
Extending the Range of Temporal Specifications of
the Run-Time Event Calculus
Periklis Mantenoglou #

National and Kapodistrian University of Athens, Greece
NCSR “Demokritos”, Athens, Greece

Alexander Artikis #

University of Piraeus, Greece
NCSR “Demokritos”, Athens, Greece

Abstract
Composite event recognition (CER) frameworks reason over streams of low-level, symbolic events in
order to detect instances of spatio-temporal patterns defining high-level, composite activities. The
Event Calculus is a temporal, logical formalism that has been used to define composite activities in
CER, while RTEC◦ is a formal CER framework that detects composite activities based on their
Event Calculus definitions. RTEC◦, however, cannot handle every possible set of Event Calculus
definitions for composite activities, limiting the range of CER applications supported by RTEC◦. We
propose RTECfl , an extension of RTEC◦ that supports arbitrary composite activity specifications in
the Event Calculus. We present the syntax, semantics, reasoning algorithms and time complexity
of RTECfl . Our analysis demonstrates that RTECfl extends the scope of RTEC◦, supporting
every possible set of Event Calculus definitions for composite activities, while maintaining the high
reasoning efficiency of RTEC◦.

2012 ACM Subject Classification Computing methodologies → Temporal reasoning

Keywords and phrases Event Calculus, temporal pattern matching, composite event recognition

Digital Object Identifier 10.4230/LIPIcs.TIME.2024.6

Supplementary Material Software: https://github.com/aartikis/rtec
archived at swh:1:dir:71c0e451729b42a4ad25f6e6fad998fe5d35adba

Funding This work was supported by the EU-funded CREXDATA project (No 101092749), and
partly supported by the University of Piraeus Research Center.

1 Introduction

Composite event recognition (CER) involves the detection of composite activities by reasoning
over streams of time-stamped, symbolic events [16, 20]. A CER framework employs an activity
specification language, where it is possible to express the spatio-temporal combinations of
input events that form each activity of interest in some application domain. In human activity
recognition, e.g., we may specify the time periods during which two people are “gathering”
using a pattern stating that at least one of the two people is walking towards the other one,
while, at the same time, the distance between them is a few meters and they are facing each
other. As another example, in the task of monitoring composite maritime activities, we may
define “trawling”, i.e., a type of fishing activity that involves several consecutive turns, as a
sequence of “change in heading” events.

The literature contains numerous CER frameworks [1, 20], several of which are automata-
based [32, 39, 21]. CORE, e.g., is a formal automata-based CER system that has proven to be
more efficient than other contemporary automata-based engines [10]. CORE is restricted to
unary relations, while the composite activities derived by CORE cannot be used as building
blocks in other patterns. In other words, CORE does not support relational and hierarchical

© Periklis Mantenoglou and Alexander Artikis;
licensed under Creative Commons License CC-BY 4.0

31st International Symposium on Temporal Representation and Reasoning (TIME 2024).
Editors: Pietro Sala, Michael Sioutis, and Fusheng Wang; Article No. 6; pp. 6:1–6:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pmantenoglou@iit.demokritos.gr
https://orcid.org/0009-0002-3275-1522
mailto:a.artikis@unipi.gr
https://orcid.org/0000-0001-6899-4599
https://doi.org/10.4230/LIPIcs.TIME.2024.6
https://github.com/aartikis/rtec
https://archive.softwareheritage.org/swh:1:dir:71c0e451729b42a4ad25f6e6fad998fe5d35adba;origin=https://github.com/aartikis/rtec;visit=swh:1:snp:f52a8034fad7209f21bdb51333e64125bd50ab57;anchor=swh:1:rev:a6a142d0d1ae83910a0ac44b364fa27b6e78c93b
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Extending the Range of Temporal Specifications of the Run-Time Event Calculus

composite activity specifications. There are also logic-based CER formalisms [17, 11, 8]. For
instance, there are several frameworks supporting fragments of the LARS language [5] that
are suitable for CER [6, 4, 18]. MeTeoR is a logic-based CER engine whose language extends
DatalogMTL with windowing [37, 38]. The Chronicle Recognition System (CRS) represents
composite activities as sets of events that are associated with time constraints [17]. The
language of CRS includes several operators, such as sequencing, iteration and negation. These
formalisms support relational composite activities, as well as compositional specifications,
paving the way for hierarchical definitions. Moreover, logic-based formalisms typically exhibit
a formal and declarative semantics, as opposed to automata-based approaches, which do not
always come with a clear semantics, making them hard to evaluate and generalise [21].

The Event Calculus is a logic programming formalism for representing and reasoning
about events and their effects over time [24]. The Event Calculus may be used as an
activity specification language for CER, as it exhibits a formal, declarative semantics, while
supporting relational and hierarchical activity specifications that may include background
knowledge [27, 20]. Moreover, the Event Calculus includes a built-in representation of inertia,
allowing for succinct composite activity patterns, and thus code maintenance. The Event
Calculus has been employed in various settings, including mobility assistance [9], reactive and
proactive health monitoring [13, 22] and simulations with cognitive agents [34]. The “Macro
Event Calculus”, e.g., uses “macro-events” to support composite event operators, such as
sequence, disjunction, parallelism and iteration [12]. The “Interval-based Event Calculus”
incorporates durative events and supports sequencing, concurrency and negation [28]. jREC
is a reactive implementation of the Cached Event Calculus [14] which is optimised for
CER [7, 19]. The Run-Time Event Calculus (RTEC) extends the Event Calculus with
optimisation techniques for CER, such as windowing, indexing and caching [3]. In order
to perform CER with minimal latency, RTEC processes hierarchies of composite activity
definitions bottom-up, while caching and reusing the derived instances of composite activities,
thus avoiding re-computations. RTEC has proven highly efficient in demanding CER
applications, including city transport management [3], maritime situational awareness [30]
and commercial fleet management [36], outperforming the state-of-the-art [26, 25, 36].

RTEC does not support every possible composite activity definition that may be expressed
in the Event Calculus. In human activity recognition, e.g., there is a need to model composite
activities defined in terms of the concept “movement(P1 , P2)”, expressing the relative
movement between persons P1 and P2 . For instance, “movement(P1 , P2) = gathering”
expresses that P1 and P2 are moving towards one another in order to have a meeting,
and “movement(P1 , P2) = abrupt_gestures” denotes that, while P1 and P2 are talking to
each other, one of them is moving his arms abruptly. Furthermore, it may be desirable
to express that P1 and P2 may be making abrupt gestures to each other only after they
have gathered close to one another, i.e., movement(P1 , P2) = abrupt_gestures depends on
movement(P1 , P2) = gathering. RTEC does not support Event Calculus definitions where
composite activities characterised by the same underlying concept, such as movement(P1 , P2),
depend on each other. To address this issue, we propose an extension of RTEC that supports
an arbitrary set of Event Calculus definitions.

