
A More Efficient and Informed Algorithm to Check
Weak Controllability of Simple Temporal Networks
with Uncertainty
Ajdin Sumic #

Technological University of Tarbes, France

Thierry Vidal #

Technological University of Tarbes, France

Abstract
Simple Temporal Networks with Uncertainty (STNU) are a well-known constraint-based model
expressing sets of activities (e.g., a schedule or a plan) related by temporal constraints, each having
possible durations in the form of convex intervals. Uncertainty comes from some of these durations
being contingent, i.e., the agent executing the plan cannot decide the actual duration at execution
time. To check that execution will satisfy all the constraints, three levels of controllability exist:
the Strong and Dynamic Controllability (SC/DC) has proven both useful in practice and provable
in polynomial time, while Weak Controllability (WC) is co-NP-complete and has been left aside.
Moreover, controllability checking algorithms are propagation strategies, which have the usual
drawback, in case of failure, to prove unable to locate the contingents that explain the source of
non-controllability. This paper has three contributions: (1) it substantiates the usefulness of WC in
multi-agent systems (MAS) where another agent controls a contingent, and agents agree just before
execution on the durations; (2) it provides a new WC-checking algorithm whose performance in
practice depends on the network structure and is faster in loosely connected ones; (3) it provides
the failing cycles in the network that explain non-WC.

2012 ACM Subject Classification Computing methodologies

Keywords and phrases Temporal constraints satisfaction, uncertainty, STNU, Controllability check-
ing, Explainable inconsistency, Multi-agent planning

Digital Object Identifier 10.4230/LIPIcs.TIME.2024.8

1 Introduction and Related Work

Temporal Constraint Satisfaction Problems (TCSP) are constraint-based problem formula-
tions that allow to represent and reason on temporal constraints. They are used in a lot of
domains, such as planning and scheduling (on which we will focus), supervision of dynamic
systems, or workflow design. They are based on a graphical model, the reason why they are
usually called Temporal Constraint Networks (TCN)[5]: variables/nodes are time-points for
which one shall assign a timestamp. Constraints/edges express sets of possible durations
relating them. A key issue is the ability to check the consistency of the whole network. The
simplest class, called the Simple Temporal Network (STN), arises when they have only binary
constraints with only convex intervals of values (no disjunctions). One of the main strengths
of this restricted, but often sufficient in practice, model is that consistency checking is made
through a polynomial propagation algorithm (the Floyd-Warhsall reduction) and provides a
complete minimal network in which all inconsistent values are removed.

An STN with Uncertainty (STNU) is an extension in which one distinguishes a subset of
constraints whose effective duration is not assigned but observed (uncontrollable durations).
This is useful for addressing realistic dynamic and stochastic domains where such durations
are usually set by the environment.

© Ajdin Sumic and Thierry Vidal;
licensed under Creative Commons License CC-BY 4.0

31st International Symposium on Temporal Representation and Reasoning (TIME 2024).
Editors: Pietro Sala, Michael Sioutis, and Fusheng Wang; Article No. 8; pp. 8:1–8:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:asumic@enit.fr
mailto:thierry.vidal@uttop.fr
https://doi.org/10.4230/LIPIcs.TIME.2024.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 A More Efficient and Informed Algorithm to Check Weak Controllability

In STNUs, the notion of temporal consistency has been redefined in the form of con-
trollability: an STNU is controllable if there exists a strategy for executing the schedule,
whatever the values are taken by the contingent durations. In [14], the authors introduce
three levels of controllability that express how and when the uncertainties are resolved:
the Weak Controllability (WC) proves that a solution exists for any possible combination
of contingent values. Which requires that some “oracle” provides those values before the
timing of controllable time-points is decided; Dynamic Controllability (DC) assumes that at
execution time, a strategy can be built based on past observations only thus, whatever the
contingent durations still to be observed; Strong Controllability (SC) is more demanding
as it enforces that there is one unique assignment of controllable timepoints values, which
defines a static control strategy that works whatever the contingent durations will be at
execution time. WC has often appeared unrealistic in dynamic applications that assume full
progressive observability at execution time, where DC looks more relevant and have received
much attention in previous works. In contrast, SC fits perfectly application domains with
partial or non observability, or when some strict commitment must be made on the execution
schedule timing for some client.

Previous works prove that SC and DC can be resolved with specifically designed
propagation-based algorithms that run in polynomial time [11, 3, 14]. While WC is a
co-NP-complete problem [12], and only exponential algorithms exist to check WC [4, 14].
This is another reason why WC has been disregarded [2, 14].

This paper tackles Weak Controllability by first exhibiting its relevance in several contexts
(e.g., multi-agent task management) and providing a more efficient algorithm for realistic
networks, i.e., loosely connected networks. Contrary to the complete propagation algorithms
proposed for SC and DC, our algorithm maintains and reasons only on the input constraints,
which form network paths. As in any graph, such paths join and form cycles. We prove that
it is possible to check the global Weak controllability by locally checking the elementary
cycles of an STNU. This way, the algorithm can also diagnose the source of uncontrollability
of a non-WC STNU by detecting the set of constraints (here, cycles) that make the STNU
not Weakly controllable. This explainability issue was recently addressed and is important
to repair non-controllable STNUs [9, 2, 1, 13].

The paper is organized as follows: Section 2 first recalls the necessary background on
STNU. Section 3 then discusses the usefulness in practical applications of WC. Then, we
prove in Section 4 how local controllability on cycles is equivalent to global WC. Next,
Section 5 will present how to locally check WC, and Section 6 will present the new algorithm
for globally checking WC. Some experimental evaluation will be displayed in Section 7 before
concluding our contribution with some prospects.

