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Abstract
Higher-Order Recursion Schemes (HORS) have long been studied as a tool to model functional
programs. Model-checking the tree generated by a HORS of order k against a parity automaton
is known to be k-EXPTIME-complete. This paper introduces timed HORS, a real-time version of
HORS in the sense of Alur/Dill’90, to be model-checked against a pair of a parity automaton and a
timed automaton. We show that adding dense linear time to the notion of recursion schemes adds
one exponential to the cost of model-checking, i.e., model-checking a timed HORS of order k can be
done in (k + 1)-EXPTIME. This is shown by an adaption of the region-graph construction known
from the model-checking of timed CTL. We also obtain a hardness result for k = 1, but we strongly
conjecture that it holds for all k. This result is obtained by encoding runs of 2-EXPTIME Turing
machines into the trees generated by timed HORS.
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1 Introduction

Higher-Order Recursion Schemes (HORS) are a well-studied framework in the context of
infinite-state verification [13, 16]. A HORS is a higher-order grammar that generates a tree,
e.g., the syntax tree of a functional program. The question of HORS model-checking is to
decide whether a given alternating parity tree-automaton (APT) accepts the tree generated
by a given HORS. This is known to be decidable in k-EXPTIME for recursion schemes of
order k [20, 19]. In fact, the problem is k-EXPTIME-complete. Competitive model-checkers
for this problem exist [17, 6, 5], which makes this problem practically feasible even though
the theoretical complexity is high.

Another, seemingly unrelated, branch of verification of complex systems concerns real-
time systems. These are systems that model time not in the discrete, transition-based
fashion known from e.g., the modal µ-calculus, but rather via dense linear time. Typical
verification questions then concern not the possibility of a given action, but, for example,
whether the action can happen in a given timeframe as in “any request is granted in at most
5 milliseconds.” A standard model for real-time verification are timed automata (TA) [2],
which serve as a finite representation of an infinite system that employs dense real time.
Model-checking the systems generated by timed automata is well-understood for specification
logics such as timed CTL, a real-time version of the well-known temporal logic CTL [3, 4].

A recent introduction to the world of real-time verification is Timed Recursive CTL [10],
which extends the specification power of timed CTL to higher-order properties, including
non-regular ones. The consequence of adding such an amount of expressive power is the
increase of the complexity of the model-checking problem to 2-EXPTIME.

In this paper, we follow a different approach at real-time higher-order verification, namely
by making the system to be verified both real-time and higher-order. This is done by
extending the notion of HORS to that of timed HORS, i.e., HORS annotated by real-time
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information. The trees generated by timed HORS are to be model-checked simultaneously
against an APT and a TA, both of which are loosely synchronized to the other. To our
knowledge, this is the first introduction of real-time verification to the world of HORS.

The paper both introduces the concept of timed HORS, the respective model-checking
problem, and studies the complexity of said problem. We show that adding real-time expres-
sions to HORS increases the complexity of the model-checking problem by one exponential.
The upper bound is shown for HORS of all orders, while the lower bound is shown only for
order-1 HORS, due to space considerations. We are confident that the hardness result can
be established for all orders due to parallels between the model-checking problems for HORS
and HFL, the underlying theory of timed recursive CTL [18].

The structure of the paper is as follows: In Sect. 2, we recall the notions of HORS, their
model-checking problem, as well as timed automata. In Sect. 3, we introduce timed HORS
and the associated model-checking problem, supported by an example. In Sect. 4, we show
that the model-checking problem for order-k timed HORS can be solved in (k + 1)-fold
exponential time, using an exponential reduction to the model-checking problem for untimed
HORS. In Sect. 5, we establish a matching lower bound for k = 1, and we conclude with
some remarks on further research in Sect. 6.

2 Preliminaries

We write [n] for the set {1, . . . , n}. Let 2n
0 denote n if k = 0 and let 2n

k+1 denote 22n
k . We use

notation of the form (t1, , t3) with indicating that the value in question is not important,
but exists.

2.1 Trees, Games, and Automata
A tree is a finite, left-closed set T ⊆ N∗, i.e., for all vi ∈ T , we have v ∈ T and, moreover,
vi − 1 ∈ T if i > 0. A tree alphabet is a finite, nonempty set Σ and a function ar : Σ → N
indicating the arity of each symbol. We write Σi for the set of symbols of arity i in Σ. A
Σ-tree is a pair (T, l) with T a tree and l : T 7→ Σ the labeling function such that each v ∈ T

has exactly ar(l(v)) successors. We often identify a tree with its labeling function.
A parity game G = (V, V∃, E, v0, Ω) is a game between ∃ and ∀. Here, (V, E) is a directed

graph, V∃ ⊆ V is the set of nodes owned by ∃, v0 ∈ V is the starting position, and Ω: V → N
is the priority function with finite codomain. We write V∀ for V \ V∃.

A play of G is a sequence of nodes in V , connected by E and starting in v0. A finite play
is extended by the player who owns the last node in the play by picking a successor of this
node. If this is not possible, the player loses the game. A maximal play is either infinite or
cannot be extended further. ∃ wins an infinite play v0, . . . if the maximal number that occurs
infinitely often in the sequence Ω(v0), . . . is even, ∀ wins if it is odd. Positional strategies
are defined as usual. A player wins a parity game iff they have a positional strategy for it.
Computing who wins a parity game can be done in time O(p · |E| · |V |⌊

p
2 ⌋) for a game with

at most p priorities [15].
Let S be a set. By B+(S) we denote the set of positive Boolean expressions over S,

derived from the grammar φ := s | ⊥ | ⊤ | φ ∨ φ | φ ∧ φ with s ∈ S.
An alternating parity tree-automaton (APT) is a P = (Q, Σ, δ, qI , Λ) where Q is a finite,

nonempty set of states, Σ is a tree alphabet containing a special nullary symbol ω, δ =
⋃

i≤n δi

is the transition function with δi : Q × Σi → B+(Qi) and n being the maximal arity that
occurs in Σ We write δ(q, l(v)) for δi(q, l(v)) if ar(l(v)) = i. Finally, qI ∈ Q is the starting
state and Λ: Q → N \ {0} is the priority function, which does not assign value 0 to any state
unless explicitly stated otherwise. The size of an APT is the number of its states.
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A run of an APT P on some Σ-tree T (for matching Σ) is a parity game G(P, T )
called the acceptance game. It has positions from T × (Q ∪

⋃
i≤n B+(Qi)) where n is the

maximal arity in Σ. Its starting position is (ϵ, qI). In a position of the form (v, q), the
unique successor is (v, δ(q, l(v))). Positions of the forms (v, φ1 ∨ φ2) and (v, φ1 ∧ φ2) have
two successors, namely (q, φ1) and (q, φ2). A position of the form (v, (q0, . . . , qi−1)) has i

successors (v0, q0), . . . , (vi − 1, qi−1), a position of the form (v, ⊤) or (v, ⊥) has no successors.
Positions of the forms (v, ⊤) and (v, φ1 ∧ φ2) and (v, (q0, . . . , qi−1)) belong to ∀, all other
positions belong to ∃. Finally, Ω(v, q) = Λ(q); for all other positions we have Ω(v, φ) = 1. P
accepts a tree T if ∃ wins G(P, T ).

2.2 Higher-Order Recursion Schemes
The following is quite terse, see e.g., [20] for more details.

The set of types is defined inductively via τ := • | τ → τ where • is the type of trees,
• → • is the type of functions that map trees to trees, etc. The order of a type is defined as
ord(•) = 0 and ord(τ1 → τ2) = max{1 + ord(τ1), ord(τ2)}. We write τ i → τ ′ to denote the
type τ → τ → · · · → τ → τ ′ with i repetitions of τ .