Our starting point is RTEC◦, an extension of RTEC that supports Event Calculus
definitions with cyclic dependencies, which are often required for CER [26], and propose
RTECfl, an extension of RTEC◦ that supports every possible set of composite activity
definitions in the Event Calculus. Our contributions are the following. First, we present the
semantics of RTECfl . Second, we present a compiler for RTECfl , identifying the reasoning
algorithm that needs to be used at run-time in order to resolve each condition of a composite

P. Mantenoglou and A. Artikis 6:3

activity definition. Third, we outline the time complexity of RTECfl, demonstrating that
its cost is the same as RTEC◦, while supporting a wider range of temporal specifications.
RTECfl and its compiler are publicly available1.

2 Background

Our starting point is RTEC◦, i.e., a recent extension of the Run-Time Event Calculus (RTEC)
that supports efficient reasoning over temporal specifications with cyclic dependencies [26]
(the other extensions of RTEC are orthogonal to this work). We present the syntax, semantics
and reasoning algorithms of RTEC◦. In Section 3, we outline the limitations of RTEC◦, and,
in Section 4, we present an extension of RTEC◦ that supports every set of Event Calculus
definitions.

2.1 Syntax & Semantics

The language of RTEC◦ follows the Event Calculus, which is many-sorted, including sorts
for representing time, instantaneous events and “fluents”, i.e., properties that may have
different values at different points in time. The time model comprises a linear time-line with
non-negative integer time-points. happensAt(E , T) signifies that event E occurs at time-point
T . initiatedAt(F = V , T) (resp. terminatedAt(F = V , T)) expresses that a time period during
which a fluent F has the value V continuously is initiated (terminated) at time-point T .
holdsAt(F = V , T) states that F has value V at T , while holdsFor(F = V , I) expresses that
the “fluent-value pair” (FVP) F=V holds continuously in the maximal intervals included in
list I .

In CER, happensAt is used to express the input events of the stream, while FVPs express
composite activities. A formalisation of the activity specification of a domain in the Event
Calculus is called event description.

▶ Definition 1 (Event Description). An event description E is a set of:
ground happensAt(E , T) facts, expressing a stream of event instances, and
rules with head initiatedAt(F = V , T) or terminatedAt(F = V , T), expressing the effects of
events on FVP F=V .

▶ Definition 2 (Syntax of the Rules in the Event Description). initiatedAt(F = V , T) rules have
the following syntax:

initiatedAt(F = V , T)←
happensAt(E1, T)[[, [not] happensAt(E2, T), . . . , [not] happensAt(En, T),
[not] holdsAt(F1 = V1, T), . . . , [not] holdsAt(Fk = Vk, T)]].

(1)

The first body literal of an initiatedAt rule is a positive happensAt predicate; this is followed by a
possibly empty set, denoted by “[[]]”, of positive/negative happensAt and holdsAt predicates. “not”
expresses negation-by-failure [15], while “[not]” denotes that “not” is optional. All (head and
body) predicates are evaluated on the same time-point T . The bodies of terminatedAt(F = V , T)
rules have the same form.

1 https://github.com/aartikis/RTEC

TIME 2024

https://github.com/aartikis/RTEC

6:4 Extending the Range of Temporal Specifications of the Run-Time Event Calculus

▶ Example 3 (Event Description for Human Activity Recognition). In human activity recog-
nition, we apply rules on streams containing symbolic representations of video feeds [2].
In general, such rules are constructed in collaboration with domain experts or learned
from data [23]. We use the fluent interaction(P1 , P2) to express that people P1 and P2
are interacting, while the value of interaction(P1 , P2) denotes the stage of the interac-
tion. The “greeting” stage of interaction(P1 , P2) denotes that P1 and P2 are greeting each
other at a distance. Below, we outline a set of rules included in the specification of FVP
interaction(P1 , P2) = greeting:

initiatedAt(interaction(P1 , P2) = greeting, T)←
happensAt(active(P1), T), happensAt(active(P2), T),
holdsAt(distance(P1 , P2) = mid, T), holdsAt(orientation(P1 , P2) = facing, T).

(2)

terminatedAt(interaction(P1 , P2) = greeting, T)←
happensAt(walking(P1), T),
not holdsAt(orientation(P1 , P2) = facing, T).

(3)

terminatedAt(interaction(P1 , P2) = greeting, T)←
happensAt(walking(P2), T),
not holdsAt(orientation(P1 , P2) = facing, T).

(4)

According to rule (2), P1 and P2 start greeting when both of them are “active”, i.e., moving
their arms while in the same position, the distance between them is a few meters, denoted
by the value “mid”, and they are facing towards one another. Rules (3)–(4) express that
P1 and P2 stop greeting when one of them starts walking, while they are not facing each
other. The FVPs distance(P1 , P2) = mid and orientation(P1 , P2) = facing are defined based
on the coordinates and the orientation of the tracked people, which are provided in the input
stream.

Moreover, we may use the fluent movement(P1 , P2) to express the relative movement
between people P1 and P2 and the value “gathering” of movement(P1 , P2) to denote that P1
and P2 are approaching one another. The specification of FVP movement(P1 , P2) = gathering
includes the following rules:

initiatedAt(movement(P1 , P2) = gathering, T)←
happensAt(walking(P1), T),
holdsAt(distance(P1 , P2) = mid, T), holdsAt(orientation(P1 , P2) = facing, T).

(5)

initiatedAt(movement(P1 , P2) = gathering, T)←
happensAt(walking(P2), T),
holdsAt(distance(P1 , P2) = mid, T), holdsAt(orientation(P1 , P2) = facing, T).

(6)

terminatedAt(movement(P1 , P2) = gathering, T)←
happensAt(active(P1), T), not happensAt(walking(P2), T). (7)

terminatedAt(movement(P1 , P2) = gathering, T)←
happensAt(active(P2), T), not happensAt(walking(P1), T). (8)

Rules (5)–(6) state that P1 and P2 start gathering when one of them is walking towards
the other person, while their distance is a few meters and they are facing each other. Rules
(7)–(8) express that P1 and P2 stop gathering when one of them is being active, while the
other person is not walking.

The dependencies among the FVPs in an event description can be expressed in the form
of a dependency graph.

