
A Faster Algorithm for Finding Negative Cycles in
Simple Temporal Networks with Uncertainty
Luke Hunsberger # Ñ

Vassar College, Poughkeepsie, NY, USA

Roberto Posenato # Ñ

University of Verona, Italy

Abstract
Temporal constraint networks are data structures for representing and reasoning about time (e.g.,
temporal constraints among actions in a plan). Finding and computing negative cycles in temporal
networks is important for planning and scheduling applications since it is the first step toward
resolving inconsistent networks. For Simple Temporal Networks (STNs), the problem reduces to
finding simple negative cycles (i.e., no repeat nodes), resulting in numerous efficient algorithms. For
Simple Temporal Networks with Uncertainty (STNUs), which accommodate actions with uncertain
durations, the situation is more complex because the characteristic of a non-dynamically controllable
(non-DC) network is a so-called semi-reducible negative (SRN) cycle, which can have repeat edges and,
in the worst case, an exponential number of occurrences of such edges. Algorithms for computing
SRN cycles in non-DC STNUs that have been presented so far are based on older, less efficient
DC-checking algorithms. In addition, the issue of repeated edges has either been ignored or given
scant attention. This paper presents a new, faster algorithm for identifying SRN cycles in non-DC
STNUs. Its worst-case time complexity is O(mn + k2n + kn log n), where n is the number of
timepoints, m is the number of constraints, and k is the number of actions with uncertain durations.
This complexity is the same as that of the fastest DC-checking algorithm for STNUs. It avoids
an exponential blow-up by efficiently dealing with repeated structures and outputting a compact
representation of the SRN cycle it finds. The space required to compactly store accumulated path
information while avoiding redundant storage of repeated edges is O(mk + k2n). An empirical
evaluation demonstrates the effectiveness of the new algorithm on an existing benchmark.

2012 ACM Subject Classification Computing methodologies → Temporal reasoning; Theory of
computation → Dynamic graph algorithms

Keywords and phrases Temporal constraint networks, overconstrained networks, negative cycles

Digital Object Identifier 10.4230/LIPIcs.TIME.2024.9

Supplementary Material Software (Source code): https://profs.scienze.univr.it/~posenato/
software/cstnu/ [17]

1 Introduction

A Simple Temporal Network with Uncertainty (STNU) is a data structure for representing
and reasoning about time [14]. STNUs are attractive for planning and scheduling applications
because they accommodate not only a wide variety of temporal constraints (e.g., duration
constraints, deadlines, and inter-action constraints), but also actions with uncertain durations
(e.g., taxi rides or battery-charging actions) [5, 15, 6, 11, 18]. In STNUs, actions with uncertain
durations are represented by contingent links. Each STNU has a graphical form where nodes
represent timepoints; labeled, directed edges represent temporal constraints; and additional
edges (called LC and UC edges) represent bounds on uncontrollable action durations.

The most important property of an STNU is called dynamic controllability (DC). An
STNU is DC if there exists a dynamic strategy for executing its controllable timepoints that
guarantees that all relevant constraints will be satisfied no matter how the uncertain durations

© Luke Hunsberger and Roberto Posenato;
licensed under Creative Commons License CC-BY 4.0

31st International Symposium on Temporal Representation and Reasoning (TIME 2024).
Editors: Pietro Sala, Michael Sioutis, and Fusheng Wang; Article No. 9; pp. 9:1–9:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hunsberger@vassar.edu
https://www.cs.vassar.edu/~hunsberg
https://orcid.org/0009-0005-8603-4803
mailto:roberto.posenato@univr.it
https://www.di.univr.it/?ent=persona&id=102
https://orcid.org/0000-0003-0944-0419
https://doi.org/10.4230/LIPIcs.TIME.2024.9
https://profs.scienze.univr.it/~posenato/software/cstnu/
https://profs.scienze.univr.it/~posenato/software/cstnu/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Finding Negative Cycles in STNUs

turn out – within their specified bounds. There are many polynomial-time algorithms, called
DC-checking algorithms, for determining whether any given STNU is DC. The fastest is
the O(mn + k2n + kn log n)-time RUL− algorithm due to Cairo et al. [3], where n is the
number of timepoints; m, the number of constraints; and k, the number of contingent links.
Hunsberger and Posenato subsequently presented a modification of RUL−, called RUL2021,
that has the same worst-case complexity, but is an order of magnitude faster in practice [10].

The characteristic feature of a non-DC STNU is that it must contain a semi-reducible
negative (SRN) cycle [12]. In general, any path from X to Y in an STNU graph is semi-
reducible if it entails a path of the same length from X to Y that contains no LC edges.
Such entailments can be discovered by generating new edges using constraint-propagation
(equivalently, edge-generation) rules. Although finding negative cycles in Simple Temporal
Networks (STNs) reduces to finding simple negative cycles (i.e., no repeat nodes), finding
SRN cycles in STNUs is more complex, given that even indivisible SRN cycles in a non-DC
STNU can have repeat edges and, in the worst case, an exponential number of such edges [9].
(An SRN cycle is indivisible if each proper sub-cycle is non-negative or non-semi-reducible.)

When given a non-DC STNU, DC-checking algorithms simply report that the network is
not DC; they do not produce an SRN cycle [12, 13, 3, 10]. For applications, it is important
to identify SRN cycles so that they can be resolved (e.g., by accepting the cost of weakening
constraints or tightening uncertain durations). Existing algorithms for finding SRN cycles in
non-DC STNUs [22, 23, 21, 1, 2] are based on older, less efficient DC-checking algorithms;
and the issue of repeated edges has been ignored or given scant attention. This paper presents
a new, faster algorithm for computing SRN cycles in non-DC STNUs while also rigorously
addressing the compact representation of SRN cycles having a large number of repeated
edges. The new algorithm modifies the RUL2021 algorithm to accumulate path information
without impacting its time complexity. The additional space required to compactly store
path information, while avoiding redundant storage of repeated edges, is O(mk + k2n).

2 Background

This section summarizes the basic definitions and results for STNUs and then describes the
RUL2021 DC-checking algorithm that is the starting point for our new algorithm.

2.1 Simple Temporal Networks with Uncertainty

A Simple Temporal Network with Uncertainty (STNU) is a triple (T , C, L) where T is a
set of n real-valued variables; C is a set of m binary difference constraints, each of the form
Y − X ≤ δ, where X, Y ∈ T and δ ∈ R; and L is a set of k contingent links, each of the form
(A, x, y, C), where A, C ∈ T and 0 < x < y < ∞ [14]. The timepoints typically represent
starting or ending times of actions; the constraints can represent deadlines, release times, and
duration or inter-action constraints. The contingent links represent actions with uncertain
durations. For each contingent link (A, x, y, C), A is called the activation timepoint and
C the contingent timepoint. We let ∆C = y − x. The executor of the network typically
controls A, but not C. The executor only observes the execution of C in real-time, knowing
only that C will be executed such that C − A ∈ [x, y]. For example, your taxi ride might be
represented by the contingent link (A, 15, 25, C), where A is when you enter the taxi, C is
when you arrive at your destination, and C − A ∈ [15, 25] is the uncertain duration, learned
only when you arrive.

