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Abstract
Anomaly detection in time series data is a critical task in various domains, including finance, health-
care, cybersecurity and industry. Traditional methods, such as time series decomposition, clustering,
and density estimation, have provided robust solutions for identifying anomalies that exhibit distinct
patterns or significant deviations from normal data distributions. Recent advancements in machine
learning and deep learning have further enhanced these capabilities. This paper introduces a novel
method for anomaly detection that combines the strengths of autoencoders and recurrent neural
networks (RNNs) with an reconstruction error feedback mechanism based on Mean Squared Error.
We compare our method against classical techniques and recent approaches like OmniAnomaly,
which leverages stochastic recurrent neural networks, and the Anomaly Transformer, which intro-
duces association discrepancy to capture long-range dependencies and DCDetector using contrastive
representation learning with multi-scale dual attention. Experimental results demonstrate that our
method achieves superior overall performance in terms of precision, recall, and F1 score. The source
code is available at http://github.com/mribrahim/AE-FAR
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1 Introduction

Time series data, characterized by its sequential and temporal nature, is extensively utilized
across numerous applications, including finance, healthcare, manufacturing, and environ-
mental monitoring. Detecting anomalies within time series data is a critical task to implement
an early warning mechanism for unusual patterns that may indicate events such as system
failures and frauds [8, 1]. Anomalies, often referred to as outliers or deviants, are data
points that deviate markedly from the expected values. In industry, anomalies are often so
rare and it is too hard to label them for supervised learning. Hence, most studies in the
literature focus on unsupervised methods such as clustering [15] and density estimation [2],
or learning representations for only the normal data (supervising only for normal data).
Because deep neural networks have the capacity to learn the representation of the normal
data, reconstruction from the embedded of that data can be used to determine the anomalies.
It means that reconstruction-based models [20] learn how to reconstruct the normal data,
and high error in the reconstructed data indicates the anomalies. Similarly, forecasting-based
methods [6] are also used to detect anomalies.

Contrastive representation got attention in computer vision tasks [3, 5], and applied
for time series problem in a recent study [21]. Contrastive representation learning aims an
embedding space emphasizing the distinction between similar and dissimilar data points.
Combination of forecasting and reconstruction-based networks are also implemented in the
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literature [22, 19]. Although prior studies have achieved significant success, they may still
suffer from performance degradation, particularly when anomalous points are not uniformly
distributed, and anomaly scores or reconstruction errors may vary in the different regions of
the data.

In this paper, we propose reconstruction networks based on Mean Squared Error (MSE)
Feedback, augmented with Attention and Recurrent Neural Network (RNN) modules. We
implement two variations of this architecture: AE-FAR, which employs an Autoencoder with
Feedback Attention Reconstruction, and VAE-FAR, which utilizes a Variational Autoencoder
(VAE) with Feedback Attention Reconstruction. In VAE-FAR, we integrate an Long Short-
Term Memory (LSTM)-VAE with dual attention modules. Specifically, we implement two
parallel graph attention mechanisms proposed in MTAD-GAT [22]. These modules are
designed to capture temporal dependencies within time series data and relationships between
features, enhancing the model’s ability to detect anomalies effectively. Previous approaches
mostly labels the anomalies if the reconstruction/forecasting error is larger than a prior
threshold or dynamically determined threshold. According to the results we observed during
our experiments, the reconstruction error does not progress similarly on the entire data set,
there are fluctuations. Therefore, it is important to apply different thresholds at different
time intervals, i.e. to identify the peaks in the errors. Since the previous and next values must
be considered in the peak detection problem, a similar structure is placed in the proposed
architecture by the reconstruction error feedback. We integrate a lightweight autoencoder
model, a RNN module, and an attention mechanism in our model. Proposed architecture
aims to improve reconstruction accuracy by dynamically adjusting the reconstruction of
input sequences based on the MSE feedback with an RNN module. Our main motivation is
that MSE feedback mechanism further enhances the model’s ability to identify anomalies
supported by the anomaly criterion. Our anomaly detection method is based on moving
average and standard deviation within a sliding window for the reconstruction error.

