
Fully Local Succinct Distributed Arguments
Eden Aldema Tshuva #

Tel Aviv University, Israel

Rotem Oshman #

Tel Aviv University, Israel

Abstract
Distributed certification is a proof system for detecting illegal network states or improper execution
of distributed algorithms. A certification scheme consists of a proving algorithm, which assigns a
certificate to each node, and a verification algorithm where nodes use these certificates to decide
whether to accept or reject. The system must ensure that all nodes accept if and only if the network
is in a legal state, adhering to the principles of completeness and soundness. The main goal is to
design a scheme where the verification process is local and the certificates are succinct, while using
as efficient as possible proving algorithm.

In cryptographic proof systems, the soundness requirement is often relaxed to computational
soundness, where soundness is guaranteed only against computationally bounded adversaries. Com-
putationally sound proof systems are called arguments. Recently, Aldema Tshuva, Boyle, Cohen,
Moran, and Oshman (TCC 2023) showed that succinct distributed arguments can be used to
enable any polynomially bounded distributed algorithm to certify its execution with polylogarithmic-
length certificates. However, their approach required a global communication phase, adding O(D)
communication rounds in networks of diameter D, which limits its applicability to local algorithms.

In this work, we give the first construction of a fully local succinct distributed argument system,
where the prover and the verifier are both local. We show that a distributed algorithm that runs
in R rounds, has polynomial local computation, and messages of B bits each can be compiled
into a self-certifying algorithm that runs in R + polylog(n) rounds and sends messages of size
B + polylog(n), with certificates of length polylog(n). This construction has several applications,
including self-certification for local algorithms, ongoing certification of long-lived algorithms, and
efficient local mending of the certificates when the network changes.

2012 ACM Subject Classification Theory of computation → Cryptographic protocols

Keywords and phrases distributed certification, proof labeling schemes, SNARG

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.1

Funding Eden Aldema Tshuva: Supported in part by AFOSR Award FA9550-23-1-0312, and an
Algorand Foundation grant.
Rotem Oshman: Research funded by the Israel Science Foundation, Grant No. 2801/20, and also
supported by Len Blavatnik and the Blavatnik Family Foundation.

1 Introduction

In this work we study distributed certification, a mechanism that is useful for ensuring
correctness and fault-tolerance in distributed algorithms: the goal is to efficiently check, on
demand, whether the system is in a legal state or not. To that end, the network computes in
advance auxiliary information in the form of certificates stored at the nodes of the network,
and we design an efficient verification procedure that allows the nodes to interact with one
another and use their certificates to verify that the system is in a legal state. Since we do
not trust that the system is in a legal state at verification time, we think of the certificates
as being provided by an untrusted prover, whose goal is to convince us that the system is
in a legal state even when it is not. One can therefore view distributed certification as a
distributed analog of NP.

© Eden Aldema Tshuva and Rotem Oshman;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 1; pp. 1:1–1:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aldematshuva@tau.ac.il
https://orcid.org/0009-0003-0701-6603
mailto:roshman@tau.ac.il
https://orcid.org/0009-0007-5065-5557
https://doi.org/10.4230/LIPIcs.DISC.2024.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Fully Local Succinct Distributed Arguments

Distributed certification was implicit in early work on fault detection and self-stabilization
(e.g., [4]), as a mechanism for detecting that the network has changed (for instance, due to
the failure of a communication link) and action must be taken to address the change. It was
formalized as an object of independent interest in [34], and has since received significant
attention in distributed computing literature (e.g., [32, 33, 12, 20, 25, 22, 17, 42, 40, 23, 22,
30, 41, 9]). Almost all work in the area is solely concerned with optimizing the length of
the certificates, which is viewed as a proxy for the efficiency of the verification algorithm:
in [34] and most of the follow-up work, the verification algorithm consists of a single round
of communication, where nodes send their certificates to their neighbors, and then output a
local decision whether to accept or reject. Our work departs from most of the literature on
distributed certification in two important ways: first, in addition to the certificate length, we
are also concerned with the efficiency of the prover algorithm, that is, the algorithm that
computes the certificates; and second, following [2], we relax the correctness requirement
from perfect soundness to computational soundness. Next we discuss these two aspects of our
work and lay out our motivation for departing from the approach taken by most prior work.

Proving as fast as computing. In the field of delegation of computation (the sequential
notion analogous to distributed certification), a great amount of effort has been devoted to
constructing provers that add minimal overhead on top of the algorithm whose correctness
they aim to certify [44, 3, 26, 24, 10, 49, 50, 11, 35]. This is referred to as “proving as fast
as computing”. Efficient provers are needed for any practical deployment of a delegation
scheme, and therefore designing proof systems where the prover is efficient is a key element
in applications such as proofs on the blockchain; for instance, [8, 7] have made great progress
in the efficiency of the prover and are used in practice. See [47] for a survey of the subject.

In the distributed setting the need for efficient provers is much the same: in order for
distributed certification to serve as a practical mechanism for fault tolerance, we must be
able to compute the certificates efficiently. Thus, the goal of our work is proving as fast as
distributed computing:

Given a distributed algorithm D that runs in polynomial communication rounds and
local computation steps, construct a prover that runs alongside D, adding at most a
polylogarithmic overhead to the rounds and local computation steps.

In other words, our goal is to obtain distributed certification schemes where both the verifier
and the prover are local (in terms of the overhead they add to the system), in contrast to
traditional distributed certification, where only the verifier is a local distributed algorithm,
and the prover is all-powerful.

Computational soundness. Most of the work on distributed certification is set in the
information theoretic world, where the prover and the network nodes are computationally
unbounded. The two requirements from a certification scheme for a network property L are:

Completeness: if the property L holds, then there exists a certificate assignment that
convinces all nodes to accept; and
Soundness: if the property L does not hold, then no certificate assignment convinces all
nodes to accept.

Unfortunately, the information-theoretic setting inherits some powerful lower bounds from
nondeterministic two-party communication complexity: for example, it is known that some
network properties require Ω(n2)-bit certificates [25], and some simple and natural properties
such as proving that the network has a given diameter require Ω(n)-bit certificates, even
when the verifier is randomized [22].

E. Aldema Tshuva and R. Oshman 1:3

This motivates us to consider the following relaxation of the soundness requirement,
known as computational soundness ([39]):

Computational soundness: if the property L does not hold, then no poly-size prover1 can
construct a certificate assignment that convinces all nodes to accept.

A proof system that has computational soundness is called an argument, and in the distributed
setting we call it a distributed argument.

One might ask whether computational soundness indeed captures the type of faults from
which the network wishes to protect itself. We argue that the answer is yes, in most if not all
practical scenarios, if one is willing to assume standard cryptographic assumptions hold. The
key here is that any fault that could be simulated by an efficient algorithm, cannot break
computational soundness, since if it could, that would mean that an efficient algorithm can
solve believed-to-be hard problems, such as the discrete logarithm. For example, if we wish
to protect against hardware or software faults, then we should demand soundness against all
certificates generated generated for an illegal state due to a buggy execution of a distributed
algorithm in the network, or against those generated by a buggy version of the honest prover
algorithm. But even a buggy prover is still an efficient algorithm. Similarly, faults caused by
topology changes can also be simulated by an efficient algorithm, which again means that
such faults cannot break a computationally sound certification scheme.

We remark that although in this work we weaken the soundness requirement, and construct
a local distributed proving algorithm, we still require soundness against global provers: the
argument that we construct is sound against any polynomial-size “cheating prover” that sees
the entire network and tries to produce certificates that fool the network into accepting even
though the network is not in a legal state.

Distributed SNARGs. In delegation of computation (the sequential notion analogous to
distributed certification), the gold standard is to construct a succinct non-interactive argument
(SNARG) whose security relies on standard cryptographic hardness assumptions, such as
learning with errors [16] or, bilinear maps [48], and decisional Diffie-Hellman [14].2 A SNARG
is a computationally sound proof system in which a polynomial-size prover P certifies a
statement of the form “x ∈ L,” where x is an input of size n and L is a language, by providing
a computationally weak verifier V with a proof π, of length |π| = polylog(n). The verifier
then examines the input x and the proof π, and decides in linear time in n whether to accept
or reject.3 It is guaranteed that the honest prover P can convince the verifier V to accept
any true statement with probability 1 (perfect completeness), and at the same time, no
poly-size cheating prover can convince the verifier to accept with non-negligible probability
(computational soundness). The requirement that the proof π be of polylogarithmic length is
called succinctness.

In recent years, the fruitful line of work on delegation of computation has culminated
in the construction of SNARGs for all properties in P [16, 48, 27, 14, 28]. In [2], this was
extended to distributed network algorithms. A distributed SNARG [2] for a property L is a
computationally sound proof system (P,V), consisting of

1 Computational soundness, like other computational hardness notions, models the adversary as a
non-uniform machine of polynomial size, as it is at least as strong as randomized.

2 Throughout this work, we refer to SNARGs for deterministic computations, which prove that some
polynomial-time computation was executed correctly, and not SNARGs for NP, which are a much
stronger cryptographic primitive that is not known to exist under standard cryptographic assumptions.

3 Technically, the prover and the verifier take as input a security parameter λ, and their running time is
polynomial in λ. We defer the discussion of the security parameter to Section 2.

DISC 2024

1:4 Fully Local Succinct Distributed Arguments

A prover P, which may or may not be a distributed algorithm (both options were
considered in [2]). Given a network graph G = (V, E) and an input assignment x : V → X
specifying the input x(v) to each node v ∈ V , the prover constructs a proof in the form
of a certificate assignment π : V → {0, 1}∗, with each node v receiving a certificate π(v)
of length polylog(n) (where n = |V |).
A verification procedure V , which is a one-round distributed algorithm where every node
v ∈ V initially knows its UID, its input x(v), its neighbors in G, and its certificate π(v).
Each node sends a (possibly different) message on each one of its edges, receives the
messages sent by its neighbors, carries out some local computation, and then outputs
accept or reject. The proof is considered accepted if and only if all nodes accept.

