1-step dominates w. Similarly,
for u, w ∈ [n], if there exists a v ∈ [n] such that u→ v and v → w then we say that u 2-step

3 We actually prove the stronger statement that the problems PMFn and t-IndexKINGn are equivalent, in
the sense that Alice and Bob need not communicate to go one from one problem to another.

N. S. Mande, M. Paraashar, S. Sanyal, and N. Saurabh 64:9

dominates w. Let S ⊆ [n] be such that v 2-step (1-step) dominates w for all w ∈ S. We then
say that v 2-step (1-step) dominates S. It is easy to see that there are tournaments where no
vertex 1-step dominates all other vertices (such a vertex is called the source of G). However,
it is now folklore that every tournament has a vertex v such that every vertex w ̸= v is either
1-step or 2-step dominated by v. Such a vertex is called a king of the tournament (see [34]).

▶ Lemma 9 (Folklore). Let G ∈ {0, 1}(
n
2) be a tournament. Then there exists a vertex v ∈ [n]

such that v is a king of G.

For a vertex v ∈ [n], let N−(v) = {w ∈ [n] : w → v} and N+(v) = {w ∈ [n] : v → w}.
Thus N−(v) and N+(v) denote the in-neighbourhood and out-neighbourhood of v in G,
respectively. The in-degree of v, denoted by d−(v) is defined as |N−(v)|, and similarly the
out-degree of v is denoted by d+(v) and is defined as |N+(v)|. If a vertex has maximum
out-degree in the tournament, then that vertex is a king of the tournament (a proof can be
found in [38]).

▶ Lemma 10 ([34]). Let G ∈ {0, 1}(
n
2) be a tournament and v ∈ [n] be a vertex of maximum

out-degree in G. Then v is a king in G.

For S ⊆ [n] let G|S be the tournament induced on S by G, i.e. G|S is a tournament with
vertex set as S and direction of edges in S are same as that in G.

The following is an important lemma that we use often.

▶ Lemma 11 ([38]). Let G ∈ {0, 1}(
n
2) be a tournament and v ∈ [n]. If a vertex u is a king

in G|N−(v), then u is a king in G.

A special class of tournaments is the class of transitive tournaments, which we define
next.

▶ Definition 12 (Transitive Tournament). A tournament G ∈ {0, 1}(
n
2) is transitive if it

satisfies the following property: for all u, v, w ∈ [n], u→ v and v → w implies u→ w.

In other words, a transitive tournament is a tournament which is a directed acyclic graph.

▶ Lemma 13 (Properties of Transitive Tournaments). Let G ∈ {0, 1}(
n
2) be a transitive

tournament. There is an ordering v1, . . . , vn of [n] such that
v1 is a source vertex and hence a unique king in G, and
for all i ∈ {2, . . . , n}, vi is source vertex in G|[n]\

⋃i−1
j=1

{vj}.

Proof. Since G is a directed acyclic graph, a topological sort on the vertices gives a source of
the graph. Let this vertex be v1. The vertex vi is obtained by applying the same argument
over the transitive tournament G|[n]\

⋃i−1
j=1

{vj}. ◀

2.1 Query and Communication Complexity
We refer the reader to the full version [36] of our paper for the formal setup of deterministic,
randomized, and quantum query complexity.

▶ Definition 14 (ARGMAXk,n). Let k be a positive integer and let a ∈ ([k])n. Given query
access to a, find i ∈ [n] such that ai ≥ aj for all j ̸= i ∈ [n].

▶ Theorem 15 ([20]). There exists a quantum query algorithm for ARGMAXk,n with query
cost O(

√
n).

APPROX/RANDOM 2024

64:10 On the Communication Complexity of Finding a King in a Tournament

We refer the reader to the full version [36] of our paper for the formal setup of deterministic,
randomized, and quantum communication complexity.

▶ Definition 16 (Set-Disjointness). Let n > 0 be a positive integer. The Set-Disjointness
problem is denoted by DISJn : {0, 1}n × {0, 1}n → {0, 1} and is defined by

DISJn(A, B) = 1 ⇐⇒ A ∩B = ∅,

where A, B ⊆ [n] are the characteristic sets of Alice and Bob’s inputs, respectively.

The communication complexity of DISJn is extensively studied. We require the following
known bounds on its communication complexity [5, 30, 43, 42, 1].

▶ Theorem 17 (Communication complexity of Set-Disjointness). The deterministic, randomized,
and quantum communication complexity of DISJn is as follows:

Dcc(DISJn) = n, Rcc(DISJn) = Θ(n), Qcc(DISJn) = Θ(
√

n).

It is a folklore result that, classically, query algorithms for functions give communication
protocols for these functions composed with small gadgets with very little blowup in the
complexity. In the quantum setup we have the following theorem, that essentially follows
from [12].

▶ Theorem 18 ([12]). Let f ⊆ Dn
f × R be a relation where Df = [k] for some finite k,

and let g : Dg × Dg → Df be a function. For all ε > 0, if Qε(f) ≤ T then Qcc
ε (f ◦ g) ≤

2T (⌈log n⌉+ ⌈log k⌉+ ⌈log |Dg|⌉).

We refer the reader to the full version [36] of our paper for a proof.
A fooling set for a communication problem f ⊆ (X × Y)×R is a set S ⊆ X × Y such

that for all pairs s1 = (x1, y1) and s2 = (x2, y2) in S, we have

{r ∈ R|(x1, y1, r) ∈ f ∧ (x1, y2, r) ∈ f ∧ (x2, y1, r) ∈ f ∧ (x2, y2, r) ∈ f} = ∅.

▶ Lemma 19. Let f ⊆ (X × Y)×R be a communication problem, and let S ⊆ X × Y be a
fooling set for f . Then, Dcc(f) ≥ log |S|.

We refer the reader to standard texts for a formal proof [32, Lemma 1.20]. We remark that
standard texts usually frame the fooling set lower bound as a lower bound technique for
communication complexity of functions rather than relations, but the same proof technique
is easily seen to show the statement above as well. A sketch of the proof is as follows: The
leaves of a protocol tree of depth c yields a partition of the space X × Y into 2c rectangles,
each of which has at least one r ∈ R that is a valid output for all pairs of inputs in the
rectangle. By the property of a fooling set, each element of it must belong to a different leaf.
This implies the number of leaves in any protocol for f must be at least |S|, implying that
the depth of any protocol must be at least log |S|.

We require the following theorem that gives an algorithm to find the maximum in a list
given noisy comparison oracle access. The formulation we use below follows easily from [21,
Theorem 15].

▶ Theorem 20 ([21, Theorem 15]). Let S = (s1, . . . , sn) be a list of n numbers. Suppose we
have access to a “noisy” oracle, that takes as input a pair of indices i ̸= j ∈ [n], and outputs
a bit that equals I[si ≥ sj] with probability at least 2/3, independent of the outputs to the
other queries. Then there is an algorithm that makes O(n) queries to the noisy oracle and
outputs arg maxi∈[n] si with probability at least 2/3.

N. S. Mande, M. Paraashar, S. Sanyal, and N. Saurabh 64:11

▶ Theorem 21 ([39, Theorem 1]). Let n > 0 be a positive integer. The GT : [n]× [n]→ {0, 1},
where Alice is given x ∈ [n] and Bob is given y ∈ [n] is defined as GT(x, y) = 1 if and only if
x ≥ y. The randomized communication complexity of GT is O(log log n).

2.2 Formal definitions of graph problems of interest
For clarity and completeness, we include formal definitions of the tasks of finding a king and
finding a maximum out-degree vertex in this section.

▶ Definition 22. Let n > 0 be a positive integer. Define KINGn ⊆ {0, 1}(
n
2) × [n] to be

(G, v) ∈ KINGn ⇐⇒ v is a king in the tournament G.

▶ Definition 23. Let n > 0 be a positive integer. Define MODn ⊆ {0, 1}(
n
2) × [n] to be

(G, v) ∈ MODn ⇐⇒ v is a maximum out-degree vertex in the tournament G.

When we give communication upper bounds for these problems, our upper bounds hold for
all partitions of the input variables

(
n
2
)

between Alice and Bob. When we give lower bounds,
we exhibit specific partitions for which our lower bounds hold.

3 Communication complexity of finding a source

We consider the communication complexity of finding a source in a tournament if it exists.
Alice knows the edge directions of a subset EA of the edges of a tournament T ∈ {0, 1}(

n
2),

Bob knows the directions of the remaining edges EB , and their goal is to output the label of
a source in the whole tournament if it exists, or output that the tournament has no source.
Formally, for a partition of edges EA, EB of the complete n-vertex graph, define

SRCEA
: {0, 1}EA × {0, 1}EB → {0, 1, . . . , n} (1)

to be SRCEA
(a, b) = 0 if there is no source in the tournament defined by edge directions a, b,

and SRCEA
(a, b) = i if vertex i is the (unique) source in the same tournament. We define

the decision version of this problem to be SRCdec
EA

: {0, 1}EA × {0, 1}EB → {0, 1}. That is,
SRCdec

EA
outputs 0 if there is no source in the tournament, and outputs 1 if there is a source.

Below, we define the celebrated Clique vs. Independent Set problem on an n-vertex graph
G [47], which we henceforth abbreviate as CISG. The CISG problem is associated with an
n-vertex undirected graph G = (V, E). In this problem, Alice and Bob both know G. Alice
is given as input a clique x ⊆ [n] in G, Bob is given as input an independent set y ⊆ [n], and
their goal is to either output that x ∩ y = ∅, or output the label of the (unique) vertex v

with {v} = x ∩ y.4
There has been a plethora of work on the Clique vs. Independent set problem, see for

example, [47, 25, 26, 8]. Of relevance to us is Theorem 1, which gives near-tight bounds on
the deterministic communication complexity of this problem.

Perhaps surprisingly, we show that the communication problem of finding a source in a
tournament is equivalent to the Clique vs. Independent Set problem. Corollary 3 would then
immediately follow. We now prove Theorem 2.

4 Conventionally, the Clique vs. Independent Set problem is phrased as a decision problem, where the
task is to determine if x ∩ y is empty or non-empty. The known bounds we state here are easily seen to
hold for the “search version” that we consider as well.

APPROX/RANDOM 2024

64:12 On the Communication Complexity of Finding a King in a Tournament

Proof of Theorem 2. In this proof, we assume for convenience that in the Clique vs. Inde-
pendent Set Problem, Alice is given an independent set and Bob is given a clique.

Let G = (V, E) be an n-vertex graph. Let I, C ⊆ [n] be Alice and Bob’s input to CISG,
respectively. Recall that the vertices in I form an independent set in G and the vertices
in C form a clique in G. We now describe the reduction from CISG to SRCE . Before
delving into the main reduction, we do a preprocessing of small communication cost to
make sure that G is connected and the size of the independent set I is at least 3.
Preprocessing: Bob sends the label of the connected component in G that his clique C is
part of. Alice removes from her independent set I, all vertices that aren’t part of this
connected component. She now sends a bit to Bob to indicate whether |I| ≥ 3. If not, she
further sends labels of the two vertices in I to Bob who then responds with an answer.
This requires a total of O(log n) communication cost. We can therefore assume that the
graph G is connected and |I| ≥ 3 for the rest of the reduction. Alice and Bob locally
construct the following inputs to SRCE (recall that Alice must construct edge directions
in E, and Bob must construct the remaining edge directions).

Alice orients the edges in E, using Claim 24 and the fact that G is a connected graph,
such that only the vertices in I have in-degree 0.
Bob orients the edges in E as follows. For vertices in C, he orients the edges in their
connected components in G, using Claim 24, such that only the vertices in C have
in-degree 0. Next he orients the edges of connected components that don’t contain
vertices of C. If this connected component is not a tree, he uses Claim 25 to orient
the edges such that no vertex has in-degree 0. If the connected component is a tree,
he orients the edges in an arbitrary way.

Let T denote the tournament constructed above. We next show that (I, C) is a 1-input
to CISG iff there exists a source in T . This would prove the first part of the theorem.
Moreover, we show that when there is a source in the constructed tournament, the source
vertex is the same as the unique vertex in I ∩ C.
Let (I, C) be a 1-input to CISG and s be the unique vertex in I ∩ C. We show that s

is the source in the tournament T . By construction, the neighbours of s in E are the
outneighbours of s in Alice’s input, and the neighbours of s in E are the outneighbours
of s in Bob’s input.
We prove the contrapositive for the other direction. Let (I, C) be a 0-input to CISG, i.e.,
I ∩ C = ∅. We show that there is no source in T . Vertices in I are ruled out from being
a source by the orientation of Alice’s edges. Now the vertices of I forms a clique in Bob’s
input, thus they form a connected component that is not a tree (since |I| ≥ 3). Since
this connected component does not contain a single vertex from C (since we assumed
I ∩ C = ∅), the construction above (using Claim 25) implies that all vertices in I have
in-degree at least 1 w.r.t. Bob’s edge directions. Thus, there is no source in the entire
tournament.
In the other direction, let {0, 1}EA and {0, 1}EB be Alice and Bob’s input to SRCEA

,
where EA, EB form a partition of the edges of the n-vertex complete graph. Say that the
tournament formed by these inputs is T . Alice and Bob construct the following instance
to the Clique vs. Independent Set problem.

The graph is G = (V, E) with V = [n] and E = EA.
Alice constructs I ⊆ [n] to be all of the vertices with in-degree 0 w.r.t. EA. It is easy
to see that I forms an independent set in G since any edge between vertices in I causes
one of the vertices in I to have in-degree at least 1.
Bob constructs C ⊆ [n] to be all of the vertices with in-degree 0 w.r.t. EB . As in the
previous bullet, it is easy to see that C forms an independent set in G, and hence a
clique in G.

N. S. Mande, M. Paraashar, S. Sanyal, and N. Saurabh 64:13

Consider the input (I, C) to CISG as constructed above. We show now that I ∩ C ̸= ∅ iff
there is a source in T , which would prove the second part of the theorem since (I, C) and
G were constructed using no communication.
Suppose s is a source in T . Since s has in-degree 0 w.r.t. both EA and EB, we must
have s ∈ I ∩C. Moreover, since every other vertex must have in-degree at least 1, such a
vertex is either not in I or not in C. Thus, s = I ∩ C. In the other direction, suppose
s = I ∩ C. By the construction above, s must have in-degree 0 w.r.t. both EA and EB ,
and hence is a source in T . ◀

▷ Claim 24. Let T be a tree, V be its vertex set and I be an independent set in T . Then
there exists an orientation of the edges of T such that exactly the vertices in V \ I have
in-degree at least 1.

Proof of Claim 24. We now show a procedure to orient the edges such that the set of vertices
with in-degree 0 equals the set I. Consider a (left-to-right) listing of subsets of vertices based
on their distances from the set I. So if the listing looks like V0, V1, · · · , Vj , · · · , then V0 = I,
and Vj ⊆ V \ I is the set of vertices such that the length of a shortest path to reach a vertex
in I equals j. We orient the edges from Vi → Vi+1 for i ≥ 0. The edges within a partition,
say Vi, are oriented arbitrarily. Now using the fact that tree is a connected graph, it is easily
seen that every vertex in V \ I has in-degree at least 1. Moreover, by our construction, all
vertices in V0 = I has in-degree 0. ◁

▷ Claim 25. Let G be a connected graph that is not a tree. Then, there exists an orientation
of the edges of G such that every vertex of G has in-degree at least 1.

Proof of Claim 25. Since G is connected but not a tree, it contains a cycle, say C. Orient
the edges of C in a cyclic way to give in-degree 1 to every vertex in C, and then orient the
edges “away” from the cycle C (in a manner similar to the proof in Claim 24 where V0 = C

here) to add 1 to in-degrees of vertices in V \C. Thus the directed graph so constructed has
no vertex with in-degree 0. ◁

4 Communication complexity of KING

The proof of Theorem 4 is divided into two parts. We show the upper bounds in Section 4.1
and the lower bounds in Section 4.2.

4.1 Upper bounds on communication complexity of KINGn

We start by proving an O(n) upper bound on the deterministic communication complexity
which also implies an O(n) upper bound on the randomized communication complexity.

▶ Lemma 26. Let G ∈ {0, 1}(
n
2) be a tournament and let E1, E2 be a partition of the edges

of G. The deterministic and randomized communication complexity of finding a king of G,
where Alice is given E1 and Bob is given E2, is upper bounded as follows

Dcc(KINGn) = O(n), Rcc(KINGn) = O(n).

APPROX/RANDOM 2024

64:14 On the Communication Complexity of Finding a King in a Tournament

Proof. The proof follows via the Protocol in Algorithm 1.

Algorithm 1 Deterministic Communication Protocol for KINGn.

1: Input: Let G ∈ {0, 1}(
n
2) be a tournament and E1, E2 ⊆ {(i, j) : i < j ∈ [n]} be a

partition of the edges of G. Alice (Player 1) is given {0, 1}E1 and Bob (Player 2) is given
{0, 1}E2 .

2: S = [n]
3: while |E1| > n and |E2| > n do
4: b← arg max

i∈{0,1}
|Ei| ▷ Ties broken arbitrarily

5: v ← arg max
w∈[n]

{out-degree(w) in Eb} ▷ Ties broken arbitrarily

6: Player b sends to Player 1− b the label of v along with a |S|-bit indicator vector of
the in-neighbourhood of v in Eb

7: Player 1− b sends an |S|-bit indicator vector of the in-neighbourhood of v in E1−b

8: S ← S ∩N−(v)
9: E1 ← the edges of E1 that are present in G|S

10: E2 ← the edges of E2 that are present in G|S
11: end while
12: if |E1| ≤ n then
13: Alice sends E1 to Bob
14: Bob outputs a king of the tournament.
15: else if |E2| ≤ n then
16: Bob sends E1 to Alice
17: Alice outputs a king of the tournament.
18: end if

Correctness. It is easy to see that in every iteration of the while loop, the size of either E1
or E2 decreases by at least 1. This shows that our algorithm always terminates.

Let S(i) denote the set S in i’th iteration of the while loop, where S(1) = [n]. We
maintain the invariant that in every iteration of the while loop, a king in G|S(i+1) is also
a king in G|S(i) . This follows easily from Lemma 11 since S(i+1) is obtained from S(i) by
restricting to vertices in the in-neighbourhood of some vertex v in Line 8. Assume without
loss of generality that the while loop terminates with |E1| ≤ n. In this case, in Line 13,
Alice sends her edges to Bob who outputs a king of G.

Cost. We show that the cost of Protocol 1 is upper bounded by O(n) for all tournaments
G ∈ {0, 1}(

n
2). Suppose we enter the while loop with |S| = k. Let c(k) be the number of

bits communicated during the execution of the while loop. Consider Line 6, and assume
without loss of generality that |E1| ≥ |E2|, thus |E1| ≥ (1/2 ·

(
k
2
)
). Since every edge in E1 is

an out-edge for some vertex (note that E1 and E2 are subsets of edges of G|S due to Line 9
and Line 10) we have

∑
u∈S d+(v) ≥ (1/2 ·

(
k
2
)
) (where the out-degrees are only computed in

E1) and hence by an averaging argument there exists v ∈ S such that the out-degree of v

when restricted to E1 (and therefore S) is at least (k − 1)/4. Thus the in-degree of v in S is
at most (3/4 · (k − 1)). Furthermore, in each iteration of the while loop, ⌈log k⌉+ k bits
are communicated in Line 6 and k bits are communicated in Line 7. We have the following
upper bound on c(k): c(k) ≤ c(3k/4) + ⌈log k⌉ + 2k, and thus c(n) = O(n). Also observe
that either Line 13 or Line 16 is executed and in each case at most n bits are communicated.
Thus the overall number of bits communicated in O(n). ◀

N. S. Mande, M. Paraashar, S. Sanyal, and N. Saurabh 64:15

Next, we give an O(
√

n log n) cost quantum communication protocol for KINGn. Our
quantum communication upper bound is a corollary of Theorem 5 which gives a quantum
communication protocol for finding a maximum out-degree vertex in a tournament (such a
vertex is also a king, see Lemma 10).

▶ Lemma 27. Let G ∈ {0, 1}(
n
2) be a tournament and let E1, E2 be a partition of E. The

quantum communication complexity, where Alice is given E1 and Bob is given E2. Then

Qcc(KINGn) = O(
√

n log n).

4.2 Lower bounds on communication complexity of KINGn

Next, we prove the lower bound. In order to do this, we first give a lower bound on the
communication complexity of PMFn. Recall that, in this problem, Alice is given as input a
subset S of [n], Bob is given a ranking of elements of [n] defined by σ, and their goal is to
output the element in S that has the largest rank according to σ.

▶ Lemma 28. The deterministic, randomized, and quantum communication complexity of
PMFn is as follows:

Dcc(PMFn) = Ω(n), Rcc(PMFn) = Ω(n), Qcc(PMFn) = Ω(
√

n).

Proof. We show that Set-Disjointness reduces to PMFn and the lemma follows from The-
orem 17. We describe the reduction next.

Consider an input to Set-Disjointness, S, T ⊆ [n] where S is with Alice and T is with
Bob. Alice and Bob locally construct the following instance of PMFn: Alice retains her set
S, and Bob creates an arbitrary σ such that the following holds:

∀i ̸= j ∈ [n], (Ti = 0) ∧ (Tj = 1) =⇒ σ(i) < σ(j).

In other words, Bob creates a permutation σ of [n] that ranks all of the indices in T higher
than all of the indices outside T . They then run a protocol for PMFn with inputs S, σ, let
k be the output of this protocol. If k ∈ T then they return S ∩ T ̸= ∅ else they return
S ∩ T = ∅.

Correctness. If PMFn(S, σ) = ⊥, then the players know (without any additional commu-
nication) that S = ∅ and hence DISJn(S, T) = 1. Thus, we may assume S ̸= ∅. Since any
protocol for PMFn must output an index k ∈ S. By Bob’s construction of σ, the elements of
T are ranked higher than elements that are not in T . Since k is the output of a protocol
for PMFn, k is the highest ranked element in S by σ. Thus if k is not among the top |T |
ranked elements, then all elements of S are ranked lower than all elements of T (by Bob’s
construction of σ) and S ∩ T = ∅. On the other hand if k is among the top |T | ranked
elements then k ∈ T ∩ S. These conditions can be checked by Bob who has σ and k. ◀

By the equivalence of PMF and the transitive variant of IndexKING (Observation 8),
Lemma 28 implies the same lower bounds on t-IndexKINGn.

We thus immediately conclude the same lower bounds on the general IndexKING problem
(where Bob’s tournament is arbitrary, and need not be transitive).

▶ Corollary 29. The deterministic, randomized, and quantum communication complexity of
IndexKINGn is as follows:

Dcc(IndexKINGn) = Ω(n), Rcc(IndexKINGn) = Ω(n), Qcc(IndexKINGn) = Ω(
√

n).

APPROX/RANDOM 2024

64:16 On the Communication Complexity of Finding a King in a Tournament

S0

T0

S2

T2

S1

T1

Figure 1 Visual depiction of GS,σ. For each b ∈ {0, 1, 2}, Sb contains the vertices {ib : i ∈ S}
and Tb contains the vertices {ib : i /∈ S}. There are four types of edges (also see Definition 30):

Edges of Type 1 are those within each Tb ∪ Sb, here ib → jb iff σ(i) > σ(j).
Edges of Type 2 are those between Sb and Tb′ for b ̸= b′, here ib → jb′ .
Edges of Type 3 are those between Sb and Sb′ for b ̸= b′, here ib → jb′ iff b′ = b + 1 (mod 3).
Edges of Type 4 are those between Tb and Tb′ for b ̸= b′, here ib → jb′ iff b′ = b + 1 (mod 3).

We now give a lower bound on the communication complexity of KINGn. For this we first
define a class of tournaments that we use in our proof.

4.3 A class of tournaments
In this section, we define a special class of tournaments on 3n vertices, that are parametrized
by a subset S ⊆ [n] and an ordering σ of [n].

▶ Definition 30. Given a set S ⊆ [n] and σ ∈ Sn, define the tournament GS,σ on 3n vertices
as follows:

The vertex set is V = {ib : i ∈ [n], b ∈ {0, 1, 2}}.
For each b ∈ {0, 1, 2} and all i ̸= j ∈ [n], the direction of the edge between ib and jb is
ib → jb iff σ(i) > σ(j). We refer to these as Type 1 edges.
For all b ̸= b′ ∈ {0, 1, 2}, all i ∈ S and all j /∈ S, ib → jb′ is an edge. We refer to these
as Type 2 edges.
For all b ̸= b′ ∈ {0, 1, 2} and all i ̸= j ∈ S, the direction between the edge ib and jb′ is
ib → jb′ iff b′ = b + 1(mod 3). We refer to these as Type 3 edges.
For all b ̸= b′ ∈ {0, 1, 2} and all i ̸= j /∈ S, the direction between the edge ib and jb′ is
ib → jb′ iff b′ = b + 1(mod 3). We refer to these as Type 4 edges.

We refer the reader to Figure 1 for a pictorial representation and some additional notation.

▶ Lemma 31. Let n > 0 be a positive integer, S ⊆ [n] and σ ∈ Sn. Then, the tournament
GS,σ has exactly three kings, namely k0, k1, k2, where k = arg maxj∈S σ(j). Moreover,
k0, k1, k2 are the only vertices with maximum out-degree in GS,σ.

Proof. We first show that k0 is a king. The argument for k1, k2 being kings follows similarly.
To show that k0 is a king, we exhibit paths of length one or two from k0 to all other vertices
in the tournament.

N. S. Mande, M. Paraashar, S. Sanyal, and N. Saurabh 64:17

First note that for any element j ∈ S, there is an edge from k0 to j0 since k =
arg maxj∈S σ(j) (this is an edge of Type 1). Thus, k0 1-step dominates S0.
For all j /∈ S and b ∈ {1, 2}, there is an edge (of Type 2) from k0 to jb. Thus, k0 1-step
dominates T1 and T2.
For j, j′ ∈ S, there is an edge (of Type 3) from k0 to j1. Thus k0 1-step dominates S1.
There is also an edge (also of Type 3) from j1 to j′

2. Thus, k0 2-step dominates S2.
For an arbitrary j ∈ S, as noted above, there is an edge from k0 to j1. For j′ /∈ S, there
is an edge (of Type 2) from j1 to j′

0. Thus, k0 2-step dominates T0.
This shows that k0 (and similarly k1 and k2) is a king in GS,σ.5 We next show that no other
vertex is a king. We do this by showing for every other vertex k′

b, a vertex that is not 1-step
or 2-step dominated by k′

b.
Consider k′ ̸= k ∈ S and b ∈ {0, 1, 2}. We now show that k′

b does not 1-step or 2-step
dominate kb.

Since kb is the unique king in the transitive tournament (GS,σ)|Sb
(see Lemma 13), k′

b

does not 1-step dominate kb via Type 1 edges. Moreover, the only vertices that are
1-step dominated by k′

b via Type 1 edges are a subset of vertices in Sb ∪ Tb. None of
these vertices can 1-step dominate kb since (GS,σ)|Sb∪Tb

is a transitive tournament.
This shows that k′

b cannot 1-step dominate or 2-step dominate kb by first using an
edge of Type 1.
The only other out-going edges from k′

b are either of Type 2 or Type 3.
Consider a Type 2 edge which goes from k′

b to Tb+1 (mod 3) (Tb+2 (mod 3) follows
similarly). By construction, there is no edge from any vertex in Tb+1 (mod 3) to kb (see
Figure 1).
Now consider a Type 3 edge which goes from k′

b to Sb+1 (mod 3). By construction,
there is no edge from any vertex in Sb+1 (mod 3) to kb (see Figure 1).

Consider k′ /∈ S and b ∈ {0, 1, 2}. We now show that k′
b does not 1-step or 2-step

dominate kb+2 (mod 3).
The only out-going edges from k′

b are either of Type 1 or Type 4. On taking a Type
1 edge, k′

b can only 1-step dominate a subset of vertices of Sb ∪ Tb. None of these
vertices have an edge to kb+2 (mod 3) (see Figure 1). Thus, k′

b cannot 2-step dominate
kb+2 (mod 3) by first taking a Type 1 edge.
A Type 4 edge goes from k′

b to a vertex in Tb+1 (mod 3). By construction, no vertex in
Tb+1 (mod 3) has an edge to kb+2 (mod 3) (see Figure 1).

Finally, we observe that k0, k1, k2 are the only three vertices with maximum out-degree in
GS,σ. Observe that the out-degrees of k0, k1, k2 are all equal by symmetry. By Lemma 10, a
vertex with maximum out-degree in GS,σ is a king in GS,σ. This, along with the proof above
that shows that k0, k1, k2 are the only kings in GS,σ, immediately implies that k0, k1, k2 are
the only three vertices with maximum out-degree in GS,σ. ◀

4.4 Proof of Theorem 4

We now prove Theorem 4. The upper bounds follow from the arguments in Section 4.1. For
the lower bounds, we do a reduction from PMF. The class of tournaments constructed in
Section 4.3, and its properties, play a crucial role in the reduction.

5 We remark here that there is an alternative proof that shows k0 to be a king: consider an arbitrary
j1 for an arbitrary j ∈ S. The in-neighborhood of j1 contains S0 and a subset of S1 ∪ T1. It can be
verified that k0 is a source (and hence a king) in the tournament restricted to the in-neighbourhood of
j1. Lemma 11 then implies that k0 is a king. We choose to keep the current proof for clarity.

APPROX/RANDOM 2024

64:18 On the Communication Complexity of Finding a King in a Tournament

Proof of Theorem 4. The upper bounds follow from Lemma 26 and Lemma 27.
For the lower bounds, consider an input S ⊆ [n] to Alice and σ ∈ Sn to Bob for

PMFn. Alice and Bob jointly construct the tournament GS,σ. Note that this construction is
completely local and involves no communication; Alice can construct all edges of Types 2, 3
and 4, and Bob can construct all edges of Type 1 (see Figure 1). By Lemma 31, there are
exactly 3 kings in GS,σ and these are

{
ib : b ∈ {0, 1, 2} , i = arg maxj∈S σ(j) = PMFn(S, σ)

}
(recall Definition 7). Thus, running a protocol for KING3n on input GS,σ (where Alice has
edges of Types 2, 3 and 4, and Bob has edges of Type 1) gives the solution to PMFn(S, σ) at
no additional cost. Lemma 28 implies the required lower bounds. ◀

5 Communication complexity of MOD

Recall that in the MODn communication problem, Alice and Bob are given inputs in {0, 1}E1

and {0, 1}E2 , respectively, where E1 and E2 form a partition of the edge set
(

n
2
)
. Their goal

is to output a vertex v that has maximum out-degree in the tournament formed by the union
of their edges. We next prove Theorem 5. In this theorem we settle the communication
complexity of finding a maximum out-degree vertex in a tournament in the deterministic,
randomized, and quantum models, up to logarithmic factors in the input size. In the
deterministic model we are able to show a tight Θ(n log n) bound.

We first define an intermediate communication problem, MAXSUMn,k, which seems
independently interesting to study from the perspective of communication complexity.

▶ Definition 32. Let n, k > 0 be positive integers. In the MAXSUMn,k problem, Alice is
given A = (a1, . . . , an) ∈ [k]n, Bob is given B = (b1, . . . , bn) ∈ [k]n, and their goal is to
output arg maxj∈[n](aj + bj) (if there is a tie, they can output any of the tied indices).

MAXSUMn,k is easily seen to be the composition of two problems: the outer problem is
ARGMAX2k,n (see Definition 14) and the inner function is SUMk (which adds two integers
in [k], one with Alice and the other with Bob). It is also easy to see that MODn reduces
to MAXSUMn,2n: Alice and Bob can locally construct (a1, . . . , an) and (b1, . . . , bn) to be
the out-degree vectors of all the vertices restricted to edges in their inputs. Thus, a cost-c
protocol for MAXSUMn,2n also gives a protocol for MODn.

We note here that our upper bounds (Theorem 5) actually give upper bounds for the more
general MAXSUMn,k problem; the deterministic, randomized, and quantum communication
upper bounds here are O(n log k), O(n log log k) and O(

√
n log k log n), respectively. Next,

we proceed to give a proof of Theorem 5.

Proof of Theorem 5. For the upper bounds, we exhibit protocols of the required cost for
MAXSUMn,n, which is only a (potentially) harder problem.

For the deterministic upper bound, note that Alice can just send her input to Bob with
cost n log n, and Bob can output the answer.
The randomized upper bound follows by using Theorem 20 with the list s = (a1 +
b1, . . . , an + bn), and observing that testing whether ai + bi ≥ aj + bj can be done with
communication O(log log n) and success probability at least 2/3 (Theorem 21).
For the quantum upper bound, recall that MAXSUMn,n is the composition of ARGMAX2n,n

(with an input list in [2n]n) and SUM (sum of 2 integers in [n], one with Alice and the
other with Bob). Here, ARGMAX2n,n has query complexity O(

√
n), where query access

is to the values of the elements of the list (see Theorem 15) and SUM : [n]× [n]→ [2n].
Setting Dg = [n], Df = [2n], g = SUMn : Dg ×Dg → Df , , f = ARGMAX2n,n ⊆ Dn

f × [n]
in Theorem 18, this gives a quantum communication upper bound of O(

√
n log n).

N. S. Mande, M. Paraashar, S. Sanyal, and N. Saurabh 64:19

Randomized and quantum lower bounds. The randomized and quantum lower bounds
follow the same proof as that of Theorem 4 (see Section 4.4) because the three kings in GS,σ

are precisely the maximum out-degree vertices there as well (see Lemma 31). This argument
also shows a deterministic lower bound of Ω(n).

Deterministic lower bound. We now turn our attention to the deterministic lower bound of
Ω(n log n), which does not use the same reduction as in the proof of Theorem 4. We show this
via a fooling set argument (Lemma 19). Below, we assume that the first half of Alice’s input
corresponds to the out-degree sequence of a tournament on vertex set L = {1, 2, . . . , n/2},
the second half of her input corresponds to the out-degree sequence of a tournament on
vertex set R = {1′, 2′, . . . , (n/2)′}, and Bob’s input is the out-degree sequence of the complete
bipartite tournament between L and R. We focus on inputs that are induced by tournaments
of the following form, that are defined for a permutation σ ∈ Sn/2−1 that acts in an identical
fashion on {2, 3, . . . , n/2} and {2′, 3′, . . . (n/2)′}. We call Alice and Bob’s input constructed
below Aσ and Bσ, respectively.
1. Vertex 1 is the source in L, and vertex 1′ is the source in R. These edges are with Alice.6

2. Vertex 1 has edges towards 1′ and σ−1(2′). All other vertices in {3′, 4′, . . . (n/2)′} have
edges pointing towards vertex 1. These edges are with Bob.

3. For all i, j ∈ {2, 3, . . . , n/2}, there is an edge from i to j iff σ(i) < σ(j). Similarly there
is an edge from i′ to j′ iff σ(i′) < σ(j′). These edges are with Alice.

4. For i ∈ {2, 3, . . . , n/2}, there is an edge from i to 1′. These edges are with Bob.
5. For i, j ∈ {2, 3, . . . , n/2}, there is an edge from i to j′ iff σ(i) ≤ σ(j). These edges are

with Bob.
We now verify that vertex 1 is the unique vertex with maximum out-degree in the whole
tournament (and hence the first coordinate must be output in the corresponding inputs to
Alice and Bob for MODn).

Items 1 and 2 above ensure that vertex 1 has out-degree n/2− 1 + 2 = n/2 + 1.
Item 1 and Item 4 ensure that the out-degree of vertex 1′ is n/2− 1.
Item 1 and Item 5 ensure that vertex σ−1(2′) has out-degree n/2− 2.
For i ∈ {2, 3, . . . , n/2}, the out-degree of vertex σ−1(i) is n/2 − i from Alice’s input
(Item 3) plus i from Bob’s input (Item 5), which gives a total of n/2.
For i ∈ {3, 4, . . . , n/2}, the out-degree of vertex σ−1(i′) is n/2 − i from Alice’s input
(Item 3) plus i− 1 from Bob’s input (Item 5), which gives a total of n/2− 1.

These bullets verify that for input (Aσ, Bσ), vertex 1 is the unique maximum out-degree
vertex. Our fooling set will be of the form F = {(Aσ, Bσ) : σ ∈ S}, where S ⊆ Sn/2−1 is
chosen appropriately. The property that S will satisfy is that for all σ ̸= σ′ ∈ S, at least one
of the inputs (Aσ, Bσ′) or (Aσ′ , Bσ) will not have vertex 1 as a maximum out-degree vertex.
We will also construct S such that |S| = 2Ω(n log n). Lemma 19 will then imply the required
deterministic communication lower bound of Ω(n log n).

It remains to construct S ⊆ Sn/2−1, which we do in the remaining part of this proof. We
construct S such that it satisfies the following property.

∀σ ̸= σ′ ∈ S, ∃i ∈ {2, 3, . . . , n/2} : |σ(i)− σ′(i)| ≥ 2.

6 When we say “edges are with Alice/Bob”, we actually mean Alice/Bob’s out-degree of vertices is
determined by the directions of the underlying edges. In this case we mean Alice’s first coordinate is
n/2 + 1 because vertex 1 is a source in L.

APPROX/RANDOM 2024

64:20 On the Communication Complexity of Finding a King in a Tournament

In the two bullets below, we first show why such an S satisfies the required fooling set
property, and then show a construction of S of size 2Ω(n log n).

Let σ ̸= σ′ be an arbitrary pair of elements of S. Without loss of generality, assume that
i ∈ {2, 3, . . . , n/2} is such that σ′(i) − σ(i) ≥ 2 (otherwise switch the roles of σ and σ′

and run the same argument). Consider the input (Aσ, Bσ′). Note that the out-degree of
vertex 1 remains n/2 + 1 because all edges incident on it are fixed for all inputs in our
fooling set. Alice’s contribution to the out-degree of vertex i is n/2 − σ(i), and Bob’s
contribution is σ′(i), which gives a total of n/2 + σ′(i)− σ(i) ≥ n/2 + 2. Thus vertex 1
cannot be a maximum out-degree vertex in the input (Aσ, Bσ′).
We construct such an S greedily one element at a time. At any step in the construction
we maintain the invariant that the current set T satisfies

∀σ ̸= σ′ ∈ T, ∃i ∈ {2, 3, . . . , n/2} : |σ(i)− σ′(i)| ≥ 2.

Additionally we maintain a “candidate” set of permutations in Sn/2−1 that are not in T ,
and have the property that adding any of them to T will satisfy T ’s invariant. Initially
we start with T = ∅ and the candidate set as Sn/2−1, which clearly satisfies the required
invariant. At any stage, after adding σ to T , we remove the set Sσ from the candidate
set, where Sσ is defined as

Sσ :=
{

τ ∈ Sn/2−1 : |τ(i)− σ(i)| < 2
}
∀i ∈ {2, 3, . . . , n/2} .

It is easy to verify by induction that T and the candidate set thus constructed always
satisfy the required invariant. The initial size of the candidate set is (n/2−1)! = 2Ω(n log n),
and at each step we are removing at most 3n elements from the candidate set. This means
that the number of iterations of this construction is at least 2Ω(n log n−n) = 2Ω(n log n),
which is what we needed. ◀

We remark that while it may seem like the argument used in the previous proof may be
adaptable to prove a deterministic communication lower bound of Ω(n log n) for KINGn, this
is not possible in view of our O(n) deterministic communication upper bound for KINGn

from Theorem 4. This shows an inherent difference between MODn and KINGn in the setting
of deterministic communication complexity.
▶ Remark 33. We note that our Ω(n log n) lower bound for MODn also solves Problem 2
in [22].

References
1 Scott Aaronson and Andris Ambainis. Quantum search of spatial regions. Theory Comput.,

1(1):47–79, 2005. doi:10.4086/TOC.2005.V001A004.
2 Miklós Ajtai, Vitaly Feldman, Avinatan Hassidim, and Jelani Nelson. Sorting and selection

with imprecise comparisons. ACM Trans. Algorithms, 12(2):19:1–19:19, 2016. doi:10.1145/
2701427.

3 Kazuyuki Amano. Some improved bounds on communication complexity via new decomposition
of cliques. Discrete Applied Mathematics, 166:249–254, 2014. doi:10.1016/j.dam.2013.09.
015.

4 Anurag Anshu, Naresh Goud Boddu, and Dave Touchette. Quantum log-approximate-rank
conjecture is also false. In Annual Symposium on Foundations of Computer Science, (FOCS),
pages 982–994, 2019. doi:10.1109/FOCS.2019.00063.

5 László Babai, Peter Frankl, and Janos Simon. Complexity classes in communication complexity
theory (preliminary version). In Annual Symposium on Foundations of Computer Science,
(FOCS), pages 337–347, 1986. doi:10.1109/SFCS.1986.15.

https://doi.org/10.4086/TOC.2005.V001A004
https://doi.org/10.1145/2701427
https://doi.org/10.1145/2701427
https://doi.org/10.1016/j.dam.2013.09.015
https://doi.org/10.1016/j.dam.2013.09.015
https://doi.org/10.1109/FOCS.2019.00063
https://doi.org/10.1109/SFCS.1986.15

N. S. Mande, M. Paraashar, S. Sanyal, and N. Saurabh 64:21

6 Yakov Babichenko, Shahar Dobzinski, and Noam Nisan. The communication complexity
of local search. In Symposium on Theory of Computing, (STOC), pages 650–661, 2019.
doi:10.1145/3313276.3316354.

7 R. Balasubramanian, Venkatesh Raman, and G. Srinivasaragavan. Finding scores in tourna-
ments. J. Algorithms, 24(2):380–394, 1997. doi:10.1006/JAGM.1997.0865.

8 Kaspars Balodis, Shalev Ben-David, Mika Göös, Siddhartha Jain, and Robin Kothari. Unam-
biguous DNFs and Alon-Saks-Seymour. In Annual Symposium on Foundations of Computer
Science, (FOCS), pages 116–124. IEEE, 2021. doi:10.1109/FOCS52979.2021.00020.

9 Gal Beniamini and Noam Nisan. Bipartite perfect matching as a real polynomial. In
Symposium on Theory of Computing, (STOC), pages 1118–1131. ACM, 2021. doi:10.1145/
3406325.3451002.

10 Arindam Biswas, Varunkumar Jayapaul, Venkatesh Raman, and Srinivasa Rao Satti. Finding
kings in tournaments. Discret. Appl. Math., 322:240–252, 2022. doi:10.1016/j.dam.2022.08.
014.

11 Joakim Blikstad, Jan van den Brand, Yuval Efron, Sagnik Mukhopadhyay, and Danupon
Nanongkai. Nearly optimal communication and query complexity of bipartite matching. In
Annual Symposium on Foundations of Computer Science, (FOCS), pages 1174–1185, 2022.
doi:10.1109/FOCS54457.2022.00113.

12 Harry Buhrman, Richard Cleve, and Avi Wigderson. Quantum vs. classical communication
and computation. In Symposium on the Theory of Computing, (STOC), pages 63–68, 1998.
doi:10.1145/276698.276713.

13 Amit Chakrabarti, Prantar Ghosh, Andrew McGregor, and Sofya Vorotnikova. Vertex ordering
problems in directed graph streams. In Symposium on Discrete Algorithms, (SODA), pages
1786–1802, 2020. doi:10.1137/1.9781611975994.109.

14 Arkadev Chattopadhyay, Yogesh Dahiya, Nikhil S. Mande, Jaikumar Radhakrishnan, and
Swagato Sanyal. Randomized versus deterministic decision tree size. In Symposium on Theory
of Computing, (STOC), pages 867–880, 2023. doi:10.1145/3564246.3585199.

15 Arkadev Chattopadhyay, Nikhil S. Mande, and Suhail Sherif. The log-approximate-rank
conjecture is false. J. ACM, 67(4):23:1–23:28, 2020. doi:10.1145/3396695.

16 Arjan Cornelissen, Nikhil S. Mande, and Subhasree Patro. Improved quantum query upper
bounds based on classical decision trees. In Foundations of Software Technology and Theoretical
Computer Science, (FSTTCS), volume 250, pages 15:1–15:22, 2022. doi:10.4230/LIPICS.
FSTTCS.2022.15.

17 Yogesh Dahiya and Meena Mahajan. On (simple) decision tree rank. Theor. Comput. Sci.,
978:114177, 2023. doi:10.1016/J.TCS.2023.114177.

18 Palash Dey. Query complexity of tournament solutions. In Conference on Artificial Intelligence,
(AAAI), pages 2992–2998, 2017. doi:10.1609/AAAI.V31I1.10702.

19 Pavol Duris and Pavel Pudlák. On the communication complexity of planarity. In Fundamentals
of Computation Theory, (FCT), volume 380 of Lecture Notes in Computer Science, pages
145–147, 1989. doi:10.1007/3-540-51498-8_14.

20 Christoph Dürr and Peter Høyer. A quantum algorithm for finding the minimum. CoRR,
quant-ph/9607014, 1996. URL: http://arxiv.org/abs/quant-ph/9607014.

21 Uriel Feige, David Peleg, Prabhakar Raghavan, and Eli Upfal. Computing with unreliable
information (preliminary version). In Symposium on Theory of Computing, (STOC), pages
128–137. ACM, 1990. doi:10.1145/100216.100230.

22 Maxime Flin and Parth Mittal. (∆+1) vertex coloring in O(n) communication. In Proceedings
of the 43rd ACM Symposium on Principles of Distributed Computing, PODC 2024, Nantes,
France, June 17-21, 2024, pages 416–424. ACM, 2024. doi:10.1145/3662158.3662796.

23 Prantar Ghosh. Private Communication, 2024.
24 Prantar Ghosh and Sahil Kuchlous. New algorithms and lower bounds for streaming tourna-

ments. CoRR, abs/2405.05952, 2024. doi:10.48550/arxiv.2405.05952.

APPROX/RANDOM 2024

https://doi.org/10.1145/3313276.3316354
https://doi.org/10.1006/JAGM.1997.0865
https://doi.org/10.1109/FOCS52979.2021.00020
https://doi.org/10.1145/3406325.3451002
https://doi.org/10.1145/3406325.3451002
https://doi.org/10.1016/j.dam.2022.08.014
https://doi.org/10.1016/j.dam.2022.08.014
https://doi.org/10.1109/FOCS54457.2022.00113
https://doi.org/10.1145/276698.276713
https://doi.org/10.1137/1.9781611975994.109
https://doi.org/10.1145/3564246.3585199
https://doi.org/10.1145/3396695
https://doi.org/10.4230/LIPICS.FSTTCS.2022.15
https://doi.org/10.4230/LIPICS.FSTTCS.2022.15
https://doi.org/10.1016/J.TCS.2023.114177
https://doi.org/10.1609/AAAI.V31I1.10702
https://doi.org/10.1007/3-540-51498-8_14
http://arxiv.org/abs/quant-ph/9607014
https://doi.org/10.1145/100216.100230
https://doi.org/10.1145/3662158.3662796
https://doi.org/10.48550/arxiv.2405.05952

64:22 On the Communication Complexity of Finding a King in a Tournament

25 Mika Göös. Lower bounds for clique vs. independent set. In Symposium on Foundations of
Computer Science, (FOCS), pages 1066–1076, 2015. doi:10.1109/FOCS.2015.69.

26 Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic communication vs. partition
number. SIAM J. Comput., 47(6):2435–2450, 2018. doi:10.1137/16M1059369.

27 András Hajnal, Wolfgang Maass, and György Turán. On the communication complexity of
graph properties. In Symposium on Theory of Computing, (STOC), pages 186–191, 1988.
doi:10.1145/62212.62228.

28 Hao Huang and Benny Sudakov. A counterexample to the Alon-Saks-Seymour conjecture and
related problems. Comb., 32(2):205–219, 2012. doi:10.1007/S00493-012-2746-4.

29 Gábor Ivanyos, Hartmut Klauck, Troy Lee, Miklos Santha, and Ronald de Wolf. New
bounds on the classical and quantum communication complexity of some graph properties. In
Foundations of Software Technology and Theoretical Computer Science, (FSTTCS), volume 18,
pages 148–159, 2012. doi:10.4230/LIPICS.FSTTCS.2012.148.

30 Bala Kalyanasundaram and Georg Schnitger. The probabilistic communication complexity of
set intersection. SIAM J. Discret. Math., 5(4):545–557, 1992. doi:10.1137/0405044.

31 Eyal Kushilevitz, Nathan Linial, and Rafail Ostrovsky. The Linear-Array Conjecture in Com-
munication Complexity is False. Comb., 19(2):241–254, 1999. doi:10.1007/S004930050054.

32 Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University Press,
1997.

33 Oded Lachish, Felix Reidl, and Chhaya Trehan. When you come at the king you best not
miss. In Foundations of Software Technology and Theoretical Computer Science, (FSTTCS),
volume 250, pages 25:1–25:12, 2022. doi:10.4230/LIPIcs.FSTTCS.2022.25.

34 H.G. Landau. On dominance relations and the structure of animal societies: III The condition
for a score structure. The bulletin of mathematical biophysics, 15:143–148, 1953. doi:
10.1007/BF02476378.

35 László Lovász and Michael E. Saks. Lattices, mobius functions and communications complexity.
In Symposium on Foundations of Computer Science, FOCS, pages 81–90, 1988. doi:10.1109/
SFCS.1988.21924.

36 Nikhil S Mande, Manaswi Paraashar, Swagato Sanyal, and Nitin Saurabh. On the communic-
ation complexity of finding a king in a tournament. CoRR, 2024. arXiv:2402.14751.

37 Nikhil S. Mande, Manaswi Paraashar, and Nitin Saurabh. Randomized and quantum query
complexities of finding a king in a tournament. In Foundations of Software Technology
and Theoretical Computer Science, (FSTTCS), volume 284, pages 30:1–30:19, 2023. doi:
10.4230/LIPICS.FSTTCS.2023.30.

38 Stephen B Maurer. The king chicken theorems. Mathematics Magazine, 53(2):67–80, 1980.
39 Noam Nisan. The communication complexity of threshold gates. Combinatorics, Paul Erdos

is Eighty, 1:301–315, 1993.
40 Noam Nisan. The demand query model for bipartite matching. In Symposium on Discrete

Algorithms, (SODA), pages 592–599, 2021. doi:10.1137/1.9781611976465.36.
41 Anup Rao and Amir Yehudayoff. Communication Complexity: and Applications. Cambridge

University Press, 2020.
42 Alexander Razborov. Quantum communication complexity of symmetric predicates. Izvestiya

of the Russian Academy of Sciences, mathematics, 67(1):159–176, 2003.
43 Alexander A. Razborov. On the distributional complexity of disjointness. Theor. Comput.

Sci., 106(2):385–390, 1992. doi:10.1016/0304-3975(92)90260-M.
44 Jian Shen, Li Sheng, and Jie Wu. Searching for sorted sequences of kings in tournaments.

SIAM J. Comput., 32(5):1201–1209, 2003. doi:10.1137/S0097539702410053.
45 Manami Shigeta and Kazuyuki Amano. Ordered biclique partitions and communication

complexity problems. Discrete Applied Mathematics, 184:248–252, 2015. doi:10.1016/j.dam.
2014.10.029.

https://doi.org/10.1109/FOCS.2015.69
https://doi.org/10.1137/16M1059369
https://doi.org/10.1145/62212.62228
https://doi.org/10.1007/S00493-012-2746-4
https://doi.org/10.4230/LIPICS.FSTTCS.2012.148
https://doi.org/10.1137/0405044
https://doi.org/10.1007/S004930050054
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.25
https://doi.org/10.1007/BF02476378
https://doi.org/10.1007/BF02476378
https://doi.org/10.1109/SFCS.1988.21924
https://doi.org/10.1109/SFCS.1988.21924
https://doi.org/10.4230/LIPICS.FSTTCS.2023.30
https://doi.org/10.4230/LIPICS.FSTTCS.2023.30
https://doi.org/10.1137/1.9781611976465.36
https://doi.org/10.1016/0304-3975(92)90260-M
https://doi.org/10.1137/S0097539702410053
https://doi.org/10.1016/j.dam.2014.10.029
https://doi.org/10.1016/j.dam.2014.10.029

N. S. Mande, M. Paraashar, S. Sanyal, and N. Saurabh 64:23

46 Makrand Sinha and Ronald de Wolf. Exponential separation between quantum communication
and logarithm of approximate rank. In Annual Symposium on Foundations of Computer
Science, (FOCS), pages 966–981, 2019. doi:10.1109/FOCS.2019.00062.

47 Mihalis Yannakakis. Expressing combinatorial optimization problems by linear programs. J.
Comput. Syst. Sci., 43(3):441–466, 1991. doi:10.1016/0022-0000(91)90024-Y.

APPROX/RANDOM 2024

https://doi.org/10.1109/FOCS.2019.00062
https://doi.org/10.1016/0022-0000(91)90024-Y

Capacity-Achieving Gray Codes
Venkatesan Guruswami # Ñ

University of California, Berkeley, CA, USA

Hsin-Po Wang # Ñ

University of California, Berkeley, CA, USA

Abstract
To ensure differential privacy, one can reveal an integer fuzzily in two ways: (a) add some Laplace
noise to the integer, or (b) encode the integer as a binary string and add iid BSC noise. The
former is simple and natural while the latter is flexible and affordable, especially when one wants to
reveal a sparse vector of integers. In this paper, we propose an implementation of (b) that achieves
the capacity of the BSC with positive error exponents. Our implementation adds error-correcting
functionality to Gray codes by mimicking how software updates back up the files that are getting
updated (“coded Gray code”). In contrast, the old implementation of (b) interpolates between
codewords of a black-box error-correcting code (“Grayed code”).

2012 ACM Subject Classification Mathematics of computing → Coding theory; Security and privacy
→ Privacy-preserving protocols

Keywords and phrases Gray codes, capacity-achieving codes, differential privacy

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.65

Category RANDOM

Funding Venkatesan Guruswami: NSF grant CCF-2210823 and a Simons Investigator Award

1 Introduction

Differential privacy is the art of publishing collective facts without leaking any detail of any
user. A mathematically rigorous way to do so is adding noise to an aggregation function
that is Lipschitz continuous (sometimes of bounded variation) in every argument. More
concretely, suppose that we are interested in a feature φ : {0, 1}n → [m] that satisfies

|φ(u) − φ(u′)| ⩽ 1, for u := (u1, . . . , ui, . . . , un) and u′ := (u1, . . . , 1−ui, . . . , un),

i.e., changing the data of the ith user does not change the feature too much. Then publishing
φ(u) + L, where L follows the Laplace distribution with decay rate ε, is ε-differentially
private [3]. That is,

Prob{φ(u) + L < t} ⩽ exp(ε) Prob{φ(u′) + L < t} (1)

for any number t ∈ R, meaning that a data broker will have a hard time telling if ui is 0 or 1.
Publishing φ(u) + L is called the Laplace mechanism [3]. It is optimal1 privacy-wise

as (1) assumes equality half of the time. But it turns out to be randomness-costly and
space-inefficient when we have many features φ1, . . . , φℓ to publish, wherein only k ≪ ℓ of
them are non-zero2 for a given x. In this case, the Laplace mechanism will add noise to

1 Note that we can always choose to publish φ(u) + 100L, which is more private than φ(u) + L by being
less informative and less useful. We say that φ(u) + L is optimal because it strikes a balance between
(1) and utility.

2 For example, φi(u) could be the number of times the ith English word was mentioned in a forum archive
u. Most word counts are going to be zero.

© Venkatesan Guruswami and Hsin-Po Wang;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 65; pp. 65:1–65:9

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:venkatg@berkeley.edu
https://people.eecs.berkeley.edu/~venkatg/
https://orcid.org/0000-0001-7926-3396
mailto:simple@berkeley.edu
https://www.hsin-po.wang
https://orcid.org/0000-0003-2574-1510
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.65
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

65:2 Capacity-Achieving Gray Codes

n bits

S TRETCH OUT RANDOMLY
E(φi1(u)) = ⇝1 11 10 01 10 01 11 11 11 1
E(φi2(u)) = ⇝1 11 11 10 01 10 00 00 00 0
E(φi3(u)) = ⇝1 11 10 01 10 01 10 01 10 0
E(φi4(u)) = ⇝1 10 01 10 00 00 01 10 00 0
E(φi5(u)) = ⇝1 10 01 11 10 01 11 11 11 1

e

⇝

1

⇝

1

⇝

e

⇝

1

⇝

c

⇝

e

⇝

e

⇝

c

⇝

0

⇝

0

⇝

e

⇝

c

⇝

c

⇝

e

⇝

e

⇝

e

⇝

e

⇝

e

⇝

0

⇝

0

⇝

c

⇝

e

⇝

1

⇝

0

⇝

c

⇝

0

⇝

e

⇝

e
⇝

0
⇝

c
⇝

e
⇝

0
⇝

1
⇝

1
⇝

e

⇝

0

⇝

1

⇝

0

⇝

e

⇝

c

⇝

e

⇝

c

⇝

e

⇝

c

⇝

e

⇝

e

⇝

e

⇝

e

⇝

c

⇝

0

⇝

1

⇝

e

⇝

0

⇝

tape is Θ(kn) bits

Figure 1 A space-efficient differential privacy mechanism. Step 1: encode integers as binary
strings. Step 2: spread out the bits. Step 3: superimpose them on a tape. Features φi1 (u), . . . , φi5 (u)
are the ones that are nonzero. Labels c and e mean collision and empty, respectively; collisions will
be replaced by random bits; empty places will be filled with 0.

all φi(u) and then publish all ℓ of them. For one, this means that we are forced to sample
Laplace distribution ℓ times. Even if we can afford that, the output will be Ω(ℓ log m) in size
(m is an upper bound on the φ’s) while the raw data is only O(k log(ℓ) log(m)).

A brilliant idea of Lolck and Pagh [6], which is a generalization of an earlier work by
Aumüller, Lebeda, and Pagh [1], reduces the space requirement as well as the sampling cost.
The idea is that, instead of working on the ordered field R, we encode each φi(u) as a binary
string E(φi(u)) ∈ {0, 1}1×n and put the bits of E(φi(u)) at n random places on a tape of
length Θ(kn). This is illustrated in Figure 1. Note that E(φi1(u)) and E(φi2(u)) might end
up choosing the same random places. Such a collision is resolved, fairly, by putting a random
bit there. These random bits together with additional random bit-flips will play the role of
the Laplace noise – protecting privacy by making precise decoding impossible.

One problem remains: To what extent can we translate the binary tape back to real
numbers? This motivates the definition of robust Gray codes.

1.1 Robust Gray Codes

A Gray code encodes integers as binary strings such that any two consecutive strings differ
at exactly one place. A popular construction of Gray codes is via the ruler sequence [7,
A001511]

ρj := the greatest number r such that 2r divides 2j. (2)

The first few terms read 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5. Then, the (j + 1)th string of
the k-bit reflected Gray code is obtained by flipping the min(ρj , k)th bit of the jth string.
For simplicity, we will write min(ρj , k) as ρj , and so we can write gj+1 = gj + eρj instead of
gj + emin(ρj ,k), where er is the rth standard basis vector of length k. As an example, when
k = 4,

V. Guruswami and H.-P. Wang 65:3

ρ1 = 1
ρ2 = 2
ρ3 = 1
ρ4 = 3
ρ5 = 1
ρ6 = 2
ρ7 = 1
ρ8 = 4

g1 = 0 0 0 0
g2 = 1 0 0 0
g3 = 1 1 0 0
g4 = 0 1 0 0
g5 = 0 1 1 0
g6 = 1 1 1 0
g7 = 1 0 1 0
g8 = 0 0 1 0
g9 = 0 0 1 1

are the first nine strings. (Digits that are flipped are highlighted.)
A robust Gray code [1, 6] encodes integers as binary strings such that they can be fuzzily

recovered even if some bits are erased or corrupted. Given the motivational Figure 1, let us
use the binary symmetric channels (BSC) with crossover probability p ∈ (0, 1/2) to model
the errors. Then a robust Gray code is a pair of encoder

E : [m] → {0, 1}1×n

and decoder

D : {0, 1}1×n → [m]

such that (a) E(x) and E(x + 1) differ by one bit and (b)

Prob
{∣∣∣D(

BSCn
p (E(x))

)
− x

∣∣∣ > t
}

< 2−Ω(n) + 2−Ω(t) (3)

for all x ∈ [m − 1] and all t > 1. Here, BSCn
p flips each of the n bits with probability p. Note

that (3) is almost as good as the Laplace mechanism in that 2−Ω(t) decays exponentially in
t. The only catch is that when t ≫ n, the other error term 2−Ω(n) dominates 2−Ω(t). This
2−Ω(n) is unavoidable because there is always3 a 2−O(n) chance that BSC will flip all ones to
zero.

Apart from robustness, we also care about space efficiency. We know that, by Shannon’s
theory, the code rate log2(m)/n cannot exceed the capacity of BSCp, which is 1 + p log2(p) −
(1 − p) log2(1 − p). But how close can they be? Before our work, Lolck and Pagh’s
construction [6] achieves 1/4 of the capacity (1/3 in [6, Appendix A]) and Fathollahi and
Wootters’s construction [4] achieves 1/2 of the capacity. This means that the latter uses half
of the space to achieve the same privacy level.

In this work, and in a concurrent work by Con, Fathollahi, Gabrys, and Yaakobi [2], we
will show that the capacity can be achieved. This means that, subject to the framework of
Figure 1, the tradeoff between privacy and space is now asymptotically tight. We also show
that our code has linear encoding and decoding complexity, meaning that even the speed
cannot be significantly improved.

3 Note that we implicitly assume that p is bounded away from zero. This is a common practice in coding
theory where channel parameters, p in this case, are fixed while the other parameters vary. Also note
that BSCp here plays the role of the Laplace noise, so it would make less sense to have p too close to
zero unless, of course, one is aiming for some special privacy regime.

APPROX/RANDOM 2024

65:4 Capacity-Achieving Gray Codes

{0, 1}n

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝⇝

⇝

⇝

⇝

⇝
⇝

⇝

⇝

⇝

⇝
⇝

⇝

⇝

⇝

⇝⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝⇝

⇝

⇝ ⇝

⇝

⇝

⇝⇝

⇝

⇝

⇝

⇝

⇝ ⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝ ⇝

⇝

⇝

⇝ ⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝⇝

⇝

⇝ ⇝

⇝

⇝

⇝

⇝

⇝

⇝ ⇝

⇝

⇝

⇝

⇝

⇝

⇝ ⇝

⇝
⇝

⇝

⇝

⇝

⇝

⇝

⇝ ⇝

⇝

(a) An error-correcting code is some points
that can be decoded up to some radius.

{0, 1}n

(b) A gray code is a Hamiltonian cycle that
only goes in the cardinal directions.

Figure 2 Figurative illustrations of error-correcting codes and Gray codes.

1.2 Previous approaches
Earlier works [6, 4] baked robust Gray codes with the following recipe.

Take a good [n, k]-error correcting code C = {c1, c2, . . . , c2k } ⊂ {0, 1}1×n.
Let E map “milestone” integers 1 =: µ1 < µ2 < · · · < µ2k := m to the codewords of C,
i.e., E(µj) := cj .
“Interpolate” between the milestones. That is, if x ∈ [µj , µj+1], then the prefix of E(x)
will come from E(µj) and the suffix from E(µj+1).

The technicality is with the third bullet point. A decoder of C can translate E(x) back to µj

if x is close enough to µj . But there is going to be a middle ground between µj and µj+1
such that the decoder will be confused.

To eliminate the confusion, Lolck and Pagh [6] proposed the following data structure

E(µj) := cj∥cj∥cj∥cj ∈ {0, 1}1×4n,

where ∥ is the string concatenation operator. They then interpolate between consecutive
milestones µj and µj+1 as

E(µj.1) := cj ∥ cj ∥ cj ∥ cj ,

E(µj.2) := cj+1∥ cj ∥ cj ∥ cj ,

E(µj.3) := cj+1∥cj+1∥ cj ∥ cj ,

E(µj.4) := cj+1∥cj+1∥cj+1∥ cj ,

E(µj.5) := cj+1∥cj+1∥cj+1∥cj+1

for some minor milestones µj =: µj.1 < µj.2 < µj.3 < µj.4 < µj.5 := µj+1. Note that only one
copy is undergoing interpolation at any given time (which is highlighted). So the advantage
of repeating cj four times is that there are always two other copies that will decode to the
same codeword. To elaborate, between µj.1 and µj.3, the two cj to the right will decode
correctly; between µj.3 and µj.5, the two cj+1 to the left will decode correctly.

Later, Fathollahi and Wootters [4] streamlined the data structure from 4n bits to (2+3ε)n
bits by using buffers – consecutive zeros and ones. They map milestones to

E(µj) := 0εn∥cj∥0εn∥cj∥0εn ∈ {0, 1}1×(2+3ε)n

V. Guruswami and H.-P. Wang 65:5

{0, 1}n

⇝⇝ ⇝

⇝

⇝ ⇝⇝

⇝⇝

⇝⇝

⇝
⇝⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝ ⇝

⇝

⇝ ⇝

⇝ ⇝

⇝ ⇝

⇝

⇝⇝

⇝

⇝

⇝⇝

⇝

⇝

⇝

⇝

⇝
⇝

⇝

⇝⇝

⇝⇝⇝

⇝

⇝

⇝ ⇝

⇝ ⇝

⇝

⇝

⇝

⇝

⇝

⇝ ⇝

⇝ ⇝

⇝ ⇝

⇝ ⇝

⇝ ⇝⇝

⇝⇝

⇝⇝

⇝

⇝

⇝⇝

⇝

(a) “Grayed code”: Old approach takes an
error correcting code and then interpolates
between codewords.

{0, 1}n

⇝

⇝ ⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝ ⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝ ⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝ ⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝ ⇝

⇝

⇝

⇝

⇝

⇝⇝

⇝⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝⇝

⇝

⇝

⇝

⇝

⇝ ⇝

⇝
⇝

⇝

⇝

⇝

(b) “Coded Gray code”: New approach mul-
tiplies a Gray code with the generator matrix
of an error-correcting code.

Figure 3 Old approach (not capacity-achieving) versus new approach (capacity-achieving).

if j is even, and to

E(µj) := 1εn∥cj∥1εn∥cj∥1εn ∈ {0, 1}1×(2+3ε)n

if j is odd. They then interpolate between the milestones as

E(µj.1) := 0εn∥ cj ∥0εn∥ cj ∥0εn,

E(µj.2) := 1εn∥ cj ∥0εn∥ cj ∥0εn,

E(µj.3) := 1εn∥cj+1∥0εn∥ cj ∥0εn,

E(µj.4) := 1εn∥cj+1∥1εn∥ cj ∥0εn,

E(µj.5) := 1εn∥cj+1∥1εn∥cj+1∥0εn,

E(µj.6) := 1εn∥cj+1∥1εn∥cj+1∥1εn

for some minor milestones µj =: µj.1 < µj.2 < µj.3 < µj.4 < µj.5 < µj.6 := µj+1. In
this construction, the decoder is left with two, not four, copies of cj . It knows that the
one sandwiched between 0εn and 1εn is the one undergoing interpolation, and hence the
other one will decode correctly. To be more precise, between µj.1 and µj.4, the left one is
undergoing interpolation and the right cj is trustworthy; between µj.3 and µj.6, the right
one is undergoing interpolation and the left cj+1 is trustworthy.

1.3 New approach
While this paper was in preparation, it came to our attention that Con, Fathollahi,
Gabrys, Wootters, and Yaakobi have achieved similar results, but with different tech-
niques [2]. In particular, their approach uses code concatenation.

In this and the concurrent work by Con, Fathollahi, Gabrys, Wootters, and Yaakobi, we
aim to rightsize the length to n + Θ(εn) bits. While their work uses code concatenation, we
begin with a generator matrix A ∈ {0, 1}k×n of some error-correcting code. We then reorder
the codewords c1, . . . , c2k using Gray code:

cj+1 = gj+1A = (gj + eρj)A = cj + Aρj ∈ {0, 1}1×n.

APPROX/RANDOM 2024

65:6 Capacity-Achieving Gray Codes

Here, gj is the jth string of the Gray code, eρj is the ρjth cardinal vector, and Aρj is the
ρjth row of A, all as row vectors. Our data structure will look like

cj∥0εn∥ρj∥βj∥0εn∥ρj∥βj∥0εn

or

cj∥1εn∥ρj∥βj∥1εn∥ρj∥βj∥1εn

depending on the parity of j, Here, βj is a subvector of cj obtained by collecting bits where Aρj

has 1. More precisely, if Aρj has 1 at indices i1, i2, . . . , iw, then βj := cj
i1

cj
i2

· · · cj
iw

∈ {0, 1}1×w,
where w is the Hamming weight of Aρj .

The purpose of keeping ρj in E is to take note of which row of A we are going to add to
cj to obtain cj+1. The purpose of keeping βj in E is to back up the bits of cj that are going
to be modified. We then interpolate between minor milestones

cj ∥0εn∥ ρj ∥ βj ∥0εn∥ ρj ∥ βj ∥0εn,

cj+1∥0εn∥ ρj ∥ βj ∥0εn∥ ρj ∥ βj ∥0εn,

cj+1∥1εn∥ ρj ∥ βj ∥0εn∥ ρj ∥ βj ∥0εn,

cj+1∥1εn∥ρj+1∥ βj ∥0εn∥ ρj ∥ βj ∥0εn,

cj+1∥1εn∥ρj+1∥βj+1∥0εn∥ ρj ∥ βj ∥0εn,

cj+1∥1εn∥ρj+1∥βj+1∥1εn∥ ρj ∥ βj ∥0εn,

cj+1∥1εn∥ρj+1∥βj+1∥1εn∥ρj+1∥ βj ∥0εn,

cj+1∥1εn∥ρj+1∥βj+1∥1εn∥ρj+1∥βj+1∥0εn,

cj+1∥1εn∥ρj+1∥βj+1∥1εn∥ρj+1∥βj+1∥1εn,

Note that we use Fathollahi and Wootters’s data structure to protect ρj and βj , and so the
backup data is almost always available.4

An analogy of this construction is to think of cj as the state of our computer at version j.
Now a software update comes in and attempts to add Aρj to cj . To avoid messing things up,
the updater backs up the files that are going to be updated, which are at i1, . . . , iw; and βj

is the backup data.
Our construction, at any code rate below capacity, achieves positive error exponents and

linear encoding and decoding complexity.

▶ Theorem 1 (Main theorem). Fix a BSC with p ∈ (0, 1/2) and a gap to capacity ε > 0.
For sufficiently large n, there exists a pair of encoder E : [m] → {0, 1}1×n and decoder
D : {0, 1}1×n → [m] with code size m > 2(Capacity(BSCp)−ε)n such that (a) E(x) and E(x + 1)
differ by one bit and (b)

Prob
{∣∣∣D(

BSCn
p (E(x))

)
− x

∣∣∣ > t
}

< 2−Ω(n) + 2−Ω(t)

for all x ∈ [m − 1] and all t > 1. Moreover, the time complexity of E and D scales5 linearly
in n.

Organization

The rest of the paper is dedicated to proving Theorem 1.

4 There is no reason not to protect ρj and βj using error-correcting codes. We omit that here but will
discuss in the formal proof.

5 exponentially in 1/ poly(ε)

V. Guruswami and H.-P. Wang 65:7

2 Proof of Theorem 1

Fix a crossover probability p and a gap to capacity ε > 0. Let n and k be very large.

2.1 The building blocks B and C
We begin with a linear code B with block length εn and dimension εk. Using well-known
constructions [5, Theorem 8], we can make the code rate k/n ε-close to the capacity if n is
large enough. Moreover, the encoding and decoding complexity can be made linear in n. Let
B be the generator matrix of B.

We stack B to construct a larger generator matrix

A :=

B B̄

B B̄

B B̄
.

B B̄

 ∈ {0, 1}k×(1+ε)n (4)

and denote the corresponding code by C ⊂ {0, 1}1×(1+ε)n. Here, B̄ is the bitwise complement
of B. We put B̄ next to B so that all rows of [B B̄] has the same Hamming weight, εn.
This means that the backup data βj will be exactly εn bits long. We repeat B and B̄ 1/ε

times so that A has block length (1 + ε)n and dimension k. This makes the code rate of C
2ε-close to the capacity.

Decoding C is straightforward. Given a received word y ∈ {0, 1}1×(1+ε)n, apply B’s
decoder to y1, . . . , yεn to obtain x1, . . . , xεn. Subtract the influence of x1, . . . , xεn from
yεn+1, . . . , y2εn and apply B’s decoder to obtain xεn+1, . . . , x2εn. Repeat this process until
we obtain xn.

We also use B to protect the row index ρj ∈ [k] and the backup data βj ∈ {0, 1}εn.
Denote by B(ρj , βj) the result of encoding these log2(k) + εn bits of information using

2n

k
⩾

⌈ log2(k) + εn

εk

⌉
blocks of B. This means that B(ρj , βj) has length 2εn2/k.

2.2 Encoding E
Recall that ρj is the ruler sequence defined in (2) capped at k. Recall that gj is the jth string
of the Gray code and is obtained by flipping the min(ρj−1, k)th bit of gj−1. We assume an
ordering on the codewords C = {c1, . . . , c2k } by Gray code, i.e., cj := gjA. Let βj be the
subvector of cj obtained by deleting the bits where Aρj has 0.

We now place the milestones at

µj := jεn(4 + 2n/k)

for j ∈ [2k]. Consequently, E will encode integers up to m := (2k − 1)εn(4 + 2n/k) + 1 =
(1 + o(1))2k. We then define data structure:

E(µj) := cj∥0εn∥B(ρj , βj)∥0εn∥B(ρj , βj)∥0εn

and

E(µj) := cj∥1εn∥B(ρj , βj)∥1εn∥B(ρj , βj)∥1εn

APPROX/RANDOM 2024

65:8 Capacity-Achieving Gray Codes

depending on the parity of j. Here, B(ρj , βj) is the bitwise complement of B(ρj , βj). Note
that each E(µj) is (1 + 4ε + 4εn/k)n bits long. We infer that the code rate of E is O(ε)-close
to the capacity.

Next, we show that the Hamming distance between E(µj) and E(µj+1) is εn(4 + 2n/k).
Trivially, the consecutive zeros and ones contributes 3εn bits of Hamming distance. Next,
note that

cj+1 − cj = gj+1A − gjA = (gj+1 − gj)A = eρj A = Aρj .

This is the ρjth row of A. By the construction (4), any row of A contributes exactly εn bits
of Hamming distance. Next, B(ρj , βj) and B(ρj+1, βj+1) contributes an unknown amount
of distance. But it is complement to the distance between B(ρj , βj) and B(ρj+1, βj+1).
Therefore, the B part contributes exactly 2εn2/k. In total, the Hamming distance is exactly
εn(4 + 2n/k).

Now that the distance between consecutive milestones matches the Hamming distance,
we can interpolate between them. In particular, for even j,

E(µj) := cj ∥0εn∥ B(ρj , βj) ∥0εn∥ B(ρj , βj) ∥0εn,

E(µj + εn) := cj+1∥0εn∥ B(ρj , βj) ∥0εn∥ B(ρj , βj) ∥0εn,

E(µj + 2εn) := cj+1∥1εn∥ B(ρj , βj) ∥0εn∥ B(ρj , βj) ∥0εn,

E(µj + 2εn + d) := cj+1∥1εn∥B(ρj+1, βj+1)∥0εn∥ B(ρj , βj) ∥0εn,

E(µj + 3εn + d) := cj+1∥1εn∥B(ρj+1, βj+1)∥1εn∥ B(ρj , βj) ∥0εn,

E(µj + 3εn + 2εn2/k) := cj+1∥1εn∥B(ρj+1, βj+1)∥1εn∥B(ρj+1, βj+1)∥0εn,

E(µj + 4εn + 2εn2/k) := cj+1∥1εn∥B(ρj+1, βj+1)∥1εn∥B(ρj+1, βj+1)∥1εn,

where d is the Hamming distance between B(ρj , βj) and B(ρj+1, βj+1).

2.3 Decoding D
Suppose that we are given

c∥ϕ∥B′∥ϕ′∥B′′∥ϕ′′′ (5)

as the noisy version of E(x) for some x ∈ [m], where
c ∈ {0, 1}1×(1+ε)n is the noisy version of cj , cj+1, or anything in between,
ϕ, ϕ′, ϕ′′ ∈ {0, 1}1×εn are the noisy version of the buffers, and
B′, B′′ ∈ {0, 1}1×2εn2/k are the noisy version of the B part.

We first apply Fathollahi and Wootters’s decoder [4] to the second half of (5)

ϕ∥B′∥ϕ′∥B′′∥ϕ′′′.

Their decoder counts how many ones and zeros are in ϕ, ϕ′, and ϕ′′. This tells us which
minor milestone we are at. We use this information to determine which of B′ or B′′ is
undergoing interpolation, and which is trustworthy. And then, we use the trustworthy one
to recover the row index ρj and the backup data βj (or ρj+1 and βj+1 depending on if x is
past µj + 2.5εn + d or not). From now on, we just call them ρ and β.

We define the rollback function Roll : {0, 1}(1+ε)n × [k] × {0, 1}εn → {0, 1}(1+ε)n that
overwrites messed-up bits using backup data. More precisely, Roll(c, ρ, β) will be the vector
c after replacing ci1 with β1, ci2 with β2, and so on, where i1, i2, . . . are the indices where
Aρ has 1. Our claim is that, it does not matter if it is cj , 0εn, or B that is undergoing
interpolation, Roll(c, ρ, β) will just look like the noisy version of cj or cj+1, which can be
decoded by the decoder of C. This can be seen more clearly by considering three cases.

V. Guruswami and H.-P. Wang 65:9

Case 1: x is between µj and µj + εn. This is the stage where we are adding Aρ to
cj . In this case, the B part backs up the subvector of cj that is undergoing interpolation;
Roll(c, ρ, β) would just be a noisy version of cj that can be decoded by C.

Case 2: x is between µj + εn and µj + 2.5εn + d. This is the case where B′ is not
trustworthy and so Fathollahi and Wootters’s decoder will decode B′′ to (ρj , βj). In this
case, Roll(c, ρj , βj) will be a noisy version of cj that can be decoded by C.

Case 3: x is between µj + 2.5εn + d and µj + 4εn + 2εn2/k. This is the case where B′′ is
not trustworthy and so Fathollahi and Wootters’s decoder will decode B′ to ρj+1, βj+1. In
this case, Roll(c, ρj+1, βj+1) will be a noisy version of cj+1 that can be decoded by C.

Examining these three cases, we can see that Roll(c, ρ, β) will always yield cj or cj+1.
With that, we can compute gj and j. Now that we know x ∈ [µj , µj+1], it suffices to
compare (5) with E(µj), . . . , E(µj+1) and see which one minimizes the Hamming distance.
The minimizer will be our best bet of x.

2.4 Complexity and tail estimation
The complexity of E and D is linear in n. This is because Gray’s encoding, Gray’s decoding,
B’s encoding, B’s decoding, determining whether ϕ, ϕ′, and ϕ′′ are zeros or ones, determining
whether B′ or B′′ is trustworthy, and Roll are all linear in n.

The tail estimation (3) boils down to the following components.
With probability 2−Ω(n), we obtain the wrong j, i.e., x /∈ [µj , µj+1].
The guesswork of x conditioned on correct j has tail probability 2−Ω(t).

The first bullet point is a consequence of the error probability of B being 2−Ω(εn), which is
2−Ω(n) as we fixed ε. The second bullet point relies on what minimizes the Hamming distance
between (5) and E(µj), . . . , E(µj+1). Such analysis has been done before [6, Lemma 3.7] [4,
Lemma 13], and we do not repeat it here. This finishes the proof.

References
1 Martin Aumüller, Christian Janos Lebeda, and Rasmus Pagh. Representing Sparse Vectors

with Differential Privacy, Low Error, Optimal Space, and Fast Access. Journal of Privacy and
Confidentiality, 12(2), November 2022. doi:10.29012/jpc.809.

2 Roni Con, Dorsa Fathollahi, Ryan Gabrys, Mary Wootters, and Eitan Yaakobi. Robust gray
codes approaching the optimal rate, 2024. arXiv:2406.17689.

3 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating Noise to
Sensitivity in Private Data Analysis. Journal of Privacy and Confidentiality, 7(3):17–51, 2016.
doi:10.29012/jpc.v7i3.405.

4 Dorsa Fathollahi and Mary Wootters. Improved construction of robust gray code, 2024.
arXiv:2401.15291.

5 Venkatesan Guruswami and Piotr Indyk. Linear-Time Encodable/Decodable Codes With
Near-Optimal Rate. IEEE Transactions on Information Theory, 51(10):3393–3400, October
2005. doi:10.1109/TIT.2005.855587.

6 David Rasmussen Lolck and Rasmus Pagh. Shannon meets Gray: Noise-robust, Low-sensitivity
Codes with Applications in Differential Privacy. In Proceedings of the 2024 Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), Proceedings, pages 1050–1066. Society for
Industrial and Applied Mathematics, January 2024. doi:10.1137/1.9781611977912.40.

7 OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences, 2024. Published
electronically at http://oeis.org.

APPROX/RANDOM 2024

https://doi.org/10.29012/jpc.809
https://arxiv.org/abs/2406.17689
https://doi.org/10.29012/jpc.v7i3.405
https://arxiv.org/abs/2401.15291
https://doi.org/10.1109/TIT.2005.855587
https://doi.org/10.1137/1.9781611977912.40
http://oeis.org

On Black-Box Meta Complexity and Function
Inversion
Noam Mazor #

Tel Aviv University, Israel

Rafael Pass #

Tel Aviv University, Israel
Cornell Tech, New York, NY, USA

Abstract
The relationships between various meta-complexity problems are not well understood in the worst-
case regime, including whether the search version is harder than the decision version, whether the
hardness scales with the “threshold”, and how the hardness of different meta-complexity problems
relate to one another, and to the task of function inversion.

In this work, we present resolutions to some of these questions with respect to the black-box
analog of these problems. In more detail, let MKt

MP[s] denote the language consisting of strings x

with Kt
M (x) < s(|x|), where Kt

M (x) denotes the t-bounded Kolmogorov complexity of x with M as
the underlying (Universal) Turing machine, and let search- MKt

MP[s] denote the search version of
the same problem.

We show that if for every Universal Turing machine U there exists a 2αnpoly(n)-size U-oracle aided
circuit deciding MKt

UP[n−O(1)], then for every function s, and every not necessarily universal Turing
machine M, there exists a 2αs(n)poly(n)-size M -oracle aided circuit solving search- MKt

MP[s(n)];
this in turn yields circuits of roughly the same size for both the Minimum Circuit Size Problem
(MCSP), and the function inversion problem, as they can be thought of as instantiating MKt

MP with
particular choices of (a non-universal) TMs M (the circuit emulator for the case of MCSP, and the
function evaluation in the case of function inversion).

As a corollary of independent interest, we get that the complexity of black-box function inversion
is (roughly) the same as the complexity of black-box deciding MKt

UP[n − O(1)] for any universal TM
U; that is, also in the worst-case regime, black-box function inversion is “equivalent” to black-box
deciding MKt

UP.

2012 ACM Subject Classification Theory of computation → Computational complexity and crypto-
graphy

Keywords and phrases Meta Complexity, Kolmogorov complexity, function inversion

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.66

Category RANDOM

Related Version Full Version: https://eprint.iacr.org/2023/1832.pdf

Funding Noam Mazor : Research partly supported by NSF CNS-2149305 and DARPA under
Agreement No. HR00110C0086.
Rafael Pass: Supported in part by AFOSR Award FA9550-23-1-0387, AFOSR Award FA9550-23-1-
0312, and an Algorand Foundation grant. This material is based upon work supported by DARPA
under Agreement No. HR00110C0086. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the
United States Government, DARPA, AFOSR or the Algorand Foundation.

1 Introduction

We consider the worst-case complexity of solving standard meta-complexity Programs, notably
the the Time-Bounded Kolmogorov Complexity Problem [10, 19, 1, 9, 5, 18] – computing
the length, denoted Kt

U(x) of the shortest program (evaluated on some particular Universal
© Noam Mazor and Rafael Pass;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 66; pp. 66:1–66:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:noammaz@gmail.com
mailto:rafaelp@tau.ac.il
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.66
https://eprint.iacr.org/2023/1832.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

66:2 On Black-Box Meta Complexity and Function Inversion

Turing machine (TM) U) that generates a given string x, within time t(|x|), where t is a
polynomial, and the (b) the Minimimum Circuit Size problem (MCSP) [8, 20] – finding the
smallest Boolean circuit that computes a given function x. For both of these problem one may
also consider thresholds versions, MKt

UP[s] and MCSP[s], where MKt
UP[s] (resp. MCSP[s])

is the languages of strings x s.t. Kt
U(x) (resp. the circuit size of x) is less than s(|x|), as

well as search versions search- MKt
UP[s], where the goal is not only to compute/decide the

complexity of a string x but also to find a short description that witnesses this complexity.
The relationship between these various meta-complexity problems are not well understood.

In particular:
1. Decision-to-Search: Solving the search version trivially yields a solver for the decisional

(or computational) version with roughly the same complexity. Does the converse hold:
Does a T (n)-size circuit for solving the decision version imply a, roughly, T (n)-size circuit
solving the search version?

2. Hardness Scaling to the Threshold: Intuitively, the threshold version of the problem,
for small thresholds s(n) ≪ n ought to be easier than the threshold n version (or
computational) version since there exist trivial 2s(n)poly(n) time algorithms for the
threshold version (simply doing brute force search). Does this hold more generally: Does
a T (n)-size circuit solving MKt

UP[n−O(1)] imply a roughly T (s(n))-size circuit for solving
MKt

UP[s(n)]?
3. The “Model of Computation” and the Relationship to Function Inversion:

Other meta-complexity problems, such as the MCSP problem, can be stated as an MKt
MP

problem with respect to a particular non-universal underlying TM M (performing circuit
emulation). Additionally, a solver for the search- MKt

MP problem with respect to any
(non-universal) TM M is also equivalent to a solver for the function inversion problem
(i.e., the problem of inverting any function on every input). Does a T (n)-size solver for
MKt

UP[s(n)] with respect to any underlying Universal TM U, imply one (of size roughly
T (n)) that also works with respect non-universal TMs (and thus also for MCSP and
function inversion)?

In the average-case regime, positive answers to these questions – when restricting to efficient
underlying (Universal) TMs – were provided in respectively [11] (for question 1), [12] (for
question 2) and [11, 17] (for question 3), but they remain wide open in the worst-case regime.
This is the focus of the current paper, but rather than restricting to efficient underlying TMs,
we will consider arbitrary TMs (with potentially a large description or running time).

In particular, very recently non-trivial circuits for the various different meta-complexity
problems were given. In [14], the current authors show that for any efficient Universal TM U,
there exists a circuit of size 24n/5poly(n, t(n)) that solves the search version of the Kt

U (and
thus also search- MKt

UP). A different, independent, paper by Hirahara, Ilango and Williams
[6] focuses on the threshold version of the above meta-complexity problems and presents
circuits of size respectively 2(4/5)s(n) · poly(n, t(n)) and 2(4/5+o(1))·s(n) log s(n) for them. In
both cases, the core of the technical work consist of providing a circuit implementation of
the function inversion algorithm from Fiat and Naor [3], and next applying this function
inversion algorithm to the one-way function construction of [11] (or variants thereof, notably
the variant of [17] to deal with the MCSP problem) based on the hardness of meta-complexity
problems – an approach first envisioned by Ren and Santhanam [17].1 As such, the worst-case

1 [17] noted that the function inversion algorithm of [3] could be applied to the one-way function
construction of [11] to get a non-trivial non-uniform RAM program that solves the MKtP problem, but
left open whether a circuit implementation can be given.

N. Mazor and R. Pass 66:3

complexity bounds obtained are roughly the same for (a) the search and the decisional version
(as the function inverter also directly solves the search problem in [11]), (b) they naturally
scale with the threshold s of MKtP[s] (based on an extension of the function inversion attack
of Fiat-Naor done in [6]), and (c) are the roughly same for MKtP, MCSP and function
inversion (since the one-way function constructions in [11, 17] are length preserving). These
works thus indicate that perhaps the same phenomena that are known in the average-case
setting may also hold in the worst-case setting.

In this paper, we demonstrate that this is not a coincidence. Indeed, we provide a positive
answer to all the above questions also in the worst-case regime, when restricting attention
to black-box solvers and thus all the above result follow from simply obtaining a circuit for
black-box solving the decisional MKtP problem.

Black-box Solvers

As noted in [14], their algorithm for Kt
U works for any Universal TM U (as long as the

algorithm gets oracle access to U): for any (not necessarily efficient) Universal TM U, there
exists a U-oracle aided circuit of size 24n/5poly(n, t(n)) that solves the search version of the
Kt

U. Following [14], we say that MKtP[s] (resp search- MKtP[s]) admits a T (n)-size black-box
solver if for every universal TM U, there exists a T (n) size U-oracle aided circuit for solving
MKt

UP[s] (resp search- MKt
UP[s]). We additionally say that these problems admit a T (n)-size

generalized black-box solver if the same holds not only with respect to any universal TM
U but also for non-universal TMs M (satisfying the minimal condition that the emulation
by M has a unique output: M(Π, 1t1) = M(Π, 1t2) if either of those provide some output).
Considering generalized black-box solvers is what will allow us to answer question 3 above,
but actually, also from a technical point of view, will also be instrumental also to deal with
question 1.

[14] proved a lower bound of 2n/2−o(n) on the size of black-box Kt solvers.

1.1 Our Results
Our main result shows that the existence of a 2αn+o(n)-size black-box solver for MKtP[n−
O(1)] implies the existence of a 2αs(n)+o(n)-size generalized black-box solver for
search- MKtP[s], thus providing a positive answer to all the above questions with respect to
black-box solvers.

▶ Theorem 1. Assume the existence of a 2αn · poly(n)-size black-box solver for MKtP[n− 4]
for t(n) = n. Then there exists a 2αs(n) · poly(n)-size generalized black-box solver for
search- MKt’P[s] for every function t′(·) and every function s(n) ≤ 2n− ⌈log n⌉.

We highlight that generalized black-box solvers can solve MCSP (since, as implicitly observed
in [6] following [17, 4]), the MCSP problem can be stated as an MKt

MP problem with
respect to a particular non-universal underlying TM M (performing circuit emulation) – see
Lemma 19 in the Appendix). As a direct corollary of Theorem 1 and Lemma 19, we thus
get:2

▶ Corollary 2. Let p ∈ poly and α > 0, and assume that for t(n) = n there exists a black-box
MKtP[n− 4] solver of size 2αn · p(n). Then for every s(n) ≤ 1.9n/ log n, search- MCSP[s]
can be solved with a circuit family of size 2(α+o(1))·s(n)·log(s(n)+log n) · poly(n).

2 When s(n) ≥ 1.1 · n/logn then MCSP[s] is the trivial language consisting of all strings due to the result
of [13], so the corollary below actually works for all s.

APPROX/RANDOM 2024

66:4 On Black-Box Meta Complexity and Function Inversion

Additionally, we observe that generalized black-box solvers for search- MKtP[n] can easily
be seen to be equivalent to function inversion circuits (for all functions f) of roughly the same
size – see Lemmas 16 and 17 in the Appendix. As a corollary of Theorem 1, we thus get that
– in the black-box regime – solving the function inversion problem is not only sufficent (as
shown in [14, 6] for solving MKtP[n−O(1)] but also necessary. This matches the converse
direction of the average-case characterization of one-way functions through the hardness of
MKtP from [11], and yields a characterization of the black-box worst-case hardness of MKtP
through the black-box worst-case hardness of one-way functions. In particular, black-box
solving just MKtP[n−O(1)] is no easier than (black-box) function inversion.

