
Robust Execution of Probabilistic STNs
Luke Hunsberger # Ñ

Vassar College, Poughkeepsie, NY, USA

Roberto Posenato # Ñ

University of Verona, Italy

Abstract
A Probabilistic Simple Temporal Network (PSTN) is a formalism for representing and reasoning
about actions subject to temporal constraints, where some action durations may be uncontrollable,
modeled using continuous probability density functions. Recent work aims to manage this kind
of uncertainty during execution by approximating a PSTN by a Simple Temporal Network with
Uncertainty (STNU) (for which well-known execution strategies exist) and using an STNU execution
strategy to execute the PSTN, hoping that its probabilistic action durations will not cause any
constraint violations.

This paper presents significant improvements to the robust execution of PSTNs. Our approach is
based on a recent, faster algorithm for finding negative cycles in non-DC STNUs. We also formally
prove that many of the constraints included in others’ work are unnecessary and that our algorithm
can take advantage of a flexible real-time execution algorithm to react to observations of contingent
durations that may fall outside the fixed STNU bounds. The paper presents an empirical evaluation
of our approach that provides evidence of its effectiveness in robustly executing PSTNs derived from
a publicly available benchmark.

2012 ACM Subject Classification Computing methodologies → Temporal reasoning; Theory of
computation → Dynamic graph algorithms

Keywords and phrases Temporal constraint networks, probabilistic durations, dispatchable networks

Digital Object Identifier 10.4230/LIPIcs.TIME.2024.12

Supplementary Material Software (Source code): https://profs.scienze.univr.it/~posenato/
software/cstnu/ [26]

1 Introduction

In many sectors of real-world industry, it is necessary to plan and schedule tasks allocated
to agents participating in complex processes [19, 1]. Temporal planning aims to schedule
tasks while respecting temporal constraints such as release times, maximum durations, and
deadlines, which requires quantitative temporal reasoning. Over the years, major application
developers have highlighted the need for explicit representation of actions with uncertain
durations; and efficient algorithms for checking whether plans involving such actions are
controllable, and for converting such plans into forms that enable them to be executed in
real time with minimal computation, while preserving maximum flexibility.

A Probabilistic Simple Temporal Network (PSTN) is a formalism for representing and
reasoning about actions subject to temporal constraints, where some action durations may
be uncontrollable, modeled using continuous probability density functions. Recent work aims
to manage this kind of uncertainty during execution by:
1. computing a dynamically controllable (DC) Simple Temporal Network with Uncertainty

(STNU) whose bounded action durations capture as much of the combined probability
mass of the corresponding probabilistic durations as possible;

2. deriving a dynamic execution strategy for the approximating STNU; and
3. using that strategy to execute the PSTN, hoping that its probabilistic action durations

will not cause any constraint violations.
© Luke Hunsberger and Roberto Posenato;
licensed under Creative Commons License CC-BY 4.0

31st International Symposium on Temporal Representation and Reasoning (TIME 2024).
Editors: Pietro Sala, Michael Sioutis, and Fusheng Wang; Article No. 12; pp. 12:1–12:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hunsberger@vassar.edu
https://www.cs.vassar.edu/~hunsberg
https://orcid.org/0009-0005-8603-4803
mailto:roberto.posenato@univr.it
https://www.di.univr.it/?ent=persona&id=102
https://orcid.org/0000-0003-0944-0419
https://doi.org/10.4230/LIPIcs.TIME.2024.12
https://profs.scienze.univr.it/~posenato/software/cstnu/
https://profs.scienze.univr.it/~posenato/software/cstnu/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Robust Execution of Probabilistic STNs

Since unlikely action durations may nonetheless occur, this approach incurs a non-zero risk
of failure. The typical goal is to minimize this risk, although some have sought to optimize a
different objective function while accepting a pre-determined bound on the risk of failure.

This paper presents significant improvements to this approach that derive from recent,
faster algorithms for solving several closely related problems, as well as some new theoretical
results:
1. Since the iterative process of computing a DC STNU to approximate a PSTN relies

on efficiently finding negative cycles in non-DC STNUs so that they can be resolved
(e.g., by tightening the bounds on participating contingent durations), this paper uses a
recent, faster algorithm for finding such cycles (Algorithm FindSRNC [16]). Its compact
representation of such cycles avoids exponential blow-up. Like some recent work, our
approximating algorithm (Algorithm genApproxSTNU) uses a general-purpose non-linear
optimization solver to aid in this process; however, genApproxSTNU explicitly aims to
maximize the combined probability mass of the probabilistic durations captured by the
STNU’s contingent durations. We also formally prove that many constraints included in
others’ work are unnecessary.

2. Given an approximating DC STNU, we then propose to use a recent, fast algorithm
(Algorithm minDispESTNU [17]) to compute an equivalent dispatchable STNU having a
minimal number of edges. Doing so allows the use of a flexible and efficient real-time
execution strategy, implemented by the algorithm RTE∗ [18], instead of, for example, the
inflexible earliest-first strategy used by many researchers.

3. Hence, we propose to execute the PSTN using RTE∗ to exploit the strategy’s flexibility
to react to observations of contingent durations that may fall outside the fixed STNU
bounds.

The paper presents an empirical evaluation of our approach that provides evidence of its
effectiveness in robustly executing PSTNs derived from a publicly available benchmark. In
particular, it shows that taking advantage of a flexible real-time execution algorithm can
increase the chances of successful executions.

2 Background

In this section, we recall the basic concepts and results about Simple Temporal Networks,
Simple Temporal Networks with Uncertainty (STNUs), Probabilistic Simple Temporal
Networks (PSTNs) and the known methods for approximating PSTNs by STNUs.

2.1 Simple Temporal Networks
A Simple Temporal Network (STN) is a pair (T , C) where T is a set of real-valued variables
called timepoints; and C is a set of ordinary constraints, each of the form (Y − X ≤ δ) for
X, Y ∈ T and δ ∈ R [5]. An STN is consistent if it has a solution as a constraint satisfaction
problem (CSP). Each STN has a corresponding graph where the timepoints serve as nodes,
and the constraints correspond to labeled, directed edges. In particular, each constraint
(Y − X ≤ δ) corresponds to an edge X δ Y in the graph. Such edges may be notated as
(X, δ, Y) for convenience.

A flexible and efficient real-time execution (RTE) algorithm has been defined for STNs
that maintains time windows for each timepoint and, as each timepoint X is executed, only
propagates constraints locally, to neighbors of X in the STN graph [28, 24]. An STN is
called dispatchable if that RTE algorithm is guaranteed to satisfy all of the STN’s constraints
no matter which execution decisions are made subject to the time-window constraints.
Algorithms for generating equivalent dispatchable STNs have been presented [28, 24].

L. Hunsberger and R. Posenato 12:3

A C

B D

c:1
C:−10

d:1
D:−10

−107

A C

B D

c:1
C:−10

d:1
D:−10

−
17 0

Figure 1 A semi-reducible path (shaded gray on the left) and a Semi-Reducible Negative (SRN)
cycle (shaded gray on the right).

2.2 Simple Temporal Networks with Uncertainty
A Simple Temporal Network with Uncertainty (STNU) augments an STN to include contingent
links that represent actions with uncertain, but bounded durations [23]. An STNU is a
triple (T , C, L) where (T , C) is an STN, and L is a set of contingent links, each of the form
(A, x, y, C), where A, C ∈ T and 0 < x < y < ∞. The semantics of STNU execution ensure
that regardless of when the activation timepoint A is executed, the contingent timepoint
C will occur such that C − A ∈ [x, y]. Thus, the duration C − A is uncontrollable but
bounded. The graph of an STNU S = (T , C, L) is the graph of the STN (T , C) augmented
to include labeled edges representing the contingent durations. In particular, each contingent
link (A, x, y, C) has two corresponding edges in the STNU graph: a lower-case (LC) edge
A c:x C, notated as (A, c:x, C), representing the uncontrollable possibility that the duration
might take on its minimum value x; and an upper-case (UC) edge C C:−y A, notated as
(C, C:−y, A), representing the possibility that it might take on its maximum value y.