It was recently shown in [2] that any network property in P admits a distributed SNARG.
Moreover, [2] constructed a distributed prover, which allows a polynomial-time distributed
algorithm to certify the correctness of its output using certificates of size polylog(n). However,
the prover constructed in [2] is global: although it is a distributed algorithm, it collects
information from all the nodes of the network, which requires Ω(D) rounds in networks of
diameter D (using messages of polylogarithmic size). This means that in some cases the
prover’s overhead may eclipse the running time of the distributed algorithm whose correctness
it certifies, e.g., if the original algorithm is a local algorithm.

1.1 Our Contribution
In this work, we construct a fully local distributed argument that certifies the correctness of
any polynomial distributed algorithm. That is, for a polynomial distributed algorithm D, it
certifies the following property:

LD =
{

(G, x, y) : D produces output y : V → Y when executed in
the network G = (V, E) with input assignment x : V → X

}
.

Our construction uses two cryptographic primitives: collision-resistant hash functions
and batch arguments for NP. These are known to exist under several standard cryptographic
assumptions: subexponential hardness of Diffie-Hellman [18, 14]; polynomial hardness of
learning with errors [1, 15]; and polynomial hardness of bilinear maps [48].

▶ Theorem 1. Assume collision-resistant hash functions and batch arguments for NP exist.
Then for any distributed algorithm D that runs in poly(n) rounds local computation time,
there is a distributed argument (P,V) certifying the property LD, where the prover P is a
distributed algorithm that adds an overhead of polylog(n) rounds to the execution of D, sends
polylog(n)-bit messages, and produces certificates of length polylog(n), and the verifier V
runs in one round and sends polylog(n)-bit messages.

Our construction relies on low-diameter network decompositions, and represents a novel
connection between this highly useful primitive and distributed certification.

Applications of our construction. Fully local distributed arguments have several applica-
tions. First, they enable efficient certification of local algorithms, where previous constructions
either had an overhead of Θ(D) rounds or produced very long certificates (or both). That is, a
distributed algorithm that runs in a small number of rounds but still has high communication
complexity (i.e., it uses long messages), could now be certified in a few more rounds, using
low communication complexity, and be verified in one round, with one message on each
edge. Second, a local prover can be used to efficiently mend a proof of correctness, instead

E. Aldema Tshuva and R. Oshman 1:5

Table 1 Generic distributed certification schemes, and the costs they incur when certifying an
algorithm that runs for R rounds and sends B-bit messages in networks with n nodes, maximum
degree ∆ and diameter D.

Soundness Certificate Verifier Message Prover Overhead
PLS [34] Perfect R · B · ∆ R · B · ∆ No overhead

LCP [25]4 Perfect Θ(n2) Θ(n2) Not distributed
RPLS [23] Statistical R · B · ∆2 O(log n) 1 round

LVD-SNARGs [2]5 Computational poly(λ, log n) poly(λ, log n) Not distributed
LVD-SNARGs [2] Computational poly(λ, log n) poly(λ, log n) O(D)

This Work Computational poly(λ, log n) poly(λ, log n) polylog n

of re-computing it from scratch when a change occurs in the network. Many distributed
algorithms support local correction (also called fixing, mending or healing) of their output,
that is, if a change in the network causes the output of the algorithm to become incorrect,
there is a local procedure that executes only in the area of the network where the change
occurred and “fixes” the output of the algorithm (see, e.g., [5, 19, 36, 6, 31] and the references
therein). Following the execution of the local correction procedure, our fully local prover can
also mend the correctness certificate, by executing the prover to re-certify correctness in the
area of the network that was modified by the correction procedure. This application of our
work creates a new tie between local correction and distributed certification, areas that both
arose originally from fault tolerance and self-stabilization but have drifted apart over time.

Finally, fully local distributed arguments are an important step towards incrementally
verifiable distributed computation. In sequential computing, incrementally verifiable compu-
tation (IVC, [46, 43]) allows for the incremental construction of a certificate of correctness,
which is updated after each step taken by the sequential algorithm, and does not require
storing the entire trace of the computation in memory. Incrementally verifiable computation
is especially relevant in distributed systems, which are often long-lived and reactive. As a
first step towards incrementally verifiable distributed computation, it is necessary to have a
low-overhead prover that can be called many times during the computation without blocking
for a long time, and our construction takes the first step in this direction.

1.2 Related Work
There are several known approaches to obtain generic schemes for certifying the correctness
of any given distributed algorithm, although as we mentioned above, most of the focus
in prior work has been on the efficiency of the verifier, not the prover. In Table 1 we
summarize the tradeoffs that each approach achieves between the length of the certificates,
the communication of the verifier, and the complexity of the prover. The table covers
only schemes where the verifier runs for one round; it is sometimes possible to trade off
certificate size against verifier rounds (see, e.g. [21, 42]), but the total communication over
all verification rounds in the information-theoretic setting remains, in general, high. Next,
we give a brief overview of each approach.

4 In [25], the certificate and message size also depend on the size of the input to each node. That is,
Θ(n2) refers to the case where there is no input to the nodes or the input is of constant size.

5 In [2], the property is assumed to be in P, and R and B are assumed to be at most polynomial in n.

DISC 2024

1:6 Fully Local Succinct Distributed Arguments

In the first work to introduce proof labeling schemes [34] it is pointed out that any
distributed algorithm can be certified by storing the entire transcript of the algorithm at
each node. This can result in long certificates. In [23] it is shown that randomization can
be used to exponentially decrease the communication of the verifier, but this comes at the
cost of even longer certificates (as well as weakening soundness from perfect soundness to
statistical soundness, where the verifier has some small probability of accepting an invalid
proof). Another generic approach is to store a description of the entire network as the
certificate at each node [25]. In addition to long certificates, this approach requires the
prover to know the entire network, which rules out an efficient distributed implementation.
However, it has the advantage of not being dependent on the communication complexity of
the distributed algorithm to be certified, which could be useful for the certification of highly
expensive algorithms.

The first work to introduce computationally sound distributed certification is [2], which
showed that any network property in P can be certified using certificates of polylogarithmic
length in this setting, assuming the prover knows the entire network. In addition, [2]
constructs a generic scheme with a distributed prover that can certify the correctness of any
given distributed algorithm that runs in polynomial rounds and local computation time.
However, the prover in this case requires O(D) rounds in networks of diameter D.

2 Preliminaries

In this section, we describe our network model (which is fairly standard) and the common
reference string model, and then go over the two cryptographic primitives used in our
construction; hash families with local openings and batch arguments for NP. The description
of a batch argument is brief and the full syntax and definition can be found in Appendix A.2.
Distributed Merkle trees, which are another existing construct we use, are discussed in
Section 3.1, and defined formally in Appendix A.1. Moreover, for lack of space, we defer the
full definition of our fully local distributed SNARG (fl-DSNARG) to Appendix A.4.

Network model. A synchronous distributed network is modeled as an undirected, connected
graph G = (V, E), where the nodes V are the processors participating in the computation,
and the edges E represent bidirectional communication links between them. Each network
node has a unique identifier v from some UID domain [ñ], and we assume that the size of the
UID domain is polynomial in the network size n, so that a UID can be encoded in O(log n)
bits. We often conflate the UID of a node with the vertex representing it in the network
graph. In each communication round, each node sends a message to each of its neighbors;
the nodes then receive the messages sent to them, carry out some internal computation, and
then the next round begins. The input to the computation is represented by an assignment
x : V → X , and the output by an assignment y : V → Y, where X ,Y are some input and
output domains (respectively). Initially, each network node v ∈ V knows its UID, its input
x(v), its neighborhood N(v) in G, and the size n of the network (or a polynomial upper
bound on the size, such as ñ). Each node v eventually produces the output y(v). We restrict
attention to algorithms where the round complexity, the message length and the internal
computation are polynomial in the size of the network.

The common reference string model and computational hardness. Our work is set in
the common reference string (CRS) model, which is also the model in which the SNARG
constructions of [16, 48, 27, 14] are set. In this model, all parties – in our case, the prover and

E. Aldema Tshuva and R. Oshman 1:7

all the network nodes – have access to a string that is sampled randomly by a trusted setup
process, denoted by Gen, which takes a security parameter λ in unary representation. (This
can be viewed as public randomness.) The security parameter governs the computational
resources that must be invested to break the security or soundness of the protocol: we say
that a task that involves the CRS is hard (or computationally hard) if given a CRS sampled
using Gen(1λ), no poly-size (in λ) adversary can succeed in the task, except with negligible
probability – that is, probability smaller than 1/λc for any constant c. Batch arguments,
described below, are defined in the CRS model and their soundness properties hold with
respect to such a security parameter.

Collision resistance and hash families with local openings. A hash family with local
openings, also sometimes known as a hash tree, allows a party that holds a vector (x1, . . . , xn)
to compute a short hash of the vector, and later to locally open specific locations i ∈ [n],
producing a certificate that convinces another party that the value hashed in location i is xi.
The interface is as follows:

Gen(1λ)→ hk: a trusted, randomized setup procedure that takes a security parameter λ

and outputs a hash key hk. The hash key can be thought of as a descriptor for a hash
function chosen at random from a collision-resistant hash family,6 which will be used in
the computation of the hash value and its local openings.
Hash(hk, x)→ val: takes a hash key hk and a bit vector x ∈ {0, 1}∗, and returns a hash
value val.
Open(hk, x, i)→ (b, ρ): takes a hash key hk, a bit vector x ∈ {0, 1}∗ and an index i ∈ [|x|],
and produces a bit b and an opening ρ, which is meant to serve as a certificate that
xi = b.
Verify(hk, val, i, b, ρ) ∈ {0, 1}: takes a hash key hk, a hash value val, an index i, a bit
b, and an opening ρ, and outputs an acceptance bit b. This procedure is meant to be
executed by the other party, which does not know the value hashed, and wishes to verify
that it has b in location i.