Fix a tree alphabet Σ. Let V = {x, y . . . } be a set of typed variables. We write x : τ to
denote that x has type τ . The set of V-terms over Σ is defined inductively: for each i-ary
symbol a ∈ Σ, the tree constructor a is a term of type •i → •, and a variable x ∈ V of type
τ is a term of type τ . Given terms t1, t2 of types τ1 → τ2 and τ1, (t1 t2) is a term of type τ2.
We write t : τ to denote the type of a term. All terms are subterms of themselves; moreover
t1 and t2 are subterms of (t1 t2). We use standard conventions to reduce the number of
parentheses, i.e., application associates to the left. The order of a subterm is the order of its
type; the order of a term is the maximal order of any of its subterms. By t[t1/x1, . . . , tn/xn]
we denote the simultaneous capture-avoiding substitution of the ti for all occurrences of the
xi in t. Here, we assume that the types of the term and the variable it is substituted for do
match.

A higher-order recursion scheme (HORS) is a G = (Σ, N , R, S) such that
Σ is a tree alphabet,
N is a set of typed nonterminals; we write N : τ to denote that N has type τ ,
R is a map from N to the set of terms such that if N has type τ1 → · · · τn → •, then
R(N) is an {x1, . . . , xn} ∪ N -term of type • where the variables x1, . . . , xn are unique to
N , and
S : • ∈ N is the starting symbol.

The order of a recursion scheme is the maximal order of the type of any of its nonterminals.
The size |G| of a HORS G = (Σ, N , R, S) is defined as the number of distinct subterms on
the right-hand-sides in R.

Define a rewriting relation →G via
N t1 · · · tn →G R(N)[t1/x1, . . . , tn/xn] if ti : τi for all i and N : τ1 → · · · → τn → •,
a t1 · · · tn →G a t′

1 · · · t′
n if a : •n → • and ti →G t′

i for all i.
Note that this defines N -terms. For a given N -term t, we define the tree tω generated by
it as follows: (a t1 · · · tn)ω is a tω

1 · · · tω
n, and (N t1 · · · tn)ω is ω where ω /∈ Σ is a nullary

constructor. Let (Ti, li) = tω
i for i ∈ {1, 2}. We write tω

1 ⊑ tω
2 if T1 ⊆ T2 and, for all v ∈ T1,

either l1(v) = ω or l1(v) = l2(v). Write T (G) for the tree generated by a recursion scheme G,
defined via

⊔
{tω | S →G t}. This tree is well-defined due to confluence of the lambda-calculus

[14]. By abuse of notation, we also write T (t) for the tree generated by a closed term t : •.
We assume for the rest of the paper that all HORS in question generate trees that do not
contain ω in order to ease notation.

TIME 2024
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The problem of model-checking higher-order recursion schemes is now the following: given
a HORS G over Σ and an APT P over Σ ∪ {ω}, does P accept TG? This problem is known
to be complete for k-fold exponential time for schemes of order k [20].

2.3 Timed Automata
Let X = {x, y, . . . } be a set of R≥0-valued variables, called clocks. CC (X ) is the set of clock
constraints over X , defined as conjunctive formulas over ⊤ and x ⊕ c for x ∈ X and c ∈ N,
where ⊕ ∈ {≤, <, >, ≥}. We write x ∈ [c, c′] for the constraint x ≥ c ∧ x ≤ c′, and similarly
for open interval bounds. Clock constraints are denoted by χ, χ′ etc.

A clock evaluation is a mapping η : X → R≥0; it satisfies a clock constraint if
η |= ⊤ always,
η |= x ⊕ c iff η(x) ⊕ c,
η |= φ1 ∧ φ2 iff η |= φ1 and η |= φ2.

For a clock evaluation η and d ∈ R≥0, we write η+d for the clock evaluation defined via
(η+d)(x) = η(x) + d for all x ∈ X . For R ⊆ X , η|R is the clock evaluation defined via
η|R(x) = η(x) if x /∈ R and η|R(x) = 0 if x ∈ R. For singleton sets {x}, we write η|x for
η|{x}.

Let Prop be a finite set of propositions. A timed automaton over clocks in X and with
propositions in Prop is an A = (L, X , ℓ0, ι, ∆, λ) where

L is the set of so-called locations of the timed automaton, including the initial location ℓ0,
X is a finite set of clocks,
ι : L → CC (X ) assigns a clock constraint called an invariant to each location,
∆ ⊆ L×CC (X )×2X ×L is a finite set of transitions; we write ℓ

g,R−−−→ ℓ′ for (ℓ, g, R, ℓ′) ∈ δ.
In such a transition, g is the guard and R are the resets of the transition,
λ : L → 2Prop labels each location with the propositions valid there.

The index of a timed automaton A is the largest constant that occurs in its guards or
invariants. Its size is defined as

|A| = |∆| · (2 · log(|L|) + |X |2 · log m(A)) + |L| · (log |X |2 · log m(A)) + |L| · |Prop|.

due to the coding of the constants in clock constraints in binary.
A TA A defines a so-called timed transition system (tTS) (S, −→, s0, λ) over pairs of

locations and clock evaluations as follows:
The state set of the system is S = {(ℓ, η) ∈ L × (X → R≥0) | η |= ι(ℓ)}.
The initial state s0 is (ℓ0, η0) where η0(x) = 0 for all x ∈ X .
Delay transitions keep the location but let time flow: for any (ℓ, η) ∈ S and d ∈ R≥0 we
have a transition (ℓ, η) d−→(ℓ, η + d) if η + d′ |= ι(ℓ) for all 0 ≤ d′ ≤ d.
Discrete transitions are derived from ∆: For all (ℓ, η) ∈ S, ℓ′ ∈ L and R ⊆ X , we have
(ℓ, η) −→(ℓ′, η|R) if there is g ∈ CC (X ) with (ℓ, g, R, ℓ′) ∈ ∆, η |= g and, finally, η|R |= ι(ℓ′).
The propositional labeling λ feeds through the labeling of a location, i.e., λ(ℓ, η) = λ(ℓ).
Moreover, we consider all states labeled by the clock constraints that hold there, i.e.,
(ℓ, η) |= χ iff η |= χ.

Note that the system defined by a TA is generally neither finite nor countable, both due to the
uncountable state set and the infinitary labeling of states by arbitrary clock constraints. Also
note that it contains an uncountable number of transition relations, namely the anonymous
transition relation that stems from discrete transitions, as well as a transition relation d for
each d ∈ R≥0, stemming from delay transitions.
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We say that time can pass from some state (ℓ0, η0) by an amount of d ∈ R≥0 if there is a
Trace in the system of the form (ℓ0, η0), (ℓ1, η1), . . . , (ℓn, ηn) such that, (i) for each 0 ≤ i < n,
either (ℓi, ηi) −→(ℓi+1, ηi+1) or (ℓi, ηi) d′

−−→(ℓi+1, ηi+1) for some d′ ∈ R≥0, and (ii) the sum of
the delay transitions on this path is d. A state is a timelock if time cannot pass from this
state, neither directly nor after some discrete transitions.

3 Real-Time Recursion Schemes

Let Σ be a tree alphabet. Its timed version is Σt = Σ × J for J a finite set of intervals with
natural bounds plus infinity, where an element (a, J) is written aJ . Hence, symbols in Σt are
of the form a[2,∞) or b(3,5] or c[2,2].

A timed HORS is a recursion scheme over a timed alphabet Σt. Hence, a timed HORS
is a recursion scheme over a tree alphabet where the terminals, or tree constructors, are
each labeled with an interval. The size of a timed HORS G is the size of its untimed version
(obtained via the mapping aJ 7→ a) times the logarithm of the largest finite interval bound
mentioned by G.

Since a timed HORS generates a tree just as an untimed HORS, this tree can be model-
checked against an APT, either by simply ignoring the interval annotations (again, via the
mapping aJ 7→ a), or by treating Σt as an ordinary tree alphabet. However, the purpose of a
timed HORS is to be validated against a pair of a (timed) APT and a TA, which are loosely
synchronized. Before we give an intuition, we define timed APT.

Let X be a set of clocks and let A be a TA over X with propositions in Q. Let Ξ be a
finite set of clock constraints over X . A timed Ξ-APT over Σω is a (Q, Σ, δ, qI , Λ) where
Q, qI , Λ are as for ordinary APT and δ is the union of the δi : Q × 2Ξ × Σi → B+(Qi), i.e.,
the transition function consumes a state, an untimed symbol from Σ, and a subset of Ξ.
Note that the state set of the timed APT is exactly the set of propositions used in the TA.
The size of a timed APT is |Q| · 2|Ξ| · log k, where k is the biggest clock constraint in Ξ.

