
Full Characterisation of Extended CTL*
Massimo Benerecetti #

Università di Napoli Federico II, Italy

Laura Bozzelli #

Università di Napoli Federico II, Italy

Fabio Mogavero #

Università di Napoli Federico II, Italy

Adriano Peron #

Università di Trieste, Italy

Abstract
The precise identification of the expressive power of logic languages used in formal methods for
specifying and verifying run-time properties of critical systems is a fundamental task and character-
isation theorems play a crucial role as model-theoretic tools in this regard. While a clear picture of
the expressive power of linear-time temporal logics in terms of word automata and predicate logics
has long been established, a complete mapping of the corresponding relationships for branching-time
temporal logics has proven to be a more elusive task over the past four decades with few scattered
results. Only recently, an automata-theoretic characterisation of both CTL* and its full-ω-regular
extension ECTL* has been provided in terms of Symmetric Hesitant Tree Automata (HTA), with
and without a suitable counter-freeness restriction on their linear behaviours. These two temporal lo-
gics also correspond to the bisimulation-invariant semantic fragments of Monadic Path Logic (MPL)
and Monadic Chain Logic (MCL), respectively. Additionally, it has been proven that the counting
extensions of CTL* and ECTL*, namely CCTL* and CECTL*, enjoy equivalent graded versions
of the HTAs for the corresponding non-counting logics. However, while Moller and Rabinovich have
proved CCTL* to be equivalent to full MPL, thus filling the gap for the standard branching-time
logic, no similar result has been given for CECTL*. This work completes the picture, by proving
the expressive equivalence of CECTL* and full MCL, by means of a composition theorem for the
latter logic. This also indirectly establishes the equivalence between HTAs and their first-order
extensions HFTAs, as originally introduced by Walukiewicz.

2012 ACM Subject Classification Theory of computation → Automata over infinite objects; Theory
of computation → Modal and temporal logics; Theory of computation → Tree languages

Keywords and phrases Branching-Time Temporal Logics, Monadic Chain Logic, Tree Automata

Digital Object Identifier 10.4230/LIPIcs.TIME.2024.18

Funding Indam GNCS 2024 project “Certificazione, Monitoraggio, ed Interpretabilità in Sistemi di
Intelligenza Artificiale”. M. Benerecetti, F. Mogavero, and A. Peron are members of the Gruppo
Nazionale Calcolo Scientifico-Istituto Nazionale di Alta Matematica (GNCS-INdAM).

1 Introduction

In the domain of formal verification of complex systems, temporal logics [33] play the crucial
role of specification languages [34] for the correct behaviour of system components over
time. These languages are generally divided into two main categories: linear-time logics
and branching-time logics. Logics in the first category focus on properties that span the
entirety of each possible behaviour in isolation, while those in the second one are designed to
address the interactions among those behaviours. Prominent examples of linear-time logics
are Linear-Time Temporal Logic (LTL) [40, 41] and its full ω-regular extension ELTL [52].
On the other hand, typical representatives of branching-time logics fall within the families

© Massimo Benerecetti, Laura Bozzelli, Fabio Mogavero, and Adriano Peron;
licensed under Creative Commons License CC-BY 4.0

31st International Symposium on Temporal Representation and Reasoning (TIME 2024).
Editors: Pietro Sala, Michael Sioutis, and Fusheng Wang; Article No. 18; pp. 18:1–18:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:massimo.benerecetti@unina.it
https://orcid.org/0000-0003-4664-6061
mailto:laura.bozzelli@unina.it
https://orcid.org/0000-0003-0963-8169
mailto:fabio.mogavero@unina.it
https://orcid.org/0000-0002-5140-5783
mailto:adriano.peron@units.it
https://orcid.org/0000-0002-7111-3171
https://doi.org/10.4230/LIPIcs.TIME.2024.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Full Characterisation of Extended CTL*

of Dynamic Logics [17] and Computation Tree Logics [12, 11, 13, 14, 50]. Notable examples
of such logics include CTL, CTL*, and ECTL*, together with the corresponding counting
versions CCTL, CCTL*, and CECTL*.

The semantics of these temporal logics is often defined using suitable variants of predicate
logic, usually First-Order Logic (FO) or Second-Order Logic (SO), interpreted either over
linearly-ordered structures, such as infinite words, or over partially-ordered structures, such as
infinite trees. At the same time, the extensive literature on automata-theoretic techniques [48]
has been instrumental in providing effective technical tools for solving related decision
problems. Predicate logics and automata theory also offer a comprehensive and coherent
framework to evaluate and compare the expressive power and the computational properties
of temporal languages, as evidenced by numerous characterisation theorems.

The foundational result in this context is Kamp’s theorem [28], which establishes the
equivalence between LTL and FO over infinite words. This result links FO-definability with
recognisability by counter-free finite-state automata [30, 44, 45, 39], via the notions of star-free
language, aperiodic language, and aperiodic syntactic monoid. Altogether these results fully
characterise the expressive power of LTL in terms of predicate logics and automata. A
similar correspondence also exists between ELTL, Monadic Second-Order Logic (MSO), and
regular automata on infinite words [8, 9, 35, 10].

The landscape for branching-time temporal logics is much more complex due to the
non-linear structure of the models and additional factors like bisimulation invariance [49] and
counting quantifiers [16], and until recently it was far from being as complete as the linear-time
counterpart. The more complete results were, indeed, the full correspondences among (1)
the µ-Calculus [29], the bisimulation-invariant fragment of MSO interpreted over trees,
and Symmetric Alternating Parity Tree Automata [27] and (2) the alternation-free fragment
of µ-Calculus (AFµ-Calculus), the bisimulation-invariant fragments of WMSO over
bounded-branching trees, and Symmetric Alternating Weak Tree Automata [1, 26]. These
equivalences extend to the general case when counting quantifiers are incorporated into
the modal logics [26, 25]. For four decades, the scenarios for CTL* and ECTL* remained
significantly more fragmented. In the eighties, it was proved that, on binary trees, CTL*
is equivalent to Monadic Path Logic (MPL) [24] and ECTL* to Monadic Chain Logic
(MCL) [47]. The single result concerning CTL* was later extended to arbitrary-branching
trees, at the turn of the century, addressing both bisimulation-invariance [37] and counting
quantifiers [38]. Only very recently have corresponding classes of automata been proposed
for these logics. Specifically, in [3], it was shown that, on arbitrary-branching trees, CTL*
and ECTL* are equivalent to two versions of Symmetric Hesitant Tree Automata, namely
HTAcf and HTA, with and without a suitable counter-freeness restriction on their linear
behaviours. Additionally, it was proved that HTA are equivalent to the bisimulation-invariant
fragment of MCL. Thus, we finally have complete correspondences among (a) CTL*, the
bisimulation-invariant fragment of MPL, and HTAcf, and (b) ECTL*, the bisimulation-
invariant fragment of MCL, and HTA. The first result was further extended to show, on
arbitrary-branching trees, the equivalence of (c) CCTL*, MPL, and a graded version of
HTAcf, called HGTAcf. However, the same result has not been obtained for CECTL*. This
logic has been proven equivalent to a graded version of HTA, called HGTA, while MCL
has only been shown equivalent to a potentially more-general first-order extension of HTA,
called HFTA, inspired to a class of automata proposed by Walukiewicz [51].

The objective of this work is to complete the picture regarding the standard branching-
time temporal logics by showing the equivalence of CECTL* with MCL. The key idea
behind this result is to establish a composition theorem for MCL. Composition Theorems

M. Benerecetti, L. Bozzelli, F. Mogavero, and A. Peron 18:3

serve as model-theoretic tools that simplify reasoning about complex structures by breaking
down a statement about the whole into several statements about its individual components.
A first example of this approach is the renowned Feferman-Vaught Theorem [15], which
reduces the first-order theory of any product of structures to the first-order theory of its
factors. An initial application to linear orders was proposed by Läuchli [31], as an alternative
to the automata-theoretic technique on words by Büchi [7, 8, 9], and subsequently advanced
in a series of works by Shelah and Gurevich [43, 19, 21, 22, 20]. Thomas then applied
the approach to binary-branching tree structures [46, 47], culminating in the composition
theorem for MPL in collaboration with Hafer [24]. This result was later extended to
arbitrary-branching trees by Moller and Rabinovich [37, 38]. In the present work, we merge
and generalise the techniques considered in [47, 38] to obtain the corresponding result for
MCL, by relying on Ehrenfeucht-Fraïssé games tailored to this logic. Specifically, we show
that verifying an MCL formula with quantifier rank m and a unique free chain variable
over a tree boils down to verifying an MSO sentence over a word that is the encoding of a
suitable vector of m chains induced by the interpretation of that variable. This allows us to
translate, via structural induction, every MCL formula with a single first-order variable into
an equivalent CECTL* state formula. Given that the translation from CECTL* to MCL
is relatively straightforward, we obtain the stated result, settling one of the problems left
open in [3]. It is important to note that the automata-theoretic technique developed in [3]
cannot be directly applied here. In principle, given the equivalences of MCL with HFTA
and CECTL* with HGTA, one might be tempted to show the equivalence of the two logics
by proving the equivalence of the two automaton classes. However, the natural compositional
transformation of the first-order formulae encoded in the transition function of an HFTA to
the corresponding graded modal formulae does not satisfy the hesitant constraint required
by a HGTA. The approach proposed in this work circumvents that difficulty and allows us
to prove, though indirectly, that HFTA and HGTA are two equivalent types of automata.