L. Hunsberger and R. Posenato 9:3

Each STNU has a graph (T , E) where the timepoints serve as nodes and the constraints
in C and the contingent links in L correspond to different kinds of labeled, directed edges.
For convenience, edges such as X α Y will be notated as (X, α, Y), where X, Y ∈ T and
α ∈ R, possibly annotated with an alphabetic letter. In particular, E = Eo ∪ Eℓ ∪ Eu,
where: Eo = {(X, δ, Y) | (Y − X) ≤ δ ∈ C} is the set of ordinary edges; Eℓ = {(A, c:x, C) |
(A, x, y, C) ∈ L}, the set of lower-case (LC) edges; and Eu = {(C, C:−y, A) | (A, x, y, C) ∈ L},
the set of upper-case (UC) edges. Note that each contingent link has a corresponding pair of
edges: an LC edge representing that the contingent duration might take on its minimum
value x, and a UC edge representing that it might take on its maximum value y.

Tc denotes the set of contingent timepoints; and Tx = T \Tc the set of executable
(or controllable) timepoints. An STNU is dynamically controllable (DC) if there exists a
dynamic strategy for executing its controllable timepoints such that all constraints in C will
necessarily be satisfied no matter how the contingent durations turn out within their specified
bounds [14, 7]. An execution strategy is dynamic if it can react, in real-time, to observations
of contingent executions. The RUL− algorithm [3] is the DC-checking algorithm with the
best worst-case time complexity: O(mn + k2n + kn log n). However, RUL2021, which is a
modification of RUL−, has been shown to be an order-of-magnitude faster on a variety of
STNU benchmarks, although having the same theoretical complexity [10].

2.2 The RUL2021 DC-Checking algorithm

This section summarizes important features of the RUL2021 algorithm. Like all DC-checking
algorithms, it operates on the STNU graph, using edge-generation rules to generate new
edges representing constraints that must be satisfied by any dynamic execution strategy.
Table 1 shows the edge-generation rules used by RUL2021. The R and L rules (for Relax and
Lower Case, respectively) are used to back-propagate distance information in the LO-graph
(i.e., the subgraph comprising the LC and ordinary edges). The wavy arrows represent
paths in the LO-graph that have already been explored. In the R rule, back-propagation
continues along the ordinary edge (P, v, Q) to generate the distance information represented
by the dotted edge (P, v + w, Ci). In the L rule, back-propagation continues along the LC
edge (Aj , cj :xj , Cj) to generate the distance information represented by the dotted edge
(Aj , xj + w, Ci). RUL2021 uses the L and R rules only to accumulate distance information;
the dotted edges are not inserted into the STNU graph. But RUL2021 does insert the edges
generated by the Ulp rule: ordinary edges that effectively bypass UC edges. For example, in
the table, the wavy path (P, v, Ci) represents distance information previously generated by
the R and L rules. This “edge” combines with the UC edge (Ci, Ci:−yi, Ai) to generate the
(blue and dashed) bypass edge (P, v − yi, Ai).

Table 1 The edge-generation rules for the RUL2021 algorithm.

Rule Graphical representation Applicability Conditions

R P Q Ci
v w

v + w
Q ∈ TX , w < ∆Ci , Ci ∈ TC

L Aj Cj Ci
cj :xj w

xj + w
Cj ̸≡ Ci, w < ∆Ci , Ci ∈ TC

Ulp P Ci Ai
v Ci:−yi

v − yi

(Ai, xi, yi, Ci) ∈ L, v ≥ ∆Ci

TIME 2024

9:4 Finding Negative Cycles in STNUs

ACXC2A2WTS

(∆C = 12)

C:−2013c2:2352
(R) 4(L) 6(R) 9(R) 14

(Ulp) −6

Figure 1 RUL2021 generating a (blue and dashed) bypass edge for a (red) UC edge.

A1C1UA2C2

V WC3A3

C1:−9−12C2:−8

3

−1 C3:−7

−1

−1

2
1 −2

Figure 2 A cycle of interruptions detected by RUL2021.

Figure 1 shows how RUL2021 processes a (red) UC edge, assuming that ∆C = 12. First,
it uses the R and L rules to back-propagate from C along LO-edges, collecting distance
information indicated by the dotted arrows. (The rules used to generate these edges are in
parentheses.) Back-propagation continues as long as the distance stays less than ∆C . Since
the path from T to C has length 14 ≥ ∆C , back-propagation stops. Then the Ulp rule is
applied to (T, 14, C) and (C, C:−20, A) to generate the (dashed) bypass edge (T, −6, A).

There can be many paths emanating backward from C in the LO-graph. To ensure that
only shortest distances are accumulated, back-propagation is guided by a priority queue and a
potential function to re-weight the edges to non-negative values, as in Johnson’s algorithm [4],
except that here the potential function is a solution to the LO-graph, viewed as an STN.
The potential function is initialized by a one-time call to the Bellman-Ford algorithm [4].

Once all of the bypass edges are computed for a given UC edge, they are inserted into
the LO-graph, which typically requires updating the potential function. Since all of the
new edges terminate at A, this updating can be carried out by a separate Dijkstra-like
back-propagation from A using a priority queue and the pre-existing potential function. If
all of the UC edges can be successfully processed in this way, then RUL2021 declares the
STNU to be DC.

However, three kinds of events can signal that the STNU is not DC:
1. Failure to update the potential function. Inserting new bypass edges might cause the

LO-graph to become inconsistent (as an STN), which would be detected by encountering
a negative cycle in the LO-graph while trying to update the potential function.

