
Learning Temporal Properties from Event Logs via
Sequential Analysis
Francesco Chiariello # Ñ

IRIT, ANITI, University of Toulouse, France

Abstract
In this work, we present a novel approach to learning Linear Temporal Logic (LTL) formulae from
event logs by leveraging statistical techniques from sequential analysis. In particular, we employ
the Sequential Probability Ratio Test (SPRT), using Trace Alignment to quantify the discrepancy
between a trace and a candidate LTL formula. We then test the proposed approach in a controlled
experimental setting and highlight its advantages, which include robustness to noise and data
efficiency.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics; Applied
computing → Business process management

Keywords and phrases Process Mining, Declarative Process Discovery, Trace Alignment, Sequential
Analysis

Digital Object Identifier 10.4230/LIPIcs.TIME.2024.14

Funding This project has been funded by the French government as part of France 2030 (Grant
agreement n°ANR-19-PI3A-0004) and by the European Union - Next Generation EU as part of the
France Relance.

1 Introduction

Process Mining (PM) [36] is an interdisciplinary field at the intersection of Data Mining
and Business Process Management (BPM) [40]. Its goal is to gain insight into operational
processes by analyzing the associated event logs. An operational process, or process for
short, corresponds to the series of activities an organization performs to accomplish its
routine tasks, such as delivering a particular service or product. In enacting a process, an
organization generates sequential data that an information system stores in the form of
an event log. Therefore, an event log keeps track of all the activities performed during
several task executions, also called traces. A fundamental problem of PM is the one of
learning models of processes from event logs, also known as Process Discovery [35]. To
achieve this, one may consider different formalisms to model the processes, including UML
activity diagrams [16], Business Process Model and Notation [23], and Petri nets [34, 38].
Those formalisms are imperative in that they prescribe, at each step, the activities that can
be performed and provide therefore an easy-to-follow recipe for process execution. However,
they have known limitations due to the tendency of over-constraining the process [37] and
the lack of interpretability. Declarative models [15], by contrast, consist of constraints over
process executions. After that, every execution not violating such constraints is admitted.
The most widespread declarative process specification language is Declare [28], which consists
of a set of templates that allow to specify temporal constraints over the activities of the
process. Declare semantics can be grounded into Linear Temporal Logic on process traces
(LTLp) [19], which allow us to exploit efficient automata-theoretic techniques [7]. For this
reason, the use of LTLp for the specification of processes is gaining increasing traction.

An obstacle to learning models of processes from event logs is that they often contain
noise. Such noise may be caused by errors in the activities performed. Besides, it may
also arise from logging errors, which result in activities being recorded in the wrong order,

© Francesco Chiariello;
licensed under Creative Commons License CC-BY 4.0

31st International Symposium on Temporal Representation and Reasoning (TIME 2024).
Editors: Pietro Sala, Michael Sioutis, and Fusheng Wang; Article No. 14; pp. 14:1–14:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:francesco.chiariello@irit.fr
https://francescochiariello.me/
https://orcid.org/0000-0001-7855-7480
https://doi.org/10.4230/LIPIcs.TIME.2024.14
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Learning Temporal Properties from Event Logs via Sequential Analysis

duplicated, or omitted entirely (thus creating gaps). Finally, noise can also occur because
events are inferred from low-level data using activity recognition techniques, rather than
being directly recorded [2]. The presence of noise in the event logs makes it difficult to learn
temporal patterns and calls for the use of statistical techniques able to handle such noise.
Another challenge is that event logs are streams of data. This means that traces are not
all available from the beginning, rather they are continuously collected as the process is
executed. Ideally, the log should be processed sequentially, as new traces arrive, allowing
conclusions about the satisfaction of temporal properties to be drawn immediately, and only
waiting for new evidence if necessary.

In this paper, we address these issues by proposing a method based on sequential analysis
to learn temporal properties of a process from its corresponding event log. Sequential
analysis [21] consists of performing hypothesis tests where a stopping rule is used to halt
the sampling process as soon as the collected evidence is sufficient to accept or reject the
hypothesis under examination. In particular, we consider a test known as the Sequential
Probability Ratio Test (SPRT) [39], originally developed within the domain of quality control
in manufacturing. Given an input lot, the general idea of the test is to incrementally
sample items from the lot and count the number of defects they have. If, at any step, the
total number of defects falls below a specified acceptance threshold, the lot is accepted.
Conversely, if it exceeds a rejection threshold (which is set higher than the acceptance
threshold), the lot is rejected. Otherwise, sampling continues. Naturally, as the total number
of defects increases with the number of items examined, both the acceptance and the rejection
threshold progressively increase. In our approach, we put forward trace alignment as a way of
quantifying the number of defects of a trace with respect to a given formula, after that SPRT
can directly be applied to our learning setting. Trace alignment [12] refers to computing
a minimal number of alignments, i.e., of modifications of the trace to make it satisfy the
formula. In our approach, we compute alignments by framing the problem as cost-optimal
planning [10] and solving it using an off-the-shelf AI planner.

Our approach has two main advantages. First, being based on a statistical approach,
makes it robust to the noise naturally occurring in the event logs. Second, its ability to make
a decision as soon as enough evidence arises, makes it very data-efficient.

