
Efficient Signature-Free Validated Agreement
Pierre Civit
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Muhammad Ayaz Dzulfikar
NUS Singapore, Singapore

Seth Gilbert
NUS Singapore, Singapore

Rachid Guerraoui
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Jovan Komatovic
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Manuel Vidigueira
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Igor Zablotchi
Mysten Labs, Zürich, Switzerland

Abstract
Byzantine agreement enables n processes to agree on a common L-bit value, despite up to t > 0
arbitrary failures. A long line of work has been dedicated to improving the bit complexity of
Byzantine agreement in synchrony. This has culminated in COOL, an error-free (deterministically
secure against a computationally unbounded adversary) solution that achieves O(nL + n2 log n)
worst-case bit complexity (which is optimal for L ≥ n log n according to the Dolev-Reischuk lower
bound). COOL satisfies strong unanimity: if all correct processes propose the same value, only that
value can be decided. Whenever correct processes do not agree a priori (there is no unanimity),
they may decide a default value ⊥ from COOL.

Strong unanimity is, however, not sufficient for today’s state machine replication (SMR) and
blockchain protocols. These systems value progress and require a decided value to always be valid
(according to a predetermined predicate), excluding default decisions (such as ⊥) even in cases where
there is no unanimity a priori. Validated Byzantine agreement satisfies this property (called external
validity). Yet, the best error-free (or even signature-free) validated agreement solutions achieve only
O(n2L) bit complexity, a far cry from the Ω(nL + n2) Dolev-Reischuk lower bound. Is it possible to
bridge this complexity gap?

We answer the question affirmatively. Namely, we present two new synchronous algorithms for
validated Byzantine agreement, HashExt and ErrorFreeExt, with different trade-offs. Both
algorithms are (1) signature-free, (2) optimally resilient (tolerate up to t < n/3 failures), and (3)
early-stopping (terminate in O(f + 1) rounds, where f ≤ t denotes the actual number of failures).
On the one hand, HashExt uses only hashes and achieves O(nL + n3κ) bit complexity, which
is optimal for L ≥ n2κ (where κ is the size of a hash). On the other hand, ErrorFreeExt is
error-free, using no cryptography whatsoever, and achieves O

(
(nL + n2) log n

)
bit complexity, which

is near-optimal for any L.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Validated Byzantine agreement, Bit complexity, Round complexity

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.14

Related Version The full version of this paper, which includes detailed pseudocode and proofs, is
available online.
Full Version: https://arxiv.org/abs/2403.08374v3 [20]

© Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic,
Manuel Vidigueira, and Igor Zablotchi;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 14; pp. 14:1–14:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-2394-1201
https://orcid.org/0009-0002-7962-0677
https://orcid.org/0000-0003-3298-7412
https://orcid.org/0000-0002-4794-8902
https://orcid.org/0009-0006-9714-4079
https://orcid.org/0009-0008-5821-2571
https://orcid.org/0000-0002-9271-518X
https://doi.org/10.4230/LIPIcs.DISC.2024.14
https://arxiv.org/abs/2403.08374v3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Efficient Signature-Free Validated Agreement

Funding Pierre Civit: Supported in part by the FNS (#40B2-0_218648).
Seth Gilbert: Supported in part by the Singapore MOE Tier 2 grant MOE-T2EP20122-0014.
Manuel Vidigueira: Supported in part by the FNS (#200021_215383).

1 Introduction

Byzantine agreement [42] is arguably the most important problem of distributed computing.
It lies at the heart of state machine replication (SMR) [6, 16, 38, 1, 7, 37, 59, 48, 50] and
blockchain systems [46, 13, 4, 32, 3, 25, 24]. Additionally, Byzantine agreement plays an
essential role in cryptographic protocols such as multi-party computation [33, 11, 36, 10, 30,
17].

Byzantine agreement operates among n processes, out of which up to t > 0 can be
corrupted by the adversary. A corrupted process is said to be faulty and can behave
arbitrarily; a non-faulty process is said to be correct and follows the prescribed protocol. Let
Value denote the set of L-bit values. (As this paper is concerned with multi-valued Byzantine
agreement, we set no restrictions on the cardinality of the Value set.) During the agreement
protocol, each process proposes exactly one value, and eventually the protocol outputs a
single decision, as per the following interface:

request propose(v ∈ Value) : a process proposes an L-bit value v.
indication decide(v′ ∈ Value): a process decides an L-bit value v′.

Intuitively, Byzantine agreement ensures that all correct processes agree on the same admis-
sible value. (We formally define the properties of Byzantine agreement in the later part of
this section.)

Practical notion of value-admissibility. A critical question in designing practical Byzan-
tine agreement algorithms is which values should be considered admissible. Traditionally,
Byzantine agreement algorithms treated the proposals of correct processes as admissible.
Consequently, they have focused on properties like strong unanimity [5, 18, 52]: if every
correct process proposes the same value v, then v is the only possible decision. Notice that
in such cases, if even one correct process proposes a value different from the (same) value
held by all other n− 1 processes, it is perfectly legal to decide some default “null op” value
(e.g., ⊥); it is also perfectly legal to decide a value that is “nonsense” from the perspective
of the underlying application. Thus, unless all correct processes agree a priori, Byzantine
agreement algorithms with strong unanimity are not guaranteed to make any “real” progress.

Many modern applications may require a stronger requirement: even if correct processes
propose different values, the resulting decision should still adhere to some validity test,
ensuring that the decision is not “wasted”. Such a condition is usually called external
validity [14, 41, 45, 56, 5, 61, 31, 44, 55]: any decided value must be valid according to
a predetermined logical predicate. We underline that the external validity property is
prevalent in today’s blockchain systems. Indeed, as long as a produced block is valid (e.g., no
double-spending), the block can safely be added to the chain (irrespectively of who produced
it).1

1 Let us underline that real-world blockchain systems might be concerned with fairness, thus making the
question of “who produced a block” important. However, this work does not focus on fairness (or any
similar topic [34, 35]).

P. Civit et al. 14:3

Synchronous validated agreement. We study validated agreement, a variant of the Byzan-
tine agreement problem satisfying the external validity property, in the standard synchronous
setting. Formally, let valid : Value→ {true, false} be any predetermined predicate. Impor-
tantly, correct processes propose valid values. The following properties are guaranteed by
validated agreement:

Agreement: No two correct processes decide different values.
Integrity: No correct process decides more than once.
Termination: All correct processes eventually decide.
Strong unanimity: If all correct processes propose the same value v, then no correct
process decides any value v′ ̸= v.
External validity: If a correct process decides a value v, then valid(v) = true.

We underline that validated agreement algorithms usually do not satisfy strong unanimity
(but only external validity). Additionally, we emphasize that obtaining an agreement
algorithm A⋆ that satisfies both strong unanimity and external validity is straightforward
given (1) an agreement algorithm A1 satisfying only strong unanimity, and (2) an agreement
algorithm A2 satisfying only external validity. Indeed, to obtain A⋆, processes run A1 and
A2 in parallel. Then, processes decide (1) the value of A1 if that value is valid, or (2) the
value of A2 otherwise.

Complexity of synchronous validated agreement. There exist two dominant worst-case
complexity metrics when analyzing any synchronous validated agreement algorithm: (1) the
bit complexity, the total number of bits correct processes send, and (2) the round complexity,
the number of synchronous rounds it takes for all correct processes to decide (and halt). The
lower bound on the bit complexity of validated agreement is Ω(nL + n2): (1) the “nL” term
comes from the fact that each correct process needs to receive the decided value, and (2) the
“n2” term comes from the seminal Dolev-Reischuk bound [27] stating that even agreeing on a
single bit requires Ω(n2) exchanged bits. We emphasize that the Ω(nL + n2) lower bound
holds even in failure-free executions in the signature-free world (with signatures, the bound
does not hold [56]). The lower bound on the round complexity is Ω(f + 1) [28], where f ≤ t

denotes the actual number of failures. If an algorithm achieves O(f + 1) round complexity,
it is said that the algorithm is early-stopping.2

State-of-the-art. The most efficient known validated agreement algorithm is Ada-Dare [19].
Ada-Dare achieves O(nL + n2κ) bit complexity (optimal for L > nκ), where κ denotes a
security parameter. However, Ada-Dare internally utilizes threshold signatures [54]. (We
emphasize that if t < n/3, some partially synchronous authenticated algorithms [60, 15]
can trivially be adapted to achieve O(nL + n2κ) bit complexity in synchrony; Ada-Dare
tolerates up to t < n/2 failures.) Perhaps surprisingly, the best signature-free validated
agreement algorithms [43, 12, 22, 18] still achieve only O(n2L) bit complexity, a far cry from
the Ω(nL + n2) lower bound.