P. Mantenoglou and A. Artikis 6:5

orientation(P1,P2)=facing

movement(P1,P2)=gathering

interaction(P1,P2)=greeting

interaction(P1,P2)=talking

distance(P1,P2)=short

distance(P1,P2)=mid movement(P1,P2)=abrupt_gestures

(a) The dependency graph GE1 of event description E1 (continuous lines), the dependency graph GE2 of
event description E2 (continuous and dashed lines), and the dependency graph GE3 of event description
E3 (all lines). For simplicity, a vertex vj is displayed as j.

orientation(P1,P2)

interaction(P1,P2)movement(P1,P2)
distance(P1,P2)

(b) The fluent dependency graph Gfl
E2

of E2 . The
contracted fluent dependency graph Gcdfl

E2
of E2 is the

same as Gfl
E2

.

orientation(P1,P2) interaction(P1,P2)

movement(P1,P2)distance(P1,P2)

(c) The fluent dependency graph Gfl
E3

of E3 .

orientation(P1,P2)
movement(P1,P2),
interaction(P1,P2)

distance(P1,P2)

(d) The contracted fluent dependency
graph Gcdfl

E3
of E3 . We display a vertex

vSi of a contracted fluent dependency
graph, where Si is a SCC of the cor-
responding fluent dependency graph,
as the set of fluents whose vertices are
in Si .

Figure 1 Dependency graphs, fluent dependency graphs and contracted fluent dependency graphs.
We use distinct shapes for the vertices of each type of graph to aid the presentation.

▶ Definition 4 (Dependency Graph). The dependency graph of an event description is a
directed graph G =(V, E), where:
1. V contains one vertex vF = V for each FVP F = V .
2. E contains an edge (vFj = Vj , vFi = Vi) iff there is an initiatedAt or terminatedAt rule for Fi = Vi

having holdsAt(Fj = Vj , T) as one of its conditions.

The vertices and edges of Figure 1a that are drawn with continuous lines, e.g., comprise
the dependency graph GE1 of event description E1 , which contains rules (2)–(8) of Example 3.

Based on the dependency graph of an event description, it is possible to define a function
level that maps the FVPs of the event description to the positive integers. Towards defining
an FVP level function, we define the level of a vertex in a directed acyclic graph as follows:

▶ Definition 5 (Vertex Level). Given a directed acyclic graph, the level of a vertex v is equal
to:
1. 1 , if v has no incoming edges.
2. n, where n > 1 , if v has at least one incoming edge from a vertex of level n−1 , and zero

or more incoming edges from vertices of levels lower than n−1 .

A dependency graph may or may not be acyclic. Given an acyclic dependency graph, the
level of an FVP F=V is defined as the level of vertex vF = V in the dependency graph. In the
acyclic dependency graph of Figure 1a, e.g., vinteraction(P1 ,P2) = greeting has level 2 , and thus
FVP interaction(P1 , P2) = greeting has level 2 . In order to handle cyclic dependency graphs,

TIME 2024

6:6 Extending the Range of Temporal Specifications of the Run-Time Event Calculus

we employ the contracted dependency graph of an event description, which is, by definition,
acyclic. Then, we define the level of an FVP based on the level of the corresponding vertex
in the contracted dependency graph.

A directed graph becomes acyclic by contracting its strongly connected components
(SCC)s into single vertices.

▶ Definition 6 (SCC Contracted Graph). Given a directed graph G =(V, E) and the SCCs
S1 , S2 , . . . , Sn of G, the SCC contracted graph Gcd =(Vcd , Ecd) of G is defined as follows:
1. Vcd =

⋃
1≤i≤n{vSi}.

2. (vSi , vSj) ∈ Ecd iff ∃vi , vj ∈ V, such that vi ∈ Si, vj ∈ Sj, Si ̸= Sj and (vi , vj) ∈ E.

▶ Definition 7 (Contracted Dependency Graph). Consider an event description with de-
pendency graph G. The contracted dependency graph of the event description is the SCC
contracted graph of G.

The dependency graph GE1 in Figure 1a is acyclic, i.e., every SCCs of GE1 contains one
vertex. As a result, the contracted dependency graph Gcd

E1
of GE1 is the same as GE1 .

▶ Definition 8 (FVP Level in RTEC◦). Consider an event description with dependency graph
G and contracted dependency graph Gcd. The level of an FVP F=V , such that vertex vF = V
is included in SCC Si of G, is equal to the level of vertex vSi in Gcd.

RTEC◦ supports event descriptions where FVPs with the same fluent have the same
FVP level. For such an event description, a local stratification may be constructed as follows.
The first stratum contains all groundings of happensAt. The remaining strata are formed by
following, in a bottom-up fashion, the levels of FVPs. For each FVP level l without cyclic
dependencies, we have one stratum containing the ground predicates for FVPs with level l.
For each FVP level l with cyclic dependencies, the ground predicates for FVPs with level
l have to be stratified further in terms of their time-stamp. We introduce an additional
stratum for each time-point of the window, i.e., the finite portion of the stream currently
being processing by RTEC◦.

▶ Proposition 9 (Semantics of RTEC◦). Consider an event description E where the FVPs
with the same fluent have the same FVP level (see Definition 8). E is a locally stratified logic
program [33].

2.2 Reasoning & Complexity
The key reasoning task of RTEC◦ is the computation of holdsFor(F = V , I), i.e., the list of
maximal intervals I during which each FVP F=V of the event description holds continuously.
Recall that, in CER, FVPs express the composite activities that we are interested in detecting.
RTEC◦ computes list I in holdsFor(F = V , I) as follows. First, it computes the initiations of
F = V based on the rules of the event description with head initiatedAt(F = V , T). Second,
if there is at least one initiation of F=V , then RTEC◦ computes the terminations of
F = V based on the rules with head terminatedAt(F = V , T), as well as the rules with head
initiatedAt(F = V ′, T), where V ′ ̸= V . Third, RTEC◦ computes the maximal intervals of
F = V by matching each initiation Ts of F = V with the first termination Te of F = V after
Ts, ignoring every intermediate initiation between Ts and Te. holdsAt(F = V , T) may then
be evaluated by checking whether T belongs to one of the maximal intervals of FVP F=V .