The remainder of the paper is organized as follows: in Section 2 we provide the background
and basic notation. Then, in Section 3 we describe the proposed method to discover temporal
properties from event logs. In Section 4 we perform and discuss controlled experiments to
demonstrate the methods’s application. In Section 5 we discuss related work. Finally, Section
6 concludes the paper and points out directions for future work.

2 Background

We start by recalling relevant notions of Linear Temporal Logic over Process Traces
(LTLp) [19]. Then, we describe Declare and show how its templates can be grounded
into LTLp. Finally, we describe Trace Alignment and Sequential Analysis.

2.1 Linear Temporal Logic on Process Traces
Let Σ be a set of propositional symbols, also called activities. A process trace is a non-empty
sequence π ∈ Σ+ of activities. An event is any occurrence of an activity in the trace. A
process trace can be thought of as representing an execution of a process. An event log is
then a sequence of process traces. Process traces are therefore ordered according to their
occurrence (i.e., to the occurrence of their last activity, since multiple process instances may

F. Chiariello 14:3

run in parallel). The same trace may appear multiple times in a log. This is expected since
they represent different executions of the same routine task. It is important to note that
process traces differ from the traces encountered in Linear Temporal Logic (LTL) [29] in
two ways: (i) they are finite, and (ii) exactly one activity occurs per each instant. This last
characteristic makes process traces suitable models for logics that reason over actions, rather
than over states.

Syntax

The syntax of LTLp is the same as LTL. An LTLp formula φ over Σ is defined according to
the following grammar:

φ ::= a | ¬φ | φ ∧ φ | Xφ | φ1Uφ2,

with a ∈ Σ. The intuitive meaning of the temporal operators “next” X and “until” U is as
follows. The formula Xφ means that at the next time instant, φ holds. The formula φ1Uφ2
means that at a certain instant φ2 holds and up to that point φ1 holds. We assume common
propositional and temporal abbreviations. In particular, for temporal operators, we define
the “eventually” operator Fφ ≡ ⊤Uφ, the “always” operator Gφ ≡ ¬F¬ϕ, and the “weak
until” operator φWφ′ ≡ Gφ ∨ φUφ′.

Semantics

The semantics of LTLp is defined on process traces. Let φ be an LTLp formula, π =
π1π2 · · ·π|π| a process trace, and 1 ≤ i ≤ |π| a time instant. We say that π satisfies φ at
time i, and we write π, i |= φ, according to the following definition:

π, i |= a iff a = πi;
π, i |= ¬φ iff π, i ̸|= φ;
π, i |= φ1 ∧ φ2 iff π, i |= φ1 and π, i |= φ2;
π, i |= Xφ iff i < |π| and π, i+ 1 |= φ;
π, i |= φ1Uφ2 iff ∃j, i ≤ j ≤ |π|, s.t. π, j |= φ2 and for k = i, i+ 1, . . . , j − 1, π, k |= φ1.

We say that π is a model for φ if π, 1 |= φ, denoted as π |= φ.
Note that, since LTLp works on traces that are finite, and in analogy with the definitions

in Linear Temporal Logic on Finite Trace (LTLf) [17, 11] the “next” operator needs to
explicitly require the existence of a next time instant.

Automata-Based Representation

Each LTLp formula φ over Σ can be associated a finite-state automaton A(φ) over the same
alphabet Σ such that for any trace π it holds that π |= φ iff π, is accepted by A(φ) [7].
Fig 1 shows the minimal automaton associated to the formula Response(a, b) = G(a→ Fb),
saying that whenever a is performed, then b is performed afterward. Note that transitions
are directly labeled with activities in Σ, resulting in an alphabet that is exponentially
smaller compared to what we would have if we were interpreting the formula in LTLf [11].
However, if we identify a process trace with a simple finite trace [18], i.e. a finite trace where
each propositional interpretation is a singleton, one can use LTLf to check properties of
process traces. Additionally, one can also check whether a trace is a simple trace by suitably
modifying the LTLf formula [8], or by directly modifying the resulting automaton with the
addition of a sink state [7].

TIME 2024

14:4 Learning Temporal Properties from Event Logs via Sequential Analysis

Figure 1 Automaton for the formula Response(a, b) = G(a → Fb). Here the asterisk stands for
any activity other than the ones appearing in the formula.

2.2 Declare
Declare [28, 15] is the most common declarative process specification language. It consists
of a set of templates that allow to easily specify the temporal constraints of the process. A
constraint is any instantiation of the variables in the template with process activities. A
process model is then a set of constraints. Table 1 shows how to write some Declare templates
(in particular, the ones that will be used later in the experiments) as LTLp formulae. Be
aware that many errors in such encodings are present in the literature. This is due to the
difficulty of working with temporal specifications [22]. These formulae have been carefully
double-checked by exploiting the automata representation, which sometimes results easier to
understand, as well as log generation techniques [5, 6].

Table 1 Some Declare templates and their corresponding LTLp formula.