Let G be a timed HORS over Σt, let A be a timed TA over clocks in X , and let P be
a timed Ξ-APT with states in Q with Ξ a set of clock constraints over X . The semantics
of an APT-TA pair over the tree generated by a timed HORS is explained in terms of an
acceptance game. This works similarly to the acceptance game for ordinary, untimed APT,
but with an extra component for the TA. Hence, a position of the game is defined by a node
in the tree generated by the timed HORS, a state of the APT and a state of the tTS defined
by the TA, i.e., a location of the TA and a suitable clock evaluation.

A play of the game proceeds like this: In a position as per above, first ∃ must let time
flow in the tTS by an amount dictated by the labeling aJ of the current tree node. Moreover,
while letting time flow, she may visit only locations of the TA whose propositional labeling
includes the current state of the APT. If she cannot let time flow like this, she looses the
acceptance game. Once ∃ has let time flow, the transition function of the timed APT is
consulted. This function consumes the current state of the APT, the labeling of the current
tree node, and, additionally, the clock constraints from Ξ valid in the state of the tTS defined
by the TA. The transition function is then played out out as for ordinary APT. Hence, the
APT and the TA are synchronized in the sense that time flow in the tTS defined by the
TA is restricted by the current state of the APT, while the behavior of the APT, in turn,
depends on the clock constraints valid in the current state of the tTS.

Formally, the semantics of a Ξ-APT P and its companion TA A (over a suitable set of
clocks) over a timed HORS G is defined as a parity game G(A, P, G):

TIME 2024
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The positions of the game are of the form (v, φ, (ℓ, η), b) where v is a node in TG ,
φ ∈ Q ∪

⋃
i B(Qi) is a subformula of the transition function of the timed APT, (ℓ, η) is a

state in the timed transition system defined by A, and b is a bit, indicating whether time
has flown already in this position.
The initial position is (ϵ, qI , (ℓ0, η0), 0) where η0(x) = 0 for all x ∈ X .
A position of the form (v, q, (ℓ, η), 0) is owned by ∃. If l(v) = aJ , any position of the form
(v, q, (ℓ′, η′), 1) is a successor position, provided (ℓ′, η′) can be reached in the tTS from
(ℓ, η) by letting time flow for an amount within J , but by visiting only locations where
the propositional labeling includes q.
A position of the form (v, q, (ℓ, η), 1) is owned by ∃. The unique successor is the position
(v, φ, (ℓ, η), 1) where φ = δ(q, S, a) with aJ = l(v) and S = {χ ∈ Ξ | η |= χ}.
A position of the form (v, φ1 ∨ φ2, (ℓ, η), 1) is owned by ∃, and one of the form (v, φ1 ∨
φ2, (ℓ, η), 1) is owned by ∀; its successors are (v, φi, (ℓ, η), 1) for i ∈ {1, 2}.
A position of the form (v, (q0, . . . , qk−1), (ℓ, η), 1) is owned by ∀. Its successors are
(vi, qi, (ℓ, η), 0) for 0 ≤ i < k.
The priority of a position of the form (v, q, (ℓ, η), 0) is Λ(q), and 1 for the other positions.

We say that (A, P) accepts T (G) if ∃ wins the above parity game.
The model-checking problem for timed HORS is: Given a timed HORS G and an APT-TA

pair P, A as per above, decide whether ∃ wins G(A, P, G).

▶ Example 1. Consider the problem of a scheduler that schedules two processes, each of
them for a variable amount of time, depending on the internal state of the scheduler. We
want to verify that the scheduler is fair, i.e., that no process gets scheduled for more than k

seconds in a row, for some given constant k.
Let {J1, . . . , Jn} be a set of intervals denoting time slices scheduled to a process. W.l.o.g.

assume that these are all unit intervals, i.e., of the form [m, m] for some natural number
m. Let Σ be a tree alphabet with a binary symbol a, unary symbols b, b′ representing the
two processes, and a nullary symbol c. We model the problem by a timed HORS with rules
S 7→ S1 c and

S1 (x : •) 7→ a[0,0] x (S2 (b1
J1

x)
)

. . . Sn (x : •) 7→ a[0,0] x (S1 (bn
Jn

x)
)

where the bi are each either b or b′. Let A be the TA defined by the following picture:

ℓ0start
s

ℓ1
x = 0

s

ℓ2

s, p

ℓ3
x = 0

p, q

ℓ4

s, q

ℓ5
y = 0

p, q
{x} {y}

{x, y}

The sets on the edges denote resets, while the equalities in locations are invariants.
Finally, let P be the {x ≤ k, y ≤ k}-APT defined by ({s, p, q}, Σ, δ, s, λ) with λ being

constant 2 and δ being defined by

δ(s, , a) = (s, s) δ( , S, b) = (q)
δ( , S, ) = ⊥ δ( , S, b′) = (p) δ( , S, c) = ⊤

where S = {x ≤ k, y ≤ k} and S stands for any set of constraints that is not S.
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The timed HORS in the above example generates a tree with the root and the rightmost
branch labeled by a[0,0], while the left branches of these nodes are increasingly longer
sequences of b and b′, ending in c. These encode increasingly longer scheduling decisions,
encoded in reverse order. The APT traverses the rightmost branch in state s, while ∃
necessarily keeps the TA in location ℓ0. Upon reading the first b or b′, the APT moves to
state q or p, respectively, and, hence, the TA follows by switching to locations ℓ4, resp. ℓ2.
Switching between the two resets exactly one of the clocks. If the APT encounters the TA in
a clock evaluation where one of the clocks exceeds k, the automaton rejects, and it accepts
any finite branch if it reaches the final c with none of the clocks having excessive value. The
infinite branch of the tree containing the as accepts since λ(s) = 2.

4 Upper Bounds for Model-Checking

We show the model-checking problem for timed HORS to be in (k + 1)-EXPTIME for order-k
timed HORS. This is done by an exponential reduction to the model-checking problem for
untimed HORS. Hence, we reduce the input of a timed HORS, an APT, and a TA to a
polynomially-sized untimed HORS and an exponential-sized APT such that the APT accepts
the tree generated by the untimed HORS iff the APT-TA pair accepts the tree generated by
the timed HORS.

As a preparation, we slightly alter the timed-HORS acceptance game. Let A be a TA, let
P be an APT and let G be a timed HORS, all over matching alphabets and propositions. Let
z be a clock not in the clock set X of A. The acceptance game G(A, P, G) is in extra-clock
semantics, if transitions from positions of the form (v, q, (ℓ, η), 0) are as follows:

First, the game transitions to the position (v, q, (ℓ, η|z), 0). Let l(v) = aJ . Any position
of the form (v, q, (ℓ′, η′), 1) with η′(z) ∈ J is a successor position, provided it can be
obtained by letting time flow by visiting only locations where the propositional labeling
includes q.

▶ Lemma 2. In G(A, P, G), ∃ wins from a position (v, q, (ℓ, η), 0) under extra-clock semantics
iff she wins from that position under standard semantics. In particular, she wins the game
from the initial position under extra-clock semantics iff she wins under standard semantics.

We omit a formal proof since this is straightforward. The main point is that z is not reset in
A, and, hence, can serve as a yardstick for elapsed time.

4.1 The Region Abstraction
The region abstraction is a classical result (see e.g., [1] or [4], Def. 9.42), that maps the infinite
transition system defined by a TA onto a finite transition system. It uses an equivalence
relation ≃m, for m ∈ N, on clock evaluations, defined as follows: η ≃m η′ iff

for all x ∈ X : η(x) > m and η′(x) > m

or ⌊η(x)⌋ = ⌊η′(x)⌋ and frac(η(x)) = 0 ⇔ frac(η′(x)) = 0
and for all y ∈ X with η(y) ≤ m and η′(y) ≤ m :

frac(η(x)) ≤ frac(η(y)) ⇔ frac(η′(x)) ≤ frac(η′(y)).

