
FastMinTC+: A Fast and Effective Heuristic for
Minimum Timeline Cover on Temporal Networks
Giorgio Lazzarinetti #

Università degli Studi Milano-Bicocca, Milano, Italy

Sara Manzoni #

Università degli Studi Milano-Bicocca, Milano, Italy

Italo Zoppis #

Università degli Studi Milano-Bicocca, Milano, Italy

Riccardo Dondi #

Università degli Studi di Bergamo, Bergamo, Italy

Abstract
The analysis and summarization of temporal networks are crucial for understanding complex
interactions over time, yet pose significant computational challenges. This paper introduces
FastMinTC+, an innovative heuristic approach designed to efficiently solve the Minimum Timeline
Cover (MinTCover) problem in temporal networks. Our approach focuses on the optimization
of activity timelines within temporal networks, aiming to provide both effective and computation-
ally feasible solutions. By employing a low-complexity approach, FastMinTC+ adeptly handles
massive temporal graphs, improving upon existing methods. Indeed, comparative evaluations on
both synthetic and real-world datasets demonstrate that our algorithm outperforms established
benchmarks with remarkable efficiency and accuracy. The results highlight the potential of heuristic
approaches in the domain of temporal network analysis and open up new avenues for further research
incorporating other computational techniques, for example deep learning, to enhance the adaptability
and precision of such heuristics.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of com-
putation → Design and analysis of algorithms; Theory of computation → Mathematical optimization;
Theory of computation → Discrete optimization

Keywords and phrases Temporal Networks, Activity Timeline, Timeline Cover, Vertex Cover,
Optimization, Heuristic

Digital Object Identifier 10.4230/LIPIcs.TIME.2024.20

1 Introduction

Modern applications are increasingly incorporating new data abstractions that necessitate
redefined approaches to data summarization and synthesis. Notably, with the widespread
availability of temporal information, many datasets, traditionally modeled as networks, are
now being treated as temporal networks [10, 18], i.e., graphs G = (V, E) that include temporal
edges representing interactions among a set of entities V , where each edge (u, v, t) ∈ E

captures the interaction at time t between entities u and v.
This paper introduces a novel heuristic, FastMinTC+, aimed at summarizing temporal

networks – a critical area for data compression, visualization, interactive analysis, and noise
reduction. Temporal network summarization poses unique challenges stemming from their
inherent complexity and the diverse objectives of summarization, for which different methods
have been proposed [17]. These methods employ a variety of techniques, including temporal
motifs [19], graphlets [11], vocabulary-based summaries [26], evolutionary patterns [27], and
community evolution [21]. While effective, such techniques can be complex and difficult to
interpret. To simplify, research has shifted towards using activity time intervals to represent

© Giorgio Lazzarinetti, Sara Manzoni, Italo Zoppis, and Riccardo Dondi;
licensed under Creative Commons License CC-BY 4.0

31st International Symposium on Temporal Representation and Reasoning (TIME 2024).
Editors: Pietro Sala, Michael Sioutis, and Fusheng Wang; Article No. 20; pp. 20:1–20:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:giorgio.lazzarinetti@unimib.it
https://orcid.org/0000-0003-0326-8742
mailto:sara.manzoni@unimib.it
https://orcid.org/0000-0002-6406-536X
mailto:italo.zoppis@unimib.it
https://orcid.org/0000-0001-7312-7123
mailto:riccardo.dondi@unibg.it
https://orcid.org/0000-0002-6124-2965
https://doi.org/10.4230/LIPIcs.TIME.2024.20
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 FastMinTC+: An Heuristic for the MinTCover Problem

interactions between entities [24, 25, 8, 5, 4, 6, 7]. An interaction between two entities
is accounted for if, at the time of their interaction, at least one of the entities is active.
This summarization task involves identifying these latent activity intervals for all entities,
producing an activity timeline that encompasses the entire network. This problem, known
as Minimum Timeline Cover (MinTCover) problem, was introduced by Rozenshtein et
al. [25], with the goal of identifying crucial time intervals that elucidate significant network
events.

To illustrate the importance of activity timelines in understanding events, consider the
launch of ChatGPT by OpenAI in November 2022. This event, which quickly captured public
attention due to its advances in AI and large language model (LLM) capabilities, sparked
widespread social media engagement and discussions on AI ethics and potential technological
innovations. Figure 1 shows a co-occurrence graph on the left, where vertices represent
hashtags and edges connect hashtags that appear together in posts. On the right side of Figure
1, a temporal network model visualizes these interactions, highlighting how data structured
in timelines of (entity, time-interval) pairs can offer deep insights into significant events.
These timelines, indicated in purple, outline key moments such as the initial launch and
subsequent debates around AI, underlining the central entities’ roles in shaping discussions.
This method of mapping event timelines is central to solving the MinTCover problem.

Figure 1 Example of a co-occurrence graph (left side) and temporal network framework (right
side) with event timelines (in purple). The analysis of hashtags coming from social media discussions
on two distinct events in time intuitively shows the relationship between activity timelines and
events, which are the objective of the MinTCover problem.

Despite the interpretability and effectiveness of this problem, studies on the hardness and
parametrized complexity highlight that MinTCover is NP-hard and, when considering more
than one time interval, not even approximable within any constant factor (deciding whether
there exists a solution of span 0 is indeed an NP-complete problem) [25, 8, 5, 4]. From hence,
our research focuses on the development of approximation and heuristic algorithms capable
of generating satisfactory timeline covers in feasible time frames. In this study, we introduce
a novel local search heuristic for the MinTCover problem, employing a low-complexity
approach in order to make it feasible even on large-scale graphs. The performance of our
method are shown with an experimental evaluation on both synthetic and real-world datasets.
The experiments show that our algorithm improves upon existing methods, both for efficiency
and accuracy.

The rest of the paper is organized as follow. In Section 2 we formally define the
MinTCover problem and we present some related works on approximate solutions. In
Section 3, we describe our heuristic, FastMinTC+, for solving the MinTCover problem. In
Section 4 we provide the experimental results on the outlined comparison. Final considerations
and future direction are described in Section 5.

G. Lazzarinetti, S. Manzoni, I. Zoppis, and R. Dondi 20:3

2 Preliminaries

2.1 Problem Definition and Notions
Let G = (V, E) be a temporal graph, with V a set of vertices and E a set of temporal edges,
where each edge is a triple (u, v, t) ∈ E, such that (u, v) ∈ V and t is a timestamp indicating
the time that an interaction between vertices u and v takes place. We consider unweighted
undirected graphs. Given a vertex u ∈ V we define, E(u) = {(u, v, t) ∈ E} as the set of
temporal edges incident in u, N((u, t)) = {v|(u, v, t) ∈ E} as the set of vertices incident in u

at timestamp t, T (u) = {t|(u, v, t) ∈ E} as the set of timestamps of edges incident in u.
Following the definition provided in [7], given a temporal graph G = (V, E) and a vertex

u ∈ V , the local degree of u in a timestamp t, denoted as degL((u, t)) = |N((u, t))|, is
the number of temporal edges incident in u at a timestamp t, while the global degree of a
vertex u, denoted as deg(u) =

∑T
t=1 degL((u, t)) is the number of temporal edges incident

in u in the overall time domain. Moreover, we define the overall density of an undirected
graph as the ratio of the number of edges |E| with respect to the maximum possible edges:
d = 2|E|

|V |(|V |−1)|T | . We consider graph to be sparse when |E| = O(|V |+ |T |).
Given two numbers su, eu, with su ≤ eu we define Iu = [su, eu] as the activity interval

of vertex u and T = {Iu}u∈V as an active timeline of G. Given an interval Iu = [su, eu],
δ(Iu) = eu − su is the span of interval Iu.