Template LTLp

Init(a) a

Exactly2(a) ¬aU(a ∧ X(¬aU(a ∧ ¬X(Fa))))
Response(a, b) G(a → Fb)

RespondedExistence(a, b) Fa → Fb

AlternateResponse(a, b) G(a →X(¬aUb))
P recedence(a, b) (¬b)Wa

ChainP recedence(a, b) G(Xb → a) ∧ ¬b

Choice(a, b) F(a ∨ b)
ExclusiveChoice(a, b) F(a ∨ b) ∧ ¬(Fa ∧ Fb)

CoExistence(a, b) Fa ↔ Fb

Init(a) says that any trace of the process must start with the activity a (here a stands
for a generic activity and so we talk about templates). Exactly2(a) says that exactly two
occurrences of a must be present in the trace. This template can be generalized to consider
any number of occurrences. Init(a) and Exactly2(a) are unary templates since they express
constraints on one activity only. Response(a, b) says that whenever a is executed, b must be
executed afterwards. ResponsedExistence(a, b) says that whenever a is executed, then b must
be executed (regardless of whether it appears before or after a). AlternateResponse(a, b)
says that every execution of a must be followed by b, without any other a in between. For
those kinds of binary templates, a and b are sometimes referred to as the activation and target
activity, since the occurrence of a triggers checking the occurrences of b. If no activation is
present, then the constraints are automatically (vacuously) satisfied. Precedence(a, b) says
that b can be executed only if a has been executed before. ChainPrecedence(a, b) says that
a must be executed immediately before any execution of b. A common error in literature
while encoding this template in temporal logics with only future operators is to forget that b

F. Chiariello 14:5

cannot be executed in the first instant. Choice(a, b) says that eventually one among a and b
must be executed. Choice(a, b) further requires that it is not possible to execute them both.
Finally, CoExistence(a, b) says that either a and b are both executed, or none of them is
executed.

2.3 Trace Alignment
The trace alignment problem is defined as follows. Given a trace π and an LTLp formula φ,
find a minimum number of alignments that makes π a model of φ [12]. An alignment refers to
the removal or addition of an event in the trace. Such a problem can be solved by compiling
it into cost-optimal planning [10] and then using any off-the-shelf planner supporting cost
optimization. One can visualize the application of the alignments as a text cursor moving
from the left to the right of π and that can add an event behind it (as is done by pressing a
character key on a keyboard, where the cursor automatically moves forward) or remove one
in front of it (as with the delete key). The goal of the planning problem is then to have the
cursor reach the right side of the trace (possibly adding some other event at this extreme)
and the resulting trace be accepted by A(φ). Note that we have here three kinds of actions
since moving forward corresponds to an action of zero cost. This is the reason why we need
to resort to cost-optimal planning.

2.4 Sequential Analysis
Sequential analysis [21] (not to be confused with sequence analysis [27]) involves conducting
hypothesis tests using a stopping rule to halt sampling once there is sufficient evidence
to either accept or reject the hypothesis being tested. One such test is the Sequential
Probability Ratio Test (SPRT) [39], originally developed within the domain of quality control
in manufacturing. Given a lot, we test the products one by one. For n = 0, 1, 2, . . . , let dn
be the total number of defects found after controlling the first n products (for n = 0 we have
clearly d0 = 0). Given a strictly increasing sequence {An} of acceptance numbers, and a
strictly increasing sequence {Rn} of rejection numbers, with An < Rn for all n ∈ N, the test
is as follows. If at any point n, we have dn < An then the number of errors is sufficiently
small and we accept the lot. If dn > Rn too many errors have already been found in the
lot and we reject it. If instead An < dn < Rn we don’t have yet enough evidence to accept
or reject the lot and we continue sampling. Let p denote the probability of a defect, p0 a
probability generating a tolerable level of noise, i.e., for which we accept the lot, and p1 > p0
a probability for which we reject the lot. H0 : p = p0 is then the null hypothesis, while
H1 : p = p1 the alternative hypothesis. The values of An and Rn can be defined by:

An =
ln

(β

1− α

)
ln

(p1

p0

)
− ln

(1− p1

1− p0

) + n

ln
(1− p0

1− p1

)
ln

(p1

p0

)
− ln

(1− p1

1− p0

) , (1)

Rn =
ln

(1− β
α

)
ln

(p1

p0

)
− ln

(1− p1

1− p0

) + n

ln
(1− p0

1− p1

)
ln

(p1

p0

)
− ln

(1− p1

1− p0

) (2)

where the alpha level α is a parameter controlling type I errors (rejecting a true null
hypothesis), and the beta level β is a parameter controlling type II errors (accepting a false
alternative hypothesis).

TIME 2024

14:6 Learning Temporal Properties from Event Logs via Sequential Analysis

3 SPRT-Based Learning of Temporal Formulae

In this section, we shall describe our approach to learning temporal formulae from event logs
by applying SPRT. We begin by noting that equations (1),(2) involve four parameters: p0,
p1, α, and β. However, they can be rewritten as

An = mn+ cA, (3)
Rn = mn+ cR, (4)

by posing

m =
ln

(1 − p0

1 − p1

)
ln

(
p1

p0

)
− ln

(1 − p1

1 − p0

) , cA =
ln

(
β

1 − α

)
ln

(
p1

p0

)
− ln

(1 − p1

1 − p0

) , cR =
ln

(1 − β

α

)
ln

(
p1

p0

)
− ln

(1 − p1

1 − p0

) . (5)

In other words, as a function of n, An and Rn are lines with the same slope m (i.e.
they are parallel) and intercepts cA and cR, respectively. Note that for reasonably small
significance levels α and β, i.e. such that α + β < 1, (besides having 0 < p0 < p1 < 1) it
follows:

m0 > 0 (so that An and Rn are strictly increasing sequences).
cA < 0 < cR (otherwise one would end up accepting or rejecting a lot even before
inspecting it).