2 Background

A Simple Temporal Network (STN) is a pair, (V , E), where V is a set of time-points vi

representing event occurrence times, and E a set of temporal constraints between these time-
points, in the form of convex intervals of possible durations [5], in the form vj − vi ∈ [lij , uij],
with lower bounds lij ∈ R∪ {−∞} and upper bounds uij ∈ R∪ {+∞}. Interestingly enough,
this model encompasses the qualitative precedence constraint, since vi precedes vj , noted
vi ⪯ vj , iff lij ≥ 0. A reference time-point v0 is usually added to V, which is the “origin of
time”, depending on the application (might be, e.g., the current day at 0:00). The goal is to
assign values to time-points such that all constraints are satisfied, i.e., to assign a value to
each constraint in its interval domain.

A. Sumic and T. Vidal 8:3

An STN with Uncertainty (STNU) is an extension in which one distinguishes a subset of
constraints whose values are parameters that cannot be assigned but will be observed [14].

▶ Definition 1 (STNU). An STNU is a tuple (V, E, C) with:
V a set of time-points {v0, v1, . . . , vn}, partitioned into controllable (Vc) and uncontrollable
(Vu) and where v0 is the reference time-point: ∀i, v0 ⪯ vi;
E a set of requirement constraints {e1, . . . , e|E|}, where each ek relates two time-points
ek = vj − vi ∈ [lij , uij] with, vi, vj ∈ V .
C a set of contingent constraints {c1, . . . , c|C|}, where each ck relates two time-points
ck = vj − vi ∈ [lij , uij] with, vi ∈ Vc, vj ∈ Vu, and necessarily vi ⪯ vj : 0 ≤ lij ≤ uij .

Intuitively, controllable time points (Vc) are moments in time to be decided by the scheduling
agent, which is trying to satisfy all the requirement constraints (E) under any possible
instantiation of the contingent constraints (C). Moreover, having a contingent duration
between two unordered time-points is semantically impossible. Figure 1a is the graphical
representation of an STNU.

In addition, an STN (and hence an STNU too) has an equivalent distance graph repres-
entation [5, 7]. Each constraint of the form [l, u] between vi and vj would be represented
as vi

[l,u]−−→ vj in the STN, or equivalently through two corresponding edges in its distance
graph: vi

u−→ vj and vj
−l−→ vi.

In STNUs, consistency has been redefined through three levels of controllability, which
we will recall hereafter before focusing on one of them, namely the Weak controllability.

▶ Definition 2 (Schedule). A schedule δ of an STNU X is the assignment of one value for
each controllable time-point δ = {δ(v) | v ∈ Vc}.

▶ Definition 3 (Situation and Projection). Given an STNU X , the situations of X is a set
of tuples Ω defined as the cartesian product of contingent domains:

Ω = ×
c ∈ C

[lc, uc]

A situation is an element ω of Ω and we write ω(c) with c ∈ C to indicate the element in
ω associated with c in the cross product. A projection Xω = (V, E ∪ Cω) of X is an STN
where Cω = {[ω(c), ω(c)] | c ∈ C}. Last, a schedule δω which satisfies all the constraints in
Xω is called a solution of Xω.

Intuitively, the set of situations defines the space of uncertainty, i.e., the possible values of
contingent constraints; a projection substitutes all contingent links with a singleton, forcing
its duration to the value appearing in ω. Now, a network shall be deemed controllable if it
is possible to schedule the controllable time points to satisfy all requirement constraints in
any possible projection. But that depends on how and when the contingent durations are
observed/known by the execution supervisor.

▶ Definition 4 (Weak Controllability (WC)). An STNU X is Weakly controllable iff
∀ω ∈ Ω, ∃δω such that δω is a solution of Xω.

This definition implies that an “oracle” communicates contingents’ durations to the
scheduler before execution time, which requires all projections to be independently consistent.

TIME 2024

8:4 A More Efficient and Informed Algorithm to Check Weak Controllability

We provide the two other controllability levels only for the sake of completeness, though
they will not be addressed in this paper. Dynamic controllability (DC) demands that the
assignment of a controllable time-point only depends on past observations, and Strong
controllability (SC) demands a unique schedule that is totally independent from any observa-
tion [14].

▶ Definition 5 (Dynamic Controllability (DC)). An STNU X is Dynamically controllable
iff it is Weakly controllable and ∀vi ∈ Vc, ∀ω, ω′ ∈ Ω, ω⪯vi = ω′⪯vi =⇒ δω(vi) = δ′

ω(vi)
where ω⪯v = {ωk ∈ ω s.t. end(ck) ⪯ v} is the part of the situation ω which contingent
constraints ending time-points precede v.

▶ Definition 6 (Strong Controllability (SC)). An STNU X is Strongly controllable iff ∃ δ

such that ∀ω ∈ Ω, δ is a solution of Xω.

As said before, polynomial-time propagation-based checking algorithms exist for SC
and DC [14][11][3]. But not for WC checking, which is co-NP-complete [12]. The original
algorithm to check WC checks the consistency of all 2|C| STNs obtained by replacing the
contingents with one of their bounds (upper or lower), which is an exponential algorithm.
This is enough to check WC as it has been proven in [14] that considering only the bounds
of contingents is enough to verify any level of controllability in STNUs.

3 Relevance of Weak Controllability

In this section, we will argue that WC may be more relevant than DC and SC for some
applications and, thus, deserves to be investigated.

