
Agile Controllability of Simple Temporal Networks
with Uncertainty and Oracles
Johann Eder #

University of Klagenfurt, Austria

Roberto Posenato #

University of Verona, Italy

Carlo Combi #

University of Verona, Italy

Marco Franceschetti #

University of St. Gallen, Switzerland

Franziska S. Hollauf #

University of Klagenfurt, Austria

Abstract
Simple temporal networks with uncertainty (STNUs) have achieved wide attention and are the basis
of many applications requiring the representation of temporal constraints and checking whether
they are conflicting. Dynamic controllability is currently the most relaxed notion to check whether
a system can be controlled without violating temporal constraints despite uncertainties. However,
dynamic controllability assumes that the actual duration of a contingent activity is only known when
the end event of this activity takes place. The recently introduced notion of agile controllability
considers when this duration is known earlier, leading to a more relaxed notion of temporal feasibility.
We extend the definition of STNUs to STNUOs (Simple Temporal Networks with Uncertainty and
Oracles) to represent the point in time at which information about a contingent duration is available.
We formally define agile controllability as a generalization of dynamic controllability considering the
timepoints of information availability. We propose a set of constraint propagation rules for STNUOs
leading to an algorithm for checking agile controllability.

2012 ACM Subject Classification Computing methodologies → Temporal reasoning; Theory of
computation → Dynamic graph algorithms

Keywords and phrases Temporal constraint networks, contingent durations, agile controllability

Digital Object Identifier 10.4230/LIPIcs.TIME.2024.4

Supplementary Material Software: https://git-isys.aau.at/ics/Papers/stnuo.git
Dataset: https://profs.scienze.univr.it/~posenato/software/benchmarks/OSTNUBenchmarks
2024.tgz

1 Introduction

Simple temporal networks with uncertainty (STNUs) [17, 4] have gained wide recognition
for modeling temporal constraints. They extend Simple Temporal Networks (STNs) [5]
by allowing one to represent uncertainties, i.e., they include so-called contingent activities,
finishing at contingent timepoints and having a duration set by the environment of the
considered system. System controllers only know the admissible range of such contingent
durations, but they can only observe but do not decide on their actual values. STNUs are
comparatively easy to use and easy to understand but expressive enough to represent temporal
constraints for a large number of applications, for example, constraint-based planning [17],
business processes [14], requirements engineering [7], or legal smart contracts [15], to name
but a few.

© Johann Eder, Roberto Posenato, Carlo Combi, Marco Franceschetti, and Franziska S. Hollauf;
licensed under Creative Commons License CC-BY 4.0

31st International Symposium on Temporal Representation and Reasoning (TIME 2024).
Editors: Pietro Sala, Michael Sioutis, and Fusheng Wang; Article No. 4; pp. 4:1–4:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:johann.eder@aau.at
https://orcid.org/0000-0001-6050-468X
mailto:roberto.posenato@univr.it
https://orcid.org/0000-0003-0944-0419
mailto:carlo.combi@univr.it
https://orcid.org/0000-0002-4837-4701
mailto:marco.franceschetti@unisg.ch
https://orcid.org/0000-0001-7030-282X
mailto:Franziska.Hollauf@aau.at
https://orcid.org/0000-0003-1098-8713
https://doi.org/10.4230/LIPIcs.TIME.2024.4
https://git-isys.aau.at/ics/Papers/stnuo.git
https://profs.scienze.univr.it/~posenato/software/benchmarks/OSTNUBenchmarks2024.tgz
https://profs.scienze.univr.it/~posenato/software/benchmarks/OSTNUBenchmarks2024.tgz
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


4:2 Agile Controllability for STNUs with Oracles

An important question in all these applications is whether the constraints modeled in an
STNU are temporally correct: can the controller derive a schedule for a process observing
all constraints? Can the controller steer the execution of a process without violating any
constraint? Are the elicited temporal requirements in conflict? Although the notion of
satisfiability is sufficient for STNs, uncertainty in STNUs requires a more sophisticated
notion of correctness. Dynamic controllability [17] is currently the most studied notion for
the temporal correctness of STNUs. It requires a viable execution strategy (assignment
of values to timepoints) that does not violate any constraint and where later timepoints
may depend on earlier timepoints but not vice versa. For checking dynamic controllability,
effective and efficient methods with polynomial complexity have been proposed [16, 4, 12].

However, dynamic controllability assumes that the duration of contingent activities, hence
the values of contingent timepoints, are only known when they happen. This is adequate in
many applications where the actual duration of some activity is only known when the end
event of this activity is observed. An example of such an activity is a money transfer in the
EU, where there is a legal requirement that the transfer does not last longer than four days.
However, the actual duration is only known when the amount is credited to the receiver’s
account. In this case, the controller cannot schedule an event that has to occur exactly
one day before the contingent timepoint (the receipt of the transferred amount) without
(potential) violation of this temporal constraint.

However, in other applications, the duration of a contingent activity can be known earlier.
For example, a delivery time between 4 and 6 weeks is guaranteed in order processing.
However, the delivery date is communicated within a week after placing the order. In this
case, it is perfectly feasible for the controller to schedule an event precisely two days before
the contingent timepoint (day of the delivery). For such a scheduling decision, the controller
recognizes that the duration of the contingent activity is known before the contingent
timepoint takes place.

Now the question arises of how the notion of dynamic controllability can be generalized
such that in a viable execution strategy, a timepoint may depend not only on timepoints
which are earlier, but also which are known earlier. We call this novel notion of controllability
agile because information about future timepoints may be used as soon as it is available.

This notion of agile controllability has first been introduced in [22, 21] together with
an algorithm to check agile controllability based on the propagation rules in [16]. Here,
we further formalize the extension of STNUs by introducing the notion of oracles, which
represent the timepoints when the duration of a contingent activity is revealed. We formally
define agile controllability by extending the notion of a viable execution strategy based on the
available information of durations rather than only the occurrence of events. Furthermore, we
develop an algorithm for checking agile controllability based on an extension of the constraint
propagation rules presented in [4].

Therefore, the original contributions of this paper are:
1. The formal definition of STNUO (Simple Temporal Network with Uncertainty and

Oracles).
2. A formal definition of Agile Controllability.
3. ORUL, a set of rules for propagating constraints in STNUOs.
4. An algorithm for checking Agile Controllability of STNUOs.
5. A proof-of-concept implementation of the checking algorithm.

