
Deterministic Self-Stabilising Leader Election for
Programmable Matter with Constant Memory
Jérémie Chalopin #

Aix Marseille Univ, CNRS, LIS, Marseille, France

Shantanu Das #

Aix Marseille Univ, CNRS, LIS, Marseille, France

Maria Kokkou #

Aix Marseille Univ, CNRS, LIS, Marseille, France

Abstract
The problem of electing a unique leader is central to all distributed systems, including programmable
matter systems where particles have constant size memory. In this paper, we present a silent
self-stabilising, deterministic, stationary, election algorithm for particles having constant memory,
assuming that the system is simply connected. Our algorithm is elegant and simple, and requires
constant memory per particle. We prove that our algorithm always stabilises to a configuration
with a unique leader, under a daemon satisfying some fairness guarantees (Gouda fairness [27]).
We use the special geometric properties of programmable matter in 2D triangular grids to obtain
the first self-stabilising algorithm for such systems. This result is surprising since it is known that
silent self-stabilising algorithms for election in general distributed networks require Ω(log n) bits of
memory per node, even for ring topologies [20].

2012 ACM Subject Classification Computer systems organization → Fault-tolerant network topolo-
gies; Computing methodologies → Self-organization

Keywords and phrases Leader Election, Programmable Matter, Self-Stabilisation, Silent, Determin-
istic, Unique Leader, Simply Connected, Gouda fair Daemon, Constant Memory

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.13

Related Version Full Version: https://arxiv.org/abs/2408.08775 [11]

Funding This work has been partially supported by ANR project DUCAT (ANR-20-CE48-0006).

1 Introduction

Leader election (LE), introduced by Le Lann [32], allows to distinguish a unique process in the
system as a leader. The leader process can then act as an initiator or a coordinator, for solving
other distributed problems. Thus, election algorithms are often used as building blocks for
many problems in this domain. We are interested in deterministic election algorithms that
are self-stabilising. Since the seminal work of Dijkstra [18], the self-stabilisation paradigm has
been thoroughly investigated (see [19] for a survey). A distributed algorithm is self-stabilising
if when executed on a distributed system in an arbitrary global initial configuration, the
system eventually reaches a legitimate configuration. Self-stabilising protocols are able to
autonomously recover from transient memory failures, without external intervention. A
self-stabilising algorithm is silent if the system always reaches a configuration where the
processes no longer change their states. In the self-stabilising setting, LE is particularly
important, as many self-stabilising algorithms rely on the existence of a distinguished node.

The concept of silent self-stabilising algorithms is also related to proof-labelling schemes [31]
where each node is given a local certificate to verify certain global properties of the system
(e.g., the existence of a unique leader). Each node can check its own certificate and those of
its neighbours to verify it is in a correct configuration. If the global configuration is incorrect,

© Jérémie Chalopin, Shantanu Das, and Maria Kokkou;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 13; pp. 13:1–13:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jeremie.chalopin@lis-lab.fr
https://orcid.org/0000-0002-2988-8969
mailto:shantanu.das@lis-lab.fr
https://orcid.org/0000-0003-4008-2445
mailto:maria.kokkou@lis-lab.fr
https://orcid.org/0009-0009-8892-3494
https://doi.org/10.4230/LIPIcs.DISC.2024.13
https://arxiv.org/abs/2408.08775
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Self-Stabilising LE with Constant Memory

at least one node should be able to detect an inconsistency using the local certificates. In
this case, this node will change its state, leading its neighbours to change their states and so
on, until the system stabilises to a correct configuration. Blin et al. [5] proved that from
any proof-labelling scheme where each process has a certificate of size ℓ, one can build a
silent self-stabilising algorithm using O(ℓ + log n) bits of memory per process, where n is the
number of processes in the network. One of the standard techniques for self-stabilising LE is
to build a spanning tree rooted at the leader, with all other nodes pointing towards their
parent in the tree. In order to detect cycles when the system is in an incorrect state, the
local certificate at each node includes the hop-distance to the root, in addition to the pointer
to the parent. So the size of the certificate depends on the size of the system.

Here, we consider programmable matter (PM) systems which are distributed systems
consisting of small, intelligent particles that connect to each other and can autonomously
change shapes according to input signals. Such systems should be scalable to arbitrary sizes,
so the particles have constant size memory independent of the size of the system, similar to
finite state automata. This requirement also implies that the particles are anonymous (i.e.,
do not have unique identifiers) and all communication is limited to O(1) size messages. One
well-studied model for PM is the Amoebot model [15] where particles operate on a triangular
grid (see Section 1.2). LE is a well studied problem in this model. When the system is
simply connected, there are stationary deterministic algorithms for election based on the
erosion approach [17] where the algorithm starts by deactivating particles on the boundary
and moving inwards, until the last active node becomes the leader. This approach works
under the minimum assumptions on the system and is the inspiration for our work.

Tolerating faults is important for PM, however none of the existing algorithms for election
in these systems are self-stabilising. The question is: given the constant memory of particles,
is it still possible to obtain a self-stabilising algorithm for PM, using other properties of
such systems? We answer this question in the affirmative for simply connected PM systems,
showing that in this case, a deterministic silent self-stabilising algorithm for LE is indeed
possible. We use the property of such systems that there is a unique boundary in the system
that is well defined, such that any particle can determine whether it is on the boundary.

1.1 Our results
We present a silent self-stabilising, deterministic, stationary, election algorithm for constant-
memory particles, in a simply connected system. We prove our algorithm always stabilises
to a unique leader configuration, under a sequential scheduler with some fairness guarantees.

We first present a proof labelling scheme ensuring the existence of a unique leader. Our
certificate orients the edges of the network and a configuration is valid when: every edge is
oriented, outgoing edges appear consecutively around each particle and there are no directed
triangles. Note that our certificate does not ensure that the global orientation of the network
is acyclic. However, using the geometric properties of the configuration, we are able to show
that any valid configuration has a unique sink. As we are interested in a constant memory
algorithm, one cannot transform our proof labelling scheme into a self-stabilising algorithm
using [5]. However, we design a very simple algorithm to orient the edges of the system. We
show that under our fairness assumption, one always reaches a valid configuration and that
this configuration contains a unique sink that is designated as the leader.

Following the classification of [21], our scheduler is Gouda fair [27]: for any configuration
C that appears infinitely often in the execution, any successor C ′ of C also appears infinitely
often. Since each particle has constant memory, there exists only a finite number of global

J. Chalopin, S. Das, and M. Kokkou 13:3

configurations of the system. In this setting, Gouda fairness ensures that any configuration
that is infinitely often reachable is eventually reached. Observe that a scheduler that at each
step activates a particle chosen uniformly at random is a Gouda fair sequential scheduler.

We do not assume that there exists an agreement on the orientation of the grid, or
even on its chirality. Observe that without simple connectivity and without agreement on
orientation or chirality, it is possible to construct arbitrarily large rings of even size where
all processes have the same geometric information about the system (see Figure 1). In this
setting, the results of [20] show that there is no silent self-stabilising LE algorithm using
constant memory. This is part of our motivation for considering simply connected systems.

5 0

3
4

2
1

5 0

3
4

2
1

5
0

34
2
1

5
0

34
2
1

5
0

34
2
1

5
0 3

4

21

50

3
4

2
1

50

3
4

2
1

50

3
4

2
1

5
0

3 4
2
1

5
0

3 4
2
1

5
0

3 4
2
1

5
03

4

2 1

5
03

4

2 1

5
03

4

2 1

5 0

3
4

2
1

5
0 3

4

21

5
0 3

4

21

Figure 1 An 18-particle ring where for each particle, the occupied neighbours are reached through
port numbers 2 and 4. Two nodes have the same colour if they agree on the grid orientation.

1.2 Related Work
In general networks, there is no self-stabilising leader election algorithm where each process
has a constant memory. More precisely, Dolev et al. [20] established that any silent self-
stabilising algorithm electing a leader in the class of rings requires Ω(log n) bits of memory
per process (where n is the size of the ring). This lower bound only uses the assumption
that there exists a silent correct configuration and holds for any kind of scheduler. More
recently, Blin et al. [4] showed that non-silent self-stabilising algorithms require Ω(log log n)
bits of memory per process in order to elect a leader synchronously in the class of rings.
Note that these lower bounds are tight in the sense that for rings, there exist silent (resp.
non-silent) self-stabilising LE algorithms using O(log n) (resp., O(log log n)) bits of memory
per process [12, 6]. Constant memory self stabilising algorithms for rings can be designed
under special assumptions, as in [30] which gives an algorithm for prime sized rings assuming
a sequential scheduler. However, [20] established that this algorithm cannot be made silent.

