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Abstract
A Simple Temporal Network with Uncertainty (STNU) is a data structure for representing and
reasoning about temporal constraints on activities, including those with uncertain durations. An
STNU is dispatchable if it can be flexibly and efficiently executed in real time while guaranteeing
that all relevant constraints are satisfied. The number of edges in a dispatchable network affects
the computational work that must be done during real-time execution. Recent work presented an
O(kn3)-time algorithm for converting a dispatchable STNU into an equivalent dispatchable network
having a minimal number of edges, where n is the number of timepoints and k is the number of
actions with uncertain durations. This paper presents a modification of that algorithm, making it
an order of magnitude faster, down to O(n3). Given that in typical applications k = O(n), this
represents an effective order-of-magnitude reduction from O(n4) to O(n3).
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1 Background

Temporal constraint networks facilitate representing and reasoning about temporal constraints
on activities. Simple Temporal Networks with Uncertainty (STNUs) are one of the most
important kinds of temporal networks because they allow the explicit representation of actions
with uncertain durations [13]. An STNU is dispatchable if it can be executed by a flexible
and efficient real-time execution algorithm while guaranteeing that all of its constraints will
be satisfied. This paper modifies an existing algorithm for converting a dispatchable network
into an equivalent dispatchable network having a minimal number of edges, making it an
order of magnitude faster.

1.1 Simple Temporal Networks
A Simple Temporal Network (STN) is a pair (T , C) where T is a set of real-valued variables
called timepoints; and C is a set of ordinary constraints, each of the form (Y − X ≤ δ) for
X, Y ∈ T and δ ∈ R [3]. An STN is consistent if it has a solution as a constraint satisfaction
problem (CSP). Each STN has a corresponding graph where the timepoints serve as nodes
and the constraints correspond to labeled, directed edges. In particular, each constraint
(Y − X ≤ δ) corresponds to an edge X δ Y in the graph. For convenience, such edges may
be notated as (X, δ, Y ) or, if the weight is not being considered, simply XY . Similarly, a path
from X to Y may be notated by listing the timepoints visited by the path (e.g., XUVWY )
or, if the context is clear, simply XY .

A flexible and efficient real-time execution (RTE) algorithm has been defined for STNs
that maintains time windows for each timepoint and, as each timepoint X is executed, only
propagates constraints locally, to neighbors of X in the STN graph [16, 14]. An STN is called
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dispatchable if that RTE algorithm is guaranteed to satisfy all of the STN’s constraints no
matter how the flexibility afforded by the algorithm is exploited during execution. Morris [12]
proved that a consistent STN is dispatchable if and only if every pair of timepoints that are
connected by a path in the STN graph are connected by a shortest vee-path (i.e., a shortest
path comprising zero or more negative edges followed by zero or more non-negative edges).
Algorithms for generating equivalent dispatchable STNs having a minimal number of edges
have been presented [16, 14]. Minimizing the number of edges is important since it directly
impacts the real-time computations required during execution.

1.2 Simple Temporal Networks with Uncertainty
A Simple Temporal Network with Uncertainty (STNU) augments an STN to include contingent
links that represent actions with uncertain, but bounded durations [13]. An STNU is a
triple (T , C, L) where (T , C) is an STN, and L is a set of contingent links, each of the form
(A, x, y, C), where A, C ∈ T and 0 < x < y < ∞. The semantics of STNU execution ensures
that regardless of when the activation timepoint A is executed, the contingent timepoint C

will occur such that C − A ∈ [x, y]. Thus, the duration C − A is uncontrollable, but bounded.
Each STNU S = (T , C, L) has a corresponding graph G = (T , Eo, Elc, Euc), where (T , Eo) is
the graph for the STN (T , C), and Elc and Euc are sets of labeled edges corresponding to the
contingent durations in L. In particular, each contingent link (A, x, y, C) in L has a lower-case
(LC) edge A c:x C in Elc that represents the uncontrollable possibility that the duration might
take on its minimum value x; and an upper-case (UC) edge C C:−y A in Euc that represents
the possibility that it might take on its maximum value y. For convenience, edges such as
A c:x C and C C:−y A may be notated as (A, c:x, C) and (C, C:−y, A), respectively.

An STNU is dynamically controllable (DC) if there exists a dynamic, real-time execution
strategy that guarantees that all constraints in C will be satisfied no matter how the contingent
durations turn out [13, 4]. A strategy is dynamic in that its execution decisions can react
to observations of contingent executions, but with no advance knowledge of future events.
Morris [10] proved that an STNU is DC if and only if it does not include any semi-reducible
negative cycles (SRN cycles). (A path P is semi-reducible if certain constraint-propagation
rules can be used to provide new edges that effectively bypass each occurrence of an LC edge
in P.) In 2014, Morris [11] presented the first O(n3)-time DC-checking algorithm.1 In 2018,
Cairo et al. [1] presented their O(mn + k2n + kn log n)-time RUL− DC-checking algorithm.
Hunsberger and Posenato [6] subsequently presented a faster version, called RUL2021, that
has the same worst-case complexity but achieves an order-of-magnitude speedup in practice
by restricting the edges it inserts into the network during constraint propagation.