Our requirements of a hash family with local openings are as follows:
Efficiency and succinctness: the procedures above run in time polynomial in their input,
and output values of length at most poly(λ, log |x|).
Completeness: for every hk generated by Gen, every input x and every index i ∈ [|x|], if
val = Hash(hk, x) and (b, ρ) = Open(hk, x, i), then Verify(hk, val, i, b, ρ) = 1.
Collision-resistance with respect to openings: it is computationally hard, given a hash
key hk generated by Gen, to find a hash value val, an index i, and two openings ρ0, ρ1,
such that both Verify(hk, val, i, 0, ρ0) = 1 and Verify(hk, val, i, 1, ρ1) = 1.

We often describe the existence of an opening ρ such that Verify(hk, val, i, b, ρ0) = 1 by saying
that the hash value val opens to b in location/index i.

Merkle tree [38] is a tree-based hash family with local openings that can be constructed
from any collision-resistant hash family. Since collision-resistant hash families are known to
exist under the assumption of either the hardness of the discrete logarithm problem [18] or
the learning with errors problem [1], Merkle trees – and hash families with local openings
in general – are also guaranteed to exist under the same assumptions. A Merkle tree over
values (x1, . . . , xn) is a binary tree, where the leaves are x1, . . . , xn, and each inner node is

6 A collision-resistant hash family is a family of functions H, such that it is computationally hard, given
a random function from the family h ∈ H, to find colliding inputs: x, y such that h(x) = h(y).

DISC 2024

1:8 Fully Local Succinct Distributed Arguments

the hash of the concatenation of its two children.7 Merkle trees form the foundation for
the distributed Merkle tree construction of [2], which is utilized in our construction of an
fl-DSNARG (see Section 3.1).

Batch arguments for NP (BARGs) and their use in SNARG constructions. In the SNARG
constructions of [16, 48, 27, 14], to prove that x ∈ L for a language L that is decided by
a Turing machine M , the prover essentially proves the following statement:“there exist
configurations cf0, . . . , cfT such that cf0 is the initial configuration of M on input x, cfT is
an accepting configuration, and for each i = 0, . . . , T − 1, the machine M transitions from
cfi to cfi+1”. This highly-structured statement is a special case of T instances of an index
language: an NP-language of the form L = {(C, i) : ∃w. C(i, w) = 1}, where C is a circuit (in
this case, verifying the transitions of the Turing machine), and i is an index. To prove such
statements, [16, 48, 27, 14] use batch arguments for NP (BARGs), which we describe next, as
they also serve as the basis for our construction in the current paper.

A batch argument for an index language L allows a prover to convince a verifier of a
conjunction of the form φ(C) =

∧k
i=1 ∃wi. C(i, wi) = 1, where the circuit C is known to

both the prover and the verifier, but only the prover knows the witnesses w1, . . . , wk. To
prove this statement, the prover produces a short proof π, which the verifier is able to check.
Crucially, the length of the proof π is linear in the length of a single witness |wi|, but only
polylogarithmic in the number of statements k.8

The BARGs we use in this work, like the BARGs used to construct SNARGs for P, are
of a special type, called a somewhere-extractable BARG (seBARG). We give here a brief
description of a seBARG. See Appendix A.2 for the full syntax and definition. A seBARG
allows for the extraction of one witness from a convincing proof π, as follows:

The procedure Gen that generates the CRS for the BARG can be called either in regular
mode or in trapdoor mode. In trapdoor mode, Gen takes in addition to the security
parameter λ an index i ∈ [k], called the binding index. It outputs a pair (crs, td), where
td is a trapdoor that can later be used to recover the i-th witness.
In trapdoor mode, the Gen procedure has a property called index hiding: it is computa-
tionally hard to find the binding index i, given crs. This means that the prover, which is
given only crs and not the trapdoor td, “cannot tell” which index we are interested in. In
fact, it is hard to even tell whether Gen was called in regular mode or in trapdoor mode,
as the distributions of the resulting string crs are computationally indistinguishable.
The seBARG has an auxiliary extraction procedure, E(td, C, π), which takes a trapdoor
td, a circuit C and a proof π, and extracts one witness w.
The seBARG has the somewhere argument of knowledge property: suppose we call Gen
in trapdoor mode with a binding index i, and obtain (crs, td). Given only crs, it is
computationally hard to find a proof π that is accepted by the verifier, such that when we
extract a witness wi using E(td, C, π), we have C(i, w) ̸= 1. In other words, it is hard for
a poly-size adversary to fool the verifier into accepting a proof π if when we extract the
i-th witness we find an inconsistency: the witness is not an NP-witness matching index i.

7 More accurately, the leafs of a Merkle tree over (x1, . . . , xn) are hash values of x1, . . . , xn, taken by a
hash function collision-resistant hash family.

8 Batch arguments for general NP languages allow proving a conjunction of NP statements. A batch
argument for an index language allows for a highly efficient verification, as the verifier does not have to
read k instances.

E. Aldema Tshuva and R. Oshman 1:9

3 Technical Overview

In this section, we give a high-level overview of our construction of a fully local distributed
SNARG (fl-DSNARG). This overview is somewhat informal, and some technical details are
glossed over or omitted. The full construction and analysis are deferred to the full version of
this paper.

Given a distributed algorithm D, an input assignment x and an output assignment y,
we wish to construct an argument that certifies the execution of each node, to prove that
each node v indeed outputs y(v) when D is executed with input x. We must take into
consideration both the local computation of the node and the messages it sends and receives.
A naïve approach would be to have each individual node construct a SNARG proof attesting
to the internal computation steps that it takes while executing D, but this is not enough: the
challenge is that from the perspective of each node, the messages it receives from other nodes
are essentially inputs to its computation, and the messages it sends are outputs. We must
verify the consistency of these messages across each edge: messages that node u “attests to
sending” to v should indeed be received at node v (i.e., they should be reflected correctly in
the proof attesting to v’s internal computation).

Unfortunately, while the real input x and output y of the distributed algorithm we are
trying to certify are available at verification time, the messages sent by the algorithm are
not: we cannot afford to store all messages sent and received as part of the certificate, as
this would require far too much space. The solution is to carefully construct a hash of the
messages, and use it to have nodes verify that the messages are consistent with the rest of
their internal computation.

Recall from Section 2 that current centralized SNARG constructions consist of a batch
argument for NP (a BARG) asserting the conjunction of T statements S1, . . . , ST , each
describing a single transition of a Turing machine. The configurations of the Turing machine
are not available explicitly at verification – they are not part of the SNARG proof; instead,
only a hash of the configurations is included in the proof. The proof consists (informally) of a
batch argument proving that for each step i, the configuration hash opens in the appropriate
locations to two configurations cfi, cfi+1, such that the Turing machine indeed transitions
from cfi to cfi+1.9 (The openings are part of the witness encoded inside the batch argument.)

We use a similar idea to handle the messages of the distributed algorithm: we construct
multiple local distributed Merkle trees, which together are analogous to a hash tree of the
messages, in such a way that each node v can compute openings to all the messages it sent
or received. Intuitively, the message-hash has a “slot” (an index) for each directed edge
u→ v and round r, which is meant to record the message mu→v

r that is sent from node u

to node v in round r. We use the message-hash and the openings to construct two batch
arguments: one attesting to the correctness of the internal computation steps at node i, and
the second attesting to the consistency between the messages recorded “inside” the internal
computation of node v, and the message-hash.

Consistency is verified at both endpoints of every directed edge u→ v: node u verifies
that the message that it sent to node v in round r is indeed recorded in the message-hash in
the slot for message mu→v

r , and node v verifies that the message that it received from node v

in round r is recorded in the message-hash in the slot for message mu→v
r . This ties together

the messages sent and received, and ensures that our proof captures the true execution of
the distributed algorithm.

9 Technically, we work with a hash of a hash of the configurations (two levels of hashing), so this description
is not quite accurate. We give a more detailed one in Section 3.2.

DISC 2024

1:10 Fully Local Succinct Distributed Arguments

Next we describe distributed Merkle trees, as introduced in [2], and our way of constructing
multiply such trees where each one is local, using a new notion of low-diameter edge cover.

3.1 Local Distributed Merkle Trees
Distributed Merkle trees. As mentioned above, the idea of hashing together all the messages
and using this hash to construct succinct arguments for distributed algorithms was introduced
in [2], and implemented in the form of a distributed Merkle tree (DMT). We introduce DMTs
here in a concise manner, see Appendix A.1 for the full syntax and definition.

A DMT is a hash with local openings for a collection of values {xv→u}{v,u}∈E , one value
for every directed edge v → u such that {v, u} ∈ E. The values are initially unordered, but
an order will be imposed on them when the DMT is constructed. Initially, each node v knows
all values xu→w such that u = v or w = v, that is, all values corresponding to edges that
touch v. The DMT is essentially a hash of hashes:

First, each node v computes a hash rt(v) (specifically, a Merkle tree) of its own “outgoing”
values, {xv→w}w∈N(v); we call rt(v) the local root of node v.
Then, the nodes compute together a global hash, rt, of the individual hashes {rt(v) : v ∈ V }.
We call rt the global root of the DMT.

Recall that the values {xv→u}{u,v}∈E are initially unordered. As the network constructs
the DMT, it imposes an order over the nodes, and each node learns the index I(v) where
its own local root is hashed inside the DMT. Since node v constructed its own local root
rt(v), it already knows the index Iv→w where it hashed each value xv→w. We think of the
concatenation of these indices, I(v) ∥ Iv→w, as the index of xv→w in the DMT.

A DMT acts much like a regular Merkle tree over the values {xv→u}{v,u}∈E . With the
information that node v obtains during the construction of the DMT, it can produce an
opening from the global root rt to any value xv→u or xu→v where u ∈ N(v). The DMT serves
in [2] as a hash of all the messages sent in the network: each value xv→u is itself a hash of
all the messages that node v sent to node u during the execution of the algorithm.