There exists a large literature about distributed systems where each process has finite
memory. Cellular automata, introduced in the 40s in [34] are one of the best known models
of this kind. More recently, numerous papers have been devoted to population protocols
introduced in [1]. In this model, there is a population of finite-state agents and at each step,
a scheduler picks two agents that jointly update their states according to their current states.
The scheduler satisfies the same fairness condition as the one we consider in this paper:
any configuration that is infinitely often reachable is eventually reached. In this setting,
there exist election protocols using only two states when all agents start in the same state.
However, when considering self-stabilising LE in this setting, Cai et al. [9] showed that a

DISC 2024

13:4 Self-Stabilising LE with Constant Memory

protocol using n − 1 states cannot solve the problem in a population of n agents. This shows
that even with a Gouda fair scheduler, it is not always possible to solve the LE problem in a
self-stabilising way when processes have constant memory.

PM was introduced in [33] and has since gained popularity. Several models have been
introduced, such as [28, 35, 24]. In this paper we consider the well studied Amoebot model
[15, 13]. In this model, constant-memory computational entities, called particles, operate in
a triangular grid. Each node of the grid is occupied by at most one particle and particles
can determine whether nodes at distance one are occupied by particles. Each particle can
communicate with its neighbours by reading their respective registers. It is usually assumed
that particles do not have any global sense of direction, while some papers assume that the
particles have a common sense of rotational orientation, called chirality (e.g., [22, 3]) or that
particles agree on a common direction (e.g., [10]). In Amoebot, particles have the ability to
move to neighbouring nodes (e.g., [22, 23]), which we do not use. The problem of LE has
been studied in the specific context of PM in both 2D (e.g., [3, 17]) and 3D settings (e.g.,
[26, 8]) and both deterministic (e.g., [22]) and randomized algorithms (e.g., [16]) have been
proposed. The existing algorithms for LE in PM can be categorized based on the use of two
main techniques: erosion (e.g., [17, 25]) and message passing on boundaries (e.g., [3, 16]).

Research on self-stabilisation in the PM setting is more limited. In [16], a randomised
LE algorithm is given and the authors discuss the possibility of making it self-stabilising
by combining it with techniques from [2, 29]. However, it is assumed that particles have
O(log∗ n) memory. In the same paper, it is argued that self-stabilisation in PM is not possible
for problems where movement is needed, as the system can become permanently disconnected.
A self-stabilising algorithm for constructing a spanning forest was introduced in [14]. The
algorithm in [14] is deterministic and particles have constant memory. However, it is assumed
that at least one non-faulty special particle always remains in the system. The need to
extend the Amoebot model to also address self-stabilising algorithms is also discussed in [13].

2 Model

Let G∆ be an infinite regular triangular grid where each node has six neighbours. A connected
particle system, P, is simply connected if G∆\P is connected. We assume each node of the
simply connected P contains exactly one particle. We call nodes that are in P occupied and
those that are not in P, empty. Each particle is anonymous, has constant memory and is
stationary (i.e., does not move). A particle is incident to six ports, leading to consecutive
neighbouring nodes in G∆. Each port is associated with a label so that ports i and i + 1
mod 6 lead to neighbouring nodes. A particle knows if each port leads to an occupied or
empty node. For each occupied neighbour q, the particle p knows the label assigned by q

to qp. Each particle has a constant-size register with arbitrary initial contents. A particle
can read the register of each occupied neighbour but can only write in its own register. All
particles are inactive unless activated by the scheduler. An activated particle reads the
contents of its register and the register of each of the neighbouring particles. Based on this
information it updates the contents of its own register according to the given algorithm.

We call P, the support of the particle system. The configuration C of the system at any
time, consists of the set P and the contents of the registers of each particle in P . A distributed
algorithm A is a set of local rules that particles execute. The rules of the algorithm depend
only on the content of the registers of the particles and of its neighbours and they modify
only the register of the particle. For an algorithm A, a configuration C, and a particle p,
we say that p is activable in C, if the execution of A modifies the contents of the register

J. Chalopin, S. Das, and M. Kokkou 13:5

of p. For two configurations, C and C ′ that have the same support, we say that C ′ is a
successor of C if there exists an activable particle p in C such that, when p executes A, C ′ is
obtained. An execution S is an infinite sequence of configurations S = C0, C1, . . . such that
for any i, Ci and Ci+1 have the same support and either there exists an activable particle
pi such that when pi executes A in Ci, Ci+1 is obtained, or there is no activable particle
and Ci+1 = Ci. If there exists a step where Ci+1 = Ci, we call Ci a final configuration. An
execution is Gouda fair [21, 27] if for any configuration C that appears infinitely often in
the execution, any successor C ′ of C also appears infinitely often. An algorithm A is silent
self-stabilising under a Gouda fair scheduler, if any such execution of the algorithm contains
a final configuration C∗ that is valid. The notion of valid configurations depends on the
algorithm. In the next section, we define the valid configurations we consider in this paper.

We now present some notations and observations about the geometry of the system. Let
v and v′ be two neighbouring nodes in P. We say that an edge that is oriented from v to a
neighbouring node v′ is outgoing for v and incoming for v′. We write

−→
vv′ to denote an edge

directed from v to v′ and vv′ to denote an undirected edge or an edge whose orientation is
not known. Particles with at least one neighbour that is not in P are on the boundary. Since
P is simply connected, there exists only one boundary in the system. Let p be a particle on
the boundary. We say that p is pending if p has a unique neighbouring particle in P . We say
that p is an articulation point if the removal of p disconnects P. If p is neither pending, nor
an articulation point, then p is incident to two distinct edges pq, pr on the boundary of P.
In this case, since P is simply connected, there is a path of particles in the 1-neighbourhood
of p from q to r. We say that p is on a θ ∈ {60◦, 120◦, 180◦, 240◦} angle to denote the angle
that is formed when moving from q to r around p and no empty nodes are encountered. By
slight abuse of notation, we also call a particle on a θ angle a θ particle. It is easy to see
that a particle on the boundary cannot be on a 300◦ angle, otherwise q and r are adjacent
and p is not on the boundary, a contradiction. P is 2–connected if it does not contain any
articulation point. Notice that in systems with at least three particles, a system with no
articulation point does not contain any pending particle. In a 2–connected particle system,
the following observation implies that there should be a 60◦ or a 120◦ particle.

▶ Observation 1. If P is 2–connected and |P| ≥ 3, particles on the boundary satisfy the
formula 2n60 + n120 − n240 = 6, where nθ is the number of θ particles on the boundary.

Proof. If P is 2–connected, it forms a simple polygon. The sum of internal angles of a simple
polygon is (n − 2)π, where n is the number of vertices of the polygon. So (n60 + n120 + n180 +
n240 − 2)π = n60

π
3 + n120

2π
3 + n180π + n240

4π
3 , that is, 2n60 + n120 − n240 = 6. ◀

▶ Lemma 2. In any simply connected particle system P with at least two particles, the
boundary of P contains one of following:
1. a pending particle, or
2. a 60◦ particle, or
3. two 120◦ particles that are connected by a path of 180◦ particles on the boundary.

Proof. A block is a 2–connected component of P . As P contains at least two particles, each
block is either an edge or it contains at least three particles. The block tree of P is a tree
where each vertex is a block and there is an edge between two blocks if they share a vertex
(i.e., an articulation point of P). A leaf, P ′, of the block tree is a 2–connected component of
P and contains a unique articulation point p′ of P. If P ′ contains precisely two particles p′

and q′, then p′ is the unique neighbour of q′ in P and q′ is a pending particle, as in Case 1.

DISC 2024

13:6 Self-Stabilising LE with Constant Memory

Suppose P ′ contains at least three particles. Since P ′ is 2–connected, every particle on
the boundary of P ′ is a θ ∈ {60◦, 120◦, 180◦, 240◦} particle. Any θ particle p ̸= p′ of P ′ is
also a θ particle of P. So a 60◦ particle p ̸= p′ in P ′, is a 60◦ particle in P, which is Case 2.