2 Preliminaries

Let N be the set of natural numbers. For i, j ∈ N with i ≤ j, [i, j] denotes the set of natural
numbers k such that i ≤ k ≤ j. For a finite or infinite word ρ over some alphabet, |ρ| is the
length of ρ (|ρ| = ω if ρ is infinite) and for all 0 ≤ i < |ρ|, ρ(i) is the (i+ 1)-th letter of ρ.

Kripke Trees. A tree T is a non-empty subset of N∗ which is prefix closed (i.e., for each
w · n ∈ T with n ∈ N, w ∈ T). Elements of T are called nodes and the empty word ε is the
root of T. For w ∈ T, a child of w in T is a node in T of the form w · n for some n ∈ N,
and a descendant of w in T is a node of T of the form w · w′ for some w′ ∈ N∗. For w ∈ T,
the subtree of T rooted at node w is the tree consisting of the nodes of the form w′ such
that w · w′ ∈ T. A subtree of T is a tree T′ such that for some w ∈ T, T′ is a subset of the
subtree of T rooted at w. A path of T is a subtree π of T which is totally ordered by the
child-relation (i.e., each node of π has at most one child in π). In the following, a path π of
T is also seen as a word over T in accordance to the total ordering in π induced by the child
relation. A chain of T is a subset of a path of T, while a branch of T is a path of T starting
at the root. A tree is non-blocking if each node has some child. A non-blocking tree T is
infinite, and maximal paths in T are infinite as well.

For an alphabet Σ, a Σ-labelled tree is a pair S = (T,Lab) consisting of a tree and a
labelling Lab : T 7→ Σ assigning to each node in T a symbol in Σ. For a subtree T′ of T, we
denote by ST′ the Σ-labelled subtree (T′,Lab↾T′) of S. In this paper, we consider formalisms

TIME 2024

18:4 Full Characterisation of Extended CTL*

whose specifications are interpreted over labeled trees. For the easy of presentation, we focus
on labeled trees which are non-blocking. All the results of this paper can be easily adapted
to the general case, where the non-blocking assumption is relaxed. For a finite set AP of
atomic propositions, a Kripke tree over AP is a non-blocking 2AP-labelled tree.

Automata over Infinite and Finite Words. We first recall the class of parity nondeterministic
automata on infinite words (parity NWA for short) which are tuples A = ⟨Σ,Q, δ, qI ,Ω⟩,
where Σ is a finite input alphabet, Q is a finite set of states, δ : Q × Σ 7→ 2Q is the transition
function, qI ∈ Q is an initial state, and Ω : Q 7→ N is a parity acceptance condition over
Q assigning to each state a natural number (color). The NWA A is deterministic if for all
states q and input symbols a, δ(q, a) is a singleton {q′} (in this case, we write δ(q, a) = q′).
We use the acronym DWA for the subclass of deterministic NWA.

Given a word ρ over Σ, a path of A over ρ is a word π over Q of length |ρ| + 1 (|ρ| + 1 is
ω if ρ is infinite) such that π(i+ 1) ∈ δ(π(i), ρ(i)) for all 0 ≤ i < |ρ|. A run over ρ is a path
over ρ starting at the initial state. The NWA A is counter-free if for all n > 0, states q ∈ Q
and finite words ρ over Σ, the following holds: if there is a path from q to q over ρn, then
there is also a path from q to q over ρ.

A run π of A over an infinite word ρ is accepting if the highest color of the states appearing
infinitely often along π is even. The ω-language L(A) accepted by A is the set of infinite
words ρ over Σ such that there is an accepting run π of A over ρ.

A parity acceptance condition Ω : Q 7→ N is a Büchi condition if Ω(Q) ⊆ {1, 2}. A Büchi
NWA is a parity NWA whose acceptance condition is Büchi.

We also consider NWA over finite words (NWAf for short) which are defined as parity
NWA but the parity condition Ω is replaced with a set F ⊆ Q of accepting states. A run π

over a finite word is accepting if its last state is accepting.

Monadic Chain Logic. We recall now Monadic Chain Logic (MCL for short) [47] interpreted
over arbitrary Kripke trees. MCL is the well-known fragment of MSO where second-order
quantification is restricted to chains of the given Kripke tree. For technical convenience, we
consider a one-sorted variant of MCL where first-order variables are encoded as second-order
variables which are singletons. It is straightforward to show that this variant is equivalent to
standard MCL.

Formally, given a finite set AP of atomic propositions and a finite set Vr2 of second-order
variables (or chain variables), the syntax of the considered variant of MCL is the set of
formulae built according to the following grammar:

φ := sing(X) | X ⊆ p | X ⊆ Y | X ≤ Y | ¬φ | φ ∧ φ | ∃CX.φ

where p ∈ AP and X,Y ∈ Vr2. Intuitively, sing(X) asserts that X is a singleton, X ⊆ p

means that p holds at each node of X, and X ≤ Y means that each node of Y is a descendant
of each node of X. As usual, a free variable of a formula φ is a variable occurring in φ that
is not bound by a quantifier. A sentence is a formula with no free variables. The language of
MCL consists of its sentences.

Semantics of MCL. Formulae of MCL are interpreted over Kripke trees on AP. Given a
Kripke tree S = (T,Lab) over AP , a second-order valuation for S is a mapping V2 : Vr2 7→ 2T

assigning to each second-order variable a chain of T. For an MCL formula φ, the satisfaction
relation (S,V2) |= φ, meaning that S satisfies the formula φ under the valuation V2, is
defined as follows (the treatment of Boolean connectives is standard):

M. Benerecetti, L. Bozzelli, F. Mogavero, and A. Peron 18:5

(S,V2) |= sing(X) ⇔ V2(X) is a singleton;
(S,V2) |= X ⊆ p ⇔ p ∈ Lab(w) for each w ∈ V2(X);
(S,V2) |= X ⊆ Y ⇔ V2(X) ⊆ V2(Y);
(S,V2) |= X ≤ Y ⇔ for all w ∈ V2(X) and w′ ∈ V2(Y), w′ is a descendant of w in T;
(S,V2) |= ∃CX.φ ⇔ (S,V2[X 7→ C]) |= φ for some chain C of T.

where V2[X 7→ C] denotes the second-order valuation for S defined as: V2[X 7→ C](X) = C
and V2[X 7→ C](Y) = V2(Y) if Y ≠ X. Note that the satisfaction relation (S,V2) |= φ, for
fixed S and φ, depends only on the values assigned by V2 to the variables occurring free in
φ. In particular, if φ is a sentence, we say that S satisfies φ, written S |= φ, if (S,V2) |= φ

for some valuation V2. In this case, we also say that S is a model of φ.

3 Branching-Time Temporal Logics

In this section, we recall syntax and semantics of Counting-CTL* (CCTL* for short) [38],
which extends standard CTL* [14] with counting operators, as well as the counting extension
CECTL* [3] of ECTL* [50], a branching-time temporal logic more expressive than CCTL*.
For technical convenience, we shall consider an equivalent syntactic variant of ECTL*,
which employs NWAf over finite words, instead of right-linear grammars, as the building
blocks of formulae.1 We also consider a fragment of CECTL*, that we call counter-free
CECTL*, where all the NWAf over finite words are required to be counter-free. We prove
that counter-free CECTL* and CCTL* have the same expressive power.

3.1 The Logic CCTL*
The syntax of CCTL* is given by specifying inductively the set of state formulae φ and the
set of path formulae ψ over a given finite set AP of atomic propositions:

φ ::= ⊤ | p | ¬φ | φ ∧ φ | Eψ | Dnφ
ψ ::= φ | ¬ψ | ψ ∧ ψ | Xψ | ψ Uψ

where p ∈ AP, X and U are the standard “next” and “until” temporal modalities, E is the
existential path quantifier, and Dn, with n ∈ N \ {0}, is the counting operator. The language
of CCTL* consists of the state formulae of CCTL*. Standard CTL* is the fragment of
CCTL* where counting operators Dn with n > 1 are not allowed.

Given a Kripke tree S = (T,Lab) (over AP), a node w of T, an infinite path π of T, and
0 ≤ i < |π|, the satisfaction relations (S, w) |= φ for a state formula φ (meaning that φ holds
at node w of S), and (S, π, i) |= ψ for a path formula ψ (meaning that ψ holds at position i
of the path π in S) are defined as follows (Boolean connectives are treated as usual):

(S, w) |= p ⇔ p ∈ Lab(w);
(S, w) |= Eψ ⇔ (S, π, 0) |= ψ for some infinite path π of T starting at node w;
(S, w) |= Dnφ ⇔ there are at least n distinct children w′ of w in T s.t. (S, w′) |= φ;
(S, π, i) |= φ ⇔ (S, π(i)) |= φ;
(S, π, i) |= Xψ ⇔ (S, π, i+ 1) |= ψ;
(S, π, i) |= ψ1 Uψ2 ⇔ for some j ≥ i: (S, π, j) |= ψ2 and (S, π, k) |= ψ1 for all i ≤ k < j.

Note that D1φ corresponds to EXφ. A Kripke tree S satisfies (or is a model of) a state
formula φ, written S |= φ, if S, ε |= φ.

1 In [3], the considered syntactic variant of CECTL* is called Counting Computation Dynamic logic
(CCDL) since it essentially corresponds to a branching-time extension of Linear Dynamic Logic [18].