1.3 Flexible and Efficient Real-time Execution
Most DC-checking algorithms generate conditional wait constraints that must be satisfied
by any valid execution strategy. Each wait is represented by a labeled edge of the form
W C:−w A, which may be notated as (W, C:−w, A). (Despite the similar notation, a wait is
distinguishable from the original UC edge since its source timepoint is not the contingent
timepoint C.) Such a wait can be glossed as: “While C remains unexecuted, W must wait at
least w after A.” Morris [11] defined an Extended STNU (ESTNU) to be an STNU augmented
with such waits. Thus, the graph for an ESTNU includes a set Eucg of generated wait edges.
For convenience, we intentionally blur the distinction between an ESTNU and its graph.

1 As is common in the literature, we use n for the number of timepoints, m for the number of ordinary
constraints; and k for the number of contingent links.
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Morris then extended the notion of dispatchability to ESTNUs, defining it in terms of the
ESTNU’s STN projections. A projection of an ESTNU is the STN derived from assigning
fixed values to the contingent durations. In any projection, each edge from the ESTNU
projects onto an ordinary edge [12, 9]. For example, consider the contingent link (A, 1, 10, C)
and the projection where its duration C − A equals 4. In that projection, the LC and UC
edges, (A, c:1, C) and (C, C:−10, A), project onto the respective ordinary edges, (A, 4, C)
and (C, −4, A), representing that C − A = 4. Meanwhile, the wait edges, (W, C:−7, A) and
(V, C:−3, A), project onto (W, −4, A) and (V, C:−3, A), respectively, since the wait on W

expires when C executes at A + 4, and the wait on V is satisfied at time A + 3.
Morris defined an ESTNU to be dispatchable if all of its STN projections are dispatchable

(as STNs). He then argued that a dispatchable ESTNU would necessarily provide a guarantee
of flexible and efficient real-time execution. Hunsberger and Posenato [9] later:
1. formally defined a flexible and efficient real-time execution algorithm for ESTNUs, called

RTE∗;
2. defined an ESTNU to be dispatchable if every run of RTE∗ necessarily satisfies all of the

ESTNU’s constraints; and
3. proved that an ESTNU satisfying their definition of dispatchability necessarily satisfies

Morris’ definition (i.e., all of its STN projections are STN-dispatchable).
The RTE∗ algorithm provides maximum flexibility during execution, unlike the earliest-first
strategy used for non-dispatchable networks [5].

Most DC-checking algorithms do not generate dispatchable ESTNUs. However, Morris [11]
argued that his O(n3)-time DC-checking algorithm could be modified, without impacting
its complexity, to generate a dispatchable output. In 2023, Hunsberger and Posenato [7]
presented a faster, O(mn + kn2 + n2 log n)-time ESTNU-dispatchability algorithm called
FDSTNU. However, neither of these algorithms provides any guarantees about the number of
edges in the dispatchable output. Since the number of edges in the network directly impacts
the real-time computations required to execute the network, it is important to minimize that
number. Hunsberger and Posenato [8] subsequently presented the first ESTNU-dispatchability
algorithm, called minDispESTNU, that, in O(kn3) time, generates an equivalent dispatchable
ESTNU having a minimal number of edges. To date, it is the only such algorithm. The
main contribution of this paper is to modify minDispESTNU so that it solves the same problem
in O(n3)-time, an order of magnitude faster, especially since it is common that k = O(n),
meaning the reduction in complexity is effectively from O(n4) to O(n3).

2 Overview of the Existing minDispESTNU Algorithm

The minDispESTNU algorithm [8] takes a dispatchable ESTNU E = (T , Eo, Elc, Euc, Eucg) as its
only input and generates as its output an equivalent dispatchable ESTNU having a minimal
number of edges. (Such an ESTNU is called a µESTNU for S.) It has four steps:
1. Compute the set Esi

o of so-called stand-in edges: ordinary edges that are entailed by
various combinations ordinary, LC, UC, and wait edges from the ESTNU.

2. Apply the STN-dispatchability algorithm from Tsamardinos et al. [16] to the resulting
set of ordinary edges, thereby generating a dispatchable STN subgraph, (T , E∗

o ).
3. Let Ê∗

o = E∗
o \Esi

o be the result of removing any remaining stand-in edges from E∗
o .

4. Compute the set of wait edges that are not needed for dispatchability and remove them
from Eucg; call the resulting set Êucg; then return the µESTNU (T , Ê∗

o , Elc, Euc, Êucg).

TIME 2024
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Figure 1 (Dashed) stand-in edges entailed by individual labeled edges.

The worst-case time complexity of the minDispESTNU algorithm is dominated by the first step:
finding the set Esi

o of so-called stand-in edges. Therefore, our new, faster algorithm modifies
only that step, achieving an order-of-magnitude reduction in the overall worst-case time
complexity. The rest of this section gives an overview of Step 1 of the existing minDispESTNU

algorithm, as implemented by its genStandIns helper algorithm.

2.1 Generating Stand-in Edges
Following Morris [11, 12], an ESTNU is dispatchable if all of its STN projections are
dispatchable (as STNs). That, in turn, requires that in each STN projection, each pair of
timepoints V and W that are connected by a path be connected by a shortest vee-path (i.e.,
a path comprising zero or more negative edges followed by zero or more non-negative edges).
A key insight behind the minDispESTNU algorithm is that in different projections, the shortest
vee-paths from V to W may take different routes and may have different lengths.