2. Cycle of interruptions. When processing a UC edge E1, back propagation from
its contingent timepoint C1 might bump into a different UC edge E2. If so, RUL2021
interrupts its processing of E1 to process E2. After finishing with E2, back propagation
from E1 continues. However, should a cycle of such interruptions occur, for example, as
illustrated in Figure 2, then the network cannot be DC. In the figure, the UC edges are
colored red; distances along LO-paths computed by back-propagation using the L and R
rules are indicated by dotted arrows; and the relevant contingent links are (A1, 1, 9, C1),
(A2, 2, 8, C2) and (A3, 3, 7, C3). Now back propagation from C1 should continue as long
as the dotted distances are less than ∆C1 = 9 − 1 = 8, but is interrupted by the UC
edge (C2, C2:−8, A2). Similarly, back-propagation from C2 should continue as long as
the dotted distances are less than ∆C2 = 8 − 2 = 6, but is interrupted by the UC
edge (C3, C3:−7, A3). Finally, back propagation from C3 should continue as long as the
dotted distances are less than ∆C3 = 7 − 3 = 4, but is interrupted by the first UC edge,

L. Hunsberger and R. Posenato 9:5

A C

C W X

C:−9
c
:1 4

1 −3

2−1

A C

C W X

C:−9

c
:1 −3

4 1

2

Figure 3 Two different CC loops associated with a contingent link (A, 1, 9, C).

Algorithm 1 The FindSRNC algorithm.
Input: G = (T , E = Eo ∪ Eℓ ∪ Eu), an STNU graph
Output: (negCycle, edgeAnn), where negCycle is an SRN cycle and edgeAnn is a hash table of

path annotations for edges in the cycle; or (∅, ∅) if the STNU is DC
1 glo ··= new global data structure // Fields: pf, status, intBy, edgeAnnotation
2 glo.pf ··= BellmanFord(Gℓo) // Initialize potential function for LO-graph
3 if glo.pf == ⊥ then return BFCT(Gℓo)
4 glo.edgeAnnotation ··= new empty hash table
5 glo.status ··= [nYet, . . . , nYet] // Initial processing status of the k UC edges
6 glo.intBy ··= [⊥, . . . , ⊥] // k-vector: records interruptions
7 foreach (C, C:−y, A) ∈ Eu do
8 negCycle ··= RulBackProp(G, (C, C:−y, A), glo)
9 if negCycle ̸= ∅ then return (negCycle, glo.edgeAnnotation)

10 return (∅, ∅)

thereby completing the cycle. At this point, RUL2021 signals that the STNU is not DC.
This is justified since each dotted distance being less than the corresponding ∆Ci value
ensures that the length of the cycle is negative; and a negative cycle in the OU-graph
(i.e., the subgraph comprising ordinary and UC edges) represents an impossible-to-satisfy
constraint for a dynamic execution strategy.

3. CC loops. Back propagation from a UC edge (C, C:−y, A) can also be blocked if an
LO-path from C back to C of length less than ∆C is encountered. Such a path is called
a CC loop [10]. A CC loop does not necessarily imply that the STNU is not DC; but
it sometimes does. Figure 3 illustrates two scenarios in which back-propagation from C

reveals a CC loop of length 2 < 8 = ∆C . However, the lefthand STNU is not DC, while
the righthand one is. The key difference, according to Morris’ analysis of semi-reducible
paths [12], is that the lefthand graph contains a negative LO-path emanating from C (to
X) which can be used to generate the (dashed, green) bypass edge (A, −1, X), thereby
creating a negative cycle in the OU-graph from A to X to C to A, whereas the righthand
graph has no such path.

3 The FindSRNC (Find Semi-Reducible Negative Cycle) Algorithm

This section introduces our new FindSRNC algorithm, which modifies RUL2021 to efficiently
accumulate path information. To contrast FindSRNC and RUL2021, we have preserved the
general structure of RUL2021, although to improve readability we have expanded the rather
cryptic names of the original helper algorithms. Modifications are highlighted in green.

The pseudocode for FindSRNC is in Algorithm 1. When given a non-DC STNU as input,
it outputs a compact representation of an SRN cycle in the form (negCycle, edgeAnn), where
negCycle is a negative cycle of edges in the LO- or OU-graph, depending on how the cycle
arose; and edgeAnn is a hash table of (key, value) pairs, where each key identifies an (ordinary)

TIME 2024

9:6 Finding Negative Cycles in STNUs

bypass edge generated by the algorithm, and value is the path used to generate that edge. It
is efficient to present the SRN cycle in this way since, in the worst case, unpacking all of the
edges in the cycle could result in an exponential number of repeated edges.

Like RUL2021, FindSRNC starts by calling the Bellman-Ford algorithm to create an
initial potential function for the LO-graph which, if successful, is stored in the pf field of a
glo data structure. (The glo data structure contains global information accessible across
multiple recursive calls to process UC edges.) If Bellman-Ford fails, then FindSRNC calls the
O(mn)-time BFCT algorithm [19] to return a negative cycle for the LO-graph (an STN). A
negative cycle in the LO-graph is a trivial case of an SRN cycle for an STNU.

If Bellman-Ford succeeds, FindSRNC initializes glo.edgeAnnotation to a new hash table
that will record the paths from which any bypass edges are derived. The glo.status field
tracks the processing status of each UC edge, as in RUL2021. The glo.intBy field, initially
a vector of ⊥ entries, stores information about when the processing of one UC edge is
interrupted by another. Finally, FindSRNC iterates through the UC edges, processing each
with a call to RulBackProp (Algorithm 2). Because RulBackProp recursively processes any
interrupting UC edges, by the time FindSRNC calls RulBackProp on some UC edge, it may
have already been processed. The status field is used to avoid redundant processing.

RulBackProp

The pseudocode for the RulBackProp algorithm is in Algorithm 2. It processes a single UC
edge E = (C, C:−y, A) while integrating the recursive processing of any interrupting UC
edges. At Line 2, if E has already been processed, it immediately returns ⊤. At Line 3,
it checks whether the processing of E has already been started, but not yet completed,
which implies a negative cycle of interruptions. In this case, RulBackProp calls AccNegCycle
(Algorithm 3) to collect the relevant path information accumulated in the glo.intBy vector,
which is then returned as a compact representation of an SRN cycle. (More will be said
about how the information in glo.intBy is generated.)

In the pseudocode, we use +++ as a concatenation operator that can be applied to edges or
paths. For example, if e1 is an edge, and π1 and π2 are paths, then π1 +++ e1 +++ π2 represents
their concatenation into a single path. In addition, we use ⟨⟩ to denote the empty path.

At Lines 4–7, RulBackProp prepares to process a UC edge E = (C, C:−y, A). As in
RUL2021, ccLoop is a flag used to signal the discovery of a CC loop; and dist records, for
each encountered timepoint X, the distance from X to C in the LO-graph. A new field,
path, records the paths from each X to A (via C). Back-propagation from C is governed by
a priority queue Q, initialized at Lines 8–10 to include each X connected to C by an edge.