TIME 2024

18:6 Full Characterisation of Extended CTL*

3.2 The Logic CECTL*
Like CCTL*, the syntax of CECTL* is composed of state formulae φ and path formulae ψ
over a given finite set AP of atomic propositions, defined as follows:

φ ::= ⊤ | p | ¬φ | φ ∧ φ | Eψ | Dnφ
ψ ::= φ | ¬ψ | ψ ∧ ψ | ⟨A⟩ψ

where p ∈ AP and ⟨A⟩ is the existential sequencing modality applied to a testing NWAf A. We
define a testing NWAf A =

〈
2AP,Q, δ, qI ,F, τ

〉
as consisting of an NWAf

〈
2AP,Q, δ, qI ,F

〉
over finite words over 2AP and a test function τ mapping states in Q to CECTL* path
formulae. Intuitively, along an infinite path π of a Kripke tree, the testing automaton accepts
the labeling of a (possibly empty) infix π(i) . . . π(j − 1) of π if the embedded NWAf has an
accepting run qi . . . qj over the labeling of such an infix so that, for each position k ∈ [i, j],
the formula holds at position k along π. A test function τ is trivial if it maps each state to ⊤.
We also use the shorthand [A]ψ≜¬⟨A⟩¬ψ (universal sequencing modality). The language of
CECTL* consists of the state formulae of CECTL*. A CECTL* formula φ is counter-free
if (i) the testing automata A occurring in φ are counter-free and (ii) either A is deterministic
or the test function of A is trivial.

Given a Kripke tree S = (T,Lab), an infinite path π of T, and 0 ≤ i < |π|, the semantics
of modality ⟨A⟩ is defined as follows, where A =

〈
2AP,Q, δ, qI ,F, τ

〉
:

(S, π, i) |= ⟨A⟩ψ ⇔ for some j ≥ i, (i, j) ∈ RA(S, π) and (S, π, j) |= ψ

where RA(S, π) is the set of pairs (i, j) with j ≥ i s.t. there is an accepting run qi . . . qj of
the NWAf embedded in A over Lab(π(i)) . . .Lab(π(j− 1)) and, for all k ∈ [i, j], it holds that
(S, π, k) |= τ(qk). The notion of a model of a CECTL* formula is defined as for CCTL*.

3.3 Expressiveness equivalence of CCTL* and counter-free CECTL*
We first show that CCTL* can be embedded into counter-free CECTL*. Let A be the
testing counter-free NWAf having trivial tests and accepting all and only the words of
length 1. Moreover, for a counter-free CECTL* path formula ψ1, let Aψ1 be the testing
counter-free DWAf A =

〈
2AP, {q1}, δ, q1, {q1}, τ

〉
defined as follows: δ(q1, a) = q1 for each

input symbol a, and τ(q1) = ψ1. Then, the next and until formulae Xψ1 and ψ1 Uψ2 can be
expressed as: Xψ1 ≡ ⟨A⟩ψ1 and ψ1 Uψ2 ≡ ψ2 ∨ ⟨Aψ1⟩⟨A⟩ψ2. Hence, we obtain the following
result.

▶ Proposition 3.1. Given a CCTL* formula, one can build an equivalent counter-free
CECTL* formula.

For the converse translation from counter-free CECTL* to CCTL*, by the known
equivalence between Monadic Path Logic (MPL) and CCTL* [38], it suffices to show that
each counter-free CECTL* formula can be translated into an equivalent MPL sentence.
We first recall the logic MPL [23], the well-known fragment of MSO where second-order
quantification is restricted to paths of the given Kripke tree.

Monadic Path Logic (MPL) [23]. Given a finite set AP of atomic propositions, a finite
set Vr1 of first-order variables, and a finite set Vr2 of second-order variables, the syntax of
standard MPL is the set of formulae built according to the following grammar:

φ := p(x) | x ≤ y | x ∈ X | ¬φ | φ ∧ φ | ∃x. φ | ∃PX.φ

M. Benerecetti, L. Bozzelli, F. Mogavero, and A. Peron 18:7

where p ∈ AP, x, y ∈ Vr1, X ∈ Vr2, and ∃PX is the path quantifier which ranges over
paths of the given Kripke tree. We also exploit the standard logical connectives ∨ and
→ as abbreviations, the universal first-order quantifier ∀x, defined as ∀x.φ≜ ¬∃x.¬φ, and
the universal path quantifier ∀PX, defined as ∀PX.φ≜ ¬∃PX.¬φ. We also make use of the
shorthands (i) x = y for x ≤ y ∧ y ≤ x, (ii) x < y for x ≤ y ∧ ¬(y ≤ x); (iii) ∃x ∈ X.φ for
∃x. (x ∈ X ∧ φ), and (iv) ∀x ∈ X.φ for ∀x. (x ∈ X → φ). Moreover, the child relation is
definable in MPL by the binary predicate child(x, y) ≜ x < y ∧ ¬∃z. (x < z ∧ z < y) which
exploits only first-order quantification.

Given a Kripke tree S = (T,Lab), a first-order valuation for S is a mapping V1 : Vr1 7→ T
assigning to each first-order variable a node of T. A path valuation for S is a second-order
valuation V2 : Vr2 7→ 2T assigning to each second-order variable a path of T. Given an MPL
formula φ, a first-order valuation V1 for S, and a path valuation V2 for S, the satisfaction
relation (S,V1,V2) |= φ is defined as follows (the treatment of Boolean connectives is
standard):

(S,V1,V2) |= p(x) ⇔ p ∈ Lab(V1(x));
(S,V1,V2) |= x ≤ y ⇔ V1(y) is a descendant of V1(x) in T;
(S,V1,V2) |= x ∈ X ⇔ V1(x) ∈ V2(X);
(S,V1,V2) |= ∃x. φ ⇔ (S,V1[x 7→ w],V2) |= φ for some w ∈ T;
(S,V1,V2) |= ∃PX.φ⇔ (S,V1,V2[X 7→ π]) |= φ for some path π of T.

where V1[x 7→ w] denotes the first-order valuation for T defined as: V1[x 7→ w](x) = w and
V1[x 7→ w](y) = V1(y) if y ̸= x.

From counter-free CECTL* to MPL. The translation presented in the following is based
on known results about counter-free DWA [32, 6].

▶ Proposition 3.2. Given a counter-free CECTL* formula, one can build an equivalent
MPL sentence.

Proof. Let ψ be a counter-free CECTL* path formula. We construct an MPL formula
ψ̂(x,X) with exactly one free first-order variable x and at most one free second-order variable
X such that for each Kripke tree S, infinite path π of S, and position i ≥ 0, it holds that

(S, π, i) |= ψ if and only if (S, x → π(i), X → π) |= ψ̂(x,X)

Moreover, ψ̂(x,X) does not depend on X if ψ is a state formula. Thus, given a state
CECTL* formula φ, the MPL sentence equivalent to φ is given by ∃x. (root(x) ∧ φ̂(x))
with root(x) ≜ ¬∃y. y < x.

The MPL formula ψ̂(x,X) is defined by structural induction on ψ as follows, where we
exploit the predicate Inf(Y) expressing that the path Y is infinite (Inf(Y) can be easily
specified in MPL by using only first-order quantification).

ψ = p with p ∈ AP: ψ̂(x,X) ≜ p(x).
ψ = ¬ψ1: ψ̂(x,X) ≜ ¬ψ̂1(x,X).
ψ = ψ1 ∧ ψ2: ψ̂(x,X) ≜ ψ̂1(x,X) ∧ ψ̂2(x,X).
ψ = Eψ1: ψ̂(x,X) ≜ ∃PY. (Inf(Y) ∧ x ∈ Y ∧ ψ̂1(x, Y) ∧ ∀y ∈ Y. x ≤ y).

ψ = Dnψ1: ψ̂(x,X) ≜ ∃x1 . . . ∃xn. (
∧
i ̸=j

xi ̸= xj ∧
n∧
i=1

(child(x, xi) ∧ ψ̂1(xi, X))).

ψ = ⟨A⟩ψ1, where A is a counter-free testing NWAf such that either A is deterministic
or the test function of A is trivial. Since a counter-free NWAf on finite words can be
converted into an equivalent counter-free DWAf [36], we can assume that the NWAf with

TIME 2024

18:8 Full Characterisation of Extended CTL*

tests A is deterministic. Let A =
〈
2AP,Q, δ, qI ,F, τ

〉
. By [32, 6], for each state q ∈ Q, we

can construct an FO formula ξq(x, y) with two free variables x and y such that for each
infinite word ρ over 2AP and positions i, j ≥ 0, it holds that (ρ, x → i, y → j) |= ξq(x, y)
iff i ≤ j and the unique run of A over ρ[i, j − 1] leads to state q. Let ξ̂q(x, y,X) be the
MPL formula obtained by “relativizing” the FO formula ξq(x, y) with respect to path X,
i.e., by replacing each subformula ∃x. θ of ξq(x, y) with ∃x. (x ∈ X ∧ θ). Then, ψ̂(x,X) is
defined as follows:∨

q∈F
∃y ∈ X.

(
x ≤ y ∧ ξ̂q(x, y,X) ∧ τ̂(q)(y,X) ∧

∀z ∈ X.
[
x ≤ z < y →

∨
q∈Q

(ξ̂q(x, z,X) ∧ τ̂(q)(z,X))
]

∧ ψ̂1(y,X)
)

◀

It remains an open question whether counter-free NWAf with non-trivial tests can be
captured in MPL. Thus, by Propositions 3.1–3.2 and the known equivalence of MPL and
CCTL* [38], we obtain the following result.

▶ Theorem 3.3. CCTL* and counter-free CECTL* are equivalent formalisms, i.e., they
specify the same class of tree languages.