Before addressing more complex cases, genStandIns generates stand-in edges entailed
by individual labeled edges. For example, given a contingent link (A, x, y, C), the LC edge
(A, c:x, C) entails a stand-in edge (A, y, C) because in any projection where ω = C−A ∈ [x, y],
the LC edge projects onto the ordinary edge (A, ω, C), whose length is ω ≤ y. Similarly,
the UC edge (C, C:−y, A) entails a stand-in edge (C, −x, A) since in any projection the UC
edge projects onto the ordinary edge (C, −ω, A), whose length is −ω ≤ −x. Finally, a wait
edge (V, C:−v, A), where −v < −x, projects onto the ordinary edge (V, max{−ω, −v}, A)
and hence entails a stand-in edge (V, −x, A), since −ω ≤ −x and −v < −x.2 Figure 1 shows
an example of the stand-in edges entailed by individual labeled edges.

The most computationally costly part of the genStandIns algorithm is its computation
of stand-in edges entailed by different combinations of ESTNU edges. For example, consider
the ESTNU in Figure 2a, commonly referred to as a diamond structure. In the projection
where ω = C − A = 2, the projected path VACW , shown in blue in Figure 2b, is the
shortest vee-path from V to W : its length is 8. But in the projection where ω = C − A = 9,
the projected path VAW , shown in orange in Figure 2c, is the shortest vee-path from V

to W : its length is 7. The plots of the lengths, |VACW | and |VAW |, in Figure 2e, show
that across all projections the maximum length of the shortest vee-path from V to W ,
indicated by the dashed green line, is 8. In other words, the combination of edges in
the diamond structure entails the stand-in edge (V, 8, W ), shown as dashed and green in
Figure 2d. Since the constraint, W − V ≤ 8, must be satisfied in all projections, it must
also be satisfied by any dynamic execution strategy for the ESTNU. Similarly, the path
VAC satisfies |VAC | = max{−ω, −6} + ω = max{0, ω − 6} ≤ 4, for all ω ∈ [1, 10]. Thus,
that path entails the stand-in edge (V, 4, C), shown as dashed and purple in Figure 2d. Like
all stand-in edges, it must be satisfied by any dynamic execution strategy. The purpose of

2 As a first step, genStandIns replaces weak waits (i.e., those where −v ≥ −x) by ordinary edges and
adjusts misleading waits (i.e., those where −v < −y). But those details are not important for this paper.
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|VACW ||VAW
|

min{|VACW |, |VAW |}

1 2 5 6 10
7

8

12

ω
V

C A

W

C
:−

v

c:x
C:−y

γ δ

θ

y −
v

(e) Plots of vee-path lengths, |VACW | and |VAW |. (f) General case.

Figure 2 (a) Sample ESTNU, (b) and (c) two of its projections with (colored) shortest vee-paths,
(d) entailed (dashed) stand-in edges, (e) plots of vee-path lengths, and (f) the general case.

the genStandIns helper algorithm is to make all such constraints temporarily explicit so
that Step 2 of minDispESTNU can determine which ordinary edges can be removed without
threatening the dispatchability of the ESTNU.

Each iteration of the genStandIns algorithm’s main loop explores O(n2k) diamond
structures (n choices for V , n choices for W , and k choices for the contingent link), as
illustrated in Figure 2f, where the distances δ and γ are provided by the all-pairs shortest-
paths (APSP) matrix for the ordinary edges in the ESTNU. (The APSP matrix for the
ordinary edges is commonly called the distance matrix, denoted by D.) The lengths of the
alternative vee-paths, VACW and VAW , are given by |VACW | = max{−ω, −v} + ω + γ and
|VAW | = max{−ω, −v} + δ. Their intersection occurs where ω = δ − γ. If that value falls
within the interval (x, y), it is not hard to show that the maximum length of any shortest
vee-path from V to W across all projections is θ = max{γ, δ −v}, represented by the stand-in
edge (V, θ, W ), shown as dashed in Figure 2f. The other stand-in edge (V, y − v, C) derives
from the two-edge path, VAC , whose length in the projection where ω = C − A is given
by: |VAC | = max{−ω, −v} + ω = max{0, ω − v} ≤ y − v. After exploring all such diamond
structures, Johnson’s algorithm [2] is called to update the APSP matrix.

2.2 Stand-in edges arising from nested diamond structures
Because the distances involved in the analysis of diamond structures depend on shortest paths
in the subgraph of ordinary edges (e.g., γ = D(C, W ) and δ = D(A, W ) in Figure 2f), which
can be affected by inserting (ordinary) stand-in edges into the ESTNU, it follows that stand-in
edges can derive from nested diamond structures, for example, as illustrated in Figure 3. That
figure shows a more complicated ESTNU, where the diamond structure involving the solid
green edges is nested inside the diamond structure involving the solid purple edges. Ignoring
the green edges, for now, the solid purple edges can be shown to entail the (purple, dashed)
stand-in edge (V2, 3, W ). In particular, in projections where ω2 = C2 − A2 ≤ 7, the length of
the path V2A2C2W is: max{−ω2, −6} + ω2 + 2 = max{2, ω2 − 4} ≤ 3. In contrast, if ω2 ≥ 7,
the length of the alternative path V2A2W is: max{−ω2, −6} + 9 = max{9 − ω2, 3} ≤ 3.