In classical planning and scheduling applications, uncertainties come from external causes;
they are somehow “controlled by Nature” and can only be observed at their time of occurrence.
For instance, the duration of a truck ride to deliver some goods depends on exogenous traffic
conditions that no one has control over. There, the real duration will be observed only
at execution time, which calls for DC enforcement. However, in many domains (logistics,
transport, services), one may have a first strategic phase that builds a plan without assigning
all real resources; a more precise tactical version will do that later. For instance, in a
health service or construction site, one needs a weekly plan for visiting patient rooms or
for construction tasks. Still, the assigned teams (number of people, skills) are unknown,
resulting in flexible and large enough intervals of possible durations. The precise assignment
is only known each day for the next day, which allows for a more precise plan just before
execution, which is exactly the definition of WC.

Moreover, uncontrollable durations also appear in multi-agent systems, when some acticity
duration might be controlled by another agent instead of Nature. Thus, some tasks might be
controllable (requirement) for one agent but uncontrollable for another (contingent). For
instance, in collaborating hospital services that share common resources: one service might
need to wait before another one sends a patient. For the other agent controlling the duration,
that represents a degree of freedom, i.e., the flexibility, that some agent wishes to keep as long
as possible to be more robust. Then, collaboration may rely on the timely communication of
effective durations at execution time. But it is also possible that they plan in advance their
weekly operations with maximum flexibility but must set their own schedules each day for
the next one. They will communicate their decisions to the agents that depend on them,
for better coordination. Therefore checking WC instead of DC/SC enables the agents to be
more robust through least-commitment strategies.

A. Sumic and T. Vidal 8:5

4 From local controllability to global controlability

4.1 Updated STNU graphical model
A starting point for resolving the issue of WC is to add some features to STNU’s graphical
representation and adapt the model accordingly. Nodes in an STNU will not only be divided
between controllable and uncontrollable time-points but also by divergent time-points and
convergent ones. From Definition 7, a divergent node has at least two outgoing edges in the
input graph modeling the STNU, and a convergent one has at least two incoming edges.

▶ Definition 7 (Convergent and Divergent time-points). In a STNU X = (V, E, C) :
vi ∈ V is called a divergent time-point iff ∃j, k, i ̸= j ≠ k with vi → vj ∈ E ∪C and vi →
vk ∈ E ∪ C. We denote Vdv as the set of divergent time-points with Vdv ⊆ V ;
vi ∈ V is called a convergent time-point iff ∃j, k, i ̸= j ̸= k with vj → vi ∈ E ∪
C and vk → vi ∈ E ∪ C. We denote Vcv, the set of convergent time-points with Vcv ⊂ V ;

A B

C D
[10, 25]

[10
, 2

0] [5
, 10]

[10
,15]

[20, 30]

(a)

A B

C D
⟨10, 25⟩

⟨−25, −10⟩

⟨1
0,

20
⟩

⟨−
20

,−
10

⟩ ⟨5
, 10⟩

⟨−
10

,−
5⟩

⟨15
,10⟩

⟨−
10

,
−

15
⟩

⟨30, 20⟩

⟨−20, −30⟩

(b)

Figure 1 An STNU is presented in (a) where time-point A can be seen as the reference point
v0, Vdv = {A, C} (doubly circled nodes) and Vcv = {D, B}. Dotted arrows express contingent
constraints. Hence, C and B are uncontrollable time points, while A and D are controllable ones.
The STNU is not Weakly controllable due to the projection highlighted in bold on the contingent
constraints A

[10, 15]
C and A

[20, 30]
B that violate the synchronization on B. We show in 1b the

controllable bounds graph of the STNU.

Please note that if a contingent link is necessarily a directed edge (implicit precedence), a
requirement link may be a non-directed edge: e.g., vi

[−5,10]−−−−→ vj , imposing some constraint
on the temporal distance between the time-points but allowing any order between them at
execution time. Hence, in this example, vi or vj may be considered a divergent time-point,
depending on the order between them in the input link defined at the design level (here, the
link will be an outgoing edge from vi). As shown in the next subsection, the beginning and
end points of the two paths that form a cycle will only change, but the cycle will still remain.

In addition, Vdv ∩ Vcv may not be void, i.e. any v ∈ V may be convergent, divergent,
convergent and divergent, or neither convergent nor divergent : these definitions are ortho-
gonal to the distinction between controllable and contingent time-points, i.e., a controllable
time-point might be convergent or divergent, etc., and an uncontrollable one alike.

Of course, by definition, v0 cannot be a convergent time-point, but usually, a divergent
one, even though the model does not enforce it, as v0 is used to define the absolute time of
any time-point vi as a constraint between v0 and vi.

TIME 2024

8:6 A More Efficient and Informed Algorithm to Check Weak Controllability

One can see that such a characterization is very similar to what is done in flow networks [8].
Still, there the problem is to check that the sum of labels (capacities) that converge on a point
equals the sum of the labels that exit that node. Here, we will instead use this distinction to
look for cycles, i.e., identify that two paths which diverge from one node and reunite in a
convergent node have compatible overall durations whatever values the contingents in those
paths will take, which is a local WC condition.

In Figure 1(a), we present an STNU as defined in definition 1 augmented by definition 7.
Figure 1(b) exhibits an alternative way to represent the STNU that will be explained later.

4.2 Weak controllability on cycles
First, we assume there is at least one convergent point (and hence at least one divergent
point). Otherwise the STNU is necessarily WC since there is no cycle among the input
constraints and hence no negative one. That means there are paths that diverge at some
point and merge at another point.