4 Expressiveness equivalence of MCL and CECTL*

It is known [3] that each CECTL* state formula has an equivalent MCL sentence. In this
section, we show that the two logics CCDL and MCL are in fact expressively equivalent.
We provide a proof of this result which relies on an adaptation of the compositional argument
given in [38] for showing that each MPL sentence has an equivalent CCTL* state formula.

4.1 Model-theoretic fundamentals
We first introduce some notations and definitions. The quantifier rank qr(φ) of an MCL
formula φ is the maximum number of nested quantifiers occurring in it. In the following, a
Kripke tree (over AP) is called structure (over AP).

Fix a finite set AP of atomic propositions. Given h ∈ N, an h-structure Sh is a tuple of
the form Sh = (S,C1, . . . ,Ch) such that S is a structure and C1, . . . ,Ch are chains of S. An
h-word structure is defined similarly but we require that the structure S is an infinite word
over 2AP (recall that an infinite word over 2AP corresponds to a structure where each node
has exactly one child). Note that a structure can be seen as a 0-structure.

An h-MCL formula is an MCL formula having at most h free variables (recall that in the
one-sorted formalization of MCL, all the variables range over chains). Note that a 0-MCL
formula is a sentence. An h-structure Sh = (S,C1, . . . ,Ch) satisfies an h-MCL formula
φ(X1, . . . , Xh) if S |= φ(C1, . . . ,Ch) (which means that (S,V2) |= φ(X1, . . . , Xh) for any
valuation V2 such that V2(Xi) = Ci for each i ∈ [1, h]). Two h-MCL formulas are equivalent
if they are satisfied by the same h-structures. Two h-MCL formulas are word-equivalent if
they are satisfied by the same h-word structures.

Equivalence relations between h-structures. Let m ∈ N. Given two h-structures, Sh =
(S,C1, . . . ,Ch) and S ′

h = (S ′,C′
1, . . . ,C′

h), we say that Sh and S ′
h are m-rank equivalent,

written Sh ≡m S ′
h, if no h-MCL formula φ(X1, . . . , Xk) of quantifier rank at most m can

distinguish them, i.e., S |= φ(C1, . . . ,Ck) iff S ′ |= φ(C′
1, . . . ,C′

k). If Sh ≡m S ′
h and Sh and

S ′
h are h-word structures, we write Sh ≡ω

m S ′
h. The equivalence relation ≡m over the class of

M. Benerecetti, L. Bozzelli, F. Mogavero, and A. Peron 18:9

h-structures has finite index and each equivalence class can be characterized by an h-MCL
formula of quantifier rank at most m, called m-type for h-MCL formulas. In particular, the
following result follows from standard arguments.

▶ Proposition 4.1. Let h ∈ N. Then, the following properties hold for each m ≥ 0:
1. the equivalence ≡m over the set of h-structures defines finitely-many equivalence classes;
2. for each equivalence class Λm of ≡m over h-structures, there is an h-MCL formula β

(called m-type for h-MCL formulas) with qr(β) ≤ m which characterizes it: that is,
Sh |= β iff Sh ∈ Λm, for all h-structures Sh;

3. each h-MCL formula φ with qr(φ) ≤ m is equivalent to a disjunction of m-types;
4. the variants of Properties 1–3 for the class of h-word structures.

Proof. We focus on Properties 1–3. We observe that by variable renaming, we can assume
that h-MCL formulas φ with qr(φ) ≤ m only use variables from a finite set. Hence, by a
straightforward induction on qr(φ), the following holds.

▷ Claim. There is a finite set Υ of h-MCL formulas with quantifier rank at most m such
that each h-MCL formula φ with qr(φ) ≤ m is equivalent to some formula in Υ.

Let Υ = {ψ1, . . . , ψN} be the finite set of h-MCL formulas with quantifier rank at most
m satisfying the previous claim. We consider the h-MCL formulas of the form

ψ1 ∧ . . . ∧ ψN

where ψi is either ψi or ¬ψi for all i ∈ [1, k]. Let us denote by β1, . . . , βℓ these formulas
(note that ℓ = 2N). By construction, for each h-structure Sh, there is exaclty one i ∈ [1, ℓ]
such that Sh |= βi. Moreover, each formula ψi ∈ Υ can be expressed as the disjunction of
all and only the formulas in {β1, . . . , βℓ} whose associated conjunct ψi is ψi. Thus, by the
previous claim, Properties 1–3 easily follow. ◀

Local isomorphism on h-structures. The equivalence relation ≡0 over h-structures can
be characterized as follows. Given two h-structures, Sh = (S,C1, . . . ,Ck) and S ′

h =
(S ′,C′

1, . . . ,C′
h), we say that Sh and Sh are locally-isomorphic (for MCL) if the follow-

ing conditions hold, where S = ⟨T,Lab⟩ and S ′ = ⟨T′,Lab′⟩:
for all i ∈ [1, h], Ci is a singleton iff C′

i is a singleton;
for all i ∈ [1, h] and p ∈ AP, Ci ⊆ Tp iff C′

i ⊆ T′
p, where Tp = {w ∈ T | p ∈ Lab(w)} and

T′
p = {w ∈ T′ | p ∈ Lab′(w)}.

for all i, j ∈ [1, h], Ci ⊆ Cj iff C′
i ⊆ C′

j ;
for all i, j ∈ [1, h], Ci ≤ Cj iff C′

i ≤ C′
j .

Note that two structures are always locally-isomorphic and two h-structures are 0-rank
equivalent iff they are locally-isomorphic.

Ehrenfeucht-Fraissé Games for MCL. The rank-equivalence relation ≡m over the class of
h-structures has an elegant characterization in terms of Ehrenfeucht-Fraissé games (EF-games)
over h-structures. The EF-game Gm(Sh,S ′

h) over two h-structures Sh = (S,C1, . . . ,Ch) and
S ′
h = (S ′,C′

1, . . . ,C′
h) is played by two players called the spoiler and the duplicator. Each

play consists of m-rounds. At i-th round, with i ∈ [1,m], the spoiler chooses a chain in one of
the two structures S and S ′, after which the duplicator responds by choosing a chain in the
other structure which she believes matches the chain chosen by the spoiler. After m-rounds,
there will be m chains C1, . . . ,Cm selected in the structure S, and corresponding m chains

TIME 2024

18:10 Full Characterisation of Extended CTL*

C′
1, . . . ,C

′
i selected in the structure S ′. The duplicator wins if the two (h+m)-structures

(S,C1, . . . ,Ch,C1, . . . ,Cm) and (S ′,C′
1, . . . ,C′

h,C
′
1, . . . ,C

′
m) are locally-isomorphic (note that

this entails that the original h-structures Sh and S ′
h need to be locally-isomorphic). Otherwise,

the spoiler wins. We say that the duplicator has a winning strategy in the game Gm(Sh,S ′
h)

if it is possible for him to win each play whatever choices are made by the opponent. The
h-structures Sh and S ′

h are m-game equivalent, written Sh ∼m S ′
h if the duplicator has a

winning strategy in the game Gm(Sh,S ′
h). If Sh ∼m S ′

h and Sh and S ′
h are h-word structures,

we write Sh ∼ω
m S ′

h. By classical arguments, one can show that the m-game equivalence
relation corresponds to the rank equivalence ≡m.

▶ Proposition 4.2. For all h,m ∈ N and h-structures Sh and S ′
h, Sh ≡m S ′

h iff Sh ∼m S ′
h.

Proof. First, we observe that for each m ≥ 0, ∼m is the unique equivalence relation satisfying
the following properties for all h-structures Sh = (S, . . .) and S ′

h = (S ′, . . .):
1. if m = 0, then Sh ∼0 S ′

h iff Sh and Sh are locally isomorphic;
2. if m > 0, then:

(forth) for each chain C of S, there is a chain C′ of S ′ such that (Sh,C) ∼m−1 (S ′
h,C′),

where (Sh,C) and (S ′
h,C′) denote the (h+ 1)-structures defined in the obvious way;

(back) for each chain C′ of S ′, there is a chain C of S such that (Sh,C) ∼m−1 (S ′
h,C′).

Thus, it suffices to show that the equivalence relation ≡m satisfies the previous conditions
with ∼m replaced with ≡m. If m = 0, the result trivially follows. Now, assume that m > 0.
We focus on the forth condition. Let C be a chain of S. According to Proposition 4.1, let β be
the unique (m−1)-type for (h+1)-structures such that (Sh,C) |= β. Hence, Sh |= ∃CXh+1. β.
By Proposition 4.1, β is an (h+ 1)-MCL formula with qr(β) ≤ m− 1. Since Sh ≡m S ′

h, it
follows that S ′

h |= ∃CXh+1. β. Hence, there exists a chain C′ ∈ S ′ such that (S ′
h,C′) |= β.

Thus, being β the (m− 1)-type for (h+ 1)-structures, we obtain that (Sh,C) ≡m−1 (S ′
h,C′),

and we are done. ◀

4.2 A Composition Theorem for MCL
We provide now a characterization of the game-equivalence relation ∼m over 1-structures on
AP, for a given m ≥ 1, in terms of the game-equivalence relation ∼ω

2m over word-structures
defined over a suitable set of atomic propositions.