In [2] it is shown that a DMT can be constructed in O(D) rounds in networks of diameter
D, using messages of polylogarithmic length. In other words, the DMT construction algorithm
of [2] is global in nature: it first constructs a spanning tree of the entire network, and then
computes the DMT by aggregating hash values up the tree and propagating openings down
the tree.10 This seems unavoidable, as the DMT is a hash of a collection of values that are
initially spread across the entire network. However, one of our main technical contributions
is to show that succinct distributed SNARGs do not require a global DMT; rather, we can
get away with using a collection of local DMTs, each applied to a low-diameter subgraph
of the original network graph, and thereby reduce the overhead of the prover from O(D)
rounds to polylog(n).

Using local DMTs. The key observation that enables us to construct a local prover is that
both during the proving stage and at verification, each node requires access only to its own
messages (sent or received).11 Thus, there is no need to have a single DMT covering the
entire network graph and providing all nodes with a single hash of all the messages; instead,

10 However, the algorithm in [2] is still more communication-efficient than simply gathering the entire
network’s transcript in one location to compute the hash tree, as it uses polylogarithmic messages.

11 The nodes do not actually require access to the messages themselves, but need to be able to verify
consistency of them against some hash value.

E. Aldema Tshuva and R. Oshman 1:11

we can compute many “small” DMTs, each covering a small neighborhood and providing the
nodes of that neighborhood with one hash that they can use to access the messages they
sent or received within that neighborhood. Moreover, we do not even need all edges of a
given node to be covered by the same DMT: the crucial property we require is that every
edge must be covered by at least one DMT, so that the messages that flow across the edge
can be incorporated into the certificates of the two nodes at the endpoints of the edge.

With this observation in mind, our goal is to cover all edges of the network by a collection
of subgraphs H1, . . . , Hk, with each subgraph Hi maintaining its own DMT. The trade-off
that governs our construction is a familiar one for distributed graph algorithms:

On the one hand, we would like each subgraph Hi to have a small diameter, so that we
can compute the DMT for the subgraph in a small number of rounds.
On the other hand, each node should belong to only a small number of subgraphs, as each
subgraph corresponds to a separate DMT and increases both the length of the certificate
that the node eventually computes and the number (or alternatively, the size) of messages
that the node must route during the proving stage, when the DMTs are constructed.

We call the cover H1, . . . , Hk a low-diameter edge cover (defined formally in Appendix A.3),
and show below that it can easily be constructed from a low-diameter decomposition of
G2, the power-2 graph induced by our network graph G. (In G2, two nodes u, v ∈ V are
neighbors if and only if their distance in G is at most 2.) We discuss how existing low-diameter
decomposition constructions [45, 13] can be extended to handle G2 while remaining in the
CONGEST model in Appendix B.

In each cluster Hi, we compute a DMT over all messages sent over edges of Hi. Each
such “local” DMT has a similar structure to the global DMT from [2]. The local DMT for
cluster Hi requires O(diam(Hi)) rounds to construct, and this is why we require a small
diameter for each cluster.

Constructing a low-diameter edge cover. Suppose we are given an (ℓ, m)-low diameter
decomposition of G2 = (V, E′): a partition of the nodes V into clusters U1, . . . , Uℓ ⊆ V , and
a coloring c : {1, . . . , ℓ} → {1, . . . , m} of the clusters, such that:
1. The subgraph G2[Ui] induced by each Ui has diameter at most d, and
2. The coloring c is a proper coloring of the cluster graph: for any i ≠ j such that for nodes

u ∈ Ui and v ∈ Uj there is an edge {u, v} ∈ E′ we have c(i) ̸= c(j).
Then we can obtain a low-diameter edge cover by defining subgraphs H1 = G[S1], . . . , Hℓ =
G[Sℓ] that each includes one cluster and all the nodes that are adjacent to it in G:

Si = Ui ∪ {v ∈ V : ∃u ∈ Ui. {v, u} ∈ E} .

For each node v, denote by C(v) ⊆ {S1, . . . , Sℓ} the set of clusters to which v belongs.
We have the following properties:

The diameter of each subgraph Hi is at most 2d + 2: the original cluster G2[Ui] has
diameter at most d with respect to G2, which translates to diameter at most 2d with
respect to G. Adding nodes adjacent to Ui in G increases the diameter to at most 2d + 2.
Every edge {u, v} ∈ E is covered by some cluster Hi = G[Si]: since U1, . . . , Uℓ is a
partition of V , there is some i ∈ [ℓ] such that u ∈ Ui ⊆ Si, and consequently v ∈ Si.
Thus, {u, v} is covered by Si.
Each node belongs to at most m clusters of the edge cover: if v belongs two clusters Si

and Sj where i ̸= j, then there exist nodes ui ∈ Si, uj ∈ Sj that are both at distance
at most 1 from v in G. But this means that ui and uj are neighbors in G2, and hence
clusters Ui, Uj are adjacent in G2, and must have a different color (c(i) ̸= c(j)). This
implies that |C(v)| ≤ m.

DISC 2024

1:12 Fully Local Succinct Distributed Arguments

3.2 Constructing the Distributed Argument
To construct our fully local distributed SNARG, we first need to fix a concrete model for
the internal computation carried out by the network nodes, as the argument will need to
refer to these computation steps. We begin by presenting such a model, and then outline the
construction of the fl-DSNARG.

Modeling polynomial-time distributed algorithms. Consider a distributed algorithm D
that runs in R rounds, with each node taking T local computation steps in each round
(including steps required to read or produce messages). For the sake of concreteness, we
model D as a Turing machine12 MD, which has three tapes:

The first tape of MD at node v contains the information available to node v throughout
the computation: its UID, its neighbors, and its input x(v).
On the second tape, MD writes and receives messages. At the beginning of each round r,
the messages that were sent to node v in round r − 1 appear on this tape; during the
round, MD erases these messages and instead writes the messages that node v sends in
round r. For simplicity, we assume in this overview that each message consists of a single
bit. (In the full version of this paper, we allow messages to be of polynomial size.)
The third tape is a work tape, and stores the current internal state of node v.

We denote by cfr,t(v) the configuration of MD at node v in the t-th computation step
of round r. For each t < T , the configuration cfr,t+1(v) is obtained from cfr,t(v) by a
computation step of MD, representing an internal computation step of node v. However,
configuration cfr+1,1(v) is obtained from cfr,T (v) by writing on the first tape the messages
that v’s neighbors sent to node v in round r, as recorded in the third tape of their final
round-r configurations, {cfr,T (u) : u ∈ N(v)}. This represents the receipt of these messages
by node v at the end of round r.

We refer to the sequence cf0,0(v), . . . , cfR,T (v) as the trace of the computation at node v,
and denote it by Trace(v).

Constructing the distributed argument. Fix a distributed algorithm D where each node
executes a Turing machine MD, a network graph G = (V, E), an input assignment x : V → X
and an output assignment y : V → Y. Let R, T be the number of rounds and the local
computation time of D, respectively. As it runs alongside the original algorithm D, the prover
records the execution of D at each node v: it stores the trace Trace(v) = cf0,0(v), . . . , cfR,T (v)
of the Turing machine MD executed at node v, and the messages {mv→u

r , mu→v
r }u∈N(v),r∈[R]

sent and received by v (respectively) on each edge {v, u} ∈ E in each round r.13

After D terminates, the prover begins constructing the certificates. The first step is to
compute a low-diameter edge cover of the network graph G, as described in Section 3.1. Let
S1, . . . , Sℓ ⊆ V be the resulting clusters, and for each node v, let S(v) ⊆ {1, . . . , ℓ} be the
indices of clusters to which node v belongs. In each cluster Si, we compute a DMT of all
messages sent over edges belonging to G[Si], as described above. In the sequel, we use the
notation (·)i(v) for the DMT associated with cluster i at node v; for example, rti(v) is the
local root of node v in the DMT for cluster i.

12 For simplicity, we assume that all nodes execute the same Turing machine, which takes the UID of the
node as input. However, this is not essential; we could have each node v execute a different machine Mv .

13 We believe that the space requirement of our prover can be reduced to have polylogarithmic overhead
on top of the original algorithm D, but this is technically non-trivial, and we defer it to future work.

E. Aldema Tshuva and R. Oshman 1:13

The remainder of the prover’s computation is local: each node uses the information it
stored while D was running, and the DMTs that we constructed, to compute a certificate
π(v), consists of the following (see Figure 1 for an illustration).

A hash with local openings hTrace(v) of the vector (hCf0,0(v), . . . , hCfR,T (v)), where each
hCfr,t(v) is itself a hash with local openings of the configuration cfr,t(v).
The set S(v) of clusters to which node v belongs.
For each cluster i ∈ S(v), the root rti of the DMT for cluster Si, as well as the index and
the opening from the root rti down to the local root rti(v), which hashes all messages
sent by node v over edges belonging to cluster i.
A BARG proof βint(v) asserting that the internal computation of node v is correct,
namely, that each configuration cfr,t+1(v) in the trace of v is obtained from the preceding
configuration cfr,t(v) by a transition of MD.14 This is a conjunction of R · (T − 1)
statements, with the (r, i)-th statement asserting (roughly) that there exist two hashed
configurations hCf, hCf ′ such that:

hTrace(v) opens to hCf in the index corresponding to step (r, t) of the computation,
and to hCf′ in the index corresponding to step (r, t + 1).
The configuration hashes hCf and hCf′ are of successive configurations cf, cf′ (respec-
tively), such that cf′ is obtained from cf by one step of MD. This statement is delicate
to prove, since it concerns the configurations “under the hash” and not the hashes
hCf, hCf ′ themselves (at least not directly), but it can be done using a technique
from [29]. In short, it involves proving that the hashes hCf, hCf ′ are of configurations
that are only different in one location, and this could be done for a locally-openable
hash.