The most important property of an STNU is whether it is dynamically controllable
(DC). An STNU is dynamically controllable (DC) if there exists a dynamic, real-time
execution strategy that guarantees that all constraints in C will be satisfied no matter how
the contingent durations turn out [23, 10]. A strategy is dynamic because its execution
decisions can react to observations of contingent executions without advance knowledge of
future events. Morris [21] proved that an STNU is DC if and only if it does not include
any semi-reducible negative cycles (SRN cycles). A path P is semi-reducible if certain
constraint-propagation rules can be used to provide new edges that effectively bypass each
occurrence of an LC edge in P. As an example of a semi-reducible path and an SRN cycle,
consider Figure 1. In the left network, the path Π = (A, c:1, C, −1, B) is semi-reducible
because it is possible to combine constraints (A, c:1, C) and (C, −1, B) to create an equivalent
constraint (A, 0, B) (dashed red) that bypasses (A, c:1, C) in Π. In the right network, the
path (cycle) Π = (A, c:1, C, −1, D, D:−10, B, 7, A) is an SRN cycle because as before, it
is possible to bypass (A, c:1, C) by constraint (A, 0, D) (dashed red), and the value of the
resulting cycle (A, 0, D, D:−10, B, 7, A) (sum of constraint values discarding possible labels)
is negative. Indeed, this network is not DC because A must be executed after or as soon as
D occurs to satisfy (A, 0, D), and in the case that the contingent link (B, 1, −10, D) duration
outcomes to be 10, the constraint (B, 7, A) will be violated.

In 2014, Morris [22] presented the first O(n3)-time DC-checking algorithm.1 In 2018,
Cairo et al. [2] presented their O(mn + k2n + kn log n)-time RUL− algorithm. In 2022,
Hunsberger and Posenato [14] subsequently presented a faster version, called RUL2021, that
has the same worst-case complexity but achieves an order-of-magnitude speedup in practice
by restricting the edges it inserts into the network during constraint propagation.

1 As is common in the literature, we use n for the number of timepoints, m for the number of ordinary
constraints; and k for the number of contingent links.

TIME 2024

12:4 Robust Execution of Probabilistic STNs

Following the literature, we refer to ordinary or LC edges as LO-edges and ordinary or
UC edges as OU-edges. An ESTNU graph has the form (T , Eo ∪ Elc ∪ Euc ∪ Eucg), where Eo is
the set of ordinary edges, Elc and Euc are the sets of LC and UC edges, and Eucg is the set of
generated wait edges (described later). The graphs, Gℓo and Gou, of the LO- and OU-edges,
respectively, can be viewed as STNs by ignoring the alphabetic labels on LC or UC edges.

2.3 Probabilistic Simple Temporal Networks
A Probabilistic Simple Temporal Network (PSTN) is similar to an STNU, except that each
contingent duration, C − A, is modeled as a random variable with a specified probability
density function (pdf) p [27, 7]. This paper assumes that each probabilistic duration has a
log-normal distribution.2

Since pdfs can have infinite tails, successfully executing a PSTN cannot be guaranteed in
general. Instead, researchers have focused on approximating PSTNs by STNUs [7, 33, 30, 31].
The approximating STNU differs from the PSTN only in representing the contingent durations;
the ordinary constraints all stay the same. The aim is to choose bounds for the approximating
STNU’s contingent links that capture as much probability mass of the probabilistic durations
as possible while preserving the STNU’s controllability. For example, if (A, x, y, C) is a
contingent link approximating a probabilistic duration (A, C, p), then the probability mass
captured by the contingent link is

∫ y

x
p(t)dt = F (y) − F (x), where F is the associated

cumulative distribution function (cdf).

2.3.1 Approximating PSTNs by Strongly Controllable STNUs
Early work sought to approximate PSTNs by strongly controllable STNUs. (An STNU
S = (T , C, L) is strongly controllable (SC) if there exists a fixed schedule for its controllable
timepoints that guarantees that all constraints in C will be satisfied no matter how the
durations of the contingent links in L turn out.) Tsamardinos [27] aimed to find a fixed
schedule for a PSTN that maximized the probability that all of its constraints would be
satisfied. However, his approach was too restrictive: it did not allow ordinary constraints
between pairs of contingent timepoints.

Fang et al. [7] defined a similar problem, called the chance-constrained probabilistic Simple
Temporal Problem (cc-pSTP). Instead of aiming to minimize the risk of failure, the cc-pSTP
is the problem of finding a static schedule that optimizes a given objective function (e.g.,
complete all tasks as early as possible) while keeping the risk of failure below a given bound
(e.g., less than 5 percent). In other words, the cc-pSTP accepts a bounded risk of failure
(a.k.a. a chance constraint). To solve the cc-pSTP, they create an initial approximating STNU
in which the bounds on each contingent link are variables, not constants. Their algorithm
then applies constraint-propagation/edge-generation rules (a.k.a. reduction rules) to enforce
the SC property. These rules are generalized from prior work on strong controllability [29, 27]
to accommodate the bounds on the contingent links being variables instead of constants.
The result is at most n2 linear constraints, each involving the contingent link bounds-as-
variables. In contrast, the chance constraint is non-linear since it depends on the cdfs for the
probabilistic durations. They approximate the chance constraint using Boole’s inequality,
which does not require assuming independence of the probabilistic durations, as follows:

2 Chen et al. [3] observed that “Existing experiments data . . . showed that heavy-tailed distributions,
such as lognormal, best fit the task uncertainty introduced by humans in collaborative tasks [6]. This is
corroborated by work that showed the human reaction time is also best modeled as log-normal [32].”

L. Hunsberger and R. Posenato 12:5

(actual probability of failure) ≤
∑k

i=1(Fi(xi) + (1 − Fi(yi)) ≤ ∆, where each Fi is the cdf
for the ith probabilistic link, and ∆ is the given bound on the risk of failure. The objective
function, which is provided as an input, can also be non-linear. After constructing their
non-linear optimization problem, they solve it using an off-the-shelf solver, called SNOPT [9].

Wang and Williams [30] presented the Rubato algorithm, which tackles the cc-pSTP by
decoupling the risk-allocation problem (i.e., assigning fixed bounds to the STNU’s contingent
links) from strong-controllability checking. In this way, the risk-allocation problem, solved
by a non-linear solver, need not include the O(n2) constraints generated by the previously
mentioned constraint-propagation rules, keeping the optimization problem small. Once risk
allocation is done, the SC checker is run which, in negative instances, outputs a simple
negative cycle. In such cases, they then accumulate a new constraint stipulating that that
cycle must be made non-negative. They iteratively run this risk-allocation/SC-checking
process until an SC STNU is found, which then yields a static schedule for the PSTN.

2.3.2 Approximating a PSTN by a Dynamically Controllable STNU

Wang [31] defined a dynamic version of the cc-pSTP that aims to approximate a PSTN
by a DC STNU. Analogous to Rubato, Wang used an iterative approach that decouples
risk-allocation from DC checking. For the first risk-allocation step, a non-linear optimization
solver generates initial bounds for the STNU’s contingent durations that capture as much of
the probability mass of the PSTN’s probabilistic durations as possible while also satisfying
the ordinary constraints from the STNU. For the DC-checking step, Morris’ O(n4)-time
DC-checking algorithm is modified so that it outputs an SRN cycle for non-DC networks.
Wang noted that such cycles may not be simple, but presented no details on how to compute
or represent them. (In the worst case, SRN cycles can involve exponentially many edges [12].)3

If the candidate STNU happens to be non-DC, it must contain an SRN cycle, which can be
resolved by making it non-negative or non-semi-reducible. Following Morris [21], Wang noted
that semi-reducibility requires that each LC edge can be reduced away by a (negative-length)
extension subpath.4 Thus, he argued that modifying any one of the participating extension
sub-paths by making it non-negative would cause the entire cycle to be non-semi-reducible.
(However, as shown below, this is often not the case.) Thus, Wang’s approach to resolving
an SRN cycle involved accumulating a disjunction of potentially very many new constraints,
one for each participating extension subpath. Hence, his approach requires the use of a
disjunctive linear program solver. Although he gives some empirical evaluations, only very
high-level implementation details are provided, making the results difficult to evaluate.

3 Preliminary Steps

In this section, we introduce some preliminary results that allow the determination of a new
algorithm for a robust execution of PSTNs.

3 Yu, Fang and Williams [33] addressed resolving a non-DC STNU by finding an SRN cycle within it and
then tightening the bounds on participating contingent durations. However, unlike Wang, they failed to
recognize that individual labeled edges can appear multiple times in an SRN cycle.

4 An extension subpath for an LC edge e in a path P is a negative-length subpath Pe that immediately
follows e in P and such that the constraint-propagation/edge-generation rules given by Morris [21] can
be used to generate a new edge E that effectively bypasses e in P.