▶ Definition 1 (Timeline Cover). Given a temporal graph G = (V, E) and an activity timeline
T = {Iu}u∈V , we say that T covers G if ∀(u, v, t) ∈ E, t ∈ Iu or t ∈ Iv.

Figure 2 shows an example of timeline covering over a 2-timestamps graph with 5 nodes.

Figure 2 A temporal graph with 5 vertices and 9 edges, distributed over two timestamps. In
purple we can see a possible timeline cover represented by intervals Iv1 = [0, 1] and Iv4 = [0, 1]. This
is a timeline cover since every edge (u, v, t) ∈ E is such that t is in either Iu or in Iv.

The trivial timeline Iu = [min T (u), max T (u)] provides a cover but may have unnecessarily
long intervals. Indeed, the task is to find a timeline that has the most compact intervals
possible according to some objective functions: the sum-span of a timeline T , S(T) =∑

u∈V δ(Iu), or the max-span of a timeline, ∆T = maxu∈V δ(Iu), are the objective functions
proposed in the literature [25].

According to these quality measures, it is possible to define two problems:

▶ Definition 2 (MinTCover+). Given a temporal network G = (V, E), find a timeline
T = {Iu}u∈V that covers G and minimizes the sum-span S(T).

TIME 2024

20:4 FastMinTC+: An Heuristic for the MinTCover Problem

▶ Definition 3 (MinTCover∞). Given a temporal network G = (V, E), find a timeline
T = {Iu}u∈V that covers G and maximize the max-span ∆T .

The selection of either the Sum or Max formulation of the problem is contingent upon
the specific application context. Generally, the Max formulation facilitates the derivation
of a worst-case bound on the duration of all activity intervals; however, this approach is
susceptible to outliers, whereby a single long interval may precipitate solutions characterized
by disproportionately high costs. Conversely, the Sum formulation is advisable in scenarios
characterized by considerable variability in the duration of events anticipated within the
activity timeline.

These problems can be further extended to allow k active intervals per vertex. It has been
shown that also when there is only one activity interval per vertex, i.e., k = 1, while the Max
problem can be reduced to 2-Sat, and solved optimally in linear time, the Sum problem
is NP-hard [8]. For this reason, in this research, we focus on designing and implementing
an heuristic algorithm for the Sum problem, with k = 1, given the scarcity of heuristics
even for this case, with the goal of proposing an efficient and effective approach also for
massive graphs. For this problem we provide an exact Integer Linear Programming (ILP)
formulation in Appendix A, considered mainly to evaluate the performance of our method
on small datasets. We will refer to this problem (MinTCover+) as MinTCover.

2.2 Related Works

The MinTCover problem, being a recent and NP-hard problem, has limited researches
which focus primarily on the study of the parametric complexity and the development of
approximate algorithms aimed at theoretical outcomes. Thus, in the following we describe
these approximate solutions and, since in building our heuristic we mainly based on established
Minimum Vertex Cover (MVC) heuristics, we also introduce the state-of-the art solutions for
MVC.

2.2.1 Approximate Solutions

For MinTCover, few approximate solutions have been proposed. In [25], Rozenstein et
al. propose an inner point iterative method as a strategy to solve this problem by initially
considering a subproblem named Coalesce. This subproblem involves finding optimal
activity timelines that include predetermined time points for each vertex, called inner points.
These points are essentially estimates on where a vertex is presumed to be active. The
challenge is to construct intervals around these points to cover all interactions. Remarkably,
the authors develop a method to find a 2-approximate solution to the Coalesce problem in
linear time, by first providing an ILP formulation, then by relaxing the integrality constraint
to write the dual, whose solution is then used iteratively to refine the MinTCover algorithm.
Each iteration adjusts the inner points based on the activity intervals derived from the
Coalesce solution, until the changes in the solution become negligible, indicating that
the intervals are covering all interactions with minimal total duration. This method not
only ensures comprehensive interaction coverage but also strives to minimize the overall
activity time across the network. If from the one hand the authors where able to find a
2-approximate solution to the Coalesce problem, they cannot provide an approximation
factor for MinTCover, even though they can compute a solution for this latter problem in
linear time.

G. Lazzarinetti, S. Manzoni, I. Zoppis, and R. Dondi 20:5

An O(T log n) factor approximation algorithm, that consists of two main phases, is
proposed by Dondi et al. in [6, 7]. The algorithm works by considering the union graph
Gu = (V, Eu) of the temporal graph G = (V, E), which is a static labeled graph, where
labels for each edge are the union of all the timestamps t associated to edges (u, v, t),
for each pair (u, v). The first phase consists in finding a minimum vertex cover with a
2-factor approximation algorithm [12] for the subgraph of the union graph that contains
edges with at least three labels. For each vertex of this set is defined an activity interval
that spans the entire temporal graph starting from 1. The vertices in this set are then
removed from the temporal graph G, resulting in a temporal graph G′ such that each pair of
vertices is connected by at most two temporal edges. Then the second phase, inspired by
an approximation algorithm for SetCover [9], uses a randomized rounding algorithm to
find an approximation solution to a variant of the problem called Minimum Non-Consecutive
Timeline Cover (Min-NC-TCover) where each vertex can be active in non consecutive
timestamps. Then they define a solution of MinTCover where each vertex is active in an
interval that includes the minimum and maximum timestamp where the vertex is active in
the computed solution of Min-NC-TCover.

2.2.2 Heuristics for Minimum Vertex Cover
MinTCover is a variant in temporal graphs of MVC, a classical NP-hard optimization
problem that consists of, given an undirected unweighted graph G = (V, E), finding a
minimum sized subset S ⊆ V such that every edge in G has at least one endpoint in S.

The MVC problem is often addressed by iteratively solving its decision version, which
involves identifying a vertex cover of a specified size k. The process begins with the
construction of a vertex cover. If a vertex cover of k vertices is found, one vertex is removed,
reducing the target size to k− 1, and a local search is initiated to find a smaller vertex cover.
The current candidate solution, denoted as C, includes the vertices selected for covering.
Each vertex v ∈ C has an associated loss, defined as the number of covered edges that would
become uncovered if v were removed from C. Conversely, for vertices not in C, a gain is
calculated based on the number of uncovered edges that would become covered upon their
addition. Both loss and gain are used to score vertices, which also have an age indicating the
time since their status last changed. The iterative process involves swapping vertices in C

with those outside of it, a step known as exchanging step.
The FastVC [3] (which in turn is inspired by NuMVC [2]) is a heuristic algorithm,

known for its efficiency in handling large graphs, which makes it of practical relevance for
real-world applications, where rapid solutions are needed. The algorithm works by following
the procedure depicted before, adopting a two-stage exchange method as exchanging step,
introduced in the NuMVC algorithm, which consists in firstly removing a vertex from C,
then adding a new vertex not in C, updating the scoring properties (loss and gain) at each
stage. The great advantage of FastVC is that to enhance the efficiency and effectiveness
of the vertex selection process it mainly relies on the Best from Multiple Selection (BMS)
heuristic, which works by generating multiple candidate solutions, choosing the best among
them based on a predefined criterion (the one that leads to the smallest vertex cover).