A BARG proof βcons(v) asserting the consistency of the messages written in v’s trace with
the messages recorded in the DMTs to which v belongs. This is a conjunction of R · ñ2

statements, where ñ is the size of the UID space: statement (r, u, w) ∈ [R] × [ñ] × [ñ]
asserts that if the edge (u, w) exists in the network, then for each of its ends v ∈ {u, w},
the same message is recorded in the appropriate index (corresponding to round r and
edge (u, w)) of the DMT and trace of node v (which again is u or w).
In more detail, we require that if the edge (u, w) exists and v ∈ {u, w} is one of its ends,
then there exist a message m ∈ {0, 1} and a configuration hash hCf such that:

The DMT for the cluster covering edge {u, w} opens to m in the location corresponding
to round r and directed edge (u, w),
hTrace opens to the configuration hash hCf in location (r, T) if v is the sender (i.e.,
u = v), or in location (r + 1, 1) if v is the receiver (i.e., w = v), and
hCf opens to m in the location where the message sent/received on edge (u, v) is
recorded.

If the edge (u, w) does not exist, or is not adjacent to node v, then the statement (r, u, w)
is simply true (i.e., it imposes no requirements). The mechanism for checking inside the
BARG whether or not the edge (u, w) exists and touches node v is somewhat subtle, and
we defer the details to the full version of this paper.

14 Recall that the transition from step (r, T) to step (r + 1, 1) involves receiving messages; it is not a local
computation step. It must still be attested to, for example to ensure that the internal state of the
machine does not change between these two steps, but we omit the details here.

DISC 2024

1:14 Fully Local Succinct Distributed Arguments

We note that despite the fact that our construction uses multiple local DMTs, the
argument presented above is simpler than the argument constructed using the global DMT
in [2]: separating the requirements into internal correctness and message consistency, and
creating a separate BARG for each, simplifies both the structure of the argument and the
proof of its soundness.

For technical reasons related to the proof of soundness, we actually need two copies of
each BARG: βint(v)j and βcons(v)j , for j ∈ {1, 2}. Each of the four BARGs uses its own crs,
and we will see that this helps us “catch a cheating prover in a lie”. This is discussed in
Section 3.3 below.

Verifying the certificates. At verification time, each node v informs its neighbors of the
clusters S(v) to which it belongs, and also sends a collection {(ρc(v), Ic(v)) : c ∈ S(v)}
consisting of v’s local root and index inside the local DMT for each cluster to which v belongs.
This allows each neighbor u ∈ N(v) to compute the location in the DMT of each message
sent on the edge (v, u).

Next, each node v verifies the four BARGs, βint(v)j and βcons(v)j for j = 1, 2, stored in
its certificate π(v). At this point it has all the information needed to do so. If the BARG
verification succeeds, node v outputs accept, and otherwise it outputs reject.

𝒖𝒖

𝒗𝒗

𝑟𝑟𝑡𝑡𝑖𝑖

𝑟𝑟𝑡𝑡𝑖𝑖 𝑢𝑢

𝑚𝑚𝑟𝑟
𝑢𝑢→𝑣𝑣𝑚𝑚𝑟𝑟−1

𝑢𝑢→𝑣𝑣 𝑚𝑚𝑟𝑟+1
𝑢𝑢→𝑣𝑣… …

𝑟𝑟𝑡𝑡𝑖𝑖 𝑣𝑣

𝑚𝑚𝑟𝑟
𝑣𝑣→𝑢𝑢𝑚𝑚𝑟𝑟−1

𝑣𝑣→𝑢𝑢 𝑚𝑚𝑟𝑟+1
𝑣𝑣→𝑢𝑢… …

𝑥𝑥𝑟𝑟+1,1 𝑥𝑥𝑟𝑟,𝑇𝑇 𝑥𝑥𝑟𝑟+1,2… …

Trace at node 𝑣𝑣

DMT for cluster 𝑖𝑖

Local DMT
root at 𝑢𝑢

Local DMT
root at 𝑣𝑣

𝑥𝑥𝑟𝑟+1,1 𝑥𝑥𝑟𝑟,𝑇𝑇 𝑥𝑥𝑟𝑟+1,2… …

Trace at node 𝑢𝑢

Individual
messages

Consistency at 𝒗𝒗
Consistency at 𝒖𝒖

Internal
correctness at 𝒗𝒗

Figure 1 The figure shows the DMT for the cluster i that covers edge {u, v}, and “under the hash”,
the messages sent from node u to node v and vice-versa, under the respective local roots rti(u), rti(v).
The figure also shows the trace at each node, “under the hash”. Inside each configuration, small
boxes indicate messages written on the second tape. In configuration cfr,T (v), these are the messages
sent by node v in round r; in configuration cfr+1,1(v), these are the messages received by node v in
round r (and similarly for node u). The internal correctness BARG at node v (in red) asserts that
each configuration cfr,t+1(v) is the successor to cfr,t(v) according to MD. The consistency BARGs
at node v and at node u (in blue) together assert that each message hashed inside the DMT matches
the corresponding messages in the traces of u and of v.

E. Aldema Tshuva and R. Oshman 1:15

3.3 The Soundness of Our Construction
In this section, we give the main ideas for our proof of computational soundness.

Fix a distributed algorithm D, and let LD be the language of all annotated graphs
(G, x, y) such that when D executes in the network G with input assignment x, the output it
produces is y. Let (Gen,P,V) be our fl-DSNARG for the language LD, as described above.

Recall that computational soundness requires that no poly-size adversary can fool the
verifier into accepting the proof of an incorrect statement, except with negligible probability
(in the security parameter and in the size of the graph). We capture this requirement in the
form of the following experiment, which we call ExpSound, where a poly-size adversary A
tries to break the soundness of the argument:

A crs is sampled by calling the trusted setup procedure Gen of the fl-DSNARG. In our
construction, several of the primitives that we use require a common reference string:
the DMT uses a CRS to select a hash function, and the BARGs use their own internal
hash functions as well. The Gen procedure of our fl-DSNARG instantiates these common
reference strings by calling the Gen procedures of the respective primitives, and returns
one value, crs, consisting of all of them together.
The adversary A is given crs, and outputs an annotated graph (G, x, y), and a certificate
assignment π to the nodes of G.

We say that A wins the experiment if it can produce a network G, an input x and output y

such that the algorithm D does not output y on (G, x), and a certificate assignment π that
convinces all nodes to accept, nonetheless. If there is a poly-size adversary that can win the
experiment with non-negligible probability, then soundness is broken.

To prove the soundness of our argument we assume towards contradiction that there is a
poly-size adversary A that can win experiment ExpSound. We use A to construct a poly-size
adversary A′ that breaks the soundness of one of our building blocks: the collision-resistance
with respect to openings property of the hash family, the index-hiding property of the BARG,
or the somewhere argument of knowledge property of the BARG. Since we assume that these
properties hold for the primitives we use, this is a contradiction.

We consider each computation step (r, t) ∈ [R]× [T] of the distributed algorithm D, and
define an experiment ExpSoundr,t, which is the same as ExpSound, except that the crs for the
two BARGs βint(v)1 and βcons(v)1 is generated in trapdoor mode, binding the crs to index
(r, t), while the other two copies, βint(v)2 and βcons(v)2, are set up in regular mode (without
a trapdoor). By the index-hiding property of the BARG, no poly-size adversary can tell
whether the Gen procedure is called in regular mode or in trapdoor mode; therefore, our
cheating adversary A wins the new experiment ExpSoundr,t with almost the same probability
that it wins the original experiment, ExpSound, where all four BARGs were set up in regular
mode. (If the probability was noticeably different, then we could break the index-hiding
property by running A and checking whether it wins. The noticeable difference between the
winning probability for ExpSound and for ExpSoundr,t translates to a noticeable advantage
in guessing whether crs was generated in trapdoor mode or not.)

Next we use the somewhere argument of knowledge property of the BARG to claim that
whenever A wins the experiment ExpSoundr,t, we can use the trapdoor associated with the
binding index (r, t) to extract NP-witnesses wint

r,t(v), wcons
r,t (v) to the (r, t)-th statement of the

BARGs βint(v)1 and βcons(v)1, again with a very close probability to the original winning
probability of A. These witnesses are accepted by the circuit of the respective BARGs.

We would now like to argue that these witnesses reflect the true state of the distributed
algorithm after the t-th computation step of round r: that is, they match the witnesses that
would be generated by an honest prover P , and contain, e.g., the true hash values of internal

DISC 2024

1:16 Fully Local Succinct Distributed Arguments

configurations and messages that the algorithm D generates at this point in its computation.
We will then use the collision resistance to openings property of the hash family to reach
a contradiction. If we could claim this for every r ∈ [R] and t ∈ [T], then in particular
it would be true for the final state of the network, in step (R, T), where the output y is
produced. Since the output is encoded in the internal configuration of the network nodes,
whenever the adversary A wins ExpSoundR,T , we can use it to find a collision in the hash of
the internal configurations: if A wins, then for some node v ∈ V , the output y(v) produced
by A does not match the true output y′(v) of the algorithm D. The witness wint

R,T (v) contains
a hash hCfR,T (v) of the false final configuration cfR,T (v)′, which includes the false output
y(v). But we know that this witness matches what the honest prover would produce, that
is, the hash of the true final configuration cfR,T (v), including the true output y′(v). Thus,
the true configuration cfR,T (v) and the false configuration cfR,T (v)′ hash to the same value,
hCfR,T (v), and we found a collision.

To prove that the witnesses extracted from the certificates in each experiment ExpSoundr,t

are the true witnesses that would be generated by the honest prover, we define hybrid
experiments

{
ExpSound′

r,t

}
(r,t)∈[R]×[T], where we use two trapdoors: the first two copies of

the BARGs are set up with a binding index of (r, t), while the second two copies are set up
with a binding index of (r, t + 1). The winning condition for experiment ExpSound′

r,t requires
the adversary to output certificates π(v) at each node v such that

All certificates are accepted.

For each node, upon extracting the witnesses for indices (r, t) and (r, t + 1) from the
respective BARGs, all four witnesses are accepted by the respective BARG circuits.15

For each node, the witnesses for index (r, t) are the true witnesses that would be generated
by the honest prover. And finally,

There exists a node where the witnesses for index (r, t + 1) are not the true witnesses
that would be generated by the honest prover.