Here, frac(r) denotes the fractional part of a real number. Clock evaluations are considered
equivalent if, for each clock, (i) either both clocks have a value greater than m, or (ii) they
compare in the same way with respect to all integers less than m. Moreover, the passage of
time will make equivalent evaluations reach the next integral value first for the same clock.

TIME 2024
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It is straightforward to verify that ≃m is an equivalence relation for any m. An equivalence
class in this relation is called a region. We denote the equivalence class of η under ≃m as
[η]m, When m is clear from the context, we may omit it and simply write [η]

An important observation is that the region abstraction is also a congruence w.r.t. the
winner of the timed-HORS acceptance game:

▶ Lemma 3. Let A be a TA, P a Ξ-APT, G a timed HORS, all over matching alphabets and
clocks. Let m be greater than or equal to the index of A, any interval on a tree constructor
in G, and any clock constraint in Ξ. Let v be a node in T (G), q a state of P, ℓ a location
in A and η ≃m η′ two clock evaluations. Then ∃ wins the acceptance game from position
(v, q, (ℓ, η), 0) iff she wins the game from position (v, q, (ℓ, η′), 0).

The proof is in App. A.1. By the lemma, the outcome of the acceptance game does not
depend on the exact clock evaluation, but only on the region in question. This motivates
notation of the form “∃ wins from a position (v, q, (ℓ, [η]), 0)”, which means that ∃ wins for
all positions (v, q, (ℓ, η′), 0) with η′ ∈ [η].

As mentioned above, given a TA A and m greater than or equal to the index of A, the
region abstraction induces a finite transition system that faithfully represents the transition
system defined by the TA. To make this precise, we define the notion of a successor region:

▶ Definition 4. Let A be a TA, and let m be greater or equal than the index of A. Let ≃m

denote the region equivalence w.r.t. m. For each region [η]m, the unique successor region is
suc([η]m) = [η]m if η(x) > m for all x ∈ X ,
suc([η]m) = [η′]m iff there is d ∈ R≥0 such that η+d = η′, and η+d′ ∈ [η]m ∪ [η′]m for
all 0 < d′ < d, and [η]m ̸= [η′]m.

The second term defines the successor region of [η] to be the first region that is entered if
time passes from any η′ ∈ [η], and the first term makes the successor region well-defined in
regions where all clocks have values greater than m.

Let A be a TA and let m be greater than or equal to the index of A. Let Ξ be a set of
clock constraints over the clocks of A. The region graph Rm

Ξ (A) of A (w.r.t. m and Ξ) is the
transition system defined as follows:

The state space is {(ℓ, [η]m) ∈ L× (X → R≥0)/≃m
| η |= ι(ℓ)} with initial state (ℓ0, [η0]m).

Discrete transitions from one state to another state are carried through, while delay
transitions always lead to the successor region. Hence, we have (ℓ, [η]m) −→(ℓ′, [η′]m)
iff either (ℓ, η) −→(ℓ′, η′) (discrete transition) or ℓ = ℓ′ and [η′]m = suc([η]m) (delay
transition).
The propositional labeling not only assigns atomic propositions to states via p ∈ λ(ℓ, [η])
iff p ∈ λA(ℓ) for any p ∈ Prop, but also interprets any clock constraint χ ∈ Ξ as an
atomic proposition in the region graph via χ ∈ λ(ℓ, [η]) iff (ℓ, η) |= χ.

The following is a classical result.

▶ Proposition 5 ([1]). Let A be a TA over n clocks with l locations and let Ξ be a set of
clock constraints over the clocks in A. Let m be greater than or equal to the index of A. Then
Rm

Ξ (A) is an (untimed) transition system of size l · 2On(log n+log m) · |Ξ|, i.e., exponential in
|A|, and there is a trace (ℓ0, η0), . . . , (ℓn, ηn) in the system defined by A iff there is a path
(ℓ0, [η0] −→[s1] −→ . . . [sn′−1] −→(ℓn, [ηn]) in Rm

Ξ (A).

The last statement means that letting time flow in the tTS defined by A corresponds to
following a path in Rm

Ξ (A), and vice versa.
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4.2 The Reduction

We now begin the reduction. The overall idea is to replace the companion TA, and the
infinite transition system defined by it, by its corresponding region graph. This untimed
transition system is then incorporated into the APT via a product construction. Hence, the
new APT will have states of the form (q, ℓ, [η]), where q is a state of the original APT, ℓ is a
location in the companion TA, and [η] is a region in its region graph. The transition function
is then modified to simulate the passage of time from positions of the form (v, q, (ℓ, η), 0)
using extra-clock semantics. However, direct simulation of the passage of time is tricky. In
particular, it cannot be directly incorporated into the transition function without incurring
blowup by another exponential in addition to the exponential blowup caused by passage to
the region graph.

The above construction is supported by changing the timed HORS into an untimed
HORS. This untimed HORS defines a tree that is similar in structure to that defined by the
timed one, and it also makes the interval annotations of the tree defined by the timed HORS
explicit via special gadgets. These gadgets help the new APT to properly advance time in
its region graph components.

Let G = (Σt, N , R, S) be a timed HORS over a timed alphabet Σt, together with its
untimed version Σ. Let J be the intervals occurring on the right-hand sides of R. Define the
untimed alphabet Σu = Σ ∪ {reset, flow} ∪

⋃
J∈J checkJ where reset : • → •, flow : •2 → •

and checkJ : • → • for all J ∈ J . Then let Gu = (Σu, N ∪
⋃

J∈J {startJ , chooseJ}, R′, S)
be an untimed HORS where R′ is defined as via:

startJ(x : •) 7→ reset (chooseJ x) chooseJ(x : •) 7→ flow (chooseJ x) (checkJ x)

and the right-hand side for a symbol in N is defined as R′(N) = R̂(N) where ̂(aJ t1 · · · tn) =
startJ (a t̂1 · · · t̂n), t̂1 t2 = t̂1 t̂2 if t1 ≠ aJ , x̂ = x for a variable x, and N̂ ′ = N ′ for N ′ ∈ N .

Hence, a tree of the form aJ t1 · · · tn is replaced by a tree whose root is labeled by reset.
The unique subtree below this root is an infinite tree where all nodes on the leftmost branch
are labeled by flow, and the right son of each of the nodes labeled by flow is a tree of the
form checkJ (a t̂1 · · · t̂n). Hence, there are infinitely many copies of the latter subtree, each
reached by following the left son of the nodes labeled by flow for a finite number of times,
and then branching to the right once.

The intuition is that the sequence of nodes labeled by flow will help the yet-to-be-defined
untimed APT to simulate the flow of time in the tTS defined by the TA by following a
suitable path in its region graph component, i.e., one that advances the region component
from one region to its successor region. The infinite sequence of nodes labeled by flow allows
the APT to follow paths of arbitrary length in this fashion. Conversely, the passage of time
is an an atomic action in the semantics of the (timed) APT-TA pair, which must be broken
up into its individual steps to avoid exponential blowup.

Let G be as before and let P = (Q, Σ, δ, qI , Λ) be a timed Ξ-APT over Σt, let A =
(L, X , ℓ0, ι, ∆, λ) be a companion TA for it. Let Q′ = Q ∪ {q′ | q ∈ Q}, let m be the smallest
integer at least as big as the index of A, each finite interval bound in J and each clock
constraint in Ξ. Let Ξ′ be the union of Ξ and {z ∈ J | J ∈ J }, where z /∈ X .