This approach is particularly useful since in problem like MVC the solution space is
large and complex, thus direct evaluation of all possible selections would be computationally
expensive. By using BMS, FastVC can more effectively explore the solution space, as it
avoids getting trapped in local minima – a common problem in greedy and local search
algorithms. It provides a way to balance exploration and exploitation by periodically allowing
the algorithm to consider a range of potential moves (vertex additions or removals) rather
than being confined to the immediate best move.

TIME 2024

20:6 FastMinTC+: An Heuristic for the MinTCover Problem

More recently, the use of Deep Learning (DL) approaches has been proposed for defining
heuristics for NP-hard problems over graphs, like MVC, highlighting that representation
learning based approaches are better in building solution to combinatorial optimization
over graphs with respect to end-to-end approaches [20]. Some of the most effective research
investigation directions are based on using Reinforcement Learning (RL) [13, 1], Graph
Neural Networks (GNNs) [16, 14] or the Attention Mechanism [15] by firstly learning a
representation of the graph and then by leveraging this representation with autoregressive
machine learning-based procedure, local search or greedy search to build the final solution.

3 FastMinTC+

In this section we describe our FastMinTC+ algorithm, which solves the MinTCover
problem in an iterative way, following a local search procedure and a heuristic optimization
similar to the one adopted by FastVC [3].

3.1 Overall Algorithm
The FastMinTC+ overall algorithm (outlined in Algorithm 1) is composed of an initialization
step, to compute an initial minimal timeline, and an exchange step, to reduce the span of the
initial computed timeline.

Algorithm 1 FastMinTC+(G, cutoff).

Input: graph G = (V, E, T), cutoff time
Output: A minimal timeline cover of G, T ∗ = {Iu}u∈V

T , loss← InitializeTC(G)
gain((v, t))← 0 for each (v, t) /∈ T
T ∗ ← T
while elapsed ≤ cutoff do

if T covers all edges AND S(T) < S(T ∗) then
T ∗ ← T

end
T ← T \ {(v, t) : loss((v, t)) ≤ loss((u, t)),∀(v, t), (u, t) ∈ T
(v, t)← SelectRndVertex(T , k)
T ← T \ {(v, t)}
e← a random uncovered edge
(v, t)← the endpoint of e with greater gain breaking ties in favor of the one not

included in the solution for a larger number of iterations
T ← T ∪ {(v, t)}
update loss of vertices N(v) in T and gain of vertices N(v) not in T

end

The initialization step is carried out by the InitializeTC procedure, which returns an
initial timeline which is granted to be minimal, and computes the loss value for each pair
(v, t) ∈ T , which corresponds to the number of edges that would become uncovered, by
removing (v, t) from the computed timeline. We remember that the timeline T is a set of
intervals Iv = [sv, ev], one for each vertex v ∈ V . Thus, we can consider T as an ordered list
of pairs (v, t) such that, for each vertex v ∈ V , we have exactly two pairs: (v, sv), (v, ev),
with sv ≤ ev. For each vertex in the timeline, thus, the loss is computed only for timestamps

G. Lazzarinetti, S. Manzoni, I. Zoppis, and R. Dondi 20:7

sv and ev and not for intermediate timestamps in the interval. After letting computing the
initial timeline and the corresponding loss, the initialization step computes the gain, which
is defined for each vertex (v, t) /∈ T as the number of uncovered edges that would become
covered by adding (v, t) to the timeline.

The solution is then refined in the exchange step, with a two-stage exchange method, by
firstly removing from the timeline the pair (vertex, timestamp) with minimum loss from
the activity timeline computed and then by randomly reducing the length of the intervals
selecting a second pair (vertex, timestamps) to be removed from the activity timeline with
the SelectRndVertex procedure. Then, the algorithm picks a random uncovered edge e, and
chooses the endpoint with greater gain adding it into T , breaking ties in favor of the endpoint
that have not been included in the solution for a larger number of iterations. Note that along
with removing or adding a vertex, the loss and gain values of the vertex and its neighbors
are updated accordingly.

3.2 Initialization Algorithm

The initialization procedure is outlined in Algorithm 2 and consists of an extending phase
and a shrinking phase.

Algorithm 2 InitializeTC(G).

Input: graph G = (V, E, T)
Output: timeline cover of G T = {Iu}u∈V , loss((v, t)) for each (v, t) ∈ T
for e ∈ E do

if e is uncovered then
add the timestamp t to the activity interval of the endpoint of e with higher
degree in t

end
end
// initialize loss to 0 (considering only the minimum and maximum t of each interval

of v in T)
loss((v, t))← 0 for each (v, t) ∈ T
for e ∈ E do

if only one endpoint of e belongs to T then
for the endpoint (v, t) ∈ T , loss((v, t)) + +

end
end
// remove redundant vertices
for (v,t) ∈ T do

if sv < ev then
if loss((v,t))=0 then
T ← T \ {(v, t)}
update loss of vertices N(v) in T

end
end

end

During the extending phase, the procedure begins with an empty set T , progressively
augmented by evaluating and incorporating edges one at a time. If an edge e is found to be
uncovered, the endpoint of e with higher degree is added to T . It is straightforward that

TIME 2024

20:8 FastMinTC+: An Heuristic for the MinTCover Problem

at the end of this phase we obtain a timeline cover. The shrinking phase consists in first
computing the loss value of pairs (v, t) in T , only for the initial and final timestamps of each
interval (thus, we do not compute the loss for the intermediate timestamps in the interval,
i.e., ∀Iu = [su, eu] ∈ T , we compute the loss only for (u, su) and (u, eu)). This phase possibly
shrinks an interval length, by removing the initial or final timestamp, if the loss is equal to 0.
When computing the loss of (v, t) with respect to an edge (u, v, t), we consider the entire
interval on vertex u, i.e., Iu = [su, eu]. If it holds that su < t < eu, we do not increment the
loss value of v since the edge (u, v, t) is already covered.

After computing the loss, the algorithm checks if there are vertices in the timeline with
loss = 0. If it finds a (v, t) with loss = 0 and Iv = [sv, ev] is such that sv < ev, then Iv is
shrinked with a new timestamp r as follows: if t = sv, sv is replaced by r, which is the first
timestamp in T (v) greater than sv (which may not necessary be sv + 1 if v is not active in
sv + 1); if t = ev, ev is replaced by r, which is the next timestamp in T (v) smaller than ev

(which may not necessary be ev − 1 if v is not active in ev − 1).
Subsequently loss of vertices in N((v, t)) is increased by 1 and loss of vertex (v, r) is

computed considering the vertex in N((v, r)).
This algorithm grants to return a minimal solution according to Theorem 4 (proof is

provided in Appendix B). A timeline cover is minimal if removing any (v, t) would make it
not a timeline cover, thus the loss(v, t) > 0, ∀(v, t) ∈ T .

▶ Theorem 4. The timeline T = {Iu}u∈V returned by the initializeTC algorithm is a
minimal timeline cover.

3.3 Random Vertex Selection Algorithm
A critical function for FastMinTC+ is SelectRndVertex, outlined in Algorithm 3, which
chooses a vertex from the candidate vertex set T to remove.