Fix m ≥ 1. Referring to Proposition 4.1, let β1, . . . , βℓ be the m-types of the equivalence
relation ≡m over the class of structures. Recall that for each structure S, there is exactly
one m-type βi for some i ∈ [i, ℓ] such that S |= βi (we say that βi is the m-type of S). Given
a structure S, a node w of S, a child wC of w in S, and i ∈ [1, ℓ], let NS(w,wC, i) be the
(possibly infinite) cardinality of the set of children w′ of w in S such that w′ ≠ wC and
the substructure (i.e., the labeled subtree) of S rooted at w′ has m-type βi. We denote by
fS(w,wC) the mapping in [1, ℓ] → [0,m], where for each i ∈ [1, ℓ], fS(w,wC)(i) is defined as:

fS(w,wC)(i)≜
{

NS(w,wC, i) if NS(w,wC, i) < m

m otherwise.

Thus, fS(w,wC)(i) approximates NS(w,wC, i) with the greatest number in [0,m] which is
smaller or equal to NS(w,wC, i). We consider the finite set APm of propositions defined as:

APm ≜ 2AP∪{c} ×
(
[1, ℓ] 7→ [0,m]

)
× [1, . . . , ℓ].

Let (S,C) be a 1-structure with labeling Lab. For each infinite branch π of S such that π
contains the chain C (note that if C is infinite, then π is uniquely determined), we denote by
ω(S, π,C) the infinite word over 2APm defined as follows for all positions j ≥ 0:

ω(S, π,C)(j) = {(Lab(π(j)) ∪ ♭, fS(π(j), π(j + 1)), kj)}

M. Benerecetti, L. Bozzelli, F. Mogavero, and A. Peron 18:11

where (i) ♭ = {c} if π(j) ∈ C, and ♭ = ∅ otherwise, and (ii) kj is such that βkj is the m-type
of the substructure of S rooted at π(j+ 1). Thus the label of the jth position of ω(S, π,C)(j)
is a singleton and corresponds to the label of the jth node of the infinite path π of S extended
with additional information concerning the m-type of the subtree rooted at node π(j+1), the
m-types of the subtrees rooted at the children of π(j) which are not in π, and the indication
whether node π(j) belong to the chain C or not. Note that the infinite word ω(S, π,C) can
be seen as the word-structure (π,Lab′), where Lab′(π(j)) = ω(S, π,C)(j) for each j ≥ 0.

The importance of the word-structure ω(S, π,C) is that it captures the whole of the
1-structure (S,C) with respect to the distinguishing power of 1-MCL formulas with quantifier
rank at most m. In particular, we establish the following crucial result.

▶ Lemma 4.3 (From MCL-games on 1-structures to MCL-games on word-structures). Let
m ≥ 1, (S,C) and (S ′,C′) be two 1-structures, and π and π′ be two infinite branches of S
and S ′, respectively, such that C ⊆ π and C′ ⊆ π′. Then:

ω(S, π,C) ∼ω
2m ω(S ′, π′,C′) ⇒ (S,C) ∼m (S ′,C′).

Proof. We need some additional definitions and preliminary observations. Let S1 = (S,C)
be a 1-structure, and π be an infinite branch of S such that C ⊆ π. We observe that each
chain of S which is not contained in the branch π can be partitioned into two chains C1 and
C2 of S such that C1 is a subset of the path π and there exists a child w′ of some node w of
π such that w′ is not a π-node and C2 is a non-empty chain of the subtree of S rooted at
node w′. This justifies the following definition. A π-term of S1 is either a chain of π, or a
tuple of the form (C1, w,T,C2) such that the following holds:

C1 is a finite chain of π and w is a node of π which is a descendant of all nodes in C1;
there is a child w′ of w in S such that w′ /∈ π, T is the labeled subtree of S rooted at
node w′, and C2 is a non-empty chain of T.

For a compound π-term t = (C1, w,T,C2) of S1, we write T(t) for T, C1(t) for C1, C2(t) for
C2, and Cw(t) for w. For a simple π-term t consisting of a chain of π, C1(t) is for t, and T(t),
C2(t), and Cw(t) denote the empty set. For each h ≥ 0, a (π, h)-term of S1 is a tuple of the
form (t1, . . . , th) where t1, . . . , th are π-terms of S1. We make the following observation:

Disjointness property. For π-terms (C1, w,T,C2) and (C′
1, w

′,T′,C′
2) of S1, either T = T ′

or T ∩ T ′ = ∅. Moreover, if T ∩ T ′ = ∅, then C2 ∩ C′
2 = ∅ (in particular, C2 and C′

2 are not
related by the descendant relation).

Fix two 1-structures S1 = (S,C) and S ′
1 = (S ′,C′), an infinite branch π of S1 with C ⊆ π,

and an infinite branch π′ of S ′
1 with C′ ⊆ π′. Let Sω = ω(S, π,C) and S ′

ω = ω(S ′, π′,C′).
Given m ≥ 1, h ∈ [0,m], a (π, h)-term tr = (t1, . . . , th) of S1, and a (π′, h)–term tr′ =
(t′1, . . . , t′h) of S ′

1, we say that tr and tr′ are m-consistent if the following holds:
1. for all i ∈ [1, h], T(ti) ̸= ∅ iff T(t′i) ̸= ∅. Moreover, if T(ti) ̸= ∅, then:

let ti1 , . . . , tip and t′i′1
, . . . , t′i′

p′
be the ordered sequences of compound terms in tr

and tr′, respectively, having tree-component T(ti) and T(t′i), respectively. Then,
p = p′, and ij = i′j for all j ∈ [1, p]. Moreover, (ST(ti),C2(ti1), . . . ,C2(tip)) ∼m−p
(S ′

T(t′
i
),C2(t′i1), . . . ,C2(t′ip)).

2. (Sω,C1(t1),Cw(t1), . . . ,C1(th),Cw(th)) ∼ω
2m−2h (S ′

ω,C1(t′1),Cw(t′1), . . . ,C1(t′h),Cw(t′h)).

By the disjointness property and since m ≥ 1 (recall that the special proposition c of APm
marks the nodes of the chains C and C′ of ω(S, π,C) and ω(S ′, π′,C′), respectively), the
following result easily follows.

TIME 2024

18:12 Full Characterisation of Extended CTL*

▷ Claim 4.4. Let tr = (t1, . . . , th) be a (π, h)-term of S1 and tr′ = (t′1, . . . , t′h) be a
(π′, h)-term of S ′

1. If tr and tr′ are m-consistent, then the (h+ 1)-structures (S,C,C1(t1) ∪
C2(t1), . . . ,C1(th) ∪ C2(th)) and (S ′,C′,C1(t′1) ∪ C2(t′1), . . . ,C1(t′h) ∪ C2(t′h)) are locally
isomorphic.

Assume that ω(S, π,C) ∼ω
2m ω(S ′, π′,C′). We need to prove that S1 ∼m S ′

1. By Claim 4.4
(for the case where h = 0), S1 and S ′

1 are locally isomorphic. Now, given 0 ≤ h < m, assume
that after h-rounds in the EF-game Gm(S1,S ′

1), there are h π-terms t1, . . . , th selected in the
structure S and corresponding h π′-terms t′1, . . . , t′h selected in the structure S ′ such that
tr = (t1, . . . , th) and tr′ = (t′1, . . . , t′h) are m-consistent with respect to S1 and S ′

1. Moreover,
assume that at the (h+ 1)-round the spoiler chooses a π-term th+1 in S (the case where the
choice is made on the structure S ′ is similar). We show that the duplicator can respond by
choosing a π′-term t′h+1 in S ′ such that the tuples (t1, . . . , th, th+1) and (t′1, . . . , t′h, t′h+1) are
still m-consistent with respect to S1 and S ′

1. Hence, by Claim 4.4, the result follows. We
focus on the case where th+1 is a compound term π-term of the form (C1, w,T,C2) (the case
where th+1 is a chain of π is simpler). We distinguish two cases:

there is some term ti in tr such that T(ti) = T: let ti1 , . . . , tiN be the ordered sequence of
compound terms in tr having T as tree-component. Note that Cw(tij) = w for all j ∈ [1, N].
Since tr and tr′ are m-consistent with respect to S1 and S ′

1, it holds that T(t′i) = T′
i ̸= ∅,

t′i1 , . . . , t
′
iN

is the ordered sequence of compound terms in tr′ having T′ as tree-component,
and there is a node w′ of π (the parent of the T′-root) such that Cw(t′ij) = w′ for all
j ∈ [1, N]. Moreover, (ST,C2(ti1), . . . ,C2(tiN)) ∼m−N (S ′

T′ ,C2(t′i1), . . . ,C2(t′i1)) and
(Sω,C1(t1),Cw(t1), . . . ,C1(th), Cw(th)) ∼ω

2m−2h (S ′
ω,C1(t′1),Cw(t′1), . . . ,C1(t′h),Cw(t′h)).

Thus, since N < m, in the EF-game over the substructures ST and S ′
T′ , the du-

plicator can pick a chain C′
2 of T′ such that (ST,C2(ti1), . . . ,C2(tiN),C2) ∼m−(N+1)

(S ′
T′ ,C2(t′i1), . . . ,C2(t′iN),C′

2). Moreover, since h < m, in the EF-game over the word struc-
tures Sω and S ′

ω, the duplicator can pick a chain C′
1 of π′ such that (Sω,C1(t1),Cw(t1), . . . ,

C1(th), Cw(th),C1, {w}) ∼ω
2m−2(h+1) (S ′

ω,C1(t′1),Cw(t′1), . . . ,C1(t′h),Cw(t′h),C′
1, {w′}).