▶ Definition 8 (Path). A path ρ in X is a sequence of time-points v1, . . . , vp such that
∀i = 1 . . . p − 1, vi → vi+1 ∈ E ∪ C or vi+1 → vi ∈ E ∪ C, v1 ∈ Vdv and vp ∈ Vcv.

In that definition, we allow a path to follow edges in the graph in any direction, thus
ensuring that all possible cycles in the STNU will not be forgotten. For example, in Figure
1(a), considering divergent node C and convergent node D, there is obviously a path C-B-D,
but C-A-B-D should also be considered, which is equivalent to stating that there is a path
in the corresponding distance graph. Somehow, Figure 1(b), if one disregards, for now, the
labels, can be viewed as such a distance graph, where the path C-A-B-D appears.

Then, any cycle of input constraints in the STNU can be defined as a pair of distinct
paths with the same starting v1 ∈ Vdv and ending vp ∈ Vcv time-points. It is a peculiar way
of defining those cycles that will be useful for our algorithm.

▶ Definition 9 (WC Divergent Cycle). A divergent cycle M is a pair (ρ1, ρ2) such that
ρ1 and ρ2 are two paths starting at the same divergent time point vd ∈ Vdv and ending at
the same converging time point vc ∈ Vcv, where vd, vc are the only common time points in
ρ1, ρ2, i.e. ρ1 ∩ ρ2 = {vd, vc}.
A cycle M is said to be Weakly controllable if the sub-STNU restricted to the set of
time-points and constraints involved in both paths is WC.

For example, in Figure 1a one has a cycle (ρ1, ρ2) with ρ1 = A-B and ρ2 = A-C-B.
Then, an STNU is WC only if all divergent cycles are WC. We will present this result in

two steps, first defining a local property that might be checked for a divergent node and then
generalizing to all divergent nodes, which will be useful for better explaining our algorithm.

▶ Definition 10 (Local divergent-WC). Let µ(vd) = {M1, . . . , Mn} the set of all cycles
starting from vd ∈ Vdv, converging on a set of convergent nodes of Vcv that are necessarily
ordered (topological ordering) after vd in the STNU X . We say that X is locally divergent-
WC on vd iff ∀ Mi ∈ µ(vd), Mi is Weakly controllable.

For example, Figure 3d shows the two cycles starting from the divergent time-point A.
Local divergent-WC does not imply WC, as the corresponding sub-STNU might contain

other divergent nodes.

▶ Theorem 11 (Global controllability). X is Weakly controllable (WC) iff ∀vd ∈ Vdv, X is
locally divergent-WC on vd.

A. Sumic and T. Vidal 8:7

Theorem 11 implies that checking the local divergent-WC property of all the divergent
nodes of an STNU is enough to check the global WC.

Proof. The forward implication is straightforward to prove: if there is a divergent node for
which at least one divergent cycle (sub-STNU) is not WC, that means there is at least one
projection for which there is no consistent local schedule. Hence, the STNU will not be WC.

For the reverse implication, suppose the global STNU is not WC. Then there is at least
one projection for which the corresponding STN is inconsistent; that is equivalent to having
a negative cycle somewhere in that STN[14]; and that negative cycle necessarily relates
time-points that form a divergent cycle in the STNU, which in turn is not WC following
Definition 9. ◀

5 Local Weak Controllability

In this section, we show how to check the local WC of a cycle by exploiting the convexity of
the problem, only considering the contingents bounds [14].

▶ Definition 12 (Controllable Bounds). Given an STNU X = (V, E, C), and vj − vi ∈ E ∪ C.
The controllable bounds of vj − vi, denoted Πctl

ij , is the pair of discrete values

Πctl
ij = ⟨minctl

ij , maxctl
ij ⟩

where, minctl
ij and maxctl

ij respectively represent the minimal and maximal duration that can
be guaranteed for vj − vi.

Any requirement constraint ek = [lij , uij] has a minimal and maximal duration that can
be guaranteed with minctl

ij = lij and maxctl
ij = uij . For a contingent constraint ck ∈ C,

we cannot guarantee that at execution time its duration will be lower (resp. greater) than
its maximum bound uij (resp. its minimal bound lij). Hence, we have minctl

ij = uij and
maxctl

ij = lij . Intuitively, e.g., minctl
ij is the worst-case scenario for a contingent duration

when trying to control the maximum possible total duration of a path it belongs to. We
generalize Πctl

ij as follows:

Πctl
ij =

{
⟨uij , lij⟩ iff vj − vi ∈ C

⟨lij , uij⟩ iff vj − vi ∈ E
(1)

Then, from Equation 1, it is actually possible to represent an STNU X in terms of its
controllable bounds graph denoted Πctl

X , similar to a distance graph but more suited to our
algorithm, which is shown in Figure 1 (b). This graph considers each original constraint and
its inverse. A requirement constraint ek = [lij , uij], equivalently lij ≤ (vj − vi) ≤ uij , has an
inverse constraint e′

k: −uij ≤ (vi − vj) ≤ −lij equivalently represented as e′
i = [−uij , −lij].

The same transformation is applied to contingent constraints.
From this transformation, it is possible to compute the controllable bounds of a path ρ

composed of constraints in E ∪ C by propagating such bounds from v1 to vp.