Define an untimed APT PA = (Q′′, Σu, δ′, q′
I , Λ′) via

Q′′ = {(q′′, ℓ, [η]) | q′′ ∈ Q′, (ℓ, [η]) is a state in Rm
Ξ (A)}

the initial state is q′′
I = (qI , ℓ0, [η0]),

Λ′(q′′, , ) = Λ(q′′) if q′′ ∈ Q, otherwise Λ′(q′′, , ) = 1
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and δ′ is defined as

δ′((q, ℓ, [η]), reset) = (q′, ℓ, [η|z]) if q ∈ Q

δ′((q′, ℓ, [η]), flow) = ((q′, ℓ′, [η′]), (q′, ℓ, [η])) if (ℓ, [η]) −→(ℓ′, [η′]) in Rm
Ξ (A) and q ∈ Q

δ′((q′, ℓ, [η]), checkJ) = ⊥ if η(z) /∈ J

δ′((q′, ℓ, [η]), checkJ) = (q, ℓ, [η]) if η(z) ∈ J

δ′((q, ℓ, [η]), a) = φ′ if δ(q, S, a) = φ and S = {χ ∈ Ξ | η |= χ}

where φ′ is obtained from φ by replacing all occurrences of q ∈ Q by (q, ℓ, [η]). All unlisted
transitions can be assumed to be ⊥. The intuition is that the copies q′ of states in Q serve for
the sequence of flow nodes and have priority 1 to avoid staying on the sequence indefinitely.
Branching leftward at a flow node advances time. The following is immediate from Prop. 5.

▶ Observation 6. The size of PA is exponential in that of P and A.

We now show that PA simulates the APT-TA pair of P and A faithfully.

▶ Lemma 7. Let G, A and P be a timed HORS, a TA and an APT over matching alphabets.
PA accepts the tree generated by Gu iff the APT-TA pair accepts TG.

The proof is in App. A.1.

▶ Theorem 8. The model-checking problem for order-k timed HORS is in (k +1)-EXPTIME.

Proof. By Lemma 7, the model-checking problem for a timed APT P and a TA A over a
timed HORS G can be reduced to the untimed model-checking problem of PA over Gu. By
Obs. 6, the size of PA is exponential in that of P and A. Since the model-checking problem
for order-k HORS can be solved in k-fold exponential time [20], the result follows. ◀

5 Matching Lower Bounds

We now show that the model-checking problem for order−1 timed HORS is 2-EXPTIME
hard. The proof reuses a construction from [10], adapted to the situation with timed HORS.
We restrict ourselves to the order-1 case due to space considerations, but we conjecture that
the proof can be extended to arbitrary order in the same fashion as in [10].

5.1 Encoding 2-EXPTIME Turing Machines
We use an idea from [12] to encode the word problem for deterministic 2-EXPTIME Turing
machines, namely by encoding an accepting run of the machine into a square table of 2-fold
exponential size. The rows of the table are the configurations of the run, in order. A row
lists the tape contents of the machine and the position and state of the head.

The following is obtained by standard reductions: the machine never moves its head
to the left of the starting position and it accepts by moving to a unique accepting state
at the starting position and on empty tape. Moreover, instead of halting, it repeats this
configuration ad infinitum, and it enters this configuration in time at most 22n − 2 on input
of size n instead of merely time less than 22p(n) for some polynomial p. Moreover, it suffices
to consider the empty-word problem, i.e., the question whether the machine halts on empty
input. The last assumption is easily shown to be valid, as for every machine M and input w

satisfying all the other assumptions, there is Mw that first writes w on empty input and
then behaves like M.
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Let M = (Q, Σ, Γ, qI , qacc) be a DTM with state set Q, unique initial and accepting
states qI and qacc, input and tape alphabets Σ ⊊ Γ, with □ ∈ Γ \ Σ the blank symbol and,
δ : Q × Γ → Q × Γ × {L, R, N} the transition function. Let Γ̂ = Γ ∪ (Q × Γ) ∪ {#} where #
is a new boundary symbol that does not occur in Γ. Define the extended transition function
δ̂ : Γ̂3 → Γ̂ \ {#} with δ̂(b1, b2, b3) being

(b2, q), if b1 ∈ Γ ∪ {#}, b2 ∈ Γ and b3 = (q′, a) with δ(q′, a) = (q, , L)
(b2, q), if b3 ∈ Γ ∪ {#}, b2 ∈ Γ and b1 = (q′, a) with δ(q′, a) = (q, , R)
(a, q), if b1, b3 ∈ Γ ∪ {#}, b2 = (q′, a) with δ(q′, a) = (q, b, N)

a, if b1, b3 ∈ Γ ∪ {#}, b2 = (q′, b) with δ(q′, a) = (q, a, R) or (q, a, L)
a, if b2 = a, b1 ̸= (q′, a′) with δ(q′, a′) = (q, , R), b3 ̸= (q′, a′) with δ(q′, a′) = (q, , L)

This encodes the contents of a cell in the table of rows in dependence on the three cells of
the previous row that are directly below it, resp. directly adjacent to the cell directly below
it. It is easy to see that the preimage of any b ∈ Γ̂ \ {#} under δ̂ is easy to compute, since
there are only |Γ̂3| many possible candidates.

▶ Definition 9. A 2n
2 -certificate for the acceptance of M is a C : [2n

2 ] × [2n
2 ] → Γ̂ where

1. C(r, c) = # iff c = 0 or c = 22n − 1,
2. C(0, 1) = (qI ,□) and C(0, c) = □ if 2 ≤ c < 22n − 1,
3. if r > 0, 0 ̸= c ̸= 22n − 1 and C(r, c) = b ∈ Γ̂, then there are b1, b2, b3 with δ̂(b1, b2, b3) = b

and C(r − 1, c − 1) = b1, C(r − 1, c) = b2 and C(r − 1, c + 1) = b3.
Such a certificate is successful if also C(22n − 1, 0) = (qacc,□) holds.

Clearly, for every M and n, there is a unique such certificate.

▶ Proposition 10. It is a 2-EXPTIME-hard problem to decide whether, given some n encoded
in unary, and a DTM M, there is a successful 2n

2 -certificate for M and n in the sense above.

For a more detailed exposition of this, see [10].

5.2 Modeling of Large Numbers

In order to encode a certificate as in the previous section into the model-checking problem for
timed HORS, we need to encode and manipulate numbers up to 22n into a polynomially-sized
presentation of a timed HORS, a TA and an APT. The heavy lifting for the encoding is done
by the TA, via the use of clock values, while the manipulating is done using the HORS.

The encoding is done using a single clock. Let A be the TA with one location ℓ, one clock
x, no invariants and no transitions and, hence, no guards. Hence, a state in the transition
system is defined completely by its value of x. Let Σred = {and, and3, or, or3, neg, ff, mx} be
a tree alphabet where ff and mx are of type •, neg is of type • → •, and and or are of type
•2 → • and and3 and or3 are of type •3 → •. Let Ξ = {x ≤ 2n − 1}. We abbreviate this
single constraint by max. Let Pcnt = ({qyes

1 , qyes
0 , qno

1 , qno
0 , q⊤}, Σred, δ, qyes

1 , Λ) be a timed APT
with Λ(qyes

1 ) = Λ(qno
1 ) = Λ(q⊤) = 1 and Λ(qyes

0 ) = Λ(qno
0 ) = 0, with δ to be defined soon.

The intuition is that qyes
1 , qyes

0 verify that a given bit is set in the representation of a large
number, and that qno

1 , qno
0 falsify this, with the difference between the two copies of each

state to become important later. The state q⊤ accepts any tree. We set the location ℓ in A
to satisfy all propositions associated to states in Q.
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The transition function of the APT is defined via (where i ∈ {1, 2})

δ(qyes
i , , ff) = ⊥ δ(qyes

i , , and) = (qyes
0 , qyes

1 )
δ(qno

i , , ff) = ⊤ δ(qyes
i , , or) = (qyes

1 , q⊤) ∨ (q⊤, qyes
1 )

δ(qyes
i , {max}, mx) = ⊤ δ(qno

i , , and) = = (qno
1 , q⊤) ∨ (q⊤, qno

1 )
δ(qno

i , {max}, mx) = ⊥ δ(qno
i , , or) = = (qno

0 , qno
1 )

δ(qyes
i , ∅, mx) = ⊥ δ(qyes

i , , and3) = (qyes
1 , qyes

1 , qyes
1 )

δ(qno
i , ∅, mx) = ⊤ δ(qyes

i , , or3) = (qyes
1 , q⊤, q⊤) ∨ (q⊤, qyes

1 , q⊤) ∨ (q⊤, q⊤, qyes
1 )

δ(q⊤, , ) = ⊤ δ(qno
i , , and3) = (qno

1 , q⊤, q⊤) ∨ (q⊤, qno
1 , q⊤) ∨ (q⊤, q⊤, qno

1 )
δ(qno

i , , or3) = (qno
1 , qno

1 , qno
1 ).