In each iteration of the while loop (Lines 12–23), RulBackProp either starts or resumes
the processing of E, first (at Line 13) by calling TryBackProp (Algorithm 4). TryBackProp
(described later) back-propagates along LO-edges, but does not generate or insert any bypass
edges. Instead, it simply collects the relevant distance and path information, while also
keeping track of whether it encountered any unstarted (i.e., interrupting) UC edges or CC
loops. At Line 14, RulBackProp checks whether TryBackProp found an SRN cycle, in which
case RulBackProp returns that cycle. Otherwise, at Line 15, RulBackProp checks whether
TryBackProp encountered any interrupting UC edges. If so, for each interrupting UC edge
EX (Lines 16–19), it uses glo.intBy [E] to record the interruption and then attempts to
recursively process EX . If all interrupting UC edges are successfully processed, it clears
the glo.intBy [E] entry (Line 20) and prepares for the next iteration of the while loop by
re-initializing the priority queue (Lines 21–22) so that processing E can be resumed, starting
from the activation timepoints of the no-longer-interrupting UC edges.

L. Hunsberger and R. Posenato 9:7

Algorithm 2 The RulBackProp algorithm.

Input: G = (T , E), STNU graph; E = (C, C:−y, A) ∈ Eu, a UC edge; glo, a global structure
Output: negCycle, an SRN cycle; or ∅ if E successfully processed

1 h ··= glo.pf // Potential function for LO-graph
2 if glo.status[E] == done then return ⊤ // E already done
3 if glo.status[E] == started then return AccNegCycle(glo.intBy, E) // Cycle of interrupts
4 glo.status[E] ··= started // Prepare to start processing the UC edge E
5 loc ··= new local struct; loc.ccLoop ··= ⊥ // No CC loop found yet
6 loc.dist ··= [∞, . . . , ∞] // distance from each TP to C

7 loc.path ··= [⟨⟩, . . . , ⟨⟩] // path from each TP to A (via E)
8 Q ··= a new priority queue // Priority of each X is h(X) + δxc, adjusted dist. from X to C
9 foreach (X, δxc, C) ∈ Eo do

10 Q.ins(X, h(X) + δxc); loc.path[X] ··= (X, δxc, C)+++ (C, C:−y, A)
11 continue? ··= ⊤
12 while continue? do // Start or resume processing of UC edge E
13 negCycle ··= TryBackProp(G, E, Q, glo, loc)
14 if negCycle ̸= ∅ then return negCycle
15 if loc.UnstartedUCs ̸= ∅ then // Process unstarted UC-edges
16 foreach (EX , X) ∈ loc.UnstartedUCs do
17 glo.intBy[E] ··= (EX , loc.path[X])
18 negCycle ··= RulBackProp(G, EX , glo)
19 if negCycle ̸= ∅ then return negCycle
20 glo.intBy[E] ··= ⊥ // All interruptions of E completed
21 Q.clear() // Prepare Q for next iteration of WHILE
22 foreach (EX , X) ∈ loc.UnstartedUCs do Q.ins(X, loc.dist[X] + glo.pf[X])
23 else continue? ··= ⊥ // Back-prop. from E completed
24 if loc.ccLoop then // CC-loop found; must initiate forward propagation
25 (X, PX) ··= FwdPropNDC(G, C, ∆C , loc, glo.pf) // ∆C = y − x for cont. link (A, x, y, C)
26 // If (A, c:x, C) can be reduced away, then return SRN cycle
27 if (X, PX) ̸= ∅ then return (A, c:x, C)+++ PX +++ loc.path[X]
28 foreach X ∈ T \{C} do // Generate bypass edges using Ulp rule
29 δxc ··= loc.dist[X] // δxc = ∞ means node not reachable
30 if ∆C ≤ δxc < ∞ then
31 G.insertOrdEdge(X, δxc − y, A)
32 glo.edgeAnnotation.put((X, A), loc.path[X])
33 edges? ··= ⊤

34 if edges? then (glo.pf, negCycle) ··= UpdatePotFn(G, A, glo.pf)
35 if glo.pf == ⊥ then return negCycle
36 glo.status[E] ··= done
37 return ∅ // Processing of E successfully completed

Once all back-propagation from E is done, RulBackProp checks, at Line 24, whether
any CC loops were encountered. If so, it calls FwdPropNDC to carry out a separate forward
propagation from C along LO-edges, checking whether any LO-path, PCX , from C to some X,
can be used to bypass the LC edge e = (A, c:x, C). If so, there must be an SRN cycle,
e+++ PCX +++ loc.path[X], where loc.path[X] is the LO-path from X to A obtained by the earlier
back-propagation from C [10]. Hence, FwdPropNDC returns (X, PCX). For the STNU on the
left of Figure 3, PCX is (C, 1, W)+++ (W, −3, X) and loc.path[X] is (X, 4, C)+++ (C, C:−9, A).

TIME 2024

9:8 Finding Negative Cycles in STNUs

Algorithm 3 The AccNegCycle algorithm (new).
Input: glo.intBy, vector recording a cycle of interruptions; E ∈ Eu, a UC edge in the cycle
Output: negCycle, an SRN cycle containing E

1 negCycle ··= ⟨⟩
2 (E′, P ′) ··= glo.intBy[E] // P ′ is path used to generate E′

3 while E′ ̸= E do
4 negCycle ··= P ′ +++ negCycle // Accumulate P ′ into cycle
5 (E′, P ′) ··= glo.intBy[E′] // Fetch next interrupter
6 return P ′ +++ negCycle

If forward propagation fails to find an SRN cycle, then RulBackProp finally uses the
information in loc.dist to generate edges that bypass the UC edge E (Lines 28–33). These
are the only edges that FindSRNC actually inserts into the STNU. For each bypass edge
(X, δxc −y, A), the corresponding path that has been accumulated in loc.path[X] is recorded
in the glo.edgeAnnotation hash table (Line 32). (As discussed below, it is TryBackProp
that accumulates the path information in loc.path[X].) If any bypass edges are inserted,
then RulBackProp (at Line 34) calls UpdatePotFn (Algorithm 7, discussed later) to update
the potential function for the LO-graph, whence the processing of E is completed (Line 36).