RTEC◦ processes FVPs in a bottom-up manner, computing and caching their intervals
level-by-level. In order to derive the initiations and the terminations of an FVP F=V , we eval-
uate the initiatedAt and terminatedAt rules defining F=V . The body of such a rule may include

P. Mantenoglou and A. Artikis 6:7

a holdsAt(F ′ = V ′, T) condition (see rule schema (1)), leading to an edge (vF′ = V ′ , vF = V)
in the dependency graph (see Definition 4). We distinguish two cases for the evaluation of
holdsAt(F ′ = V ′, T):
1. Vertices vF′ = V ′ and vF = V are not part of a cycle in the dependency graph. In this

case, vF′ = V ′ and vF = V are in different SCCs of the dependency graph and, based on
edge (vF′ = V ′ , vF = V), F ′ = V ′ has a lower level than F=V (see Definition 8). Since
RTEC◦ processes FVPs in ascending FVP level order, at the time of processing F=V , the
intervals of F ′ = V ′ that are required to compute holdsAt(F ′ = V ′, T) have been derived
and cached at a previous step. As a result, holdsAt(F ′ = V ′, T) is resolved by fetching
the intervals of F ′ = V ′ from the cache and checking whether T belongs to one of those
intervals, without the need for re-computation.

2. Vertices vF′ = V ′ and vF = V are part of a cycle in the dependency graph. In this case,
vF′ = V ′ and vF = V are in the same SCC of the dependency graph, and thus F ′ = V ′ and
F=V have the same level (see Definition 8). As a result, RTEC◦ may process F=V
before F ′ = V ′, in which case the intervals of F ′ = V ′ are not be present in the cache at
the time of processing F=V . To address this issue, RTEC◦ computes holdsAt(F ′ = V ′, T)
using the incremental caching techniques presented in [26].

3 Problem Statement

Towards a more accurate domain specification for human activity recognition, we may extend
event description E1 of Example 3 with a definition for an FVP expressing that two people
are talking.

▶ Example 10 (Representing interaction(P1 , P2) = talking (Example 3 cont’d)). After having
approached one another, persons P1 and P2 may start talking, in which case the value of
the interaction(P1 , P2) fluent should change from “greeting” to “talking”. The specification
of FVP interaction(P1 , P2) = talking includes the following rules:

initiatedAt(interaction(P1 , P2) = talking, T)←
happensAt(active(P1), T),
holdsAt(distance(P1 , P2) = short, T), holdsAt(orientation(P1 , P2) = facing, T),
not holdsAt(movement(P1 , P2) = gathering, T).

(9)

initiatedAt(interaction(P1 , P2) = talking, T)←
happensAt(active(P2), T),
holdsAt(distance(P1 , P2) = short, T), holdsAt(orientation(P1 , P2) = facing, T),
not holdsAt(movement(P1 , P2) = gathering, T).

(10)

terminatedAt(interaction(P1 , P2) = talking, T)←
happensAt(inactive(P1), T), happensAt(inactive(P2), T). (11)

According to rules (9)–(10), P1 and P2 start talking when one of them is being active, while
their distance is about one meter, denoted by “short”, they are facing one another and their
relative movement is not “gathering”, i.e., P1 and P2 are not moving towards one another.
Rule (11) denotes that P1 and P2 stop talking when neither of them is being active.

A fluent cannot have more than one value at any time; an initiation of an FVP F = V1 implies
a termination of FVP F = V2 , where V1 ̸= V2 . As a result, there are implicit dependencies
among FVPs with the same fluent. For instance, in the event description of Example 10,
FVPs interaction(P1 , P2) = greeting and interaction(P1 , P2) = talking implicitly depend on
each other.

TIME 2024

6:8 Extending the Range of Temporal Specifications of the Run-Time Event Calculus

The vertices and edges of Figure 1a that are drawn with continuous or dashed lines
comprise the dependency graph GE2 of event description E2 , i.e., the extension of event
description E1 with rules (9)–(11) of Example 10. FVPs interaction(P1 , P2) = greeting and
movement(P1 , P2) = gathering have level 2 , while FVP interaction(P1 , P2) = talking has
level 3 (see Definition 8).

Event description E2 contains FVPs with the same fluent and different levels, which is com-
mon in CER specifications. In city transport management, e.g., fluent “punctuality(Vh)” may
be used to monitor the punctuality level of a vehicle Vh over time [3]. punctuality(Vh) = low
may be initiated when Vh leaves a stop earlier than scheduled while punctuality(Vh) = mid
holds. As another example, in maritime activity monitoring, we may employ the fluent
“fishing_trip(Vl)” to survey a fishing trip of a vessel Vl [30]. FVP fishing_trip(Vl) = ended
may depend on FVP fishing_trip(Vl) = returning, which expresses the previous stage
of the trip. In these cases, FVP punctuality(Vh) = low has a higher level than FVP
punctuality = mid, and FVP fishing_trip(Vl) = ended has a higher level than FVP
fishing_trip(Vl) = returning (see Definition 8).

RTEC◦ does not support event descriptions, such as E2 , where FVPs with the same
fluent have different levels. Suppose that FVP F = V1 has level n and FVP F = V2 has level
m, where n < m, and that RTEC◦ is currently processing the FVPs with level n. When
processing F = V1 , RTEC◦ needs to evaluate the rules with head initiatedAt(F = V2 , T), as
the initiation of F = V2 constitute terminations of F = V1 . Such a rule may include a body
condition referring to an FVP F ′ = V ′ with level n′, where n ≤ n′ < m. Since F ′ = V ′ has a
lower level than F = V2 , RTEC◦ attempts to evaluate holdsAt(F ′ = V ′, T) by retrieving the
intervals of F ′ = V ′ from the cache, in order to check whether T belongs to one of them.
However, the cache of RTEC◦ may not contain the intervals of F ′ = V ′ at this time, because
F ′ = V ′ has level n′ and RTEC◦ is currently processing the FVPs with level n, where n ≤ n′,
compromising correctness.

In the case of event description E2 , when processing interaction(P1 , P2) = greeting,
RTEC◦ evaluates the initiations of interaction(P1 , P2) = talking, as they are terminations of
interaction(P1 , P2) = greeting. According to rules (9)–(10) of event description E2 , the initi-
ations of interaction(P1 , P2) = talking depend on FVP movement(P1 , P2) = gathering, whose
intervals may not present in the cache at the time of processing interaction(P1 , P2) = greeting.
For this reason, RTEC◦ does not support event description E2 .

One way to address this issue is to assign to FVP interaction(P1 , P2) = greeting a higher
level than the level of FVP movement(P1 , P2) = gathering. According to dependency graph
GE2 (see Figure 1a), since there is no FVP that depends on FVP interaction(P1 , P2) = greeting,
we may increase the level of interaction(P1 , P2) = greeting to 3 without producing an FVP
level assignment that compromises the correctness of the bottom-up processing of RTEC◦. In
this way, movement(P1 , P2) = gathering is processed before interaction(P1 , P2) = greeting,
and thus, at the time of processing interaction(P1 , P2) = greeting, the maximal intervals of
movement(P1 , P2) = gathering are present in the cache of RTEC◦, avoiding the aforemen-
tioned error.