Indeed, any value of m, cA, and cR satisfying the above inequalities is an admissible
choice. Therefore in the following, we will directly work with these parameters, without
explicitly modeling and reasoning about the noise. The method is provided in Algorithm 1.
It takes as input a log L, a temporal formula φ, and suitable values for the parameters cA,
cR, and cR. First, the initial values d0, A0, R0 are assigned (lines 1-3). Then, for each n,
we do the following. If dn ≤ An we return Accept (lines 5-6). If dn ≥ Rn we return Reject

(lines 7-8). Otherwise, we compute the next values dn+1, An+1, R0 (lines 9-12) and proceed.
Note that the value of dn+1 is computed by first selecting a trace π from the log (line 11),
which can be done according to the order of the traces in the log or by random sampling; then
computing the number of defects of pi, represented by the number of alignments required
to make pi a model of φ, and adding such quantity to the total number of defects (line 12).
While the checks A0 < d0 and d0 < R0 could be avoided, treating n = 0 as all the other
values turns out to be mathematically convenient for interpreting the parameters of the
algorithm.

It is worth noting that what we have just described is actually a semi-algorithm. In fact,
even assuming a new trace is always available, it could be the case that the total number
of defects never satisfies any of the inequalities. To obviate this, one can simply return a
default value of their choice (be it Accept, Reject, or, e.g., Inconclusive).

4 Experiments

In this section, we illustrate Algorithm 1 by performing some controlled experiments. We begin
by detailing the process of constructing an appropriate log in Subsection 4.1. Subsequently,
in Subsection 4.2, we employ this log to examine several Declare constraints.

4.1 Log Generation and Description
To perform controlled experiments, we resort to synthetic data. Fixed an alphabet Σ =
{a, b, c, d, e}, we define 5 Declare constraints over it:

F. Chiariello 14:7

Algorithm 1 SPRT-based Learning of Temporal Formulae.

Input: L, φ, m > 0, cA < 0, and cR > 0
Output: Accept or Reject

1 defects← 0
2 A← cA
3 R← cR
4 while True do
5 if defects ≤ A then
6 return Accept

7 if defects ≥ R then
8 return Reject

9 A← A+m

10 R← R+m

11 π ← Next(L) // Extract next trace
12 defects← defects+Align(φ, π) // add the alignments’ cost

1. ExclusiveChoice(c, d),
2. Response(a, b),
3. RespondedExistence(a, e),
4. Precedence(e, a),
5. AlternateResponse(b, c).

The model M represented by the conjunction of those five constraints is represented in
the intuitive Declare graphical notation in Fig 2.

Figure 2 The Declare model used for the experiments.

We then generate a log of 100 traces of length varying from 6 to 15. In particular, for
each length, we generate 5 positive traces, i.e. satisfying (all the constraints of) the model,
and 5 negative traces, i.e. violating at least one constraint. The generation is performed
using ASP Log Generator [5, 6], which converts the constraints into their corresponding
automata [7] and use Answer Set Programming [3] to find traces accepted or not by the
automata (depending on whether we are looking for a positive or negative one). We generate
negative traces by explicitly imposing the violation of the model since injecting some noise
on a positive trace, e.g. by randomly adding and removing events, could result in the trace
still satisfying the constraints. To improve the quality of the log, avoiding traces that are too
repetitive and too similar among each other, we constrain each of the 5 activities to occur

TIME 2024

14:8 Learning Temporal Properties from Event Logs via Sequential Analysis

Table 2 Number of traces violating the constraints arranged according to the cost of repairs.

1 2 3+ #traces total cost
C1 19 13 6 38 68
C2 14 0 0 14 14
C3 9 0 0 9 9
C4 31 0 0 31 31
C5 16 15 2 33 52

Table 3 Number of alignments per constraint as a function of the trace length.

6 7 8 9 10 11 12 13 14 15 tot
C1 5 2 3 5 6 8 11 5 12 11 68
C2 2 2 1 1 0 1 2 2 0 3 14
C3 3 0 0 1 1 1 2 0 1 0 9
C4 4 2 4 4 4 2 3 2 2 4 31
C5 2 8 6 9 4 6 6 6 0 5 52

tot 16 14 14 20 15 18 24 15 15 23 174

no more than in 1/2 of the instants. In addition, we modify the search strategy to perform
random (rather than heuristic) decisions with probability 0.2 and run the log generator
multiple times with different seeds asking each time for 1 solution. Note that how negative
traces are generated greatly impacts the cost of the alignments. Table 2 reports, for each
constraint, the number of traces violating it, arranged according to the cost of the alignments,
together with the total cost of the alignments (traces with a repair cost of 3 or more are
merged in one column, however, their different impact is reflected by the total cost). For
example, constraint 1 ExclusiveChoice(c, d) (C1 for short in the tables) has 38 traces (out
of the 50 negative ones) violating it of which 19 require 1 alignment, 13 require 2 alignments,
and 6 require 3 or more alignments, for a total of 68 alignments. The costs are computed
by compiling the problem into the Planning Domain Definition Language [9] and solving it
with Fast Downward [24]. To better understand the noise of the log, in Table 3 we report,
for each trace length, the number of alignments required to make the traces of that length
conformant with the constraint. Recall that there are 5 negative traces per length.