Algorithm 3 SelectRndVertex(T , k).

Input: A timeline T , a parameter k
Output: an element of T
best ← a random vertex (v, t) from T
for 1 to k-1 do

tmp ← a random vertex (u, r) from T
if loss(tmp) < loss(best) then

best ← tmp
end

end
return best

This algorithm follows the structure of the cost-effective BMS heuristic, which picks k

elements (where k is a parameter) randomly with replacement from the set T , and then
returns the one with lowest loss value. The set T is composed of all the pairs (v, t) that
belong to the activity timeline T and whose timestamps are an initial or ending timestamp of
an interval. In this way, we only remove from the timeline vertices which are at the beginning
or end of the interval, with the goal of reducing the length of the activity timelines avoiding
producing multiple intervals for the same vertex. From hence, Theorem 5 holds (proof is
provided in Appendix C).

G. Lazzarinetti, S. Manzoni, I. Zoppis, and R. Dondi 20:9

▶ Theorem 5. With k ≥ 50, the probability that the SelectRndVertex algorithm choose a
vertex whose loss value is not grater than 90% vertices in T is grater or equal to 0.9948.

3.4 Heuristic Complexity Analysis

The overall FastMinTC+ heuristic (outlined in Algorithm 1), as seen, is composed of two
main parts: the initialization step (i.e., the InitializeTC procedure outlined in Algorithm 2,
followed by the gain initialization) and the exchange step (i.e., the iterative cycle carried out
for an elapsed time smaller or equal to a given cutoff time, that uses the SelectRndVertex
procedure, outlined in Algorithm 3 as two-stage exchange method). Thus, the complexity of
the FastMinTC+ heuristic relies on the complexity of Algorithms 2 and 3.

In the following we denote n = |V |, m = |E| and t = |T |.
Let us first focus on the complexity of the InitializeTC algorithm. This can be divided in

three parts: the extending phase, the initialization of the loss values and the shrinking phase.
It is straightforward that the complexity of the extending phase is O(m). Indeed, to compute
the extending phase, it is necessary to scan the set of edges E one time, adding, for every
scanned edge, the endpoint with higher degree. As far as loss computation is concerned, it
depends on the number of vertices (v, t) ∈ T . Since we add, for each vertex v ∈ V exactly
two timestamps (the start and end of the activity interval, namely, sv, ev), the dimension of
the computed activity timeline is exactly |T | = 2n. It follows that the complexity for the
initialization of the loss is O(n). In order to update the loss values, we must check if an
edge is covered by one of two vertices of the timeline; we need to scan the set of edges E,
the complexity is O(m). Thus, the overall complexity of loss initialization is O(n + m). For
the shrinking phase, the complexity depends on the number of updates performed over the
loss values. Since each vertex is updated at most once for each edge incident in it, the total
number of possible updates is bounded to the sum of the global degrees of each vertex, i.e.,∑

v∈V deg(v) = 2m, thus the complexity of the shrinking phase is O(m + n). Therefore, the
overall complexity of the InitializeTC algorithm is O(m + n).

Let’s now move to the SelectRndVertex procedure. Since the algorithm only performs
comparison operation for pair of elements at a time for each iteration, the complexity is
O(k), where k is the number of iteration. Since k is constant, the overall complexity is O(1).

Consider now the FastMinTC+ heuristic. From the previous analysis, it holds that
the computational complexity of the initialization phase, i.e., the one derived from the
InitializeTC algorithm, is O(m + n). For the exchange step, the complexity can be derived
by: 1) checking whether T covers all edges, which can be done summing the gain values
of (v, t) /∈ T with complexity O(n): if the sum is 0, it means that T is a minimal cover; 2)
getting the vertex (v, t) with lower loss value, which can be done with complexity O(n); 3)
select a random vertex with the SelectRndVertex procedure, which has complexity O(1); 4)
extract a random uncovered edge e and add the endpoint of e with greater gain, breaking
ties in favor of the older one, which has the same complexity as the loss update operation,
thus O(m + n); 5) update loss and gain values, which have both complexity O(m). Thus,
the overall time complexity of the exchange step is O(m + n), leading to an overall time
complexity of the FastMinTC+ heuristic equals to O(m + n).

4 Performance Evaluation

In this section we provide the results of our experiments on FastMinTC+. We evaluate it
against state-of-the-art approaches on both synthetic and real world graphs.

TIME 2024

20:10 FastMinTC+: An Heuristic for the MinTCover Problem

4.1 Dataset Description
In the current literature, there are no publicly available datasets for the MinTCover problem.
The sole study addressing experimental analysis on real and synthetic instances is presented
in [25]. However, this study has significant limitations: firstly, the method proposed for
generating synthetic datasets does not ensure that the computed ground truth is optimal,
complicating the assessment of the algorithm’s performance against exact solvers; secondly,
the real-world dataset employed is not publicly accessible, precluding reproducibility of the
results. To address these gaps, we have developed three distinct datasets, each designed for
specific evaluative purposes:

Dataset1 consists of 264 synthetically generated instances of sparse temporal graphs,
characterized by a low temporal edge-to-vertex ratio (|E| = O(|V |+ |T |)). These graphs
vary considerably, with vertex counts |V | = [10, 10000], timestamp sets T = [4, 5000], and
edges |E| = [10, 1000000]. This dataset facilitates comparisons between the proposed
heuristic and state-of-the-art algorithms across sparse graph scenarios, which reflect
conditions found in many real-world datasets. For more granular analysis, instances are
categorized as small (up to 50 vertices and 20 timestamps), medium (up to 500 vertices
and 500 timestamps), and hard (up to 10000 vertices and 5000 timestamps).
Dataset2 includes 195 synthetically generated instances of dense temporal graphs (|E| ≫
O(|V |+|T |)). These instances also range in size with vertices |V | = [10, 10000], timestamps
T = [2, 5000], and edges |E| = [100, 20000000]. The purpose of Dataset2 mirrors that
of Dataset1, but focuses on denser graphs. Similar to Dataset1, it is divided into small
(up to 30 vertices and 4 timestamps), medium (up to 1000 vertices and 100 timestamps),
and hard categories (up to 10000 vertices and 5000 timestamps) to account for scalability
concerns.
Dataset3 comprises 25 publicly available instances of temporal benchmark graphs sourced
from the DIMACS repository [22]. This dataset was curated to include a diverse array
of graphs in terms of edge count |E|, vertex count |V | and timestamp range |T |, thus
resulting in a set of graphs with densities D that ranges from 8,49 E-10 to 4,74 E-01. The
primary aim of Dataset3 is to evaluate the performance of the proposed heuristic against
state-of-the-art algorithms on benchmark graphs, thereby assessing their applicability to
practical scenarios.

4.2 Experimental Results
To evaluation our heuristic FastMinTC+ we benchmark it against both an optimal solution
derived from the ILP formulation (Equation 1 in Appendix A) and the principal approximation
algorithms discussed in Section 2.2.1. The compared algorithms include the iterative method
for inner points (Inner) as outlined in [25], and the two-phases approach (2Phases)
introduced in [7]. Our evaluations span three datasets, assessing both the quality (measured
by the length of the sum-span of the timelines S(T)) and scalability (determined by execution
time) of each solution. The algorithmic comparison varies by dataset and instance complexity;
for Dataset1 and Dataset2, all four algorithms are evaluated on small instances. However, the
ILP solution is omitted from medium instances and both the ILP and 2Phases are excluded
from hard instances due to computational limitations. Only Inner and FastMinTC+ are
analyzed for Dataset3 due to their superior performance.