However, it is not always possible to circumvent the issues introduced by FVPs with the
same fluent and different levels by increasing the level of an FVP. Consider the following
example, where we extend event description E2 with a definition for an FVP expressing that
two people are making abrupt movements while talking.

▶ Example 11 (Representing movement(P1 , P2) = abrupt_gestures (Example 10 cont’d)).
While people P1 and P2 are talking, they may start moving their arms abruptly, possibly
indicating that a fight between P1 and P2 is about to start. The specification of FVP
movement(P1 , P2) = abrupt_gestures includes the following rules:

P. Mantenoglou and A. Artikis 6:9

initiatedAt(movement(P1 , P2) = abrupt_gestures, T)←
happensAt(abrupt(P1), T),
holdsAt(interaction(P1 , P2) = talking, T).

(12)

initiatedAt(movement(P1 , P2) = abrupt_gestures, T)←
happensAt(abrupt(P2), T),
holdsAt(interaction(P1 , P2) = talking, T).

(13)

terminatedAt(movement(P1 , P2) = abrupt_gestures, T)←
happensAt(active(P1), T), not happensAt(abrupt(P2), T). (14)

terminatedAt(movement(P1 , P2) = abrupt_gestures, T)←
happensAt(active(P2), T), not happensAt(abrupt(P1), T). (15)

Rules (12)–(13) denote that movement(P1 , P2) = abrupt_gestures is initiated when one of
the people P1 and P2 starts moving abruptly while the two of them are talking. Rules
(14)–(15) express that we have a termination of movement(P1 , P2) = abrupt_gestures when
one of the two people starts being active while the other one is not moving abruptly.

All the vertices and edges in Figure 1a compose dependency graph GE3 of event description
E3 , i.e., the extension of event description E2 with rules (12)–(15). According to dependency
graph GE3 , FVP movement(P1 , P2) = abrupt_gestures has level 4 .

Event description E3 contains FVPs with the same fluent and different levels. The FVPs
interaction(P1 , P2) = greeting and interaction(P1 , P2) = talking have level 2 and 3 , respect-
ively, while FVPs movement(P1 , P2) = gathering and movement(P1 , P2) = abrupt_gestures
have level 2 and 4 . As a result, RTEC◦ does not support event description E3 . When
processing FVP movement(P1 , P2) = gathering, RTEC◦ may need to evaluate its termina-
tions, which include the initiations of FVP movement(P1 , P2) = abrupt_gestures. Accord-
ing to rules (12)–(13), the initiations of movement(P1 , P2) = abrupt_gestures depend on
interaction(P1 , P2) = talking, whose intervals are not present in the cache at this time.

In this case, it is not possible to set the level of movement(P1 , P2) = gathering to 4 , with
the goal of processing interaction(P1 , P2) = talking before movement(P1 , P2) = gathering, be-
cause there is an edge (vmovement(P1 ,P2) = gathering, vinteraction(P1 ,P2) = talking) in GE3 , implying
that we cannot process interaction(P1 , P2) = talking before movement(P1 , P2) = gathering.
These FVPs should have the same level. Moreover, interaction(P1 , P2) = greeting depends on
interaction(P1 , P2) = talking, and vice versa, which means that these FVPs should also have
the same level. Therefore, movement(P1 , P2) = gathering, interaction(P1 , P2) = greeting,
interaction(P1 , P2) = talking and movement(P1 , P2) = abrupt_gestures should have the same
level, i.e., 2 , implying that these FVPs must be processed with incremental caching (see the
second case presented in Section 2.2).

4 Proposed Solution

We propose RTECfl, an extension of RTEC◦ that supports event descriptions where the
vertices of FVPs with the same fluent may have different levels, such as event descriptions E2
and E3 . To achieve this, RTECfl incorporates a new definition for FVP level that takes into
account the implicit dependencies between FVPs with the same fluent. We demonstrate that,
based on the definition of FVP level in RTECfl , we may construct a local stratification for
every possible event description. Afterwards, we propose a compiler for RTECfl , identifying
the holdsAt(F = V , T) conditions that need to be resolved with the incremental caching
technique proposed in [26], because the intervals of F=V may not be present in the cache

TIME 2024

6:10 Extending the Range of Temporal Specifications of the Run-Time Event Calculus

at the time of evaluating holdsAt(F = V , T). We outline the cost of RTECfl, showing that
it is the same as the cost of RTEC◦. Therefore, RTECfl extends the range of temporal
specifications supported by RTEC◦, while maintaining its high reasoning efficiency.

4.1 Syntax & Semantics
In RTECfl , all FVPs with the same fluent have the same level. This is achieved by determining
FVP level based on the fluent dependency graph of the event description, which is defined as
follows:

▶ Definition 12 (Fluent Dependency Graph). Consider an event description with dependency
graph G =(V, E). The fluent dependency graph of the event description is a directed graph
Gfl =(Vfl , Efl), where:
1. Vfl contains one vertex vF for each fluent F .
2. Efl contains an edge (vF1 , vF2), where F1 ̸= F2 , iff there is an edge (vF1 = V1 , vF2 = V2) in
E, where V1 and V2 are values of fluents F1 and F2 , respectively.

Figure 1b, e.g., depicts the fluent dependency graph Gfl
E2

of event description E2 of
Example 10. Vertex vinteraction(P1 ,P2) of Gfl

E2
corresponds to vertices vinteraction(P1 ,P2) = greeting

and vinteraction(P1 ,P2) = talking of GE2 , inheriting their incoming edges.
The fluent dependency graph Gfl

E2
is acyclic. Therefore, we may assign to each FVP F=V

of event description E2 the level of vertex vF in the fluent dependency graph Gfl
E2

, which is
derived by following Definition 5. It could be the case, however, that the fluent dependency
graph of an event description contains cycles. Figure 1c, e.g., depicts the fluent dependency
graph Gfl

E3
of event description E3 . Gfl

E3
includes a cycle, while, according to Definition 5,

the level of a vertex is defined only on acyclic graphs. To address this issue, we contract the
vertices of the fluent dependency graph that are in the same strongly connected component
(SCC), leading to an acyclic graph. We define the contracted fluent dependency graph as
follows:

▶ Definition 13 (Contracted Fluent Dependency Graph). Consider an event description with
fluent dependency graph Gfl. The contracted fluent dependency graph Gcdfl of the event
description is the SCC contracted graph of Gfl.