Suppose now that in P ′, any boundary particle p different from p′ is a θ particle with
θ ∈ {120◦, 180◦, 240◦}. Let n′

120, n′
180, n′

240 be respectively the number of 120◦, 180◦, 240◦

particles in P ′ that are different from p′. Since p′ is an articulation point, p′ cannot have
more than three consecutive particle neighbours. Consequently, in P ′, p′ is either a 60◦ or a
120◦ particle. If p′ is a 60◦ particle in P ′, from Observation 1, we have 2 + n′

120 − n′
240 = 6. If

p′ is a 120◦ particle in P ′, from Observation 1, we have n′
120 + 1 − n′

240 = 6. In both cases, we
then have n′

120 ≥ n′
240 + 4. Let p1, . . . , pn′

120
be the 120◦ particles of P ′ in the order in which

they appear when we move on the boundary of P ′ starting from p′ (i.e., p′ appears between
pn′

120
and p1). Since n′

120 ≥ n′
240 + 4 > n′

240 + 1, there exists an index 1 ≤ i ≤ n′
120 − 1 such

that only 180◦ particles appear on the boundary of P ′ between pi and pi+1. Since all these
180◦ particles are also 180◦ particles on the boundary of P, we are in Case 3. ◀

We explain how two adjacent particles in a triangle detect each other’s chirality. The
label λ(Π) of a path Π = (p1, p2, . . . , pk) in the graph induced by the particles is a sequence
of pairs of labels (a1, b2), (a2, b3), . . . , (ak−1, bk) where for each i, ai (resp. bi) is the port
connecting pi to pi+1 (resp. pi−1).

Following [36], we define the view of depth k of a particle p, denoted by viewk(p), to
be the set of labels λ(Π) of paths Π starting at p of length at most k. Note that for each
1 ≤ j ≤ k, if both (a1, b2), (a2, b3), . . . , (aj , bj+1) and (a1, b2), (a2, b3), . . . , (aj , b′

j+1) belong
to viewk(p), then bj+1 = b′

j+1. From [7], for any constant k, each particle p can construct
viewk(p) in a self stabilising way with constant memory.

▶ Lemma 3. For any triangle of particles pqr, p can infer the chirality of q from view3(p).

Proof. In the following, for a particle p, we let {pi | 0 ≤ i ≤ 5} be the set of ports incident
to p and we assume that either pi+1 = pi + 1 for each 0 ≤ i ≤ 5, or pi+1 = pi − 1 for each
0 ≤ i ≤ 5 (where additions are made modulo 6). We will use the following observation.

▷ Claim 4. If pqr is a triangle, then the ports connecting r to p and q are consecutive.

Consider a triangle pqr. Let p1 (resp. q1) be the port through which p (resp. q) is
connected to q (resp. p). Further, let p (resp. r) be connected to r (resp. p) through p0
(resp. r1). Observe that if p learns the port through which q is connected to r, it also learns
the chirality of q. Note that by Claim 4, this port is either q0 or q2 and the port from r to q

is either r0 or r2. Notice that if r is the only common neighbour of p and q, then only one of
{(p1, q1), (q0, x) | 0 ≤ x ≤ 5} ∪ {(p1, q1), (q2, x) | 0 ≤ x ≤ 5} is in view3(p) and p can then
infer the chirality of q. Suppose now that p and q have two common neighbours r and r′.

▷ Claim 5. The edge qr is labelled (q2, r0) if and only if the following formula holds:

(p1, q1), (q2, r0), (r1, p0) ∈ view3(p) ∧ (p0, r1), (r0, q2), (q1, p1) ∈ view3(p)

∧
[
(p1, q1), (q0, r2) /∈ view3(p) ∨ (p2, r5) /∈ view3(p)

]
Proof. First let us suppose that the edge qr is labelled (q2, r0). Then, the first two expressions
of the formula are satisfied. Let us suppose (p1, q1), (q0, r2) ∈ view3(p). Then from Claim 4,
qr′ is labelled (q0, r2) and pr′ is either labelled (p2, r1) or (p2, r3). In either case, (p2, r5) /∈
view3(p) and the formula is satisfied.

J. Chalopin, S. Das, and M. Kokkou 13:7

Let us now suppose that the formula is satisfied and assume that qr is not labelled (q2, r0).
Then by Claim 4, qr is labelled either (q2, r2), or (q0, r0), or (q0, r2). Note that the first two
cases are impossible since (p1, q1), (q2, r0) and (p0, r1), (r0, q2) belong to view3(p). Conse-
quently, qr is labelled (q0, r2) and since (p1, q1)(q2, r0) ∈ view3(p), by Claim 4, qr′ is labelled
(q2, r0), and the label of pr′ is either (p2, r5) or (p2, r1). Note that we are necessarily in the sec-
ond case since we assumed that the formula holds and since (p1, q1)(q0, r2) ∈ view3(p). This
implies that (p1, q1)(q2, r0)(r1, p2) ∈ view3(p), and thus (p1, q1)(q2, r0)(r1, p0) /∈ view3(p),
contradicting the fact that the formula holds. ◁

From Claim 4, qr must be labelled (q0, r0), (q0, r2), (q2, r0) or (q2, r2). Applying Claim 5 to
each possibility, p can detect the label of qr and thus infer the chirality of q. ◀

3 A Proof Labelling Scheme for Leader Election

Our aim is to orient all edges so that a unique sink particle (i.e., particle with no outgoing
edges) that we define to be the leader exists. The certificate given to each particle consists of a
direction for each edge incident to the particle. The orientation of the edges is chosen so that
particles that are reached by an outgoing edge of some particle p, induce a connected graph
of size at most three. In general we cannot avoid the existence of cycles in the orientation,
but we will show that the existence of a unique sink is always guaranteed. Each particle p

checks that the following rules are locally satisfied or detects an error.

R1 Each edge is oriented and both particles agree on the direction of the edge.
R2 Particle p has at most three outgoing edges. We consider edges between p and empty

nodes to be incoming for p.
R3 When looking at the ports of p cyclically, all outgoing edges of p are consecutive.
R4 For every 3-particle triangle p belongs in, the triangle is not a cycle.

We call a configuration where every particle satisfies R1–R4 a valid configuration. Note
that R4 does not guarantee an acyclic orientation (i.e., that larger cycles do not exist in
the configuration). We do not forbid global cycles, but we will prove that even if cycles of
size larger than three are formed by the incoming and outgoing edges, the remaining rules
guarantee that there exists a unique sink in the system that we define to be the leader.

▶ Theorem 6. If all rules R1–R4 are satisfied, then there exists a unique sink in the system.

A valid configuration that does not contain any oriented cycle is a valid acyclic orientation.
Observe that any particle system admits a valid acyclic orientation, as it can be constructed
from any erosion based Leader Election algorithms for programmable matter (e.g., [17, 22]).
Indeed, consider an execution of an erosion algorithm on a system, and orient any edge pq

from p to q if p is eroded before q in the execution. This orientation is acyclic and it thus
obviously satisfies R1 and R4. Since an erosion based algorithm erodes only a particle that
does not disconnect its neighbourhood and that is strictly convex (i.e., that has at most
three non-eroded neighbours), the orientation also satisfies R2 and R3.

4 A Self-Stabilising Algorithm for Leader Election

In Section 3, we claimed that if all rules are locally satisfied a unique sink exists in the
system. Here, we show how a valid configuration is reached from a configuration containing
errors. Our algorithm is simple: when a particle, p, is incident to an undirected edge e, p

orients e as outgoing. If the orientation of the edges incident to p violates a rule, p undirects
all its outgoing edges. Each activated particle always executes both lines of Algorithm 1.

DISC 2024

13:8 Self-Stabilising LE with Constant Memory

Algorithm 1 Self Stabilising LE.

If ¬R1 : Mark all undirected edges as outgoing
If ¬R2 ∨ ¬R3 ∨ ¬R4 : Mark all outgoing edges as undirected

The directed edges incident to particles are encoded by each particle p having a variable
linkp[v′] ∈ {in, out} for each neighbouring node v′. For particle p ∈ P and v′ ∈ VG∆\P ,
linkp[v′] = in. Any particle p can locally detect whether it is incident to an empty node, so
we assume that edges between occupied and unoccupied nodes are always marked correctly.
For two adjacent particles p, p′ ∈ P, if linkp[p′] = in and linkp′ [p] = out, pp′ is directed
from p′ to p. We encode an undirected edge between two particles p and p′ as linkp[p′] =
linkp′ [p] = in. We address linkp[p′] = linkp′ [p] = out, as a special case. The endpoint that
is activated first (say p) marks linkp[p′] as in. Notice that this is only possible during the
first activation of p. In the remainder of this paper we only use the orientation of the edges
without referencing their encoding. That is, we say that an edge between two particles p

and q is: directed from p to q (i.e., −→pq), directed from q to p (i.e., −→qp) or undirected (i.e., pq

or qp). From Lemma 3 particles in a common triangle detect each other’s chirality. Since
particles know both labels assigned to an edge, particles can compute the orientation of edges
in triangles they belong in and check R4. From now on we only refer to particles detecting
cyclic triangles. We prove that when executing our algorithm, any particle system reaches a
valid configuration that contains a unique sink.

