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Abstract
Inconsistency measures serve to quantify the level of contradiction present within a knowledge
base. They can be used for both consistency restoration and information extraction. In this
article, we specifically explore inconsistency measures applicable to Disjunctive Temporal Problems
(DTPs). We present a framework that extends traditional propositional logic approaches to DTPs,
incorporating both new postulates and adaptations of existing ones. We identify and elaborate on
various properties that establish relationships among these postulates. Furthermore, we introduce
multiple inconsistency measures, adopting both a conventional approach that particularly leverages
Minimal Inconsistent Subsets and a DTP-specific strategy based on constraint relaxation. Finally,
we show the applicability of the inconsistency measures in DTPs through two real-world applications.
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1 Introduction

Numerous formalisms have been proposed in the literature for representing and reasoning
about temporal information under constraints. The temporal constraints considered by these
formalisms differ in two primary aspects. First, the types of temporal entities represented by
their variables, which can include temporal points, intervals, or even durations. Second, their
nature can be qualitative [1], quantitative, or a combination of both [11, 5]. Simple Temporal
Problems (STPs) [7] belong to the temporal formalisms allowing to handle quantitative
constraints. They represent temporal entities as points on a timeline and allow constraining
distance between each pair of temporal entities using numeric values specified by an interval.
To increase the expressiveness of the considered temporal constraints, STPs have been
extended numerous times [12, 20]. In particular, Disjunctive Temporal Problems (DTPs)
[18] extend STPs by employing disjunctions of STP constraints, thus providing a temporal
framework highly useful in a wide range of applications.

In the literature, an inconsistency measure is defined as a function that assigns a non-
negative value to each knowledge base. It quantifies the degree of conflict or contradiction
present within the database, offering an interesting tool for evaluating and managing incon-
sistencies (e.g. see [10, 19, 13, 9]). In the realm of application, these measures are used in
various analytical reasoning approaches. For instance, in the data mining task of clustering,
inconsistency measures are utilized to enhance the quality of clusters by actively reducing
contradictions [14]. Furthermore, these measures are used as a stepping stone for defining
paraconsistent consequence relations, which allow for logical deduction in the presence of
inconsistent information [15].

The literature presents a wide range of proposals for defining inconsistency measures, aimed
at identifying and addressing various forms of conflict, highlighting the richness of this research
field (e.g., see [10, 8, 3, 2, 4]). Numerous studies on inconsistency measures have adopted a
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15:2 A Framework for Assessing Inconsistency in Disjunctive Temporal Problems

postulate-based approach by reasoning about various dimensions related to the measurement
and management of inconsistency. This approach standardizes assessment criteria and
facilitates a comprehensive understanding of the underlying causes of inconsistency.

Despite extensive research, there remains a significant gap in the exploration of inconsist-
ency measurement within the realm of temporal reasoning. To the best of our knowledge,
only a few studies have specifically focused on adapting inconsistency measures to this
context, concentrating primarily on qualitative spatio-temporal reasoning and temporal logic
(see [6, 17, 16]). In this paper, we introduce the first framework designed specifically for
measuring inconsistency in DTPs.

Our first contribution consists in introducing a range of rationality postulates for defining
inconsistency measures in DTPs. Some of these postulates are adaptations from those
established in the propositional context, while others are uniquely tailored to DTPs. For
example, one DTP-specific postulate asserts that applying an identical shift to all intervals
within a DTP does not alter the amount of inconsistency. We also examine the relationships
among these postulates. Our analysis particularly highlights that certain postulates are
incompatible, and combining specific ones can yield an inconsistency measure that can only
distinguish between consistent and inconsistent DTPs.

Our second contribution is the development of various inconsistency measures using
different approaches. Specifically, we employ a traditional approach that involves Minimal
Inconsistent Subsets, and we introduce a strategy specifically tailored for DTPs based on
constraint relaxation. This relaxation is achieved by widening the temporal intervals.

Our third contribution details two applications of inconsistency measures within DTPs.
The core principle of our approach involves using these measures to facilitate the selection
of the most suitable solutions. Within a DTP framework, constraints may correspond to
either the specific needs of an individual agent or the integrity constraints of a computational
service. By applying inconsistency measures, we are able to identify the optimal service or
achieve consensus among agents.

2 Preliminaries

2.1 Temporal problems
In the sequel we will denote by IZ the set of closed (possibly half-unbounded or unbounded)
intervals over Z with endpoints in Z∪{−∞, +∞}. Given I ∈ IZ, I−1 will denote the interval
of IZ containing the opposite values of I. We consider Disjunctive Temporal Problems
(DTP) [18] on IZ.

▶ Definition 1 (Disjunctive Temporal Problem (DTP)).
A temporal constraint c is a disjunction x1 − y1 ∈ I1 ∨ . . . ∨ xk − yk ∈ Ik where k ≥ 1,
x1, . . . , xk, y1, . . . , yk are temporal variables with domain Z and I1, . . . , Ik are intervals
belonging to IZ.
A DTP D is a pair (V, C) where V = {x1, . . . , xn} is a finite set of temporal variables
ranging over Z and C = {c1, . . . , cm} is a set of temporal constraints involving V where
n ≥ 1 and m ≥ 1.
A solution σ of a DTP D = (V, C) is an assignment of integer numbers to the variables
in V such that all constraints in C are satisfied. More formally, a solution σ of D is a
function σ : V → Z such that for each c ∈ C there exists at least one disjunct x− y ∈ I

belonging to c such that the value σ(x)− σ(y) belongs to the interval I.
A DTP admitting at least one solution will be said consistent. In the contrary case it will
said inconsistent.
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Let DT P represent the set of all DTPs. In the sequel, a temporal constraint (resp. a
disjunct of a temporal constraint) will also be called a temporal clause (resp. a temporal
literal).

Given a DTP D = (V, C) and a constraint c ∈ C, we sometimes use D \ {c} to denote
the DTP (V, C \ {c}).

A Simple Temporal Problem (STP) [7] is a specific type of DTP characterized by each
constraint containing exactly one disjunct. Furthermore, a Temporal Constraint Satisfaction
Problem (TCSP) [7] represents a DTP in which all disjuncts within a constraint apply to the
same pair of variables.

Given a set of temporal variables V , the set of all possible assignments of integer numbers
to the variables in V will be denoted by JV K. Moreover, the subset of JV K corresponding to
the set of solutions of a DTP D = (V, C) will be denoted by sols(D).

Note that here we consider DTPs with constraints on closed integer intervals and interpret
their variables with integer values. Even if it may seem restrictive, most of the concepts and
results introduced later can be extended to more general DTPs.

Consider a temporal constraint c = x1 − y1 ∈ I1 ∨ . . . ∨ xk − yk ∈ Ik. The nota-
tion vars(c) refers to the set of temporal variables involved in c, i.e., the set of variables
{x1, . . . , xk, y1, . . . , yk}. Furthermore, Lit(c) denotes the disjuncts (temporal literals) of the
constraint of c. Moreover, given another temporal constraint c′, c subsumes c′ if and only if
(i) vars(c) ⊆ vars(c′), and (ii) for all (x− y ∈ I) ∈ Lit(c), there exists (x− y ∈ I ′) such that
I ⊆ I ′. A sub-DTP of a DTP D = (V, C) is a DTP (V, C ′) such that C ′ ⊆ C. Given two
DTPs D = (V, C) and D′ = (V ′, C ′), the union of D and D′, denoted by D∪D′, is the DTP
defined by (V ∪ V ′, C ∪ C ′).