▶ Theorem 3. There exists a black-box MKtP[n−O(1)] solver of size 2αn ·poly(n) for every
polynomial t if and only if every function f can be inverted by an f-oracle aided circuit of
size 2αn · poly(n).

As a consequence of Theorem 3, and Impagliazzo’s lower bound on the circuit size of black-
box one-way function inversion [7]3, we directly get a lower bound on the complexity of
black-box MKtP solvers; such a lower bound was previously proved directly for the MKtP
problem in [14] but it required a significantly more complicated proof and employing heavier
machinery.

▶ Corollary 4. There is no black-box MKtP[n− 4] solver of size 2n/2−o(n).

1.2 Proof Outline
Theorem 1 is proved in two step. The first step is formally stated in Corollary 13 and the
second in Corollary 15.

Step 1: From Black-box to Generalized Black-Box for Small Thresholds

We first show that any black-box solver for MKtP[n− 4] of size T (n) implies a generalized
black box MKtP[s(n)] solver of size T (s(n)+O(1))poly(n, t(n)).4 The proof follows standard
techniques from the literature on hardness magnification (i.e., hashing down the statement
x using a pairwise independent hash function h to roughly the threshold size, and then
applying the solver of a related language on the smaller instance h(x) and thereby improving
the running time) [16, 2, 15]. The key difference with our approach is that by leveraging the
black-box property of the algorithm, we can use an algorithm for the same problem, but
parameterized by a different universal TM Mh, as opposed to a general NP problem as in
those earlier works – that is, we get “self hardness magnification” [12]). (We highlight that
[6] also rely on a similar hashing technique to directly present an attack on the threshold
version of MKtP but do so in a slightly different context: in particular, they use hashing to
develop a function inversion algorithm whose circuit complexity only depends on the input
size of the function and not the output size, and next function inversion with an input size
that depends on the threshold to solve MKtP[s]. Nevertheless, our usage of this approach is
inspired by theirs.) Additionally, and perhaps more surprisingly, we show that this technique
allows us to solve the orthogonal problem of dealing with non-universal Turing machines (so
that we can get a generalized black-box solver): in essence, the idea is to define a universal

3 Impagliazzo shows that for every large enough n ∈ N, there exists a permutation σ : {0, 1}n → {0, 1}n

such that every σ-oracle aided circuit C of size at most 2n/2−2 log2 n fails to invert f . See also [21].
4 This reduction also works for the search version of these problems.

N. Mazor and R. Pass 66:5

TM Mh that has two tracks: if the first bit of the input “program” Π is 0, it simply runs some
Universal TM U(Π>1) on the rest of the input Π>1, and if it is 1, then it outputs h(M(Π>1))
where M is the non-universal TM that we want a MKt

MP[s] solver for. The key point is that
due to pairwise independence property of the hash function, h(x) is uniform (for a random
choice of h) and thus with high probability h(x) has essentially maximal Kt

U complexity, and
thus the existence of the first “track” does not disrupt the hardness magnification reduction.

Step 2: From Decision to Search

Our next result shows how any generalized MKtP[s] solver of size 2αs(n) can be used to solve
also the search version of the problem with roughly the same running time. In particular,
to solve search- MKt

MP[s], we will rely on a circuit deciding MKt
Mn

P[s + ⌈log n⌉] where
Mn is defined as a TM that given a program Π = (i, Π′) where i is defined as the first
⌈log n⌉ bits of Π, checks if Π′ generates an output x of exactly n bits, and if so outputs x

concatenated with the first i bits of Π′. The key point is that for every n-bit length string
x, Kt

Mn
(x) = Kt

M (x) + ⌈log n⌉ (obtained by letting i = 0). Furthermore, this Kolmogorov
complexity can be maintained if we concatenate the prefix of any minimum length program
Π′ that generates x, so the bits of any such minimum length program can be iteratively
recovered given an oracle computing Kt

Mn
. The same argument also works if we only have

access to a decision oracle for the threshold s + ⌈log n⌉, but then we only recover a program
of length at most s.

2 Preliminaries

2.1 Notations
All logarithms are taken in base 2. We use calligraphic letters to denote sets and distributions,
uppercase for random variables, and lowercase for values and functions. Let poly stand
for the set of all polynomials. Given a vector v ∈ Σn, let vi denote its ith entry, let
v<i = (v1, . . . , vi−1) and v≤i = (v1, . . . , vi). Similarly, for a set I ⊆ [n], let vI be the ordered
sequence (vi)i∈I . For a function f : D → R, and a set S ⊆ D, we let f(S) = {f(x) : x ∈ S}.

2.2 Distributions and Random Variables
When unambiguous, we will naturally view a random variable as its marginal distribution.
The support of a finite distribution P is defined by Supp(P) := {x : PrP [x] > 0}. For a
(discrete) distribution P, let x← P denote that x was sampled according to P. Similarly,
for a set S, let x← S denote that x is drawn uniformly from S.

2.3 Kolmogorov Complexity
Roughly speaking, the t-time-bounded Kolmogorov complexity, Kt(x), of a string x ∈ {0, 1}∗

is the length of the shortest program Π = (M, y) such that, when simulated by an universal
Turing machine, Π outputs x in t(|x|) steps. Here, a program Π is simply a pair of a Turing
Machine M and an input y, where the output of P is defined as the output of M(y). When
there is no running time bound (i.e., the program can run in an arbitrary number of steps),
we obtain the notion of Kolmogorov complexity.

In the following, let U(Π, 1t) denote the output of Π when emulated on U for t steps. We
now define the notion of Kolmogorov complexity with respect to the universal TM U.

APPROX/RANDOM 2024

66:6 On Black-Box Meta Complexity and Function Inversion

▶ Definition 5. Let t be a polynomial. For all x ∈ {0, 1}∗, define

Kt
U(x) = min

Π∈{0,1}∗
{|Π| : U(Π, 1t(|x|)) = x}

where |Π| is referred to as the description length of Π.

It is well known that for every x, Kt(x) ≤ |x|+ c, for some constant c depending only on the
choice of the universal TM U.

▶ Fact 6. For every universal TM U, there exists a constant c such that for every x ∈ {0, 1}∗,
and for every t such that t(n) > 0, Kt

U(x) ≤ |x|+ c.

We will use the following bound on the Kolmogorov complexity of strings sampled from the
uniform distribution.

▶ Lemma 7. For any universal TM U and every n ∈ N, it holds that

Prx←{0,1}n

[
Kt

U(x) ≥ n− i
]
≥ 1− 2−i.

3 Definitions

Given some efficient threshold function s, let MKt
MP[s] denote the set of strings x s.t.

Kt
M (x) ≤ s(|x|) (where we let Kt

M (x) = ∞ if there is no Π such that M(Π, 1t) = x). Let
search- MKt

MP[s] denote the search problem in which given a string x with Kt
M (x) ≤ s(|x|),

the output is a program Π of length at most s(|x|) with M(Π, 1t(n)) = x.
We start with the definition of a black-box emulator and a black-box universal TM.

▶ Definition 8 (Black-box emulator/Black-box Universal TM). A function M : {0, 1}∗ ×
1∗ → {0, 1}∗ ∪ {⊥}, is a black-box TM emulator if M has “unique outputs”: For any
Π ∈ {0, 1}∗, t1, t2 ∈ N, t1 ≤ t2, if M(Π, 1t1) ̸= ⊥, M(Π, 1t2) = M(Π, 1t1). A black-box
TM emulator U is a black-box universal Turing machine (black-box UTM) if there exists a
universal Turing machine U0 such that for any (Π, 1t), if Π is a valid description of a Turing
machine (w.r.t U0), then U(Π, 1t) = U0(Π, 1t).

We next define black-box solvers for MKt
MP[s]. For a TM M , a function t : N→ N, and

a number n ∈ N, we let fM,t
n : {0, 1}≤2n → {0, 1}∗ be the function defined by fM,t

n (Π) =
M(Π, 1t(n)) for any Π ∈ {0, 1}≤2n.

▶ Definition 9 (Black-box MKtP-solver). For functions t, s, T : N→ N, we say that MKtP[s]
admits a black-box MKtP[s]-solver of size T (n) if for every black-box universal TM U, there
exists a circuit family C = {Cn}n∈N of size at most T (n), such that for every n ∈ N, Cn is a
fU,t

n -oracle aided circuit that decides MKt
UP[s] on inputs of length n.

▶ Remark 10 (Black-Box vs. Fully Black-Box solvers). In [14] there are two definitions for Kt

solvers: fully black-box and (plain) black-box. The (plain) black-box is defined as in the
definition above, while for fully black-box the circuit family C can be used to compute the
Kt

U complexity with respect to any universal TM U.
The construction of Kt solver given in [14] is not fully black-box. Indeed, the circuit

family in [14] construct is dependent in the universal TM with respect to we defined Kt.
Moreover, proving lower bounds for (plain) black-box solvers is stronger.
We define generalized black-box solver in exactly the same way except that we quantify over
all black-box TM emulators (as opposed to just universal ones).

N. Mazor and R. Pass 66:7

▶ Definition 11 (Generalized black-box MKtP-solver). For functions t, s, T : N→ N, we say
that MKtP[s] admits a generalized black-box MKtP[s]-solver of size T (n) if the following holds
for every black-box TM M , there exists a circuit family C = {Cn}n∈N of size at most T (n),
such that for every n ∈ N, Cn is a fM,t

n -oracle aided circuit that decides MKt
MP[s] on inputs

of length n.

We similarly define black-box solvers and generalized black box solvers for search- MKtP.

4 Generalized Solvers Scaling with the Threshold

We show how to turn a black-box solver into a generalized black-box solver where the circuit
size scales with the threshold. As mentioned before, proof follows standard techniques from
the literature on hardness magnification (i.e., hashing down the statement to roughly the
threshold size, and then applying the solver on the smaller instance and thereby improving
the running time) [16, 2, 15].

▶ Theorem 12. There exists q ∈ poly such that the following holds. Let T : N → N be a
function, and assume that for t(n) = n there exists a black-box MKtP[n− 4] solver of size
T (n). Then, there exists a generalized black-box MKt’P[s] solver of size T (s(n) + 5) · q(n)
for every function s(·) with s(n) ≤ 2n and for every function t′(·).5

Proof of Theorem 12. Fix an efficient universal TM U, and let p ∈ poly be such that p(n, t)
bounds the size of a circuit implementing U(Π, 1t) for inputs (Π, 1t) with |Π| = n. Let
M , s(n), and t′(n) be the TM, time function and threshold for which we want to solve
MKt’

MP[s]. Let t(n) = n. For every n ∈ N, let Hn =
{

h : {0, 1}n → {0, 1}s(n)+5
}

be a
pairwise independent hash family, such that there exists m ∈ poly for which m(n + s(n))
bounds the circuit size evaluating h for every h ∈ Hn. Fix n ∈ N. We start by showing a
distribution over circuits that solves MKt’

MP[s] with good probability.
For every h ∈ Hn, we define Uh to be the following black-box universal TM:

Uh(Π, 1t) =

U(Π>1, 1t) if Π1 = 0
h(M(Π>1, 1t′(n))) if |Π| ≤ 2n + 1, Π1 = 1 and

∣∣∣M(Π>1, 1t′(n))
∣∣∣ = n

⊥ Otherwise

By the assumption that there exists a black-box solver of size T (n) for every black-box
universal TM, there exists a circuit of size Cs

h of size T (s(n) + 5) that solves MKt
Uh

P[n− 4]
on input of length n′ = s(n) + 5, and using oracle to the function fh

n : {0, 1}≤2n′
→ {0, 1}∗

defined by fh
n (Π) = Uh(Π, 1t(n′)).

Let Ch be the circuit that given input x ∈ {0, 1}n, computes h(x) and outputs Cs
h(h(x)).

We claim that for every x ∈ {0, 1}n,
1. if Kt′

M (x) ≤ s(n), Ch(x) outputs Yes for every h, and,
2. if Kt′

M (x) > s(n), it holds that for h← Hn, Ch(x) outputs No with probability at least
3/4.

5 We remark that the theorem extends also to the search versions of the same problems with essentially
identically the same proof. Since we later will show a generic decision-to-search reduction, we omit the
details.

APPROX/RANDOM 2024

66:8 On Black-Box Meta Complexity and Function Inversion

To see (1), consider any x ∈ {0, 1}n s.t. Kt′

M (x) ≤ s(n). Then there exists a program Π of
length at most s(n) such that M(Π, 1t′(n)) = x. Therefore Uh(1||Π, 1t(n)) = h(M(Π, 1t′(n))) =
h(x) and thus Kt

Uh
(h(x)) ≤ s(n) + 1 ≤ n′ − 4, so Ch(x) will always answer Yes.

For (2), consider any x ∈ {0, 1}n s.t. Kt′

M (x) > s(n). We claim that with probability
at least 3/4 over the choice of a random h← Hn, it holds that Kt

Uh
(h(x)) > n′ − 4, which

implies that Ch(x) outputs No. To see the above, assume that for some h, Kt
Uh

(h(x)) ≤ n′−4.
Then there exists Π such that |Π| ≤ n′ − 4, and Uh(Π, 1t(n)) = h(x). By the definition of
Uh, it either holds that Π1 = 0, and then Kt

U(h(x)) ≤ n′ − 5, or Π1 = 1, which means that
h(x) = h(x′) for some x′ with Kt′

M (x′) ≤ n′ − 5 = s(n). In the following we show that the
probability that one of the above happens is at most 1/4 (over a random choice of h← Hn).
Indeed, since Hn is a pairwise independent family, h(x) uniformly distributed when h← Hn.
Therefore,

Prh←Hn

[
Kt

U(h(x)) ≤ n′ − 4
]

= Pr
y←{0,1}n′

[
Kt

U(y) ≤ n′ − 4
]
≤ 2−3.

Moreover, for every x′ ̸= x, it holds that Prh←Hn [h(x) = h(x′)] ≤ 2−s(n)−5. By a union
bound over all x′ with Kt′

M (x′) ≤ s(n), we get that the probability of collision h(x) = h(x′)
with such x′ is at most 2−4. Using the union bound again, it holds that with probability at
least 1−2−3−2−4 > 3/4, both Kt

U(h(x)) > n′−4 and there is no x′ ≠ x with Kt′

M (x′) ≤ s(n)
such that h(x) = h(x′) . In this case, Kt

Uh
(h(x)) > n′ − 4, and Ch(h(x)) answers No.

The proof now follows by simple amplification: for h1, . . . , hn ∈ Hn, let Ch1,...,hn
be the

circuit that computes Ch1(x), . . . , Chn
(x) and outputs No if one of the execution output No.

It follows using a standard Union bound, that with positive probability over the random
choice of h1, . . . , hn ← Hn, Ch1,...,hn

outputs the right answer for all x ∈ {0, 1}n; thus, there
exists a fixed choice of h1, . . . , hn that works for every input.

We finally bound the size of Ch1,...,hn
. We start with bounding the size of a circuit with

fh
n oracle, for every h ∈ {h1, . . . , hn}. In this case,

|Ch1,...,hn
| ≤ n ·m(n + s(n)) + n · |Cs

h|+ O(n)
≤ n ·m(n + s(n)) + n · T (s(n) + 5) + O(n).

Next, observe that each fh
n oracle can be implemented using a circuit of size m(n + s(n)) +

p(2n′, 2n′) using oracle to the function fM,t
n : {0, 1}≤2n → {0, 1}∗ defined by fM,t′

n (Π) =
M(Π, 1t′(n)). Thus, the size of a fM,t′

n -oracle aided circuit computing Ch1,...,hn
is at most

T (s(n) + 5) · q(n) for q(n) = (m(n + s(n)))2 + p(2(s(n) + 5), 2(s(n) + 5)). ◀

By taking T (n) = 2α·n·poly(n), we get the following corollary.

▶ Corollary 13. Assume the existence of a 2αn ·poly(n)-size black-box solver for MKtP[n−4]
for t(n) = n. Then there exists a generalized black box MKt’P[s] solver of size 2α·s(n) ·poly(n)
for all functions t′(·) and s = s(n) with s(n) ≤ 2n.

5 From Decision to Search

In this section we show that if there exists a non-trivial black box solver to MKtP, then such
a solver (with roughly the same efficiency) exists also for search- MKtP.

▶ Theorem 14. There exists q ∈ poly such that the following holds. Let p : N → N be
a monotone function, and let T : N → N and t : N → N be functions. Assume that for
every s : N → N with s(n) ≤ 2n there exists a generalized black-box MKtP[s] solver of size
T (s(n)) · p(n). Then, there exists a generalized black-box search- MKtP[s] solver of size
T (s(n) + ⌈log n⌉) · p(n + s(n)) · q(n) for every s : N→ N such that s(n) ≤ 2n− ⌈log n⌉.

N. Mazor and R. Pass 66:9

Proof. Let M be a black-box TM emulator, and for every n ∈ N, let Mn be the following
black-box TM emulator. Given Π and 1t′ , Mn interprets Π = i||Π′, where the first ⌈log n⌉
bits of Π interpreted as an index i ∈ [n], and the rest of the bits interpreted as a program Π′.
Then, Mn acts as follows:

Mn(i, Π′, 1t′
) =

{
M(Π′, 1t(n))||Π′≤i if i ≤ n, |Π′| ≤ 2n and

∣∣M(Π′, 1t(n))
∣∣ = n

⊥ Otherwise

We observe that for every x, for every i ∈ [n], and for every program Π′ of length ℓ ≤ 2n such
that M(Π′, 1t) = x, it holds that Kt

M (x)+⌈log n⌉ ≤ Kt
Mn

(x||Π′≤i) ≤ ℓ+⌈log n⌉. In particular,
assuming that Kt

M (x) ≤ 2n, for the minimal-length program Π′ such that M(Π′, 1t) = x it
holds that Kt

Mn
(x||Π′≤i) = Kt

M (x)+⌈log n⌉. Moreover, for every z ∈ {0, 1}∗ such that z is not
a prefix of a program of length at most ℓ that outputs x, it holds that Kt

Mn
(x||z) > ℓ+⌈log n⌉.

We can thus use an algorithm that decides MKt
Mn

P to find a program Π of length at most s

such that M(Π, 1t) = x. This can be done by the following process:
1. Check if Kt

Mn
(x) ≤ s(n) + ⌈log n⌉. If not output ⊥.

2. Let z = ⊥.
3. For every i ∈ [s(n)]:

a. Check if M(z, 1t) = x. If it does, output z.
b. Check if Kt

Mn
(x||z||0) ≤ s(n) + ⌈log n⌉, let z = z||0. Otherwise let z = z||1.

4. Output z.

Since Kt
Mn

(x||z||0) ≤ s(n) + ⌈log n⌉ if and only if z||0 is a prefix of a program Π of length at
most s such that M(Π, 1t) = x, the above process always finds such a program. We left to
show that the above process can be implemented using a circuit of size T (s(n) + ⌈log n⌉) ·
p(n + s(n)) · poly(n).

Let s′ be the function defined by s′(k) = 1 for every k < n, and s′(k) = s(n) + ⌈log n⌉
otherwise. Then if s(n) ≤ 2n − ⌈log n⌉, it holds that s′(k) ≤ 2k. By our assumption, for
every n′ there exists a fMn,t

n′ -oracle aided circuit Cn′ of size T (s′(n)) · p(n′) that decides
MKt

Mn
P[s′] on inputs of lenght n′. We observe that the above process can be implemented

with one call to each of Cn′ , for n′ ∈ {n, . . . , n + s(n)}. Moreover, the fMn,t
n′ -oracle can be

implemented by a poly-size circuit using an fM,t
n -oracle. Thus, the above process can be

implemented using a circuit of size at most s(n) · T (s(n) + ⌈log n⌉) · p(n + s(n)) · poly(n), as
required. ◀

By taking T (s(n)) = 2α·s(n), we get the following corollary.

▶ Corollary 15. Assume there exists a generalized black box MKtP[s] solver of size 2α·s(n) ·
poly(n) for all functions t(·) and s = s(n) with s(n) ≤ 2n. Then there exists a 2αs(n) ·poly(n)-
size generalized black-box solver for search- MKt’P[s] for every function t′(·) and every function
s(n) ≤ 2n− ⌈log n⌉.

References
1 Gregory J. Chaitin. On the simplicity and speed of programs for computing infinite sets of

natural numbers. J. ACM, 16(3):407–422, 1969.
2 Lijie Chen, Ce Jin, and R Ryan Williams. Hardness magnification for all sparse np languages.

In 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), pages
1240–1255. IEEE, 2019.

3 Amos Fiat and Moni Naor. Rigorous time/space trade-offs for inverting functions. SIAM
Journal on Computing, 29(3):790–803, 2000.

APPROX/RANDOM 2024

66:10 On Black-Box Meta Complexity and Function Inversion

4 Gudmund Skovbjerg Frandsen and Peter Bro Miltersen. Reviewing bounds on the circuit size
of the hardest functions. Information processing letters, 95(2):354–357, 2005.

5 J. Hartmanis. Generalized kolmogorov complexity and the structure of feasible computations.
In 24th Annual Symposium on Foundations of Computer Science (sfcs 1983), pages 439–445,
November 1983. doi:10.1109/SFCS.1983.21.

6 Shuichi Hirahara, Rahul Ilango, and Ryan Williams. Beating brute force for compression
problems. Technical Report TR23-171, Electronic Colloquium on Computational Complexity,
2023.

7 Russell Impagliazzo. Relativized separations of worst-case and average-case complexities for
np. In 2011 IEEE 26th Annual Conference on Computational Complexity, pages 104–114.
IEEE, 2011.

8 Valentine Kabanets and Jin-yi Cai. Circuit minimization problem. In Proceedings of the
Thirty-Second Annual ACM Symposium on Theory of Computing, May 21-23, 2000, Portland,
OR, USA, pages 73–79, 2000.

9 Ker-I Ko. On the notion of infinite pseudorandom sequences. Theor. Comput. Sci., 48(3):9–33,
1986. doi:10.1016/0304-3975(86)90081-2.

10 A. N. Kolmogorov. Three approaches to the quantitative definition of information. International
Journal of Computer Mathematics, 2(1-4):157–168, 1968.

11 Yanyi Liu and Rafael Pass. On one-way functions and kolmogorov complexity. In 2020 IEEE
61st Annual Symposium on Foundations of Computer Science (FOCS), pages 1243–1254. IEEE,
2020.

12 Yanyi Liu and Rafael Pass. Cryptography from sublinear-time average-case hardness of
time-bounded kolmogorov complexity. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, pages 722–735, 2021.

13 Oleg B Lupanov. On a method of circuit synthesis. Izvestia VUZ, 1:120–140, 1958.
14 Noam Mazor and Rafael Pass. The non-uniform perebor conjecture for time-bounded

kolmogorov complexity is false. 15th Innovations in Theoretical Computer Science, 2024.
15 Igor Carboni Oliveira, Ján Pich, and Rahul Santhanam. Hardness magnification near state-of-

the-art lower bounds. Theory OF Computing, 17(CCC 2019 Special Issue), 2021.
16 Igor Carboni Oliveira and Rahul Santhanam. Hardness magnification for natural problems.

In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pages
65–76. IEEE, 2018.

17 Hanlin Ren and Rahul Santhanam. Hardness of kt characterizes parallel cryptography. In
36th Computational Complexity Conference (CCC 2021). Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2021.

18 Michael Sipser. A complexity theoretic approach to randomness. In Proceedings of the 15th
Annual ACM Symposium on Theory of Computing (STOC), pages 330–335, 1983.

19 R.J. Solomonoff. A formal theory of inductive inference. part i. Information and Control,
7(1):1–22, 1964. doi:10.1016/S0019-9958(64)90223-2.

20 Boris A Trakhtenbrot. A survey of russian approaches to perebor (brute-force searches)
algorithms. Annals of the History of Computing, 6(4):384–400, 1984.

21 AC-C Yao. Coherent functions and program checkers. In Proceedings of the twenty-second
annual ACM symposium on Theory of computing, pages 84–94, 1990.

A search- MKtP and Function Inversion

We observe that generalized black-box solvers for search- MKtP directly yield function
inverters with roughly the same complexity, and vice versa.

▶ Lemma 16. There exists p ∈ poly such that the following holds. Assume that for some
t = t(n) there exists a generalized black-box search- MKtP[n] solver of size T = T (n). Then
for every function π : {0, 1}n → {0, 1}n there exists a π-oracle aided circuit of size T (n) · p(n)
that inverts π.

https://doi.org/10.1109/SFCS.1983.21
https://doi.org/10.1016/0304-3975(86)90081-2
https://doi.org/10.1016/S0019-9958(64)90223-2

N. Mazor and R. Pass 66:11

Proof. Let M be the black box TM that on input x ∈ {0, 1}n
, 1t outputs y = π(x). By

assumption, there exists a fM,t
n -oracle aided circuit of size at most T (n), that given an input

y ∈ {0, 1}n finds an input x of length at most n, such that M(x, 1t(n)) = y, if such exists.
Since M(x, 1t(n)) = π(x), such an x is a pre-image of y. Moreover, by the definition of M ,
the fM,t

n -oracle can be implemented efficiently using a π-oracle. ◀

The converse of Lemma 16 was implicitly proven in [14]; we repeat the proof for the
convenience of the reader.

▶ Lemma 17. There exists p ∈ poly such that the following holds. Assume that for every
function π : {0, 1}n → {0, 1}n there exists a π-oracle aided circuit of size T (n) that inverts π

with probability 1 (for every y = π(x), f(C(y)) = y). Then there exists a black-box MKtP[s]
solver of size T (n + ⌈log n⌉) · p(n) for every t : N→ N and every s : N→ N with s(n) ≤ n.

Proof. Let U be a black-box universal TM. Let f ′n : {0, 1}n × [n]→ {0, 1}n × [n] be defined
as

f ′n(Π, i) =
{

(U(Π≤i, 1t(n)), i)
∣∣U(Π≤i, 1t(n))

∣∣ = n

0n Otherwise

Let n′ = n + ⌈log n⌉. In the following, we assume that both the domain and the range of
f ′n is {0, 1}n′

, by the use of appropriate encoding and padding. By assumption, there is a
circuit family Ĉ =

{
Ĉn

}
n∈N

with f ′n oracle, of size T (n′) that inverts f ′n with probability 1.

Given a circuit Ĉn that inverts f ′n, we can construct a (f ′n-oracle aided) circuit Cn that
computes the Kt

U complexity of any string x of length n with Kt
U(x) ≤ n. This can be done

by computing f ′
−1
n (x, 1), . . . , f ′

−1
n (x, n) and outputing Yes if there exists (Π, i) such that

U(Π<i, 1t(n)) = x and i ≤ s(n) (the t-bounded Kolmogorov complexity of the string 0n can
be hardcoded in the circuit).

Observe that the size of Cn is n′ ·
∣∣∣Ĉn

∣∣∣ + poly(n). Thus, there exists a circuit family
of size n′ · T (n′) + poly(n) = T (n′) · poly(n), with f ′n oracle, that solves MKt

UP[s]. Lastly,
observe that f ′n can be efficiently computed from fU,t

n , thus we can replace the f ′n oracle with
a small circuit using an fU,t

n -oracle, to get a circuit of size T (n + ⌈log n⌉)poly(n). ◀

B MCSP[s] as a special case of MKt
MP

We note that any generalized black-box MKtP[s] solver can be used to solve MCSP[s]. In
fact, we observe that the MCSP[s] problem can be formulated as a MKt

MP[s′] instance for a
particular choice of an (efficient but non-universal) TM M , and for a function s′(n) ≈ s(n).

Towards this, we will rely on the fact that circuits can be succinctly encoded as bit strings
from which the circuit can be efficiently decoded. In particular, as observed in [17, 6], the
encoding from [4] satisfies this requirement.

▶ Lemma 18 (Implicit in [4], see also [17, 6]). There exists an efficiently computable function
ℓ(s, k) ∈ (1 + o(1))(s · log(s + k)) such that ℓ is monotone in s and the following holds. There
exists an efficient algorithm Dec, such that for every circuit C : {0, 1}k → {0, 1} of size s,
there exists x ∈ {0, 1}ℓ(s,k) such that Dec(x) is a circuit of size s that computes the same
function as C. Moreover, for every x such that Dec(x) outputs a circuit C : {0, 1}k → {0, 1}
of size s, it holds that |x| = ℓ(s, k).6

6 Note that we here requires the length of an encoding of a circuit of size s to be exactly ℓ(s, k) (in
contrast to bounded by ℓ(s, k)). As far as we can tell, this property has not been previously stated but
it can be assumed without loss of generality using padding, and by assuming that given an input x,
Dec only outputs a circuit C of size s if it holds that |x| = ℓ(s, k), or outputs ⊥ otherwise.

APPROX/RANDOM 2024

66:12 On Black-Box Meta Complexity and Function Inversion

We now observe that the MCSP is a special-case of the MKt
MP problem for a specific choice

of the TM M .

▶ Lemma 19. There exists an efficient TM M such that the following holds for every
s : N → N and every t : N → N with t(n) ≥ n. Deciding MCSP[s] is equivalent to deciding
MKt

MP[s′], for s′(n) = ℓ(s(n), ⌊log n⌋).

Proof. Let Dec be the function from Lemma 18, and let M be the TM that given an input
x, 1t, computes Dec(x) to get a circuit C : {0, 1}k → {0, 1}. If x is not valid encoding of a
circuit, or 2k ̸= |x|, M outputs ⊥. If t ≤ 2k, M also outputs ⊥. Otherwise, M outputs the
truth table of C. Since ℓ is monotone in s, there exists a program of length less then s′(n) if
and only if there exists a circuit of size less than s(n) for x. ◀

Explicit and Near-Optimal Construction of
t-Rankwise Independent Permutations
Nicholas Harvey #

Department of Computer Science and Department of Mathematics,
University of British Columbia, Vancouver, Canada

Arvin Sahami #

Department of Computer Science and Department of Mathematics,
University of British Columbia, Vancouver, Canada

Abstract
Letting t ≤ n, a family of permutations of [n] = {1, 2, . . . , n} is called t-rankwise independent if for
any t distinct entries in [n], when a permutation π is sampled uniformly at random from the family,
the order of the t entries in π is uniform among the t! possibilities.

Itoh et al. show a lower bound of (n/2)⌊ t
4 ⌋ for the number of members in such a family, and

provide a construction of a t-rankwise independent permutation family of size nO(t2/ ln(t)).
We provide an explicit, deterministic construction of a t-rankwise independent family of size

nO(t) for arbitrary parameters t ≤ n. Our main ingredient is a way to make the elements of a
t-independent family “more injective”, which might be of independent interest.

2012 ACM Subject Classification Theory of computation → Pseudorandomness and derandomization

Keywords and phrases Rankwise independent permutations

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.67

Category RANDOM

1 Introduction

An important topic in the area of pseudorandomness is the construction of random variables
such that any t of them are independent (for some parameter t ∈ N), given a small source of
purely random bits. A fundamental notion introduced by Wegman and Carter in 1979 [2] is
that of a t-independent family1, defined as follows (see also [9, Definition 3.31]).

▶ Definition 1 (t-independent family). Let m,n, t be positive integers with t ≤ m. A family
H of functions mapping [m]→ [n] is called t-independent if, when h ∈ H is chosen uniformly
at random, for any t distinct x1, . . . , xt ∈ [m] and t elements y1, . . . , yt ∈ [n],

P (h(xi) = yi for i = 1, . . . , t) = 1
nt
,

or equivalently, that the t random variables h(x1), . . . , h(xt) are independently and uniformly
distributed in [n].

These t-independent families are well-studied, and have found various applications. One
example is to derandomize a randomized algorithm that uses certain independent random
variables, but one can relax the assumption of being mutually independent to any t of them
being independent. Then often one can derandomize the algorithm by iterating over the
elements of H to find a function for which the algorithm succeeds. See [9, section 3.5] for such

1 Throughout this paper, we use the term “family” to refer to a multiset, meaning that the members need
not be distinct.

© Nicholas Harvey and Arvin Sahami;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 67; pp. 67:1–67:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nickhar@mail.ubc.ca
https://orcid.org/0000-0001-5593-9785
mailto:arvin52@student.ubc.ca
https://orcid.org/0009-0008-6660-9886
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.67
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

67:2 Explicit and Near-Optimal Construction of t-Rankwise Independent Permutations

an application for the MaxCut problem. It is then desirable to have explicit constructions of
such a family H with small size. In fact, explicit constructions of such families of near-optimal
size are known [4] for any parameters 1 ≤ t ≤ m and any n.

One can also define analogous families when restricting to permutations of [n] instead of
general functions. This natural restriction yields the notion of t-independent permutations.

▶ Definition 2 (t-independent permutation). A family Π is called t-independent if it contains
permutations of [n] such that, for any t distinct x1, . . . , xt ∈ [n] and any t distinct elements
y1, . . . , yt ∈ [n],

P (π(xi) = yi for i = 1, . . . , t) =
t−1∏
i=0

1
n− i

when π ∈ Π is chosen uniformly at random.

Explicit construction of such families with a small size, namely such that |Π| ≤ nO(t),
remains an open problem. This bound is near-optimal, since there is an obvious lower bound
of |Π| ≥

∏t−1
i=0(n− i), which follows from the definition.

In fact, there are few non-trivial constructions of such families for any t ≥ 4. Perhaps the
closest result in this direction is a probabilistic proof for the existence of small (i.e., with
|Π| ≤ nO(t)) t-independent permutations for any 1 ≤ t ≤ n due to Kuperberg, Lovett and
Peled [7]. However, their proof does not seem to yield an efficient deterministic or randomized
construction of the family, as it has a tiny success probability.

Many relaxed notions related to t-independence have been proposed for permutation
families, including “t-restricted min-wise independent” [1] and “t-rankwise independent”
families [5]. The latter is the focus of this paper.

▶ Definition 3 (t-rankwise independent permutation). A family Π of permutations over [n] is
called t-rankwise independent if for any t distinct points x1, . . . , xt ∈ [n],

P (π(x1) < π(x2) < . . . < π(xt)) = 1
t!

when π ∈ Π is chosen uniformly at random.

Another interesting type of permutation families has recently been proposed in the
cryptography community. This is the notion of a perfect sequence covering array (PSCA).

▶ Definition 4 (Yuster [10]). Let t ≤ n. The family Π of permutations of [n] is called a
PSCA(n, t) if there exists a fixed λ ∈ N such that for any t distinct indices i1, . . . , it ∈ [n],
there are exactly λ permutations π ∈ Π such that

(i1, i2, . . . , it) is a subsequence of (π(1), π(2), . . . , π(n)).

(The notation and wording have been adapted to match ours.)

Let g∗(n, t) denote the smallest size of a PSCA family Π. Naturally, researchers in
this field are interested in the value of g∗(n, t), and in the construction of families that
asymptotically achieve this minimum size.

It was observed in [6] that t-rankwise independent families and PSCAs are isomorphic.
Specifically, Π is a PSCA(n, t) family if and only if Π−1 =

{
π−1 : π ∈ Π

}
is a t-rankwise

independent family of permutations over [n]. Consequently, our construction of t-rankwise
independent permutations can immediately be translated into a construction of PSCAs.
Henceforth we will only use the terminology of t-rankwise independent families, and will no
longer refer to PSCAs.

N. Harvey and A. Sahami 67:3

Itoh et al. [5] show a lower bound of (n/2)⌊ t
4 ⌋ ≤ |Π| for the size of a t-rankwise inde-

pendent family Π. They also construct a family Π with |Π| ≤ nO(t2/ ln(t)), which does not
asymptotically match the lower bound.

We present a deterministic algorithm for constructing a t-rankwise independent family Π
of permutations over [n], with |Π| ≤ nO(t). This asymptotically matches the known lower
bound. Formally, the following is our main result.

▶ Theorem 5 (Main). There exists a constant C > 0 such that the following is true. Let
n, t be positive integers with t ≤ n. Then there exists a t-rankwise independent family Π
consisting of permutations of [n] such that |Π| ≤ (Cn)35t. Furthermore, the whole family can
be constructed by a deterministic algorithm in nO(t) time. (The implied constant in the O(.)
notation does not depend on either n or t).

Our construction starts in Section 2.2 with a t-independent family H, based on Reed-
Solomon codes. The next step, appearing in Section 2.3, modifies it to obtain another
t-independent family G whose members, roughly speaking, look “more injective”. This step
is the main technical contribution of the paper, and might be of independent interest. (Note
that, since G is a t-independent family, not all the maps in G can be injective). Finally, in
Section 2.4, we use this t-independent family G to construct permutations of [n], yielding the
t-rankwise independent family Π.

2 The construction

2.1 Overview
Our construction involves three steps, which build upon each other.
1. Construct H, a t-independent family of [n]→ ZN maps, where N = Θ(n3).
2. Construct G, a t-independent family of [n]→ ZN maps, such that each map’s image has

size at least n− 16t. Intuitively, this condition says that each map has very few collisions,
or is almost injective. (Being injective is equivalent to the image having size exactly n).

3. Construct Π, a t-rankwise independent family of permutations on [n].

The most substantial of these steps is the construction of G, whereas the construction of
H is the most trivial. We explain these steps in the following sections.

2.2 Construction of H
The construction of H is standard. The first step is to find a prime p in the interval [n3, 2n3].
This must exist, by Bertrand’s postulate, and can be found in Õ(n3) time using exhaustive
search and a deterministic primality test. We set N = p, and therefore

n3 ≤ N ≤ 2n3. (1)

Let H be the family of [n]→ FN maps defined by polynomials over FN of degree less than t,
namely

H =

 ∑
0≤i≤t−1

aix
i : ai ∈ FN

 .

This family is well-known to be t-independent; see, e.g., [3, Exercise 5.8]. Note that the size
of the family is |H| = pt = N t.

APPROX/RANDOM 2024

67:4 Explicit and Near-Optimal Construction of t-Rankwise Independent Permutations

2.3 Construction of G
The next step is to use the family H to build a family G. Each map in H will yield exactly
one map in G. The family G will retain H’s property of being t-independent. In addition, we
will be able to guarantee that every map in G has image size at least n − 16t. Thus each
map has few collisions (although this is an informal term that we have not yet defined).

The family G has a simple form, and it is constructed by the pseudocode shown in
Algorithm 1. This algorithm computes a single, specific map α : [n]→ ZN , then it constructs

G = { h+ α : h ∈ H } .

▷ Claim 6. For any map α, the resulting family G will be t-independent.

Proof. Suppose that h is chosen uniformly at random from H. For any t distinct entries
x1, . . . , xt ∈ [n], {h(xi)}i∈[t] are independent, and hence {fi(h(xi))}i∈[t] are independent for
any deterministic functions fi. In particular, since α is not random, letting fi(z) = z+α(xi),
we have that {h(xi) + α(xi)}i∈[t] remain independent. Lastly, for any k ∈ [n], h(k) +
α(k) is uniformly distributed since h(k) is uniform in ZN , and α is not random. Thus
{(h+ α)(xi)}i∈[t] are independent and uniform in ZN , as desired. ◁

We will prove that there is a specific choice of α such that every h ∈ H satisfies

|(h+ α)([n])| = |{ h(x) + α(x) : x ∈ [n] }| ≥ n− 16t,

which is the desired property of the family G. In fact, it is possible to show that a random
choice of α will satisfy this property with positive probability. However, this would not
quite achieve the goals of this paper, since ultimately we want an explicit, deterministic
construction of a t-rankwise independent family of permutations. Instead, we will obtain a
deterministic construction by derandomizing the randomized construction of α.

Algorithm 1 contains pseudocode for this procedure, which we now briefly explain. The
algorithm computes the values α(1), α(2), . . . , α(n) one-by-one, in that order. Thinking of
h + α as mapping the “balls” [n] to the “bins” ZN , then Sh

k is the set of bins that have
already received balls (for this particular function h). In order to be as injective as possible,
we want to avoid a collision (for every h) between the kth ball and these bins – that is, we
want (h+ α)(k) ̸∈ Sh

k ∀h ∈ H. To do so, the algorithm uses a potential function (shown in
(2)) in which the variable x corresponds to the value that will be used for α(k). This function
penalizes any value x which would cause any further collision among any function h ∈ H.
This potential function is essentially a pessimistic estimator, as explained in Section 2.3.1
below.

▶ Lemma 7. Algorithm 1 returns a t-independent family G satisfying the following.

|g([n])| ≥ n− 16t ∀g ∈ G

The subset of the codomain that experienced a “collision” is defined to be

Y =
{
y ∈ ZN : |g−1(y)| ≥ 2

}
,

and the subset of the domain involved in these collisions is defined to be

X =
⋃

y∈Y
g−1(y) = g−1(Y).

▶ Corollary 8. The family G produced by Lemma 7 satisfies |X | ≤ 32t.

N. Harvey and A. Sahami 67:5

Algorithm 1 Main Algorithm.

Input: t-independent family H of [n]→ ZN maps s.t. |H| = N t.
Output: t-independent family G of [n]→ ZN maps s.t. |G| = N t, |g([n])| ≥ n−16t ∀g ∈ G.

1: λ← ln(16tN/n2)
2: G ← ∅
3: for k = 1, . . . , n do
4: ▷ Compute the value α(k)
5: for h ∈ H do
6: Let Sh

k = { h(i) + α(i) : 1 ≤ i ≤ k − 1 } ⊆ ZN , and note that Sh
1 = ∅.

This is (h+α)([k− 1]), the set of values that already appear in the image of h+α.
7: Define

βh
k

(
α(1), α(2), . . . , α(k − 1), x

)
=
{

1 if h(k) + x ∈ Sh
k

0 otherwise

To ease notation, we will use the shorthand
βh

k (x) = βh
k

(
α(1), α(2), . . . , α(k − 1), x

)
.

9: end for
10: Pick

a ∈ argminx∈ZN

∑
h∈H

exp
(
λ
(
βh

k (x) +
∑

1≤i≤k−1
βh

i

(
α(1), . . . , α(i)

)))
(2)

11: Let α(k)← a

12: end for
13: return the family G = { h+ α : h ∈ H }.

A formal proof is in Appendix A, and here we present only a sketch.

Proof (Sketch). The size of X is maximized by having exactly 16t bins containing exactly 2
balls, and n− 32t bins containing exactly 1 ball. ◀

2.3.1 Proof of Lemma 7

For each function h ∈ H and integer k ∈ [n], there is a function βh
k : Zk

N → {0, 1} that is
defined in Algorithm 1, and which we define equivalently here as

βh
k (x1, . . . , xk) =

{
1 if ∃1 ≤ i ≤ k − 1 s.t. h(k) + xk = h(i) + xi (mod N)
0 otherwise.

We will use the notation βh
k (xk) for βh

k (x1, . . . , xk) when x1, . . . , xk−1 are clear from context.
The scalar λ > 0 is as defined as in Algorithm 1. Additionally, define the scalar cλ > 0

and the function ψk : Zk
N → R+ by

cλ = E exp(λY) > 0

ψk(x1, . . . , xk) =
∑
h∈H

exp
(
λ

k∑
i=1

βh
i (x1, . . . , xi)

)
· cn−k

λ , (3)

APPROX/RANDOM 2024

67:6 Explicit and Near-Optimal Construction of t-Rankwise Independent Permutations

where Y is a random variable having the Bernoulli distribution with parameter n/N , which
we write as Bern (n/N). We will often write ψk(xk) instead of ψk(x1, . . . , xk) for notational
convenience.

Intuitively, ψk(x1, . . . , xk) is a pessimistic estimator of the expected number of functions
h ∈ H which would have |(h+ α)([n])| > n− 16t given that α(i) = xi ∀i ∈ [k], and that the
rest of the entries α(k + 1), . . . , α(n) are chosen uniformly at random from ZN .

Let α : [n]→ ZN be the mapping constructed by Algorithm 1.

▷ Claim 9. ψ0 ≥ ψ1(α(1)) ≥ ψ2(α(2)) ≥ . . . ≥ ψn(α(n)), where here we use the notation
ψi(α(i)) to denote ψi (α(1), α(2), . . . , α(i)).

▷ Claim 10. 1 > ψ0 = exp(−16λt) · |H| · [E exp(λY)]n.

Together, Claims 9 and 10 imply that

1 > ψn(α(n)) =
∑
h∈H

exp
(
λ
(k∑

i=1
βh

i (α(i))
)
− 16λt

)
.

Since all summands are non-negative, it follows that, for every h ∈ H, we have

exp
(
λ
(k∑

i=1
βh

i (α(i))
)
− 16λt

)
< 1.

Observe that
∑

i≤k β
h
i (α(i)) = k − |Sh

k | ∀k, h. Taking the log and rearranging, we obtain
that

n− |Sh
n| =

n∑
i=1

βh
i (α(i)) < 16t ∀h ∈ H.

Let g = h+α. Since |g([n])| = |Sh
n|, we have |g([n])| > n− 16t for all h ∈ H. This completes

the proof of Lemma 7.

Proof of Claim 9. We will show that ψk(α(k)) ≤ ψk(α(k − 1)) ∀1 ≤ k ≤ n. So let k ∈ [n] be
arbitrary.

Our first observation is that, in the algorithm’s iteration k, it chooses the value a = α(k)
to minimize ψk(α(1), . . . , α(k − 1), a). This holds because the functions

∑
h∈H

exp
(
λβh

k (x) + λ
k−1∑
i=1

βh
i (α(i))

)
and ψk(α(1), α(2), . . . , α(k − 1), x)

are positive multiples of each other.
Since α(k) minimizes ψk, we clearly have

ψk(α(1), . . . , α(k)) ≤ EU∼Unif(ZN)ψk(α(1), . . . , α(k − 1), U),

where Unif(S) denotes the uniform distribution on the set S. Hence in order to show that
ψk(α(k)) ≤ ψk−1(α(k − 1)), it suffices to prove that

EU∼Unif(ZN) ψk(α(1) . . . , α(k − 1), U) ≤ ψk−1(α(k − 1)). (4)

Since ψk and ψk−1 are both sums over h ∈ H, it will suffice to prove this inequality for each
summand. More specifically, we will ignore the e−16λt constant and define

ψh
k (x) = exp

(
λ

k−1∑
i=1

βh
i (α(i)) + λβh

k (x)
)
· cn−k

λ ,

N. Harvey and A. Sahami 67:7

where, as above, cλ = E exp(λY), and Y is Bern(n/N). Towards our inductive proof, we
may rewrite this as

ψh
k (x) = ψh

k−1
(
α(k − 1)

)
· 1
c
· exp

(
λβh

k (α(1), . . . , α(k − 1), x)
)
.

Plugging this into our goal (4), it suffices to prove that

EU∼Unif(ZN) ψ
h
k−1
(
α(k − 1)

)
· 1
c
· exp

(
λβh

k (α(1), . . . , α(k − 1), U)
)
≤ ψk−1

(
α(k − 1)

)
,

or equivalently (observing that ψh
k−1(α(k − 1)) > 0),

EU∼Unif(ZN) exp
(
λβh

k (α(1), . . . , α(k − 1), U)
)
≤ cλ = E exp(λY). (5)

Note that there are exactly |Sh
k | values of U that result in βh

k (α(1), α(2), . . . , α(k − 1), U)
taking the value 1, whereas the rest result in the value 0. Since U is uniformly distributed
on ZN and |Sh

k | ≤ n for all k ∈ [n], h ∈ H, it follows that βh
k (α(1), . . . , α(k − 1), U) has a

Bernoulli distribution Bern(p) where p ≤ n/N . Since Y has the distribution Bern(n/N), the
desired inequality (5) follows. ◁

For the next proof, we will require the following statement of the Chernoff bound. A
proof is given in Appendix A.

▶ Theorem 11 (Poisson tail of Chernoff bound). Let Y1, . . . , Yn be independent random
variables supported on [0, 1]. Let µ = E

∑n
i=1 Yi. Then, for any δ ≥ 1, if λ = ln(1 + δ) then

P

(
n∑

i=1
Yi ≥ (1 + δ)µ

)
≤ Eexp

(
λ

n∑
i=1

Yi − λ(1 + δ)µ
)
≤ (1 + δ)−(1+δ)µ/4.

Proof of Claim 10. Let Y1, . . . , Yn be i.i.d. Bern(n
N) random variables. We may rewrite the

definition of ψ0 from (3) using these Yi random variables as

ψ0 = |H| · E exp
(
λ

n∑
i=1

Yi − 16λt
)
.

To prove the claim, we must show that this is less than 1.
To do so, consider any fixed h ∈ H. We will use the Chernoff bound as stated in

Theorem 11, with 1 + δ = 16tN/n2. (Note that δ ≥ 1, as required, since N ≥ n3.) The value
of λ required by the theorem is ln(1 + δ) = ln(16tN/n2), which matches the definition in
Algorithm 1. Lastly, note that

µ = E
n∑

i=1
Yi = n2/N,

since each Yi is Bern(n/N). Thus λ(1 + δ)µ = 16λt. Applying the theorem, we obtain

E exp
(
λ

n∑
k=1

Yi − 16λt
)
≤ (1 + δ)−(1+δ)µ/4 =

(
16tN/n2)−4t

< n−4t ≤ N−t,

since n3 ≤ N ≤ 2n3 by (1), and also using n ≥ 2. Thus, in conclusion

ψ0 < |H| ·N−t = 1. ◁

APPROX/RANDOM 2024

67:8 Explicit and Near-Optimal Construction of t-Rankwise Independent Permutations

Algorithm 2 Construction of Π from G.

Input: t-independent family G of [n]→ ZN maps.
Output: t-rankwise independent family of permutations on [n].

1: Let Π← ∅
2: Let τ ← 32t
3: for g ∈ G do
4: Let Σ =

{
(σ1, . . . , σN) : σi is a permutation of g−1(i)

}
5: Let s← τ !/|Σ|
6: for (σ1, . . . , σN) ∈ Σ do
7: Let L← [] be an empty list
8: for i = 1, . . . , N do
9: Append to L the elements of g−1(i) in the order given by σi

10: end for
11: Add s copies of the permutation π : [n]→ [n], where π(i) = L[i], to the set Π
12: end for
13: end for
14: return Π

2.4 Construction of Π
The last step is to use the family G of maps to build the t-rankwise independent family Π of
permutations on [n]. Pseudocode for this process is shown in Algorithm 2. Roughly speaking,
the algorithm first sorts the elements of [n] according to the order induced by the functions
in G and then “breaks ties” using permutations in Σ (see line 4); also note that the number
of new permutations will hence depend on |Σ| which is not necessarily fixed for all g ∈ G.
The algorithm finally inserts the new permutations in Π. Note that in the algorithm, we
view integers i ∈ [N] as elements of ZN in the natural manner.

In order for line 11 to make sense, we must establish the following claim.

▷ Claim 12. The value s = τ !/|Σ| is a positive integer.

Proof. As above, define

Y =
{
y ∈ ZN : |g−1(y)| ≥ 2

}
X =

⋃
y∈Y

g−1(y) = g−1(Y).

Informally, Y is the set of bins containing multiple balls, and X is the set of balls that are
not alone in their bin. By Lemma 7, we know that |X | ≤ 32t = τ .

Let SK denote the symmetric group on the set K. Observe that Σ is simply the direct
product

∏
y∈ZN

Sg−1(y), which has an obvious isomorphism to
∏

y∈Y Sg−1(y), since we can
ignore y with |g−1(y)| ∈ {0, 1}. In turn, this is isomorphic to a subgroup of SX . It follows
that |Σ| divides |SX |, which divides τ ! since |X | ≤ τ . ◁

▷ Claim 13. The family Π is t-rankwise independent.

Proof. We want to show

P (π(x1) < . . . < π(xt)) = 1
t! (6)

for any t distinct indices x1, . . . , xt. For notational convenience, let us assume x1 = 1, x2 =
2, . . . , xt = t. It can be seen that our proof does not use the indices x1, . . . , xt.

N. Harvey and A. Sahami 67:9

To generate π, we will first pick g ∈ G uniformly at random, then pick (σ1, . . . , σN) ∈ Σ
uniformly at random. Since each g ∈ G produces exactly τ ! elements in Π, this is equivalent
to picking π uniformly. Note that, since Σ is a Cartesian product, the distribution on the σi

is equivalent to picking σi ∈ Sg−1(i) uniformly and independently at random.
For i ∈ [t] define

Ri = rank of π(i) among π(1), . . . , π(t) = |{j ∈ [t] : π(j) ≤ π(i)}|.

Let R = (R1, . . . , Rt). Let us view R as an element of the symmetric group St (with
R(i) = Ri). In the remainder of the proof, we will establish that

P
(
R = r

)
= P

(
R = rρ

)
∀r, ρ ∈ St. (7)

Together with the fact that 1 =
∑

ρ∈St
P
(
R = rρ

)
, we obtain P

(
R = r

)
= 1

t! ∀r ∈ St. Thus,
when r is the identity permutation, this establishes (6), for the case xi = i ∀i ∈ [t].

In order to prove (7), let us introduce some notation for convenience. Throughout the
proof, let X denote the random vector (X1, X2, . . . , Xt) where Xi = g(i). Let i denote the
t-tuple i = (i1, . . . , it) ∈ Zt

N . Intuitively, X gives the random locations of the first t balls,
and i gives a specific list of locations that might be the outcome for those balls.

By the law of total probability

P
(
R = r

)
=

∑
i∈Zt

N

P
(
R = r | X = i

)
· P
(
X = i

)
(8)

P
(
R = rρ

)
=

∑
i∈Zt

N

P
(
R = rρ | X = i

)
· P
(
X = i

)
(9)

Since ρ is a permutation, one can write the second equation as

P
(
R = rρ

)
=

∑
i∈Zt

N

P
(
R = rρ | X = iρ

)
· P
(
X = iρ

)
, (10)

where, for a t-tuple v and permutation ρ ∈ St, the notation vρ denotes the t-tuple whose
coordinates are permuted according to ρ, i.e., (vρ)i = vρ(i).

Observe that by the t-independence of X1, . . . , Xt, we have

P
(
X = i

)
= P

(
X = iρ

)
= 1

N t
.

Thus to show (8) equals (10), it suffices to show that

P
(
R = r | X = i

)
= P

(
R = rρ | X = iρ

)
.

Call the permutation r ∈ St “feasible” w.r.t. the sequence i1, . . . , it if for any p, q ∈ [t], if
ip < iq then r(p) < r(q). In words, this means that the order of i1, . . . , it is given by the
permutation r. It is possible that several indices in [t] have the same value in the sequence
i1, . . . , it, in which case r is allowed to induce any ordering among them.

We observe that P
(
R = r | X = i

)
= 0 ⇐⇒ r is not feasible w.r.t i. We also note that

r is feasible w.r.t i iff rρ is feasible w.r.t iρ, and hence

P
(
R = r | X = i

)
= 0 ⇐⇒ P

(
R = rρ | X = iρ

)
= 0.

So it remains to check the equality of the conditional probabilities for a permutation r feasible
to the t-tuple i. In fact we can calculate the conditional probability explicitly.

APPROX/RANDOM 2024

67:10 Explicit and Near-Optimal Construction of t-Rankwise Independent Permutations

Let S = {i1, . . . , it} and for s ∈ ZN , let Bs = {k ∈ [t] : ik = s} ⊆ g−1(s) (observe that
Bs = ∅ ∀s /∈ S). If one views the indices [t] as balls being thrown into the bins ZN , then S

would be the set of bins occupied by [t] and Bs represents balls among [t] falling into bin s.
For s ∈ ZN define the event

Es = { ∀i, j ∈ Bs, σs(i) < σs(j) ⇐⇒ r(i) < r(j) } = { σs permutes Bs according to r }.

Note that the permutation σs is chosen uniformly at random from Sg−1(s), and hence
there is 1

|Bs|! probability that the rank induced over the indices appearing in Bs is the same
rank as the one induced by r. That is,

P
(
Es | X = i

)
= 1
|Bs|!

.

Note that assuming r is feasible w.r.t i, we have R = r iff R and r induce the same order
over all the entries of Bs for all s ∈ S. That is,{

R = r
}

=
⋂
s∈S

Es

conditioned on X = i.
Note that the permutations {σs : s ∈ S} are chosen independently when conditioned on

X = i so {Es}s∈S are independent and hence

P
(
R = r | X = i

)
= P

(⋂
s

Es | X = i

)
=
∏
s∈S

P
(
Es | X = i

)
=
∏
s∈S

1
|Bs|!

.

Finally, we verify that the analogous computation for P
(
R = r | X = iρ

)
yields the same

result. Let S′ =
{

(iρ)k : k ∈ [t]
}

; since ρ is a permutation, it follows that S′ = S. Similarly
letting B′

s =
{
k ∈ [t] : (iρ)k = s

}
, this time we have

P
(
R = r | X = iρ

)
=

∏
s∈S′=S

1
|B′

s|!
.

However it is clear that |Bs| = |B′
s| ∀s ∈ ZN , as B′

s = (ρ−1)(Bs) (since ρ−1 is a bijection
between the two sets). Therefore

∏
s∈S′

1
|B′

s|!
=
∏
s∈S

1
|Bs|!

which we argued earlier is sufficient to prove (7). ◁

▷ Claim 14. There is a constant C > 0 such that |Π| ≤ (Cn)35t.

Proof. It is clear that each map g ∈ G contributes exactly |Σ| · s = τ ! permutations to Π.
Thus,

|Π| = τ ! · |G| ≤ (32t)32t · |H| ≤ (32n)32t ·N t ≤ (32n)32t · (2n3)t,

by (1). ◁

N. Harvey and A. Sahami 67:11

3 Conclusion and Future Work

Our algorithm for constructing Π runs in time nO(t), which is quite efficient size |Π| = nO(t).
However, in applications often one is interested in sampling only a single permutation from
Π. In this case, it may be unnecessary to construct the whole family. It is natural to ask if
one can give a more explicit construction of t-rankwise independent families. That is, can a
t-rankwise independent family Π of permutations of [n] be constructed such that
|Π| ≤ nO(t), and
sampling a single permutation from Π can be done in time O(n)?

We also re-emphasize that the problem of explicitly constructing a t-independent permuta-
tion family Π over [n] with |Π| ≤ nO(t) remains open. Such a construction would strengthen
the results of this paper, as it would be a t-rankwise independent permutation family as well.

References
1 Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael Mitzenmacher. Min-wise

independent permutations. Journal of Computer and System Sciences, 60(3):630–659, 2000.
doi:10.1006/jcss.1999.1690.

2 J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions. Journal of
Computer and System Sciences, 18:143–154, 1979. doi:10.1016/0022-0000(79)90044-8.

3 Venkat Guruswami, Atri Rudra, and Madhu Sudan. Essential Coding Theory, 2018. Manuscript.
4 Nicholas Harvey and Arvin Sahami. Explicit orthogonal arrays and universal hashing with

arbitrary parameters. In Proceedings of the ACM Symposium on Theory of Computation
(STOC), 2024.

5 Toshiya Itoh, Yoshinori Takei, and Jun Tarui. On permutations with limited independence.
In Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’00, pages 137–146, USA, 2000. Society for Industrial and Applied Mathematics.

6 Enrico Iurlano. Growth of the perfect sequence covering array number. Des. Codes Crypto-
graphy, 91(4):1487–1494, December 2022. doi:10.1007/s10623-022-01168-3.

7 Greg Kuperberg, Shachar Lovett, and Ron Peled. Probabilistic existence of rigid combinatorial
structures. In Proceedings of the forty-fourth annual ACM symposium on Theory of computing,
pages 1091–1106, 2012. doi:10.1145/2213977.2214075.

8 Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

9 Salil P. Vadhan. Pseudorandomness. Foundations and Trends® in Theoretical Computer
Science, 7(1–3):1–336, 2012. doi:10.1561/0400000010.

10 Raphael Yuster. Perfect sequence covering arrays. Des. Codes Cryptography, 88(3):585–593,
March 2020. doi:10.1007/s10623-019-00698-7.

A Omitted proofs

Proof of Corollary 8. For notational convenience, let Xi = |g−1(i)| for i ∈ [N]. Observe
that n =

∑
i∈[N] Xi and |g([n])| =

∑
i∈[N] 1{Xi≥1}. Then we may write

2 ·
(
n− |g([n])|

)
= 2

∑
i∈[N]

(Xi − 1{Xi≥1}︸ ︷︷ ︸
=0 if Xi ∈ {0, 1}

) =
∑

i∈[N]

1{Xi≥2} · 2(Xi − 1)︸ ︷︷ ︸
≥1{Xi≥2}·Xi

≥
∑

i∈[N]

1{Xi≥2} ·Xi = |X |.

Thus, by Lemma 7, |X | ≤ 2 ·
(
n− |g([n])|

)
≤ 2 · (16t) = 32t. ◀

APPROX/RANDOM 2024

https://doi.org/10.1006/jcss.1999.1690
https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.1007/s10623-022-01168-3
https://doi.org/10.1145/2213977.2214075
https://doi.org/10.1561/0400000010
https://doi.org/10.1007/s10623-019-00698-7

67:12 Explicit and Near-Optimal Construction of t-Rankwise Independent Permutations

Proof of Theorem 11. Observe that

1{
∑n

i=1
Yi≥(1+δ)µ} ≤ exp

(
λ

n∑
i=1

Yi − λ(1 + δ)µ
)

and hence taking expectations implies

E1{
∑n

i=1
Yi≥(1+δ)µ} = P

(
n∑

i=1
Yi ≥ (1 + δ)µ

)
≤ Eexp

(
λ

n∑
i=1

Yi − λ(1 + δ)µ
)
.

Next, as shown in [8, Theorem 4.1 and its proof], letting λ = ln(1 + δ), we have the inequality

E exp
(
λ

n∑
i=1

Yi − λ(1 + δ)µ
)
≤
(

eδ

(1 + δ)1+δ

)µ

.

It remains to prove that(
eδ

(1 + δ)1+δ

)µ

≤ (1 + δ)−(1+δ)µ/4 ∀δ ≥ 1.

As 0 ≤ µ, it suffices to show

eδ

(1 + δ)1+δ
≤ (1 + δ)−(1+δ)/4 ∀δ ≥ 1.

After taking logs and performing simple algebraic manipulations, we arrive at another
equivalent inequality

4
3 ≤ (1 + 1

δ) ln(1 + δ) ∀δ ≥ 1.

For x ≥ 0, let f(x) = (1 + 1
x) ln(1 + x). We note that

f ′(x) = x− ln(1 + x)
x2 ≥ 0 ∀x > 0

since ln(x+ 1) ≤ x ∀x > 0. Thus in particular f is non-decreasing over [1,∞) and hence

(1 + 1
δ

) ln(1 + δ) = f(δ) ≥ f(1) = 2 ln(2) > 4
3 ∀δ ≥ 1

as desired. ◀

Sparse High Dimensional Expanders via Local Lifts
Inbar Ben Yaacov # Ñ

Weizmann Institute of Science, Rehovot, Israel

Yotam Dikstein # Ñ

Institute for Advanced Study, Princeton, NJ, USA

Gal Maor #

Tel Aviv University, Tel Aviv, Israel

Abstract
High dimensional expanders (HDXs) are a hypergraph generalization of expander graphs. They are
extensively studied in the math and TCS communities due to their many applications. Like expander
graphs, HDXs are especially interesting for applications when they are bounded degree, namely, if
the number of edges adjacent to every vertex is bounded. However, only a handful of constructions
are known to have this property, all of which rely on algebraic techniques. In particular, no random
or combinatorial construction of bounded degree high dimensional expanders is known. As a result,
our understanding of these objects is limited.

The degree of an i-face in an HDX is the number of (i + 1)-faces that contain it. In this work we
construct complexes whose higher dimensional faces have bounded degree. This is done by giving an
elementary and deterministic algorithm that takes as input a regular k-dimensional HDX X and
outputs another regular k-dimensional HDX X̂ with twice as many vertices. While the degree of
vertices in X̂ grows, the degree of the (k − 1)-faces in X̂ stays the same. As a result, we obtain a
new “algebra-free” construction of HDXs whose (k − 1)-face degree is bounded.

Our construction algorithm is based on a simple and natural generalization of the expander
graph construction by Bilu and Linial [12], which build expander graphs using lifts coming from edge
signings. Our construction is based on local lifts of high dimensional expanders, where a local lift is
a new complex whose top-level links are lifts of the links of the original complex. We demonstrate
that a local lift of an HDX is also an HDX in many cases.

In addition, combining local lifts with existing bounded degree constructions creates new families
of bounded degree HDXs with significantly different links than before. For every large enough D, we
use this technique to construct families of bounded degree HDXs with links that have diameter ≥ D.

2012 ACM Subject Classification Theory of computation → Expander graphs and randomness
extractors

Keywords and phrases High Dimensional Expanders, HDX, Spectral Expansion, Lifts, Covers,
Explicit Constructions, Randomized Constructions, Deterministic Constructions

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.68

Category RANDOM

Related Version Full Version: https://arxiv.org/abs/2405.19191 [11]

Funding Inbar Ben Yaacov: This project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme (grant
agreement No. 819702) and from the Simons Foundation Collaboration on the Theory of Algorithmic
Fairness.
Yotam Dikstein: This material is based upon work supported by the National Science Foundation
under Grant No. DMS-1926686.
Gal Maor : Supported by Gil Cohen’s ERC grant 949499.

© Inbar Ben Yaacov, Yotam Dikstein, and Gal Maor;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 68; pp. 68:1–68:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:inbar.ben-yaacov@weizmann.ac.il
https://www.inbarbenyaacov.com/
https://orcid.org/0000-0002-0540-9302
mailto:yotam.dikstein@gmail.com
https://sites.google.com/view/yotam-dikstein
https://orcid.org/0000-0002-6248-6574
mailto:galmaor@mail.tau.ac.il
https://orcid.org/0009-0001-5011-0916
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.68
https://arxiv.org/abs/2405.19191
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

68:2 Sparse High Dimensional Expanders via Local Lifts

1 Introduction

Expander graphs are graphs that are well connected. These objects are studied extensively in
computer science and mathematics [40], and since their discovery they have found numerous
applications in complexity [25, 62], coding theory [64, 66, 26], derandomization [40, 33] and
more. Most of these applications rely on families of expander graphs that have a bounded
degree. It is well known that random regular graphs are expanders, and many explicit
bounded degree constructions are also in hand [55, 51, 63, 12, 54].

Recently, the study of high dimensional expanders (HDXs) emerged (see surveys [49, 37]).
These are hypergraph analogues of expander graphs. While the full potential of high
dimensional expanders is yet to be discovered, they are already important objects of study.
High dimensional expanders, and especially bounded degree high dimensional expanders1

have already yielded exciting applications in various areas such as locally testable codes
[26, 61, 28], quantum complexity [7], sampling and Markov chains [27, 43], agreement testing
[27, 24, 8], high dimensional geometry and topology [38, 30], pseudorandomness [19] and
random (hyper)graph theory [46, 56].

The specific family of high dimensional expanders used in many of the aforementioned
applications is tailor-made to satisfy other desired properties, in addition to high dimensional
expansion. For example, the local neighborhoods in the high dimensional expanders used
in [26, 61, 28] are tailored so that one can define a small locally testable code on them; the
high dimensional expanders in [38, 24, 8] also have a vanishing 1-cohomology over certain
group coefficients.

However, constructing bounded degree high dimensional expanders (for arbitrarily small
spectral expansion of the links) is still a serious challenge. No random model for bounded
degree high dimensional expanders is known, and all deterministic constructions known use
non-trivial algebraic techniques. The fact that we have only a handful of bounded degree
constructions to choose from, makes these objects difficult to understand and to work with.
We believe that many further applications await us once we learn how to diversify these
constructions, in the same way that many of the above-mentioned applications of expander
graphs grew out of more varied expander constructions that were discovered.

Nowadays, all known constructions of HDXs rely on algebraic techniques, including
quotients of the Bruhat Tits buildings [10, 16, 45, 52, 22, 24, 8] and coset complexes
[42, 31, 59] (see also [39] for a more elementary analysis of some of these HDXs). There
have been attempts at constructing bounded degree HDXs with combinatorial tools, but all
these constructions fall short either in bounded degreeness [35, 47] or in their local spectral
expansion [20, 21, 17, 48, 34].

In particular, it is an important open question whether an algorithm à la Zig-Zag product
[63] exists for bounded degree high dimensional expanders. That is, an algorithm that given
a bounded degree high dimensional expander as input, outputs another high dimensional
expander with more vertices and the same bound on the degree and spectral expansion.

As an intermediate result, in this work we develop an algorithm that takes a high
dimensional expander as input, and outputs another high dimensional expander with more
vertices, the same bound on spectral expansion and the same bound on the degree of high
dimensional faces (but not on the degree vertices). This algorithm is entirely combinatorial,
relying only on the theory of graph covers initiated by [5, 12]. While families of complexes

1 A family of HDXs is called bounded degree if there is some M > 0 so that all vertices in every HDX in
the family have degree at most M .

I. Ben Yaacov, Y. Dikstein, and G. Maor 68:3

constructed via such an algorithm are not sufficient for applications that require the vertex
degree to be bounded, we view this as a stepping stone towards an “algebra free” construction
of bounded degree HDXs. One exception to this is the recent work by [3], which analyzes a
variant of the well known Glauber dynamics (or up-down) random walk on HDXs. The walk
that [3] analyzes has bounded degree if and only if the underlying HDX is (k − 1)-bounded
degree.

1.1 Preliminaries on High Dimensional Expanders
To better understand our results, let us introduce some standard definitions and notation
on simplicial complexes (see Section 2.3 for a more elaborated definitions). A simplicial
complex is a hypergraph that is downwards closed to containment. A simplicial complex is
k-dimensional if the largest hyperedge in the complex is of size (k + 1). We denote by X(ℓ)
the sets (aka faces) of size ℓ + 1. Let X be a k-dimensional simplicial complex.

The degree of a face σ ∈ X(ℓ), is d(σ) := |{τ ∈ X(ℓ + 1) | τ ⊇ σ}|. A family of complexes
{Xi}∞

i=0 is ℓ-bounded degree if there exists an M > 0 that bounds the degrees of all ℓ-faces
across all the complexes simultaneously. That is, for every i and any σ ∈ Xi(ℓ), d(σ) ≤ M .
We say that a family of complexes are bounded degree if they are 0-bounded degree. We say
that a complex is (d0, d1, . . . , dk−1)-regular if for every σ ∈ X(ℓ), d(σ) = dℓ.

In this paper we are mainly interested in the local spectral expansion definition of high
dimensional expanders (see [49] for a survey on other definitions). For this we need to define
“links”, the generalization of vertex neighborhoods in graphs. For a face σ ∈ X, the link of
σ is the simplicial complex Xσ = {τ \ σ | σ ⊆ τ ∈ X}. We will be interested in the graph
structure underlying the complex and its links. The 1-skeleton of X is the graph whose
vertices are X(0) and whose edges are X(1).

▶ Definition 1 (High dimensional expander). For λ > 0 we say that X is a λ-two sided (one
sided) high dimensional expander if for every ℓ ≤ k − 2 and σ ∈ X(ℓ), the 1-skeleton of Xσ

is a λ-two sided (one sided) spectral expander.

1.2 Our Results
Our results are based on the notion of a graph lifts. We say a graph Ĝ = (V̂ , Ê) is a lift of
a graph G = (V, E) if there exists a graph homomorphism ϕ : V̂ → V such that for every
v̂ ∈ V̂ , the mapping ϕ is a bijection on the neighborhood of v̂. Intuitively, a lift of a graph
G is a large graph Ĝ that locally looks the same as G. Graph lifts are essential in many
constructions of expander graphs [5, 12, 54], and our construction builds on the beautiful
work of [12]. We elaborate more on this below.

Our main result is a construction algorithm that maintains both expansion and the degree
of the (k − 1)-faces of a regular complex. This algorithm takes as input a (d0, d1, . . . , dk−1)-
regular λ-high dimensional expander X, and outputs a (2d0, 2d1, . . . , 2dk−2, dk−1)-regular X̂

with twice as many vertices that is also a λ-HDX (even though the number of intermediate
faces grows like |X̂(i)| = 2i|X(i)| for i ≤ k − 1). This algorithm uses the notion of random
lifts [12], and in particular, it requires no algebraic machinery for the construction nor the
analysis. More formally, this is the theorem we prove.

▶ Theorem 2 (See Theorem 28 for a more precise statement). There exists a randomized
algorithm A that takes as input a k-dimensional complex X0 and an integer i ≥ 1, runs
in expected time poly((2i|X0(0)|)k) at most, and outputs a k-dimensional complex Xi with
2i|X0(0)| vertices. The algorithm has the following guarantees.

APPROX/RANDOM 2024

68:4 Sparse High Dimensional Expanders via Local Lifts

1. If X0 is a (d0, d1, . . . , dk−1)-regular λ-two sided high dimensional expander, then Xi is
a (2id0, . . . , 2idk−2, dk−1)-regular λ′-two sided high dimensional expander where λ′ =
O
(

max
{

λ
(
1 + log 1

λ

)
,
√

log3 dk−1
dk−1

})
.

2. For every σ̂ ∈ Xi(k − 2), the link (Xi)σ̂ is a lift of (Xi−1)σ for some σ ∈ Xi−1(k − 2).
For every j ≤ k − 2, |Xi(j)| = 2(j+1)i|X0(j)|.

There are various complexes in hand that one can use as the input to this algorithm.
These include the complete complex, the complexes from [50], and even complexes from
bounded degree families that are regular, such as those constructed by [31].

We give two proofs to Theorem 2, building on the techniques developed by [12] to analyze
lifts in expander graphs, and extend them to high dimensional expanders.

While most of the work in [12] regards random lifts of graphs, they also show how to
deterministically find expander graphs using lifts. Building on their method, we also give
a deterministic algorithm for finding the complexes in Theorem 2, albeit under some more
assumptions on the input X0. This provides a deterministic, polynomial time and elementary
construction of a family of (k − 1)-bounded k-dimensional high dimensional expanders.

▶ Theorem 3 (See Theorem 35). There exists a deterministic algorithm B that takes as
input a k-dimensional complex X0 and an integer i ≥ 1, runs in time poly((2i|X0(0)|)k) at
most, and outputs a k-dimensional complex Xi with 2i|X0(0)| vertices. The algorithm has
the following guarantees.
1. If X0 is a (d0, d1 . . . , dk−1)-regular λ-two sided high dimensional expander,

such that dk−1 > 210k and |X0(k − 2)| ≤ (dk−2)10k, then Xi is a
(2id0, . . . , 2idk−2, dk−1)-regular λ′-two sided high dimensional expander where λ′ =
O
(

25k max
{

λ
(
1 + log 1

λ

)
,
√

log3 dk−1
dk−1

})
.

2. For every σ̂ ∈ Xi(k − 2), the link (Xi)σ̂ is a lift of (Xi−1)σ for some σ ∈ Xi−1(k − 2).
For every j ≤ k − 2, |Xi(j)| = 2(j+1)i|X0(j)|.

Not only is our construction deterministic, but it is also simple and versatile; one can
apply it to various kinds of high dimensional expanders, and the family of HDXs obtained
by doing so is changes according to the initiating HDX given at the beginning of the process.

1.3 Comparing to Random Constructions of HDXs
In the graph case the configuration model yields regular and bounded degree expanders.
In contrast, there is no immediate generalization of this model to higher dimensions, that
leads to bounded degree HDXs, even if one only wishes to bound the degrees of higher
dimensional faces. If one settles for logarithmic degree, then one could use the [46] random
model to construct random HDXs. The degree of the top-level faces of these complexes is
O(log n), where n is the number of vertices, and the degree of the lower dimensional faces is
polynomial in n. For 2-dimensional complexes, the random geometric model in [47] offers an
improvement to the vertex degree that one gets from [46], but it is still polynomial.

It is tempting to try and adapt the [46] model for constructing (k − 1)-bounded degree
HDXs, but doing so in a straightforward manner falls short of achieving that. The work
by [50] found an appropriate generalization of the random model that gives (k − 1)-bounded
degree HDXs, utilizing the breakthrough work of [44] on Steiner systems. In their model, one
takes a complete (k − 1)-skeleton and samples k-faces by sampling random Steiner systems
on this complex.

Our construction sidesteps this difficulty by taking a different approach; it uses random
local lifts of HDXs (presented in the following subsection) instead of trying to construct
random ones from scratch. In this setting, the high dimensional case behaves more similar

I. Ben Yaacov, Y. Dikstein, and G. Maor 68:5

to the 1-dimensional one - our work shows that random local lifts of HDXs are HDXs with
high probability. Of course, this requires an appropriate modification of the lift notion to
local lifts.

1.4 The Construction
We now dive into the heart of Theorem 2. Our construction builds upon the work of random
lifts of graphs studied in [12]. Random lifts of expanders have been subject to extensive
research (e.g., [6, 12, 2, 54, 14]). However, in this work, we do not try to lift the complex
itself. Instead, we construct another complex where the (k − 2)-links are lifts of links in the
original complex. We call such a complex a local lift.

Let us first explain the idea behind the work of [12]. Their work suggests a construction
of bounded degree family of expander graphs {Gi}∞

i=0, where for every i, Gi+1 is a lift of Gi.
The fact that the maximal degree of Gi+1 is equal to the maximal degree of Gi promises
that the sequence is bounded degree. Therefore, one only needs to worry about expansion.

The work [12] studies random lifts sampled using signings on the edges of a graph
G = (V, E), that is, functions f : E → {±1}. Given such a signing f , one can construct the
following lift Ĝ = (V̂ , Ê) by setting V̂ = V × {±1} and {(v, i), (u, j)} ∈ Ê if {v, u} ∈ E and
i · j = f({u, v}).

The work of [12] analyzes when a lift Ĝ obtained by random signing f is an expander
graph. They give a proof (based on the Lovász Local Lemma) that every expander G has
such a “good” signing. They also provide a deterministic algorithm to construct such a lift
using the conditional probabilities method [4]. Our construction generalizes this idea, only
instead of lifts coming from edge signings, we define local lifts coming from face-signings.

Let X be a k-dimensional simplicial complex and let f : X(k) → {±1}. Define the
k-dimensional complex X̂ (where f is implicit in the notation) as a complex whose vertices
are X̂(0) = X(0) × {±1}, and whose k-faces are

X̂(k) =
{{

vj0
0 , vj1

1 , . . . , vjk

k

} ∣∣∣∣∣ {v0, v1, . . . , vk} ∈ X(k) and
k∏

i=0
ji = f({v0, v1, . . . , vk})

}
.

For 1 ≤ ℓ ≤ k − 1 the ℓ-faces are independent of the second coordinate, that is,

X̂(ℓ) =
{{

vj0
0 , vj1

1 , . . . , vjℓ

ℓ

} ∣∣∣ {v0, v1, . . . , vℓ} ∈ X(ℓ)
}

.

Obviously, the underlying graph of X̂ is not a lift of the underlying graph of X. Indeed,
the degree of each vertex is doubled. However, for every σ̂ ∈ X̂(k − 2), we show that X̂σ̂ is
isomorphic to a lift of Xσ (where σ =

{
v
∣∣ vj ∈ σ̂

}
).

Indeed, let us assume for simplicity that k = 2. Consider the link of a vertex vj ∈ X̂(0)
and define the function g : Xv(1) → {±1} by g(uw) = j · f(uw). We claim that X̂vj is the
cover g induces on Xv. It is easy to see that its vertices are X̂vj (0) = Xv(0)×{±1}, since the
vertices in X̂vj correspond to edges in X̂(1). These are precisely all u1, u−1 where u ∈ Xv(0).

The edges are more delicate. Edges
{

uj′
, wj′′

}
∈ X̂vj (1) correspond to triangles{

vj , uj′
, wj′′

}
∈ X̂. Indeed, such a triangle is in X̂ if and only {u, w} ∈ Xv(1) and

j · j′ · j′′ = f({v, u, w}). The second condition occurs if and only if j · j′ · j′′ = g(uw). Hence,
X̂vj is the cover g induces on Xv.

As mentioned above, we give two proofs that signings f so that X̂ is a high dimensional
expander exist. The first proof is based on the Lovász Local Lemma and follows the argument
in [12, Lemma 3.3], and generalizes it so that multiple links may be taken into account

APPROX/RANDOM 2024

68:6 Sparse High Dimensional Expanders via Local Lifts

simultaneously. The second proof is based on a different way to use the Lovász Local Lemma
(together with other results from [12]) which we find simpler, to deduce high dimensional
expansion. This proof, while more restrictive on the link sizes, can be combined with the
algorithmic version of the Lovász Local Lemma [57], to prove Theorem 2. Afterwards, we
show that if the links of the complex X are already dense, then the derandomization technique
in [12] works for high dimensional expanders, and we can obtain a deterministic construction
for (k − 1)-bounded k-dimensional high dimensional expanders, proving Theorem 3.

1.5 Understanding Vertex vs. Edge Degree in Bounded-Degree
Constructions

We can use Theorem 2 to diversifying links in other existing bounded degree constructions,
and thus gain more understanding on how possible high dimensional expanders may look
like. For simplicity, let us stick to the 2-dimensional case, and consider the question how
small could d1 be given d0 in a (d0, d1)-regular high dimensional expander?

Let us consider the behavior of d0 and d1 in the known bounded degree constructions
[10, 16, 45, 52, 42, 31, 22, 24, 8]. In all the above, d0 grows to infinity as λ goes to 0, and
d1 = poly(d0)2. In other words, the links themselves are “locally” dense. A natural question
to ask is whether the lower bound of d1 ≥ d

Ω(1)
0 is necessary for bounded degree constructions.

In expander graphs it is well known that one can increase the size of the graph without
increasing the bound on the degree, but this is not the behavior in the known bounded-degree
HDX constructions.

We note that if one allows d0 to tend to infinity with n, rather than staying constant,
then works such as [50] (and also infinite families of complexes constructed by iteratively
applying Theorem 3) show that this is false. But this question is more interesting when its
bounded degree.

Theorem 3 gives a negative answer to this question in the 2-dimensional case, by proving
the following.

▶ Theorem 4. For every λ > 0 and any sufficiently large M > 0, there exists an infinite
family of 2-dimensional λ-two sided high dimensional expanders that are (d0, exp(poly(1

λ)))-
regular, for M ≤ d0 ≤ 2M .

In particular, for every large enough D > 0, there exists an infinite family of 2-dimensional
λ-two sided HDXs such that the diameter in every link Xv, is at least D.

We stress that d1 = exp(poly(1
λ̃

)) depends only on the spectral expansion and not on the
number of vertices or d0.

The proof of Theorem 4 appears in the full version of this paper [11].

1.6 Related Work
Bounded degree HDX

As discussed above, all known constructions of bounded degree high dimensional expanders
use algebraic techniques. The first bounded degree high dimensional expanders for arbitrarily
small λ > 0 was by [10]. This was followed by many other works that aimed to construct the
high dimensional equivalent to Ramanujan graphs [16, 45, 53, 52]. All these constructions

2 Technically most of the constructions above are not regular, only bounded degree, so d0 and d1 should
be average values, but we ignore this point for the sake of presentation.

I. Ben Yaacov, Y. Dikstein, and G. Maor 68:7

are quotients of Ã-type Bruhat Tits buildings. The work by [22] used this building together
with complex lifts to construct other high dimensional expanders. Recently, high dimensional
expanders that come from C̃ Bruhat Tits buildings were also constructed and studied
[18, 24, 8]. A second type of constructions come from coset complexes, first studied by [42].
More complexes of this type were constructed by [31, 59]. We mention that the work by [39]
simplified the analysis of these coset complexes, and gave a description of the complexes
in [42] in relatively elementary means (albeit still relying on algebraic methods).

Interestingly, [50] give a randomized construction of a (k − 1)-bounded degree family of
λ-HDXs for arbitrarily small λ > 0. This construction is based on random Steiner systems
and given in the breakthrough result of [44]. The underlying (k−1)-skeletons of the complexes
in that family are complete.

There are other bounded degree constructions [20, 21, 17, 48, 34]. These constructions
have various mixing properties, but none of them are λ-HDXs for λ < 1

2 (where λ is
normalized between 0 and 1). There are other constructions of λ-HDXs for λ < 1

2 , which
are not bounded degree, but are still non-trivially sparse. These include [35] - based on
Grassmann posets, and [47] - based on random geometric graphs of the sphere.

Finally, we comment that previous works also considered the possible degrees (d0, d1)
possible in a high dimensional expanders. The work by [31] used irregular algebraic construc-
tions of bounded degree λ-HDXs and “regularized” them, thus showing that there exists
bounded degree HDXs that are regular for arbitrarily small λ. The work by [17] gives a lower
bound on the expansion of the underlying graph of the complex in terms of (d0, d1), but this
lower bound does not rule out (or construct) such HDXs with d1 ≪ d0.

Graph and HDX lifts

The study of random graph lifting was initiated in [5]. Random lifts from signings of
expanders were studied in [12] where it was proven that with high probability they are also
expanders. This was extended to larger lifts as well [60, 1]. Friedman showed that random
lifts of Ramanujan graphs are nearly Ramanujan [32] (see also [14]). In the seminal paper
by [54], Ramanujan bipartite graphs were constructed by using graph lifts. One can also
define lifts of simplicial complexes. Most known bounded degree high dimensional expanders
are constructed using a dual notion of lifts - that is, taking quotients of an infinite object
[10, 16, 45, 53, 52, 42], in a way such that the infinite object is a lift of the complex that
is constructed. [22] studied taking random lifts of simplicial complexes as in [12], but the
construction there needed the use of algebraic techniques as well.

1.7 Open Questions
Combinatorial constructions

As we mention earlier, there is no construction of bounded degree high dimensional expanders
that does not rely on non-trivial algebraic techniques. As an intermediate step towards such
a construction, can one give a construction of k-dimensional simplicial complexes that are
(k − 2)-bounded degree (or i-bounded degree for any i < k − 1)?

Links with other properties

Fix a vertex set [n] and graphs {Gi}n
i=1 (one graph for every vertex i ∈ [n]). It is interesting

to understand whether there exists a graph whose vertex set is V = [n], and such that the
neighborhood of every vertex i ∈ V is (isomorphic to) Gi. The structure of such graphs is an

APPROX/RANDOM 2024

68:8 Sparse High Dimensional Expanders via Local Lifts

extensive topic of study, especially in the case where all Gi’s are equal (see, e.g., [15, 13, 58]).
One of the major components in the works [26, 61] that constructed asymptotically good
locally testable codes and quantum codes, is a construction of graphs that locally look like a
neighborhood of a graph product, but globally have improved expansion properties.

In this work, we propose a technique that addresses a related problem. Given a graph
G (which is the one skeleton of a regular 2-dimensional complex X), we find a graph Ĝ

where every neighborhood in Ĝ is a random (or deterministic) 2-lift of a corresponding
neighborhood in G. Is there a technique that allows us to do so for any set of 2-lifts of the
respective vertex neighborhoods?

Other notions of expansion

In this paper we mainly deal with local spectral expansion, but other definitions of high
dimensional expansion also exist. Most notable is the notion of coboundary expansion
defined independently in [46] and [38]. This notion is important for many applications of
high dimensional expanders such as code construction [26], topological expansion [38] and
property testing [41, 36, 23, 9]. Does a local lift maintain coboundary expansion? If not, is
it maintained in interesting special cases?

Better local spectral expansion

Works following [12] such as [54, 14] improved the bounds on the spectrum of lifts of regular
graphs. Can one construct local lifts of regular high dimensional expanders that are also
Ramanujan?

1.7.1 Organization of This Paper
The necessary preliminaries are given in Section 2. We describe local lifts in Section 3 and
describe some of their basic properties. In Section 4 we show existence of good local lifts by
modifying a Lovász Local Lemma argument by [12]. In Section 5 we prove Theorem 2 using
the algorithmic Lovász Local Lemma [57] and derive Theorem 4. In Section 6 we show that
the method of derandomization in [12] could be generalized to our case as well and prove
Theorem 3.

2 Preliminaries

Unless explicitly stated, all logarithms are with base 2. The ln function is a logarithm with
base e. We write A ⊔ B to denote a disjoint union of sets A, B. The For n ≥ 0 we write
[n] = {0, 1, . . . , n}. For a square matrix (or equivalently, a linear operator on a finite vector
space), we write ∥A∥ to denote the operator norm.

2.1 Graphs
Let G = (V, E) be a graph. For u, v ∈ V we write Γ(v) for the set of v’s neighbors in
G and u ∼ v if u and v are neighbors. The indicator vector of a set S ⊆ V , denoted by
1S , is 1S : V → {0, 1} with 1S(v) = 1 ⇐⇒ v ∈ V . For two sets S, T ⊆ V we write
EG(S, T) for the set of edges in G between S and T . The graph induced by S and T is
G′ = (S ∪ T, EG(S, T)). For a d-regular graph we denote ℓ2(V) = {f : V → R} endowed
with the inner product ⟨f, g⟩ =

∑
v∈V f(v)g(v).

I. Ben Yaacov, Y. Dikstein, and G. Maor 68:9

2.1.1 Expander Graphs

Expander graphs are graphs with good connectivity properties. There are many equivalent
ways to define expanders [40]. In this manuscript we focus on spectral expansion.

Let G = (V, E) be a d-regular graph. The random walk matrix of G is a matrix A ∈ RV ×V

defined by A(u, v) = 1
d if u ∈ Γ(v) and otherwise 0. Equivalently, it corresponds to the

random walk operator A : ℓ2(V) → ℓ2(V) with Af(v) = 1
d

∑
u∈Γ(v) f(u). We abuse notation

and use A for both the matrix and the random walk operator it represents. We sometimes
denote this operator by AG when G is unclear from the context.

The operator A is self adjoint with respect to the inner product. Therefore, it has
an orthonormal basis of real-valued eigenvectors, where the eigenvalues are denoted by
1 = λ1 ≥ λ2 ≥ · · · ≥ λn. We elaborate and write λi(G) when the graph in question is unclear
from the context. The spectrum of G is the spectrum of its random walk matrix and is
denoted by Spec(G).

▶ Definition 5 (spectral expander). For λ ∈ [0, 1] we say that G is λ-two sided (resp. one
sided) spectral expander (or expander for short) if λ ≥ max{λ2, |λn|} (resp. λ ≥ λ2).

2.1.2 Tensor Product

Let G, H be any graphs. The tensor product of G and H, denoted by
G ⊗ H, is the graph with vertices V (G) × V (H), and edges E(G ⊗ H) =
{(a, b)(a′, b′) | {a, a′} ∈ E(G) and {b, b′} ∈ E(H)}. The following fact is well known.

▶ Fact 6. Let G, H be graphs. If H, G are λ, λ′-two sided spectral expanders respectively,
then G ⊗ H is a max{λ, λ′}-two sided spectral expander. Moreover, if H is a λ-two sided
spectral expander and G is a λ′-one sided spectral expander, then G ⊗ H is a max{λ, λ′}-one
sided spectral expander.

2.2 Graph Lifts

Graph lifts are an important notion, studied first by [5, 6] (although the notion of lifts
themselves is a classical notion in algebraic topology known for about a century).

▶ Definition 7 (lift). For finite, connected and simple graphs G and Ĝ, a lift (also known as
a covering map) ϕ : Ĝ → G is a graph homomorphism with the property that for all v̂ ∈ V (Ĝ),
ϕ maps the neighborhood of v̂ in Ĝ onto the neighborhood of ϕ(v̂) in G. Finally, we say that
Ĝ is an ℓ-lift of G if there exists an ℓ-to-1 covering map ϕ : Ĝ → G.

One way to construct a 2-lift is to use a signing function on the edges as follows.

▶ Definition 8 (Function induced lift). Let G = (V, E) be a graph and let f : E → {±1}
be a signing. The f -induced lift Ĝ = Ĝf is the graph whose vertices are V̂ = V × {±1} ={

vj
∣∣ v ∈ V, j ∈ {±1}

}
and whose edges are Ê =

{{
vj , ui

} ∣∣ {v, u} ∈ E, ij = f({u, v})
}

.