Our network is lightweight compared to the state-of-the-art methods and performs well
with the proposed MSE feedback module and thresholding for anomaly detection.
We train a simple autoencoder model and LSTM-VAE improved with graph attention
mechanisms. Then we incorporate attention mechanism for the reconstructed values
and obtained mean squared error. These pre-trained models are integrated with RNN
to further enhance the reconstruction process by remembering the reconstruction MSE
errors.
We use a sliding window-based anomaly detection mechanism that focuses on sudden
error changes rather than relying on a predefined general threshold. We show that our
model’s architecture inherently supports the sliding window-based thresholding approach.
Through extensive experiments, we show that AE-FAR achieves an overall F1 score of
93.38 on the MSL, SWAT and SMD datasets and 58.48 on the pulp-and-paper industry
dataset. VAE-FAR has an overall F1 score of 93.65 on the MSL, SWAT and SMD datasets,
and 50.78 on the pulp-and-paper industry dataset.

2 Related works

Classical methods for time series anomaly detection have evolved significantly, adapting to
various data characteristics. Techniques such as time series decomposition, clustering, and
density estimation have offered robust solutions for identifying anomalies in time series data
characterized by distinct patterns or substantial deviations from normal data distributions.
Examples of classical anomaly detection methods include the Local Outlier Factor (LOF) [2]
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and Deep Autoencoding Gaussian Mixture Model (DAGMM) [24], both of which are grounded
in density estimation principles. Distance to the cluster center is used as an anomaly score in
clustering based methods. ITAD [16] applies a tensor-based decomposition to model normal
behavior patterns and uses clustering techniques to group similar patterns. Deep-SVDD [15]
trains a neural network to learn a representation of normal data and the objective is to map
normal instances close to a central point in the latent space. IForest [11] detects anomalies by
isolating observations through a recursive partitioning process. It randomly selects a feature
and then chooses a split value between the minimum and maximum values of that feature.
Autoregressive models predicting the future values based on past observations are another
type of anomaly detection method. Recently, with the rise of deep learning, RNNs and
their variants such as LSTM networks have been extensively applied, capable of capturing
long-term dependencies and temporal patterns for detecting anomalies in diverse domains.
CL-MPPCA [18] an extension of ARIMA, is one such method that compares predicted values
with actual values and detects deviations that exceed a certain threshold. It combines the
capabilities of LSTM-based neural networks and mixture of several probabilistic PCA models.

Autoencoders are a type of neural networks designed to learn embedded representations of
data, typically for the purposes of dimensionality reduction or feature learning. They consist
of two main components: an encoder that maps the input data to a lower-dimensional latent
space, and a decoder that reconstructs the input data from this latent representation. VAEs
extend the autoencoder by encoding inputs into distributions, typically Gaussian. The decoder
reconstructs the data from these distributions instead of fixed points in the latent space.
Employing VAE, LSTM-VAE [13] and some improved versions [17, 9] of LSTM-VAE are
applied for the anomaly problem. OmniAnomaly [17] employs a stochastic RNN framework
with GRU, integrating VAEs to model the temporal dependencies. InterFusion [10] proposes
a hierarchical VAE to model inter-metric and temporal relationships. MAD-GAN [9] is
Generative Adversarial Network(GAN) based method in which LSTM is used in generator and
discriminator networks. DGHL [4] proposes a hierarchical latent space representation with
convolution networks. BEATGAN [23] is also a reconstruction-based method using generative
adversarial networks. MTAD-GAT [22] combines forecasting-based and reconstruction-based
networks and anomalies are detected by using both the these outputs. AnomalyTransformer
[20] introduces a new Anomaly-Attention mechanism to compute the association discrepancy
focusing on the difference between normal and anomalous patterns. DCDetector [21] is a
contrastive learning based multi-scale dual attention model.

3 Method

Let X be a multivariate time-series sequence of length N :

X = (x1, x2, . . . , xn)

The unsupervised time series anomaly detection problem aims to ascertain the anomalous
nature of X without the availability of labeled data. This work proposes a composite model
that combines an AE or VAE, an attention mechanism, and RNN to address this problem.
The general overall of proposed architecture is shown in Figure 1. AE-FAR integrates
multiple neural network components to enhance time series prediction accuracy through error
correction. It consists of three main parts: an autoencoder, an attention layer, and RNN.