TIME 2024

12:6 Robust Execution of Probabilistic STNs

3.1 Efficiently Finding and Representing SRN Cycles
Iteratively finding a DC STNU to approximate a PSTN typically requires numerous calls
to an algorithm for finding SRN cycles in non-DC STNUs. For this, Wang used a modified
version of Morris’ O(n4)-time DC-checking algorithm. Instead, this paper takes advantage of
a new, faster O(mn + kn2 + kn log n)-time algorithm, FindSRNC, for finding and compactly
representing SRN cycles [16]. Aside from its greater speed, there are two main features that
are important for this paper. First, because an indivisible SRN cycle in a non-DC STNU can
have, in the worst case, an exponential number of occurrences of LC and UC edges [12], the
output of FindSRNC includes a hash table that compactly represents the repeating structures
that necessarily occur in such cycles, while requiring only O(mk + k2n) space. Second,
FindSRNC, like the RUL2021 algorithm [14] on which it is based, detects three different kinds
of SRN cycles: (1) a negative cycle in the LO-graph; (2) a special kind of cycle, called a CC
loop; and (3) a cycle arising from a cycle of interruptions of its recursive processing of UC
edges. The following section recalls how Wang’s approach to resolving SRN cycles introduces
potentially very many disjunctive constraints and then rigorously addresses the different
ways that each kind of SRN cycle returned by FindSRNC can be resolved, in one case without
requiring any disjunctions, in another case requiring only a single disjunction, and in a third
case requiring a bounded number of disjunctions.

3.2 More Efficient Resolution of SRN Cycles
To resolve an SRN cycle L, Wang generates a disjunctive collection of linear constraints. The
main constraint is to make |L| non-negative. The other constraints, which can be numerous,
aim to make L non-semi-reducible by, for each occurrence of an LC edge e in L, constraining
its extension subpath Pe to be non-negative. (Each occurrence of an LC edge in L can have
a very different extension subpath.) The idea is that if any of these constraints are satisfied,
then L will either be non-negative or non-semi-reducible (or both). However, while it is
true that modifying an extension subpath Pe by making it non-negative renders it unable to
reduce away the LC edge, it does not necessarily make L non-semi-reducible. Why? Because
other edges following Pe in L might combine with Pe to create a new extension subpath for
e, as illustrated below.

A. . . C A′ C ′ F G H . . .c:5 1 c′:4 −6 −2 −3

In this example, the extension subpath for the LC edge e = (A, c:5, C) is the negative-length
subpath from C to F , shaded dark gray. This subpath can be made non-negative by increasing
the lower bound on the LC edge (A′, c′:4, C ′) from 4 to 5. However, doing so would not make
the overall path non-semi-reducible because the path from C to G, shaded light gray, would
still be negative and hence could be used to reduce away e. As a result, a subsequent iteration
of Wang’s algorithm might return the very same SRN cycle, albeit with a slightly different
length. Even worse, a chain of negative edges following an existing extension subpath for e

might lead to numerous nearly identical iterations. Furthermore, a single SRN cycle might
have many LC edges leading to numerous disjunctive constraints, thereby compounding the
problem for the disjunctive optimization solver, making it expensive for larger networks.

3.3 Three Kinds of SRN Cycles Computed by FindSRNC

Before addressing how to resolve the SRN cycles output by FindSRNC, we must discuss how
FindSRNC works. As shown in Figure 2, FindSRNC processes each UC edge E = (C, C:−y, A),
propagating backward from C along LO-edges aiming to generate edges that effectively

L. Hunsberger and R. Posenato 12:7

ACXC2A2WTS
C:−2013c2:2352

14 ≥ ∆C

−6

Figure 2 Generating a (blue, dashed) bypass edge for a (red) UC-edge, assuming that ∆C = 12.

A C

A2 C2

A3

C3V(∆C = 9)

c:1
C:−10

3

c2:1

−6

c 3
:1

−6

7

A C

A2 C2

A3

C3V

c:1
C:−10

3

c2:1

−6

c 3
:1

−6

7

−2

−1

C:−8

A C

A2 C2

A3

C3V

c:1
C:−10

3

c2:4

−6

c 3
:5

−6

7

Figure 3 A CC loop (left); a CC-based SRN cycle (center); and resolving the SRN cycle (right).

bypass E. Back-propagation continues while the subpath being explored has length less than
∆C = y − x. If that distance ever becomes greater than or equal to ∆C , as in the path
from T to C in Figure 2, then a bypass edge, shown as blue and dashed, is generated, and
back-propagation stops.

As in Johnson’s algorithm [4], the back-propagation is guided by a potential function
that is a solution to the graph of LO-edges viewed as an STN. The potential function is
initialized by a call to Bellman-Ford [4] and, after the processing of each UC edge, is updated
to accommodate any newly generated edges. If the updating reveals a negative cycle in the
LO-graph, then the STNU cannot be DC. Therefore, FindSRNC outputs that negative cycle.

There are two ways that FindSRNC’s back-propagation can be blocked: (1) by a CC loop,
or (2) by bumping into another UC edge. A CC loop is where back-propagation from C

cycles back to C with all encountered distances less than ∆C , as illustrated on the lefthand
side of Figure 3. A CC loop does not necessarily entail an SRN cycle, but it can: if there
exists a negative-length LO-path emanating from C that can be used to reduce away the
LC edge (A, c:x, C) [14]. An example of this is shown in the center of Figure 3. Based on
the edge-generation rules from Morris [21], the negative-length (dotted) path from C to A3
can be used to generate the (dashed, green) bypass edge (A, −1, A3). Meanwhile, the path
from A3 to A can be used to generate the (dashed, orange) wait edge (A3, C:−8, A), thereby
forming a negative cycle in the OU-graph, which implies that the network cannot be DC. In
such a case, FindSRNC outputs the SRN cycle formed by the matching LC and UC edges
together with the CC loop. We call such a cycle a CC-based SRN cycle for convenience.

Back-propagation from C can also be blocked by bumping into another UC edge, say
E2, while encountered distances remain less than ∆C . In such cases, E’s processing is
interrupted until E2 is fully processed. Once all edges bypassing E2 have been generated,
back-propagation from C continues. But if a cycle of such interruptions is found, all processing
is blocked, and the network cannot be DC [2]. In that case, FindSRNC returns the SRN cycle
formed by concatenating the interrupted subpaths, including the corresponding UC edges, as
shown on the left of Figure 4, where it is assumed that the length of each LC edge is 1.

3.4 Resolving SRN Cycles Output by FindSRNC

SRN cycles are, by definition, negative and semi-reducible, so such cycles can be resolved by
making them non-negative or non-semi-reducible. As in earlier work, we restrict attention to
resolving an SRN cycle by increasing the lengths of LC or UC edges contained within it (i.e.,

TIME 2024

12:8 Robust Execution of Probabilistic STNs

A C C2 A2

C A4

C4C3A3Q −1

5

C
:−

10
c:1 5 C2:−9

−1

c
4 :1

5C3:−8

4
<

∆
C

6 < ∆C2

5
<

∆
C

3

A C C2 A2

C A4

C4C3A3Q −1

5

C
:−

10

c:1 5 C2:−9

−1

c
4 :1

5C3:−8

−1

−1

A C C2 A2

C A4

C4C3A3Q −1

5

C
:−

10

c:1 5 C2:−4

−1

c
4 :2

5C3:−6

0

0

1

1

Figure 4 A cycle of interruptions (left); a weakened version with a (shaded) CC loop (center);
making it non-semi-reducible by constraining subpaths emanating from C to be non-negative (right).

by tightening the bounds on the corresponding contingent links). Although the bypass edges
computed by FindSRNC are invariably ordinary, the paths they bypass may have multiple LC
and UC edges. Increasing the lengths of those LC or UC edges in turn increases the lengths
of the bypass edges.

Since resolving an SRN cycle by making it non-negative is always an option, this section
focuses on cases where an SRN cycle can be made non-semi-reducible without making it
non-negative. The lemmas below address the three kinds of SRN cycles output by FindSRNC.

▶ Lemma 1. If an SRN cycle comprises only LO-edges, then the only way to resolve the
cycle is by making it non-negative.

Proof. A negative cycle comprising only LO-edges is necessarily semi-reducible [13]. ◀

▶ Lemma 2. Let L be a CC-based SRN cycle where (C, C:−y, A) and (A, c:x, C) are the
relevant UC and LC edges. Then, the only way to make L non-semi-reducible is by making
the length of each subpath emanating from C in the CC loop non-negative.

The righthand side of Figure 3 shows an example of making a CC-based SRN cycle non-semi-
reducible, in this case, by increasing the lengths of the LC edges A2C2 and A3C3 to ensure
that every subpath emanating from C is non-negative. (The modified lengths are shown in
blue.) Notice that the length of the entire CC-based cycle is still negative: −2.