▶ Theorem 7. Starting from an arbitrary simply connected configuration any Gouda fair
execution of Algorithm 1 eventually reaches a configuration satisfying R1–R4 in which no
rules can be applied and there exists a unique sink.

5 Proof of Theorem 6 and Theorem 7

Here, we prove Theorem 7. Notice the second statement of Theorem 7 is precisely Theorem 6.
A configuration of a particle system executing Algorithm 1 is described by the direction of
each edge pq (i.e., −→pq, −→qp or undirected). We make a few observations on how to change the
orientation of some edges of a valid configuration and maintain a valid configuration.

▶ Observation 8. Let p be a particle such that R3 is satisfied at p. Let e be an incoming
edge to p and e′ be an outgoing edge of p, s.t. when moving cyclically around p, e and e′ are
consecutive. If e becomes outgoing (resp. e′ becomes incoming), R3 is not violated at p.

▶ Observation 9. Let C be a configuration and let p be a particle so that R1 (resp., R2, R4)
is satisfied at some particle q ̸= p in C. Then, R1 (resp., R2, R4) is satisfied at q in C \ {p}.

Let S = C0, C1, . . . be an execution of Algorithm 1 starting from a configuration C0.
Notice a particle p is activable in a configuration C if when it executes Algorithm 1, one of its
undirected edges becomes outgoing or one of its outgoing edges becomes undirected. If there
exists a configuration Cf where no node is activable, then Cf = Cj for all j > f , and we say
that the execution stabilises to a final configuration. If all rules are satisfied in this final
configuration, then this configuration is valid and we say it is a final directed configuration.
If a configuration Ci is not final, we can assume that there exists an activable particle pi

such that we obtain Ci+1 by activating pi in Ci. Since each particle has constant memory,
the number of possible configurations is finite. Hence there exists an index i0 in S such that
any configuration Ci with i ≥ i0 appears infinitely often in S. We write Si0 = Ci0 , Ci0+1, . . .

J. Chalopin, S. Das, and M. Kokkou 13:9

to denote the part of the execution starting at Ci0 and in the following we consider only Si0

and configurations Ci with i ≥ i0. We call the edges that are never undirected in Si0 , stable
edges. Observe that by the definition of i0, each edge is either stable or undirected infinitely
often. Notice that any edge pq directed from p to q in Ci with i ≥ i0, is directed from p to q

infinitely often, regardless of whether it is stable. We establish some properties in Si0 .

▶ Lemma 10. In any configuration Ci with i ≥ i0, Rules R2, R3 and R4 are always satisfied.

Proof. Let ni be the number of particles in Ci that do not satisfy R2, R3 or R4. If a particle
p is activated in Ci, then R2, R3 and R4 are satisfied at p in Ci+1. Moreover, if R2, R3, and
R4 are satisfied at some particle p in Ci that is not activated at step i, then they are still
satisfied at step Ci+1. Consequently, ni+1 ≤ ni. Since for i ≥ i0, Ci appears infinitely often,
we get that for every i ≥ i0, we have ni = ni0 . If ni > 0, there exists a particle p that always
violates one of the rule R2, R3 or R4. Thus, p is eventually activated at some step i and in
Ci+1, p satisfies the rules, a contradiction. Consequently, for any i ≥ i0, R2, R3 and R4 are
satisfied at every particle in Ci. ◀

▶ Lemma 11. If a particle p is incident to a stable outgoing edge, p is never activable in Si0

and all edges incident to p are stable edges.

Proof. In a configuration Ci, if a particle p is incident to an outgoing edge and an undirected
edge, then p is activable in Ci. After its activation, either all the undirected edges incident
to p have become outgoing edges, or all outgoing edges of p have become undirected.

Let −→pq be a stable edge, hence, p never marks −→pq as undirected. Let us suppose that
in addition to −→pq, p is also incident to an unstable edge pr. Then infinitely often, pr is
undirected and thus there exists a step where p is activated and pr is undirected. At this
step, p marks −→pr as outgoing. Then if −→pr becomes undirected at a later step, −→pq must also
become undirected, which is a contradiction. Hence, all edges incident to p are stable. ◀

▶ Lemma 12. If a particle p is incident to an unstable edge in Si0 , the unstable edges
incident to p are at least two and do not appear consecutively around p, or there are at least
four unstable edges incident to p.

Proof. Suppose the lemma does not hold and that there exists a particle p incident to
1 ≤ k ≤ 3 unstable edges that appear consecutively around p. Then, there exists an unstable
edge pq incident to p such that for every unstable edge pr incident to p, either r = q or r is
adjacent to q. Note that by Lemma 11, all stable edges incident to p are incoming to p.

▷ Claim 13. Consider an unstable edge pr with r ̸= q and let s be the common neighbour
of p and r that is distinct from q. Then −→sp and −→sr are stable.

Proof. By the definition of q, sp is stable, and by Lemma 11, sp is oriented from s to p. By
Lemma 11 applied at s and r, sr is also stable and it is directed from s to r. ◁

Suppose first there is a configuration Ci with i ≥ i0 such that pq is directed from p to q

in Ci and undirected in Ci+1. This implies that p is activated at step i. By Lemma 10 there
exists at least an undirected edge pr in Ci, and when orienting all undirected edges incident
to p in Ci as outgoing edges, one of R2, R3, R4 is violated. By the definition of q, this cannot
be R2 or R3. If R4 is violated, it implies that in Ci, there exists an undirected edge pr and
directed edges −→rs and −→sp. By Claim 13, s = q but this is impossible since −→pq is in Ci.

Then, at each step i ≥ i0, either qp is undirected or it is −→qp. If there is no step i ≥ i0
where q is activated, then q never has any outgoing edge, qp is always undirected and we
let i1 = i0. Otherwise, consider a step i1 − 1 where q is activated such that in Ci1 , qp is

DISC 2024

13:10 Self-Stabilising LE with Constant Memory

undirected. Then at step i1, all edges incident to p are either incoming or undirected. We
claim that if we activate p at step i1, it orients pq from p to q. Indeed by the definition of q,
rules R2 and R3 are satisfied when pq is oriented from p to q. By Claim 13, any triangle
violating R4 should contain q, but this is impossible since q has no outgoing edges in Ci1 . So,
by the fairness condition, there exists a configuration Ci containing −→pq, a contradiction. ◀

We now prove Theorem 7 using the structure of the boundary of P given by Lemma 2.
Informally, the proof has the following structure. We assume that it is possible that the
system does not stabilise and arrive at a contradiction. Out of the particle systems that
do not stabilise to a configuration that satisfies all rules and has a unique sink, we take
a system with the minimum number of particles. On the boundary of that system there
exists a particle p satisfying one of the cases of Lemma 2. For each orientation of the edges
incident to p we show that the edges incident to p are stable. Then we take a smaller system
containing exactly one less particle, p. We show that the execution in both systems for
particles that are not p is the same. Hence, if the system that contains p does not satisfy all
rules and does not have a unique sink, the same is true for the system that does not contain
p. Since we had assumed that the system containing p is the minimum size system that does
not stabilise to a valid configuration, a smaller system not stabilising is a contradiction.

Proof of Theorem 7. Let us suppose that there exists a fair execution S = C0, C1, . . . on
a particle configuration C = C0 that does not stabilise to a final directed configuration
containing a unique sink. Consider such an execution S with a support P of minimum size.
As defined above, consider a fair execution Si0 = Ci0 , Ci0+1, . . . containing only configurations
appearing infinitely often. By Lemma 2, we can assume that the boundary of P contains
either a pending particle, or a 60◦ particle, or two 120◦ particles that are connected by a
path of 180◦ particles on the boundary. In the following, we show that each of these cases
cannot occur. We first consider the case where P contains a pending particle.

▶ Lemma 14. If P contains a pending particle p (i.e., a particle with only one neighbouring
particle w), all edges are stable in Si0 and there is a unique sink in the final configuration.