The rest of the paper is organized as follows. In Section 2, we review related work and
introduce the basic terms and definitions. In Section 3, we define STNUOs as an extension of
STNUs with so-called oracles and define Agile Controllability as an extension of the notion
of viable execution strategy. Section 4.1 discusses using oracles in execution strategies and



J. Eder, R. Posenato, C. Combi, M. Franceschetti, and F. S. Hollauf 4:3

presents ORUL, a set of propagation rules to derive implicit constraints, and a backtracking
algorithm to check agile controllability based on ORUL. Section 5 discusses the experimental
evaluation of a proof-of-concept implementation of the checking algorithm, and finally, in
Section 6, we draw some conclusions.

2 Background and Related work

2.1 Simple Temporal Networks with Uncertainty
The Simple Temporal Network with Uncertainty (STNU) is a data structure that models
temporal problems in which the execution of some events cannot be controlled. The STNU
comprises a set of timepoints and a set of temporal constraints. The timepoint set is
partitioned into controllable (executable) timepoints and uncontrollable (contingent) ones;
the constraint set is partitioned into regular and contingent ones.

The following is a formal definition of the STNU adapted from [11]:

▶ Definition 1 (STNU). An STNU is a triple (T , C, L), where:
T is a finite, non-empty set of real-valued variables called timepoints. T is partitioned
into TX , the set of executable timepoints, and TC , the set of contingent timepoints.
C is a set of binary (ordinary) constraints, each of the form Y −X ≤ δ for some X, Y ∈ T
and δ ∈ R.
L is a set of contingent links, each of the form (A, x, y, C), where A ∈ TX , C ∈ TC

and 0 < x < y < ∞. A is called the activation timepoint; C contingent timepoint. If
(A1, x1, y1, C1) and (A2, x2, y2, C2) are distinct contingent links, then C1 ̸= C2.

The tuple (T , C) forms a Simple Temporal Network (STN), a data structure proposed by
Dechter et al. in [5] to study the Simple Temporal Problem, that is, the satisfiability of a set
of (controllable) temporal constraints. An STN is satisfiable if it is possible to determine an
assignment (schedule) to timepoints such that all the constraints are satisfied. We say that a
controller executes an STN when it schedules its timepoints.

The STNU model extends the STN one by adding contingent timepoints and links.
The contingent link bounds cannot be modified, and the schedule of contingent timepoints
is decided by nature/environment, who determines the duration of each contingent link.
Therefore, given a contingent link (A, x, y, C), once the controller executes the activation
timepoint A, the environment decides the duration d ∈ [x, y] and reveals it at time A + d,
that is C = A + d.

An important property of the STNU is the dynamic controllability. To define it, we must
formally introduce some concepts we recall from [11].

▶ Definition 2 (Situation). If (A1, x1, y1, C1), . . . , (AK , xK , yK , CK) are the K contingent
links in an STNU N = (T , C, L), then the corresponding space of situations for N is
Ω = [x1, y1] × · · · × [xK , yK ]. Each situation ω = (ω1, . . . , ωK) ∈ Ω represents one possible
complete set of values for the duration of the contingent links of N (chosen by nature).

▶ Definition 3 (Schedule). A schedule for an STNU N = (T , C, L) is a mapping ξ : T ∪{⊥} →
R, where we assume that ξ(⊥) = +∞. Ξ denotes the set of all schedules for an STNU. For
historical reasons, we represent ξ(X) as [X]ξ.

After having formally introduced the durations decided by nature, i.e., a situation, and
the schedules of an STNU, i.e., the assignments of all timepoints to real values, we have to
merge such aspects, to consider a strategy that, given a situation decided by nature, finds a
suitable schedule.

TIME 2024



4:4 Agile Controllability for STNUs with Oracles

▶ Definition 4 (Execution Strategy). An execution strategy S for an STNU N = (T , C, L)
is a mapping S : Ω → Ξ.

▶ Definition 5 (Viable Execution Strategy). An execution strategy S for an STNU N =
(T , C, L) is viable if for each situation ω ∈ Ω the schedule S(ω) is a solution for N , i.e., an
assignment that satisfies all the constraints in the network.

▶ Definition 6 (Dynamic Execution Strategy). An execution strategy for an STNU N =
(T , C, L) is dynamic if, for any two situations ω′, ω′′ and any executable timepoint X ∈ TX ,
it holds that:

if [X]S(ω′) = k and S(ω′)≤k = S(ω′′)≤k, then [X]S(ω′′) = k,

where S(ω′)≤k is the set of contingent link durations observed up to and including time k,
called history1 until k. Since history also considers contingent durations observed at instant k,
we say that the dynamic execution strategy implements the instantaneous reaction semantics.

An STNU is dynamically controllable if there exists a viable dynamic execution strategy
for it, that is, an execution strategy that assigns the executable timepoints with the guarantee
that all constraints will be satisfied, irrespectively of the duration values (within the specified
bounds) the contingent links will be revealed to take [11].

2.2 Checking Dynamic Controllability
Each STNU S = (T , C, L) has a corresponding graph G = (T , Eo ∪ Elc ∪ Euc), also called
distance graph, where the timepoints in T serve as the graph’s nodes and the constraints in
C and L correspond to labeled, directed edges. In particular:

Eo = {X δ Y | (Y − X ≤ δ) ∈ C}
Elc = {A c:x C | (A, x, y, C) ∈ L}, and
Euc = {C

C:−y
A | (A, x, y, C) ∈ L}.

The so-called lower-case (LC) edge A c:x C represents the uncontrollable possibility that
the duration (C − A) might take on its minimum value x, while the so-called upper-case
(UC) edge C

C:−y
A represents the uncontrollable possibility that (C − A) might take on its

maximum value y. Such edges may be respectively notated as (A, c:x, C) and (C, C:−y, A),
while constraints in C and edges in Eo may be called ordinary constraints and edges to
distinguish them from the LC and UC edges.

Constraint propagation algorithms based on applying constraint propagation rules on
the corresponding graph have been proposed to check whether an STNU is dynamically
controllable [17, 16, 3, 12, 13]. A constraint propagation algorithm applies constraint
propagation rules to derive implicit constraints from existing ones in the STNU. The
algorithm terminates when either reaching network quiescence, i.e., no new constraints can be
derived (the network is dynamically controllable), or a negative cycle is found (the network
is not dynamically controllable). From now on, given a set of propagation rules R, we will
call closure of a set N of temporal constraints the set of constraints derived by applying the
propagation rules in R.

Morris and Muscettola were the first to propose in [17] an algorithm based on constraint
propagation that exhibits time complexity O(n5). In contrast, Cairo et al. proposed in [3] a
new set of rules that improve the time complexity of the dynamic controllability (DC) check

1 Also called pre-history in previous work [11, 2].



J. Eder, R. Posenato, C. Combi, M. Franceschetti, and F. S. Hollauf 4:5

Table 1 Edge-generation rules used by RUL [4, Fig. 2].