TIME 2024
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Figure 1 General overview of the proposed AE-FAR architecture.

3.1 Overall architecture
We train a simple AE to reconstruct the input X. X̂ represents the reconstructed input values
with AE network. In the proposed composite model we use the MSE error of that AE.

X̂ = Autoencoder(X)

MSE = 1
n

n∑
i=1

(xi − x̂i)2 (1)

The combination of X̂ and MSE is passed to the attention mechanism. The attention
layer is responsible for assigning different importance levels to various parts of the input
sequence. That helps the model focus on the most relevant features during the prediction
process. The attention layer uses a sequential model consisting of linear transformations,
a Tanh activation function, and a Softmax function to compute attention weights. In the
following equation, α represents the attention weights. These weights are then applied to the
input features to produce a weighted input.

z = [X̂, MSE]
α = Softmax(Linear(tanh(Linear(z))))
z′ = α ⊙ z.

(2)

The MSE Feedback RNN module is a recurrent neural network that processes sequences
of inputs and provides feedback based on the mean squared error between the predicted and
actual values. This module includes an RNN layer followed by a fully connected layer. The
RNN processes the input sequence and outputs hidden states, which are then transformed by
the fully connected layer to produce the final output. Finally, the adjusted reconstruction,
incorporating RNN predictions, forms the model’s output, aiming to refine and improve the
accuracy of predictions over time.

h = RNN(z′)

ŷ = X̂ + h
(3)

AE-FAR integrates the autoencoder, attention mechanism, and MSE Feedback RNN to
enhance the forecasting capabilities. Combining all parts, the model output is:

ŷ = X̂ + RNN(α ⊙ [X̂, MSE]) (4)

This approach aims to enhance the reconstructed output ŷ by incorporating error-driven
adjustments from the RNN, thereby improving predictive accuracy in time-series analysis.
Sample reconstruction errors and anomaly points are shown in Figure 2 comparing the
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results of the AE with the proposed AE-FAR model, highlighting the influence of the MSE
feedback module. The figure illustrates a region containing 14 actual anomalies, represented
by vertical red dotted lines. The AE method detects 39 anomaly points, whereas the AE-FAR
method identifies 30 anomaly points. It is observed that the AE-FAR method has a lower
mean error value compared to the AE method, and its anomaly detections are closer to the
actual anomaly points. The mean distances between the predicted anomaly indexes and
the ground truth anomaly indexes are 87.5 and 72.8 for the AE method and the AE-FAR
method, respectively.

Figure 2 Reconstruction error and detected anomaly points. Vertical red dotted lines indicate
the real anomalies.

3.2 LSTM-VAE with attention layers
We employ a different variant of that proposed architecture by using VAE instead of AE.
In the VAE network, we use graph-based feature and attention layers proposed in MTAD-
GAT [22]. The general overview of the VAE improved with the attention layers is shown in
the Figure 3. Feature attention layer aims to emphasize the most relevant features for each
time step while temporal attention layer applies attention across the temporal dimension,
focusing on the most significant time steps for each feature. The encoded representation is
formed by concatenating the original input X with the outputs of the feature and temporal
attention layers. Reparameterize function implements the reparameterization trick to sample
latent variables from a Gaussian distribution inferred by the encoder’s output. Decoder
module reconstructs the input sequence from the sampled latent variables.

3.3 Anomaly criterion
We use a sliding window-based approach to dynamically compute thresholds based on
statistical properties of the reconstruction error. The proposed anomaly detection strategy is
based on the MSE values using a moving average and standard deviation within a sliding

TIME 2024
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Figure 3 General overview of the VAE with graph attention.

window. This approach is particularly useful in anomaly detection where the MSE distribution
may change over time. Our model’s architecture inherently supports the sliding window-
based thresholding mechanism, making it more effective in dynamically adjusting to varying
anomaly patterns within the time series data. Window size is a significant hyper-parameter
in time series analysis to split time series into instances instead of using only a single point
as input. We use the same window size for the the sliding window used to compute the
moving average and moving standard deviation. The adaptive nature of the sliding window
approach ensures that the detection mechanism remains sensitive to new patterns, providing
a robust tool for maintaining robust performance in anomaly detection.