The intuition for the automaton is that the states qyes
i reject at ff (for “false”) and that

they accept at mx iff, in the companion TA, max is satisfied. The states qno
i work in the

opposite fashion. At tree constructors and, or, both state pairs behave as expected: for and,
both subtrees have to be verified, while for or, only one of them needs to be verified, and
opposite for qno

i . Again, the pair qno
i behaves in the opposite fashion, and and3 and or3 are

the ternary variants of and and or. For reasons that we will explain later, at the binary tree
constructors, the priority of the state going in leftward direction sometimes deviates from
the default 1.

▶ Definition 11. A tree over Σred encodes a number k ∈ [22n ] if its representation in binary
is

∑2n−1
i=0 bi ·2i where bi = 0 iff Pcnt accepts the root of the tree with the clock of its companion

TA set to 2n − 1 − i.

Note that this definition talks about runs of the APT-TA pair with the clock of the TA
initialized to a specific value, not necessarily 0. The intuition is that acceptance of Pcnt for
different initial values of the clock of the companion TA forms a set of bits: for each clock
value in [2n], Pcnt either accepts or it does not. These bits can be thought of as the binary
representation of a number in [2n

2 − 1]. Note that the order of the bits is reversed from what
one would intuitively expect: the least significant bit is the one where x has value 2n

2 − 1,
while the most significant bit is the one where x has value 0.

It is also fairly easy to see that there are trees that encode numbers. For example, the
number 0 is encoded by the tree with just one node, labeled by ff. It now is time to add
incrementation and decrementation of numbers.

In the binary representation of the increment of a number, a bit is set if either it is

set in the representation of the number, and there is an unset bit of lesser significance, or

not set in the representation of the number, but all bits of lesser significance are set.
Since bits are set in the encoding of our numbers if the APT Pcnt accepts if the single clock
of its companion TA is set to the right value, checking whether a bit of lesser significance is
set in the encoding of a number, i.e., a tree, can be done by letting time flow for the right
amount, and then simply checking if the APT accepts the tree. This works because bits of
lesser significance are represented by clock values closer to 2n

2 − 1.
In the following, for a[1,1] we write a1, and an undecorated constructor a means a[0,0].

Consider the following definitions, where T (zero ) clearly encodes 0:
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zero 7→ ff
exists (x : •) 7→ or1 (exists x) (and max x)

all (x : •) 7→ and1 (all x) (or (neg max) x)
inc (x : •) 7→ or

(
and x (exists (neg x))

) (
and (neg x) (all x)

)
dec (x : •) 7→ or

(
and x (exists x)

) (
and (neg x) (all (neg x))

)
isZero? (x : •) 7→ and(neg x) (all neg x)

We have already seen that the tree generated by zero encodes the number 0. The
following lemma proves that the above macros behave as their names suggest.

▶ Lemma 12. Let e be a closed term of type • such that T (e) encodes some number k ∈ [22n ].
Then
1. Pcnt accepts T (exists e) from states qyes

i with its clock set to some value k ∈ [2n] iff it
accepts T (e) from qyes

i with the clock set to some integral k′ with k < k′ ≤ 2n − 1, and it
accepts from states qno

i iff it accepts T (e) from qno
i for no such integral clock value.

2. Pcnt accepts T (all e) from states qyes
i with its clock set to some value k ∈ [2n] iff it

accepts T (e) from qno
i and for all integral clock values k′ with k < k′ ≤ 2n − 1, and it

accepts from states qno
i iff it rejects T (e) from qno

i for some such integral clock value.
3. T (inc e) encodes the number k + 1 mod 22n and T (dec e) encodes the number k − 1

mod 22n .
4. Pcnt accepts T (isZero? e) with the clock set to 0 from states qyes

i iff T (e) encodes 0, and
from states qno

i iff the tree generated by T (e) encodes a number different from 0.
The proof is in App. A.2.

5.3 The Hardness Proof
We now show that it is 2-EXPTIME-hard to decide the model-checking problem of timed
HORS , i.e., to decide whether a given pair of a TA and a timed APT accepts the tree
generated by an order-1 timed HORS. We reduce the following problem to the model-checking
problem: given n encoded in unary and M a DTM, is there a successful 2n

2 -certificate for
M? By Prop. 10, this problem is 2-EXPTIME-hard.

For the remainder of this section, fix some n encoded in unary and a 2n
2 -bounded DTM.

Let Γ̂ be as in Def. 9. Note that the question for a successful 2n
2 -certificate asks for a table

of width 2n
2 and height 2n

2 , filled with entries from Γ̂. It is sufficient to check that the top
left entry of the certificate is correct, and then to recursively check that the three entries
directly below a given entry are as per δ̂.1

We implement this recursive verification procedure by defining an APT-TA pair and an
order-1 timed HORS such that the pair accepts the HORS iff the certificate is successful.
The state of the APT represents an element of Γ̂. The timed HORS generates a tree in which
certain nodes represent an entry of the table, and these nodes have two (indirect) subtrees
that encode the row and column number of the entry, to be recognized by the TA part of
the APT-TA pair as in Def. 11. In addition, such a node representing a column entry has
another three direct subtrees, which encode the three table entries in the previous row with
the three adjacent column numbers as per δ̂. The tree contains further gadgets to verify
that a given symbol can occur in the entry if this is easily verified, e.g., for the leftmost and
rightmost columns and the boundary symbol #. The scheme is defined as follows:

1 This recursive procedure does not check the top right half of the table, but it is easy to see that it must
be filled by blanks due to the assumptions about the DTM in question. See also [10] for more details.
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S 7→ F (dec zero ) zero

F (r : •)(c : •) 7→ or (check r c) (next r c)
gtOne? (x : •) 7→ and

(
neg (isZero? x)

) (
neg (isZero? (dec x))

)
ltMax? (x : •) 7→ and

(
neg (isZero? (inc x))

) (
isZero? (inc (inc x))

)
check (r : •)(c : •) 7→ or3

(
or (isZero? (inc r)) (isZero? r)

)(
and (isZero? r) (isZero? (dec c))

)(
and3 (isZero? r) (gtOne? x) (ltMax? x)

)
next (r : •)(c : •) 7→ and

(
and3 (neg (isZero? r)) (neg (isZero? c)) (ltMax? c)

)
(

and3
(
F (dec r) (dec c)

) (
F (dec r) c

) (
F (dec r) (inc c)

))
Intuitively, the only properly recursive nonterminal here is F . Any subtree generated by F

with arguments r and c encodes a cell of the certificate, namely that whose row number is
encoded by T (r) and its column number is encoded by T (c). Such a tree node poses a choice
to the yet-to-be-defined APT whether it accepts this tree via (the tree generated by) next
or via check . The latter variant allows the APT to verify that T (r) and T (c) satisfy the
boundary conditions of the certificate, while the former variant verifies that T (r) and T (c)
encode the indices of an interior cell of the certificate and make the APT verify recursively
the properties of the three cells below that encoded by T (r) and T (c).