▶ Example 2. As illustration, consider the set of temporal variables V = {x1, x2, x3, x4, x5}
and the following set of temporal constraints C:
c1 = x1−x2 ∈ [4, 7] ∨ x2−x3 ∈ [−2, 2] ∨ x2−x4 ∈ [0, 8],
c2 = x3−x4 ∈ [−20, 20],
c3 = x1−x2 ∈ [−15, −10] ∨ x2−x3 ∈ [8, 12],
c4 = x1−x3 ∈ [−11, −8] ∨ x2−x4 ∈ [−6, −3],

c5 = x1−x3 ∈ [10, 12] ∨ x1−x4 ∈ [6, 7],
c6 = x1−x2 ∈ [−11, −6] ∨ x1−x3 ∈ [6, 9],
c7 = x2−x5 ∈ [5, 10] ∨ x3−x5 ∈ [0, 5],
c8 = x1−x3 ∈ [0, 3] ∨ x1−x4 ∈ [12, 14].

Let the DTPs D = (V, C) and D′ = (V, C \ {c8}). The DTP D′ is consistent, whereas the
DTP D is inconsistent. A solution σ of D′ is given by the following assignment: σ(x1) = 10,
σ(x2) = σ(x3) = 21, σ(x4) = 4 and σ(x5) = 16. This assignment satisfies, for example, the
temporal literal x1−x3 ∈ [−11,−8] of the constraint c4 since σ(x1)−σ(x3) = 10− 21 = −11.

2.2 Relaxations
An c-rewriting rule for a temporal clause c is a function µ mapping from Lit(c) (the set of
temporal literals in c) to IZ. This function µ is applied to a temporal constraint c such that
µ(c) denotes the temporal clause resulting from replacing each literal l = x− y ∈ I within c

with x− y ∈ µ(l).
A local c-transformation for a DTP instance D = (V, C), where C = {c1, . . . , cn}, is a

function λ that assigns an c-rewriting rule µi to each constraint ci in C. This transformation is
applied to D such that λ(D) results in a new DTP instance (V, C ′), where C ′ =

⋃n
i=1{µi(ci)}.

In the sequel, by abuse of notation, we will sometimes denote (λ(ci))(ci) by λ(ci) for notational
convenience.

A local c-relaxation for a DTP instance D = (V, C) is defined as a local c-transformation λ,
where for each temporal constraint c = x1−y1 ∈ I1∨. . .∨xk−yk ∈ Ik in C, the transformation
ensures that Ii ⊆ (λ(c))(xi− yi ∈ Ii) for every i ∈ {1, . . . , k}. This transformation effectively
relaxes the constraints, making them less restrictive.

TIME 2024
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Given two intervals I = [l, u] and I ′ = [l′, u′] with I ⊆ I ′, we use δ(I, I ′) to denote the
value (u′ − l′) − (u − l). We extend δ to the cases where I or I ′ are half-unbounded or
unbounded intervals in the following way: δ(I, I ′) = +∞ for the cases where I is left-bounded
(resp. right-bounded) and I ′ is left-unbounded (resp. left-unbounded). Intuitively, this
means that the value of infinity dominates in this scenario. In the case where I =]−∞, u]
and I ′ =]−∞, u′] (resp. I = [l, +∞[ and I ′ = [l′, +∞[), δ(I, I ′) is defined by u′ − u (resp.
l − l′). For the last case which corresponds to I = I ′ =]−∞, +∞[, δ(I, I ′) is defined by 0.

Let λ be a local c-relaxation of D = (V, C), we use ω(λ) to denote the following value:∑
c∈C

∑
l=(x−y∈I)∈Lit(c)

δ(I, (λ(c))(l))

Furthermore, we use θ(λ) to denote the following value:

max
c∈C,l=(x−y∈I)∈Lit(c)

δ(I, (λ(c))(l))

▶ Example 3. Consider again the DTP D = (V, C) defined in Example 2. Let λ be a local
c-transformation for D that assigns the c-rewriting rule µi to the constraint ci in C, with
the rules µi defined as follows:
µ1(x1−x2 ∈ [4, 7]) = [4, 10], µ1(x2−x3 ∈ [−2, 2]) = [−4, 3], µ1(x2−x4 ∈ [0, 8]) = [0, 8];
µ2(x3−x4 ∈ [−20, 20]) = [−30, 40];
µ5(x1−x3 ∈ [10, 12]) = [0, 20], µ5(x1−x4 ∈ [6, 7]) = [2, 15];
and µi(x−y ∈ I) = I for each ci ∈ {c3, c4, c6, c7, c8} and each temporal x−y ∈ I belonging
to Lit(ci).
We have λ(c1) = x1−x2 ∈ [4, 10]∨x2−x3 ∈ [−4, 3]∨x2−x4 ∈ [0, 8], λ(c2) = x3−x4 ∈ [−30, 40],
λ(c5) = x1−x3 ∈ [0, 20] ∨ x1−x4 ∈ [2, 15] and λ(ci) = ci for all ci{c3, c4, c6, c7, c8}.

Clearly, the local c-transformation λ is a local c-relaxation of D. It results in the less
constraining DTP λ(D) = (V, {λ(c1), λ(c2), λ(c5)} ∪ {c3, c4, c6, c7, c8}). We can notice that
λ(D) is consistent, whereas D is an inconsistent DTP. A solution σ of λ(D) is given by the
following assignment: σ(x1) = 20, σ(x2) = σ(x3) = 31, σ(x4) = 8 and σ(x5) = 26. Moreover,
we have ω(λ) = 3 + 3 + 30 + 18 + 12 = 66 and θ(λ) = max{3, 3, 30, 18, 12} = 30.

In the following, we show that to achieve a consistent DTP from an inconsistent DTP, we
can restrict ourselves to local c-relaxations that extend the interval of at most one temporal
literal per temporal clause by modifying only one of its bounds. We also show that such a
restriction preserves optimal relaxations with respect to minimizing the values generated by
the functions ω(.) et θ(.).

▶ Proposition 4. Let D = (V, C) be a DTP and a local c-relaxation λ of D. If λ(D) is a
consistent DTP then there exists a local c-relaxation λ′ of D such that:
(1) λ′(D) is a consistent DTP,
(2) for each c ∈ C, we have |{l = (x− y ∈ I) ∈ Lit(c) : I ̸= (λ′(c))(l)}| ≤ 1,
(3) for each c ∈ C and l = (x− y ∈ I) ∈ Lit(c), we have I = (λ′(c))(l) or (λ′(c))(l) \ I is a

bounded interval of IZ,
(4) we have θ(λ) ≥ θ(λ′) and ω(λ) ≥ ω(λ′).

Proof. Suppose that λ(D) is a consistent DTP. Let σ a solution of λ(D). From σ we will
define a local c-relaxation λ′ with the desired properties. As σ is a solution of λ(D), we
know that for each c ∈ C there exists at least one temporal literal lc = (x− y ∈ I) ∈ Lit(c)
such that σ(x) − σ(y) ∈ (λ(c))(lc). Select such a temporal literal lc = (x − y ∈ I) and
define λ′(c) by (λ′(c))(lc) = I if (λ(c))(lc) = I or σ(x)− σ(y) ∈ I, by the smallest interval
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of IZ containing the values of I and σ(x)− σ(y) in the contrary case. Moreover, we define
(λ′(c))(u− v ∈ I ′) by I ′ for all (u− v ∈ I ′) ∈ Lit(c) \ {lc}. Remark that for each c ∈ C, we
have σ(x)− σ(y) ∈ (λ′(c))(lc), by consequence σ is a solution of λ′(D). Hence Property (1)
is satisfied. Moreover, by construction of λ′, we can assert that the properties (2) and (3)
are also satisfied. Always by construction, we can observe that I ⊆ (λ′(c))(l) ⊆ (λ(c))(l) for
all c ∈ C and l = (x− y ∈ I) ∈ Lit(c). It follows that δ(I, (λ′(c))(l)) ≤ δ(I, (λ(c))(l)) for all
c ∈ C and l = (x− y ∈ I) ∈ Lit(c). As a result, we have θ(λ′) ≤ θ(λ) and ω(λ′) ≤ ω(λ). ◀

In the sequel, given a DTP D, the set of the local c-relaxations λ of D such that λ(D) is
consistent will be denoted by LCR(D).