Rule Pre-existing and
generated edges Applicability Conditions

(R) XYW
uv

u + v
none

(U) ACX
v

c:x
C: − y

max{v − y, −x}

(A, x, y, C) ∈ L

(L) ACX
c:xv

x + v
v ≤ 0 or X ∈ TC , X ̸≡ C, ∃(B, s, t, X) ∈ L,
v ≤ t

algorithm to O(mn + k2n + kn log n), where n is the number of timepoints, m is the number
of constraints, and k is the number of contingent links. Table 1 shows the propagation rules
proposed by Cairo et al., which we will use in the following.

2.3 Related Work: Making Contingent Links Flexible
The motivation to study the flexibility for contingent links comes from different application
domains, such as business process modeling [23, 21, 20], robotics [24], and so on. Here, we
briefly introduce different approaches to managing such flexibility.

The first, proposed in [23, 19], introduces the concept of guarded link: it is a contingent
link, and thus its duration is not controlled by the system but has bounds that can be shrunk
until some specific durations, named guards. In [23], the authors extend STNUs’ propagation
rules to deal with such guarded links. In contrast, in [19], the propagation rules for checking
DC are also extended to deal with conditional execution paths, where, according to some
conditions set during the network execution, only specific time points are executed.

In a second research line, in [1], the authors discuss some degrees of strong and dy-
namic controllability for STNUs, evaluating how far a network is from being controllable.
Such metrics approximate the probability that an STNU can be dispatched offline (strong
controllability) or online (dynamic controllability). Here, the focus is on uncontrollable
networks. Such metrics are further generalized to Probabilistic Simple Temporal Networks
(PSTNs). Taking into account even more recent research results, in [24], the authors discuss
the robustness measure of PSTNs, that is, the probability of success in execution. They
introduce and discuss degrees of weak/strong/dynamic controllability, robustness under a
predefined dispatching protocol, and the PSTN expected execution utility.

There are several approaches that allow the representation of a timepoint when a con-
tingent duration is revealed. The approach proposed in [25] proposes weak controllability,
where all contingent durations are already known at the beginning of the process. Weak
controllability can be seen as a special case of agile controllability proposed here.

The temporal variables considered in [6] are means of receiving temporal information
from the process environment, for example, as output of process activities.

In [9], the authors introduce a further character of flexibility in the context of temporal
business processes, making the durations of non-contingent activities known earlier. Indeed,
they introduce and discuss the concept of semi-contingent task duration: it is a duration under
the system’s control until the task is initiated. Then, such duration becomes only observable
but not under the system’s control. Simple Temporal Networks with Semi-Contingency and
Uncertainty (STNSUs) are then introduced, and dynamic controllability is studied for this
new kind of temporal constraint network.

TIME 2024



4:6 Agile Controllability for STNUs with Oracles

In [8, 10], the authors introduce a further flexibility aspect as they extend STNUs and
Conditional Simple Temporal Networks with Uncertainty (CSTNUs) also to include a new
kind of timepoints named parameters, whose occurrence must be fixed as soon as the network
execution starts. A dynamic controllability check algorithm is proposed for this new kind of
network.

3 Extending STNUs with Oracles

As the STNU does not allow decoupling the value of a contingent duration and the time of
occurrence of the associated timepoint, we introduce a new kind of timepoint called oracle.
An oracle OC is a timepoint associated with a contingent link (A, C). When OC is executed,
it reveals the associated contingent link duration. In other words, OC can reveal the duration
of the contingent link before the contingent timepoint C occurs. We extend the formal
definition of an STNU in [11] with oracles as follows:

▶ Definition 7 (STNU with Oracles). An STNU with Oracles (STNUO) is a tuple (T , C, L, O),
where:

T is a finite, non-empty set of real-valued variables called timepoints. T is partitioned into
TX , the set of executable timepoints and TC , the set of contingent timepoints. TO ⊆ TX ,
is the set of oracle timepoints.
C is a set of binary (ordinary) constraints, each of the form Y −X ≤ δ for some X, Y ∈ T
and δ ∈ R.
L is a set of contingent links, each of the form (A, x, y, C), where A ∈ TX , C ∈ TC

and 0 < x < y < ∞. A is called the activation timepoint; C contingent timepoint. If
(A1, x1, y1, C1) and (A2, x2, y2, C2) are distinct contingent links, then C1 ̸= C2.
O : TC → TO ∪ {⊥} is a function that associates a contingent timepoint with its corre-
sponding oracle, if any. For the sake of simplicity and without loss of generality, we
assume that each oracle is associated with a single contingent timepoint.

The environment decides the duration d of a contingent link (Ai, xi, yi, Ci), revealed
at time Ai + d or when the associated oracle Oi is executed. The requirement that only
non-contingent nodes can be oracles does not reduce expressiveness, as oracles can be closely
linked to contingent nodes. If O(C) = ⊥, the contingent node C does not have an oracle.

In the following, we extend the concept of dynamic execution strategy, replacing the
concept of history with the concept of Oracle-extended History (OH) to consider also the
presence of oracle timepoints. Therefore, we prefer to call this new dynamic execution
strategy as agile execution strategy. Then, we introduce the concept of Agile Controllability.

The definitions of situation, schedule, execution strategy, and viable execution strategy
are straightforward extensions of Definitions 2–5, respectively, to also include oracle time
points.

In the definition of dynamic controllability, the history until k is the set of all contingent
durations whose contingent timepoints occurred before or at time k. For STNUOs, the
concept of history must also include all the durations revealed by oracles executed before or
at k. Therefore, we call such history as Oracle-extended History (OH) at time k. Thus, OH
contains information about the past and already-known information about the future.

▶ Definition 8 (Oracle-extended History (OH)). Given a schedule ξ for an STNUO N =
(T , C, L, O), and a time k, the Oracle-extended History (OH) until k is:

ξ≤k = {ωi | ωi = [C]ξ − [A]ξ and min{[C]ξ, [O(C)]ξ} ≤ k}.



J. Eder, R. Posenato, C. Combi, M. Franceschetti, and F. S. Hollauf 4:7

V

A C

X

Y

W

OC

c:10
C:−20

3
−3

−2

20
−4

6

10
−8 −

10 25

0

Figure 1 An STNUO with contingent link (A, 10, 20, C). Oracle OC is associated to C.