TryBackProp

Pseudocode for TryBackProp (called phaseOne in RUL2021) is given as Algorithm 4. For a
UC edge E = (C, C:−y, A), it propagates backward from C along LO-edges as long as the
accumulated distance remains less than ∆C = y − x. (Recall the condition w < ∆Ci

for the
R and L rules in Table 1.) Its while loop (Lines 3–19) uses the priority queue initialized
by RulBackProp and the potential function updated by RulBackProp to explore shortest
paths in the LO-graph. At Lines 4–6, it pops a node X off the queue, converts its key into
the distance from X to C, and assigns it to loc.dist[X]. At Line 7, it checks whether
X is an activation timepoint and, if so, sets EX to the corresponding UC edge. Next, if
loc.dist[X] < ∆C (Line 8), TryBackProp considers four cases (Lines 9-19).
In Case 1, back propagation has circled back to C, prompting TryBackProp to set the
ccLoop flag. In Case 2, back propagation has encountered another UC edge EX whose
processing has not yet been started; so TryBackProp pushes the interrupting edge onto a
list of as-yet-unstarted UC edges (to be processed later by RulBackProp). In Case 3, back
propagation has hit a UC edge EX whose processing has already been started, but not yet
finished. This implies a cycle of interruptions and, hence, an SRN cycle. In preparation for
terminating, the algorithm records the interruption of E by EX , along with the path from X

to A accumulated in loc.path[X]. Then it calls AccNegCycle (Algorithm 3) to recursively
collect the information accumulated in the cycle of interruptions to return an SRN cycle.
In Case 4, back propagation continues past X, and path information is accumulated. At
Line 15, TryBackProp calls ApplyRL (Algorithm 5), which applies the R rule to all ordinary
edges coming into X and, if X happens to be a contingent timepoint, applies the L rule to
the corresponding LC edge coming into X. ApplyRL returns a list of pairs, each of the form
(e, δW C), where e is an LO-edge from W to X, and δW C is the length of the LO-path from
W to C via X. For each such pair, TryBackProp (at Lines 15–19) first checks whether the
path from W to C represents a new shorter LO-path and, if so, updates the key for W in the
priority queue and incrementally accumulates the relevant path information in loc.path[W].

L. Hunsberger and R. Posenato 9:9

Algorithm 4 The TryBackProp algorithm.

Input: G = (T , E), an STNU graph; E = (C, C:−y, A) ∈ Eu; Q, a priority queue; glo, global
struct; loc, local struct

Output: negCycle, an SRN cycle; or ∅ if no SRN cycle found.
1 h ··= glo.pf // Potential function, a solution to the LO-graph
2 loc.UnstartedUCs ··= {} // Will collect unstarted UC edges
3 while Q ≠ ∅ do

// keyX = distance from X to C, adjusted by h

4 (X, keyX) ··= Q.extractMinNode()
5 δxc ··= keyX − h(X) // δxc = distance from X to C in Gℓo

6 loc.dist[X] ··= δxc // Record shorter length
// If X is an ATP, then EX is corresponding UC-edge; else ⊥

7 EX ··= G.UCEdgeFromATP(X)
8 if δxc < ∆C then // Continue back-propagation

// Case 1: Found CC loop of length δxc < ∆C ; signal need for fwd prop
9 if X ≡ C then loc.ccLoop ··= ⊤

// Case 2: EX is an unstarted UC-edge; accumulate it
10 else if glo.status[EX] == nYet then loc.UnstartedUCs.add((EX , X))

// Case 3: Cycle of interruptions: not DC
11 else if glo.status[EX] == started then
12 glo.intBy[E] ··= (EX , loc.path[X])
13 return AccNegCycle (glo.intBy, EX)
14 else // Case 4: Continue back-propagation along LO-edges
15 foreach (e, δwc) ∈ ApplyRL(G, X, ∆C , δxc) do
16 newKey ··= δwc + h(W)
17 if δwc < loc.dist[W] and (W ̸∈ Q or newKey < Q.key(W)) then

// Accumulate new path from W to C

18 Q.insOrDecrKey(W, newKey)
19 loc.path[W] ··= e+++ loc.path[X]

20 return ∅

Algorithm 5 The ApplyRL algorithm.
Input: G, an STNU graph; X ∈ T ; ∆C ; and δxc < ∆C

Output: A list of pairs, (e, δwc), where e is an LO-edge from W to X, and δW C = |e| + δxc.
1 edgeDistPairs ··= {}

// If X is a contingent timepoint Ci, then apply the L rule to (Ai, ci:xi, Ci) and (Ci, δxc, C)
2 if X ≡ Ci ∈ TC then edgeDistPairs.add(((Ai, ci:xi, Ci), xi + δxc))
3 else // Otherwise, apply the R rule to (W, δwx, X) and (V, δvc, C)
4 foreach (W, δwx, X) ∈ Eo do edgeDistPairs.add(((W, δwx, X), δwx + δxc))
5 return edgeDistPairs

FwdPropNDC

The FwdPropNDC algorithm (Algorithm 6) propagates forward from C along LO-edges checking
whether there is a negative-length path from C to some X that can be used to bypass the LC
edge (A, c:x, C). It is the same as in RUL2021, except that it accumulates path information
in a vector called fwdPath. At Lines 2–3, a priority queue is initialized to contain just C, with
fwdPath[C] = ⟨⟩. The priority queue uses the same potential function as TryBackProp to
effectively re-weight the LO-edges. As each timepoint X is popped from the queue (Line 5),

TIME 2024

9:10 Finding Negative Cycles in STNUs

Algorithm 6 The FwdPropNDC algorithm.
Input: G, an STNU graph; C ∈ TC ; ∆C = y − x; loc, local struct; h, potential function.
Output: (X, PCX), if path PCX can be used to reduce away the LC edge (A, c:x, C); else ∅

1 fwdPath ··= {⟨⟩, . . . , ⟨⟩} // For each X, fwdPath[X] is an LO-path from C to X

2 Q ··= new priority queue // Key keyX = d(C, X) − h(C)
3 Q.insert(C, −h(C)) // Queue initially contains only C

4 while Q ≠ ∅ do
5 (X, keyX) ··= Q.extractMinNode()
6 d(C, X) ··= keyX + h(X) // Distance from C to X in Gℓo

7 if loc.dist[X] < ∆C then // If distance from X to C < ∆C

// Check if the path CX can reduce-away the LC-edge
8 if d(C, X) < 0 then return (X, fwdPath[X])
9 foreach (X, δxy, Y) ∈ Eℓ ∪ Eo do // Iterate over LO-edges emanating from X

10 newKey ··= d(C, X) + δxy − h(Y)
11 if Y ̸∈ Q or newKey < Q.key(Y) then
12 Q.insOrDecrKey(Y, newKey)
13 fwdPath[Y] ··= fwdPath[X]+++ (X, δxy, Y)

14 return ∅ // Was unable to reduce-away the LC-edge

the distance from X to C that was determined during back-propagation and stored in
loc.dist[X] is compared to ∆C . (Generating an edge to bypass the LC edge using the path
from C to X will only create an SRN cycle if dist[X] < ∆C [10].) If dist[X] < ∆C and
d(C, X) < 0 (i.e., an appropriate negative-length path has been found), then FwdPropNDC
terminates, returning (X, fwdPath[X]) (Line 8). Otherwise, forward propagation continues
from X, accumulating relevant path information (Lines 9–13). If the queue is exhausted
without finding a way to bypass the LC edge, FwdPropNDC returns ∅ (Line 14).