▶ Example 5. Consider the DTP D = (V, C) defined in Example 2 and its local c-relaxation
λ given in Example 3 with the solution σ of λ(D). By following the approach described in
the proof of Proposition 4, we can construct a new local c-relaxation λ′ from λ and σ that
satisfies the properties specified in Proposition 4. The resulting local c-relaxation λ′ assigns
the c-rewriting rule µ′

i to the constraint ci in C in the following way:
µ′

2(x3−x4 ∈ [−20, 20]) = [−20, 23];
µ′

5(x1−x3 ∈ [10, 12]) = [10, 12], µ′
5(x1−x4 ∈ [6, 7]) = [6, 12];

and µ′
i(x−y ∈ I) = I for each ci ∈ {c1, c3, c4, c6, c7, c8} and each temporal x−y ∈ I belonging

to Lit(ci).
We have λ′(c2) = x3−x4 ∈ [−20, 23], λ′(c5) = x1−x3 ∈ [10, 12] ∨ x1−x4 ∈ [6, 12] and

λ′(ci) = ci for all ci ∈ {c1, c3, c4, c6, c7, c8}. It is clear that λ′ is a local c-relaxation of D

ensuring that λ′(D) is a consistent DTP with σ serving as a solution. Hence, we have
λ′ ∈ LCR(D). Moreover, we have ω(λ′) = 3 + 5 = 8 and θ(λ′) = max{3, 5} = 5, whereas
ω(λ) = 66 and θ(λ) = 30.

3 Rationality Postulates for Inconsistency Measurement

In this section, we describe various rationality postulates that can be used for defining
inconsistency measures in the context of DTPs. Many of these rationality postulates are
adaptations of those introduced in the propositional case. Additionally, we highlight several
interesting relationships between the considered postulates.

Before presenting our rationality postulates, we first outline the concepts used to express
them.

▶ Definition 6 (Minimal Inconsistent Sub-DTP (MIS)). Let D = (V, C) be a DTP. A Minimal
Inconsistent Sub-DTP (MIS) of D is an inconsistent sub-DTP D′ of D such that each
sub-DTP D′′ of D′, with D′ ̸= D′′, is consistent.

A constraint c is said to be free in a DTP D if there exists no MIS D′ = (V, C) of D such
that c ∈ C.

Consider now the dual concept of MIS.

▶ Definition 7 (Maximal Consistent Sub-DTP (MCS)). Let D = (V, C) be a DTP. A Maximal
Consistent Sub-DTP (MCS) of D is an consistent sub-DTP D′ of D such that each sub-DTP
D′′ of D, with D′ ⊊ D′′, is inconsistent.

Clearly, a constraint is free if it belongs to all MCSes.
A constraint c is said to be safe in a DTP D if there is a variable x ∈ vars(c) such that

v /∈ vars(c′) for every c′ ∈ C \ {c}.

TIME 2024
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Let us note that our definition of safe constraints diverges from the concept of a safe
formula as defined in [10]. Indeed, a safe formula is defined as one that shares no propositional
variables with the remaining elements of the knowledge base.

We adopt the following notational conventions:
MIS(D): the set of MISes of D,
MCS(D): the set of MCSes of D,
Free(D): the set of free constraints of D,
Safe(D): the set of safe constraints of D.

▶ Example 8. Revisiting the DTP D = (V, C) defined in Example 2, we observe the following:
MCS(D) = {(V, C \ {c5}), (V, C \ {c8})},
MIS(D) = {(V, {c1, c4, c5, c8}), (V, {c1, c5, c6, c8}), (V, {c3, c4, c5, c8}), (V, {c4, c5, c6, c8})},
Free(D) = {c2, c7},
Safe(D) = {c7}.

▶ Proposition 9. Let D be a DTP. If c is a safe constraint in D, then c is free in D.

Proof. Let D = (V, C) and consider a constraint c ∈ C which is identified as a safe but not
free constraint in C. Given that c is not free, there exists a MIS D′ = (V, C ′) of D such
that c ∈ C ′. Since D′ is an MIS, we can define D′′ = (V, C ′ \ {c}), which admits a solution
σ. Given the safety of c in D, it follows that there exists a variable x ∈ vars(c) that does
not appear in any constraints of D′′. Assuming without loss of generality that x− y ∈ I is
a temporal literal in c, we can identify a specific value v such that v − σ(y) ∈ I. We then
define a new assignment σ′ for D′ as follows: σ′(x) = v, and for all y ∈ V \ {x}, σ′(y) = σ(y).
Since σ′ satisfies c and σ satisfies D′′, we conclude that σ′ is a solution for D′. This leads to
a contradiction, as D′ being a MIS. ◀

Given a DTP D and an integer k ∈ Z, we use D ⊕ k to denote the DTP obtained from
D by replacing each interval [l, u] with [l + k, u + k].

▶ Proposition 10. Let D be a DTP and k ∈ Z. Then D is consistent iff D⊕ k is consistent.

Proof. This is mainly a consequence of the fact that for every solution σ, the assignment σ′

is a solution of D ⊕ k, where σ′(x) = σ(x) + k for every variable x. ◀

An inconsistency measure I is a function that maps a DTP to a non-negative real value.
By denoting R∞

≥0 the set of non-negative real value, an inconsistency measure is a function
I : DT P → R∞

≥0 that satisfies the following property:
I(D) = 0 iff D is a consistent DTP (Consistency - Cons).

The property Cons stipulates that an inconsistency measure must distinguish between
consistent and inconsistent DTPs.

In this work, many rationality postulates for defining inconsistency measures are analogous
to those introduced in the propositional case (e.g., see [10, 19]). The considered postulates
are as follows: for all DTPs D = (V, C) and D = (V ′, C ′),
I(D ∪D′) ≥ I(D) (Monotonicity - Mono).
If c ∈ C is a safe temporal constraint of D then I(D) = I((V, C \ {c})) (Safe Constraint
Independence - SCI).
If c ∈ C is a free temporal constraint of D then I(D) = I((V, C \ {c})) (Free Constraint
Independence - FCI).
If c ∈ C is not free in D then I(D) > I((V, C \{c})) (Problematic Constraint Dependence
- PCD).
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If D′ is consistent and V ∩ V ′ = ∅, then I(D ∪D′) = I(D) (Sub-DTP Independence -
SDI).
If c subsumes c′ then I((V ∪ vars(c), C ∪{c})) ≥ I((V ∪ vars(c′), C ∪{c′})) (Subsumption
- Sub).
If c subsumes c′ and c /∈ C, then I((V ∪ vars(c), C ∪ {c})) ≥ I((V ∪ vars(c′), C ∪ {c′}))
(Weak Subsumption - WSub).
If V ∩ V ′ = ∅, then I(D ∪D′) = I(D) + I(D′) (Variable Independence-Additivity - VIA).
If C ∩ C ′ = ∅, then I(D ∪D′) ≥ I(D) + I(D′) (Super-Additivity - SA).
For any k ∈ Z, I(D) = I(D ⊕ k) (Shift Independence - SI).