Given a sequence of MSE values mse_list = [mse1, mse2, . . . , mset], dynamic threshold
is calculated based on average and standard deviation for a window size w as follows:

avg[t] = 1
w

w∑
i=0

mset−i

std[t] =

√√√√ 1
w

w∑
i=0

(mset−i − avg[t])2

(5)

The dynamic threshold T [t] for each input X in a time step is then calculated using a
user-defined threshold factor β, and anomalies(A) are identified at each time step t if the
MSE mset exceeds the computed dynamic threshold T [t]:

T [t] = avg[t] + β × std[t] (6)

At =
{

1 if mset > T [t]
0 otherwise

4 Experiments

4.1 Benchmark datasets
We perform experiments using four datasets: the Mars Science Laboratory (MSL) [7] rover
dataset, the Server Machine Dataset (SMD) [17], Secure Water Treatment (SWAT) [12],
and pulp-and-paper manufacturing industry dataset [14]. MSL is collected by NASA and it
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reflects the rover’s operational status and environment. SMD contains data collected from
various server machines in a data center. It includes metrics such as CPU usage, memory
usage, and network traffic, aimed at detecting anomalies that may indicate hardware failures
or network issues. SWAT includes sensor data from critical infrastructure systems. The
pulp-and-paper industry dataset used in our experiments has a total of 59 input features,
after removing the categorical features x28 and x61. This dataset consists of 18,398 rows, of
which only 124 rows are labeled as anomalies. A significant characteristic that distinguishes
this dataset from others is the presence of non-consecutive anomalies, which poses a unique
challenge for anomaly detection methods. We create two subset datasets (called Paper-1 and
Paper-2) for testing purposes, containing 29 and 58 anomalies respectively.

We adopt a widely recognized adjustment technique to ensure a fair comparison with
existing methods in the literature. That adjustment approach refines predicted anomaly labels
in time series data by ensuring that if any single point in an anomalous segment is detected,
the entire segment is marked as anomalous. This strategy is justified by the observation
that detecting a single anomalous point triggers an alert for the entire segment in real-world
applications. While this adjustment technique significantly impacts datasets like MSL, SMD,
and SWAT, it has no effect on Paper-1 and Paper-2 datasets. We employ a neighborhood-
based matching strategy to assess the performance on the paper industry dataset. This
approach was chosen due to the difficulty of precisely determining the exact timing of
anomalies in this particular industry dataset. We apply a slight temporal misalignments
between true and predicted anomalies by defining a window size k. True positives are
correctly predicted anomalies within k indices of actual anomalies, while false positives are
predictions without a corresponding true anomaly in the window. This approach enhances
robustness in detecting anomalies in time series data by accounting for small deviations, thus
providing a more accurate assessment of model performance in practical scenarios. It offers
a comprehensive evaluation of precision, recall, and F1 score, rounded for clarity. Table 4
represents the performance comparison with this approach.

4.2 Implementation details

We use a fixed window size 50 for all datasets to split time series into instances. The same
value of 50 is also used for k to apply a slight temporal misalignments for pulp-and-paper
industry dataset. The AE model consists of four linear layers: the first layer compresses
the input from a flattened dimension of window ∗ inputsize to 32 neurons, the second layer
further reduces the size to 16 neurons, and then gradually expanded to the original input size.
For the VAE network, the dimension of hidden size and latent size are 64 and 32, respectively.
RNN component is an 8-layer RNN that processes the combined input with dimensions
inputsize + 1. It uses a hidden size of inputdim/2 for the hidden state and maps the output
to the original input dimension using a fully connected layer. The attention mechanism
takes an input dimension of inputsize + 1 and maps it to an attention dimension 64. The
experiments with these hyperparameter selection are implemented in PyTorch with NVIDIA
GeForce RTX 3060 graphic card. We use Adam optimizer with an initial learning rate of
10−4 and set the batch size to 128. We used early stopping during training by monitoring
the validation error, with an early stop value set to 10, to prevent overfitting and ensure
optimal model performance. We choose a fixed threshold value as the default comparison,
and for the proposed anomaly criterion, we define different threshold factors β 4, 5 and 6.5
for SMD, SWAT and MSL, respectively.

TIME 2024
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Table 1 Ablation study on MSL, SMD and SWAT. ∗ indicates the proposed anomaly criterion
instead of fixed threshold.