Define Pred = (Q, Σred, δ′, {q(qacc,□)}, Λ) as an extension of the APT Pcnt from the
previous section, with δ′ to be defined soon, with

Q = {qyes
1 , qyes

0 , qno
1 , qno

0 , q⊤} ∪ {qb
l | b ∈ {#,□, (qI ,□)}} ∪ {q(b1,b2,b3) | b1, b2, b3 ∈ Γ̂},

and Λ(q) = 1 for all qb
l , q(b1,b2,b3) and Λ as per Pcnt for q ∈ {qyes

1 , qyes
0 , qno

1 , qno
0 , q⊤}. The

companion TA remains the one-state, one-clock featureless TA from Pcnt.
Consider the timed HORS Gred = (Σred, N , R, S) with N and R as given by the definitions

above. The idea is that Pred accepts from state qb and with the clock of its companion TA
set to 0 the tree T (F r c) iff the numbers encoded by the trees T (r) and T (c) are m and m′

such that C(m, m′) = b in the unique certificate for M and n. In particular, Pred accepts
T (S) from its starting state q(qacc,□) iff C(2n

2 − 1, 0) = (qacc,□).
Towards this, consider the following definition of the transition function of Pred:

δ′(qb, , or) = (qb
l , q⊤) if b ∈ {#, (qI ,□)}

δ′(q□, , or) = (q□l , q⊤) ∨
∨

δ̂(b1,b2,b3)=□

(q⊤, q(b1,b2,b3))

δ′(qb, , or) =
∨

δ̂(b1,b2,b3)=b

(q⊤, q(b1,b2,b3)) if b /∈ {#,□, (qI ,□)}

δ′(q#
l , , or3) = (qyes

1 , q⊤, q⊤) δ′(q(qi,□)
l , , or3) = (q⊤, qyes

1 , q⊤)

δ′(q□l , , or3) = (q⊤, q⊤, qyes
1 ) δ′(q(b1,b2,b3), , and) = (qyes

1 , q(b1,b2,b3))

δ′(q(b1,b2,b3), , and3) = (qb1 , qb2 , qb3)

The remaining transitions can all be assumed to lead to ⊥, as they will not occur anyway.
We now formalize the above intuition about the semantics of the APT.



E. Alsmann and F. Bruse 16:15

▶ Lemma 13. Let C : 2n
2 × 2n

2 → Γ̂ be the unique certificate for n and M. Let r, c : • be
expressions such that T (r), T (c) encode m, m′ ∈ [2n

2 ]. Let b, b1, b2, b3 ∈ Γ̂.
1. Pred accepts T (check r c) from state q#

l iff either m′ = 0 or m′ = 2n
2 − 1.

2. Pred accepts T (check r c) from state q□l iff both 2 ≤ m′ < 2n
2 − 1 and m = 0.

3. Pred accepts T (check r c) from state q
(qI ,□)
l iff both m = 0 and m′ = 1.

4. Pred accepts T (next r c) from state q(b1,b2,b3) iff (i) both m > 0 and 0 < m′ < 2n
2 −1 and

(ii) Pred accepts T
(
F (dec r) (dec c)

)
from state qb1 and T

(
F (dec r) c

)
from state

qb2
)

and T
(
F (dec r) (inc c)

)
from state qb3 .

5. Pred accepts T (F r c) from state qb iff C(m, m′) = b.
Finally, Pred accepts T (Gred) iff C(2n

2 − 1, 0) = (qacc,□).

The proof is in App. A.2.
This lemma then immediately yields the hardness result:

▶ Theorem 14. It is 2-EXPTIME-hard to decide whether a given APT-TA pair accepts a
given timed HORS.

Proof. Take any DTM M. By Prop. 10, it is 2-EXPTIME-hard to decide, given n, whether
there is a successful 2n

2 -certificate for M. By Lemma 13, this is equivalent to deciding
whether Pred, together with its trivial companion TA, accepts T (Gred). The size of Pred is
polynomial in |M|, the size of the TA is polynomial in n, and the size of Gred is linear in n,
since the bound max can be encoded in binary. Hence, this is a polynomial-time reduction to
the timed-HORS model-checking problem which, in turn, must be 2-EXPTIME-hard. ◀

6 Conclusion

We have introduced the concept of timed APT and timed HORS, to be model-checked in
conjunction with a TA. To our knowledge, this constitutes the first formalization of dense
real time for the verification of trees generated by HORS. We have shown that real time
adds at most one exponent to the model-checking problem, and that this is strict at order 1.
This is in line with findings for settings where not the structure to be verified is higher-order,
but the property a structure is verified against. For example, the model-checking problem for
Recursive CTL is complete for exponential time [8], and adding real time to obtain Timed
Recursive CTL makes the problem complete for two-fold exponential time [10].

While this paper introduces the concept of adding real time to recursion schemes, the
expressiveness of the framework needs to be explored. For example, we could allow the
APT to reset some clocks of its companion TA, which would make it easier to model certain
problems. We would also like to invert the semantics of the TA in the sense that ∀ controls
the flow of time. This would allow us to model safety properties of the form “no matter
how long it takes to perform an action, correctness is guaranteed”. However, the concept of
timed automata is somewhat alien to adverse time flow, hence we expect such a change to
be non-trivial.

We conjecture that the hardness result can be obtained for all k, not just for k = 1. This
would be done by replacing the trees that encode large numbers by functions that consume
such a tree and return such a tree, and functions that consume such functions and return
trees encoding a number, etc. Such an approach has been used in similar settings [18, 11].
We also conjecture the existence of a restricted version of timed HORS and the APT-TA
pairs used in the model-checking problem, such that the problem becomes characteristic not
of time, but of space. This is suggested by similar fragments both for the timed setting [9]
and for the model-checking problem for untimed HORS [7].

TIME 2024
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A Omitted Proofs

A.1 Proofs for Section 4
▶ Lemma 3. Let A be a TA, P a Ξ-APT, G a timed HORS, all over matching alphabets and
clocks. Let m be greater than or equal to the index of A, any interval on a tree constructor
in G, and any clock constraint in Ξ. Let v be a node in T (G), q a state of P, ℓ a location
in A and η ≃m η′ two clock evaluations. Then ∃ wins the acceptance game from position
(v, q, (ℓ, η), 0) iff she wins the game from position (v, q, (ℓ, η′), 0).
Proof. We show the result using extra-clock semantics. Let A, P, G and m, η, η′ be as in
the lemma. We show the following, stronger result: ∃ wins the acceptance game from any
position of the forms (v, q, (ℓ, η), 0) or (v, φ, (ℓ, η), 1) iff she wins from positions (v, q, (ℓ, η′), 0),
resp. (v, φ, (ℓ, η′), 1). The proof is by induction over plays of the acceptance game. Since
the claim of the lemma is fully symmetric, it suffices to show that a winning strategy for η

yields one for η′. The invariant will be that ∃ keeps the game for η′ in positions of the form
(v, q, (ℓ, η′), 0) or (v, q, (ℓ, η′), 1) such that she wins the respective game from the position
with η′ replaced by some η with η ≃m η′. Clearly, the initial position for the claim of the
lemma has this form.

The interesting case is that of a position of the form (v, q, (ℓ, η′), 0) with l(v) = aJ . By
assumption, ∃ has a winning strategy from ((v, q, (ℓ, η), 0). This means there is a trace
(ℓ, η|z) = (ℓ1, η1), . . . , (ℓn, ηn) where all the ℓi satisfy q and (ℓi, ηi) reaches (ℓi+1, ηi+1) either
via a delay transition or a discrete transition, and ηn(z) ∈ J . We produce a sequence
(ℓ, η′|z) = (ℓ1, η′

1), . . . , (ℓn, η′
n) that satisfies the same conditions and, moreover, satisfies

η′
i ≃m ηi for all i.

It is easy to see that η|z ≃m η′|z. The rest of the sequence is generated by induction. If
the next pair in the sequence is reached by a discrete transition for the ηi, then the same
transition is available for η′

i since clock evaluations in the same region satisfy the same clock
constraints (which appear as guards and location invariants here). If the next pair is reached
via a delay transition using delay d, there is some d′ such that delaying form η′

i reaches
an equivalent region. This is due to the definition of ≃m: letting time flow in equivalent
regions will pass through the same sequences or regions, since clocks reach integral values
in the same order. Hence, such a sequence (ℓ1, η′

1), . . . , (ℓn, η′
n) exists. Since η′

n ≃ ηn, also
η′

n(z) ∈ J . This finishes the case of positions of the form (v, q, (ℓ, η′), 0).
For the other cases, the invariant is easy to maintain since the TA part of the position

does not change. This finishes the proof. ◀
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▶ Lemma 7. Let G, A and P be a timed HORS, a TA and an APT over matching alphabets.
PA accepts the tree generated by Gu iff the APT-TA pair accepts TG.