The postulate Mon asserts that adding a new constraint cannot decrease the existing
level of contradiction within the DTP. SCI and FCI maintain that safe constraints and free
constraints, respectively, do not influence the level of conflict. PCD says that introducing
non-free constraints must increase the level of contradiction. SDI states that an independent,
consistent sub-DTP does not affect the overall amount of contradiction. Sub postulates
that stricter constraints results in more conflicts. WSub is a weaker variant of Sub; the
condition c /∈ C allows us to indicate that c is replaced with c′. VIA asserts that the total
contradiction in the union of two DTPs, which do not share any variables, equals the sum
of their individual contradictions. SA says that the total amount of contradiction in two
disjoint DTPs cannot be less than the sum of their individual contradictions. Finally, SI
posits that applying a shift to a DTP does not alter the level of contradiction.

It is important to note that in a consistent DTP, introducing a constraint that is less
restrictive than an existing one does not modify the solution set. This observation also
explains why, in Sub as opposed to WSub, we do not require the condition c /∈ C: adding a
weaker constraint does not affect the amount of contradiction.

The properties previously described are not entirely independent and display various
interrelationships. For example, it is evident that Sub implies WSub. The proposition below
outlines additional relationships among these properties.

▶ Proposition 11. The following properties hold:
1. FCI implies SCI.
2. SA implies Mono.
3. Cons and VIA implies SDI.

Proof.
Property 1. It is a direct consequent of Proposition 9: every safe constraint is a free

constraint.
Property 2. Let I be an inconsistency measure that satisfies SA. Let D = (V, C) and

D′ = (V ′, C ′) be two DTPs. We define a new DTP D′′ as D′′ = (V ′, C ′ \ C). It
follows that D ∪ D′ = D ∪ D′′. Furthermore, using property SA and noting that
D ∩ D′′ = ∅, we deduce I(D ∪ D′) = I(D ∪ D′′) ≥ I(D) + I(D′′). Consequently, we
obtain I(D ∪D′) ≥ I(D).

Property 3. Let I be an inconsistency measure that satisfies both Cons and VIA. Let D and D′

be two DTPs such that D′ is consistent and vars(D)∩vars(D′) = ∅. Applying VIA under the
condition that vars(D)∩vars(D′) = ∅, we deduce that I(D∪D′) = I(D)+I(D′). Moreover,
by invoking Cons, I(D′) = 0 holds. Therefore, this leads to I(D ∪D′) = I(D). ◀

As demonstrated by the following proposition, some of our properties are incompatible.

▶ Proposition 12. There is no inconsistency measure that satisfies both PCD and Sub.

TIME 2024
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Proof. Assume, for the sake of contradiction, that there exists an measure I that satisfies both
PCD and Sub. Consider the DTP D = ({x, y}, C) where C = {x− y ∈ [0, 1], x− y ∈ [2, 3]}.
Clearly, the constraint x− y ∈ [2, 3] subsumes x− y ∈ [2, 4]. Employing Sub, it follows that
I(D′) ≥ I(D′′), with D′ = ({x, y}, C∪{x−y ∈ [2, 3]}) and D′′ = ({x, y}, C∪{x−y ∈ [2, 4]}).
Since C ∪ {x− y ∈ [2, 3]} = C, we have I(D′) = I(D). Furthermore, x− y ∈ [2, 4] is clearly
problematic in D′′; hence, by applying PCD,we deduce that I(D) < I(D′′). This leads to a
contradiction. ◀

Over-constraining inconsistency measures can lead to uninteresting results, as demon-
strated by the following proposition.

▶ Proposition 13. An inconsistency measure I satisfies Cons, Sub and SA iff I is defined as
follows:

I(D) =
{
∞ if D is inconsistent
0 otherwise

Proof.

The If Part. First, we establish that I(D) = ∞ if and only if D is inconsistent, which
implies that I satisfies Cons.

The satisfaction of Sub follows from the observation: if c subsumes c′ and D = (V, C∪{c})
is a consistent DTP, then I(D) = I((V ∪ vars(c′), C ∪ {c′})) = 0; if D is inconsistent, then
I(D) =∞ ≥ I((V ∪ vars(c′), C ∪ {c′})).

For SA, we consider: (i) if D ∪ D′ is consistent, then both D and D′ are consistent,
leading to I(D ∪ D′) = 0 and I(D) + I(D′) = 0; (ii) if D ∪ D′ is inconsistent, then
I(D ∪D′) =∞ ≥ I(D) + I(D′).

The Only-If Part. Let D = (V, C) be a DTP. If D is consistent, then by Cons, I(D) = 0.
Now consider that D is inconsistent. Define a mapping f that associates each constraint
c in C with any two distinct constraints not in C by adding two incompatible literals:
c′ = c ∨ (x − y ∈ [l, l]) and c′′ = c ∨ (x − y ∈ [l + 1, l + 1]), where x and y are arbitrary
variables, and l is an integer chosen such that c′ and c′′ are not in C. Using Sub, it follows that
I(D) = I((V, C ∪

⋃
c∈C f(c))). Additionally, by SA, I((V, C ∪

⋃
c∈C f(c))) ≥ I(D) + I(D′)

where D′ = (V,
⋃

c∈C f(c)). Given Cons and the inconsistency of D, I(D′) > 0. Therefore,
if I(D) ̸= ∞, this leads to I(D) > I(D), a contradiction. Consequently, we deduce
I(D) =∞. ◀

The following proposition demonstrates the need for caution when allowing infinity as an
inconsistency value.

▶ Proposition 14. If I is an inconsistency measure that satisfies Cons, and there exists a
DTP D such that I(D) =∞, then I does not satisfy PCD.

Proof. Let D = (V, C) be a DTP such that I(D) = ∞. Consider c to be a non-free
constraint within D. We define c′ as a constraint not present in C but logically equivalent
to c. This equivalence can be achieved by utilizing redundancy in temporal literals; for
example, c ∨ l ≡ c ∨ l ∨ l. Given that c is non-free in D, we obtain that c′ is non-free in
D = (V, C ∪ {c′}). Applying PCD, we deduce that I(D) < I(D′). However, this leads to a
contradiction since I(D) =∞. ◀
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4 Inconsistency Measures

In this section, we present several inconsistency measures, each based on a different approach.
Some measures are adaptations of those previously established in the propositional case,
while others are developed by leveraging the concept of local c-relaxation.

The considered inconsistency measures are defined as follows:
Imcs(D) = min{|C ′| : C ′ ⊆ C, (V, C \ C ′) ∈ MCS(D)}
Imis(D) = |MIS(D)|
Ip(D) = |C \ Free(D)|
Iω(D) = min{ω(λ) : λ ∈ LCR(D)}
Iθ(D) = min{θ(λ) : λ ∈ LCR(D)}

The measure Imcs(D) quantifies the minimum number of constraints that must be removed
to restore consistency. Imis(D) counts the total number of minimal inconsistent subsets
within the DTP. Ip(D) calculates the number of constraints in C that do not participate in
any minimal inconsistent subset. Iω(D) measures the minimum weight of a local c-relaxation
required to achieve consistency. Iθ(D) determines the minimum width of a local c-relaxation
necessary for restoring consistency.

Table 1 Properties of inconsistency measures. ✓means “satisfies” and ✗ means “does not satisfy”.