Proof. By Lemma 12, the edge pw is stable. Suppose first that pw is directed from p to
w in Si0 . For each i ≥ i0, let C ′

i = Ci \ {p} and consider the sequence of configurations
S ′

i0
= C ′

i0
, C ′

i0+1, . . . , C ′
i, Observe that for each i ≥ i0, either Ci+1 = Ci or there exists

pi such that Ci+1 is obtained from Ci by activating pi and thus modifying the orientations
of edges incident to pi. Since −→pw is stable, by Lemma 11, for any i ≥ i0, pi ≠ p. Moreover,
for each i ≥ i0, the edges of C ′

i have the same orientation as in Ci. So, p′ ̸= p is activable in
C ′

i if and only if it is activable in Ci. Furthermore, the configuration obtained by activating
pi in C ′

i is precisely C ′
i+1 since the edges of C ′

i have the same orientation as in Ci. Hence,
S ′

i0
is a fair execution of Algorithm 1 on P \ {p}. By the minimality of the size of P, there

exists a step i1 ≥ i0 such that C ′
i1

is a final directed configuration that contains a unique
sink p′′. Since the edges incident to p are stable, Ci1 is a final directed configuration. By our
definition of i0, this implies that i1 = i0. Since p has an outgoing edge, −→pw, in Ci1 = Ci0 , p

is not a sink of Ci0 and p′′ is the unique sink in Ci0 .
Suppose now that −→wp is stable. Notice that in this case, p is a sink in Ci for each i ≥ i0.

Moreover, since −→wp is stable, by Lemma 11, w is never activated. Since the two common
neighbours of p and w are empty, by R3, p is the only outgoing neighbor of w in Ci for any
i ≥ i0. Consequently, w is a sink in Ci \ {p} for any i ≥ i0. For each i ≥ i0, let C ′

i = Ci \ {p}
and consider the sequence of configurations S ′

i0
= C ′

i0
, C ′

i0+1, . . . , C ′
i, . . . Observe that for each

i ≥ i0, either Ci+1 = Ci or there exists pi such that Ci+1 is obtained from Ci by activating
pi and thus modifying the orientations of edges incident to pi. Since p has only incoming

J. Chalopin, S. Das, and M. Kokkou 13:11

edges in Ci, pi ≠ p. Moreover, since −→wp is stable, pi ≠ w. Moreover, for each i ≥ i0, the
edges of C ′

i have the same orientation as in Ci. Consequently, p′ ̸= p is activable in C ′
i if

and only if it is activable in Ci. Furthermore, the configuration obtained by activating pi in
C ′

i is precisely C ′
i+1 since the edges of C ′

i have the same orientation as in Ci. Consequently,
S ′

i0
is a fair execution of Algorithm 1 on P \ {p}. By the minimality of the size of P, there

exists a step i1 ≥ i0 such that C ′
i1

is a final directed configuration that contains a unique
sink p′′ = w in C ′

i1
. Since −→wp is stable, Ci1 is a final directed configuration. By our definition

of i0, this implies that i1 = i0. Since any p′ ∈ Ci0 \ {p, w} is not a sink in C ′
i0

, and since −→wp

is in Ci0 , p is the unique sink in the valid configuration Ci0 . ◀

We now consider the case where the boundary of P contains a 60◦ particle p, and we let
q and r be the two neighbours of p on the boundary of P.

▶ Lemma 15. If P contains a 60◦ particle p, all edges are stable and there is a unique sink
in the final configuration.

Proof. By Lemma 12, pq and pr are stable. Consequently, pq and pr are always directed
in the same way all along Si0 and we can talk about the orientation of pq and pr in Si0 .
For each i ≥ i0, let C ′

i = Ci \ {p} and consider the sequence of configurations S ′
i0

=
C ′

i0
, C ′

i0+1, . . . , C ′
i, For each i ≥ i0, either Ci+1 = Ci or there exists pi such that Ci+1 is

obtained from Ci by activating pi and thus modifying the orientations of edges incident to
pi. Since all edges incident to p are stable in Si0 , we can assume pi ̸= p, for any i ≥ i0.

We distinguish three cases, depending on the orientation of pq and pr in Si0 .

▷ Case 1. The edges incident to p are −→pq and −→pr.

Proof. For each i ≥ i0, the edges of C ′
i have the same orientation as in Ci. Hence, a particle

p′ ̸= p is activable in C ′
i if and only if it is activable in Ci. The configuration obtained by

activating pi in C ′
i is precisely C ′

i+1 since the edges of C ′
i have the same orientation as in

Ci. So, S ′
i0

is a fair execution of Algorithm 1 on P \ {p}. By the minimality of the size of
P, there exists a step i1 ≥ i0 such that C ′

i1
is a final directed configuration with a unique

sink p′′. Since the edges incident to p are stable, Ci1 is a final directed configuration. By our
definition of i0, this implies that i1 = i0. Since p has only outgoing edges in Ci1 = Ci0 , p is
not a sink of Ci0 and p′′ is the unique sink in Ci0 . ◁

▷ Case 2. The edges incident to p are −→qp and −→pr.

Proof. Since −→qp is stable, qr is also stable by Lemma 11. By R4, qr is directed from q to r in
Si0 . Notice that since q and p are incident to outgoing stable edges, from Lemma 11, p and
q are incident only to stable edges and are never activable. The edges of C ′

i≥i0
\ {p} have

the same orientation as in Ci≥i0 . Consequently, for any p′ /∈ {p, q}, p′ is activable in C ′
i if

and only if it is activable in Ci. Let us consider q. In Ci, −→qp is stable and directed and in C ′
i,

q has an incoming edge from the respective empty node. Furthermore, q is incident to an
incoming edge from the empty common neighbour of p and q. Hence, R3 is satisfied for q in
C ′

i from Observation 8, and the remaining rules are satisfied for q in C ′
i from Observation

9. Therefore, q is never activable in C ′
i≥i0

and thus a particle p′ ̸= p is activable in C ′
i≥i0

if
and only if it is activable in Ci≥i0 . So, S ′

i0
is a fair execution of Algorithm 1 on P \ {p}. By

the minimality of the size of P, there exists a step i1 ≥ i0 such that C ′
i1

is a final directed
configuration that contains a unique sink p′′. Note that p′′ ≠ q since −→qr ∈ C ′

i1
. Since the

edges incident to p are stable and since q is not activable, Ci1 is a final directed configuration.
By our definition of i0, this implies that i1 = i0. Since p has an outgoing edge in Ci1 = Ci0 ,
p is not a sink of Ci0 and p′′ is therefore the unique sink in Ci0 . ◁

DISC 2024

13:12 Self-Stabilising LE with Constant Memory

▷ Case 3. The edges incident to p are −→qp and −→rp.

Proof. Since −→qp and −→rp are stable, from Lemma 11, q and r are never activable and all edges
incident to q and r are stable. Hence qr is stable and we assume without loss of generality
that qr is directed as −→qr in Ci≥i0 . Notice that p is a sink in C and that from R3 all edges
incident to r except −→rp are incoming to r in Ci. Edges in C ′

i \ {p} have the same orientation
as in Ci. Using the arguments from Case 2, R1–R4 are satisfied for q and for r in C ′

i. So, q

and r are never activable in C ′
i. For the reasons in Case 2, S ′

i0
is a fair execution of Algorithm

1 on P \ {p}. Since P is of minimum size, there exists a step i1 ≥ i0 such that C ′
i1

is a final
directed configuration that contains a unique sink p′′. Since the only outgoing edge of r in
Ci0 is −→rp, r = p′′ is the unique sink of C ′

i1
. Furthermore, since the edges incident to p, q, r are

stable, Ci1 is a final directed configuration. By our definition of i0, this implies that i1 = i0.
Since p has only incoming edges in Ci1 = Ci0 , p is a sink in Ci0 and r is not a sink in Ci0

due to −→rp, so p is the unique sink in Ci0 . ◁

Therefore, for any orientation of the edges incident to p in Si0 , Ci0 is a directed final
configuration containing a unique sink. ◀

Now assume there exist two 120◦ particles connected by a path of 180◦ particles on the
boundary of P.

▶ Lemma 16. If P contains two 120◦ particle p, p∗ connected by a path of 180◦ particles on
the boundary, all edges are stable and there is a unique sink in the final configuration.