The fact that no efficient signature-free validated agreement is known becomes even more
surprising when considering that optimal signature-free algorithms exist for the “traditional”
Byzantine agreement problem. COOL [18] is a Byzantine agreement algorithm satisfying
(only) strong unanimity while exchanging O(nL+n2 log n) bits. Although it was not the goal
of the COOL algorithm, COOL can trivially achieve early-stopping (by internally utilizing
an early-stopping binary agreement such as [43]). In addition, COOL is optimally resilient

2 We consider only asymptotic early-stopping (as in [43]) instead of strict early stopping (as in [28]) that
requires termination in exactly f + 2 rounds.

DISC 2024

14:4 Efficient Signature-Free Validated Agreement

(tolerates up to t < n/3 failures). Importantly, COOL uses no cryptography whatsoever:
we say that COOL is error-free as it is deterministically secure against a computationally
unbounded adversary.

Is there a fundamental complexity gap between external validity and strong unanimity
in the signature-free world? Can signature-free validated agreement be solved efficiently in
synchrony? These are the questions we study in this paper.

1.1 Contributions
In this paper, we present the first validated agreement algorithms achieving o(n2L) bit
complexity without signatures:

First, we introduce HashExt, a hash-based algorithm that exchanges O(nL + n3κ) bits
(optimal for L ≥ n2κ), where κ denotes the size of a hash.
Second, we provide ErrorFreeExt, an error-free (i.e., cryptography-free) solution that
achieves O

(
(nL + n2) log n

)
bit complexity and is thus nearly-optimal.

Importantly, both HashExt and ErrorFreeExt are (1) optimally resilient (tolerate up
to t < n/3 failures), and (2) early-stopping (terminate in O(f + 1) synchronous rounds). A
comparison of our new algorithms with the state-of-the-art can be found in Table 1.

Table 1 Performance of deterministic synchronous agreement algorithms with L-bit values and
κ-bit security parameter. S stands for “strong unanimity”, E stands for “external validity”, and IC
stands for “interactive consistency” (where processes agree on the proposals of all processes). (There
exists a trivial reduction from IC to S + E, where each correct process decides the most represented
valid value in the decided vector. Hence, we write that IC implies S + E.) All considered algorithms
are early-stopping, except for Ada-Dareic and Ada-Daresu (whose goal was not early-stopping).

Protocol Validity Bit complexity Resilience Cryptography
COOL [18, 43] S O(nL + n2 log n) n > 3t None
Parallel COOL

[18, 43]
IC → (S +

E)
O(n2L + n3 log n) n > 3t None

Ada-Dareic [19] IC → (S +
E)

O(n2L + n2κ) n > 2t Threshold Sign.

Ada-Daresu [19] S + E O(nL + n2κ) n > 2t Threshold Sign.
HashExt S + E O(nL + n3κ) n > 3t Hash

ErrorFreeExt S + E O
(
(nL + n2) log n

)
n > 3t None

Lower
bound [27, 21]

Any Ω(nL + n2) t ∈ Ω(n) Any

1.2 Overview & Technical Challenges
Why is efficient validated agreement hard? To solve the validated agreement problem (i.e.,
to satisfy external validity), a decided value must be valid. Therefore, a validated agreement
algorithm needs to ensure that it is operating on (or converging to) a valid value. If the
value (in its entirety) is attached to every message, satisfying external validity is (relatively)
simple: each message can be individually validated and invalid messages can be ignored.
Unfortunately, attaching an L-bit value to each message is inherently expensive, yielding a
sub-optimal bit complexity of Ω(n2L).

To avoid attaching an L-bit value to each message, the most efficient solutions to validated
agreement (designed for arbitrary-sized values) involve coding techniques, where an L-bit value
is split into n different shares of O(L

n + log n) size. The goal is to (somehow) reach agreement
on a valid value using O(n2) messages of O(L

n + log n) bits, for a total of O(nL + n2 log n)
exchanged bits. However, this “coding-based” design introduces a new challenge. How can a

P. Civit et al. 14:5

process that only holds one share (or constantly many shares) know that the corresponding
value is valid? For example, to check if a split value v is valid, correct processes might
attempt to reconstruct it, expending O(nL + n2 log n) bits in the process (as reconstruction
is expensive). Since there may be (in the worst case) up to t ∈ Ω(n) invalid values (from
as many faulty processes), this reconstruction process might have to be repeated many
times before a valid value is found, resulting in (say) sub-optimal O(n2L + n3 log n) total
communication.

Overview of HashExt. To overview HashExt’s design, we first revisit how efficient
signature-based validated agreement is solved (see, e.g., [19]). In the signature-based paradigm,
efficient validated agreement algorithms adopt the following approach: (1) First, each process
disseminates its value (using coding techniques) and obtains a proof of retriveability (PoR).
A PoR is a cryptographic object containing a digest (of a value) and proving that (i) the
pre-image of the digest can be retrieved by all correct processes, and (ii) the pre-image
of the digest is valid. (2) Second, processes agree on a single PoR. (3) Third, processes
retrieve a value corresponding to the agreed-upon PoR. Importantly, each PoR must be
“self-certifying”: once a correct process obtains an alleged PoR, the process must be able to
determine if the PoR is valid to be sure that if this PoR gets decided in the second step, a
valid value can be retrieved. That is why PoRs are usually implemented using signatures: if
a PoR contains a signature-based certificate, processes can be confident in its validity. Due to
this “self-certifying” nature of PoRs, it seems challenging to adapt them to the signature-free
world.

To design a hash-based validated agreement algorithm HashExt, we (roughly) follow
the aforementioned three-step approach with one fundamental difference: HashExt utilizes
implicit (“non-self-certyfing”) PoRs. Given any observed digest d, a correct process executing
HashExt can determine if (1) the pre-image v of digest d can be retrieved, and (2) v is
valid. There is no proof that the valid pre-image can be retrieved – only the protocol design
ensures this guarantee.

Overview of ErrorFreeExt. To implement ErrorFreeExt, our error-free (cryptography-
free) near-optimal solution, we rely on a recursive structure – carefully adapting to long values
the recursive design proposed by [12, 22, 43, 51] that is only concerned with constant-sized
values. At each recursive iteration with n processes, processes are statically partitioned into
two halves that run the algorithm among n/2 processes. Moreover, each recursive iteration
exhibits “additional work” through the graded consensus [9, 2] primitive. Intuitively, the
graded consensus primitive reconciles decisions made by two distinct halves to ensure that all
processes agree on a unique valid value. Due to the recursive nature of ErrorFreeExt, its
bit complexity depends on the complexity of graded consensus. To obtain ErrorFreeExt’s
near-optimal O

(
(nL+n2) log n

)
bit complexity, we observe that a graded consensus algorithm

with O(nL + n2 log n) bits can be derived from the “reducing” technique introduced by the
previously mentioned COOL [18] protocol.3

Roadmap. We define the system model and introduce some preliminaries in §2. We present
HashExt in §3, whereas ErrorFreeExt is introduced in §4. Finally, we conclude in §5.
Omitted pseudocode, detailed related work and proofs are relegated to the full version of the
paper.

3 A similar observation has recently been made for (balanced) synchronous gradecast, a sender-oriented
counterpart to graded consensus [8].