▶ Definition 13 (Controllable Path Bounds). Let ρ be a path in Πctl
X , with v1, . . . , vp the

sequence of time-points of ρ. The controllable path bounds denoted Πctl
ρ is defined as

follows:

Πctl
ρ = ⟨

∑
minctl

ij ,
∑

maxctl
ij ⟩

TIME 2024

8:8 A More Efficient and Informed Algorithm to Check Weak Controllability

From this point, it’s possible to check the WC controllability of a cycle M = (ρ1, ρ2) through
the controllable paths bounds Πctl

ρ1
and Πctl

ρ2
. Indeed, we need to guarantee that the minimum

controllable duration of ρ1 is less than or equal to the maximum controllable duration of ρ2
and vice-versa. Intuitively, if the condition is not satisfied, then there exists a projection of
M such that ρ1 and ρ2 cannot synchronize on vp as Πct

ρ represent the worst-case scenarios
of ρ: the worst cases for synchronizing two paths are when, for one path, its contingents take
their minimal bounds lij and for the second one, their maximal bounds uij .

▶ Theorem 14 (Cycle WC property). Given a cycle M = (ρ1, ρ2) and the controllable paths
bounds Πctl

ρ1
= ⟨minctl

ρ1
, maxctl

ρ1
⟩ and Πctl

ρ2
= ⟨minctl

ρ2
, maxctl

ρ2
⟩, M is weakly controllable iff:

(minctl
ρ1

≤ maxctl
ρ2

) ∧ (minctl
ρ2

≤ maxctl
ρ1

) (2)

Proof. If M is WC, then whatever the bounds of the contingents in M, there always exists
a schedule that satisfies the constraints of M. Let’s suppose Equation 2 is false. It means
there exists a projection of ρ1 and ρ2 such that the synchronization on vp is impossible and
forms a negative cycle. Thus, such a projection is inconsistent, and M is not WC.

For the reverse implication, let us suppose M is not WC, but Equation 2 is satisfied.
Then, it means that the projections of the two worst-case scenarios of M are consistent
as there exists at least one schedule that guarantees the synchronization on vp. Thus, any
projection satisfies the synchronization on vp. This is not possible as M is not WC, which
implies the sub-STNU has a negative cycle [14]. ◀

Obviously, one can see that only one of the literal can be false, i.e., either (minctl
ρ1

≤ maxctl
ρ2

)
or (minctl

ρ2
≤ maxctl

ρ1
) is false. For the sake of simplicity, we denote M ctl a worst-case scenario

of M. The left network of Figure 3d forms a non-WC cycle. The controllable bounds
are {30, 20} on (A-B) that forms a path ρ1, {10, 20} on (C-B) and {15, 10} on (A-C) that
together form a path ρ2. We have Πctl

ρ1
= {30, 20} and Πctl

ρ2
= {25, 30}, which does not satisfy

minctl
ρ2

≤ maxctl
ρ1

.

6 The WC-Checking algorithm

6.1 Description of the algorithm
In this section, we present the new WC-checking algorithm for an STNU X , which comprises
two parts: the first finds the cycles from a divergent time-point, and the second checks those
cycles. It is based on the following basic structures:

A path ρ is divided into two projection paths ρmin and ρmax where only the minimal
(ρmin) or maximal (ρmax) controllable bounds are computed: Πctl

ρmax
= maxctl

ρ and
Πctl

ρmin
= minctl

ρ . Given η = {min, max}, a projection path is of the form ρη =
⟨ηctl

ρ , Cρη
, Vρη

⟩ such that

ηctl
ρ is the controllable bound of ρη (maxctl

ρ or minctl
ρ);

Cρη is the set of contingent constraints of ρη (Cρη ⊆ C);

Vρη
the set of time-points of ρη (Vp ⊆ V).

One can notice that ρmin and ρmax represent the two worst-case scenarios of ρ.

P(vd) is the set of projection paths P(vd) = {ρη1 , . . . , ρηm} from the divergent time-
point vd.

A. Sumic and T. Vidal 8:9

the minimal divergent cycles Dmin(vd) is a mapping of convergent time points vc ∈ Vcv

to a set of projection paths (Pmin
vc

) that converge on vc from vd such that each of them η

= min (ρmin): ∀ρη ∈ Pmin
vc

, ηctl
ρ = minctl

ρ .
the maximal divergent cycles Dmax(vd) is similar as Dmin(vd) but each projection
path in Pmax

vc
, η = max (ρmax): ∀ρη ∈ Pmax

vc
, ηctl

ρ = maxctl
ρ .

We introduce in Algorithm 1 the findDivergentCycles algorithm in charge of finding the cycles
from a divergent time-point vd. To avoid going through all possible paths in the controllable
bounds graph Πctl

X , we prune the number of paths in two ways:
We first add the notion of rank, which is common in qualitative temporal networks [6]:
it is possible to define a partial order of all time-points with regard to the precedence
relation; rank(vz) = 0, then for all vi such that vz ⪯ vi ∈ E ∪ C and there is no vj such
that vz ⪯ vj ∈ E ∪ C and vj ⪯ vi ∈ E ∪ C, rank(vi) = 1, and so on and so forth.
Using that rank, a forward search is then applied by ordering the time-points through a
topological ordering algorithm from vz (rank 0). This enables us to avoid any time-point
vi with a lower rank than the current divergent time-point vd. Figures 3a to 3c highlight
only the edges considered by the forward search.
To distinguish between the minimal and maximal controllable bounds of a path, we apply
two forward searches: one that computes the paths with only the maximal controllable
bound and one with the minimal controllable bound. This allows us to prune the paths
that converge to any convergent time-point to keep only stricter ones. For example,
it is easy to see that for two projection paths ρη and ρ′

η such that Cpη = Cp′
η

= {∅}
(only requirement constraints) ρη is stricter than ρ′

η if η = min and minctl
ρ > minctl

ρ′

(respectively, η = max and maxctl
ρ < maxctl

ρ′). Hence, it’s useless to consider further ρ′
η as

ρη is a stricter projection path, and only ρη is kept in Dmin(vd) or Dmax(vd) depending on
the computed controllable bound (η). This also holds for a path ρ′