Proof. Let q and r be the neighbours of p on the boundary and let s be the common
neighbour of p, q and r. By Lemma 12, we know that ps is stable in Si0 . We split the proof
of the lemma in different cases, depending on the orientation of ps in Ci≥i0 . Due to space
constraints, we omit some details, which can be found in [11], in the proofs of Cases 1.1 – 2.3.

▷ Case 1. The edge between p and s is −→ps.

For each i ≥ i0, let C ′
i = Ci \ {p} and consider the sequence of configurations S ′

i0
=

C ′
i0

, C ′
i0+1, . . . , C ′

i, . . . For each i ≥ i0, either Ci+1 = Ci or there exists pi such that Ci+1 is
obtained from Ci by activating pi and thus modifying the orientations of edges incident to pi.
From Lemma 11, since −→ps is stable, p is never activable and the edges pq and pr are stable.
Consequently, pi ̸= p for any i ≥ i0. The orientations of pq and pr lead to the following cases.

▷ Case 1.1. Particle p is incident to −→pq, −→ps and −→pr.

Proof. The proof for this case follows the same argumentation as Case 1 of Lemma 15. ◁

▷ Case 1.2. Particle p is incident to −→pq, −→ps and −→rp.

Proof. Since −→rp is stable, from Lemma 11, r is not activable in C and rs is stable. From R4,
−→rs is in Ci≥i0 . The edges of C ′

i≥i0
\ {p} have the same orientation as in Ci≥i0 . So for any

p′ /∈ {p, r}, p′ is activable in C ′
i if and only if p′ is activable in Ci. Let us consider r. From

Observation 8 and the incoming edge from the empty common neighbour of p and r to r, R3
is satisfied for r in C ′

i. R1, R2 and R4 are satisfied for r in C ′
i from Observation 9. Hence, r

is never activable in C ′
i. So, S ′

i0
is a fair execution of Algorithm 1 on P \ {p}. The unique

sink in C ′
i0

is p′′ ̸= r, since r has an outgoing edge −→rs in C ′
i. Since p has outgoing edges in

Ci0 , p is not a sink of Ci0 and p′′ is the unique sink in Ci0 . ◁

▷ Case 1.3. Particle p is incident to −→qp, −→ps and −→rp.

J. Chalopin, S. Das, and M. Kokkou 13:13

Proof. Since −→qp and −→rp are stable, from Lemma 11, r and q are not activable in C and the
edges rs and qs are stable. By R4, −→rs and −→qs belong to Ci≥i0 . The edges of C ′

i≥i0
\ {p} have

the same orientation as in Ci≥i0 . Consequently, for any p′ /∈ {p, q, r}, p′ is activable in C ′
i if

and only if p′ is activable in Ci. Let us consider q and r. Using the same arguments as in
Case 1.2, R1–R4 are satisfied for q and for r in C ′

i. Consequently, q and r are never activable
in C ′

i. Therefore, C ′
i satisfies all rules and S ′

i0
is a fair execution of Algorithm 1 on P \ {p}.

Since q and r each have an outgoing edge to s in C ′
i, p′′ /∈ {q, r}. Since p has outgoing edges

in Ci0 , p is not a sink of Ci0 and p′′ is therefore the unique sink in Ci0 . ◁

We now consider the case where the edge between p and s is −→sp. Observe that by
Lemma 11, sq and sr are stable edges. Note that by Lemma 12, pq is stable if and only if pr

is stable. We distinguish two cases depending on whether these two edges are stable.

▷ Case 2. The edge between p and s is −→sp, and the edges pq and pr are stable.

The possible orientations of the stable edges sq and sr in Si0 give the following subcases.

▷ Case 2.1. Particle s is incident to −→qs and −→rs.

Proof. By Lemma 11, r and q are never activable and rp and qp are stable. By R4, −→qp and
−→rp are in Ci≥i0 . The edges of C ′

i≥i0
\ {p} have the same orientation as in Ci≥i0 and thus for

any p′ /∈ {q, r, s}, p′ is activable in C ′
i if and only if it is activable in Ci. Let us consider

q, r, s. Using the same arguments as in Case 1.2, R1–R4 are satisfied for q and r in C \ {p}.
Since sp is between two incoming edges, from Observation 8, R3 is satisfied for s in C ′

i. R1,
R2 and R4 are satisfied for s in C ′

i from Observation 9. So, q, r, s are never activable in C ′
i.

Furthermore, the configuration obtained by activating pi ̸= q, s, r in C ′
i is precisely C ′

i+1
since the edges of C ′

i have the same orientation as in Ci. Hence, S ′
i0

is a fair execution of
Algorithm 1 on P \ {p}. By R3, the only outgoing edge of s in Ci0 is −→sp, so p′′ = s is the
unique sink of C ′

i0
. Since s has an outgoing edge −→sp in Ci0 , s is not a sink of Ci0 and p is the

unique sink in Ci0 . ◁

Observe that if s is incident to −→qs (resp., −→rs), then since qp (resp., rp) is stable, by R4, p

is incident to −→qp (resp., −→rp). When among qs and rs, there is one outgoing and one incoming
edge, we consider two cases depending on whether p is a sink in Si0 .

▷ Case 2.2. Particle s is incident to −→qs and −→sr and p is incident to −→rp.

Proof. Since −→qs and −→sp are stable, necessarily −→qp is stable and p is a sink in Ci≥i0 . So, p is
never activable in Si0 and from Lemma 11, q, r, s are never activable in Si0 either. The edges
of C ′

i≥i0
\ {p} have the same orientation as in Ci≥i0 and thus any particle p′ /∈ {p, q, r, s}

is activable in C ′
i if and only if it is activable in Ci. Let us consider q, r, s. Since −→sp is

between an incoming and an outgoing edge, by Observation 8, R3 is satisfied for s in C ′
i.

The remaining rules are satisfied for s in C ′
i from Observation 9. The arguments for q are the

same as in Case 2.1. Due to the incoming edge from the common empty neighbour of r and p

and from Observation 8, R3 is satisfied for r in C ′
i. The remaining rules are satisfied for r in

C ′
i from Observation 9. So, q, r, s are never activable in C ′

i≥i0
. Hence, all rules are satisfied

in C ′
i and S ′

i0
is a fair execution of Algorithm 1 on P \ {p}. By R3, the only outgoing edge

of r in Ci is −→rp, so p′′ = r is the unique sink of C ′
i. Since p does not have outgoing edges in

Ci1 = Ci0 , r is not a sink of Ci0 due to −→rp and p is the unique sink in Ci0 . ◁

▷ Case 2.3. Particle s is incident to −→qs and −→sr and p is incident to −→pr.

DISC 2024

13:14 Self-Stabilising LE with Constant Memory

Proof. As noted before the stable edge qp is oriented as −→qp by R4. By Lemma 11, p, q and s

are never activable in Si0 and the edges pr and sr are stable. The edges of C ′
i≥i0

\ {p} have
the same orientation as in Ci≥i0 . So, for any p′ /∈ {p, q, s}, p′ is activable in C ′

i if and only if
it is activable in Ci. Let us consider q and s. Using the same arguments for both q and s as
in Case 2.2, we obtain that R1–R4 are always satisfied at q and s, and that they are never
activable in C ′

i≥i0
. Hence, S ′

i0
is a fair execution of Algorithm 1 on P \ {p}. The unique sink

of C ′
i0

, p′′ /∈ {q, s}, since q and s have outgoing edges in C \ {p}. Since the edges incident to
p are stable, Ci0 is a final directed configuration. Since p is incident to −→pr in Ci0 , p is not a
sink in Ci, hence p′′ is the unique sink in Ci0 . ◁

▷ Case 2.4. Particle s is incident to −→sq and −→sr.