Consider, e.g., the fluent dependency graph Gfl
E2

of Figure 1b. Gfl
E2

is acyclic, and thus every
SCC of Gfl

E2
contains one vertex. As a result, the contracted fluent dependency graph Gcdfl

E2

of Gfl
E2

is the same as Gfl
E2

. As another example, Figure 1d presents the contracted fluent
dependency graph Gcdfl

E3
corresponding to the fluent dependency graph Gfl

E3
in Figure 1c,

which is produced by contracting vertices vmovement(P1 ,P2) and vinteraction(P1 ,P2) of Gfl
E3

, as
these vertices are in the same SCC of Gfl

E3
. Due to this contraction of vertices, Gcdfl

E3
is

acyclic.
We may assign a level to each vertex in a contracted fluent dependency graph by following

Definition 5. We define the level of an FVP in RTECfl as follows:

▶ Definition 14 (FVP Level in RTECfl). Consider an event description with fluent dependency
graph Gfl and contracted fluent dependency graph Gcdfl. The level of an FVP F=V , such
that vertex vF is included in SCC Si of Gfl, is equal to the level of vertex vSi of Gcdfl.

Based on Definition 14, FVPs with the same fluent have the same level. In the case of
event description E2 , e.g., where the contracted fluent dependency graph Gcdfl

E2
of E2 matches

with the fluent dependency graph in Figure 1b, FVPs interaction(P1 , P2) = greeting and

P. Mantenoglou and A. Artikis 6:11

Algorithm 1 compile(E).

1: Gcdfl
E ← construct_contracted_fluent_dependency_graph(E)

2: level ← compute_fvp_level(Gcdfl
E)

3: for each rule r in E do
4: F = V ← get_fvp_in_head(r)
5: for each condition “[not] holdsAt(F ′ = V ′, T)” in the body of r do ▷ not is optional.
6: if level[F ′ = V ′] = level[F = V] then
7: replace “[not] holdsAt(F ′ = V ′, T)” with “[not] holdsAtCyclic(F ′ = V ′, T)” in r
8: return E

interaction(P1 , P2) = talking have level 3 because the level of vertex vinteraction(P1 ,P2) in
Gcdfl

E2
is 3 . In the case of event description E3 , the vertex of the contracted fluent dependency

graph corresponding to fluents movement(P1 , P2) and interaction(P1 , P2) has level 2 (see
Figure 1d). Thus, FVPs interaction(P1 , P2) = greeting, movement(P1 , P2) = gathering,
interaction(P1 , P2) = talking and movement(P1 , P2) = abrupt_gestures have level 2 .

We can devise a local stratification of an event description by following bottom-up the
levels of FVPs, as specified in Definition 14. For each level with cyclic dependencies, we
introduce an additional stratum per time-point, following an ascending temporal order.

▶ Proposition 15 (Semantics of RTECfl). An event description is a locally stratified logic
program.

According to Proposition 15, RTECfl supports every event description E that follows
Definition 1. If the dependency graph of E contains FVPs with the same fluent whose vertices
are in different levels of the graph, then these FVPs are assigned the same level, following
the definition of FVP level in RTECfl (see Definition 14), avoiding the issues described in
Section 3.

4.2 Compiler
We developed a compiler that assigns a level to each FVP of an input event description
E and marks the holdsAt body conditions of the rules in E that must be evaluated with
incremental caching, in order to guarantee correct reasoning. The compilation is performed
before the commencement of run-time reasoning, in a process transparent to the event
description developer. Algorithm 1 outlines the compilation steps. First, we derive the
levels of FVPs by following Definitions 13 and 14. We construct the contracted fluent
dependency graph Gcdfl

E of E (line 1 of Algorithm 1). Then, we assign a level to each FVP
in E based on the level of the corresponding vertex of Gcdfl

E (line 2). In order to identify
the holdsAt conditions that need to be evaluated with incremental caching, the compiler
works as follows. For each holdsAt(F ′ = V ′, T) or “not holdsAt(F ′ = V ′, T)” condition in the
body of a rule in E , the compiler checks whether the level of FVP F ′ = V ′ is equal to the
level of the FVP in the head of the rule (lines 3–6). If this is the case, then we translate
condition holdsAt(F ′ = V ′, T) (resp. “not holdsAt(F ′ = V ′, T)”) into holdsAtCyclic(F ′ = V ′, T)
(resp. “not holdsAtCyclic(F ′ = V ′, T)”) (line 7). At run-time, RTECfl evaluates the conditions
with holdsAtCyclic using incremental caching (recall the second case presented in Section 2.2)
and the conditions with holdsAt using the interval retrieval operation (see the first case of
Section 2.2). A further discussion on run-time reasoning is presented in the section that
follows.

TIME 2024

6:12 Extending the Range of Temporal Specifications of the Run-Time Event Calculus

We tested the compiler of RTECfl on event descriptions from various CER applications,
including human activity recognition [2], city transport management [3] and maritime
situational awareness [29, 30]. Moreover, we have used our compiler in applications that
involve the monitoring of the normative positions of agents in multi-agent systems, such as
e-commerce [35] and voting protocols [31]. In all cases, the compilation time amounted to a
few milliseconds, and thus we do not show these times here. The compiler is available with
the code of RTECfl

1.

4.3 Reasoning & Complexity
RTECfl follows RTEC◦ and processes FVPs in ascending FVP level order. When processing
a rule that includes a holdsAtCyclic(F ′ = V ′, T) condition, RTECfl computes the changes in
the value of F ′ between Tleq and T , where Tleq is the last time-point before T where the
truth value of holdsAt(F ′ = V ′, Tleq) has been evaluated and cached. In the worst-case, the
cost of this process is O(ωk), where ω is the size of the window and k is the cost of computing
whether an FVP is initiated or terminated at a given time-point (see [3] for an estimation
of k). This is the same incremental caching technique as the one used in RTEC◦, thus
yielding the same cost [26]. In the case of a holdsAt(F ′ = V ′, T) condition, RTECfl retrieves
the maximal intervals of F ′ = V ′ from its cache and checks whether T belongs to one of
the retrieved intervals. Since the cached intervals are temporally sorted, this is achieved
with a binary search, while the number of cached intervals of F ′ = V ′ is bounded by ω.
Therefore, the cost of an interval retrieval operation in RTECfl is O(log(ω)), which is the
same as the cost of this operation in RTEC◦. As a result, RTECfl yields the same worst-case
time complexity as RTEC◦, while supporting a wider range of temporal specifications. By
following Definition 14 for FVP level, RTEC◦ reasons with incremental caching only when it
is necessary, i.e., only when the required intervals may not be present in the cache.