Measure Cons Mono SCI FCI PCD SDI Sub WSub VIA SA SI
Imcs ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓

Imis ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓

Ip ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓

Iω ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓

Iθ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓

In Table 1, we present the properties satisfied by each considered measure.
The initial observation is that all our measures uphold the properties Cons, Mono, SCI,

SDI, and SI. Cons is fulfilled for Imcs because D is the unique MCS of D if and only if D is
consistent; For Imis and Ip, it is satisfied as a consistent DTP has no Minimal MIS; in the
cases of Iω and Iθ, no local c-relaxation is required to achieve consistency in consistent DTPs.
Mono is observed in Imcs since adding a constraint cannot reduce the number of constraints
needed to be ignored for consistency; it holds for Imis and Ip as adding a constraint does
not eliminate any existing MIS; for Iω and Iθ, any sub-DTP of a consistent DTP remains
consistent, which means a local c-relaxation that leads to consistency after adding a constraint
will also lead to consistency when applied to the DTP prior to the addition. SCI is met as
the safe constraints are not involved in any conflicts, notably, they do not require relaxation
to achieve consistency. SI is applicable for Imcs, Imis, and Ip since applying a shift does not
alter the MCSes and MISes of a DTP; for Iω and Iθ, it is mainly because the value δ(l, l′)
remains unchanged when the same shift is applied to the literals l and l′.

The second observation is that the property Sub is satisfied exclusively by the measure
Iθ. A main reason why this property is not met by the other measures stems from its
implication that adding an subsumed constraint should not alter the inconsistency value.
However, in the case of the first four measures, adding such a constraint can impact the
situation by introducing new MISes and necessitating the relaxation of the newly added
subsumed constraint. In contrast, Iθ handles the addition of a subsumed constraint without
issue, as a local c-relaxation leading to consistency does not require widening intervals after
incorporating a subsumed constraint.

TIME 2024
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It should be noted that the inconsistency measure Iθ satisfies the weaker variant WSub.
This is because any local c-relaxation in a DTP that achieves consistency will also maintain
consistency when any constraint is replaced by one of its subsumed constraints.

A key distinction between the measures Imcs, Imis, and Ip on one hand, and Iω and Iθ

on the other, is that the latter two incorporate internal information from the constraints.
This specifically accounts for why both Iω and Iθ do not satisfy FCI.

▶ Proposition 15. Iω and Iθ do not satisfy FCI.

Proof. Let be the DTP D = (V = {x1, x2, x3}, C = {c1, c2, c3, c4}) defined by:
c1 = x1−x2 ∈ [5, 5] ∨ x1−x2 ∈ [20, 20],
c2 = x1−x2 ∈ [10, 10] ∨ x1−x2 ∈ [21, 21],
c3 = x2−x3 ∈ [0, 0],
c4 = x1−x3 ∈ [5, 10].

D is inconsistent and admits as unique MIS (V, {c1, c2}). Hence, Free(D) = {c3, c4}. We
have Iω(D) = 5 and Iθ(D) = 3. Moreover, we can easily see that have Iω((V, C \ {c4}) =
Iθ((V, C \ {c4}) = 1. Consequently, Iω and Iθ do not satisfy the postulate FCI. ◀

▶ Theorem 16. The functions listed in Table 1 are inconsistency measures that satisfy the
properties outlined in the same table.

5 Applications

In this section, we explore two applications of inconsistency measures. The core concept
involves using these measures to select optimal solutions. Constraints in a DTP may represent
the requirements of an individual agent or the integrity constraints of a computational service
(e.g., op1− op2 ∈]−∞, 10] can be used to represent the constraint that operation op2 must
start no less than 10 time units after operation op1). When conflicts arise either between
the constraints of different agents or between the constraints of an agent and a service,
inconsistency measures are employed to identify the most suitable resolution.

Service 1

Service 2

Service 3

op1 − op2 ∈ ] − ∞, − 10]
op2 − op3 ∈ ] − ∞, − 5]

op1 − op2 ∈ [−2, + ∞[

op1 − op2 ∈ [−9, + ∞[

op1 − op2 ∈ [−2, + ∞[
op2 − op3 ∈ [−2, + ∞[

8

1

11

Figure 1 Scenario depicting a service selection problem.

5.1 Service Selection
In the first application, we address the scenario where an agent with specific temporal
constraints needs to select computational services to perform a set of operations. These
services come with their own integrity constraints, which are also temporal in nature. We
formally represent this situation with the tuple Ω = ⟨V, C, S, f⟩,where V is a set of temporal
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variables, C is a finite set of temporal constraints over V (the constraints of the considered
agent), S is a set of computation services, and f is a function that assigns each service a
finite set of temporal constraints (reflecting its integrity constraints).

Algorithm 1 Consensus Achievement via Constraint Modification.

1: procedure AchieveConsensus(V, A, f, I ) ▷ with A = {a1, . . . , ak}
2: Dξ ← (V,

⋃
a∈A f(a)) ▷ Define the initial DTP

3: i← 1
4: d← I(Dξ)
5: d0 ← d

6: while Dξ does not admit a solution do
7: Dt ← Dξ

8: for each constraint c in f(ai) do
9: D′ ← Dξ \ {c}

10: if I(D′) < d then
11: Dt ← D′

12: d← I(D′)
13: end if
14: end for
15: Dξ ← Dt ▷ Update the DTP
16: if i = k then
17: if d = d0 then ▷ no constraint reduces the amount of contradiction
18: Dξ ← Dξ \ {c} ▷ c is an arbitrary constraint in Dξ

19: d← I(Dξ)
20: end if
21: d0 ← d

22: i← 1
23: else
24: i← i + 1
25: end if
26: end while
27: return Dξ

28: end procedure

In scenarios where the constraints of the considered agent clash with the integrity
constraints of the computational services, inconsistency measures can be used to identify the
most suitable service. This is achieved by computing I((V, C ∪ f(s))) for each service s ∈ S.
The inconsistency measures offer a quantitative assessment of the conflict severity between
an agent’s requirements and a service’s constraints, facilitating an informed decision-making
process.

For example, take the service selection problem illustrated in Figure 1. By employing the
inconsistency measure Iω, the second service is identified as the most appropriate choice.
This service exhibits fewer contradictions (1) with the constraints of the agent compared to
others (8 and 11).

TIME 2024
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5.2 Multi-Agent Consensus
In this section, we explore an application of inconsistency measures to DTPs, aimed at
facilitating consensus within a multi-agent system. This involves using these measures to
strategically guide the modification of constraints, thus driving the system towards consensus.

We define a consensus problem as a tuple ξ = ⟨V, A, f⟩, where V is a set of temporal
variables, A is a set of agents, and f is a function that assigns each agent in A a set of
temporal constraints. We consider that there is a consensus if the DTP Dξ = (V,

⋃
a∈A f(a))

admits a solution.
Our approach to achieving consensus involves proposing that each agent, sequentially,

weaken or remove one of its constraints. The critical aspect of this strategy is to provide
agents with guidance on which modifications will bring them closest to consensus. This is
where the role of inconsistency measures becomes crucial. More precisely, consider I as the
inconsistency measure in use, with ξ = ⟨V, A, f⟩ representing a consensus problem, and a an
agent in A. An ordering ≺ on the constraints in f(a) can be defined as follows: c ≺ c′ if and
only if I((V, (f(a) \ {c}) ∪

⋃
a′∈A\{a} f(a′))) < I((V, (f(a) \ {c′}) ∪

⋃
a′∈A\{a} f(a′))).

In Algorithm 1, we outline a variant of our approach designed to systematically achieve
consensus. This algorithm iteratively removes the most problematic constraint, as determined
by the inconsistency measure. This systematic elimination is designed to gradually resolve
conflicts and align the system towards a solution.

6 Conclusion and perspectives

In this paper, we introduced a framework for defining inconsistency measures in Disjunctive
Temporal Problems (DTPs), marking three main contributions. First, we established
rationality postulates that lay foundational criteria for these measures. Second, we developed
various inconsistency measures using diverse approaches. Finally, we demonstrated the
applicability of these measures through two real-world applications, which underscores their
potential to improve reasoning in temporal tasks.