Proof. The invariant for ∃ to maintain for either direction of the proof is to stay in a position
(v, (q, ℓ, [η])) such that she wins from position (v, φ, (ℓ, η), 0) or (v, q, (ℓ, η), 1) in G(A, P, G),
or to stay in a position of the latter form such that she wins from position (v, (q′, ℓ, [η])) or
(v, (q, ℓ, [η])) in the acceptance game G(PA, Gu), where q ∈ Q, the state set of P.

The interesting part is that of a position of the form (v, (q, ℓ, [η]) in G(PA). Assume that
there is a corresponding position (v, q, (ℓ, η), 0) such that ∃ wins from there in G(A, P, G).
Using extra-clock semantics, the game first transitions to (v, q, (ℓ, η|z), 0). Then, ∃ lets time
flow, visiting only locations where q holds, up to some (v, q, (ℓ′, η′), 0) with η′(z) ∈ J where
aJ = l(v). By Prop. 5, there is a path corresponding to the trace taken by ∃ in G(PA, G)
passing through the respective regions, ending up in (ℓ′, [η′]). It is not hard to see that all
regions on this path also must satisfy the proposition q. Hence, ∃ can move through the
gadget defined by startJ by letting the initial transition for reset reset the clock z, passing
from [η] to [η|z], then choosing the leftmost branch at flow choosing successor pairs or regions
and locations following the trace from G(PA, Gu), and exiting via the right branch once she
has replicated the trace. This yields a position (v, (q, ℓ′, [η′])) and by the definition of ≃m,
also η′(z) ∈ J , whence the check at checkJ is passed.

The other transitions concern only the transition function of the original APT and do
not manipulate time, whence it is not hard to verify the invariant. The converse direction
follows a similar pattern, also invoking Prop. 5. This finishes the proof. ◀

A.2 Proofs for Section 5
▶ Lemma 12. Let e be a closed term of type • such that T (e) encodes some number k ∈ [22n ].
Then
1. Pcnt accepts T (exists e) from states qyes

i with its clock set to some value k ∈ [2n] iff it
accepts T (e) from qyes

i with the clock set to some integral k′ with k < k′ ≤ 2n − 1, and it
accepts from states qno

i iff it accepts T (e) from qno
i for no such integral clock value.

2. Pcnt accepts T (all e) from states qyes
i with its clock set to some value k ∈ [2n] iff it

accepts T (e) from qno
i and for all integral clock values k′ with k < k′ ≤ 2n − 1, and it

accepts from states qno
i iff it rejects T (e) from qno

i for some such integral clock value.
3. T (inc e) encodes the number k + 1 mod 22n and T (dec e) encodes the number k − 1

mod 22n .
4. Pcnt accepts T (isZero? e) with the clock set to 0 from states qyes

i iff T (e) encodes 0, and
from states qno

i iff the tree generated by T (e) encodes a number different from 0.

Proof. The proof is by verification. We begin with the first item. The second item is shown
similarly to the first item.

Let k be as in the lemma and assume that there is k′ with k < k′ ≤ 2n − 1 such that the
automaton accepts T (e) from qyes

i . Let n = k′ − k. We can construct a winning play for ∃ by
choosing the pair (qyes

1 , q⊤) for n − 1 times when reading the and1. For each such transition,
time passes for one unit, so x has value k′ − 1 after doing this. Then let ∃ choose (q⊤, qyes

1 )
at the next occurrence of a∨

1 . Since k′ ≤ 2n − 1, a winning play for the tree and max x is
easily constructed from the winning play for T (e) from clock value k′. Conversely, assume
that Pcnt accepts T (exists e) from qyes

i from some clock value k ∈ [2n]. There are two
cases: either ∃ chooses (q⊤, qyes

1 ) eventually, or she always chooses (qyes
1 , q⊤). Note that,

since the priority of qyes
1 is 1, this is a losing play. Hence, ∃ chooses the first option after n

many choices of the second option, whence time has passed by n + 1 when reaching the tree
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T (and max x). Clearly, k + n + 1 ≤ 2n − 1 for otherwise the play is obviously not winning.
Hence k′ = k + n + 1 is as desired. The statement for the state qno

i is proved in a similar
fashion.

The third item follows from the first and second items and the pattern of binary incre-
mentation outlined above, the last item follows from the second item and Def. 11. ◀

▶ Lemma 13. Let C : 2n
2 × 2n

2 → Γ̂ be the unique certificate for n and M. Let r, c : • be
expressions such that T (r), T (c) encode m, m′ ∈ [2n

2 ]. Let b, b1, b2, b3 ∈ Γ̂.
1. Pred accepts T (check r c) from state q#

l iff either m′ = 0 or m′ = 2n
2 − 1.

2. Pred accepts T (check r c) from state q□l iff both 2 ≤ m′ < 2n
2 − 1 and m = 0.

3. Pred accepts T (check r c) from state q
(qI ,□)
l iff both m = 0 and m′ = 1.

4. Pred accepts T (next r c) from state q(b1,b2,b3) iff (i) both m > 0 and 0 < m′ < 2n
2 −1 and

(ii) Pred accepts T
(
F (dec r) (dec c)

)
from state qb1 and T

(
F (dec r) c

)
from state

qb2
)

and T
(
F (dec r) (inc c)

)
from state qb3 .

5. Pred accepts T (F r c) from state qb iff C(m, m′) = b.
Finally, Pred accepts T (Gred) iff C(2n

2 − 1, 0) = (qacc,□).

Proof. The first three items are shown directly. We show the first item, the other two are
shown similarly. Note that the root T (check r c) is labeled by or3, and that δ(q#

l , or3) =
(qyes

1 , q⊤, q⊤). Since every tree is accepted by q⊤, it remains to argue that the automaton
accepts T

(
and(zero (inc r) zero r)

)
from qyes

1 iff m′ = 0 or m′ = 2n
2 − 1. The former

is equivalent to the automaton accepting T (zero (inc r)) and T (zero r) from qyes
1 . By

Lemma 12, this is the case iff m′, i.e., the number encoded by r, is either 2n
2 − 1 or 0, which

is what we wanted to show.
The proof for the last two items is by simultaneous induction over m′. Before we begin

the induction consider the structures of the respective trees.
The tree root of T (next r c) is labeled by and, and both its left and right subtrees are

labeled by and3. We have δ(q(b1,b2,b3), , and) = (qyes
1 , q(b1,b2,b3)) and δ(q(b1,b2,b3), , and3) =

(b1, b2, b3), we obtain that Pred accepts T (next r c) iff it accepts the following:
T (neg (isZero? r)) from qyes

1 ,
T (neg (isZero? c)) from qyes

1 ,
T (ltMax? c) from qyes

1 ,
T (F (dec r) (dec c)) from qb1 ,
T (F (dec r) c) from qb2 , and
T (F (dec r) (inc c)) from qb3 .

By Lemma 12, the first three are equivalent to m > 0 and 0 < m′ < 2n
2 − 1, as in the claim.

Similar considerations yield that Pred accepts the tree generated by T (F r c) iff it accepts
one of T (next r c) and T (check r c). Closer inspection of the requirements w.r.t. m and m

yield that at most one of the latter can be the case (since acceptance of T (next r c) requires
m > 0 and 0 < m′ < 2n

2 − 1, while acceptance of T (check r c) requires m = 0 or m′ = 0 or
m′ = 2n

2 − 1).
Now let m = 0. The fourth item follows readily from the previous considerations, since

both acceptance of T (next r c) and the premise of the item require m > 0. For the fifth
item, the claim follows since only acceptance of T (check r c) is in question (since m > 0),
and the first three items cover exactly the possibilities for C(0, m′), namely # (for m′ = 0
and m′ = 2n

2 − 1), (qI ,□) (for m′ = 1) and □ (for 1 < m′ < 2n
2 − 1).
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Now let m > 0 and assume that the fourth and fifth item have been shown for m − 1. For
the fourth item, the claim now follows easily from the itemized list above and the induction
hypothesis applied to the last three items of the list. For the fifth item of the lemma, if
m′ = 0 or m′ = 2n

2 − 1, apply the first item of the lemma, and if 0 < m′ < 2n
2 − 1, apply the

fourth item of the lemma.
The last, unitemized claim then follows straightforwardly. ◀
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