TIME 2024
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Figure 3 Deriving stand-in edges from nested diamond structures.

Next, since the green diamond is isomorphic to the diamond from Figure 2d, it entails
the (green, dashed) stand-in edge (A2, 8, W ). But now, using that stand-in edge instead of
the purple edge (A2, 9, W ), a new analysis of the purple structure shows that it entails a
stronger (blue, dashed) stand-in edge (V2, 2, W ). In other words, nested diamond structures
can sometimes combine to entail stronger stand-in edges.

Hunsberger and Posenato [8] proved that it suffices to explore nested diamond structures
up to a maximum depth of k. Thus, the genStandIns algorithm does up to k iterations of
its main loop. Since each iteration ends by calling Johnson’s algorithm on up to n2 edges,
the overall complexity of genStandIns is O(kn3).

3 Speeding up the minDispESTNU Algorithm

The complexity of the minDispESTNU algorithm is driven by the O(kn3)-time complex-
ity of genStandIns. Our modification of minDispESTNU replaces genStandIns with
newGenStandIns, which, taking a more focused and efficient approach to dealing with
nested diamond structures, works in O(n3) time. Since k = O(n) is common in applications
(e.g., k ≈ n/10 in some benchmarks [15]), the reduction in worst-case time-complexity is
effectively from O(n4) to O(n3).

3.1 Stand-in Edges Derived from Nested Diamond Structures
Figure 4 illustrates the nested relationship between an inner diamond Di (involving timepoints
Vi, Ai, Ci and Wi, shaded dark gray) and an outer diamond Dj (involving timepoints
Vj , Aj , Cj and Wj , shaded light gray), where the arrows labeled by a, b, δi, γi and γj represent
ordinary edges or paths, and the dashed arrows represent the stand-in edges (Vi, τi, Wi) and
(Vj , τj , Wj) entailed by the diamonds.3 Lemma 1, below, ensures that in any such nesting,
there must be a path from Aj to Ai that comprises zero or more negative ordinary edges
followed by one (negative) wait edge, which for convenience we call a negOrdWait path.
This implies that the activation timepoints involved in nested structures can be put into a
strict partial order which, in turn, implies that generating the stand-in zedges associated

3 Hunsberger and Posenato [8] proved that when considering vee-paths from Aj to Wj , the only relevant
nesting of diamonds occurs if the inner diamond Di resides along the path from Aj to Wj in the outer
diamond Dj , as shown in the figure. Since the inner diamond begins with a negative wait edge, any
path from Aj to Wj that included Di between Cj and Wj could not be a vee-path.
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Figure 4 Nested diamond structures (one shaded light, one shaded dark) considered in Lemma 1.

with nested diamonds can be done in just one pass, instead of the k passes through the
main loop of genStandIns. Furthermore, to determine the length of the stand-in edge from
Vj to any Wj , taking advantage of the nesting of Di within Dj , it suffices to know the
length of the shortest ordinary path from Aj to Wj . (Recall that the length of the entailed
stand-in edge depends only on the values of D(Cj , Wj), D(Aj , Wj) and −vj .) In other
words, when generating stand-in edges derived from diamonds involving the labeled edges
(Ai, ci:xi, Ci) and (Ci, Ci:−yi, Ai), it is not necessary to find all ordinary distances affected
by those stand-in edges (which is what the existing genStandIns algorithm uses Johnson’s
algorithm to do – on each of up to k passes); instead, it suffices to focus on the distances of
ordinary paths emanating from Aj that are affected by those stand-in edges. In the case of Aj

shown in the figure, it suffices to record distances of the form, D(Aj , Wi) = b + τi, resulting
from new stand-in edges. Crucially, all of these distances correspond to paths emanating
from a single source, Aj . After exploring all inner diamonds Di and recording the new
distances, D(Aj , Wi), then all values D(Aj , ·) can be updated using Dijkstra’s single-source
shortest-paths algorithm, guided by a potential function [2]. These observations enable
the newGenStandIns algorithm, presented later in this section, to call Dijkstra’s algorithm
k times, instead of calling Johnson’s algorithm k times, leading to an order-of-magnitude
reduction in worst-case time complexity, from O(kn3) down to O(n3).

▶ Lemma 1. Let S be any dispatchable ESTNU. Suppose that E is a stand-in edge derived
from nested diamond structures in which the diamond structure Di associated with the
contingent link (Ai, xi, yi, Ci) is nested directly inside the diamond structure Dj associated
with the contingent link (Aj , xj , yj , Cj). Furthermore, suppose that the labeled edges from
these contingent links are needed for E (i.e., without their labeled edges, E would not be
entailed by the remaining edges in S). Then there must be a path from Aj to Ai in S that
consists of zero or more negative ordinary edges, followed by a single wait edge of the form
(Vi, Ci:−vi, Ai) (i.e., a negOrdWait path).