The lift map is ϕ(vj) = v.

It is elementary to prove this construction is indeed a lift, so we omit this proof. It is also
easy to show that any 2-lift is an induced lift for some signing f : V (G) → {±1}. See [65]
for a more general statement and proof.

In Section 3 we generalize the notion of graph lifts to local lifts of simplicial complexes.

APPROX/RANDOM 2024

68:10 Sparse High Dimensional Expanders via Local Lifts

2.2.1 Signing Functions and Lift Expansion
Fix a graph G and a signing f : E(G) → {±1}. In this subsection, we characterize the
eigenvalues of an f -induced lift. For this, we need to define the f -signing of an adjacency
operator. For a d-regular graph the f -signing of the adjacency operator is the matrix
Af (u, v) = f(u, v) · A(u, v) for {u, v} ∈ E and Af (u, v) = 0 if {u, v} /∈ E.

This signing matrix is closely related to the random walk operator of the lift. In particular,
the following is by now classical.

▶ Lemma 9. Let G be a d-regular graph and let Ĝ be an f-induced 2-lift. Then the
eigenvalues of A

Ĝ
are the union (with multiplicities) of the eigenvalues of A and those of Af .

In particular, if ∥Af ∥ ≤ λ and G is a λ′-two sided (resp. one sided) spectral expander, then
Ĝ is a max {λ, λ′}-two sided (resp. one sided) spectral expander.

Using this lemma, [12] gave a criterion for the expansion of the lift graph.

▶ Lemma 10 ([12, Lemma 3.3]). Let G, f and Af be as above and assume that G is a λ-two
sided (resp. one sided) spectral expander with no self loops. Assume that for any pair of
disjoint S, T ⊆ V (G) it holds that

∣∣〈1S , Af 1T

〉∣∣ ≤ α
√

|S||T |, then Ĝf is a λ′-two sided (resp.
one-sided) spectral expander where λ′ = max

{
λ, O

(
α
(
1 + log 1

α

))}
.

We note that there is a nice formula for this inner product, which is
〈
1S , Af 1T

〉
=

1
d

∑
(v,u):{v,u}∈E(G) f(u, v)1S(v)1T (u).

2.3 High Dimensional Expanders
▶ Definition 11 (simplicial complex). A k-dimensional simplicial complex is a finite hypergraph
X that is downwards closed to containment. That is, if τ ∈ X and σ ⊆ τ then σ ∈ X.

We write X = X(−1) ⊔ X(0) ⊔ X(1) ⊔ · · · ⊔ X(k), where X(ℓ) = {σ ∈ X | |σ| = ℓ + 1} (here
X(−1) = {∅} is mainly a formality) and the maximal size of a set σ ∈ X is k + 1. We call
elements σ ∈ X(ℓ) ℓ-faces, and in this case we say that X is k-dimensional. In this paper we
will always assume the simplicial complex in question is pure, that is, that every σ ∈ X(ℓ)
contained in some τ ∈ X(k). In addition, we assume it has no self-loops or multifaces.
Namely, every vertex appears at most once in each face and any face appears at most once
in X.

The degree of a face σ ∈ X(i) is d(σ) = |{τ ∈ X(i + 1) | τ ⊇ σ}|. We say that a family
of simplicial complexes {Xi}∞

i=0 is j-bounded degree if there is an integer M > 0 so that for
all Xi and all σ ∈ Xi(j), d(σ) ≤ M . If the family is 0-bounded degree, we sometimes just
say bounded degree (without the zero).

▶ Definition 12 (hyper-regularity). Let d0 ≥ d1 ≥ · · · ≥ dk−1 be positive integers. A k-
dimensional simplicial complex X is (d0, d1, . . . , dk−1)-regular if for any i ∈ {0, . . . , k − 1}
and any i-face σ, d(σ) = di.

We say that X is regular if there exists such a tuple so that X is (d0, d1, . . . , dk−1)-regular.
In this case we denote by di(X) = di.

The j-skeleton of a simplicial complex X is the simplicial complex obtained by taking all
the i-faces of X, for all i ≤ j. The 1-skeleton of a complex is also called an underlying graph.

A link is a generalization of a graph neighborhood.

▶ Definition 13 (link). For a k-dimensional simplicial complex X and a face σ ∈ X, the
link of σ is the (k − 1 − |σ|)-dimensional simplicial complex Xσ = {τ \ σ | τ ∈ X, τ ⊃ σ} .

For ℓ ≤ k − 2 and σ ∈ X(ℓ) we denote by Aσ the random walk operator of the 1-skeleton of
Xσ. We often abuse of notation and for a face σ = {v0, . . . , vℓ} ∈ X(ℓ) write σ = v0 . . . vℓ.

I. Ben Yaacov, Y. Dikstein, and G. Maor 68:11

Natural analogues of expander graphs to higher dimensions are simplicial complexes
where the neighborhoods of the faces are themselves expander graphs. See Section 1 for more
context on this important definition.

▶ Definition 14 (λ-high dimensional expander). Let λ ∈ [0, 1]. A k-dimensional simplicial
complex X is a λ-two sided (resp. one sided) high dimensional expander if for all i ≤ k − 2
and all σ ∈ X(i), the 1-skeleton of Xσ is a λ-two sided (resp. one sided) spectral expander.

2.4 The Lovász Local Lemma
The Lovász Local Lemma is a classical result in the probabilistic method.

▶ Lemma 15 (Lovász Local Lemma [29]). Let B = {B1, . . . , Bn} be a finite set of events in
some arbitrary probability space. The dependency graph of B is a digraph GB = (B, E) so
that any event Bi ∈ B is mutually independent of all the events B \ Γ(Bi), where Γ(Bi) is
the neighborhood of Bi in GB.

If there exists a real function ρ : B → [0, 1) so that

P[Bi] ≤ ρ(Bi)
∏

Bj∼Bi

(1 − ρ(Bj)) (2.1)

for any Bi ∈ B, then with strictly positive probability, none of the events Bi occur.

This lemma also has an algorithmic version, first given in the seminal work of [57]. We give
below a slightly less general version than the one in [57].

▶ Lemma 16 ([57]). Let Ω be a finite set and let P = (P1, P2, . . . , Pm) be a tuple of
independent random variables supported on Ωm. Let B = {B1, B2, . . . , Bn} be a finite set of
events in the sigma algebra of P. Let the dependency graph and the assignment ρ : B → [0, 1)
be as in Lemma 15. Then there exists a randomized algorithm that finds an assignment
p ∈ Ωm such that p /∈

⋃n
i=1 Bi. If one can verify whether Bi holds in time t, then the

randomized algorithm runs in tn
∑n

i=1
ρ(Bi)

1−ρ(Bi) expected time.

The algorithm described in this lemma is simple. The algorithm starts with randomly
sampling some p ∈ Ωm. While there exists some Bi such that p ∈ Bi, the algorithm takes an
arbitrary such Bi, and resamples all the coordinates Pj that Bi depends upon. Of course,
if the algorithm halts, then p /∈

⋃n
i=1 Bi. The paper [57] shows that the expected number

of times an event Bi is resampled is at most ρ(Bi)
1−ρ(Bi) which explains the runtime of this

algorithm.

3 Local lifts

This section presents our basic construction, the local lift of a complex. We will define this
construction formally and describe some of its properties.

▶ Construction 17 (Local Lift). Let X be a k-dimensional simplicial complex and let
f : X(k) → {±1}. The f -local lift of X denoted by X̂ = X̂f , is the following k-dimensional
simplicial complex:

X̂(0) = X(0) × {±1} and we denote the vertices by X̂(0) =
{

vj
∣∣ v ∈ X(0), j ∈ {±1}

}
.

For any 1 ≤ ℓ ≤ k − 1,

X̂(ℓ) =
{

{vj0
0 , vj1

1 , . . . , vjℓ

ℓ }
∣∣∣ {v0, v1 . . . , vℓ} ∈ X(ℓ), j0, . . . , jℓ ∈ {±1}

}
.

APPROX/RANDOM 2024

68:12 Sparse High Dimensional Expanders via Local Lifts

Finally, X̂(k) is the set of all faces σ =
{

vj0
0 , vj1

1 , . . . , vjk

d

}
so that the face without the

signs is {v0, v1, . . . , vk} ∈ X(k), and the product of the ji’s are equal to f(σ). Namely,

X̂(k) =
{{

vj0
0 , vj1

1 , . . . , vjk

k

} ∣∣∣∣∣ {v0, v1, . . . , vk} ∈ X(k), f({v0, v1, . . . , vk}) =
k∏

i=0
ji

}
.

One can already see that the (k − 1)-skeleton of X̂ doesn’t depend on f and is just some
inflation of the original complex. The dependence on f is only in the top-level faces. Thus,
in particular, X̂ is not a lift of (the underlying graph) of X, except when k = 1. However,
the links of (k − 2)-faces in X̂ are lifts of links in X, which is why we named this complex a
local lift. We will see this in the next subsection.

3.1 Local Properties of Local Lifts
For the rest of this subsection, we fix X to be a k-dimensional pure simplicial complex,
f : X(k) → {±1} to be a signing function, and X̂ to be the f -local lift of X. We also need
the following three pieces of notation:
1. Let π : X̂(0) → X(0) be the projection map π(vj) = v, and we extend it to higher

dimensional faces as well by π(
{

vj0
0 , vj1

1 , . . . , vji

i

}
) = {v0, v1, . . . , vi}.

2. Let sign : X̂ → {±1} be sign(σ̂) →
∏

vj∈σ̂ j.
3. For any σ̂ ∈ X̂(k − 2) with σ = π(σ̂) we denote by fσ : Xσ(1) → {±1} the function

fσ(e) = f(σ ⊔ e) and by fσ̂ : Xσ(1) → {±1} the function fσ̂(e) = sign(σ̂) · fσ(e).

The first observation is that the degrees of X̂ are twice the degrees of X, except for dk−1,
which stays the same.

▶ Observation 18. If X is (d0, . . . , dk−1)-regular then X̂ is (2d0, 2d1 . . . , 2dk−2, dk−1)-regular.
⌟

It is a direct calculation, so we have omitted its proof. We just comment that the reason that
dk−1 remains the same is that for every σ̂ ∈ X̂(k − 1) and v ∈ Xπ(σ̂)(0) there is exactly one
j ∈ {±1} such that σ̂ ∪

{
vj
}

∈ X̂(k). Therefore, dk−1(X) = |Xπ(σ̂)(0)| = |X̂σ̂(0)| = dk−1(X̂).
The next lemma gives a complete description of the links of X̂.

▶ Lemma 19 (on the structure of the links). Let σ̂ ∈ X̂ and denote by σ = π(σ̂).
1. If dim(σ̂) < k − 2, then the 1-skeleton of X̂σ̂ (the σ̂-link of X̂), is isomorphic to the

1-skeleton of Xσ tensored with the complete graph on two vertices with self loops3.
2. If dim(σ̂) = k − 2, then X̂σ̂ is isomorphic to a lift of Xσ induced by fσ̂.

Proof. The first item directly follows from the definition of a tensor product. For the second
item, suppose dim(σ̂) = k − 2. Both the vertices of X̂σ̂ and of the fσ̂-induced lift of Xσ

are Xσ(0) × {±1}. As for the edges,
{

ui, vj
}

∈ X̂σ̂(1) if and only if {u, v} ∈ Xσ(1) and
ij · sign(σ̂) = f(σ ⊔ {u, v}) (or equivalently ij = fσ̂({u, v})). This is precisely the relation
that defines edges in the fσ̂-induced lift of Xσ. ◀

3 Note that this is also true for the link of σ = ∅, i.e. X̂ itself.

I. Ben Yaacov, Y. Dikstein, and G. Maor 68:13

The following corollary that bounds the spectrum of the links is direct.

▶ Corollary 20. Let σ̂ ∈ X̂ and denote σ = π(σ̂).
1. If dim(σ̂) < k − 2 then λ(X̂σ̂) = λ(Xσ).
2. If dim(σ̂) = k − 2 then Spec(X̂σ̂) = Spec(Aσ) ∪ Spec(Afσ̂

σ), where Aσ is the normalized
adjacency matrices of Xσ and Afσ̂

σ is its signed normalized adjacency matrix with respect
to fσ̂.

Proof. The first item follows from the first item in Lemma 19 that shows the link of X̂
σ̂

is
isomorphic to the link of Xσ tensored with a complete graph, and Fact 6 that bounds the
expansion of such a graph. The second item follows from Lemma 9 and the fact that the
link is the fσ̂-induced lift of Xσ as we saw in Lemma 19. ◀

4 Families of HDXs via Random Local Lifts

This section is dedicated to existential proofs of high dimensional expanders based on our
local lifts from Construction 17. We start by stating the main theorem of this section which
asserts that given an arbitrary HDX X, there exists a family of HDXs with parameters
comparable to those of X so that any member of the family is a local lift of the former.
Formally,

▶ Theorem 21. Let X0 be a (d0, d1, . . . , dk−1)-regular λ-two sided (resp. one sided) HDX over
n vertices, for λ ∈ [0, 1]. Then there exists a family of max

{
λ, O

(√
k2 log3 dk−1

dk−1

)}
-two sided

(resp. one sided) high dimensional expanders {Xi}∞
i=0 so that Xi is a (2id0, . . . , 2idk−2, dk−1)-

regular complex over 2in vertices and Xi+1 is a local lift of Xi.

The proof of Theorem 21 is based on proving the single-step version of it, given in
Theorem 22, and applying it iteratively.

▶ Theorem 22. Let λ ∈ [0, 1]. For any k-dimensional, (d0, . . . , dk−1)-regular, λ-two sided
(resp. one sided) high dimensional expander X over n vertices, there exists a signing f :
X(k) → {±1} so that X̂ is a max

{
λ, O

(√
k2 log3 dk−1

dk−1

)}
-two sided (resp. one sided) high

dimensional expander with regularity (2d0, . . . , 2dk−2, dk−1) and 2n vertices.

We start by proving Theorem 21 given Theorem 22. The proof of Theorem 22 is more
involved and is provided in the remainder of this section.

Proof of Theorem 21 assuming Theorem 22. Let X0 as specified in Theorem 21 and de-
note λ′ := max

{
λ, O

(√
k2 log3 dk−1

dk−1

)}
. The proof is by induction on i. Clearly X0 holds the

requirements.
For the induction step, let Xi be a (2id0, . . . , 2idk−2, dk−1)-regular λ′-two sided (resp.

one sided) HDX with 2in vertices received in the i-th step of the process. By Theorem 22,
there exists a singing function fi : Xi(k) → {±1} so that the fi-local lift of Xi (denoted by
X̂i) is a (2i+1d0, . . . , 2i+1dk−2, dk−1)-regular λ′-two sided (resp. one sided) HDX over 2i+1n

vertices. Setting Xi+1 := X̂i concludes the proof. ◀

4.1 Proof Outline of Theorem 22
The proof of Theorem 22 is based on Lovász Local Lemma [29] and Lemma 10, and closely
follows the lines of the existential proof in [12].

APPROX/RANDOM 2024

68:14 Sparse High Dimensional Expanders via Local Lifts

Recall that one approach for proving a given k-dimensional simplicial complex is λ-HDX,
is considering all of its ℓ-links for ℓ ≤ k−2 and bound the spectrum of each of their 1-skeletons
by λ. By Corollary 20, the only links one should be concerned with are those obtained by
(k − 2)-faces, as the links of all other faces inherent the expansion from the initial HDX. In
addition, by the same corollary, it’s enough to analyze the spectra of the signed random walk
matrices of the (k − 2)-links of X, with respect to the signing induced on them as defined in
Lemma 19. Indeed, doing so is the most technical part of the proof and follows by the next
lemma combined with Lemma 10:

▶ Lemma 23. For any k-dimensional pure (d0, . . . , dk−1)-regular simplicial complex X over
n vertices, there exists a signing function f : X(k) → {±1} such that for any (k − 2)-face
σ̂ ∈ X̂ and any disjoint subsets of vertices S, T ⊆ Xσ(0) for σ = π(σ̂),

|⟨1S , Afσ̂
σ 1T ⟩| ≤ 10

√
k2 log dk−1

dk−1
|S||T | (4.1)

where fσ̂ is the signing on Xσ’s edges induced by f as defined in Section 3.1.

By the (d0, . . . , dk−1)-regularity of X, Xσ is a dk−1-regular graph over dk−2-vertices.
Furthermore, since any signing over the k-faces induces a signing function on the edges of
any (k − 2)-link, our goal is to find a single signing function f such that these lifts of all the
links of the (k − 2)-dimensional faces expand.

The proof of Lemma 23 is by the Lovász Local Lemma Lemma 15. We define the set of
“bad” events B = {BS,T

σ }. The event BS,T
σ is that (4.1) doesn’t hold for a fixed σ ∈ X(k − 2)

and fixed disjoint sets S, T ⊆ Xσ(0). In [12], similar bad events were considered, but only
the sets S, T needed to be specified. The main difference between our proof and theirs is
that we need to take care of the dependencies between events corresponding to different
(k − 2)-faces σ, σ′.

To apply the lemma and deduce Lemma 23, one needs to understand and analyze the
dependency relation of the events in B.

On the dependency of bad events in B

Fix σ̂ ∈ X̂(k − 2) and disjoint S, T ⊆ Xσ(0) for σ = π(σ̂), and define F (σ, S, T) ⊆ X(k) to
be the set of all k-faces of X so that σ ⊆ τ and τ \ σ is an edge in the graph induces by
S ⊔ T on Xσ. Recall that sign : X̂ → {±1} is defined by sign(σ̂) =

∏
vj∈σ̂ j, and note that

dk−1⟨1S , Afσ̂
σ 1T ⟩ =

∑
uv∈Xσ(1)

s.t. u∈S,v∈T

fσ̂(uv) = sign(σ̂)
∑

uv∈Xσ(1)
s.t. u∈S,v∈T

f(σ ⊔ uv) = sign(σ̂)
∑

τ∈F (σ,S,T)

f(τ).

Since the signs f assigns to the k-faces are chosen independently, if the event BS,T
σ is not

mutually independent of a subset A ⊆ B, there must exists some event BS′,T ′

σ′ ∈ A for which
F (σ, S, T) ∩ F (σ′, S′, T ′) is not empty.

Towards using the Lovász Local Lemma, we need to bound the probability of the event
BS,T

σ as well as the number of neighbors it has in the dependency graph considered in the
Local Lemma. The bound on the probability follows directly from the arguments in [12], but
bounding the number of neighbors each event is more involved. In contrast to the expander
graph case considered in [12] (where the “bad” events only depend on S and T), in simplicial
complexes events corresponding to different faces σ, σ′ (and therefore to different links) can
depend on one another as long as they have a common k-face in F (σ, S, T) ∩ F (σ′, S′, T ′).

I. Ben Yaacov, Y. Dikstein, and G. Maor 68:15

A naive count of the number of such k-faces won’t suffice, and would lead the bound in
Equation (4.1) to scale with dk−2. Therefore, we need to carefully characterize when exactly
F (σ, S, T) and F (σ′, S′, T ′) intersect.

The first case where dependency can occur is when σ = σ′. In this case, we are in the
same setting as in [12], which observed that there must be an edge in the subgraph induced
by S ∪ T as well as in the one induced by S′ ∪ T ′ for a dependency to happen.

In the second case, which is new to our proof, σ ̸= σ′ meaning that each of the events
considers a different graph. In this case, we observe that this implies both that there is
a k-face τ containing both σ, σ′ and that either there exist vertices v ∈ σ ∩ (S′ ⊔ T ′) and
s ∈ S ⊔ T so that τ \ σ′ = {v, s}, or that τ \ σ′ ⊆ σ. As we show below, this characterization
is useful to bound the number of possible events that are dependent on a certain BS,T

σ . The
following claim gives this characterization formally.

▷ Claim 24. Let an event BS,T
σ ∈ B and some subset A ⊆ B. If

for any BS′,T ′

σ′ ∈ A with σ = σ′ there is no edge lying in both EXσ
(S, T) and EXσ

(S′, T ′),
and
for any BS′,T ′

σ′ ∈ A with σ ̸= σ′ there is no k-face τ ∈ X containing both σ and σ′, so
that τ \ σ and τ \ σ′ are edges in EXσ

(S, T) and EXσ′ (S′, T ′) respectively,
then BS,T

σ is mutually independent of A.

All left to conclude the proof of Lemma 23 is carefully counting the number of events that
fulfill one of the claim conditions and provide a real function that bounds the probability of
each event as in Equation (2.1). We leave the details for the formal proof, which is given in
the next section.

4.2 Proving Lemma 23
This subsection is dedicated to the proof of Lemma 23 together with the subclaims it requires.
We start by setting notations and highlighting features that will be needed for the proof.

Notations

We say that sets S, T ⊆ Xσ(0) induce a connected subgraph if the subgraph obtained by
projecting Xσ on S ∪ T is connected. In addition, we write EXσ

(S, T) to indicate the set of
edges between S and T in Xσ. For σ̂ ∈ X̂(k − 2), we denote σ = π(σ̂). When the face σ̂

being considered is clear from the context we abbreviate and write f for fσ̂.
In addition, we rely on the following observation:

▶ Observation 25. If a signing f : X(k) → {±1} independently assigns a uniform sign to
each k-face, then for any σ̂ ∈ X̂(k − 2), fσ̂ independently assigns a uniform sign to each edge
in Xσ.

Proof. Let σ̂ ∈ X̂(k − 2) and let e ̸= e′ ∈ Xσ(1). Then for any j, j′ ∈ {±1}

P[fσ̂(e) = j ∧ fσ̂(e′) = j′] = P[sign(σ̂) · f(σ ⊔ e) = j ∧ sign(σ̂) · f(σ ⊔ e′) = j′]

= P[sign(σ̂) · f(s ⊔ e) = j] · P[sign(σ̂) · f(σ ⊔ e′) = j′] = 1
4 . ◀

In addition, as in [12], we can restrict the proof to consider only a pair of sets inducing
connected subgraphs and deduce the result to any pair of sets. In addition, we can assume that
d is as large as 996 as it is always the case that

〈
1S , Af

σ1T

〉
≤
√

|S||T | and 1 ≤ 10
√

k2 log dk−1
dk−1

for dk−1 ∈ [1, 996].
We are now ready to prove Lemma 23.

APPROX/RANDOM 2024

68:16 Sparse High Dimensional Expanders via Local Lifts

Proof of Lemma 23. We set f to be a randomized signing of X(k) by setting a uniform and
independent sign from {±1} to any k-face. Fix some face σ̂ ∈ X̂(k − 2) with π(σ̂) = σ, and
disjoint sets S, T ⊆ Xσ(0). Denote the “bad” event in which the claim does not hold for our
fixed face and sets by BS,T

σ . That is, P
[
BS,T

σ

]
= P

[
|⟨1S , Af

σ1T ⟩| > 10
√

k2 log dk−1
dk−1

|S||T |
]

.

Fix for a moment some edge uv ∈ Xσ(1), and consider the (u, v)-th entry of Af
σ. By

Definition 8, Af
σ(u, v) = 1

dk−1
fσ̂(uv), which, per Observation 25, distributed uniformly in

{±1} and is independent of all other edges signs. In addition, since

⟨1S , Af
σ1T ⟩ = 1

dk−1

∑
uv∈EXσ (S,T)

fσ̂(uv),

⟨1S , Af
σ1T ⟩ is a sum of independent uniform random variables over {±1}, implying that

E
f

[
⟨1S , Af

σ1T ⟩
]

= 1
dk−1

∑
uv∈EXσ (S,T)

E
f

[fσ̂(uv)] = 0.

Hence, by Hoeffding’s inequality,

P
[
BS,T

σ

]
= P

[∣∣⟨1S , Af
σ1T ⟩

∣∣ > 10

√
k2 log dk−1

dk−1
|S||T |

]

≤ 2 exp

−
2 · 100 k2 ln dk−1

dk−1
|S||T |∑

uv∈EXσ (S,T)

(
1

dk−1
− (− 1

dk−1
)
)2

 . (4.2)

Assuming w.l.o.g. that |S| ≥ |T | we get

200 k2 ln dk−1
dk−1

|S||T |∑
uv∈EXσ (S,T)

(
1

dk−1
− (− 1

dk−1
)
)2 = 200k2dk−1(ln dk−1)|S||T |

4|EXσ (S, T)| ≥ 50k2dk−1(ln dk−1)|S||T |
dk−1|T |

≥ 25k2 ln dk−1|S ⊔ T |.

Hence, denoting c = |S ⊔ T |,

Equation (4.2) ≤ 2 exp
(
−25ck2 ln dk−1

)
≤ d−10ck2

k−1 . (4.3)

We turn to analyze the dependency graph of the “bad” events:4 Recall that B is the set of all
events BS,T

σ for σ ∈ X(k − 2) and disjoint subsets S, T ⊆ Xσ(0). Using the characterization
of correlated events in B given in Claim 24, we get the following bound on the neighborhood
size of the events in the dependency graph:

▷ Claim 26. Let BS,T
σ ∈ B and denote c = |S ⊔ T |. Then BS,T

σ has at most 3k2cdc′−1

neighbors BS′,T ′

σ′ with |S′ ⊔ T ′| = c′.

Now, to apply Lovász Local Lemma, one needs to define a function ρ : B → [0, 1) such
that P

[
BS,T

σ

]
≤ ρ(BS,T

σ)
∏

BS′,T ′
σ′ ∼Bx,y

σ

(
1 − ρ(BS′,T ′

σ′)
)

. Set ρ(BS,T
σ) = d−3ck2

k−1 . Indeed

4 Recall that the dependency graph of a set of events B is a digraph with a vertex for each event B ∈ B
and any event B is mutually independent of B \ Γ(B).

I. Ben Yaacov, Y. Dikstein, and G. Maor 68:17

ρ(BS,T
σ)

∏
BS′,T ′

σ′ ∈∼BS,T
σ

(
1 − ρ(BS′,T ′

σ′)
)

= d−3ck2

k−1

∏
BS′,T ′

σ′ ∼BS,T
σ

(
1 − d

−3|S′∪T ′|k2

k−1

)

= d−3ck2

k−1

∏
c′∈[n]

(
1 − d−3c′k2

k−1

)2c′
3ck2dc′−1

k−1 (4.4)

≥ d−3ck2

k−1 exp

−6ck2
∑

c′∈[n]

2c′
dc′−1

k−1 d−3c′k2

k−1

 (4.5)

≥ d−3ck2

k−1 e−7ck2

≥ d−10ck2

k−1 ≥ P
[
BS,T

σ

]
(4.6)

where Equation (4.4) is since for any U ⊆ Xσ(0) of cardinality c′, there are at most 2c′ pairs
of disjoint sets S′, T ′ with S′ ⊔ T ′ = U , Equation (4.5) is by e−x ≤ 1 − x

2 for any x ∈ [0, 1.59]
and Equation (4.6) is by taking dk−1 ≥ 3. Together with Equation (4.3), this concludes the
proof. ◀

The formal proofs of Claim 24 and Claim 26, and the proof of Theorem 22 given Lemma 23
appear in the full version of this paper [11].

4.3 Concluding Theorem 22
Proof of Theorem 22. Let X be a (d0, . . . , dk−1)-regular, λ(X)-two sided (resp. one sided)
HDX over n vertices, fix f to be the signing provided by Lemma 23, and set X̂ to be the
f -local lift of X.

By Observation 18, X̂ is a (2d0, . . . , 2dk−2, dk−1)-regular graph over 2n vertices. We
need to prove that for any σ̂ ∈ X̂ of dimension ≤ k − 2, the 1-skeleton of X̂σ̂ is a
max

{
λ(X), O

(√
k2 log3 dk−1

dk−1

)}
-two sided (resp. one sided) expander.

By Corollary 20, the spectra of all links X̂σ̂ with σ̂ of dimension < k − 2 are bounded by
λ(X). In addition, by Lemma 23, for any σ̂ ∈ X̂(k − 2) and any disjoint sets S, T ⊆ Xσ(0)
for σ = π(σ̂), we have that |⟨1S , Af

σ1T ⟩| ≤ O
(√

k2 log dk−1
dk−1

|S||T |
)

where Af
σ is the fσ̂-signed

random walk matrix of Xσ. Together with Lemma 10 this implies

λ(Xσ) = O

(√
k2 log dk−1

dk−1

(
1 + log

(√
dk−1

k2 log dk−1

)))

≤ O

(√
k2 log dk−1

dk−1
· log

√
dk−1

)
= O

√k2 log3 dk−1

dk−1

hence, by Lemma 9, λ(Xσ) = max

{
λ(X), O

(√
k2 log3 dk−1

dk−1

)}
and by Corollary 20, this is

also the case for λ(X̂σ̂). ◀

5 An Algorithmic Version of Theorem 21

In this subsection, we prove that there is a randomized algorithm that finds a family of local
lifts as in Theorem 21 when X is a high dimensional expander under mild assumptions on
the degree sequence which we encapsulate in the following definition.

APPROX/RANDOM 2024

68:18 Sparse High Dimensional Expanders via Local Lifts

▶ Definition 27 (Nice complex). Let X be a k-dimensional simplicial complex. We say that
X is nice if X is regular, and

d
1−4 log dk−1
k−2 <

2
e(k + 1)kdk−1 + 1 . (5.1)

We prove the following.

▶ Theorem 28. There exists a randomized algorithm A that takes as input a k-dimensional
complex X0 and an integer i ≥ 1, runs in expected time poly((2i|X0(0)|)k) at most, and
outputs a k-dimensional complex Xi with 2i|X0(0)| vertices. The algorithm has the following
guarantee.

If X0 is a nice (d0, . . . , dk−1)-regular λ-two sided high dimensional expander, then Xi

is a (2id0, . . . , 2idk−2, dk−1)-regular λ′-two sided high dimensional expander where λ′ =
O
(

max
{

λ
(
1 + log 1

λ

)
,
√

log3 dk−1
dk−1

})
5.

Moreover, one can modify the algorithm so that it outputs a sequence X1, X2, . . . , Xi of
complexes all satisfying the same guarantees (instead of just the last one), so that for every
j = 0, 1, . . . , i − 1, Xj+1 is a local lift of Xj.

Loosely speaking, in order to prove Theorem 28, we need to prove that there is an
algorithm A that finds a single local lift for X in polynomial time (just as Theorem 21 was
proved by the “one-step theorem” Theorem 22) with good enough spectral expansion. Then
we just iteratively use A on its own output, setting Xj+1 = A(Xj), until reaching j = i − 1.
For this to work, we also need to address the issue that λ′ ≥ λ so naively the expansion
deteriorates as we reiterate. We differ the proof of Theorem 28 for the full version of this
paper [11].
▶ Remark 29 (A non-uniform algorithm for any HDX). Theorem 28 requires that X0 be a nice
complex, i.e. that (5.1) holds. However, in any family {Xi}∞

i=0 where Xi+1 is a local lift of
Xi, the degree dk−2(Xi) tends to infinity with i while the other side of both inequalities stays
fixed. Thus, the inequalities will eventually hold for any family of consecutive local lifts. In
fact, they should hold for any i ≥ C log(k + dk−1(X0)) for some large enough constant C > 0.
Thus we can modify the algorithm to work even if X0 is not nice (albeit with the spectral
expansion bound guaranteed in Theorem 21, which is slightly worse than the expansion in
Theorem 28). This is done by allowing the algorithm to do a brute-force search for the first
few steps, to produce a nice Xi, and then continuing as the original algorithm does. The
first few steps will eventually stop because Theorem 21 promises the existence of such an Xj .
This process takes poly(|Xi|k) + exp(O(|X0|k)) time.

Towards the proof of Theorem 28, we need the following definition and lemma from [12].

▶ Definition 30. A graph G with adjacency operator A is said to be (β, t)-sparse if for
every S, T ⊆ V (G) such that |S ∪ T | ≤ t, ⟨1S , A1T ⟩ ≤ β

√
|S||T |. For a k-dimensional

hyper-regular complex X, we say that it is (β, t)-sparse if for every σ ∈ X(k − 2), the graph
Xσ is (β, t)-sparse.

▶ Remark 31. While the definition here regards any S, T with |S ∪ T | ≤ t, it is in fact
equivalent to regarding only S, T with |S ∪ T | ≤ t such that the graph induced on S ∪ T

is connected. We also remark that if X is (β, t)-sparse then it is also (β′, t)-sparse for any
β′ ≥ β.

5 We will not calculate the constants in the big O notation explicitly.

I. Ben Yaacov, Y. Dikstein, and G. Maor 68:19

The reason we need this definition of sparseness is that in a random local lift, sparseness
does not deteriorate with high probability. More formally, the following lemma was proven
in [12].

▶ Lemma 32 ([12, Lemma 3.4]). Let G = (V, E) be a d-regular graph with n vertices that is
(β, log n)-sparse for β ≥ 10

√
log d

d . Then with probability ≥ 1 − n−4 log d over f : E → {±1}:
For every S, T ⊆ V ,

∣∣〈1S , Af 1T

〉∣∣ ≤ β
√

|S||T | and,
Ĝf is (β, log n + 1)-sparse,

We comment that [12, Lemma 3.4] does not explicitly calculate the probability 1 − n−4 log d;
rather, they only say the events happen with high probability. This is the probability that is
implicit in their proof. They also prove this theorem for β = 10

√
log d

d but the same proof

extends to β ≥ 10
√

log d
d with no additional changes.

This next claim easily follows from the definition of expansion and says that a spectral
expander is sparse.

▷ Claim 33. Let G be a d-regular λ-two sided spectral expander over n vertices such that
λ > 1√

d
and d ≥ 3. Then G is (2λ, log n)-sparse.

Proof. Fix S, T such that with |S ∪ T | ≤ log n. By the λ-expansion and the expander
mixing lemma (see e.g. [40]), ⟨1S , A1T ⟩ ≤ |S||T |

n + λ
√

|S||T |. We bound this term by(
λ + log n

n

)√
|S||T |. As log n

n ≤ 1√
n

≤ 1√
d

≤ λ the claim follows. ◁

We are ready to state our one-step theorem.

▶ Theorem 34. There exists a randomized algorithm A with the following guarantees.
Let X be a k-dimensional d̄-regular λ-two sided (resp. one sided) high dimensional ex-
pander over n vertices, where d̄ = (d0, . . . , dk−1). Let β ≥ 10

√
log dk−1

dk−1
and denote by

λ′ = max
{

λ, O(β(1 + log 1
β))
}

. Assume that X is (β, log dk−2)-sparse, and suppose that

dk−2 and dk−1 satisfy dk−2 > d2
k−1 and (5.1). Then A(X) = X̂ is a local lift of X such that:

1. The complex X̂ is a λ′-two sided (resp. one sided) high dimensional expander.
2. The complex X̂ is (β, log 2dk−2)-sparse.

Upon input X satisfying the above, the algorithm runs in time poly(|X(0)|k).

Proof of Theorem 34. We intend to use Lemma 16. For this, we fix the following “bad”
events C = {Cσ | σ ∈ X(k − 2)} where Cσ ⊆ {f : X(k) → {±1}} is the event where :
1. Either X̂σ

±fσ is not a λ′-two sided spectral expander, or
2. X̂σ

±fσ is not (β, log 2dk−2)-sparse.

By Lemma 32 (and Lemma 10 that relates the first item in Lemma 32 to spectral
expansion), Pf [Cσ] ≤ 2d

−4 log dk−1
k−2 . Moreover, because every link of a σ̂ ∈ X̂(k − 2) is a lift

of Xσ with respect to fσ̂, then if none of the events Cσ occur, then X̂ satisfies both items in
Theorem 34. We will use Lemma 16 to find such an assignment.

We now construct a dependency graph for C. Let σ ∈ X(k − 2) and U ⊆ X(k − 2). The
event Cσ only depends on fσ, so it only depends on k-faces τ ⊇ σ. Therefore, if Cσ and
{Cσ′ | σ′ ∈ U} are not mutually independent, then in particular there is a k-face τ ∈ X and
σ′ ∈ U such that τ ⊇ σ, σ′. Hence, in our dependency graph we connect Cσ ∼ Cσ′ if there
exists such a k-face containing both σ and σ′. Let us upper bound the neighborhood size
of an event Cσ. The number of neighbors that Cσ has is upper bounded by the number
of k-faces containing σ times

(
k+1
k−1
)

(the number of ways to choose σ′ ⊆ τ). Therefore, the
number of neighbors is bounded by

APPROX/RANDOM 2024

68:20 Sparse High Dimensional Expanders via Local Lifts

D :=
(

k + 1
k − 1

)
· |{τ ∈ X(k) | τ ⊇ σ}| =

(
k + 1
k − 1

)
|Xσ(1)| = (k + 1)k

4 dk−2dk−1.

By setting ρ : C → [0, 1) to be the constant function ρ(Cσ) = 1
D+1 we have that P [Cσ] ≤

ρ(Cσ)
∏

σ′∼σ(1 − ρ(Cσ)), because ρ(Cσ)
∏

σ′∼σ(1 − ρ(Cσ)) ≥ 1
D+1

(
1 − 1

D+1

)D

≥ 1
e(D+1)

and P [Cσ] ≤ 2d
−4 log dk−1
k−2 ≤ 1

e(D+1) by (5.1).
Let us now verify that the algorithm in Lemma 16 runs in polynomial time. We note that

there the number of events in C is poly(|X(0)|k), and checking whether Cσ occurs could be
done in poly(|X(0)|)-time because it amounts to:
1. Find the spectrum of a signed adjacency operator of a dk−2-sized graph.
2. Going over all connected sets U ⊆ X̂±fσ

σ of size ≤ log 2dk−2 for every σ ∈ X(k − 2),
finding S, T such that S ∪ T = U , and counting the number of edges between S and T to
check if the pair S, T violates sparseness. There is a poly(|X(0)|) such U, S, T at most.

Therefore, the randomized algorithm in Lemma 16 will find a signing in poly(|X(0)|k) ·∑
σ∈X(k−2)

1
D = poly(|X(0)|k)-time. ◀

6 Derandomizing the Construction

In this section we provide a deterministic construction of (k − 1)-bounded families of high
dimensional expanders, as referred to in Theorem 3. For the rest of this section, we denote
αk(d) = 10

√
k2 log d

d (when k is clear from context, we will write α(d)).
We will prove the following theorem.

▶ Theorem 35 (Restatement of Theorem 3). There exists a deterministic algorithm B
that takes as input a k-dimensional complex X0 and an integer i ≥ 1, runs in time
poly((2i|X0(0)|)k), and outputs a k-dimensional complex Xi with 2i|X0(0)| vertices. The
algorithm has the following guarantee: If X0 is a (d0, . . . , dk−1)-regular λ-two sided high
dimensional expander, with λ > αk(dk−1), dk−1 > 210k and |X0(k − 2)| ≤ d10k

k−2, then
Xi is a (2id0, . . . , 2idk−2, dk−1)-regular λ′-two sided high dimensional expander where
λ′ = O

(
25kλ

(
1 + log 1

λ

)) 6. In particular, for every n ∈ N, choosing i = log n yields a
complex with at least n-vertices.

This explicit construction generalizes the explicit construction for expanders given in [12],
which is based on the conditional probabilities method [4, Chapter 16].

We first observe that under the assumption that the base complex is sparse (as in
Definition 30) and that |X(k −2)| is not too large, then a random local lift of X is also sparse
and is a high dimensional expander with high probability. Then, we explain how we can find
such a lift deterministically by greedily selecting the values f(τ) one k-face at a time.

▶ Lemma 36. Let X be a k-dimensional, (d0, . . . , dk−1)-regular and (β, log dk−2)-sparse
simplicial complex so that β ≥ α(dk−1) and |X(k − 2)| ≤ d

log dk−1
k−2 .

Then, for f : X(k) → {±1} drawn uniformly at random, with probability at least
1 − d

−3 log dk−1
k−2 :

1. For every σ ∈ X(k − 2) and every S, T ⊆ Xσ(0):
∣∣〈1S , Af

σ1T

〉∣∣ ≤ β
√

|S||T |.
2. The local lift X̂ = X̂f is (β, log dk−2 + 1)-sparse. ⌟

6 We will not calculate the constants in the big O notation explicitly.

I. Ben Yaacov, Y. Dikstein, and G. Maor 68:21

We comment that the condition |X(k − 2)| ≤ d
log dk−1
k−2 may seem odd at first glance. However,

similar to Remark 29, this is eventually satisfied by every sequence {Xi}∞
i=0 where Xi+1 is a

local lift of Xi. Thus, we do not lose too much generality by assuming it.
The proof of Lemma 36 follows by applying Lemma 32 to every link and taking a union

bound over the links. We omit the proof since it is a direct calculation.
The deterministic construction mentioned at the beginning of this section is composed of

iterative applications of the local lift, where each application is according to the algorithm
described in the following lemma.

▶ Lemma 37. Let X be a k-dimensional (d0, . . . , dk−1)-regular (β, log dk−2)-sparse simplicial
complex with dk−1 > 210k, β ≥ α(dk−1) and such that |X(k − 2)| ≤ d10k

k−2.
Then, there is a deterministic poly (|X(0)|k) time algorithm for finding a function f :

X(k) → {±1} such that:
1. For every σ ∈ X(k − 2), ∥Af

σ∥ = O
(

25kβ
(

1 + log 1
β

))
.

2. X̂f is (β, log dk−2 + 1)-sparse.

The proof of Lemma 37 appears in the full version of this paper [11]. We give here a
short discussion of the techniques used there. The proof uses the method of conditional
probabilities. The main idea is that, given the conditions on the input complex, we can
define random variables denoted Z(σ), which serve as “error” indicators, where these errors
occur with very small probability. By defining another set of random variables Y (σ) which
correlate with the links’ expansions, and amplifying the impact of each error, we are able to
choose f(τ) k-face by k-face, while tracking the expected value of the sum of those variables
efficiently and making sure no error occurs. We are now ready to prove our main result in
this section.

Proof of Theorem 35. Let d̄ = (d0, d1, . . . , dk−1 = d) and let X0 be a d̄-regular λ-two sided
high dimensional expander for λ > αk(d), such that |X0(k − 2)| ≤ d10k

k−2. By Claim 33, it is
also (2λ, log dk−2)-sparse.

Denote by B′ the algorithm suggested by Lemma 37, and let X1, X2, . . . , Xi be such that
Xj = B′(Xj−1) for j ∈ [i]. We set Xi to be B’s output.

Let us show that, Xi meets the guarantees of Theorem 35. By Observation 18, for every
j ∈ [i], Xj is (2jd0, 2jd1, . . . , 2jdk−2, d)-regular and |Xj(0)| = 2j |X0(0)|.

In addition, one can verify by a direct calculation that, for any j ∈ [i], |Xj(k − 2)| =
2k−1|Xj−1(k−2)|, so if |Xj−1(k−2)| ≤ dk−2(Xj−1)10k then |Xj(k−2)| = 2k−1|Xj−1(k−2)| ≤
dk−2(Xj−1)10k · 2k−1 ≤ dk−2(Xj)10k. Thus, by induction and the fact that this inequality
holds for X0, this holds for every j.

Finally, by Lemma 37 one inductively obtains that for any j:
1. Xj is an O

(
25kλ

(
1 + log 1

λ

))
-high dimensional expander.

2. Xj is (2λ, log dk−2(Xi))-sparse.
3. Xj computed in time poly(|Xj−1(0)|k) = poly(2j−1|X0(0)|k).
as required. ◀

References
1 Louigi Addario-Berry and Simon Griffiths. The spectrum of random lifts. arXiv preprint, 2010.

arXiv:1012.4097.
2 Naman Agarwal, Alexandra Kolla, and Vivek Madan. Small lifts of expander graphs are

expanding. CoRR, abs/1311.3268, 2013. arXiv:1311.3268.

APPROX/RANDOM 2024

https://arxiv.org/abs/1012.4097
https://arxiv.org/abs/1311.3268

68:22 Sparse High Dimensional Expanders via Local Lifts

3 Vedat Levi Alev and Ori Parzanchevski. Sequential sweeps and high dimensional expansion.
arXiv preprint, 2023. arXiv:2312.02089.

4 Noga Alon and Joel H Spencer. The probabilistic method. John Wiley & Sons, 2016.
5 Alon Amit and Nathan Linial. Random graph coverings i: General theory and graph con-

nectivity. Combinatorica, 22(1):1–18, 2002.
6 Alon Amit, Nathan Linial, Jiří Matoušek, and Eyal Rozenman. Random lifts of graphs.

In Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms, pages
883–894. Citeseer, 2001. doi:10.1145/365411.365801.

7 Anurag Anshu, Nikolas P Breuckmann, and Chinmay Nirkhe. Nlts hamiltonians from good
quantum codes. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing,
pages 1090–1096, 2023.

8 Mitali Bafna, Noam Lifshitz, and Dor Minzer. Constant degree direct product testers with
small soundness, 2024. arXiv:2402.00850.

9 Mitali Bafna and Dor Minzer. Characterizing direct product testing via coboundary expansion.
In Proceedings of the 56th Annual ACM Symposium on Theory of Computing, pages 1978–1989,
2024.

10 Cristina M Ballantine. Ramanujan type buildings. Canadian Journal of Mathematics,
52(6):1121–1148, 2000.

11 Inbar Ben Yaacov, Yotam Dikstein, and Gal Maor. Sparse high dimensional expanders via
local lifts, 2024. arXiv:2405.19191.

12 Yehonatan Bilu and Nathan Linial. Lifts, discrepancy and nearly optimal spectral gap.
Combinatorica, 26(1439-6912):495–519, 2006. doi:10.1007/s00493-006-0029-7.

13 Aart Blokhuis and Andries E Brouwer. Locally 4-by-4 grid graphs. Journal of graph theory,
13(2):229–244, 1989.

14 Charles Bordenave. A new proof of Friedman’s second eigenvalue theorem and its extension to
random lifts. Ann. Sci. Éc. Norm. Supér. (4), 53(6):1393–1439, 2020. doi:10.24033/asens.
2450.

15 Morton Brown and Robert Connelly. On graphs with a constant link, ii. Discrete Mathematics,
11(3):199–232, 1975.

16 Donald I Cartwright, Patrick Solé, and Andrzej Żuk. Ramanujan geometries of type an.
Discrete mathematics, 269(1-3):35–43, 2003.

17 Michael Chapman, Nathan Linial, and Yuval Peled. Expander graphs – both local and global.
Combinatorica, 40:473–509, 2020. doi:10.1007/s00493-019-4127-8.

18 Michael Chapman and Alexander Lubotzky. Stability of homomorphisms, coverings and
cocycles ii: Examples, applications and open problems. arXiv preprint, 2023. arXiv:2311.
06706.

19 Itay Cohen, Roy Roth, and Amnon Ta-Shma. Hdx condensers. In 2023 IEEE 64th Annual
Symposium on Foundations of Computer Science (FOCS), pages 1649–1664. IEEE, 2023.

20 David Conlon. Hypergraph expanders from cayley graphs. Israel Journal of Mathematics,
233(1):49–65, 2019.

21 David Conlon, Jonathan Tidor, and Yufei Zhao. Hypergraph expanders of all uniformities
from cayley graphs. Proceedings of the London Mathematical Society, 121(5):1311–1336, 2020.

22 Yotam Dikstein. New high dimensional expanders from covers. In Proceedings of the 55th
Annual ACM Symposium on Theory of Computing, pages 826–838, 2023.

23 Yotam Dikstein and Irit Dinur. Agreement theorems for high dimensional expanders in the
small soundness regime: the role of covers, 2023. arXiv:2308.09582.

24 Yotam Dikstein, Irit Dinur, and Alexander Lubotzky. Low acceptance agreement tests via
bounded-degree symplectic hdxs, 2024. URL: https://eccc.weizmann.ac.il/report/2024/
019/.

25 Irit Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):12, 2007. doi:10.1145/
1236457.1236459.

https://arxiv.org/abs/2312.02089
https://doi.org/10.1145/365411.365801
https://arxiv.org/abs/2402.00850
https://arxiv.org/abs/2405.19191
https://doi.org/10.1007/s00493-006-0029-7
https://doi.org/10.24033/asens.2450
https://doi.org/10.24033/asens.2450
https://doi.org/10.1007/s00493-019-4127-8
https://arxiv.org/abs/2311.06706
https://arxiv.org/abs/2311.06706
https://arxiv.org/abs/2308.09582
https://eccc.weizmann.ac.il/report/2024/019/
https://eccc.weizmann.ac.il/report/2024/019/
https://doi.org/10.1145/1236457.1236459
https://doi.org/10.1145/1236457.1236459

I. Ben Yaacov, Y. Dikstein, and G. Maor 68:23

26 Irit Dinur, Shai Evra, Ron Livne, Alexander Lubotzky, and Shahar Mozes. Locally testable
codes with constant rate, distance, and locality. In Proceedings of the 54th Annual ACM
SIGACT Symposium on Theory of Computing, pages 357–374, 2022.

27 Irit Dinur and Tali Kaufman. High dimensional expanders imply agreement expanders. In
Proc. 58th IEEE Symp. on Foundations of Comp. Science (FOCS), pages 974–985, 2017.
doi:10.1109/FOCS.2017.94.

28 Irit Dinur, Siqi Liu, and Rachel Yun Zhang. New codes on high dimensional expanders, 2023.
arXiv:2308.15563.

29 Paul Erdős and László Lovász. Problems and results on 3-chromatic hypergraphs and some
related questions, in “infinite and finite sets”(a. hajnal et al., eds.). In Colloq. Math. Soc. J.
Bolyai, volume 11, page 609, 1975.

30 Jacob Fox, Mikhail Gromov, Vincent Lafforgue, Assaf Naor, and János Pach. Overlap
properties of geometric expanders. Journal für die reine und angewandte Mathematik (Crelles
Journal), 2012(671):49–83, 2012.

31 Ehud Friedgut and Yonatan Iluz. Hyper-regular graphs and high dimensional expanders, 2020.
arXiv:2010.03829.

32 Joel Friedman. A proof of Alon’s second eigenvalue conjecture and related problems. American
Mathematical Soc., 2008.

33 Oded Goldreich. A sample of samplers: A computational perspective on sampling. In
Studies in Complexity and Cryptography. Miscellanea on the Interplay between Randomness
and Computation: In Collaboration with Lidor Avigad, Mihir Bellare, Zvika Brakerski, Shafi
Goldwasser, Shai Halevi, Tali Kaufman, Leonid Levin, Noam Nisan, Dana Ron, Madhu Sudan,
Luca Trevisan, Salil Vadhan, Avi Wigderson, David Zuckerman, pages 302–332. Springer,
2011.

34 Louis Golowich. Improved Product-Based High-Dimensional Expanders. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2021), volume 207, 2021. doi:10.4230/LIPIcs.APPROX/RANDOM.2021.38.

35 Louis Golowich. From grassmannian to simplicial high-dimensional expanders. arXiv preprint,
2023. arXiv:2305.02512.

36 Roy Gotlib and Tali Kaufman. List agreement expansion from coboundary expansion, 2022.
arXiv:2210.15714.

37 Roy Gotlib and Tali Kaufman. No where to go but high: A perspective on high dimensional
expanders. arXiv e-prints, pages arXiv–2304, 2023.

38 M. Gromov. Singularities, expanders and topology of maps. part 2: from combinatorics to
topology via algebraic isoperimetry. Geom. Funct. Anal., 20:416–526, 2010. doi:10.1007/
s00039-010-0073-8.

39 Prahladh Harsha and Ramprasad Saptharishi. A note on the elementary construction of
high-dimensional expanders of kaufman and oppenheim, 2019. arXiv:1912.11225.

40 Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications.
Bulletin of the American Mathematical Society, 43(4):439–561, 2006.

41 Tali Kaufman and Alexander Lubotzky. High dimensional expanders and property testing. In
Innovations in Theoretical Computer Science, ITCS’14, Princeton, NJ, USA, January 12-14,
2014, pages 501–506, 2014.

42 Tali Kaufman and Izhar Oppenheim. Construction of new local spectral high dimensional
expanders. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 773–786, 2018.

43 Tali Kaufman and Izhar Oppenheim. High order random walks: Beyond spectral gap. Comb.,
40(2):245–281, 2020. doi:10.1007/s00493-019-3847-0.

44 Peter Keevash. The existence of designs. arXiv preprint, 2014. arXiv:1401.3665.
45 Wen-Ching Winnie Li. Ramanujan hypergraphs. Geometric & Functional Analysis GAFA,

14:380–399, 2004.

APPROX/RANDOM 2024

https://doi.org/10.1109/FOCS.2017.94
https://arxiv.org/abs/2308.15563
https://arxiv.org/abs/2010.03829
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.38
https://arxiv.org/abs/2305.02512
https://arxiv.org/abs/2210.15714
https://doi.org/10.1007/s00039-010-0073-8
https://doi.org/10.1007/s00039-010-0073-8
https://arxiv.org/abs/1912.11225
https://doi.org/10.1007/s00493-019-3847-0
https://arxiv.org/abs/1401.3665

68:24 Sparse High Dimensional Expanders via Local Lifts

46 Nathan Linial and Roy Meshulam. Homological connectivity of random 2-complexes. Combin-
atorica, 26:475–487, 2006. doi:10.1007/s00493-006-0027-9.

47 Siqi Liu, Sidhanth Mohanty, Tselil Schramm, and Elizabeth Yang. Local and global expansion
in random geometric graphs. In Proceedings of the 55th Annual ACM Symposium on Theory of
Computing, STOC 2023, pages 817–825, New York, NY, USA, 2023. Association for Computing
Machinery. doi:10.1145/3564246.3585106.

48 Siqi Liu, Sidhanth Mohanty, and Elizabeth Yang. High-Dimensional Expanders from Expanders.
In Proceedings of the 11th Innovations in Theoretical Computer Science Conference (ITCS
2020), 2020. doi:10.4230/LIPIcs.ITCS.2020.12.

49 Alexander Lubotzky. High dimensional expanders. In Proceedings of the International Congress
of Mathematicians: Rio de Janeiro 2018, pages 705–730. World Scientific, 2018.

50 Alexander Lubotzky, Zur Luria, and Ron Rosenthal. Random steiner systems and bounded
degree coboundary expanders of every dimension. Discrete & Computational Geometry,
62:813–831, 2019.

51 Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. Ramanujan graphs. Combinatorica,
8(3):261–277, 1988.

52 Alexander Lubotzky, Beth Samuels, and Uzi Vishne. Explicit constructions of Ramanujan
complexes of type Ãd. European J. Combin., 26(6):965–993, 2005. doi:10.1016/j.ejc.2004.
06.007.

53 Alexander Lubotzky, Beth Samuels, and Uzi Vishne. Ramanujan complexes of type Ãd. Israel
J. Math., 149(1):267–299, 2005. doi:10.1007/BF02772543.

54 Adam W. Marcus, Daniel A. Spielman, and Nikhil Srivastava. Interlacing families i: Bipartite
ramanujan graphs of all degrees. Annals of Mathematics, 182:307–325, 2015. doi:10.4007/
annals.2015.182.1.7.

55 Gregoty Margulis. Explicit constructions of expanders. Problemy Peredaci Informacii, 9(4):71–
80, 1973.

56 Roy Meshulam and N. Wallach. Homological connectivity of random k-dimensional complexes.
Random Struct. Algorithms, 34(3):408–417, 2009. doi:10.1002/rsa.20238.

57 Robin A Moser and Gábor Tardos. A constructive proof of the general lovász local lemma.
Journal of the ACM (JACM), 57(2):1–15, 2010.

58 A. Márquez, A. de Mier, M. Noy, and M.P. Revuelta. Locally grid graphs: classification and
tutte uniqueness. Discrete Mathematics, 266(1):327–352, 2003. The 18th British Combinatorial
Conference. doi:10.1016/S0012-365X(02)00818-X.

59 Ryan O’Donnell and Kevin Pratt. High-dimensional expanders from chevalley groups. In
Shachar Lovett, editor, 37th Computational Complexity Conference, CCC 2022, July 20-23,
2022, Philadelphia, PA, USA, volume 234 of LIPIcs, pages 18:1–18:26. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.CCC.2022.18.

60 Roberto Imbuzeiro Oliveira. The spectrum of random k-lifts of large graphs (with possibly
large k). arXiv preprint, 2009. arXiv:0911.4741.

61 Pavel Panteleev and Gleb Kalachev. Asymptotically good quantum and locally testable
classical LDPC codes. In Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th
Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022,
pages 375–388. ACM, 2022. doi:10.1145/3519935.3520017.

62 Omer Reingold. Undirected connectivity in log-space. Journal of the ACM (JACM), 55(4):1–24,
2008.

63 Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy waves, the zig-zag graph product,
and new constant-degree expanders. Annals of mathematics, 155(1):157–187, 2002.

64 Michael Sipser and Daniel A Spielman. Expander codes. IEEE transactions on Information
Theory, 42(6):1710–1722, 1996.

65 David Surowski. Covers of simplicial complexes and applications to geometry. Geometriae
Dedicata, 16:35–62, April 1984. doi:10.1007/BF00147420.

66 Amnon Ta-Shma. Explicit, almost optimal, epsilon-balanced codes. In Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing, pages 238–251, 2017.

https://doi.org/10.1007/s00493-006-0027-9
https://doi.org/10.1145/3564246.3585106
https://doi.org/10.4230/LIPIcs.ITCS.2020.12
https://doi.org/10.1016/j.ejc.2004.06.007
https://doi.org/10.1016/j.ejc.2004.06.007
https://doi.org/10.1007/BF02772543
https://doi.org/10.4007/annals.2015.182.1.7
https://doi.org/10.4007/annals.2015.182.1.7
https://doi.org/10.1002/rsa.20238
https://doi.org/10.1016/S0012-365X(02)00818-X
https://doi.org/10.4230/LIPIcs.CCC.2022.18
https://arxiv.org/abs/0911.4741
https://doi.org/10.1145/3519935.3520017
https://doi.org/10.1007/BF00147420

Randomness Extractors in AC0 and NC1: Optimal
up to Constant Factors
Kuan Cheng # Ñ

CFCS, School of CS, Peking University, China

Ruiyang Wu #

CFCS, School of CS, Peking University, China

Abstract
We study randomness extractors in AC0 and NC1. For the AC0 setting, we give a logspace-uniform
construction such that for every k ≥ n/ poly log n, ε ≥ 2− poly log n, it can extract from an arbitrary
(n, k) source, with a small constant fraction entropy loss, and the seed length is O(log n

ε
). The seed

length and output length are optimal up to constant factors matching the parameters of the best
polynomial time construction such as [13]. The range of k and ε almost meets the lower bound
in [10] and [7]. We also generalize the main lower bound of [10] for extractors in AC0, showing
that when k < n/ poly log n, even strong dispersers do not exist in non-uniform AC0. For the NC1

setting, we also give a logspace-uniform extractor construction with seed length O(log n
ε

) and a
small constant fraction entropy loss in the output. It works for every k ≥ O(log2 n), ε ≥ 2−O(

√
k).

Our main techniques include a new error reduction process and a new output stretch process,
based on low-depth circuit implementations for mergers, condensers, and somewhere extractors.

2012 ACM Subject Classification Theory of computation → Expander graphs and randomness
extractors; Theory of computation → Pseudorandomness and derandomization

Keywords and phrases randomness extractor, uniform AC0, error reduction, uniform NC1, disperser

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.69

Category RANDOM

Related Version Full Version: https://eccc.weizmann.ac.il/report/2024/040/

1 Introduction

Randomness extractors are functions that can transform weak random sources into distri-
butions close to uniform. A typical definition of weak random sources is by min-entropy.
A random variable (weak rsource) X has min-entropy k if for every x in the support of
X, log 1

Pr[X=x] ≥ k. To extract from an arbitrary weak source of a certain min-entropy,
Nisan and Zuckerman [23] introduced the definition of seeded extractor, where the ex-
tractor has a short uniform random seed as an extra input. Specifically, a function
Ext : {0, 1}n × {0, 1}d −→ {0, 1}m is defined to be a strong (k, ε)-extractor, if for every
source X with min-entropy k,

∥ (Ud, Ext(X, Ud)) − Ud+m∥ ≤ ε,

where Ud and Um are uniform distributions over {0, 1}d and {0, 1}m respectively, and ∥ · ∥
is the statistical distance. The entropy loss of such a strong extractor is k − m. On the
contrary, a weak (k, ε)-extractor has the same definition except we only require

∥Ext(X, Ud) − Um∥ ≤ ε.

The entropy loss of such a weak extractor is k + d − m.

© Kuan Cheng and Ruiyang Wu;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 69; pp. 69:1–69:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ckkcdh@pku.edu.cn
https://ckkcdh.github.io/
https://orcid.org/0000-0002-8972-1749
mailto:2301111967@stu.pku.edu.cn
https://orcid.org/0009-0009-5613-3631
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.69
https://eccc.weizmann.ac.il/report/2024/040/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

69:2 Randomness Extractors in AC0 and NC1: Optimal up to Constant Factors

As a fundamental pseudorandom construction, extractors are closely related to other
pseudorandom objects and also have various applications in computational complexity,
combinatorics, algorithm design, information theory, and cryptography. See surveys [21, 29,
37, 30, 1, 38].

Optimizing extractor constructions aims to get, for every k and ε, an extractor with d

as small as possible, and m as large as possible. An existential bound for strong extractors
can be given by a probabilistic argument, which has d = log(n − k) + 2 log(1/ε) + O(1),
m = k − 2 log(1/ε) − O(1). This is optimal up to some additive constants for k ≤ n/2, due
to the lower bound by [24]. After [23], a long line of work has been done to seek explicit
extractors with parameters close to the existential bounds [40, 31, 11, 32, 41, 25, 21, 27, 36,
33, 26, 20, 13, 34, 9, 19]. Among them, [13] first achieves d = log n + O(log(k/ε)) and an
arbitrary constant factor entropy loss, and also achieves m = k − 2 log(1/ε) − O(1) with
d = log n+O(log k · log(k/ε)). [34] and [19] can also achieve the same parameters by replacing
the condenser in [13] with their condenser versions. On the other hand, [34] and [9] achieve
subconstant entropy loss m = (1 − 1/ poly log n)k, d = O(log n) when ε ≥ 1/2logβ n for any
constant β < 1.

In terms of computational complexity, an explicit construction is an algorithm that can
compute the function in deterministic polynomial time on given parameters. A natural
question is whether one can construct extractors in lower complexity classes, with matching
parameters to the current best explicit ones. Some early work on extractors already pays
attention to constructions in low-complexity models. For example, Zuckerman [41] showed
that his construction is actually in NC. Also Bar-Yossef, Reingold, Shaltiel, and Vadhan
[2] showed streaming constructions for several pseudorandom objects including extractors.
Furthermore, extractors in low-complexity models have already been used in derandomization
tasks for certain low-complexity classes, such as in [35, 8]. In this paper, we specifically focus
on two low-complexity classes, i.e. AC0 and NC1. AC0 is the class of all uniform circuit
families of polynomial-size, constant depth, with NOT, AND, and OR gates, where AND
and OR gates have unbounded fan-in. NC1 is the class of all uniform circuit families of
polynomial-size, O(log n) depth, with NOT, AND, and OR gates, where AND, OR gates
have fan-in 2. Unless otherwise specified, our constructions are all logspace-uniform circuit
families, i.e. there exists a logspace Turing machine that can output the description for each
circuit in the family.

Viola [39] raised the question on extractor construction in AC0 and showed that for every
constant D, there exists a polynomial p such that as long as k ≤ n/p(log n), no extractor in
AC0 with depth D extract even 1 bit with a constant error, no matter how long the seed
is. Goldreich and Wigderson [10] extend the result for bit-fixing sources. This rules out the
possibility for the case that k = n/ logω(1) n. For the case k ≥ n/ poly log n, [10] gives a strong
extractor in AC0 that has an output length linear to the seed length. Lately Cheng and Li [7]
give a construction that significantly improves the parameters. For the case that ε = 1/ poly n,
δ = 1/ poly log n, they achieve d = O(log n), m = O(δn). For the more general case that
ε = 2− poly log n, δ = 1/ poly log n, they achieve d = O

(
(log n + log(n/ε) log(1/ε)

log n)
)

, m = O(δn).
They also show that ε has to be at least 2− poly log n for AC0 extractors.

For extractors in NC1, unlike the AC0 case, there are no known lower bounds for k

or ε. Indeed the extractor based on universal hash functions [5], argued by the leftover
hash lemma [16], can achieve an arbitrary ε and k. It can be realized in NC1 since there
are simple linear function constructions for such hash functions. Trevisan’s extractor [36],
and its improved version [26] can also be realized in NC1, since their main components, the
average-case hard function based on local list-decodable codes can be computed in NC1.

K. Cheng and R. Wu 69:3

Extractors can also be derived from averaging samplers [41]. Healy [15] constructs a sampler
in NC1. However if one simply applies the transformation of [41] on it, then this can only
give an extractor with a constant error. So it is still a question whether one can achieve
extractors in NC1 with better parameters for arbitrary k and ε.

1.1 Our results
Our main positive result is an AC0 computable extractor with parameters optimal up to
constant factors.

▶ Theorem 1. For every constant a, c > 0, γ ∈ (0, 1), every k ≥ n
loga(n) , ε ≥ 2− logc(n), there

exists an explicit (k, ε)-strong extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m in AC0 with depth
O(a + c + 1)2, such that d = O(log n

ε), and m ≥ (1 − γ)k.

Notice that this is much better in seed length compared to the previous best AC0 construc-
tions [7], which requires d = O

((
log n + log(n/ε) log(1/ε)

log n

)
loga n

)
for such an output length.

Also, notice that there are lower bounds for k and ε in the AC0 construction setting, i.e. k

has to be at least n/ poly log n by [10] and ε has to be 2− poly log n by [7]. Thus roughly in
the plausible range for k and ε, we achieve parameters optimal up to constant factors.

Our method can also be used to give NC1 computable extractors.

▶ Theorem 2. For every constant γ ∈ (0, 1) every k ≥ Ω(log2(n)), ε ≥ 2−O(√
k), there

exists a strong (k, ε) extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m computable in NC1, with
d = O(log(n/ε)), m = (1 − γ)k.

To our knowledge, the previous best known NC1 construction is the improved Trevisan’s
extractor from [26], which has seed length O(log2 n log 1

ε), for all k, ε. Our parameters are
optimal up to constant factors for ranges of k, ε as stated.

Our negative result generalizes the previous entropy parameter lower bound by [10] for
strong extractors in AC0 to strong dispersers in AC0.

▶ Theorem 3. For every d, s > 0, every constant δ ∈ (0, 1), if C : {0, 1}n × {0, 1}r → {0, 1}
is a (k, 1

2 − δ)-disperser that can be computed by a non-uniform AC circuit of size s and
depth d, then k ≥ Θ(δn

logd−1 s
).

1.2 Technique Overview
1.2.1 Extractor in AC0

Our AC0 computable extractor is constructed by three main parts.

1.2.1.1 Merger in AC0

In this part, we show that any somewhere high-entropy source X can be merged to be a
high-entropy source in AC0 under a restricted setting of parameters. The merger is a crucial
building block in the construction of our extractor.

Recall that X = (X1, . . . , XΛ) is a simple somewhere (n, k) source if there exists i ∈
[Λ], Xi is a (n, k) source. We call each Xi a segment. A somewhere (n, k) source is a
convex combination of simple somewhere (n, k) sources. A (k, k′, ε) merger is a function
Merge : {0, 1}nΛ × {0, 1}d → {0, 1}m, such that for any input somewhere (n, k) source X,
Merge(X, U) has entropy k′. [9] gives a fairly good merger for somewhere uniform sources,
which has m = n = k, k′ = (1 − δ)k, d = 1

δ (log 2Λ
ε). Our key observation is that if the

APPROX/RANDOM 2024

69:4 Randomness Extractors in AC0 and NC1: Optimal up to Constant Factors

number of segments in the somewhere uniform source is poly log n, δ is a small constant,
and error ε = 2− poly log n, then this merger can be computed in AC0. To see this, note that
the computation of [9] is over a finite field Fq, where q = 2d = 2poly log n in this setting. The
computation only involves three operations: (1) the summation of poly log n elements; (2)
the powering yi where y ∈ Fq, i = poly log n; (3) the product of a constant number of field
elements. (1) is clearly in AC0 since it is actually the summation of poly log n bits, while (2)
and (3) are shown to be in AC0 by [14]. Note that this can be straightforwardly generalized
to a merger for somewhere high-entropy source by first applying an extractor to each segment
and then merging them.

1.2.1.2 Error Reduction

In this part, we give a new error reduction that can be realized in a highly parallel way. The
required seed length is optimal up to constant factors, significantly better than [7]. Our
method takes the basic extractor from [7], applies error reduction and stretches the output
length to poly(log n) bits. The stretching is designed to satisfy the requirement in the next
part.

Let X be an input (n, k)-source with k = n/ loga n for some constant a. We start from
an AC0 computable (k, ε0) extractor Ext0 : {0, 1}n × {0, 1}d0 → {0, 1}m0 where ε0 = 1/n,
d0 = O(log n), m0 = O(k2/n), which is achieved in [7]. Then for every given constant c, the
new error reduction can reduce the error to be as small as ε = 2− logc(n), with a seed length
O(log n

ε). We briefly describe the main steps of the procedure along with their arguments.
1. Apply Ext0 to X for t = log(n/ε)

log n times in parallel, using independent seeds, outputting
Y1, Y2, . . . , Yt respectively, each of length m0.
Notice that by the error reduction of [25], one can show that with probability at least
1 − ε′ ≥ 1 − O(ε0)t, there exists i such that Yi has min-entropy at least m0 − O(log t),
while the seed length used here is only td0 = O(log(n/ε)). Hence one can deduce that
(Y1, . . . , Yt) is tε′ close to a somewhere (m0, m0 − O(log t)) source. We stress that this
step is also the first step in the error reduction of [7]. But we differ from [7] after then.

2. For each i, cut Yi into l = O(log n) blocks such that their lengths form a geometric
sequence. That is Yi = (Yi,1, Yi,2, . . . , Yi,l), where we let mj = |Yi,j | = m0.1

0 · 3j . Denote
Yi,1...j as the first j blocks of Y . Then for each j, let Bj = (Y1,1...j , Y2,1...j , . . . , Yt,1...j),
i.e. the i-th segment of Bj is the first j blocks from Yi. Regard Bj as a somewhere
high-entropy source and merge it by the merger from the previous part, attaining Zj .
Here we use the same seed for each j. Then we regard (Z1, Z2, . . . , Zl) as a block source
and extract in a standard way by using an extractor Ext1. Here Ext1 is constructed by
first sampling O(log n

ε) bits from the source and then applying universal hashing.
Notice that since the high entropy segment of Y is a (m0, m0 − O(log t)) source, each Bj

has to be a somewhere (Mj , Mj − O(log t)) source, where Mj = m1 + m2 + · · · + mj . Also,
as t = poly log n, the merger can be implemented in AC0. As a result of merging, Zj has a
high constant entropy rate. Since mj , j ∈ [l] forms a geometric sequence, Zj is a constant
times longer than Zj−1. Thus (Z1, Z2, . . . , Zl) is indeed very close to a block source that
has a constant conditional entropy rate. The output length is Ω(log n log n

ε) since for each
block we can sample O(log n

ε) bits and then apply an extractor from the left-over hash
lemma. The seed length is O(log n

ε) since both the merger and the sample-then-extract
have a seed length O(log n

ε).
3. Assume the previous steps give an extractor Ext′. To increase the output length, we run

the above steps again but instead use Ext′ to replace Ext1 in the second step. This can
increase the output length by a Ω(log n) factor. We do this for b times to finally get an
extractor with output length Ω(logb n · log n

ε), for a given arbitrary constant b.

K. Cheng and R. Wu 69:5

Note that in this way the circuit depth has a factor b blow-up. The seed length also has
a factor b blow-up. But as b is a constant, the construction is still in AC0 and the seed
length is still O(log n

ε).

1.2.1.3 Output Stretch

The last part is a new output stretch procedure for AC0 computable extractors. Compared
to the one in [7], the new method attains an output length (1 − γ)k with a seed length
O(log n

ε).
Observe that if the input source already has a constant entropy rate, then this is an

easy case. Because one can do sampling to get a two-block source with constant conditional
entropy rates. Then one can use the extractor derived from the previous part to extract from
the second source, attaining a poly log n

ε length output, and then use it to extract the first
block by applying the main extractor from [7]. However, the hard case is when the entropy
rate is sub-constant i.e. k = n

loga n . The above simple strategy does not work since we don’t
know how to argue that the block attained from sampling can keep a constant fraction of
all entropy while conditioned on this block, the source still keeps a fairly large conditional
entropy. To resolve this issue, we follow a general strategy used in [9]. We describe the
following 3 steps to reduce the hard case to the easy case.
1. Use Ta-shma’s somewhere-block-source converter [33] to convert the original source into

a somewhere-two-block-source.
Recall that Ta-shma’s converter tries every position of the input source. For each position,
the source is cut into two substrings. To avoid having too many segments in the resulting
somewhere-two-block-source, one can pick a cutting position after, for example, every
n/ log2a n consecutive positions. In this way, the number of segments is Λ = log2a n. [33]
shows that for at least one of the position choices, the cutting can give a two-block source
where the first block has entropy Ω(k), and the second has conditional entropy Ω(k).

2. For each segment, apply our extractor in the error reduction part for the second block
and then use the output as a seed to extract the first block by the extractor in [7].
As at least one segment of the somewhere source is indeed a two-block source, the
extraction for the second block can provide an output of length poly log n

ε . This is enough
to extract a constant fraction of entropy i.e. Ω(k) from the first block by [7]. Then what
we get is very close to a somewhere uniform source.

3. Use the merger in AC0 from the previous part to get a source with a constant entropy
rate and min-entropy Ω(k).
As we only have poly log n segments, ε = 2− poly log n, and the entropy rate attained is
a constant, it holds that the merger is in AC0, with a seed length O(log n

ε). Then after
merging, the hard setting is reduced to the previously discussed easy setting, i.e. the
constant entropy rate case.

1.2.2 Extractor in NC1

Our construction for extractor in NC1 can be described by the following 3 steps.
1. First apply a condenser from [19]. Regard the output as (Y1, Y2) such that Y1, Y2 have a

equal length.
Compared to the condenser in [13], the condenser in [19] can only work for k ≥
Ω(log2(n)), ε ≥ 2−O

(√
k(n)
)
, However, the advantage is that it is computable in NC1.

Recall that the [19] (k, k +d, ε) condenser can actually be viewed as Cond : Fn
q ×Fq → Fm

q .
It views the input source as coefficients of a degree n − 1 polynomial f(x) =

∑n−1
i=0 aix

i

APPROX/RANDOM 2024

69:6 Randomness Extractors in AC0 and NC1: Optimal up to Constant Factors

over field Fq, log q = O(log n
ε). The seed is a random element of Fq. The computation is

actually Cond(f, u) = (u, f(u), f (1)(u), . . . , f (m)(u)). Where f (j)(u) =
∑d

i=0
i!

(i−j)! aiu
i−j

is the j-th derivative of f . Notice that all these coefficients i!
(i−j)! can be precomputed

and hardwired in the circuits. The polynomial evaluation consists of three operations:
(1) the powering xi−j , (2) the multiplication of two Fq elements, and (3) the summation
of a polynomial number of elements. The powering could be implemented with two
steps: powering in N and then divided by q, which is computable in NC1 by [4]. The
multiplication and summation are both in NC1 by straightforward realizations. So after
condensing, we get a source (Y1, Y2) with an entropy rate > 3/4. As Y1 and Y2 have an
equal length, they form a two-block source with constant conditional entropy rates.

2. For Y2, apply the extractor from our error reduction to get Z of length O(log2 n log(n/ϵ)).
This step is basically the same as the AC0 case. We make sure the error reduction can
also be done in NC1 under this parameter setting, and the seed length is still O(log n

ε).
3. Apply the improved Trevisan’s extractor [26] to Y1 using Z as the seed.

Notice that this extracts O(k) bits with a desired error. It can be further stretched to
(1 − γ)k by a standard parallel method. Also, notice that it is a folklore that Trevisan’s
extractor [36] and its improved version [26] can be realized in NC1. So our whole
construction is in NC1. The required seed length for improved Trevisan’s extractor is
O(log2 n log(n/ϵ)), and the output from step 2 is enough to feed it. Hence the overall
seed length is O(log n

ε).

1.2.3 A lower bound for AC0 computable dispersers
Our lower bound follows from the improved switching lemma in [28]. Assume Disp :
{0, 1}n × {0, 1}r → {0, 1} is a strong (k, 1

2 − δ)-disperser computable in AC0 with depth d

and size s. Notice that we only need to consider the 1 bit output setting. Consider that
for a fixed seed y ∈ {0, 1}r, we apply a random restriction on Cy := Disp(·, y). Let the
random restriction be Rp over {0, 1, ∗}n such that for every i ∈ [n], independently we have
Pr[Rp(i) = ∗] = p, Pr[Rp(i) = 0] = Pr[Rp(i) = 1] = 1−p

2 . For a restriction ρ sampled from
Rp, the function Cy|ρ is defined to be a function such that if ρi is 1 or 0 then fix the i-th input
to be ρi, otherwise leave it unfixed, and then apply Cy on this modified input. The switching
lemma from [28] basically shows that Prρ∼Rp [Cy|ρ is not constant] ≤ δ, if p = δ

Θ(log s)d−1 .
Also notice that when δ is a constant, with probability at least 1 − 2−O(pn) > 1 − δ, the
number of stars in ρ is at least p/2 fraction. By a union bound and an averaging argument,
one can show that there exists a ρ which has at least pn/2 stars such that for > 1 − 2δ

fraction of y, Cy|ρ is a constant. Notice that if we take this ρ for a uniform input source, then
it becomes a bit-fixing source of entropy k ≥ pn/2 = Θ(δn

logd−1 s
). Also notice that for every

y such that Cy|ρ is not fixed, Supp(Cy|ρ(X)) ≤ 2 as Cy only has 1 bit output. This implies
that | Supp(U, Disp(X, U))| is less than 2δ2r · 2 + (1 − 2δ)2r ≤ (1

2 + δ)2r+1, a contradiction
to the disperser definition.

1.3 Paper Organization
In Section 2 we prepare some basic tools used in the rest of the paper. In Section 3 we show
that merger can be implemented in AC0. In Section 4 we give our new error reduction. In
Section 5 we give our new output stretch and show our AC0 computable extractor finally. In
Section 6 we show our NC1 computable extractor. In Section 7 we give our lower bound for
dispersers in AC0. In Section 8 we describe some open questions.

K. Cheng and R. Wu 69:7

2 Preliminaries

We use the following results from previous works. First, we review the extractors in AC0

from [7]. They are actually logspace-uniform constructions, though [7] did not explicitly
mention this. We briefly explain the reason after exhibiting their results.

▶ Theorem 4 ([7]). For every constant a, c ≥ 1, every k = δn = Θ(n/ loga n) there exists an
explicit (k, 1/nc)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m computable in AC0 with depth
O(a), where d = O(log n), m = k0.01.

▶ Remark 5. Theorem 4 uses several tools and all of them can be implemented by logspace-
uniform AC0 circuits. Specifically they use hardness amplifications from [17] and [18] and the
Nisan-Wigderson (NW) generator [22]. These tools only use 4 kinds of operations: 1) pairwise
independent generator; 2) inner product in FO(log n)

2 ; 3) parity function on O(log n) bits; 4)
Construct a combinatorial design and run the NW generator. It is straightforward to see
that Procedure 1), 2) and 3) are all logspace-uniform. Procedure 4) is also logspace-uniform
by Lemma A.3 in [6].

For smaller errors, they have the following theorem.

▶ Theorem 6 ([7] for small entropy). For every constant γ ∈ (0, 1), a, c ≥ 1, k = δn =
Θ(n/ loga n), ε = 2−Θ(logc n), there exists an explicit (k, ε)-extractor Ext : {0, 1}n ×{0, 1}d →
{0, 1}m in AC0 with depth O(a+c), where d = O

((
log n + log(n/ε) log(1/ε)

log n

)
/δ
)

, m ≥ (1−γ)k.

Also, recall the sample-then-extract technique in AC0.

▶ Theorem 7 ([7] Sample-then-extract). For every constant δ ∈ (0, 1], c ≥ 1 and every
ϵ = 2− logc n, there exists an explicit strong (δn, ϵ)-extractor Ext : {0, 1}n ×{0, 1}d → {0, 1}m

in AC0 with depth O(c), where d = O(log(n/ε)), m = Θ(log(n/ε)).

▶ Remark 8. Theorem 7 has two main ingradients: 1) The NC1 sampler from [15]. 2)
Transforming a circuit of input length l = Θ(logc n), depth O(log l) and size poly(l) to a
AC0 circuit, from [12] (See also Lemma 12). Both of them are indeed logspace-uniform.

Theorem 6 uses Theorem 4 together with an error reduction and output stretch procedure.
Both the error reduction and output stretch only consist of some sample-then extract
techniques and some utilities of the transformation from [12]. Hence it is also logspace-
uniform.

Leftover hash lemma is also needed in our construction.

▶ Lemma 9 (Leftover Hash Lemma [16]). Let X be an (n′, k = δn′)-source. For any ∆ > 0,
let H be a universal family of hash functions mapping n′ bits to m = k − 2∆ bits. The
distribution U ◦ Ext(X, U) is at distance at most 1/2∆ to uniform distribution where the
function Ext : {0, 1}n′ × {0, 1}d → {0, 1}m chooses the U ’th hash function hU in H and
outputs hU (X).

For universal hash functions, we use the construction from Toeplitz matrices. For every
u, the hash function hA(x) equals to Ax where A is a Toeplitz matrix.

Error reduction for extractors has been extensively studied in previous works. We recall
the following key ingredient in the classic error-reducing technique [25].

▶ Lemma 10 (Gx Property [25]). Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (k, ϵ)-extractor
with ϵ < 1/4. Let X be any (n, k + t)-source. For every x ∈ {0, 1}n, there exists a set Gx

such that the following holds.

APPROX/RANDOM 2024

69:8 Randomness Extractors in AC0 and NC1: Optimal up to Constant Factors

For every x ∈ {0, 1}n, Gx ⊂ {0, 1}d and |Gx|/2d = 1 − 2ϵ.
If we draw a y from Ext(X, GX) (draw an x from X, then draw gx uniformly from the
set Gx, take y = Ext(x, gx)), then with probability at least 1 − 2−t over this random
drawing, the y we get can have the property that Pr [Ext(X, GX) = y] ≤ 2−(m−1). Here
Ext(X, GX) is obtained by first sampling x according to X, then choosing r uniformly
from Gx, and outputting Ext(x, r).

We also need to use the following lemmas about low-depth circuits computing.

▶ Lemma 11 (folklore, see also [7]). Let a > 0 be an absolute constant. Then loga(n)-bit
parity can be computed by an AC0 circuit with O(a) depth and poly(n) size.

▶ Lemma 12 ([12]). For every c ∈ N, every integer l = Θ(logc n), if the function fl :
{0, 1}l → {0, 1} can be computed by circuits of depth O(log l) and size poly(l), then it can be
computed by AC0 circuits of depth c + 1, size poly(n).

▶ Remark 13. The transformation from [12] mainly uses Barrington’s Theorem [3] which
provides a Dlogtime-uniform AC0 reduction from any NC1 circuit to a downward self-reducible
NC1-complete language. The self-reducible here is logspace-uniform NC0 reduction. Thus
the NC1 complete language of input size l = Θ(logc n) can be reduced to a language of input
size O(log n) and thus can be decided by logspace-uniform AC0 circuits.

Finally, we use some folklore facts about block sources. Proofs of them can be found in
the full version.

▶ Definition 14 (block source). Let X = (X1, . . . , Xl) such that each Xi is distributed
on {0, 1}ni . We say X is a (n1, k1, n2, k2, . . . , nl, kl)-block source if for every i ∈ [l] and
(x1, . . . , xi−1) ∈ {0, 1}n1+···+ni−1 , Xi|X1=x1,...,Xi−1=xi−1 is a (ni, ki)-source.

▶ Lemma 15. Fix t ∈ N and k, s, n, n1, . . . , nk ∈ N such that n1 + · · · + nk = n. Let
X = (X1, . . . , Xl) be a (n, n − k)-source on {0, 1}n such that Xi is distributed on {0, 1}ni for
each i ∈ [t]. Then (X1, . . . , Xl) is l ·2−s-close to a (n1, n1 −k, n2, n2 −k−s, . . . , nl, nl −k−s)-
source.

▶ Lemma 16. Let X = (X1, . . . , Xl) be a (n1, k1, n2, k2, . . . , nl, kl)-block source on {0, 1}n.
Suppose that Exti : {0, 1}ni × {0, 1}r → {0, 1}mi is a strong (ki, ε)-extractor for each
i ∈ [l]. Let Y be a uniformly random variable on {0, 1}r. Take Z = (Z1, . . . , Zl) such that
Zi = Exti(Xi, Y). Then (Y, Z) is l · ε-close to uniform.

▶ Definition 17 (strong two-block extractor). We say a function Ext : {0, 1}n1 × {0, 1}n2 ×
{0, 1}r → {0, 1}m is a strong (k1, k2, ε)-two-block extractor, if for any (k1, k2)-block-source
X = (X1, X2) and independent uniform random distribution Ur on {0, 1}r, the joint distri-
bution (Ur, Ext(X1, X2, Ur)) is ε-close to uniform distribution on {0, 1}r × {0, 1}m.

▶ Lemma 18. Let Ext1 : {0, 1}n1 × {0, 1}m1 → {0, 1}m2 be a (k1, ε1)-strong extractor, and
Ext2 : {0, 1}n2 × {0, 1}r → {0, 1}m1 be a (k2, ε2)-strong extractor. Then the construction

Ext(X1, X2, Ur) = Ext1(X1, Ext2(X2, Ur)) (1)

is a strong (k1, k2, ε1 + ε2)-two-block extractor

K. Cheng and R. Wu 69:9

3 Merger in AC0

In this section, we will examine the merger construction in [9] and show that the merger can
indeed be implemented in AC0 for some specific setting of parameters.

We start by defining somewhere-(n, k) sources.

▶ Definition 19 (somewhere-(n, k) source). Let X = (X1, . . . , XΛ) such that each Xi is
distributed on {0, 1}n. We say X is a simple somewhere-(n, k) source with Λ segments if there
exists i ∈ [Λ] such that Xi is a (n, k)-source on {0, 1}n. We say X is a somewhere-uniform
source if X is a convex combination of simple somewhere-(n, k) sources.

If n = k in the above definition, which means that Xi is uniform, we say X is a
somewhere-uniform source.

A merger is a function that takes a somewhere-uniform source and a uniform random
seed as input and outputs a (m, k′)-source. The remaining entropy k′ is usually less than
the original entropy k.

▶ Definition 20 (merger and strong merger). We say Merge : {0, 1}Λ·n × {0, 1}r → {0, 1}m

is a (k, k′, ε)-merger if for any somewhere-(n, k) source X = (X1, . . . , XΛ), the distribution
Merge(X, Ur) is ε-close to a k′-source. Here Ur is a independent uniform random distribution
on {0, 1}r

Furthermore, if (Ur, Merge(X, Ur)) is ε-close to (Ur, W), we say Merge is a strong
(k, k′, ε)-merger. Here W is a distribution such that for all a ∈ {0, 1}r, W |Ur=a is a k′-
source.

We examine the merger introduced in [9], and find that the merger can be implemented
in AC0 if the number of segments is not too large.

▶ Theorem 21 (merger in [9]). For any constant a, c > 0, δ ∈ (0, 1), let Λ(n) ≤ loga(n), ε(n) ≥
2− logc(n). Then there exists explicit (n, δn, ε(n))-mergers Merge : {0, 1}Λ(n)·n × {0, 1}r(n) →
{0, 1}n. Here r(n) = O(log(1

ε)).
Furthermore, the mergers can be implemented in AC0 with O(a + c + 1) depth and poly(n)

size,

The merger in [9] is defined as follows:
Define q = 2s be a power of two which is decided later. Let Fq be the finite field of order

q. Let X = (X1, . . . , XΛ) be a somewhere-uniform-source with Λ segments. Regard each Xi

as distributed on FK
q with K = n

s . Then

Xi = (Xi,1, . . . , Xi,K), Xi,j ∈ Fq. (2)

Note that the uniform distribution on FK
q is equivalent to the uniform distribution on

{0, 1}n.
Take γ1, . . . , γΛ be Λ unique points in Fq. Let C1, . . . , CΛ be Λ unique polynomials in

Fq[x] of degree at most Λ − 1, such that Ci(γj) = 1 if i = j and Ci(γj) = 0 if i ̸= j. Then
the merger is defined as:

Merge(X, y) =
(Λ∑

i=1
Ci(y)Xi,1, . . . ,

Λ∑
i=1

Ci(y)Xi,K

)
, (3)

where y ∈ Fq.

APPROX/RANDOM 2024

69:10 Randomness Extractors in AC0 and NC1: Optimal up to Constant Factors

▶ Lemma 22 (merger in [9]). For any constant δ > 0, let q ≥
(2Λ

ε

)1/δ. Then the function
Merge : FK·Λ

q × Fq → FK
q is a (K log q, k, ε)-merger, where k = (1 − δ) · K · log q.

The condition q ≥
(2Λ

ε

)1/δ is equivalent to r ≥ 1
δ log

(2Λ
ε

)
. When Λ = loga(n), ε =

2− logc(n), this requires r ≥ 2
δ logc(n). So we can pick r(n) = min{s ∈ N|s ≥ 2

δ logc(n), ∃d ∈
N, s = 3 · 2d}. As δ is a constant, r(n) = O(logc(n)) = O

(
log
(1

ε

))
.

▶ Lemma 23. For any constant a, c, δ ∈ (0, 1), let Λ(n) ≤ loga n, ε(n) ≥ 2− logc(n). Define
r(n) = min{s ∈ N | s ≥ 2

δ logc(n), ∃d ∈ N, s = 3 · 2d}, q(n) = 2r(n), K(n) = n
r(n) . Then the

(n, δn, ε)-merger Merge : {0, 1}Λ(n)·n × {0, 1}r(n) → {0, 1}n can be implemented in uniform
AC0 with O(a + c + 1) depth and poly(n) size.

To prove the lemma, we can express the Λ polynomials C1, . . . , CΛ by their Λ2 coefficients.
That is:

Ci(y) =
Λ∑

j=1
ci,jyj−1, ci,j ∈ Fq, i ∈ [Λ].

These coefficients are not necessarily computable in AC0. Instead, they can be pre-
determined and stored in the circuit. Note that Λ = loga(n) and r2(n) = O(logc(n)).
Therefore it requires O(logc(n)) bits to store one coefficient, and O(log2a+c(n)) bits to store
all the coefficients.

Therefore, the AC0 circuit for the merger is only required to do three types of operations:
powering, multiplication and summation. The parameters of these operations satisfies the
following conditions:
1. The powering operation is to compute yj , where j ≤ loga(n), and y ∈ Fq. The order

q = 2s is a power of 2, and s = O (logc(n)).
2. The multiplication operation is to compute ci,jyj−1Xi,k, for each i ∈ [Λ], j ∈ [Λ], k ∈ [K].

All of the three multipliers are in Fq.
3. The summation operation is to compute

∑Λ
i=1
∑Λ

j=1 ci,jyj−1Xi,k for each k ∈ [K]. All
the addends are in Fq, and the total number of them is log4a(n).

The following theorems in the work of Healy and Viola [14] show that the powering and
multiplication are indeed in AC0.