DISC 2024

14:6 Efficient Signature-Free Validated Agreement

2 System Model & Preliminaries

2.1 System Model
Processes. We consider a static set Π = {p1, p2, ..., pn} of n processes, where each process
acts as a deterministic state machine. Our HashExt (resp., ErrorFreeExt) algorithm
implements validated agreement against a computationally bounded (resp., unbounded)
adversary that can corrupt up to t < n/3 processes at any time during an execution. (We
underline that no signature-free agreement algorithm can tolerate n/3 or more failures [40],
disregarding the restricted-resource model [29] that allows for a higher corruption threshold.)
A corrupted process is said to be faulty; a non-faulty process is said to be correct. We denote
by f ≤ t the actual number of faulty processes; we emphasize that f is not known.

Stopping. Each correct process can invoke a special stop request while executing any
protocol. Once a correct process stops executing a protocol, it ceases taking any steps (e.g.,
sending and receiving messages).

Communication network. Processes communicate by exchanging messages over an authen-
ticated point-to-point network. The communication network is reliable: if a correct process
sends a message to a correct process, the message is eventually received.

Synchrony. We assume the standard synchronous environment in which the computation
unfolds in synchronous δ-long rounds, where δ denotes the known upper bound on message
delays. In each round 1, 2, ... ∈ N, each process (1) performs (deterministic) local computa-
tions, (2) sends (possibly different) messages to (a subset of) the other processes, and (3)
receives the messages sent to it by the end of the round.

2.2 Complexity Measures
Let Agreement be any synchronous validated agreement algorithm, and let E(Agreement)
denote the set of Agreement’s executions. Let α ∈ E(Agreement) be any execution. The bit
complexity of α is the number of bits correct processes collectively send throughout α. The
bit complexity of Agreement is then defined as

max
α∈E(Agreement)

{
the bit complexity of α

}
.

Similarly, the latency complexity of α is the time it takes for all correct processes to decide
and stop in α. The latency complexity of Agreement is then defined as

max
α∈E(Agreement)

{
the latency complexity of α

}
.

We say that Agreement satisfies early stopping if and only if the latency complexity of
Agreement belongs to O

(
(f + 1)δ

)
. Note that the maximum number of rounds Agreement

requires to decide – the round complexity of Agreement – is equal to the latency complexity
of Agreement divided by δ. Throughout the paper, we use the latency and round complexity
interchangeably.

2.3 Building Blocks
This subsection overviews building blocks utilized in both HashExt and ErrorFreeExt.

P. Civit et al. 14:7

Reed-Solomon codes. HashExt and ErrorFreeExt rely on Reed-Solomon (RS)
codes [53]. We use RSEnc and RSDec to denote RS’ encoding and decoding algorithms.
In brief, RSEnc(M, m, k) takes as input a message M consisting of k symbols, treats it as
a polynomial of degree k − 1, and outputs m evaluations of the corresponding polynomial.
Similarly, RSDec(k, r, T) takes as input a set of symbols T (some of the symbols might be
incorrect) and outputs a degree k − 1 polynomial (i.e., k symbols) by correcting up to r

errors (incorrect symbols) in T . Note that RSDec can correct up to r errors in T and output
the original message given that |T | ≥ k + 2r [47]. Importantly, the bit-size of an RS symbol
obtained by the RSEnc(M, m, k) algorithm is O(|M |

k + log m), where |M | denotes the bit-size
of the message M .

Graded consensus. Both HashExt and ErrorFreeExt make extensive use of the graded
consensus primitive [9, 2] (also known as Adopt-Commit [26]), whose formal specification
is given in Module 1. In brief, graded consensus allows processes to propose their input
value from the GC_Value set and decide on some value from the GC_Value set with some
binary grade. The graded consensus primitive ensures agreement among correct processes
only if some correct process decides a value with (higher) grade 1. If no correct process
decides with grade 1, graded consensus allows correct processes to disagree. (Thus, graded
consensus is a weaker problem than validated agreement.) HashExt employs the graded
consensus primitive on hash values (GC_Value ≡ the set of all hash values). On the other
hand, ErrorFreeExt utilizes graded consensus on values proposed to validated agreement
(GC_Value ≡ Value).

Module 1 Graded consensus.
Events:

request propose(v ∈ GC_Value): a process proposes a value v ∈ GC_Value.
indication decide(v′ ∈ GC_Value, g′ ∈ {0, 1}): a process decides a value v′ ∈ GC_Value with a
grade g′.

Assumed behavior:
Every correct process proposes exactly once.
All correct processes propose simultaneously (i.e., in the same round). (We revisit this assumption
for the graded consensus primitive employed in ErrorFreeExt; see §4.3.)

Properties:
Strong unanimity: If all correct processes propose the same value v and a correct process decides a
pair (v′, g′), then v′ = v and g′ = 1.
Justification: If a correct process decides a pair (v′, ·), then v′ was proposed by a correct process.
Consistency: If any correct process decides a pair (v, 1), then no correct process decides any pair
(v′ ̸= v, ·).
Integrity: No correct process decides more than once.
Termination: All correct processes decide simultaneously (i.e., in the same round). (The “simulta-
neous” termination is revisited in the graded consensus primitive employed in ErrorFreeExt;
see §4.3.)

3 HashExt: Optimal Early-Stopping Hash-Based Solution

In this section, we present HashExt, our hash-based validated Byzantine agreement solution
that achieves O(nL + n3κ) bit complexity, which is optimal for L ≥ n2κ (κ denotes the
size of a hash value). Additionally, HashExt is (1) optimally resilient as it tolerates up to
t < n/3 faults, and (2) early-stopping as it terminates in O

(
(f + 1)δ

)
time (i.e., O(f + 1)

synchronous rounds).

DISC 2024

14:8 Efficient Signature-Free Validated Agreement

We start by introducing the building blocks of HashExt (§3.1). Then, we present
HashExt’s pseudocode (§3.2). Finally, we present a proof sketch of HashExt’s correctness
and complexity (§3.3). We relegate a proof of HashExt’s correctness and complexity to the
full version of the paper.

3.1 Building Blocks
Digests. We assume a collision-resistant function digest : Value→ Digest ≡ {0, 1}κ, where
κ is a security parameter. Concretely, the digest(v ∈ Value) function performs the following
steps: (1) it encodes value v into n RS symbols [m1, m2, ..., mn] ← RSEnc(v, n, t + 1); (2)
it aggregates [m1, m2, ..., mn] into an accumulation value zv using the Merkle-tree-based
(i.e., hash-based) cryptographic accumulator [49]; (3) it returns zv. Note that, as we employ
hash-based Merkle trees, an accumulation value zv is a hash. The formal definition of the
digest(·) function can be found in the full version of the paper.

Data dissemination. The formal specification of the data dissemination primitive is given
in Module 2. Intuitively, the data dissemination primitive allows all correct processes to
obtain the same value v⋆ assuming that (1) all correct processes a priori agree on the digest
d⋆ of value v⋆ (even if processes do not know the pre-image v⋆ of d⋆ a priori), and (2) at least
one correct process initially holds the pre-image v⋆. We relegate the implementation of the
data dissemination primitive to the full version of the paper. In brief, the implementation
heavily relies on Merkle-tree-based accumulators and it exchanges O(nL + n2κ log n) bits
while terminating in 2δ time.

Module 2 Data dissemination.
Events:

request input(v ∈ Value ∪ {⊥}, d ∈ Digest): a process inputs a value v (or ⊥) and a digest d.
request output(v′ ∈ Value): a process outputs a value v′.

Assumed behavior:
All correct processes input a pair. We underline that correct processes might not input their values
simultaneously (i.e., at the exact same round).
No correct process stops unless it has previously output a value.
There exists a value v⋆ ∈ Value (v⋆ ̸= ⊥) and a digest d⋆ = digest(v⋆) such that:

If any correct process inputs a pair (v ∈ Value, ·), then v = v⋆.
If any correct process inputs a pair (·, d ∈ Digest), then d = d⋆.
At least one correct process inputs a pair (v⋆, d⋆).