For future work, we plan to explore additional rationality postulates to further enhance
our framework. Additionally, we aim to define and investigate more inconsistency measures,
expanding our current set. We also intend to assess the computational complexity of these
measures and implement them.
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7 Appendix

The complete proofs of the satisfaction or the non satisfaction of each postulate for the
inconsistency measures Iω and Iθ are given in this appendix.

Iω Iθ

Consistency (Cons) ✓(Proposition 17) ✓(Proposition 17)
Monotonicity (Mono) ✓(Proposition 18) ✓(Proposition 18)
Safe Constraint Independence (SCI) ✓(Proposition 20) ✓(Proposition 20)
Free Constraint Independence (FCI) ✗ (Proposition 15) ✗ (Proposition 15)
Problematic Constraint Dependence (PCD) ✗ (Proposition 21) ✗ (Proposition 21)
Sub-DTP Independence (SDI) ✓ (Proposition 22) ✓ (Proposition 22)
Subsumption (Sub) ✗ (Proposition 24) ✓ (Proposition 26)
Weak Subsumption (WSub) ✓ (Proposition 23) ✓ (Proposition 23)
VI-Additivity (VIA) ✓ (Proposition 29) ✗ (Proposition 27)
Super-Additivity (SA) ✓ (Proposition 28) ✗ (Proposition 27)
Shift Independence (SI) ✓ (Proposition 30) ✓ (Proposition 30)

▶ Proposition 17. Iω and Iθ satisfy Cons.

Proof. Let D = (V, C) be a DTP. Consider the particular local c-relaxation λD
id of D defined

by (λD
id(c))(x − y ∈ I) = I for all c ∈ C and for all (x − y ∈ I) ∈ Lit(c). Clearly, we have

λD
id(D) = D. Hence, λD

id ∈ LCR(D). Moreover, as ω(λD
id) = θ(λD

id) = 0 we can assert that
Iω(D) = Iθ(D) = 0.
Now, suppose that Iω(D) = 0 or Iθ(D) = 0. We can assert that there exists a local
c-relaxation λ ∈ LCR(D) such that ω(λ) = 0 or θ(λ) = 0. By definition of ω and θ it
follows that for all c ∈ C and for all l = (x− y ∈ I) ∈ Lit(c) we have δ(I, (λ(c))(l)) = 0 and
consequently, I = (λ(c))(l). It results that λ = λD

id and λ(D) = D. Furthermore, we know
that λ(D) is consistent since λ belongs to LCR(D). It results that D is also consistent. ◀

▶ Proposition 18. Iω and Iθ satisfy Mono.

Proof. Let D = (V, C) and D′ = (V ′, C ′) be two DTPs and λ ∈ LCR(D ∪D′). Let λ′ be the
local c-transformation of D defined by λ′(c) = λ(c) for all c ∈ C. Clearly, λ′(c) is a local c-
relaxation of D. Moreover, we have λ′(D) which is consistent since λ(D∪D′) is consistent and
λ′(D) ⊆ λ(D∪D′). Hence, λ′ belongs to LCR(D). Consequently, we have ω(λ′) ≥ Iω(D) and
θ(λ′) ≥ Iθ(D). On the other hand, by construction of λ′ we can notice that ω(λ) ≥ ω(λ′) and
θ(λ) ≥ θ(λ′). Now, suppose that λ is such that ω(λ) = min{ω(λ′′) : λ′′ ∈ LCR(D ∪D′)} =
Iω(D ∪ D′) (resp. such that θ(λ) = min{θ(λ′′) : λ′′ ∈ LCR(D ∪ D′)} = Iθ(D ∪ D′)). As
ω(λ) ≥ ω(λ′) (resp. θ(λ) ≥ θ(λ′)) and ω(λ′) ≥ Iω(D) (resp. θ(λ′) ≥ Iθ(D)), we can conclude
that Iω(D ∪D′) ≥ Iω(D) (resp. Iθ(D ∪D′) ≥ Iθ(D)). ◀

▶ Proposition 19. Let D = (V, C) be a DTP and c ∈ Safe(D). D is a consistent DTP iff
(V, C \ {c}) is a consistent DTP.

Proof. Obviously, (V, C \ {c}) is a consistent DTP in the case where D is consistent. Now,
suppose that (V, C \ {c}) is a consistent DTP and let us show that D is also consistent. Let
σ a solution of (V, C \ {c}) and a variable x ∈ vars(c) which does not belong to vars(c′) for all
c′ ∈ C \ {c}. We know that there exists in c a temporal literal of the form x− y ∈ I (Case
1) or the form y − x ∈ I (Case 2) with y ∈ V and I ∈ IZ. Let a value a ∈ I and consider
the assignment σ′ of V defined by σ′(u) = σ(u) for each u ∈ V \ {x} and σ′(x) = a + σ(y)
if Case 1 occurs, σ′(x) = σ(y) − a in the contrary case. Clearly, σ′ satisfies the temporal
constraints of C and is a solution of D. It results that D is consistent. ◀
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▶ Proposition 20. Iω and Iθ satisfy SCI.

Proof. Let D = (V, C) be a DTP and c ∈ C a safe temporal constraint of D. Let us prove
that Iω(D) = Iω((V, C \ {c})) and Iθ(D) = Iθ((V, C \ {c})). As D = (V, C \ {c}) ∪ (V, {c}),
from Mono we have Iω(D) ≥ Iω((V, C \ {c})) and Iθ(D) ≥ Iθ((V, C \ {c})). Now, let us
show that Iω(D) ≤ Iω((V, C \ {c})) and Iθ(D) ≤ Iθ((V, C \ {c})). Let λ ∈ LCR((V, C \ {c}))
such that ω(λ) = min{ω(λ′) : λ′ ∈ LCR((V, C \ {c}))} (resp. such that θ(λ) = min{θ(λ′) :
λ′ ∈ LCR((V, C \ {c}))}). Consider the local c-relaxation λ′ of D defined by (λ′(c))(l) = I for
all l = (x− y ∈ I) ∈ Lit(c) and λ′(c′) = λ(c′) for all c′ ∈ C \ {c}. Clearly, ω(λ′) = ω(λ) and
θ(λ′) = θ(λ). Moreover, we can notice that c is a safe temporal constraint of λ′(D) = (V, C ′)
and λ((V, C \ {c}) = (V, C ′ \ {c}). From Proposition 19, it follows that λ′(D) is consistent.
Hence, λ′ ∈ LCR(D). Consequently, we have Iω(D) ≤ ω(λ′) and Iθ(D) ≤ θ(λ′). From this
and the fact that ω(λ′) = ω(λ) = Iω((V, C \ {c})) and θ(λ′) = θ(λ) = Iθ((V, C \ {c})), we
can can assert that Iω(D) ≤ Iω((V, C \ {c})) and Iθ(D) ≤ Iθ((V, C \ {c})). We can conclude
that Iω(D) = Iω((V, C \ {c})) and Iθ(D) = Iθ((V, C \ {c})). ◀

▶ Proposition 21. Iω and Iθ do not satisfy PCD.

Proof. Let D = (V = {x1, x2, x3}, C = {c1, c2, c3}) be the DTP defined by:
c1 = x1−x2 ∈ [5, 5],
c2 = x1−x2 ∈ [15, 15],
c3 = x1−x2 ∈ [10, 10].

D is an inconsistent DTP. Moreover, we have MIS(D) = {{c1, c2}, {c1, c3}, {c2, c3}} and
Free(D) = ∅. On the other hand, we have Iω(D) = 10 and Iθ(D) = 5. Now, by considering the
DTP (V, C \{c3}) we have Iω((V, C \{c3})) = 10 = Iω(D) and Iθ((V, C \{c3})) = 5 = Iθ(D).
From this example we can assert that Iω and Iθ do not satisfy the postulate PCD. ◀

▶ Proposition 22. Iω and Iθ satisfy SDI.