▶ Lemma 24 ([14, Corollary 6(1)]). Let a, c > 0 be absolute constants. Let y ∈ Fq where
q = 2s and s = 2 · 3d for some d ∈ N. Suppose that j ≤ loga(n) and s ≤ logc(n), then yj can
be computed by a logspace-uniform AC0 circuit with O(a + c) depth and poly(n) size.

▶ Lemma 25 ([14, Corollary 6(2)]). Let a, c > 0 be absolute constants. Let y1, y2 ∈ Fq where
q = 2s and s = 2 · 3d for some d ∈ N. Suppose that s ≤ logc(n), then y1 · y2 can be computed
by a logspace-uniform AC0 circuit with O(c) depth and poly(n) size.

The summation operation is also in AC0, as the summation of elements in Fq where
q = 2s is equivalent to bitwise parity of the binary representation of the elements if we
implement Fq by polynomial fields with coefficients in F2. When the number of addends is
poly log n, it is in AC0 by Lemma 11.

With these results, the merger can be implemented in AC0 with O(a + c) depth and
poly(n) size.

K. Cheng and R. Wu 69:11

Proof of Lemma 23. It is sufficient prove that each
∑Λ

i=1
∑Λ

j=1 ci,jyj−1Xi,k can be com-
puted in AC0 with O(a + c) depth and poly(n) size. The powering could be computed in
O(a + c) depth and poly(n) size by Lemma 24. The multiplication could be computed in
O(c) depth and poly(n) size by Lemma 25. The summation could be computed in O(a)
depth and poly(n) size by Lemma 11. ◀

Theorem 21 follows directly from Lemma 22 and Lemma 23.

Proof of Theorem 21. Take r(n) = min{s ∈ N|s ≥ 2 logc(n)
δ , ∃d ∈ N, s = 3 · 2d}, q(n) =

2r(n), K(n) = n
r(n) as discussed above. By Lemma 22, we know that the merger is a

(n, k(n), ε(n))-merger, where k(n) = (1 − δ)n. By Lemma 23, we know that the merger can
be implemented in AC0 with O(a + c) depth and poly(n) size. ◀

As noted in [9], their merger for somewhere uniform sources can be extended to handle
somewhere high entropy sources. Following their idea, we also prepare a merger for somewhere
high entropy sources, and furthermore, it is computable by low-depth circuits.

▶ Corollary 26. Let δ ∈ (0, 1), Λ(n) ≤ poly(n), ε(n) = 2−O(n) , ∆(n) = O(log(n
ε)).Then there

exists a strong (n − ∆(n), δm(n), ε(n))-merger Merge : {0, 1}Λ(n)·n × {0, 1}r(n) → {0, 1}m(n).
Here r(n) = O(log(n

ε)) and m(n) = Ω(n). The merger is computable in logspace-uniform
AC0[2].

If Λ(n) ≤ loga(n), ε(n) ≥ 2− logc(n) for constant a, c > 0, then the merger can be imple-
mented in AC0 with O(a + c + 1) depth and poly(n) size.

4 Error Reduction

The main theorem of this section is the following:

▶ Theorem 27. For any constant a, c > 0, b ∈ N+, every k(n) ≥ n/ loga(n), ε(n) ≥ 2− logc(n),
there exists a strong (k(n), ε(n))-extractor Ext : {0, 1}n × {0, 1}r(n) → {0, 1}m(n), where
r(n) = O(log(n

ε(n))), m(n) = Θ
(

logb(n) · log(n
ε(n))

)
.

Furthermore, the extractor can be implemented in AC0 with O(b(a + c + 1)) depth.

We show this theorem by giving a new error reduction stated as the following. To describe
it, We fix a > 0 to be a constant and k(n) = n

loga n .

▶ Lemma 28. For any ε0 ∈ (0, 1) every constant c > 0 and ε = 2− logc n, suppose there exists
a (k, ε0)-extractor Ext0 : {0, 1}n ×{0, 1}d0 −→ {0, 1}m0 with m0 ≥ k0.01 and a family of strong
(n1/100, ε)-extractors Ext1 : {0, 1}n1 × {0, 1}d1 −→ {0, 1}m1 for every n1 ∈ [m0.1

0 , m0], Then
for any ε = 2− logc n, there exists a strong (k, ε)-extractor Ext′ : {0, 1}n × {0, 1}d → {0, 1}m,
where d = O(d1 + d0 · log ε

log ε0
), m = Θ (m1 · log n).

If Ext0 and Ext1 can be realized by depth h and g AC circuits respectively,then Ext′

can be realized by a depth O(h + g + c + 1) AC circuit.

Now we describe the construction and analysis of Lemma 28.

4.1 Step 1: extracting in parallel
We apply Ext0 for t = log(1/ε)

log(1/ε0) times in parallel, with independent seeds. Specifically, take
U1,i be independent uniform seeds in {0, 1}d0 for every i ∈ [t]. Let Y = (Y1, Y2, . . . , Yt),
where Yi = Ext0(X, U1,i).

The step can be computed by depth h AC circuits because the extractor Ext0 has depth
h, and the parallel extraction can be done without increasing the depth.

APPROX/RANDOM 2024

69:12 Randomness Extractors in AC0 and NC1: Optimal up to Constant Factors

Analysis

We now show that Y is close to a somewhere-(m0(n), m0(n) − O(log t))-source. The main
idea is that by Lemma 10, we know that with high probability, at least one of the seeds Ui

lands in Gx, which makes Yi a good source with a high entropy rate. The following lemma
states this formally:

▶ Lemma 29. Let Ext0 : {0, 1}n × {0, 1}d0 → {0, 1}m0 be an (k, ε0)-extractor and X be a
(n, k + s)-source. Take independent seeds U1, U2, . . . , Us ∈ {0, 1}d0 . Let Y = (Y1, Y2, . . . , Yt),
where Yi = Ext0(X, Ui). Then Y is (2ε0)t + t ·2−s-close to a somewhere-(m0, m0 −O(log t))-
source

Take x from a fixed distribution X and fix extractor Ext. Let Gx be the set of good seeds
from Lemma 10. We first denote event BADi = {Ui ̸∈ GX}. Note that these events are not
necessarily independent. However, the probability that all of them happen is exponentially
small, as the following claim shows.

▷ Claim 30. Pr[BAD1 ∧ BAD2 ∧ · · · ∧ BADt] ≤ (2ε0)t.

We define an indicator random variable I ∈ {0, 1}[t] as follows:

∀i ∈ [t], i ∈ I ⇐⇒ Ui ∈ GX . (4)

With probability at least 1 − (2ε0)t, The set I is not an empty set. Take Yi = Ext(X, Ui).
By Lemma 10, Yi|(BADi)c = Yi|i∈I is 2−s-close to a (m0, m0 − O(1)) source.

We apply the technique from [20] to prove that (Y1, Y2, . . . , Yt) is indeed close to a
somewhere-(m0, m0 − O(log t))-source.

▶ Lemma 31 ([20]). Let Y = (Y1, . . . , Yt) be the random variable defined in Lemma 29. Let
I be a random set subset of [t]. Assume I ̸= ∅, and for every i ∈ [t], Yi|i∈I is ε-close to a
(m, k)-source. Then Y is (t · ε)-close to a somewhere-(m, k − log t) source.

By Claim 30 and Lemma 31, we can prove Lemma 29:

Proof of Lemma 29. Take I as the random set indicator defined above. By Lemma 10,
Yi|(BADi)c = Yi|i∈I is 2−s-close to a (m0, m0 −O(1)) source. By Claim 30, we know that with
probability at least 1 − (2ε0)t, I is not an empty set. Conditioning on such events, Lemma 31
implies that Y |{I ̸=∅} is t · 2−s-close to a somewhere-(m0, m0 − O(log t)) source. The lemma
follows. ◀

4.2 Step 2: divide and merge
Assume we have a somewhere-(m0, m0 − O(log t))-source. We divide each segment of the
source into a sequence of blocks whose lengths form a geometric sequence. Specifically, take
Y = (Y1, Y2, . . . , Yt) to be a simple somewhere-(m0, m0 − O(log t))-source. We divide each
Yi into l + 1 blocks of length m1, m2, . . . , ml+1 respectively, such that

Yi = (Yi,1, Yi,2, . . . , Yi,l+1) for every i ∈ [t]. (5)

The lengths satisfies

mj = m0.1
0 · 3j−1 for every j ∈ [l]. (6)

K. Cheng and R. Wu 69:13

where l =
⌊
log3 m0.9

0
⌋
. Denote Yi,1...j = (Yi,1, Yi,2, . . . , Yi,j) for every i ∈ [t] and j ∈ [l].

Define Bj as:

Bj = (Y1,1...j , Y2,1...j , . . . , Yt,1...j) for every j ∈ [l]. (7)

We denote Mj = m1 + m2 + · · · + mj for every j ∈ [l].
Let Mergej : {0, 1}t·Mj × {0, 1}d2(n) → {0, 1}(1−α)Mj be a strong (Mj − ∆, 3

4 (1 −
α)Mj , ε(n)/l)-merger from Corollary 26 for every j ∈ [l], where α is a constant. The
seed length of the merger is d2(n) = O(log(Mj

ε(n))) = O(log(m(n)
ε(n))). Let U2 be a uniform

random variable on {0, 1}d2(n). Define

Zj = Mergej(Bj , U2) for every j ∈ [l]. (8)

The gap between source length and source entropy is ∆ = O(log t) = O(log 1
ε(n)), which

meets the requirement that ∆ = O(log Mj

ε(n)) in Corollary 26.
Next, we apply the strong extractor family Ext1 to extract from the block source.

Let Ext1,j : {0, 1}(1−α)Mj × {0, 1}d3(n) → {0, 1}m′(n) be a strong ((1 − α)Mj/100, ε(n)/l)-
extractor for every j ∈ [l]. These Ext1,j , j ∈ [l] with different input lengths, are all from the
family Ext1. Let U3 be a uniform random variable on {0, 1}d3(n). Then

Wj = Ext1,j(Zj , U3) for every j ∈ [l]. (9)

Analysis

Now we give our analysis. Note that since Y is a simple somewhere high entropy source,
by dividing it into blocks, each prefix Bj is a simple somewhere-(Mj , Mj − O(log t))-source.
Through merging, Zj ’s are correlated high-entropy sources with different lengths. They are
close to a block source.

▶ Lemma 32. Zj is ε(n)/l-close to a ((1 − α)Mj , 3
4 (1 − α)Mj)-source for every j ∈ [l].

Proof. Let Yi be a (m0, m0 − O(log t))-source in Y . Then Yi,1...j must have entropy at least
mj − O(log t). Therefore Bj is a somewhere-(mj , mj − O(log t))-source. By Corollary 26, Zj

is ε(n)/l-close to a ((1 − α)Mj , 3
4 (1 − α)Mj)-source. The claim follows. ◀

Denote Z0 = (U1, U2) as the seeds used in all previous steps to obtain Z1, . . . , Zj . We
stress that the sequence Z0, Z1, . . . , Z1 is of exponentially increasing length and each contains
|Zj | − O(log 1

ε(n)) bits of min-entropy. Therefore, even if all the randomness in (Z0, . . . Zi) is
contained in Zi+1, there still must be Ω(|Zi+1|) bits of conditional min-entropy within Zi+1.
That makes the sequence a block source. We formalize the inspection into the following
lemma.

▶ Lemma 33. (Z0, Z1, Z2, . . . , Zl) is 2ε(n)-close to a block source (Z0, Z ′
1, Z ′

2, . . . , Z ′
l). The

conditional entropy of Z ′
j is larger than (1 − α)Mj/100 = Ω((1 − α)Mj) for each j ∈ [l]

Then we can extract from the block-source (Z0, Z1, Z2, . . . , Zl) using standard methods,
which gives (Z0, U3, W1, W2, . . . , Wl):

▶ Lemma 34. (Z0, U3, W1, W2, . . . , Wl) is 3ε(n)-close to (Z0, U3, V), where V is a independ-
ent uniform distribution.

APPROX/RANDOM 2024

69:14 Randomness Extractors in AC0 and NC1: Optimal up to Constant Factors

4.3 Wrap-up to prove Lemma 28 and Theorem 27

Proof of Lemma 28. Take X be the sources, U1, U2, U3 be the seeds. Let Y = (Y1, Y2, . . . , Yt)
such that Yi = Ext0(X, U1,i) for every i ∈ [t] as in the first step. By Lemma 29,
Y is ε(n)-close to a somewhere-(m(n), m(n) − O(log t))-source. Let Bj be the source
(Y1,1...j , Y2,1...j , . . . , Yt,1...j) for every j ∈ [l]. Then take Zj = Mergej(Bj , U2) and Wj =
Ext1,j(Zj , U3) for every j ∈ [l] as in the second step. Here Ext1,j is the strong extractor
from family Ext1 with source length n1 = mj . By Lemma 34 and its remark, (U1, U2, U3, W)
is 3ε(n)-close to uniform if Y is a somewhere-(m(n), m(n) − O(log t))-source. By the triangle
inequality, W is 4ε(n)-close to uniform.

Step 1 executes the extractor Ext0 in parallel, which costs depth h. Step 2 executes the
merger Mergej from Corollary 26 and the extractor Ext1,j , for every j ∈ [l] in parallel. This
takes depth O(c + g). So the overall depth is as the lemma stated.

The seed length of the extractor is d(n) = |U1| + |U2| + |U3|. U1 = (U1,1, U1,2, . . . , U1,t)
where |U1,i| = d0 for every i ∈ [t] and t = log ε(n)

log ε0
. |U2| = O(log(n

ε(n))) and |U3| = d1.
Therefore d = O(d1 + d0 · log ε

log ε0
).

The output consists of Θ (log n) parts of length m1. Therefore the output length is
m = Θ (m1 · log n). ◀

We instantiate Ext0 as the extractor from Theorem 4 and Ext1 as the strong extractors
from Theorem 7, which gives the following theorem:

▶ Corollary 35. For any constant a, c > 0, every k(n) ≥ n/ loga(n), ε(n) ≥ 2− logc(n),
there exists a strong (k(n), ε(n))-extractor Ext : {0, 1}n × {0, 1}r(n) → {0, 1}m(n), where
r(n) = O(log(n

ε(n))), m(n) = Θ
(

log(n) · log(n
ε(n))

)
.

Furthermore, the extractor can be implemented in uniform AC0 with O(a + c + 1) depth.

The only gap between Corollary 35 and Theorem 27 is that the output length of Co-
rollary 35 is only Θ

(
log(n) · log(n

ε)
)

instead of Θ
(

logb(n) · log(n
ε)
)

. We resolve the issue
by repeatedly using Lemma 28, each time instantiating Ext1 in Lemma 28 as the strong
extractor family provided by the immediate previous using of Lemma 28. After an iteration,
the output length is multiplied by a Θ(log n) factor. Therefore we can achieve the parameter
as in Theorem 27 after b iterations.

5 Output Stretch

In this section, we will use the framework introduced in [9], to further stretch the output
length from O(logc(n)) to a near-optimal O(k). The main theorem of this section is the
following:

▶ Theorem 36. For any constant a, c > 0 and γ ∈ (0, 1), let k(n) ≥ n
loga(n) , ε(n) ≥ 2− logc(n).

Then there exists a (k(n), ε(n))-strong extractor Ext : {0, 1}n × {0, 1}r(n) → {0, 1}m(n), such
that r(n) = O(log(n

ε)), and m(n) ≥ (1 − γ) · k(n).
Furthermore, the extractor can be implemented in AC0, with O(a + c + 1)2 depth and

poly(n) size.

We use a four-step method to extract randomness.

K. Cheng and R. Wu 69:15

5.1 Step 1: Converting to a somewhere-block-source
In this subsection, we will convert the original k-source into a somewhere-block-source. First,
we define the concept:

▶ Definition 37 (somewhere-block-source). Let X = (X1, . . . , XΛ) be a random variable
with Λ segments, each Xi distributed on {0, 1}n1 × {0, 1}n2 . We say X is a simple (k1, k2)-
somewhere-block-source if there exists i ∈ [Λ] such that Xi is a (k1, k2)-block-source. We
say X is a (k1, k2)-somewhere-block-source if X is a convex combination of simple (k1, k2)-
somewhere-block-sources.

Ta-shma’s somewhere-block-source converter [33] is a deterministic function that converts
a k1 + k2 + s-source into a (k1 − O(n/Λ), k2)-somewhere-block-source, which has Λ segments.

Take X1 ∈ {0, 1}n as the original source, assume n is divisible by Λ, otherwise pad X1
with 0’s. Regard X1 as a source with Λ parts, each of length n/Λ:

X1 = (X1,1, . . . , X1,Λ) ∈
(

{0, 1}n/Λ
)Λ

. (10)

Now define the following separation of these parts into (Yi, Zi):

Yi = (X1,1, . . . , X1,i, 0(Λ−i)·(n/Λ)), (11)

Zi = (0i·(n/Λ), X1,i+1, . . . , X1,Λ). (12)

Then (Yi, Zi) ∈ {0, 1}2n. The Ta-shma’s somewhere-block-source converter is defined as
the collection of all (Yi, Zi), for i ∈ [Λ]:

BΛ
T S(X1) =

{
(Yi, Zi) ∈ {0, 1}2n | i ∈ [Λ]

}
. (13)

▶ Theorem 38 ([33]). Let Λ be an integer and Λ divides n. Let BΛ
T S be the Ta-shma’s

somewhere-block-source converter defined above. Fix k, k1, k2, s ∈ N such that k = k1 + k2 + s.
Then for any k-source X ∈ {0, 1}n, BΛ

T S(X) is O(n · 2−s/3)-close to a (k1 − O(n/Λ), k2)-
somewhere-block-source.

Now we summarize the first step:

Step 1: Set Λ = log2a(n), Take X2 = (X2,1, . . . , X2,Λ) = BΛ
T S(X1) as a somewhere-block-

source.

▶ Lemma 39. For any constant a ≥ 0, let k ≥ n
loga(n) . Then for any k-source X1 ∈ {0, 1}n,

the somewhere-block-source X2 = BΛ
T S(X1) is n · 2− n

log2a n -close to a (k − O(n
log2a n

), n
log2a n

)-
somewhere-block-source.

The first step can be computed in AC0 with O(1) depth and poly(n) size, as it is only
splitting the input into blocks.

5.2 Step 2: Extracting from a somewhere-block-source
In this subsection, we focus on the good block of the somewhere-block-source, and extract
randomness from it. A two-block extractor is employed in this section. We use the block-
extraction technique together with our extractors from Theorem 6 and Theorem 27 to extract
O(loga+c n) randomness from the second block of the block source, then use it as seed for
another extractor, in order to extract O(k) randomness from the first block of the block
source.

APPROX/RANDOM 2024

69:16 Randomness Extractors in AC0 and NC1: Optimal up to Constant Factors

For a somewhere-block-source, we may apply the two-block extractor to each segment
such that the good segment is converted into a somewhere-close-to-uniform source. The
source is defined as follows:

▶ Lemma 40. Let X = (X1, . . . , XΛ) be a (k1, k2)-somewhere-block-source, where each
segments is a source on {0, 1}n1 × {0, 1}n2 . Let Ext : {0, 1}n1 × {0, 1}n2 × {0, 1}r → {0, 1}m

be a (k1, k2, ε)-strong-two-block extractor. Let Ur be a uniform random distribution on {0, 1}r.
Then

(Ext(X1, Ur), . . . , Ext(XΛ, Ur))

is ε-close to a somewhere-uniform-source.

Take Ext1 from Theorem 6 and Ext2 from Theorem 27. Construct Ext(X1, X2, Ur) =
Ext1(X1, Ext2(X2, Ur)) as a strong-two-block extractor. We have the following theorem:

▶ Theorem 41 (block-extraction in AC0). There exists a constant γ ∈ (0, 1). For any
constant a, c > 0, let k1(n) ≥ n

loga(n) , k2(n) ≥ n
log2a(n) , ε(n) ≥ 2− logc(n), there exists a

(k1(n), k2(n), ε(n))-strong-two-block extractor Ext : {0, 1}n × {0, 1}n × {0, 1}r → {0, 1}m,
such that r(n) = O(log(n

ε)), and m(n) ≥ (1 − γ)k1(n).
Furthermore, the extractor can be implemented in AC0, with O(a + c + 1)2 depth and

poly(n) size.

We summarize the second step here:

Step 2: Take Ext : {0, 1}n ×{0, 1}n ×{0, 1}r1(n) → {0, 1}m(n) as a (n
loga(n) , n

log2a(n) , ε(n))-
strong-two-block extractor, where r1(n) = O(log(n

ε)) and m(n) ≥ (1 − γ)k(n). Take
X3 = (Ext(X2,1, Ur1), . . . , Ext(X2,Λ, Ur1)) be 2 · ε(n)-close to a somewhere-uniform-
source.

This step can be implemented in AC0 with O(a + c) depth and poly(n) size, as it is
applying AC0 functions to each block of the input.

The source X3 is now ε(n)-close to a somewhere-uniform-source. It has Λ = log2a(n)
segments, each of length m(n) ≥ (1 − γ)k(n). The next step is using the merger introduced
in [9] to merge the segments into one source.

5.3 Step 3: Merging the segments

We use the merger introduced in [9] to merge the segments of the somewhere-uniform-source
into one source. The construction of the merger is discussed in Theorem 21.

Step 3: Take Merge : {0, 1}Λ·m(n) × {0, 1}r2(n) → {0, 1}m(n) be the (m(n), 3
4 m(n), ε(n))-

merger from Theorem 21. Then X4 = Merge(X3, Ur2).

As a direct consequence of Theorem 21 we have the following lemma.

▶ Lemma 42. X4 is 3 · ε(n)-close to a 3
4 m(n)-source.

Also, notice that the computation in AC0 with depth O(a+c), with seed length O(log(n/ε(n)).

K. Cheng and R. Wu 69:17

5.4 Step 4: Second extraction
The final step is as the following.

Step 4: Take Ext2 : {0, 1}m(n)/2 × {0, 1}m(n)/2 × {0, 1}r3(n) → {0, 1}m′(n) be the
(1

8 m(n), 1
8 m(n), ε(n))-strong-two-block extractor from Theorem 41, where r3(n) =

O(log(n
ε)) and m′(n) ≥ 1−γ

6 · m(n). Take X5 = Ext2(X ′
4, X ′′

4 , Ur3), where Ur3 is a
uniform random distribution on {0, 1}r3(n), where (X ′

4, X ′′
4) = X4.

▶ Lemma 43. X5 is 5ε(n) close to uniform.

The circuit depth of Ext2 is O(a + c + 1)2 by Theorem 41.
Now we prove the main theorem of this section:

▶ Theorem 44. For any constant a, c > 0, γ′ ∈ (0, 1), let k(n) ≥ n
loga(n) , ε(n) ≥ 2− logc(n).

Then there exists a (k(n), ε′(n))-strong extractor Ext : {0, 1}n ×{0, 1}r(n) → {0, 1}m(n), such
that r(n) = O(log(n

ε(n))), and m(n) ≥ (1 − γ′) · k(n).
Furthermore, the extractor can be implemented in AC0, with O(a + c + 1)2 depth and

poly(n) size.

Proof. The extractor Ext is defined as Ext(X1, Ur1 , Ur2 , Ur3) = X5, where X5 is defined
through the four steps above. Detailed analysis could be found in the full version. ◀

6 Extractors in NC1

Our method can also construct extractors in NC1 with improved parameters. The construction
consists of 3 parts:
1. Apply a condenser from [19]. It behaves like the GUV condenser but is computable in

NC1. It condenses the source into a source with a constant entropy rate. We regard the
output as a block source.

2. For the second block, apply our error reduction method which outputs a seed of length
O(log2 n log(n/ϵ)).

3. Apply the improved Trevisan’s extractor [26] to the first block, which outputs Ω(k) bits
of randomness.

The main theorem is as follows:

▶ Theorem 45. For every constant γ ∈ (0, 1) every k = k(n) ≥ Ω(log2(n)), ε = ε(n) ≥
2−O

(√
k(n)
)
, there exists a strong (k, ε) extractor Ext : {0, 1}n × {0, 1}r(n) → {0, 1}m(n)

computable in NC1, with r(n) = O(log(n/ε)), m(n) = (1 − γ)k(n).

6.1 Condenser in NC1

The first component in our construction is the condenser from [19]. A simplified version of
their result is as follows:

▶ Lemma 46 (condenser from [19]). For every k = k(n) ≥ Ω(log2(n)), ε = ε(n) ≥ n ·
2−

√
k(n)/1024, There exists m(n) ≤ 3

2 k(n) and a function Cond : {0, 1}n × {0, 1}r(n) →
{0, 1}m(n) with r ≤ 4 log(n

ε) such that Cond is a (k, k + r, ε)-condenser.

APPROX/RANDOM 2024

69:18 Randomness Extractors in AC0 and NC1: Optimal up to Constant Factors

The condenser takes the input x as the representation of a degree ≤ d = O(n
log q)

polynomial over Fq for some prime q ≥ d, log q ≥ r. Denote the degree ≤ d polynomial as f .
The condenser takes the seed y as a point in Fq. Then the output is defined as:

Cond(x, y) = (y, f(y), f (1)(y), . . . , f (s)(y)) (14)

for some s = s(n) ≤ m(n)
r(n) . f (i) denotes the i-th formal derivative of f .

To apply the condenser, we need to transform a source on {0, 1}n to a source on Fq

and transform it back for the output. We use division to do the transformation, which is
computable in NC1.

The condenser itself requires two sorts of operations: polynomial evaluation and formal
derivative. Denote f(x) =

∑d
i=0 aix

i. Then f (j)(x) =
∑d

i=0
i!

(i−j)! aix
i−j . There are at

most d2 such coefficients i!
(i−j)! , which can be precomputed and stored in the circuit. The

multiplication of ai and i!
(i−j)! can be done in NC1. Therefore, the formal derivative is

computable in NC1.
The polynomial evaluation consists of three operations: calculating the powering xi−j ,

multiplication and summation. The powering can be implemented with two steps: O(n)-th
powering and division by q, which are computable in NC1 according to [4]. The multiplication
and iterated summation are both in NC1.

Putting it together, we can obtain the following lemma:

▶ Lemma 47. The condenser from Lemma 46 is computable in NC1.

Regard the output of the condenser as (X1, X2), |X1| = |X2| = 1
2 m(n). By Lemma 15,

(X1, X2) is ε(n)-close to a (1
2 m(n), 1

6 m(n), 1
2 m(n), 1

6 m(n))-source.

6.2 Error Reduction in NC1

After condensing, we only need to handle an input (n, k) source X over {0, 1}n with constant
entropy rate δ = k

n . To extract a seed of length O(log n log(n/ϵ)), we use almost the same
procedure as in Section 4 despite some minor changes.

For the first step to convert the source to a somewhere source, we use the same extractors
as in Section 4. We apply the extractors in parallel for t = log n

log(1/ε) = O(
√

k) times. Then
the output is ε-close to a somewhere (m0, m0 − log(t))-source, where m0 = Ω(k).

For the second step, we still apply the (m0 − log(t), 0.9m0, ε)-merger from Corollary 26
to the output of the first step as in Section 4. Since ε ≥ 2−O(

√
k) and t = poly(k), the merger

is computable in NC1.
After applying the merger, we obtain a block-source with exponentially increasing length.

We require a modification to Theorem 7 for the NC1 setting. The main difference is
that the error is now 2−O(

√
k) instead of 2− poly(log n). Also we setup the block length

mj = 3j · 10 log n
ε , j ∈ [l], where l can still be O(log n), since ε = 2−O(

√
k).

To extract from the block source, we require the following extractor in NC1.

▶ Lemma 48. For every constant δ ∈ (0, 1] and every ε = 2−O(n), there exists an explicit
(δn, ε)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m in NC1, where d = O(log(n/ε)), m =
Θ(log(n/ε)).

We use the sample-then-extract technique with leftover hash lemma to construct the
extractor. Detailed analysis could be found in the full version.

Using the extractor to extract from the block source as in Section 4, we obtain a seed of
length O(log n log(n/ε)).

One can use the iteration of Section 4 to stretch the output to O(log2 n log(n/ε)).

K. Cheng and R. Wu 69:19

This gives us the following lemma:

▶ Lemma 49. For every δ ∈ (0, 1), k = δn, ε = ε(n) = 2−O(
√

k), there exists a strong
(k(n), ε(n))-extractor Ext : {0, 1}n × {0, 1}r(n) → {0, 1}m(n) computable in NC1, with
r(n) = O(log(n/ε)), m(n) = O(log2(n) log(n/ε)).

6.3 Improved Trevisan’s Extractor in NC1

With the seed of length O(log2 n log(n/ε)), We apply the extractor from [26] to the first
block of the block source. Their extractor could be implemented in NC1

▶ Theorem 50 (Improved Trevisan’s Extractor [26]). For every k = k(n), ε = ε(n), there
are explicit (k(n), ε(n))-extractors ExtT rev : {0, 1}n × {0, 1}r(n) → {0, 1}m(n) with r(n) =
O(log2(n) log(n/ε)) and m(n) = Ω(k(n)).

Moreover,the extractor ExtT rev is computable in NC1.

6.4 Putting it together
Now we can prove Theorem 45.

Proof of Theorem 45. Take X as the input source. Let Cond : {0, 1}n × {0, 1}r1(n) →
{0, 1}m(n) be the (k, k + r1, ε/4)-condenser from Lemma 46. Take (X1, X2) = Cond(X, U1),
where U1 is the seed of length r1 = O(log(n/ε)). By Lemma 15, (X1, X2) is ε/2-close to a
(1

2 m(n), 1
6 m(n), 1

2 m(n), 1
6 m(n))-source.

For X2, apply the (1
6 m(n), ε/4)-strong extractor Ext1 from Lemma 49 with seed U2 of

length r2 = O(log(n/ε)). The output is Y = Ext1(X2, U2) of length O(log2(n) log(n/ε)).
For X1, apply the (1

2 m(n), ε/4)-extractor ExtT rev from Theorem 50 with seed Y , which
outputs a distribution W of length Ω(k).

By the property of Ext1, (X1, Y) is 3ε/4-close to (X1, Y ′) such that Y ′ is a independent
uniform distribution. Therefore W = ExtT rev(X1, Y) is ε-close to uniform.

The extractor Ext is defined as Ext(X, U1, U2) = W . Cond, Ext1, ExtT rev are all
computable in NC1. Therefore, Ext is computable in NC1. ◀

7 Entropy lower bound for AC0 dispersers

In the context of AC0 computation, not all sources are extractable. A well-known result
of [10] shows that extracting even one bit of randomness is impossible for sources with
entropy less than n

poly(log n) . Similar result from [7] shows that extracting randomness with
error less than 2−poly(log n) is impossible for AC0 extractors.

In this section, we will extend the bound from extractors to dispersers. Dispersers are
functions that take a source and a seed and output a distribution like extractors. The only
difference is that the output distribution is not necessarily uniform, but rather supported
on all but a small fraction of the codomain. We will show that strong AC0 dispersers for
sources with entropy less than n

poly(log n) do not exist.

▶ Definition 51 (Disperser). A function Disp : {0, 1}n × {0, 1}r → {0, 1}m is a (k, ε)-
disperser if for every k-source X on {0, 1}n and uniformly random variable Y on {0, 1}r,
| Supp(Disp(X, Y))| ≥ (1 − ε)2m.

Furthermore, Disp is a strong (k, ε)-disperser if for every k-source X on {0, 1}n and
uniformly random variable Y on {0, 1}r, | Supp(Y, Disp(X, Y))| ≥ (1 − ε)2r+m.

APPROX/RANDOM 2024

69:20 Randomness Extractors in AC0 and NC1: Optimal up to Constant Factors

We remark that the requirement for X to have entropy ≥ k can be replaced by a weaker
requirement, which only requires Supp(X) ≥ 2k, without changing the definition.

Our proof is based on the new switching lemma for AC0 circuits by Rossman in [28].
Their original result says that every AC0 circuit can be reduced to a decision tree of arbitrary
depth under a random restriction for all but a small fraction of the inputs. By restricting
the inputs for the second time, it is reduced to a constant function.

▶ Definition 52 (Restrictions). A restriction ρ is a string on {0, 1, ∗}n. We denote the
application of ρ to x ∈ {0, 1}n by ρ ◦ x, which is defined as:

(ρ ◦ x)i =
{

ρi if ρi ̸= ∗,

xi if ρi = ∗.
(15)

The restriction on a function f : {0, 1}n → {0, 1}m is defined as:

f |ρ(x) = f(ρ ◦ x). (16)

We use Rp to denote the independent uniform random restriction with star probability p.
That is, for every i ∈ [n], Pr[Rp(i) = ∗] = p, Pr[Rp(i) = 0] = Pr[Rp(i) = 1] = 1−p

2 .

The switching lemma for AC0 circuits is stated as follows:

▶ Lemma 53 (Switching Lemma for AC0 circuits [28]). For every δ ∈ (0, 1), d > 0, s = s(n),
there exists p = δ

Θ(log s)d−1 such that for every AC0 circuit C of size s and depth d,

Pr
ρ∼Rp

[C|ρ is not constant] ≤ δ. (17)

The following negative result for strong dispersers directly follows from the switching
lemma.

▶ Theorem 54. For every d > 0, s = s(n), every constant δ ∈ (0, 1), if C : {0, 1}n ×{0, 1}r →
{0, 1} is a (k, 1

2 − δ)-disperser that can be computed by a non-uniform AC circuit of size s

and depth d, then k ≥ Θ(δn
logd−1 s

).

8 Open Questions

We mention the following open questions.
For extractors in AC0, can we further improve the circuit depth? The current depth is
O(a + c + 1)2. Is it possible to be linear in a + c + 1, while maintaining other parameters
to be roughly the same?
For extractors in NC1, can we improve the plausible range of k and ε? For example is it
possible to give an NC1 construction that can work for all k, ε, matching the parameters
in [13]?
Some components of our NC1 computable extractors are actually in AC0[2]. Is it possible
to give an extractor in AC0[2], with parameters optimal up to constant factors?
For weak dispersers, we do not have a similar negative result to that of Section 7. The
reason is that a single good seed in the seed space can make the disperser good enough,
regardless of other seeds. So it remains an open question whether weak dispersers can
constructed in AC0, specifically for sources with entropy less than n

poly(log n) .

K. Cheng and R. Wu 69:21

References
1 Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge

University Press, 2009.
2 Z. Bar-Yossef, O. Reingold, R. Shaltiel, and L. Trevisan. Streaming computation of com-

binatorial objects. In Proceedings of the 17th Annual IEEE Conference on Computational
Complexity, pages 165–174, 2002.

3 David A Barrington. Bounded-width polynomial-size branching programs recognize exactly
those languages in nc. In Proceedings of the eighteenth annual ACM symposium on Theory of
computing, pages 1–5, 1986.

4 Paul Beame, Stephen A. Cook, and H. James Hoover. Log depth circuits for division and
related problems. SIAM J. Comput., 15(4):994–1003, 1986. doi:10.1137/0215070.

5 J. L. Carter and M. N. Wegman. Universal classes of hash functions. Journal of Computer
and System Sciences, 18:143–154, 1979.

6 Lijie Chen and Roei Tell. Hardness vs randomness, revised: Uniform, non-black-box, and
instance-wise. In 62nd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 125–136. IEEE, 2021. doi:
10.1109/FOCS52979.2021.00021.

7 Kuan Cheng and Xin Li. Randomness extraction in ac0 and with small locality. In Ap-
proximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM) 2018. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.

8 Gil Cohen, Dean Doron, Ori Sberlo, and Amnon Ta-Shma. Approximating iterated multiplic-
ation of stochastic matrices in small space. In Barna Saha and Rocco A. Servedio, editors,
Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, Or-
lando, FL, USA, June 20-23, 2023, pages 35–45. ACM, 2023. doi:10.1145/3564246.3585181.

9 Zeev Dvir, Swastik Kopparty, Shubhangi Saraf, and Madhu Sudan. Extensions to the Method
of Multiplicities, with Applications to Kakeya Sets and Mergers. SIAM Journal on Computing,
42(6):2305–2328, January 2013. doi:10/f5msx6.

10 Oded Goldreich, Emanuele Viola, and Avi Wigderson. On randomness extraction in AC0. In
Proceedings of the 30th Conference on Computational Complexity, CCC ’15, pages 601–668,
Dagstuhl, DEU, June 2015. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

11 Oded Goldreich and Avi Wigderson. Tiny families of functions with random properties
(preliminary version) a quality-size trade-off for hashing. In Proceedings of the twenty-sixth
annual ACM symposium on Theory of computing, pages 574–584, 1994.

12 Shafi Goldwasser, Dan Gutfreund, Alexander Healy, Tali Kaufman, and Guy N. Rothblum.
Verifying and decoding in constant depth. In Proceedings of the thirty-ninth annual ACM
symposium on Theory of computing, pages 440–449. ACM, 2007.

13 Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. Unbalanced expanders and
randomness extractors from Parvaresh–Vardy codes. Journal of the ACM, 56(4):1–34, June
2009. doi:10/ctbzhm.

14 Alexander Healy and Emanuele Viola. Constant-Depth circuits for arithmetic in finite fields
of characteristic two. In Proceedings of the 23rd Annual Conference on Theoretical Aspects of
Computer Science, STACS’06, pages 672–683, Berlin, Heidelberg, February 2006. Springer-
Verlag. doi:10/df5dfs.

15 Alexander D Healy. Randomness-efficient sampling within nc1. Computational Complexity,
17(1):3–37, 2008.

16 Russel Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation from one-
way functions. In Proceedings of the 21st Annual ACM Symposium on Theory of Computing,
pages 12–24, 1989.

17 Russell Impagliazzo. Hard-core distributions for somewhat hard problems. In Foundations
of Computer Science, 1995. Proceedings., 36th Annual Symposium on, pages 538–545. IEEE,
1995.

18 Russell Impagliazzo and Avi Wigderson. P=BPP unless E has sub-exponential circuits:
Derandomizing the xor lemma. In Proceedings of the 29th Annual ACM Symposium on Theory
of Computing, 1997.

APPROX/RANDOM 2024

https://doi.org/10.1137/0215070
https://doi.org/10.1109/FOCS52979.2021.00021
https://doi.org/10.1109/FOCS52979.2021.00021
https://doi.org/10.1145/3564246.3585181
https://doi.org/10/f5msx6
https://doi.org/10/ctbzhm
https://doi.org/10/df5dfs

69:22 Randomness Extractors in AC0 and NC1: Optimal up to Constant Factors

19 Itay Kalev and Amnon Ta-Shma. Unbalanced expanders from multiplicity codes. In Ap-
proximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM) 2022, volume 245 of LIPIcs, pages 12:1–12:14. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.APPROX/RANDOM.2022.12.

20 Chi-Jen Lu, Omer Reingold, Salil Vadhan, and Avi Wigderson. Extractors: Optimal up
to Constant Factors. Proceedings of the thirty-fifth annual ACM symposium on Theory of
computing, June 2003. doi:10/bw2j9d.

21 Noam Nisan and Amnon Ta-Shma. Extracting randomness: A survey and new constructions.
Journal of Computer and System Sciences, 58:148–173, 1999.

22 Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of Computer and System
Sciences, 49(2):149–167, October 1994.

23 Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of Computer and
System Sciences, 52(1):43–52, 1996.

24 Jaikumar Radhakrishnan and Amnon Ta-Shma. Bounds for dispersers, extractors and depth-
two superconcentrators. Siam Journal on Discrete Mathematics, 13:2–24, 2000.

25 Ran Raz, Omer Reingold, and Salil P. Vadhan. Error reduction for extractors. In 40th Annual
Symposium on Foundations of Computer Science, FOCS ’99, pages 191–201. IEEE Computer
Society, 1999. doi:10.1109/SFFCS.1999.814591.

26 Ran Raz, Omer Reingold, and Salil P. Vadhan. Extracting all the randomness and reducing
the error in trevisan’s extractors. J. Comput. Syst. Sci., 65(1):97–128, 2002. doi:10.1006/
JCSS.2002.1824.

27 Omer Reingold, Ronen Shaltiel, and Avi Wigderson. Extracting randomness via repeated
condensing. In 41st Annual Symposium on Foundations of Computer Science, FOCS 2000,
pages 22–31. IEEE Computer Society, 2000. doi:10.1109/SFCS.2000.892008.

28 Benjamin Rossman. An entropy proof of the switching lemma and tight bounds on the
decision-tree size of AC0, 2017. URL: https://users.cs.duke.edu/~br148/logsize.pdf.

29 Ronen Shaltiel. Recent developments in explicit constructions of extractors. Bulletin of the
European Association for Theoretical Computer Science, 77:67–95, 2002.

30 Ronen Shaltiel. An introduction to randomness extractors. In Proceedings of the 38th
International Colloquium on Automata, Languages, and Programming, 2011.

31 A. Srinivasan and D. Zuckerman. Computing with very weak random sources. SIAM Journal
on Computing, 28:1433–1459, 1999.

32 Amnon Ta-Shma. On extracting randomness from weak random sources. In Proceedings of
the 28th Annual ACM Symposium on Theory of Computing, pages 276–285, 1996.

33 Amnon Ta-Shma. Almost optimal dispersers. In Proceedings of the Thirtieth Annual ACM
Symposium on the Theory of Computing, 1998, pages 196–202. ACM, 1998. doi:10.1145/
276698.276736.

34 Amnon Ta-Shma and Christopher Umans. Better condensers and new extractors from
parvaresh-vardy codes. In 2012 IEEE 27th Conference on Computational Complexity, pages
309–315. IEEE, 2012.

35 Roei Tell. Improved bounds for quantified derandomization of constant-depth circuits and
polynomials. computational complexity, 28(2):259–343, 2019.

36 Luca Trevisan. Extractors and pseudorandom generators. Journal of the ACM, 48(4):860–879,
2001. doi:10.1145/502090.502099.

37 Salil Vadhan. The unified theory of pseudorandomness. SIGACT News, 38, 2007.
38 Salil Vadhan. Pseudorandomness. Foundations and Trends® in Theoretical Computer Science,

7(1–3):1–336, 2012.
39 Emanuele Viola. The complexity of constructing pseudorandom generators from hard functions.

computational complexity, 13(3-4):147–188, 2005.
40 Avi Wigderson and David Zuckerman. Expanders that beat the eigenvalue bound: Explicit

construction and applications. Combinatorica, 19(1):125–138, 1999.
41 David Zuckerman. Randomness-optimal oblivious sampling. Random Structures and Al-

gorithms, 11(4):345–367, December 1997. doi:10/cr8kht.

https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2022.12
https://doi.org/10/bw2j9d
https://doi.org/10.1109/SFFCS.1999.814591
https://doi.org/10.1006/JCSS.2002.1824
https://doi.org/10.1006/JCSS.2002.1824
https://doi.org/10.1109/SFCS.2000.892008
https://users.cs.duke.edu/~br148/logsize.pdf
https://doi.org/10.1145/276698.276736
https://doi.org/10.1145/276698.276736
https://doi.org/10.1145/502090.502099
https://doi.org/10/cr8kht

On Sampling from Ising Models with Spectral
Constraints∗

Andreas Galanis #

University of Oxford, UK

Alkis Kalavasis #

Yale University, New Haven, CT, USA

Anthimos Vardis Kandiros #

Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract
We consider the problem of sampling from the Ising model when the underlying interaction matrix
has eigenvalues lying within an interval of length γ. Recent work in this setting has shown various
algorithmic results that apply roughly when γ < 1, notably with nearly-linear running times based
on the classical Glauber dynamics. However, the optimality of the range of γ was not clear since
previous inapproximability results developed for the antiferromagnetic case (where the matrix has
entries ≤ 0) apply only for γ > 2.

To this end, Kunisky (SODA’24) recently provided evidence that the problem becomes hard
already when γ > 1 based on the low-degree hardness for an inference problem on random matrices.
Based on this, he conjectured that sampling from the Ising model in the same range of γ is NP-hard.

Here we confirm this conjecture, complementing in particular the known algorithmic results by
showing NP-hardness results for approximately counting and sampling when γ > 1, with strong
inapproximability guarantees; we also obtain a more refined hardness result for matrices where only
a constant number of entries per row are allowed to be non-zero. The main observation in our
reductions is that, for γ > 1, Glauber dynamics mixes slowly when the interactions are all positive
(ferromagnetic) for the complete and random regular graphs, due to a bimodality in the underlying
distribution. While ferromagnetic interactions typically preclude NP-hardness results, here we work
around this by introducing in an appropriate way mild antiferromagnetism, keeping the spectrum
roughly within the same range. This allows us to exploit the bimodality of the aforementioned
graphs and show the target NP-hardness by adapting suitably previous inapproximability techniques
developed for antiferromagnetic systems.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness;
Theory of computation → Random walks and Markov chains; Theory of computation → Generating
random combinatorial structures

Keywords and phrases Ising model, spectral constraints, Glauber dynamics, mean-field Ising, random
regular graphs

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.70

Category RANDOM

Related Version Full Version: https://arxiv.org/abs/2407.07645

Funding Vardis Kandiros was supported by a Fellowship of the Eric and Wendy Schmidt Center
at the Broad Institute of MIT and Harvard and by the Onassis Foundation-Scholarship ID: F ZP
016-1/2019-2020.

∗ For the purpose of Open Access, the author has applied a CC BY public copyright licence to any Author
Accepted Manuscript (AAM) version arising from this submission.

© Andreas Galanis, Alkis Kalavasis, and Anthimos Vardis Kandiros;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 70; pp. 70:1–70:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:andreas.galanis@cs.ox.ac.uk
mailto:alkis.kalavasis@yale.edu
mailto:kandiros@csail.mit.edu
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.70
https://arxiv.org/abs/2407.07645
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

70:2 On Sampling from Ising Models with Spectral Constraints

1 Introduction

The Ising model with a symmetric interaction matrix J ∈ RN×N is a probability distribution
µJ over {−1, 1}N with

µJ(σ) = 1
ZJ

exp
(

1
2σ⊤Jσ

)
for all vectors σ ∈ {−1, 1}N ,

where the normalizing constant ZJ =
∑

σ∈{−1,1}N exp
(1

2 σ⊤Jσ
)

is the partition function of
the model. The most well-studied setting for the Ising model is when the underlying matrix
J corresponds to the adjacency matrix of a graph G, scaled by a real parameter β which
corresponds to the (inverse) temperature;1 for β > 0 the model is called ferromagnetic, and
antiferromagnetic otherwise. The more general setting with non-uniform weights in the
entries of J arises frequently in statistical learning settings, see, e.g., [9, 30, 25, 12].

The Ising model is the most fundamental example of a spin system, capturing how local
interactions affect the global macroscopic behaviour, see [48, 41, 40, 33] for applications
in various areas. From a computer science perspective, sampling from the Ising model
plays a key role in various learning and inference problems. Understanding the limits of
efficient sampling has therefore been a major focus in the literature, yielding new algorithmic
techniques as well as exploring the power of classical algorithms (such as Glauber dynamics)
and their connections to phase transitions in statistical mechanics; we briefly review some of
the relevant literature below.

The prototypical setting where the problem of sampling for the Ising model has been
studied is lattices (such as Z2), where the landscape for Markov-chain algorithms has been
well-understood [38, 39, 37]. Random graph models have also been considered more recently
such as sparse random graphs [43, 13, 6, 16, 36] or the Sherrington-Kirkpatrick model
[18, 17, 26]. More closely related to the setting considered in this paper is the case of
general graphs. In the ferromagnetic case, where the entries of J are all nonnegative, the
classical algorithm by Jerrum and Sinclair [28] gives a poly-time sampler (albeit with a
relatively large running-time polynomial), see also [24, 19]. In the antiferromagnetic case,
the problem is more interesting for bounded-degree graphs, where in the case of uniform
weights the existence of polynomial-time algorithms is connected to the uniqueness threshold,
see [46, 47, 21, 45, 35].

Recently, the development of spectral independence [4, 1] has given tight results on the
performance of Glauber dynamics. This has lead to nearly linear-time algorithms in various
settings, see e.g., [11, 10, 18, 3, 31] and has made it possible to connect the performance of
Glauber dynamics with the eigenvalues of the underlying matrix J . In this direction, [18, 3]
show that Glauber dynamics is fast mixing when λmax(J) − λmin(J) < 1 which significantly
improves upon the standard Dobrushin’s uniqueness condition (the latter only applies when∑

j |Jij | < 1 for all i ∈ [N]).
On the other side, the optimality of these algorithmic results in terms of the spectrum is

less clear. It is known [34, 14] that Glauber dynamics mixes slowly in the complete graph
for temperatures β > 1, which corresponds precisely to the condition λmax(J) − λmin(J) > 1
by taking J to be the adjacency matrix of the N -vertex complete graph, scaled by β/N .
This does not however translate in a straightforward way to hardness results and does not
preclude the possibility that various alternative methods could potentially go beyond the
1-gap, see, e.g., [44, 31, 27] for some recent approaches using variational methods. To this

1 Note that in this parametrization µJ (σ) ∝ exp(1
2 βσ⊤Aσ), where A is the adjacency matrix of the graph.

A. Galanis, A. Kalavasis, and A. V. Kandiros 70:3

end, Kunisky [32] gave further evidence that λmax(J) − λmin(J) > 1 is hard for sampling
via a reduction to hypothesis testing in a Wishart negatively-spiked matrix model that
involves random matrices (which is known to resist low-degree algorithms [5]). Kunisky
also posed the conjecture that in fact NP-hardness for sampling under spectral constraints
should hold when λmax(J) − λmin(J) > 1. To add a bit to the mystery, it is noteworthy that
the inapproximability results for the antiferromagnetic case (mentioned earlier) only apply
roughly when λmax(J) − λmin(J) > 2, see also below for a more detailed discussion.

1.1 Our results
Our aim in this work is to address Kunisky’s conjecture and close the gap between algorithmic
and NP-hardness results. In particular, we answer in the affirmative the conjecture in [32],
obtaining NP-hardness results that complement the algorithmic results of [18, 3]. This
completes the program initiated in [32], i.e., showing that Glauber is effectively optimal for
“general-purpose” Ising model sampling, and clarifies the picture in terms of the computational
complexity landscape under spectral constraints.

To formally state the result, we define the following computational problem.

Problem: SpectralIsing(γ)
Input: A symmetric matrix J ∈ RN×N , with λmax(J) − λmin(J) < γ.
Output: The partition function ZJ =

∑
σ∈{−1,+1}N exp

(1
2 σ⊺Jσ

)
.

▶ Theorem 1. Fix any real γ > 1. Then, it is NP-hard to approximate SpectralIsing(γ),
even within an exponential factor 2cN for some constant c = c(γ) > 0.

This confirms Conjecture 1.9 of [32] and complements the algorithm of [18, 3]. Using
Theorem 1, we get the following result using the standard reduction [29] from counting to
sampling (the problem is self-reducible under scaling of the matrix J). Recall, the total
variation distance between probability distributions µ and ν is defined as TV(µ, ν) = 1

2 ∥µ−ν∥1.

▶ Corollary 2. For every real γ > 1, the following holds. Suppose there is a poly-time sampler
that, on input a symmetric matrix J ∈ RN×N with λmax(J)−λmin(J) < γ and δ > 0, returns
a configuration σ whose distribution is within TV distance δ from µJ . Then NP = RP.

As we will explain next, it is also possible to obtain a more refined version of Theorem 1,
for the restricted case where each row of the interaction matrix J has at most d non-zero
entries, for some fixed integer d ≥ 4.

Problem: BoundedSpectralIsing(d, γ)
Input: A symmetric matrix J ∈ RN×N , with ≤ d non-zero entries per row and λmax(J) −
λmin(J) < γ.
Output: The partition function ZJ =

∑
σ∈{−1,+1}N exp

(1
2 σ⊺Jσ

)
.

▶ Theorem 3. Fix any integer d ≥ 4 and real γ > 1
2 ln(1 + 2

d−3)(d − 1 + 2
√

d − 2). Then,
it is NP-hard to approximate BoundedSpectralIsing(d, γ), even within an exponential
factor 2cN for some constant c = c(γ) > 0.

Note that when taking the limit d → ∞ in the above bound, we recover the spectral
condition γ > 1 of Theorem 1, so asymptotically the bound is tight; we are not aware of
algorithmic results that apply specifically to the d-sparse setting under the spectral condition.

APPROX/RANDOM 2024

70:4 On Sampling from Ising Models with Spectral Constraints

We remark further that applying the results of [47, 21] would yield hardness only in the
setting where γ > d ln(1 + 2

d−2) (see [32, Section 1.2] for a detailed description on how to
translate the results), so Theorem 3 improves on this by roughly a factor of 2 asymptotically.
It should be noted however that the setting in these results is more restrictive (negative
weights, which have the same value on all edges) and hence not directly comparable.

1.2 Techniques

Before giving the proofs, we explain briefly the main idea behind Theorem 1, the idea for
Theorem 3 is almost identical, modulo the gadget used in the reduction.

The key ingredient in obtaining Theorem 1 is to exploit the slow mixing of Glauber
dynamics on the complete graph in a suitable way. Recall that [34] showed exponential mixing
time for Glauber dynamics on the N -vertex complete graph when the weights on the edges are
ferromagnetic equal to β/N (entry-wise) for any β > 1 (note that the corresponding matrix
J has λmax(J)−λmin(J) = β). Intuitively, the slow mixing is caused because the distribution
exhibits bimodality, i.e., it is concentrated around two modes/“phases” corresponding roughly
to the all-plus and all-minus configurations (see Section 2 for more details). Therefore, we
would like to use the binary behaviour of the complete graph as a gadget in the reduction.
The main trouble here is caused by the ferromagnetic interactions which cannot typically
be related to NP-hard problems; by contrast, in the antiferrromagnetic case β < 0, the
max-probability configurations in the Ising distribution correspond to maximum cuts (when
J encodes the adjacency matrix of a graph), and the respective gadgets in the constructions
had bipartite structure.2

Hence, in order to get NP-hardness, we need to introduce some “mild” antiferromagnetism
(small negative weights): mild to keep the spectrum unchanged and antiferromagnetic to
allow us to reduce from an NP-hard problem (we will use MaxCut); this is quite different than
the approach of [32] where the positive and negative entries in the constructed instance are
more heavily mixed up (randomly). At this stage, the main observation is that the previous
reductions used in the antiferromagnetic case [46, 47, 21] can accommodate this relatively
easily; the only difference here is that we need to use small negative weights to connect
disjoint copies of the gadgets, and amplify their effect using appropriately-sized matchings;
conveniently, since the matchings (with the small weights on their edges) correspond to a
low-rank perturbation, the spectrum of the underlying matrix is close to that of the complete
graph.

The proof of Theorem 3 is almost identical. The main difference needed to make our
construction sparse is to use a random d-regular graph as the gadget, which is known to
exhibit slow mixing when β > βd := 1

2 ln(1 + 2
d−2) [22, 13, 43, 42], with a similar bimodal

behaviour to that of the complete graph for β > 1. Relative to the spectrum, the well-known
result of Friedman [20] shows that the adjacency matrix A of a random d-regular graph
satisfies w.h.p. λmax(A) − λmin(A) ≤ λd + ϵ for any constant ϵ > 0, where λd := d + 2

√
d − 1.

For technical reasons (see Remark 10 for details), we need to actually use a (d − 1)-regular
graph as a gadget in the reduction, so the argument sketched above yields NP-hardness when
γ > βd−1λd−1 and d ≥ 4.

2 As a side note, we remark that the factor-2 gap from the antiferromagnetic setting (mentioned below
Theorem 3) comes from the use of bipartite gadgets in these results, which have a symmetric spectrum
around zero and hence effectively double the range of the eigenvalues.

A. Galanis, A. Kalavasis, and A. V. Kandiros 70:5

1.3 Outline and Discussion
We give the details of the gadget in Section 2 and the reduction in Section 3.1. This gives
a self-contained proof of Theorem 1; for Theorem 3 the argument is identical modulo the
use of the (random) d-regular graph as the gadget, for which we need to import a couple of
non-trivial results from the literature.

As a final remark before proceeding to the proofs, it would be interesting to explore whether
the statistical hardness perspective from [32] (or some variant) perhaps applies to other
counting/sampling problems where NP-hardness results are unlikely, such as approximating
the number of independent sets in a bipartite graph [15], or approximating the partition
function of the ferromagnetic Potts model [23]. Another related question is whether such
statistical hardness results can be invoked on sparse random graph models where the spectral
threshold λmax(J) − λmin(J) = 1 (that applies to worst-case instances) is known not to be
tight (see [10, 31, 36]).

2 The Gadget of Theorem 1

Our main gadget will be a clique graph Kn = (V, E) with n vertices, where V = {1, 2, . . . , n}.
We will consider n to be an absolute (large) constant that we will choose later. For a small
integer t > 0, let S ⊆ V be an arbitrary subset of V with |S| = t. Let r = n − t. Intuitively,
S contains the nodes that will be used to connect the gadgets with each other.

We define the phase of the configuration σ ∈ {−1, 1}n on V \S as

Yσ = 1
{ ∑

i∈V \S

σi > 0
}

− 1
{ ∑

i∈V \S

σi ≤ 0
}

.

Note that the phase of a configuration is defined using only the spins in V \ S. For any fixed
β > 0, consider solutions to the equation

ln 1 − α

α
+ 2β(2α − 1) = 0 (1)

for α ∈ [0, 1]. It is not hard to see that for β > 1 there are exactly three solutions
α = q−, 1/2, q+ which satisfy q+ − 1/2 = 1/2 − q− > 0. Using these, we define the product
measure Q+

S (resp. Q−
S) on configurations on S, where each spin takes the value +1 with

probability q+, and −1 with probability 1 − q+ (resp. q− and 1 − q−). Concretely, for
τ ∈ {−1, +1}S , we have

Q±
S (τ) = (q±)

∑
i∈S

τi+t

2 (1 − q±)
t−

∑
i∈S

τi

2 =
(
q±(1 − q±)

)t/2
(

q±

1−q±

)∑
i∈S

τi

2
. (2)

We now state a lemma that presents the basic properties of the Ising model on our gadget
graph. A similar lemma appears in the seminal results of [46, 47]. Informally, the lemma
states that conditioned on the phase of the spins in V \ S, the spins in S behave almost
independently from each other, with bias depending on the phase.

▶ Lemma 4. Let β > 1. Then, for any real ϵ > 0 and integer t ≥ 1, for all sufficiently
large integers n = n(t, ϵ) such that n − t is odd, the following holds for the Ising model with
interaction matrix J ∈ Rn×n given by J = β

n−t 11⊤, where 1 is the n-dimensional vector with
all ones.

Let S ⊆ [n] be a subset of the vertices with |S| = t. Then:
1. The phases on V \S appear with the same probability, i.e., Prσ∼µJ

[Yσ = +] =
Prσ∼µJ

[Yσ = −] = 1/2.

APPROX/RANDOM 2024

70:6 On Sampling from Ising Models with Spectral Constraints

2. Conditioned on the phase, the joint distribution of the spins in S is approximately given
by the product distribution Q±

S , i.e.,

for any τ ∈ {−1, +1}S, it holds that Prσ∼µJ

[
σS = τ | Yσ = ±

]
= (1 ± ϵ)Q±

S (τ).

Proof. Let r = n − t. For r odd (as in the statement of the lemma), we have by symmetry
that the phases appear with equal probability. So, we focus on proving the second item. For
a vector x with entries +1 or −1, we denote by |x| the sum of its entries.

Let α ∈ [0, 1] be such that αr is an integer. For a configuration τ ∈ {−1, +1}S , let Zα(τ)
be the contribution to the partition function of configurations σ with αr spins from V \S set
to +1, (1 − α)r spins from V \S set to −1 and σS = τ . Concretely,

Zα(τ) =
∑

σ∈{−1,+1}V ; σS=τ, |σV \S |=(2α−1)r

exp(1
2 σ⊤Jσ).

The number of configurations σ with σS = τ and exactly αr of the spins in V \S equal to
1 is

(
r

αr

)
. Using that J = β

r 11⊤, for each such σ, we have 1
2 σ⊤Jσ = β

r (|σV \S | + |τ |)2 =
β
2r

(
(2α − 1)r + |τ |

)2. So,

Zα(τ) =
(

r

αr

)
exp

(
β

2 (2α − 1)2r + β(2α − 1)|τ | + β

2r
|τ |2

)
. (3)

We use the well-known approximation of the binomial coefficient using Stirling’s approxima-
tion. This yields, for any α ∈ [0, 1], that(

r

αr

)
= exp(rH(α) + o(r)). (4)

where H(α) := −α ln α − (1 − α) ln(1 − α) is the binary entropy function. Asymptotically in
r, we can also ignore the term exp(β

2r |τ |2), so we obtain that

Zα(τ) = exp
(
rf(α) + o(r)

)
where f(α) := H(α) + β

2 (2α − 1)2. (5)

The function f(α) plays a key role since for large r it controls the asymptotic order of Zα(τ).
The important point, as we will see below, is that the global maximum of f is attained for
α = q±.

Indeed, we have

f ′(α) = − ln(α) + ln(1 − α) + 2β(2α − 1)

and f ′′(α) = − 1
α(1−α) + 4β. Since f ′′ has at most two zeros, we have that f ′ has at most

three distinct zeros and hence f has at most three critical points. For β > 1, we have
f ′(1/2) = 0 and f ′′(1/2) = −4 + 4β > 0, so f has a local minimum at α = 1/2; therefore, the
maximum of f in the interval [0, 1] is attained at some point α ̸= 1/2. Using the symmetry
of f around α = 1/2, there must be at least two global maxima, one in the interval (0, 1/2)
and (1/2, 1). Since f has at most three critical points (and 1/2 is one of them), we conclude
that there are exactly two critical points/maxima other than α = 1/2, which must therefore
be the values q+, q− as defined in (1).

We are now ready to establish the second item of the lemma. We will argue about
the + phase, but the other phase is completely symmetric. Let τ, τ ′ ∈ {−1, 1}S be two
configurations of spins in S. We have that

Pr[σS = τ |Y (σV \S) = +]
Pr[σS = τ ′|Y (σV \S) = +] =

∑
α>1/2 Zα(τ)∑
α>1/2 Zα(τ ′) . (6)

A. Galanis, A. Kalavasis, and A. V. Kandiros 70:7

We will show that the sums in the numerator and denominator are dominated by α values
that are close to q+. First, note that since q+ is the unique global maximum of f(α) in
the interval [1/2, 1], for any arbitrarily small constant δ > 0, there is η > 0 such that
f(α) ≤ f(q+) − 3η for all α > 1/2 with α /∈ [q+ − δ, q+ + δ]. We pick δ > 0 sufficiently small
and r > 0 sufficiently large so that exp(4βtδ + β t2

r) < ϵ/2. Since |τ | ≤ t, it follows that for r

large enough it holds that∑
α>1/2; |α−q+|>δ

Zα(τ) ≤ exp(r(f(q+) − 2η)).

By the continuity of f , for α = q+ + O(1/r) we have f(α) = f(q+) + O(1/r) and therefore∑
α>1/2; |α−q+|≤δ

Zα(τ) ≥ exp(r(f(q+) − η)).

It follows that∑
α>1/2; |α−q+|>δ Zα(τ)∑
α>1/2; |α−q+|≤δ Zα(τ) ≤ exp(−ηr) ≤ ϵ/2. (7)

for all sufficiently large r. Thus,∑
α>1/2 Zα(τ)∑
α>1/2 Zα(τ ′) ≤

∑
α>1/2 Zα(τ)∑

|α−q+|≤δ Zα(τ ′) =
∑

α>1/2 Zα(τ)∑
|α−q+|≤δ Zα(τ) ·

∑
|α−q+|≤δ Zα(τ)∑
|α−q+|≤δ Zα(τ ′)

≤ (1 + ϵ/2)
∑

|α−q+|≤δ Zα(τ)∑
|α−q+|≤δ Zα(τ ′) , (8)

where the last inequality follows from (7).
On the other hand, for any α with |α − q+| ≤ δ, using (3) we get

Zα(τ)
Zα(τ ′) = exp

(
β(2α − 1)(|τ | − |τ ′|) + β(|τ |2−|τ ′|2)

2r

)
≤ exp(4βtδ + β t2

r)
exp

(
β(2q+ − 1)(|τ | − |τ ′|)

)
≤ (1 + ϵ/2) exp

(
β(2q+ − 1)(|τ | − |τ ′|)

)
, (9)

where the last inequality follows from the choice of δ and r. Using the definition (2) and the
fact that q+ is a solution of (1), i.e., that f ′(q+) = 0, we have that

exp
(
β(2q+ − 1)(|τ | − |τ ′|)

)
=

(
q+

1 − q+

) |τ|−|τ′|
2

= Q+
S (τ)

Q+
S (τ ′)

.

Hence, from (9) we obtain that Zα(τ)
Zα(τ ′) ≤ (1 + ϵ/2) Q+

S
(τ)

Q+
S

(τ ′) . Since this holds for all α with
|α − q+| ≤ δ, we have∑

|α−q+|≤δ Zα(τ)∑
|α−q+|≤δ Zα(τ ′) ≤ (1 + ϵ/2) Q+

S (τ)
Q+

S (τ ′)
. (10)

Combining this with (6) and (8), we obtain that

Pr[σS = τ |Y (σV \S) = +]
Pr[σS = τ ′|Y (σV \S) = +] ≤ (1 + ϵ) Q+

S (τ)
Q+

S (τ ′)
.

APPROX/RANDOM 2024

70:8 On Sampling from Ising Models with Spectral Constraints

By interchanging the roles of τ, τ ′, we also obtain the inverse inequality, so

(1 − ϵ) Q+
S (τ)

Q+
S (τ ′)

≤
Pr[σS = τ |Y (σV \S) = +]
Pr[σS = τ ′|Y (σV \S) = +] ≤ (1 + ϵ) Q+

S (τ)
Q+

S (τ ′)
. (11)

For τ ∈ {−1, 1}S , observe that we can expand the ratio

Pr[σS = τ |Y = +]
Q+

S (τ)
=

∑
τ ′ Q+

S (τ ′) Pr[σS = τ | Y = +]∑
τ ′ Q+

S (τ) Pr[σS = τ ′ | Y = +]

so using that mini
ai

bi
≤

∑
i

ai∑
i

bi
≤ maxi

ai

bi
for non-negative (ai)i, (bi)i, we obtain from (11)

that∣∣∣∣Pr[σS = τ |Y = +]
Q+

S (τ)
− 1

∣∣∣∣ ≤ max
τ ′

∣∣∣∣Q+
S (τ ′) Pr[σS = τ | Y = +]

Q+
S (τ) Pr[σS = τ ′ | Y = +]

− 1
∣∣∣∣ ≤ ϵ.

This finishes the proof. ◀

3 Proofs of Main Results

3.1 Proof of Theorem 1
Let γ > 1 and β = (1+γ)/2 > 1. Following the technique in [46, 47, 21], we reduce MaxCut
on 3-regular graphs to SpectralIsing(γ).

Consider a 3-regular graph H = (VH , EH) with |VH | = m vertices, an instance of
MaxCut. Let G be the clique graph on n vertices, with a subset S of the vertices with
|S| = t that will be used as terminals (cf. Lemma 4); for convenience, we assume that t > 0
is a multiple of 3 (with n ≫ 3t). We construct an instance HG of SpectralIsing(γ) as
follows:

We replace each node v ∈ VH with a distinct copy of the gadget clique graph G. In
particular, for any v ∈ VH , consider a copy Gv = (Wv, Ev) of the gadget G; each edge in
Ev has weight w+ = β/r as in Lemma 4, where recall that β = (1 + γ)/2 > 1. For each
v ∈ VH , let Sv ⊆ Wv be a subset of the vertices in Gv of size t = n − r. Let ĤG be the
disjoint union of the Gv’s for v ∈ H. Note that the number of vertices of ĤG is nm.
We now describe how to encode the edges of H using connections between the gadgets
(which will complete the construction of HG). Assume that the node u ∈ VH has neighbors
v1, v2, v3 in H, i.e., (u, vi) ∈ EH , i = 1, . . . , 3. Then, we partition Su into subsets Si

u of
size t/3 each. Each subset Si

u corresponds to one of the three neighbors of u. Then, for
each i = 1, 2, 3, we add a perfect matching between Si

u and the corresponding subset
Sj

vi
of Svi

that corresponds to u. The weight of each of these edges in the matching will
be w− = (1 − γ)/5 < 0, since γ > 1. This antiferromagnetic structure across different
copies will be crucial in order to approximate maxcut(H) by approximating the partition
function of HG.

Let J be the adjacency matrix of the weighted graph HG. We first show that the spectrum
of J has the desired properties, i.e., that λmax(J) − λmin(J) < γ.

▷ Claim 5 (Structure of HG). The symmetric matrix J = D + E ∈ Rnm×nm, where D is a
block diagonal matrix where the matrix of each block of size n × n is β

r 11⊤ and E contains
in each row exactly one non-zero element of magnitude (1 − γ)/5.

Proof. By construction since n is the number of vertices of the gadget and m is the number
of vertices of the input graph. ◁

A. Galanis, A. Kalavasis, and A. V. Kandiros 70:9

▷ Claim 6 (Spectrum Preservation). For any integer t > 0, there exists n(t, γ) > 0, such that
for n > n(t, γ) it holds |λmax(J) − λmin(J)| < γ.

Proof. We will use Claim 5. Using Weyl’s inequality (see Chapter 3 in [7]), which controls
the eigenspectrum of a matrix under small perturbations of the entries, we have that for any
i, it holds that |λi(J) − λi(D)| ≤ ∥E∥, where ∥E∥ is the spectral norm of E. By definition,
E has one element in each row of absolute value (γ − 1)/5, so ∥E∥ ≤ γ−1

5 . It follows that

|λmax(J) − λmin(J)| ≤ |λmax(J) − λmax(D)| + |λmax(D) − λmin(D)| + |λmin(D) − λmin(J)|

≤ 2(γ − 1)
5 + n

r

1 + γ

2 . (12)

In the above we used the well-known fact that the spectrum of D is the spectrum of each of
the blocks, which, in turn, is equal to

λmax(D) − λmin(D) = n

r

1 + γ

2 ,

since each block is a rank-1 matrix. Now, recall that n = r + t, so by choosing r sufficiently
large we can make n

r < 6γ+4
5γ+5 , which implies that the right hand side in (12) is < γ. ◁

We next show that if we could approximate ZJ within an arbitrarily small exponential
factor in poly-time, we would obtain a PTAS for maxcut(H). This part of the argument is
largely based on the techniques of [47]; we first state the following lemma whose proof is
given for completeness in the full version.

▶ Lemma 7. It holds that

(1 − 4ϵ)m2−m ≤
ZHG/Z

ĤG

A3mt/2 (B/A)maxcut(H)t/3 ≤ (1 + 4ϵ)m,

where B > A > 0 are constants depending only on γ.

With these pieces at hand, we are now ready to complete the reduction for Theorem 1,
which we restate here for convenience.

▶ Theorem 1. Fix any real γ > 1. Then, it is NP-hard to approximate SpectralIsing(γ),
even within an exponential factor 2cN for some constant c = c(γ) > 0.

Proof. Assume that for any arbitrarily small constant δ > 0, there is an oracle approxδ

such that, for any J with λmax(J) − λmin(J) ≤ γ, we have that, when F = approxδ(J),
|F − log(Z(J))| ≤ δm. We will show how to obtain a PTAS for MaxCut on 3-regular
graphs, i.e., approximate MaxCut on 3-regular graphs within an arbitrarily small factor.

Let H be a 3-regular graph H on m vertices, an instance of MaxCut. The maximum
cut of H is at least the expected value of a random cut which is equal to 3m/4. We then
construct HG and ĤG as above. Observe that Z(ĤG) can be computed in poly-time since
ĤG is a disjoint collection of constant-size gadget graphs. Moreover, by Claim 6, HG is an
instance of SpectralIsing(γ). So, we can use the oracle approxδ on HG, which will give us
an output FH with the guarantee

|FH − log ZHG | ≤ δmn.

Lemma 7 implies that

3 log
(

ZHG /Z
ĤG

A3mt/2(1+4ϵ)m

)
t log(B/A) ≤ maxcut(H) ≤

3 log
(

2mZHG /Z
ĤG

A3mt/2(1−4ϵ)m

)
t log(B/A) .

APPROX/RANDOM 2024

70:10 On Sampling from Ising Models with Spectral Constraints

Thus, by using the output FH we can compute upper and lower bounds for the maximum
cut value, which differ by O((δn + 1)m/t). Since m ≤ 4/3maxcut(H), to show the desired
PTAS for MaxCut, it only remains to show that the quantity R = (δn + 1)/t can be made
arbitrarily small, say less than some target value ζ, where ζ > 0 is an arbitrary constant.
We first take t to be sufficiently large, so that 1/t < ζ/2 is sufficiently small. This makes n

to be large, but still a constant, and hence n/t is a constant. So, by taking δ small enough,
we will have δn/t < ζ/2, making R < ζ as desired.

This yields the desired PTAS. Since maxcut is APX-hard [2], we conclude that it is
NP-hard to approximate ZJ within some exponential factor, as wanted. ◀

3.2 Proof of Theorem 3
For integers d, n ≥ 3 with dn even, let Gn,d be a d-regular graph chosen uniformly at random
among all such graphs with vertex set V = {1, 2, . . . , n}. Let S ⊆ [n] be an arbitrary subset
of the vertices of size t. Consider the Ising distribution µJ with J = βA where A is the
adjacency matrix of G and β > 1

2 ln(1 + 2
d−2).

The range of β corresponds to the so-called non-uniqueness regime on the d-regular tree;
roughly, this implies that on the d-regular tree of height h, when we condition the leaves to
be + and take the limit h → ∞, the marginal probability that the root is plus converges
to some value q+ > 1/2. Similarly, when we condition the leaves to be −, the marginal
probability that the root is plus converges to some value q− < 1/2.3

It is well-known by now [13, 42] that this behaviour on the tree manifests itself on the
random d-regular graph, roughly because of the tree-like neighborhoods in the latter. To
make this more precise in our setting, analogously to Section 2, for a subset S ⊆ V , define the
phase YS(σ) of a configuration σ ∈ {−1, +1}V to be + if

∑
i∈V \S σi ≥ 0, and − otherwise.

We also define the product measures Q±
S on S analogously to (2), using now the values of

q+, q− as defined above (see also Footnote 3). Then, the following lemma captures the main
properties of the gadget that we need.

▶ Lemma 8. Let d ≥ 3 be an integer and β > 1
2 ln(1 + 2

d−2). Then, for any real ϵ > 0 and
integer t ≥ 1, for all sufficiently large integers n = n(t, ϵ) with n − t odd, the following holds
with probability 1 − ϵ over the choice of G ∼ Gn,d. Let S ⊆ V be a subset of vertices with
|S| = t.

Consider the Ising model with interaction matrix J = βA where A is the adjacency matrix
of G. Then:
1. λmax(J) − λmin(J) ≤ β(d + 2

√
d − 1) + ϵ.

2. The phases appear with the same probability, i.e., Prσ∼µJ
[Yσ = +] = Prσ∼µJ

[Yσ = −] =
1/2.

3. Conditioned on the phase, the joint distribution of the spins in S is approximately given
by the product distribution Q±

S , i.e.,

for any τ ∈ {−1, +1}S, it holds that Prσ∼µJ

[
σS = τ | Yσ = ±

]
= (1 ± ϵ)Q±

S (τ).

Proof. The first item is Friedman’s result [20], see also [8]. The second item is by symmetry
of the configuration space (since n is odd). The third item follows by [42, Theorem 2.4], see
also [13, Theorem 2.7] and [47, Proposition 4.2] for related results. Technically, there is a bit
of work to translate the results here, we give the details in the full version. ◀

3 To define q+, q− more explicitly, for β > 1
2 ln(1 + 2

d−2), let q̃+ > 1 > q̃− > 0 be the solutions of x =(
exp(2β)x+1
x+exp(2β)

)d−1
. Then, q+, q− are defined from q+

1−q+ = q̃+ exp(2β)q̃++1
q̃++exp(2β) and q−

1−q− = q̃− exp(2β)q̃−+1
q̃−+exp(2β) ,

see also [21, Section 3].

A. Galanis, A. Kalavasis, and A. V. Kandiros 70:11

▶ Remark 9. We use the gadget of Lemma 8 for some large but otherwise constant value of n.
So, we can find a d-regular graph G satisfying Items 1-3 of Lemma 8 in deterministic time.

We are now ready to prove Theorem 3, which we restate here for convenience.

▶ Theorem 3. Fix any integer d ≥ 4 and real γ > 1
2 ln(1 + 2

d−3)(d − 1 + 2
√

d − 2). Then,
it is NP-hard to approximate BoundedSpectralIsing(d, γ), even within an exponential
factor 2cN for some constant c = c(γ) > 0.

Proof. Let

βd−1 := 1
2 ln

(
1 + 2

d−3
)
, λd−1 := d − 1 + 2

√
d − 2 (13)

and set β = βd−1 + η, λ = λd−1 + η where η > 0 is a small constant so that βλ + 2η < γ

(note that such an η exists since γ > βd−1λd−1).
Assume that we are given a 3-regular instance H of MaxCut with m vertices. Let G be

a (d − 1)-regular gadget with n vertices for some sufficiently large n, i.e., G satisfies Items 1-3
of Lemma 8 for degree d − 1 and β = βd−1 + η, see also Remark 9. So, according to Item 1
there, the interaction matrix JG corresponding to G satisfies λmax(JG) − λmin(JG) ≤ βλ.

Using G, the construction of the graph HG is identical to that of Section 3.1, i.e., we
have a distinct copy of G for each node of H and, for each pair of neighbouring nodes of
H, we add a matching of size t/3 between the corresponding gadgets using the vertices in
S. Note that HG has maximum degree d, so the interaction matrix of HG, denoted by J

henceforth, has at most d non-zero entries per row.
The weight of an edge inside the gadget is w+ = β > 0 and the weight of the edges

that connect two gadgets is w− = −η < 0 (antiferromagnetic connections). Analogously to
Claim 5, the symmetric matrix J can be written as D + E ∈ Rnm×nm, where (i) D is a block
diagonal matrix with the matrix in each block being the n × n adjacency matrix of G scaled
by w+, and (ii) E contains in each row exactly one non-zero element of magnitude w−. The
same argument as in the proof of Claim 6 gives that

|λmax(J) − λmin(J)| ≤ |λmax(J) − λmax(D)| + |λmax(D) − λmin(D)| + |λmin(D) − λmin(J)|
≤ 2η + βλ < γ.

This establishes that HG is a valid instance of BoundedSpectralIsing(d, γ).
Now, using Item 3 of Lemma 8, we obtain the exact same estimate as in Lemma 7 (with

the same expressions for the constants A, B modulo the new values of w+ and w−), and
therefore the same argument used in the proof of Theorem 1 applies verbatim to show
NP-hardness of approximating the partition function within an arbitrarily small exponential
factor. ◀

▶ Remark 10. Note that we could make the graph HG to be d-regular for any integer d ≥ 3 by
taking the gadget G to be a random d-regular graph with a matching of size t removed (and
using the endpoints of the matching as the set S of terminals); this more refined construction
has been used for example in the hardness results of [46, 47, 21]. While one can show the
analogue of Items 2 and 3 with minor modifications (analogously to what was done in the
proof of Lemma 8), the proof of Item 1 for this modified gadget seems to require more careful
adaptation of the proofs in [20, 8]. It is nevertheless reasonable to expect that the same
bound on the range of the eigenvalues as stated currently in Item 1 will still apply; provided
this is indeed the case, one can improve slightly the parameters of Theorem 3 to d ≥ 3 and
γ > βdλd, where βd, λd are as in (13).

APPROX/RANDOM 2024

70:12 On Sampling from Ising Models with Spectral Constraints

References
1 Vedat Levi Alev and Lap Chi Lau. Improved analysis of higher order random walks and

applications. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2020, pages 1198–1211, 2020.

2 Paola Alimonti and Viggo Kann. Hardness of approximating problems on cubic graphs. In
Proceedings of the Third Italian Conference on Algorithms and Complexity, CIAC ’97, pages
288–298, 1997.

3 Nima Anari, Vishesh Jain, Frederic Koehler, Huy Tuan Pham, and Thuy-Duong Vuong.
Entropic independence in high-dimensional expanders: Modified log-sobolev inequalities for
fractionally log-concave polynomials and the ising model. arXiv preprint, 10:32–42, 2021.
arXiv:2106.04105.

4 Nima Anari, Kuikui Liu, and Shayan Oveis Gharan. Spectral independence in high-dimensional
expanders and applications to the hardcore model. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), pages 1319–1330, 2020.

5 Afonso S Bandeira, Dmitriy Kunisky, and Alexander S Wein. Computational hardness of
certifying bounds on constrained pca problems. In 11th Innovations in Theoretical Computer
Science Conference (ITCS 2020), volume 151, page 78. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2020.

6 Ivona Bezáková, Andreas Galanis, Leslie Ann Goldberg, and Daniel Štefankovič. Fast sampling
via spectral independence beyond bounded-degree graphs. ACM Trans. Algorithms, 20(1),
January 2024.

7 Rajendra Bhatia. Perturbation bounds for matrix eigenvalues. SIAM, 2007.
8 Charles Bordenave. A new proof of friedman’s second eigenvalue theorem and its extension

to random lifts. In Annales Scientifiques de l’École Normale Supérieure, volume 4, pages
1393–1439, 2020.

9 Guy Bresler. Efficiently learning Ising models on arbitrary graphs. In Proceedings of the
Forty-Seventh Annual ACM Symposium on Theory of Computing, STOC ’15, pages 771–782,
2015.

10 Yuansi Chen and Ronen Eldan. Localization schemes: A framework for proving mixing bounds
for markov chains. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer
Science (FOCS), pages 110–122. IEEE, 2022.

11 Zongchen Chen, Kuikui Liu, and Eric Vigoda. Optimal mixing of Glauber dynamics: entropy
factorization via high-dimensional expansion. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2021, pages 1537–1550, 2021.

12 Yuval Dagan, Constantinos Daskalakis, Nishanth Dikkala, and Anthimos Vardis Kandiros.
Learning Ising models from one or multiple samples. In Proceedings of the 53rd Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2021, pages 161–168, 2021.

13 Amir Dembo and Andrea Montanari. Ising models on locally tree-like graphs. The Annals of
Applied Probability, 20(2):565–592, 2010.

14 Jian Ding, Eyal Lubetzky, and Yuval Peres. The mixing time evolution of glauber dynamics
for the mean-field ising model. Communications in Mathematical Physics, 289(2):725–764,
2009.

15 Martin Dyer, Leslie Ann Goldberg, Catherine Greenhill, and Mark Jerrum. The relative
complexity of approximate counting problems. Algorithmica, 38:471–500, 2004.

16 Charilaos Efthymiou and Kostas Zampetakis. On sampling diluted spin glasses using glauber
dynamics. arXiv preprint, 2024. arXiv:2403.08921.

17 Ahmed El Alaoui, Andrea Montanari, and Mark Sellke. Sampling from the sherrington-
kirkpatrick gibbs measure via algorithmic stochastic localization. In 2022 IEEE 63rd Annual
Symposium on Foundations of Computer Science (FOCS), pages 323–334. IEEE, 2022.

18 Ronen Eldan, Frederic Koehler, and Ofer Zeitouni. A spectral condition for spectral gap: fast
mixing in high-temperature ising models. Probability theory and related fields, 182(3):1035–1051,
2022.

https://arxiv.org/abs/2106.04105
https://arxiv.org/abs/2403.08921

A. Galanis, A. Kalavasis, and A. V. Kandiros 70:13

19 Weiming Feng, Heng Guo, and Jiaheng Wang. Swendsen-Wang dynamics for the ferromagnetic
Ising model with external fields. Information and Computation, 294:105066, 2023.

20 Joel Friedman. A proof of Alon’s second eigenvalue conjecture and related problems. American
Mathematical Soc., 2008.

21 Andreas Galanis, Daniel Štefankovič, and Eric Vigoda. Inapproximability of the partition
function for the antiferromagnetic ising and hard-core models. Combinatorics, Probability and
Computing, 25(4):500–559, 2016.

22 Antoine Gerschenfeld and Andrea Montanari. Reconstruction for models on random graphs.
In 2007 48th Annual IEEE Symposium on Foundations of Computer Science, pages 194–204,
2007.

23 Leslie Ann Goldberg and Mark Jerrum. Approximating the partition function of the ferro-
magnetic Potts model. J. ACM, 59(5), 2012.

24 Heng Guo and Mark Jerrum. Random cluster dynamics for the Ising model is rapidly mixing.
The Annals of Applied Probability, 28(2):1292–1313, 2018.

25 Linus Hamilton, Frederic Koehler, and Ankur Moitra. Information theoretic properties of
markov random fields, and their algorithmic applications. In Advances in Neural Information
Processing Systems, volume 30, 2017.

26 Brice Huang, Andrea Montanari, and Huy Tuan Pham. Sampling from spherical spin glasses in
total variation via algorithmic stochastic localization. arXiv preprint, 2024. arXiv:2404.15651.

27 Vishesh Jain, Frederic Koehler, and Andrej Risteski. Mean-field approximation, convex
hierarchies, and the optimality of correlation rounding: a unified perspective. In Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 1226–1236,
2019.

28 Mark Jerrum and Alistair Sinclair. Polynomial-time approximation algorithms for the Ising
model. SIAM Journal on computing, 22(5):1087–1116, 1993.

29 Mark R. Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation of combinatorial
structures from a uniform distribution. Theoretical Computer Science, 43:169–188, 1986.

30 Adam Klivans and Raghu Meka. Learning graphical models using multiplicative weights. In
2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pages
343–354, 2017.

31 Frederic Koehler, Holden Lee, and Andrej Risteski. Sampling approximately low-rank ising
models: Mcmc meets variational methods. In Conference on Learning Theory, pages 4945–4988.
PMLR, 2022.

32 Dmitriy Kunisky. Optimality of Glauber dynamics for general-purpose Ising model sampling
and free energy approximation. In Proceedings of the 2024 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 5013–5028, 2024.

33 Steffen L Lauritzen. Graphical models, volume 17. Clarendon Press, 1996.
34 David A Levin, Malwina J Luczak, and Yuval Peres. Glauber dynamics for the mean-field

Ising model: cut-off, critical power law, and metastability. Probability Theory and Related
Fields, 146:223–265, 2010.

35 Liang Li, Pinyan Lu, and Yitong Yin. Correlation decay up to uniqueness in spin systems. In
Proceedings of the twenty-fourth annual ACM-SIAM symposium on Discrete algorithms, pages
67–84, 2013.

36 Kuikui Liu, Sidhanth Mohanty, Amit Rajaraman, and David X Wu. Fast mixing in sparse
random Ising models. arXiv preprint, 2024. arXiv:2405.06616.

37 Eyal Lubetzky and Allan Sly. Critical Ising on the square lattice mixes in polynomial time.
Communications in Mathematical Physics, 313(3):815–836, 2012.

38 Fabio Martinelli and Enzo Olivieri. Approach to equilibrium of Glauber dynamics in the one
phase region: I. The attractive case. Communications in Mathematical Physics, 161(3):447–486,
1994.

APPROX/RANDOM 2024

https://arxiv.org/abs/2404.15651
https://arxiv.org/abs/2405.06616

70:14 On Sampling from Ising Models with Spectral Constraints

39 Fabio Martinelli and Enzo Olivieri. Approach to equilibrium of Glauber dynamics in the one
phase region: II. The general case. Communications in Mathematical Physics, 161(3):487–514,
1994.

40 Marc Mezard and Andrea Montanari. Information, physics, and computation. Oxford
University Press, 2009.

41 Marc Mézard, Giorgio Parisi, and Miguel Angel Virasoro. Spin glass theory and beyond: An
Introduction to the Replica Method and Its Applications, volume 9. World Scientific Publishing
Company, 1987.

42 Andrea Montanari, Elchanan Mossel, and Allan Sly. The weak limit of Ising models on locally
tree-like graphs. Probability Theory and Related Fields, 152:31–51, 2012.

43 Elchanan Mossel and Allan Sly. Exact thresholds for Ising–Gibbs samplers on general graphs.
The Annals of Probability, 41(1), 2013.

44 Andrej Risteski. How to calculate partition functions using convex programming hierarchies:
provable bounds for variational methods. In Conference on Learning Theory, pages 1402–1416.
PMLR, 2016.

45 Alistair Sinclair, Piyush Srivastava, and Marc Thurley. Approximation algorithms for two-state
anti-ferromagnetic spin systems on bounded degree graphs. Journal of Statistical Physics,
155(4):666–686, 2014.

46 Allan Sly. Computational transition at the uniqueness threshold. In 2010 IEEE 51st Annual
Symposium on Foundations of Computer Science, pages 287–296. IEEE, 2010.

47 Allan Sly and Nike Sun. The computational hardness of counting in two-spin models on
d-regular graphs. In 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science,
pages 361–369. IEEE, 2012.

48 Michel Talagrand. Mean field models for spin glasses: Volume I: Basic examples, volume 54.
Springer Science & Business Media, 2010.

Approximate Degree Composition for Recursive
Functions
Sourav Chakraborty # Ñ

Indian Statistical Institute, Kolkata, India

Chandrima Kayal #

Indian Statistical Institute, Kolkata, India

Rajat Mittal # Ñ

Indian Institute of Technology Kanpur, India

Manaswi Paraashar # Ñ

University of Copenhagen, Denmark

Nitin Saurabh # Ñ

Indian Institute of Technology Hyderabad, India

Abstract
Determining the approximate degree composition for Boolean functions remains a significant unsolved
problem in Boolean function complexity. In recent decades, researchers have concentrated on proving
that approximate degree composes for special types of inner and outer functions. An important and
extensively studied class of functions are the recursive functions, i.e. functions obtained by composing
a base function with itself a number of times. Let hd denote the standard d-fold composition of the
base function h. The main result of this work is to show that the approximate degree composes if
either of the following conditions holds:

The outer function f : {0, 1}n → {0, 1} is a recursive function of the form hd, with h being any
base function and d = Ω(log log n).
The inner function is a recursive function of the form hd, with h being any constant arity base
function (other than AND and OR) and d = Ω(log log n), where n is the arity of the outer
function.

In terms of proof techniques, we first observe that the lower bound for composition can be
obtained by introducing majority in between the inner and the outer functions. We then show that
majority can be efficiently eliminated if the inner or outer function is a recursive function.

2012 ACM Subject Classification Theory of computation

Keywords and phrases Approximate degree, Boolean function, Composition theorem

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.71

Category RANDOM

Related Version Full Version: https://arxiv.org/abs/2407.08385 [16]

Funding Sourav Chakraborty: supported by the Science & Engineering Research Board of the DST,
India, through the MATRICS grant MTR/2021/000318.
Manaswi Paraashar : supported by ERC grant (QInteract, Grant Agreement No 101078107).
Nitin Saurabh: supported by the seed grant (SG/IITH/F285/2022-23/SG-123) from IIT Hyderabad.

1 Introduction

Representations of Boolean functions f : {0, 1}n → {0, 1} in terms of multivariate polynomials
p(x) play a pivotal role in theoretical computer science. There are different notions of
representations;

© Sourav Chakraborty, Chandrima Kayal, Rajat Mittal, Manaswi Paraashar, and Nitin Saurabh;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 71; pp. 71:1–71:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sourav@isical.ac.in
https://www.isical.ac.in/~sourav/
https://orcid.org/0000-0001-9518-6204
mailto:chandrimakayal2012@gmail.com
mailto:rmittal@cse.iitk.ac.in
https://www.cse.iitk.ac.in/users/rmittal/
mailto:manaswi.isi@gmail.com
https://sites.google.com/view/manaswi-paraashar/home
https://orcid.org/0009-0005-3805-5095
mailto:nitin@cse.iith.ac.in
https://nitinsau.github.io/
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.71
https://arxiv.org/abs/2407.08385
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

71:2 Approximate Degree Composition for Recursive Functions

exact representation: f(x) = p(x) for all x ∈ {0, 1}n,
approximate representation: |f(x) − p(x)| ≤ 1/3 for all x ∈ {0, 1}n, and
sign representation: (1 − 2f(x))p(x) > 0 for all x ∈ {0, 1}n.