▶ Definition 9 (Agile Execution Strategy with Oracles). Let N = (T , C, L, O) be an STNUO.
An execution strategy with oracles SO for N is agile if, for any two situations ω′, ω′′ and
any executable timepoint X ∈ T , it holds that:

if [X]SO(ω′) = k and SO(ω′)≤k = SO(ω′′)≤k, then [X]SO(ω′′) = k

where SO(ω) is a schedule determined by the execution strategy with oracles SO given the
situation ω, and SO(ω)≤k is OH until k. Since OH also considers contingent durations
observed and revealed until time k, we say that the dynamic execution strategy implements
the instantaneous reaction semantics.

▶ Definition 10 (Agile Controllability (AC)). An STNUO N = (T , C, L, O) is agilely control-
lable if it admits a viable agile execution strategy with oracles. We refer to agile controllability
(AC) as the property of being agilely controllable.

▶ Example 11. Let us consider an STNUO N = (T , C, L, O) as depicted in Figure 1, where
OC is the oracle for C that must be executed 3 time units after the activation timepoint A.
Let d ∈ [10, 20] be the duration revealed by the oracle OC .
V can neither be scheduled with nor without an oracle because if the contingent link lasts 10,
the oracle is executed too late to allow V to be executed, satisfying the constraint with C. W

must be scheduled before the oracle to satisfy the constraint with C. Therefore, the oracle is
not relevant for scheduling W . X can be scheduled without oracle (for example, X = A + 2)
or with oracle (for example, X = OC − 3 + d − 4 = A + d − 4, where 4 is one of the possible
values to choose.) Y can be scheduled only with oracle: Y = OC − 3 + d − 5 = A + d − 5.
Thus, Y can be executed only after OC .

The notion of agile controllability is strictly more general than the notion of dynamic
controllability.

▶ Lemma 12. Let N = (T , C, L, O) be an STNUO. If the STNU N ′ = (T , C, L) is dynami-
cally controllable, then N is agilely controllable.

Proof. The lemma follows directly from the definition as if N satisfies the requirements for
dynamic controllability; it also satisfies those of agile controllability, as any viable dynamic
execution strategy is also a viable agile execution strategy. ◀

4 Checking Agile Controllability of STNUO

This section presents a procedure for checking whether an STNUO is agilely controllable.
The procedure is based on the rules introduced in Table 1. For the following considerations,
let X be a non-contingent node, C a contingent node (with activation node A), and m/M

the minimum/maximum duration of the considered contingent link (A, m, M, C).

TIME 2024



4:8 Agile Controllability for STNUs with Oracles

4.1 On The Usage of Oracles
The canonical problem we deal with here arises when a timepoint X depends on a future
contingent timepoint C, i.e., there is a constraint X ≤ C + δ, where δ < 0. The standard
STNU semantics assumes that the value of a contingent timepoint, here C, is only revealed
when C occurs. Therefore, the value for X must not violate the constraint for any possible
C, i.e., ∃X∀C | X ≤ C + δ. Such a set is only possible if X ≤ A + m + δ, which is the
constraint derived by the L rule in Table 1, i.e., at the latest, X has to be executed at least
δ time units before the earliest execution of C.

On the other hand, if there is a constraint C ≤ X + δ′, 0 ≤ δ′, then STNU is DC
only if M − m ≤ δ + δ′, that is, if the difference between the smallest and the greatest
distance between X and C is larger than the contingency of C (i.e., the difference between
the maximum and minimum distances between A and C); otherwise, the constraints conflict.

▶ Example 13. The node X in Figure 1 can be scheduled since the contingency of C is 10
smaller than 18, the range of possible distances between C and X. For node Y , these values
are 10 and 2. Applying the rules U and L to X, C, and A leads to a negative cycle.

However, if the duration of contingent activity is revealed earlier by an oracle at time
point OC , then it is sufficient that ∀C∃X | X ≤ C + δ. However, the following constraint
has to hold: OC ≤ X and consequently OC ≤ C + δ. So, the essence of using an oracle is
that the sequence of quantifiers is changed from ∃X∀C to ∀C∃X. However, the price is the
introduction of an additional constraint, which could conflict with other constraints.

For the propagation of constraints, this has the following consequences:
(1) If the oracle is not used, then the L and U rules must be applied.
(2) If the oracle is used, then the L and U rules must not be applied on X and C, but the

additional constraint Oc ≤ X must be added to the OSTNU.

Generally, the STNUs derived in (1) or (2) are not equivalent and admit different closures.
Moreover, one closure could contain a negative cycle, and the other not.

▶ Example 14. Using the oracle avoids the negative cycle resulting from propagation in
case (1), such as Y in Figure 1. On the other hand, using the oracle as in case (2) might
lead to a conflict that was not there, such as W in Figure 1.

These possible configurations are all considered in the definition of a viable execution
strategy: the value of X may be a function of the duration of a contingent activity d if C

is in the history of X (i.e., is before X), or OC is in the oracle-extended history of X (i.e.,
OC is before X). The disjunction in the definition of oracle-extended history also leads to a
choice in applying rules to propagate constraints.

▶ Example 15. In Figure 1, for timepoint X, there is the choice to either apply the rules L
and U or consider the oracle OC and introduce constraint Oc ≤ X.

An interesting question is determining when an oracle is necessary to guarantee Agile
Controllability. Basically, we can only use an oracle if there is one for a contingent node.
Then, we only have to consider whether to use an oracle if there is a negative link from
the considered contingent node to a non-contingent node. This link could be the result of
constraint propagation.

We call U = {(X, C) | X ∈ TX , C ∈ TC , O(C) ̸= ⊥} the set of all potential oracle
candidates. If there is constraint X ≤ C + δ, or a constraint C ≤ X + δ′ with C ∈ TC ,
O(C) ̸= ⊥, X ∈ TX , δ < 0, and 0 ≤ δ′, then we call (X, C) an oracle candidate since a
viable execution strategy could require the usage of the oracle.



J. Eder, R. Posenato, C. Combi, M. Franceschetti, and F. S. Hollauf 4:9

Table 2 ORUL: propagation rules extending RUL ones for checking Agile Controllability of
STNUO. U+ is the set of all oracle candidates for which the oracle should be used, and U− is the
set of all oracle candidates for which the oracle should not be used.

Rule Pre-existing and
generated edges

Conditions

Relax (REL) XYW
uv

u + v
none

Upper (UPP) ACX
v

c:x
C: − y

max{v − y, −x}

(X, C) ∈ U− or O(C) = ⊥ or X ∈ TC

Lower (LOW) ACX
c:xv

x + v

X ∈ TX ,

((X, C) ∈ U− or O(C) = ⊥), v ≤ 0, or
X ∈ TC , X ̸≡ C, ∃(B, w, y, X) ∈ L, v ≤ y

Oracle (ORC) ACX

OC

c:x
C: − yv

0

X ∈ TX , (X, C) ∈ U+

▶ Example 16. In Figure 1, all pairs (V, C), (W, C), (X, C), (Y, C) are oracle candidates.