Proof. Since pq, pr, ps are stable and since ps is directed as −→sp in Ci≥i0 , p is incident to at
most one outgoing edge. Without loss of generality, we can thus assume that −→qp is in Ci≥i0 .
Observe that by R3, −→qp is the only outgoing edge at q and no neighbour of q is activable in
Ci≥i0 by Lemma 11. Note also that s has three outgoing edges −→sq, −→sp, −→sr in Ci and since s is
not activable in Ci, by R2, all other edges incident to s are incoming. Again, this implies
that all neighbours of s different from r are not activable in Ci≥i0 . For each i ≥ i0, let C∗

i

be the configuration obtained from Ci by replacing −→sq by −→qs.
For any particle p′ /∈ {s, q}, R2 and R3 are satisfied at p′ in C∗

i since they are satisfied at
p′ in Ci by Lemma 10 and the orientation of the edges incident to p′ in C∗

i is the same as in
Ci. Since q only has one outgoing edge in Ci, R2 and R3 are satisfied at q in C∗

i . Since s

has three outgoing edges −→sq, −→sp, −→sr in Ci and since all other edges incident to s are incoming,
R2 directly holds at s in C∗

i and R3 holds at s in C∗
i since p, q and r are reached through

consecutive ports of s by definition. If R4 is not satisfied at some particle p′ in C∗
i , there is a

directed triangle made of the edges −→qs,
−→
sp′,

−→
p′q in C∗

i . Since the only out-neighbours of s in
C∗

i are p and r, necessarily, p′ = p, but this is impossible since pq is oriented from q to p. So,
R2, R3, R4 are always satisfied in C∗

i≥i0
. Since all edges incident to q and s are stable in Ci,

R1 is also satisfied at s and q in Ci and in C∗
i . Hence, q and s are never activable in C∗

i . For
any p′ /∈ {q, s}, p′ is activable in C∗

i if and only if it is activable in Ci. Therefore, S∗
i is a

fair execution of Algorithm 1 on P. Note that when considering C∗
i≥i0

, we are in Case 2.2
or 2.3. So, we know that C∗

i0
is a final directed configuration that contains a unique sink p′′

different from q and s. Since a particle p′ is activable in Ci0 if and only if it is activable in
C∗

i0
, Ci0 is also a final directed configuration, and p′′ is the unique sink of Ci0 . ◁

Finally, we consider the case where the edges pq and pr are not stable. We remind the
reader that from Lemma 12, pq and pr are either both stable or both unstable.

▷ Case 3. The edge between p and s is −→sp and the edges pq and pr are not stable.

Proof. We will prove that this case is not possible.

■
. . .

q s s2 s3 sk sk+1

rkrk−1r2rp

(a)

■
. . .

q s s2 s3 sk sk+1

rkrk−1r2rp

(b)

Figure 2 Left: The setting in Case 3, that is, a 120◦ particle p (square) with {pq, pr} unstable
and s incident to the directed edges sq, sp and sr. Right: The final orientation of edges in Case 3.

J. Chalopin, S. Das, and M. Kokkou 13:15

Without loss of generality, assume that r is on the path connecting p to p∗ via 180◦

particles. Note that it is possible that p∗ = r. Let (r0 = p, r1 = r, r2, . . . , rk = p∗) be the
path on the boundary from p to p∗ whose inner particles are all 180◦ particles (if r = p∗,
then k = 1). Let sj+1 be the common neighbour of any pair of consecutive particles rj and
rj+1 with 0 ≤ j ≤ k − 1, and observe that s1 = s. Let s0 = q and let sk+1 be the neighbour
of rk on the boundary that is distinct from rk−1. This setting is also shown in Figure 2a.

Since s is incident to a stable edge, −→sp, from Lemma 11 all edges incident to s are stable.
By Lemma 11 applied at q and r and since pq and pr are not stable, necessarily −→sq and −→sr

are stable in Si0 . Since in this setting s has three outgoing edges, sq, sp and sr, from R2 ss2
is incoming to s. So, s2 is incident to the stable outgoing edge −→s2s. From Lemma 11, s2 is
not activable and all edges incident to s2 are stable and directed. From R4, s2r is oriented
from s2 to r. If r = p∗ (i.e., if k = 1), r is incident to only one edge that is not stable, which
is impossible from Lemma 12. Hence, k ≥ 2 and rr2 is not stable. As s2 is not activable,
from Lemma 11, s2r2 is stable. If s2r2 is directed from r2 to s2, r2 has a stable outgoing
edge and from Lemma 11, rr2 is stable, which is a contradiction for r. So s2r2 is directed
from s2 to r2.

Generalising, for i ≥ 1 each particle si is incident to the stable edges −−−→sisi−1, −−−→siri−1 and
−−→siri and the edge ri−1ri is not stable. Then, for i = k the edge rk−1rk should be the only
unstable edge incident to rk which is impossible from Lemma 12, a contradiction. ◁

This ends the proof of Lemma 16. ◀

The proof of Theorem 7 follows from Lemmas 2, 14, 15 and 16. ◀

6 Further Remarks

We showed that our algorithm works assuming that the scheduler is sequential and Gouda fair.
The execution presented in Figure 3 shows that if we consider a sequential unfair scheduler
(i.e., we only ask that the scheduler activates an activable particle at each step), there exist
periodic executions that never reach a valid configuration. It would thus be interesting to
understand if we can design a self-stabilising leader election algorithm for simply connected
configurations that is correct even with an unfair scheduler. In the case where this is possible,
we believe that this would lead to a much more complex algorithm than our algorithm.

Figure 3 A periodic unfair execution of our algorithm. At each step, the red vertex is activated,
and it modifies the status of its incident red edges (i.e., the ones that are not incoming).

Our algorithm heavily uses the geometry of the system and relies on the support being
simply connected. For particles that agree on the orientation of the grid, the impossibility
results of Dolev et al. [20] no longer hold. One can thus wonder if it is possible to design a silent
self-stabilising LE algorithm using constant memory for arbitrary connected configurations if
particles agree on the orientation of the grid. Again, the geometry of the grid should be used
to overcome the impossibility results of [20], but it seems very challenging.

DISC 2024

13:16 Self-Stabilising LE with Constant Memory

References
1 Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational

power of population protocols. Distributed Comput., 20(4):279–304, 2007. doi:10.1007/
s00446-007-0040-2.

2 Baruch Awerbuch and Rafail Ostrovsky. Memory-efficient and self-stabilizing network reset.
In PODC 1994, pages 254–263. ACM, 1994. doi:10.1145/197917.198104.

3 Rida A. Bazzi and Joseph L. Briones. Stationary and deterministic leader election in self-
organizing particle systems. In SSS 2019, volume 11914 of Lecture Notes in Comput. Sci.,
pages 22–37. Springer, 2019. doi:10.1007/978-3-030-34992-9_3.

4 Lélia Blin, Laurent Feuilloley, and Gabriel Le Bouder. Optimal space lower bound for
deterministic self-stabilizing leader election algorithms. Discret. Math. Theor. Comput. Sci.,
25, 2023. doi:10.46298/dmtcs.9335.

5 Lélia Blin, Pierre Fraigniaud, and Boaz Patt-Shamir. On proof-labeling schemes versus silent
self-stabilizing algorithms. In SSS 2014, volume 8756 of Lecture Notes in Comput. Sci., pages
18–32. Springer, 2014. doi:10.1007/978-3-319-11764-5_2.

6 Lélia Blin and Sébastien Tixeuil. Compact deterministic self-stabilizing leader election on a
ring: the exponential advantage of being talkative. Distributed Comput., 31(2):139–166, 2018.
doi:10.1007/s00446-017-0294-2.

7 Paolo Boldi and Sebastiano Vigna. Universal dynamic synchronous self–stabilization. Dis-
tributed Comput., 15:137–153, 2002. doi:10.1007/s004460100062.

8 Joseph L. Briones, Tishya Chhabra, Joshua J. Daymude, and Andréa W. Richa. Invited paper:
Asynchronous deterministic leader election in three-dimensional programmable matter. In
ICDCN 2023, pages 38–47. ACM, 2023. doi:10.1145/3571306.3571389.

9 Shukai Cai, Taisuke Izumi, and Koichi Wada. How to prove impossibility under global fairness:
On space complexity of self-stabilizing leader election on a population protocol model. Theory
Comput. Syst., 50(3):433–445, 2012. doi:10.1007/s00224-011-9313-z.

10 Jérémie Chalopin, Shantanu Das, and Maria Kokkou. Deterministic leader election for station-
ary programmable matter with common direction. In SIROCCO 2024, volume 14662 of Lecture
Notes in Comput. Sci., pages 174–191. Springer, 2024. doi:10.1007/978-3-031-60603-8_10.

11 Jérémie Chalopin, Shantanu Das, and Maria Kokkou. Deterministic self-stabilising leader
election for programmable matter with constant memory. arXiv preprint, 2024. doi:10.48550/
arXiv.2408.08775.

12 Ajoy Kumar Datta, Lawrence L. Larmore, and Priyanka Vemula. Self-stabilizing leader election
in optimal space under an arbitrary scheduler. Theor. Comput. Sci., 412(40):5541–5561, 2011.
doi:10.1016/j.tcs.2010.05.001.