It is important to note that templates behave very differently. We can see for example
that ExclusiveChoice(c, d) requires a total of 68 alignments over the whole log and that the
cost is strongly influenced by the trace length. In fact, in case both c and d are present in
the trace, to align it one has to determine which activity has fewer occurrences and remove
them. Other templates such as Response always require at most 1 alignment, regardless of
the trace length, since it is simply sufficient to add the target activity at the end of the trace.

This makes the choice of the values of the parameters m, cA, and cR in Algorithm 1 very
important, particularly for the slope m. Such a choice, which must be made constraint by
constraint, should therefore be undertaken after careful consideration of both the particular
formula (where formulae intuitively easier to satisfy correspond to smaller values for m) and
the expected noise.

4.2 Execution
In this subsection, we show and discuss the execution of the Algorithm 1 over the generated
log. We start by considering the Declare model M. We choose a value of m = 1, of cR = 8,
and of cA = −8. In Figure 3, we plot the lines An and Rn in green and red, respectively.

F. Chiariello 14:9

We then apply the algorithm to each of the five constraints of M. Note that we use here
the same parameters across the various constraints just for the sake of simplicity. We want
to stress that the choice of such parameters must be done individually for each constraint
after carefully pondering the expected noise of the log, the structure of the formula, as well
as additional considerations about the risk of a wrong decision. We then plot, for each
constraint, the curve representing the total number of defects as a function of the number
of traces observed, selecting traces according to their order in the log. We observe that all
the constraints are classified as satisfied by the model. The first constraint to be decided
is Response(a, c) at step 8. Note that, from m = 1 follows that −cA represents exactly
the minimum number of steps before deciding on acceptance. The last constraint to be
decided is instead ExclusiveChoice(c, d) at step 44. One could stop plotting a curve after
it intersects An, indeed the algorithm terminates and the new costs are not computed. In
Figure 3 however we continue to show them (this time as dashed lines) to better visualize
the behavior of the log with respect to the constraints.

Figure 3 Results of the application of the algorithm to the constraints of the model.

In Figure 4 we consider instead a set of new constraints that were not used during the
generation of the log. We again use the same parameters as before. We see in step 8 that
the constraint Choice(c, d) is accepted. This constraint is actually implied by one of the
constraints used to generate the log, ExclusiveChoice(c, d), that was accepted at a later
step. This is a consequence of the fact that any alignment w.r.t. the latter formula is also
an alignment w.r.t. to the former one, and holds indeed as a general result, that we state
formally as follows:

▶ Observation 1. If a formula φ is accepted in nφ steps, and ψ is implied by φ then ψ is
accepted as well and in a number of steps nψ ≤ nφ. Dual results hold for the rejection.

TIME 2024

14:10 Learning Temporal Properties from Event Logs via Sequential Analysis

Figure 4 Results of the application of the algorithm to new constraints.

We note from the figure that Choice(c, d) has indeed an alignments’ cost of 0 throughout
the steps and is therefore decided at step −cA = 8. The fact that the costs are equal to 0 is
a consequence of how we generated the log (i.e. by forcing the same activities not to appear
too many times in trace). The constraints CoExistence(a, b) and Init(e) are accepted after
9 and 35 steps, respectively. By taking into consideration the meaning of the constraints
is clear why the former were accepted: repairing a trace requires at most 1 alignment and
therefore m = 1 is a high value compared with the expected defects of the traces. We have
then the first two cases of rejected constraints: Exactly2(D) rejected after 9 steps, and
ChainPrecedence(e, a) rejected after 14 steps. Both of those constraints require acting on
the different occurrences of an activity and therefore for them, m = 1 may be a too-small
value (again, depending on how much noise we expect in the log as well).

Finally, it is worthwhile to point out that, although Algorithm 1 stops after deciding
to accept or reject, one could indeed continue to monitor a constraint to be able to change
the decision when new evidence emerges. This is important, for example, in cases in which
the distribution of the process executions substantially changes over time. In this respect,
it is useful to note that, both in Figure 3 and 4 no decision has ever been overturned, not
reconsidered. Once a curve enters one of the two half-plane defined by Am and Rm it tends
to stay there. This could however be due to the particular choice of the parameters. Value
for m closer to the actual alignment cost, together with a smaller distance cR − cA between
Am and Rm, could result in more oscillating situations.

F. Chiariello 14:11

5 Related Works

The problem of learning linear temporal formulae, sometimes known as LTL (specification)
mining [25], has been approached by the Temporal Logic community mainly with exact
methods, rather than relying on statistical ones. Camacho and McIlraith [4] reduce the
problem of learning LTLf formulae to proposition satisfiability. The approach is based
on guessing the (alternating) automaton associated with a formula and then checking for
conformance with the (positive and negative) example traces. Such automaton can then be
converted in linear time into the corresponding formula. Note that no templates are used here;
instead, they employ SAT solver to perform a search over the space of all possible formulae.
Gaglione et al. [20] later modified the approach to handle noise using MaxSAT solvers. These
approaches assume the availability of both positive and negative example traces. Roy et
al. [32] consider the problem of learning from positive example only. This setting, which is
the standard in Process Mining, is known in the Machine Learning literature as one-class (or
unary) classification and is way more challenging than binary classification when considering
minimality requirements about the discovered solutions [33, 1]. The approach by Roy et
al. [32] is however limited in that it cannot handle noise.