In running the test, for the FastMinTC+ algorithm, we set the parameter k = 50
and instead of setting a time limit, we define a number of 2000 iteration for the exchange
step. The algorithm is executed 5 times each with a different shuffling of the edges, and the
best result is reported. For the Inner algorithm we set the number of iterations to 10 (as
suggested by the authors). No parameters have to be set for the 2Phases approximation.

G. Lazzarinetti, S. Manzoni, I. Zoppis, and R. Dondi 20:11

We implement our algorithm FastMinTC+ in the Python programming language
(version 3.12). The code for Inner is open-source and implemented in Python (version 2) [23].
For the 2Phases algorithm no implementation were available online, thus, we implement
it in Python (version 3.12). Experiments are carried out on a MacBook Pro (2017) under
MacOS, using a 16GB RAM and 4 cores of a i7-3,1 GHz CPU.

4.2.1 Sparse Instances Results
The comprehensive results for Dataset1, consisting of sparse graphs, are summarized in
Table 1. FastMinTC+ consistently outperforms both Inner and 2Phases in small
instances. Specifically, compared to the sum-span calculated by the ILP and other algorithms,
FastMinTC+ approximates the ILP-derived solution more closely than its competitors.
Among the 189 simple instances in Dataset1, FastMinTC+ provides a superior solution
(i.e., a shorter sum-span) compared to Inner 177 times and to 2Phases 154 times. In the
subset of 25 medium instances, FastMinTC+ continues to outperform, invariably offering
better solutions than 2Phases and surpassing Inner in 14 instances. Similar trends are
observed in the 50 hard instances, where FastMinTC+ excels over Inner 34 times.

The fact that 2Phases’s performance downgrade with larger instances, aligns with the
fact that it provides an approximate factor proportional to the number of timestamps.

A notable finding from this experiment pertains to the average execution times. Clearly,
the ILP algorithm, while providing optimal solutions, is significantly slower even for basic
sparse instances. 2Phases encounters scalability issues, notably in hard instances where
experiments could not be conducted due to prohibitive execution times. Conversely, Fast-
MinTC+ is faster, even in large sparse instances, typically requiring an order of magnitude
less time to compute the solution compared to Inner.

Thus, although FastMinTC+ generally outperforms Inner and 2Phases, it may not
be invariably the superior choice for sparse graphs, unless graph size increases to a point
where Inner becomes computationally impractical.

Table 1 Experimental Results on Dataset1 - small, medium and hard instances. Results show
that the proposed heuristic produces for sparse graphs better results with respect to the approximate
solutions in a smaller time.

Dataset1 Algorithm Average
Execution Time

Average
Sum Span

Small
Instances

ILP 1,13 E-01 1,01 E+00
2Phases 8,68 E-02 3,37 E+00
Inner 9,37 E-04 7,05 E+00
FastMinTC+ 5,39 E-04 3,02 E+00

Medium
Instances

2Phases 3,52 E+01 80,1 E+03
Inner 1,21 E-01 71,1 E+03
FastMinTC+ 4,32 E-02 70,9 E+03

Hard
Instances

Inner 1,75 E+02 16,01 E+06
FastMinTC+ 1,43 E+01 15,95 E+06

4.2.2 Dense Instances Results
The comprehensive results for Dataset2, composed of dense graphs, are summarized in Table 2.
The findings from evaluations of small, medium, and hard instances are parallel to those
observed in Dataset1, reinforcing the quality and the scalability of the proposed heuristic.

TIME 2024

20:12 FastMinTC+: An Heuristic for the MinTCover Problem

Notably, the difference in average sum-span and execution time between FastMinTC+ on
both approximate and exact solutions is more pronounced here than in Dataset1. Indeed,
as far as sum-span is concerned, in all 195 test cases assessed, Inner only outperformed
FastMinTC+ once in a small instance scenario, while as far as execution time is concerned,
FastMinTC+ always outperforms Inner, reaching, on average, a larger delta with respect
to tests on Dataset1, with a maximum delta of 3492,17 seconds on the instance with
10000 vertices and 5000 timestamps. These results validate FastMinTC+’s capability to
effectively scale to larger instances. Moreover, they suggest a distinct advantage in favor of
FastMinTC+ when handling dense graphs, indicating its overall preferable performance
relative to Inner in such contexts.

Table 2 Experimental Results on Dataset2 - small, medium and hard instances. Results confirm
that the proposed solution produces for dense graphs better results with respect to the approximate
solutions in a smaller time.

Dataset2 Algorithm Average
Execution Time

Average
Sum Span

Small
Instances

ILP 9,62 E+01 8,24 E+00
2Phases 3,29 E-01 27,85 E+00
Inner 2,68 E-03 20,39 E+00
FastMinTC+ 5,73 E-04 11,88 E+00

Medium
Instances

2Phases 8,54 E+00 28,69 E+03
Inner 5,81 E-01 28,38 E+03
FastMinTC+ 9,81 E-02 27,08 E+03

Hard
Instances

Inner 8,96 E+02 14,74 E+06
FastMinTC+ 1,82 E+01 14,05 E+06

4.2.3 Real World Instances Results

Experiments conducted on real-world graphs corroborate the findings observed in the synthetic
test instances too. Detailed results for these real-world instances are presented in Tables 3
and 4. For each graph considered, Table 3 provides the results in terms of sum-span, while
Table 4 provides the results in terms of execution time.

Overall, FastMinTC+ demonstrates superior performance in terms of sum-span com-
pared to Inner on non-sparse graphs. Specifically, in the analysis of 25 real-world instances,
FastMinTC+ achieves a better sum-span in 17 cases. Notably, the instances where Inner
outperforms FastMinTC+ are characterized by particularly low densities, with a maximum
density value of 6,27 E-04 and an average density value of 1,09 E-04. In contrast, the instances
where FastMinTC+ outperforms Inner are characterized by a maximum density value
of 4,47 E-01 and an average density value of 1,26 E-01. It is also worth noting that there
are, albeit rarer, cases of graphs with very low densities (such as ia-contacts-dublin with
D = 8.98E − 08) where FastMinTC+ outperforms Inner, while there are no cases of dense
graphs where Inner outperforms FastMinTC+. This confirms that, while FastMinTC+
should be always preferable in the case of dense graphs, it should be taken into account also
in the case of sparse graphs, representing a valid alternative to Inner even in these cases.

The results also confirm the best performance in terms of execution time of the Fast-
MinTC+, which always achieves a lower execution time compared to Inner.

G. Lazzarinetti, S. Manzoni, I. Zoppis, and R. Dondi 20:13

Table 3 Experimental Results on real-world publicly available graphs from Dataset3. For each
considered graph we report the information on the size of the network and the results in terms of
sum-span S(T) of Inner and FastMinTC+.