Winning this experiment with non-negligible probability again breaks the index-hiding
property of the BARG, because it essentially means that the adversary can tell whether the
binding index is (r, t), in which case it produces true witnesses matching the honest prover
at all nodes, or (r, t + 1), in which case it produces a false witness at some node. Proving
this step also relies on the fact that the witnesses are accepted by the BARG circuit, which
asserts that the transition from step (r, t) to step (r, t + 1) is legal. This means that if the
witness for step (r, t) is the true witness, then either the witness for step (r, t + 1) is also the
true witness, or we have broken the somewhere proof of knowledge property of the BARG (it
accepts, despite the extraction of an inappropriate witness).

After proving that the adversary cannot win experiment ExpSound′
r,t except with negligible

probability, we chain together the entire sequence ExpSound′
1,1, . . . , ExpSound′

R,T and argue
that since the adversary does not win any of these experiments with non-negligible probability,
either it produces false witnesses for the initial state of the network, or it produces true
witnesses for all computation steps (in which case we are done, as we explained above).
However, the prover cannot lie about the initial state of the network without breaking
collision resistance, for reasons similar to those we outlined for the final configuration.

15 Recall that the BARG circuit is simply the circuit that verifies (i, wi), not to be confused with the BARG
verifier, which verifies the BARG proof.

E. Aldema Tshuva and R. Oshman 1:17

References
1 Miklós Ajtai. Generating hard instances of lattice problems. In Proceedings of the twenty-eighth

annual ACM symposium on Theory of computing, pages 99–108, 1996.
2 Eden Aldema Tshuva, Elette Boyle, Ran Cohen, Tal Moran, and Rotem Oshman. Locally

verifiable distributed snargs. In Theory of Cryptography Conference, pages 65–90. Springer,
2023.

3 Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam.
Ligero: Lightweight sublinear arguments without a trusted setup. In Proceedings of the 2017
acm sigsac conference on computer and communications security, pages 2087–2104, 2017.
doi:10.1145/3133956.3134104.

4 B. Awerbuch, B. Patt-Shamir, and G. Varghese. Self-stabilization by local checking and
correction. In Proceedings 32nd Annual Symposium of Foundations of Computer Science, pages
268–277, 1991.

5 B. Awerbuch and M. Sipser. Dynamic networks are as fast as static networks. In [Proceedings
1988] 29th Annual Symposium on Foundations of Computer Science, pages 206–219, 1988.

6 Alkida Balliu, Juho Hirvonen, Darya Melnyk, Dennis Olivetti, Joel Rybicki, and Jukka
Suomela. Local mending. In Merav Parter, editor, Structural Information and Communication
Complexity, pages 1–20, 2022. doi:10.1007/978-3-031-09993-9_1.

7 Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast reed-solomon interactive
oracle proofs of proximity. In 45th international colloquium on automata, languages, and
programming (icalp 2018). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.

8 Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, 2018.

9 Aviv Bick, Gillat Kol, and Rotem Oshman. Distributed zero-knowledge proofs over networks.
In SODA, pages 2426–2458. SIAM, 2022. doi:10.1137/1.9781611977073.97.

10 Jonathan Bootle, Andrea Cerulli, Essam Ghadafi, Jens Groth, Mohammad Hajiabadi, and
Sune K Jakobsen. Linear-time zero-knowledge proofs for arithmetic circuit satisfiability.
In International Conference on the Theory and Application of Cryptology and Information
Security, pages 336–365. Springer, 2017. doi:10.1007/978-3-319-70700-6_12.

11 Jonathan Bootle, Alessandro Chiesa, and Jens Groth. Linear-time arguments with sublinear
verification from tensor codes. In Theory of Cryptography: 18th International Conference,
TCC 2020, Durham, NC, USA, November 16–19, 2020, Proceedings, Part II 18, pages 19–46.
Springer, 2020. doi:10.1007/978-3-030-64378-2_2.

12 Keren Censor-Hillel, Ami Paz, and Mor Perry. Approximate proof-labeling schemes. Theoretical
Computer Science, 811:112–124, 2020. doi:10.1016/J.TCS.2018.08.020.

13 Yi-Jun Chang and Mohsen Ghaffari. Strong-diameter network decomposition. In Proceedings
of the 2021 ACM Symposium on Principles of Distributed Computing, pages 273–281, 2021.
doi:10.1145/3465084.3467933.

14 Arka Rai Choudhuri, Sanjam Garg, Abhishek Jain, Zhengzhong Jin, and Jiaheng Zhang.
Correlation intractability and SNARGs from sub-exponential DDH. In Proceedings of the 43rd
Annual International Cryptology Conference, CRYPTO 2023, Part IV, volume 14084 of LNCS,
pages 635–668. Springer, 2023. doi:10.1007/978-3-031-38551-3_20.

15 Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. Non-interactive batch arguments
for NP from standard assumptions. In Proceedings of the 41st Annual International Cryptology
Conference, CRYPTO 2021, Part IV, volume 12828 of LNCS, pages 394–423. Springer, 2021.
doi:10.1007/978-3-030-84259-8_14.

16 Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. SNARGs for P from LWE. In 62nd
IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages 68–79, 2021.

17 Pierluigi Crescenzi, Pierre Fraigniaud, and Ami Paz. Trade-offs in distributed interactive
proofs. In DISC, volume 146 of LIPIcs, pages 13:1–13:17. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2019. doi:10.4230/LIPICS.DISC.2019.13.

DISC 2024

https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1007/978-3-031-09993-9_1
https://doi.org/10.1137/1.9781611977073.97
https://doi.org/10.1007/978-3-319-70700-6_12
https://doi.org/10.1007/978-3-030-64378-2_2
https://doi.org/10.1016/J.TCS.2018.08.020
https://doi.org/10.1145/3465084.3467933
https://doi.org/10.1007/978-3-031-38551-3_20
https://doi.org/10.1007/978-3-030-84259-8_14
https://doi.org/10.4230/LIPICS.DISC.2019.13

1:18 Fully Local Succinct Distributed Arguments

18 Ivan Bjerre Damgård. Collision free hash functions and public key signature schemes. In
Workshop on the Theory and Application of of Cryptographic Techniques, pages 203–216.
Springer, 1987.

19 Shlomi Dolev. Self-Stabilization. MIT Press, 2000.
20 Yuval Emek, Yuval Gil, and Shay Kutten. Locally Restricted Proof Labeling Schemes. In

36th International Symposium on Distributed Computing (DISC 2022), volume 246, pages
20:1–20:22, 2022. doi:10.4230/LIPICS.DISC.2022.20.

21 Laurent Feuilloley, Pierre Fraigniaud, Juho Hirvonen, Ami Paz, and Mor Perry. Redun-
dancy in distributed proofs. Distributed Comput., 34(2):113–132, 2021. doi:10.1007/
S00446-020-00386-Z.

22 Pierre Fraigniaud, Pedro Montealegre, Rotem Oshman, Ivan Rapaport, and Ioan Todinca. On
distributed Merlin-Arthur decision protocols. In SIROCCO, volume 11639 of LNCS, pages
230–245. Springer, 2019. doi:10.1007/978-3-030-24922-9_16.

23 Pierre Fraigniaud, Boaz Patt-Shamir, and Mor Perry. Randomized proof-labeling schemes.
Distributed Computing, 32:217–234, 2019. doi:10.1007/S00446-018-0340-8.

24 Alexander Golovnev, Jonathan Lee, Srinath Setty, Justin Thaler, and Riad S Wahby. Brake-
down: Linear-time and field-agnostic snarks for r1cs. In Annual International Cryptology
Conference, pages 193–226. Springer, 2023. doi:10.1007/978-3-031-38545-2_7.

25 Mika Göös and Jukka Suomela. Locally checkable proofs in distributed computing. Theory
Comput., 12(1):1–33, 2016. doi:10.4086/TOC.2016.V012A019.

26 Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography with constant
computational overhead. In Proceedings of the fortieth annual ACM symposium on Theory of
computing, pages 433–442, 2008. doi:10.1145/1374376.1374438.

27 Yael Kalai, Alex Lombardi, Vinod Vaikuntanathan, and Daniel Wichs. Boosting batch
arguments and RAM delegation. In Proceedings of the 55th Annual ACM Symposium on
Theory of Computing (STOC), pages 1545–1552, 2023. doi:10.1145/3564246.3585200.

28 Yael Tauman Kalai, Alex Lombardi, and Vinod Vaikuntanathan. Snargs and ppad hardness
from the decisional diffie-hellman assumption. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 470–498. Springer, 2023. doi:
10.1007/978-3-031-30617-4_16.

29 Yael Tauman Kalai, Omer Paneth, and Lisa Yang. How to delegate computations publicly. In
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC
2019, pages 1115–1124. ACM, 2019. doi:10.1145/3313276.3316411.

30 Gillat Kol, Rotem Oshman, and Raghuvansh R. Saxena. Interactive distributed proofs. In
Symposium on Principles of Distributed Computing (PODC), pages 255–264, 2018. URL:
https://dl.acm.org/citation.cfm?id=3212771.

31 Michael König and Roger Wattenhofer. On local fixing. In Principles of Distributed Systems,
pages 191–205. Springer International Publishing, 2013. doi:10.1007/978-3-319-03850-6_
14.

32 Amos Korman and Shay Kutten. Distributed verification of minimum spanning trees. In
Proceedings of the twenty-fifth annual ACM symposium on Principles of distributed computing,
pages 26–34, 2006. doi:10.1145/1146381.1146389.

33 Amos Korman and Shay Kutten. Distributed verification of minimum spanning trees. In
Proceedings of the twenty-fifth annual ACM symposium on Principles of distributed computing,
pages 26–34, 2006. doi:10.1145/1146381.1146389.

34 Amos Korman, Shay Kutten, and David Peleg. Proof labeling schemes. In Proceedings of
the twenty-fourth annual ACM symposium on Principles of distributed computing, pages 9–18,
2005. doi:10.1145/1073814.1073817.