Proof. Let D = (V, C) and D′ = (V ′, C ′) be two DTPs such that V ∩ V ′ = ∅ and D′

is consistent. Since Iω and Iθ satisfy Mono we know that Iω(D ∪ D′) ≥ Iω(D) and
Iθ(D ∪D′) ≥ Iθ(D). Now, let us prove that Iω(D ∪D′) ≤ Iω(D) and Iθ(D ∪D′) ≤ Iθ(D).
Let λ be a local c-relaxation of D belonging to LCR(D) and let λ′ be the local c-transformation
of D ∪D′ defined by λ′(c) = λ(c) for all c ∈ C and λ′(c) = c for all c ∈ C ′. Clearly, λ′(c)
is a local c-relaxation of D ∪D′. Also, we have ω(λ) = ω(λ′) and θ(λ) = θ(λ′). Moreover,
we can show that λ′(D ∪ D′) = λ(D) ∪ D′. Since vars(λ(D)) = vars(D) = V , we have
vars(λ(D)) ∩ vars(D′) = ∅. From all this and the fact that λ(D) and D′ are two consistent
DTPs we can assert that λ′(D ∪D′) = λ(D) ∪D′ is a consistent DTP. It follows that λ′

belongs to LCR(D ∪D′). Hence, Iω(D ∪D′) ≤ ω(λ′) = ω(λ) and Iθ(D ∪D′) ≤ θ(λ′) = θ(λ).
Now, suppose that λ is such that ω(λ) = min{ω(λ′′) : λ′′ ∈ LCR(D)} = Iω(D) (resp. such
that θ(λ) = min{θ(λ′′) : λ′′ ∈ LCR(D)} = Iθ(D)). With this additional property about λ

we can deduce that Iω(D ∪D′) ≤ Iω(D) (resp. Iθ(D ∪D′) ≤ Iθ(D)). From all this, we can
conclude that Iω(D ∪D′) = Iω(D) and Iθ(D ∪D′) = Iθ(D). ◀

▶ Proposition 23. Iω and Iθ satisfy WSub.

Proof. Let D = (V, C) be a DTP and two temporal constraints c, c′ such that c ̸∈ C and c

subsumes c′. Let us denote by D′ (resp. by D′′) the DTP (V ∪ vars(c), C ∪ {c}) (resp. the
DTP (V ∪ vars(c′), C ∪ {c′})). Firstly, note that in the case where c′ ∈ C, we have by mono
that Iω(D′) ≥ Iω(D′′) and Iθ(D′) ≥ Iθ(D′′) since D′ = D′′ ∪ (vars(c), {c}). In the sequel,
we will suppose that c′ ̸∈ C. Let λ′ be a local c-relaxation belonging to LCR(D′) such that for
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each c′′ ∈ C ∪{c}, we have |{l = (x− y ∈ I) ∈ Lit(c′′) : I ̸= (λ′(c′′))(l)}| ≤ 1. Note that from
Proposition 4, this last assumption is not restrictive. In the case where λ′(c) = c we define
the local c-transformation λ′′ of D′′ by λ′′(c′′) = λ′(c′′) for all c′′ ∈ C and for all l ∈ Lit(c′),
(λ′′(c′))(l) = l. In the case where λ′(c) ̸= c, let l′ = (x− y ∈ I ′) be the temporal literal of c

such that (λ′(c))(l′) ̸= l′ and let l′′ = (x−y ∈ I ′′) one temporal literal of c′ such that I ′ ⊆ I ′′.
For this case, we define the local c-transformation λ′′ of D′′ by λ′′(c′′) = λ′(c′′) for all c′′ ∈ C,
(λ′′(c′))(l′) is defined by the smallest interval of IZ including (λ′(c))(l′)∪ I ′′ and for all l ∈ c′

such that l ̸= l′, (λ′′(c′))(l) = l. Whatever the considered case and the definition of λ′′ we can
show that λ′′ is a local c-relaxation of D′′ such that ω(λ′) ≥ ω(λ′′), θ(λ′) ≥ θ(λ′′) such that
λ′′(D′′) is consistent (since any solution of λ′(D′) can be extended to a solution λ′′(D′′)).
It follows that λ′′ ∈ LCR(D′′), ω(λ′) ≥ ω(λ′′) ≥ Iω(D′′) and ω(λ′) ≥ ω(λ′′) ≥ Iθ(D′′). Now
suppose that λ′ is such that ω(λ′) = Iω(D′) (resp. θ(λ′) = Iθ(D′)). With this additional
assumption we can deduce that Iω(D′) ≥ Iω(D′′) and Iθ(D′) ≥ Iθ(D′′). ◀

▶ Proposition 24. Iω does not satisfy Sub.

Proof. Let D = (V = {x1, x2, x3}, C = {c1, c2}) be the DTP defined by:
c1 = x1−x2 ∈ [0, 0],
c2 = x1−x2 ∈ [1, 1],
c3 = x1−x2 ∈ [4, 4].

D is an inconsistent DTP. Moreover, we have Iω(V, C) = 4. Now consider the constraint
c4 = x1−x2 ∈ [4, 5]. Clearly, c3 subsumes c4. On the other hand, we have Iω(V, C ∪ {c4}) =
Iω(V, C) = 4 and Iω(V, C ∪ {c4}) = Iω(V, {c1, c2, c3, c4}) = 7. From this example we can
assert that Iω does not satisfy the postulate Sub. ◀

▶ Proposition 25. Let D = (V, C) be a DTP and two temporal constraints c, c′ such that
c ∈ C and c subsumes c′. We have Iθ(D) = Iθ((V ∪ vars(c′), C ∪ {c′})).

Proof. In the case where c′ ∈ C, the property is obvious, in the sequel we will suppose
that c′ ̸∈ C. By Mono (Proposition 18) we know that Iθ(D) ≤ Iθ((V ∪ vars(c′), C ∪ {c′})).
We will show that Iθ(D) ≥ Iθ((V ∪ vars(c′), C ∪ {c′})). Let λ be a local c-relaxation of
LCR(D) such that θ(λ) = min{θ(λ′′) : λ′′ ∈ LCR(D)} = Iθ(D). Moreover we suppose
that for each c′′ ∈ C ∪ {c}, we have |{l = (x − y ∈ I) ∈ Lit(c′′) : I ̸= (λ(c′′))(l)}| ≤ 1.
Note that, from Proposition 4, this last assumption is not restrictive. We define the
local c-relaxation λ′ of (V ∪ vars(c′), C ∪ {c′}) in the following way. In the case where
|{l = (x−y ∈ I) ∈ Lit(c) : I ̸= (λ(c))(l)}| = 0 (Case 1), (λ′(c′′))(l) = (λ(c′′))(l) for all c′′ ∈ C

and l ∈ Lit(c′′). Moreover, (λ′(c′))(l) = I for all l = (x− y ∈ I) ∈ Lit(c′). In the case where
|{l = (x− y ∈ I) ∈ Lit(c) : I ̸= (λ(c))(l)}| = 1 (Case 2), let l′ = (x′− y′ ∈ I ′) be the literal of
c such that (λ(c))(l′ = (x′ − y′ ∈ I ′)) ̸= I ′ and l′′ = (x′ − y′ ∈ I ′′) be a literal of c′ such that
I ′ ⊆ I ′′. For this case, λ′ is defined by (λ′(c′′))(l) = (λ(c′′))(l) for all c′′ ∈ C and l ∈ Lit(c′′),
(λ′(c′))(l) = I for all l = (x− y ∈ I) ∈ Lit(c′) \ {l′′} and (λ′(c′))(l′′) is defined by the smallest
interval of IZ including λ(c))(l′) ∪ I ′′. Whatever the definition of λ′ we have θ(λ′) = θ(λ)
and λ′ ∈ LCR((V ∪ vars(c′), C ∪ {c′})). It follows that θ(λ) ≥ Iθ((V ∪ vars(c′), C ∪ {c′})).
Consequently, Iθ(D) ≥ Iθ((V ∪ vars(c′), C ∪ {c′})). ◀

▶ Proposition 26. Iθ satisfies Sub.