UpdatePotFn

When RulBackProp inserts edges that bypass a UC edge E, it changes the LO-graph. Hence,
the potential function for the LO-graph typically needs to be updated. The pseudocode for
the UpdatePotFn function is given as Algorithm 7.

Since all bypass edges for E necessarily point at its activation timepoint A, UpdatePotFn
propagates backward from A along LO-edges as long as changes to the potential function,
h, are required. This function and its helper UpdateVal (Algorithm 8) are the same as
in RUL2021 except that path information is accumulated (Algorithm 8, Line 6) so that if
back-propagation ever cycles all the way back to A, the implied SRN cycle can be returned
(Algorithm 8, Line 4).

Computational Complexity

FindSRNC performs more operations than RUL2021, mostly by accumulating path information
during propagation. For lack of space, we simply note that the most time-consuming operation
is prepending an edge onto the front of an existing path, which happens at most once per edge
visited. Since the prepending operation (+++) can be realized in constant time, the worst-case
time complexity of FindSRNC is the same as that of RUL2021: O(mn + k2n + kn log n).

Regarding the extra space requirements of FindSRNC, the most costly is the space needed
by TryBackProp for accumulating path information in the loc.path structures. TryBackProp
is called at most 2k times [3, 10]. Each call explores at most (m + nk) edges. (FindSRNC

L. Hunsberger and R. Posenato 9:11

Algorithm 7 The UpdatePotFn algorithm.
Input: G, an STNU graph; A, an activation timepoint; h, a potential function for Gℓo, excluding

edges ending at A

Output: (h′, negCycle), where h′ is either a potential function for Gℓo (including edges
terminating at A); or ⊥, the latter indicating that negCycle is a negative cycle

1 h′ ··= copy of h; path ··= [⟨⟩, . . . , ⟨⟩]
2 Q ··= new priority queue; Q.insert(A, 0) // Initialize queue for back-prop from A

3 while Q ≠ ∅ do
4 (V, keyV) ··= Q.extractMinNode()
5 foreach ((U, δ, V) ∈ Eo) do // Back-propagate along ordinary edges ending at V

6 negCycle ··= UpdateVal((U, δ, V), h, h′, Q, path)
7 if negCycle ̸= ∅ then return (⊥, negCycle)
8 if V ∈ TC then // V is contingent; back-propagate along LC edge (AV , v:xV , V)
9 negCycle ··= UpdateVal((AV , xV , V), h, h′, Q, path)

10 if negCycle ̸= ∅ then return (⊥, negCycle)

11 return (h′, ∅)

Algorithm 8 The UpdateVal algorithm.

Input: (U, δ, V), an edge; h, h′, potential fns.; Q, priority queue; and path, a vector of path info
Output: negCycle, an SRN cycle; or ∅ if h′ was successfully updated to satisfy (U, δ, V)

1 Side Effect: Modifies Q, h′ and path
2 if h′(U) < h′(V) − δ then
3 h′(U) ··= h′(V) − δ

// If back propagation has cycled back to A, return the cycle
4 if Q.state(U) == alreadyPopped then return (U, δ, V)+++ path[V]
5 Q.insOrDecrKey(U, h(U) − h′(U))
6 path[U] ··= (U, δ, V)+++ path[V]
7 return ∅

inserts at most nk edges overall.) Each edge exploration involves prepending an existing path
with an edge, which uses only constant space. So the overall space complexity across all calls
to TryBackProp is O(mk + k2n). Similar remarks apply to FwdPropNDC and UpdatePotFn.

The edgeAnnotation hash table has at most nk entries: one for each bypass edge. Each
entry is a pointer to a loc.path entry. So the total space required is O(nk). The compact
SRN cycle generated by AccNegCycle is the concatenation of at most k paths, each with at
most n edges, for a total of at most nk edges, which is dominated by the O(mk + k2n) space
discussed above. This compact cycle, together with the information in the edgeAnnotation
hash table, avoids redundantly storing repeated structures. In this way, it uses polynomial
space to implicitly represent a cycle that, if fully expanded, might have exponentially many
edges. Similar remarks apply to the cycles returned by FwdPropNDC and UpdatePotFn.

Magic Loop Example

Hunsberger [8] identified a family of STNUs in which the only SRN cycle, called a magic loop,
has an exponential number of edges. Since each STNU has at most n2 +2k edges, magic loops
necessarily contain a large number of repeated edges. In particular, a magic loop of order k

has k contingent links, but 3(2k)−2 edges. The top of Figure 4 shows an STNU whose (brown)
LC edges are e1 = (A1, c1:1, C1), e2 = (A2, c2:1, C2), and e3 = (A3, c3:1, C3); and whose (red)

TIME 2024

9:12 Finding Negative Cycles in STNUs

A2 C2 C1 C3 A3

A1 X

c1:1

C1:−
3

c2:1

C2:−10 C3:−36

c3:18
−1 −2948

−7

34

5, π
1 31, π2

45, π3

21, π4

35, π5

−1, π6

C1 A1 C1 C2 A2

⟳−1
C2 C1 A1 C1

X

C1:−3 c1:1 −1 C2:−10 c2:1 8 C1:−3 c1:1
−29

C1A1C1C2A2C2C1A1C1
48

C1:−3c1:1−1C2:−10c2:18C1:−3
c1:1

C3

A3

C3

−7

C
3 :−36

c3:1
34

5, π1

5, π1

31, π2

45, π3

21, π4

35, π5

−1, π6

Figure 4 A sample STNU (top) and the magic loop of order 3 (bottom) hiding within it.

Figure 5 A screenshot of FindSRNC in action.

UC edges are E1 = (C1, C1:−3, A1), E2 = (C2, C2:−10, A2), and E3 = (C3, C3:−36, A3). The
bypass edges generated by FindSRNC are dashed: those bypassing E1 in green, E2 in purple,
and E3 in blue. Each bypass edge is also annotated by a path, where: π1 = (C2, 8, C1)+++ E1;
π2 = (C3, 34, C1)+++ E1; π3 = (X, 48, C1)+++ E1; π4 = π2 +++ e1 +++ (C1, −1, C2)+++ E2; π5 =
π3 +++ e1 +++ (C1, −1, C2)+++ E2; and π6 = π5 +++ e2 +++ π1 +++ e1 +++ (C1, −7, C3)+++ E3. The magic loop for
this STNU is at the bottom of the figure. It has 22 edges. E1 and e1 appear four times each;
several other edges, twice each. After all UC edges have been processed, UpdatePotFn finds
a negative cycle in the LO-graph: π6 +++ e3 +++ π4 +++ e2 +++ π1 +++ e1 +++ (C1, −29, X). This information
is compactly stored in the cycle returned by FindSRNC. For higher-order magic loops, the
number of edges grows exponentially, but the space used by FindSRNC is bounded by mk+nk2.