Properties:
Safety: If any correct process outputs a value v, then v = v⋆.
Liveness: Let τ be the first time by which all correct processes have input a pair. Then, every
correct process outputs a value by time τ + 2δ.
Integrity: No correct process outputs a value unless it has previously input a pair.

3.2 Pseudocode
The pseudocode of HashExt is given in Algorithm 1.

Key idea. The crucial idea behind HashExt is to ensure that all correct processes agree
on a digest d⋆ of a valid value v⋆ such that at least one correct process knows the pre-image
v⋆ of d⋆. To solve validated agreement, it then suffices to utilize the data dissemination
primitive (see Module 2): if (1) all correct processes input the same digest d⋆, and (2) at
least one correct process inputs the pre-image v⋆ of d⋆, then all correct processes agree on the

P. Civit et al. 14:9

(valid) value v⋆. Given that the data dissemination primitive exchanges O(nL + n2κ log n)
bits and terminates in 2 rounds, HashExt dedicates O(nL + n3κ) bits and O(f + 1) rounds
to agreeing on digest d⋆.

Protocol description. HashExt internally utilizes an instance DD of the data dissemination
primitive. We design HashExt in a view-based manner: HashExt operates in (at most)
f + 1 views, where each view V has its leader leader(V) = pV .4 Each view V internally uses
two instances GC1[V] and GC2[V] of the graded consensus primitive (see Module 1) that
operates on digests.

We say that a correct process pi commits a digest d in view V if and only if pi invokes
DD.input(·, d) in view V (line 44). Each correct process pi maintains four important local
variables:

lockedi (line 6): holds a digest (or ⊥) on which pi is currently “locked on”.
votei (line 7): holds a digest (or ⊥) currently supported by pi.
known_valuesi[D], for every digest D (line 9): holds the pre-image of digest D observed
by pi.
acceptedi[V], for every view V (line 10): holds the set of digest that are “accepted” in
view V .

Let pi be any correct process. Each view V operates in four steps:
1. Process pi proposes lockedi to GC1[V] and decides a pair (d1, g1) (line 16). Intuitively,

if d1 ̸= ⊥ and g1 = 1, pi sticks with digest d1 throughout the view as it is possible that
some other correct process has previously committed digest d1. (Hence, not sticking with
digest d1 in view V might be dangerous as it could lead to a disagreement on committed
digests.)

2. Here, the leader of view V (if correct) aims to enable all correct processes to commit a
digest in view V . Specifically, the leader behaves in the following manner:

If it decided a non-⊥ digest from GC1[V], then the leader disseminates the digest
(line 20).
Otherwise, the leader disseminates its proposal (line 22).

Process pi behaves according to the following logic:
If pi decided a non-⊥ digest d with grade 1 from GC1[V] (d1 = d ̸= ⊥ and g1 = 1; see
the rule at line 23), then pi supports digest d by broadcasting a support message for
d (line 24).
If pi decided ⊥ from GC1[V], then pi supports a digest d by broadcasting a support
message for d (line 27 or line 30) if (1) it receives digest d from the leader and pi

accepted d in any previous view (line 26), or (2) it receives a valid value v from the
leader such that digest(v) = d (line 28). If the latter case applies, process pi “observes”
the pre-image v of digest d (line 29).

3. Process pi accepts a digest d in view V if it receives a support message for d from t + 1
processes (line 33). Moreover, process pi updates its votei variable to a digest d if it
receives a support message for d from 2t + 1 processes (line 35). Otherwise, process pi

sets its votei variable to ⊥ (line 37). Observe that if any correct process pj updates its
votej variable to a digest d, then every correct process pk accepts d in view V . Indeed, as
pj receives a support message for digest d from at least 2t + 1 processes out of which at
least t + 1 are correct, it is guaranteed that pk receives a support message for d from at
least t + 1 processes.

4 HashExt elects leaders in a round-robin fashion.

DISC 2024

14:10 Efficient Signature-Free Validated Agreement

Algorithm 1 HashExt: Pseudocode (for process pi).

1: Uses:
2: Graded consensus, instances GC1[V], GC2[V], for each view V ∈ [1, t + 1] ▷ bits: O(n2κ);

rounds: 2
3: Data dissemination, instance DD ▷ bits: O(nL + n2κ log n); rounds: 2

4: Local variables:
5: Value vi ← pi’s proposal
6: Digest lockedi ← ⊥ ▷ locked digest
7: Digest votei ← ⊥ ▷ digest to be voted for
8: View committeed_viewi ← ⊥
9: Map(Digest→ Value) known_valuesi ← {⊥,⊥, ...,⊥} ▷ values corresponding to digests

10: Map(View→ Set(Digest)) acceptedi ← {∅, ∅, ..., ∅} ▷ accepted digests per view

11: – Task 1 –
12: for each view V ∈ [1, t + 1]:
13: if committed_viewi ̸= ⊥ and commited_viewi + 1 = V : complete the view after 6 synchronous

rounds
14: if commited_viewi ̸= ⊥ and V > committed_viewi + 1: do not execute the view
15: Step 1 of view V : ▷ 2 synchronous rounds
16: Let (d1 ∈ Digest ∪ {⊥}, g1 ∈ {0, 1})← GC1[V].propose(lockedi)
17: Step 2 of view V : ▷ 2 synchronous round
18: if pi = leader(V):
19: if d1 ̸= ⊥: ▷ check if a non-⊥ digest is decided from GC1[V]
20: broadcast d1 ▷ broadcast a non-⊥ digest decided from GC1[V]
21: else:
22: broadcast vi ▷ broadcast the proposed value
23: if d1 ̸= ⊥ and g1 = 1:
24: broadcast ⟨support, d1⟩
25: else:
26: if dl ∈ Digest is received from leader(V) and a view V ′ < V exists with dl ∈ accepted[V ′]:

27: broadcast ⟨support, dl⟩
28: else if vl ∈ Value is received from leader(V) such that valid(vl) = true:
29: known_values[digest(vl)]← vl

30: broadcast ⟨support, digest(vl)⟩
31: Step 3 of view V : ▷ 0 synchronous round (only local computation)
32: if exists d ∈ Digest such that a ⟨support, d⟩ message is received from t + 1 processes:
33: acceptedi[V]← acceptedi[V] ∪ {d}
34: if exists d ∈ Digest such that a ⟨support, d⟩ message is received from 2t + 1 processes:
35: votei ← d
36: else:
37: votei ← ⊥
38: Step 4 of view V : ▷ 2 synchronous rounds
39: Let (d2 ∈ Digest ∪ {⊥}, g2 ∈ {0, 1})← GC2[V].propose(votei)
40: if d2 ̸= ⊥: ▷ check if a non-⊥ digest is decided from GC2[V]
41: lockedi ← d2 ▷ digest d2 is locked as some correct process might commit it
42: if g2 = 1 and committed_viewi = ⊥: ▷ check if digest d2 is decided with grade 1
43: committed_viewi ← V
44: invoke DD.input(known_values[d2], d2) ▷ commit digest d2

45: – Task 2 – ▷ executed in a separate thread
46: upon DD.output(v′ ∈ Value):
47: trigger decide(v′)
48: wait for view committed_viewi+1 to be completed (if not yet and if committed_viewi+1 ≤ t+1)

49: trigger stop ▷ process pi stops HashExt

P. Civit et al. 14:11

4. Process pi proposes votei to GC2[V] and decides a pair (d2, g2). If d2 ̸= ⊥, process pi

updates its lockedi variable to d2 (line 41). Additionally, if g2 = 1, then pi commits d2
(line 44). Importantly, if any correct process pj commits a digest d ̸= ⊥ in view V , every
correct process pk updates its lockedk variable to d. Indeed, as pj commits d, it decides
(d ̸= ⊥, 1) from GC2[V]. The consistency property of GC2[V] ensures that each correct
process pk decides d from GC2[V].