TIME 2024
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Proof. Suppose that E is the stand-in edge (Vj , τj , Wj). Since the labeled edges from these
contingent links are needed for E, it follows that in at least one STN projection, the shortest
vee-path from Vj to Wj must include the path from Aj to Vi to Ai. Since any subpath of a
vee-path is also a vee-path and the wait edge (Vi, Ci:−vi, Ai) has negative length, it follows
that all of the ordinary edges represented in the figure by (Aj , b, Vi) must be negative. ◀

Given Lemma 1, the activation timepoints participating in a nested diamond structure
must be linked by a chain of negOrdWait paths. In addition, for a DC STNU, there can
be no cycles of such paths because they would constitute a negative cycle in the OU-graph,
i.e., Gou = (T , Eo ∪ Euc ∪ Eucg), the graph containing all the original and derived edges but
the lower-case ones. However, a single activation timepoint may participate in multiple
nested structures. Hence, the set of all negOrdWait paths among the activation timepoints
necessarily forms a strict partial order (equivalently, a forest of one or more directed acyclic
graphs in the OU-graph).

For each pair of activation timepoints, Aj and Ai, for which there is a negOrdWait path
from Aj to Ai, we say that Aj is a parent of Ai and that Ai is a child of Aj . The relevant
information for determining the stand-in edges emanating from Aj and passing through
a diamond structure involving labeled edges from (Ai, xi, yi, Ci) is: (1) ℓ, the (negative)
length of the negOrdWait path from Aj to Ai; and (2) −vi, the (negative) length of the
wait edge, (Vi, Ci:−vi, Ai), terminating that negOrdWait path. These lengths are shown in
Figure 4, where b = ℓ + vi is the length of the prefix of the negOrdWait path that includes
only the ordinary edges (i.e., everything except the terminal wait edge). Then, as shown by
Hunsberger and Posenato [8], for any timepoint Wi ∈ T \{Ai, Ci, Aj , Cj}, the length of the
potential stand-in edge from Aj to Wi is given by b + max{γi, δi − vi} = max{b + γi, ℓ + δi},
where γi = D(Ci, Wi) and δi = D(Ai, Wi), also shown in the figure. Then, for any Wj , the
ordinary distance D(Aj , Wj) affected by such a stand-in edge can be determined by the
previously mentioned call to Dijkstra’s algorithm, guided by a potential function.

3.2 The getPCinfo (get parent/child info) Algorithm
The getPCinfo algorithm (Algorithm 1) efficiently computes the relevant parent/child
information, returning a pair of vectors of hash tables, called parent and child. For each
activation timepoint Ai, parent[Ai] is a hash table containing entries where some Aj is the
key and (ℓ, −vi) is the value (i.e., Aj is the parent, ℓ is the length of the negOrdWait path
from Aj to Ai, and −vi is the length of its terminating wait edge). Similarly, for each
activation timepoint Aj , child[Aj ] is a hash table containing entries linking some child Ai to
the corresponding pair (ℓ, −vi), where ℓ is the length of the negOrdWait path from Aj to Ai,
and −vi is the length of its terminal wait edge.

An important factor is that if two negOrdWait paths from Aj to Ai have the same length,
but one has a stronger (i.e., more negative) terminating wait edge, then the negOrdWait
path terminated by the weaker wait dominates the one with the stronger wait because in
any projection the projected length of the one with the weaker wait will be shorter than (or
the same as) that of the one with the stronger wait. For example, if ℓ is the length of two
negOrdWait paths from Aj to Ai, but −v1 > −v2, where the corresponding terminal wait
edges are (V1, Ci:−v1, Ai) and (V2, Ci:−v2, Ai), then |AjV1 Ai | = (ℓ + v1) + max{−ω, −v1} =
max{ℓ + v1 − ω, ℓ} ≤ max{ℓ + v2 − ω, ℓ} = (ℓ + v2) + max{−ω, −v2} = |AjV2 Ai |. Another
important factor involves negOrd paths (i.e., paths comprising solely negative ordinary edges).
If a negOrd path has the same length as a negOrdWait path, then the negOrd path dominates
the negOrdWait path since in every projection the length of the negOrd path will be the
same as or shorter than the length of the projected negOrdWait path.
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Algorithm 1 getPCinfo: find negOrdWait paths between pairs of activation timepoints.

Input: G = (T , Eo, Elc, Euc, Eucg), an ESTNU graph
Output: (parent, child), where parent and child are k-vectors of hash tables signaling the

presence of negOrdWait paths between pairs of activation timepoints
1 f ··= bellmanFord(Gou) // A potential function for Gou = (T , Eo ∪ Euc ∪ Eucg)
2 parent ··= (∅, . . . , ∅)
3 child ··= (∅, . . . , ∅) // k-vectors of hash tables
4 foreach (A, x, y, C) ∈ L do // Back-propagate from A along negOrdWait paths
5 negLen ··= (∞, . . . , ∞) // An n-vector of accum. lengths of negOrdWait paths ending in A

6 negWait ··= (⊥, . . . , ⊥) // An n-vector of corresp. neg. wait values (or ⊥ for ord paths)
// Initialize min priority queue Q with entries for negative ord and wait edges incoming to A

// Element = U , a timepoint
// Key = Non-negative accumulated length adjusted by potential function, f