4 Empirical Evaluation

In this section, we present a possible implementation of the FindSRNC algorithm and one its
evaluation in a public benchmark.

The proposed algorithm was implemented as a proof-of-concept prototype in the (freely
available) CSTNU Tool, version 1.42 [17]. The tool enables users to create different kinds
of temporal constraint networks and to verify automatically some properties like dynamic
controllability or consistency (for some kinds of networks). In particular, as concerns STNUs,
it allows one to verify the dynamic controllability and, in case the network is not DC, to
obtain the semireducible negative cycle that determines the non-controllability.

L. Hunsberger and R. Posenato 9:13

500 1,000 1,500 2,000 2,500

0.01

0.1

1

Number of nodes, n

Av
er

ag
e

E
xe

cu
tio

n
T

im
e

[s
]

FindSRNC
RUL2021

n Avg.
SRN
cycle
length

Pct.
Simple
SRN
cycles

Avg. SRN
expanded
cycle
length

500 8.0 63% 14.1
1000 7.9 64% 14.4
1500 7.6 74% 15.3
2000 8.5 72% 14.0
2500 8.6 63% 14.4

Figure 6 Experimental results.

The screenshot Figure 5 shows the CSTNU Tool after the execution of FindSRNC algorithm
on the STNU depicted in Figure 4. On the left side, there is the initial network that can be
edited. On the right side, there is the checked network with the semireducible negative cycle
emphasized in red. The status bar above the network on the right gives a summary of the
FindSRNC result. The extended result (like the expanded semireducible negative cycle) is
saved in a logging file associated with the execution.

We empirically evaluated FindSRNC on a published benchmark [16] to confirm that the
execution times of FindSRNC and RUL2021 are equivalent, and to highlight the characteristics
of the SRN cycles in non-DC instances. Our implementations are publicly available [17]. We
ran them on a JVM 21 with 8 GB of heap memory on a Apple PowerBook/M1 Pro.

For each n ∈ {500, 1000, 1500, 2000, 2500}, the benchmark contains 200 randomly gener-
ated non-DC STNUs, each having n nodes, n/10 contingent links, and m ≈ 3n edges. For
each sub-benchmark (i.e., for each n), we used the first 100 instances. For each instance,
RUL2021 checked only the non-DC status; FindSRNC also returned an SRN cycle.

The left-hand plot of Figure 6 shows the average execution times of the two algorithms
for each sub-benchmark. These results highlight that computing the SRN cycle does not
require significant computational overhead. More interesting is that by analyzing the cycles
computed by FindSRNC, we can evaluate the characteristics of the non-DC instances in the
benchmark. The table in Figure 6 shows that, for each n, the average number of edges in
the SRN cycle (i.e., the SRN cycle length) is quite small (less than 9); and most instances
present a simple SRN cycle (i.e., an SRN cycle having no (annotated) bypass edges and,
hence, comprising only edges that were already present in the input STNU).

FindSRNC outputs a non-simple SRN cycle very compactly. However, we also computed
the fully expanded version of each cycle, recursively replacing each bypass edge by the
annotated path from which it was derived. The average length of the expanded cycles
increased to a maximum of 16 in each sub-benchmark, revealing that an SRN cycle can
involve more edges from the original STNU than one might suspect from the compact version.

Finally, we checked that no instance leads to an expanded SRN cycle with any repeated
edges. Since the benchmark was built to simulate temporal business processes organized on
five lanes, the absence of complex SRN cycles in 500 random instances suggests that such
instances may only rarely appear in practice; but if they do, FindSRNC will find them.

TIME 2024

9:14 Finding Negative Cycles in STNUs

5 Conclusion

This paper presented the FindSRNC algorithm that modifies the fastest DC-checking algorithm
for STNUs to accumulate path information while also rigorously addressing the compact
representation of the SRN cycles it outputs. When given an overconstrained STNU, FindSRNC
can be used to identify constraints to relax or contingent durations to tighten. It can also
be used as a supporting process in an iterative algorithm for finding a DC STNU that well
approximates a Probabilistic Simple Temporal Network [20, 23, 21, 1].

References
1 Shyan Akmal, Savanna Ammons, Hemeng Li, and James C. Boerkoel, Jr. Quantifying degrees

of controllability in temporal networks with uncertainty. In 29th International Conference
on Automated Planning and Scheduling (ICAPS 2019), pages 22–30, 2019. URL: https:
//ojs.aaai.org/index.php/ICAPS/article/view/3456, doi:10.1609/icaps.v29i1.3456.

2 Nikhil Bhargava, Tiago Vaquero, and Brian C. Williams. Faster conflict generation for dynamic
controllability. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence (IJCAI-17), pages 4280–4286, 2017. doi:10.24963/ijcai.2017/598.

3 Massimo Cairo, Luke Hunsberger, and Romeo Rizzi. Faster Dynamic Controllablity Checking
for Simple Temporal Networks with Uncertainty. In 25th International Symposium on Temporal
Representation and Reasoning (TIME-2018), volume 120 of LIPIcs, pages 8:1–8:16, 2018.
doi:10.4230/LIPIcs.TIME.2018.8.

4 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms, 4th Edition. MIT Press, 2022. URL: https://mitpress.mit.edu/9780262046305/
introduction-to-algorithms.

5 Johann Eder, Marco Franceschetti, and Josef Lubas. Dynamic Controllability of Processes
without Surprises. Applied Sciences, 12(3):1461, January 2022. doi:10.3390/app12031461.

6 Cheng Fang, Andrew J. Wang, and Brian C. Williams. Chance-constrained Static Schedules
for Temporally Probabilistic Plans. Journal of Artificial Intelligence Research, 75:1323–1372,
2022. doi:10.1613/jair.1.13636.

7 Luke Hunsberger. Fixing the semantics for dynamic controllability and providing a more
practical characterization of dynamic execution strategies. In 16th International Symposium
on Temporal Representation and Reasoning (TIME-2009), pages 155–162, 2009. doi:10.1109/
TIME.2009.25.

8 Luke Hunsberger. Magic Loops in Simple Temporal Networks with Uncertainty–Exploiting
Structure to Speed Up Dynamic Controllability Checking. In 5th International Conference
on Agents and Artificial Intelligence (ICAART-2013), volume 2, pages 157–170, 2013. doi:
10.5220/0004260501570170.