Declarative Process Discovery algorithms [14, 26, 27] have been proposed that exploit
statistical analysis, handle noise, and work with positive examples only. However, those
algorithms usually consider only Declare constraints. Besides, they assume for simplicity the
event log to be a fixed multiset of traces, rather than an ordered collection in continuous
evolution, and do not reason about whether the evidence gathered up to some moment is
enough to make a decision, as is done with the stopping rules in sequential analysis.

Sequential analysis has also inspired a constraint acquisition algorithm in the context
of Constraint Programming [30, 31]. This algorithm is however a coarse simplification of
SPRT, using no parameters other than constant acceptance and rejection thresholds, and
does not quantify the discrepancy between a constraint and an example. Furthermore, our
work differs in that it considers temporal properties of traces rather than constraints over
the values of decision variables.

6 Conclusion

In this paper, we have shown how to use statistical techniques from sequential analysis for
learning linear temporal formulae from events log. Our approach is based on analyzing the
log incrementally and measuring how much a trace deviates from satisfying a given formula.
As a measure of such deviation, we use the number of alignments, i.e., of modifications of
the trace (in terms of additions and removals of activities) to make the trace a model of the
formula. We have then implemented our approach and tested it with controlled experiments.
The advantage of a statistical approach is its ability to handle the noise naturally occurring
in the event logs. Sequential analysis, in particular, by exploiting only the strictly necessary
number of samples, additionally provides early decision-making capabilities. This turns
out to be useful both in the case one has to analyze a huge volume of data, alleviating the
computational burden, as well as in the case where such data are scarce.

In future work, we intend to study how one can use Algorithm 1 to learn interpretable
models, by combining it with a suitable procedure for selecting temporal formulae to be
tested, taking into account subsumption-driven hierarchies [13] and their interaction with
the learning phase. Furthermore, we intend to study how to suitably select the parameters
m, cA, and cR of Algorithm 1 by considering both the structure of the formula and the noise

TIME 2024

14:12 Learning Temporal Properties from Event Logs via Sequential Analysis

of the log generation process, which need to be explicitly modeled. Finally, we intend to
consider other possible measures of the discrepancy between a formula and a trace, study
their properties, and the impact they have on applying sequential analysis techniques.

References
1 Simone Agostinelli, Francesco Chiariello, Fabrizio Maria Maggi, Andrea Marrella, and Fabio

Patrizi. Process mining meets model learning: Discovering deterministic finite state automata
from event logs for business process analysis. Inf. Syst., 114:102180, 2023. doi:10.1016/J.IS.
2023.102180.

2 Iris Beerepoot, Claudio Di Ciccio, Hajo A. Reijers, Stefanie Rinderle-Ma, Wasana Bandara,
Andrea Burattin, Diego Calvanese, Tianwa Chen, Izack Cohen, Benoît Depaire, Gemma Di
Federico, Marlon Dumas, Christopher G. J. van Dun, Tobias Fehrer, Dominik Andreas Fischer,
Avigdor Gal, Marta Indulska, Vatche Isahagian, Christopher Klinkmüller, Wolfgang Kratsch,
Henrik Leopold, Amy Van Looy, Hugo A. López, Sanja Lukumbuzya, Jan Mendling, Lara
Meyers, Linda Moder, Marco Montali, Vinod Muthusamy, Manfred Reichert, Yara Rizk,
Michael Rosemann, Maximilian Röglinger, Shazia Sadiq, Ronny Seiger, Tijs Slaats, Mantas
Simkus, Ida Asadi Someh, Barbara Weber, Ingo Weber, Mathias Weske, and Francesca Zerbato.
The biggest business process management problems to solve before we die. Comput. Ind.,
146:103837, 2023. doi:10.1016/J.COMPIND.2022.103837.

3 Gerhard Brewka, Thomas Eiter, and Miroslaw Truszczynski. Answer set programming at a
glance. Commun. ACM, 54(12):92–103, 2011. doi:10.1145/2043174.2043195.

4 Alberto Camacho and Sheila A. McIlraith. Learning interpretable models expressed in linear
temporal logic. In ICAPS, pages 621–630. AAAI Press, 2019. URL: https://ojs.aaai.org/
index.php/ICAPS/article/view/3529.

5 Francesco Chiariello, Fabrizio Maria Maggi, and Fabio Patrizi. Asp-based declarative process
mining. In AAAI, pages 5539–5547. AAAI Press, 2022. doi:10.1609/AAAI.V36I5.20493.

6 Francesco Chiariello, Fabrizio Maria Maggi, and Fabio Patrizi. A tool for compiling declarative
process mining problems in ASP. Softw. Impacts, 14:100435, 2022. doi:10.1016/J.SIMPA.
2022.100435.

7 Francesco Chiariello, Fabrizio Maria Maggi, and Fabio Patrizi. From LTL on process traces to
finite-state automata. In BPM (Demos / Resources Forum), volume 3469 of CEUR Workshop
Proceedings, pages 127–131. CEUR-WS.org, 2023. URL: https://ceur-ws.org/Vol-3469/
paper-23.pdf.

8 Giuseppe De Giacomo, Riccardo De Masellis, and Marco Montali. Reasoning on LTL on
finite traces: Insensitivity to infiniteness. In AAAI, pages 1027–1033. AAAI Press, 2014.
doi:10.1609/AAAI.V28I1.8872.