We emphasize that if process pi commits a digest in some view V , process pi does not execute
any view greater than V + 1 (line 14). Moreover, if pi commits in view V < t + 1, then
process pi necessarily completes view V + 1 before stopping (line 48). Importantly, process pi

completes view V + 1 after exactly 6 rounds have elapsed. Let us elaborate. As some correct
process pj ̸= pi might never enter view V + 1 (since it has committed in a view smaller than
view V), it is possible that not all correct processes participate in view V + 1. This implies
that utilized graded consensus instances might never complete, which further means that
process pi can forever be stuck executing a graded consensus instance in view V + 1. To
avoid this scenario, process pi completes view V + 1 after 6 rounds irrespectively of which
step of view V + 1 pi is in after 6 rounds. Finally, once pi outputs a value v′ from DD
(and completes the aforementioned “next view”), pi decides v′ (line 47) and stops executing
HashExt (line 49).

3.3 Proof Sketch
This subsection provides a proof sketch of the following theorem:

▶ Theorem 1. HashExt (Algorithm 1) is a hash-based early-stopping validated agreement
algorithm with O(nL + n3κ) bit complexity.

Our proof sketch focuses on the crucial intermediate guarantees ensured by HashExt.

Preventing disagreement on committed digests. First, we show that correct processes do
not disagree on committed digests. Let V denote the first view in which a correct process
commits; let d⋆ be the committed digest. No correct process commits any non-d⋆ digest in
view V due to the consistency property of GC2[V]: it is impossible for correct processes to
decide different digests from GC2[V] with grade 1.

If V < t + 1, HashExt prevents any non-d⋆ digest to be committed in any view greater
than V. Specifically, HashExt guarantees that all correct processes commit d⋆ (and no
other digest) by the end of view V + 1. The consistency property of GC2[V] ensures that
every correct process pi updates its lockedi variable to d⋆ at the end of view V. Therefore,
all correct processes propose d⋆ to GC1[V + 1], which implies that all correct processes decide
(d⋆, 1) from GC1[V + 1] (due to the strong unanimity property of GC1[V + 1]). Hence, all
correct processes broadcast a support message for digest d⋆ (line 24), which further implies
that all correct processes propose d⋆ to GC2[V + 1]. Finally, the strong unanimity property of
GC2[V + 1] ensures that all correct processes decide (d⋆, 1) from GC2[V + 1] and thus commit
d⋆ by the end of view V + 1.

Ensuring eventual agreement on the committed digest. Second, we prove that an agree-
ment on the committed digest eventually occurs. Concretely, we now show that all correct
processes commit a digest by the end of the first view whose leader is correct. Let that view
be denoted by Vl ∈ [1, f + 1] and let pVl

be the leader of Vl. If any correct process commits a
digest in any view smaller than Vl, then all correct processes commit the same digest by the
end of view Vl due to the argument from the previous paragraph. Hence, suppose no correct
process commits any digest in any view preceding view Vl. We distinguish two scenarios:

DISC 2024

14:12 Efficient Signature-Free Validated Agreement

Let pVl
decide a digest d ̸= ⊥ from GC1[Vl]. Crucially, the justification property of GC1[Vl]

ensures that d ̸= ⊥ is proposed by some correct process pj . Hence, the value of the
lockedj variable is d at the beginning of view Vl. Let V ′ < Vl denote the view in which pj

updates lockedj to d upon deciding d ≠ ⊥ from GC2[V ′]. Again, the justification property
of GC2[V ′] guarantees that a correct process proposed d to GC2[V ′] upon receiving 2t + 1
support messages for d. As at least t + 1 such messages are received from correct
processes, every correct process accepts digest d in view V ′.
In this case, process pVl

broadcasts digest d in Step 2. We show that all correct processes
broadcast a support message for digest d. Consider any correct process pi. We study
two possible cases:

Let pi decide a non-⊥ digest d′ with grade 1 from GC1[Vl]. In this case, the consistency
property of GC1[Vl] ensures that d = d′. Thus, process pi sends a support message
for digest d (line 24).
Let pi decide ⊥ or with grade 0 from GC1[Vl]. In this case, process pi sends a support
message for digest d (line 27) as (1) it receives d from pVl

, and (2) it accepts d in view
V ′ < Vl.

Let pVl
decide ⊥ from GC1[Vl]. Note that this implies that no correct process decides

a non-⊥ digest with grade 1 from GC1[Vl] (due to the consistency property of GC1[Vl]).
Hence, process pVl

broadcasts its valid value v, which then implies that all correct
processes send a support message for digest d = digest(v) (line 30).

Hence, there exists a digest d for which all correct processes express their support in both
cases. Therefore, all correct processes propose d to GC2[Vl]. Finally, the strong unanimity
property ensures that all correct processes decide (d, 1) from GC2[Vl] and thus commit digest
d in view Vl.

Ensuring that some correct process knows the valid pre-image of the committed digest.
We show how HashExt enables processes to “obtain” implicit PoRs (see §1). Let d⋆ denote
the (unique) committed digest. For d⋆ to be committed, there exists a correct process that
sends a support message for d⋆ in a view in which d⋆ is committed (due to the justification
property of GC2[V], for every view V). Therefore, it suffices to show that the first correct
process to ever send a support message for d⋆ (or any other digest) does so at line 30
upon receiving valid value v⋆ with digest(v⋆) = d⋆. Let pi denote the first process to send a
support message for digest d⋆ and let it do so in some view V . We study if pi could have
sent the message at lines 24 and 27:

Process pi could not have sent the support message at line 24 as this would imply that
pi is not the first correct process to send the message for d⋆. The justification property
of GC1[V] ensures that some correct process pj has its lockedj variable set to d⋆ at the
beginning of view V . For process pj to update its lockedj variable to d⋆ in some view
V ′ < V , there must exist a correct process that sends a support message for d⋆ in view
V ′ (due to the justification property of GC2[V ′]). Therefore, pi cannot be the first correct
process to send a support message for d⋆.
Process pi could not have sent the support message at line 27 as this would also imply
that pi is not the first correct process to send the message for d⋆. Indeed, for the message
to be sent at line 27, process pi accepts d⋆ in some view V ′ < V , which implies that at
least one correct process sends a support message for d⋆ in view V ′.

Hence, pi must have sent the message at line 30, which implies that pi knows the pre-image
v⋆ of digest d⋆ and that v⋆ is valid (due to the check at line 28).

P. Civit et al. 14:13

Correctness. The previous three intermediate results show that the preconditions of DD
(see Module 2) are satisfied, which implies that DD behaves according to its specification.
Hence, all correct processes decide the same valid value from HashExt due to the properties
of DD.

Complexity. Each view with a non-correct leader exchanges O(n2κ) bits. Moreover, each
view with a correct leader exchanges O(nL + n2κ) bits. As DD exchanges O(nL + n2κ log n)
bits and it is ensured that only O(1) views with correct leaders are executed, HashExt
exchanges O(nL + n2κ) + n ·O(n2κ) + O(nL + n2κ log n) = O(nL + n3κ) bits.

As all correct processes start DD at the end of the first view with a correct leader (at
the latest), all correct processes input to DD in O(f + 1) rounds (recall that each view has 6
rounds). Since DD guarantees agreement in 2 rounds, all correct decide and stop in O(f + 1)
rounds.

On the lack of strong unanimity. Note that HashExt as presented in Algorithm 1 does
not satisfy strong unanimity. Indeed, even if all correct processes propose the same value
v, it is possible that correct processes agree on a value v′ proposed by a faulty leader.
However, as specified in §1, it is trivial to modify HashExt to obtain an early-stopping
algorithm with both strong unanimity and external validity that exchanges O(nL + n3κ) bits.
Indeed, this can be done by running in parallel (1) the current (without strong unanimity)
implementation of HashExt, and (2) the error-free early-stopping COOL [18, 43] protocol
with only strong unanimity.

4 ErrorFreeExt: Near-Optimal Early-Stopping Error-Free Solution

This section presents ErrorFreeExt, an error-free validated Byzantine agreement algorithm
that achieves (1) O

(
(nL + n2) log n

)
bit complexity, and (2) early stopping. Recall that

ErrorFreeExt is also optimally resilient (tolerates up to t < n/3 Byzantine processes).
We start by introducing ErrorFreeExt’s building blocks (§4.1). To introduce Error-

FreeExt’s recursive structure, we first show how (a simplified version of) the recursive
structure yields a near-optimal validated agreement without early-stopping – SlowExt
(§4.2). Then, we overview ErrorFreeExt (§4.3) and give a proof sketch of its correctness
and complexity (§4.4). We relegate ErrorFreeExt’s full pseudocode and a formal proof
to the full version of the paper.