Arguably the most important measure associated with a polynomial is its (total) degree.
Let deg(f), d̃eg(f), and deg±(f) denote the minimal possible degree of a real polynomial
exactly, approximately, and sign representing f , respectively. These different notions of
degrees capture notions of efficiency in many different models of computation (e.g., decision
trees, quantum query, perceptrons), and are thus well-studied in literature (see, e.g., [6, 7, 14]
and the references therein).

For instance, deg±(f) (called sign degree) has strong connections to – separations among
complexity classes [7], designing efficient learning algorithm [28, 27], and lower bounds
against circuits, formulas, communication complexity, etc. [12, 18]. Similarly, upper bounds
on d̃eg(f) (called approximate degree), has strong connections to learning theory [25, 29, 37],
approximate inclusion-exclusion [24, 43], differentially private data release [47, 17], etc. While
the lower bounds on approximate degree lead to lower bounds in quantum query complexity
[5, 2, 1], communication complexity [43, 38], circuit complexity [3], etc.

Despite decades of work in this area, there are many important problems that are yet
to be resolved completely. One such problem pertains to the composition of approximate
degrees. For any two Boolean functions f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1}, define
the composed function f ◦ g : {0, 1}nm → {0, 1} as follows

f ◦ g(x11, . . . , x1m, , xn1, . . . , xnm) = f(g(x1), . . . , g(xn)),

where xi = (xi1, . . . , xim) ∈ {0, 1}m for i ∈ [n]. The function f is called the outer function
and g the inner function.

Investigating the behaviour of complexity measures under composition has been a quint-
essential tool in our quest to gain insights into relationships among different measures. In
particular, composition has been used successfully on numerous occasions to show separ-
ations between various complexity measures associated with Boolean functions, see, e.g.,
[36, 33, 23, 4, 46, 19]. A big open problem in this context is to understand how approximate
degree behaves under composition. More formally, it asks whether for all Boolean functions
f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1},

d̃eg(f ◦ g) = Θ̃(d̃eg(f) · d̃eg(g))?

The tilde in the Θ̃ notation hides a factor polynomial in log(n+m). This problem is often
referred to as the “approximate degree composition” problem.

The upper bound, d̃eg(f ◦ g) = O(d̃eg(f) · d̃eg(g)), was established in a seminal work [42]
of Sherstov. Thus to completely resolve the problem it remains to prove a matching lower
bound on the approximate degree of a composed function in terms of the approximate degree
of the individual functions. In other words, does the following hold for all Boolean functions
f and g,

d̃eg(f ◦ g) = Ω̃
(

d̃eg(f) · d̃eg(g)
)

?

In this article we will refer to the aforementioned (lower bound) question by the phrase
“approximate degree composition” problem.

Numerous works, including those by [33, 4, 39, 41, 40, 13, 8, 15], actively pursued these
lower bounds, leading to newer connections with several important problems in the field.
However, establishing the lower bound d̃eg(f ◦ g) = Ω̃

(
d̃eg(f) d̃eg(g)

)
even for specific

S. Chakraborty, C. Kayal, R. Mittal, M. Paraashar, and N. Saurabh 71:3

functions or restricted classes of functions is often very challenging. For example, consider
the composed function OR ◦ AND, it took a long series of work [33, 44, 4, 41, 40, 13] over
nearly two decades to prove that d̃eg(OR ◦ AND) = Ω

(
d̃eg(OR) d̃eg(AND)

)
. Till date we

know that the approximate degree composes in the following cases:
when the outer function f has full approximate degree, i.e., Θ(n) [39],
when the outer function f is a symmetric function [8],
when the outer function f has minimal approximate degree with respect to its block
sensitivity, i.e., d̃eg(f) = O(

√
bs(f)) [15], and

when the sign degree of the inner function is same as its approximate degree [39, 30].

This work focuses on the behavior of approximate degree when recursive functions are
composed with other general functions (as outer or inner function). Here, by recursive
functions, we mean the functions of the kind hd (h composed with itself d times) where the
arity of h is small. The function h is often called the base function and the function f is
called the recursive-h function.

Recursive functions are an important class of Boolean functions that are studied in various
different contexts in the analysis of Boolean functions, mainly in proving various lower bounds
[4, 45, 36, 33, 34, 9]. For example, the Kushilevitz’s function [34] which is the only known
non-trivial example of functions with low degree and high sensitivity is a recursive function
of a carefully chosen base function. Recursive majority, MAJd

3, is another recursive function
that has been studied extensively in the literature for its different properties [36, 22, 31, 32].
Boppana (see, e.g., [36]) used it to provide the first evidence that the randomized query
is more powerful than deterministic query [36]. In the same article, they show a similar
separation using recursive AND2 ◦ OR2 function too. In a different application of recursive
AND2 ◦ OR2, [23] show separation between deterministic tree-size complexity and number of
monomials in the minimal DNF or CNF.

The approximate degree composition was not known when the outer or inner function is
a recursive function, in general. For some special recursive functions, however, it was known
that the approximate degree composes. For example, the OR function on n = 3d bits is same
as ORd

3. After a series of works ([33, 4, 40, 13, 41]), it was proven that the approximate degree
composition holds when the outer function is OR, and in general symmetric [8]. Similarly,
from the result of [39, 30] it can be observed that the lower bound holds when either the
inner or outer function is recursive PARITY. Unfortunately, these results can’t be applied in
general even when the base function is symmetric or it has full approximate degree.

This scenario leads to the natural question:

Can we prove that d̃eg(f ◦ g) = Ω(d̃eg(f) · d̃eg(g)) when the outer function f

or the inner function g is recursive?

1.1 Our Results

Let h : {0, 1}k → {0, 1} be a function on k-bits. Let hd denote the Boolean function
represented by the complete k-ary tree of depth d such that each internal node of the tree is
labelled by h and the leaves of tree are labelled by distinct variables. Our main result shows
that the composition theorem holds for any hd (except a few specific h’s), either as the outer
function with any inner function or as the inner function with any outer function.

APPROX/RANDOM 2024

71:4 Approximate Degree Composition for Recursive Functions

▶ Theorem 1. Let f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1} be two Boolean functions
and d ≥ C log log n for a large enough constant C. Then,

d̃eg(f ◦ g) = Ω
(

d̃eg(f)d̃eg(g)
polylog(n)

)
,

if either of the following conditions hold:
1. f = hd, for any Boolean function h.
2. g = hd, for any Boolean function h with constant arity and not equal to AND or OR.

In light of the above theorem, understanding the composition of approximate degree when
inner function is OR is the central case for making progress towards the general composition
question.

We would like to emphasize that there are not many results which prove composition
theorem for a general class of inner functions. Theorem 1 shows that the composition
property holds if the inner function is recursive irrespective of the outer function.

We further note that Theorem 1 doesn’t follow from the known results even when the
composition theorem is known to hold for the base function. Firstly, it is known that the
composition lower bound holds when the outer function is symmetric [8]; though, a repeated
composition of a symmetric function will incur the factor of (log n)d (because of the log n
factor hiding in the Ω̃ notation). Secondly, while the majority function, MAJn, has full
approximate degree (Θ(n)), MAJd

3 doesn’t have full approximate degree. Thus, Sherstov’s
result [39] that proves composition theorem holds for functions with full approximate degree
cannot be applied in the case of recursive majority. The situation is similar for the inner
function as well.

Moving ahead, the proof of Theorem 1 uses two ideas.
We first prove that a similar theorem works for the specific case of h = MAJ3 and
h = AND2 ◦ OR2 functions.
Then, we use a general h to simulate AND2 ◦ OR2; hence, proving composition for the
general case.

The case of recursive h = MAJ3 and h = AND2 ◦ OR2 functions is in itself very interesting.
There have been several works towards exploring the approximate degree and other properties
of these two functions [21, 26, 36, 23]. Given their importance, and the fact that it is a
central step in our main result (Theorem 1), we state the composition theorem for these two
functions separately.

▶ Theorem 2. Let f and g be two Boolean functions. Then,

d̃eg(f ◦ hd) = Ω̃(d̃eg(f) d̃eg(hd)) and d̃eg(hd ◦ g) = Ω̃(d̃eg(hd) d̃eg(g)),

where h is either MAJ3 : {0, 1}3 → {0, 1} or AND2 ◦ OR2 : {0, 1}4 → {0, 1}, n is the arity of
the outer function, d ≥ C log log n for a large enough constant C, and Ω̃(·) hides polylog(n)
factors.

To prove Theorem 2 we will need the following lemma. Even though the lemma can
be obtained from a combination of known results (e.g., [39] and [10]) with appropriate
parameters, we give a self-contained simpler proof of the lemma, inspired by the primal-dual
perspective of [40].

▶ Lemma 3. For any Boolean functions f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1},

d̃eg(f ◦ MAJt ◦ g) = Ω(d̃eg(f)d̃eg(g)) (1.1)

for t ≥ C log n for a large enough constant C.

S. Chakraborty, C. Kayal, R. Mittal, M. Paraashar, and N. Saurabh 71:5

Note that, Lemma 3 gives a way to settle the composition question affirmatively. In
particular, if d̃eg(f ◦ MAJt ◦ g) = Õ(d̃eg(f ◦ g)), where t is Θ(log n) and n is the arity of f ,
then it follows that the composition holds for f and g.

We also highlight that a tighter lower bound can be obtained when the middle function
MAJ is replaced by an “amplifier function” in Lemma 3. Define H to be a strong hardness
amplifier function for g if

d̃eg 1−2−Ω(t)
2

(H ◦ g) = Ω(d̃eg(H) ◦ d̃eg(g)).

We also observe that,

d̃eg(f ◦H ◦ g) = Ω(d̃eg(f)d̃eg(H)d̃eg(g)), (1.2)

when H is a strong hardness amplifier function for g. We discuss this improvement in the
full version of the paper [16].

1.2 Proof Ideas

To address the lower bound for the composition of two Boolean functions f and g, f ◦ g, we
will call f to be the “outer function” and g to be the “inner function”. In the case of three
layered composed functions (f ◦H ◦ g), we will call H to be the “hardness amplifier” and f

and g to be the outer and inner functions respectively.

Primal dual approach to composition. Our proof technique is based on the primal-dual
view used by [40] for proving the composition of ANDn ◦ ORn. Here, instead of using
“dual-composition method” (see [13, 14]) we will be using only the dual witness of the inner
function. The primal-dual approach is to construct an approximating polynomial for f with
smaller degree than d̃eg(f) by applying a linear operator L on the assumed approximating
polynomial for f ◦ g (say p, with smaller degree than claimed), leading to a contradiction.
The linear operator L is defined by taking the input to f , extending it to a probability
distribution (which depends upon the dual of g) over the inputs of f ◦ g and outputting the
expectation.

Let ψ be the dual witness of g, we get µ0 and µ1 by restricting ψ on support which takes
positive and negative values respectively; by the properties of dual witness, µ1 (and µ0) will
mostly be supported on inputs x such that g(x) = 1 (and g(x) = 0 respectively). The input
to f is expanded bit by bit using µ0 and µ1, creating a distribution on inputs of f ◦ g.

Formally, L takes a general function h : {0, 1}mn → {0, 1} and gives Lh : {0, 1}n → R.

Lh(z1, . . . , zn) = E
x1∼µz1

E
x2∼µz2

· · · E
xn∼µzn

[h(x1, x2, . . . , xn)], (1.3)

where xi ∈ {0, 1}m for all i ∈ {1, 2, . . . , n}.
To complete the proof, the following two properties of L are required:

1. Showing that the polynomial Lp indeed approximates f in l∞ norm. Intuitively this
happens because the restricted distributions (µ0 and µ1) are a pretty good indicator of
the value of g.

2. The degree of Lp is small, intuitively because L reduces the degree of every monomial by
a factor of d̃eg(g).

APPROX/RANDOM 2024

71:6 Approximate Degree Composition for Recursive Functions

Problem with the primal dual approach. Unfortunately, the recipe described above doesn’t
work well in general due to the error introduced by the expectation over µ0 and µ1 in the
string (z1, . . . , zn). To handle a noisy string in place of a Boolean string, the approximating
polynomial p needs to be robust. A polynomial is robust to noise 1

3 , if for all inputs x and
for all ∆ ∈

[
− 1

3 ,
1
3
]m, |p(x) − p(x+ ∆)| < ε.

While any polynomial p can be made robust up to error ε with degree at most deg(p) +
log(1

ε) (see Theorem 11 by [42]), such polynomials are not known to be multilinear, making
the analysis of expectation difficult. [11] gives a robust multilinear polynomial for any
Boolean function f : {0, 1}n → {0, 1}; though, the polynomial is defined on a perturbation
matrix of input x instead of x itself. We now discuss how to overcome this problem.

We give the proof ideas of Theorem 1, Theorem 2 and Lemma 3 in the reverse order, the
way they are obtained from each other.

Proof idea of Lemma 3. We will use MAJt to get past this difficulty; it helps to reduce
the noise in the input of f to error 1

n . Using the fact that any multilinear polynomial on n

variables is robust up to error 1
n , we have our lower bound for the function d̃eg(f ◦ MAJt ◦ g)

where t = Ω(log n).

Proof idea of Theorem 2. Using previously known constructions ([48, 20]), MAJlog n can
be projected to MAJd

3 and (AND2 ◦ OR2)d, where d ≥ C log log n. We now replace MAJlog n

in Lemma 3 with these recursive functions; by using the associativity of the composition of
functions and the approximate degree upper bound [42], we finish the proof of the theorem.
Note that we only lose a factor of polylog(n) in the lower bound since we only need to
simulate MAJlog n.

Now we give the idea about how to replace AND2 ◦OR2 with almost any recursive function
to get our main result.

Proof idea of Theorem 1. Given Theorem 2, it is natural to ask, what other recursive
functions satisfy the composition property. We show that almost any h can be used to replace
the AND2 ◦ OR2 function. This is done by simulating AND2 and OR2 using restrictions of
h and its powers. The proof of this simulation is divided into two cases: monotone h and
non-monotone h.

For the monotone case (except when h is AND or OR): We show that both AND2 and
OR2 will be present as sub-cubes of the original Boolean hypercube of h.

For the non-monotone case (except when h is PARITY or ¬PARITY): The proof requires
more work here because of these two issues. First, there need not be both functions AND2 and
OR2 as sub-cubes (though, we show that at least one will be present). Second, the sub-cube
could be rotated. The resolution to both these issues is same. We use the non-monotonicity
to construct the negation function. This allows us to rotate the sub-cube as well as construct
AND2/OR2 from the other one.

A slight technical point to note is that when h is a non-constant arity function and hd is
the inner function, then the loss in the lower bound will be larger than polylog(n). However,
even for the case when the base function h has arity that is a “slowly” growing function of n
we still obtain a non-trivial lower bound composition result.

The remaining cases of Theorem 1, that is,
(i) when f or g equals hd for h ∈ {PARITY,¬PARITY} follows from [39], and (ii) when
f = hd and h ∈ {AND,OR} follows from [8].

S. Chakraborty, C. Kayal, R. Mittal, M. Paraashar, and N. Saurabh 71:7

2 Notations and Preliminaries

In this paper, we will assume a Boolean function has domain {0, 1}n and range {0, 1}. We
start with some of the important definitions.

▶ Definition 4 (Generalized Composition of functions). For any Boolean function f : {0, 1}n →
{0, 1} and n Boolean functions g1, g2, . . . , gn, define the composed function

f ◦ (g1, g2, . . . , gn)(x1, x2, . . . , xn) = f(g1(x1), g2(x2), . . . , gn(xn)),

where gi’s can have different arities and xi ∈ Dom(gi) for all i ∈ [n].
When all the copies of gi are the same function g then the composed function is denoted

by f ◦ g.

▶ Definition 5 (Recursive functions). For any Boolean function f : {0, 1}t → {0, 1} we define
recursive function fd : {0, 1}td

→ {0, 1} by fd = f ◦ f ◦ . . . ◦ f︸ ︷︷ ︸
d times

.

▶ Definition 6 (Approximate degree (d̃eg)). For some constant 0 < ε < 1/2, a polynomial
p : Rn → R is said to ε-approximate a Boolean function f : {0, 1}n → {0, 1} if for all
x ∈ {0, 1}n, |p(x) − f(x)| ≤ ε. The ε-approximate degree of f , d̃egε(f), is the minimum
possible degree of a polynomial that ε-approximates f . Conventionally we use d̃eg(·) as the
shorthand for d̃eg1/3(·).

Note that the constant ε in the above definition can be replaced by any constant strictly
smaller than 1/2 which changes d̃egε(f) by only a constant factor. We note this well-known
fact about error reduction.

▶ Lemma 7 (Error reduction). For any ε > 0, d̃egε(f) = Θε(d̃eg(f)), where Θε(·) denotes
that the constant in Θ(·) depends on ε.

▶ Lemma 8 ([38, 39]). Let f : {0, 1}n → R be a function and ε > 0. Then, d̃egε(f) ≥ d iff
there exists a function ψ : {0, 1}n → R such that∑

x∈{0,1}n

|ψ(x)| = 1, (2.1)

∑
x∈{0,1}n

ψ(x) · f(x) > ε, and (2.2)

∑
x∈{0,1}n

ψ(x) · p(x) = 0 for every polynomial p of degree < d. (2.3)

In a seminal work, Sherstov [42] showed that the approximate degree can increase at
most multiplicatively under composition.

▶ Theorem 9 ([42]). For all Boolean function f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1},
d̃eg(f ◦ g) = O(d̃eg(f) · d̃eg(g)).

At times we will be working with inputs that are not Boolean but are close to Boolean. So
we would also need the following notion of robust approximating polynomials.

▶ Definition 10 ((δ, ε)-robust approximating polynomial). Let p : {0, 1}m → [0, 1] be a
polynomial. Then, for δ, ε > 0, a (δ, ε)-robust approximating polynomial for p is a polynomial
probust : Rm → R such that for all x ∈ {0, 1}m and for all ∆ ∈ [−δ, δ]m,

|p(x) − probust(x+ ∆)| < ε.

APPROX/RANDOM 2024

71:8 Approximate Degree Composition for Recursive Functions

Sherstov [42] proved that for any Boolean function f : {0, 1}n → {0, 1} there exists a robust
approximating polynomial with degree at most O(d̃eg(f) + log(1/ε)).

▶ Theorem 11 ([42]). A (δ, ε)-robust approximating polynomial for p : {0, 1}n → [0, 1] of
degree Oδ(deg(p) + log(1/ε)) exists. Here Oδ(·) denotes that the constant in O(·) depends on
δ.

Note that a robust approximating polynomial need not to be multilinear. For our purposes,
we need a multilinear robust approximating polynomial.

▶ Theorem 12 (Folklore). Any multilinear polynomial p : {0, 1}n → {0, 1} is
(

δ
n , δ
)
-robust.

A proof of the theorem above can be found at [11, Lemma 3].

▶ Theorem 13 ([8]). For any symmetric Boolean function f : {0, 1}n → {0, 1} and any
Boolean function g : {0, 1}m → {0, 1},

d̃eg(f ◦ g) = Ω
(

d̃eg(f)d̃eg(g)
log n

)
.

Finally, we define projection of functions.

▶ Definition 14 (Projection of functions). Let f : {0, 1}n → R and g : {0, 1}m → R be two
functions. We say that f is a projection of g, denoted f ≤proj g, iff

f(x1, . . . , xn) = g(a1, . . . , am)

for some ai ∈ {0, 1} ∪ {x1, x2, . . . , xn}. That is, f is obtained from g by substitutions of
variables of g by variables of f or constants in {0, 1}.

We need the following theorems about computing MAJn using a projection of recursive
functions.

▶ Theorem 15 ([20]). There exists a constant C > 0, such that MAJn : {0, 1}n → {0, 1} is
a projection of MAJd

3 where d = C log n.

▶ Theorem 16 ([48]). There exists a constant C > 0, such that MAJn : {0, 1}n → {0, 1} is
a projection of (AND2 ◦ OR2)d where d = C log n.

3 Composition theorem for recursive Majority and alternating
AND-OR trees

In this section we give a proof of Theorem 2. We begin with a proof highlight of Lemma 3.
The missing proofs are in the full version of the paper [16].

3.1 Proof of Lemma 3
▶ Lemma 3. For any Boolean functions f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1},

d̃eg(f ◦ MAJt ◦ g) = Ω(d̃eg(f)d̃eg(g)) (1.1)

for t ≥ C log n for a large enough constant C.

S. Chakraborty, C. Kayal, R. Mittal, M. Paraashar, and N. Saurabh 71:9

Proof. We will present a proof inspired by the primal-dual view of [40]. Fix any constant
0 < ε < 1/2. Let h := f ◦ MAJt ◦ g be the composed function, and ph : {0, 1}ntm → R be an
ε-approximating polynomial for h.

Further, define d := d̃eg 1−ε
2

(g). Then, by Lemma 8, there exists a function ψ : {0, 1}m →
R such that∑

x∈{0,1}m

|ψ(x)| = 1, (3.1)

∑
x∈{0,1}m

ψ(x) · g(x) > 1 − ε

2 , and (3.2)

∑
x∈{0,1}m

ψ(x) · p(x) = 0 for every polynomial p of degree < d. (3.3)

Let µ be the probability distribution on {0, 1}m given by µ(x) = |ψ(x)| for x ∈ {0, 1}m.
From (3.3), we have

∑
x∈{0,1}m ψ(x) = 0. Therefore, the sets {x | ψ(x) < 0} and {x | ψ(x) >

0} are weighted equally by µ. Let µ0 and µ1 be the probability distributions obtained by
conditioning µ on the sets {x | ψ(x) < 0} and {x | ψ(x) > 0} respectively. Hence,

µ = 1
2µ0 + 1

2µ1, and ψ = 1
2µ1 − 1

2µ0.

We note an important property of the distributions µ0 and µ1 which shows that the error
between sign(ψ(x)) and g(x) is low.

▶ Lemma 17. Ex∼µ1 [g(x)] > 1 − ε.

▶ Lemma 18. Ex∼µ0 [g(x)] < ε.

Consider the following linear operator L that maps functions h : {0, 1}ntm → R to
functions Lh : {0, 1}n → R,

Lh(z) = E
x11∼µz1
x12∼µz1

...
x1t∼µz1

E
x21∼µz2
x22∼µz2

...
x2t∼µz2

· · · E
xn1∼µzn
xn2∼µzn

...
xnt∼µzn

[h(x11, . . . , x1t, x21, . . . , x2t, . . . , xn1, . . . , xnt)]. (3.4)

Recall h = f ◦ MAJt ◦ g and ph be ε-approximating polynomial for h. Thus by convexity
of L we have ∥L(h− ph)∥∞ ≤ ε. We will now observe some useful properties of the linear
operator L.

▶ Lemma 19. deg(Lph) ≤ deg(ph)/d, where d = d̃eg 1−ε
2

(g).

We now show that Lph is in fact an approximating polynomial for f .

▶ Lemma 20. Fix 0 < δ < 1/2. Recall ph is an ε-approximating polynomial for h =
f ◦ MAJt ◦ g. Let t = Θ(log n+ log(1/δ)) where the constant in Θ(·) depends on ε. Then,
Lph is a (δ + ε)-approximating polynomial for f . That is,

∥f − Lph∥∞ ≤ ∥f − Lh∥∞ + ∥Lh− Lph∥∞ ≤ δ + ε.

APPROX/RANDOM 2024

71:10 Approximate Degree Composition for Recursive Functions

Proof. It suffices to show ∥f − Lh∥∞ ≤ δ. To this end, consider Lh(z).

Lh(z) = E
x11∼µz1
x12∼µz1

...
x1t∼µz1

E
x21∼µz2
x22∼µz2

...
x2t∼µz2

· · · E
xn1∼µzn
xn2∼µzn

...
xnt∼µzn

[f ◦ MAJt ◦ g(x11, . . . , x1t, . . . , xn1, . . . , xnt)]

= f

(
MAJt

(
E

µz1
[g], . . . , E

µz1
[g]
)
, . . . ,MAJt

(
E

µzn

[g], . . . , E
µzn

[g]
))

= f(z′
1, z

′
2, . . . , z

′
n),

where ∥z − z′∥∞ ≤ δ/n because t = Θε(log n+ log(1/δ)) and Lemmas 18 and 17.
Therefore, for any z ∈ {0, 1}n, |f(z) −Lh(z)| = |f(z) − f(z′)| ≤ δ, since ∥z− z′∥∞ ≤ δ/n

and Lemma 12. ◀

Since Lph is a (δ + ε)-approximating polynomial for f , we also have deg(Lph) ≥ d̃egδ+ε(f).
We therefore have the following inequalities

d̃egδ+ε(f) ≤ deg(Lph) ≤ deg(ph)
d̃eg 1−ε

2
(g)

.

Rewriting we have

d̃egε(f ◦ MAJt ◦ g) = deg(ph) ≥ d̃egδ+ε(f) · d̃eg 1−ε
2

(g). (3.5)

This completes the proof of Lemma 3. ◀

3.2 Proof of Theorem 2
We note an easy to observe fact about approximate degree of projections of functions.

▶ Fact 3.6. Let f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1} be such that f ≤proj g, i.e., f
is a projection of g. Then, for any ε ∈ (0, 1/2), d̃egε(f) ≤ d̃egε(g).

Consider the recursive-majority function MAJd
3 given by the complete 3-ary tree of height

d with internal nodes labeled by MAJ3 and the leaves are labeled by distinct variables. Fix
d ≥ C log log n for a large enough constant C.

First, observe that MAJd
3 is not a symmetric function. Secondly, it doesn’t have full ap-

proximate degree ([35]). And finally, its approximate degree is not equal to Θ
(√

bs(MAJd
3)
)

(it follows from the fact that bs(MAJd
3) is linear with d̃eg(MAJd

3). See the full version [16]
for a proof of d̃eg(MAJd

3) = 2d). Thus, none of the previous works [39, 8, 15] imply that
approximate degree composes when one of the (inner or outer) functions is recursive-majority
MAJd

3.

Proof of Theorem 2. Let MAJd
3 be the recursive-majority function obtained by the complete

3-ary tree of height d with internal nodes labeled by MAJ3 and the leaves are labeled by distinct
variables. Let f : {0, 1}n → {0, 1} be an arbitrary function and consider the approximate
degree of the composed function f ◦ MAJt ◦ MAJd

3 where t = Θ(log n).

d̃eg(f ◦ MAJt ◦ MAJd
3) ≤ d̃eg(f ◦ MAJC log t

3 ◦ MAJd
3) = d̃eg(f ◦ MAJd

3 ◦ MAJC log t
3) (3.7)

= O(d̃eg(f ◦ MAJd
3) · d̃eg(MAJC log t

3)) (3.8)

= O(d̃eg(f ◦ MAJd
3) · poly(t)). (3.9)

S. Chakraborty, C. Kayal, R. Mittal, M. Paraashar, and N. Saurabh 71:11

The first inequality in (3.7) follows from the fact that MAJt is a projection of MAJC log t
3

(Theorem 15) and Fact 3.6. Then (3.8) follows from Theorem 9.
On the other hand, from Lemma 3, for t = Ω(log n) we have

d̃eg(f ◦ MAJt ◦ MAJd
3) = Ω(d̃eg(f) · d̃eg(MAJd

3)).

Combining with (3.9), we obtain the lower bound

d̃eg(f ◦ MAJd
3) = Ω

(
d̃eg(f) · d̃eg(MAJd

3)
polylog(n)

)
.

A similar argument shows the following inequalities, where in the last two inequalities we
use Theorem 16 instead of Theorem 15, for d = Ω(log n),

d̃eg(MAJd
3 ◦ f) = Ω̃(d̃eg(f) · d̃eg(MAJd

3)),
d̃eg(f ◦ (AND2 ◦ OR2)d) = Ω̃(d̃eg(f) · d̃eg((AND2 ◦ OR2)d)), and
d̃eg((AND2 ◦ OR2)d ◦ f) = Ω̃(d̃eg(f) · d̃eg((AND2 ◦ OR2)d)). ◀

4 Composition theorem for recursive functions

In this section we prove our main theorem (Theorem 1). It shows that the approximate
degree composes when either the inner function or the outer function is a recursive function.
More formally,

▶ Theorem 1. Let f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1} be two Boolean functions
and d ≥ C log log n for a large enough constant C. Then,

d̃eg(f ◦ g) = Ω
(

d̃eg(f)d̃eg(g)
polylog(n)

)
,

if either of the following conditions hold:
1. f = hd, for any Boolean function h.
2. g = hd, for any Boolean function h with constant arity and not equal to AND or OR.

The following cases of Theorem 1 follows from prior works:
1. f or g equals hd for h ∈ {PARITY,¬PARITY} [39].
2. f = hd and h ∈ {AND,OR} [8].
Therefore, it remains to prove Theorem 1 when h /∈ {PARITY,¬PARITY,AND,OR}. A crucial
technical insight that makes the proof work is that when h /∈ {PARITY,¬PARITY,AND,OR}
then AND2 and OR2 are projections of h3. We can thus simulate MAJ using a small power
of h. Thereafter, Lemma 3 is used to conclude Theorem 1. We now work out the details.
We first state the main technical lemma we need for Theorem 1 and then complete the proof
of the theorem. Finally, we prove the technical lemma in Section 4.1.

▶ Lemma 21. Let h : {0, 1}t → {0, 1} (where t ≥ 2) be a Boolean function which depends on
all t variables and is not equal to PARITY/¬PARITY/OR/AND. The function AND2 (and
similarly OR2) can be obtained by setting all but two variables to constants in hk for k ≤ 3.

We now present the proof of Theorem 1 using Lemma 21.

Proof of Theorem 1. Let h : {0, 1}t → {0, 1} be any Boolean function such that h /∈
{PARITY,¬PARITY,AND,OR}. We know from Lemma 3 that d̃eg(f ◦ MAJk ◦ hd) =
Ω(d̃eg(f)d̃eg(hd)) where k = Θ(log n). Like in the proof of Theorem 2, we will simu-
late MAJk using hℓ for sufficiently large ℓ. From Lemma 21, it follows that (AND2 ◦ OR2)ℓ

is a projection of h6ℓ. Therefore, we obtain from Theorem 16 that MAJk is a projection of
hC log k for some constant C > 0. We thus have the following sequence of inequalities,

APPROX/RANDOM 2024

71:12 Approximate Degree Composition for Recursive Functions

d̃eg(f ◦ hd) ≥ d̃eg(f ◦ MAJk ◦ h(d−C log k))

= Ω(d̃eg(f)d̃eg(h(d−C log k)))

= Ω
(

d̃eg(f)d̃eg(hd)
tC log k

)

= Ω
(

d̃eg(f)d̃eg(hd)
polylog(n)

)
.

Note that the last equality above uses the fact that t is a constant. When hd is the outer
function then we don’t need t to be a constant, while the rest of the argument remains the
same to give

d̃eg(hd ◦ g) = Ω
(

d̃eg(hd)d̃eg(g)
polylog(n)

)
. ◀

This completes the proof of the main theorem. We now present a proof of Lemma 21.

4.1 Proof of the main technical lemma (Lemma 21)
We proceed by proving an intermediate result (Lemma 22) before going to the proof of
Lemma 21.

Suppose we are allowed to modify a Boolean function by two operations: negating some
of its variables, and restricting some of the variables to constant values. Lemma 22 proves
that almost every Boolean function can be modified to either an AND2 or an OR2 function.
A restriction of the variables amounts to looking at a smaller hypercube translated to a new
point, and negating a variable amounts to rotating the smaller hypercube. In other words,
we want to show that there is a shifted AND2 or OR2 in the Boolean hypercube of h (see
Figure 1 for an example).

This shifted AND2/OR2 in the Boolean hypercube of a Boolean function can be concretely
defined by the concept of a sensitive block. For a block of variables S ⊆ [n] and an input
x ∈ {0, 1}n, define x⊕S ∈ {0, 1}n to be the input which flips exactly the variables in S at
the input x. Given a Boolean function f : {0, 1}n → {0, 1}, a block S is called sensitive on
x iff f(x) ̸= f(x⊕S). A block S is called minimal sensitive for x at f , if no subset of S is
sensitive for x at f .

Notice that a shifted AND2/OR2 is a square with three vertices labelled 0 and one vertex
labelled 1 or vice versa. This gives us a minimal sensitive block on the vertex opposite to the
unique value. It can be easily verified that the converse is also true. So, we define a function
to have a shifted AND2/OR2 iff it has a minimal sensitive block of size 2.

We show below that almost all functions have a minimal sensitive block of size 2.

▶ Lemma 22. Let h : {0, 1}t → {0, 1} (where t ≥ 2) be a Boolean function which depends
on all t variables and is not equal to PARITY/¬PARITY. Then, there exists an x ∈ {0, 1}t

such that h has a minimal sensitive block of size 2 on x.

Proof. We will prove the result using induction on the variables. The statement can be
easily verified for t = 2.

Define g0 (and g1) to be the restrictions of h by setting xt = 0 (and xt = 1) respectively.
Let ey be the edge ((y, 0), (y, 1)) in the Boolean hypercube, and St := {ey : y ∈ {0, 1}t−1}.
Color an edge ey red if g0(y) = g1(y), and blue otherwise.

S. Chakraborty, C. Kayal, R. Mittal, M. Paraashar, and N. Saurabh 71:13

Figure 1 A function on 3 bits with a shifted OR marked with red edges.

Notice that not all the edges in St can be red, otherwise h does not depend on xt. Suppose
all the edges in St are blue, i.e, g1 = ¬g0 (in other words, h = g0 ⊕ xt). Since h depends on
all variables, then g0 depends on all variables x1, x2, · · · , xt−1. If g0 is PARITY/¬PARITY,
then h is also PARITY/¬PARITY. Implying that g0 is dependent on all its variables and is
not PARITY/¬PARITY. By induction, there exists a minimal sensitive block of size 2 for g0
(and hence h).

For the rest of the proof, we can assume that there exists both a red and a blue edge
in St.

Let ex be red and ey be blue, this means that g0(x) = g1(x) but g0(y) ̸= g1(y). If x and
y were at Hamming distance 1, then vertices (x, 0), (x, 1), (y, 0) and (y, 1) will give us the
required minimal sensitive block of size 2.

If x, y are not at Hamming distance 1, look at any path from x to y in the t−1 dimensional
hypercube, say z0 = x, z1, z2, · · · , zl = y. The edge ez0 is red and ezl

is blue. Since the color
needs to switch at some point, there exist zi, zi+1 at Hamming distance 1 such that ezi

is
red and ezi+1 is blue. Again, the vertices (zi, 0), (zi, 1), (z1+1, 0) and (zi+1, 1) will give us the
required minimal sensitive block of size 2. ◀

We are prepared to prove Lemma 21 which shows: given a Boolean function h, AND2
(and OR2) can be obtained by restricting some of the variables to constants in a very small
power of h. Compared to Lemma 22, we need to remove negation and simulate both AND2
and OR2 and not just one of them.

We just show how to obtain AND2, the case for OR2 is similar. We handle the case of h
being monotone and non-monotone separately.

Monotone h

This case is simpler, and AND2 can be obtained as a restriction of h itself. Let a minimal
1-input be a x ∈ {0, 1}t such that setting any 1 bit of x to 0 changes the value of h. If there
is a minimal 1-input x of Hamming weight more than 2, we get a AND2 by choosing any two
indices which are 1 in x. The following claim finishes the proof for monotone functions.

▷ Claim 23. Let h : {0, 1}t → {0, 1} be a monotone Boolean function which depends on all
variables. If there is no minimal 1-input with Hamming weight more than 2, then h is the
OR function.

APPROX/RANDOM 2024

71:14 Approximate Degree Composition for Recursive Functions

Figure 2 An example for constructing AND2 using a non-monotone function. Let
h : {0, 1}3 → {0, 1} be 0 at x = 001 and 1 otherwise. Use the shifted OR2/minimal sensitive
block at 001 with indices {2, 3}.

Proof. By abusing the notation, let 0 denote the all 0 input. Since the function is monotone
but not constant, we know that h(0) = 0. Let S ⊆ [t] capture the indices such that the
corresponding Hamming weight 1-input has function value 0,

S = {i : h(0⊕i) = 0}.

For a y ∈ {0, 1}t, if the set of 1-indices are not a subset of S, then h(y) = 1 by monotonicity.
If the set of 1-indices are a subset of S, then h(y) = 0 because there is no minimal 1-input
with Hamming weight more than 2.

In other words, h is the OR function on the remaining [t] \ S variables. Since h depends
on all the t variables, h is the OR function. ◁

Non-monotone h

Since h is a non-monotone function, there exists an input a ∈ {0, 1}t and an index i ∈ [t]
such that h(a) = 1, ai = 0 and h(a⊕i) = 0. Restricting the variables according to a (except
the i-th bit) gives h1(xi) = ¬xi.

From Lemma 22, there exists a b ∈ {0, 1}t such that h has a minimal sensitive block of
size 2 on b (shifted AND2/OR2). The main idea of this proof is to use negation and this
shifted AND2/OR2 (Figure 2 gives an example).

For the formal proof, without loss of generality assume that the block have indices 1, 2
(that means h(b) = h(b⊕{1}) = h(b⊕{2}) ̸= h(b⊕{1,2})). We will finish the proof by considering
the two cases h(b) = 0 and h(b) = 1.

S. Chakraborty, C. Kayal, R. Mittal, M. Paraashar, and N. Saurabh 71:15

h(b) = 0 (shifted AND2): Suppose b1 = 0 and b2 = 1 (other cases can be handled
similarly). Notice that AND2(x, y) = h(x,¬y, b3, · · · , bt), giving us AND2(x, y) =
h(x, h1(y), b3, · · · , bt).
h(b) = 1 (shifted OR2): Suppose b1 = 1 and b2 = 0 (other cases can be handled similarly).
Notice that OR2(x, y) = h(x,¬y, b3, · · · , bt); using De Morgan’s law,

AND2(x, y) = ¬OR2(¬x,¬y) = ¬h(¬x, y, b3, · · · , bt) = h1(h(h1(x), y, b3, · · · , bt))

Since h1 is also a restriction of h, the proof is complete.

5 Conclusion

Towards the main open problem of approximate degree composition, we have the following
immediate question in light of Lemma 3. Can we upper bound d̃eg(f ◦ MAJt ◦ g) in terms of
d̃eg(f ◦ g)? Precisely,

▶ Open question 24. Is d̃eg(f ◦ MAJt ◦ g) = Õ(d̃eg(f ◦ g)), where t = Θ(log n) and n is the
arity of the outer function f?

Observe that an affirmative solution to the above question solves the composition question
for approximate degree in positive. Another interesting question is to find other classes of
functions for which the analogue of Equation 1.2 holds.

▶ Open question 25. Find non-trivial classes of functions H such that d̃eg(f ◦ h ◦ g) =
Ω̃(d̃eg(f) · d̃eg(h) · d̃eg(g)) for all h ∈ H?

It has the following two useful implications. First, this gives composition for functions
h ∈ H. In particular, when one of the functions h (inner or outer) belongs to the class H
then d̃eg(f ◦ h ◦ g) = Ω̃(d̃eg(f) · d̃eg(h) · d̃eg(g)) along with Theorem 9 implies

d̃eg(h ◦ g) = Ω̃(d̃eg(h) · d̃eg(g)) and d̃eg(f ◦ h) = Ω̃(d̃eg(f) · d̃eg(h)).

Second, a function h ∈ H can be used as “hardness amplifier” functions.
Another very interesting question that may provide us insights to make progress towards

the main question of approximate degree composition is to prove that approximate degree
composes when the inner function is OR.

▶ Open question 26. Show that d̃eg(f ◦ OR) = Ω̃(d̃eg(f).d̃eg(OR)).

References
1 S. Aaronson. Impossibility of Succinct Quantum Proofs for Collision-Freeness. Quantum Inf.

Comput., 12(1-2):21–28, 2012. doi:10.26421/QIC12.1-2-3.
2 S. Aaronson and Y. Shi. Quantum Lower Bounds for the Collision and the Element Distinctness

Problems. J. ACM, 51(4):595–605, 2004. doi:10.1145/1008731.1008735.
3 E. Allender. A Note on the Power of Threshold Circuits. In FOCS, pages 580–584, 1989.

doi:10.1109/SFCS.1989.63538.
4 A. Ambainis. Polynomial Degree and Lower Bounds in Quantum Complexity: Collision

and Element Distinctness with Small Range. Theory Comput., 1(1):37–46, 2005. doi:
10.4086/toc.2005.v001a003.

5 R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum Lower Bounds by
Polynomials. J. ACM, 48(4):778–797, 2001. doi:10.1145/502090.502097.

APPROX/RANDOM 2024

https://doi.org/10.26421/QIC12.1-2-3
https://doi.org/10.1145/1008731.1008735
https://doi.org/10.1109/SFCS.1989.63538
https://doi.org/10.4086/toc.2005.v001a003
https://doi.org/10.4086/toc.2005.v001a003
https://doi.org/10.1145/502090.502097

71:16 Approximate Degree Composition for Recursive Functions

6 R. Beigel. The Polynomial Method in Circuit Complexity. In Proceedings of the Eigth Annual
Structure in Complexity Theory Conference, pages 82–95, 1993.

7 R. Beigel. Perceptrons, PP, and the Polynomial Hierarchy. Comput. Complex., 4:339–349,
1994. doi:10.1007/BF01263422.

8 S. Ben-David, A. Bouland, A. Garg, and R. Kothari. Classical Lower Bounds from Quantum
Upper Bounds. In FOCS, pages 339–349, 2018. doi:10.1109/FOCS.2018.00040.

9 S. Ben-David, P. Hatami, and A. Tal. Low-Sensitivity Functions from Unambiguous Certificates.
In ITCS, volume 67, pages 28:1–28:23, 2017. doi:10.4230/LIPIcs.ITCS.2017.28.

10 A. Bouland, L. Chen, D. Holden, J. Thaler, and P. N. Vasudevan. On the Power of Statistical
Zero Knowledge. In FOCS, pages 708–719, 2017. doi:10.1109/FOCS.2017.71.

11 H. Buhrman, I. Newman, H. Röhrig, and R. de Wolf. Robust Polynomials and Quantum
Algorithms. Theory Comput. Syst., 40(4):379–395, 2007. doi:10.1007/S00224-006-1313-Z.

12 H. Buhrman, N. K. Vereshchagin, and R. de Wolf. On Computation and Communication with
Small Bias. In CCC, pages 24–32, 2007. doi:10.1109/CCC.2007.18.

13 M. Bun and J. Thaler. Dual Lower Bounds for Approximate Degree and Markov-Bernstein
Inequalities. In ICALP, volume 7965, pages 303–314, 2013. doi:10.1007/978-3-642-39206-1_
26.

14 M. Bun and J. Thaler. Approximate Degree in Classical and Quantum Computing. Found.
Trends Theor. Comput. Sci., 15(3-4):229–423, 2022. doi:10.1561/0400000107.

15 S. Chakraborty, C. Kayal, R. Mittal, M. Paraashar, S. Sanyal, and N. Saurabh. On the Com-
position of Randomized Query Complexity and Approximate Degree. In APPROX/RANDOM,
volume 275, pages 63:1–63:23, 2023. doi:10.4230/LIPICS.APPROX/RANDOM.2023.63.

16 Sourav Chakraborty, Chandrima Kayal, Rajat Mittal, Manaswi Paraashar, and Nitin Saurabh.
Approximate Degree Composition for Recursive Functions, 2024. arXiv:2407.08385.

17 K. Chandrasekaran, J. Thaler, J. R. Ullman, and A. Wan. Faster Private Release of Marginals
on Small Databases. In ITCS, pages 387–402, 2014. doi:10.1145/2554797.2554833.

18 L. Chen. Adaptivity vs. Postselection, and Hardness Amplification for Polynomial Approxima-
tion. In ISAAC, volume 64 of LIPIcs, pages 26:1–26:12, 2016. doi:10.4230/LIPICS.ISAAC.
2016.26.

19 J. Gilmer, M. Saks, and S. Srinivasan. Composition Limits and Separating Examples for
Some Boolean Function Complexity Measures. Combinatorica, 36(3):265–311, 2016. doi:
10.1007/s00493-014-3189-x.

20 O. Goldreich. On (Valiant’s) Polynomial-Size Monotone Formula for Majority. In Com-
putational Complexity and Property Testing - On the Interplay Between Randomness and
Computation, volume 12050 of Lecture Notes in Computer Science, pages 17–23. Springer,
2020. doi:10.1007/978-3-030-43662-9_3.

21 M. Göös and T. S. Jayram. A Composition Theorem for Conical Juntas. In Ran Raz, editor,
31st Conference on Computational Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo,
Japan, volume 50 of LIPIcs, pages 5:1–5:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2016. doi:10.4230/LIPICS.CCC.2016.5.

22 T. S. Jayram, R. Kumar, and D. Sivakumar. Two Applications of Information Complexity. In
STOC, pages 673–682, 2003. doi:10.1145/780542.780640.

23 S. Jukna, A. Razborov, P. Savický, and I. Wegener. On P versus NP ∩ co-NP for Decision
trees and Read-Once Branching Programs. Comput. Complex., 8(4):357–370, 1999.

24 J. Kahn, N. Linial, and A. Samorodnitsky. Inclusion-Exclusion: Exact and Approximate.
Comb., 16(4):465–477, 1996. doi:10.1007/BF01271266.

25 A. Kalai, A. Klivans, Y. Mansour, and R. Servedio. Agnostically Learning Halfspaces. SIAM
J. Comput., 37(6):1777–1805, 2008. doi:10.1137/060649057.

26 P. Kamath and P. Vasudevan. Approximate Degree of AND-OR trees, 2014. URL: https:
//www.scottaaronson.com/showcase3/kamath-pritish-vasudevan-prashant.pdf.

27 A. Klivans, R. O’Donnell, and R. Servedio. Learning Intersections and Thresholds of Halfspaces.
J. Comput. Syst. Sci., 68(4):808–840, 2004. doi:10.1016/J.JCSS.2003.11.002.

https://doi.org/10.1007/BF01263422
https://doi.org/10.1109/FOCS.2018.00040
https://doi.org/10.4230/LIPIcs.ITCS.2017.28
https://doi.org/10.1109/FOCS.2017.71
https://doi.org/10.1007/S00224-006-1313-Z
https://doi.org/10.1109/CCC.2007.18
https://doi.org/10.1007/978-3-642-39206-1_26
https://doi.org/10.1007/978-3-642-39206-1_26
https://doi.org/10.1561/0400000107
https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2023.63
https://arxiv.org/abs/2407.08385
https://doi.org/10.1145/2554797.2554833
https://doi.org/10.4230/LIPICS.ISAAC.2016.26
https://doi.org/10.4230/LIPICS.ISAAC.2016.26
https://doi.org/10.1007/s00493-014-3189-x
https://doi.org/10.1007/s00493-014-3189-x
https://doi.org/10.1007/978-3-030-43662-9_3
https://doi.org/10.4230/LIPICS.CCC.2016.5
https://doi.org/10.1145/780542.780640
https://doi.org/10.1007/BF01271266
https://doi.org/10.1137/060649057
https://www.scottaaronson.com/showcase3/kamath-pritish-vasudevan-prashant.pdf
https://www.scottaaronson.com/showcase3/kamath-pritish-vasudevan-prashant.pdf
https://doi.org/10.1016/J.JCSS.2003.11.002

S. Chakraborty, C. Kayal, R. Mittal, M. Paraashar, and N. Saurabh 71:17

28 A. Klivans and R. Servedio. Learning DNF in time 2õ(n1/3). J. Comput. Syst. Sci., 68(2):303–
318, 2004. doi:10.1016/J.JCSS.2003.07.007.

29 A. Klivans and R. Servedio. Toward Attribute Efficient Learning of Decision Lists and Parities.
J. Mach. Learn. Res., 7:587–602, 2006. URL: http://jmlr.org/papers/v7/klivans06a.html.

30 T. Lee. A Note on the Sign Degree of Formulas. CoRR, abs/0909.4607, 2009. arXiv:0909.4607.
31 N. Leonardos. An Improved Lower Bound for the Randomized Decision Tree Complex-

ity of Recursive Majority. In ICALP, volume 7965, pages 696–708, 2013. doi:10.1007/
978-3-642-39206-1_59.

32 F. Magniez, A. Nayak, M. Santha, J. Sherman, G. Tardos, and D. Xiao. Improved Bounds for
the Randomized Decision tree Complexity of Recursive Majority. Random Struct. Algorithms,
48(3):612–638, 2016. doi:10.1002/rsa.20598.

33 N. Nisan and M. Szegedy. On the Degree of Boolean Functions as Real Polynomials. Comput.
Complex., 4:301–313, 1994. doi:10.1007/BF01263419.

34 N. Nisan and A. Wigderson. On Rank vs. Communication Complexity. Combinatorica,
15(4):557–565, 1995. doi:10.1007/BF01192527.

35 B. Reichardt and R. Špalek. Span-Program-Based Quantum Algorithm for Evaluating Formulas.
Theory Comput., 8(1):291–319, 2012. doi:10.4086/TOC.2012.V008A013.

36 M. Saks and A. Wigderson. Probabilistic Boolean Decision Trees and the Complexity of
Evaluating Game Trees. In FOCS, pages 29–38, 1986. doi:10.1109/SFCS.1986.44.

37 R. Servedio, L.-Y. Tan, and J. Thaler. Attribute-Efficient Learning and Weight-Degree
Tradeoffs for Polynomial Threshold Functions. In COLT, volume 23, pages 14.1–14.19.
JMLR.org, 2012. URL: http://proceedings.mlr.press/v23/servedio12/servedio12.pdf.

38 A. Sherstov. The Pattern Matrix Method. SIAM J. Comput., 40(6):1969–2000, 2011. doi:
10.1137/080733644.

39 A. Sherstov. Strong Direct Product Theorems for Quantum Communication and Query
Complexity. SIAM J. Comput., 41(5):1122–1165, 2012. doi:10.1137/110842661.

40 A. Sherstov. Approximating the AND-OR Tree. Theory Comput., 9:653–663, 2013. doi:
10.4086/toc.2013.v009a020.

41 A. Sherstov. The Intersection of Two Halfspaces has High Threshold Degree. SIAM Journal
on Computing, 42(6):2329–2374, 2013. doi:10.1137/100785260.

42 A. Sherstov. Making Polynomials Robust to Noise. Theory Comput., 9:593–615, 2013.
doi:10.4086/TOC.2013.V009A018.

43 A. A. Sherstov. Approximate Inclusion-Exclusion for Arbitrary Symmetric Functions. Comput.
Complex., 18(2):219–247, 2009. doi:10.1007/S00037-009-0274-4.

44 Y. Shi. Approximating Linear Restrictions of Boolean functions, 2002.
45 M. Snir. Lower Bounds on Probabilistic Linear Decision Trees. Theoretical Computer Science,

38:69–82, 1985. doi:10.1016/0304-3975(85)90210-5.
46 A. Tal. Properties and Applications of Boolean Function Composition. In ITCS, pages

441–454, 2013. doi:10.1145/2422436.2422485.
47 J. Thaler, J. R. Ullman, and S. P. Vadhan. Faster Algorithms for Privately Releasing Marginals.

In ICALP, volume 7391 of Lecture Notes in Computer Science, pages 810–821. Springer, 2012.
doi:10.1007/978-3-642-31594-7_68.

48 L. Valiant. Short Monotone Formulae for the Majority Function. Journal of Algorithms,
5(3):363–366, 1984. doi:10.1016/0196-6774(84)90016-6.

APPROX/RANDOM 2024

https://doi.org/10.1016/J.JCSS.2003.07.007
http://jmlr.org/papers/v7/klivans06a.html
https://arxiv.org/abs/0909.4607
https://doi.org/10.1007/978-3-642-39206-1_59
https://doi.org/10.1007/978-3-642-39206-1_59
https://doi.org/10.1002/rsa.20598
https://doi.org/10.1007/BF01263419
https://doi.org/10.1007/BF01192527
https://doi.org/10.4086/TOC.2012.V008A013
https://doi.org/10.1109/SFCS.1986.44
http://proceedings.mlr.press/v23/servedio12/servedio12.pdf
https://doi.org/10.1137/080733644
https://doi.org/10.1137/080733644
https://doi.org/10.1137/110842661
https://doi.org/10.4086/toc.2013.v009a020
https://doi.org/10.4086/toc.2013.v009a020
https://doi.org/10.1137/100785260
https://doi.org/10.4086/TOC.2013.V009A018
https://doi.org/10.1007/S00037-009-0274-4
https://doi.org/10.1016/0304-3975(85)90210-5
https://doi.org/10.1145/2422436.2422485
https://doi.org/10.1007/978-3-642-31594-7_68
https://doi.org/10.1016/0196-6774(84)90016-6

Public Coin Interactive Proofs for Label-Invariant
Distribution Properties
Tal Herman #

Weizmann Institute of Science, Rehovot, Israel

Abstract
Assume we are given sample access to an unknown distribution D over a large domain [N]. An
emerging line of work has demonstrated that many basic quantities relating to the distribution,
such as its distance from uniform and its Shannon entropy, despite being hard to approximate
through the samples only, can be efficiently and verifiably approximated through interaction with an
untrusted powerful prover, that knows the entire distribution [Herman and Rothblum, STOC 2022,
FOCS 2023]. Concretely, these works provide an efficient proof system for approximation of any
label-invariant distribution quantity (i.e. any function over the distribution that’s invariant to a
re-labeling of the domain [N]).

In our main result, we present the first efficient public coin AM protocol, for any label-invariant
property. Our protocol achieves sample complexity and communication complexity of magnitude
Õ(N2/3), while the proof can be generated in quasi-linear Õ(N) time.

On top of that, we also give a public-coin protocol for efficiently verifying the distance a between
a samplable distribution D, and some explicitly given distribution Q.

2012 ACM Subject Classification Theory of computation → Interactive proof systems

Keywords and phrases Interactive Proof Systems, Distribution Testing, Public-Coin Protocols

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.72

Category RANDOM

Funding Tal Herman: This project has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme (grant agreement
No. 819702), from the Israel Science Foundation (grant number 5219/17), and from the Simons
Foundation Collaboration on the Theory of Algorithmic Fairness.

1 Introduction

Given sample access to a distribution, what can we learn about the distribution, and what is
the complexity of learning? These questions are central to computer science and statistics
and have guided a rich body of work with applications ranging many fields. An emerging
line of work asks the following question:

What is the complexity of verifying claims about a samplable distribution?

That is, suppose there exists a powerful yet untrusted prover that claims to have drawn
many samples from a distribution D, and concluded that it satisfies some condition, e.g. its
support is of size at most K, its Shannon entropy is h, etc. Can a verifier interacting with
the prover be convinced that the claim is (approximately) correct, while taking fewer samples
and running in less time than required to compute these measures directly from samples?

This question was raised by Chiesa and Gur [5], and recently Herman and Rothblum
[14] showed that a rich family of distribution properties, namely label-invariant distribution
properties - those distribution measures that remain unchanged after permuting the domain
(such as the distribution’s support size and Shannon entropy) - have (doubly) efficient
proof systems, that for natural problems, allow verification that is significantly faster than
computation from samples only. These protocols are private-coin protocols, in which the

© Tal Herman;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 72; pp. 72:1–72:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tal.herman@weizmann.ac.il
https://orcid.org/0000-0001-7685-3569
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.72
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

72:2 Public Coin Interactive Proofs for Label-Invariant Distribution Properties

verifier can draw samples from D, toss random coins, and choose whether to send them to
the prover, or keep them hidden from it. Indeed, the protocols in [14] rely heavily on the
fact that the verifier hides its random coin-tosses in order to perform the verification. In
this work we explore public-coin protocols for verifying distribution properties, in which the
verifier reveals to the prover every coin it tosses immediately upon drawing it. We construct
efficient public-coin proof systems for label-invariant distribution properties, and more.

More concretely, we follow the definition of public-coin proof systems for distribution
properties from Chiesa and Gur [5], in which the verifier can only send random coin tosses
to the prover, and the samples they draw from D are independent from the transcript of the
protocol, and are drawn only after the communication phase.

Our work studies the power of public-coin proof systems in the context of verifying
properties of an unknown samplable distribution. We find this to be a foundational question:
indeed, the power of public-coin proof systems has been a central question since they were
first introduced [10, 2]. In the classical setting (verifying the membership of a fixed and
known input in a language), Goldwasser and Sipser [11] showed how to convert general
protocols into public-coin ones (albeit their transformation does not preserve the honest
prover’s running time [19, 1]). In our context, where the verifier only has sampling access to
the unknown distribution, no such general transformation is known. Chiesa and Gur showed
upper and lower bounds for public-coin interactive proofs for distribution properties. Beyond
the foundational importance of public-coin protocols, they are also important for removing
interaction using the Fiat-Shamir paradigm [7] and for transforming general protocol into
zero-knowledge ones [9, 4]

1.1 This Work: Public-coin Protocols for Label-Invariant Distribution
Properties

Our main result is a new public-coin protocol for label-invariant distribution properties. We
proceed to present this result, and put it into context with the private-coin setting of [14],
and the other public-coin distribution verification protocols of [5].

A distribution property P = (PN)N∈N is an ensemble such that PN is a set of distributions
over domain [N]. We consider the distance of a distribution D over domain [N] from the
property by the total variation of D from the closest distribution to it in PN . A distribution
property is said to be label-invariant if permuting the domain doesn’t change P . This family
of distribution properties contains many natural properties, such as the property of being
close to uniform over some subset of the domain, or having Shannon entropy roughly k.

▶ Theorem 1 (Main result: public-coin IPs for label-invariant properties, informal). For every
label-invariant distribution property P with a doubly-efficient approximate decision procedure,1

there exists a 2-message public-coin interactive protocol as follows. The prover and the verifier
both get as input an integer N and proximity parameters εc, εf ∈ [0, 1] where εc < εf , as
well as sampling access to an unknown distribution D over support [N], and the following
properties hold:

1 See Definition 28. In a nutshell, these are label-invariant properties that can be efficiently decided from
the τ -approximate bucket-histogram of the distribution, i.e. by only knowing how many elements have
probability roughly (1+τ)j

N for all j, see Definition 5. [13] showed that this assumption is quite mild,
and many natural distribution properties admit such a procedure, the reader is referred to [13] for a
deeper exploration of this notion.

T. Herman 72:3

Completeness: if D is εc-close to the property (its total variation distance from the closest
distribution in the property is at most εc), and the prover follows the protocol, then w.h.p.
the verifier accepts.
Soundness: if D is εf -far from the property (its total variation distance from every
distribution in the property is at least εf), then w.h.p. no matter how the prover cheats,
the verifier rejects.
Doubly-efficient prover: Taking ρ = εf − εc, the honest prover’s runtime and sample
complexity are Õ(N) · poly(1/ρ).
Efficient verification: the communication complexity and the verifier’s sample complexity
and runtime are all Õ

(
N2/3) · poly(1/ρ).

Public-coin verification vs. testing of label-invariant distribution properties

Observe that the protocol above allows us to efficiently approximate the distance of D from
P , by running a binary search with different values for εc, εf . Raskhodnikova et al. [17], and
Valiant and Valiant [20] showed that approximating the distance between D and natural
label-invariant distribution properties, given only black-box sample access to the distribution,
requires Θ(N/ log N) samples. This includes approximating the distance from being uniform
over the entire domain, from having entropy k, and more. Thus, our result demonstrates
that public-coin verification can be more efficient than stand-alone computation with no
access to a prover for these natural distribution problems.

Comparison with the secret-coin setting of Herman and Rothblum [14]

Herman and Rothblum provided a secret-coin interactive proof for verifying membership
in any label-invariant distribution property (that admits an efficient approximate decision
procedure) with verifier sample complexity, runtime, communication complexity of magnitude
Õ
(√

N
)

, and only two messages. The first message in their protocol contains a tuple of
elements in [N], where each element was sampled with probability 1

2 from the distribution
D, and with probability 1

2 was drawn uniformly from [N]. Crucially for their argument,
the verifier doesn’t share with the prover which samples were drawn according to which
distribution, and later capitalizes on that fact to reject dishonest prover behavior.

In our public-coin protocol not only is the verifier required to share the random coin
tosses, it also cannot send samples from D as part of the communication. Thus, Theorem 4
achieves a similar result qualitatively to theirs, but using only public coins, at the cost of
more samples and communication.

Comparison with Chiesa and Gur [5]

Chiesa and Gur provided public-coin protocols for any property with communication c =
Õ(N), and verifier sample complexity s = O

(√
N
)

, by having the prover send an explicit
description of the distribution, and the verifier use an identity tester from the distribution
testing literature to check that the description matches the samplable distribution. Then, the
verifier accepts if D is both close to the explicit distribution provided, and if this description
is of a distribution inside the property. Moreover they also proved that for a distribution
property that requires Ω(t) samples to test, any public-coin proof system for this property
must satisfy s · c = Ω(t). As mentioned above, verifying the distance from uniformity or
approximating the entropy of a distribution requires Ω̃(N) samples, and so, every AM
protocol that verifies this property must also satisfy s · c = Ω̃(N). Our protocol for this
problem achieves c · s = Õ(N4/3), and the question of whether there exists a more efficient
public-coin proof system for this problem remains open.

APPROX/RANDOM 2024

72:4 Public Coin Interactive Proofs for Label-Invariant Distribution Properties

Obtaining approximate tags of elements in [N]

The method through which our protocol allows the verifier to verify any label invariant
distribution property is by having the verifier uniformly draw elements from [N], and verifiably
obtain an approximation of the probability of each element according to D, that is correct
on average (we call this a uniformly drawn approximate tagged sample). Formally, for some
accuracy parameter σ ∈ (0, 1), and a tuple (zi) ∈ [N]s, we define:

▶ Definition 2 (σ-approximate tags for (zi) with respect to D). σ-approximate tags for (zi)
with respect to D is a tuple (πi)i∈[s] ∈ [0, 1]s that satisfies the following inequality:

1
s

∑
i∈[s]

(
1 − min

{
D(zi)

πi
,

πi

D(zi)

})
≤ σ (1)

In other words, on average, πi ∈ [1 ± σ] D(zi). A uniformly drawn approximate tagged
sample allows to approximate the probability histogram of a distribution, as explained in
the following sections. Note that in [13] and [14] the authors obtain an approximate tagged
sample drawn according to D, rather than from a uniformly drawn sample, and use it to
approximate the probability histogram of D. Thus, upon obtaining the probability histogram,
our approaches converge, and we follow these works to bridge the gap between obtaining a
probability histogram of a distribution and the estimation of distance from a label-invariant
property. Note that the main difficulty is obtaining the tagged sample, a task that without
communication would’ve required Ω̃(N) samples, and so, this paper will focus on this point.

Moreover, [13, 14] not only contain secret coins, but also rely on the fact that the verifier
can send samples from D to the prover. In this work, we allow the verifier to only send
random coins, not even samples from D. This choice is justified in Chiesa and Gur [5], and
allows our protocol to utilize properties of public-coin protocols over other objects with
different access models.

We also show that a uniformly drawn approximate tagged-sample can also be used to
verify distribution properties that are not label-invariant. Specifically, we also show that for
the well-studied problem of approximating the distance of D from an explicit distribution Q,
an approximate tagged uniform sample is sufficient:

▶ Theorem 3 (Tolerant Verification of Identity). Given an explicit description of distribution
Q over [N], parameters 0 < εc < εf <, and sample access to distribution D over domain
[N], there exists a 2-message public-coin protocol, with verifier sample complexity and
communication complexity Õ(N2/3) · poly(1

εf −εc
) such that:

If ∆SD(D, Q) ≤ εc, the verifier accepts with high probability.
If ∆SD(D, Q) ≥ εf , the verifier rejects with high probability.

1.2 Further Related Works
Interactive proof systems were introduced in the seminal work of Goldwasser, Micali and
Rackoff [10] in the context of proving computational statements about an input that is fully
known to the prover and the verifier. In our work, the distribution can be thought of as the
input, but it is not fully known to the verifier, and is accessed implicitly through samples.
We aim for verification without examining the distribution in its entirety, using minimal
resources (samples, communication, runtime, etc.).

Our work builds on a line of work that studied the power of sublinear time verifiers,
who cannot read the entire input [6, 18, 12], on verifying properties of distributions using a
small number of samples [5, 13, 14], and the rich literature of distribution testing, of which

T. Herman 72:5

most notably, we extensively use the ideas of Batu and Canonne in [3], as explained in the
technical overview. We also note that Herman and Rothblum [15] recently showed that a
very rich family of distribution properties, those that can be decided by a small circuit from
an explicit description of the distribution, can be doubly-efficiently verified with asecret-coin
protocol.

2 Technical Overview

As discussed in the introduction above, the protocol behind Theorem 1 is based on obtaining
verified Θ(ρ)-approximate tags with respect to D for a sample uniformly drawn from [N]. In
this section, we describe the public-coin protocol for obtaining this object. We then detail
how this tagged sample can be leveraged to verify membership in label-invariant distribution
properties.

▶ Theorem 4 (Informal). There exists a 2-message public-coin interactive protocol between a
verifier and a (potentially malicious) prover, where the verifier receives as input parameters
σ ∈ (0, 0.1) and N ∈ N, as well as sample access to a distribution D over domain [N].
The communication complexity, verifier sample complexity, and verifier runtime are all
s = Õ

(
N2/3) poly(σ−1), the honest prover with the same input as the verifier has sample

complexity and runtime Õ(N)poly(σ−1). At the end of the interaction, the verifier rejects or
outputs (Si) ∈ [N]s that is drawn uniformly from [N], and (πi) ∈ [0, 1]s such that:

If the prover is honest, for all i ∈ [s], πi = D(Si), and with probability at least 0.75, the
verifier doesn’t reject.
Whatever strategy a dishonest prover follows, with probability at most 0.25 over the
verifier’s coin tosses and samples, the verifier accepts and outputs (πi) such that doesn’t
satisfy Inequality (1).

We outline the protocol behind Theorem 4. We highlight that some details are swept under
the rug for sake of simplicity. In particular, we assume that D(x) ≤ 1

s for all x ∈ [N]. After
we present the protocol under this assumption, we discuss how to remove this assumption.

The communication phase

The verifier draws an i.i.d. sample S = (Si) of size s = Õ
(
N2/3) · poly

(
σ−1) uniformly

from [N], and sends the sample the prover. For each sample Si received, the prover replies
with πi such that πi = D(Si). Note that with high probability, due to the choice of s, there
doesn’t exist an element in x ∈ [N] that was sampled more than 3 times,2 and in general,
the fraction of elements that were sampled twice or three times is very small with respect to
s. Therefore, for sake of simplicity, assume that S contains only unique elements.

Moreover, since we assumed D(x) ≤ 1
s for all x ∈ [N], by choice of s, the sample S

contains with overwhelming probability many samples uniformly distributed inside Supp(D).

Verifing the prover’s message

The verifier divides the samples in S into buckets according to their alleged probability, where
inside each bucket all the samples are claimed to have roughly the same mass. Concretely,
for τ = O(σ3), and for every j, denote by BS

j ⊆ [s] the collection of indices in S that the

2 The probability that 4 samples collide is
∑

x∈[N] D(x)4 = 1
N3 while there are only

(
s
4

)
= O(N8/3)

possible 4-tuples in the sample S.

APPROX/RANDOM 2024

72:6 Public Coin Interactive Proofs for Label-Invariant Distribution Properties

prover claimed have probability in the range
[

(1+τ)j

N , (1+τ)j+1

N

]
. The verifier then tests for

every such j that the average probability of the elements in BS
j is indeed roughly (1+τ)j

N , and
that D

∣∣
BS

j

is close to uniform:
Checking that the average mass is correct. The verifier draws a fresh sample T ,
and checks that the empirical mass of BS

j in T is roughly s ·
∣∣BS

j

∣∣ · (1+τ)j

N , and rejects
otherwise. Observe that for any distribution D, the true mass of BS

j is
∑

k∈BS
j

D(Sk).
And so, by choice of s, since the empirical mass of BS

j in T is strongly concentrated
around its mean, if the test passes, then with high probability:

s ·
∑

k∈BS
j

D(x) τ
≈ s ·

∣∣BS
j

∣∣ · (1 + τ)j

N

Where for α ∈ (0, 1) we use the notation a
α
≈ b to indicate that a ∈ (1 ± α)b. We conclude

that with high probability:

E
k

uni∼ BS
j

[D(Sk)]
O(τ)
≈ (1 + τ)j

N
(2)

Verifying that D
∣∣
BS

j

is close to uniform. The verifier draws another fresh D-sample
T ′ of size s, and counts how many 3-way collisions occur between elements in BS

j

and the two samples T, T ′, i.e. the number of 3-tuples (k, r, r′) ∈ [s]3 satisfy k ∈ BS
j ,

Sk = Tr = T ′
r′ . If this quantity is far from s2 ·

∣∣BS
j

∣∣ ·((1+τ)j

N

)2
, the verifier rejects. Similar

to before, for any fixed pair of entries in T, T ′, (r, r′) ∈ [s]2, the true expected number of
k ∈ BS

j for which Sk = Tr = Tr′ is
∑

k∈BS
j

(D(Sk))2. The total expected number of such
3-tuples is s2 ·

∑
k∈BS

j
(D(Sk))2. This quantity is also strongly concentrated around its

mean by choice of s = Θ(N2/3)poly(σ−1). We conclude that if this test passed, then with
high probability:

s2 ·
∑

k∈BS
j

(D(Sk))2 O(τ)
≈ s2 ∣∣BS

j

∣∣ ·
(

(1 + τ)j

N

)2

And equivalently:

E
k

uni∼ BS
j

[
(D(Sk))2

] O(τ)
≈
(

(1 + τ)j

N

)2

(3)

We are thus left to argue that Equations (2) and (3) imply that D
∣∣
BS

j

is close to uniform.
Following Batu and Canonne [3], observe that:

Var
k

uni∼ BS
j

[D(Sk)] = E
k

uni∼ BS
j

[
(D(Sk))2

]
−
(
E

k
uni∼ BS

j

[D(Sk)]
)2

And so, assuming Equations (2) and (3) hold, we get that Var
k

uni∼ BS
j

[D(Sk)] =

O (τ) (E [D(x)])2. Using Chebychev’s Inequality:

Pr
k

uni∼ BS
j

(∣∣∣∣D(Sk) − E
k

uni∼ BS
j

[D(Sk)]
∣∣∣∣ ≥ O

(√
τ

σ

)
· E

k
uni∼ BS

j

[D(Sk)]
)

≤ O(σ) (4)

T. Herman 72:7

From which we conclude all but σ-fraction of entries i ∈ BS
j satisfy:

πi

O(τ)
≈ (1 + τ)j

N

O(τ)
≈ E

k
uni∼ BS

j

[D(Sk)]
O(

√
τ/σ)

≈ D(Si)

Where the first inequality stems from the definition of Bs
j , the second from Equation (2),

and the last from Inequality (4). Plugging in τ = O(σ3), we get: πi

O(σ)
≈ D(Si).

We thus showed that if both verifier tests pass, then with high probability over the
randomness of the verifier, it holds that for every j, the tags over BS

j are σ-approximately
correct, from which Inequality (1) is inferred.

Assuming D contains no heavy elements

Observe that the probability of all elements with probability larger than 1/s can be well-
approximated through their empirical mass in a sample of size Θ̃(s) from D. Therefore, we
can think of a verifier that estimates without need of a prover the mass of all such elements.
This process is described in detail in [13], and we describe it shortly here. The reader is
referred to their work for further detail. After receiving the prover’s tags, the verifier performs
the following step: the verifier draws a fresh D-sample, denoted H, of size Õ(s)poly(σ−1)
from D. With high probability, by a coupon-collector argument, this set contains all elements
with probability at least 1

s (if any exist).
The verifier tests the mass of H be drawing a fresh sample and examining the empirical

mass of H in that new sample. If it is significant, i.e. Ω(σ), the verifier “learns” D
∣∣
H up to σ

distance by subsampling from this distribution and running a folklore distribution learner (see
Theorem 4). This requires Õ(s)poly(σ−1) samples from D, and thus doesn’t incur significant
overhead to the sample complexity of the protocol. Thus, the verifier obtains an explicit
description of the distribution PH, which is O(σ)-close to D

∣∣
H. Since H is a set of size at

most s, and the sample S was drawn drawn i.i.d. from [N], with overwhelming probability
it holds that |S ∩ H| = O(N1/3) = o(s), and in order to verify the prover’s answer’s in the
protocol described above, the verifier can just “erase” every element in S that appeared in H,
and run the protocol presented above over just elements guaranteed with high probability to
be of probability at most 1/s, without affecting the correctness of the protocol. Thus, the
verifier obtains full tags for H, and tags for S \ H. Later, the verifier can “fill-in” the missing
parts in S to obtain a full tagged sample. If D is entirely supported over heavy elements,
then the protocol can be avoided all together by also checking the mass of H is larger than
1 − O(σ), and ignoring the prover’s message.

Verifying label-invariant distribution properties

In order to verify label-invariant distribution properties, it suffices to know the probability
histogram of the distribution, i.e., how many elements have probability p for every p ∈ [0, 1].
Herman and Rothblum [13] observed that for many natural properties an approximation of
this histogram is sufficient, and define the τ -bucket histogram as follows:

▶ Definition 5 (τ -bucket histogram of D). For any j ∈ {. . . , −1, 0, 1, . . . , log N
τ }, the j’th

bucket of D over domain [N] is:

BD
j =

{
x :∈ Supp(D) : D(x) ∈

[
(1 + τ)j

N
,

(1 + τ)j+1

N

)}
The τ -bucket histogram of D is the tuple

(
(j, D(BD

j))
)

j:BD
j

̸=ϕ
.

APPROX/RANDOM 2024

72:8 Public Coin Interactive Proofs for Label-Invariant Distribution Properties

In [13] the authors focus their attention on those label-invariant distribution properties for
which the information

(
(j, D(BD

j))
)

j:BD
j

̸=ϕ
is sufficient in order to efficiently approximate

the distance (in total-variation) of D from the property. They say that such properties admit
an efficient approximate decision procedure, and show that many natural label-invariant
problems are of this type, including the property of having Shannon entropy roughly k, or
being close to uniform over some set of size M ≤ N .

In our protocol the verifier obtains a uniformly drawn tagged sample3. We argue that
this tagged sample allows the verifier to compute an approximation of the bucket histogram
of D: if our protocol didn’t end in rejection, then with high probability, the tags are roughly
correct. In other words, for every j, |BS

j |
s is the empirical mass of BD

j in the uniform sample

S. Since we expect there to be about |BD
j |

N -fraction of samples in S that landed in BD
j , we

conclude that:∣∣BS
j

∣∣
s

≈
∣∣BD

j

∣∣
N

And since D(BD
j) ≈

∣∣BD
j

∣∣ · (1+τ)j

N , if we set pj =
(

|BS
j |

s · N

)
· (1+τ)j

N , then D(BD
j) ≈ pj , and

we get with high probability, a τ -histogram which is O(σ) close to the true histogram of D

in the following sense: there exists a distribution D′ with histogram exactly ((j, pj)) that is
O(σ)-close to D in total variation distance. Thus, using the decision procedure, the verifier
decides whether ((j, pj)) is consistent with some distribution close to P , and thus, conclude
whether D is far from the property, or close to it.

3 Preliminaries

For an integer n ∈ N, we use [n] to denote the set {1, . . . , n}.

▶ Definition 6. The total variation distance (alt. statistical distance) between distributions
P and Q over a finite domain X is defined as:

∆SD(P, Q) = 1
2
∑
x∈X

|P (x) − Q(x)|

▶ Theorem 7 (Folklore distribution learner [8]). There exists an algorithm that given sample
access to a distribution P over the domain [N], and an accuracy parameter α ∈ (0, 1), it
runs in time Õ(N/α2), takes O(N/α2) samples, and with probability at least 0.99 outputs a
full description of a distribution Papprox such that ∆SD(P, Papprox) ≤ α.

▶ Definition 8 (Distribution property). We say the P = (PN)N∈N is a distribution property
if PN ⊆ ∆N , where ∆N is the set of all distributions over domain [N].

▶ Definition 9 (Distribution tester for property P). Let P be a distribution property. A tester
T of property P is a probabilistic oracle machine, that on input parameters N and ε, and
oracle access to a sampling device for a distribution D over a domain of size [N], outputs a
binary verdict that satisfies the following two conditions:
1. If D ∈ PN , then Pr(T D(N, ε) = 1) ≥ 2/3.
2. If ∆SD(D, PN) > ε, then Pr(T D(N, ε) = 0) ≥ 2/3.

3 Here we differ from [13] that obtain a D-sampled tagged sample, i.e. (zi) in their case was drawn from
D.

T. Herman 72:9

In the context of this work, the relevant distance measure is statistical distance as defined
above. An extension of this definition, introduced by Parnas, Ron, and Rubinfeld [16] is the
following:

▶ Definition 10 ((εc, εf)-tolerant distribution property tester). For parameters εc, εf ∈ [0, 1]
such that εc < εf , a (εc, εf)-tolerant tester T of property Π is a probabilistic oracle machine,
that on inputs N, εc, εf and given oracle access to a sampling device for distribution D over
a domain of size N , outputs a binary verdict that satisfies the following two conditions:
1. If δ(D, ΠN) ≤ εc, then Pr(T D(N, εc, εf) = 1) ≥ 2/3.
2. If δ(D, ΠN) ≥ εf , then Pr(T D(N, εc, εf) = 0) ≥ 2/3.
Note that a tolerant distribution test is for some property Π is at least as hard as a standard
non-tolerant tester for the same property.

▶ Definition 11 (Proof system for tolerant distribution testing problems). A proof system for
a tolerant distribution testing problem P with parameters εc and εf is a two-party game,
between a verifier executing a probabilistic polynomial time strategy V , and a prover that
executes a strategy P . Given that both V and P have black-box sample access to distribution D

over the domain [N], and are given N , the interaction should satisfy the following conditions:
Completeness: For every D over domain of size at most N , such that ∆SD(D, PN) ≤ εc,
the verifier V , after interacting with the prover P , accepts with probability at least 2/3.
Soundness: For every D over domain of size at most N such that ∆SD(D, PN) ≥ εf ,
and every cheating strategy P ∗, the verifier V , after interacting with the prover P ∗, rejects
with probability at least 2/3.

The complexity measures associated with the protocol are: the sample complexity of the verifier
as as the honest prover (strategy P), the communication complexity, the runtime of both
agents, and the round complexity (how many messages were exchanged).

▶ Definition 12 (Label invariant distribution property). A distribution property P is called
label invariant if for all N ∈ N, it holds that any permutation σ over N elements satisfies
that D ∈ PN if and only if σ(D) ∈ PN .

4 Public Coin Protocol for Verified Tagged Sample

Using the same approach as Herman and Rothblum [13], we provide an algorithm to obtain
a tagged sample assuming that the samplable distribution D satisfies that for every x ∈ [N],
D(x) ≤ 1

s , where s = O
(

log N
ε5 · N2/3

)
. In Section 2 we discuss why we can assume this

without loss of generality.

▶ Theorem 13. There exists 2-message AM interactive protocol between an honest verifier and
a (potentially malicious) prover, where the verifier receives as input parameters σ ∈ (0, 0.1)
and 100 < N ∈ N, as well as sample access to a distribution D over domain [N]. Set τ = σ3

8000 .
Assume D(x) ≤ 1

s for s = O
(

log N
ε5 · N2/3

)
. The communication complexity, verifier sample

complexity, and verifier runtime are all s. Given sample access to the distribution D, the
honest prover requires with high probability Õ (N) poly(σ−1) samples and runtime.

At the end of the interaction, the verifier rejects or outputs ((zi, πi))i∈[s] where (zi)i∈[s]
is a sample of size s drawn uniformly i.i.d. from [N] and:

Completeness. If the prover is honest, then with probability at least 0.75, the verifier
doesn’t reject, and ((zi, πi))i∈[s′] satsifies 1

s

∑
i∈[s]:πi≥ σ

1000N

(
1 − min

{
πi

D(zi) , D(zi)
πi

})
=

O(τ), while 1
s

∑
i∈[s]:πi≤ σ

1000N
D(zi) ≤ σ

50N .

APPROX/RANDOM 2024

72:10 Public Coin Interactive Proofs for Label-Invariant Distribution Properties

Soundness. Whatever strategy a dishonest prover follows, with probability at most 0.25
over the verifier’s coin tosses and samples, they accept and ((zi, πi))i∈[s′] satisfies:

1
s

∑
i∈[s]:πi≥ σ

1000N

(
1 − min

{
πi

D(zi)
,

D(zi)
πi

})
≥ σ (5)

or

1
s

∑
i∈[s]:πi≤ σ

1000N

D(zi) ≥ σ

10N
(6)

Note that we use the convention that min
{

πi

D(zi) , D(zi)
πi

}
= 1 if πi = 0 and D(zi) ̸= 0, or

πi ̸= 0 and D(zi) = 0.

We show that Protocol 1 satisfies the conditions of Theorem 13.

Protocol 1 Public-Sample Tagged Sample Retrieval Protocol.

Input: parameters N ∈ N, σ ∈ (0, 1), as well as sample access to distribution D over domain [N]
such that for all x ∈ [N], D(x) ≤ 1

s
for s = O

(log N
ε5 N2/3).

1. V: draw s uniformly from [N]. Denote the sample (Si)i∈[s]. Reject if there exists x ∈ [N] such
that x appears more than log N times in S. Otherwise, send (Si) to P.

2. P: set τ = σ3

80000 . For every i ∈ [s], if D(Si) ≥ σ
100N

, send πi such that πi = D(Si), otherwise,
send πi = 0.

3. V: for every j set Sj =
{

i ∈ [s] : πi ∈
[

ejτ

N
, e(j+1)τ

N

)}
. Draw two fresh samples of size s

from D, T = (Ti)i∈[s] and T ′ = (T ′
i)i∈[s]. For every j such that

∣∣Sj
∣∣ ≥ e−jτ · s · ε·τ

100 log N
and

ejτ

N
≥ σ

1000N
, set:

C̃pair
j =

∣∣{(k, r) ∈ [s]2 : k ∈ Sj , Sk = Tr

}∣∣
C̃triple

j =
∣∣{(k, r, r′) ∈ [s]3 : k ∈ Sj , Sk = Tr = T ′

r

}∣∣
Reject unless for all such j:∣∣∣∣C̃pair

j − s ·
∣∣Sj
∣∣ · ejτ

N

∣∣∣∣ ≤ 4τ · s ·
∣∣Sj
∣∣ · ejτ

N
(7)

And∣∣∣∣∣C̃triple
j − s2 ·

∣∣Sj
∣∣ ·
(

ejτ

N

)2
∣∣∣∣∣ ≤ 4τ · s2 ·

∣∣Sj
∣∣ ·
(

ejτ

N

)2

(8)

4. V: denote S−∞ = {i ∈ [s] : πi = 0}. Reject unless C̃pair
−∞ ≤ s ·

∣∣S−∞
∣∣ · σ

50N
.

5. V: Output ((Si, πi))i∈[s]

T. Herman 72:11

4.1 Protocol 1 is Complete
We first show that Step 1 of Protocol 1 does not result in rejection.

▷ Claim 14. With probability at least 0.99 over the choice of S, there doesn’t exist an
element x ∈ [N] that was sampled more than 3 times in S, and the verifier doesn’t reject
after Step 1 of Protocol 1.

Proof. Fix x ∈ [N] and i1, i2, i3, i4 ∈ [s] such that for all k, k′ ∈ [log N], ik ̸= ik′ . Note that:

Pr
S

(Si1 = Si2 = Si3 = Si4) =
(

1
N

)4

There are
(

s
4
)

possible choices for i1, i2, i3, i4 ∈ [s]. Therefore, the probability that there
exists some set of 4 indices whose respective samples equal x is at most:(

s

4

)
· 1

N4 ≤
(s

N

)4
≤ 1

N4/3

Taking the union bound over all possible x ∈ [N] yields the desired result. ◁

Next, we argue that if the prover is honest, with high probability, the verifier collision
tests don’t result in rejection.

▷ Claim 15. Assuming the verifier didn’t reject after Step 1 and that the prover is honest,
then with probability at least 0.8 over the choice of T, T ′ the verifier doesn’t reject.

Proof. For every j such that ejτ

N ≥ σ
1000N and

∣∣Sj
∣∣ ≥ e−jτ · s · ε·τ

100 log N by Propositions 30
and 31 and choice of s, it also holds that:

E
[
C̃pair

j

]
= s

(∑
i∈Sj

D(Si)
)

≥ s ·
∣∣Sj
∣∣ · ejτ

N
≥ 300 log2 N

τ3

E
[
C̃triple

j

]
≥ s2

∑
i∈Sj

(D(Si))2 = s2 ·
∣∣Sj
∣∣ ·
(

ejτ

N

)3

≥ 300 log2 N

τ3

And so, since there are at most 2 log N/τ buckets for which ejτ

N ≥ σ
1000N , we conclude from

Propositions 30 and 31 that with probability at least 0.8 over the choice of T, T ′ for all j as
described in statement it holds that:∣∣∣C̃triple

j − E
[
C̃triple

j

]∣∣∣ ≤ E
[
C̃triple

j

]
·

√√√√ 300 log2 N

τ · E
[
C̃triple

j

] ≤ 4τs2 ∣∣Sj
∣∣ (ejτ

N

)2

And similarly:∣∣∣C̃pair
j − E

[
C̃pair

j

]∣∣∣ ≤ E
[
C̃pair

j

]
·

√√√√ 300 log2 N

τ · E
[
C̃

pair]
j

] ≤ (eτ − 1) s
∣∣Sj
∣∣ ejτ

N
· τ ≤ 4τs

∣∣Sj
∣∣ ejτ

N

◁

▷ Claim 16. If the prover is honest, with high probability over T , the final verifier test
passes with high probability, and:

1
s

∑
i∈[s]:πi< σ

1000N

D(Si) ≤ σ

10N
(9)

APPROX/RANDOM 2024

72:12 Public Coin Interactive Proofs for Label-Invariant Distribution Properties

Proof. Since the prover is honest, E
[
C̃−∞

]
= s ·

∑
i∈S−∞ D(Si) ≤ s · |S−∞| · σ

1000N , and so,

by Markov’s Inequality, with probability at least 0.95, C̃−∞ ≤ s · |S−∞| · σ
50N , and the final

test passes. Moreover, Inequality (9) holds. ◁

▶ Remark 17 (Honest prover complexity). For sake of simplicity we assume the honest prover in
Protocol 1 knows D(Si) exactly. However, this is not necessary. A prover that approximates
this quantity for every sample up to sufficient accuracy using only Õ(N)poly(τ−1) samples
suffices. See Remark 4.14 in [14] for a detailed discussion.

4.2 Protocol 1 is Sound
Note that by Claim 14, regardless of the prover’s response, the verifier rejects after Step 1
with probability at most 0.01, and so, throughout this section, we assume that Step 1 passed,
and S doesn’t contain elements appearing more than 4 times, even when not stated explicitly.

First, we address the last verifier test:

▷ Claim 18. For every index j such that ejτ

N ≥ σ
1000N and

∣∣Sj
∣∣ ≥ e−jτ · s · ε·τ

100 log N , with
probability at least 0.98 over the choice of T and T ′, either the verifier rejects, or it holds
that:

E
[
C̃pair

j

]
≥ 300 log2 N

τ3 (10)

and

E
[
C̃triple

j

]
≥ 300 log2 N

τ3 (11)

Proof. Fix some j0 such that
∣∣Sj0

∣∣ ≥ s· ετ
100 log N , ej0τ

N ≥ ε
100N , and also E

[
C̃triple

j0

]
< 300 log2 N

τ3 .
By Markov’s Inequality, with probability at least 0.99:

C̃triple
j0

≤ 100E
[
C̃triple

j0

]
≤ 30000 log2 N

τ3

However, the verifier rejects unless:

C̃triple
j0

≥ (1 − 4τ) s2 ∣∣Sj0
∣∣ (ej0τ

N

)2

≥ s3 · τε3

2 · 1003N3 log N
>

30000 log2 N

τ3

Where the last inequality is justified since s ≥ 300 log N
τ4/3ε

N2/3. We thus conclude that for
every j such that vj0 ≥ ετ

100 log N , ej0τ

N ≥ ε
100N , either E

[
C̃triple

j

]
≥ 300 log2 N

τ3 or the verifier

reject with probability at least 0.99. An analogous argument can be made w.r.t. to C̃pair
j .

Taking the union bound over both these events yields the required result. ◁

▷ Claim 19. With probability at least 0.8 over the choice of T and T ′, for every j such that∣∣Sj
∣∣ ≥ e−jτ · s · ε·τ

100 log N and ejτ

N ≥ σ
1000N , and for which Inequalities (10) and (11) hold, it

further holds that:∣∣∣∣∣C̃pair
j − s

∑
i∈Sj

D(Si)

∣∣∣∣∣ ≤ 4τ · s
∑
i∈Sj

D(Si) (12)

As well as:∣∣∣∣∣C̃triple
j − s2

∑
i∈Sj

(D(Si))2

∣∣∣∣∣ ≤ 4τ · s2
∑
i∈Sj

(D(Si))2 (13)

T. Herman 72:13

Proof. By Propositions 30 and 31 it holds that with probability 0.8 over the choice of T and
T ′ for every j such that

∣∣Sj
∣∣ ≥ s · ε·τ

100 log N and ejτ

N ≥ ε
100N , the following holds:

∣∣∣C̃pair
j − E

[
C̃pair

j

]∣∣∣ ≤ E
[
C̃pair

j

]
·

√√√√ 300 log2 N

τ · E
[
C̃pair

j

]
∣∣∣C̃triple

j − E
[
C̃triple

j

]∣∣∣ ≤ E
[
C̃triple

j

]
·

√√√√ 300 log2 N

τ · E
[
C̃triple

j

]
Moreover, from the same propositions we know that:

E
[
C̃pair

j

]
= s

∑
i∈Sj

D(Si)

E
[
C̃triple

j

]
= s2

∑
i∈Sj

(D(Si))2

We thus conclude that for all the j as specified above:∣∣∣∣∣C̃pair
j − s

∑
i∈Sj

D(Si)

∣∣∣∣∣ ≤ E
[
C̃pair

j

]
·

√√√√ 300 log2 N

τ · E
[
C̃pair

j

] ≤ τs
∑
i∈Sj

D(Si)

Where the last inequality above stems from the assumption that Inequality (11) holds.
Similarly:∣∣∣∣∣C̃triple

j − s2
∑
i∈Sj

(D(Si))2

∣∣∣∣∣ ≤ τs2
∑
i∈Sj

(D(Si))2 ◁

▷ Claim 20. Assuming the verifier didn’t reject, with probability at least 0.8 over the choice
of T and T ′, for every j such that

∣∣Sj
∣∣ ≥ e−jτ · s · ε·τ

100 log N and ejτ

N ≥ σ
1000N , and for which

Inequalities (10) and (11) hold. It further holds that:

1
|Sj |

∑
i∈Sj

D(Si) ∈ ejτ

N
[1 − 10τ, 1 + 10τ] (14)

1
|Sj |

∑
i∈Sj

(D(Si))2 ∈
(

ejτ

N

)2

[1 − 10τ, 1 + 10τ] (15)

Proof. By Claim 19, with probability at least 0.8 over the choice of T and T ′, for every j

such that and
∣∣Sj
∣∣ ≥ e−jτ · s · ε·τ

100 log N and ejτ

N ≥ σ
1000N , and for which Inequalities (10) and

(11) hold, Inequalities (12) and (13) hold.
Furthermore, if the verifier didn’t reject, for all such j, Inequalities (7) and (8) holds as

well for all such j. Putting it all together, we get that:∣∣∣∣∣s ·
∣∣Sj
∣∣ · ejτ

N
− s

∑
i∈Sj

D(Si)

∣∣∣∣∣ ≤
∣∣∣∣s ·
∣∣Sj
∣∣ · ejτ

N
− C̃pair

j

∣∣∣∣+

∣∣∣∣∣C̃pair
j − s

∑
i∈Sj

D(Si)

∣∣∣∣∣ (16)

≤ 4τs ·
∣∣Sj
∣∣ · ejτ

N
+ 4τs

∑
i∈Sj

D(Si) (17)

APPROX/RANDOM 2024

72:14 Public Coin Interactive Proofs for Label-Invariant Distribution Properties

Rearranging Inequality (16):

s
∑
i∈Sj

D(Si) ∈ s ·
∣∣Sj
∣∣ · ejτ

N

[
1 − 4τ

1 + 4τ
,

1 + 4τ

1 − 4τ

]

Likewise:∣∣∣∣∣s2 ·
∣∣Sj
∣∣ (ejτ

N

)2

− s2
∑
i∈Sj

(D(Si))2

∣∣∣∣∣ ≤ +4τs2 ·
∣∣Sj
∣∣ (ejτ

N

)2

+ 4τs2
∑
i∈Sj

(D(Si))2 (18)

Similarly, for Inequality (18):

s2
∑
i∈Sj

(D(Si))2 ∈ s2 ·
∣∣Sj
∣∣ (ejτ

N

)2 [1 − 4τ

1 + 4τ
,

1 + 4τ

1 − 4τ

]

And through the relation 1−4τ
1+4τ ≥ 1 − 10τ and 1+4τ

1−4τ ≤ 1 + 10τ that holds for all τ > 0, we
get the desired result. ◁

▶ Definition 21. Define the distribution USj to be the uniform distribution over Sj.