Proof. Let D = (V, C) be a DTP and two temporal constraints c, c′ such that c subsumes c′.
We have two cases that arise: c ̸∈ C or c ∈ C. By considering the case c ̸∈ C, from WSub
(Proposition 23), we know that Iθ((V ∪ vars(c), C ∪{c})) ≥ Iθ((V ∪ vars(c′), C ∪{c′})). Now,
consider the case c ∈ C. For this case Iθ((V ∪ vars(c), C ∪ {c})) = Iθ((V, C)). Moreover,
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from Proposition 25, we can assert that Iθ((V, C)) = Iθ((V ∪ vars(c′), C ∪ {c′})). From all
this, we can conclude that Iθ((V ∪ vars(c), C ∪ {c})) ≥ Iθ((V ∪ vars(c′), C ∪ {c′})) and that
Iθ satisfies Sub. ◀

▶ Proposition 27. Iθ does not satisfy VIA and SA.

Proof. Let D = (V = {x1, x2, x3, x4}, C = {c1, c2, c3, c4}) be the DTP defined by:
c1 = x1−x2 ∈ [0, 0],
c2 = x1−x2 ∈ [1, 1],
c3 = x3−x4 ∈ [0, 0],
c4 = x3−x4 ∈ [1, 1].

Consider the two DTPs D = (V = {x1, x2}, C = {c1, c2}) and D′ = (V ′ = {x1, x2}, C ′ =
{c3, c4}). We have V ∩ V ′ = ∅ and C ∩ C ′ = ∅. Moreover, Iθ(D ∪D′) = 1, Iθ(D) = 1 and
Iθ(D′) = 1. From this example we can assert that Iθ do not satisfy the postulates VIA and
SA. ◀

▶ Proposition 28. Iω satisfies SA.

Proof. Let D = (V, C) and D′ = (V ′, C ′) be two DTPs such that C∩C ′ = ∅. Let λ′′ be a local
c-relaxation of LCR(D∪D′) such that ω(λ′′) = min{ω(λ′′′) : λ′′′ ∈ LCR(D∪D′)} = Iω(D∪D′).
We define the local c-relaxation λ (resp. λ′) of D (resp. of D′) by λ(c) = λ′′(c) (resp.
λ′(c) = λ′′(c)) for all c ∈ C (resp. for all c′ ∈ C ′). Clearly, since C ∩ C ′ = ∅ we have
ω(λ′′) = ω(λ)+ω(λ′). Moreover we have can show that λ ∈ LCR(D) and λ′ ∈ LCR(D′). Hence,
ω(λ) ≥ Iω(D) and ω(λ′) ≥ Iω(D′). It results that Iω(D ∪D′) = ω(λ′′) = ω(λ) + ω(λ′) ≥
Iω(D) + Iω(D′). ◀

▶ Proposition 29. Iω satisfies VIA.

Proof. Let D = (V, C) and D′ = (V ′, C ′) be two DTPs such that V ∩V ′ = ∅. As V ∩V ′ = ∅ we
have C∩C ′ = ∅. From SA (Proposition 28) we know that that Iω(D∪D′) ≥ Iω(D)+Iω(D′).
Let us prove that Iω(D ∪D′) ≤ Iω(D) + Iω(D′). Let λ be a local c-relaxation of LCR(D)
such that ω(λ) = min{ω(λ′′′) : λ′′′ ∈ LCR(D)} = Iω(D) and let λ′ be a local c-relaxation
of LCR(D′) such that ω(λ′) = min{ω(λ′′′) : λ′′′ ∈ LCR(D′)} = Iω(D′). Let the local c-
transformation λ′′ defined by λ′′(c) λ(c) for all c ∈ C and λ′′(c) λ′(c) for all c ∈ C ′. We can
show that ω(λ′′) = ω(λ)+ω(λ′) (since C∩C ′ = ∅) and λ′′ ∈ LCR(D∪D′). This last belonging
comes from the fact that λ′′(D ∪ D′) = λ(D) ∪ λ′(D′), V ∩ V ′ = ∅, λ(D) is a consistent
DTP and λ′(D′) is a consistent DTP. It results that Iω(D ∪D′) ≤ ω(λ′′) = ω(λ) + ω(λ′) =
Iω(D) + Iω(D′). From all this, we can conclude that Iω(D ∪D′) = Iω(D) + Iω(D′). ◀

▶ Proposition 30. Iω and Iθ satisfies SI.

Proof. Let D = (V, C) be a DTP and k ∈ Z. Let λ be a local c-relaxation of LCR(D)
such that ω(λ) = min{ω(λ′′) : λ′′ ∈ LCR(D)} = Iω(D) and let λ′ be a local c-relaxation of
LCR(D) such that θ(λ′) = min{θ(λ′′) : λ′′ ∈ LCR(D)} = Iθ(D). From λ and λ′ we define the
two local c-relaxations of D ⊕ k λ′′ and λ′′′ in the following way: (λ′′(c))(l) = (λ(c))(l)⊕ k

and (λ′′′(c))(l) = (λ′(c))(l)⊕ k for all c ∈ C and l ∈ Lit(c). We can show that ω(λ) = ω(λ′′)
and θ(λ′) = θ(λ′′′). We can also show that λ′′(D⊕k) and λ′′′(D⊕k) are consistent. It follows
that λ′′ and λ′′′ belong to LCR(D ⊕ k). It results that Iω(D) = ω(λ) = ω(λ′′) ≥ Iω(D ⊕ k)
and Iθ(D) = θ(λ′) = θ(λ′′′) ≥ Iθ(D ⊕ k).
Now, let us prove that Iω(D) ≤ Iω(D ⊕ k) and Iθ(D) ≤ Iθ(D ⊕ k). Let λ be a local
c-relaxation of LCR(D ⊕ k) such that ω(λ) = min{ω(λ′′) : λ′′ ∈ LCR(D ⊕ k)} = Iω(D ⊕ k)
and let λ′ be a local c-relaxation of D⊕k such that θ(λ′) = min{θ(λ′′) : λ′′ ∈ LCR(D⊕k)} =
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Iθ(D ⊕ k). From λ and λ′ we define the two c-relaxation of D λ′′ and λ′′′ in the following
way: (λ′′(c))(l) = (λ(c))(l) ⊕ (−k) and (λ′′′(c))(l) = (λ′(c))(l) ⊕ (−k) for all c ∈ C and
l ∈ Lit(c). We can show that ω(λ) = ω(λ′′) and θ(λ′) = θ(λ′′′). We can also show that λ′′(D)
and λ′′′(D) are consistent. It follows that λ′′ and λ′′′ belong to LCR(D). It results that
Iω(D ⊕ k) = ω(λ) = ω(λ′′) ≥ Iω(D) and Iθ(D ⊕ k) = θ(λ′) = θ(λ′′′) ≥ Iθ(D).
From all this, we can conclude that Iω(D ⊕ k) = Iω(D) and Iθ(D ⊕ k) = Iθ(D). ◀
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