7 Q ··= new priority queue
8 foreach (U, δ, A) with δ < 0 do // Negative ordinary edges incoming to A

9 Q.insert(U, δ − f(A) + f(U)) // f(A) − f(U) ≤ δ ⇐⇒ δ − f(A) + f(U) ≥ 0
10 negLen[U ] ··= δ

11 foreach (V, C:−v, A) ∈ Eucg do // (Negative) wait edges incoming to A

12 Q.insert(V, −v − f(A) + f(V )) // f(A) − f(V ) ≤ −v ⇐⇒ −v − f(A) + f(V ) ≥ 0
13 negLen[V ] ··= −v; negWait[V ] ··= −v

// Use back-propagation to find shortest negOrd or negOrdWait paths terminating at A

14 while ¬Q.empty() do
15 U ··= Q.extractMin()
16 if U = A′ is an activation timepoint and negWait[A′] ̸= ⊥ then

// Record negOrdWait path found from A′ to A

17 parent[A].insert(A′, (negLen[A′], negWait[A′]))
18 child[A′].insert(A, (negLen[A′], negWait[A′]))

// Continue back-propagating along negative ordinary edges
19 foreach (V, v, U) ∈ Eo | v < 0 do
20 newLen ··= v + negLen[U ]
21 if newLen < negLen[V ] or ((newLen == negLen[V ]) and

((negWait[U ] == ⊥) or (negWait[U ] > negWait[V ]))) then
// Record new shortest negOrd or negOrdWait path from V to A (via U)

22 if negLen[V ] == ∞ then Q.insert(V, newLen − f(A) + f(V ))
23 else Q.decreaseKey(V, newLen − f(A) + f(V ))
24 negLen[V ] ··= newLen
25 negWait[V ] ··= negWait[U ]

26 return (parent, child) // Return the vectors of parent/child hash tables

At Line 1, getPCinfo calls the Bellman-Ford algorithm [2] to generate a solution to the
OU-graph that will be used as a potential function to guide the traversal of negOrd and
negOrdWait paths. Line 2 initializes the parent and child vectors of hash tables.

Each iteration of the for loop at Lines 4–25 processes one activation timepoint A, looking
for shortest negOrd or negOrdWait paths from A backward to other activation timepoints.
Lines 5–6 initialize the negLen and negWait vectors. For each X, negLen[X] specifies the
length of the shortest negOrd or negOrdWait path from X to A that has been found so far
(or ∞). If a shortest negOrdWait path from X to A has been found that is not dominated
by a negOrd path, then negWait[X] specifies the length of its terminating wait edge.
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Lines 7–13 initialize a min priority queue [2] to include an entry for each negative ordinary
edge and each wait edge incoming to A. Like in Johnson’s algorithm, the potential function
f is used to adjust the distances in the OU-graph to be non-negative to enable the use of
Dijkstra’s algorithm to guide the exploration of negOrd and negOrdWait paths.

Each iteration of the while loop (Lines 14–25) pops a timepoint U off the queue. If
U happens to be an activation timepoint A′ for which an undominated negOrdWait path
has been found, then entries linking A (the child) to A′ (the parent) are inserted into the
relevant hash tables (Lines 16–18). Next, back-propagation along negative ordinary edges
continues at Lines 19–25. The complicated if condition at Line 21 covers cases where a
new shortest negOrd or negOrdWait path from V to A (via U) has been found. First, if
newLen < negLen[V ] (which includes negLen[V ] = ∞), then the path via U is a new shortest
path. Second, if newLen = negLen[V ], then the path via U dominates a pre-existing path
from V to A if: (1) the path via U is a negOrd path (whence negWait[U ] = ⊥); or (2) the
wait terminating the path via U is weaker than the terminal wait in the pre-existing path (i.e.,
negWait[U ] > negWait[V ]). In any of these cases, the values of negLen[V ] and negWait[V ]
are updated, and V is either newly inserted into the queue or its key is updated (Lines 22–25).
After the main for loop is completed, the parent and child vectors of hash tables are returned
at Line 26.

3.3 The newGenStandIns Algorithm
The section presents our newGenStandIns algorithm (Algorithm 2). It uses the parent and
child hash tables computed by getPCinfo to more efficiently generate all of the stand-in edges
arising from nested diamond structures. Its time-complexity is O(n3), an order-of-magnitude
improvement over the O(kn3)-time complexity of genStandIns.

For simplicity, we assume that all stand-in edges entailed by individual labeled edges
have already been computed and have been passed as an input Eisi into newGenStandIns.

At Line 1, newGenStandIns calls the Bellman-Ford algorithm on the subgraph of ordinary
edges which will be used as a potential function to enable the use of Dijkstra’s single-source
shortest-paths algorithm to update distance-matrix entries. At Line 2, Et

o is initialized; it will
accumulate changes to D(Aj , ·) values, stored as temporary edges, that are derived directly
from nested stand-in edges. Next, at Lines 3–7, the list, readyToGo, of activation timepoints
that are ready to process is initialized. Since the activation timepoints form a strict partial
order, this list is initially populated by those having no children. The vector, numUnprocd,
keeps track of how many unprocessed children each activation timepoint has. Later on, as
each activation timepoint is processed, its parent’s entry in numUnprocd will be decremented.