▷ Claim 22. Assuming the verifier didn’t reject, with probability at least 0.8 over the choice
of T and T ′, for every j such that

∣∣Sj
∣∣ ≥ e−jτ · s · ε·τ

100 log N and ejτ

N ≥ σ
1000N , and for which

Inequalities (10) and (11) hold. It further holds that:

Ei∼USj [D(Si)] ∈ ejτ

N
[1 − 10τ, 1 + 10τ]

Vari∼USj [D(Si)] ≤ 60τ
(
Ei∼USj [D(Si)]

)2

Proof. With high probability, for all j as specified in the claim statement, by Claim 20:

Ei∼USj [D(Si)] =
∑
i∈Si

1
|Sj |

D(Si) ∈ ejτ

N
· [1 − 10τ, 1 + 10τ]

Furthermore:

Ei∼USj

[
(D(Si))2

]
= 1

|Sj |
∑
i∈Sj

(D(Si))2 (19)

≤ (1 + 10τ)
(

ejτ

N

)2

(20)

≤ (1 + 10τ)
(
Ei∼USj [D(Si)]

)2 1
(1 − 10τ)2 (21)

≤ (1 + 40τ)
(
Ei∼USj [D(Si)]

)2 (22)

And so, we conclude that:

Vari∼USj [D(Si)] = Ei∼USj

[
(D(Si))2

]
−
(
Ei∼USj [D(Si)]

)2

≤ (1 + 40τ)
(
Ei∼USj [D(Si)]

)2 − (1 − 20τ)
(
Ei∼USj [D(Si)]

)2

≤ 60τ
(
Ei∼USj [D(Si)]

)2
◁

T. Herman 72:15

▷ Claim 23. Assuming the verifier didn’t reject, with probability at least 0.8 over the choice
of T and T ′, for every j such that

∣∣Sj
∣∣ ≥ e−jτ · s · ε·τ

100 log N and ejτ

N ≥ σ
1000N , and for which

Inequalities (10) and (11) hold, it further holds that:

Ei∼USj

[
min

{
D(Si)

πi
,

πi

D(Si)

}]
≥ 1 − σ

50 (23)

Proof. By Claim 22, for every j as specificied in the claim statement, it holds that:

Ei∼USj [D(Si)] ∈ ejτ

N
[1 − 10τ, 1 + 10τ]

Vari∼USj [D(Si)] ≤ 60τ
(
Ei∼USj [D(Si)]

)2

Therefore, through Chebychev’s Inequality:

Pr
i∼U

Sj

(
|D(Si) − E [D(Si)]| ≥

√
6000τ

σ
· E [D(Si)]

)
≤

60τ
(
Ei∼U

Sj [D(Si)]
)2(

Ei∼U
Sj [D(Si)]

)2 · 6000τ/σ
≤ σ

100

Observe that with probability at least 1 − σ
100 over the choice of i ∼ USj it holds that:

|D(Si) − πi| ≤ |D(Si) − E [D(Si)]| +
∣∣∣∣E [D(Si)] − ejτ

N

∣∣∣∣+
∣∣∣∣ejτ

N
− πi

∣∣∣∣
≤
√

6000τ

σ
· E [D(Si)] +

∣∣∣∣E [D(Si)] − ejτ

N

∣∣∣∣+ (eτ − 1) · ejτ

N

≤
√

6000τ

σ
· ejτ

N
(1 + 10τ) + 12τ · ejτ

N

≤

(
2
√

6000τ

σ
+ 12τ

)
ejτ

N

≤ eτ

(
2
√

6000τ

σ
+ 12τ

)
πi

≤

(
3
√

6000τ

σ
+ 12τ

)
πi

Where the second to last inequality stems from the fact that by definition for all i ∈ Sj ,
πi ∈

[
ejτ

N , e(j+1)τ

N

]
. We conclude that for all such i it holds that:

D(Si)
πi

∈

[
1 − 3

√
6000τ

σ
− 12τ, 1 + 3

√
6000τ

σ
+ 12τ

]

By choice of τ , this implies that with probability at least 1 − 1
100σ over the choice of i ∼ USj ,

it holds that:
D(Si)

πi
∈
[
1 − σ

100 , 1 + σ

100

]
Next, since for all i by definition min

{
D(Si)

πi
, πi

D(Si)

}
≤ 1, we get that for all j as specified in

the claim statment, with probability at least 0.8 over the choice of T and T ′ if the verifier
didn’t reject, it holds that:

Ei∼USj

[
min

{
D(Si)

πi
,

πi

D(Si)

}]
≥ σ

100 +
(

1 − σ

100

)(
1 − σ

100

)
≥ 1 − σ

50 ◁

APPROX/RANDOM 2024

72:16 Public Coin Interactive Proofs for Label-Invariant Distribution Properties

▷ Claim 24. Assume the prover’s tags satisfy the following inequality:

1
s

∑
i∈[s]:πi≥ σ

1000N

(
1 − min

{
πi

D(zi)
,

D(zi)
πi

})
≥ σ (24)

Then, there exists some j0 such that
∣∣Sj0

∣∣ ≥ s · e−j0τ · ε·τ
100 log N and ej0τ

N ≥ ε
100N , and:

Ei∼U
Sj0

[
min

{
D(Si)

πi
,

πi

D(Si)

}]
≤ 1 − 0.7σ (25)

Proof. We decompose the sum in Inequality (5) according to alleged buckets as follows:

σ ≤ 1
s

∑
i∈[s]:πi≥ σ

1000N

(
1 − min

{
πi

D(zi)
,

D(zi)
πi

})

= 1
s

∑
j:|Sj |̸=ϕ

∑
i∈Sj

(
1 − min

{
πi

D(zi)
,

D(zi)
πi

})

=
∑

j:|Sj |̸=ϕ

∣∣Sj
∣∣

s
· 1

|Sj |
∑
i∈Sj

(
1 − min

{
πi

D(zi)
,

D(zi)
πi

})

=
∑

j:|Sj |̸=ϕ

∣∣Sj
∣∣

s
· Ei∼USj

[
1 − min

{
D(Si)

πi
,

πi

D(Si)

}]

Define J =
{

j :
∣∣Sj
∣∣ ≥ e−jτ · s · ε·τ

100 log N , ejτ

N ≥ σ
1000N

}
, and denote

∑
j /∈J

|Sj|
s = α. Define

next Jc =
{

j : 0 <
∣∣Sj
∣∣ < e−jτ · s · ε·τ

100 log N , ejτ

N ≥ σ
1000N

}
. Observe that:

∑
j∈Jc

∣∣Sj
∣∣

s
≤ 1

s

∑
j∈Jc

1

e−jτ · s · ε · τ

100 log N
≤
∑
j∈Jc

1

100
σ

· ε · τ

100 log N
≤ σ

20

Then:∑
j∈J

∣∣Sj
∣∣

s
· Ei∼USj

[
1 − min

{
D(Si)

πi
,

πi

D(Si)

}]
≥ 0.7σ

Consider thus the distribution B that assigns to every j ∈ J the probability
∣∣∣ Sj

s·(1−α)

∣∣∣, and 0
otherwise. Then:

Ej∼B

[
Ei∼USj

[
1 − min

{
D(Si)

πi
,

πi

D(Si)

}]]
≥ σ − σ

20 ≥ 0.9σ

And so it must hold that there exists some j0 ∈ J such that:

Ei∼U
Sj0

[
1 − min

{
D(Si)

πi
,

πi

D(Si)

}]
≥ 0.9σ

Finally, this implies that for j0:

Ei∼U
Sj0

[
min

{
D(Si)

πi
,

πi

D(Si)

}]
≤ 1 − 0.9σ ◁

T. Herman 72:17

▷ Claim 25. With high probability over the choice of S, T, T ′, if Inequality (5) holds, then,
with high probability, the verifier rejects.

Proof. Assume the prover’s response (πi)i∈[s] satisfies Inequality (24). Then, by Claim 24, it
holds that there exists some j0 such that

∣∣Sj0
∣∣ ≥ s · ε·τ

100 log N and ej0τ

N ≥ ε
100N , and for which:

Ei∼U
Sj0

[
min

{
D(Si)

πi
,

πi

D(Si)

}]
≤ 1 − 0.9σ (26)

Next, by Claim 18, with probability at least 0.98 over the choice of T, T ′, Inequalities (10)
and (13) hold for j0. Then, assuming the verifier didn’t reject, by Claim 23 it holds that
with probability at least 0.8 over the choice of T, T ′ that:

Ei∼U
Sj0

[
min

{
D(Si)

πi
,

πi

D(Si)

}]
≥ 1 − σ

50 (27)

Note that Inequality (26) and Inequality (27) contradict one another, from which we conclude
that if the prover’s response satisfies Inequality (24), then with probability at least 0.75 over
the choice of S, T, T ′, the verifier should reject. ◁

Finally, concerning the final verifier test:

▷ Claim 26. If the prover’s answer didn’t result with the verifier rejecting the test in Step 4
of Protocol 1, then with probability at most 0.01, Inequality (6) holds.

Proof. By Proposition 30 E
[
C̃−∞

]
= s

∑
i:πi< σ

1000N
D(x). Thus, assuming that Inequality

(6) holds, every entry in T has probability at least
∑

i∈[s]:πi< σ
1000N

D(x) ≥ s · σ
10N of landing

on S−∞, and by Hoeffdings Inequality, this will yield:

C̃−∞ ∈ (1 + 1√
s

)s2 · σ

10N
> s ·

∣∣S−∣∣ · σ

50N

And the verifier rejects with high probability. ◁

4.3 From verified uniform tagged sample to property verification
▶ Lemma 27. For every two distributions D, Q over domain [N], and parameter σ ∈ (0, 1).
Let (zi)i∈[s] be a sample of size s = Õ(N2/3)poly(σ−1) drawn uniformly from [N]. There
exists an algorithm that runs in time O(s) and outputs δ ∈ [0, 1], such that |δ − ∆SD(Q, D)| =
O
(

σ + 1√
s

)
, given the following input:

The sample (zi)i∈[s].
(πi)i ∈ [0, 1]s, that satisfy the following two inequalities:

1
s

∑
i∈[s]:πi≥ σ

1000N

(
1 − min

{
πi

D(zi)
,

D(zi)
πi

})
≤ σ (28)

1
s

∑
i∈[s]:πi≤ σ

1000N

D(zi) ≤ σ

10N
(29)

Q(zi), for all i ∈ [s].

APPROX/RANDOM 2024

72:18 Public Coin Interactive Proofs for Label-Invariant Distribution Properties

Proof. Consider the following algorithm: for every i ∈ [S], set θ′
zi

= |πi−Q(zi)|
2 , and output

δ = 1
s

∑
i∈[s] θ′

zi
. We show that this algorithm satisfies the conditions of the lemma.

For every x ∈ [N] define θx = |D(x)−Q(x)|
2 . Observe that by definition, ∆SD(D, Q) =

Ex∼U[N] [θx]. Since the sample (zi) was drawn i.i.d., the collection (θx) is independent. By
Hoeffding’s Inequality:

Pr
S

∣∣∣∣∣∣1s
∑
i∈[s]

θzi − ∆SD(D, Q)

∣∣∣∣∣∣ >
2√
s

 ≤ 2e−8 < 0.01

And so, with probability at least 0.99 over the choice of (zi):∣∣∣∣∣∣1s
∑
i∈[s]

θzi
− ∆SD(D, Q)

∣∣∣∣∣∣ ≤ 2√
s

(30)

By assumption over (πi) and the Triangle Inequality:∣∣∣∣∣∣1s
∑
i∈[s]

θzi
− 1

s

∑
i∈[s]

θ′
zi

∣∣∣∣∣∣ ≤ 1
s

∣∣∣∣∣∣
∑
i∈[s]

(
|D(zi) − Q(zi)|

2 − |πi − Q(zi)|
2

)∣∣∣∣∣∣ (31)

≤ 1
2s

∑
i∈[s]

|(|D(zi) − Q(zi)| − |πi − Q(zi)|)| (32)

≤ 1
2s

∑
i∈[s]

|(D(zi) − Q(zi)) − (πi − Q(zi))| (33)

= 1
2s

∑
i∈[s]

|D(zi) − πi| (34)

For every i such that D(zi) ̸= 0, it holds that save for at most σ-fraction of i ∈ [s], πi ∈
(1 ± O(σ)) D(zi), and for every i such that D(zi) ̸= 0, it must hold that 1

s

∑
i∈[s]:D(zi)=0 πi ≤

σ. And so:
1
2s

∑
i∈[s]

|D(zi) − πi| ≤ 1
2s

∑
i∈[s]:D(zi) ̸=0

D(zi)
∣∣∣∣1 − πi

D(zi)

∣∣∣∣+ 1
2s

∑
i∈[s]:D(zi)=0

πi (35)

≤ 1
2

1
s

∑
i∈[s]:D(zi)

O(σ)
≈ πi

D(zi)
∣∣∣∣1 − πi

D(zi)

∣∣∣∣+ 1
s

∑
i∈[s]:D(zi)

O(σ)
̸≈ πi

D(zi)
∣∣∣∣1 − πi

D(zi)

∣∣∣∣+ σ

(36)

≤ 1
2 (O(σ) + O(σ) + σ) (37)

= O(σ) (38)

We thus conclude that with high probability over (zi), the algorithm yields δ such that:
|δ − ∆SD(D, Q)| = O(σ + 1√

s
) ◀

An immediate corollary of this lemma is Theorem 3. We note here that this method can
also be leveraged to achieve an efficient protocol for identity testing from an approximate
tagged sample drawn according to D, and so, can be also implemented on the output of [14]
without incurring further overhead.

We now address the question of verification of label-invariant distribution problems. First,
we recall the following definition:

T. Herman 72:19

▶ Definition 28 (Efficient approximate decision procedure, [13]). A distribution property P
has a µ-efficient approximate decision procedure if there exists a polynomial-time procedure
A as follows. A gets as input the domain size N , a distance parameter σ ∈ (0, 1), and a
histogram (mj)j satisfying

∑
j

∣∣∣mj − Q(BQ
j)
∣∣∣ ≤ µ. For every integer N , every distribution

D over [N] and every σ > 0:
If Q is in P, then A accepts the (mj)j.
A rejects every (mj)j histogram that is consistent with a distribution that is not σ-close
to P.

▶ Corollary 29. Let P be a label-invariant distribution property, 0 ≤ εc < εf ≤ 1 distance
parameters, and assume P admits an efficient τ -approximate decision procedure, where
τ = O (εf − εc)3. Given sample access to distribution D over domain [N], there exists a
2-message public-coin protocol with verifier sample complexity and communication complexity
Õ(N2/3) · poly(τ−1), such that:

Completeness. If ∆SD(D, P) ≤ εc, the verifier accepts with high probability.
Soundness. If ∆SD(D, P) ≥ εf , the verifier rejects with high probability.

We outline how to obtain a protocol for every label-invariant distribution property
admitting an efficient decision procedure from a uniform verified tagged sample. Generally,
we follow [13]. The reader is referred to their work for further detail on efficient decision
procedures, as well as examples for such procedures for natural label-invariant properties,
such as those relating to Shannon entropy, support size, and distance from uniformity. We
note that the main obstacle in the protocol behind the above corollary, addressed by this
paper in a novel way, is obtaining a good approximation of the probability according to D

of randomly chosen elements in the domain. Recall that without communication, this task
requires Õ(N) samples and runtime from the verifier.

We provide an outline the protocol behind Corollary 29. The verifier and the prover run
Protocol 1 over distribution D with distance parameter σ = εf −εc

3 , and with the following
addition: the prover also sends, alongside (πi)i∈[s], the tags (qi)i∈[s], such that for all i ∈ [s],
qi = Q(i), for some distribution Q ∈ P . The verifier performs the following checks:
1. The verifier runs the tests outlined in Protocol 1 with respect to (πi), and rejects w.h.p.

if prover tags satisfy Inequalities (5) or (6).
2. The verifier uses (qi) to compute the bucket histogram of distribution Q. The size of

every bucket of significant mass j of Q can be approximated to high accuracy from a
uniform tagged sample (qi). Then, the mass of each bucket can be approximated by the
product of the size and ejτ

N . Note that this process yields a probability histogram for Q

that is accurate with high probability up to τ multiplicative factor. Then, the verifier
runs the τ -approximate decision procedure with distance parameter σ, to check that
indeed Q ∈ PN , and reject if it’s far.

3. If non of the above tests failed, the verifier estimates the distance between Q and D using
(πi) and (qi) as outlined in Lemma 27, and rejects unless estimate smaller than εc + O(τ).

If the all tests passed, then with high probability it holds that Q is τ -close to P, and that
∆SD(Q, D) ≤ εc + O(τ), and the conditions of Corollary 29 hold. If D is εf far from the
property, and the tags (qi) produce a histogram consistent with a histogram of a distribution
that passes the efficient decision procedure, then by assumption, it holds that there exists
some Q ∈ P that is εf − τ far from D, and so the distance test will fail. We omit further
detail, as the process of verifying membership in distribution property from approximate
histogram is outlined in [13].

APPROX/RANDOM 2024

72:20 Public Coin Interactive Proofs for Label-Invariant Distribution Properties

References

1 Gal Arnon and Guy N. Rothblum. On prover-efficient public-coin emulation of interactive
proofs. In Stefano Tessaro, editor, 2nd Conference on Information-Theoretic Cryptography,
ITC 2021, July 23-26, 2021, Virtual Conference, volume 199 of LIPIcs, pages 3:1–3:15. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.ITC.2021.3.

2 László Babai and Shlomo Moran. Arthur-merlin games: A randomized proof system, and a
hierarchy of complexity classes. J. Comput. Syst. Sci., 36(2):254–276, 1988. doi:10.1016/
0022-0000(88)90028-1.

3 Tugkan Batu and Clément L. Canonne. Generalized uniformity testing. In Chris Umans,
editor, 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017,
Berkeley, CA, USA, October 15-17, 2017, pages 880–889. IEEE Computer Society, 2017.
doi:10.1109/FOCS.2017.86.

4 Michael Ben-Or, Oded Goldreich, Shafi Goldwasser, Johan Håstad, Joe Kilian, Silvio Micali,
and Phillip Rogaway. Everything provable is provable in zero-knowledge. In Shafi Goldwasser,
editor, Advances in Cryptology - CRYPTO ’88, 8th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 21-25, 1988, Proceedings, volume 403 of Lecture Notes
in Computer Science, pages 37–56. Springer, 1988. doi:10.1007/0-387-34799-2_4.

5 Alessandro Chiesa and Tom Gur. Proofs of proximity for distribution testing. In Anna R.
Karlin, editor, 9th Innovations in Theoretical Computer Science Conference, ITCS 2018,
January 11-14, 2018, Cambridge, MA, USA, volume 94 of LIPIcs, pages 53:1–53:14. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.ITCS.2018.53.

6 Funda Ergün, Ravi Kumar, and Ronitt Rubinfeld. Fast approximate probabilistically checkable
proofs. Inf. Comput., 189(2):135–159, 2004. doi:10.1016/j.ic.2003.09.005.

7 Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Andrew M. Odlyzko, editor, Advances in Cryptology - CRYPTO ’86,
Santa Barbara, California, USA, 1986, Proceedings, volume 263 of Lecture Notes in Computer
Science, pages 186–194. Springer, 1986. doi:10.1007/3-540-47721-7_12.

8 Oded Goldreich. Introduction to Property Testing. Cambridge University Press, 2017. doi:
10.1017/9781108135252.

9 Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity
for all languages in NP have zero-knowledge proof systems. J. ACM, 38(3):691–729, 1991.
doi:10.1145/116825.116852.

10 Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof-systems (extended abstract). In Robert Sedgewick, editor, Proceedings of the 17th
Annual ACM Symposium on Theory of Computing, May 6-8, 1985, Providence, Rhode Island,
USA, pages 291–304. ACM, 1985. doi:10.1145/22145.22178.

11 Shafi Goldwasser and Michael Sipser. Private coins versus public coins in interactive proof
systems. In Juris Hartmanis, editor, Proceedings of the 18th Annual ACM Symposium on
Theory of Computing, May 28-30, 1986, Berkeley, California, USA, pages 59–68. ACM, 1986.
doi:10.1145/12130.12137.

12 Tom Gur and Ron D. Rothblum. Non-interactive proofs of proximity. Comput. Complex.,
27(1):99–207, 2018. doi:10.1007/s00037-016-0136-9.

13 Tal Herman and Guy N. Rothblum. Verifying the unseen: interactive proofs for label-invariant
distribution properties. In Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th
Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022,
pages 1208–1219. ACM, 2022. doi:10.1145/3519935.3519987.

14 Tal Herman and Guy N. Rothblum. Doubley-efficient interactive proofs for distribution
properties. In 64th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2023, Santa Cruz, CA, USA, November 6-9, 2023, pages 743–751. IEEE, 2023. doi:10.1109/
FOCS57990.2023.00049.

https://doi.org/10.4230/LIPICS.ITC.2021.3
https://doi.org/10.1016/0022-0000(88)90028-1
https://doi.org/10.1016/0022-0000(88)90028-1
https://doi.org/10.1109/FOCS.2017.86
https://doi.org/10.1007/0-387-34799-2_4
https://doi.org/10.4230/LIPIcs.ITCS.2018.53
https://doi.org/10.1016/j.ic.2003.09.005
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1017/9781108135252
https://doi.org/10.1017/9781108135252
https://doi.org/10.1145/116825.116852
https://doi.org/10.1145/22145.22178
https://doi.org/10.1145/12130.12137
https://doi.org/10.1007/s00037-016-0136-9
https://doi.org/10.1145/3519935.3519987
https://doi.org/10.1109/FOCS57990.2023.00049
https://doi.org/10.1109/FOCS57990.2023.00049

T. Herman 72:21

15 Tal Herman and Guy N. Rothblum. Interactive proofs for general distribution prop-
erties. Electron. Colloquium Comput. Complex., pages TR24–094, 2024. URL: https:
//eccc.weizmann.ac.il/report/2024/094.

16 Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and distance
approximation. J. Comput. Syst. Sci., 72(6):1012–1042, 2006. doi:10.1016/j.jcss.2006.03.
002.

17 Sofya Raskhodnikova, Dana Ron, Amir Shpilka, and Adam D. Smith. Strong lower bounds for
approximating distribution support size and the distinct elements problem. SIAM J. Comput.,
39(3):813–842, 2009. doi:10.1137/070701649.

18 Guy N. Rothblum, Salil P. Vadhan, and Avi Wigderson. Interactive proofs of proximity:
delegating computation in sublinear time. In Dan Boneh, Tim Roughgarden, and Joan
Feigenbaum, editors, Symposium on Theory of Computing Conference, STOC’13, Palo Alto,
CA, USA, June 1-4, 2013, pages 793–802. ACM, 2013. doi:10.1145/2488608.2488709.

19 Salil P. Vadhan. On transformation of interactive proofs that preserve the prover’s complexity.
In F. Frances Yao and Eugene M. Luks, editors, Proceedings of the Thirty-Second Annual
ACM Symposium on Theory of Computing, May 21-23, 2000, Portland, OR, USA, pages
200–207. ACM, 2000. doi:10.1145/335305.335330.

20 Gregory Valiant and Paul Valiant. The power of linear estimators. In Rafail Ostrovsky,
editor, IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011,
Palm Springs, CA, USA, October 22-25, 2011, pages 403–412. IEEE Computer Society, 2011.
doi:10.1109/FOCS.2011.81.

A Collision Tests Analysis

A.1 Twoway Collisions

▶ Proposition 30. Assume that for every x ∈ [N], D(x) ≤ 1
s . For every sample S such that

for every i ∈ [s], the element Si appears at most log N times in S, with probability at least
1 − τ

100 log N over the choice of the sample T , it holds that:

E
[
C̃pair

j

]
= s

∑
i∈Sj

D(Si)

As well as:

∣∣∣C̃pair
j − E

[
C̃pair

j

]∣∣∣ ≤ E
[
C̃pair

j

]
·

√√√√ 300 log2 N

τ · E
[
C̃pair

j

]
Proof. The reader is referred to the Appendix of Herman and Rothblum [14] for a detailed
proof of this claim. In a nutshell, For every k, r ∈ [s] denote by Ck,r the indicator of the
event {Sk = Tr}. Observe that C̃pair

j =
∑

k∈Sj

∑
r∈[s] Ck,r, and that ET [Ck,r] = D(Sk). By

the linearity of expectation:

E
[
C̃pair

j

]
=
∑

k∈Sj

∑
r∈[s]

E [Ck,r] =
∑

k∈Sj

∑
r,r′∈[s]

D(Sk) = s
∑

k∈Sj

D(Sk) (39)

In order to prove concentration we show that VarT

[
C̃pair

j

]
is small. Herman and Rothblum

[14] show that the variance can be bounded by log NE
[
C̃j

]
And so, the desired result is

thus achieved through Chebychevs’ Inequality. ◀

APPROX/RANDOM 2024

https://eccc.weizmann.ac.il/report/2024/094
https://eccc.weizmann.ac.il/report/2024/094
https://doi.org/10.1016/j.jcss.2006.03.002
https://doi.org/10.1016/j.jcss.2006.03.002
https://doi.org/10.1137/070701649
https://doi.org/10.1145/2488608.2488709
https://doi.org/10.1145/335305.335330
https://doi.org/10.1109/FOCS.2011.81

72:22 Public Coin Interactive Proofs for Label-Invariant Distribution Properties

A.2 Threeway Collisions
▶ Proposition 31. Assume that for every x ∈ [N], D(x) ≤ 1

s . For every sample S = (Si)i∈[s]
such that for every i ∈ [s], the element Si appears in at most log N locations in S, with
probability at least 1 − τ

100 log N over the choice of the samples T, T ′, it holds that for any set
of bucket indices J of size at most 2 log N

τ , for every j ∈ J :

E
[
C̃triple

j

]
= s2

∑
i∈Sj

(D(x))2

As well as:∣∣∣C̃triple
j − E

[
C̃triple

j

]∣∣∣ ≤ E
[
C̃triple

j

]
·

√√√√ 300 log2 N

τ · E
[
C̃triple

j

]
Proof. For every k, r, r′ ∈ [s] denote by Ck,r,r′ the indicator of the event {Sk = Tr = T ′

r′}.
Observe that C̃triple

j =
∑

k∈Sj

∑
r,r′∈[s] Ck,r,r′ , and that ET,T ′ [Ck,r,r′] = (D(Sk))2. By the

linearity of expectation:

E
[
C̃triple

j

]
=
∑

k∈Sj

∑
r,r′∈[s]

ET,T ′ [Ck,r,r′] =
∑

k∈Sj

∑
r,r′∈[s]

(D(Sk))2 = s2
∑

k∈Sj

(D(Sk))2 (40)

Next, we show that for every j ∈ J the random variable C̃triple
j is well concentrated

around its mean. In order to do so, we bound the variance of C̃triple
j . Note that:

Var
[
C̃triple

j

]
=

∑
(k0,r0,r′

0)∈[s]3

(k1,r1,r′
1)∈[s]3

Cov
[
Ck0,r0,r′

0
, Ck1,r1,r′

1

]

And so, in order to bound the variance, consider the following case analysis for the pair
((k0, r0, r′

0), (k1, r1, r′
1)):

Type I. Sk0 ̸= Sk1 , then: either r0 ̸= r1 and r′
0 ̸= r′

1 in which case
Cov

[
Ck0,r0,r′

0
, Ck1,r1,r′

1

]
= 0 as the variables are independent; or r0 = r1 or r′

0 = r′
1, in

which case since Sk0 ̸= Sk′
1
, it cannot be that Ck0,r0,r′

0
= 1 and Ck1,r1,r′

1
= 1 simultan-

eously, which means that Cov
[
Ck0,r0,r′

0
, Ck1,r1,r′

1

]
< 0.

Type II. Sk0 = Sk1 and (r0, r′
0) = (r1, r′

1), then Cov
[
Ck0,r0,r′

0
, Ck1,r1,r′

1

]
=

V ar
[
Ck0,r0,r′

0

]
≤ E

[
Ck0,r0,r′

0

]
.

Type III.:
Type IIIa. Sk0 = Sk1 and r0 = r1 = r, however r′

0 ̸= r′
1, then:

Cov
[
Ck0,r,r′

0
, Ck1,r,r′

1

]
≤ E

[
Ck0,r,r′

0
· Ck1,r,r′

1

]
= (D(Sk0))3

Type IIIb. Sk0 = Sk1 and r′
0 = r′

1 = r′, however r0 ̸= r1, then:

Cov
[
Ck0,r,r′

0
, Ck1,r,r′

1

]
≤ E [Ck0,r0,r′ · Ck1,r1,r′] = (D(Sk0))3

Since all pairs of indicators of Type I do not contribute to the variance, we are left to quantify
how many pairs of indicators are there of Type II and Type III. Fix k0 ∈ [s], and denote
Ak0 = {i ∈ [s] : Si = Sk0}.

Type II. By assumption over S, |Ak0 | ≤ log N , and so, there are at most log N options
for k1. Then, there are s2 ways to pick (r, r′). Therefore, k0 participates in at most
s2 · log N pairs of Type II.

T. Herman 72:23

Type III. This type is divided into two symmetric sub-types. As above, for a fixed k0,
there are at most log N possible values for k1. Then, there are s3 ways to pick r, r′

0, r′
1.

Therefore, k0 participates in at most 2 · s3 · log N pairs of Type IIIa. Type IIIb is the
symmetric where both triplets agree on r′, but have two different values r0 and r1.

First, we calculate the contribution of all the Type II pairs to the variance:∑
(k0,r,r′)∈[s]3

∑
k1∈Ak0

Cov [Ck0,r,r′ , Ck1,r,r′] ≤
∑

(k0,r,r′)∈[s]3

∑
k1∈Ak0

E [Ck0,r,r′] (41)

≤ log N
∑

(k0,r,r′)∈[s]3

E [Ck0,r,r′] (42)

= log N · E
[
C̃triple

j

]
(43)

As for the Type IIIa pairs:∑
(k0,r,r′

0,r′
1)∈[s]4

∑
k1∈Ak0

Cov
[
Ck0,r,r′

0
, Ck1,r,r′

1

]
≤

∑
(k0,r,r′

0,r′
1)∈[s]4

∑
k1∈Ak0

(D(Sk0))3 (44)

≤ log N
∑

(k0,r,r′
0,r′

1)∈[s]4

(D(Sk0))3 (45)

≤ s · log N
∑

(k0,r,r′
0,)∈[s]3

(D(Sk0))3 (46)

= log N · E
[
C̃triple

j

]
(47)

Similarly, all Type IIIb contribute at most log N ·E
[
C̃triple

j

]
to the variance as well. We thus

conclude that:

Var
[
C̃triple

j

]
≤ 3 log N · E

[
C̃triple

j

]
Therefore, using Chebichev’s Inequality:

Pr
T,T ′

∣∣∣C̃triple
j − E

[
C̃triple

j

]∣∣∣ ≥

√
300 log2 N

τ
· E
[
C̃triple

j

] ≤
3 log N · E

[
C̃triple

j

]
300 log2 N

τ · E
[
C̃triple

j

] (48)

≤ τ

100 log N
(49)

Taking union bound over all j ∈ J yields the desired result. ◀

APPROX/RANDOM 2024

Additive Noise Mechanisms for Making
Randomized Approximation Algorithms
Differentially Private
Jakub Tětek # Ñ

INSAIT, Sofia, Bulgaria

Abstract
The exponential increase in the amount of available data makes taking advantage of them without
violating users’ privacy one of the fundamental problems of computer science. This question has been
investigated thoroughly under the framework of differential privacy. However, most of the literature
has not focused on settings where the amount of data is so large that we are not even able to
compute the exact answer in the non-private setting (such as in the streaming setting, sublinear-time
setting, etc.). This can often make the use of differential privacy unfeasible in practice.

In this paper, we show a general approach for making Monte-Carlo randomized approximation
algorithms differentially private. We only need to assume the error R of the approximation algorithm
is sufficiently concentrated around 0 (e.g. E[|R|] is bounded) and that the function being approximated
has a small global sensitivity ∆. Specifically, if we have a randomized approximation algorithm
with sufficiently concentrated error which has time/space/query complexity T (n, ρ) with ρ being
an accuracy parameter, we can generally speaking get an algorithm with the same accuracy and
complexity T (n, Θ(ϵρ)) that is ϵ-differentially private.

Our technical results are as follows. First, we show that if the error is subexponential, then the
Laplace mechanism with error magnitude proportional to the sum of the global sensitivity ∆ and
the subexponential diameter of the error of the algorithm makes the algorithm differentially private.
This is true even if the worst-case global sensitivity of the algorithm is large or infinite. We then
introduce a new additive noise mechanism, which we call the zero-symmetric Pareto mechanism.
We show that using this mechanism, we can make an algorithm differentially private even if we only
assume a bound on the first absolute moment of the error E[|R|].

Finally, we use our results to give either the first known or improved sublinear-complexity
differentially private algorithms for various problems. This includes results for frequency moments,
estimating the average degree of a graph in subliinear time, rank queries, or estimating the size of
the maximum matching. Our results raise many new questions and we state multiple open problems.

2012 ACM Subject Classification Security and privacy; Theory of computation → Streaming,
sublinear and near linear time algorithms

Keywords and phrases Differential privacy, Randomized approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.73

Category RANDOM

Related Version Full Version: https://arxiv.org/abs/2211.03695

Funding This work was done while the author was at BARC, University of Copenhagen. He was
supported by the VILLUM Foundation grant 54451. This research was partially funded from the
Ministry of Education and Science of Bulgaria (support for INSAIT, part of the Bulgarian National
Roadmap for Research Infrastructure).

Acknowledgements The author would like to thank Rasmus Pagh and anonymous reviewers for
helping to improve this paper.

© Jakub Tětek;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 73; pp. 73:1–73:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:j.tetek@gmail.com
https://www.jakubtetek.com/
https://orcid.org/0000-0002-2046-1627
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.73
https://arxiv.org/abs/2211.03695
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

73:2 Mechanisms for Making Rand. Approx. Algorithms Differentially Private

1 Introduction

With the increase in the amount of available data, the problem of analyzing it in a privacy-
preserving manner has become a central problem in computer science. One commonly used
tool for this task is differential privacy, which is a well-established notion of privacy that
is commonly used in data analysis and machine learning. However, with some notable
exceptions, the literature on differential privacy has focused on the setting where the amount
of data is small enough that we would be able to practically solve a given problem exactly
in the non-private setting. However, in practice, this assumption is often not realistic –
this is after all the reason for the existence of (among others) streaming and sublinear-time
algorithms.

Our goal is thus to get very efficient (sublinear) algorithms that at the same time guarantee
differential privacy. In the streaming or sublinear-time setting, the error coming from the
algorithm not being exact will generally speaking be much bigger than the amount of noise
that the given problem necessitates for ensuring differential privacy. The main objective
in this setting is thus not to simply minimize the amount of noise we add, but rather to
achieve a given level of accuracy while minimizing the complexity (e.g. space, time, or query
complexity) of the algorithm. Of course, some amount of noise inherently has to be added to
achieve privacy, but this is usually so small, that one would need linear complexity to get
such a level of accuracy even without privacy. In the sublinear regime, we thus usually do
not have to worry whether a given level of accuracy is achievable and we instead focus as our
central objective on the complexity needed to achieve it.

One of the main difficulties in making sublinear algorithms private is that most sublinear-
time and streaming algorithms are randomized and give only probabilistic guarantees on
the quality of the output. This makes adding noise based on global sensitivity1 – which is
commonly used to get differentially private algorithms – unsuitable for this situation, as
in the worst case the global sensitivity of the approximation algorithm2 can be very large
even if the global sensitivity of the function being approximated is small. In this paper, we
propose a way to get around this issue by showing additive noise mechanisms that only need
that (1) the function being approximated has low global sensitivity and (2) the answer of
the algorithm is sufficiently concentrated around the true value.

We give two main results. The first one states that if the error has subexponential tails3,
adding the Laplace distribution suffices to achieve pure differential privacy – this can be seen
as a generalization of the standard Laplace mechanism. The second result shows a similar
result for a different distribution, and it only assumes bounded mean deviation (or higher
moments) of the error instead of being subexponential. While the first result has much
stronger assumption about the error distribution, it is also stronger in that it also works for
multiple adaptive queries that are not answered independently. This is useful for example for
streaming algorithms, where multiple queries can be answered using a single sketch and are
thus not answered independently. Note that the standard composition theorem would allow
us to perform multiple queries only if they were answered independently.

We use our results to give new differentially private algorithms for various problems:
for maximum matching under node-level privacy, frequency moments, counting connected
components under edge-level privacy, and rank queries. We also show how a common

1 Global sensitivity of a function g with respect to a relation ∼ is defined as supx∼x′ |g(x) − g(x′)|.
2 Here, we see the approximation algorithm as a deterministic function of the input and a string of random

bits.
3 A distribution is subexpoential if its tails are dominated by the tail of an exponential distribution.

J. Tětek 73:3

technique for designing relative-approximation sublinear-time algorithms – advice removal by
geometric search – can be made differentially private. This implies an edge-differentially-
private algorithm for estimating the average degree of a graph, improving upon the state of
the art [5], but we think it could also be useful for many other problems. Our algorithm
for maximum matching also answers an open problem from [5]. For the other mentioned
problems, we give the most efficient differentially private algorithm known.

Notably, a concurrent work [7] gave a similar result. In the context of global sensitivity,
their result makes weaker assumptions and results in algorithms that are less efficient since
they rely on postprocessing to turn approximate differential privacy into pure differential
privacy. We discuss this in detail in Section 1.3.

1.1 Our results

We now informally state our main technical results and then we state the results for specific
results that we obtained using the technical results. We also show how to use our technical
results to give algorithms for specific problems in Section 1.2. We start with a result for
algorithms with subexponential error tails, which appears in Section 3:

▶ Theorem 9, simplified version. Assume we have an algorithm A(D) for D being a dataset.
Assume there exists a function g with global sensitivity ≤ ∆1 w.r.t. D such that A(D) − g(D)
has subexponential diameter4 ≤ ∆2, i.e. P[|A(D) − g(D)| ≥ t] ≤ 2e−t/∆2 for t ≥ 0. Then
releasing A(D) + Laplace

(
O
(
(∆1 + ∆2)/ϵ

))
is ϵ-differentially private for ϵ ≤ O(1).

Moreover, with noise Laplace
(
O
(
k(∆1 + ∆2)/ϵ

))
, this also holds if we make k such

releases with different algorithms A1, · · · , Ak chosen adaptively that are executed with the
same randomness.

Note that this generalizes the claim that the Laplace mechanism with noise magnitude
proportional to the global sensitivity gives differential privacy (this can be seen by setting
A(D) = g(D)). Note also that in the second half, the algorithms use the same randomness,
and we thus cannot get this part of the result by standard composition.

We then prove in Section 4 that in the case of a single query, it is sufficient to assume a
bound on some deviation moments (multiple independently answered queries can be handled
using the standard composition theorem).

▶ Theorem 13, simplified version. Let us have an algorithm A such that there exists a
function g with global sensitivity ≤ ∆ and such that E[|A(D) − g(D)|3] ≤ ∆3 for any dataset
D. Then for ϵ ≤ O(1) there exists a random variable Y with E[|Y |] ≤ O(∆/ϵ), such that
A(·) + Y is ϵ-differentially private.

We now state results which, as we show in Section 5, follow from the above technical
results. For all the following results, our algorithm is the most efficient known, except for
the streaming algorithm for rank queries, which is incomparable with the algorithm from
[19]. With the result for maximum matching, we (together with the concurrent [7]) answer
positively the open question of Blocki, Grigorescu, and Mukherjee [5], and the algorithm for
estimating the number of edges improves upon the algorithm from [5]. For more detailed
comparison with [7], see Section 1.3.

4 The subexponential diameter of a distribution roughly corresponds to the smallest parameter σ, such
that the tail of Laplace(1/σ) dominates the tails of the distribution.

APPROX/RANDOM 2024

73:4 Mechanisms for Making Rand. Approx. Algorithms Differentially Private

▶ Corollaries 16–20, simplified versions. There exists an ϵ-differentiallly private
1. streaming algorithm for the frequency F2 moment problem with space complexity O(1

ρ2ϵ2)
(Corollary 16),

2. sublinear-time algorithm for estimating the number of connected components with time
complexity O(1

ρ2ϵ2 log 1
ρϵ) (Corollary 17),

3. sublinear-time algorithm for estimating the size of the maximum matching with time
complexity dO(1/(ρ2ϵ2))/(ρϵ)O(1/(ρϵ)) (Corollary 18),

4. streaming algorithm for answering k (adaptive) rank queries in space O(k log2 k
ρϵ) (Corol-

lary 19),
5. sublinear-time algorithm for approximating the number of edges in a graph in time

O(n
ϵ2ρ2√

m
) (Corollary 20).

1.2 Our techniques

We now sketch the techniques that we use in our paper. In each part of this section, we also
give a reference to the corresponding section of this paper.

1.2.1 Subexponential error, one query (Section 3)

Suppose we have a randomized algorithm A(D) for D being a dataset that approximates a
function g(D) with global sensitivity ≤ ∆1 for some parameter ∆1. Define the error R as
the random variable R = A(D) − g(D) and assume that it is tightly concentrated around 0,
namely P[|R| > t] ≤ 2e−t/∆2 for some value ∆2 (∆2 is an upper bound on the “subexponential
diameter” of R). Intuitively speaking, ∆2 determines the “scale” of R, and ∆2 is in fact up
to a constant factor an upper bound on E[|R|]. Note that the tails of R decrease at least at
the same rate as those of the Laplace distribution. This suggests Laplacian noise with large
enough magnitude could “hide R”. Indeed, we prove that Laplacian noise will guarantee
privacy. We now sketch the proof.

High-level view. Assume for simplicity that both ∆1, ∆2 ≤ 1. The same approach works
for general values of ∆1, ∆2 by simple re-scaling. Let Y ∼ Laplace(c/ϵ) for appropriately
chosen value of c. We will prove that for any random variable X with subexponential
diameter ≤ 3 5 (that is P[|X| ≥ t] ≤ 2e−t/3), the probability density functions satisfy
fX+Y (y)/fY (y) = e±Θ(ϵ) for any y. We can use this to prove privacy, as we now show. For
two neighboring datasets D1, D2, we set R1 = A(D1)−g(D1) and R2 = A(D2)−g(D1) (note
the asymmetry in the definitions). It then holds that R1 has subexponential diameter ∆2 ≤ 1.
One can also show that the subexponential diameter of R2 = (A(D2)−g(D2))+(g(D2)−g(D1))
is ≤ 3 (Lemma 5). Let y′ = y − g(D1). It then holds for any y that

fA(D1)+Y (y)
fA(D2)+Y (y) =

fg(D1)+R1+Y (y)
fg(D1)+R2+Y (y) = fR1+Y (y′)

fR2+Y (y′) = fR1+Y (y′)
fY (y′) · fY (y′)

fR2+Y (y′) = e±Θ(ϵ)

where the last equality uses the claim fX+Y (y′)/fY (y′) = e±Θ(ϵ) for X = R1 and for X = R2.
This implies differential privacy.

5 We choose value 3 as this is the value we will need below. The claim holds also for larger constants
with c chosen appropriately.

J. Tětek 73:5

Bounding ratios of density functions. We now sketch why fX+Y (y)/fY (y) = e±Θ(ϵ). Since
Y is continuous, we may re-write

fX+Y (y) = E[fY (y − X)] = ϵ

2c
E[e−ϵ|X−y|/c] = (∗)

where the first equality is a standard identity [16]. We now use the inequalities |X − y| ≤
|X| + |y| and |X − y| ≥ |y| − |X|. This allows to bound

(∗) ≤ ϵ

2c
E[e−ϵ(|y|−|X|)/c] = ϵ

2c
e−ϵ|y|/cE[eϵ|X|/c]

(∗) ≥ ϵ

2c
E[e−ϵ(|X|+|y|)/c] = ϵ

2c
e−ϵ|y|/cE[e−ϵ|X|/c]

while it holds that fY (y) = ϵ
2c e−ϵ|y|/c. It is thus sufficient to prove that E[eϵ|X|/c] ≤ eO(ϵ)

and E[e−ϵ|X|/c] ≥ e−O(ϵ). While the first inequality is standard, the second is not. We will
now sketch a proof for both.

Bounding the expectation of exponentials of a subexponential random variable. If
we knew the density function of X, we could easily express the expectations as integrals.
However, not only we do not have a bound on the density, but the density may even not exist.
We thus use the following trick. We use the fact that for any real random variable Z, it holds
that Z has the same distribution as F −1

Z (u) for u ∼ Unif(0, 1) where FZ is the cumulative
distribution function (CDF) of Z. This allows us to write E[e−ϵ|X|/c] = Eu[e−F −1

ϵ|X|/c
(u)] and

similarly for E[eϵ|X|/c].
Unlike the density function, we do have a bound on the cumulative distribution func-

tion. Specifically, we are assuming P[|X| > t] ≤ 2e−t/3 which implies that F −1
ϵ|X|/c(u) ≤

− 3ϵ
c log(1−u

2). Upper-bounding the CDF like this reduces the problem to computing the
expectation of a function of the uniform random variable, which can be done straightforwardly.
This proves the desired bounds.

1.2.2 Subexponential error, multiple queries (Section 3)
We would like to be able to release answers to multiple queries which are not answered
independently (such as if they are answered based on the same sketch). Since the answers
are not independent, we cannot use the composition theorem. We now sketch an alternative
approach.

For fixed queries, the above proof goes through with minor modifications even in the
multivariate case. Instead of using the inequalities |y − X| ≤ |y| + |X| and |y − X| ≥ |y| − |X|
in the case of y, X ∈ R, we use the analogous version for ℓ1 norms in the case of y, X ∈ Rk:
∥y − X∥1 ≤ ∥y∥1 + ∥X∥1 and ∥y − X∥1 ≥ ∥y∥1 − ∥X∥1. We then use that if X is a vector
of k subexponential random variables with diameter ≤ ∆, then ∥X∥1 has subexponential
diameter ≤ 3k∆ (Lemma 5).

This however gives the result only in the nonadaptive case, when the queries do not
depend on the released values: the identity fX+Y (y) = E[fY (X − y)] relies crucially on
X = (X1, · · · , Xk) and Y = (Y1, · · · , Yk) being independent. In the case of adaptive queries,
Xi could depend on Y1, · · · , Yi−1 (the query that we perform – and thus also the answer to
it – can be influenced by the noise we add to the previous answers). We instead use our
non-adaptive version of the claim and make it adaptive in a black box fashion, by proving a
claim that may be of independent interest: If we have a countable number of mechanisms
such that releasing the answers of any fixed subset of size k is ϵ-differentially private, then
we may also pick this subset adaptively and it will still be ϵ-differentially private.

APPROX/RANDOM 2024

73:6 Mechanisms for Making Rand. Approx. Algorithms Differentially Private

1.2.3 Error with polynomial tails (Section 4)
In the case that the error has polynomial tails, we only consider the case of a single query.
Our techniques do not seem to generalize to the multivariate case, and we conjecture that
this is impossible (see Section 6). The case when multiple queries are answered independently
may be still handled by the standard composition theorem.

An approach similar to the one described above can be made to work, with the difference
that we use the inequality |x−X| ≥ max(0, |x|−|X|) instead of the weaker |x−X| ≥ |x|−|X|.
This approach, however, requires proving the following inequality for all y, s ≥ 0, α > 1, 0 ≤
ϵ ≤ 1:∫ 1

0
min

(
(1 + |y|/s)α,

∣∣∣∣1 − (1 − 2−1/α)ϵ
(1 + |y|/s)(1 − u)1/α

∣∣∣∣−α
)

du ≤ 1 + 2α − 1
α − 1 ϵ.

This is the technically most challenging part of this paper. The trick is to bound the inside
of the integral for u ∈ [0, 1 − ϵ(1 + |y|/s)−α] by a simpler expression that can be successfully
integrated. The rest of the interval [0, 1] contributes at most ϵ, as its length is ϵ(1 + |y|/s)−α

and the maximum value of the function being integrated is ≤ (1 + |y|/s)α.

1.2.4 How to use our technical results (Section 5)
1.2.4.1 Error with subexponential tails

We now sketch how one can use Theorem 9 to get differentially private mechanisms for
specific problems. Recall that the theorem states that if our algorithm approximates a
function with global sensitivity ≤ ∆1 and the subexponential diameter of the error is ≤ ∆2,
then adding noise from Laplace(O(∆1 + ∆2)/ϵ) makes the algorithm ϵ-differentially private.

We start with a randomized approximation algorithm whose error is subexponentially
concentrated around zero (often, this is either known or easy to prove) that approximates
a parameter with a small global sensitivity ∆1. This is the case for example for the YYI
maximum matching algorithm [34] under node-level privacy or the KLL sketch [20] for rank
queries. Suppose the complexity (such as time/space/query/sample or other complexity) of
the algorithm is T (n, ρ) and has additive error of scale (i.e. with subexponential diameter)
ρn. If we want the final error with privacy to be O(ρn), then we run the algorithm with error
parameter ϵρ, making the error’s subexponential diameter be O(ϵρn). We then get from
Theorem 9 that adding noise of magnitude O(ρn) is sufficient to get ϵ-differential privacy,
assuming ∆1 is sufficiently small, giving us the desired result. The complexity of the private
algorithm will thus be T (n, Θ(ϵρ)). This allows us to achieve a given level of accuracy6

under pure differential privacy, while not significantly worsening the algorithm’s complexity.
We describe this approach in greater detail and with general failure probabilities (not just
constant) in Section 5.

To illustrate the second part of the theorem, consider for example a rank queries sketch
(see Section 5.5 for details). The algorithms A1, · · · , Ak correspond to making k adaptive
queries to the sketch of a dataset (assume we are given k queries we need to perform) and
the fact that the algorithms use the same randomness corresponds to us querying the same
sketch (as compared to k independent sketches). Specifically, the algorithm Ai here builds

6 This is true unless ρ is very small, as otherwise the global sensitivity will necessitate some level of
noise. As we noted, this usually happens only when T (n, ϵρ) ≥ Ω(n), making this uninteresting for our
sublinear setting.

J. Tětek 73:7

the sketch (using the shared randomness), and then performs the i-th query. Note that the
fact that we only use one sketch prevents us from using the composition theorem to get this
from just the first part of the theorem.

1.2.4.2 Error with polynomial tails

If the error has polynomial tails, we can make it private in a way essentially the same
as in the subexponential case using Theorem 13. Moreover, it holds that if we have
E[|A(D) − g(D)|] ≤ ∆, then by taking a median of 5 independent executions of A, we get
an algorithm A′ whose error’s third moment is also bounded: E[|A′(D) − g(D)|3] ≤ O(∆3)
[21]. This means that we can make an algorithm private even if we only have a bound on
E[|A(D) − g(D)|], for g being a low-global-sensitivity function, or the mean squared error
E[(A(D) − g(D))2].

1.3 Related work
To the best of our knowledge, the work on differentially private approximation algorithms
started with private sketches. Mir, Muthukrishnan, Nikolov, and Wright [25] gave pan-
private7 sketches for heavy hitters. An improved sketch has been recently given by Pagh and
Thorup [27]. A private version of the deterministic Misra-Gries sketch [26] for heavy hitters
has been recently given by Tětek and Lebeda [22]. Heavy hitters were also investigated in
the multi-party computation setting [18], in the local differential privacy setting [3], and
using cryptographic assumptions [24, 17, 18].

A sketch for fractional frequency moments Fp for 0 ≤ p ≤ 1 has been given by Wang,
Pinelis, and Song [33]. After releasing this paper, Epasto, Mao, Andres, Mirrokni, Vassilvitskii,
and Zhong [15] have given an algorithm general value of p in the continual release setting. A
sketch for differentially private quantiles has been given by Alabi, Ben-Eliezer, and Chaturvedi
[1]. A technique for stream sanitization has been given by Kaplan and Stemmer [19]; this
work resulted in improved differentially private sketches for approximate quantiles. An
approach for differentially privately estimating distances in euclidean spaces using private
sketches has been given by Stausholm [31]. A general approach to making linear sketches
differentially private was given by Zhao, Qiao, Redberg, Agrawal, Abbadi, and Wang [35].

A recent line of work has shown that many sketches already provide privacy by themeselves
or with only small modifications, without adding any noise. Blocki, Blum, Datta, and Sheffet
[6] have shown that the Johnson-Lindenstrauss transform by itself ensures differential privacy.
Smith, Song, and Guha Thakurta [30] have shown that this is also the case for the Flajolet-
Martin sketch for counting distinct elements and a similar result is known for the LogLog
algorithm [9, 11]. This was recently generalized [10] to show that this is not only the case
for the two above-mentioned sketches, but in fact for a large class of sketches for counting
distinct elements.

As far as sublinear-time algorithms are concerned, Sivasubramaniam, Li, and He [29]
have shown a differentially private algorithm that returns a 2 + ρ approximation of the
number of edges in a graph in time Õρ,ϵ(

√
n). This has been later improved by Blocki,

Grigorescu, and Mukherjee [5] to 1 + ρ approximation in the same complexity. In that paper,
the authors also give differentially private sublinear algorithms for approximate maximum
matching and vertex cover. A sublinear time algorithm for estimating the median was
recently discovered [8].

7 An algorithm on an input stream is said to be pan-private if releasing the internal state of the algorithm
at any point in the computation is differentially private. It is a strictly stronger notation than differential
privacy of the output.

APPROX/RANDOM 2024

73:8 Mechanisms for Making Rand. Approx. Algorithms Differentially Private

Concurrent work
The problem of differentially private randomized approximation algorithms has been explored
independently of this work by Blocki, Grigorescu, Mukherjee, and Zhou [7]. The techniques
used in [7] differ significantly from those used in this paper. Specifically, in [7], the authors set
the failure probability of the algorithm to be ≤ δ (for example by probability amplification),
thus limiting the global sensitivity of the algorithm up to an event of probability ≤ δ. This
allows them to rely on the standard result for getting differential privacy based on global
sensitivity8. Specifically, if the algorithm has complexity T (n, ρ) and one uses probability
amplification, then the approach of [7] gives an (ϵ, δ)-differential privacy in complexity
O(T (n, ϵρ) log δ−1). They then show that one can post-process the output of the algorithm
to achieve pure differential privacy.

In this paper, instead of relying just on global sensitivity, we instead prove privacy from
first principles. At the cost of assuming that the error is sufficiently concentrated, we show
that the probability amplification step is not needed, allowing us to get ϵ-differential privacy
in the better complexity of T (n, ϵρ). Our approach allows us to give more efficient algorithms
than Blocki, Grigorescu, Mukherjee, and Zhou [7] for several problems: estimating the
average degree of a graph, estimating the size of a maximum matching, and estimating the
number of connected components.

2 Preliminaries

2.1 Differential privacy
Throughout the paper, we assume that we have a symmetric “neighbor” relation ∼ on the
set of all possible datasets. Intuitively speaking, in the case when we have a database of
users, this should correspond to two datasets being the same except for the data of one user
whose privacy we are trying to protect.

▶ Definition 1 ([12]). A randomized algorithm M with range S is ϵ-differentially private if
for any measurable T ⊆ S, it holds for any x ∼ x′ for a symmetric “neighbor” relation ∼,
that

e−ϵ ≤ P[M(x) ∈ T]
P[M(x′) ∈ T] ≤ eϵ

This definition is commonly relaxed to a notion called approximate differential privacy,
with the above notion then being called pure privacy. In this paper, we will focus only on
pure differential privacy.

If the output of M is a continuous random variable, then it is sufficient to prove that for
any y and x ∼ x′ it holds e−ϵ ≤ fM(x)(y)/fM(x′)(y) ≤ eϵ, where fX for X being a continuous
random variable is the probability density function of X.

The global sensitivity [13] of a function g is defined as

sup
x∼x′

|g(x) − g(x′)|.

The authors have shown that if g has global sensitivity ∆, then adding Laplace(∆/ϵ) provides
ϵ-differential privacy.

8 They also consider functions with low smoothed sensitivity instead of just low global sensitivity; we do
not consider that in this paper.

J. Tětek 73:9

In the context of graph problems, one often speaks of a mechanism being edge-differentially
private, or node-differentially private. These terms refer to the relation ∼ that is used. In
the case of node-differential privacy, we have G ∼ G′ iff one can get G from G′ by deleting
one vertex and the incident edges, or the other way around. In the case of edge-differential
privacy, we have G ∼ G′ iff one can get G from G′ by deleting one edge, or the other way
around.

2.2 Probability theory

If D is a distribution, we use D⊗k for k being a natural number, to denote the k-fold product
distribution of D. For a random variable Z, we denote by FZ its cumulative distribution
function. We denote by F −1

Z (p) = inf{x ∈ R : FZ(x) ≥ p} its generalized inverse. It holds
that F −1

Z (u) has the same distribution as Z for u ∼ Unif(0, 1) [23]. We will need the
following claim.

▶ Fact 2 ([16]). Let X, Y be independent random variables in Rk, and assume Y has a
probability density function (pdf) fY (z). Then the pdf of X + Y is fX+Y (z) = E[fY (z − X)].

Concentration of measure

The notions of subexponential random variables and subexponentialdiameter σse[X] are
central to concentration of measure. There are several different definitions for σse[X], that
differ by constant factors. See for example [32, Chapter 2] for an exposition of the various
definitions. In this paper, one of the definitions is especially suitable for the way we use it in
our proofs, and that is the definition that we use.

▶ Definition 3. Let X be a real random variable. We define the subexponential diameter of
X, denoted by σse[X] as the smallest values for which for any t > 0 holds

P[|X| ≥ t] ≤2 exp(−t/σse[X])

A random variable X is said to be subexponential if σse[X] < ∞.

It holds that σse[cX] = cσse[X]. It also holds that

▶ Fact 4. For X being a random variable and c ≥ 0, it holds that σse[X+c] ≤ σse[X]+c/ log 2.

Proof. We can bound P[X + c ≥ t] ≤ min(1, 2e−(t−c)/σse[X]) ≤ min(1, 2e−t/(σse[X]+c/ log 2)),
thus implying the claim. ◀

Finally, the following is a standard claim, but we need the constant factor, which is
specific to the definition of σse that we are using. We thus give a proof in the full version of
this paper, based on the standard proof of triangle inequality for Orlicz norms.

▶ Lemma 5. Let us have real random variables X1, · · · , Xk. It holds

σse[
k∑

i=1
Xi] ≤ 3

k∑
i=1

σse[Xi]

APPROX/RANDOM 2024

73:10 Mechanisms for Making Rand. Approx. Algorithms Differentially Private

3 Algorithms with subexponential error

In this section, we show how algorithms, whose error has a small subexponential diameter,
can be made differentially private. We start by proving a technical lemma. We will later
bound the ratios between probability densities of our mechanism’s answers by the exponential
expectations that we now bound and, finally, we will use that to prove privacy in Theorem 9,
which is the main theorem of this section.

Note that while the second of the two inequalities is standard, the first one is not. Our
proof does not follow the strategy of the standard proof of the second inequality, which
is based on a Taylor expansion and does not seem to straightforwardly apply to the first
inequality.

▶ Lemma 6. Suppose X is a random variable with subexponential diameter ∆ ≤ 1/2. It
holds E[e−|X|] ≥ 2−∆

1+∆ ≥ e−(1+log 2)∆ and E[e|X|] ≤ 2∆

1−∆ ≤ e3 log(2)∆.

Proof. Since X is subexponential with diameter ∆, it holds that P[|X| ≥ z] ≤ 2e−z/∆.
Therefore, F −1

|X|(u) ≤ −∆ log(1−u
2). We use the fact that for u ∼ Unif(0, 1), the random

variable F −1
|X|(u) has the same distribution as |X|. We can now bound

E[e−|X|] =Eu[e−F −1
|X|(u)]

≥Eu[e∆ log(1−u
2)] (1)

=2−∆Eu[(1 − u)∆]

=2−∆
∫ 1

0
(1 − u)∆du

=2−∆
[
− (1 − u)∆+1

∆ + 1

]1

u=0

= 2−∆

1 + ∆ ≥ e−(1+log 2)∆

where the last inequality holds because we can equivalently write 2−∆/(∆ + 1) ≥ (2e)−∆,
which simplifies to e∆ ≥ 1 + ∆, which is a standard inequality. Similarly, we can bound
E[e|X|] as follows.

E[e|X|] =Eu[eF −1
|X|(u)]

≤Eu[e−∆ log(1−u
2)]

= 2∆

1 − ∆ ≤ e3 log(2)∆

where the second equality is by substituting ∆ with −∆ in (1) (since as we have shown, (1)
is equal to 2−∆/(1 + ∆)). We have here used that ∆ < 1 (otherwise the final expression may
not be defined). The last inequality can be shown as follows: we take the ratio of the two
sides resulting in h(∆) = 4∆(1 − ∆) and we show h(∆) ≥ 1 for 0 ≤ ∆ ≤ 1/2. The function h

is concave (the second derivative is −2 · 22∆ log 4 + 22∆ log2 4, which can be easily seen to be
negative), meaning that it is sufficient to check that the inequality holds at the endpoints of
the interval [0, 1/2]: that h(0) ≥ 1 and h(1/2) ≥ 1. One can easily check this holds. ◀

We are now ready to prove a lemma about the ratio of the density function of a Laplace
and of Laplace shifted by a subexponential random variable. We will then use this to
prove differential privacy. Note that the random variables in the lemma do not have to be
independent.

J. Tětek 73:11

▶ Lemma 7. Let X1, · · · , Xk be random variables with subexponential diameter at most
∆ and let X = (X1, · · · , Xk). Let Y ∼ Lap⊗k(k∆/ϵ) for ϵ ≤ 1/6. Consider y ∈ Rk. It
holds e−3(1+log 2)ϵ ≤ fX+Y (y)/fY (y) ≤ e9 log(2)ϵ. Moreover, if k = 1 and ϵ ≤ 1/2, it holds
e−(1+log 2)ϵ ≤ fX+Y (y)/fY (x) ≤ e3 log(2)ϵ.

Proof. By Fact 2, we have

fX+Y (y) = E[fY (y − X)] =
(ϵ

2k∆

)k

E[exp(− ϵ

k∆∥X − y∥1)]

For the sake of brevity, we let γ =
(

ϵ
2k∆

)k. We may bound ∥X − y∥1 ≤ ∥X∥1 + ∥y∥1 and
∥X − y∥1 ≥ ∥y∥1 − ∥X∥1. This allows us to bound

fX+Y (y) =γE

[
exp

(
−ϵ∥X − y∥1

k∆

)]
≥γE

[
exp

(
−ϵ(∥X∥1 + ∥y∥1)

k∆

)]
=γ exp

(
−ϵ∥y∥1

k∆

)
E

[
exp

(
−ϵ∥X∥1

k∆

)]
(2)

≥γ exp
(

−ϵ∥y∥1

k∆

)
exp(−3(1 + log 2)ϵ)

where the last inequality is by Lemma 6; we used that ϵ∥X∥1
k∆ has subexponential diameter

≤ 3ϵ ≤ 1/2, since we have by Lemma 5 that σse[∥X∥] ≤ 3k∆. In the case k = 1, we simply
have that σse[ϵ∥X∥1

k∆] ≤ ϵ, in which case the final bound on (2) is

≥ γ exp
(

−ϵ∥y∥1

k∆

)
exp(−(1 + log 2)ϵ)

At the same time, fY (y) = γ exp(− ϵ∥y∥1
k∆) and thus

fX+Y (y)
fY (y) ≥e−3(1+log 2)ϵ if k > 1

fX+Y (y)
fY (y) ≥e−(1+log 2)ϵ if k = 1

Similarly, we can bound

fX+Y (y) =γE

[
exp

(
−ϵ∥X − y∥1

k∆

)]
≤γE

[
exp

(
−ϵ(∥y∥1 − ∥X∥1)

k∆

)]
=γ exp

(
−ϵ∥y∥1

k∆

)
E

[
exp

(
ϵ∥X∥1

k∆

)]
≤γ exp

(
−ϵ∥y∥1

k∆

)
exp(9 log(2)ϵ)

in the case k > 1 and

fX+Y (y) ≤ γ exp
(

−ϵ∥y∥1

k∆

)
exp(3 log(2)ϵ)

APPROX/RANDOM 2024

73:12 Mechanisms for Making Rand. Approx. Algorithms Differentially Private

in the case k = 1. Thus, we have

fX+Y (y)
fY (y) ≤e9 log(2)ϵ if k > 1

fX+Y (y)
fY (y) ≤e3 log(2)ϵ if k = 1 ◀

We now state a useful technical lemma; the proof appears in the full version. This lemma
states that in general, if we have a countable number of mechanisms and releasing any
fixed k of them is differentially private, then picking the mechanisms adaptively will not
violate differential privacy. The proof roughly follows the outline of the proof of adaptive
composition [28]. In what follows, we again use the subscript · r to denote a random bitstring
used as the source of randomness of the mechanisms.

▶ Lemma 8. Let us have a countable number of mechanisms M1,r, · · · , such that releasing the
value (Mi1,r(D), · · · , Mik,r(D)) is ϵ-differentially private for any fixed i1, · · · , ik ∈ [n]. Then
the mechanism (Mj1,r(D), · · · , Mjk,r(D)) is ϵ-differentially private for j1, · · · , jk ∈ [n] such
that jℓ for ℓ ∈ [k] is drawn from a distribution which is a function of Mj1,r(D), · · · , Mjℓ−1,r(D).

We are now ready to prove the main theorem of this section. In what follows, we denote by
Ar(·) the algorithm A executed with randomness r. We formalize the multiple-query setting
as having one algorithm which takes as part of its input a query. This differs somewhat from
the presentation in the introduction which assumed we have a sequence of algorithms, which
we chose there as it required less notation. Note also that while we are not assuming that the
algorithm does not know which phase it is (the value of i), we may without loss of generality
assume this is passed as part of the query. Note that the condition on the queries x1, · · · , xk

below simply states that the queries can be chosen adaptively based on the released values,
and that they do not have to be deterministic. Note also that the randomness r must not be
released, as the privacy also relies on that randomness.

▶ Theorem 9. Let us have an algorithm A(D, x) for a database D and a query x ∈ U , where
U is a countable universe. Assume there exists a function g(D, x) with its global sensitivity
w.r.t. D being ≤ ∆1 for any x, and such that σse[A(D, x) − g(D, x)] ≤ ∆2 for any D, x.

Pick at random Yi ∼ Laplace(c(∆1 + ∆2)k/ϵ)) for c = 3 + 12 log 2 and for ϵ ≤ c/6 and
pick r independently uniformly on {0, 1}∞. Then for queries x1, · · · , xk ∈ U where the query
xi is drawn from a distribution that is a function of Ar(D, x1) + Y1, · · · , Ar(D, xi−1) + Yi−1,
releasing (Ar(D, x1) + Y1, · · · , Ar(D, xk) + Yk) is ϵ-differentially private, with the privacy
also being over the randomness of r.

If k = 1, then c = 1 + 4 log 2 and ϵ ≤ c/2 is sufficient.

Proof. Let us have two neighboring databases D1, D2. Let Y = (Y1, · · · , Yk), and for
x = (x1, · · · , xk), let A′(D, x) = (Ar(D, x1) + Y1, · · · , Ar(D, xk) + Yk) for r uniform on
{0, 1}∞. Similarly, let g(D, x) = (g(D, x1), · · · , g(D, xk)). We prove that for any fixed
(non-adaptive) queries x = (x1, · · · , xk) it holds fA′(D1,x)(y)/fA′(D2,x)(y) ≤ eϵ. If we prove
this, the theorem follows: the inequality fA′(D1,x)(y)/fA′(D2,x)(y) ≥ e−ϵ holds by symmetry
and these bounds together imply ϵ-differential privacy. Lemma 8 then imply that A′ is
differentially private even for adaptive queries.

Let R1 = A′(D1, x) − g(D1, x) and R2 = A′(D2, x) − g(D1, x) (note the asymmetry in
the definitions). We are assuming R1 has subexponential diameter ≤ ∆2. By Fact 4, it holds
that R2 has subexponential diameter ≤ ∆1/log(2) + ∆2. We now have from Lemma 7 the
following bounds

J. Tětek 73:13

fg(D1,x)+R1+Y (y)
fg(D1,x)+Y (y) = fR1+Y (y − g(D1, x))

fY (y − g(D1, x)) ≤e9 log(2)ϵ/c

fg(D2,x)+R2+Y (y)
fg(D1,x)+Y (y) = fR2+Y (y − g(D2, x))

fY (y − g(D1, x)) ≥e−3(1+log 2)ϵ/c

which in turn allows us to bound

fA′(D1,x)(y)/fA′(D2,x)(y) =
fg(D1,x)+R1+Y (x)

fg(D1,x)+Y
·

fg(D1)+Y

fg(D2)+R2+Y (x) ≤ e(3+12 log 2)ϵ/c = eϵ

If k = 1, the same computation gives the desired bound for c = 1 + 4 log 2, since Lemma 7
in that case gives gives

fg(D1,x)+R1+Y (y)
fg(D1,x)+Y (y) ≤e3 log(2)ϵ/c

fg(D2,x)+R2+Y (y)
fg(D1,x)+Y (y) ≥e−(1+log 2)ϵ/c

which again results in the bound fA′(D1,x)(y)/fA′(D2,x)(y) ≤ eϵ. ◀

4 Algorithms with bounded mean error

In this section, we show a weaker version of Theorem 9 that only requires that the error has
some number of bounded moments, instead of requiring that it is subexponential. We start
by defining the distribution that we will use in our additive noise mechanism.

▶ Definition 10. Zero-symmetric Pareto distribution with shape parameter α > 1 and scale
parameter s > 0, denoted ZSParetoα(s), is defined by the PDF

1
2s

(α − 1)(|x|/s + 1)−α

Before we can prove the main theorem of this section, we need the following technical lemma.
The proof is rather technical and it appears in the full version of this paper.

▶ Lemma 11. Let us have any 0 ≤ ϵ ≤ 1, α > 1, and x ≥ 0. It holds

∫ 1

0
min

(
(1 + x)α,

∣∣∣∣1 − (1 − 2−1/α)ϵ
(1 + x)(1 − u)1/α

∣∣∣∣−α
)

du ≤ 1 + 2α − 1
α − 1 ϵ (3)

We are now ready to prove a lemma which bound the privacy loss of our mechanism. In
what follows, we use the notation ∥X∥p for a random variable X to denote the Lp norm

p
√
E[|X|p].

▶ Lemma 12. Let X be a real random variable such that ∥X∥α ≤ ∆ and let Y ∼
ZSParetoα(s) for s = (1 − 2−1/α)−1∆/ϵ for 0 ≤ ϵ ≤ 1 and α > 1. Consider y ∈ R.
It holds e−(1−2−1/α)αϵ ≤ fX+Y (y)/fY (y) ≤ e

2α−1
α−1 ϵ.

APPROX/RANDOM 2024

73:14 Mechanisms for Making Rand. Approx. Algorithms Differentially Private

Proof. Since ∥X∥α ≤ ∆, it holds by the higher-order Chebyshev inequality9 that P[|X| ≥
z] ≤ ∆α/zα. Therefore, F −1

|X|(u) ≤ ∆/ α
√

1 − u. We will use that |y − X| ≤ |y| + |X| and
later below also that |y − X| ≥ max(0, |y| − |X|). We start with the simpler case of proving
a lower bound.

fX+Y (y)
fY (y) =E[fY (y − X)]

(|y|/s + 1)−α
(4)

=E[(|y − X|/s + 1)−α]
(|y|/s + 1)−α

≥E

[(
|y|/s + |X|/s + 1

|y|/s + 1

)−α
]

=E

[(
1 + |X|/s

|y|/s + 1

)−α
]

≥E[(1 + |X|/s)−α]
≥E[1 − α|X|/s]
=1 − αE[|X|]/s

≥1 − α(1 − 2−1/α)∆
∆ ϵ ≥ e−(1−2−1/α)αϵ (5)

where (4) holds by Fact 2, and (5) uses that E[|X|] = ∥X∥1 ≤ ∥X∥α ≤ ∆. We now show
the upper bound part. We prove an upper bound in terms of the integral which we have
bounded in Lemma 11.

fX+Y (y)
fY (y) =E[(|y − X|/s + 1)−α]

(|y|/s + 1)−α

≤E

[
min

(
(1 + |y|/s)α,

∣∣∣∣ |y|/s − |X|/s + 1
|y|/s + 1

∣∣∣∣−α
)]

=E

[
min

(
(1 + |y|/s)α,

∣∣∣∣1 − |X|/s

|y|/s + 1

∣∣∣∣−α
)]

=Eu

min

(1 + |y|/s)α,

∣∣∣∣∣1 −
F −1

|X|(u)/s

|y|/s + 1

∣∣∣∣∣
−α

≤Eu

[
min

(
(1 + |y|/s)α,

∣∣∣∣1 − (1 − 2−1/α)−1ϵ

(|y|/s + 1)(1 − u)1/α

∣∣∣∣−α
)]

=
∫ 1

0
min

(
(1 + |y|/s)α,

∣∣∣∣1 − (1 − 2−1/α)−1ϵ

(|y|/s + 1)(1 − u)1/α

∣∣∣∣−α
)

du

≤1 + 2α − 1
α − 1 ϵ ≤ e

2α−1
α−1 ϵ

where we have proven the inequality second to last in Lemma 11. ◀

We are now ready to prove the main theorem of this section.

9 The higher-order Chebyshev inequality states that for X being a real random variable, it holds
P[|X − E[X]| ≥ t] ≤ tα/E[|X − E[X]|α] for any α ≥ 0.

J. Tětek 73:15

▶ Theorem 13. Let us have an algorithm A(D) such that there exists a function g(D) with
global sensitivity ≤ ∆1 w.r.t. D for which for any input D, it holds E[|A(D) − g(D)|α] ≤ ∆α

2
for some α > 1. Let Y ∼ ZSParetoα(c(∆1 + ∆2)/ϵ) for c = α + 2 + 1/(α − 1) and ϵ ≤ c,
independent of the randomness of A; then A(D) + Y is ϵ-differentially private with respect
to D.

Proof. This proof follows the strategy of the proof of Theorem 9. Let us have two neighboring
databases D1, D2. We again prove that for any y, it holds fA(D1)(y)/fA(D2)(y) ≤ eϵ; this
implies the theorem. We also again set R1 = A(D1) − g(D1) and R2 = A(D2) − g(D1). We
are assuming ∥R1∥α ≤ ∆2 and by the triangle inequality, we have that ∥R2∥α ≤ ∆1 + ∆2.
Therefore, we have

fg(D1)+R1+Y (y)
fg(D1)+Y (y) = fR1+Y (y − g(D1))

fY (y − g(D1)) ≤ exp
(

2α − 1
(α − 1)cϵ

)
fg(D2)+R1+Y (y)

fg(D1)+Y (y) = fR1+Y (y − g(D2))
fY (y − g(D1)) ≥ exp

(
−(1 − 2−1/α)αϵ/c

)
which in turn allows us to bound

fA(D1)+Y (y)/fA(D2)+Y (y) =
fg(D1)+R1+Y (y)

fg(D1)+Y (y) ·
fg(D1)+Y (y)

fg(D2)+R1+Y (y)

≤ exp
((

(2α − 1)
(α − 1) + (1 − 2−1/α)α

)
ϵ/c

)
≤ eϵ

where we now argue the last inequality; that will conclude the proof. If we set c =
2 + 1/(α − 1) + α − 2−1/αα, the last inequality would be an equality. By monotonicity, it
is thus sufficient to prove that 2 + 1/(α − 1) + α − 2−1/αα ≤ 2 + log 2 + 1/(α − 1). This is
equivalent to 2−1/αα ≥ α − log 2, which in turn can be re-written as 2−1/α ≥ 1 − log(2)/α.
This follows from the inequality ex ≥ 1 + x for x = − log(2)/α. ◀

5 Implications of our results

In this section, we give several implications of Theorem 9 and Theorem 13. This list is by no
means meant to be exhaustive. We start with the more straightforward applications and
focus on the more involved ones later, with one part being deferred to the full version of this
paper.

Recall that, as we discussed, the goal in the sublinear setting is not to simply add small
amount of noise, but rather to achieve a given level of error as efficiently as possible while
guaranteeing differential privacy. This is so because in this setting, the amount of error
coming from the algorithm not being exact tends to be much greater than the amount of
noise needed to achieve privacy when not subject to having limited resources.

5.1 The general approach
In all applications, we take a known algorithm for a given problem, and use either Theorem 9
or Theorem 13 to argue that adding noise to the algorithm’s answer ensures privacy.

Assume the original algorithm had complexity T (n, ρ) and assume for example that the
error is of magnitude ρn, namely that for error R, it holds E[R2]1/2 ≤ O(ρn) (this can
be generalized to ≤ O(ρf(x)) for x being the input and f being any function). We run
the algorithm with parameter ρ′ = ϵρ and add noise of magnitude O(ρn) (more generally

APPROX/RANDOM 2024

73:16 Mechanisms for Making Rand. Approx. Algorithms Differentially Private

O(ρf(x))). By Theorem 13 with α = 2, as long as the approximated function’s sensitivity
is ∆ ≤ ϵρn, this is ϵ-differentially private10. At the same time, the error is ≤ O(ρn) with
arbitrarily high constant probability. The time complexity is T (n, ϵρ).

If we want to achieve a failure probability of β, we run this algorithm Θ(log β−1) times and
take the median. By a standard probability amplification argument, the success probability
will be as desired. To achieve ϵ-differential privacy by composition, we have to divide the
privacy budget between the runs, resulting in complexity O(T (n, ϵρ/ log β−1) log β−1). This
can be summarized (and generalized with the general function f(x)) as follows:

▶ Lemma 14. Suppose there is an algorithm approximating a function g with global sensitivity
∆ such that E[(A(x) − g(x))2]1/2 ≤ ρf(x) for some function f with time/space/query
complexity T (n, ρ). Then for ϵ ≤ O(1) there exists an ϵ-differentially private algorithm
A′ such that when ϵρ ≥ Ω(∆/f(x)), it holds P [|A′(x) − g(x)| > ρf(x)] ≤ β and that has
complexity O(T (n, ϵρ/ log β−1) log β−1).

A more efficient approach for decreasing failure probability exists in the case of subex-
ponential error. Assume the same setting as above, except that the error’s subexponential
diameter is ρn instead having only moment bounds (like above, we can generalize to ρf(x)
instead of ρn). We run the algorithm with parameter ρ′ = ϵρ/ log β−1 and add noise of
magnitude Θ(ρn/ log β−1). This algorithm is ϵ-differentially private by Theorem 9, as long
as ∆ ≤ ϵρn. The noise has subexponential diameter O(ρ′n) and by Lemma 5, the total
error will up to a constant have the same subexponential diameter. By the definition of
subexponential diameter, the probability that the error is ≥ Θ(ρn) is ≤ β as desired. This
results in complexity O(T (n, ϵρ/ log β−1)) saving us one log β−1 factor. We can summarize
this as

▶ Lemma 15. Suppose there is an algorithm approximating a function g with global sensitivity
∆ such that σse[A(x) − g(x)] ≤ ρf(x) for some function f with time/space/query complexity
T (n, ρ). Then for ϵ ≤ O(1), there exists an ϵ-differentially private algorithm A′ such that
when ϵρ ≥ Ω(∆/f(x)), it holds P [|A′(x) − g(x)| > ρf(x)] ≤ β and that has complexity
O(T (n, ϵρ/ log β−1)).

We are now ready to give private algorithms for specific problems.

5.2 Frequency moment F2

In their seminal paper, Alon, Matias, and Szegedy [2] show a sketch that allows one to
estimate the F2 frequency moment, defined as F2(x1, · · · , xn) =

∑n
i=1 x2

i . In the streaming
setting, the vector x1, · · · , xn is given through a stream of updates y1, · · · , yk of the form
yj = (ℓj , Dj) where D can be negative and we define xi =

∑k
j=1 I[ℓj = i]Dj . Two inputs are

then adjacent if they differ in one value yj for some j. The algorithm from [2] uses space
O(1

ρ2) and has mean squared error of ≤ ρ2F 2
2 ≤ ρ2n4. The sensitivity of the F2 moment is n.

This implies the following

▶ Corollary 16. For ϵ ≤ O(1) and ρ ≤ 1/(ϵn), there is an ϵ-differentially private algorithm
that returns an additive ±ρn2 approximation of the frequency moment F2 with probability
1 − β, and has space complexity O(log3 β−1

ρ2ϵ2).

10 This upper bound on the sensitivity ensures that ∆2 in Theorem 13 dominates.

J. Tětek 73:17

This improves upon the concurrent work [7] which gives an algorithm with complexity
O(log4 n

ρ2ϵ2). Shortly after releasing this paper, an approach also appeared with the incomparable
complexity of O(log(n) log3 β−1/ρ2) was shown (for ϵ being not too small) that also has
multiplicative approximation guarantees and works (with some loss in the complexity) in the
continual release setting [15]. The setting of Fp for p ∈ [0, 1] has been considered in [33].

5.3 Connected components
An algorithm is known [4] that returns an estimate ĉ of the number of connected components
c of a simple graph in time O(1

ρ2 log 1
ρ) and has mean squared error E[(ĉ − c)2] ≤ ρ2n2. At

the same time, the number of connected components has global sensitivity 1 with respect to
edge additions/deletions. This gives us the following

▶ Corollary 17. For ϵ ≤ O(1) and ρ ≤ 1/(ϵn), there is an ϵ-edge-differentially private
algorithm that returns an additive ±ρn approximation of the number connected components
with probability 1 − β, and has complexity O(log3 β−1

ρ2ϵ2 log log β−1

ρϵ).

No private sublinear-complexity algorithm for estimating the number of connected components
was previously known.

5.4 Maximum matching
Yoshida, Yamamoto, and Ito [34] show an algorithm that can approximate the size of the
maximum matching to within multiplicative 1 + ρ in time dO(1/ρ2)(1/ρ)O(1/ρ) for d being
the maximum degree of the input graph. It works by implementing an oracle for a matching
of size within factor 1 + ρ/2 of the maximum matching; for a specified vertex, this oracle
answers whether the vertex is matched in the oracle’s matching. The algorithm then samples
Θ(1/ρ2) vertices and checks the fraction that is matched in the oracle’s matching. The error
coming from the oracle is ≤ ρn/2 in the worst case and thus has subexponential diameter
O(ρn). The error coming from the sampling has subexponential diameter O(ρn) by the
Hoeffding inequality. By Lemma 5, the subexponential diameter of the error is thus O(ρn).
At the same time, the global sensitivity of the maximum matching size is ≤ 1 with respect
to the removal of one vertex. This gives us the following

▶ Corollary 18. For ϵ ≤ O(1) and ρ ≤ 1/(ϵn), there is an ϵ-node-differentially-private
algorithm that returns an additive ±ρn approximation of the maximum matching size with
probability 1 − β in time dO(log2(β−1)/(ρ2ϵ2))/(ρϵ)O(log(β−1)/(ρϵ)).

Together with the concurrent [7], this solves the open problem posed in [5] where the authors
show a hybrid (2, ρn) approximation, while we give a purely additive ±ρn approximation.

5.5 Rank queries
Karnin, Lang, and Liberty [20] develop a sketch of size O(1

ρ) that allows one to answer rank
queries with error with subexponential diameter ρn. We show how to use their sketch to
answer range queries over an ordered universe. For small number of queries, this improves
upon the work of [19] which has a logarithmic dependency on the universe size. This gives
us the following corollary.

▶ Corollary 19. There is a sketch that allows ϵ-differentially private algorithm that returns k

rank queries (potentially adaptive) for ϵ ≤ O(1) with an additive ±ρn error with probability
1 − β, and has complexity O(k log2(k/β)

ρϵ).

APPROX/RANDOM 2024

73:18 Mechanisms for Making Rand. Approx. Algorithms Differentially Private

Proof. We use the KLL sketch with error parameter ρ′ = ρϵ/(k log(k/β)). This means that
the error has a subexponential diameter of ≤ ρϵn/(k log(k/β)). Therefore, by Theorem 9, it
holds that using for each query a Laplace mechanism with error magnitude Θ(ρn/ log(k/β))
will result in ϵ-differential privacy.

By Lemma 5, the overall subexponential diameter of the error of each answer is
O(ρn/ log(k/β)) and therefore the probability of error O(ρn) is 1−β/k. By the union bound,
the overall success probability is ≥ 1 − β. ◀

This is in comparison to the approach of Kaplan and Stemmer [19] which results in space
complexity O(log |U | log(k/β)

ρϵ), improving by a factor of log |U | for constant k, β, where U is
the universe.

5.6 Relative approximation sublinear-time algorithms
In the full version of this paper, we show a general theorem that implies that many sublinear-
time algorithms that have relative error guarantees can be made differentially private.
Specifically, it applies to many algorithms that rely on a commonly used “advice removal”
technique [14]. Among other things, this theorem implies the following algorithm. This
improves upon the work of Blocki, Grigorescu, and Mukherjee [5] who give an algorithm
with complexity Õϵ,ρ(

√
n) under the assumption m ≥ Ω(n).

▶ Corollary 20. For ϵ ≤ O(1) and ρ ≤ 1/(ϵn), there exists an ϵ-edge-differentially private
algorithm that returns a 1 + ρ-approximation of the average degree of a graph with probability
1 − β and has complexity O(n log3 β−1

ϵ2ρ2√
m

).

6 Open problems and conjectures

We are convinced that our results are only the beginning of the story and that there are many
interesting related open problems. These include using normal noise with approximate/zero-
concentrated differential privacy, generalizing our method to input-dependent error mag-
nitudes, improving the constants, lower bounds for answering multiple queries when we have
polynomial tails. For a more detailed discussion, see the full version of this paper.

References
1 Daniel Alabi, Omri Ben-Eliezer, and Anamay Chaturvedi. Bounded space differentially private

quantiles. arXiv preprint, 2022. arXiv:2201.03380.
2 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the

frequency moments. In Proceedings of the twenty-eighth annual ACM symposium on Theory
of computing, pages 20–29, 1996.

3 Raef Bassily, Kobbi Nissim, Uri Stemmer, and Abhradeep Guha Thakurta. Practical locally
private heavy hitters. Advances in Neural Information Processing Systems, 30, 2017.

4 Petra Berenbrink, Bruce Krayenhoff, and Frederik Mallmann-Trenn. Estimating the number
of connected components in sublinear time. Information Processing Letters, 114(11):639–642,
2014.

5 J Blocki, E Grigorescu, and T Mukherjee. Privately estimating graph parameters in sublinear
time. In 49th International Colloquium on Automata, Languages, and Programming (ICALP
2022)., 2022.

6 Jeremiah Blocki, Avrim Blum, Anupam Datta, and Or Sheffet. The johnson-lindenstrauss
transform itself preserves differential privacy. In 2012 IEEE 53rd Annual Symposium on
Foundations of Computer Science, pages 410–419. IEEE, 2012.

https://arxiv.org/abs/2201.03380

J. Tětek 73:19

7 Jeremiah Blocki, Elena Grigorescu, Tamalika Mukherjee, and Samson Zhou. How to Make
Your Approximation Algorithm Private: A Black-Box Differentially-Private Transformation
for Tunable Approximation Algorithms of Functions with Low Sensitivity. In Nicole Megow
and Adam Smith, editors, Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM 2023), volume 275 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 59:1–59:24, Dagstuhl, Germany, 2023. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.APPROX/RANDOM.2023.59.

8 Jonas Boehler and Florian Kerschbaum. Secure sublinear time differentially private median
computation, February 1 2022. US Patent 11,238,167.

9 Seung Geol Choi, Dana Dachman-Soled, Mukul Kulkarni, and Arkady Yerukhimovich.
Differentially-private multi-party sketching for large-scale statistics. Cryptology ePrint Archive,
2020.

10 Charlie Dickens, Justin Thaler, and Daniel Ting. (nearly) all cardinality estimators are
differentially private. arXiv preprint, 2022. arXiv:2203.15400.

11 Marianne Durand and Philippe Flajolet. Loglog counting of large cardinalities. In Algorithms-
ESA 2003: 11th Annual European Symposium, Budapest, Hungary, September 16-19, 2003.
Proceedings 11, pages 605–617. Springer, 2003.

12 Cynthia Dwork. Differential Privacy. In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and
Ingo Wegener, editors, Automata, Languages and Programming, pages 1–12, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg.

13 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In Theory of cryptography conference, pages 265–284.
Springer, 2006.

14 Talya Eden, Dana Ron, and C Seshadhri. On approximating the number of k-cliques in
sublinear time. In Proceedings of the 50th annual ACM SIGACT symposium on theory of
computing, pages 722–734, 2018.

15 Alessandro Epasto, Jieming Mao, Andres Munoz Medina, Vahab Mirrokni, Sergei Vassilvitskii,
and Peilin Zhong. Differentially private continual releases of streaming frequency moment
estimations. arXiv preprint, 2023. arXiv:2301.05605.

16 geetha290krm (https://math.stackexchange.com/users/1064504/geetha290krm).
Does fX+Y (z) = e[fy(z − x)] hold? Mathematics Stack Exchange, 2022.
URL:https://math.stackexchange.com/q/4544852 (version: 2022-10-04). arXiv:https:
//math.stackexchange.com/q/4544852.