Note that w′ must be a descendant of all nodes in C′
1. Hence, by setting t′h+1 to

(C′
1, w

′,T′,C′
2), the result follows.

there is no term in tr having tree-component T: let ti1 , . . . , tiN be the (possibly empty)
ordered sequence of compound terms in tr whose second component is w. Since h < m

and tr and tr′ are m-consistent, in the EF-game over the word structures Sω and S ′
ω,

the duplicator can pick a chain C′
1 of π′ and a node w′ ∈ π′ which is a descendant of

all nodes in C′
1 such that (Sω,C1(t1),Cw(t1), . . . ,C1(th), Cw(th),C1, {w}) ∼ω

2m−2(h+1)
(S ′
ω,C1(t′1),Cw(t′1), . . . ,C1(t′h),Cw(t′h),C′

1, {w′}). Hence, t′i1 , . . . , t
′
iN

is the (possibly
empty) ordered sequence of compound terms in tr′ whose second component is w′.
Since the label of w in Sω and the label of w′ in S ′

ω coincide and N < m, by construction
of the word-structures Sω and S ′

ω, there must be a child w′′ of w′ in S ′ such that w′′ /∈ π′

and for the subtree T′ of S ′ rooted at w′′, it holds that ST ≡m S ′
T′ and T′ ≠ T(t′ij) for

all j ∈ [1, N]. Being C2 ⊆ T and m ≥ 1, in the EF-game over the substructures ST and
S ′

T′ , the duplicator can pick a chain C′
2 of T′ such that (ST,C2) ∼m−1 (ST,C2). We set

t′h+1 = (C′
1, w

′,T′,C′
2), and the result follows. ◀

We can now state a composition theorem for 1-MCL formulas over 1-structures, which
allows to express such formulas in terms of MCL sentences over word-structures on 2APm

(or, equivalently, MSO sentences over infinite words on 2APm).

▶ Theorem 4.5 (Composition Theorem for MCL). For all m ≥ 1 and 1-MCL formulas φ(X)
over AP with qr(φ) ≤ m, there is an MCL sentence ψ over APm such that for each 1-structure
(S,C) and infinite branch π of S with C ⊆ π, we have (S,C) |= φ(X) ⇔ ω(S, π,C) |= ψ.

M. Benerecetti, L. Bozzelli, F. Mogavero, and A. Peron 18:13

Proof. According to Proposition 4.1, we consider the following formulas:
the m-types α1(X), . . . , αℓ(X) for 1-structures. By Proposition 4.1, there is I ⊆ {1, . . . , ℓ}
such that φ(X) is equivalent to

∨
p∈I αp(X).

The 2m-types γ1, . . . , γh for the MCL-sentences over word-structures on APm.

We denote by Γ the finite set of 2m-types γi with i ∈ [1, h] such that there exist a
1-structure (S,C) and an infinite branch π of S with C ⊆ π so that (S,C) |= φ(X) and
ω(S, π,C) |= γi. The desired MCL sentence ψ is then given by

∨
γi∈Γ γi. We prove the

following, hence the result directly follows.

▷ Claim. For each 1-structure (S,C) and infinite branch π of S so that C ⊆ π, it holds that
(S,C) |= φ(X) if and only if ω(S, π,C) |= γi, for some γi ∈ Γ.

To prove the claim, let (S,C) and π be as in the claim. By Proposition 4.1, there is a
unique i ∈ [1, h] such that ω(S, π,C) |= γi.

If (S,C) |= φ(X), then by construction, γi ∈ Γ. Assume now that γi ∈ Γ. It remains
to show that (S,C) |= φ(X). We assume the contrary and derive a contradiction. Hence,
there exists p′ ∈ [1, ℓ] \ I such that (S,C) |= αp′(X). Since γi ∈ Γ, there exist p ∈ I, a
1-structure (S ′,C′), and an infinite branch π′ of S ′ with C′ ⊆ π′ so that (S ′,C′) |= αp(X)
and ω(S ′, π′,C′) |= γi. Since ω(S, π,C) |= γi, it follows that ω(S, π,C) ≡ω

2m ω(S ′, π′,C′).
Thus, by Proposition 4.2 and Lemma 4.3, we obtain that (S,C) ≡m (S ′,C′), which is a
contradiction since (S,C) and (S ′,C′) have distinct m-types. ◀

4.3 From MCL to CECTL*
By exploiting Theorem 4.5, we show that the logics MCL and CECTL* have the same
expressiveness.

▶ Theorem 4.6. MCL and CECTL* are equally expressive.

Proof. By [3], each CECTL* state formula has an equivalent MCL sentence. Thus, it
suffices to show that for each MCL sentence, there is an equivalent CECTL* state formula.
Let φ be an MCL sentence. The result is shown by an induction argument on the quantifier
rank qr(φ).

Base case. Let φ be an MCL sentence such that qr(φ) = 1. Since the existential chain
quantifier ∃C distributes over disjunction, φ is equivalent to a Boolean combination of
sentences of the form ∃CX.ψ, where ψ is a conjunction of atoms in X, i.e., atoms of the form
X ⊆ p or X ≤ X or sing(X), or negations of atoms in X.

Fix an MCL sentence of the form ∃CX.ψ, where ψ is a conjunction of atoms in X or
negations of atoms X. We show that there is an equivalent CECTL* formula. Hence, the
result follows. We assume that ∃CX.ψ is satisfiable (otherwise, ∃CX.ψ is equivalent to ¬⊤,
and the result trivially follows). We distinguish two cases:

ψ holds when X is bound to the empty chain. In this case, ∃CX.ψ is equivalent to ⊤,
and the result follows.
ψ does not hold when X is bound to the empty chain: in this case, the atomic for-
mula X ≤ X corresponds to sing(X) and there exist distinct atomic propositions
p1, . . . , pn, q1, . . . , qm such that ψ can be rewritten as

ξ ∧
i=n∧
i=1

X ⊆ pi ∧
j=m∧
j=1

¬(X ⊆ qj)

TIME 2024

18:14 Full Characterisation of Extended CTL*

where either ξ = ⊤, or ξ = sing(X), or ξ = ¬sing(X). We focus on the case where
ξ = ¬sing(X) (the other cases being similar). Note that for an atom X ⊆ pi and two
chains C and C′ of a structure (Kripke tree) S = ⟨T,Lab⟩ such that C ⊆ C′, (S,V2[X 7→
C′]) |= X ⊆ pi entails that (S,V2[X 7→ C]) |= X ⊆ pi (intuitively, the satisfaction relation
is downward-closed for atoms X ⊆ pi). Moreover, (S,V2[X 7→ C]) |= ¬(X ⊆ qj) iff
there is a node w ∈ C such that qj /∈ Lab(w). It follows that a structure (Kripke tree)
S = ⟨T,Lab⟩ is a model of ∃CX.ψ iff there exist ℓ ∈ [2,m+ 2] and a finite chain C of S
having cardinality ℓ such that (i) pi ∈ Lab(w) for all i ∈ [1, n] and w ∈ C, and (ii) for
all j ∈ [1,m], there exists w ∈ C so that qj /∈ Lab(w). These requirements can be easily
captured by a CTL* formula (and thus by a CECTL* formula as well). Hence, the
result follows.

Induction step. Let m ≥ 1 and assume that for each MCL sentence with quantifier rank at
most m, there is an equivalent CECTL* state formula. Fix an MCL sentence of the form
∃CX.φ(X) with qr(φ) ≤ m. We show that ∃CX.φ(X) has an equivalent CECTL* state
formula. Hence, the result follows. For the fixed m ≥ 1, let β1, . . . , βℓ be the m-types for
MCL sentences over structures on AP. Since β1, . . . , βℓ have quantifier rank at most m, by
the induction hypothesis, there exist CECTL* state formulas β̂1, . . . , β̂ℓ such that βi and β̂i
are equivalent for each i ∈ [1, ℓ]. Recall that APm = 2AP∪{c} × ([1, ℓ] 7→ [0,m]) × [1, ℓ]. Let
AP′

m obtained from APm by removing the special proposition c from the first component
2AP∪{c} of APm. For a structure S (over AP) and an infinite branch π of S, we write ω(S, π)
to mean the word-structure ω(S, π, ∅). Note that ω(S, π) corresponds to an infinite word
over AP′

m. Recall that for each MSO sentence ϕ over infinite words, one can construct a
Büchi NWA accepting the models of ϕ. Moreover, Büchi NWA are closed under projection
and a Büchi NWA can be converted into an equivalent parity DWA [42]. Thus, since MCL
over word structures corresponds to MSO over infinite words, by applying Theorem 4.5 to
the 1-MCL formula φ(X), there exists a parity NWA Dφ over AP′

m such that the following
holds.

▷ Claim 4.7. For each structure S, there exists a chain C of S such that (S,C) |= φ(X) if
and only if there exists an infinite branch π of S so that ω(S, π) ∈ L(Dφ).

Let Υ ≜ ([1, ℓ] 7→ [0,m]) × [1, ℓ]. Now, for each (f, k) ∈ Υ, we define a CECTL* path
formula θ(f,k) expressing, for a given structure S, infinite branch π of S, and node w ∈ π,
that:

for each i ∈ [1, ℓ], let N be the (possibly infinite) number of distinct children w′ of w
such that the substructure of S rooted at w′ has m-type βi. Then:

case i ̸= k: N = f(i) if f(i) < m, and N ≥ f(i) otherwise;
case i = k: N = f(i) + 1 if f(i) < m, and N ≥ f(i) + 1 otherwise.

The substructure of S rooted at the child w′ of w along π has m-type βk.