5 Summary and Future Work

We proposed RTECfl , an extension of RTEC◦, which detects composite activities based on
their Event Calculus definitions, in order to support every possible set of such definitions. We
described the syntax and semantics of RTECfl , demonstrating that activity specifications in
RTECfl are locally stratified logic programs. Afterwards, we proposed a compiler for RTECfl ,
identifying the conditions of activity definitions that may be evaluated with an efficient cache
operation, without sacrificing correctness, with the goal of improving reasoning efficiency at
run-time. We outlined the worst-case time complexity of RTECfl , showing that it yields the
same cost as RTEC◦. As a result, RTECfl supports a wider range of temporal specifications
than RTEC◦, while maintaining its high reasoning efficiency. The code of RTECfl is publicly
available1.

In the future, we aim to compare RTECfl with automata-based activity recognition
frameworks, such as [10, 40].

References
1 Elias Alevizos, Anastasios Skarlatidis, Alexander Artikis, and Georgios Paliouras. Probabilistic

complex event recognition: A survey. Commun. ACM, 50(5):71:1–71:31, 2017. doi:10.1145/
3117809.

2 Alexander Artikis, Marek J. Sergot, and Georgios Paliouras. A logic programming approach
to activity recognition. In EIMM Workshop in MM, pages 3–8, 2010. doi:10.1145/1877937.
1877941.

https://doi.org/10.1145/3117809
https://doi.org/10.1145/3117809
https://doi.org/10.1145/1877937.1877941
https://doi.org/10.1145/1877937.1877941

P. Mantenoglou and A. Artikis 6:13

3 Alexander Artikis, Marek J. Sergot, and Georgios Paliouras. An event calculus for event
recognition. IEEE Trans. Knowl. Data Eng., 27(4):895–908, 2015. doi:10.1109/TKDE.2014.
2356476.

4 Hamid R. Bazoobandi, Harald Beck, and Jacopo Urbani. Expressive stream reasoning with
laser. In ISWC, volume 10587, pages 87–103, 2017. doi:10.1007/978-3-319-68288-4_6.

5 Harald Beck, Minh Dao-Tran, and Thomas Eiter. LARS: A logic-based framework for analytic
reasoning over streams. Artif. Intell., 261:16–70, 2018. doi:10.1016/J.ARTINT.2018.04.003.

6 Harald Beck, Thomas Eiter, and Christian Folie. Ticker: A system for incremental asp-
based stream reasoning. Theory Pract. Log. Program., 17(5-6):744–763, 2017. doi:10.1017/
S1471068417000370.

7 Stefano Bragaglia, Federico Chesani, Paola Mello, Marco Montali, and Paolo Torroni. Reactive
event calculus for monitoring global computing applications. In Logic Programs, Norms and
Action - Essays in Honor of Marek J. Sergot on the Occasion of His 60th Birthday, volume
7360, pages 123–146, 2012. doi:10.1007/978-3-642-29414-3_8.

8 Sebastian Brandt, Elem Güzel Kalayci, Vladislav Ryzhikov, Guohui Xiao, and Michael
Zakharyaschev. Querying log data with metric temporal logic. J. Artif. Intell. Res., 62:829–
877, 2018. doi:10.1613/JAIR.1.11229.

9 Stefano Bromuri, Visara Urovi, and Kostas Stathis. icampus: A connected campus in the
ambient event calculus. Int. J. Ambient Comput. Intell., 2(1):59–65, 2010. doi:10.4018/JACI.
2010010105.

10 Marco Bucchi, Alejandro Grez, Andrés Quintana, Cristian Riveros, and Stijn Vansummeren.
CORE: a complex event recognition engine. Proc. VLDB Endow., 15(9):1951–1964, 2022.
doi:10.14778/3538598.3538615.

11 Francesco Calimeri, Marco Manna, Elena Mastria, Maria Concetta Morelli, Simona Perri, and
Jessica Zangari. I-dlv-sr: A stream reasoning system based on I-DLV. Theory Pract. Log.
Program., 21(5):610–628, 2021. doi:10.1017/S147106842100034X.

12 Iliano Cervesato and Angelo Montanari. A calculus of macro-events: Progress report. In
TIME, pages 47–58, 2000. doi:10.1109/TIME.2000.856584.

13 Hervé Chaudet. Extending the event calculus for tracking epidemic spread. Artif. Intell.
Medicine, 38(2):137–156, 2006. doi:10.1016/J.ARTMED.2005.06.001.

14 L. Chittaro and A. Montanari. Efficient temporal reasoning in the cached event calculus.
Comput. Intell., 12(3):359–382, 1996. doi:10.1111/J.1467-8640.1996.TB00267.X.

15 Keith L. Clark. Negation as failure. In Logic and Data Bases, pages 293–322. Plemum Press,
1977. doi:10.1007/978-1-4684-3384-5_11.

16 Gianpaolo Cugola and Alessandro Margara. Processing flows of information: From data
stream to complex event processing. ACM Comput. Surv., 44(3), 2012. doi:10.1145/2187671.
2187677.

17 C. Dousson and P. Le Maigat. Chronicle recognition improvement using temporal focusing
and hierarchisation. In IJCAI, pages 324–329, 2007.

18 Thomas Eiter, Paul Ogris, and Konstantin Schekotihin. A distributed approach to LARS
stream reasoning (system paper). Theory Pract. Log. Program., 19(5-6):974–989, 2019. doi:
10.1017/S1471068419000309.

19 Nicola Falcionelli, Paolo Sernani, Albert Brugués de la Torre, Dagmawi Neway Mekuria,
Davide Calvaresi, Michael Schumacher, Aldo Franco Dragoni, and Stefano Bromuri. Indexing
the event calculus: Towards practical human-readable personal health systems. Artif. Intell.
Medicine, 96:154–166, 2019. doi:10.1016/J.ARTMED.2018.10.003.

20 Nikos Giatrakos, Elias Alevizos, Alexander Artikis, Antonios Deligiannakis, and Minos N.
Garofalakis. Complex event recognition in the big data era: a survey. VLDB J., 29(1):313–352,
2020. doi:10.1007/S00778-019-00557-W.

21 Alejandro Grez, Cristian Riveros, Martín Ugarte, and Stijn Vansummeren. A formal framework
for complex event recognition. ACM Trans. Database Syst., 46(4):16:1–16:49, 2021. doi:
10.1145/3485463.