17 Badih Ghazi, Noah Golowich, Ravi Kumar, Rasmus Pagh, and Ameya Velingker. On the power
of multiple anonymous messages: Frequency estimation and selection in the shuffle model of
differential privacy. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 463–488. Springer, 2021.

18 Ziyue Huang, Yuan Qiu, Ke Yi, and Graham Cormode. Frequency estimation under multiparty
differential privacy: One-shot and streaming. arXiv preprint, 2021. arXiv:2104.01808.

19 Haim Kaplan and Uri Stemmer. A note on sanitizing streams with differential privacy. arXiv
preprint, 2021. arXiv:2111.13762.

20 Zohar Karnin, Kevin Lang, and Edo Liberty. Optimal quantile approximation in streams.
In 2016 ieee 57th annual symposium on foundations of computer science (focs), pages 71–78.
IEEE, 2016.

21 Kasper Green Larsen, Rasmus Pagh, and Jakub Tětek. Countsketches, feature hashing and
the median of three. In International Conference on Machine Learning, pages 6011–6020.
PMLR, 2021.

22 Christian Janos Lebeda and Jakub Tětek. Better differentially private approximate histograms
and heavy hitters using the misra-gries sketch. arXiv preprint, 2023. arXiv:2301.02457.

23 Alexander J McNeil, Rüdiger Frey, and Paul Embrechts. Quantitative risk management:
concepts, techniques and tools-revised edition. Princeton university press, 2015.

APPROX/RANDOM 2024

https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.59
https://arxiv.org/abs/2203.15400
https://arxiv.org/abs/2301.05605
https://arxiv.org/abs/https://math.stackexchange.com/q/4544852
https://arxiv.org/abs/https://math.stackexchange.com/q/4544852
https://arxiv.org/abs/2104.01808
https://arxiv.org/abs/2111.13762
https://arxiv.org/abs/2301.02457

73:20 Mechanisms for Making Rand. Approx. Algorithms Differentially Private

24 Luca Melis, George Danezis, and Emiliano De Cristofaro. Efficient private statistics with
succinct sketches. arXiv preprint, 2015. arXiv:1508.06110.

25 Darakhshan Mir, Shan Muthukrishnan, Aleksandar Nikolov, and Rebecca N Wright. Pan-
private algorithms via statistics on sketches. In Proceedings of the thirtieth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pages 37–48, 2011.

26 Jayadev Misra and David Gries. Finding repeated elements. Science of computer programming,
2(2):143–152, 1982.

27 Rasmus Pagh and Mikkel Thorup. Improved utility analysis of private countsketch. arXiv
preprint, 2022. arXiv:2205.08397.

28 Ryan M Rogers, Aaron Roth, Jonathan Ullman, and Salil Vadhan. Privacy odometers and
filters: Pay-as-you-go composition. Advances in Neural Information Processing Systems, 29,
2016.

29 Harry Sivasubramaniam, Haonan Li, and Xi He. Differentially private sublinear average degree
approximation, 2020.

30 Adam Smith, Shuang Song, and Abhradeep Guha Thakurta. The flajolet-martin sketch itself
preserves differential privacy: Private counting with minimal space. Advances in Neural
Information Processing Systems, 33:19561–19572, 2020.

31 Nina Mesing Stausholm. Improved differentially private euclidean distance approximation. In
Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, pages 42–56, 2021.

32 Roman Vershynin. High-dimensional probability: An introduction with applications in data
science, volume 47. Cambridge university press, 2018.

33 Lun Wang, Iosif Pinelis, and Dawn Song. Differentially private fractional frequency moments
estimation with polylogarithmic space. arXiv preprint, 2021. arXiv:2105.12363.

34 Yuichi Yoshida, Masaki Yamamoto, and Hiro Ito. An improved constant-time approximation
algorithm for maximum˜ matchings. In Proceedings of the forty-first annual ACM symposium
on Theory of computing, pages 225–234, 2009.

35 Fuheng Zhao, Dan Qiao, Rachel Redberg, Divyakant Agrawal, Amr El Abbadi, and Yu-Xiang
Wang. Differentially private linear sketches: Efficient implementations and applications. arXiv
preprint, 2022. arXiv:2205.09873.

https://arxiv.org/abs/1508.06110
https://arxiv.org/abs/2205.08397
https://arxiv.org/abs/2105.12363
https://arxiv.org/abs/2205.09873

Improved Bounds for Graph Distances in Scale
Free Percolation and Related Models
Kostas Lakis #

ETH Zürich, Department of Computer Science, Zürich, Switzerland

Johannes Lengler #

ETH Zürich, Department of Computer Science, Zürich, Switzerland

Kalina Petrova #

ETH Zürich, Department of Computer Science, Zürich, Switzerland

Leon Schiller #

ETH Zürich, Department of Computer Science, Zürich, Switzerland

Abstract
In this paper, we study graph distances in the geometric random graph models scale-free percolation
SFP, geometric inhomogeneous random graphs GIRG, and hyperbolic random graphs HRG. Despite
the wide success of the models, the parameter regime in which graph distances are polylogarithmic
is poorly understood. We provide new and improved lower bounds. In a certain portion of the
parameter regime, those match the known upper bounds.

Compared to the best previous lower bounds by Hao and Heydenreich [19], our result has several
advantages: it gives matching bounds for a larger range of parameters, thus settling the question
for a larger portion of the parameter space. It strictly improves the lower bounds of [19] for all
parameters settings in which those bounds were not tight. It gives tail bounds on the probability of
having short paths, which imply shape theorems for the k-neighbourhood of a vertex whenever our
lower bounds are tight, and tight bounds for the size of this k-neighbourhood. And last but not
least, our proof is much simpler and not much longer than two pages, and we demonstrate that it
generalizes well by showing that the same technique also works for first passage percolation.

2012 ACM Subject Classification Mathematics of computing → Random graphs; Mathematics of
computing → Stochastic processes; Theory of computation → Random network models

Keywords and phrases Mathematics, Probability Theory, Combinatorics, Random Graphs, Random
Metric Spaces

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.74

Category RANDOM

Related Version Full Version: https://arxiv.org/abs/2405.07217

Funding Kostas Lakis: gratefully acknowledges support from the John S. Latsis Public Benefit
Foundation and the Onassis Foundation
Kalina Petrova: funded by SNSF grant No. CRSII5 173721
Leon Schiller : funded by SNSF grant No. 197138

Acknowledgements This research started at the joint workshop of the Combinatorial Structures
and Algorithms and Theory of Combinatorial Algorithms groups of ETH Zürich held in Stels,
Switzerland, January 2024. We thank the organizers for providing a very pleasant and inspiring
working atmosphere.

1 Introduction and Main results

In the last years, a family of random graph models including hyperbolic random graphs
(HRG) [26], scale-free percolation (SFP) [14], and geometric inhomogeneous random graphs
(GIRG) [11], has emerged as a model for large real-world networks. They combine an

© Kostas Lakis, Johannes Lengler, Kalina Petrova, and Leon Schiller;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 74; pp. 74:1–74:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:klakis@student.ethz.ch
https://orcid.org/0009-0004-5595-1839
mailto:johannes.lengler@inf.ethz.ch
mailto:kalina.petrova@inf.ethz.ch
https://orcid.org/0009-0006-1753-6962
mailto:leon.schiller@inf.ethz.ch
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.74
https://arxiv.org/abs/2405.07217
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

74:2 Improved Bounds for Graph Distances in Scale Free Percolation and Related Models

underlying geometric space with an inhomogeneous degree distribution. This combination
yields many properties that occur in real-world networks across a wide range of domains,
such as strong clustering, a rich community structure, ultra-small distance, small separators,
compressibility, and more [11]. The networks have been used empirically and theoretically to
study algorithms like local routing protocols [7, 9, 12], bidirectional search [6] or maximum
flow [8], spreading processes like bootstrap percolation [21] or SI models [22–25], and they
have been used to study the effectiveness of different interventions during the Covid19
pandemic [17,20,27].

Despite this widespread adoption, the fundamental question of graph distances has been
open for some parameter regimes. In general, the models come with two parameters: the
degrees follow a power-law distribution with exponent τ > 1, i.e., P (deg(v) ≥ x) ∼ x1−τ for
any fixed vertex v;1 and α > 1 determines the number of weak ties [18] in the network, i.e.
edges which are present although their geometric distance and degrees suggest otherwise.
The parameter α is also called inverse temperature. If τ < 3 then for two random vertices
x, y in the giant component, with high probability2 their graph distance dG(x, y) is at most
doubly logarithmic in their geometric distance, i.e., dG(x, y) = O(log log |x − y|). For τ ≤ 2
we even have dG(x, y) = O(1). These regimes are very precisely understood [1,10,14]. On
the other hand, if τ > 3 and α > 2, then it is known that the graph distance of two vertices
x, y grows linearly with their geometric distance, and this is again well understood [2, 15].

However, in the polylogarithmic regime τ > 3 and α ∈ (1, 2), the picture is incomplete. It
is understood in the limiting case τ = ∞, which is known as long-range percolation LRP, that
dG(x, y) = (log |x − y|)∆(α)±o(1) where ∆(α) = 1/ log2(2/α) > 1 [2, 3]. Since graph distances
can only increase with τ , the upper bound applies for any τ > 1, and this is the best known
upper bound.3 On the other hand, it is easy to see that for τ > 3 the k-neighbourhood can
grow at most exponentially, so distances are at least logarithmic, dG(x, y) = Ω(log |x−y|) [14].
Hence we know that distances are polylogarithmic for τ > 3 and α ∈ (1, 2). But the exponents
of the upper and lower bound (∆ and 1 respectively) did not match, and this gap remained
open for a long time.

Very recently, Hao and Heydenreich [19] could show an improved lower bound of dG(x, y) ≥
(log |x − y|)∆(min{α,(τ−1)/2})−o(1), where, as before, ∆(x) = 1/ log2(2/x). This closed the gap
in the case that α < (τ − 1)/2, since then min{α, (τ − 1)/2} = α. Their proof had 9 pages
and was a complicated application of Biskup’s hierarchy argument [3]. In this paper we give
a stronger lower bound with a much simpler inductive proof of only about two pages. It is
inspired by ideas of Biskup for the simpler case of LRP [4], which themselves are adaptations
of those in [29]. More precisely, we show that dG(x, y) = Ω

(
(log |x − y|)∆(min{α,τ−2−o(1)})).

This closes the gap between upper and lower bound whenever α < τ − 2, which comprises
a strictly larger portion of the polylogarithmic regime than the bound of [19]. Moreover,
throughout the polylogarithmic regime, since τ > 3 implies τ − 2 > (τ − 1)/2, our bound is
strictly stronger in all cases in which the bound of [19] is not tight.

1 The distribution is often allowed to vary by constant factors or slowly varying functions, but this will
not be relevant for this paper. Also, the traditional SFP parameterization uses two parameters τ and γ
instead of the one parameter τ . However, one of those parameters is internal to the graph generation
process and does not yield additional classes of graphs, which is why we omit the additional parameter.

2 We say an event occurs with high probability, or w.h.p., if it occurs with probability 1 − o(1).
3 An improved upper bound was claimed in [19], but the proof had an issue which we consider severe, see

Appendix A for details. At submission time of the camera-ready version of this paper, the problem has
not been fixed, so currently we must consider this result as unproven.

K. Lakis, J. Lengler, K. Petrova, and L. Schiller 74:3

Our result is also stronger in two other aspects: Firstly, we provide strong tail bounds
on the probability P (dG(x, y) ≤ k). These yield a shape theorem for the geometric shape
of the k-neighbourhood of a fixed vertex for growing k, in the case α < τ − 2 when our
lower bound matches the upper bound. The shape theorem also implies that the size of
the k-neighbourhood of a fixed vertex grows as ek1/∆±o(1) as k → ∞, which was not known
before. Secondly, due to its simplicity, we believe that our method is also potentially easier
to generalize. As demonstration, we show that a similar lower bound holds not only for
graph distances, but also for first passage percolation.

In the following, we will start by formally defining the graph models and stating our
precise results. The heart of the paper is Section 2, where we prove our result for the SFP
model. In Section 3, we extend the proof to first-passage percolation. Finally, in Appendix A
we explain why the proof of the upper bound claimed in [19] is incorrect.

1.1 Preliminaries and Random Graph Models
Our results hold for Scale Free Percolation (SFP), Geometric Inhomogeneous Random Graphs
(GIRG), and Hyperbolic Random Graphs (HRG). We will define LRP and GIRG formally in
this section. HRG has been shown to be a special case of GIRG [11], so all results proven
for GIRG automatically also hold for HRG, and we do not need to formally define HRG. A
formal definition of HRG together with its connection to GIRG can be found in [11].

1.1.1 Scale Free Percolation (SFP)
For SFP, we start with the infinite4 d-dimensional grid, which is our set of vertices. For two
points x, y ∈ Zd, we define their distance |x−y| via the usual Euclidean norm. Moreover, each
vertex draws a weight wx independently identically distributed from a power-law distribution.
For our purposes, this is a Pareto distribution satisfying

P (wx ≥ z) = z1−τ

for z ≥ 1, where the parameter τ > 1 is the power-law exponent.
We add edges in two different ways. First, we place the usual grid edges5 between points

that are adjacent in Zd, i.e., we place an edge between x = (x1, . . . , xd) and y = (y1, . . . , yd)
if there is some coordinate 1 ≤ i ≤ d such that |xi − yi| = 1 and xj = yj for all j ̸= i. Second,
we randomly create long-range edges, also called weak ties, by placing an edge between
x, y ∈ Zd, independently for different sets {x, y}, with probability pxy, which is defined as6

p(SFP)
xy := min

{
1, λ

(
wxwy

|x − y|d

)α}
, (1)

where λ > 0, α > 1 are constants. We write x ∼ y if there is an edge between x, y ∈ Zd and
x ≁ y otherwise.

4 Traditionally, LRP is defined on an infinite vertex set while GIRG is defined on a finite vertex set,
following the tradition of mathematics for LRP and of computer science for GIRG. However, both
models can be defined in either a finite or an infinite version, and this does not affect graph distances,
see [25] for details.

5 Some variants of SFP do not include grid edges. Since we prove lower bounds on graph distances, we
make our result stronger by including grid edges.

6 In the literature, the connection probability is often defined as 1 − exp(−λ|x − y|−αd). We remark that
this differs from our connection probability at most by a constant factor, which does not change the
model substantially.

APPROX/RANDOM 2024

74:4 Improved Bounds for Graph Distances in Scale Free Percolation and Related Models

We remark that the parameterization is slightly different from the original one used
in [14] and also in [19]. Compared to our formulation, they used auxiliary weights w′

x := wα
x ,

which were then drawn from a power-law distribution with exponent τ ′ = 1 + d(τ − 1)/α.
These two parameterizations are equivalent, but our formulation has the advantage that
the weights correspond, up to constant factors, to the expected degree of the vertices,
E [deg(x) | wx] = Θ(wx). Our formulation also saves an internal parameter of the model.
Moreover, we rescaled α by a factor d to match it with the parameterization of GIRG.
When comparing our results with the lower bounds in [19], the following transformations
are needed, where the subscript “[19]” indicates notation from that paper, and parameters
without subscript are from our paper.

α[19] = αd and γ[19] = τ − 1. (2)

The internal parameter τ[19] is superfluous and does not have a correspondence in our paper.

1.1.2 Geometric Inhomogeneous Random Graphs (GIRG)
The GIRG model is sometimes also referred to as Continuum Scale Free Percolation [16].
The main difference between SFP and GIRG is that in GIRG, the positions of vertices are
randomly chosen. Namely, for some large enough n ∈ N, we consider a cube X of volume n

in Rd, where d is a constant. Our vertex set V then consists of n vertices, where the position
ξx of each vertex x is picked independently at random from the uniform distribution over X .
The distance between two vertices x, y ∈ V is defined as the Euclidean norm |ξx − ξy|, as
in SFP. Again similarly to SFP, each vertex x draws a weight wx independently from the
Pareto distribution satisfying

P (wx ≥ z) = z1−τ

for z ≥ 1, with τ > 1. Finally, two different vertices x and y are connected by an edge with
probability7

p(GIRG)
xy = Θ

(
min

{
1,

(
wxwy

|ξx − ξy|d

)α})
, (3)

where the hidden constants are uniform over all x, y. Formally, we require that there are two
absolute constants clow, cupp > 0 independent of n such that for all n and any two different
vertices x, y ∈ V , conditional on their weights wx, wy ≥ 1 and positions ξx, ξy ∈ X ,

clow min
{

1,

(
wxwy

|ξx − ξy|d

)α}
≤ p(GIRG)

xy ≤ cupp min
{

1,

(
wxwy

|ξx − ξy|d

)α}
.

The reason for allowing constant factor deviations is that then hyperbolic random graphs
(HRG) is a special case of GIRG with d = 1, where the Euclidean distance is replaced by the
angular distance in hyperbolic space [11]. Hence, any statement proven for this version of
GIRG also holds for HRG.

Note that the constants τ and α have an analogous role here as in SFP. A notable
difference to SFP is that in GIRG there are no grid edges (since positions are no longer on
the grid), but that does not significantly affect our results.

7 The original paper [11] used a geometry that was rescaled by a factor n1/d. I.e., they used a cube of
volume one and had an additional factor n in the denominator of (3). Both variants are equivalent, but
our scaling aligns better with the SFP scaling and allows GIRGs to be extended to infinite graphs if
desired [25].

K. Lakis, J. Lengler, K. Petrova, and L. Schiller 74:5

1.1.3 Long Range Percolation (LRP)

To put our results in an adequate context, we sometimes reference the model of Long Range
Percolation (LRP) which is a special case and predecessor of SFP, cf. e.g. [3, 5]. We define
LRP completely analogously to SFP with the only modification that every vertex has a
(deterministic) weight of 1.

1.1.4 First Passage Percolation (FPP)

Our lower bounds on graph distances are (in a similar form) also applicable to First Passage
Percolation (FPP) on the graph models SFP, GIRG, HRG, and also LRP. Here, each edge e

of the graph draws a random length or cost ce independently identically distributed (i.i.d.)
from a distribution over the non-negative reals. For two vertices x, y we are then interested
in the minimal/infimal cost of all paths from x to y. This can be done on an arbitrary finite
or infinite underlying graph. In this work we restrict our attention to the case where each
edge cost is sampled from an exponential distribution with rate 1. The formal definition is
as follows.

▶ Definition 1 (First Passage Percolation (FPP)). We call the following process First Passage
Percolation, in short FPP. Given a graph G = (V, E), assign to each edge e an i.i.d. cost ce

sampled from an exponential distribution with rate 1. For a finite path π, we define the cost
of that path as

c(π) =
∑
e∈π

ce

Then, the cost-distance or first passage time between two vertices x and y is the minimum
(or infimum) cost of any finite path connecting x and y, i.e.

d cost
G (x, y) := inf{c(π) : π ∈ Px,y} for x, y ∈ V,

where Px,y is the set of all finite paths between x and y.

Recently, FPP on SFP, GIRG, and HRG was studied [13,23–25]. In particular, it was
shown in [23, 25] that FPP on those graphs exhibits an explosive behaviour if the vertex
weights have infinite variance (i.e. if τ < 3). This means that the cost-distance between two
vertices x, y converges in distribution against a random variable that is finite almost surely.
In the infinite model SFP, this means that there are infinitely many vertices reachable within
finite cost from a given vertex; in the finite models GIRG and HRG, a constant fraction of
all vertices have cost-distance O(1). We emphasize that this is not true for graph distances
for τ ∈ (2, 3) since then degrees are finite almost surely, so the number of vertices in graph
distance C is finite/constant for any constant C > 0.

We remark that a model with a similar name, long-range first passage percolation was
introduced and studied in [13]. This is not FPP on LRP, but a different model with the
complete graph on Zd (all edges are present, degrees are infinite), where transmission times
are penalized for edges between vertices of large Euclidean distance. Despite the differences,
the models are related, and our analysis of FPP uses a coupling to a similar model and is
inspired by [13].

APPROX/RANDOM 2024

74:6 Improved Bounds for Graph Distances in Scale Free Percolation and Related Models

1.1.5 Terminology
We are interested in the typical graph distance dG(x, y) between two vertices x, y in SFP, GIRG,
and HRG, and the cost-distance d cost

G (x, y) in FPP.8 We are interested in the asymptotic
behavior of dG(x, y) and d cost

G (x, y) in terms of the Euclidean distance |x − y|. That is, we
study how dG(x, y) and d cost

G (x, y) scale as functions of |x − y| when |x − y| → ∞. We
define the function ∆(β) := 1

log2(2/β) , which will appear in the exponent governing the
polylogarithmic behavior of graph distances. Throughout, we use ∆ = ∆(α) where α is the
long-range parameter of the relevant model.

Previous work showed that both LRP and SFP exhibit multiple phase transitions in
the asymptotic behavior of dG(x, y) depending on the model parameters, which were briefly
summarized in the introduction and are further summarized (together with our results) in
Table 1.

Table 1 Upper and lower bounds for graph distances and cost-distances in long-range percolation
(LRP), scale-free percolation (SFP) and first passage percolation (FPP) on SFP, with ∆(β) =
1/ log2(2/β). The results on graph distance for SFP also hold for geometric inhomogeneous random
graphs (GIRG) and hyperbolic random graphs (HRG). Our results are indicated in bold.

Model α ∈ (1, 2) α > 2

LRP Θ
(
log(|x − y|)∆(α)) [3, 5] Θ(|x − y|) [2]

τ ∈ (2, 3) τ > 3 τ ∈ (2, 3) τ > 3

SFP Θ(log log(|x − y|))
[14]

≤ log(|x − y|)∆(α)+o(1) [3, 5] 9

≥ log(|x − y|)∆(min{α,τ−2})−o(1)

Corollary 2

Θ(log log(|x − y|))
[14]

Θ(|x − y|)
[2]

FPP on SFP Θ(1) [23]
≤ log(|x − y|)∆(α)+o(1) [23]

≥ log(|x − y|)∆(min{α,
τ−1

2 })−o(1)

Corollary 3
Θ(1) [23] ?

1.2 Our results
In this section, we formally state our main results. To keep the exposition simple, we state
them only for SFP, not for GIRG and HRG. All results on graph distances in this section also
hold for GIRG and HRG, where all constants can be chosen independently of the number
n of vertices. We give details on that in the full version but omit them here due to space
constraints.

We prove stronger lower bounds for graph distances in the logarithmic regimes of SFP
with a much simpler proof than in [19]. Furthermore, we also obtain a shape theorem which
sandwiches the k-neighbourhood of a given vertex between two geometric balls of similar
size. The key result is a general upper bound on the probability that two vertices have
graph/cost-distance at most k. For the following claims, recall that ∆(β) = 1/ log2(2/β).

▶ Theorem 1.1 (Tail Bound for Graph Distances in SFP). Consider SFP with parameters
α ∈ (1, 2), τ > 3 and λ. Fix any sufficiently small ε > 0 and let ∆′ = ∆(min{α, τ − 2 − ε}).
Then, there exist constants c1, c2, β depending on the model parameters as well as ε such
that for any pair of vertices x, y ∈ Zd and any k ∈ N, we have

P (dG(x, y) ≤ k) ≤ c−1
2 |x − y|−αd(k + 1)−β exp

(
c1k1/∆′

)
.

8 Formally, the graph distance is also defined in Definition 1 by setting c(e) := 1 for all edges e.
9 In [19], the authors claim to prove an improved logarithmic upper bound with exponent ∆(min{α, τ −2}),

which would match our lower bounds. However, we show that their proof is wrong, see Appendix A.

K. Lakis, J. Lengler, K. Petrova, and L. Schiller 74:7

The above bound is proved by induction over k in Section 2. We express the probability
that a path of length ≤ k exists recursively by decomposing the path into two parts connected
by an edge which has the longest geometric distance on the original path. Applying the
inductive hypothesis and integrating over all possible endpoints and weights of the endpoints
of said edge then yields the desired bound. However, this actually only works if α < τ − 2,
which is needed to ensure convergence of some involved integrals. We remedy this and make
the theorem applicable also to the case α ≥ τ − 2 by using a coupling argument. Here (see
Lemma 5 for the exact statement), we argue that decreasing α only makes the model denser,
so graph distances can only become smaller. Thus, to prove the claim for some α ≥ τ − 2, we
can decrease α to some value α′ := τ − 2 − ε without increasing distances, and then apply
Theorem 1.1 for the already settled case α′. This is the reason why we use the exponent
∆(min{α, τ − 2 − ε}). Using the above tail bound then directly implies a bound on typical
graph distances.

▶ Corollary 2 (Typical Graph Distances in SFP). Consider SFP under the assumption α ∈ (1, 2)
and τ > 3. Then for every sufficiently small ε > 0, there is a constant c > 0 such that

lim
|x−y|→∞

P
(

dG(x, y) ≥ c log(|x − y|)∆(min{α,τ−2−ε})
)

= 1.

Note that in the case α < τ − 2, the exponent is exactly ∆(α) (if ε is chosen sufficiently
small), which is a slightly stronger result than the one we obtain if α ≥ τ −2 and matches the
known upper bounds in [5] up to only a constant factor in front of the log. The previously best
lower bounds by Hao and Heydenreich [19] only matched these upper bounds if 2α < τ −2 and
nonetheless were only tight if we ignore an additional additive constant of −ε in the exponent.
If α ≥ τ − 2, we also have to account for such an ε in the exponent, but even in this case,
our result strengthens the lower bounds in [19] and at the same time relies on a significantly
simpler proof. The original proof heavily relied on so-called hierarchies as introduced in [3]
and required complex combinatorial estimates for showing that certain structures w.h.p. do
not exist. We avoid this by using the inductive proof strategy as described above instead.
This not only simplifies and improves the existing lower bounds on graph distances, but the
tail bound in Theorem 1.1 further yields a so-called shape theorem precisely characterizing
the diameter and the cardinality of the k-neighbourhood of a vertex x, i.e., the set of vertices
in graph distance at most k from x. To this end, we define B(x, k) := {y ∈ V | dG(x, y) ≤ k}
as the set of all k-hop neighbors of a given vertex x.

▶ Theorem 1.2 (Shape Theorem for k-Balls in SFP). Consider SFP with α < τ − 2. Let
∆ = ∆(α), fix an ε > 0 and let Xlow, Xupp be the set of vertices at a geometric distance of at
most q(k) = ek1/∆−ε and at most r(k) = ek1/∆+ε from a fixed vertex x, respectively. Then,
we have

lim
k→∞

P (Xlow ⊆ B(x, k) ⊆ Xupp) = 1. (A)

In particular,

lim
k→∞

P
(

ek1/∆−ε

≤ |B(x, k)| ≤ ek1/∆+ε
)

= 1. (B)

The lower bound of the theorem comes from [4], while we contribute the upper bound,
which is a relatively straightforward corollary of our tail bound in Theorem 1.1. For this
reason, we defer the formal proof to the full version of this paper. Note that lower bounds
on graph distances correspond to upper bounds for B(x, k) and vice versa.

APPROX/RANDOM 2024

74:8 Improved Bounds for Graph Distances in Scale Free Percolation and Related Models

We further note that while our upper bound in Theorem 1.2 also holds for GIRG and
HRG, the lower bound is not known for these models and can only hold with some caveats.
Firstly, due to the lacking grid edges those graphs are not connected, and require additional
constraints to ensure the existence of a giant (linear-size) connected component. Second,
even if the giant component exists, a constant fraction of vertices are not in the largest
component. Hence, the lower bounds in (A) and (B) can only hold conditioned on x being in
the largest component, and for (A) we must intersect Xlow with the giant component. We
conjecture that the lower bounds in Theorem 1.2 hold with these caveats, but this is not
known.

1.3 First passage percolation on SFP
Using similar techniques and inspired from those in [13], we can prove similar statements for
FPP on SFP. Analogous to Theorem 1.1, we obtain a tail bound on the probability that x, y

have cost-distance at most t. We remark that the same result could be obtained analogously
for GIRG (and thus HRG) as well, but we omit this for conciseness.

▶ Theorem 1.3 (Tail Bound for Cost-Distances for FPP on SFP). Consider FPP on SFP and
arbitrary vertices x, y. Fix any sufficiently small ε > 0. There exists a constant c depending
only on α, ε and τ such that for ∆′′ = ∆(min{α, τ−1

2 } − ε),

P
(
d cost

G (x, y) ≤ t
)

≤ |x − y|−αd exp
(

ct1/∆′′
)

.

The proof of this differs from Theorem 1.1 in some significant aspects which are formally
presented in Section 3. Intuitively, the main differences are as follows. Firstly, we now have
two sources of randomness: the existence of edges and the cost of an existing edge. The first
step towards proving Theorem 1.3 is therefore to combine these two sources into a single
one. This is achieved by coupling the model to a related model called Complete Scale Free
First Passage Percolation or CFFP for short. Here, all possible edges on the vertex set Zd

exist a priori but the cost of the edge between x, y ∈ Zd is now drawn from an exponential
distribution with rate wα

x wα
y |x − y|−αd instead of rate 1, i.e., in CFFP the rate of an edge

depends on the vertex weights and (geometric) distances of its endpoints.
The second main difference to the proof of Theorem 1.1 is that cost-distances are

continuous random variables, so we cannot union-bound over all possible cost-distances
before and after the longest edge of a potential path anymore like we did for SFP (in
Lemma 4). Instead, we establish a continuous analog, a so called self-bounding inequality
that relates the expected size of a k-ball to itself recursively. Another difficulty one has to
overcome is that, in principle, paths of low cost-distance do not necessarily have to correspond
to low graph distance as well. It could theoretically happen that many edges have very low
cost and we get a low cost path which uses many edges. In such cases, we cannot use the
existence of a geometrically long edge in the path, which is very central to our proof for
graph distances. However, we are able to show that paths with high graph distance are
actually very unlikely to have low cost-distance (see Lemma 8). Finally, a further obstacle
in adapting the proof is that we have to work with the probability that a path of a certain
cost exists conditioned on the weights of its endpoints at multiple points. This impacts the
probabilities of edges/paths existing and thus introduces complications. To overcome this, we
relate said probabilities conditional on the involved weights to their unconditional versions
by employing a coupling (Proposition 12).

K. Lakis, J. Lengler, K. Petrova, and L. Schiller 74:9

As a corollary of the above tail bound, we obtain lower bounds on the typical cost-distance
similar to the one established for SFP (Corollary 2).

▶ Corollary 3 (Typical Graph Distances in FPP on SFP). Consider FPP on SFP under the
assumption α ∈ (1, 2) and τ > 3. Then, for every sufficiently small ε > 0

lim
|x−y|→∞

P
(

d cost
G (x, y) ≥ log(|x − y|)∆(min{α, τ−1

2 }−ε)
)

= 1.

1.3.1 Asymptotics and Probability Theory

We use standard Landau notation for indicating the asymptotic growth of a function. All
asymptotic statements refer to the asymptotic behavior of a function as the distance |x − y|
tends to infinity, unless explicitly noted otherwise (like for the shape theorem, where we
consider k → ∞.) We further require a version of the Van den Berg-Kesten inequality (or
BK-inequality) from [28], which allows us to bound the probability that there exist disjoint
subpaths connecting a vertex x to u and a vertex v to y by the product of the probabilities
of either path existing, as if they were independent. We refer the interested reader to the full
version of this paper for further details.

2 Lower Bounds for Graph Distances in SFP

In this section, we provide the proof of our main lower bound. Our proof generally follows
the structure of the proof of Theorem 3.1 in [4]. Our goal is to show that the logarithmic
exponent in the distances is at least roughly ∆(min{α, τ − 2}). When α < τ − 2, this is
the same as ∆ = ∆(α). We will first give the proof under this condition, so we first show
Lemma 4.

▶ Lemma 4 (Tail Bound for Graph Distances in SFP). Consider SFP with α ∈ (1, 2) such
that α < τ − 2 and ∆ = ∆(α). There exist constants c1, c2, β depending only on the model
parameters, such that for any pair x, y ∈ Zd and any k ∈ N,

P (dG(x, y) ≤ k | wx, wy) ≤ wx
αwy

αc−1
2 |x − y|−αd(k + 1)−βec1k1/∆

. (4)

Proof. First of all, note that for fixed β, c2, and λ, the base case (k = 1) is true for c1
large enough. That is because the RHS of 4 is 2−βec1wα

x wα
y c−1

2 |x − y|−αd and the actual
connection probability is at most λwα

x wα
y |x − y|−αd. For the inductive step, let h be the RHS

of our induction hypothesis, i.e.,

h(r, k, wx, wy) := wα
x wα

y c−1
2 r−αd(k + 1)−βec1k1/∆

.

Assume that the induction hypothesis is true up to k − 1. For x, y to be connected with
at most k steps, an edge must be used with geometric distance at least |x−y|

k . This could
either be the first or last edge on the path, or a so-called internal edge. Let us first bound
the probability corresponding to this edge being internal. For this, we union bound over all
possible endpoints u and v of said edge. Actually, we integrate, since constant factors are
essentially immaterial for the proof. At a given distance r, there are at most cdrd−1 vertices,
for some constant cd. Let wu, wv be the weights of u, v, respectively. By the BK inequality,
we have

APPROX/RANDOM 2024

74:10 Improved Bounds for Graph Distances in Scale Free Percolation and Related Models

P (dG(x, y) ≤ k, longest edge is internal | wu, wv, wx, wy) ≤
k−2∑
i=1

P (dG(x, u) ≤ i | wx, wu) P (u ∼ v | wu, wv) P (dG(v, y) ≤ k − i | wv, wy) ≤ λw
α
u w

α
v

(
|x − y|

k

)−αd

×
k−2∑
i=1

(∫ ∞

1

cdru
d−1 min {1, h(ru, i, wx, wu)} dru

)
︸ ︷︷ ︸

I(u,i)

(∫ ∞

1

cdrv
d−1 min {1, h(rv, k − i, wv, wy)} drv

)
︸ ︷︷ ︸

I(v,k−i)

.

We will now argue that there exists a constant Cint (depending on the model parameters)
such that

I(u, i) ≤ Cint

(
(i + 1)− β

α e
c1
α i1/∆

wuwxc
− 1

α
2

)
,

I(v, k − i) ≤ Cint

(
(k − i + 1)− β

α e
c1
α (k−i)1/∆

wvwyc
− 1

α
2

)
.

To this end, note that that there exists a value

r̂u = (wxwu) 1
d c

− 1
αd

2 (i + 1)− β
αd e

c1
αd (i+1)1/∆

for ru below which the minimum inside the integral I(u, i) is 1. We can thus express
I(u, i) =

∫ r̂u

1 f1(ru)dru +
∫∞

r̂u
f2(ru)dru where f1(r) = cdrd−1

u and f2 is a polynomial in ru

with exponent smaller than −1. Therefore, the entire integral is dominated by the value
of the antiderivative of f1 and f2 at the splitting point r̂u. Since f1, f2 are polynomials,
the antiderivative of f1 is ≤ cruf1(ru) and the antiderivative of f2 is ≤ cruf2(ru) for some
constant c. Since the minimum is a continuous function, we have f1(r̂u) = f2(r̂u) and thus,
I(u, i) = Θ(r̂uf1(r̂u)) = Θ(r̂u

d) as claimed. A similar argument holds for I(v, k − i). 10

Plugging this in, we obtain

P (dG(x, y) ≤ k, longest edge is internal | wu, wv, wx, wy)

≤ Cint
2λ · w1+α

u w1+α
v wα

x wα
y |x − y|−αdc

− 2
α

2

× kαd
k−2∑
i=1

(
(i + 1)− β

α e
c1
α i1/∆

)(
(k − i + 1)− β

α e
c1
α (k−i)1/∆

)
︸ ︷︷ ︸

:=S

.

Our goal now is to show that the above term is at most h(r, k, wx, wy). To this end, we
show that

S ≤ (k + 1)−βec1k1/∆
(5)

for k and β large enough. For this, notice that for small or large i, the exponential terms in
S are still quite “tame”, due to the 1

α factor. When i is around k
2 , their product (which is

maximized for such i due to concavity) is practically

exp
(

2c1

α

(
k

2

)1/∆
)

= exp
(

2c1

α
2−1/∆k1/∆

)
= exp

(
c1k1/∆

)

10 This observation is helpful whenever we integrate a continuous and piecewise polynomial function.

K. Lakis, J. Lengler, K. Petrova, and L. Schiller 74:11

as 2−1/∆ = α/2 by definition of ∆. In fact, for i = k
2 , we have actual equality and for every

1 ≤ i ≤ k, we have

exp
(c1

α
i1/∆

)
exp

(c1

α
(k − i)1/∆

)
≤ exp

(
c1k1/∆

)
.

This is precisely the exponential term that appears in the statement we want to prove (5).
However, we also need to account for the sum and the terms polynomial in k that appear
in S. To this end, we use that – if i ≈ k/2 – we gain from the product of the polynomial
terms in the sum to compensate overheads. On the other hand, if i is large or small, the
product of the exponential terms is much smaller than what we need, so we can compensate
the other terms by using the arising gap. With this in mind, we split the sum in S into the
cases where |i − k

2 | ≤ k
4 and those where this is not true. This way, we obtain

S ≤ k1+αde(1−γ)c1k1/∆
+ k1+αd ((k + 1)/8)− 2

α β
ec1k1/∆

, (6)

where γ > 0 is a constant depending on ∆ (and therefore on α). The first term accounts for
cases where i is sufficiently far from k

2 , making the exponential terms merge in a tame way.
When i ∈

[
k
4 , 3k

4
]
, both i + 1 and k − i + 1 are at least k+1

8 , since k > 2 (recall that we are
analyzing the case where k edges allow for an internal edge), and this is how the other term
is obtained.

Now, notice that since α < 2, we can choose β large enough such that (αd+1)− 2β
α < −β.

Then, the second term in 6 is at most (k + 1)−βec1k1/∆ as desired. For the first term, we
notice that the same holds if k is large enough. Hence, for all k, S is at most some constant
C times (k + 1)−βec1k1/∆ . We use this to conclude that

P (dG(x, y) ≤ k, longest edge is internal | wu, wv, wx, wy)

≤ CC2
intλc

1− 2
α

2 wα+1
u wα+1

v wα
x wα

y |x − y|−αd(k + 1)−βec1k1/∆
c−1

2

= CC2
intλc

1− 2
α

2 wα+1
u wα+1

v · h(|x − y|, k, wx, wy).

Since we assume that α < τ − 2, we can integrate wu, wv out such that the corresponding
integrals over wu and wv converge and only obtain another constant factor overhead. Then,
we can choose c2 large enough to compensate these constant overheads. Notice that this
works since we have a factor of c

1− 2
α

2 where the exponent is negative because α < 2. In total,
we have shown that we can choose the constants β, c1 and c2 such that the above bound is
at most 1

3 h(|x − y|, k, wx, wy) for all k.
Now, let us also bound the probability of paths in which the longest edge is adjacent to

either x or y. To this end, we sum over all possible vertices z connected to x by an edge of
(geometric) length ≥ |x − y|/k. Again, by the BK inequality, we have

P (dG(x, y) ≤ k, longest edge incident to x | wx, wz, wy)

≤ λwα
x wα

z

(
|x − y|

k

)−αd(∫ ∞

1
cdrd−1 min {1, h(r, k − 1, wz, wy)} dr

)
≤ Cλwα

x wα
z

(
|x − y|

k

)−αd

k− β
α e

c1
α k1/∆

wzwyc
− 1

α
2

≤ Cλwα+1
z · (k + 1)βkαd− β

α ec1(1
α −1)k1/∆

c
1− 1

α
2 · h(|x − y|, k, wx, wy).

Again, by integrating out wz, we get another constant factor. We can now choose c1 large
enough so that the term exponential in k (which has a negative exponent since 1

α − 1 < 0)
swallows the polynomial and constant terms for every k, ensuring that the factor in front

APPROX/RANDOM 2024

74:12 Improved Bounds for Graph Distances in Scale Free Percolation and Related Models

of h(|x − y|, k, wx, wy) is at most 1
3 , as desired. Finally, summing the three possibilities

that the longest edge is internal, the first, or the last edge on the path yields that overall,
P (dG(x, y) ≤ k | wx, wy) ≤ h(|x − y|, k, wx, wy) and finishes the proof. ◀

As promised, we now deal with cases where α ≥ τ − 2 by coupling SFP to SFP with
larger α without decreasing distances using the following lemma.

▶ Lemma 5. Let α and λ be the long-range and percolation parameters of some instance of
SFP. Fix the weights of all vertices and let puv refer to the probability that two vertices u and
v are connected by an edge. Fix some α′ < α. Then, puv ≤ min{1, λα′/αwα′

u wα′

v |u − v|−dα′}.
In particular, this means that the original SFP graph (with parameter α) is a subgraph of the
one with parameters α′ and λ′ = λα′/α.

Proof. We have

puv ≤ min{1, λwα
u wα

v |u − v|−dα} =
(

min{1, λ
1
α wuwv|u − v|−d}

)α

≤
(

min{1, λ
1
α wuwv|u − v|−d}

)α′

= min{1, λ
α′
α wα′

u wα′

v |u − v|−dα′
}. ◀

The implication of Lemma 5 is that we can artificially ensure that α < τ − 2 by setting
α′ = τ − 2 − ε for an arbitrarily small ε and λ′ = λα′/α. This allows us to prove Theorem 1.1
by applying Lemma 4 to this model since here, graph distances only get shorter due to
Lemma 5. We defer the proof to the full version, since it is only technical and the ideas in it
are already presented.

3 First Passage Percolation (FPP)

In this section we study first passage percolation (FPP) on SFP. Recall that this means
that we assign a cost to every edge which is drawn independently from an exponential
distribution with rate 1. For conciseness, we restrict ourselves to SFP even though the same
technique would also work for GIRGs/HRGs. Note that we obtain the LRP model from SFP
by informally setting τ = ∞. Formally, since SFP is an increasing model in τ in terms of
stochastic domination, the edge set of SFP with any finite τ stochastically dominates the
edge set of LRP. Hence, all lower bounds on cost-distances from SFP also transfer to LRP.11

In the following, we assume for simplicity that λ = 1; this does not affect our results.
In contrast to plain SFP, in FPP we have an additional source of randomness since

not only the existence of an edge is random but also its cost. To prove lower bounds on
cost-distances, it is therefore simpler (and sufficient) to consider a model in which there is
only one source of randomness for the edges. We call this model Complete Scale Free First
Passage Percolation, or CFFP for short. Here, all edges exist a priori, i.e., the graph is fixed
to be the complete graph with vertex set Zd. However, we now draw the cost of each edge
by sampling from an exponential distribution with rate wα

u wα
v |u − v|−αd (i.e. a rate that

depends on the weights and geometric distance between the two endpoints) instead of rate 1.
We start by showing that FPP on SFP is dominated by CFFP, i.e., that cost-distances

in CFFP can only become shorter as compared to FPP on SFP. To that end, we need the
following lemma that will allow us to combine the randomness of two events occurring with
probability min{1, α} and (1 − e−b), respectively into an event occurring with probability
1 − e−ab.

11 The same is true for graph-distances, but here the results for LRP were already known.

K. Lakis, J. Lengler, K. Petrova, and L. Schiller 74:13

▶ Lemma 6. min{1, a}(1 − e−b) ≤ 1 − e−ab for all a, b ≥ 0.

Proof. If a ≥ 1, then the inequality is easy to see, as (1 − e−b) ≤ (1 − e−ab) in this case. So,
let us assume that a < 1 from now on. Consider the function

f(b) = a(1 − e−b) − (1 − e−ab).

Note that it suffices to show that f(b) ≤ 0 for all b ≥ 0. We can see that f(0) = 0 and also

f ′(b) = a(e−b − e−ab) ≤ 0.

This shows that the function f(b) is non-increasing and since f(0) = 0, we have f(b) ≤ 0 for
all b ≥ 0. ◀

With this, we establish a coupling between FPP on SFP and CFFP such that cost-distances
in CFFP are at most as large as cost-distances in FPP on SFP.

▶ Lemma 7. Let u, v be a pair of vertices in Zd. Let further X(u,v) be the cost of the edge
{u, v} in FPP on SFP if it exists, and X(u,v) = ∞ if the edge does not exist, and let Y(u,v)
be its cost in CFFP. Then for any t ≥ 0,

P
(
X(u,v) ≤ t

)
≤ P

(
Y(u,v) ≤ t

)
.

Proof. For the event on the LHS to be true, the edge {u, v} must exist and then inde-
pendently the cost must be drawn to be at most t. The probability for the first event is
min{1, (wuwv)α|u − v|−αd} and the probability of the latter is 1 − e−t. For the event on the
RHS, one simply needs that the cost sampled from an exponential distribution with rate
(wuwv)α|u − v|−αd is at most t and the probability of this is exactly 1 − e−(wuwv)α|u−v|−αdt.
Lemma 6 finishes the proof. ◀

Lemma 7 shows that any lower bound shown for cost-distances in CFFP will also be true
for FPP on SFP. To see more clearly why this is true, note that we can couple the models in
the following way. First, we sample the weights for the vertices in exactly the same way for
both models. Then, conditioned on these weights, the probability space is a product space
over independent one-dimensional random variables (technically, one of them can be infinite
in value, but this is not a problem for our purposes) for which the inequality in Lemma 7
holds. With this in mind, we continue by establishing the lower bound for cost-distances in
CFFP. We will generally follow similar arguments as the ones presented in [13], which studies
a model similar to CFFP but without vertex weights. To establish an upper bound on the
probability that the cost-distance between two vertices is at most t, we need a bound on the
probability that the sum of exponential random variables is at most t, which is provided in
the following lemma, which in turn is an adaptation of Lemma 2.1 in [13].

▶ Lemma 8. Let X1, X2, . . . , Xk be i.i.d. exponential random variables such that the rate of
Xi is (wiwi+1)α|ui − ui+1|−αd, for some sequence of vertices uj with corresponding weight
wj, with 1 ≤ j ≤ k + 1. The wi are drawn from a power law with exponent τ . Assume that
2α < τ − 1. Then, there exists a c > 0 depending only on α, τ such that for all t ≥ 0,

P

(
k∑

i=1
Xi ≤ t

)
≤
(

ect

k

)k k∏
i=1

|ui − ui+1|−αd,

where the above probability is taken over the randomness of the weights and the Xi values.

APPROX/RANDOM 2024

74:14 Improved Bounds for Graph Distances in Scale Free Percolation and Related Models

Proof. Note that each Xi = Yi

(wiwi+1)α|ui−ui+1|−αd , where Yi is an exponential random variable
with rate 1. Let us use λi = (wiwi+1)α|ui − ui+1|−αd from now on. By Markov’s inequality,
we have

P

(
k∑

i=1
Xi ≤ t

)
= P

(
exp

(
−θ

k∑
i=1

Xi

)
≥ e−θt

)
≤ eθtE

[
exp

(
−θ

k∑
i=1

Xi

)]
.

Now, let us bound the expectation above. Once one fixes the weights wj , each Xi is
independent from each other. Moreover, for Yi with rate one, it holds that E [exp(−θYi)] =

1
1+θ ≤ 1

θ for θ > 0. So, for a fixed realization w1, w2, . . . , wk+1 of the weights, we have:

E

[
exp

(
−θ

k∑
i=1

Xi

)
| w1, w2, . . . , wk+1

]
=

k∏
i=1

E
[
exp

(
− θ

λi
Yi

)]

≤
k∏

i=1

λi

θ

≤ θ−k
k+1∏
i=1

(wi)2α
k∏

i=1
|ui − ui+1|−αd.

The weight terms are raised to 2α, since each weight wi enters in (at most) two λj as wα
i .

Integrating the weights out, we see that since they are independent, one has

E

[
exp

(
−θ

k∑
i=1

Xi

)]
≤

[
θ−k

k∏
i=1

|ui − ui+1|−αd

]
k+1∏
i=1

E
[
(wi)2α

]
.

Now, since 2α − τ < −1, the expectations inside the rightmost product are all at most
some constant c′. Let c be e.g. equal to (c′)2 such that ck ≥ (c′)k+1. Collecting the above
bounds, we have

P

(
k∑

i=1
Xi ≤ t

)
≤ eθt

[
θ−k

k∏
i=1

|ui − ui+1|−αd

]
ck.

Setting θ = k
t shows the desired bound. ◀

With Lemma 8 at hand, we show that the expected size of the t-ball around the origin
grows at most exponentially with t. We define this ball B(x, t) as the set of vertices reachable
from vertex x with a path of cost-distance at most t. Exponential growth is not enough by
itself for our goal of showing a polylogarithmic lower bound on the distances but is a crucial
step in doing so. To do this, we modify the proof of Lemma 2.6 and Theorem 1.2 (ii) in [13].
In the following, we only consider the growth of B(0, t), i.e., the t-ball around the origin, but
it is easy to see that (by translation invariance) the same statements hold if we replace the
origin by any vertex x.

▶ Theorem 9 (Exponential Ball Growth). Let B(0, t) denote the set of vertices reachable
with a path of cost at most t from the origin in CFFP. If 2α < τ − 1, we have for some C

depending only on α and τ ,

E [|B(0, t)|] ≤ eCt.

K. Lakis, J. Lengler, K. Petrova, and L. Schiller 74:15

Proof. We compute

E [|B(0, t)|] =
∑

u∈Zd

P
(
d cost

G (0, u) ≤ t
)

≤ 1 +
∑

u∈Zd

u̸=0

∞∑
k=1

∑
(0,u)−path π

of length k

P (π has cost distance at most t)

Lemma 8
≤ 1 +

∑
u∈Zd

u̸=0

∞∑
k=1

(
ect

k

)k ∑
(0,u)−path

(0=u1,u2,...,uk+1=u)

[
k∏

i=1
|ui − ui+1|−αd

]
.

The constant c above is as in Lemma 8. The rightmost sum above can be bounded by
bk|u|−αd for some b depending only on α. This is done by Lemma 2.5 (c) in [13] (the quantity
bounded there is the above sum and is defined in equation (2.3) in the page previous to that
of Lemma 2.5). With that in mind, we have

E [|B(0, t)|] ≤ 1 +

 ∑
u∈Zd,u ̸=0

|u|−αd

(∞∑
k=1

(
ecbt

k

)k
)

.

Since α > 1, the first sum above is bounded by a constant c1. Moreover, note that
∞∑

k=1

(
ecbt

k

)k

≤
∞∑

k=0

(ecbt)k

k! − 1 = eecbt − 1.

One can choose C large enough so that E [|B(0, t)|] ≤ eCt. To see why, note that we can
freely assume c1 ≥ 1. Then, setting C = ecbc1 suffices. That is because of the following. Let
f(x) = xc1 + c1(1 − x) − 1. This function is decreasing from 0 to 1 and increasing afterwards.
Moreover, both f(0) and f(1) are non-negative, hence it is non-negative for all x ≥ 0. Setting
x = eecbt shows that for all t ≥ 0,

E [|B(0, t)|] ≤ 1 + c1(eecbt − 1) ≤ (eecbt)c1 = eCt. ◀

In the following, we define

g(t) := E [|B(0, t)|]

and note that we have already shown that g(t) grows at most exponentially. But we can do
better and show that in fact it grows at most stretched exponentially, in particular roughly
as exp(t 1

∆). This intuitively corresponds to the cost-distances between two vertices u and v

growing roughly as (log |u − v|)∆, and is then also used in proving the corresponding lower
bound later.

To show this improved bound, we bound the crucial quantity

f(r, t) = sup
|u|=r

P
(
d cost

G (0, u) ≤ t
)

∈ [0, 1],

that is, the highest possible probability with which a vertex connects to the origin with cost
at most t, given that it has geometric distance r. We only consider r, t > 0. One can show
the following bound for f(r, t).

▶ Lemma 10 (Towards a Self-Bounding Inequality for g(t)). Consider CFFP with 2α < τ − 1.
There exist constants cf , δ > 0 depending only on α and τ such that

f(r, t) ≤ cf r−αdh(t), where h(t) := tαd

∫ t

0
g(t − y)(g(y) − 1)dy + e−δt.

APPROX/RANDOM 2024

74:16 Improved Bounds for Graph Distances in Scale Free Percolation and Related Models

This lemma can be seen as a generalization of the technique we use to prove Lemma 4:
We bound the probability that two vertices at distance r are connected by a path of cost at
most t by a term that is essentially r−αd (which is roughly the probability that the longest
edge in such a path exists) times h(t) which integrates over all possible y such that said edge
connects the (t − y)-ball around 0 and the y-ball around u. Using this, we can then derive a
self-bounding inequality for g(t), which relates g recursively to itself such that we can derive
an upper bound on g by solving said recursive relation using Theorem 13 which is identical
to [13, Theorem 5.3]. We derive the self-bounding inequality by summing f(r, t) over all
vertices and thus express g(t) as a function of h(t), which – in turn – depends on g. We
capture this in the following lemma.

▶ Lemma 11 (Self-Bounding Inequality for g(t)). Consider CFFP with 2α ≤ τ − 1. There
are constants c, δ such that for all t ≥ 0

g(t)α ≤ c

(
tαd

∫ t

0
g(t − y)g(y)dy + 1

)
.

Proof. To derive the self-bounding inequality for g using Lemma 10, we upper bound g by
an expression involving f(r, t) and then upper bound f(r, t) using Lemma 10. Specifically,
we estimate the expected size of a t-ball by integrating over all vertices times the respective
probability f(r, t).

E [B(0, t)] = g(t) ≤ 1 +
∫ ∞

1
cdrd−1 min{1, f(r, t)}dr

= 1 +
∫ (cf h(t))

1
αd

1
cdrd−1dr +

∫ ∞

(cf h(t))
1

αd

cdcf rd−1−αdh(t)dr

since for r > (cf h(t)) 1
αd , the minimum is smaller than 1 by definition of f(r, t) from Lemma 10.

Integrating out then yields,

g(t) ≤ 1 + c′
(

h(t) 1
α + h(t) 1

α −1h(t)
)

≤ 1 + ((c′′h(t)) 1
α

for some constants c′, c′′ that depend on α, d and τ . Therefore, we infer that

(g(t) − 1)α ≤ c′′h(t). (7)

It can be shown that12 g(t)α ≤ 2α−1(1 + (g(t) − 1)α). Chaining this inequality with (7) and
replacing h(t) above by its definition in Lemma 10 we get the claimed recursive inequality
for g(t). In more detail, we have

g(t)α ≤ 2α−1(1 + (g(t) − 1)α) ≤ 2α−1(1 + c′′h(t))

Since h(t) is bounded away from zero and since e−δt ≤ 1, it follows that there exists a c such
that the inequality claimed in the lemma statement holds for all t. ◀

It is through this inequality that a stronger bound on g(t) can be derived. For this,
we use Theorem 5.3 from [13] directly which we restate as Theorem 13. It claims (among
more general things) that for a given function g(t), if 1 ≤ g(t) ≤ eCt for some constant C

(which we have already shown) and an inequality similar to 7 holds, then one roughly has
g(t) ≤ et1/∆ . Now that we have motivated Lemma 10, let us prove it.

12 One simply needs to consider the function f(x) = 2α−1(1 + (x − 1)α) − xα restricted to x ≥ 1, which
has a global minimum of 0 at x = 2.

K. Lakis, J. Lengler, K. Petrova, and L. Schiller 74:17

Proof of Lemma 10. Fix a “target” vertex u. Let us first focus on paths from 0 to u which
contain at least ρt edges (we assume that this is an integer for simplicity) for some constant ρ

that will be determined later. If Plong is the probability that some such path has cost-distance
less than t, then by a simple union bound we have

Plong ≤
∞∑

k=ρt

∑
(0,u)−path π

of length k

P (π has cost-distance at most t)

Lemma 8
≤ eθt

∞∑
k=ρt

θ−kck
∑

(0,u)−path (u1,u2,...,uk+1)
with u1=0 and uk+1=u

k∏
i=1

|ui − ui+1|−αd

Lemma 2.5 (c) in [13]
≤ eθt|u|−αd

∞∑
k=ρt

(
cb

θ

)k

.

In the second line above, we used Lemma 8 but the final step where θ is set to some value
is not carried out. Furthermore, the constant b that emerges in the third line is as in Lemma
2.5 (c) of [13]. Now, setting θ = ρ > ecb, we have

Plong ≤ |u|−αdeρt

(
cb
ρ

)ρt

1 − cb
ρ

≤ |u|−αd e

e − 1e−ρt log ρ
ecb . (8)

Now, let us turn our attention to paths that use at most ρt edges instead and let Pshort
denote the probability that such a path has cost-distance at most t. The idea here is to
notice that a geometrically long edge (u1, u2) must be used (similarly as in the proof of
Lemma 4). In particular, this edge has to cover a distance of at least |u|

ρt , as there are at
most ρt edges used to cover a distance of |u|. We adapt the argumentation of the proof of
Lemma 5.1 in [13], which is essentially a union bound over all the possible intermediate pairs
(u1, u2). More precisely, we get that

Pshort ≤∑
u1,u2∈Zd

|u1−u2|≥ |u|
ρt

∫∫
P
(
d cost

G (0, u1) + c(u1,u2) + d cost
G (u2, u) ≤ t | wu1 , wu2

)
dµ(wu1)dµ(wu2)

(9)

where µ(w) = w1−τ is the probability measure of the weight distribution and

P
(
d cost

G (0, u1) + c(u1,u2) + d cost
G (u2, u) ≤ t | wu1 , wu2

)
≤
∫ t

0
dP
(
d cost

G (0, u1) ≤ s | wu1

) ∫ t−s

0
P
(
d cost

G (u2, u) ≤ y | wu2

)
wα

u1
wα

u2
|u|−dα(ρt)αddy.

(10)

where we use a convolution over the cost of the left and right path segment and that the
density of c(u1,u2) is at most wα

u1
wα

u2
|u|−dα(ρt)dα. Had there not been weights involved, the

proof of Lemma 5.1 in [13] would show immediately that

Pshort ≤ cshort|u|−αdh(t)

for some constant cshort depending on α. In our case we first need to get rid of the weights.
To this end, we use the following simple proposition whose proof we defer for now.

APPROX/RANDOM 2024

74:18 Improved Bounds for Graph Distances in Scale Free Percolation and Related Models

▶ Proposition 12. For any u1 ∈ Zd and any t > 0, we have

P
(
d cost

G (0, u1) ≤ t | w1
)

≤ 2wα
1 P
(
d cost

G (0, u1) ≤ t
)

.

Applying this proposition to (10) yields

P
(
d cost

G (0, u1) + c(u1,u2) + d cost
G (u2, u) ≤ t | wu1 , wu2

)
≤ 4w2α

u1
w2α

u2
|u|−dα(ρt)αd

∫ t

0
dP
(
d cost

G (0, u1) ≤ s
) ∫ t−s

0
P
(
d cost

G (u2, u) ≤ y
)

dy.

Then, applying this to (9) and taking the sum into the integrals, we get

Pshort ≤
∑

u1,u2∈Zd

|u1−u2|≥|u|/(ρt)

(∫∫
4w2α

u1 w2α
u2 dµ(wu1)dµ(wu2)

)

×
(

|u|−dα(ρt)αd

∫ t

0
dP
(
d cost

G (0, u1) ≤ s
)∫ t−s

0
P
(
d cost

G (u2, u) ≤ y
)

dy

)
≤
(∫ ∞

1

∫ ∞

1
4(τ − 1)2w2α−τ

u1 w2α−τ
u2 dwu1 dwu2

)

×

|u|−dα(ρt)αd
∑

u1∈Zd

∑
u2∈Zd

∫ t

0
dP
(
d cost

G (0, u1) ≤ s
)∫ t−s

0
P
(
d cost

G (u2, u) ≤ y
)

dy

where we took the sum into the second set of parentheses and omitted the condition
|u1 − u2| ≥ |u|/(ρt) from the sum and then split it into two sums. We also replaced
µ(w) = 1 − w1−τ so dµ(w) = (τ − 1)w−τ dw. Now, taking these sums into the integrals and
recalling that g(x) =

∑
v∈Zd P (d cost

G (0, v) ≤ x) yields that

Pshort ≤
(∫ ∞

1

∫ ∞

1
4w2α−τ

u1
w2α−τ

u2
dwu1dwu2

)(
|u|−dα(ρt)αd

∫ t

0
dg(s)

∫ t−s

0
g(y)dy

)
.

Here, it is easy to see that the term in the second set of parentheses is at most cshort|u|−αdh(t)
for some constant cshort as was formally shown in [13, Lemma 5.1]. The term in the first set
of parentheses is some constant that only depends on α, τ since the condition 2α < τ − 1
ensures that the integrals converge. This constant enters into cshort.

If we now choose ρ > ecb and δ = ρ log ρ
ecb , then summing Plong from (8) and Pshort as

above yields

f(r, t) ≤ cf r−αdh(t)

for some constant cf as desired. ◀

We now give the proof of the proposition deferred above.

Proof of Proposition 12. Recall that the statement of the proposition is that

P
(
d cost

G (0, u1) ≤ t | w1
)

≤ 2wα
1 P
(
d cost

G (0, u1) ≤ t
)

We show this using a coupling argument. To this end, we consider a model M that
resembles CFFP where instead of having the vertex u1 with weight w1, we set the weight
of u1 deterministically equal to 1. However, to decide the costs of edges adjacent to u1, we
take the minimum of ⌈wα

1 ⌉ many independent samples, i.e., for the edge (u1, v) we set its
cost to the minimum of ⌈wα

1 ⌉ independent samples from an exponential distribution with

K. Lakis, J. Lengler, K. Petrova, and L. Schiller 74:19

rate wα
v |u − v|−αd. Alternatively, this can be seen as having ⌈wα

1 ⌉ copies of u1 (with weight
1) and then studying the minimal cost-distance from 0 to one of the copies u1 where the
minimum is taken over all copies. Note that this description diverges from the one in the
previous sentence if we are interested in paths between two arbitrary vertices, but since we
are only concerned with paths from 0 to u1, the two are equivalent.

We continue by showing that cost distances in CFFP (from 0 to u1) stochastically
dominate those in M , i.e., that

P
(
d cost

G (u1, 0) ≤ t in CFFP | w1
)

≤ P
(
d cost

G (u′
1, 0) ≤ t in M

)
.

To this end, we first show that this is the case for the cost of all edges incident to u1. Let
e = (u1, v) be an arbitrary such edge and note that

P
(
c(u1,v) ≥ x in M

)
=
(

e−xwα
v |u1−v|−αd

)⌈wα
1 ⌉

≤ e−xwα
1 wα

v |u1−v|−αd

= P
(
c(u1,v) ≥ x in CFFP

)
.

Now, let R be a fixed realization of all weights and edge costs in CFFP not associated with
u1 and denote by [d cost

G (0, v)]R. the cost distance from 0 to v in this realization when u1 is
removed from the underlying graph. With this, we note that – conditional on R – we have

d cost
G (u1, 0) ≤ t ⇐⇒ ∃ v such that c(u1,v) ≤ t −

[
d cost

G (0, v)
]

R .

Since P
(
c(v,u1) ≥ x in M

)
≤ P

(
c(v,u1) ≥ x in CFFP

)
as shown above, the probability that

this occurs in M is as least as large as the corresponding probability in CFFP, and since
this holds conditional on any realization R, it also holds unconditionally by the law of total
probability. Hence, we have shown the desired stochastic domination.

It remains to be shown that

P
(
d cost

G (u1, 0)) ≤ t′ in M
)

≤ 2wα
1 P
(
d cost

G (u1, 0) ≤ t in CFFP
)

.

To to prove this, we again consider an arbitrary but fixed realization R as in the previous
paragraph and recall that d cost

G (u1, 0) ≤ t if and only if there is some v such that c(u1,v) ≤
t − [d cost

G (0, v)]R. Note that by the definition of M , this occurs if and only if it happens
for at least one of the ⌈wα

1 ⌉ ≤ 2wα
1 copies of u1. Since for each copy, the probability that

this happens for said copy is P (d cost
G (u1, 0) ≤ t in CFFP | wu1 = 1, R), we get from a union

bound and from the law of total probability that

P
(
d cost

G (u1, 0) ≤ t in M
)

≤ 2wα
1 P
(
d cost

G (u1, 0) ≤ t in CFFP | wu1 = 1
)

≤ 2wα
1 P
(
d cost

G (u1, 0) ≤ t in CFFP
)

◀

Finally, we will use Lemma 10 in conjunction with Theorem 5.3 from [13] to show the
desired lower bound on cost-distances. We restate that theorem here, simplified for our use
case.

▶ Theorem 13 (Theorem 5.3 from [13]). Let g(t) : [0, ∞) → R be a function satisfying

1 ≤ g(t) ≤ eCt

and

g(t)1/θ ≤ ch

(
1 + tβ−1

∫ t

0
g(y)g(t − y) dy

)

APPROX/RANDOM 2024

74:20 Improved Bounds for Graph Distances in Scale Free Percolation and Related Models

for all t ≥ 0 for some constants C > 0, θ ∈
(1

2 , 1
)
, β ≥ 0, and ch ≥ 1. Then, there exists a

constant cθ > 1 such that g(t) ≤ G(t) for all t ≥ 0 where G(t) is defined such that

log G(t) = cθ(2λt)log2(2θ)(log(1 + tβ))log2(1/θ)(1 + o(1)).

We use the above theorem to prove our main lemma for FPP, which we restate here.

▶ Lemma 14 (Tail Bound for Cost-Distances in FPP). Consider FPP on SFP with 2α < τ − 1
and arbitrary vertices x, y. There exists a constant c depending only on α and τ such that
for ∆ = ∆(α) = 1/log2 (2/α),

logP
(
d cost

G (x, y) ≤ t
)

≤ c(log(1 + t))1−1/∆t1/∆(1 + o(1)) − αd log |x − y| + c.

Proof. As discussed, it suffices to show the claim for CFFP. Moreover, by translation
invariance, we can replace x with the origin 0 and y by u = y − x. By Lemma 11 we have

g(t)α ≤ c1

(
tαd

∫ t

0
g(t − y)g(y) dy + 1

)
(11)

for some c1, δ > 0 depending only on parameters of the model. We also know that g(t) ≤ eCt

from Theorem 9 for a C with the same dependencies. Therefore, using Theorem 5.3
from [13] (stated above the current theorem) with θ = 1

α , β = αd + 1 and with the inequality
1 + tβ ≤ (1 + t)β , we have g(t) ≤ G(t), where

log G(t) = c(log(1 + t))1− 1
∆ t

1
∆ (1 + o(1)),

where c depends only on parameters of the model. Now, by Lemma 10, we have

logP
(
d cost

G (0, u) ≤ t
)

≤ log f(|u|, t)

≤ c′ − αd log |u| + log
(

tαd

∫ t

0
g(t − y)(g(y) − 1) dy + e−δt

)
The constant c′ above comes from Lemma 10. The final step is to notice that inequality (11)
is satisfied as equality for G(t), as in [13]. Then, substituting the expression for it in the
resulting inequality gives the desired bound. ◀

We can use the coupling employed in Theorem 1.1 to establish the above tail bound even
if 2α ≥ τ − 1 but with ∆ replaced by ∆′′ = ∆(min{α, τ−1

2 } − ε) for arbitrarily small ε. We
then have obtained Theorem 1.3. Since the proof is almost verbatim the same as that of
Theorem 1.1, we omit it. Note that one minor technical step that is required additionally
to get the bound claimed in Theorem 1.3 using the one obtained from Lemma 14 is to
introduce an auxiliary constant ε′ in addition to the ε from the statement of the theorem.
This swallows the (log(1 + t))1− 1

∆ factor.

References
1 Mohammed Amin Abdullah, Michel Bode, and Nikolaos Fountoulakis. Typical distances in a

geometric model for complex networks. Internet Mathematics, 1:38, 2017.
2 Noam Berger. A lower bound for the chemical distance in sparse long-range percolation models.

arXiv preprint, 2004. arXiv:math/0409021.
3 Marek Biskup. On the scaling of the chemical distance in long-range percolation models. The

Annals of Probability, 32(4):2938–2977, October 2004. doi:10.1214/009117904000000577.

https://arxiv.org/abs/math/0409021
https://doi.org/10.1214/009117904000000577

K. Lakis, J. Lengler, K. Petrova, and L. Schiller 74:21

4 Marek Biskup. Graph diameter in long-range percolation. Random Structures & Algorithms,
39(2):210–227, 2011. doi:10.1002/rsa.20349.

5 Marek Biskup and Jeffrey Lin. Sharp asymptotic for the chemical distance in long-range
percolation. Random Structures & Algorithms, 55(3):560–583, 2019. doi:10.1002/rsa.20849.

6 Thomas Bläsius and Philipp Fischbeck. On the external validity of average-case analyses of
graph algorithms. ACM Transactions on Algorithms, 20(1):1–42, 2024.

7 Thomas Bläsius, Tobias Friedrich, Maximilian Katzmann, and Anton Krohmer. Hyperbolic
embeddings for near-optimal greedy routing. ACM J. Exp. Algorithmics, 25, 2020. doi:
10.1145/3381751.

8 Thomas Bläsius, Tobias Friedrich, and Christopher Weyand. Efficiently computing maximum
flows in scale-free networks. arXiv preprint, 2020. arXiv:2009.09678.

9 Marián Boguná, Fragkiskos Papadopoulos, and Dmitri Krioukov. Sustaining the internet with
hyperbolic mapping. Nature communications, 1(1):62, 2010.

10 Karl Bringmann, Ralph Keusch, and Johannes Lengler. Average distance in a general class of
scale-free networks with underlying geometry. arXiv preprint, 2016. arXiv:1602.05712.

11 Karl Bringmann, Ralph Keusch, and Johannes Lengler. Geometric inhomogeneous random
graphs. Theoretical Computer Science, 760:35–54, 2019.

12 Karl Bringmann, Ralph Keusch, Johannes Lengler, Yannic Maus, and Anisur R Molla. Greedy
routing and the algorithmic small-world phenomenon. Journal of Computer and System
Sciences, 125:59–105, 2022.

13 Shirshendu Chatterjee and Partha S. Dey. Multiple phase transitions in long-range first-
passage percolation on square lattices. Communications on Pure and Applied Mathematics,
69(2):203–256, 2016. doi:10.1002/cpa.21571.

14 Maria Deijfen, Remco Hofstad, and Gerard Hooghiemstra. Scale-free percolation. Annales
de l Institut Henri Poincaré Probabilités et Statistiques, 49:817–838, August 2013. doi:
10.1214/12-AIHP480.

15 Philippe Deprez, Rajat Subhra Hazra, and Mario V Wüthrich. Inhomogeneous long-range
percolation for real-life network modeling. Risks, 3(1):1–23, 2015.

16 Philippe Deprez and Mario V Wüthrich. Scale-free percolation in continuum space. Commu-
nications in Mathematics and Statistics, 7(3):269–308, 2019.

17 Leslie Ann Goldberg, Joost Jorritsma, Júlia Komjáthy, and John Lapinskas. Increasing
efficacy of contact-tracing applications by user referrals and stricter quarantining. Plos one,
16(5):e0250435, 2021.

18 Mark S Granovetter. The strength of weak ties. American journal of sociology, 78(6):1360–1380,
1973.

19 Nannan Hao and Markus Heydenreich. Graph distances in scale-free percolation: the logar-
ithmic case. Journal of Applied Probability, 60(1):295–313, 2023.

20 Joost Jorritsma, Tim Hulshof, and Júlia Komjáthy. Not all interventions are equal for the
height of the second peak. Chaos, Solitons & Fractals, 139:109965, 2020.

21 Christoph Koch and Johannes Lengler. Bootstrap percolation on geometric inhomogeneous
random graphs. Internet Mathematics, page 18995, 2021.

22 Júlia Komjáthy, John Lapinskas, and Johannes Lengler. Penalising transmission to hubs
in scale-free spatial random graphs. Annales de l’Institut Henri Poincaré, Probabilités et
Statistiques, 57(4):1968–2016, 2021. doi:10.1214/21-AIHP1149.

23 Júlia Komjáthy, John Lapinskas, Johannes Lengler, and Ulysse Schaller. Four universal growth
regimes in degree-dependent first passage percolation on spatial random graphs i. arXiv
preprint, 2023. arXiv:2309.11840.

24 Júlia Komjáthy, John Lapinskas, Johannes Lengler, and Ulysse Schaller. Four universal growth
regimes in degree-dependent first passage percolation on spatial random graphs ii. arXiv
preprint, 2023. arXiv:230911880.

APPROX/RANDOM 2024

https://doi.org/10.1002/rsa.20349
https://doi.org/10.1002/rsa.20849
https://doi.org/10.1145/3381751
https://doi.org/10.1145/3381751
https://arxiv.org/abs/2009.09678
https://arxiv.org/abs/1602.05712
https://doi.org/10.1002/cpa.21571
https://doi.org/10.1214/12-AIHP480
https://doi.org/10.1214/12-AIHP480
https://doi.org/10.1214/21-AIHP1149
https://arxiv.org/abs/2309.11840
https://arxiv.org/abs/230911880

74:22 Improved Bounds for Graph Distances in Scale Free Percolation and Related Models

25 Júlia Komjáthy and Bas Lodewijks. Explosion in weighted hyperbolic random graphs and geo-
metric inhomogeneous random graphs. Stochastic Processes and their Applications, 130(3):1309–
1367, 2020. doi:10.1016/j.spa.2019.04.014.

26 Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and Marián Boguná.
Hyperbolic geometry of complex networks. Physical Review E, 82(3):036106, 2010.

27 Gergely Ódor, Domonkos Czifra, Júlia Komjáthy, László Lovász, and Márton Karsai.
Switchover phenomenon induced by epidemic seeding on geometric networks. Proceedings of
the National Academy of Sciences, 118(41):e2112607118, 2021.

28 David Reimer. Proof of the van den berg–kesten conjecture. Combinatorics, Probability and
Computing, 9(1):27–32, 2000. doi:10.1017/S0963548399004113.

29 Pieter Trapman. The growth of the infinite long-range percolation cluster. The Annals of
Probability, 38(4):1583–1608, 2010.

A On the upper bound claim in [19]

In this section, we briefly explain the mistake in the upper bound proof for graph distances
in [19]. There, the authors add edges for some paths of length 2 in SFP, thus cutting graph
distances at most in half. Let us call the resulting graph 2-SFP. Then they compare 2-SFP
to LRP with different parameters. The 2-SFP graph does not dominate an LRP because the
edges are correlated, but for every edge e, P (e open in 2-SFP) ≥ P (e open in LRP).

Then they make the argument that the correlations are positive, so that for every fixed
x-y-path π, by the FKG inequality:

P (π open in 2-SFP) ≥ P (π open in LRP) . (12)

That is correct, but it does not imply the statement that we would want for a suitable k:

P (∃ x-y-path π of length ≤ k: π open in 2-SFP)
≥ P (∃ x-y-path π of length ≤ k: π open in LRP) . (13)

Instead, (12) only implies by summing over all x-y-paths of length at most k:

E [# of open x-y-paths of length ≤ k in 2-SFP] (14)
≥ E [# of open x-y-paths of length ≤ k in LRP] . (15)

However, it is not hard to see that due to the correlations the left hand side of (14) is
dominated by low-probability events where the number of paths is very large. In particular,
the upper bound proof for LRP is centered around the concept of hierarchies, and the first
step of a hierarchy is to find an edge of length Θ(|x − y|), where the two endpoints lie
respectively close to x and y. It is easy to see that for some parameters considered in [19],
with high probability such edges do exist in LRP but do not exist in 2-SFP. However, the
expected number of such edges in 2-SFP (corresponding to the left hand side of (14)) is still
large because the unlikely event of a vertex of weight Θ(|x − y|) at distance |x − y| from x

induces a very large number of 2-paths in SFP, which become edges in 2-SFP.
Hence, the argument in [19] shows (14) but not (13), and this is not a minor omission

but a major gap. In fact, we conjecture that the upper bound statements in [19] are false,
and that the exponent ∆(α) = 1/ log2(2/α) is tight throughout the polylogarithmic regime,
i.e. for all τ > 3 and α ∈ (1, 2). The reason for this intuition is that for τ > 3 there exists a
constant C > 0 such that the induced graph of vertices of weight larger than C does not
percolate. However, we do not see an obvious way to leverage this property into lower bounds
for graph distances.

https://doi.org/10.1016/j.spa.2019.04.014
https://doi.org/10.1017/S0963548399004113

Derandomizing Multivariate Polynomial Factoring
for Low Degree Factors
Pranjal Dutta # Ñ

School of Computing, National University of Singapore, Singapore

Amit Sinhababu #

Chennai Mathematical Institute, Chennai, India

Thomas Thierauf # Ñ

Ulm University, Germany

Abstract
Kaltofen [STOC 1986] gave a randomized algorithm to factor multivariate polynomials given by
algebraic circuits. We derandomize the algorithm in some special cases.

For an n-variate polynomial f of degree d from a class C of algebraic circuits, we design a
deterministic algorithm to find all its irreducible factors of degree ≤ δ, for constant δ. The running
time of this algorithm stems from a deterministic PIT algorithm for class C and a deterministic
algorithm that tests divisibility of f by a polynomial of degree ≤ δ.

By using the PIT algorithm for constant-depth circuits by Limaye, Srinivasan and Tavenas [FOCS
2021] and the divisibility results by Forbes [FOCS 2015], this generalizes and simplifies a recent
result by Kumar, Ramanathan and Saptharishi [SODA 2024]. They designed a subexponential-time
algorithm that, given a blackbox access to f computed by a constant-depth circuit, outputs its
irreducible factors of degree ≤ δ. When the input f is sparse, the time complexity of our algorithm
depends on a whitebox PIT algorithm for

∑
i
mig

di
i , where mi are monomials and deg(gi) ≤ δ. All

the previous algorithms required a blackbox PIT algorithm for the same class.
Our second main result considers polynomials f , where each irreducible factor has degree at

most δ. We show that all the irreducible factors with their multiplicities can be computed in
polynomial time with blackbox access to f .

Finally, we consider factorization of sparse polynomials. We show that in order to compute all
the sparse irreducible factors efficiently, it suffices to derandomize irreducibility preserving bivariate
projections for sparse polynomials.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory; Computing
methodologies → Algebraic algorithms

Keywords and phrases algebraic complexity, factoring, low degree, weight isolation, divisibility

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.75

Category RANDOM

Funding Pranjal Dutta: Funded by the project “Foundation of Lattice-based Cryptography”, by
NUS-NCS Joint Laboratory for Cyber Security.
Thomas Thierauf : Supported by DFG grant TH 472/5-2.

1 Introduction

The problem of multivariate polynomial factorization asks to find the unique factorization
of a given polynomial f ∈ F[x1, . . . , xn] as a product of distinct irreducible polynomials
over F. The problem reduces to univariate polynomial factorization over the same field,
for which a deterministic polynomial time algorithm is known over the field Q. The com-
plexity of multivariate factorization depends on the representation of input and output
polynomials. If we use dense representation (where all the coefficients are listed including
the zero coefficients), deterministic polynomial time algorithms for multivariate factoring

© Pranjal Dutta, Amit Sinhababu, and Thomas Thierauf;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 75; pp. 75:1–75:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:duttpranjal@gmail.com
https://sites.google.com/view/pduttashomepage/home
https://orcid.org/0000-0001-9137-9025
mailto:amitkumarsinhababu@gmail.com
mailto:thomas.thierauf@uni-ulm.de
https://image.informatik.htw-aalen.de/~thierauf/
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.75
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

75:2 Derandomizing Multivariate Polynomial Factoring for Low Degree Factors

are known [16]. If we use sparse representation (where only the nonzero coefficients are
listed), only randomized polynomial time (in the total sparsity of input polynomial and the
output factors) algorithms are known [41, 21]. There are other standard representations like
arithmetic circuits, and blackbox models (that gives the evaluations of the polynomial at any
point, but the internal structure of the computation is hidden). Randomized polynomial time
factorization algorithms are known in these models due to the classic results of Kaltofen [19]
and Kaltofen and Trager [21]. Randomization is naturally required for these models, as
the more basic question of polynomial identity testing (given a circuit/blackbox, test if it
computes the zero polynomial) is not yet derandomized.

Towards derandomization of special cases of multivariate factoring, we are motivated by
the following two questions.

▶ Question 1. Given a sparse polynomial f . Can we find all the sparse irreducible factors
of f by a deterministic algorithm in polynomial/quasipolynomial/subexponential time?

Note that the factors of a sparse polynomial f might be nonsparse. Bhargava, Saraf and
Volkovich [3] showed an upper bound on the sparsity of the factors of a sparse polynomial f .
However, the bound is exponential in the degree of f . Therefore, instead of finding all the
irreducible factors, we want to output only those factors that are sparse.

▶ Question 2 ([41, 3]). Given polynomial f =
∏m

i=1 gi
ei as a blackbox, where polynomials gi

are irreducible polynomials whose sparsities are bounded by s. Can we find the polynomials
gi in deterministic time poly(s, n, d) or time quasi-poly/sub-exponential in s, n, d?

The second question can be seen as a special case of polynomial factorization, where we
are promised that all the irreducible factors are sparse. To our surprise, we do not know a
deterministic subexponential-time algorithm even for the special case of Question 2, when
the given blackbox computes the product of just two irreducible sparse polynomials.

Derandomization of multivariate factoring (whitebox, or blackbox) reduces to (whitebox,
or correspondingly blackbox) derandomization of polynomial identity testing (PIT). Kopparty,
Saraf and Shpilka [27] showed this reduction in the model of arithmetic circuits. However,
we do not know if sparse factorization reduces to sparse PIT or constant-depth arithmetic
circuit PIT (the algorithms of [27] reduce to general arithmetic circuit PIT). Recently, there
has been some progress on these questions by [28, 29]. Earlier works of Volkovich [39, 40]
made progress on several special cases of sparse multivariate factoring.

Multivariate polynomial factoring has various applications, such as low-degree testing [1],
constructions of pseudorandom generators for low-degree polynomials [6, 8], computational
algebraic geometry [14] and many more. blackbox multivariate polynomial factorization is
extensively used in arithmetic circuit reconstruction [36, 37], and polynomial equivalence
testing [22, 23, 33]. Algebraic hardness vs randomness [15] results crucially use multivariate
factorization. Special cases of depth-4 polynomial identity testing are related to questions
about sparse polynomial factorization [12, 40, 4].

Divisibility testing. In a factorization algorithm, we may want to check if a candidate factor
is truly a factor via divisibility testing. It asks to test if a polynomial g(z) divides a polynomial
f(z). Forbes [9] showed that the divisibility testing question can be efficiently reduced to an
instance of a PIT question of a model that relates to both f and g; see Lemma 9. Currently,
we do not know any deterministic polynomial time algorithm even when g and f are both
sparse polynomials. When f is a sparse polynomial and g is a linear polynomial, the problem
reduces to polynomial identity testing of any-order read-once oblivious branching programs
(ROABPs), for which polynomial time whitebox PIT algorithm [34] and quasipolynomial

P. Dutta, A. Sinhababu, and T. Thierauf 75:3

time blackbox PIT algorithms are known [10, 13, 11]. We do not know a deterministic
polynomial time algorithm, even for testing if a quadratic polynomial g divides a sparse
polynomial.

1.1 Our results
We show a general result that exhibits properties of a class C of polynomials, such that we
can compute the constant-degree factors of polynomials f ∈ C. The following theorem is an
informal statement of Theorem 18.

▶ Theorem 1 (Low-degree factors via divisibility). Let δ ∈ N be a constant and C be a
class of polynomials such that there is an efficient PIT algorithm for C. For any n-variate
polynomial f ∈ C of degree d, finding all its irreducible factors of degree ≤ δ reduces to
solving polynomially many divisibility questions of whether a given polynomial of degree ≤ δ

divides f .

Arguably, Theorem 1 generalizes and simplifies a recent result by Kumar, Ramanathan
and Saptharishi [28] about the factorization of polynomials computed by constant-depth
circuits. Importantly, if f is represented in the whitebox setting, then both the required
algorithms (PIT and divisibility testing) in Theorem 1 are whitebox algorithms, whereas [28]
still requires blackbox algorithms. We compare the results in more detail in Section 1.2.

We can apply Theorem 1 in the case of (any-order) ROABPs. There are polynomial
time (respectively, quasipolynomial time) whitebox (respectively, blackbox) PIT algorithms
for ROABPs. Moreover, using the divisibility techniques by Forbes [9] (see Lemma 9) and
the duality trick by Saxena [35], the divisibility testing question of whether a given linear
polynomial divides a ROABP can be reduced to a PIT instance of a polynomial-size ROABP.

▶ Corollary 2 (Linear factors of ROABPs). Let f be an n-variate polynomial of degree d,
computed by an any-order ROABP of width w. Then one can output all its linear factors, along
with the exponents in time poly(ndw) in the whitebox setting, and in time poly(ndwlog log w)
in the blackbox setting.

When the input f is s-sparse, this result is already known due to Volkovich [39, Theorem 4].
Note that a sparse polynomial has a trivial ROABP.

Finally, we remark that Theorem 1 can be further generalized to outputting factors from
a general class D (as black box) when in addition to assuming (informally speaking) efficient
PIT for C and the divisibility test for C by D, one has to assume efficient derandomization
of HIT for D (in the sense of finding a good bivariate projection preserving irreducibility,
see Assumption 1) and an inclusion property (i.e. given g ∈ D or not). For simplicity, in the
conference version, we only assume that D is the class of constant-degree polynomials.

Our second result considers the class of polynomials f , where all the irreducible factors of f

are promised to have degrees bounded by δ. For this class, there are blackbox PIT algorithms
with time complexity poly(d, nδ) for n-variate polynomials f of degree d, see [7, 5]. Hence,
by Theorem 1, the factoring problem reduces to a divisibility question. Using techniques of
Forbes [9] (see Lemma 9), this can be further reduced to designing a blackbox PIT algorithm
for polynomials of the form ΣiΠj fi,j , where deg(fi,j) ≤ δ. However, we do not know better
than subexponential-time PIT algorithms for this model. Thus, Theorem 1 does not yield
anything fruitful in this promise setting. We show how to completely avoid divisibility testing
and still find all the irreducible factors in polynomial time. The following theorem is an
informal statement of Theorem 19.

APPROX/RANDOM 2024

75:4 Derandomizing Multivariate Polynomial Factoring for Low Degree Factors

▶ Theorem 3 (Promise low-degree factoring). Let δ ∈ N be a constant. Given a blackbox
access to an n-variate polynomial f of degree d such that all its irreducible factors have
degrees at most δ, one can deterministically output all its irreducible factors along with the
multiplicities in poly(nd) time.

The above theorem can be generalized to polynomials whose irreducible factors are from
a class D (and we will output them as blackbox), for which efficient PIT and derandomiz-
ation of HIT (in the sense of finding a good bivariate projection preserving irreducibility;
see Assumption 1) is known. For simplicity, in the conference version, we only focus on the
class of constant-degree polynomials.

Related work on Theorem 3. There have been some works when δ = 1. In this setting,
given a promise that f(z) =

∏
i∈[m] ℓei

i , where ℓi(z) are mutually co-prime linear polynomials,
we have to output ℓi. A randomized polynomial time algorithm for this problem follows
from the work of Kaltofen and Trager [21]. Recently, Koiran and Ressyare [25] gave three
different randomized algorithms for the non-promise problem that can test if a given f can
be completely factored into linear polynomials and output the factorization if it exists. The
first algorithm assumes that ℓ1, . . . , ℓm are linearly independent, while the last two do not
need that assumption. Later, Koiran and Skomra [26] derandomized the first algorithm when
ℓi are linearly independent. Using a different idea and linearly independence of ℓi, Medini
and Shpilka [32] gave an alternative deterministic polynomial time algorithm. All these works
exploited the linearity (and sometimes randomization/linear independence) of the factors,
while our algorithm neither requires linearity of the factors nor any linear independence.

Finally, we go back to Question 1 of outputting all the sparse irreducible factors of a given
sparse polynomial. Can efficient sparse irreducibility testing lead to an efficient algorithm?
For general multivariate factoring, an effective version of Hilbert’s Irreducibility Theorem
(HIT) by Kaltofen [17] (Theorem 10) says that with high probability, an irreducible n-variate
polynomial remains irreducible if we randomly project it to a bivariate polynomial. This
leads to an efficient factoring algorithm, since HIT helps to preserve the factorization pattern
(the number of distinct irreducible factors and corresponding multiplicities). The hardness
of Question 1 stems from the fact that a sparse polynomial may have both sparse and
non-sparse irreducible factors. Hence, preserving irreducibility for sparse polynomials will
not preserve the factorization pattern, and therefore, it may be hard to get back the actual
factor. However, we observe that a deterministic version of HIT for sparse polynomials can
indeed solve Question 1. The following theorem is an informal statement of Theorem 20.

▶ Theorem 4 (Conditional sparse factoring, Informal). Suppose there is an efficient algorithm
that finds a bivariate projection, making an s-sparse irreducible polynomial both monic (in
one variable) and irreducible. Then there is a subexponential-time algorithm that outputs all
its irreducible factors with sparsities ≤ s along with their multiplicities.

1.2 Comparison with Kumar, Ramanathan and Saptharishi [28]
Theorem 1 implies [28, Theorem 1.1–1.2]. Let ∆ ≥ 2 be an arbitrary positive integer.
Assume that we have a blackbox access to f , which can be computed by a ∆-depth algebraic
circuit of size s. The recent breakthrough result of Limaye, Srinivasan, and Tavenas [31]
gives a subexponential time identity testing algorithm for f . Moreover, using the techniques
from [9] (see Lemma 9), one can show that whether a given polynomial of degree ≤ δ

divides f can be efficiently reduced to PIT for an algebraic circuit of size poly(sd), of the

P. Dutta, A. Sinhababu, and T. Thierauf 75:5

form
∑

i gih
di
i , where the polynomials gi are computable by ∆-depth algebraic circuits and

deg(hi) ≤ δ. For a formal proof, see [28, Corollary 2.19]. The main time complexity of [28,
Theorem 1.1] is also dictated by the best-known blackbox PIT algorithm for the same model
as above, which runs in subexponential time [31]. This algorithm requires the underlying
field to have characteristic 0.

When ∆ = 2, Theorem 1 gives a quasipolynomial time algorithm to output irreducible
factors of degree ≤ δ, thus implying [28, Theorem 1.2]. We know a polynomial time identity
testing for sparse polynomials, due to Klivans and Spielman [24]. Further, [9, Corollary 7.16]
showed that whether a polynomial of degree ≤ δ divides a sparse polynomial, reduces to PIT
for Σm ∧ ΣΠ[δ]; this model computes polynomials of the form

∑poly(sd)
i=1 mih

di
i , where mi

are monomials, and deg(hi) ≤ δ. The best-known blackbox (and whitebox) PIT algorithm
for this model runs in quasipolynomial time [9, Corollary 6.7], and work over fields of
characteristics 0 or large.

Whitebox vs. blackbox. Interestingly, if the input f has a whitebox access to it (for example
when f is sparse, we can use [24]), then the required PIT algorithms in Theorem 1 are also
in the whitebox setting. On the other hand, the factoring algorithm in [28] requires blackbox
PIT algorithms. To explain it further, let f(x, z) be a monic polynomial (in x) and computed
by a constant-depth circuit. Further, f = g · h, where deg(g) ≤ δ and gcd(g, h) = 1. In the
usual factoring algorithm via Hensel lifting/Newton iteration, it is important to find a good
starting point a ∈ Fn such that gcd(g(x, a), h(x, a)) = 1. This step is usually ensured by
finding a hitting set for the Resultant polynomial Resx(g(x, z), h(x, z)). Once such a point
is found, one can project to the univariate f(x, a), factorize it and then do the lifting. [28]
observed that Res(g, h) = Res(g, f/g). Further, they showed that the polynomials f/g as
well as Res(g, f/g) can be computed by small-size constant-depth algebraic circuits. This was
enough to find a good projection using [31], and then find the true factor g via lifting. Since
we do not know the factor g apirori, the polynomials f/g and Res(g, f/g) can be viewed
as polynomials computable by small-size constant-depth algebraic circuits without having
explicit access to them.