Graph |E| |V| |T| D Inner
S(T)

FMTC+
S(T)

aves-sparrow-social 516 52 1 3,89E-01 1,40E+01 1,00E+01
aves-wildbird-network 11900 202 5 1,17E-01 5,88E+02 4,78E+02
copresence-InVS13 394247 95 20128 4,39E-03 1,53E+06 1,49E+06
copresence-InVS15 1283194 219 21535 2,50E-03 3,71E+06 3,64E+06
copresence-LH10 150126 73 12604 4,53E-03 3,97E+05 3,87E+05
copresence-LyonSchool 6594492 242 3123 7,24E-02 7,02E+05 6,64E+05
copresence-SFHH 1417485 403 3148 5,56E-03 9,26E+05 8,92E+05
copresence-Thiers13 18613039 328 8937 3,88E-02 2,57E+06 2,45E+06
email-dnc 39264 1892 19382 1,13E-06 2,54E+05 5,84E+05
fb-wosn-friends 1269502 63731 736674 8,49E-10 8,99E+08 9,83E+08
ia-contacts-dublin 415912 10972 76943 8,98E-08 1,00E+06 9,60E+05
ia-contacts-hypertext2009 20818 113 5245 6,27E-04 3,50E+05 3,93E+05
ia-digg-reply 87627 30398 83942 2,26E-09 1,41E+08 1,76E+08
ia-hospital-ward-proximity 32424 75 9452 1,24E-03 3,26E+05 3,18E+05
ia-primary-school-proximity 125773 242 3099 1,39E-03 6,51E+05 6,30E+05
a-prosper-loans 3394979 89269 1258 6,77E-07 9,78E+05 1,00E+06
a-retweet-pol 61157 18470 60500 5,93E-09 1,06E+07 1,21E+07
insecta-ant-colony1 111578 113 40 4,41E-01 3,46E+03 3,25E+03
insecta-ant-colony3 241280 160 40 4,74E-01 5,07E+03 4,77E+03
insecta-ant-colony5 194317 152 40 4,23E-01 4,36E+03 4,14E+03
mammalia-raccoon-proximity 1997 24 51 1,42E-01 7,73E+02 7,61E+02
rec-amz-Baby 915446 596316 4868 1,06E-09 2,80E+06 2,91E+06
reptilia-tortoise-network-bsv 554 136 3 2,01E-02 9,60E+01 5,00E+01
reptilia-tortoise-network-fi 1713 787 8 6,92E-04 5,5E+02 3,12E+02
SFHH-conf-sensor 70261 403 3508 2,47E-04 7,11E+05 8,27E+05

TIME 2024

20:14 FastMinTC+: An Heuristic for the MinTCover Problem

Table 4 Experimental Results on real-world publicly available graphs from Dataset3. For each
considered graph we report the information on the size of the network and the results in terms of
execution time of Inner and FastMinTC+.

Graph |E| |V| |T| D Inner
elapsed

FMTC+
elapsed

aves-sparrow-social 516 52 1 3,89E-01 0,01 0,00
aves-wildbird-network 11900 202 5 1,17E-01 0,09 0,05
copresence-InVS13 394247 95 20128 4,39E-03 2,52 1,07
copresence-InVS15 1283194 219 21535 2,50E-03 8,50 3,47
copresence-LH10 150126 73 12604 4,53E-03 1,00 0,39
copresence-LyonSchool 6594492 242 3123 7,24E-02 43,65 15,92
copresence-SFHH 1417485 403 3148 5,56E-03 9,59 3,18
copresence-Thiers13 18613039 328 8937 3,88E-02 114,17 43,69
email-dnc 39264 1892 19382 1,13E-06 0,39 0,13
fb-wosn-friends 1269502 63731 736674 8,49E-10 11,36 7,19
ia-contacts-dublin 415912 10972 76943 8,98E-08 3,38 1,12
ia-contacts-hypertext2009 20818 113 5245 6,27E-04 0,13 0,06
ia-digg-reply 87627 30398 83942 2,26E-09 0,98 1,49
ia-hospital-ward-proximity 32424 75 9452 1,24E-03 0,21 0,09
ia-primary-school-proximity 125773 242 3099 1,39E-03 0,80 0,32
a-prosper-loans 3394979 89269 1258 6,77E-07 36,98 23,71
a-retweet-pol 61157 18470 60500 5,93E-09 0,73 0,77
insecta-ant-colony1 111578 113 40 4,41E-01 0,66 0,31
insecta-ant-colony3 241280 160 40 4,74E-01 1,39 0,61
insecta-ant-colony5 194317 152 40 4,23E-01 1,12 0,50
mammalia-raccoon-proximity 1997 24 51 1,42E-01 0,01 0,01
rec-amz-Baby 915446 596316 4868 1,06E-09 18,16 12,53
reptilia-tortoise-network-bsv 554 136 3 2,01E-02 0,14 0,64
reptilia-tortoise-network-fi 1713 787 8 6,92E-04 0,02 0,01
SFHH-conf-sensor 70261 403 3508 2,47E-04 0,45 0,19

G. Lazzarinetti, S. Manzoni, I. Zoppis, and R. Dondi 20:15

5 Conclusion and Future Works

This research tackled the complex problem of summarizing temporal networks, aiming to
optimize the timeline cover for entities within a temporal graph. We introduced a novel
heuristic approach, FastMinTC+, which significantly advances the field by offering a
computationally feasible solution to the MinTCover problem. Our method leverages low-
complexity approximate heuristics, shown to be very effective on the related MVC problem on
static networks, enabling the effective processing of massive graphs, a notable improvement
over existing methodologies.

Experimental results, on both synthetic and real-world datasets, demonstrates that Fast-
MinTC+ achieves superior performance compared to state-of-the-art algorithms, enhancing
computational efficiency and maintaining a high level of accuracy and reliability in identify-
ing sub-optimal timeline covers. These results underscore the potential of our heuristic to
facilitate deeper insights into temporal data analysis.

Looking ahead, the integration of DL techniques presents a promising avenue for fur-
ther enhancing the efficacy of our heuristic. Specifically, exploring the synergy between
our heuristic approaches and DL models could yield innovative strategies for tackling the
MinTCover problem. These developments are poised to redefine the boundaries of temporal
network analysis, opening up new possibilities for both theoretical and practical applications
in the field.

References
1 Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural

combinatorial optimization with reinforcement learning. In 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Workshop Track
Proceedings. OpenReview.net, 2017. URL: https://openreview.net/forum?id=Bk9mxlSFx.

2 Shaowei Cai. Balance between complexity and quality: Local search for minimum vertex
cover in massive graphs. In Qiang Yang and Michael J. Wooldridge, editors, Proceedings
of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015,
Buenos Aires, Argentina, July 25-31, 2015, pages 747–753. AAAI Press, 2015. URL: http:
//ijcai.org/Abstract/15/111.

3 Shaowei Cai, Kaile Su, Chuan Luo, and Abdul Sattar. Numvc: An efficient local search
algorithm for minimum vertex cover. J. Artif. Intell. Res., 46:687–716, 2013. doi:10.1613/JA
IR.3907.

4 Riccardo Dondi. Untangling temporal graphs of bounded degree. Theor. Comput. Sci.,
969:114040, 2023. doi:10.1016/J.TCS.2023.114040.

5 Riccardo Dondi and Manuel Lafond. An FPT algorithm for temporal graph untangling.
In Neeldhara Misra and Magnus Wahlström, editors, 18th International Symposium on
Parameterized and Exact Computation, IPEC 2023, September 6-8, 2023, Amsterdam, The
Netherlands, volume 285 of LIPIcs, pages 12:1–12:16. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2023. doi:10.4230/LIPICS.IPEC.2023.12.