Each iteration of the while loop (Lines 8–28) pops one activation timepoint Aj off the
readyToGo list and, at Lines 12–19, for each child Ai and each timepoint Wi, explores
diamond structures involving the labeled edges from the contingent link (Ai, xi, yi, Ci), to
determine whether the distance D(Aj , Wi) can be affected by a nested diamond. (Recall
Figure 3.) Instead of explicitly dealing with the wait edge (Vi, Ci:−vi, Ai) shown in the
figure, newGenStandIns uses the ℓi and −vi values retrieved from the child[Aj ] hash table at
Line 12 (where b in the figure equals ℓi + vi), along with the distances, γi = D(Ci, W ) and
δi = D(Ai, Wi), obtained from the distance matrix at Line 14. This information is sufficient
to determine whether the paths ViAiCiWi and ViAiWi combine to entail a new stand-in
edge, (Vi, τi, Wi), where τi = max{γi, δi − vi}. In particular, as in genStandIns, ωi = δi − γi

(at Line 15) specifies the projection where |ViAiCiWi | = |ViAiWi |; and a new stand-in edge
from Vi to Wi is entailed if ωi ∈ (xi, yi) and if that new stand-in edge is at least as strong
as any existing ordinary path from Vi to Wi. However, here, the goal is not to generate
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Algorithm 2 newGenStandIns: Compute the stand-in edges arising from nested diamonds.
Input: (T , Eo, Elc, Euc, Eucg), dispatchable ESTNU; parent, child, vectors of hash tables

computed by getPCinfo; D, distance matrix for Go = (T , Eo); Eisi ⊆ Eo, stand-in edges
entailed by individual labeled edges

Output: Esi, the set of all stand-in edges (including Eisi); and D, the updated distance matrix.
1 f ··= bellmanFord(Go) // Initialize a potential function f on the ordinary subgraph Go

2 Et
o ··= ∅ // Used to collect all temporary (ordinary) edges

3 readyToGo ··= ∅ // A list of activation timepoints ready for processing
4 numUnprocd ··= (0, . . . , 0) // For each activ’n. timepoint, the num of its unprocessed children
5 foreach (A, x, y, C) ∈ L do
6 numUnprocd[A] ··= child[A].count() // Fetch the number of A’s children
7 if numUnprocd[A] == 0 then readyToGo.push(A) // If no children, then ready to process
8 while readyToGo ̸= ∅ do
9 Aj ··= readyToGo.pop() // Contingent link for Aj is (Aj , xj , yj , Cj)

10 anyChange ··= ⊥
11 newLengths ··= empty hash table // For collecting new D(Aj , ·) values
12 foreach (Ai, (ℓi, −vi)) ∈ child[Aj ] do // Contingent link for Ai is (Ai, xi, yi, Ci)
13 foreach Wi ∈ T \{Ai, Ci, Aj , Cj} do
14 γi = D(Ci, Wi); δi = D(Ai, Wi); ωi ··= δi − γi

15 if ωi ∈ (xi, yi) then // ωi specifies proj’n. where max shortest vee-path occurs
16 newVal ··= max{ℓi + vi + γi, ℓi + δi} // Length of potential new D(Aj , Wi) value
17 if newVal < D(Aj , Wi) then
18 newLengths.insert(Wi, newVal) // Record new D(Aj , Wi) value
19 anyChange ··= ⊤

20 if anyChange == ⊤ then // Need to update potential function and D(Aj , ·) values
21 E+

o ··= ∅ // Collect set of changed D(Aj , ·) values as temporary edges
22 foreach (Wi, newVal) ∈ newLengths do E+

o ··= E+
o ∪ {(Aj , newVal, Wi)}

23 f ··= updatePotFn((T , Eo ∪ E+
o ), f) // Update pot’l. fn. to accommodate temp edges

24 D(Aj , ·) ··= dijkstra(Aj , Eo ∪ E+
o , f) // Update D(Aj , ·) values for next iteration

25 Et
o ··= Et

o ∪ E+
o // Accumulate temp edges RE: Aj in global set Et

o

26 foreach A ∈ parent[Aj ] do // Update info for Aj ’s parents now that Aj is done
27 numUnprocd[A] ··= numUnprocd[A] − 1
28 if numUnprocd[A] == 0 then readyToGo.push(A)

// Fully updated D ensures that one iteration of genStandIns will generate all stand-in edges
29 D ··= johnson(T , Eo ∪ Et

o) // After this, temp edges are discarded
30 Esi ··= genStandInsOnce((T , Eo, Elc, Euc, Eucg), Eisi, D)
31 D ··= johnson(T , Eo ∪ Esi) // Final update of D to accommodate the generated stand-in edges
32 return (Esi, D)

that stand-in edge, but instead to provide the D(Aj , Wi) value affected by it. Therefore, the
only information accumulated in the newLengths hash table is the pair (Wi, newVal), where
newVal = b + τi = ℓi + vi + τi = max{ℓi + vi + γi, ℓi + δi} (at Lines 16–18).