θ(f,k) ≜ (X β̂k) ∧
∧

i∈[1,ℓ]

θi(f,k), where

θi(f,k) ≜

Df(i)β̂i, if f(i) = m ∧ i ̸= k;
Df(i)β̂i ∧ ¬Df(i)+1β̂i, if f(i) < m ∧ i ̸= k;
Df(i)+1β̂i, if f(i) = m ∧ i = k;
Df(i)+1β̂i ∧ ¬Df(i)+2β̂i, if f(i) < m ∧ i = k.

Since β1, . . . , βℓ are the m-types for MCL sentences, by construction, the following holds.

M. Benerecetti, L. Bozzelli, F. Mogavero, and A. Peron 18:15

▷ Claim 4.8. Given a structure S, an infinite branch π of S, and i ≥ 0, there is exactly one
element (f, k) ∈ Υ such that (S, π, i) |= θ(f,k).

Let Dφ =
〈
2AP × Υ,QD, δD, qD,I ,ΩD

〉
be the parity DWA of Claim 4.7. For each

(f, k) ∈ Υ, we consider the parity NWA N(f,k) =
〈
2AP,QN , δN , (qD,I , f, k),ΩN

〉
over 2AP

with initial state (qD,I , f, k) which simulates Dφ by keeping track in the current state
of the guessed second component of the next input symbol. Formally QN = QD × Υ,
δN ((q′, f ′, k′), a) =

∨
(f ′′,k′′)∈Υ

(δD(q′, (a, f ′, k′)), f ′′, k′′) and ΩN (q′, (f ′, k′)) = ΩD(q′) for all

q′ ∈ QD, a ∈ 2AP, and (f ′, k′) ∈ Υ. Note that for (f, k) ̸= (f ′, k′), the parity NWA N(f,k)
and N(f ′,k′) differ only for the initial state. Moreover, let τ be the testing function assigning
to each state (q′, f ′, k′) ∈ QN the CECTL* path formula θ(f ′,k′). By construction and
Claim 4.7, we obtain the following characterization of the structures satisfying the MCL
sentence ∃CX.φ(X).

▷ Claim 4.9. For each structure S = (T,Lab), S |= ∃CX.φ(X) iff for some infinite branch π
of S and some (f, k) ∈ Υ, there is an accepting run ν of N(f,k) over Lab(π(0))Lab(π(1)) . . .
such that (S, π, i) |= τ(ν(i)) for all i ≥ 0.

Given a finite path πf of a structure S = (T,Lab), a good run of N(f,k) over πf is a
finite path νf of N(f,k) over the Lab-labeling of πf such that (S, πf (i)) |= τ(ν(i)) for all
0 ≤ i < |πf |.

We now show that the characterization of the set of models of ∃CX.φ(X) in Claim 4.9
can be captured by a CECTL* formula. For all states (q, f, k) ∈ QN and set P ⊆ QN , we
denote by (q,f,k)NP the testing NWAf with test function τ and whose embedded NWAf is
obtained from the automata N(f,k) by setting a fresh copy of (q, f, k) as initial state, and
P as set of accepting states. This fresh copy behaves as (q, f, k) and has the same test as
(q, f, k), and ensures that the automaton cannot accept the empty word. Finally, let QN,even
be the set of states in QN having even color, and for each (q, f, k) ∈ QN , let QN > (q, f, k)
be the set of states in QN having color greatest than the color of (q, f, k). We consider the
CECTL* state formula Eψ where the CECTL* path formula ψ is defined as follows:

ψ ≜
∨

(f,k)∈Υ

∨
(q′,f ′,k′)∈QN,even

(ψ1(f, k, q′, f ′, k′) ∧ ψ2(f, k, q′, f ′, k′)

ψ1(f, k, q′, f ′, k′) ≜ ⟨(qD,I ,f,k)N{(q′,f ′,k′)}⟩[(q′,f ′,k′)NQN>(q′,f ′,k′)]¬⊤
ψ2(f, k, q′, f ′, k′) ≜ [(qD,I ,f,k)N{(q′,f ′,k′)}]⟨(q′,f ′,k′)N{(q′,f ′,k′)}⟩⊤

Thus, an infinite branch π of a structure S satisfies the path formula ψ iff there exist
(f, k) ∈ Υ and (q′, f ′, k′) ∈ QN,even such that the following conditions hold:

there is a good run of N(f,k) over some non-empty prefix π(0) . . . π(i) of π from state
(qD,I , f, k) to the state with even color (q′, f ′, k′). Moreover, no good run of N(f,k) over
some non-empty infix of π from position i which starts and ends at state (q′, f ′, k′) visits
a state with color greatest than color of (q′, f ′, k′).
for each good run of N(f,k) over some non-empty prefix π(0) . . . π(i) of π from state
(qD,I , f, k) to state (q′, f ′, k′), there is a good run f N(f,k) over some non-empty infix of
π from position i which starts and ends at state (q′, f ′, k′).

The first condition is expressed by the conjunct ψ1(f, k, q′, f ′, k′) of ψ, while the second
condition is expressed by the conjunct ψ2(f, k, q′, f ′, k′). By Claim 4.9, correctness of the
construction directly follows from the following claim whose proof relies on the mutual-
exclusivity condition expressed in Claim 4.8.

TIME 2024

18:16 Full Characterisation of Extended CTL*

▷ Claim 4.10. For each structure S = (T,Lab) and infinite branch π of S, (S, π, 0) |= ψ iff
for some (f, k) ∈ Υ, there exists an accepting run ν of N(f,k) over Lab(π(0))Lab(π(1)) . . .
such that (S, π, i) |= τ(ν(i)) for all i ≥ 0.

The left-right implication in Claim 4.10 easily follows from construction. For the
right-left implication, assume that for some (f, k) ∈ Υ, there is an accepting run
ν = (q0, f0, k0)(q1, f1, k1) . . . of N(f,k) over ρ = Lab(π(0))Lab(π(1)) . . . with (q0, f0, k0) =
(qD,I , f, k) such that (S, π, i) |= θ(fi,ki) for all i ≥ 0. Since ν is accepting, there ex-
ists a state (q′, f ′, k′) ∈ QN,even having an even color n such that n is the maximum
color associated to the states which occur infinitely many times along ν. We show that
(S, π, 0) |= ψ1(f, k, q′, f ′, k′) ∧ ψ2(f, k, q′, f ′, k′). Hence, the result follows. We focus on
the conjunct ψ2(f, k, q′, f ′, k′) (the proof for the conjunct ψ1(f, k, q′, f ′, k′) is similar). By
construction of ψ2(f, k, q′, f ′, k′), it suffices to show that for all j ≥ 0 and accepting runs νf
of (qD,I ,f,k)N{(q′,f ′,k′)} over ρ[0, j] whose states satisfy the associated tests, then νf is a prefix
of ν. Let νf = (q′

0, f
′
0, k

′
0) . . . (q′

j+1, f
′
j+1, k

′
j+1) be such a finite run over ρ[0, j] such that

(q′
0, f

′
0, k

′
0) = (qD,I , f, k) and for all i ∈ [0, j + 1], (S, π, i) |= θ(f ′

i
,k′

i
). Since (S, π, i) |= θ(fi,ki)

for all i ≥ 0, by Claim 4.8, it follows that (f ′
i , k

′
i) = (fi, ki) for all i ∈ [0, j + 1]. Thus, since

Dφ is deterministic, we deduce that q′
i = qi for all i ∈ [0, j + 1], and the result follows. This

concludes the proof of Claim 4.10.
At this point, the equivalence between ∃CX.φ(X) and Eψ directly follows from Claims

4.9 and 4.10. This concludes the proof of Theorem 4.6. ◀

5 Conclusion

In this work, we adopted a compositional approach to prove the expressive equivalence of
Monadic Chain Logic (MCL) and the counting extension CECTL* of ECTL*. Recent
work [3] has established that the graded version (HGTA) of Hesitant Tree Automata (HTA)
and their first-order extension (HFTA) represent the automata counterparts of the logics
CECTL* and MCL, respectively. As a corollary of our main results, we obtain the following
chain of equivalence:

▶ Corollary 5.1. The logics CECTL* and MCL and the classes of automata HGTA and
HFTA are all equivalent formalisms.

It would be interesting to explore the applicability of a compositional approach to Monadic
Tree Logic (MTL) [2], a fragment of MSO where second-order quantifiers range over trees.
The goal here is to gain insights into the expressiveness of various extensions of standard
temporal logics for strategic reasoning, such as Substructure Temporal Logic (STL), a
temporal logic that allows implicit predication over substructures/subtrees [4, 5].

References
1 A. Arnold and D. Niwiński. Fixed Point Characterization of Weak Monadic Logic Definable

Sets of Trees. In Tree Automata and Languages, pages 159–188. North-Holland, 1992.
2 M. Benerecetti, L. Bozzelli, F. Mogavero, and A. Peron. Quantifying over Trees in Monadic

Second-Order Logic. In LICS’23, pages 1–13. IEEECS, 2023.
3 M. Benerecetti, L. Bozzelli, F. Mogavero, and A. Peron. Automata-Theoretic Characterisations

of Branching-Time Temporal Logics. In ICALP’24, LIPIcs 297, pages 128:1–20. Leibniz-
Zentrum fuer Informatik, 2024.