6 Riccardo Dondi and Alexandru Popa. Timeline cover in temporal graphs: Exact and approxim-
ation algorithms. In Sun-Yuan Hsieh, Ling-Ju Hung, and Chia-Wei Lee, editors, Combinatorial
Algorithms - 34th International Workshop, IWOCA 2023, Tainan, Taiwan, June 7-10, 2023,
Proceedings, volume 13889 of Lecture Notes in Computer Science, pages 173–184. Springer,
2023. doi:10.1007/978-3-031-34347-6_15.

7 Riccardo Dondi and Alexandru Popa. Exact and approximation algorithms for covering
timeline in temporal graphs. Annals of Operations Research, April 2024. doi:10.1007/s104
79-024-05993-8.

TIME 2024

https://openreview.net/forum?id=Bk9mxlSFx
http://ijcai.org/Abstract/15/111
http://ijcai.org/Abstract/15/111
https://doi.org/10.1613/JAIR.3907
https://doi.org/10.1613/JAIR.3907
https://doi.org/10.1016/J.TCS.2023.114040
https://doi.org/10.4230/LIPICS.IPEC.2023.12
https://doi.org/10.1007/978-3-031-34347-6_15
https://doi.org/10.1007/s10479-024-05993-8
https://doi.org/10.1007/s10479-024-05993-8

20:16 FastMinTC+: An Heuristic for the MinTCover Problem

8 Vincent Froese, Pascal Kunz, and Philipp Zschoche. Disentangling the computational complex-
ity of network untangling. CoRR, abs/2204.02668, 2022. doi:10.48550/arXiv.2204.02668.

9 Dorit S. Hochbaum. Approximation algorithms for the set covering and vertex cover problems.
SIAM J. Comput., 11(3):555–556, 1982. doi:10.1137/0211045.

10 Petter Holme and Jari Saramäki. Temporal networks. CoRR, abs/1108.1780, 2011. arXiv:
1108.1780.

11 Yuriy Hulovatyy, Huili Chen, and Tijana Milenkovic. Exploring the structure and function of
temporal networks with dynamic graphlets. Bioinform., 32(15):2402, 2016. doi:10.1093/BI
OINFORMATICS/BTW310.

12 George Karakostas. A better approximation ratio for the vertex cover problem. ACM Trans.
Algorithms, 5(4):41:1–41:8, 2009. doi:10.1145/1597036.1597045.

13 Elias B. Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio,
Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 6348–6358, 2017.
URL: https://proceedings.neurips.cc/paper/2017/hash/d9896106ca98d3d05b8cbdf4fd8
b13a1-Abstract.html.

14 Kenneth Langedal, Johannes Langguth, Fredrik Manne, and Daniel Thilo Schroeder. Efficient
minimum weight vertex cover heuristics using graph neural networks. In Christian Schulz
and Bora Uçar, editors, 20th International Symposium on Experimental Algorithms, SEA
2022, July 25-27, 2022, Heidelberg, Germany, volume 233 of LIPIcs, pages 12:1–12:17. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.SEA.2022.12.

15 Giorgio Lazzarinetti, Riccardo Dondi, Sara Manzoni, and Italo Zoppis. An attention-based
method for the minimum vertex cover problem on complex networks. Algorithms, 17(2):72,
2024. doi:10.3390/A17020072.

16 Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Combinatorial optimization with graph
convolutional networks and guided tree search. In Samy Bengio, Hanna M. Wallach, Hugo
Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 537–
546, 2018. URL: https://proceedings.neurips.cc/paper/2018/hash/8d3bba7425e7c98c5
0f52ca1b52d3735-Abstract.html.

17 Yike Liu, Tara Safavi, Abhilash Dighe, and Danai Koutra. Graph summarization methods and
applications: A survey. ACM Comput. Surv., 51(3):62:1–62:34, 2018. doi:10.1145/3186727.

18 Othon Michail. An introduction to temporal graphs: An algorithmic perspective. Internet
Math., 12(4):239–280, 2016. doi:10.1080/15427951.2016.1177801.

19 Ashwin Paranjape, Austin R. Benson, and Jure Leskovec. Motifs in temporal networks.
Proceedings of the Tenth ACM International Conference on Web Search and Data Mining,
2016. URL: https://api.semanticscholar.org/CorpusID:13332080.

20 Yun Peng, Byron Choi, and Jianliang Xu. Graph learning for combinatorial optimization: A
survey of state-of-the-art. Data Sci. Eng., 6(2):119–141, 2021. doi:10.1007/S41019-021-001
55-3.

21 Anna-Kaisa Pietilänen and Christophe Diot. Dissemination in opportunistic social networks:
the role of temporal communities. In Proceedings of the Thirteenth ACM International
Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc ’12, pages 165–174, New
York, NY, USA, 2012. Association for Computing Machinery. doi:10.1145/2248371.2248396.

22 Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive graph
analytics and visualization. In AAAI, 2015. URL: https://networkrepository.com.

23 P. Rozenshtein. the-network-untangling-problem. https://github.com/polinapolina/the-n
etwork-untangling-problem/tree/master, 2020. [Online; accessed 13-June-2024].

https://doi.org/10.48550/arXiv.2204.02668
https://doi.org/10.1137/0211045
https://arxiv.org/abs/1108.1780
https://arxiv.org/abs/1108.1780
https://doi.org/10.1093/BIOINFORMATICS/BTW310
https://doi.org/10.1093/BIOINFORMATICS/BTW310
https://doi.org/10.1145/1597036.1597045
https://proceedings.neurips.cc/paper/2017/hash/d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.html
https://doi.org/10.4230/LIPICS.SEA.2022.12
https://doi.org/10.3390/A17020072
https://proceedings.neurips.cc/paper/2018/hash/8d3bba7425e7c98c50f52ca1b52d3735-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/8d3bba7425e7c98c50f52ca1b52d3735-Abstract.html
https://doi.org/10.1145/3186727
https://doi.org/10.1080/15427951.2016.1177801
https://api.semanticscholar.org/CorpusID:13332080
https://doi.org/10.1007/S41019-021-00155-3
https://doi.org/10.1007/S41019-021-00155-3
https://doi.org/10.1145/2248371.2248396
https://networkrepository.com
https://github.com/polinapolina/the-network-untangling-problem/tree/master
https://github.com/polinapolina/the-network-untangling-problem/tree/master

G. Lazzarinetti, S. Manzoni, I. Zoppis, and R. Dondi 20:17

24 Polina Rozenshtein, Francesco Bonchi, Aristides Gionis, Mauro Sozio, and Nikolaj Tatti.
Finding events in temporal networks: segmentation meets densest subgraph discovery. Knowl.
Inf. Syst., 62(4):1611–1639, 2020. doi:10.1007/S10115-019-01403-9.

25 Polina Rozenshtein, Nikolaj Tatti, and Aristides Gionis. The network-untangling problem:
from interactions to activity timelines. Data Min. Knowl. Discov., 35(1):213–247, 2021.
doi:10.1007/S10618-020-00717-5.

26 Neil Shah, Danai Koutra, Tianmin Zou, Brian Gallagher, and Christos Faloutsos. Timecrunch:
Interpretable dynamic graph summarization. In Longbing Cao, Chengqi Zhang, Thorsten
Joachims, Geoffrey I. Webb, Dragos D. Margineantu, and Graham Williams, editors, Pro-
ceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Sydney, NSW, Australia, August 10-13, 2015, pages 1055–1064. ACM, 2015.
doi:10.1145/2783258.2783321.