35 Jonathan Lee, Srinath Setty, Justin Thaler, and Riad Wahby. Linear-time and post-quantum
zero-knowledge snarks for r1cs. Cryptology ePrint Archive, 2021.

https://doi.org/10.4230/LIPICS.DISC.2022.20
https://doi.org/10.1007/S00446-020-00386-Z
https://doi.org/10.1007/S00446-020-00386-Z
https://doi.org/10.1007/978-3-030-24922-9_16
https://doi.org/10.1007/S00446-018-0340-8
https://doi.org/10.1007/978-3-031-38545-2_7
https://doi.org/10.4086/TOC.2016.V012A019
https://doi.org/10.1145/1374376.1374438
https://doi.org/10.1145/3564246.3585200
https://doi.org/10.1007/978-3-031-30617-4_16
https://doi.org/10.1007/978-3-031-30617-4_16
https://doi.org/10.1145/3313276.3316411
https://dl.acm.org/citation.cfm?id=3212771
https://doi.org/10.1007/978-3-319-03850-6_14
https://doi.org/10.1007/978-3-319-03850-6_14
https://doi.org/10.1145/1146381.1146389
https://doi.org/10.1145/1146381.1146389
https://doi.org/10.1145/1073814.1073817

E. Aldema Tshuva and R. Oshman 1:19

36 Christoph Lenzen, Jukka Suomela, and Roger Wattenhofer. Local algorithms: Self-stabilization
on speed. In Stabilization, Safety, and Security of Distributed Systems, pages 17–34, 2009.
doi:10.1007/978-3-642-05118-0_2.

37 Nathan Linial and Michael Saks. Low diameter graph decompositions. Combinatorica,
13(4):441–454, 1993. doi:10.1007/BF01303516.

38 Ralph C. Merkle. A certified digital signature. In Proceedings of the 9th Annual International
Cryptology Conference, CRYPTO ’89, volume 435 of LNCS, pages 218–238. Springer, 1989.
doi:10.1007/0-387-34805-0_21.

39 Silvio Micali. Computationally sound proofs. SIAM Journal on Computing, 30(4):1253–1298,
2000. doi:10.1137/S0097539795284959.

40 Pedro Montealegre, Diego Ramírez-Romero, and Ivan Rapaport. Shared vs private randomness
in distributed interactive proofs. arXiv preprint arXiv:2006.16191, 2020. arXiv:2006.16191.

41 Moni Naor, Merav Parter, and Eylon Yogev. The power of distributed verifiers in interactive
proofs. In Shuchi Chawla, editor, Symposium on Discrete Algorithms (SODA), pages 1096–115,
2020. doi:10.1137/1.9781611975994.67.

42 Rafail Ostrovsky, Mor Perry, and Will Rosenbaum. Space-time tradeoffs for distributed
verification. In International Colloquium on Structural Information and Communication
Complexity, pages 53–70. Springer, 2017. doi:10.1007/978-3-319-72050-0_4.

43 Omer Paneth and Rafael Pass. Incrementally verifiable computation via rate-1 batch arguments.
In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pages
1045–1056. IEEE, 2022. doi:10.1109/FOCS54457.2022.00102.

44 Noga Ron-Zewi and Ron D Rothblum. Proving as fast as computing: succinct arguments with
constant prover overhead. In Proceedings of the 54th Annual ACM SIGACT Symposium on
Theory of Computing, pages 1353–1363, 2022. doi:10.1145/3519935.3519956.

45 Václav Rozhoň and Mohsen Ghaffari. Polylogarithmic-time deterministic network decompo-
sition and distributed derandomization. In Proceedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, pages 350–363, 2020.

46 Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply time/space
efficiency. In Theory of Cryptography Conference, pages 1–18. Springer, 2008. doi:10.1007/
978-3-540-78524-8_1.

47 Michael Walfish and Andrew J Blumberg. Verifying computations without reexecuting them.
Communications of the ACM, 58(2):74–84, 2015. doi:10.1145/2641562.

48 Brent Waters and David J. Wu. Batch arguments for NP and more from standard bilinear
group assumptions. In Proceedings of the 42nd Annual International Cryptology Conference,
CRYPTO 2022, Part II, volume 13508 of LNCS, pages 433–463. Springer, 2022. doi:10.1007/
978-3-031-15979-4_15.

49 Tiacheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and Dawn Song.
Libra: Succinct zero-knowledge proofs with optimal prover computation. In Advances in
Cryptology–CRYPTO 2019: 39th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 18–22, 2019, Proceedings, Part III 39, pages 733–764. Springer, 2019.
doi:10.1007/978-3-030-26954-8_24.

50 Jiaheng Zhang, Tianyi Liu, Weijie Wang, Yinuo Zhang, Dawn Song, Xiang Xie, and Yupeng
Zhang. Doubly efficient interactive proofs for general arithmetic circuits with linear prover
time. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security, pages 159–177, 2021. doi:10.1145/3460120.3484767.

A Full Syntax, Formal Definitions and Statements

A.1 Distributed Merkle Trees
We give here the full definition of a distributed Merkle tree, adopted from [2], with a minor
change we discuss bellow.

DISC 2024

https://doi.org/10.1007/978-3-642-05118-0_2
https://doi.org/10.1007/BF01303516
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1137/S0097539795284959
https://arxiv.org/abs/2006.16191
https://doi.org/10.1137/1.9781611975994.67
https://doi.org/10.1007/978-3-319-72050-0_4
https://doi.org/10.1109/FOCS54457.2022.00102
https://doi.org/10.1145/3519935.3519956
https://doi.org/10.1007/978-3-540-78524-8_1
https://doi.org/10.1007/978-3-540-78524-8_1
https://doi.org/10.1145/2641562
https://doi.org/10.1007/978-3-031-15979-4_15
https://doi.org/10.1007/978-3-031-15979-4_15
https://doi.org/10.1007/978-3-030-26954-8_24
https://doi.org/10.1145/3460120.3484767

1:20 Fully Local Succinct Distributed Arguments

Syntax. An efficient distributed Merkle tree DMT is associated with a recursive hash family
with local openings

MT = (MT.Gen, MT.Hash, MT.Open, MT.Verify)

and consists of the following algorithms:

Gen(1λ)→ hk. A randomized algorithm that takes as input the security parameter λ and
outputs a hash key hk = MT.Gen(1λ).

DistMake(hk; G; x)→ {(valv, rtv, Iv, ρv, βv)}v∈V (G). A distributed algorithm that executes
in a distributed network G, with all nodes receiving the same hash key hk, and each
node v ∈ V (G) initially holding a collection of inputs x(v) = {xv→u}u∈N(v) (one input
xu→v for each neighbor u ∈ N(v)). The output at each node v consists of:
A hash value valv, which is the same at all nodes,
A local MT-root rtv,16

An index Iv ∈ {0, 1}∗,
An opening path ρv, and
A set βv of openings (ρv→u) of index and opening path for every neighbor u ∈ N(v).

▶ Definition 2 (DMT). A DMT is required to satisfy the following properties:

Well-formedness.
All nodes v ∈ V (G) output the same value valv,
All indices Iv are of length c · ⌈log n⌉, for some constant c,

MT-functionality. Fix a hash key hk, a network G of size n and input assignment to it
x : V (G) → {0, 1}∗, where for every v ∈ V (G), x(v) = {xv→u}u∈N(v), such that for
every edge {v, u} ∈ E(G), xv→u ∈ {0, 1}ℓ. Let{

(valv, rtv, Iv, ρv, pv, F̂v, βv)
}

v∈V (G)
= DistMake(hk, G, x),

where βv = {ρv→u}u∈N(v) . For each directed edge (v, u), let Index(v, u) = Iv ∥ id(u),
and Opening(v, u) = ρv ∥ ρv→u. We say that the DMT satisfies MT-functionality
if for every such output, there exists a constant c and a vector x⃗ of length at most
≤ 2c·⌈log n⌉+⌈log ñ⌉+⌈log ℓ⌉ (where ñ denotes the size of the UID domain) such that:
For every v ∈ V (G) and u ∈ N(v) we have x⃗Index(v,u) = xv→u,
For every v ∈ V (G), valv = MT.Hash(hk, x⃗),
For every v ∈ V (G) and u ∈ N(v) we have:
(x⃗v→u, Opening(v, u)) = MT.Open(hk, x⃗, Index(v, u)).

Efficiency. At each node, the local computation executed by DistMake runs in time
poly(λ, n, m).

16 Throughout this section and the sequel, we use both val and rt to denote MT-values, which are also
themselves MT-roots (the construction is recursive). We use val to denote a “final” value, the root
of the entire network, which is later exposed to the algorithm using the DMT; we typically use rt for
intermediate values handled inside the distributed Merkle.

E. Aldema Tshuva and R. Oshman 1:21

Low round complexity and low communication complexity. DistMake runs in O(D)
synchronized communication rounds on networks of diameter D, and uses messages of
length poly(λ, log n).

▶ Remark 3. In [2], the set βv returned from the algorithm DistMake also contain indices
{Iv ∥ Iv→u}u∈N(v), and the MT-functionality property is defined with respect to Index(v, u) =
Iv ∥ Iv→u, where Iv ∥ Iv→u is the port number of u as represented in the node v. In this
work, we simplify this by considering the UIDs instead of port numbers of the nodes. This
means that the hash value val now depends on the size of the UID domain ñ = |U|, where it
used to depend on the maximal degree, but this does not come with a meaningful cost as (1)
we assume ñ = poly(n) and (2) the dependency (of previously ∆ and now ñ) is logarithmic.

▶ Theorem 4 ([2]). For every recursive hash family with local openings, there exists a
respective distributed Merkle tree.

A.2 Somewhere Extractable Batch Arguments (seBARGs)
Syntax. A seBARG for index language consists of the following algorithms:

Gen(1λ, k, 1s, i)→ (crs, td). A randomized setup procedure that takes a security parameter
λ, the number of statements k, the size of the circuit 1s, and an optional index i, and
generates a common reference string crs and if provided an index i, a trapdoor td.