4.1 Building Blocks
We now overview the building blocks of ErrorFreeExt. Given ErrorFreeExt’s recursive
structure, the specification of each building block explicitly states its participants (to increase
the clarity). Moreover, given that building blocks might be executed among an overly
corrupted set of participants (due to the recursion), each building block explicitly states
what properties are ensured given the level of corruption among its participants.

Committee broadcast. The formal specification of the committee broadcast primitive
is given in Module 3. Committee broadcast is concerned with two sets of processes: (1)
Entire ⊆ Π, and (2) Committee ⊆ Entire. Moreover, the primitive is associated with a
validated Byzantine agreement algorithm VA to be executed among processes in Committee.
Intuitively, the committee broadcast primitive ensures the following: (1) correct processes
in Committee agree on the same value using the VA algorithm (given that Committee is

DISC 2024

14:14 Efficient Signature-Free Validated Agreement

not overly corrupted), and (2) correct processes in Committee disseminate the previously
agreed-upon value to all processes in Entire. We underline that the totality property of
committee broadcast (deliberately written in orange in Module 3) is important only for
ErrorFreeExt’s early-stopping, i.e., it can be ignored for SlowExt (in §4.2).

Module 3 Committee broadcast ⟨Entire, Committee,VA⟩.
Participants:

Entire ⊆ Π; let x = |Entire| and let x′ be the greatest integer smaller than x/3.
Committee ⊆ Entire; let y = |Committee|, let y′ be the greatest integer smaller than y/3 and let f ′

be the actual number of faulty processes in Committee.

Utilized validated agreement among Committee:
VA; let LVA(y, f ′) denote the worst-case latency complexity of VA with up to f ′ faulty processes
and let BVA(y) denote the maximum number of bits any correct process sends while executing VA
with up to y′ faulty processes. (We underline that LVA(y, f ′) is based on the non-known actual
number of failures, whereas BVA(y) is based on the known upper bound on the number of failures.)

Events:
request input(v ∈ Value, g ∈ {0, 1}): a process inputs a pair (v, g).
indication output(v′ ∈ Value): a process outputs a value v′.

Assumed behavior:
Every correct process inputs a pair.
If a correct process inputs a pair (v, ·), then valid(v) = true.
No correct process stops unless it has previously output a value.
If any correct process inputs a pair (v, 1), for any value v, then no correct process inputs a pair
(v′ ̸= v, ·).

Properties ensured only if up to x′ processes in Entire are faulty:
Totality: Let τ denote the first time at which a correct process outputs a value. Then, every correct
process outputs a value by time τ + 2δ.
Stability: If a correct process inputs a pair (v, 1) and outputs a value v′, then v′ = v.
External validity: If a correct process outputs a value v, then valid(v) = true.
Optimistic consensus: If (1) there are up to y′ faulty processes in Committee, and (2) all correct
processes in Entire start within 2δ time of each other, the following properties are satisfied:

Liveness: Let τ be the first time by which all correct processes in Committee have input a pair.
Then, every correct process outputs a value by time τ + 7δ + LVA(y, f ′).
Agreement: No two correct processes output different values.
Strong unanimity: If every correct process proposes a pair (v, ·), for any value v, then no correct
process outputs a value different from v.

Properties ensured even if more than x′ processes in Entire are faulty:
Complexity: Each correct process sends O(L + x log x) + BVA bits.

Finisher. The formal specification of the finisher primitive is given in Module 4. Finisher is
executed among a set Entire ⊆ Π of processes. Each process inputs a pair (v ∈ Value, g ∈
{0, 1}), where v is a value and g is a binary grade. In brief, finisher ensures that all correct
processes output the same value if all correct processes input the same value with grade 1
(the liveness property). Moreover, finisher ensures totality: if any correct process outputs
a value, then all correct processes output the same value. We emphasize that the finisher
primitive is introduced only for achieving early-stopping in ErrorFreeExt, i.e., it plays no
role in SlowExt.

4.2 SlowExt: Achieving Near-Optimality Without Early-Stopping
Wisdom of the ancients. As mentioned in §1.2, the problem with the sequential reconstruc-
tive approach is that, by allowing each Byzantine process to impose its own value, we can
end up with f = t ∈ O(n) (wasted) reconstructions of invalid values (with O(n2) messages
each), for a total of O(n3) messages. Making an analogy to a parliamentary system (e.g., of

P. Civit et al. 14:15

Module 4 Finisher ⟨Entire⟩.
Participants:

Entire ⊆ Π; let x = |Entire| and let x′ be the greatest integer smaller than x/3.

Events:
request input(v ∈ Value, g ∈ {0, 1}): a process inputs a pair (v, g).
indication output(v′ ∈ Value): a process outputs a value v′.

Assumed behavior:
All correct processes input a pair and they do so within 2δ time of each other.
No correct process stops unless it has previously output a value.
If any correct process inputs a pair (v, 1), for any value v, then no correct process inputs a pair
(v′ ̸= v, ·).

Properties ensured only if up to x′ processes in Entire are faulty:
Preservation: If a correct process pi outputs a value v′, then pi has previously input a pair (v′, ·).
Agreement: No two correct processes output different values.
Justification: If a correct process outputs a value, then a pair (·, 1) was input by a correct process.
Liveness: Let all correct processes input a pair (v, 1), for any value v. Let τ be the first time by
which all correct processes have input. Then, all correct processes output value v by time τ + δ.
Totality: Let τ be the first time at which a correct process outputs a value. Then, all correct
processes output a value by time τ + 2δ.

Properties ensured even if more than x′ processes in Entire are faulty:
Complexity: Each correct process sends O(x) bits.

some island in ancient Greece [39]), this is the equivalent of allowing every single member
of parliament to present their proposal to all others. This is somewhat wasteful. In many
modern parliamentary systems, since time is limited, proposals are first filtered internally
within each party before each party presents one proposal to the whole assembly. Hence,
no matter how many bad proposals a party might have internally, the whole assembly only
discusses one per party. The cost of dealing with bad actors (and proposals) is shifted to
the parties, which are individually smaller than the whole assembly. This is (essentially) the
crucial realization of [12, 22]. By adopting a recursive framework with two “parties” at each
level, [12, 22] obtain non-early-stopping solutions with optimal O(n2) exchanged messages
(albeit still O(n2L) exchanged bits).

SlowExt in a nutshell. To design SlowExt, we adapt the recursive framework of [12, 22]
to long values. More precisely, we follow the recent variant of the framework proposed
by [51, 43] that utilizes (1) the graded consensus [9, 2] primitive (instead of the “universal
exchange” primitive of [12]; see Module 1), and (2) the committee broadcast primitive (see
Module 3). At each recursive iteration, processes are statically partitioned into two halves
(according to their identifiers) that run the algorithm among n/2 processes (inside that half’s
committee broadcast primitive) in sequential order. The recursion stops once a validated
agreement instance with only a single process is reached; at this point, the process decides
its proposal. A graphical depiction of SlowExt is given in the gray part of Figure 1.