η such that Cρ′
η

̸= {∅}
(with contingent constraints). However, when Cρη and Cρ′

η
are not empty, applying these

rules is impossible as it might result in removing an inconsistent cycle in the graph.
Suppose we have the minimal controllable bounds of ρ and ρ′ (minctl

ρ and minctl
ρ′) and

the maximal controllable bounds of a path ρ′′ (maxctl
ρ′′) such that the pair ⟨ρ′, ρ′′⟩ forms

a cycle M ctl. Then, if ρmin is stricter than ρ′
min and ρ′

min is not kept, M ctl will never
be checked likewise for the WC of X . Therefore, both ρmin and ρ′

min must be kept in
Dmin(vd). 1 We illustrate such case in Figure 2.

Lines 1 to 3 initialize the maps Dmax(vd) and Dmin(vd), and the set of paths P(vd).
Then, lines 5-16 propagate the paths in P(vd) to find and keep all stricter paths of vd in
Dmax(vd) until P(vd) = {∅}. In fact, in line 14, we also update P(vd) and Pvj by removing
the paths that are not stricter anymore. A second forward search is done for Dmin(vd)
where P(vd) is reset. Once the forward searches are over, the maps Dmax(vd) and Dmin(vd)
contain all the restrictive paths from vd to a convergent time-point vc. Then, we execute
the checkCycles algorithm (see Algorithm 2) in charge of checking the WC of the cycles of
vd. This algorithm is trivial as it simply searches and checks for each vc in Dmax(vd) and
Dmin(vd) all the pairs of paths (ρmin, ρmax) that converge on vc and form a cycle M ctl

where Vρmin ∩ Vρmax = {vd, vc}.
Finally, Algorithm 3 presents the WC-checking algorithm that, for a given STNU X ,

computes its controllable bounds graph Πctl
X (line 1), determines the topological ordering of

the time-points (line 2), and find and check the cycles of each divergent time-point in Vdv.

1 This is actually the reason why full reduction of intervals through the intersection of different edges is
not possible, and hence, a polynomial time algorithm cannot be found, unlike DC and SC.

TIME 2024

8:10 A More Efficient and Informed Algorithm to Check Weak Controllability

Algorithm 1 findDivergentCycles algorithm.

Input: vd:(time-point), Πctl
X : (graph), rank: map

Output: Boolean
1 Dmin(vd) = Dmax(vd) = {}
2 P(vd) = [⟨0, [], [vd]⟩]
3 A first forward search for Dmax

4 while P(vd) not empty do
5 ρmax = P (vd)[0] ρmax is removed in P(vd)
6 for each child vj of vm ∈ Vρmax

with rank(vj) ≥ rank(vd) and vj ̸∈ Vρmax
do

7 ρmax = propagateMaxPath(Πctl
X , ρmax, maxctl

mj)
8 if vj is a convergent time point (vj ∈ Vcv) then
9 if vj not in Dmax(vd) then

10 add vj → [ρmax] in Dmax(vd)
11 else
12 if ρmax is a restrictive path in Pmax

vj
then

13 add ρmax to Pmax
vj

and to P(vd)

14 else
15 add ρmax to P(vd)

16 A second forward search for Dmin(vd) with ρmin

17 return checkCycles(Dmax(vd), Dmin(vd))

Algorithm 2 checkCycles algorithm.

Input: Dmax(vd), Dmin(vd)
Output: Boolean

1 for each vc → Pmin
vc

in Dmin(vd) do
2 for each ρmin in Pmin

vc
do

3 for each ρmax in Pmax
vc

in Dmax(vd) do
4 if (ρmin, ρmax) is of the form M ctl then
5 if minctl

ρ > maxctl
ρ then

6 return False Or the cycle

7 return True

Algorithm 3 WC-Checking algorithm.

Input: X : STNU(V,E,C)
Output: Boolean

1 Πctl
X = getDistanceGraph(X)

2 rank = orderFromRank(X)
3 for each vd in Vdv do
4 if findDivergentCycles(vd, Πctl

X , rank) == False then
5 return False Or non-WC cycles of vd

6 return True Or all non-WC cycles

A. Sumic and T. Vidal 8:11

Z

A

B

C D
[10, 20]

[10, 20]

[6,
20

]

[10, 18]

[10
, 1

5]

[15, 20]

(a)

Z

A

B

C D
[10, 20]

[10, 20]

[10, 18]

[10
, 1

5]

[15, 20]

⟨35, 50⟩
⟨30, 33⟩

(b)

Z

A

B

C D

10

10

10

6

18

15

20

15

p′
min = 35

pmin = 36

p′′
max = 33

(c)

Figure 2 This figure illustrates the special case of the pruning rules when Cρη and Cρ′
η

are not
empty. Figure a) shows a non-Weakly controllable STNU, whereas Figure b) shows its only non-WC
cycle. Figure c) highlights the computed projection paths pmin, p′

min, and p′′
max of the given example.

One can see that if p′
min is not kept in Dmin(vd), the inconsistent cycle will never be checked as the

pair ⟨pmin, p′′
max⟩ do not form a cycle Mctl. Hence, such pruning rules cannot be applied when Cρη

and Cρ′
η

are not empty.

We show the execution of our algorithm for Divergent time-point A in Figure 3 using
A → C → B → D as the order for the forward searches. We highlight the search and
the paths (min and max) forming the non-Weakly controllable cycle. Please note that we
simplified the example by not showing how Dmin and Dmax are incrementally changed.