Proof. If any subpath emanating from C in the CC loop has negative length, then it can be
used to reduce away (bypass) the LC edge (A, c:x, C), preserving the SRN cycle [14]. ◀

Although each subpath emanating from C needs to be non-negative, that need not
require an explicit constraint for each timepoint following C. First, since the only allowed
modifications involve lengthening edges, any subpath emanating from C that is already
non-negative in L does not need to be explicitly constrained. In addition, if a subpath from
C to X is constrained to be non-negative and the path from X to Y is non-negative, then the
subpath from C to Y will automatically be non-negative. A one-time traversal of the edges in
L suffices to determine the conjunction of constraints needed to make L non-semi-reducible.

▶ Lemma 3. Let L be an SRN cycle obtained from a cycle of interruptions of processings
of UC edges (e.g., as shown on the lefthand side of Figure 4). If E = (C, C:−y, A) and
e = (A, c:x, C) are adjacent in L, then L can be made non-semi-reducible by making the
length of each subpath emanating from C that does not include E non-negative. Although
there can be multiple pairs of adjacent labeled edges providing such opportunities for making
L non-semi-reducible, there are no other ways of making L non-semi-reducible.

L. Hunsberger and R. Posenato 12:9

Proof. A cycle of interruptions necessarily entails an SRN cycle [2], so resolving L requires
breaking that cycle of interruptions. One way is to lengthen edges in L enough to enable the
generation of bypass edges for all UC edges in L. But that would yield a cycle comprising
only LO-edges and, since negative LO-cycles are invariably semi-reducible, resolving the SRN
cycle in this way would still require making |L| non-negative. The only other outcome that
can arise from increasing the lengths of edges preceding a UC edge would be the creation
of a CC loop, as illustrated in Figure 4 (center), where the UC edges C2A2 and C3A3 have
been bypassed by dashed, blue edges, creating a CC loop from C back to C. Since a CC
loop contains only LO-edges, a CC loop can only be created if all other UC edges have been
bypassed.

▷ Claim. Constraining every subpath emanating from C that terminates at or before
the UC edge (C, C:−y, A), as illustrated on the righthand side of Figure 4, will ensure
that L is non-semi-reducible. (In the figure, constraining the subpath from C to A4 to be
non-negative automatically ensures that the subpaths terminating at A2, C4 and C3 will
also be non-negative, given the negative edge from A2 to A4, and the non-negative paths
from A4 to C4 and C3. Similarly, constraining the subpath from C to Q to be non-negative
ensures that the subpaths terminating at A3 and C will also be non-negative.)

Proof. If every subpath emanating from C is non-negative, then every UC edge other than
(C, C:−y, A) must be bypassable. For example, the first encountered UC edge (C ′, C ′:−y′, A′)
must be bypassable since the subpath from C to A′ being non-negative implies that the
subpath from C to C ′ must be at least y′ > ∆C′ . An inductive argument ensures that all
following UC edges are bypassable. But then Lemma 2 ensures that the CC-based cycle
formed using those bypass edges is non-semi-reducible. ◁

Finally, if any subpath emanating from C is negative, then the LC edge (A, c:x, C) can
be bypassed, yielding a cycle of interruptions that cannot be resolved via a CC loop involving
(C, C:−y, A) and (A, c:x, C); hence the only options for making L non-semi-reducible must
involve forming a CC loop using a different pair of adjacent, matching UC and LC edges. ◀

Summary. All three types of SRN cycles L returned by FindSRNC can be resolved by making
L non-negative. Alternatively, L can be made non-semi-reducible if: (1) it is a CC-based SRN
cycle for a contingent timepoint C, where each subpath emanating from C is non-negative; or
(2) L arises from a cycle of interruptions and L includes at least one adjacent pair of matching
UC and LC edges. This analysis of SRN cycles greatly reduces the need for disjunctive
constraints as compared to the approach of Wang. It also avoids the problem of repeatedly
revisiting the same SRN cycle, when making the length of an extension subpath non-negative,
fails to make it non-semi-reducible. Finally, we conjecture that occurrences of CC loops
and (especially) cycles of interruptions that can be weakened to reveal a CC loop will occur
only rarely in practice and, therefore, our new algorithm, presented in Section 4, focuses
exclusively on constraining the SRN cycle itself to be non-negative (i.e., a single constraint).

4 New Algorithm for Robustly Executing PSTNs

Given any PSTN, our new algorithm for robustly executing PSTNs: (1) computes an
approximating STNU that is DC, using the FindSRNC algorithm to efficiently compute
and compactly represent SRN cycles in non-DC STNUs; (2) converts that STNU into
an equivalent dispatchable ESTNU; and (3) executes the original PSTN using the RTE∗

algorithm, leveraging its flexibility to react to possibly extreme contingent durations.

TIME 2024

12:10 Robust Execution of Probabilistic STNs

Algorithm 1 genApproxSTNU: generate a DC STNU that approximates a given PSTN.

Input: S = (T , C, M): a PSTN where M = {(Ai, Ci, Lognormal(µi, σi)) | i ∈ {1, . . . , k}}
Output: (Su, F), where Su = (T , C, L) is an approximating DC STNU for S, and F is the joint

probability mass of the durations in M captured by the links in L). Or ⊥ if unable.
// Initialize the approximating STNU

1 Su ··= (T , C, L), where L = {(Ai, xi = eµi−3.3σi , yi = eµi+3.3σi , Ci) | i ∈ {1, . . . , k}}
2 (L, H) ··= FindSRNC(copy(Su)) // L = SRN cycle; H = edge-annotation hash table
3 while L do

// Below, len = |L|; ai, bi = num. occurrences of ith LC, UC edges in (fully expanded) L

4 (len, (a1, . . . , an), (b1, . . . , bn)) ··= fetchEdgeInfo(negCycle, edgeAnnHash)
5 if Σk

i=1(ai + bi) == 0 then return ⊥ // No labeled edges in expanded SRN cycle
6 A ··= {i | ai > 0 or bi > 0} // Collect indices of contingent links participating in SRN cycle
7 κ ··= |A| // κ ≤ k is num. contingent links participating in SRN cycle
8 Let π : {1, . . . , κ} 7→ A be a re-ordering of the indices of A from 1 to κ

9 bounds ··= (xπ(1), yπ(1), . . . , xπ(κ), yπ(κ))
10 muVec ··= (µπ(1), . . . , µπ(κ)); sigVec ··= (σπ(1), . . . , σπ(κ))
11 coeffs ··= (aπ(1), −bπ(1), . . . , aπ(κ), −bπ(κ))
12 const ··= −len +

∑
1≤i≤κ

(aπ(i)xπ(i) − bπ(i)yπ(i))
13 ((x̂π(1), ŷπ(1), . . . , x̂π(κ), ŷπ(κ)), F̂) ··= nlpOpt(κ, muVec, sigVec, coeffs, const, bounds)
14 if F̂ == ⊥ then return ⊥
15 foreach i ∈ {1, . . . , κ} do xπ(i) ··= x̂π(i) and yπ(i) ··= ŷπ(i) // Update bounds
16 (negCycle, edgeAnnHash) ··= FindSRNC(copy(Su)) // Prepare for next iteration

// Su is dynamically controllable. Re-compute objective function over all contingent links.
17 F ··= Π1≤i≤k (lnCDF(yi, µi, σi) − lnCDF(xi, µi, σi))
18 return (Su, F), where Su has updated bounds (x1, y1, . . . , xk, yk)

4.1 Generating a DC STNU to Approximate a PSTN
The genApproxSTNU algorithm (Algorithm 1) takes as its input a PSTN S with k probabilistic
durations of the form (Ai, Ci, Lognormal(µi, σi)).5 It aims to generate an approximating
STNU for S that is DC by providing bounds for the contingent links that maximize the
joint probability mass of the probabilistic durations they capture while preserving the DC
property.

At Line 1, the approximating STNU is initialized by setting the bounds for each contingent
link (Ai, xi, yi, Ci) to xi = eµi−3.3σi and yi = eµi+3.3σi , which represent ±3.3 standard
deviations for the underlying normal distribution, which ensures capturing approximately
99.96% of the probability mass. As a result, we expect that the initial STNU will not be DC.

Next, at Line 2, it calls the FindSRNC algorithm on a copy of the STNU. (FindSRNC
destructively modifies its input.) For non-DC STNUs, FindSRNC outputs a compact repre-
sentation of an SRN cycle as a pair, (L, H), where L is a list of ordinary, LC and UC edges
with no repeats, and H is an edge-annotation hash table [16]. Although L has no repeat
edges, some of its ordinary edges may be bypass edges. Each bypass edge E in L has an entry
in the hash table H that identifies the path PE bypassed by E. In addition, the bypassed
paths may recursively include other bypass edges. In the worst case, fully expanding L by
recursively replacing each occurrence of a bypass edge by the path it bypassed can lead to an
exponential number of edges due to the presence of repeated structures [11]. In contrast, the
edge-annotation hash table uses only O(k2n) space to store the relevant information [16].