Crucially, as t < n/3, at least one half contains less than one-third of faulty processes.
Therefore, there exists a “healthy” (non-corrupted) half that successfully executes the recursive
call (i.e., successfully executes the committee broadcast primitive). However, agreement
achieved among a healthy half must be preserved, i.e., preventing an unhealthy half from
ruining the “healthy decision” is imperative. To this end, the recursive framework utilizes
the graded consensus primitive that allows the correct processes to stick with their previously
made (if any) decision. For example, suppose that the first half of processes is healthy.
Hence, after executing SlowExt among the first half of processes (i.e., in the first committee
broadcast primitive), all correct processes obtain the same value (due to the optimistic

DISC 2024

14:16 Efficient Signature-Free Validated Agreement

Graded
Consensus

Committee
Broadcast

Graded
Consensus

Committee
Broadcast

Graded
Consensus

Committee
Broadcast

Graded
Consensus

() Finisher Finisher

()

First half

Second half

Default leader

Figure 1 The recursive structure of ErrorFreeExt (and SlowExt).

consensus property of committee broadcast). In this case, the graded consensus primitive
GC2 ensures that correct processes cannot change their values due to the actions of the second
half, thus preserving the previously achieved agreement. By implementing both the graded
consensus and committee broadcast primitives with only O(nL + n2 log n) bits (see the full
version of the paper), SlowExt achieves near-optimal asymptotic bit complexity:

log n∑
i=0

2i ·
(n

2i
L +

(n

2i

)2
log

(n

2i

))
≤

log n∑
i=0

(
nL + n2

2i
log n

)
∈ O

(
(nL + n2) log n

)
.

4.3 ErrorFreeExt: Overview
The pseudocode for ErrorFreeExt is provided in the paper’s full version and its graph-
ical presentation can be found in Figure 1. Below, we give key insights for obtaining
ErrorFreeExt.

Why is SlowExt not early-stopping? SlowExt does not achieve early stopping as
SlowExt allocates a predetermined number of rounds for each recursive call: processes
cannot prematurely terminate a recursive call even if they have already decided. In particular,
each recursive call consumes the maximum number of rounds necessary for its completion.
This maximum number of rounds is proportional to the upper bound t on the number of
Byzantine processes rather than the actual number f ≤ t of Byzantine processes. As a result,
SlowExt incurs round complexity dependent on t rather than f .

From SlowExt to ErrorFreeExt. To achieve early stopping from SlowExt, ErrorFree-
Ext mirrors the binary approach of [43] and carefully adapts it to long L-bit values. The
first key ingredient is the introduction of the finisher instance F2 that we position (1) before
the committee broadcast instance CB2 led by the second half of processes, and (2) after the
graded consensus instance GC2. In brief, F2 leverages the presence of the graded consensus
instance GC2 to check if GC2 ensured agreement among correct processes. If that is the
case, then F2 allows correct processes to terminate immediately (i.e., in O(δ) time) after the
termination of the committee broadcast instance CB1 led by the first half of processes.

However, the introduction of F2 to tackle early-stopping brings its share of technical
difficulties. Indeed, since the actual number of failures f is unknown, processes cannot
remain perfectly synchronized: a correct process pi might decide (and terminate) at some

P. Civit et al. 14:17

time τ thinking this is the maximum time before all correct processes decide given the
failures pi observed, whereas another correct process pj might still be running after time τ

as it has observed more failures than pi. To handle the aforementioned desynchronization,
ErrorFreeExt relies on weak synchronization ensuring that correct processes execute
different sub-modules with at most 2δ desynchronization time: if the first correct process starts
executing a sub-module at time τ , then all correct processes start executing the same sub-
module by time τ +2δ. To achieve this weak synchronization, we follow the standard approach
of [57, 58]. Furthermore, to handle the 2δ desynchronization in ErrorFreeExt’s sub-
modules, we extend the round duration of graded consensus instances from the original δ time
to 3δ time. (The specification of the other sub-modules directly tackles the aforementioned
desynchronization.) We emphasize that at some point τ , correct processes might be in
different rounds: e.g., a correct process pi can be in round 4, whereas another correct process
pj is in round 5. However, the round duration of 3δ ensures that all correct processes overlap
in each round for (at least) δ time. As message delays are bounded by δ, the δ-time-overlap
is enough to ensure that each correct process hears all r-round-messages from all correct
processes before leaving round r. (We emphasize that this is a well-known simulation
technique; see, e.g., [43, 23].)

It is important to mention that ErrorFreeExt starts with a single standard “Phase
King” iteration: (1) the committee broadcast instance CBl with a predetermined leader pℓ,
(2) the graded consensus instance GCℓ, and (3) the finisher instance Fℓ. This iteration is
added to prevent ErrorFreeExt from running for Θ(log n) time when there are only O(1)
faults. Indeed, if the predetermined leader pℓ is correct, the committee broadcast instance
CBℓ ensures that all correct processes propose the same valid value v to GCℓ in O(1) time
after starting ErrorFreeExt. Then, the strong unanimity property of GCℓ ensures that all
correct processes decide (v, 1) from GCℓ and input (v, 1) to Fℓ. This enables Fℓ to make all
correct processes decide v immediately (i.e., in O(δ) time) after starting.

Finally, the graded consensus instance GCsu (together with GCℓ) ensures the
strong unanimity property. If all correct processes propose the same value v to ErrorFree-
Ext, then (1) all correct processes decide (v, 1) from GCsu and propose v to GCℓ, (2) all
correct processes decide (v, 1) from GCℓ and input (v, 1) to Fℓ, and (3) output v from Fℓ

and decide v from ErrorFreeExt.

4.4 Proof Sketch
This subsection provides a proof sketch of the following theorem:

▶ Theorem 2. ErrorFreeExt is an error-free early-stopping validated agreement algorithm
with O

(
(nL + n2) log n

)
bit complexity.

We underline that ErrorFreeExt achieves balanced bit complexity as its per-process
complexity is O

(
(L+n) log n

)
. This subsection discusses the key intermediate results ensured

by ErrorFreeExt.

Gluing all sub-modules together. Processes execute each sub-module within 2δ time of each
other, thus enabling the associated implementations to realize the corresponding specifications.
The consistency property of the graded consensus primitive ensures a similar consistency
for the inputs to the following committee broadcast primitive. Under this condition, the
strong unanimity property of the underlying validated agreement protocol ensures agreement
if the recursive call is executed with a healthy (non-corrupted) committee.

DISC 2024

14:18 Efficient Signature-Free Validated Agreement

Ensuring strong unanimity. Strong unanimity is implied by (1) the strong unanimity
properties of GCsu and GCℓ, (2) the stability property of CBℓ, and (3) liveness and agreement
of Fℓ.

Finisher’s “lock”. If a process decides a value v via a finisher F ∈ {Fℓ,F2}, the justification
property of F , combined with the consistency property of the graded consensus GC ∈
{GCℓ,GC2} positioned immediately before, ensures that every correct process outputs (v, ·)
from GC.

From a correct leader or the first healthy committee to a common valid decision. If
the predetermined leader pℓ is correct, all correct processes agree on a common value after
Fℓ: this holds due to (1) the optimistic consensus property of CBℓ, (2) the strong unanimity
property of GCℓ, and (3) the liveness and agreement properties of Fℓ. Similarly, if pℓ is faulty,
but the first half of processes is healthy, all correct processes agree on a common value after
F2. Importantly, if some correct process decides via Fℓ, the finisher’s lock (see the paragraph
above), combined with strong unanimity of GC1 and GC2 and the stability property of CB1,
guarantees agreement.

From the second healthy committee to a common valid decision. If a correct process
does not decide via Fℓ or F2, it means that both the predetermined leader pℓ and the first
half of processes are unhealthy, which implies that the second half is healthy. If some correct
process decides via F2, the finisher’s lock, combined with CB2’s strong unanimity, preserves
agreement. Let us emphasize that if some correct process decides via Fℓ, the agreement is
ensured due to (1) the finisher’s lock, (2) the strong unanimity properties of GC1 and GC2,
and (3) the stability property of CB1.

Complexity. The per-process bit complexity B(n) of ErrorFreeExt follows from the
equation B(n) ≤ O(L + n log n) + max

(
B(⌊n

2 ⌋),B(⌈n
2 ⌉)

)
. Similarly, the early stopping

property holds due to the following equations: (1) L(n, f) ∈ O(δ) if the predetermined leader
pℓ is correct, and (2) L(n, f) ≤ O(δ) + L(|H1|, f1) + L(|H2|, f2) otherwise, where f1 (resp.,
f2) denotes the actual number of faulty processes among the first (resp., second) half of
processes H1 (resp., H2).