27 Bianca Wackersreuther, Peter Wackersreuther, Annahita Oswald, Christian Böhm, and
Karsten M. Borgwardt. Frequent subgraph discovery in dynamic networks. In Ulf Brefeld, Lise
Getoor, and Sofus A. Macskassy, editors, Proceedings of the Eighth Workshop on Mining and
Learning with Graphs, MLG ’10, Washington, D.C., USA, July 24-25, 2010, pages 155–162.
ACM, 2010. doi:10.1145/1830252.1830272.

A ILP formulation for MinTCover

The MinTCover problem can be formulated as an ILP mainly considering a variable
xu,t ∈ {0, 1} whose value is 1 if t is included in the activity interval of u, 0 otherwise. With
this variable we can formulate the following constraints:

Edge Coverage: For each edge (u, v, t) ∈ E, at least one between u and v must have t in
its activity interval. This can be expressed as xu,t + xv,t ≥ 1∀(u, v, t) ∈ E.
Activity Interval definition: for each vertex u and for each timestamp t, if t is included
in the activity interval of u, then the following should hold: su ≤ t ≤ eu. This means
that if xu,t = 1, then su ≤ t and eu ≥ t. This can be expressed, by adding a constant
M ≥ max(T), with two conditions, one over su and one over eu as follows:

1. su ≤ t ∗ xu,t + M(1− xu,t)
2. eu ≥ t ∗ xu,t −M(1− xu,t)
Indeed, if xu,t = 0, it holds that M ≥ su and −M ≤ eu, otherwise it holds that su ≤ t

and eu ≥ t.
Length of the Interval: for each vertex u, the length of the activity interval is by definition
δ(Iu) = eu − su. This is the objective function to be minimized. For simplicity, we can
define δ(Iu) = du.

With these variables and constraints we can formulate the ILP as in Equation 1.

minimize
∑
u∈V

du

subject to xu,t + xv,t ≥ 1 ∀(u, v, t) ∈ E

su ≤ t ∗ xu,t + M(1− xu,t) ∀u ∈ V, ∀t ∈ T

eu ≥ t ∗ xu,t −M(1− xu,t) ∀u ∈ V, ∀t ∈ T

(1)

B InitializeTC’s minimality: Proof

Theorem 4 states that the timeline T = {Iu}u∈V returned by the initializeTC algorithm,
outlined in Algorithm 2, is a minimal timeline cover.

TIME 2024

https://doi.org/10.1007/S10115-019-01403-9
https://doi.org/10.1007/S10618-020-00717-5
https://doi.org/10.1145/2783258.2783321
https://doi.org/10.1145/1830252.1830272

20:18 FastMinTC+: An Heuristic for the MinTCover Problem

Consider the timeline T = {Iu}u∈V produce as output by the extending phase, which
may be modified in the shrinking phase. By construction, at the end of the extending phase
T is a timeline cover. We now prove Theorem 4 by showing that: 1) the timeline T returned
by the procedure is a timeline cover; 2) loss value of any vertex in the timeline T does not
decrease; 3) the timeline T returned after the shrinking phase is minimal.

Proof.
1) Suppose to perform ith iteration of the shrinking phase. Note that, if T is a timeline

cover at the ith iteration, it is a timeline cover also at the (i + 1)th iteration. Indeed,
if loss(v, t)i+1 > 0, then T does not change; if loss(v, t)i+1 = 0, then (v, t) is removed,
but according to the definition of loss, removing such vertex (v, t) would not generate
any new uncovered edge. From hence, since T is a timeline cover at iteration 0, it is a
timeline cover also the end of the shrinking phase (ith iteration).

2) Notice that during the shrinking phase, the loss value of any vertex (v, t) in T does not
decrease. Indeed, if at the ith iteration loss(v, t)i > 0 the iteration does nothing, thus
its loss value does not decrease; if loss(v, t)i = 0, then all vertices in N(v) belong to T ,
otherwise, if at the ith iteration there exists a vertex (u, t) : (u, v, t) ∈ E and (u, t) /∈ T ,
by definition loss(v, t)i would be at least 1. So, in case loss(v, t)i = 0, (v, t) is removed
and along with that, the loss value of each vertex u ∈ N(v) is increased by one as, after
this iteration, the removal of u would make the edge (u, v, t) from covered to uncovered.
The loss of all the vertices not in N(v) do not change.

3) Suppose now that after the shrinking phase, there exists a vertex (v, t) in T whose removal
keeps T a timeline cover. Supposing that the shrinking phase takes i iteration, from the
assumption we can say that loss(v, t)i = 0, by definition of loss. Since the loss value of
any vertex (v, t) in T does not decrease according to point 2 of this proof, the value of
loss(v, t) at the ith iteration is at most 0, thus, since loss values are non-negative it is
exactly 0. Therefore, (v, t) would have been removed at the ith iteration. This complete
the proof by contradiction. ◀

C SelectRndVertex Quality: Proof

Theorem 5 states that with k ≥ 50, the probability that the SelectRndVertex algorithm,
outlined in Algorithm 3, choose a vertex whose loss value is not grater than 90% vertices in
T is grater or equal to 0.9948.

Proof. Consider a real number ρ ∈ (0, 1), the probability of the event E = {the loss value of
the element chosen by the SelectRndVertex algorithm is not greater than ρ|T | elements in
the set T } is Pr(E) ≥ 1− (ρ|T |−1

|T |)k > 1− ρk.
Indeed, ρ|T | is the number of elements in the ρ fraction of T with the worst losses (i.e.,

higher loss). Thus, considering that each random selection from T is independent, ρ|T |
|T |

represents the chance of selecting one of the worst ρ|T | elements in one selection. It follows
that ρ|T |−1

|T | is the probability of selecting an element whose loss value is higher or equal than
(1 − ρ)|T | elements. After k iterations, (ρ|T |−1

|T |)k is the probability that all the iterations
randomly select elements inside of the worst elements set. From hence 1− (ρ|T |−1

|T |)k > 1− ρk

is the probability that at least one of the k iterations selects an element from within the top
elements set.

This means that for k = 50, the probability that the SelectRndVertex algorithm choose a
vertex whose loss value is not greater than ρ = 90% vertices in T is Pr(E) ≥ 1−0.950 > 0.9948,
where we consider the probability of event E to be greater or equal to the computed value,
since there might be the case that more than one elements in those ρ|T | elements have the
same loss value, which is the minimum among loss values of all the ρ|T | element. ◀

	1 Introduction
	2 Preliminaries
	2.1 Problem Definition and Notions
	2.2 Related Works
	2.2.1 Approximate Solutions
	2.2.2 Heuristics for Minimum Vertex Cover

	3 FastMinTC+
	3.1 Overall Algorithm
	3.2 Initialization Algorithm
	3.3 Random Vertex Selection Algorithm
	3.4 Heuristic Complexity Analysis

	4 Performance Evaluation
	4.1 Dataset Description
	4.2 Experimental Results
	4.2.1 Sparse Instances Results
	4.2.2 Dense Instances Results
	4.2.3 Real World Instances Results

	5 Conclusion and Future Works
	A ILP formulation for MinTCover
	B InitializeTC's minimality: Proof
	C SelectRndVertex Quality: Proof