9 Luke Hunsberger. Magic Loops and the Dynamic Controllability of Simple Temporal Networks
with Uncertainty. In Joaquim Filipe and Ana Fred, editors, Agents and Artificial Intelligence,
volume 449 of Communications in Computer and Information Science (CCIS), pages 332–350,
2014. doi:10.1007/978-3-662-44440-5_20.

10 Luke Hunsberger and Roberto Posenato. Speeding up the RUL− Dynamic-Controllability-
Checking Algorithm for Simple Temporal Networks with Uncertainty. In 36th AAAI Conference
on Artificial Intelligence (AAAI-22), volume 36-9, pages 9776–9785. AAAI Pres, 2022. doi:
10.1609/aaai.v36i9.21213.

11 Erez Karpas, Steven J. Levine, Peng Yu, and Brian C. Williams. Robust Execution of Plans for
Human-Robot Teams. In 25th Int. Conf. on Automated Planning and Scheduling (ICAPS-15),
volume 25, pages 342–346, 2015. doi:10.1609/icaps.v25i1.13698.

12 Paul Morris. A Structural Characterization of Temporal Dynamic Controllability. In Principles
and Practice of Constraint Programming (CP-2006), volume 4204, pages 375–389, 2006.
doi:10.1007/11889205_28.

https://ojs.aaai.org/index.php/ICAPS/article/view/3456
https://ojs.aaai.org/index.php/ICAPS/article/view/3456
https://doi.org/10.1609/icaps.v29i1.3456
https://doi.org/10.24963/ijcai.2017/598
https://doi.org/10.4230/LIPIcs.TIME.2018.8
https://mitpress.mit.edu/9780262046305/introduction-to- algorithms
https://mitpress.mit.edu/9780262046305/introduction-to- algorithms
https://doi.org/10.3390/app12031461
https://doi.org/10.1613/jair.1.13636
https://doi.org/10.1109/TIME.2009.25
https://doi.org/10.1109/TIME.2009.25
https://doi.org/10.5220/0004260501570170
https://doi.org/10.5220/0004260501570170
https://doi.org/10.1007/978-3-662-44440-5_20
https://doi.org/10.1609/aaai.v36i9.21213
https://doi.org/10.1609/aaai.v36i9.21213
https://doi.org/10.1609/icaps.v25i1.13698
https://doi.org/10.1007/11889205_28

L. Hunsberger and R. Posenato 9:15

13 Paul Morris. Dynamic controllability and dispatchability relationships. In Int. Conf.
on the Integration of Constraint Programming, Artificial Intelligence, and Operations Re-
search (CPAIOR-2014), volume 8451 of LNCS, pages 464–479. Springer, 2014. doi:
10.1007/978-3-319-07046-9_33.

14 Paul Morris, Nicola Muscettola, and Thierry Vidal. Dynamic control of plans with temporal
uncertainty. In 17th Int. Joint Conf. on Artificial Intelligence (IJCAI-2001), volume 1, pages
494–499, 2001. URL: https://www.ijcai.org/Proceedings/01/IJCAI-2001-e.pdf.

15 Jun Peng, Jingwei Zhu, and Liang Zhang. Generalizing STNU to Model Non-functional
Constraints for Business Processes. In 2022 International Conference on Service Science
(ICSS), pages 104–111. IEEE, May 2022. doi:10.1109/ICSS55994.2022.00024.

16 Roberto Posenato. STNU Benchmark version 2020, 2020. Last access 2022-12-01. URL:
https://profs.scienze.univr.it/~posenato/software/cstnu/benchmarkWrapper.html.

17 Roberto Posenato. CSTNU Tool: A Java library for checking temporal networks. SoftwareX,
17:100905, 2022. doi:10.1016/j.softx.2021.100905.

18 Christoph Strassmair and Nicholas Kenelm Taylor. Human Robot Collaboration in Production
Environments. In 23rd IEEE International Symposium on Robot and Human Interactive
Communication 2014, 2014. URL: https://researchportal.hw.ac.uk/en/publications/
human-robot-collaboration-in-production-environments.

19 Robert Endre Tarjan. Shortest Paths. Technical report, AT&T Bell Laboratories, 1981.
20 Ioannis Tsamardinos. A probabilistic approach to robust execution of temporal plans with

uncertainty. In Methods and Applications of Artificial Intelligence (SETN 2002), volume
2308 of Lecture Notes in Artificial Intelligence (LNAI), pages 97–108, 2002. doi:10.1007/
3-540-46014-4_10.

21 Andrew J. Wang. Risk-bounded Dynamic Scheduling of Temporal Plans. PhD thesis, Mas-
sachusetts Institute of Technology, 2022. URL: https://hdl.handle.net/1721.1/147542.

22 Peng Yu, Cheng Fang, and Brian Charles Williams. Resolving uncontrollable conditional tem-
poral problems using continuous relaxations. In 24th International Conference on Automated
Planning and Scheduling, ICAPS 2014. AAAI, 2014. URL: http://www.aaai.org/ocs/index.
php/ICAPS/ICAPS14/paper/view/7895, doi:10.1609/icaps.v24i1.13623.

23 Peng Yu, Brian C. Williams, Cheng Fang, Jing Cui, and Patrick Haslum. Resolving over-
constrained temporal problems with uncertainty through conflict-directed relaxation. Journal
of Artificial Intelligence Research, 60:425–490, 2017. doi:10.1613/jair.5431.

TIME 2024

https://doi.org/10.1007/978-3-319-07046-9_33
https://doi.org/10.1007/978-3-319-07046-9_33
https://www.ijcai.org/Proceedings/01/IJCAI-2001-e.pdf
https://doi.org/10.1109/ICSS55994.2022.00024
https://profs.scienze.univr.it/~posenato/software/cstnu/ benchmarkWrapper.html
https://doi.org/10.1016/j.softx.2021.100905
https://researchportal.hw.ac.uk/en/publications/human-robot- collaboration-in-production-environments
https://researchportal.hw.ac.uk/en/publications/human-robot- collaboration-in-production-environments
https://doi.org/10.1007/3-540-46014-4_10
https://doi.org/10.1007/3-540-46014-4_10
https://hdl.handle.net/1721.1/147542
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS14/paper/view/7895
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS14/paper/view/7895
https://doi.org/10.1609/icaps.v24i1.13623
https://doi.org/10.1613/jair.5431

	1 Introduction
	2 Background
	2.1 Simple Temporal Networks with Uncertainty
	2.2 The RUL2021 DC-Checking algorithm

	3 The FindSRNC (Find Semi-Reducible Negative Cycle) Algorithm
	4 Empirical Evaluation
	5 Conclusion