Now consider the case where there are a pair of constraints, X ≤ C + δ and C ≤ X + δ′,
with δ < 0, and δ + δ′ ≤ M − m, the contingency of C. In such a configuration, there is no
viable execution strategy without using the oracle OC . Therefore, we call (X, C) oracle
dependent.

▶ Example 17. In Figure 1, (Y, C) is oracle dependent.

Constraints can only become stricter (and never removed) during constraint propagation.
Therefore, if an oracle candidate (X, C) becomes oracle dependent due to the propagation of
constraints, it will remain oracle dependent.

While for oracle-dependent pairs, any viable solution must use the oracle, constraint
propagation could, but not necessarily, make oracle dependent some oracle candidates.
Whether a pair becomes an oracle candidate or oracle dependent might also depend on which
oracles are used for constraint propagation and which are not.

As there is no way of deciding upfront whether a (X, C) pair will become oracle dependent,
it will be necessary for oracle candidates, which are not oracle dependent, to explore both
options: to use oracle and not to use the oracle. For a particular constraint propagation, it
is necessary to decide for which (X, C) pairs to use the oracle.

4.2 Propagation rules for STNUOs
In the previous section, we argued that exploring whether an oracle has to be used for an
oracle candidate might be necessary. For guiding the propagation of constraints, we maintain
two sets of oracle candidates:

U+ is the set of all oracle candidates for which the oracle has to be used, and
U− is the set of all oracle candidates for which the oracle has not to be used.

In Table 2, we propose ORUL, a set of constraint-propagation rules based on RUL set [4],
modified for checking agile controllability. ORUL uses sets U+ and U− to guide the rules’
application. Briefly, the REL rule is the same as the R rule in Table 1. The conditions for
the UPP and LOW rules are extended with additional restriction (X, C) ∈ U− such that the
rules are only applied if oracles should not be used. The new ORC rule inserts the necessary
constraints for using an oracle when (X, C) ∈ U+.

TIME 2024



4:10 Agile Controllability for STNUs with Oracles

The following theorem states conditions on U+ and U− to guarantee AC.

▶ Theorem 18. Let N = (T , C, L, O) be an STNUO and let U = {(X, C) | X ∈ TX , C ∈
TC , O(C) ̸= ⊥} be the set of all possible pairs (ordinary node, contingent node) where the
contingent node has its corresponding oracle.

N is Agilely Controllable if ∃ U+, U− such that U = U+ ∪ U−, U+ ∩ U− = ∅, and the
closure of N considering U+, U− for the propagation rules in Table 2 does not include a
negative cycle.

Proof Sketch. We show that ORUL is sound, i.e., if ORUL does not lead to a negative cycle,
then the STNUO is AC. It is straightforward to show that the propagated constraints are
finite if no negative cycle is derived. Hence, let N ∗

O be the closure of N with respect to
ORUL, and N ∗

R be the set of all constraints derived by RUL. Cairo and Rizzi showed that
the constraints of N ∗

R are necessary and sufficient to decide whether N is DC [4]. We show
that N ∗

O contains all the constraints of N ∗
R except those that are not necessary if oracles

are used, while it includes all the constraints needed for the oracle candidates in U+. It also
excludes all constraints that are derived from unnecessary ones. Hence, N ∗

O is sufficient to
decide whether N is AC.

If U+ = ∅, and thus U− = U , then the rules in Table 2 are the same as in Table 1, and
N ∗

R = N ∗
O. As in [4], we can conclude that the STNUO is DC and hence AC if no negative

cycle is derived.
If U+ ̸= ∅, let (X, C) ∈ U+, (A, m, M, C) ∈ L, (X − C ≤ δ) ∈ C, (C − X ≤ δ′) ∈ C,

δ < 0 < δ′, 0 ≤ δ′ + δ < M − m, and O(C) = O. Since oracle O is used for X, (O − X ≤
0) ∈ N ∗

O and the LOW and UPP rules are not applied for the triple ⟨X, A, C⟩. Hence, the
LOW- and UPP-derived constraints between A and X are not in N ∗

O. For a viable execution
strategy, these constraints are not necessary, as for any duration d of the contingent activity
(A, m, M, C), C = A + d. There exists a value for X that satisfies constraints (X − C ≤ δ)
and (C − X ≤ δ′). In fact, both X and A are executable timepoints, and d is available
before X, therefore X = A + d + δ is admissible and allows for the satisfaction of constraints
(X − C ≤ δ) and (C − X ≤ δ′). Therefore, if the propagation of such constraints does not
determine negative cycles, then the network is AC.

We may also observe that any constraint that can be derived from N by rules in Table 1
which is not in N ∗

O, would be the result of a sequence of rule applications, starting by
applying the UPP or LOW rules to some ⟨X, A, C⟩, where (X, C) in U+, and hence is not
necessary. ◀

4.3 A Checking Algorithm
We propose the backtracking Algorithm 1 to check whether an STNUO is agilely controllable.

The algorithm aims to check whether there exist sets U+ and its complementary U−

such that the propagation with these sets does not lead to a negative cycle. As outlined at
the end of Section 4.1, there is no way to know in advance sets U+ and U−. Therefore, the
algorithm computes these sets incrementally and with backtracking. To reduce the effort
of backtracking, the general strategy is to delay decisions about potential membership of a
pair (X, C) in these sets as late as possible, but for those having an explicit condition for
membership to U+ or U−. For this reason, U+ and U− are both empty when the algorithm
starts, and only at the end, if the network is agilely controllable, they satisfy the conditions
of Theorem 182.

2 More precisely, U+∩U− = ∅ and U+∪U− ⊆ U . Indeed, the algorithm does not consider pairs (X, C) for
which there are no explicit constraints. Such possible pairs are not effective with respect to constraint
propagations.



J. Eder, R. Posenato, C. Combi, M. Franceschetti, and F. S. Hollauf 4:11

Algorithm 1 CheckAC.