6.2 Features and Complexity
The algorithm presented in the previous section returns the set of negative cycles of a
non-Weakly controllable STNU (see Algorithms 2, 3), which is important for explainability,
i.e., necessary for the repair problem. Moreover, divergent time-points are independent,
which makes parallelization possible. In addition, the usual pseudo-controllability step from
Morris [10] is not required for constraint bounds with finite values (lij ̸= −∞ and uij ̸= +∞).
Thus, an incremental execution is possible as divergent time-points are independent. Indeed,
when adding new constraints, it’s not necessary to recompute the minimal network; hence,
checking only the cycles of divergent time points of the same rank or lesser (topological
ordering) is enough to guarantee WC. Still, it is not optimal as unnecessary cycles might be
checked. The drawback of the algorithm is that the minimal network is not computed.

The temporal complexity of the algorithm depends on the number of cycles to check,
which is related to multiple parameters such as the number of contingents, the number
of divergent time-points, and the number of successors per divergent time-point. For a
complete graph, the algorithm is exponential and not better than the original algorithm

TIME 2024

8:12 A More Efficient and Informed Algorithm to Check Weak Controllability

A B

C D
⟨10, 25⟩

⟨−25, −10⟩

⟨1
0,

20
⟩

⟨−
20

,−
10

⟩ ⟨5
, 10⟩

⟨−
10

,−
5⟩

⟨15
,10⟩

⟨−
10

,
−

15
⟩

⟨30, 20⟩

⟨−20, −30⟩

(a)

A B

C D
⟨10, 25⟩

⟨−25, −10⟩

⟨1
0,

20
⟩

⟨−
20

,−
10

⟩ ⟨5
, 10⟩

⟨−
10

,−
5⟩

⟨15
,10⟩

⟨−
10

,
−

15
⟩

⟨30, 20⟩

⟨−20, −30⟩

(b)

A B

C D
⟨10, 25⟩

⟨−25, −10⟩

⟨1
0,

20
⟩

⟨−
20

,−
10

⟩ ⟨5
, 10⟩

⟨−
10

,−
5⟩

⟨15
,10⟩

⟨−
10

,
−

15
⟩

⟨30, 20⟩

⟨−20, −30⟩

(c)

A B

C

⟨30, 20⟩
⟨25, 30⟩

[10
, 2

0][10
,15]

[20, 30]

A

B

C

D

[10, 15]

[2
0,

30
]

[10, 25]

[5, 10]
⟨35, 30⟩
⟨25, 35⟩

(d)

Figure 3 This Figure shows, in a simplified manner, a running example of Algorithm 1 with
divergent time-point A. We highlight the edges taken at each step according to line 7. Figures 3a to
3c show the search, while Figure 3d shows the cycles to check for A, with the left one being not
Weakly controllable. After step 3, Dmin and Dmax contain all the restrictive paths (only those that
need to be kept) with, in a simplified manner, Dmin = {C : ⟨15, AC⟩, B : [⟨20, AB⟩, ⟨25, ACB⟩], D :
[⟨15, ACD⟩, ⟨35, ABD⟩, ⟨30, ACBD⟩]} and Dmax = {C : ⟨10, AC⟩, B : [⟨20, AB⟩, ⟨30, ACB⟩], D :
[⟨25, ACD⟩, ⟨30, ABD⟩, ⟨40, ACBD⟩]}. We highlight the paths of the non-Weakly controllable cycle.

(2|C|). However, our interest lies in realistic graphs where the sparsity of the graph is low by
restricting these parameters. Thus, the next section compares our algorithm (new_WC) with
the original one (old_WC) using the Floyd-Warshall algorithm (APSP) as a time metric only
to see how close they are to a polynomial behavior when parameters are restricted enough.

7 Experiments

To empirically test the effectiveness of the proposed algorithm, we consider the execution
time as the execution of all computations and not after finding an inconsistency as existing
checking algorithms do. The benchmark comes from a random generator we implemented
that can generate sparse STNUs. It creates an STNU in the form of a complete directed
acyclic graph (DAG), then randomly removes several edges depending on parameters: the
number of time points n, the percentage of divergent time points rd, the maximum number
of their successors nc, and the percentage of contingent constraints rc.

All the experiments have been performed on a machine equipped with an Intel Core
processor: 11th Gen Intel(R) Core(TM) i7-11850H @ 2.50GHz 2.50 GHz. We used a
time/memory limit of 10 minutes/4GB and sequential, single-core computation.

We experiment under different settings: n = {20, 50, 100, 200, 500, 1000}, rd =
{0.1, 0.2, 0.3} meaning 10 to 30% of divergent time-points, rc = {0.2, 0.3}, and nc = 3.
For each combination of parameters, we generate 20 STNUs and compute the average exe-

A. Sumic and T. Vidal 8:13

cution time. We show in Figure 4b that, in general, our algorithm clearly outperforms the
old-WC algorithm and has a behavior slightly worse than the APSP algorithm up to 20%
of contingent constraints. This shows that the parameters were bounded enough to have
a polynomial-like behavior. However, beyond this threshold, our algorithm starts to show
its limit. This shows the sensitivity of our algorithm to the parameters (see Figure 4c). In
addition, we observe from the experimentation that the position of contingents can impact
the number of cycles to check. The closer to v0 contingents are, the higher the number of
cycles to check. Such a case is shown in Figure 4a where the dotted line for the case of 10%
of divergent time-points (new_WC) overlaps the other two (20 and 30 %).