MSL SMD SWAT
Methods P R F1 P R F1 P R F1

AE 95.70 20.91 34.32 38,10 68,09 48,86 91.62 76.41 83.33
AE-FAR 83.57 90.45 86.87 62.72 52.01 56.86 92.12 76.41 83.53

VAE-FAR 52.87 96.87 68.41 81.28 76.81 78.98 97.43 77.09 86.07
AE∗ 85.23 99.54 91.83 91.89 87.78 89.79 94.87 96.97 95.91

AE − F AR∗ 92.59 95.13 93.85 92.01 88.20 90.06 97.40 96.36 96.87
V AE − F AR∗ 90.23 94.89 92.50 89.95 94.59 92.21 94.49 98.07 96.24

4.3 Results and analysis
We use commonly-used evaluation measures: precision, recall, F1 score for performance
comparison. The ablation study represented in Table 1 evaluates the performance on MSL,
SMD and SWAT benchmark datasets. The first three rows represent the performance with
fixed general threshold, while the other rows represent the performance with the proposed
anomaly criterion. The best results obtained with both approaches are shown separately
in bold. The results clearly demonstrate the effectiveness of the anomaly criterion method
improving the AE, AE-FAR and VAE-FAR models. The AE with anomaly criterion shows
substantial gains in recall and F1 scores, especially for the MSL and SWAT datasets. VAE-
FAR has better recall compared to the AE-FAR with the general fixed threshold. Both of
the AE-FAR and VAE-FAR models, when combined with the proposed anomaly criterion,
consistently outperforms other configurations, achieving the highest F1 scores across all
datasets. This highlights the robustness and accuracy of the proposed methods in multivariate
time-series anomaly detection.

Table 2 represents the ablation study for subsets of pulp-and-paper industry datasets.
The AE-FAR model alone shows high precision for the Paper-1 dataset at 66.67%, but recall
is very low at 14.81%, resulting in an F1 score of 24.24%. This suggests that the model is
very conservative in identifying anomalies, leading to fewer false positives but many missed
anomalies with the fixed threshold. On the other hand, VAE-FAR has more stabil and better
results compared to the AE-FAR with the fixed threshold. Using the proposed anomaly
criterion significantly improves performance as shown in last three rows. For the Paper-1
dataset, it achieves a balanced precision of 56.41% and a high recall of 81.48%, resulting in
the highest F1 score of 66.67% among all methods. VAE-FAR∗ has the second best value
with an F1 score of 58.46 with the anomaly criterion. For the Paper-2 dataset, AE-FAR∗

achieves a precision of 37.29% and a recall of 77.19%, resulting in the highest F1 score of
50.29% . This demonstrates the effectiveness of the anomaly criterion in improving the
model’s ability to detect anomalies accurately. The AE model benefits significantly from the
anomaly criterion, especially in terms of recall, but at the cost of precision. The AE-FAR
model alone shows high precision but struggles with recall, indicating a conservative anomaly
detection approach. The combination of AE-FAR with the anomaly criterion achieves the
best overall performance, striking a balance between precision and recall and resulting in the
highest F1 scores for both datasets.

Table 3 shows the performance comparison of different anomaly detection methods in the
literature. For three real world datasets MSL, SMD and SWAT: AE-FAR avd VAE-FAR
achieve an overall F1-Score of 93.59 and 93.65, while DCdetector and AnomalyTransformer
have 93.37 and 93.32, respectively. Table 4 presents the performance comparison with the
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Table 2 Ablation study on pulp-and-paper industry dataset. ∗ indicates the proposed anomaly
criterion instead of fixed threshold.

Paper-1 Paper-2
Methods P R F1 P R F1

AE 44.74 62.96 52.31 23.58 43.86 30.67
AE-FAR 66.67 14.81 24.24 40.0 14.04 20.78

VAE-FAR 45.83 40.74 43.14 31.34 36.84 33.87
AE∗ 38.46 92.59 54.35 29.49 80.70 43.19

AE − F AR∗ 56.41 81.48 66.67 37.29 77.19 50.29
V AE − F AR∗ 50.0 70.37 58.46 32.73 63.16 43.11

Table 3 Results on multivariate benchmark datasets. All results are presented as percentages;
the best values are in bold, and the second-best are underlined.