1.3 Proof idea
In this section, we give an overview of our algorithms. The overall idea is to project the
input polynomial to a trivariate polynomial, factorize it, and recover the original factors via
efficient sparse interpolation [24].

Proof ideas of Theorem 1 and Theorem 3. Suppose f(x, z) is an (n + 1)-variate degree d

homogeneous polynomial computed by an s-size circuit, which is monic in x. The monicness
property can be assumed otherwise it is well-known that a random shift can make f monic,
and this step can be derandomized assuming PIT for f ; see Lemma 7. We start with the
simplest scenario of δ = 1, i.e., given f , we want to output its linear factors.

Suppose f = ℓe · g, with e ≥ 1, where gcd(ℓ, g) = 1 and ℓ is a linear polynomial. Consider
the substitution ϕ : zi 7→ yi, where y is a new variable. Observe that ϕ(f) ∈ F[x, y] is
a nonzero monic polynomial (in x) of total degree at most nd. Further, ϕ(ℓ), remains
an irreducible factor of ϕ(f) and it is easy to identify ℓ from ϕ(ℓ), since the monomials
{z1, · · · , zn} are assigned yi uniquely. One can factorize the bivariate polynomial ϕ(f) in
deterministic poly(nd) time (see Lemma 11). We can apply the inverse of ϕ to each factor
having degree 1 in x, and there could be nd many candidates of linear factors. The actual
factor ℓ must be one of them. The divisibility testing makes sure that it always outputs the
true linear factors.

APPROX/RANDOM 2024

75:6 Derandomizing Multivariate Polynomial Factoring for Low Degree Factors

When δ ≥ 2, we can still find small weights wi, such that any monomial ze of degree ≤ δ

gets uniquely mapped to yi, via ϕ : zi 7→ ywi ; see Lemma 14. Unfortunately, this map may
not preserve irreducibility. On the other hand, an effective version of Hilbert’s Irreducibility
Theorem [20] shows that a monic irreducible polynomial g(x, z) remains irreducible under the
substitution zi 7→ βit+γi, where βi, γi are randomly chosen from F; see Theorem 10. Further,
this step can be derandomized when g is a low-degree polynomial. We combine these two
ideas to get small weights wi and w′

i such that the projection Ψ : zi 7→ ywit + yw′
i preserves

the irreducibility of any polynomial of degree ≤ δ, and further it is uniquely recoverable from
the projected trivariate polynomial; see Corollary 16. Therefore, it suffices to factor the
trivariate polynomial, find all its irreducible factors, and recover the original factors.

The proof of Theorem 3 uses the same trivariate projection as above. In this case, we
can avoid divisibility because the trivariate projection preserves the factorization pattern,
and one can recover the original factors uniquely from the projected ones.

Proof idea of Theorem 4. Kaltofen and Trager [21] gave an efficient blackbox factoring
algorithm, that given a blackbox access to a polynomial f , and an arbitrary point, outputs
evaluations at that point of all its irreducible factors. For simplicity, consider a monic
polynomial f(x, z). To get the evaluations at (α, c) ∈ Fn+1, consider a trivariate projection η :
z 7→ βt1 + (c − γ)t2 + γ and x 7→ x, for new variables t1 and t2. Here β, γ ∈ Fn was chosen
such that z 7→ βt + γ preserves the irreducibility all the irreducible factors of f ; such a
projection exists using Theorem 10. The map η preserves the factorization patter, and hence
one can find the evaluations by factoring η(f), and evaluating the irreducible factors at
x = α, t1 = 0, t2 = 1.

Our algorithm is a simple adaptation of their algorithm, with the following observation.
Let g(x, z) be an irreducible sparse factor of f(x, z) and let β, γ ∈ Fn be such that g(x, βt+γ)
remains irreducible. Although the map η does not preserve the factorization pattern, η(g)
remains an irreducible factor of η(f). Therefore, g(α, c) can be efficiently found, via evaluating
the right trivariate factor. For finding the right factor, one can observe that there is a unique
correspondence between the bivariate g(x, βt + γ) and trivariate η(g). Since, g is sparse,
one can use sparse interpolation [24] to explicitly reconstruct the polynomial g, from its
evaluations. Finally, whether a sparse polynomial g divides the input sparse polynomial f

can be solved in deterministic subexponential time, via divisibility-to-PIT reduction of [9]
(see Lemma 9) and the blackbox PIT algorithm for constant-depth circuits of [31].

2 Preliminaries

We take F = Q as the underlying field throughout the paper, although the results hold over
large characteristics.

Let P(n, d) be the set of n-variate polynomials of degree at most d, with variables
z = (z1, z2, . . . , zn). For an exponent vector e = (e1, e2, . . . , en), we denote the monomial
ze = (ze1

1 , ze2
2 , . . . , zen

n). Its degree is ||e||1 =
∑n

i=1 ei.
For a ∈ Fn, we also denote ||a||0 = |{i | ai ̸= 0}|.
sp(f) denotes the sparsity, i.e., the number of monomials with nonzero coefficients in f .
Homk[f] denotes the homogeneous component of f of degree equal to k.
A polynomial f is called irreducible, if it cannot be factored into the product of two

non-constant polynomials. Polynomial f is called square-free, if for any non-constant factor g,
the polynomial g2 is not a factor of f .

P. Dutta, A. Sinhababu, and T. Thierauf 75:7

By deg(f) we denote the total degree of f . Let x and z = (z1, . . . , zn) be variables
and f(x, z) be a (n + 1)-variate polynomial. Then we can view f as a univariate polynomial
f =

∑
i ai(z) xi over K[x], where K = F[z]. The x-degree of f is denoted by degx(f). It is

the highest degree of x in f . Polynomial f is called monic in x, if the coefficient adx(z) is
the constant 1 polynomial, i.e. adx

(z) = 1, where dx = degx(f).
An algorithm runs in subexponential time, if its running time on inputs of length n is

bounded by 2nϵ , for any ϵ > 0.

2.1 Computational problems, complexity measures and closure
properties

For classes P, Q of multivariate polynomials, we define the following computational problems.
PIT(P): given p ∈ P , decide whether p ≡ 0.
Factor(P|Q): given p ∈ P , compute all its irreducible factors in Q with their multiplicities.
Div(P/Q): given p ∈ P and q ∈ Q, decide whether q|p.

The time complexity to solve these problems we denote by TPIT(P), TFactor(P|Q),
and TDiv(P/Q), respectively.
▶ Remark. Note that a decision algorithm for PIT(P) also yields an algorithm that computes
a point a ∈ (F\{0})n such that p(a) ̸= 0, in case when p ̸≡ 0. In the blackbox case, the
queries of the decision algorithm on the input of the zero-polynomial yield a hitting set 1

for the whole class P. In the whitebox case, one can search for a by by assigning values
successively to the variables and do kind of a self-reduction. For each variable, one tries at
most d values from {1, 2, . . . , d} for a polynomial of degree d. If they all give 0, definitely
d + 1 works because it cannot be zero at (d + 1) many values. With n variables, this amounts
to nd calls to the PIT-decision algorithm. The final desired point a ∈ {1, · · · , d + 1}n, which
is very explicit. The running time to compute a is therefore bounded by nd · TPIT(P).

For time complexity, we assume that the polynomials are given in some model of compu-
tation, such as circuits, branching programs, or formulas. With each model, we associate a
complexity measure µ : F[z] → N. For example, let f ∈ F[z], some of the commonly used
measures in the literature are:

µ(f) = sp(f), the number of monomials with nonzero coefficients,
µ(f) = size∆(f), the size of the smallest depth-∆ algebraic circuit computing f ,
µ(f) = sizeROABP(f), the width of the smallest any-order read read-once oblivious
branching program (ROABP) computing f .

We define classes of polynomials of bounded measure,

Cµ(s, n, d) := { f ∈ P(n, d) | µ(f) ≤ s } . (1)

We generally assume that all polynomials we deal with can be efficiently evaluated at
any point a ∈ Fn within the respective measure, where we consider the unit-cost model for
operations over F. This holds for all the computational models usually considered in the
literature.

▶ Definition 5 (Closure under derivatives). Class Cµ(s, n, d) is closed under derivatives, if
for any f ∈ Cµ(s, n, d), a variable z ∈ {z1, · · · , zn}, and e ∈ N, the size of the derivative
µ(∂ef/∂ze) = poly(snd), and further it can be computed in poly(snd) time from f .

1 H ⊆ Fn is a hitting set for a class P, if for every nonzero f ∈ P, there exists a ∈ H, such that f(a) ̸= 0.

APPROX/RANDOM 2024

75:8 Derandomizing Multivariate Polynomial Factoring for Low Degree Factors

▶ Definition 6 (Closure under highest degree). Let f =
∑d

k=0 fk(z) ∈ Cµ(s, n, d),
where fk(z) = Homk[f], the homogeneous component of f of degree k. We say that Cµ(s, n, d)
is closed under highest degree component if in the above, µ(fd) ≤ poly(snd), and further it
can be computed in poly(snd) time from f .

For example, if the class contains polynomials where each is a product of constant-degree
polynomials, then it is not closed under homogenization (i.e. µ(fk) ≤ poly(snd) and it can
be computed in polynomial time). However, the highest-degree component is still a product
of constant-degree polynomials. Other classes that are closed under the highest degree are
sparse polynomials, polynomials computed by polynomial size any-order ROABPs, or by
constant-depth circuits.

Finally, we define Hom[Cµ(s, n, d)], as follows:

Hom[Cµ(s, n, d)] := { f ∈ P(n, d) | g ∈ Cµ(s, n, d) and f = Homd[g] } . (2)

When the context and the parameters are clear, we will simply denote the classes as C and
Hom[C], without explicitly writing the parameters.

2.2 Transformation to a monic polynomial
Algorithms for factoring polynomials often assume that the given polynomial is monic. If
this is not the case for the given polynomial f , we apply a transformation τ to f that yields
a monic polynomial τ(f) that we can factor. From the factors of τ(f) we can then reveal the
factors of f . Although this is standard in the literature, we state it in terms of the symbols
that we introduced above.

▶ Lemma 7 (Transformation to monic). Let C be a class of polynomials that is closed under
highest degree component. Let f(z) ∈ C be n-variate of degree d and size s. For a new
variable x, and α = (α1, . . . , αn) ∈ (F\{0})n, define a linear transformation τα on the
variables zi:

τα : zi 7→ αix + zi,

where αi ̸= 0, for i = 1, 2, . . . , n. Let fα(x, z) be the resulting polynomial.
Then we can compute α such that 1

fd(α) fα(x, z) is monic in x in time nd · TPIT(Hom[C]) +
poly(snd), where fd = Homd[f].

Proof. Let f(z) ∈ C be a polynomial of degree d with n variables z = (z1, . . . , zn) .
To see what the transformation does, let

f = f0 + f1 + · · · + fd,

where fk = Homk[f], the homogeneous degree-k component of f . Consider the degree-d
component,

fd(z) =
∑

|β|1=d

cβzβ.

Then, for fα, we have degx(fα) = d and the coefficient of the leading x-term xd in fα is
fd(α) =

∑
|β|1=d cβαβ.

Hence, the PIT algorithm for the homogeneous component fd of f yields an α ∈ (F\{0})n

such that fd(α) ̸= 0. Then the polynomial 1
fd(α) fα(x, z) is monic in x. For simplicity of

notation, assume in the following that fd(α) = 1, so that fα(x, z) is monic in x. ◀

P. Dutta, A. Sinhababu, and T. Thierauf 75:9

Since we work with the shifted polynomial, we need to ensure that the shift of variables
does not affect the irreducibility of the factors; this is guaranteed by the following lemma.
This is quite standard in the literature; for a nice proof, see [29, Lemma B7].

▶ Lemma 8. Let f(z) ∈ F[z] be an n-variate irreducible polynomial. Then, for every a ∈ Fn,
the polynomial f(ax + z) is also irreducible.

2.3 Divisibility testing reduces to PIT
Strassen [38] showed that if g | f , where both f and g can be computed by size s circuits, then
h := f/g can also be computed by a circuit of size poly(sd), where d = deg(h). Forbes [9]
observed that this procedure can still be done, even when g ∤ f , and we will get a small size
circuit computing a polynomial h̃. We can then argue that g divides f if and only if f = g · h̃.
The latter question is a PIT question.

▶ Lemma 9 (Divisibility reduces to PIT, [9, Corollary 7.10]). Let g(z) and f(z) be two
polynomials of degree at most d. Let S ⊆ F be a poly(d)-explicit set such that |S| =
2d2 + 1. Further let α ∈ Fn such that g(α) ̸= 0. Then there are poly(d)-explicit constants
{cβ,i}β∈S,0≤i≤d, such that

g(z) | f(z) ⇐⇒ f(z + α) − g(z + α) ·
∑
β∈S

f(βz + α)
∑

0≤i≤d

cβ,i · g(βz + α)i = 0

2.4 Effective Hilbert’s Irreducibility Theorem
An effective version of Hilbert’s Irreducibility Theorem due to Kaltofen and von zur Gathen
shows how to project a multivariate irreducible polynomial down to two variables, such that
the projected bivariate polynomial stays irreducible. The proof shows the existence of an
irreducibility certifying polynomial G(a, b) in 2n variables corresponding to the irreducible
polynomial g(x, z). The nonzeroness of G proves the irreducibility of g(x, z) and also gives a
way to find an irreducibility-preserving projection to bivariate (see [17, 20, 27]).

▶ Theorem 10. Let g(x, z) be an irreducible polynomial of total degree δ with n + 1 variables
that is monic in x. There exists a nonzero polynomial G(a, b) of degree 2δ5 in 2n variables
such that for α, β ∈ Fn,

G(α, β) ̸= 0 =⇒ ĝ(x, t) = g(x, α1t + β1, . . . , αnt + βn) is irreducible.

The certifying polynomial G immediately yields a randomized algorithm to construct the
irreducible projection ĝ via PIT. The derandomization of Hilbert’s Irreducibility Theorem is
a challenging open problem in general. We observe that it can be derandomized for constant
degree polynomials.

2.5 Basics of factoring and interpolation
Berlekamp [2] and Lenstra, Lenstra and Lovász [30] gave efficient factorization algorithms
for univariate polynomials over finite fields and Q, respectively. Kaltofen [18] showed how
to reduce the factorization of bivariate polynomials to univariate polynomials. In fact, the
reduction works for k-variate polynomials, for any constant k. In our case, we use it for the
case k = 3.

Via standard interpolation, one can assume that the input is given as a dense representa-
tion.

APPROX/RANDOM 2024

75:10 Derandomizing Multivariate Polynomial Factoring for Low Degree Factors

▶ Lemma 11 (Trivariate Factorization). Let f(x, y, z) be a trivariate polynomial of degree d.
Then there exists an algorithm that outputs all its irreducible factors and their multiplicities
in time poly(d).

The following lemma shows how to find the multiplicity of an irreducible factor g of a
polynomial f . It holds when char(F) = 0, or, large. For a concise proof, see [28, Lemma 4.1].

▶ Lemma 12 (Factor multiplicity). Let f(z), g(z) ∈ F[z] be non-zero polynomials and let
z ∈ {z1, · · · , zn} be such that ∂z(g) ̸= 0 and g is irreducible. Then the multiplicity of g in f

is the smallest non-negative integer e such that g ∤ ∂ef
∂ze .

Klivans and Spielman [24] derandomized the isolation lemma for PIT of sparse polynomials.
Their algorithm works over fields of 0 or large characteristics.

▶ Lemma 13 (Sparse PIT and interpolation). Given an n-variate s-sparse polynomial f of
degree d via blackbox access, PIT for f works in time poly(snd). Furthermore, if f is nonzero,
one can find the monomials in f with nonzero coefficients in time poly(snd).

▶ Remark. Let F = Q, for the simplicity. The interpolation algorithm in [24] works by
projecting f to a univariate polynomial in y via the map zi 7→ piy

wi , for pi are distinct
primes, and weights wi. They used univariate interpolation, to find the coefficients and
the exponents. If the input polynomial f is not s-sparse, one can still run the algorithm.
If at any moment while doing the univariate interpolation, it detects more than s many
nonzero coefficients, it stops, otherwise it will continue, and indeed at the end, output a
wrong s-sparse polynomial f̂ , such that (unfortunately) it matches at all the interpolating
values. Given s, n, d, the evaluation points on which the interpolation algorithm can be
thought as coming from a fixed set.

2.6 Isolation
Let Mδ be the set of monomials in n variables z = (z1, z2, . . . , zn) of degree bounded by δ,

Mδ = { ze | ||e||1 ≤ δ } . (3)

Note that Mδ is polynomially bounded, for constant δ,

|Mδ| ≤
(

n + δ

δ

)
≤ (n + δ)δ ≤ (δ + 1) nδ = O(nδ). (4)

There is a standard way to map the multivariate monomials in Mδ in a injective way to
univariate monomials of polynomial degree. For completeness, we describe the details.

Consider the standard Kronecker substitution on Mδ. Define

φ : zi 7→ y(δ+1)i−1
. (5)

By extending φ linearly to monomials ze ∈ Mδ, we get

φ : ze 7→ y
∑n

i=1
ei(δ+1)i−1

, (6)

Clearly, φ is injective on Mδ. However, the degree of y can be exponentially large, up
to (δ + 1)n. A way around is to take the exponents modulo some small prime number p. We
have to determine p in a way to keep the mapping injective on Mδ. Hence, for any two terms
ye, ye′ we get from φ, we have to ensure that e ̸≡ e′ (mod p). Equivalently p ̸ | (e − e′).

P. Dutta, A. Sinhababu, and T. Thierauf 75:11

We have |e − e′| ≤ (δ + 1)n and, by (4), there are (δ + 1)2n2δ many pairs e, e′ we get
from Mδ via φ. Prime p should not divide any of these differences, and hence, p should not
divide their product P . The product P is bounded by

P ≤ ((δ + 1)n)(δ+1)2n2δ

= (δ + 1)(δ+1)2n2δ+1
. (7)

Hence, P has at most log P ≤ R = (δ + 1)3 n2δ+1 many prime factors. By the Prime Number
Theorem, there are more than log P primes in the set [R2]. Hence, we can find an appropriate
prime p ≤ R2 = nO(δ).

▶ Lemma 14. There is a prime p = nO(δ) such that the linear extension of

φp : zi 7→ ywi , where wi = (δ + 1)i−1 mod p , for i = 1, 2, . . . , n, (8)

to monomials is injective on Mδ. Moreover, we can find such a p in time nO(δ) and compute
and invert φp in time nO(δ).

Proof. We already argued about the existence of prime p. For the running time, recall that
|Mδ| = O(nδ). Therefore we can search for p and check whether it works on Mδ in time nO(δ).
At the same time we can compute pairs of exponents (e, k) such that φp(ze) = yk. These
pairs can be used to invert φp. ◀

The mapping φp in Lemma 14 maintains factors of degree δ of a polynomial in the
following sense.

▶ Lemma 15. Let polynomial f(z) factor as f = gh, where g(z) has degree δ. Let φp be the
map from Lemma 14. Then we have φp(f) = φp(g)φp(h), and g can be recovered from φp(g)
in time nO(δ).

Note that in Lemma 15, we do not claim that irreducibility is maintained: when g is
irreducible, still φp(g) might be reducible. Consider the example n = δ = 2. The weights
{1, 3} make sure that each monomial z2

1 , z1z2, z2
2 gets mapped to a distinct power in y. Let

g(x, z) = x2 − z1z2. Observe that g is irreducible, however g(x, y, y3) = (x − y2)(x + y2) is
reducible.

We combine Lemma 14 and Theorem 10 to obtain a projection of a multivariate polynomial
to a 3-variate polynomial that maintains irreducibility of polynomials up to degree δ.

▶ Corollary 16. Let g(x, z) be an irreducible polynomial of constant degree δ with n + 1
variables that is monic in x. There exists w, w′ ∈ Fn with wi, w′

i = npoly(δ) such that

Ψ(g) = g(x, yw1t + yw′
1 , . . . , ywnt + yw′

n) ∈ F[x, y, t] (9)

is irreducible. Moreover, we can compute and invert Ψ(g) in time npoly(δ).

Proof. Let G(a, b) be the polynomial of degree 2δ5 in 2n variables provided by Theorem 10
for g. Let w, w′ ∈ Fn with wi, w′

i = npoly(δ) be the exponents we get from Lemma 14 for G.
That is,

Ĝ(y) = G(yw1 , . . . , ywn , yw′
1 , . . . , yw′

n) ̸= 0 .

Now, suppose that Ψ(g) is reducible. Then it would also be reducible at a point y = α,
where Ĝ(α) ̸= 0. But then ĝ(x, t) = Ψ(g)(x, α, t) would be reducible too, and this would
contradict Theorem 10. We conclude that Ψ(g) is irreducible.

APPROX/RANDOM 2024

75:12 Derandomizing Multivariate Polynomial Factoring for Low Degree Factors

For the complexity, we first determine prime p from Lemma 14 and then get the
weights w, w′ from above. For a given g(x, z) =

∑
k,e ck,exkze, we can compute Ψ(g)

in time npoly(δ). For a monomial of g, the mapping looks as follows:

ck,e xk ze 7→ ck,e xk
n∏

i=1
(ywit + yw′

i)ei . (10)

To compute g from Ψ(g), set t = 0, i.e. consider Ψ(g)(x, y, 0). From (10) we see that
monomials then have the form

ck,e xk y
∑n

i=1
eiw′

i .

From these we get the exponents k and e similar as in the proof of Lemma 14. ◀

▶ Remark. In Corollary 16, when we say that we invert Ψ, it means that for a given h ∈
F[x, y, t] which is monic in x with x-degree ≤ δ, we either detect that h is not in the codomain
of Ψ, or we compute g ∈ F[x, z] such that Ψ(g) = h in time npoly(δ).

The inversion can be done similarly as described in the proof of Corollary 16. One can
evaluate t = 0, and then for every monomial xkyj , try to find xkze that would map to such
a monomial at t = 0. By the property of the map, while mapping the y-degrees, z-degree
could be at most δ, i.e. deg(xkze) ≤ 2δ. We will, of course, return empty if the degree of
any such monomial, after inverting, becomes > δ. Finally, once we have got a candidate g of
degree δ, we still have to check whether Ψ(g) = h, because the inversion procedure ignores
the variable t. The last step can also be efficiently checked.

The polynomial g of degree δ we considered so far can be thought to be a constant-degree
factor of a given polynomial f of degree d. Our goal would be to compute g. It is now easy
to extend the above results to hold for all degree-δ factors of f simultaneously.

▶ Corollary 17. Let f(x, z) be a polynomial of degree d with n + 1 variables that is monic
in x, and let δ be a constant. There exists w, w′ ∈ Fn with wi, w′

i = dnpoly(δ) such that for
any irreducible factor g of degree δ of f , we have that Ψ(g) is an irreducible factor of Ψ(f).

Proof. The proof goes along the lines of Corollary 16, but we choose the weights slightly larger
so that the Ĝ(y) polynomials for all the degree-δ factors g of f are non-zero simultaneously.
That is, we choose prime p in Lemma 14 as p = dnpoly(δ). ◀

Finally, we conclude this subsection by a general remark that whenever n and δ are fixed,
these weights are fixed and can be found efficiently.

3 Computing the low-degree factors

For a size measure µ, we consider a class of polynomials C = Cµ(s, n, d) ⊆ P(n, d) such that
C is closed under derivatives. Many classes C in the literature fulfill this condition. Useful
for us are in particular sparse polynomials, polynomials computed by poly-size any-order
ROABPs or by constant-depth circuits. For a constant δ ∈ N, let D = P(n, δ).

Our first theorem shows that for any polynomial f ∈ C, all the factors of f that are
in D can be computed in polynomial time with oracles for PIT for Hom[C] and divisibility
testing C by D.

▶ Theorem 18. Factor(C|D) can be solved deterministically in time

nd · TPIT(Hom[C]) + d2npoly(δ) · TDiv(C/D) + poly(s, npoly(δ), d).

Proof. Let f(z) ∈ C. To compute the factors of degree δ of f , we first do some transformations.
The first step is to make f monic in a new variable x via Lemma 7. Let fα(x, z) be monic.

P. Dutta, A. Sinhababu, and T. Thierauf 75:13

Then we apply Corollary 17 to fα(x, z). That is we compute the weights w, w′ ∈ Fn

bounded by dnpoly(δ) and explicitly compute Ψ(fα) ∈ F[x, y, t] of degree at most d̃ = d2 npoly(δ).
Note that the x-degree of fα has not changed by mapping Ψ. In the blackbox case, we can
interpolate and reconstruct the polynomial in time poly(sd̃)

The next step is to factor 3-variate Ψ(fα). This can be done efficiently Lemma 11.
Finding and listing all the irreducible factors takes time poly(d̃).

Having the factors of Ψ(fα) in hand, we invert transformations Ψ and τα on the factors.
Let g̃ be a factor of Ψ(fα). By Corollary 17, if g indeed corresponds to a δ-degree factor of f ,
then τα(g) corresponds to a δ-degree factor of τα(f). Therefore, the inverse transformations
will yield g. Formally, the factor is g = τ−1

α (Ψ−1(g̃)).
However g̃ might also not correspond to a degree-δ factor of f . In this case, either the

inverse transformation does not go through properly, or the degree we get is larger than δ.
In these cases, we can immediately throw away g̃; see the remark after Corollary 16. But
it could also be that we actually obtain a polynomial g of degree δ, just that it is not a
factor of f . For that reason, we finally do a divisibility check whether g|f . That way we will
compute all factors of f of degree δ.

For the time complexity of the factoring algorithm, we have nd · TPIT(Hom[C]) for trans-
forming f to to monic fα by Lemma 7. Time poly(d npoly(δ)) is used for map Ψ and the
factoring of Ψ(fα). Similar time is taken to invert and get the candidate factors. Finally, we
have at most d2npoly(δ) candidate polynomials g for which we test divisibility of g|f . ◀

▶ Remark. Theorem 18 can be applied in different algebraic models. Furthermore, if a class
is closed under highest degree, one can simply assume PIT for C. In particular, if we work
with algebraic formulas, or algebraic branching programs (ABPs), then the above theorem
along with the divisibility lemma Lemma 9 implies that we need PIT for the same class, to
deterministically find the constant-degree factors.

The following pseudo-code summarizes the algorithm given in the proof of Theorem 18.

Algorithm 1 Computing factors of degree ≤ δ.
Input : f(z), s, and δ, where f is an n-variate polynomial of degree d such that µ(f) ≤ s,

and δ is a constant.
Output : A list of irreducible polynomials of degree ≤ δ, which are factors of f , along with

the factor-multiplicities.
1 Set the output list L = ∅. Set the intermediate candidates list L′ = ∅.
2 Make a monic transformation τα : zi 7→ αix + zi, according to Lemma 7. Let

fα(x, z) := τα(f).
3 Find weights w, w′ bounded by dnpoly(δ) according to Corollary 17 and compute

Ψ(fα) ∈ F[x, y] in dense representation.
4 Factorize the trivariate polynomial Ψ(fα) according to Lemma 11. Let S be the set of all

≤ δ degree factors in x of Ψ(fα) in dense representation.
5 for g̃ ∈ S do

/* Computing candidate factors via divisibility */
6 Compute ĝ = Ψ−1(g̃) (if the inverse exists) of degree ≤ δ by Corollary 16.
7 Compute g = τ−1

α (ĝ).
8 If g | f then add g to L′.
9 for g ∈ L′ do

/* Computing multiplicities via Lemma 12 */
10 Let z ∈ {z1, . . . , zn} be any variable that g depends on, so that ∂z(g) ̸= 0.
11 Find the smallest e ≥ 0 such that g ∤ ∂ef

∂ze .
12 if e > 1 then add (g, e) to the list L.
13 return L

APPROX/RANDOM 2024

75:14 Derandomizing Multivariate Polynomial Factoring for Low Degree Factors

4 Computing the factors of a constant degree product

Now, we want to output the constant-degree irreducible factors in the promise case.
It is still an open question to test in deterministic polynomial time if a quadratic

polynomial (or any non-linear polynomial whose total degree is upper bounded by a constant)
divides another polynomial f , even when f is a sparse polynomial. In the above theorem f

may not be sparse and we have only blackbox access to it. Thus, the proof for Theorem 2 is
a bit different from Theorem 1.

▶ Theorem 19. Given blackbox access to an n-variate degree-d polynomial f =
∏s

i=1 gei
i ,

where gi are irreducible polynomials with deg(gi) ≤ δ, one can deterministically output all
(gi, ei) in time poly(dnpoly(δ)).

Proof. The first step of the algorithm is to make f(z) monic in a new variable x via Lemma 7.
One can find an α ∈ (F\{0})n in poly(d, nδ) time by using the hitting set for polynomials of
degree ≤ δ; see [7, 5].

Next step is to apply Corollary 16 to fα(x, z). Find the weights w, w′ ∈ Fn, each bounded
by dnpoly(δ). Observe that Ψ(fα) ∈ F[x, y, t], of degree at most d̃ := d2npoly(δ). By the same
lemma, we know that for any irreducible factor g of f , we have that Ψ(g) is an irreducible
factor of Ψ(f)

The next step is to explicitly compute the trivariate polynomial Ψ(fα). Since, the degree
of the polynomial is at most d̃, one can interpolate and reconstruct the polynomial, from its
blackbox access, in time poly(sd̃). Note that s ≤ d.

The next step is to factorize Ψ(fα). This can be done efficiently using Lemma 11. Finding
and listing all the irreducible factors takes time poly(d̃).

The next step is to invert the transformation Ψ−1 on the factors computed in the previous
step. This can be done efficiently in time poly(dnpoly(δ)); see Corollary 16 and its remark.
Let g̃ be a factor of φ(fα). Output g = τ−1

α (Ψ−1(g̃)).

Algorithm 2 Promise factors of degree ≤ δ.

Input : An n-variate, degree d polynomial f(z), and a constant δ, and a promise
that all its irreducible factors have degree ≤ δ.

Output : All the irreducible factors of f , along with the multiplicities.

1 Set the output list L = ∅.
2 Make a monic transformation τα : zi 7→ αix + zi, according to Lemma 7. Let

fα(x, z) := τα(f).
3 Find weights w, w′ bounded by dnpoly(δ) according to Corollary 17 and compute

Ψ(fα) ∈ F[x, y] in dense representation.
4 Factorize the trivariate polynomial Ψ(fα) according to Lemma 11. Let S be the set

of irreducible factors of Ψ(fα) along with its multiplicities as a tupple.
5 for (g̃, e) ∈ S do

/* Computing the irreducible factors via inversion */
6 Compute ĝ = Ψ−1(g̃), by Corollary 16 and its remark.
7 Compute g = τ−1

α (ĝ), and add (g, e) to L.
8 return L

P. Dutta, A. Sinhababu, and T. Thierauf 75:15

Now, we discuss the correctness of the output. By assumption, f = ge1
1 · · · ges

s where
gi ∈ D. Therefore, Ψ(τα(f)) = Ψ(τα(g1))e1 · · · Ψ(τα(gs))es . Furthermore, by choice of w, w′,
we know the following facts.

1. The polynomials Ψ(τα(gi)) ∈ F[x, y, t] are irreducible over F, for all i = 1, . . . , s.

2. Ψ(τα(gi)) ̸= Ψ(τα(gj)), for i ̸= j.

3. One can uniquely recover gi from Ψ(τα(gi)), using Corollary 16 and its remark.

This implies that the factoring pattern of f and Ψ(τα(f)) remain the same, and can be
recovered by simply looking at the factorization of Ψ(τα(f)).

Time complexity. To make f monic, we find vector α in time poly(dnδ). Interpolation
and trivariate factorization of a degree-d̃ polynomial takes time poly(d̃) = poly(dnpoly(δ)),
see Lemma 11. Inverting each of them to get the original factor also takes time poly(dnpoly(δ)).

◀

5 Finding sparse factors reduces to sparse irreducibility

Let f be an n-variate irreducible polynomial of degree d. Let α ∈ (F\{0})n, such that

fd(α) ̸= 0, where fd = Homd[f] is the homogeneous degree − d component of f .

Using Lemma 7 and Lemma 8, one can conclude that f̂(x, z) := f(αx + z) is a monic
irreducible (n + 1)-variate polynomial of degree d.

On the other hand Theorem 10 shows that for a random β, γ ∈ Fn, the bivariate
polynomial

f(αx + βt + γ) = f̂(x, βt + γ) ∈ F[x, t] ,

remains irreducible. When the degree of f is a constant, such an irreducibility preserving
reduction can be efficiently derandomized; see Corollary 16. Formally, we should think of it
as a derandomization for the class of constant degree polynomials. In Corollary 16, one can
think of evaluating y at polynomially many points to find the right β, γ, while the point α

comes from an efficient PIT algorithm for fd. Note that any α ∈ (F\{0})n suffices as long as
fd(α) ̸= 0.

Let α ∈ (F\{0})n. We define a set Sα(s, n, d) as follows.

Sα(s, n, d) := {f ∈ P(n, d) | f is irreducible, sp(f) ≤ s, and Homdeg(f)[f](α) ̸= 0} . (11)

Motivated by the efficient derandomization of irreducibility preserving bivariate projections
for constant degree polynomials, we assume the following.
▶ Assumption 1 (Sparse irreducible projection). Let α ∈ (F\{0})n, and Sα(s, n, d) ⊆ P(n, d)
as defined in Equation (11). Then, there is a deterministic subexponential time algorithm to
find an explicit set Hα ⊆ F2n of size subexponential, such that for any f ∈ Sα(s, n, d), there
exists (β, γ) ∈ Hα such that f(αx + βt + γ) remains irreducible.
▶ Remark. Assuming the above, one can decide whether an s-sparse degree-d polynomial
f is irreducible or not in subexponential time. To do this, one can find α ∈ (F\{0})n such
that Homd[f](α) ̸= 0, in time poly(snd), using [24]. Hence, one can find a set Hα such that
f(z) is reducible if and only if f(αx + βt + γ) is reducible, for every (β, γ) ∈ Hα. Whether
a bivariate polynomial is reducible can be checked in time poly(d) (Lemma 11).

APPROX/RANDOM 2024

75:16 Derandomizing Multivariate Polynomial Factoring for Low Degree Factors

Using Assumption 1, one can design an efficient deterministic algorithm to output sparse
irreducible factors of a sparse polynomial.

▶ Theorem 20 (Efficient sparse factoring). Let f ∈ F[z] be an s-sparse polynomial of degree
d. If Assumption 1 holds, then there is a deterministic subexponential time algorithm that
outputs all its irreducible factors with sparsities ≤ s, along with the multiplicities.

Proof. Assume that g is a s-sparse irreducible factor of f with multiplicity e, i.e., f = ge · R,
where gcd(g, R) = 1. Assume that deg(g) = d1, and deg(R) = d2. We will argue that
Algorithm 3 correctly outputs (g, e). Let α ∈ (F\{0})n, such that Homd[f](α) ̸= 0. Observe
that Homd[f] = (Homd1 [g])e · Homd2 [R]. Therefore, it must hold that Homd1 [g](α) ̸= 0,
implying g ∈ Sα(s, n, d).

By Assumption 1, we know that there exists a subexponential time algorithm to find a
set Hα such that g(αx + βt + γ) remains irreducible for some (β, γ) ∈ F2n. We call (β, γ) a
“good” point for g.

For such a good point, the set S in Line 6 of Algorithm 3 must contain g(αx + βt + γ).
Pick any c ∈ Fn. Observe that g̃(x, t1, t2) := ϕc(g) = g(αx + βt1 + (c − γ)t2 + γ) is a
monic polynomial in x. Further, g̃ remains irreducible, since g̃(x, t, 0) = g(αx + βt + γ)
is irreducible by the choice of a good point (β, γ). Hence, S′ in Line 10 must contain the
polynomial g̃.

One can find the corresponding factor in Line 12, and suppose the corresponding index is
j. Note that g̃(0, 0, 1) = g(c).

From the above, one can conclude that the L′
j contains (j, c, g(c)). One can now do the

sparse interpolation using [24], to reconstruct g; see Lemma 13. Since g | f , this is correctly
detected and added to the list L′. This is being discussed in Line 15-16.

Further, by our choice of a good point (β, γ) ∈ Hα, the bivariate g(αx + βt + γ) remains
irreducible, and hence it successfully passes Line 19. Since g is a nontrivial polynomial, one
can find a variable z ∈ {z1, . . . , zn} such that ∂z(g) ̸= 0 in Line 20. Using Lemma 12, one
can conclude that indeed Line 22 adds (g, e) to the list L.

From the above analysis, we know that Algorithm 3 always outputs g with the corres-
ponding multiplicity. On the other hand, Line 15 makes sure that the candidate polynomial
is indeed at most s-sparse (see Lemma 13) and Line 16, by the divisibility testing, makes
sure it detects a wrong sparse factor. What could have happened is L′ contains factors which
are s-sparse reducible polynomials dividing f .

Line 19 again uses Assumption 1 to check if it is indeed irreducible or not. Finally, Line
20-22 make sure that the Algorithm 3 never outputs the correct multiplicity. This finishes
the correctness of the algorithm.

Running time analysis. Since f is s-sparse, one can find an α ∈ Fn, such that Homd[f](α) ̸=
0, in poly(snd) time [24].

Line 6-10 take poly(d) time, since bivariate/trivariate interpolation and factorization can
be done efficiently Lemma 11.

Line 15 can be done using the sparse interpolation algorithm in poly(snd) time [24]. Line
16 requires whether a given s-sparse polynomial Pj divides another s-sparse polynomial f

or not. Using the techniques from [9] (Lemma 9), this divisibility question can be reduced
to a PIT instance of a constant-depth circuit, for which there is a subexponential time
algorithm [31].

Line 19 is again bivariate factorization Lemma 11 which can be done in poly(d) time.

P. Dutta, A. Sinhababu, and T. Thierauf 75:17

Further, ∂ef
∂ze is at most s-sparse. Hence, the divisibility question of whether P | ∂ef

∂ze in
Line 21, can be similarly done in subexponential time. Finally, since |Hα| is subexponentially
large, the overall running time remains subexponential. ◀

Algorithm 3 Computing s-sparse factors.

Input : An n-variate, degree d polynomial s-sparse polynomial f(z).
Output : A list of irreducible s-sparse polynomials which are factors of f , along with

the factor-multiplicities.

1 Set the output list L = ∅. Set the intermediate candidate list L′ = ∅.
2 Use Lemma 13 to find an α ∈ (F\{0})n such that Homd[f](α) ̸= 0.
3 Use Assumption 1 to find a set Hα.
4 for each (β, γ) ∈ Hα do
5 Let ϕ : zi 7→ αix + βit + γi. Compute f̂ := ϕ(f) ∈ F[x, t], as a dense

representation.
6 Factorize the bivariate polynomial f̂ over F. Let S = {g1(x, t), . . . , gm(x, t)} be

the set of its irreducible factors.
7 Set m many interpolating lists L′

j = ∅, for j ∈ [m].
8 Fix c = (c1, . . . , cn) ∈ Fn. /* These points are the evaluation points

for which s-sparse interpolation succeeds */
9 For new variables t1 and t2, define a new map

ϕc : zi 7→ αix + βit1 + (ci − γi)t2 + γi. Compute f̃c := ϕc(f) ∈ F[x, t1, t2], as a
dense representation.

10 Factorize the trivariate f̃c over F. Let S′ = {h1(x, t1, t2), . . . , hr(x, t1, t2)} be the
set of its irreducible factors.

11 for hi ∈ S do
/* Computing the unique correspondence between bivariate and

trivariate factors, and the evaluations */
12 Find the unique j ∈ [m] such that hi(x, t, 0) = gj(x, t), if exists, otherwise go

to the next factor in S.
13 Evaluate hi(0, 0, 1), and add (j, c, hi(0, 0, 1)) to L′

j .
14 for j ∈ [m] do

/* Computing candidate sparse factors via interpolation and
divisibility */

15 Use sparse interpolation algorithm (Lemma 13) to find an s-sparse polynomial
Pj , if exists, such that Pj(c) = θ where (j, c, θ) ∈ L′

j .
16 Check if Pj | f , or not. If yes, then update L′ = {Pj} ∪ L′.
17 return L′

18 for each P ∈ L′ do
/* Deciding irreducibility and computing multiplicities via

Lemma 12 */
19 Check if P is irreducible, using Assumption 1 and its remark. If it is not

irreducible, STOP, and go to the next polynomial in L′.
20 Otherwise, let z ∈ {z1, . . . , zn} be any variable that P depends on, so that

∂z(P) ̸= 0.
21 Find the smallest e ≥ 1 such that P ∤ ∂ef

∂ze and add (P, e) to the list L.
22 return L

APPROX/RANDOM 2024

75:18 Derandomizing Multivariate Polynomial Factoring for Low Degree Factors

▶ Remarks.
1. Assumption 1 is true for constant degree polynomials and can be solved in polynomial

time Corollary 16. Therefore, Algorithm 3 can be used to give an alternative proof
of Theorem 18. This is because for f ∈ C, we need to find α, such that Homd[f](α) ̸=
0, which is given by the PIT oracle for C. Once the α is found, Hα can be found
for the constant-degree polynomials, that preserves irreducibility; see Corollary 16.
Additionally, the algorithm requires some divisibility testing by the candidate constant-
degree polynomials, which is done using the divisibility testing Div(C/D).

2. Theorem 20 can be generalized to the input and output polynomials being computed by
constant-depth circuits, by analogously changing the Assumption 1 for constant-depth
circuits. In this case, we will only be able to output the factors as blackbox (because
efficient reconstruction for constant-depth circuits is still unknown). Note that whether a
constant-depth circuit divides another constant-depth circuit can be deterministically
decided in subexponential time.

6 Conclusion

We conclude with some open questions.
1. Can we decide whether a given sparse polynomial is irreducible in deterministic subex-

ponential time? The proof may already give a good bivariate projection that preserves
irreducibility. Then Theorem 20 would give us a deterministic subexponential-time
algorithm to find irreducible sparse factors of a sparse polynomial.

2. Can we find bounded individual degree sparse factors of a sparse polynomial (without any
bound on the individual degree) in deterministic quasipolynomial time? Volkovich asked
if multilinear factors of a sparse polynomial can be found in deterministic polynomial
time [39].

3. Can one compute all the factors of a sparse polynomial/constant depth circuit by constant
depth circuits of small size? At least, can one find all the factors that are computable
in constant depth? The recent result in [29] gives a deterministic subexponential-time
algorithm that outputs a list of circuits (of unbounded depth and possibly with division
gates) that includes all such factors.

4. Given a blackbox computing the product of sparse irreducible polynomials fi with bounded
individual degree, find fi’s in deterministic polynomial time. [3] gives a quasipolynomial
time algorithm, when the input is sparse with constant individual degree and the factors
are all sparse (polynomially upper bounded with respect to input polynomial’s sparsity).

References
1 Sanjeev Arora and Madhu Sudan. Improved low-degree testing and its applications. Combin-

atorica, 3(23), 2003.
2 Elwyn R Berlekamp. Factoring polynomials over large finite fields. Mathematics of computation,

24(111):713–735, 1970.
3 Vishwas Bhargava, Shubhangi Saraf, and Ilya Volkovich. Deterministic factorization of sparse

polynomials with bounded individual degree. Journal of the ACM (JACM), 67(2):1–28, 2020.
4 Pranav Bisht and Ilya Volkovich. On solving sparse polynomial factorization related problems.

In 42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 2022). Schloss-Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

5 Markus Bläser and Anurag Pandey. Polynomial identity testing for low degree polynomials
with optimal randomness. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM 2020). Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2020.

P. Dutta, A. Sinhababu, and T. Thierauf 75:19

6 Andrej Bogdanov. Pseudorandom generators for low degree polynomials. In Proceedings of
the thirty-seventh annual ACM symposium on Theory of computing, pages 21–30, 2005.

7 Nader Bshouty. Testers and their applications. In Proceedings of the 5th conference on
Innovations in theoretical computer science, pages 327–352, 2014.

8 Ashish Dwivedi, Zeyu Guo, and Ben Lee Volk. Optimal pseudorandom generators for low-degree
polynomials over moderately large fields. arXiv preprint, 2024. arXiv:2402.11915.

9 Michael A Forbes. Deterministic divisibility testing via shifted partial derivatives. In 2015
IEEE 56th Annual Symposium on Foundations of Computer Science, pages 451–465. IEEE,
2015.

10 Michael A Forbes, Ramprasad Saptharishi, and Amir Shpilka. Hitting sets for multilinear
read-once algebraic branching programs, in any order. In Proceedings of the forty-sixth annual
ACM symposium on Theory of computing, pages 867–875, 2014.

11 Zeyu Guo and Rohit Gurjar. Improved explicit hitting-sets for roabps. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2020). Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2020.

12 Ankit Gupta. Algebraic geometric techniques for depth-4 pit & sylvester-gallai conjectures for
varieties. In Electronic Colloquium on Computational Complexity (ECCC), volume 21, 2014.

13 Rohit Gurjar, Arpita Korwar, Nitin Saxena, and Thomas Thierauf. Deterministic identity
testing for sum of read-once oblivious arithmetic branching programs. computational complexity,
26:835–880, 2017.

14 Ming-Deh Huang and Yiu-Chung Wong. Extended hilbert irreducibility and its applications.
Journal of Algorithms, 37(1):121–145, 2000.

15 Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests means
proving circuit lower bounds. In Proceedings of the 35th ACM Symposium on Theory of
Computing (STOC), pages 355–364. ACM, 2003.

16 Erich Kaltofen. Computing with polynomials given by straight-line programs I: greatest
common divisors. In Proceedings of the 17th Annual ACM Symposium on Theory of Computing,
May 6-8, 1985, Providence, Rhode Island, USA, pages 131–142, 1985.

17 Erich Kaltofen. Effective hilbert irreducibility. Information and Control, 66(3):123–137, 1985.
18 Erich Kaltofen. Polynomial-time reductions from multivariate to bi-and univariate integral

polynomial factorization. SIAM Journal on Computing, 14(2):469–489, 1985.
19 Erich Kaltofen. Factorization of polynomials given by straight-line programs. Randomness

and Computation, 5:375–412, 1989.
20 Erich Kaltofen. Effective noether irreducibility forms and applications. Journal of Computer

and System Sciences, 50(2):274–295, 1995.
21 Erich Kaltofen and Barry M. Trager. Computing with polynomials given byblack boxes for

their evaluations: Greatest common divisors, factorization, separation of numerators and
denominators. Journal of Symbolic Computation, 9(3):301–320, 1990.

22 Neeraj Kayal. Efficient algorithms for some special cases of the polynomial equivalence problem.
In Dana Randall, editor, Proceedings of the Twenty-Second Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January 23-25, 2011,
pages 1409–1421. SIAM, 2011. doi:10.1137/1.9781611973082.108.

23 Neeraj Kayal. Affine projections of polynomials. In Proceedings of the forty-fourth annual
ACM symposium on Theory of computing, pages 643–662, 2012.

24 Adam R Klivans and Daniel Spielman. Randomness efficient identity testing of multivariate
polynomials. In Proceedings of the thirty-third annual ACM symposium on Theory of computing,
pages 216–223, 2001.

25 Pascal Koiran and Nicolas Ressayre. Orbits of monomials and factorization into products of
linear forms. arXiv preprint, 2018. arXiv:1807.03663.

26 Pascal Koiran and Mateusz Skomra. Derandomization and absolute reconstruction for sums
of powers of linear forms. Theoretical Computer Science, 887:63–84, 2021.

APPROX/RANDOM 2024

https://arxiv.org/abs/2402.11915
https://doi.org/10.1137/1.9781611973082.108
https://arxiv.org/abs/1807.03663

75:20 Derandomizing Multivariate Polynomial Factoring for Low Degree Factors

27 Swastik Kopparty, Shubhangi Saraf, and Amir Shpilka. Equivalence of polynomial identity
testing and polynomial factorization. computational complexity, 24(2):295–331, 2015.

28 Mrinal Kumar, Varun Ramanathan, and Ramprasad Saptharishi. Deterministic algorithms for
low degree factors of constant depth circuits. In Proceedings of the 2024 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 3901–3918. SIAM, 2024.

29 Mrinal Kumar, Varun Ramanathan, Ramprasad Saptharishi, and Ben Lee Volk. Towards
deterministic algorithms for constant-depth factors of constant-depth circuits. arXiv preprint,
2024. arXiv:2403.01965.

30 Arjen K Lenstra, Hendrik Willem Lenstra, and László Lovász. Factoring polynomials with
rational coefficients. Mathematische annalen, 261:515–534, 1982.

31 Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas. Superpolynomial lower bounds
against low-depth algebraic circuits. In 2021 IEEE 62nd Annual Symposium on Foundations
of Computer Science (FOCS), pages 804–814. IEEE, 2021.

32 Dori Medini and Amir Shpilka. Hitting sets and reconstruction for dense orbits in vp_ {e} and
σπσ circuits. In 36th Computational Complexity Conference (CCC 2021). Schloss-Dagstuhl-
Leibniz Zentrum für Informatik, 2021.

33 C Ramya and BV Raghavendra Rao. Linear projections of the vandermonde polynomial.
Theoretical Computer Science, 795:165–182, 2019.

34 Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non-commutative
models. computational complexity, 14:1–19, 2005.

35 Nitin Saxena. Diagonal circuit identity testing and lower bounds. In Automata, Languages
and Programming: 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11,
2008, Proceedings, Part I 35, pages 60–71. Springer, 2008.

36 Amir Shpilka. Interpolation of depth-3 arithmetic circuits with two multiplication gates.
In Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, pages
284–293, 2007.

37 Gaurav Sinha. Reconstruction of real depth-3 circuits with top fan-in 2. In 31st Conference
on Computational Complexity (CCC 2016). Schloss-Dagstuhl-Leibniz Zentrum für Informatik,
2016.

38 Volker Strassen. Vermeidung von divisionen. Journal für die reine und angewandte Mathematik,
264:184–202, 1973.

39 Ilya Volkovich. Deterministically factoring sparse polynomials into multilinear factors and sums
of univariate polynomials. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM 2015). Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2015.

40 Ilya Volkovich. On some computations on sparse polynomials. In Approximation, Randomiz-
ation, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM
2017). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017.

41 Joachim von zur Gathen and Erich Kaltofen. Factoring sparse multivariate polynomials.
Journal of Computer and System Sciences, 31(2):265–287, 1985.

https://arxiv.org/abs/2403.01965

	p000-Frontmatter
	Preface
	Program Committees
	Subreviewers

	p001-Armbruster
	1 Introduction
	1.1 Our results and techniques
	1.2 Related Work
	1.3 Organization of the paper

	2 Our algorithm
	2.1 The LP relaxation and polyhedral basics
	2.2 Rounding an LP solution
	2.3 Derandomizing Algorithm 1

	3 Extending to several independent total orders: Proving Theorem 2
	4 Proof of Lemma 5

	p002-Chawla
	1 Introduction
	2 Definitions
	2.1 The Traveling Salesman Problem with Time-Windows
	2.2 The offline, online, and predictions settings
	2.3 The TW-TSP with service times

	3 Our results and an outline of our approach
	4 Relating the Optima
	5 The offline approximation
	6 The online algorithm
	7 Lower bounds
	7.1 Lower bounds for online TW-TSP without predictions
	7.2 Tight dependence on location error
	7.3 Comparing the optimal with and without service times

	p003-Dinitz
	1 Introduction
	1.1 Our Results and Techniques
	1.2 Other Related Work

	2 Lp-Survivable Network Design
	2.1 The Convex Program
	2.2 The Iterative Rounding Algorithm
	2.3 Analysis of the Algorithm

	3 A Tree Labeling Problem
	3.1 Construction of a super-tree T^o
	3.2 The LP relaxation for finding T = (V, E)
	3.3 The rounding algorithm

	4 Analysis of probabilities of group coverage
	4.1 Concentration bound on costs

	A Proof of Lemma 13
	B Reduction of Degree-Bounded Group Steiner Tree on Bounded-Treewidth Graphs to Tree-Labeling Problem

	p004-Fomin
	1 Introduction
	1.1 Our Result and Techniques
	1.2 Related Problems

	2 Bicriteria FPT Approximation Scheme in Euclidean Spaces
	2.1 Preprocessing
	2.2 Main Algorithm
	2.3 Analysis

	3 Conclusion and Future Directions

	p005-Mohan
	1 Introduction
	1.1 The Model
	1.2 Our Results
	1.3 Future Directions
	1.4 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Concentration Tools
	2.3 Coupling

	3 Sparse Random Graphs
	3.1 Phase 1: T_1 = delta/(2p)
	3.2 Phase 2: T_2 = T_2(n) such that omega/p le T_2 le n/omega
	3.3 Not Very Sparse Random Graphs
	3.4 Very Sparse Random Graphs

	4 Dense Random Graphs

	p006-Lokshtanov
	1 Introduction
	2 Preliminaries
	3 Our algorithm
	3.1 Preprocessing: reducing to the K_4-free case
	3.2 The main algorithm
	3.3 Analysis
	3.3.1 The quality of S_1
	3.3.2 The quality of S_2
	3.3.3 The quality of S_3
	3.3.4 Putting everything together

	4 Generalizations

	p007-Hastad
	1 Introduction
	2 Algorithm based on equations modulo 2
	3 Algorithm using Q
	4 Concluding remarks

	p008-Minarik
	1 Introduction
	1.1 Formal definitions
	1.2 Previous results
	1.3 Our results

	2 Preliminaries
	3 Sand
	3.1 Upper bound
	3.2 Lower bound

	4 Pebbles
	5 Bricks
	5.1 First stage algorithm Bricks
	5.2 Fractional solutions
	5.3 Second stage

	p009-Chandrasekaran
	1 Introduction
	1.1 Our Results
	1.2 Other Related Work

	2 NP-hardness
	2.1 Reduction from exact ell-cover
	2.2 NP-hardness for pin (0,1)

	3 APX-hardness for pin (0,1)
	4 Approximation Algorithms
	5 Conclusion
	A Missing proofs for NP-hardness
	A.1 Proof of Theorem 2
	A.2 Technical Lemmas for Hardness Results
	A.3 Proof of Lemma 5

	p010-Bohm
	1 Introduction
	2 Structure of the algorithm
	2.1 Item types
	2.2 Phases and states
	2.3 Bin types
	2.4 Proof overview

	3 Algorithm in the starting phase
	4 The fill-up phase
	4.1 Preliminaries
	4.2 Packing methods for non-hard items
	4.3 Hard (quarter^{+(+)} and large) items
	4.3.1 Sets considered for packing hard items
	4.3.2 Packing methods for hard items: Five stages

	p011-Martinsson
	1 Introduction
	1.1 History of Max-Cut
	1.2 NP-hardness inapproximability of Max-2Lin(2)
	1.3 Gadget reductions
	1.4 The Hadamard Max-CSPs Max-Hadk
	1.4.1 Historical overview of Hadk-to-2Lin(2) gadgets
	1.4.2 Our Hadk-to-2Lin(2) gadgets

	1.5 Our results and comparison to previous results
	1.6 The limitations of Hadk-to-2Lin(2) gadget reductions
	1.7 Outline of proof
	1.8 Organisation of paper

	2 Preliminaries
	2.1 Boolean functions
	2.2 Max-CSP
	2.3 The automated gadget framework

	3 Relaxed soundness and infinity relaxed soundness
	3.1 Relaxed soundness described as an LP
	3.2 Introduction of infinity relaxed soundness

	4 Numerical results
	4.1 Edges used/unused in constructed gadgets
	4.2 Lists and plots of gadgets
	4.2.1 The curve s(c)

	4.3 Notable gadgets

	5 Conclusions
	A Max-Flow and symmetries
	A.1 Feasible flows and leaky flows
	A.2 Symmetries of Max-Flow graphs

	B Properties of relaxed soundness
	C Affine maps and lifts
	C.1 M-lifts of sink and sources
	C.2 Lifting gadgets and flows

	D Proving that rsinf(G) can be attained in the limit
	D.1 Total leakage approaches 0 as k' -> inf
	D.2 The proof of Lemma 3.11

	E Gadget construction and verification
	E.1 Symmetrical Hadk-to-2Lin(2) gadgets are optimal
	E.2 Compressing the rsLP(G) and rsinfLP(G)
	E.2.1 Further restricting the compressed LPs

	E.3 Implementation details
	E.4 Verification of rs(G) and rsinf(G)

	F Edges used/unused in constructed gadgets

	p012-Ezra
	1 Introduction
	1.1 Our Results
	1.1.1 General Framework for Subadditive JRP
	1.1.2 MLA and Weighted Symmetric Subadditive JRP
	1.1.3 Running time of Algorithms and Reductions
	1.1.4 Lower bounds on approximating subadditive service functions

	1.2 Future Directions
	1.3 Further Related Work

	2 Subadditive Joint Replenishment
	2.1 Reduction Lemma
	2.2 Applying the Reduction Lemma to Subadditive JRP

	3 Multi-Level Aggregation
	3.1 Notation and Algorithm Overview
	3.2 MLA Partitioning Algorithm

	4 Weighted Symmetric Subadditive Joint Replenishment
	4.1 Symmetric Subadditive JRP
	4.2 Weighted Symmetric Subadditive JRP

	5 Tight Instances against Previous Algorithms
	5.1 An Omega(sqrt{nlog n}) Tight Instance for the Algorithm of [35]
	5.2 An Omega(sqrt{nlog n}) Tight Instance for the Algorithm of [44]

	p013-Bhawalkar
	1 Introduction
	1.1 Our Results and Techniques
	1.1.1 Generalizations

	1.2 Related Work
	1.3 Problem Formulation
	1.4 Paper Outline

	2 The Structure of Near-optimal Solutions for AVA
	2.1 Welfare is non-linear in supply

	3 Offline Algorithm via Reduction to Matroid-Constrained GAP
	4 An Offline Algorithm via Relax-and-Round
	4.1 Allocation of N-items
	4.2 Completing the analysis
	4.3 Extension: adding side constraints

	5 Online Algorithms: Approximating the Online Optimum
	5.1 Analysis

	A Online Algorithms: Approximating the Offline Optimum
	A.1 A matching algorithm assuming constant expected arrivals

	B Hardness Results
	B.1 Max-Coverage hardness of AVA
	B.2 Clique hardness of GenAVA

	p014-Buchem
	1 Introduction
	1.1 Our Contribution and Techniques
	1.2 Further Related Work

	2 Preliminaries
	3 Minimizing the maximum machine load
	3.1 Algorithm
	3.2 Analysis

	4 Maximizing the minimum machine load
	4.1 Guessing initial quantities
	4.1.1 Algorithm
	4.1.2 Analysis

	4.2 Dynamic program
	4.2.1 Algorithm
	4.2.2 Analysis

	5 Conclusion

	p015-Fairstein
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Preliminaries
	2.1 Distributional Online Paging
	2.2 Limited Horizon

	3 Full Horizon
	4 The Split-and-Solve Algorithm
	A Rounding the LP

	p016-Hashemi
	1 Introduction
	1.1 Related Work

	2 Technical Overview
	2.1 Reduction in Adversarial Streams
	2.2 Bernstein's Algorithm for Unweighted Random-Order Streams
	2.3 Applying the Algorithm to Batch Arrivals
	2.4 Non-bipartite graphs

	3 Notation and Preliminaries
	3.1 Models
	3.2 Graph Unfolding
	3.3 EDCS
	3.4 Concentration Inequality

	4 2/3-Approximation in Random-Order Streams
	4.1 Reduction to Unweighted b-batch Random-Order Streams
	4.2 2/3-Approximation in b-batch Random-Order Streams
	4.3 Extension to Non-Bipartite Graphs

	5 5/6-Approximation in the Robust Communication Model

	p017-Bampis
	1 Introduction
	2 Preliminaries
	3 Stable Matching with Comparison Queries
	3.1 Verifying That a Given Matching Is Stable
	3.2 Finding an A-Optimal Stable Matching
	3.3 Finding a B-Optimal Stable Matching
	3.3.1 Algorithm for Computing a B-Optimal Stable Matching
	3.3.2 Lower Bound for Computing a B-Optimal Matching
	3.3.3 Offline Results for Computing B-Optimal Stable Matchings

	4 Stable Matching with Interview Queries
	5 Stable Matching with Set Queries
	5.1 Verifying That a Given Matching Is Stable
	5.2 Verifying That a Given Matching Is Stable and B-Optimal

	6 Open Problems

	p018-Sun
	1 Introduction
	1.1 Our techniques

	2 Preliminaries
	3 Hitting the facial cycles of a digraph
	4 Solving the case of no facial cycles
	5 Statement and proofs of topological results we use

	p019-Ghentiyala
	1 Introduction
	1.1 Codes and lattices
	1.2 Basis reduction for lattices
	1.3 Basis reduction for codes!
	1.3.1 Projection, epipodal vectors, and proper bases
	1.3.2 What's a good basis and what is it good for?

	1.4 Our contribution
	1.4.1 Expanding on the work of DDvW22
	1.4.2 Backward reduction and redundant sets
	1.4.3 Fully backward-reduced bases
	1.4.4 BKZ and slide reduction for codes
	1.4.5 Two illustrative algorithms
	1.4.6 On ``the best possible bases''

	2 Preliminaries
	2.1 Some notation

	3 Generalizing epipodal vectors, size reduction, and the fundamental domain to Fq
	3.1 Projection and epipodal vectors
	3.1.1 Basic operations on blocks

	3.2 Size reduction and its fundamental domain

	4 Proper bases and primitivity
	5 Redundant sets of coordinates, the last epipodal vector, and backward reduction
	5.1 Backward reduction
	5.2 Full backward reduction
	5.3 Heuristic analysis suggesting better performance in practice
	5.3.1 Backward reducing without all of the columns

	p020-Moseley
	1 Introduction
	1.1 Prior Work on Consistent Clustering
	1.2 Our Contribution
	1.3 Results

	2 Technical Overview
	2.1 Properties of competitive algorithms
	2.2 Techniques
	2.3 Preliminaries
	2.4 Subroutines

	3 Algorithm Description
	3.1 The Estimated Center Subroutine
	3.2 The Add Operation Subroutine
	3.3 The Exchange Operation Subroutine

	4 Algorithm Invariants and Analysis
	4.1 Notation
	4.2 Invariants

	5 Bounding Cost
	6 Conclusion
	A Terminology
	B Helper Propositions
	C Proof of Lemma 5
	D Proof of Theorem 3
	E Proof of Lemma 7
	F Proof of Lemma 8
	G Proof of Lemma 9

	p021-Hathcock
	1 Introduction
	1.1 Our results
	1.2 Technical Overview

	2 Preliminaries
	3 The Partition Matroid Cover Algorithm
	4 Approximating the poise for directed graphs
	5 The undirected case

	p022-Casey
	1 Introduction
	1.1 Our results
	1.2 Our Techniques
	1.3 Related work
	1.4 Discussion and Open Problems

	2 General cms logarithmic approximation
	3 cms with a constant number of configurations
	4 cms with a constant number of configurations of constant size
	4.1 A pseudo-polynomial time algorithm
	4.2 A polynomial-time approximation scheme

	5 cms with O(1) number jobs and block types, and all configurations up to a given size
	A Constructing Schedules of Polynomial Size

	p023-Goswami
	1 Introduction
	2 Our Results and Technical Overview
	2.1 Bipartite Sorting
	2.1.1 Defining Instance-Optimality
	2.1.2 InversionSort: An Almost Instance Optimal Algorithm

	2.2 Unexpected Result: Generalized Sorting and Sorting with Priced Information

	3 Problem Definitions
	4 Results on Bipartite Sorting
	4.1 Defining Instance-Optimality
	4.2 Lower Bounds on OPT
	4.3 InversionSort and its O(log^3 n) instance-optimal guarantee
	4.3.1 Description of InversionSort
	4.3.2 Putting everything together: Proof of Theorem 1

	5 Result on Sorting with Priced Information: Lower bound does not extend
	5.1 Algorithm details
	5.1.1 Algorithm 3 : Hamiltonian By Predecessors
	5.1.2 The fourth algorithm in Algorithm 2

	5.2 Analysis of Algorithm 2
	5.2.1 Proof of O~(n^{3/4}) competitive ratio of Algorithm 2

	5.3 Proof of Theorem 20

	p024-Braverman
	1 Introduction
	1.1 Our models and contributions
	1.2 Technical overview

	2 Preliminaries
	3 An Algorithm in the Persistent Noise Setting
	4 An Algorithm in the Non-persistent Noise Setting
	5 Discussion and Open Problems
	A Technical Preliminaries

	p025-Cervenjak
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview
	1.3 Paper Structure

	2 Preliminaries
	3 Streaming FPT-AS and Polynomial-Time Algorithms
	3.1 Kernelization Lemma
	3.2 Applications of the Kernelization Lemma
	3.3 Polynomial-Time Streaming Algorithm

	4 Algorithms for Bounding the Unique Coverage Ratio
	4.1 UniqueGreedy
	4.2 UniqueGreedyFreq
	4.3 UniqueGreedySize

	5 Space Lower Bound for a (1.5 + o(1)) / (ln k - 1)-Approximation
	5.1 High-Level Ideas of the Reduction
	5.2 Proof of Theorem 5.1

	6 Subsampling for the Data Stream
	7 Conclusions

	p026-Nandi
	1 Introduction
	1.1 Prior Work and Technical Challenges
	1.2 Our Results
	1.3 Technical Overview
	1.4 Paper Organization

	2 Preliminaries
	2.1 Estimator and Klee's Measure Problem
	2.2 Notations
	2.3 Delphic Family with WOR Sampling
	2.4 Random Processes and Distributions

	3 Estimator for Delphic sets
	3.1 Handling Delphic Sets with WOR sampling
	3.1.1 Correctness of Algorithm 2 for Delphic Sets with WOR sampling
	3.1.2 Complexity of the Algorithm 2

	3.2 Estimator for General Delphic Sets

	4 Space Optimal Algorithm with an Oracle in NTISP(poly, LINSPACE)
	5 Conclusion
	A Concentration Bounds
	B Proof of Proposition 15
	C Further Improvements for Klee's Measure Problem
	D Basic Probability Results

	p027-Doron-Arad
	1 Introduction
	1.1 Related Work
	1.2 Our Results
	1.3 Technical Overview
	1.4 Organization

	2 Preliminaries
	3 The Algorithm
	4 The Analysis
	4.1 Concentration Bounds
	4.2 The proof of Lemma 6

	p028-Ghosal
	1 Introduction
	2 Preliminaries
	3 The Boundaries and Their Shadows
	4 A 3/2-approximation when w(A) is much greater than p squared
	5 A (3/2 + beta)-approximation
	6 Tightness of approximation
	7 DRTile
	8 The Multidimentional RTile Problem

	p029-AlemanEspinosa
	1 Introduction
	2 Preliminaries and notation
	3 An adaptivity-gap lower bound for CorrKO
	4 Approximation algorithms for CorrKO
	4.1 Quasi-polytime O(log log W)-approximation algorithm
	4.2 Polynomial-time O(log W)-approximation algorithm

	5 Refined approximation guarantees and hardness results for CorrKO
	5.1 2CorrKO: CorrKO with distributions of support-size at most 2

	6 CorrKO with cancellations
	7 O(log log B)-approximation for CorrO
	A Adversarial orderings can be arbitrarily bad for correlated knapsack

	p030-Arpino
	1 Introduction
	2 Notation and conventions
	3 Related Work
	4 Preliminary Bounds
	5 Algorithmic solutions
	5.1 Challenges of Greedy analysis
	5.2 BlockGreedy algorithm
	5.3 Reduction from BlockGreedy to Greedy

	6 Discussion and Open Questions
	6.1 Summary of our results and proof techniques
	6.2 Multiplicative vs. additive integrality gaps
	6.3 Analysis of a linear program solution.

	A Auxiliary lemmas
	B Main tool for the case mp lesssim log n and Proof of Lemma 25
	C Lemma 26, formal version of Lemma 7

	p031-Ta-Shma
	1 Introduction
	1.1 Further Results
	1.2 The Technique
	1.3 Summary and Discussion

	2 Preliminaries
	3 Flow
	4 Expander Hitting Property Revised
	4.1 Confinement Probability Upper-bounds
	4.2 Confinement Probability Lower-bounds

	5 Fooling Non-Symmetric Confinement Functions
	6 Fooling The Sum Function modulo Lg
	6.1 Bias Amplification
	6.2 Bias-independent bound using the flow framework

	p032-Chen
	1 Introduction
	2 Preliminaries
	2.1 Matroid
	2.2 Strongly log-concave polynomial
	2.3 Polynomial and distribution
	2.4 Down-up walk

	3 Our algorithm
	3.1 Down-up walk for polarized polynomial
	3.2 A fast implementation of the down-up walk

	4 Random cluster models with q<=1

	p033-Aden-Ali
	1 Introduction
	1.1 Preliminaries and notation
	1.2 Proof overview

	2 Lower Bounds
	2.1 Information lower bound for a single counter
	2.2 Amortized space complexity via direct sum
	2.3 Offline lower bound

	3 Upper bounds

	p034-Gola
	1 Introduction
	1.1 Related work
	1.2 Open problems

	2 Preliminaries
	2.1 Additive Combinatorics Tools

	3 High Agreement with Two-Sided Error
	4 Low Agreement with One-Sided Error
	4.1 Computing the good coordinates
	4.2 Proof of Theorem 3

	p035-Haviv
	1 Introduction
	1.1 Our Contribution
	1.2 Proof Techniques
	1.3 Related Work
	1.4 Outline

	2 Preliminaries
	2.1 Intersecting Families
	2.2 Chernoff–Hoeffding Bound

	3 Two-Sided Error Tester
	4 One-Sided Error Tester
	4.1 Canonical Tester
	4.1.1 The case r=2
	4.1.2 General r

	4.2 The case n=Theta(k)

	p036-Lau
	1 Introduction
	1.1 Our Results
	1.2 Previous Work on Boolean Hypercubes

	2 Preliminaries
	3 Positive Results
	3.1 Recovering Morris and Peres's Result
	3.2 Non-Reversible Markov Chains
	3.3 Proofs of Auxiliary Lemmas

	4 Counterexamples
	4.1 Proof of Lower Bound

	p037-Black
	1 Introduction
	1.1 Results
	1.1.1 Sample-Based Testing and Learning on the Hypercube
	1.1.2 Sample-Based Testing and Learning in Continuous Product Spaces

	1.2 Proof Overviews
	1.2.1 The Testing Lower Bound for Hypercubes
	1.2.2 The Learning Upper Bound for Product Spaces

	1.3 Discussion and Open Questions
	1.4 Related Work
	1.4.1 Sample-Based Monotonicity Testing
	1.4.2 Query-Based Monotonicity Testing
	1.4.3 k-Monotonicity Testing
	1.4.4 Learning Monotone Functions
	1.4.5 Learning k-Monotone Functions
	1.4.6 Sample-Based Property Testing

	1.5 Learning Functions with Bounded Image Size: Proof of Theorem 3

	2 Preliminaries on k-Monotonicity
	3 Lower Bound for Sample-Based Testers
	3.1 The Distributions D_{yes} and D_{no}
	3.2 Proof of Claim 13
	3.3 D_{yes} and D_{no} are Hard to Distinguish: Proof of Lemma 16
	3.4 Functions Drawn from D_{no} are Far from k-Monotone: Proof of Lemma 15

	4 Learning Upper Bound over Product Spaces
	4.1 Reduction to Hypergrids via Downsampling
	4.2 Learning over Hypergrids
	4.3 Putting it Together: Proof of Theorem 21
	4.3.1 Proof of Claim 28

	5 Sample-Based Testing with One-Sided Error

	p038-Bshouty
	1 Introduction
	1.1 Our Technique
	1.2 Approximation Implies Learning k-Sparse Parities
	1.2.1 First Approach
	1.2.2 The Second Approach

	1.3 Approximation Implies Learning Parities
	1.4 Justification for the Use of the gamma-Approximation Definition

	2 Definitions and Preliminaries
	3 Approximation vs. Learning
	3.1 Approximation Implies Learning Some Lin(F,k)
	3.2 Approximation Implies Learning Lin(F)

	p039-Chatterjee
	1 Introduction
	1.1 Background and motivation
	1.2 The main result

	2 Proof strategy
	2.1 The method of moments fails
	2.2 Belief Propagation
	2.3 Approaching the variance
	2.4 Unit Clause Propagation
	2.5 Variance redux
	2.6 Local convergence in probability
	2.7 Correlated Belief Propagation
	2.8 The central limit theorem

	3 Discussion

	p040-Henzinger
	1 Introduction
	1.1 Problem Definition
	1.2 Summary of Results
	1.3 Algorithm Overview

	2 Preliminaries
	3 Item-Level Algorithms in General Model
	3.1 Known Total Flippancy
	3.2 Generalizations

	4 A Connection between the General Model under Event-Level Privacy and the ``Likes''-Model under Item-Level Privacy
	5 Item-Level Lower Bounds in the ``Likes''-Model
	6 Unknown Total Flippancy
	7 Lower Bounds for Approximate Differential Privacy

	p041-Golovnev
	1 Introduction
	1.1 Hilbert Functions
	1.2 Randomness Extractors
	1.3 Our Results on Hilbert Functions
	1.3.1 Degree-d Closure of Sets

	1.4 Our Results on Randomness Extractors
	1.4.1 Low-Degree Dispersers
	1.4.2 Low-Degree Extractors

	1.5 Remarks

	2 Preliminaries
	2.1 Probability Distributions
	2.2 Randomness Sources, Dispersers, and Extractors
	2.3 Hilbert Functions and Standard Monomials

	3 Hilbert Functions of Sets in Finite Grids
	4 Number of Points with Low Hamming Weight in Down-Closed Sets
	4.1 The Boolean Case, q=2
	4.2 The General Case of Finite Grids

	5 A Tight Bound on the Size of Degree-d Closures of Sets
	6 Low-Degree Dispersers
	6.1 Dispersers for Small Families of Sources
	6.2 Dispersers for Polynomial and Circuit Sources

	7 Random Low-Degree Polynomials Extract from Fixed Sources
	8 Low-Degree Extractors
	8.1 Extractors Outputting Multiple Bits

	p042-Bennett
	1 Introduction
	1.1 Our Results
	1.1.1 Algorithms
	1.1.2 Barriers
	1.1.3 Reductions

	1.2 Related Work
	1.3 Open Questions

	p043-Fargion
	1 Introduction
	1.1 Techniques
	1.2 Related Work
	1.3 Paper Outline

	2 Preliminaries
	2.1 Interactive Protocols and Coding Schemes
	2.2 Noise Models

	3 A UPEF-optimal coding scheme via code concatenation
	4 A UF Scheme with Optimal Communication
	4.1 Analysis
	4.2 Obtaining a UF-optimal coding scheme

	p044-Dwivedi
	1 Introduction
	1.1 Our Results
	1.2 Proof Techniques

	2 Preliminaries
	3 Hypothesis (H)
	4 Lecerf's Techniques
	5 Proofs of the Main Theorems
	6 Open Problems

	p045-Adar
	1 Introduction
	1.1 Adaptivity notions in the Huge Object model
	1.2 Organization of the paper

	2 Preliminaries
	2.1 Distances
	2.2 The testing model
	2.3 Restricted models

	3 Overview of results and methods
	3.1 Non-adaptive algorithms

	4 Remaining open problems

	p046-Adar
	1 Introduction
	1.1 Definition of the model
	1.2 Summary of our results
	1.3 Open problems

	2 Preliminaries
	2.1 Algorithmic model
	2.2 Technical components

	3 Quick bounds from previous results
	4 Overview of our proofs
	4.1 Two-sided, non-adaptive lower-bound
	4.2 One-sided, non-adaptive upper bound
	4.3 One-sided, adaptive upper bound
	4.4 One-sided lower-bounds

	p047-Chang
	1 Introduction
	1.1 Related work
	1.2 Proof methods

	2 Satisfiability upper bound by interpolation
	2.1 Proof of Proposition 1.5
	2.2 Proof of Lemma 1.3
	2.3 Proof of Lemma 1.7

	3 Proof of Proposition 1.6
	3.1 Proof of Lemma 3.1
	3.2 Proof of Lemma 3.2

	p048-Adar
	1 Introduction
	2 Organization of the paper
	3 Our results
	4 Preliminaries
	5 Linear algorithm for Equivalence
	5.1 Proof of Lemma 16

	6 Lower bound for Product
	7 Technical proofs for Equivalence testing
	8 Extending the Equivalence test to general alphabets
	9 Upper bound for Product
	10 Technical proofs for the Product lower bound
	A Explicit algorithms

	p049-Lee
	1 Introduction
	1.1 Main results
	1.2 Related work
	1.2.1 Continuous sampling
	1.2.2 Parallel algorithms for discrete sampling
	1.2.3 Diffusion models and the proximal sampler

	2 Preliminaries
	2.1 Markov kernels
	2.2 Functional inequalities
	2.3 Additional notation

	3 k-Glauber mixes k times as fast
	3.1 Tensorization and projection
	3.2 Contraction improves going down

	4 Parallel sampling for Ising models
	4.1 Approximate tensorization of entropy for the Ising model
	4.2 Approximate rejection sampling
	4.3 Concentration
	4.4 Analysis of the Parallel Ising Sampler

	p050-Dobrokhotova-Maikova
	1 Introduction
	2 Preliminaries
	2.1 Sorting Networks
	2.2 From Sorting Networks to Majority Circuits
	2.3 Approximate Majority
	2.4 t-Wise Independent Hash Functions

	3 Sub-log-squared Circuit for Majority
	3.1 Proof of Lemma 12

	4 k-Sorting Network Construction
	4.1 Proof Strategy
	4.2 Merging s-Sorted Arrays
	4.3 Computing Majority
	4.4 Constructing Sorting Network
	4.5 Other Applications

	5 Conclusion

	p051-Goldberg
	1 Introduction
	2 Main Results
	2.1 Consequences of showing the NP-hardness of an approximation to pKt or Kt
	2.2 Consequences of showing the NP-hardness of Kt
	2.3 Consequences of showing the NP-hardness of K
	2.4 Robustness of reductions to K

	3 Related Work
	4 Techniques
	4.1 Proof sketch of Theorem 1
	4.2 Proof Sketch of Theorem 2
	4.3 Proof Sketch of Theorem 4
	4.4 Proof Sketch of Theorem 5

	5 NP-hardness of and
	5.1 Randomized Reductions
	5.2 Deterministic Reductions

	6 Open Questions

	p052-Chen
	1 Introduction
	1.1 Our results
	1.2 Discussion and techniques
	1.3 Future work

	2 Preliminaries
	2.1 Local Statistical Query algorithms

	3 Worst-case lower bounds
	3.1 Establishing closeness of one-bit statistics

	4 Worst-case upper bounds
	4.1 Proof of Lemma 16
	4.2 Proof of Lemma 17

	5 Average-case lower bounds
	6 Average-case upper bounds
	6.1 Proof of Lemma 29

	p053-Doron
	1 Introduction
	1.1 Related Work
	1.2 Technical Overview

	p054-Bhangale
	1 Introduction
	1.1 Proof outline

	2 Preliminaries
	2.1 Parallel repetition of connected games
	2.2 Variants of multiplayer games

	3 Proof of Theorem 2
	3.1 The path-trick and the i-links
	3.2 The transformations
	3.2.1 Properties of the transformations

	3.3 Finishing the proof

	p055-Kacham
	1 Introduction
	1.1 Our Results
	1.2 Implications to Practice

	2 Preliminaries
	2.1 Notation
	2.2 Fast Rectangular Matrix Multiplication

	3 Schatten-p LRA using Fast Matrix Multiplication
	3.1 Block Krylov Iteration Algorithm
	3.2 Main Theorem

	4 Comparison with the Algorithm of Li and Woodruff LW20
	4.1 Further Improving the running time of LW20 using our algorithm

	5 Stability of LazySVD
	5.1 Finite Precision Preliminaries
	5.2 Stability Analysis

	A Time Complexity of SVD in the Real RAM model
	B An Experiment

	p056-Kuchukova
	1 Introduction
	1.1 Overview of Techniques
	1.1.1 Fast Mixing
	1.1.2 Slow Mixing

	1.2 Outline

	2 Preliminaries
	2.1 Ising Model on the Infinite Tree
	2.2 Pinned Models
	2.3 Kawasaki Dynamics, Down-up Walk, and Glauber Dynamics
	2.4 Mixing Times
	2.4.1 Upper Bounds on Mixing Time
	2.4.2 Lower Bounds on Mixing Time

	2.5 Thresholds for Zero-Freeness and Spectral Independence

	3 Main Statements and Proof Structure
	3.1 Rapid Mixing
	3.2 Metastability and Slow Mixing

	p057-Meir
	1 Introduction
	1.1 Our model and results

	2 Preliminaries
	3 Warm-up: Connectivity with Stochastic Distance
	4 Stochastic Distance from k-Connectivity
	4.1 Properties of minimal cuts
	4.2 Increasing the connectivity by one
	4.3 Putting it all together

	5 Distributed algorithm for k-connectivity
	A Robustness of Stochastic Closeness

	p058-Alev
	1 Introduction
	2 Preliminaries
	2.1 Linear Algebra
	2.2 Probability Distributions
	2.3 Functional Inequalities, Isoperimetric Constants, and Mixing Times
	2.4 (Partite) Simplicial Complexes
	2.5 Higher Order Random Walks on Simplicial Complexes
	2.6 Local to Global Analysis

	3 Expanderized Random Walks
	3.1 Closeness in Operator Norm: Proof of Theorem 18
	3.2 Log-Sobolev Bound: Proof of Corollary 20

	4 Functional Inequalities on Simplical Complexes
	4.1 Proof of Phi-Entropy Contraction Bounds, Theorem 22
	4.2 Proof of the log-Sobolev Inequality, Lemma 24

	5 Application: Sampling Using the Expanderized Walks
	5.1 List Coloring of Bounded Degree Graphs

	p059-Aigner-Horev
	1 Introduction
	1.1 Ramsey properties of random hypergraphs
	1.2 Main result
	1.3 A tuple lemma for link graphs
	1.4 A variant of the hypergraph regularity lemma

	2 Preliminaries
	2.1 Graph regularity
	2.2 Hypergraph regularity

	3 Monochromatic expanded cliques
	3.1 Properties of random hypergraphs
	3.2 Proof of Theorem 1

	p060-Levi
	1 Introduction
	1.1 Our Results
	1.2 Overview of Our Algorithms
	1.2.1 The case of a single cluster

	1.3 The case of k-clusterable graphs
	1.4 Related Work
	1.4.1 LSSG Algorithms

	2 Preliminaries
	2.1 Mixing-Time of Regular Graphs
	2.2 Mixing-Time of General Bounded Degree Graphs

	3 LSSG for a Single Cluster
	3.1 The Global Algorithm for a Single Cluster
	3.2 Correctness of the Global Algorithm for a Single Cluster
	3.3 Details of the Implementation of the Local Algorithm for a Single Cluster

	4 LSSG for Clusterbale Graphs
	4.1 The Global Algorithm for Clusterable graphs
	4.2 Correctness of the Global Algorithm for Clusterable Graphs
	4.3 Details of the Local Algorithm

	A Other Related Work
	A.1 LCAs for Spanners
	A.2 Graph Clustering
	A.3 LCAs for Other Graph Problems

	B Omitted Proofs of Section 2
	C Omitted Proofs of Section 3

	p061-Cheng
	1 Introduction
	1.1 Main results
	1.2 Notations and definitions
	1.3 Some related works
	1.4 Key new ideas in our work

	2 An auxiliary lemma
	3 Deterministic decoding: Decoding
	3.1 The main decoding algorithm – MainDecode
	3.2 The basic building block of deterministic decoding – EasyFlip
	3.2.1 Proof of

	3.3 Running EasyFlip iteratively for a constant number of times – DeepFlip
	3.3.1 Proof of

	3.4 Running DeepFlip thoroughly until significantly reducing the number of unsatisfied constraints – HardSearch
	3.4.1 Proof of

	4 Randomized decoding: Reduce large corruptions to a moderate size
	4.1 Proof of

	p062-Dikstein
	1 Introduction
	1.1 Applications of cosystolic expansion
	1.2 Related work
	1.3 Open questions
	1.4 Overview of the proof of Theorem 1
	1.5 Organization of this paper and the full version

	2 Preliminaries and notation
	2.1 Coboundary and cosystolic expansion
	2.2 Local properties of simplicial complexes

	3 Cosystolic expansion
	3.1 Properties of Algorithm 10
	3.2 Local minimality
	3.3 Locally minimal cosystols are heavy

	p063-Jain
	1 Introduction
	1.1 Related work
	1.2 Organization

	2 Proof of Theorem 1
	2.1 Preliminaries
	2.2 Constructing a flow
	2.3 Flow encoding
	2.4 Rapid mixing

	3 Barriers to the spectral independence approach

	p064-Mande
	1 Introduction
	1.1 Sketch of proofs of main results
	1.1.1 Equivalence of source-finding and CIS
	1.1.2 Upper bounds
	1.1.3 Lower bounds

	2 Preliminaries
	2.1 Query and Communication Complexity
	2.2 Formal definitions of graph problems of interest

	3 Communication complexity of finding a source
	4 Communication complexity of KING
	4.1 Upper bounds on communication complexity of KING_n
	4.2 Lower bounds on communication complexity of KING_n
	4.3 A class of tournaments
	4.4 Proof of Theorem 4

	5 Communication complexity of MOD

	p065-Guruswami
	1 Introduction
	1.1 Robust Gray Codes
	1.2 Previous approaches
	1.3 New approach

	2 Proof of Theorem 1
	2.1 The building blocks B and C
	2.2 Encoding
	2.3 Decoding D
	2.4 Complexity and tail estimation

	p066-Mazor
	1 Introduction
	1.1 Our Results
	1.2 Proof Outline

	2 Preliminaries
	2.1 Notations
	2.2 Distributions and Random Variables
	2.3 Kolmogorov Complexity

	3 Definitions
	4 Generalized Solvers Scaling with the Threshold
	5 From Decision to Search
	A search-MK^tP and Function Inversion
	B MCSP[s] as a special case of MK^t_MP

	p067-Harvey
	1 Introduction
	2 The construction
	2.1 Overview
	2.2 Construction of {H}
	2.3 Construction of G
	2.3.1 Proof of Lemma 7

	2.4 Construction of Pi

	3 Conclusion and Future Work
	A Omitted proofs

	p068-BenYaacov
	1 Introduction
	1.1 Preliminaries on High Dimensional Expanders
	1.2 Our Results
	1.3 Comparing to Random Constructions of HDXs
	1.4 The Construction
	1.5 Understanding Vertex vs. Edge Degree in Bounded-Degree Constructions
	1.6 Related Work
	1.7 Open Questions
	1.7.1 Organization of This Paper

	2 Preliminaries
	2.1 Graphs
	2.1.1 Expander Graphs
	2.1.2 Tensor Product

	2.2 Graph Lifts
	2.2.1 Signing Functions and Lift Expansion

	2.3 High Dimensional Expanders
	2.4 The Lovász Local Lemma

	3 Local lifts
	3.1 Local Properties of Local Lifts

	4 Families of HDXs via Random Local Lifts
	4.1 Proof Outline of Theorem 22
	4.2 Proving Lemma 23
	4.3 Concluding the Theorems

	5 An Algorithmic Version of Theorem 4.2
	6 Derandomizing the Construction

	p069-Cheng
	1 Introduction
	1.1 Our results
	1.2 Technique Overview
	1.2.1 Extractor in AC^0
	1.2.2 Extractor in NC^1
	1.2.3 A lower bound for AC^0 computable dispersers

	1.3 Paper Organization

	2 Preliminaries
	3 Merger in AC^0
	4 Error Reduction
	4.1 Step 1: extracting in parallel
	4.2 Step 2: divide and merge
	4.3 Wrap-up to prove Lemma 28 and Theorem 27

	5 Output Stretch
	5.1 Step 1: Converting to a somewhere-block-source
	5.2 Step 2: Extracting from a somewhere-block-source
	5.3 Step 3: Merging the segments
	5.4 Step 4: Second extraction

	6 Extractors in NC^1
	6.1 Condenser in NC^1
	6.2 Error Reduction in NC^1
	6.3 Improved Trevisan's Extractor in NC^1
	6.4 Putting it together

	7 Entropy lower bound for AC^0 dispersers
	8 Open Questions

	p070-Galanis
	1 Introduction
	1.1 Our results
	1.2 Techniques
	1.3 Outline and Discussion

	2 The Gadget of Theorem 1
	3 Proofs of Main Results
	3.1 Proof of Theorem 1
	3.2 Proof of Theorem 3

	p071-Chakraborty
	1 Introduction
	1.1 Our Results
	1.2 Proof Ideas

	2 Notations and Preliminaries
	3 Composition theorem for recursive Majority and alternating AND-OR trees
	3.1 Proof of Lemma 3
	3.2 Proof of Theorem 2

	4 Composition theorem for recursive functions
	4.1 Proof of the main technical lemma (Lemma 21)

	5 Conclusion

	p072-Herman
	1 Introduction
	1.1 This Work: Public-coin Protocols for Label-Invariant Distribution Properties
	1.2 Further Related Works

	2 Technical Overview
	3 Preliminaries
	4 Public Coin Protocol for Verified Tagged Sample
	4.1 Protocol 1 is Complete
	4.2 Protocol 1 is Sound
	4.3 From verified uniform tagged sample to property verification

	A Collision Tests Analysis
	A.1 Twoway Collisions
	A.2 Threeway Collisions

	p073-Tetek
	1 Introduction
	1.1 Our results
	1.2 Our techniques
	1.2.1 Subexponential error, one query (Section 3)
	1.2.2 Subexponential error, multiple queries (Section 3)
	1.2.3 Error with polynomial tails (Section 4)
	1.2.4 How to use our technical results (Section 5)

	1.3 Related work

	2 Preliminaries
	2.1 Differential privacy
	2.2 Probability theory

	3 Algorithms with subexponential error
	4 Algorithms with bounded mean error
	5 Implications of our results
	5.1 The general approach
	5.2 Frequency moment F_2
	5.3 Connected components
	5.4 Maximum matching
	5.5 Rank queries
	5.6 Relative approximation sublinear-time algorithms

	6 Open problems and conjectures

	p074-Lakis
	1 Introduction and Main results
	1.1 Preliminaries and Random Graph Models
	1.1.1 Scale Free Percolation (SFP)
	1.1.2 Geometric Inhomogeneous Random Graphs (GIRG)
	1.1.3 Long Range Percolation (LRP)
	1.1.4 First Passage Percolation (FPP)
	1.1.5 Terminology

	1.2 Our results
	1.3 First passage percolation on SFP
	1.3.1 Asymptotics and Probability Theory

	2 Lower Bounds for Graph Distances in SFP
	3 First Passage Percolation (FPP)
	A On the upper bound claim in [19]

	p075-Dutta
	1 Introduction
	1.1 Our results
	1.2 Comparison with Kumar, Ramanathan and Saptharishi [28]
	1.3 Proof idea

	2 Preliminaries
	2.1 Computational problems, complexity measures and closure properties
	2.2 Transformation to a monic polynomial
	2.3 Divisibility testing reduces to PIT
	2.4 Effective Hilbert's Irreducibility Theorem
	2.5 Basics of factoring and interpolation
	2.6 Isolation

	3 Computing the low-degree factors
	4 Computing the factors of a constant degree product
	5 Finding sparse factors reduces to sparse irreducibility
	6 Conclusion