TIME 2024

https://doi.org/10.1109/TKDE.2014.2356476
https://doi.org/10.1109/TKDE.2014.2356476
https://doi.org/10.1007/978-3-319-68288-4_6
https://doi.org/10.1016/J.ARTINT.2018.04.003
https://doi.org/10.1017/S1471068417000370
https://doi.org/10.1017/S1471068417000370
https://doi.org/10.1007/978-3-642-29414-3_8
https://doi.org/10.1613/JAIR.1.11229
https://doi.org/10.4018/JACI.2010010105
https://doi.org/10.4018/JACI.2010010105
https://doi.org/10.14778/3538598.3538615
https://doi.org/10.1017/S147106842100034X
https://doi.org/10.1109/TIME.2000.856584
https://doi.org/10.1016/J.ARTMED.2005.06.001
https://doi.org/10.1111/J.1467-8640.1996.TB00267.X
https://doi.org/10.1007/978-1-4684-3384-5_11
https://doi.org/10.1145/2187671.2187677
https://doi.org/10.1145/2187671.2187677
https://doi.org/10.1017/S1471068419000309
https://doi.org/10.1017/S1471068419000309
https://doi.org/10.1016/J.ARTMED.2018.10.003
https://doi.org/10.1007/S00778-019-00557-W
https://doi.org/10.1145/3485463
https://doi.org/10.1145/3485463

6:14 Extending the Range of Temporal Specifications of the Run-Time Event Calculus

22 Özgür Kafali, Alfonso E. Romero, and Kostas Stathis. Agent-oriented activity recognition in
the event calculus: An application for diabetic patients. Comput. Intell., 33(4):899–925, 2017.
doi:10.1111/COIN.12121.

23 Nikos Katzouris, Georgios Paliouras, and Alexander Artikis. Online learning probabilistic event
calculus theories in answer set programming. Theory Pract. Log. Program., 23(2):362–386,
2023. doi:10.1017/S1471068421000107.

24 Robert A. Kowalski and Marek J. Sergot. A logic-based calculus of events. New Gener.
Comput., 4(1):67–95, 1986. doi:10.1007/BF03037383.

25 Periklis Mantenoglou, Dimitrios Kelesis, and Alexander Artikis. Complex event recognition
with allen relations. In KR, pages 502–511, 2023. doi:10.24963/KR.2023/49.

26 Periklis Mantenoglou, Manolis Pitsikalis, and Alexander Artikis. Stream reasoning with cycles.
In KR, pages 544–553, 2022.

27 Adrian Paschke. Eca-ruleml: An approach combining ECA rules with temporal interval-based
KR event/action logics and transactional update logics. CoRR, abs/cs/0610167, 2006.

28 Adrian Paschke and Martin Bichler. Knowledge representation concepts for automated SLA
management. Decis. Support Syst., 46(1):187–205, 2008. doi:10.1016/J.DSS.2008.06.008.

29 Kostas Patroumpas, Alexander Artikis, Nikos Katzouris, Marios Vodas, Yannis Theodoridis,
and Nikos Pelekis. Event recognition for maritime surveillance. In EDBT, pages 629–640,
2015. doi:10.5441/002/EDBT.2015.63.

30 Manolis Pitsikalis, Alexander Artikis, Richard Dreo, Cyril Ray, Elena Camossi, and Anne-
Laure Jousselme. Composite event recognition for maritime monitoring. In DEBS, pages
163–174, 2019. doi:10.1145/3328905.3329762.

31 J. Pitt, L. Kamara, M. Sergot, and A. Artikis. Voting in multi-agent systems. Comput. J.,
49(2):156–170, 2006. doi:10.1093/COMJNL/BXH164.

32 Olga Poppe, Chuan Lei, Elke A. Rundensteiner, and David Maier. Event trend aggregation
under rich event matching semantics. In SIGMOD, pages 555–572, 2019. doi:10.1145/
3299869.3319862.

33 Teodor C. Przymusinski. On the declarative semantics of deductive databases and logic
programs. In Foundations of Deductive Databases and Logic Programming, pages 193–216.
Morgan Kaufmann, 1988. doi:10.1016/B978-0-934613-40-8.50009-9.

34 Nausheen Saba Shahid, Dan O’Keeffe, and Kostas Stathis. A knowledge representation
framework for evolutionary simulations with cognitive agents. In ICTAI, pages 361–368. IEEE,
2023. doi:10.1109/ICTAI59109.2023.00059.

35 M. Sirbu. Credits and debits on the Internet. IEEE Spectrum, 34(2):23–29, 1997.
36 Efthimis Tsilionis, Alexander Artikis, and Georgios Paliouras. Incremental event calculus for

run-time reasoning. J. Artif. Intell. Res., 73:967–1023, 2022. doi:10.1613/JAIR.1.12695.
37 Przemyslaw Andrzej Walega, Mark Kaminski, and Bernardo Cuenca Grau. Reasoning over

streaming data in metric temporal datalog. In AAAI, pages 3092–3099, 2019. doi:10.1609/
AAAI.V33I01.33013092.

38 Przemyslaw Andrzej Walega, Mark Kaminski, Dingmin Wang, and Bernardo Cuenca Grau.
Stream reasoning with datalogmtl. J. Web Semant., 76:100776, 2023. doi:10.1016/J.WEBSEM.
2023.100776.

39 Bo Zhao, Han van der Aa, Thanh Tam Nguyen, Quoc Viet Hung Nguyen, and Matthias
Weidlich. EIRES: efficient integration of remote data in event stream processing. In SIGMOD,
pages 2128–2141, 2021. doi:10.1145/3448016.3457304.

40 Bartosz Zielinski. Explanatory denotational semantics for complex event patterns. Formal
Aspects Comput., 35(4):23:1–23:37, 2023. doi:10.1145/3608486.

https://doi.org/10.1111/COIN.12121
https://doi.org/10.1017/S1471068421000107
https://doi.org/10.1007/BF03037383
https://doi.org/10.24963/KR.2023/49
https://doi.org/10.1016/J.DSS.2008.06.008
https://doi.org/10.5441/002/EDBT.2015.63
https://doi.org/10.1145/3328905.3329762
https://doi.org/10.1093/COMJNL/BXH164
https://doi.org/10.1145/3299869.3319862
https://doi.org/10.1145/3299869.3319862
https://doi.org/10.1016/B978-0-934613-40-8.50009-9
https://doi.org/10.1109/ICTAI59109.2023.00059
https://doi.org/10.1613/JAIR.1.12695
https://doi.org/10.1609/AAAI.V33I01.33013092
https://doi.org/10.1609/AAAI.V33I01.33013092
https://doi.org/10.1016/J.WEBSEM.2023.100776
https://doi.org/10.1016/J.WEBSEM.2023.100776
https://doi.org/10.1145/3448016.3457304
https://doi.org/10.1145/3608486

	1 Introduction
	2 Background
	2.1 Syntax & Semantics
	2.2 Reasoning & Complexity

	3 Problem Statement
	4 Proposed Solution
	4.1 Syntax & Semantics
	4.2 Compiler
	4.3 Reasoning & Complexity

	5 Summary and Future Work