4 M. Benerecetti, F. Mogavero, and A. Murano. Substructure Temporal Logic. In LICS’13,
pages 368–377. IEEECS, 2013.

M. Benerecetti, L. Bozzelli, F. Mogavero, and A. Peron 18:17

5 M. Benerecetti, F. Mogavero, and A. Murano. Reasoning About Substructures and Games.
TOCL, 16(3):25:1–46, 2015.

6 U. Boker, K. Lehtinen, and S. Sickert. On the Translation of Automata to Lin-
ear Temporal Logic. In FOSSACS’22, LNCS 13242, pages 140–160. Springer, 2022.
path(doi : 10.1007/978 − 3 − 030 − 99253 − 88).

7 J.R. Büchi. Weak Second-Order Arithmetic and Finite Automata. MLQ, 6(1-6):66–92, 1960.
8 J.R. Büchi. On a Decision Method in Restricted Second-Order Arithmetic. In ICLMPS’62,

pages 1–11. Stanford University Press, 1962.
9 J.R. Büchi. On a Decision Method in Restricted Second Order Arithmetic. In Studies in Logic

and the Foundations of Mathematics, volume 44, pages 1–11. Elsevier, 1966.
10 Y. Choueka. Theories of Automata on ω-Tapes: A Simplified Approach. JCSS, 8(2):117–141,

1974.
11 E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic Verification of Finite-State Concurrent

Systems Using Temporal Logic Specifications: A Practical Approach. In POPL’83, pages
117–126. ACM, 1983.

12 E.A. Emerson and E.M. Clarke. Design and Synthesis of Synchronization Skeletons Using
Branching-Time Temporal Logic. In LP’81, LNCS 131, pages 52–71. Springer, 1982.

13 E.A. Emerson and J.Y. Halpern. “Sometimes” and “Not Never” Revisited: On Branching
Versus Linear Time. In POPL’83, pages 127–140. ACM, 1983.

14 E.A. Emerson and J.Y. Halpern. “Sometimes” and “Not Never” Revisited: On Branching
Versus Linear Time. JACM, 33(1):151–178, 1986.

15 S. Feferman and R. Vaught. The First-Order Properties of Products of Algebraic Systems.
FM, 47(1):57–103, 1959.

16 K. Fine. In So Many Possible Worlds. NDJFL, 13:516–520, 1972.
path(doi : 10.1305/NDJFL/1093890715).

17 M.J. Fischer and R.E. Ladner. Propositional Dynamic Logic of Regular Programs. JCSS,
18(2):194–211, 1979. path(doi : 10.1016/0022 − 0000(79)90046 − 1).

18 G. De Giacomo and M.Y. Vardi. Linear Temporal Logic and Linear Dynamic Logic on Finite
Traces. In IJCAI’13, pages 854–860. IJCAI’ & AAAI Press, 2013.

19 Y. Gurevich. Modest Theory of Short Chains. I. JSL, 44(4):481–490, 1979.
path(doi : 10.2307/2273287).

20 Y. Gurevich. Monadic Second-Order Theories. In Model-Theoretical Logics, pages 479–506.
Springer, 1985.

21 Y. Gurevich and S. Shelah. Modest Theory of Short Chains. II. JSL, 44(4):491–502, 1979.
path(doi : 10.2307/2273288).

22 Y. Gurevich and S. Shelah. Rabin’s Uniformization Problem. JSL, 48(4):1105–1119, 1979.
23 Y. Gurevich and S. Shelah. The Decision Problem for Branching Time Logic. JSL, 50(3):668–

681, 1985. path(doi : 10.2307/2274321).
24 T. Hafer and W. Thomas. Computation Tree Logic CTL* and Path Quantifiers in the

Monadic Theory of the Binary Tree. In ICALP’87, LNCS 267, pages 269–279. Springer, 1987.
path(doi : 10.1007/3 − 540 − 18088 − 522).

25 D. Janin. A Contribution to Formal Methods: Games, Logic and Automata. Habilitation
thesis, Université Bordeaux I, Bordeaux, France, 2005.

26 D. Janin and G. Lenzi. On the Relationship Between Monadic and Weak Monadic Second Order
Logic on Arbitrary Trees, with Applications to the mu-Calculus. FI, 61(3-4):247–265, 2004.
URL: http://content.iospress.com/articles/fundamenta-informaticae/fi61-3-4-04.

27 D. Janin and I. Walukiewicz. On the Expressive Completeness of the Propositional mu-Calculus
with Respect to Monadic Second Order Logic. In CONCUR’96, LNCS 1119, pages 263–277.
Springer, 1996. path(doi : 10.1007/3 − 540 − 61604 − 760).

28 H.W. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, University of California,
Los Angeles, CA, USA, 1968.

TIME 2024

https://doi.org/10.1007/978-3-030-99253-8_8
https://doi.org/10.1305/NDJFL/1093890715
https://doi.org/10.1016/0022-0000(79)90046-1
https://doi.org/10.2307/2273287
https://doi.org/10.2307/2273288
https://doi.org/10.2307/2274321
https://doi.org/10.1007/3-540-18088-5_22
http://content.iospress.com/articles/fundamenta-informaticae/fi61-3-4-04
https://doi.org/10.1007/3-540-61604-7_60

18:18 Full Characterisation of Extended CTL*

29 D. Kozen. Results on the Propositional muCalculus. TCS, 27(3):333–354, 1983.
path(doi : 10.1016/0304 − 3975(82)90125 − 6).

30 R.E. Ladner. Application of Model Theoretic Games to Discrete Linear Orders and Finite
Automata. IC, 33(4):281–303, 1977. path(doi : 10.1016/S0019 − 9958(77)90443 − 0).

31 H. Läuchli. A Decision Procedure for the Weak Second-Order Theory of Linear Order. In
LC’66, volume 50, pages 189–197. North-Holland, 1968.

32 O. Maler and A. Pnueli. On the Cascaded Decomposition of Automata, its Complexity, and
its Application to Logic. Unpublished, 1995.

33 Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems - Specifica-
tion. Springer, 1992.

34 Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems - Safety. Springer, 1995.
35 R. McNaughton. Testing and Generating Infinite Sequences by a Finite Automaton. IC,

9(5):521–530, 1966. path(doi : 10.1016/S0019 − 9958(66)80013 −X).
36 R. McNaughton and S. Papert. Counter-Free Automata. MIT Press, 1971.
37 F. Moller and A.M. Rabinovich. On the Expressive Power of CTL*. In LICS’99, pages 360–368.

IEEECS, 1999.
38 F. Moller and A.M. Rabinovich. Counting on CTL*: On the Expressive Power of Monadic

Path Logic. IC, 184(1):147–159, 2003. path(doi : 10.1016/S0890 − 5401(03)00104 − 4).
39 D. Perrin and J. Pin. First-Order Logic and Star-Free Sets. JCSS, 32(3):393–406, 1986.

path(doi : 10.1016/0022 − 0000(86)90037 − 1).
40 A. Pnueli. The Temporal Logic of Programs. In FOCS’77, pages 46–57. IEEECS, 1977.
41 A. Pnueli. The Temporal Semantics of Concurrent Programs. TCS, 13:45–60, 1981.

path(doi : 10.1016/0304 − 3975(81)90110 − 9).
42 S. Safra. On the Complexity of ω-Automata. In FOCS’88, pages 319–327. IEEECS, 1988.
43 S. Shelah. The Monadic Theory of Order. AM, 102(3):379–419, 1975.
44 W. Thomas. Star-Free Regular Sets of ω-Sequences. IC, 42(2):148–156, 1979.
45 W. Thomas. A Combinatorial Approach to the Theory of ω-Automata. IC, 48(3):261–283,

1981.
46 W. Thomas. Logical Aspects in the Study of Tree Languages. In CAAP’84, pages 31–50. CUP,

1984.
47 W. Thomas. On Chain Logic, Path Logic, and First-Order Logic over Infinite Trees. In

LICS’87, pages 245–256. IEEECS, 1987.
48 W. Thomas. Automata on Infinite Objects. In Handbook of Theoretical Computer Science

(vol. B), pages 133–191. MIT Press, 1990.
49 J. van Benthem. Modal Correspondence Theory. PhD thesis, University of Amsterdam,

Amsterdam, Netherlands, 1977.
50 M.Y. Vardi and P. Wolper. Yet Another Process Logic. In LP’83, LNCS 164, pages 501–512.

Springer, 1984.
51 I. Walukiewicz. Monadic Second Order Logic on Tree-Like Structures. TCS, 275(1-2):311–346,

2002. path(doi : 10.1016/S0304 − 3975(01)00185 − 2).
52 P. Wolper. Temporal Logic Can Be More Expressive. IC, 56(1-2):72–99, 1983.

path(doi : 10.1016/S0019 − 9958(83)80051 − 5).

https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1016/S0019-9958(77)90443-0
https://doi.org/10.1016/S0019-9958(66)80013-X
https://doi.org/10.1016/S0890-5401(03)00104-4
https://doi.org/10.1016/0022-0000(86)90037-1
https://doi.org/10.1016/0304-3975(81)90110-9
https://doi.org/10.1016/S0304-3975(01)00185-2
https://doi.org/10.1016/S0019-9958(83)80051-5

	1 Introduction
	2 Preliminaries
	3 Branching-Time Temporal Logics
	3.1 The Logic CCTL*
	3.2 The Logic CECTL*
	3.3 Expressiveness equivalence of CCTL* and counter-free CECTL*

	4 Expressiveness equivalence of MCL and CECTL*
	4.1 Model-theoretic fundamentals
	4.2 A Composition Theorem for MCL
	4.3 From MCL to CECTL*

	5 Conclusion