13 Joshua J. Daymude, Andréa W. Richa, and Christian Scheideler. The canonical Amoebot
model: Algorithms and concurrency control. Distributed Comput., 36(2):159–192, 2023.
doi:10.1007/s00446-023-00443-3.

14 Joshua J. Daymude, Andréa W. Richa, and Jamison W. Weber. Bio-inspired energy distribution
for programmable matter. In ICDCN 2021, pages 86–95. ACM, 2021. doi:10.1145/3427796.
3427835.

15 Zahra Derakhshandeh, Shlomi Dolev, Robert Gmyr, Andréa W Richa, Christian Scheideler,
and Thim Strothmann. Amoebot – A new model for programmable matter. In SPAA 2014,
pages 220–222. ACM, 2014. doi:10.1145/2612669.2612712.

16 Zahra Derakhshandeh, Robert Gmyr, Thim Strothmann, Rida A. Bazzi, Andréa W. Richa, and
Christian Scheideler. Leader election and shape formation with self-organizing programmable
matter. In DNA 2015, volume 9211 of Lecture Notes in Comput. Sci., pages 117–132. Springer,
2015. doi:10.1007/978-3-319-21999-8_8.

17 Giuseppe Antonio Di Luna, Paola Flocchini, Nicola Santoro, Giovanni Viglietta, and Yukiko
Yamauchi. Shape formation by programmable particles. Distributed Comput., 33(1):69–101,
2020. doi:10.1007/s00446-019-00350-6.

https://doi.org/10.1007/s00446-007-0040-2
https://doi.org/10.1007/s00446-007-0040-2
https://doi.org/10.1145/197917.198104
https://doi.org/10.1007/978-3-030-34992-9_3
https://doi.org/10.46298/dmtcs.9335
https://doi.org/10.1007/978-3-319-11764-5_2
https://doi.org/10.1007/s00446-017-0294-2
https://doi.org/10.1007/s004460100062
https://doi.org/10.1145/3571306.3571389
https://doi.org/10.1007/s00224-011-9313-z
https://doi.org/10.1007/978-3-031-60603-8_10
https://doi.org/10.48550/arXiv.2408.08775
https://doi.org/10.48550/arXiv.2408.08775
https://doi.org/10.1016/j.tcs.2010.05.001
https://doi.org/10.1007/s00446-023-00443-3
https://doi.org/10.1145/3427796.3427835
https://doi.org/10.1145/3427796.3427835
https://doi.org/10.1145/2612669.2612712
https://doi.org/10.1007/978-3-319-21999-8_8
https://doi.org/10.1007/s00446-019-00350-6

J. Chalopin, S. Das, and M. Kokkou 13:17

18 Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commun. ACM,
17(11):643–644, 1974. doi:10.1145/361179.361202.

19 Shlomi Dolev. Self-Stabilization. MIT Press, 2000. doi:10.7551/mitpress/6156.001.0001.
20 Shlomi Dolev, Mohamed G. Gouda, and Marco Schneider. Memory requirements for silent

stabilization. Acta Inf., 36(6):447–462, 1999. doi:10.1007/s002360050180.
21 Swan Dubois and Sébastien Tixeuil. A taxonomy of daemons in self-stabilization. arXiv

preprint, 2011. doi:10.48550/arXiv.1110.0334.
22 Fabien Dufoulon, Shay Kutten, and William K. Moses Jr. Efficient deterministic leader election

for programmable matter. In PODC 2021, pages 103–113. ACM, 2021. doi:10.1145/3465084.
3467900.

23 Yuval Emek, Shay Kutten, Ron Lavi, and William K Moses Jr. Deterministic leader election
in programmable matter. In ICALP 2019, volume 132 of LIPIcs Leibniz Int. Proc. Inform.,
pages 140:1–140:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:10.4230/
LIPIcs.ICALP.2019.140.

24 Sándor P. Fekete, Robert Gmyr, Sabrina Hugo, Phillip Keldenich, Christian Scheffer, and
Arne Schmidt. Cadbots: Algorithmic aspects of manipulating programmable matter with
finite automata. Algorithmica, 83(1):387–412, 2021. doi:10.1007/s00453-020-00761-z.

25 Nicolas Gastineau, Wahabou Abdou, Nader Mbarek, and Olivier Togni. Distributed leader
election and computation of local identifiers for programmable matter. In ALGOSENSORS
2018, volume 11410 of Lecture Notes in Comput. Sci., pages 159–179. Springer, 2018. doi:
10.1007/978-3-030-14094-6_11.

26 Nicolas Gastineau, Wahabou Abdou, Nader Mbarek, and Olivier Togni. Leader election and
local identifiers for three-dimensional programmable matter. Concurr. Comput. Pract. Exp.,
34(7), 2022. doi:10.1002/cpe.6067.

27 Mohamed G. Gouda. The theory of weak stabilization. In WSS 2001, volume 2194 of Lecture
Notes in Comput. Sci., pages 114–123. Springer, 2001. doi:10.1007/3-540-45438-1_8.

28 Elliot Hawkes, Byoungkwon An, Nadia M. Benbernou, H. Tanaka, Sangbae Kim, Erik D.
Demaine, Daniela Rus, and Robert J. Wood. Programmable matter by folding. Proc. Natl.
Acad. Sci., 107(28):12441–12445, 2010. doi:10.1073/pnas.0914069107.

29 Gene Itkis and Leonid Levin. Fast and lean self-stabilizing asynchronous protocols. In FOCS
1994, pages 226–239. IEEE Computer Society, 1994. doi:10.1109/SFCS.1994.365691.

30 Gene Itkis, Chengdian Lin, and Janos Simon. Deterministic, constant space, self-stabilizing
leader election on uniform rings. In WDAG 1995, volume 972 of Lecture Notes in Comput.
Sci., pages 288–302. Springer, 1995. doi:10.1007/BFb0022154.

31 Amos Korman, Shay Kutten, and David Peleg. Proof labeling schemes. Distributed Comput.,
22(4):215–233, 2010. doi:10.1007/s00446-010-0095-3.

32 Gérard Le Lann. Distributed systems - towards a formal approach. In IFIP 1977, pages
155–160. North-Holland, 1977. URL: https://inria.hal.science/hal-03504338.

33 Tommaso Toffoli and Norman Margolus. Programmable matter: Concepts and realization.
Int. J. High Speed Comput., 5(2):155–170, 1993. doi:10.1016/0167-2789(91)90296-L.

34 John von Neumann. Theory of Self-Reproducing Automata. University of Illinois Press, 1966.
URL: https://dl.acm.org/doi/book/10.5555/1102024.

35 Damien Woods, Ho-Lin Chen, Scott Goodfriend, Nadine Dabby, Erik Winfree, and Peng Yin.
Active self-assembly of algorithmic shapes and patterns in polylogarithmic time. In ITCS
2013, pages 353–354. ACM, 2013. doi:10.1145/2422436.2422476.

36 Masafumi Yamashita and Tiko Kameda. Computing on an anonymous network. In PODC
1988, pages 117–130. ACM, 1988. doi:10.1145/62546.62568.

DISC 2024

https://doi.org/10.1145/361179.361202
https://doi.org/10.7551/mitpress/6156.001.0001
https://doi.org/10.1007/s002360050180
https://doi.org/10.48550/arXiv.1110.0334
https://doi.org/10.1145/3465084.3467900
https://doi.org/10.1145/3465084.3467900
https://doi.org/10.4230/LIPIcs.ICALP.2019.140
https://doi.org/10.4230/LIPIcs.ICALP.2019.140
https://doi.org/10.1007/s00453-020-00761-z
https://doi.org/10.1007/978-3-030-14094-6_11
https://doi.org/10.1007/978-3-030-14094-6_11
https://doi.org/10.1002/cpe.6067
https://doi.org/10.1007/3-540-45438-1_8
https://doi.org/10.1073/pnas.0914069107
https://doi.org/10.1109/SFCS.1994.365691
https://doi.org/10.1007/BFb0022154
https://doi.org/10.1007/s00446-010-0095-3
https://inria.hal.science/hal-03504338
https://doi.org/10.1016/0167-2789(91)90296-L
https://dl.acm.org/doi/book/10.5555/1102024
https://doi.org/10.1145/2422436.2422476
https://doi.org/10.1145/62546.62568

	1 Introduction
	1.1 Our results
	1.2 Related Work

	2 Model
	3 A Proof Labelling Scheme for Leader Election
	4 A Self-Stabilising Algorithm for Leader Election
	5 Proof of Theorem 6 and Theorem 7
	6 Further Remarks