8 Conclusion

This paper introduced a novel approach for checking the WC of an STNU by checking the
consistency of its elementary cycles. Interesting features of our algorithm to consider further
are as follows: it can identify the constraints causing the uncontrollability, and it can be
executed in an incremental way (not optimal) and in a parallelized way. However, it is not
capable of computing the minimal network of an STNU. Moreover, we exhibited that the
algorithm’s complexity depends on the sparsity of the STNU, which makes it exponential in
the worst cases. However, experiments show that in loosely connected STNU, the algorithm
tends to behave in a polynomial-like way. Finally, the paper argues the relevance of the
problem of WC in a multi-agent setting, where uncontrollable events are not controlled by
Nature but by other agents in the system. Further work will tackle the problem of repairing
negative cycles by negotiating the duration of the uncontrollable events, whose duration
depends on the other agents’ decisions.

TIME 2024

8:14 A More Efficient and Informed Algorithm to Check Weak Controllability

(a)

(b)

(c)

Figure 4 Experimentation with 10% (a), 20% (b), and 30% (c) of contingent constraints.

A. Sumic and T. Vidal 8:15

References
1 Shyan Akmal, Savana Ammons, Hemeng Li, and James C Boerkoel Jr. Quantifying degrees

of controllability in temporal networks with uncertainty. In Proceedings of the International
Conference on Automated Planning and Scheduling, 2019.

2 Shyan Akmal, Savana Ammons, Hemeng Li, Michael Gao, Lindsay Popowski, and James C.
Boerkoel. Quantifying controllability in temporal networks with uncertainty. Artificial
Intelligence, 2020.

3 Arthur Bit-Monnot and Paul Morris. Dynamic controllability of temporal plans in uncertain
and partially observable environments. J. Artif. Intell. Res., 2023. doi:10.1613/JAIR.1.13065.

4 Alessandro Cimatti, Andrea Micheli, and Marco Roveri. Solving temporal problems using smt:
weak controllability. In Proceedings of the AAAI Conference on Artificial Intelligence, 2012.

5 Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint networks. Artificial intelligence,
1991.

6 Malik Ghallab and A. Mounir Alaoui. Managing efficiently temporal relations through
indexed spanning trees. In Proceedings of the 11th International Joint Conference on Artificial
Intelligence. Detroit, MI, USA, August 1989, pages 1297–1303. Morgan Kaufmann, 1989. URL:
http://ijcai.org/Proceedings/89-2/Papers/072.pdf.

7 Luke Hunsberger and Roberto Posenato. Speeding up the rul dynamic-controllability-checking
algorithm for simple temporal networks with uncertainty. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 2022.

8 Jsen-Shung Lin, Chin-Chia Jane, and John Yuan. On reliability evaluation of a capacitated-flow
network in terms of minimal pathsets. Networks, 1995. doi:10.1002/NET.3230250306.

9 Josef Lubas, Marco Franceschetti, and Johann Eder. Resolving conflicts in process models
with temporal constraints. In Proceedings of the ER Forum and PhD Symposium, 2022.

10 Paul Morris. A structural characterization of temporal dynamic controllability. In Principles
and Practice of Constraint Programming - CP 2006, 12th International Conference, CP 2006,
Nantes, France, September 25-29, 2006, Proceedings, volume 4204 of Lecture Notes in Computer
Science, pages 375–389. Springer, 2006. doi:10.1007/11889205_28.

11 Paul Morris. Dynamic controllability and dispatchability relationships. In Integration
of AI and OR Techniques in Constraint Programming - 11th International Conference,
CPAIOR 2014, Cork, Ireland, May 19-23, 2014. Proceedings. Springer, 2014. doi:10.1007/
978-3-319-07046-9_33.

12 Paul H. Morris and Nicola Muscettola. Managing temporal uncertainty through waypoint
controllability. In Proceedings of the Sixteenth International Joint Conference on Artificial
Intelligence, IJCAI 99, Stockholm, Sweden, July 31 - August 6, 1999. 2 Volumes, 1450 pages,
pages 1253–1258. Morgan Kaufmann, 1999. URL: http://ijcai.org/Proceedings/99-2/
Papers/083.pdf.

13 Ajdin Sumic, Alessandro Cimatti, Andrea Micheli, and Thierry Vidal. SMT-based repair of
disjunctive temporal networks with uncertainty: Strong and weak controllability. In Proceedings
of the The 21st International Conference on the Integration of Constraint Programming,
Artificial Intelligence, and Operations Research (CPAIOR 2024), 2024.

14 Thierry Vidal and Hélène Fargier. Handling contingency in temporal constraint networks:
from consistency to controllabilities. J. Exp. Theor. Artif. Intell., 11(1):23–45, 1999. doi:
10.1080/095281399146607.

TIME 2024

https://doi.org/10.1613/JAIR.1.13065
http://ijcai.org/Proceedings/89-2/Papers/072.pdf
https://doi.org/10.1002/NET.3230250306
https://doi.org/10.1007/11889205_28
https://doi.org/10.1007/978-3-319-07046-9_33
https://doi.org/10.1007/978-3-319-07046-9_33
http://ijcai.org/Proceedings/99-2/Papers/083.pdf
http://ijcai.org/Proceedings/99-2/Papers/083.pdf
https://doi.org/10.1080/095281399146607
https://doi.org/10.1080/095281399146607

	1 Introduction and Related Work
	2 Background
	3 Relevance of Weak Controllability
	4 From local controllability to global controlability
	4.1 Updated STNU graphical model
	4.2 Weak controllability on cycles

	5 Local Weak Controllability
	6 The WC-Checking algorithm
	6.1 Description of the algorithm
	6.2 Features and Complexity

	7 Experiments
	8 Conclusion