Input: N an STNUO, U−, U+

Output: Agile controllability status
1 ok ← applyRules(N ,U−,U+);
2 if ok then
3 save(N ,U−,U+);
4 U0 ← getOpenOracles(N ,U−,U+);
5 if U0 ̸= ∅ then
6 (X, C)← select(U0);
7 if interval(X, C) > contingencyInterval(C) then
8 U− ← U− ∪ {(X, C)};
9 ok ← checkAC(N ,U−,U+);

10 if not ok then
11 restore(N ,U−,U+);

12 if (X, C) ̸∈ U− then
13 U+ ← U+ ∪ {(X, C)};
14 ok ← checkAC(N ,U−,U+);
15 if not ok then
16 restore(N ,U−,U+);

17 return ok

The algorithm is recursive. It starts with applying all the rules in Table 2. If the check is
positive (no negative cycle was discovered), it determines which oracle-dependent pairs have
not yet been considered and tries to assign each to U− or U+ recursively. When a negative
cycle is discovered, the STNUO with the current sets U+ and U− is not agilely controllable
and, therefore, backtracking is required (procedure restore). If there is no negative cycle,
the algorithm checks whether there are still undecided oracle candidates. Heuristically, one
undecided candidate pair (X, C) is chosen. Suppose a solution without applying the oracle
for this pair is still possible (no oracle dependency). In that case, we decide not to use the
oracle (i.e., inserting (X, C) in U−) and proceed recursively, invoking the checking procedure.
If it fails, we restore the STNUO and continue with the decision to use the oracle (i.e.,
inserting (X, C) in U+) and recursively invoke the checking procedure.

When constraints lead to an oracle-dependent pair (X, C) (line 12 of Algorithm 1), such a
pair is inserted into U+. When a constraint C v X with a non-positive v is derived, (X, C) is
inserted into U− (line 8 of Algorithm 1). The procedure terminates when either no additional
constraints can be derived, and the procedure returns true, or a negative cycle is detected,
and the procedure returns false.

The algorithm uses the following auxiliary procedures.

getOpenOracles(N , U−, U+)

It returns the set of oracle candidates (X, C), i.e., the set of all pairs (X, C) for which either
a constraint C v X with a non-positive v or a constraint X w C with a non-negative w

exist and (X, C) is neither in U− nor in U+.

select(U0)

It returns one of the oracle candidate pairs (X, C), not yet in U− neither in U+. Heuristically,
it returns the pair with the smallest difference between its interval and the contingency
interval of C.

TIME 2024



4:12 Agile Controllability for STNUs with Oracles

applyRules(N , U−, U+)

It iteratively applies rules of Table 2 to generate additional constraints. It returns false if a
negative cycle is discovered; true, otherwise.

save(N , U−, U+)

It saves the current set of constraints such that restore(N , U−, U+) can reconstruct the
set of constraints as they were when the corresponding save(N , U−, U+) was executed.
These procedures support backtracking if a negative cycle is found based on a decision on
the inclusion of pairs in U− resp. U+.

interval(X, C)

It returns the value δ + δ′ derived by the constraints (X − C ≤ δ) and (C − X ≤ δ′).

contingencyInterval(C)

It returns the value u − l relative to the contingent link (A, l, u, C) associated with the input
contingent timepoint C.

▶ Example 19. Figure 2 presents the process of applying the algorithm on an example
STNUO where (A, 20, 30, C) is a contingent link, OC is its oracle, and X and Y are non-
contingent nodes. Propagated self-loops (e.g., from X to X) are excluded from the figure
for readability reasons except for negative cycles. In one step, newly propagated constraints
by the rules in Table 2 are depicted as follows: rules propagated by REL are colored gray,
by UPP orange, by LOW olive, and by ORC blue. Negative cycles are marked in red.
Pre-existing or pre-propagated constraints are black.

The algorithm starts with empty U+ and U−. In the first step (line 1 of Algorithm 1),
the rules are applied by propagating three new constraints via REL as presented in Figure 2
(step I). This intermediate STNUO is checked for a negative cycle. Since it does not have one
(is ok), the algorithm proceeds with saving this state and getting the open oracles (lines µ3
and 4 of Algorithm 1). U0 includes then the following pairs: (X, C) and (Y, C).

Next, (X, C) is selected to check whether to use the oracle for it (line 6 of Algorithm 1). In
this case, interval(X, C) = 15 − (−4) = 19 and contingencyInterval (X, C) = 30 − 20 =
10. Since the contingency interval is smaller, (X, C) is put in U− (lines 7-9 of Algorithm 1).

CheckAC calls itself. The rules are applied, and new constraints are propagated via REL
as presented in Figure 2 (Step II). The STNUO now has a negative cycle. Indeed, the
self-cycle in A equal to −1 is derived. More precisely, applying rule REL on timepoints A,
X, and C, we obtain (A, C) = 16 + 13 = 29; then, applying rule UPP on A, C, A, we obtain
the negative self-cycle 29 − 30 = −1 in A.

Thus, the status is not ok, and the algorithm backtracks (lines 10 and 11 of Algorithm 1):
The STNUO from step (I) is restored (see step III in Figure 2) and (X, C) is removed from
U−. Thus, the algorithm checks what happens if the oracle is used for (X, C) (lines 12-16 of
Algorithm 1). (X, C) is put in U+.

CheckAC calls itself. The rules are applied again, and new constraints are propagated
(see step IV in Figure 2). This STNUO is without a negative cycle (status is ok). The
algorithm stores this state and gets again the open oracles. U0 now includes only (Y, C).
For this pair, interval(Y, C) = ∞ (since there is only the constraint C − Y ≤ 9) and
contingencyInterval(Y, C) = 30 − 20 = 10. Since the contingency interval is smaller,
(Y, C) is put in U−.



J. Eder, R. Posenato, C. Combi, M. Franceschetti, and F. S. Hollauf 4:13

CheckAC calls itself again, and the rules are applied (see Step V in Figure 2). No
constraint leading to a negative cycle was propagated (status is ok). This state is saved, and
the algorithm checks for open oracles. None are found; hence, U0 is empty. The algorithm
ends with the result that the STNUO is agilely controllable.

4.3.1 Computational Complexity

Since CheckAC is a recursive backtracking algorithm, it is possible to give an upper bound
to its space complexity assuming the worst case that each oracle must be paired with each
other timepoint. In such a case, the depth of the recursion is O(kn) (assuming that each of
k contingent timepoints has an oracle). For each level of recursion, it is necessary to store

A

C

X

OC

Y

c
:2

0
C

:−
30

−
415

9

20

I

A

C

X

OC

Y

c
:2

0
C

:−
30

−
415

9

5

29

25 20

II

III

A

C

X

OC

Y

−1

c
:2

0
C

:−
30

−
4

15,14, 13

1, 0
9

5

5, 4

29
−

21
,−

20
,−

19

25
,1

6
−

17
,−

16
,−

15

0

20

−12, −
11, −

10

−4
5

25

IV

A

C

X

OC

Y

c
:2

0
C

:−
30

−
415

9

5

29

25

0

20

−4
5

25

V

A

C

X

OC

Y

c
:2

0
C

:−
30

−
415

9

5

29

25

0

20

−20

−4
5

25

Figure 2 Applying CheckAC on an STNUO example.