9 Giuseppe De Giacomo, Francesco Fuggitti, Fabrizio Maria Maggi, Andrea Marrella, and Fabio
Patrizi. A tool for declarative trace alignment via automated planning. Softw. Impacts,
16:100505, 2023. doi:10.1016/J.SIMPA.2023.100505.

10 Giuseppe De Giacomo, Fabrizio Maria Maggi, Andrea Marrella, and Fabio Patrizi. On the
disruptive effectiveness of automated planning for ltlf -based trace alignment. In AAAI, pages
3555–3561. AAAI Press, 2017. doi:10.1609/AAAI.V31I1.11020.

11 Giuseppe De Giacomo and Moshe Y. Vardi. Linear temporal logic and linear dynamic logic
on finite traces. In IJCAI, pages 854–860. IJCAI/AAAI, 2013. URL: http://www.aaai.org/
ocs/index.php/IJCAI/IJCAI13/paper/view/6997.

12 Massimiliano de Leoni, Fabrizio Maria Maggi, and Wil M. P. van der Aalst. An alignment-
based framework to check the conformance of declarative process models and to preprocess
event-log data. Inf. Syst., 47:258–277, 2015. doi:10.1016/J.IS.2013.12.005.

13 Claudio Di Ciccio, Fabrizio Maria Maggi, Marco Montali, and Jan Mendling. Ensuring
model consistency in declarative process discovery. In BPM, volume 9253 of Lecture Notes in
Computer Science, pages 144–159. Springer, 2015. doi:10.1007/978-3-319-23063-4_9.

https://doi.org/10.1016/J.IS.2023.102180
https://doi.org/10.1016/J.IS.2023.102180
https://doi.org/10.1016/J.COMPIND.2022.103837
https://doi.org/10.1145/2043174.2043195
https://ojs.aaai.org/index.php/ICAPS/article/view/3529
https://ojs.aaai.org/index.php/ICAPS/article/view/3529
https://doi.org/10.1609/AAAI.V36I5.20493
https://doi.org/10.1016/J.SIMPA.2022.100435
https://doi.org/10.1016/J.SIMPA.2022.100435
https://ceur-ws.org/Vol-3469/paper-23.pdf
https://ceur-ws.org/Vol-3469/paper-23.pdf
https://doi.org/10.1609/AAAI.V28I1.8872
https://doi.org/10.1016/J.SIMPA.2023.100505
https://doi.org/10.1609/AAAI.V31I1.11020
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997
https://doi.org/10.1016/J.IS.2013.12.005
https://doi.org/10.1007/978-3-319-23063-4_9

F. Chiariello 14:13

14 Claudio Di Ciccio and Massimo Mecella. On the discovery of declarative control flows for
artful processes. ACM Trans. Manag. Inf. Syst., 5(4):24:1–24:37, 2015. doi:10.1145/2629447.

15 Claudio Di Ciccio and Marco Montali. Declarative process specifications: Reasoning, discovery,
monitoring. In Process Mining Handbook, volume 448 of Lecture Notes in Business Information
Processing, pages 108–152. Springer, 2022. doi:10.1007/978-3-031-08848-3_4.

16 Marlon Dumas and Arthur H. M. ter Hofstede. UML activity diagrams as a workflow
specification language. In UML, volume 2185 of Lecture Notes in Computer Science, pages
76–90. Springer, 2001. doi:10.1007/3-540-45441-1_7.

17 Bernd Finkbeiner and Henny Sipma. Checking finite traces using alternating automata.
Form.Meth.Syst.Des., 24(2):101–127, 2004. doi:10.1023/B:FORM.0000017718.28096.48.

18 Valeria Fionda and Gianluigi Greco. The complexity of LTL on finite traces: Hard and easy
fragments. In AAAI, pages 971–977. AAAI Press, 2016. doi:10.1609/AAAI.V30I1.10104.

19 Valeria Fionda and Gianluigi Greco. LTL on finite and process traces: Complexity results and
a practical reasoner. J. Artif. Intell. Res., 63:557–623, 2018. doi:10.1613/JAIR.1.11256.

20 Jean-Raphaël Gaglione, Daniel Neider, Rajarshi Roy, Ufuk Topcu, and Zhe Xu. Learning
linear temporal properties from noisy data: A maxsat-based approach. In ATVA, volume
12971 of Lecture Notes in Computer Science, pages 74–90. Springer, 2021. doi:10.1007/
978-3-030-88885-5_6.

21 Bhaskar Kumar Ghosh and Pranab Kumar Sen. Handbook of sequential analysis. CRC Press,
1991.

22 Ben Greenman, Sam Saarinen, Tim Nelson, and Shriram Krishnamurthi. Little tricky
logic: Misconceptions in the understanding of LTL. Art Sci. Eng. Program., 7(2), 2023.
doi:10.22152/PROGRAMMING-JOURNAL.ORG/2023/7/7.

23 Object Management Group. Business process model and notation (bpmn), version 2.0.2, 2014.
URL: www.omg.org/spec/BPMN.

24 Malte Helmert. The fast downward planning system. J. Artif. Intell. Res., 26:191–246, 2006.
doi:10.1613/JAIR.1705.

25 Caroline Lemieux, Dennis Park, and Ivan Beschastnikh. General LTL specification mining
(T). In ASE, pages 81–92. IEEE Computer Society, 2015. doi:10.1109/ASE.2015.71.