5 In other words, Lognormal(µi, σi) = eµi+σiZ , where Z is a standard normal random variable.

L. Hunsberger and R. Posenato 12:11

As long as FindSRNC returns an SRN cycle, the while loop at Lines 3–16 aims to resolve
the cycle by tightening the bounds on the participating contingent links while retaining as
much of the probability mass from the corresponding probabilistic durations as possible. Each
iteration begins, at Line 4, by calling the fetchEdgeInfo algorithm (Algorithm 2) which
returns the following information: len, the length of (one traversal of) the SRN cycle; and
two vectors (a1, . . . , ak) and (b1, . . . , bk), where each ai specifies the number of occurrences
of the LC edge (Ai, ci:xi, Ci) in the (fully expanded) SRN cycle, and each bi the number of
occurrences of the UC edge (Ci, Ci:−yi, Ai). Crucially, as will be seen later, this can be done
in O(nk2) time, even if the (fully expanded) cycle contains an exponential number of edges.

At Line 5, if there are no labeled edges in the (fully expanded version of) the SRN cycle,
genApproxSTNU returns ⊥, since such a cycle cannot be resolved by adjusting the bounds on
contingent links. Otherwise, at Lines 6–12, it prepares data for the the constraint optimization
problem of finding new bounds for the contingent links that maximize the captured joint
probability mass subject to the constraint of making the SRN cycle non-negative.

At Line 6, the set A collects the indices i for the contingent links whose labeled edges
participate in the SRN cycle L. At Line 7, κ = |A| ≤ k denotes the number of contingent
links participating in L. Since resolving the SRN cycle only requires dealing with those
κ contingent links, Line 8 specifies a bijection π from {1, 2, . . . , κ} to A that facilitates
preparing data for the non-linear solver, focusing only on the participating contingent links.

Lines 9–10 collect, for each participating contingent link, the current values of the bounds,
xπ(i) and yπ(i), and the µi and σi values of the associated log-normal distributions. Lines 11–
12 collect information needed to specify the constraint, |L| ≥ 0. First, coeffs collects the
number of occurrences of the labeled edges from participating contingent links. These counts
are important because, for example, increasing the value of some xi to x̂i increases |L| by
ai(x̂i − xi), while decreasing yi to ŷi increases |L| by bi(yi − ŷi). Overall, changing the values
in (xπ(1), yπ(1), . . . , xπ(κ), yπ(κ)) to (x̂π(1), ŷπ(1), . . . , x̂π(κ), ŷπ(κ)) increases |L| by:∑κ

i=1(aπ(i)(x̂π(i) − xπ(i)) + bπ(i)(yπ(i) − ŷπ(i)))

Therefore, satisfying |L| ≥ 0 requires choosing values, x̂π(i) and ŷπ(i), such that:∑κ
i=1(aπ(i)x̂π(i) − bπ(i)ŷπ(i)) ≥ −|L| +

∑κ
i=1(aπ(i)xπ(i) − bπ(i)yπ(i))

The lefthand sum is a linear combination of the variables, x̂π(i) and ŷπ(i), while the quantity
on the righthand side is a constant. That constant is assigned to const at Line 12.

Line 13 calls a non-linear optimization solver, here called nlpOpt. Currently, our algorithm
uses the fmincon solver provided by Matlab; others have used the SNOPT solver. If the
solver is unable to find a new set of bounds for the contingent links to resolve the SRN
cycle, then the entire algorithm fails. However, if successful, it returns a vector of the new
bounds, x̂i and ŷi, and the value of the objective function F . Line 15 updates the bounds
in the STNU to reflect the new values. Line 16 calls FindSRNC in preparation for the next
iteration of the while loop. If Line 18 is reached, then the STNU Su has been made DC. It
is returned by the algorithm, along with the updated value of the objective function.

The fetchEdgeInfo Algorithm

The fetchEdgeInfo algorithm (Algorithm 2) accumulates the numbers of occurrences of LC
and UC edges in the SRN cycle L. Crucially, it does not need to expand L fully. Instead, it
uses a hash table, infoHash, to keep track of the numbers of occurrences of labeled edges
recursively hiding within each encountered bypass edge. When it first sees a bypass edge

TIME 2024

12:12 Robust Execution of Probabilistic STNs

Algorithm 2 fetchEdgeInfo.
Input: k, the number of contingent links; P, a path in an STNU graph; edgeAnnHash, a

hash-table of (E, PE) pairs where PE is the path bypassed by the edge E

Output: (len, (a1, . . . , ak), (b1, . . . , bk)), where len = |P|, and ai and bi are the numbers of
times (Ai, ci:xi, Ci) and (Ci, Ci:−yi, Ai) appear in the fully unwound version of P

1 infoHash ··= new hash table; len ··= 0
2 lcCounts ··= (0, . . . , 0); ucCounts ··= (0, . . . , 0) // Counts of occurrences of LC/UC edges
3 foreach E ∈ P do
4 if E = (Ai, ci:xi, Ci) is an LC edge for some i then
5 len ··= len + xi; lcCounts[i] ··= lcCounts[i] + 1
6 else if E = (Ci, Ci:−yi, Ai) is a UC edge for some i then
7 len ··= len − yi; ucCounts[i] ··= ucCounts[i] + 1
8 else if ∃(E, PE) ∈ edgeAnnHash then // E is a bypass edge for path PE

9 if ∃(E, ·) ∈ infoHash then // E has already been processed by fetchEdgeInfo
10 (len′, lcCounts′, ucCounts′) ··= infoHash.getValue(E)
11 else
12 (len′, lcCounts′, ucCounts′) ··= fetchEdgeInfo(k, PE) // Recursively process PE

13 infoHash.setValue(E, (len′, lcCounts′, ucCounts′)) // Store results in infoHash

14 len ··= len + len′

15 foreach i ∈ {1, 2, . . . , k} do
16 lcCounts[i] ··= lcCounts[i] + lcCounts′[i]; ucCounts[i] ··= ucCounts[i] + ucCounts′[i]

17 else len = len + |E| // E is an ordinary edge from the original STNU
18 return (len, lcCounts, ucCounts)

E, it recursively processes it, then stores the vectors of counts in the infoHash hash table.
Subsequent encounters with E only need to do a constant-time look-up in the hash table
(cf. Lines 9–13 in Algorithm 2). fetchEdgeInfo requires O(nk2) space due to at most O(kn)
entries stored in the infoHash hash table, each of size O(k). This is less than the O(n2k)
size of the edge-annotation hash table, H, passed in as an input.

4.2 Flexible and Efficient Real-time Execution

Most DC-checking algorithms generate conditional wait constraints that must be satisfied
by any valid execution strategy. Each wait is represented by a labeled edge of the form
(W, C:−w, A), which can be glossed as: “While C remains unexecuted, W must wait at least
w after A.” (Despite the similar notation, a wait is distinguishable from the original UC
edge since its source timepoint is not the contingent timepoint C.) Morris [22] defined an
Extended STNU (ESTNU) to be an STNU augmented with such waits. He then extended
the notion of dispatchability to ESTNUs, defining an ESTNU to be dispatchable if all of its
STN projections are STN-dispatchable.6 He then argued that a dispatchable ESTNU would
necessarily provide a guarantee of flexible and efficient real-time execution.

6 A projection of an ESTNU is the STN derived from forcing its contingent durations to take on fixed
values. Each edge in an ESTNU projects onto an ordinary STN edge. For example, in the projection
where C − A = 4, the edges (A, c:2, C), (C, C:−9, A), (W, C:−7, A) and (V, C:−3, A) project onto the
ordinary edges (A, 4, C), (C, −4, A), (W, −4, A) and (V, C: − 3, A), respectively [18].

L. Hunsberger and R. Posenato 12:13

Hunsberger and Posenato [18] later:
1. formally defined a flexible and efficient real-time execution algorithm for ESTNUs, called

RTE∗;
2. defined an ESTNU to be dispatchable if every run of RTE∗ necessarily satisfies all of the

ESTNU’s constraints; and
3. proved that an ESTNU satisfying their definition of dispatchability necessarily satisfies

Morris’ definition (i.e., all of its STN projections are STN-dispatchable).

The RTE∗ algorithm provides maximum flexibility during execution, unlike the earliest-
first strategy used for non-dispatchable networks.