TIME 2024



4:14 Agile Controllability for STNUs with Oracles

(save procedure) the configuration of the network and the two sets U+ and U−. Such an
operation requires space O(n2), where n is the number of all timepoints. Therefore, the
computational space required by the algorithm is O(kn3).

5 Experimental Evaluation

The algorithm for checking the agile controllability of an STNUO presented in Section 4.3
has been implemented as a proof-of-concept prototype to test the algorithm’s correctness
and analyze its feasibility.

The algorithm has been implemented in Java. Experiments with this implementation
were executed on an Ubuntu 22 machine having 16GB of RAM and an AMD EPYC-Rome
(8) @ 2.6GHz CPU. The experiments use as input data from the OSTNU benchmark, which
is available online3.

The benchmark includes 30 random STNUO instances with 30 nodes (5 contingent and 2
oracles). In all cases, the implementation produced the correct result. We ran the checking
algorithm 100 times on each example and determined the average AC checking execution
time. All execution average times are below 3 s. Therefore, our approach to determining
the AC property is comparable to that presented by Posenato et al. [22]. This allows us to
conclude that the algorithm is feasible for realistically sized STNUOs. Nevertheless, we will
continue optimizing the algorithm and its implementation. For example, we will want to
consider the DC checking algorithm in [13], which implements a DC checker based on the
rules in Table 1 in a more efficient way, for the applyRules(N , U−, U+) procedure, and to
improve the heuristics for the select(U0) procedure.

The source code of the prototype implementation, the parser of the data sets used for
the experiments, and the complete results are publicly available in an online repository4.

6 Discussion and Conclusions

We proposed agile controllability (AC) as a proper generalization of the well-established
notion of dynamic controllability for STNUs, leading to a more relaxed notion of temporal
correctness, which is still strong enough to guarantee that a controller can steer the execution
of a process in a way that no temporal constraint is violated despite uncertainties. The main
distinction to dynamic controllability is that available information about future durations
of contingent links can be utilized for scheduling and dispatching timepoints. STUNOs,
Simple Temporal Networks with Uncertainty and Oracles, can express when information
about the timepoint of future contingent links is available. We presented a formal definition
of viable execution strategies that utilize such advanced information. We also presented a set
of rules for propagating constraints, leading to an algorithm that effectively checks whether
an STNUO is agilely controllable.

AC is expected to support a wide range of applications as it provides a less restrictive
notion of temporal correctness of plans, processes, requirements, contracts, etc. The pre-
sented algorithm seems feasible for typical problem sizes in many of these application areas.
Nevertheless, improving implementations of this algorithm will further extend the approach’s
applicability. Indeed, the algorithm CheckAC and its related proof-of-concept implementation,

3 https://profs.scienze.univr.it/~posenato/software/benchmarks/OSTNUBenchmarks2024.
tgz [18]

4 https://git-isys.aau.at/ics/Papers/stnuo.git

https://profs.scienze.univr.it/~posenato/software/benchmarks/OSTNUBenchmarks2024.tgz
https://profs.scienze.univr.it/~posenato/software/benchmarks/OSTNUBenchmarks2024.tgz
https://git-isys.aau.at/ics/Papers/stnuo.git


J. Eder, R. Posenato, C. Combi, M. Franceschetti, and F. S. Hollauf 4:15

as it is presented here, is intended to demonstrate the existence of an effective backtracking
algorithm to check the agile controllability of an STNUO. It is not optimized, and exploring
numerous possibilities to develop a significantly more efficient implementation of this basic
algorithm is the subject of ongoing research.

References
1 Shyan Akmal, Savana Ammons, Hemeng Li, Michael Gao, Lindsay Popowski, and James

C. Boerkoel Jr. Quantifying controllability in temporal networks with uncertainty. Artif.
Intell., 289:103384, 2020. doi:10.1016/J.ARTINT.2020.103384.

2 Arthur Bit-Monnot and Paul Morris. Dynamic Controllability of Temporal Plans in Uncertain
and Partially Observable Environments. Journal of Artificial Intelligence Research, 77:1311–
1369, August 2023. doi:10.1613/jair.1.13065.

3 Massimo Cairo, Luke Hunsberger, and Romeo Rizzi. Faster dynamic controllability checking
for simple temporal networks with uncertainty. In 25th International Symposium on Temporal
Representation and Reasoning (TIME 2018), volume 120 of LIPIcs, pages 8:1–8:16, 2018.
ISBN: 9783959770897. doi:10.4230/LIPIcs.TIME.2018.8.

4 Massimo Cairo and Romeo Rizzi. Dynamic controllability of simple temporal networks with
uncertainty: Simple rules and fast real-time execution. Theoretical Computer Science, 797:2–16,
2019. doi:10.1016/J.TCS.2018.11.005.

5 Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint networks. Artificial intelligence,
49(1-3):61–95, 1991. doi:10.1016/0004-3702(91)90006-6.

6 Johann Eder, Marco Franceschetti, and Julius Köpke. Controllability of business processes with
temporal variables. In ACM SAC 2019, pages 40–47, 2019. doi:10.1145/3297280.3297286.

7 Johann Eder, Marco Franceschetti, and Josef Lubas. Time and processes: Towards engineering
temporal requirements. In Proceedings of the 16th International Conference on Software Tech-
nologies, ICSOFT 2021, pages 9–16. SCITEPRESS, 2021. doi:10.5220/0010625400090016.

8 Marco Franceschetti and Johann Eder. Checking temporal service level agreements for web
service compositions with temporal parameters. In 2019 IEEE International Conference on
Web Services (ICWS), pages 443–445. IEEE, 2019. doi:10.1109/ICWS.2019.00080.

9 Marco Franceschetti and Johann Eder. Semi-contingent task durations: Characterization
and controllability. In Marcello La Rosa, Shazia W. Sadiq, and Ernest Teniente, editors,
Advanced Information Systems Engineering - 33rd International Conference, CAiSE 2021,
Melbourne, VIC, Australia, June 28 - July 2, 2021, Proceedings, volume 12751 of Lecture Notes
in Computer Science, pages 246–261. Springer, 2021. doi:10.1007/978-3-030-79382-1_15.

10 Marco Franceschetti, Roberto Posenato, Carlo Combi, and Johann Eder. Dynamic Con-
trollability of Parameterized CSTNUs. In ACM SAC 2023, pages 965–973, 2023. doi:
10.1145/3555776.3577618.