26 Fabrizio Maria Maggi, R. P. Jagadeesh Chandra Bose, and Wil M. P. van der Aalst. Efficient
discovery of understandable declarative process models from event logs. In CAiSE, volume
7328 of Lecture Notes in Computer Science, pages 270–285. Springer, 2012. doi:10.1007/
978-3-642-31095-9_18.

27 Fabrizio Maria Maggi, Claudio Di Ciccio, Chiara Di Francescomarino, and Taavi Kala. Parallel
algorithms for the automated discovery of declarative process models. Inf. Syst., 74(Part):136–
152, 2018. doi:10.1016/J.IS.2017.12.002.

28 Maja Pesic, Helen Schonenberg, and Wil M. P. van der Aalst. DECLARE: full support
for loosely-structured processes. In EDOC, pages 287–300. IEEE Computer Society, 2007.
doi:10.1109/EDOC.2007.14.

29 Amir Pnueli. The temporal logic of programs. In FOCS, pages 46–57. IEEE Computer Society,
1977. doi:10.1109/SFCS.1977.32.

30 Steve Prestwich. Robust constraint acquisition by sequential analysis. In ECAI, volume
325 of Frontiers in Artificial Intelligence and Applications, pages 355–362. IOS Press, 2020.
doi:10.3233/FAIA200113.

31 Steven Prestwich and Nic Wilson. A statistical approach to learning constraints. International
Journal of Approximate Reasoning, 2024.

32 Rajarshi Roy, Jean-Raphaël Gaglione, Nasim Baharisangari, Daniel Neider, Zhe Xu, and Ufuk
Topcu. Learning interpretable temporal properties from positive examples only. In AAAI,
pages 6507–6515. AAAI Press, 2023. doi:10.1609/AAAI.V37I5.25800.

33 Tijs Slaats, Søren Debois, and Christoffer Olling Back. Weighing the pros and cons: Process
discovery with negative examples. In BPM, volume 12875 of Lecture Notes in Computer
Science, pages 47–64. Springer, 2021. doi:10.1007/978-3-030-85469-0_6.

TIME 2024

https://doi.org/10.1145/2629447
https://doi.org/10.1007/978-3-031-08848-3_4
https://doi.org/10.1007/3-540-45441-1_7
https://doi.org/10.1023/B:FORM.0000017718.28096.48
https://doi.org/10.1609/AAAI.V30I1.10104
https://doi.org/10.1613/JAIR.1.11256
https://doi.org/10.1007/978-3-030-88885-5_6
https://doi.org/10.1007/978-3-030-88885-5_6
https://doi.org/10.22152/PROGRAMMING-JOURNAL.ORG/2023/7/7
www.omg.org/spec/BPMN
https://doi.org/10.1613/JAIR.1705
https://doi.org/10.1109/ASE.2015.71
https://doi.org/10.1007/978-3-642-31095-9_18
https://doi.org/10.1007/978-3-642-31095-9_18
https://doi.org/10.1016/J.IS.2017.12.002
https://doi.org/10.1109/EDOC.2007.14
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.3233/FAIA200113
https://doi.org/10.1609/AAAI.V37I5.25800
https://doi.org/10.1007/978-3-030-85469-0_6

14:14 Learning Temporal Properties from Event Logs via Sequential Analysis

34 Wil M. P. van der Aalst. The application of petri nets to workflow management. J. Circuits
Syst. Comput., 8(1):21–66, 1998. doi:10.1142/S0218126698000043.

35 Wil M. P. van der Aalst. Foundations of process discovery. In Process Mining Handbook,
volume 448 of Lecture Notes in Business Information Processing, pages 37–75. Springer, 2022.
doi:10.1007/978-3-031-08848-3_2.

36 Wil M. P. van der Aalst. Process mining: A 360 degree overview. In Process Mining Handbook,
volume 448 of Lecture Notes in Business Information Processing, pages 3–34. Springer, 2022.
doi:10.1007/978-3-031-08848-3_1.

37 Wil M. P. van der Aalst, Maja Pesic, and Helen Schonenberg. Declarative workflows: Balancing
between flexibility and support. Comput. Sci. Res. Dev., 23(2):99–113, 2009. doi:10.1007/
S00450-009-0057-9.

38 Wil M. P. van der Aalst and Christian Stahl. Modeling Business Processes - A Petri Net-
Oriented Approach. Cooperative Information Systems series. MIT Press, 2011.

39 A Wald. Sequential tests of statistical hypotheses. The Annals of Mathematical Statistics,
16(2):117–186, 1945.

40 Mathias Weske. Business Process Management - Concepts, Languages, Architectures, Third
Edition. Springer, 2019. doi:10.1007/978-3-662-59432-2.

https://doi.org/10.1142/S0218126698000043
https://doi.org/10.1007/978-3-031-08848-3_2
https://doi.org/10.1007/978-3-031-08848-3_1
https://doi.org/10.1007/S00450-009-0057-9
https://doi.org/10.1007/S00450-009-0057-9
https://doi.org/10.1007/978-3-662-59432-2

	1 Introduction
	2 Background
	2.1 Linear Temporal Logic on Process Traces
	2.2 Declare
	2.3 Trace Alignment
	2.4 Sequential Analysis

	3 SPRT-Based Learning of Temporal Formulae
	4 Experiments
	4.1 Log Generation and Description
	4.2 Execution

	5 Related Works
	6 Conclusion