Most DC-checking algorithms do not generate dispatchable ESTNUs. However, Morris [22]
argued that his O(n3)-time DC-checking algorithm could be modified, without impacting
its complexity, to generate a dispatchable output. In 2023, Hunsberger and Posenato [15]
presented a faster, O(mn + kn2 + n2 log n)-time ESTNU-dispatchability algorithm. However,
neither of these algorithms provides any guarantees about the number of edges in the
dispatchable output. More recently, Hunsberger and Posenato [17] presented minDispESTNU,
the first ESTNU-dispatchability algorithm that, in O(kn3) time, generates an equivalent
dispatchable ESTNU having a minimal number of edges, which is important since it directly
affects the real-time computations of the RTE∗ algorithm.

Our new approach to executing PSTNs in real time is the first to explore the use of the
flexible and efficient RTE∗ algorithm. To enable this, we first use the minDispESTNU algorithm
to convert the DC STNU output by genApproxSTNU into an equivalent, dispatchable ESTNU
having a minimal number of edges. Then, we execute the PSTN using the RTE∗ algorithm
as if it were being applied to the dispatchable ESTNU. In other words, the time-windows and
wait constraints maintained by RTE∗ are determined by the ESTNU’s edges. In addition, to
increase the chances of successful execution, RTE∗ is run not with the needlessly inflexible
earliest-first strategy that has been used by others [3, 31, 8], but with a more flexible midpoint
strategy made available by RTE∗. In particular, if a currently enabled timepoint X has a
time-window [a, b], then instead of executing X at a, we execute it at a+b

2 . This enables
RTE∗ to adapt to unexpected durations that fall outside the STNU’s fixed bounds.

5 Empirical Evaluation

We evaluated the robust execution of PSTNs by generating random PSTN instances, then
executing them using the RTE∗ algorithm based on the approximating STNU, converted to a
dispatchable ESTNU. We randomly generated durations for the probabilistic links according
to their distributions. Since the probabilistic durations could fall outside the contingent
bounds of the ESTNU, RTE∗ might not succeed in all instances, but the percentage of
successful executions across random trials provides a measure of the PSTN’s robustness.

We wanted to evaluate whether (1) creating a dynamically controllable STNU to approx-
imate a PSTN; and (2) taking advantage of the flexibility offered by the RTE∗ execution
algorithm might lead to a greater percentage of successful PSTN executions, even in cases
where the sampled durations fall outside the STNU’s fixed bounds. Toward that end, we
took non-DC STNUs from a published benchmark [25] and converted them into PSTNs as
described in the Appendix (cf. the GenPSTN algorithm, Algorithm 4). The results of this
phase are summarized in Table 1, where n, k, and m are the numbers of timepoints, contin-
gent durations, and constraints; “exTime” is the average time to execute genApproxSTNU;
“optTime” is the average time spent running the non-linear optimization solver; “#NLOprobs”
is the average number of calls to the non-linear optimization solver; “%probMass” is the
average probability mass of the probabilistic links captured by the approximating STNU; and

TIME 2024

12:14 Robust Execution of Probabilistic STNs

Table 1 Results using genApproxSTNU to generate DC approximating STNUs for PSTNs.

#PSTNs n k m exTime [s] optTime [s] #NLOprobs %probMass #RCs
24 500 50 1558 0.191 0.141 0.96 77 11
24 1000 100 3136 0.223 0.042 1.00 67 17
14 1500 150 4713 0.573 0.100 1.21 43 10
17 2000 200 6289 0.914 0.046 1.11 53 16

Table 2 Results of RTE∗ execution algorithm on PSTNs: Earliest-First (EF) vs. Midpoint (MP).

#PSTNs n k m execTP
(µs)

%trials-
in succ

EF MP

%trials-
out succ
EF MP

%trials-
out fail

EF MP

num out
if succ

EF MP

num out
if fail

EF MP
24 500 50 2500 9.16 73 73 5 5 22 22 1.08 1.09 1.06 1.06
24 1000 100 5119 14.98 66 66 8 6 26 28 1.03 1.03 1.10 1.12
14 1500 150 7883 26.14 58 58 4 7 38 35 1.07 1.08 1.16 1.15
17 2000 200 106522 31.05 53 53 8 8 39 39 1.10 1.11 1.21 1.23

“#RCs” is the number of approximating STNUs having one or more activation timepoints
participating in rigid components. As expected, the percentage of the probability mass
captured by the approximating STNU fell as the number of contingent durations increased
since, for example, .99550 ≈ .778, whereas .995200 ≈ .367. In addition, since the initial STNU
was non-DC, making it DC could require reducing contingent ranges significantly.

After converting the STNU instances into their minimal dispatchable form [17], we ran the
RTE∗ algorithm 200 times on each dispatchable ESTNU, where the contingent durations were
obtained by randomly sampling the associated log-normal distributions (15800 executions in
total). To test the impact of the execution strategy on the rate of successful execution, the
execution of each network in the same situation (i.e., in the same projection) was run twice:
once with the earliest-first strategy, which executes timepoints as soon as possible, and once
with the midpoint strategy, which executes timepoints at the midpoints of their time-windows.
Table 2 summarizes our results, where: “execTP” reports the average time (in µsecs) to
schedule each timepoint; “%trials-in succ”, the percentage of executions/trials where all
sampled durations fell within the respective contingent bounds of the ESTNU. For such cases,
the execution strategy (earliest-first results in plain text, midpoint in italic) is irrelevant
because any RTE∗ execution is guaranteed to succeed for dispatchable ESTNUs. Column
“%trials-out succ” reports the percentage of trials where one or more contingent durations fell
outside the ESTNU’s contingent bounds (called outlier trials), but the execution succeeded
anyway due to the flexibility of RTE∗ (higher value represents the best performance); while
“%trials-out fail” reports the average number of outlier trials where the execution failed
(lower value represents the best performance). Column “num out if fail” reports the average
number of outlier durations in failed executions; while “num out if succ” reports the average
number of outlier durations in successful executions. The comparison of the “%probMass”
values from Table 1 and “%trials-in succ” from Table 2 confirms that the probability mass
captured by the ESTNU’s contingent links corresponds to situations that always generate
successful executions. It is not clear if the execution strategy for the controllable timepoints
(earliest-first or midpoint) can increase the rate of successful executions, given that the
number of different PSTNs is limited. Further investigation is necessary, including on PSTNs
from real-world applications. Nonetheless, our results provide evidence that the RTE∗

algorithm makes it possible to have successful executions even when one or more contingent
durations are outside the ESTNU’s bounds.

Our implementations are publicly available [26].

L. Hunsberger and R. Posenato 12:15

6 Conclusions

The paper presented a new approach to the robust execution of PSTNs that takes advantage
of several recent efficient algorithms for:
1. finding and compactly representing SRN cycles in non-DC STNUs;
2. converting DC STNUs into equivalent, dispatchable ESTNUs having a minimal number

of edges; and
3. flexibly and efficiently executing ESTNUs in real time.
We presented a new algorithm to generate an approximating STNU that aims to maximize
the combined probability mass of the PSTN’s probabilistic durations while maintaining the
dynamic controllability of the STNU; and a formal analysis of SRN cycles that provided new
insights into how to efficiently resolve them while avoiding issues arising in past approaches.
Our empirical evaluation of our approach provides evidence of its effectiveness on robustly
executing PSTNs derived from a publicly available benchmark. In particular, it shows that
approximating a PSTN by a dispatchable ESTNU and taking advantage of a flexible real-time
execution algorithm can increase the chances for a successful execution of that PSTN.

References
1 Nikhil Bhargava. Multi-Agent Coordination under Uncertain Communication. 33rd AAAI

Conference on Artificial Intelligence (AAAI-19), 33(1):9878–9879, 2019. doi:10.1609/aaai.
v33i01.33019878.

2 Massimo Cairo, Luke Hunsberger, and Romeo Rizzi. Faster Dynamic Controllablity Checking
for Simple Temporal Networks with Uncertainty. In 25th International Symposium on Temporal
Representation and Reasoning (TIME-2018), volume 120 of LIPIcs, pages 8:1–8:16, 2018.
doi:10.4230/LIPIcs.TIME.2018.8.

3 Rosy Chen, Yiran Ma, Siqi Wu, and James C. Boerkoel, Jr. Sensitivity analysis for dynamic
control of pstns with skewed distributions. In 33rd International Conference on Automated
Planning and Scheduling (ICAPS 2023), volume 33, pages 95–99, 2023. doi:10.1609/icaps.
v33i1.27183.

4 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms, 4th Edition. MIT Press, 2022. URL: https://mitpress.mit.edu/9780262046305/
introduction-to-algorithms.