11 Luke Hunsberger. Efficient execution of dynamically controllable simple temporal networks
with uncertainty. Acta Informatica, 53:89–147, 2016. doi:10.1007/S00236-015-0227-0.

12 Luke Hunsberger and Roberto Posenato. Speeding up the RUL¯ Dynamic-Controllability-
Checking Algorithm for Simple Temporal Networks with Uncertainty. In Proceedings of the
36th AAAI Conference on Artificial Intelligence, volume 36, pages 9776–9785. AAAI Press,
2022. doi:10.1609/aaai.v36i9.21213.

13 Luke Hunsberger and Roberto Posenato. A Faster Algorithm for Converting Simple Temporal
Networks with Uncertainty into Dispatchable Form. Information and Computation, 293, June
2023. doi:10.1016/j.ic.2023.105063.

14 Andreas Lanz, Roberto Posenato, Carlo Combi, and Manfred Reichert. Simple Temporal
Networks with Partially Shrinkable Uncertainty. In Proceedings of the 6th International
Conference on Agents and Artificial Intelligence (ICAART 2015), volume 2, 2015. doi:
10.5220/0005200903700381.

TIME 2024

https://doi.org/10.1016/J.ARTINT.2020.103384
https://doi.org/10.1613/jair.1.13065
https://doi.org/10.4230/LIPIcs.TIME.2018.8
https://doi.org/10.1016/J.TCS.2018.11.005
https://doi.org/10.1016/0004-3702(91)90006-6
https://doi.org/10.1145/3297280.3297286
https://doi.org/10.5220/0010625400090016
https://doi.org/10.1109/ICWS.2019.00080
https://doi.org/10.1007/978-3-030-79382-1_15
https://doi.org/10.1145/3555776.3577618
https://doi.org/10.1145/3555776.3577618
https://doi.org/10.1007/S00236-015-0227-0
https://doi.org/10.1609/aaai.v36i9.21213
https://doi.org/10.1016/j.ic.2023.105063
https://doi.org/10.5220/0005200903700381
https://doi.org/10.5220/0005200903700381


4:16 Agile Controllability for STNUs with Oracles

15 Josef Lubas and Johann Eder. A time-aware model for legal smart contracts. In Han van der
Aa, Dominik Bork, Henderik A. Proper, and Rainer Schmidt, editors, Enterprise, Business-
Process and Information Systems Modeling, pages 121–135, Cham, 2023. Springer Nature
Switzerland. doi:10.1007/978-3-031-34241-7_9.

16 Paul Morris. Dynamic controllability and dispatchability relationships. In CPAIOR 2014,
volume 8451 of LNCS, 2014. doi:10.1007/978-3-319-07046-9_33.

17 Paul H. Morris and Nicola Muscettola. Temporal dynamic controllability revisited. In 20th
National Conf. on Artificial Intelligence (AAAI-2005), 2005. URL: https://cdn.aaai.org/
AAAI/2005/AAAI05-189.pdf.

18 Roberto Posenato. CSTNU Tool: A Java library for checking temporal networks. SoftwareX,
17:100905, 2022. doi:10.1016/j.softx.2021.100905.

19 Roberto Posenato and Carlo Combi. Adding flexibility to uncertainty: Flexible simple temporal
networks with uncertainty (FTNU). Inf. Sci., 584:784–807, 2022. doi:10.1016/J.INS.2021.
10.008.

20 Roberto Posenato and Carlo Combi. Flexible temporal constraint management in modularized
processes. Inf. Syst., 118:102257, 2023. doi:10.1016/J.IS.2023.102257.

21 Roberto Posenato, Marco Franceschetti, Carlo Combi, and Johann Eder. Some results and
challenges Extending Dynamic Controllability to Agile Controllability in Simple Temporal
Networks with Uncertainties. TechRep 1/2023, Dip. Informatica-Univ. di Verona, 2023. URL:
https://iris.univr.it/handle/11562/1116013.

22 Roberto Posenato, Marco Franceschetti, Carlo Combi, and Johann Eder. Introducing agile
controllability in temporal business processes. In Enterprise, Business-Process and Information
Systems Modeling - 25th International Conference, BPMDS 2024, and 29th International
Conference, EMMSAD 2024, volume 511 of Lecture Notes in Business Information Processing,
pages 87–99. Springer, 2024. doi:10.1007/978-3-031-61007-3_8.

23 Roberto Posenato, Andreas Lanz, Carlo Combi, and Manfred Reichert. Managing time-
awareness in modularized processes. Softw. Syst. Model., 18(2):1135–1154, 2019. doi:10.
1007/S10270-017-0643-4.

24 Michael Saint-Guillain, Tiago Vaquero, Steve A. Chien, Jagriti Agrawal, and Jordan R.
Abrahams. Probabilistic temporal networks with ordinary distributions: Theory, robustness
and expected utility. J. Artif. Intell. Res., 71:1091–1136, 2021. doi:10.1613/JAIR.1.13019.

25 Thierry Vidal and Hélène Fargier. Handling contingency in temporal constraint networks:
from consistency to controllabilities. J. Exp. Theor. Artif. Intell., 11(1), 1999. doi:10.1080/
095281399146607.

https://doi.org/10.1007/978-3-031-34241-7_9
https://doi.org/10.1007/978-3-319-07046-9_33
https://cdn.aaai.org/AAAI/2005/AAAI05-189.pdf
https://cdn.aaai.org/AAAI/2005/AAAI05-189.pdf
https://doi.org/10.1016/j.softx.2021.100905
https://doi.org/10.1016/J.INS.2021.10.008
https://doi.org/10.1016/J.INS.2021.10.008
https://doi.org/10.1016/J.IS.2023.102257
https://iris.univr.it/handle/11562/1116013
https://doi.org/10.1007/978-3-031-61007-3_8
https://doi.org/10.1007/S10270-017-0643-4
https://doi.org/10.1007/S10270-017-0643-4
https://doi.org/10.1613/JAIR.1.13019
https://doi.org/10.1080/095281399146607
https://doi.org/10.1080/095281399146607

	1 Introduction
	2 Background and Related work
	2.1 Simple Temporal Networks with Uncertainty
	2.2 Checking Dynamic Controllability
	2.3 Related Work: Making Contingent Links Flexible

	3 Extending STNUs with Oracles
	4 Checking Agile Controllability of STNUO
	4.1 On The Usage of Oracles
	4.2 Propagation rules for STNUOs
	4.3 A Checking Algorithm
	4.3.1 Computational Complexity


	5 Experimental Evaluation
	6 Discussion and Conclusions