Afterward, at Line 20, if processing Aj led to changes in any D(Aj , ·) values, then
newGenStandIns collects all of the changes as a set E+

o of temporary edges (Lines 21–22)
that it then uses to (1) incrementally update the potential function f (at Line 23), and
(2) propagate the new D(Aj , ·) values to update all affected D(Aj , ·) values (at Line 24). For
updating the potential function, it calls the updatePotFn, which is a simplified version of the
UpdPF algorithm from the RUL2021 algorithm [6]; here, it explores paths emanating from Aj

as long as changes to the potential function are needed. For updating D(Aj , ·) values, it calls
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Algorithm 3 The updatePotFn function.

Input: Go = (T , Eo), STN; A, timepoint; h, pot’l. fn. for Go, excluding edges emanating from A

Output: A pot’l. fn. h′ for Go (including edges emanating from A); or ⊥ if Go is inconsistent
1 h′ := copy-vector(h)
2 Q := new empty priority queue
3 Q.insert(A, 0) // Initialize queue for forward propagation from A

4 while (!Q.empty()) do
5 (V, key(V )) := Q.extractMinNode()
6 foreach ((V, δ, W ) ∈ Eo) do // Propagate along ordinary edges emanating from V

7 if (h′(W ) > h′(V ) + δ) then
8 h′(W ) := h′(V ) + δ // Update pot’l. fn. h′ and insert W into Q or decrease its key
9 if (Q.state(W ) == notYetInQ) then Q.insert(W, h(W ) − h′(W ))

10 else Q.decreaseKey(W, h(W ) − h′(W ))

11 return h′

Dijkstra’s single-source shortest-paths algorithm using Aj as the source and f as a potential
function to re-weight the edges to non-negative values. This use of Dijkstra is similar to its
use in Johnson’s algorithm [2]. Note that after these updates the temporary edges in E+

o are
not inserted into the ESTNU graph, but they are accumulated in Et

o for later use at Line 25.
The processing of Aj ends at Lines 26–28, where for each parent A of Aj , the number

of A’s unprocessed children is decremented by 1 and, if that number reaches 0, then A is
pushed onto the readyToGo list, indicating that it is ready for processing.

Once all activation timepoints have been processed, all distance values D(Aj , ·) needed
to account for arbitrary nestings of diamond structures have been accumulated. All that
remains is to use these values to generate all of the stand-in edges. For example, suppose that
the diamond formed by Vj , Aj , Cj and Wj from Figure 3 is the outermost diamond in a nested
sequence that entails a stand-in edge of the form, (Vj , τj , Wj). Then the resulting D(Aj , Wj)
value, determined by the inner levels of nesting, was computed when Aj was processed by
the while loop at Lines 8–19. But the stand-in edge (Vj , τj , Wj) has not yet been generated.
However, given all of the D(Aj , ·) values computed so far (for all Aj), generating all such
stand-in edges, including those that are not involved in any nesting, can be accomplished
by an O(kn2)-time exploration of diamond structures involving any timepoints, V, A, C, W ,
where A and C are timepoints associated with a contingent link (A, x, y, C), and V and W

are any timepoints other than A or C. This is precisely what a single iteration of the for
loop at Lines 13-27 of genStandIns does. Here, it is called genStandInsOnce, at Line 30.
Afterward, at Line 31, a final call to Johnson’s algorithm computes the full distance matrix
to accommodate all of the new stand-in edges, including those in Eisi passed in as an input.

3.4 Complexity of newGenStandIns

Our modification of the minDispESTNU algorithm replaces the genStandIns helper by the
newGenStandIns algorithm presented above. The complexity of newGenStandIns is de-
termined as follows. Its k calls of Dijkstra’s algorithm on at most m + nk edges cost
O(mk + nk2 + kn log n) time. Its k calls of the updatePotFn function similarly require
O(mk + nk2 + kn log n) time. The call to genStandInsOnce, as reported by Hunsberger
and Posenato [8], requires O(kn2) time (n choices for V , n choices for W , and k choices for
(A, x, y, C)). The most costly computation, however, is the last one: the call to Johnson’s
algorithm on at most m = n2 edges costs O(n3) time. Therefore, the overall complexity of
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newGenStandIns is O(n3). This is an order-of-magnitude reduction compared to the O(kn3)
complexity of genStandIns, especially since, for applications, k = O(n) (e.g., k ≈ n/10 in
some benchmarks [15]), implying an effective reduction from O(n4) to O(n3).

The complexity of steps 2, 3 and 4 of minDispESTNU, which we do not change, is dominated
by the call to the STN-dispatchability algorithm on at most n2 edges, which is also O(n3).
So the overall complexity of our modification of minDispESTNU is O(n3).

4 Conclusions

Generating an equivalent dispatchable ESTNU having a minimal number of edges is an
important problem for applications involving actions with uncertain but bounded durations.
The number of edges in the dispatchable network is important because it directly impacts
the real-time computations that are necessary when executing the network. Therefore, for
time-sensitive applications it is important to generate an equivalent dispatchable ESTNU
having a minimal number of edges, called a µESTNU. This paper modified the only existing
algorithm for generating a µESTNU, making it an order-of-magnitude faster. It reduced the
worst-case time-complexity from O(kn3) to O(n3) which, given that in typical applications
k = O(n), implies an effective reduction from O(n4) to O(n3).
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