P(crs, C, w1, . . . , wk) → (b, π). A polynomial-time prover algorithm that takes the crs, a
circuit C and a list of witnesses w1, . . . , wk, and outputs a bit b and a proof π.

V(crs, C, π)→ b. A polynomial-time verification algorithm that takes the crs, a circuit C,
and a proof π and outputs an acceptance bit.

E(td, C, π)→ wi. A polynomial-time extraction algorithm that takes a trapdoor td, a circuit
C, and a proof π, and outputs a witness wi.

▶ Definition 5 (seBARG). A seBARG satisfies the following requirements.

Succinctness. The length of the crs and of the proof π is at most poly(s, λ, log k).

Verifier Efficiency. The verifier runs in time poly(s, λ, log k).

Completeness. For any λ ∈ N and s = s(λ) of size at most 2λ, for any circuit
C : [k]× {0, 1}m → {0, 1} of size at most s, any witnesses w1, . . . , wk ∈ {0, 1}m and
any index i∗ ∈ [k]

Pr
[
V(crs, C, π) = 1

∣∣∣∣ (crs, td)← Gen(1λ, k, 1s, i∗)
π ← P(crs, C, w1, . . . , wk)

]
= 1.

Index hiding. For any poly-size adversary A and polynomials k = k(λ) and s = s(λ),
there exists a negligible function negl(·) such that for every λ ∈ N

Pr

 i0, i1 ∈ [k]
A(crs) = b

∣∣∣∣∣∣
(i0, i1)← A(1λ)
b← {0, 1}
(crs, td)← Gen(1λ, k, 1s, ib)

 ≤ 1
2 + negl(λ).

DISC 2024

1:22 Fully Local Succinct Distributed Arguments

Somewhere argument of knowledge. For any poly-size adversary A, polynomials
k = k(λ) and s = s(λ), and index i∗ = i∗(λ) ∈ [k(λ)], there exists a negligible function
negl(·) such that for every λ ∈ N

Pr

 V(crs, C, π) = 1
∧ C(i∗, w) = 0

∣∣∣∣∣∣
(crs, td)← Gen(1λ, k, 1s, i∗)
(C, π)← A(crs)
w ← E(td, C, π)

 ≤ negl(λ).

▶ Theorem 6 ([15, 48, 27, 14]). seBARGs for NP, and in particular, for the index languages,
exist assuming either: (1) LWE, (2) DLIN, or (3) subexponential DDH.

A.3 Low-Diameter Edge Cover

For a graph G = (V, E) and a mapping S from V to subsets of U , denote by TS the image of
S (that is, the set {t ∈ U | ∃v ∈ V : t ∈ S(v)}), and for every t ∈ TS , denote by Vt the set
of nodes which have t in their image: V S

t = {v ∈ V | t ∈ S(v)}.

▶ Definition 7 ((D, s)-edge-cover). For a graph G, we say a mapping S : V → U is an edge
cover of G if for every edge {v, u} ∈ E, we have S(v) ∩ S(u) ̸= ∅.

We say S is diameter-D if for every t ∈ T , we have that the graph induced by V S
t , G[Vt]

is of strong-diameter at most D.
We say S is s-succinct if for every node v ∈ V , we have |S(v)| ≤ s.

▶ Remark 8. We remark that unlike the classical definition of graph decomposition, here
we think of the clusters from the point of view of the nodes; and for that reason define the
edge-cover to be a mapping from nodes to all of the sets it belongs to, rather than simply a
set of subsets of the graph nodes.

▶ Theorem 9. There exists a (polylog(n), polylog(n))-edge-cover algorithm in the CONGEST
model.

A.4 Fully Local Distributed SNARG

We give here the full definition of a fully local distributed SNARG (fl-DSNARG), which is
mostly adopted from [2], with the only difference being the improved efficiency requirement
from the prover.

Syntax. A locally verifiable distributed SNARG with a round-efficient distributed prover
for a distributed algorithm D and corresponding graph language LD consists of the following
algorithms.

Gen(1λ, n)→ crs. A randomized algorithm that takes as input a security parameter 1λ and
a graph size n, and outputs a common reference string crs.

P(crs; G; x)→ (y, π). A distributed algorithm that runs in the network G, where all of the
nodes have access to the common reference string crs obtained from Gen, and each node
v ∈ V (G) inputs x(v), and outputs (1) an assignment of outputs y : V (G)→ {0, 1}∗

of D when executed in G, and (2) an assignment of proofs π : V (G)→ {0, 1}∗.

E. Aldema Tshuva and R. Oshman 1:23

V(crs; G; x, π) → b. A distributed decision algorithm that takes as a common input to
the entire network a common reference string crs, executes in the network G, where
each node v ∈ V (G) is assigned with an input x(v) and a proof π(v), and outputs
acceptance bits b : V → {0, 1}∗.

▶ Definition 10 (fl-DSNARG). Let D be a distributed algorithm, and let LD be its cor-
responding graph language. An fl-DSNARG (Gen,P,V) for D must satisfy the following
properties:

Completeness. For any (G, x) ∈ LD,

Pr
[
V(crs; G; x, π) = 1

∣∣∣∣ crs← Gen(1λ, n)
π ← P(crs; G; x)

]
= 1.

Soundness. For any poly-size algorithm P∗ and polynomial n = n(λ), there exists a
negligible function negl(·) such that

Pr
[

(G, x) /∈ LD
∧ V(crs; G; x, π) = 1

∣∣∣∣ crs← Gen(1λ, n)
(G, x, π)← P∗(crs)

]
≤ negl(λ).

Succinctness. The crs and the proof π(v) at each node v are of length at most
poly(λ, log n).

Verifier efficiency. V runs in a single synchronized communication round, during which
each node sends a (possibly different) message of length poly(λ, log n) to each neighbor.
At each node v, the local computation executed by V runs in time
poly(λ, |π(v)|, |x(v)|, deg(v)) = poly(λ, n).

Prover efficiency. P adds an overhead of polylog(n) communication rounds to the
rounds of D, where in each of these rounds, each node sends a message of length
poly(λ, log n) to each neighbor. At each node, the local computation executed by P
runs in time poly(λ, n).

The following theorem states the existence of fl-DSNARG, assuming the existence of the
ingredients we used, to complement Theorem 1.

▶ Theorem 11. Assume the existence of a (D, c)-edge-cover algorithm in the CONGEST
model, a distributed Merkle tree, and a somewhere extractable argument of knowledge for NP.

Then, for every distributed algorithm D that runs in polynomial rounds and local compu-
tation time, there exists an fl-DSNARG.

B G2 Strong-Diameter Decomposition in the CONGEST Model

We require a (polylog(n), polylog(n))-decomposition algorithm that satisfies the following
properties:

It is a strong-diameter decomposition algorithm,
it is in the CONGEST model, and
it can be extended to graph powers while remaining in the CONGEST model.

DISC 2024

1:24 Fully Local Succinct Distributed Arguments

While the first two requirements are rather obvious, the last one may seem trivial given the
second requirement, but it is in fact more delicate. It is true that given an algorithm in the
LOCAL model, to simulate its execution on G2, is rather simple; each node could start by
collecting its distance-2 neighborhood and then simulate each step of the original algorithm
as if it was operating on G2, while suffering a factor of 2 in the number of rounds. However,
this does not generally work in the CONGEST model, as the distance-2 neighborhood of
each node might be much larger than the number of connections it can use to collect the
information.

In [45], a CONGEST algorithm for weak-diameter is constructed using the building block
of weak-diameter ball-carving algorithm. Their weak-diameter ball-carving is then extended
to be simulatable on Gk in the CONGEST model for any constant k, while preserving the
round complexity. It then uses a classical CONGEST reduction from ball-carving to graph
decomposition [37], where the ball-carving algorithm is executed log n times.

In [13], a strong-diameter decomposition is constructed using a transformation from
weak-diameter ball carving to strong-diameter ball carving in the CONGEST model, following
by the same classical reduction from ball-carving to decomposition. Their transformation
satisfies the property that if the original algorithm runs in polylog n rounds and produces
polylog n-diameter clusters, then the new algorithm also runs in polylog n rounds and
produces polylog n-diameter clusters (with different polynomial dependencies in log n). Then,
combining this transformation with the weak-diameter CONGEST ball-carving of [45], they
obtain a polylog n rounds polylog n strong-diameter ball-carving in the CONGEST model,
followed by a corresponding strong-diameter decomposition in the CONGEST model.

Since the weak-diameter ball carving of [45] could be simulated on G2 in the CONGEST
model, to see that the strong-diameter decomposition of [13] could be simulated on G2 in the
CONGEST model it remains to show that their weak-diameter to strong diameter ball-carving
transformation could be also simulated in G2 in the CONGEST model. We observe that the
transformation of [13] uses communication between the nodes in the following two ways,
which both could be simulated on G2 in the CONGEST model:

Counting the number of nodes in a cluster, by gathering information over Steiner trees.
This could be simulated for G2 since each node has to transfer only a number of nodes,
where this number is still bounded by n in G2, and so could be described in O(log n) bits.
Computing a radius around a node v such that the ratio between the number of nodes
in the cluster within that radius around v and the number of nodes beyond that radius
exceeds some parameter. This is done by growing a BFS tree around v and gathering the
number of nodes within each distance. Here as well, we have that nodes only transfer
numbers, which are bounded by n, and thus their description is of size O(log n).

	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Preliminaries
	3 Technical Overview
	3.1 Local Distributed Merkle Trees
	3.2 Constructing the Distributed Argument
	3.3 The Soundness of Our Construction

	A Full Syntax, Formal Definitions and Statements
	A.1 Distributed Merkle Trees
	A.2 Somewhere Extractable Batch Arguments (seBARGs)
	A.3 Low-Diameter Edge Cover
	A.4 Fully Local Distributed SNARG

	B G2 Strong-Diameter Decomposition in the CONGEST Model