5 Rina Dechter, Itay Meiri, and J. Pearl. Temporal Constraint Networks. Artificial Intelligence,
49(1-3):61–95, 1991. doi:10.1016/0004-3702(91)90006-6.

6 Maya Abo Dominguez, William La, and James C. Boerkoel Jr. Modeling human temporal
uncertainty in human-agent teams. CoRR, abs/2010.04849, 2020. URL: https://arxiv.org/
abs/2010.04849, arXiv:2010.04849.

7 Cheng Fang, Peng Yu, and Brian C. Williams. Chance-constrained probabilistic simple temporal
problems. In 28th AAAI Conference on Artificial Intelligence (AAAI-2014), volume 3, pages
2264–2270, 2014. doi:10.1609/aaai.v28i1.9048.

8 Michael Gao, Lindsay Popowski, and James C. Boerkoel, Jr. Dynamic Control of Probabilistic
Simple Temporal Networks. In 34th AAAI Conference on Artificial Intelligence (AAAI-20),
volume 34, pages 9851–9858, 2020. doi:10.1609/aaai.v34i06.6538.

9 Philip E. Gill, Walter Murray, and Michael A. Saunders. Snopt: An sqp algorithm for
large-scale constrained optimization. SIAM Review, 47(1):99–131, 2005. doi:10.1137/
S0036144504446096.

10 Luke Hunsberger. Fixing the semantics for dynamic controllability and providing a more
practical characterization of dynamic execution strategies. In 16th International Symposium
on Temporal Representation and Reasoning (TIME-2009), pages 155–162, 2009. doi:10.1109/
TIME.2009.25.

TIME 2024

https://doi.org/10.1609/aaai.v33i01.33019878
https://doi.org/10.1609/aaai.v33i01.33019878
https://doi.org/10.4230/LIPIcs.TIME.2018.8
https://doi.org/10.1609/icaps.v33i1.27183
https://doi.org/10.1609/icaps.v33i1.27183
https://mitpress.mit.edu/9780262046305/introduction-to- algorithms
https://mitpress.mit.edu/9780262046305/introduction-to- algorithms
https://doi.org/10.1016/0004-3702(91)90006-6
https://arxiv.org/abs/2010.04849
https://arxiv.org/abs/2010.04849
https://arxiv.org/abs/2010.04849
https://doi.org/10.1609/aaai.v28i1.9048
https://doi.org/10.1609/aaai.v34i06.6538
https://doi.org/10.1137/S0036144504446096
https://doi.org/10.1137/S0036144504446096
https://doi.org/10.1109/TIME.2009.25
https://doi.org/10.1109/TIME.2009.25

12:16 Robust Execution of Probabilistic STNs

11 Luke Hunsberger. Magic Loops in Simple Temporal Networks with Uncertainty–Exploiting
Structure to Speed Up Dynamic Controllability Checking. In 5th International Conference
on Agents and Artificial Intelligence (ICAART-2013), volume 2, pages 157–170, 2013. doi:
10.5220/0004260501570170.

12 Luke Hunsberger. Magic Loops and the Dynamic Controllability of Simple Temporal Networks
with Uncertainty. In Joaquim Filipe and Ana Fred, editors, Agents and Artificial Intelligence,
volume 449 of Communications in Computer and Information Science (CCIS), pages 332–350,
2014. doi:10.1007/978-3-662-44440-5_20.

13 Luke Hunsberger. Efficient execution of dynamically controllable simple temporal networks
with uncertainty. Acta Informatica, 53(2):89–147, 2015. doi:10.1007/s00236-015-0227-0.

14 Luke Hunsberger and Roberto Posenato. Speeding up the RUL− Dynamic-Controllability-
Checking Algorithm for Simple Temporal Networks with Uncertainty. In 36th AAAI Conference
on Artificial Intelligence (AAAI-22), volume 36-9, pages 9776–9785. AAAI Pres, 2022. doi:
10.1609/aaai.v36i9.21213.

15 Luke Hunsberger and Roberto Posenato. A Faster Algorithm for Converting Simple Tem-
poral Networks with Uncertainty into Dispatchable Form. Information and Computation,
293(105063):1–21, 2023. doi:10.1016/j.ic.2023.105063.

16 Luke Hunsberger and Roberto Posenato. A Faster Algorithm for Finding Negative Cycles
in Simple Temporal Networks with Uncertainty. In The 31st International Symposium on
Temporal Representation and Reasoning (TIME-2024), volume 318 of LIPIcs, 2024. doi:
10.4230/LIPIcs.TIME.2024.8.

17 Luke Hunsberger and Roberto Posenato. Converting Simple Temporal Networks with Un-
certainty into Minimal Equivalent Dispatchable Form. In Proceedings of the Thirty-Fourth
International Conference on Automated Planning and Scheduling (ICAPS 2024), volume 34,
pages 290–300, 2024. doi:10.1609/icaps.v34i1.31487.

18 Luke Hunsberger and Roberto Posenato. Foundations of Dispatchability for Simple Tem-
poral Networks with Uncertainty. In 16th International Conference on Agents and Arti-
ficial Intelligence (ICAART 2024), volume 2, pages 253–263. SCITEPRESS, 2024. doi:
10.5220/0012360000003636.

19 Erez Karpas, Steven J. Levine, Peng Yu, and Brian C. Williams. Robust Execution of Plans for
Human-Robot Teams. In 25th Int. Conf. on Automated Planning and Scheduling (ICAPS-15),
volume 25, pages 342–346, 2015. doi:10.1609/icaps.v25i1.13698.

20 Dimitri Kececioglu et al. Reliability Engineering Handbook, volume 1. DEStech Publications,
Inc, 2002.

21 Paul Morris. A Structural Characterization of Temporal Dynamic Controllability. In Principles
and Practice of Constraint Programming (CP-2006), volume 4204, pages 375–389, 2006.
doi:10.1007/11889205_28.

22 Paul Morris. Dynamic controllability and dispatchability relationships. In Int. Conf.
on the Integration of Constraint Programming, Artificial Intelligence, and Operations Re-
search (CPAIOR-2014), volume 8451 of LNCS, pages 464–479. Springer, 2014. doi:
10.1007/978-3-319-07046-9_33.

23 Paul Morris, Nicola Muscettola, and Thierry Vidal. Dynamic control of plans with temporal
uncertainty. In 17th Int. Joint Conf. on Artificial Intelligence (IJCAI-2001), volume 1, pages
494–499, 2001. URL: https://www.ijcai.org/Proceedings/01/IJCAI-2001-e.pdf.

24 Nicola Muscettola, Paul H. Morris, and Ioannis Tsamardinos. Reformulating temporal plans
for efficient execution. In Proceedings of the Sixth International Conference on Principles of
Knowledge Representation and Reasoning, KR’98, pages 444–452, 1998.

25 Roberto Posenato. STNU Benchmark version 2020, 2020. Last access 2022-12-01. URL:
https://profs.scienze.univr.it/~posenato/software/cstnu/benchmarkWrapper.html.

26 Roberto Posenato. CSTNU Tool: A Java library for checking temporal networks. SoftwareX,
17:100905, 2022. doi:10.1016/j.softx.2021.100905.

https://doi.org/10.5220/0004260501570170
https://doi.org/10.5220/0004260501570170
https://doi.org/10.1007/978-3-662-44440-5_20
https://doi.org/10.1007/s00236-015-0227-0
https://doi.org/10.1609/aaai.v36i9.21213
https://doi.org/10.1609/aaai.v36i9.21213
https://doi.org/10.1016/j.ic.2023.105063
https://doi.org/10.4230/LIPIcs.TIME.2024.8
https://doi.org/10.4230/LIPIcs.TIME.2024.8
https://doi.org/10.1609/icaps.v34i1.31487
https://doi.org/10.5220/0012360000003636
https://doi.org/10.5220/0012360000003636
https://doi.org/10.1609/icaps.v25i1.13698
https://doi.org/10.1007/11889205_28
https://doi.org/10.1007/978-3-319-07046-9_33
https://doi.org/10.1007/978-3-319-07046-9_33
https://www.ijcai.org/Proceedings/01/IJCAI-2001-e.pdf
https://profs.scienze.univr.it/~posenato/software/cstnu/ benchmarkWrapper.html
https://doi.org/10.1016/j.softx.2021.100905

L. Hunsberger and R. Posenato 12:17

27 Ioannis Tsamardinos. A probabilistic approach to robust execution of temporal plans with
uncertainty. In Methods and Applications of Artificial Intelligence (SETN 2002), volume
2308 of Lecture Notes in Artificial Intelligence (LNAI), pages 97–108, 2002. doi:10.1007/
3-540-46014-4_10.