Dataset MSL SWAT SMD
Metric P R F1 P R F1 P R F1
LOF 47.72 85.25 61.18 72.15 65.43 68.62 56.34 39.86 46.68
IForest 53.94 86.54 66.45 49.29 44.95 47.02 42.31 73.29 53.64
DAGMM 89.60 63.93 74.62 89.92 57.84 70.40 67.30 49.89 57.30
ITAD 69.44 84.09 76.07 63.13 52.08 57.08 86.22 73.71 79.48
CL-MPPCA 73.71 88.54 80.44 76.78 81.50 79.07 82.36 76.07 79.09
Deep-SVDD 91.92 76.63 83.58 80.42 84.45 82.39 78.54 79.67 79.10
BeatGAN 89.75 85.42 87.53 64.01 87.46 73.92 72.90 84.09 78.10
OmniAnomaly 89.02 86.37 87.67 81.42 84.30 82.83 83.68 86.82 85.22
InterFusion 81.28 92.70 86.62 80.59 85.58 83.01 87.02 85.43 86.22
AnomalyTransformer 92.09 95.15 93.59 91.55 96.73 94.07 89.40 95.45 92.33
DCdetector 93.69 99.69 96.60 93.11 99.77 96.33 83.59 91.10 87.18
AE-FAR 92.59 95.13 93.85 97.40 96.36 96.87 92.01 88.20 90.06
VAE-FAR 90.23 94.89 92.50 94.49 98.07 96.24 89.95 94.59 92.21

DCDetector on two subsets of a pulp-and-paper manufacturing industry anomaly detection
dataset: Paper-1 and Paper-2. For Paper-1, Introducing the proposed anomaly criterion to
DCdetector slightly changes the results, with a precision of 31.43%, recall of 40.74%, and F1
score of 35.48%. There is a small reduction in precision and recall, which suggests that the
proposed thresholding might be filtering out some true positives, leading to a lower overall
performance. For Paper-2, proposed anomaly criteria improves the performance slightly,
achieving a precision of 28.21%, recall of 38.60%, and F1 score of 32.59%. On the other
hand, AE-FAR outperforms the other methods significantly for both Paper-1 and Paper-2
datasets. Although VAE-FAR shows lower performance compared to AE-VAR, it is seen
that it gives much better performance than DCDetector. The proposed anomaly criterion for
DCdetector shows minor improvements but does not suffice to compete with the performance
of AE-FAR. These findings highlight the effectiveness of the proposed approach in handling
the rare anomalies in the pulp-and-paper manufacturing industry datasets.

5 Conclusion

The proposed AE-FAR/VAE-FAR models effectively combine AE/VAE, an attention mechan-
ism, and RNN to improve anomaly detection in time series data. The AE/VAE is employed
to reconstruct the input data, aiming to capture the underlying normal patterns. They

TIME 2024



17:10 AE-FAR: Autoencoder with Feedback Attention Reconstruction

Table 4 Results on pulp-and-paper manufacturing industry dataset. All results are presented as
percentages; the best values are in bold, and the second-best are underlined.

Dataset Paper-1 Paper-2
Metric P R F1 P R F1
DCdetector 35.29 44.44 39.34 23.17 33.33 27.34
DCdetector∗ 31.43 40.74 35.48 28.21 38.60 32.59
AE-FAR 56.41 81.48 66.67 37.29 77.19 50.29
VAE-FAR 50.0 70.37 58.46 32.73 63.16 43.11

consist of an encoder that maps the input data to a lower-dimensional latent space and a
decoder that reconstructs the input from this latent representation. The attention mechanism
is integrated to enhance the model’s focus on significant parts of the input data. The RNN
component processes the reconstructed data produced by the autoencoder and reconstruction
errors. The RNN output is used to adjust the reconstructed input, providing the final output
of the model. This integrated approach leads to more accurate anomaly detection results.
The proposed models outperform state-of-the-art approaches overall on four datasets.

Future work. We need to focus on anomaly criterion selecting threshold factor β automatic-
ally, and better detection and localization for discontinuous anomalies such as pulp-and-paper
dataset.
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