28 Ioannis Tsamardinos, Nicola Muscettola, and Paul Morris. Fast Transformation of Temporal
Plans for Efficient Execution. In 15th National Conf. on Artificial Intelligence (AAAI-1998),
pages 254–261, 1998. URL: https://cdn.aaai.org/AAAI/1998/AAAI98-035.pdf.

29 Thierry Vidal and Hélène Fargier. Handling contingency in temporal constraint networks:
from consistency to controllabilities. J. of Experimental & Theoretical Artificial Intelligence,
11(1):23–45, 1999. doi:10.1080/095281399146607.

30 Andrew Wang and Brian C. Williams. Chance-Constrained Scheduling via Conflict-Directed
Risk Allocation. In 29th Conference on Artificial Intelligence (AAAI-2015), volume 29, 2015.
doi:10.1609/aaai.v29i1.9693.

31 Andrew J. Wang. Risk-bounded Dynamic Scheduling of Temporal Plans. PhD thesis, Mas-
sachusetts Institute of Technology, 2022. URL: https://hdl.handle.net/1721.1/147542.

32 Peifeng Yin, Ping Luo, Wang-Chien Lee, and Min Wang. Silence is also evidence: interpreting
dwell time for recommendation from psychological perspective. In Proceedings of the 19th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’13,
pages 989–997, 2013. doi:10.1145/2487575.2487663.

33 Peng Yu, Cheng Fang, and Brian Charles Williams. Resolving uncontrollable conditional tem-
poral problems using continuous relaxations. In 24th International Conference on Automated
Planning and Scheduling, ICAPS 2014. AAAI, 2014. URL: http://www.aaai.org/ocs/index.
php/ICAPS/ICAPS14/paper/view/7895, doi:10.1609/icaps.v24i1.13623.

Appendix

A Procedure for Tighten Contingent Bounds to Resolve an SRN

In this section, we propose nlpOpt, a possible algorithm that tightens contingent bounds to
resolve an SRN cycle using “Sparse Nonlinear OPTimizer” (SNOPT) library [9]. SNOPT
is a software package for solving large-scale optimization problems (linear and nonlinear
programs). It employs a sparse Sequential quadratic programming (SQP) algorithm with
limited-memory quasi-Newton approximations to the Hessian of Lagrangian.

In nlpOpt we assume that the bounds on contingent links are monotonically tightened,
using only a single linear constraint per iteration. A different possibility is to collect the linear
constraints from each iteration and run the optimization solver on all of the accumulated
constraints.

In the experimental evaluation, it was not possible to use the SNOPT library due to a
compatibility problem. MatLab-Optimization Toolbox library offers the fmincon function
to solve minimization constrained nonlinear problems using a sparse Sequential quadratic
programming (SQP) algorithm, the same technique used by SNOPT. Therefore, we adapted
the nlpOpt algorithm, reformulating the optimization problem as a minimization one and
using a MatLab script to represent the non-linear objective function.

B PSTN Generation

To generate a set of PSTN instances for our benchmark, we considered the set of random
non-DC STNUs from a published benchmark [25]. Such instances aim to represent the
temporal representation of business processes organized in worker lanes. Contingent links
represent tasks and ordinary links represent temporal deadlines or release times of such tasks.

TIME 2024

https://doi.org/10.1007/3-540-46014-4_10
https://doi.org/10.1007/3-540-46014-4_10
https://cdn.aaai.org/AAAI/1998/AAAI98-035.pdf
https://doi.org/10.1080/095281399146607
https://doi.org/10.1609/aaai.v29i1.9693
https://hdl.handle.net/1721.1/147542
https://doi.org/10.1145/2487575.2487663
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS14/paper/view/7895
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS14/paper/view/7895
https://doi.org/10.1609/icaps.v24i1.13623

12:18 Robust Execution of Probabilistic STNs

Algorithm 3 The nlpOpt algorithm: tighten contingent bounds to resolve an SRN cycle.

Input: k: the number of contingent durations; (µ1, . . . , µk) and (σ1, . . . , σk): k-vectors of µ and
σ parameters for log-normal distributions; coeffs and const: a matrix of coefficients
and a corresponding vector of lower bounds for one or more linear constraints;
(x1, y1, . . . , xk, yk): a vector of initial bounds for the contingent durations

Output: (v, F), where v contains optimized bounds for the k contingent durations, and F is the
corresponding value of the objective function

1 snN ··= 2k

2 numCs ··= numRows(coeffs) // numCs is the number of linear constraints
3 snNF ··= 1 + numCs // snNF includes 1 for the objective function
4 F ··= a new vector with snNF slots // F will hold values of objective function and linear constraints

// Initialize v, the vector of variables
5 v ··= (x1, y1, . . . , xk, yk)

// Set lower and upper bounds for the variables in v
6 vlow ··= (x1, eµ1 , x2, eµ2 , . . . , xk, eµk)
7 vupp ··= (eµ1 , y1, eµ2 , y2, . . . , eµk , yk)

// Set lower and upper bounds for the objective function (in [−1, 0]) and the linear constraints
8 Flow ··= (−1, const[1], const[2], . . . , const[numCs])
9 Fupp ··= (0, ∞, ∞, . . . , ∞)

// Local function that SNOPT uses to compute the objective function and linear constraints
10 Function stnuUsrFun(v): // v = (ℓ1, u1, . . . , ℓk, uk)

// Store the value of the objective function in F[1]
11 F[1] ··= Π1≤i≤k (lnCDF(ui, µi, σi) − lnCDF(ℓi, µi, σi)) // lnCDF = log-normal CDF

// Store the values of the lefthand sides of the linear constraints in F[2], . . . , F[snNF]
12 foreach j ∈ {1, . . . , numRows(coeffs)} do
13 F[j + 1] ··= coeffs[j][1] ∗ v[1] + . . . coeffs[j][2k] ∗ v[2k]

// Call the SNOPT solver, which destructively modifies v
14 (v, F, . . .) ··= snSolveA(v, vlow, vupp, Flow, Fupp, &stnuUsrFun)
15 return (v, F)

Algorithm 4 The GenPSTN algorithm: generation of a PSTN candidate from an STNU.
Input: N = (TN , CN , L): an STNU where L is a set of k contingent links, each of the form

(Ai, xi, yi, Ci), where A, C ∈ T and 0 < x < y < ∞.
Output: S = (TS , CS , M): a PSTN where M = {(Ai, Ci, Lognormal(µi, σi)) |∈ {1, . . . , k}}

1 TS := TN

2 CS := CN

3 M := ∅
4 σf := 0.3 // Factor to limit the final σ value
5 foreach (A, x, y, C) ∈ L do
6 M = (x + y)/2
7 S = σf (y − x)/2
8 µ = ln(M2/

√
M2 + S2)

9 σ =
√

ln(1 + S2/M2)
10 M := M ∪ {(A, C, Lognormal(µ, σ))}
11 return (TS , CS , M)

Each random STNU was converted into a PSTN using the GenPSTN algorithm described
in Algorithm 4. For each contingent link (A, x, y, C) in the STNU, GenPSTN creates a
probabilistic duration with a log-normal distribution with parameters µ and σ chosen to
ensure that the mean of the distribution is (x + y)/2, and three standard deviations captures

L. Hunsberger and R. Posenato 12:19

the entire range [x, y] [20]. Starting with a non-DC STNU guarantees that the initial STNU
candidate generated by genApproxSTNU would not be DC and, hence, would require multiple
iterations to find an approximating STNU that was DC. However, because some non-DC
STNUs have negative cycles comprising only ordinary edges and, hence, cannot be made DC
by restricting their contingent ranges, only the PSTNs for which DC approximating STNUs
can be created were kept.

TIME 2024

	1 Introduction
	2 Background
	2.1 Simple Temporal Networks
	2.2 Simple Temporal Networks with Uncertainty
	2.3 Probabilistic Simple Temporal Networks
	2.3.1 Approximating PSTNs by Strongly Controllable STNUs
	2.3.2 Approximating a PSTN by a Dynamically Controllable STNU

	3 Preliminary Steps
	3.1 Efficiently Finding and Representing SRN Cycles
	3.2 More Efficient Resolution of SRN Cycles
	3.3 Three Kinds of SRN Cycles Computed by FindSRNC
	3.4 Resolving SRN Cycles Output by FindSRNC

	4 New Algorithm for Robustly Executing PSTNs
	4.1 Generating a DC STNU to Approximate a PSTN
	4.2 Flexible and Efficient Real-time Execution

	5 Empirical Evaluation
	6 Conclusions
	A Procedure for Tighten Contingent Bounds to Resolve an SRN
	B PSTN Generation