5 Concluding Remarks

This paper introduces HashExt and ErrorFreeExt, two synchronous signature-free
algorithms for validated Byzantine agreement. Both algorithms are (1) optimally resilient,
and (2) early stopping. On one side, HashExt utilizes only collision-resistant hashes,
achieving a bit complexity of O(nL + n3κ), which is optimal when L ≥ n2κ (with κ being
the size of a hash value). Conversely, ErrorFreeExt is error-free, avoids cryptography
entirely, and achieves a bit complexity of O

(
(nL + n2) log n

)
, which is nearly optimal for any

L. In the future, we plan to focus on the following open questions:
Is it possible to design an error-free validated agreement algorithm with a bit complexity
of O(nL)? Our ErrorFreeExt algorithm achieves only O(nL log n) bit complexity.
Can HashExt be optimized to achieve O(nL) bit complexity for a wider range of
proposal sizes L? Currently, HashExt allows for optimal O(nL) bit complexity only
when L ≥ n2κ.

P. Civit et al. 14:19

References
1 Michael Abd-El-Malek, Gregory R Ganger, Garth R Goodson, Michael K Reiter, and Jay J

Wylie. Fault-Scalable Byzantine Fault-Tolerant Services. ACM SIGOPS Operating Systems
Review, 39(5):59–74, 2005. doi:10.1145/1095810.1095817.

2 Ittai Abraham and Gilad Asharov. Gradecast in synchrony and reliable broadcast in asynchrony
with optimal resilience, efficiency, and unconditional security. In Alessia Milani and Philipp
Woelfel, editors, PODC ’22: ACM Symposium on Principles of Distributed Computing, Salerno,
Italy, July 25 - 29, 2022, pages 392–398. ACM, 2022. doi:10.1145/3519270.3538451.

3 Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Alexander Spiegelman. Solidus:
An Incentive-compatible Cryptocurrency Based on Permissionless Byzantine Consensus. CoRR,
abs/1612.02916, 2016.

4 Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Alexander Spiegelman. Solida:
A Blockchain Protocol Based on Reconfigurable Byzantine Consensus. In James Aspnes,
Alysson Bessani, Pascal Felber, and João Leitão, editors, 21st International Conference on
Principles of Distributed Systems, OPODIS 2017, Lisbon, Portugal, December 18-20, 2017,
volume 95 of LIPIcs, pages 25:1–25:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2017. doi:10.4230/LIPICS.OPODIS.2017.25.

5 Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. Asymptotically optimal validated
asynchronous byzantine agreement. In Peter Robinson and Faith Ellen, editors, Proceedings of
the 2019 ACM Symposium on Principles of Distributed Computing, PODC 2019, Toronto, ON,
Canada, July 29 - August 2, 2019, pages 337–346. ACM, 2019. doi:10.1145/3293611.3331612.

6 Atul Adya, William J. Bolosky, Miguel Castro, Gerald Cermak, Ronnie Chaiken, John R.
Douceur, Jon Howell, Jacob R. Lorch, Marvin Theimer, and Roger Wattenhofer. FARSITE:
federated, available, and reliable storage for an incompletely trusted environment. In David E.
Culler and Peter Druschel, editors, 5th Symposium on Operating System Design and Implemen-
tation (OSDI 2002), Boston, Massachusetts, USA, December 9-11, 2002. USENIX Association,
2002. URL: http://www.usenix.org/events/osdi02/tech/adya.html.

7 Yair Amir, Claudiu Danilov, Danny Dolev, Jonathan Kirsch, John Lane, Cristina Nita-
Rotaru, Josh Olsen, and David Zage. Steward: Scaling byzantine fault-tolerant replication
to wide area networks. IEEE Trans. Dependable Secur. Comput., 7(1):80–93, 2010. doi:
10.1109/TDSC.2008.53.

8 Gilad Asharov and Anirudh Chandramouli. Perfect (parallel) broadcast in constant expected
rounds via statistical VSS. In Marc Joye and Gregor Leander, editors, Advances in Cryptology
- EUROCRYPT 2024 - 43rd Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Zurich, Switzerland, May 26-30, 2024, Proceedings, Part V,
volume 14655 of Lecture Notes in Computer Science, pages 310–339. Springer, 2024. doi:
10.1007/978-3-031-58740-5_11.

9 Hagit Attiya and Jennifer L. Welch. Multi-valued connected consensus: A new perspective on
crusader agreement and adopt-commit. In Alysson Bessani, Xavier Défago, Junya Nakamura,
Koichi Wada, and Yukiko Yamauchi, editors, 27th International Conference on Principles
of Distributed Systems, OPODIS 2023, December 6-8, 2023, Tokyo, Japan, volume 286 of
LIPIcs, pages 6:1–6:23. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:
10.4230/LIPICS.OPODIS.2023.6.

10 Zuzana Beerliova-Trubiniova and Martin Hirt. Simple and efficient perfectly-secure asyn-
chronous MPC. Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 4833 LNCS:376–392, 2007.
doi:10.1007/978-3-540-76900-2_23.

11 Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In Janos Simon,
editor, Proceedings of the 20th Annual ACM Symposium on Theory of Computing, May 2-4,
1988, Chicago, Illinois, USA, pages 1–10. ACM, 1988. doi:10.1145/62212.62213.

DISC 2024

https://doi.org/10.1145/1095810.1095817
https://doi.org/10.1145/3519270.3538451
https://doi.org/10.4230/LIPICS.OPODIS.2017.25
https://doi.org/10.1145/3293611.3331612
http://www.usenix.org/events/osdi02/tech/adya.html
https://doi.org/10.1109/TDSC.2008.53
https://doi.org/10.1109/TDSC.2008.53
https://doi.org/10.1007/978-3-031-58740-5_11
https://doi.org/10.1007/978-3-031-58740-5_11
https://doi.org/10.4230/LIPICS.OPODIS.2023.6
https://doi.org/10.4230/LIPICS.OPODIS.2023.6
https://doi.org/10.1007/978-3-540-76900-2_23
https://doi.org/10.1145/62212.62213

14:20 Efficient Signature-Free Validated Agreement

12 Piotr Berman, Juan A Garay, and Kenneth J Perry. Bit Optimal Distributed Consensus. In
Computer science: research and applications, pages 313–321. Springer, 1992.

13 Ethan Buchman. Tendermint: Byzantine Fault Tolerance in the Age of Blockchains. PhD
thesis, University of Guelph, 2016. URL: https://atrium.lib.uoguelph.ca/server/api/
core/bitstreams/0816af2c-5fd4-4d99-86d6-ced4eef2fb52/content.

14 Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and Efficient
Asynchronous Broadcast Protocols. In Joe Kilian, editor, Advances in Cryptology - CRYPTO
2001, 21st Annual International Cryptology Conference, Santa Barbara, California, USA,
August 19-23, 2001, Proceedings, volume 2139 of Lecture Notes in Computer Science, pages
524–541. Springer, 2001. doi:10.1007/3-540-44647-8_31.

15 Jan Camenisch, Manu Drijvers, Timo Hanke, Yvonne-Anne Pignolet, Victor Shoup, and
Dominic Williams. Internet computer consensus. In Alessia Milani and Philipp Woelfel,
editors, PODC ’22: ACM Symposium on Principles of Distributed Computing, Salerno, Italy,
July 25 - 29, 2022, pages 81–91. ACM, 2022. doi:10.1145/3519270.3538430.

16 Miguel Castro and Barbara Liskov. Practical Byzantine Fault Tolerance and Proactive Recovery.
ACM Transactions on Computer Systems, 20(4), 2002. doi:10.1145/571637.571640.

17 Nishanth Chandran, Wutichai Chongchitmate, Juan A. Garay, Shafi Goldwasser, Rafail
Ostrovsky, and Vassilis Zikas. The hidden graph model: Communication locality and optimal
resiliency with adaptive faults. In ITCS 2015 - Proceedings of the 6th Innovations in Theoretical
Computer Science, pages 153–162, 2015. doi:10.1145/2688073.2688102.

18 Jinyuan Chen. Optimal error-free multi-valued byzantine agreement. In Seth Gilbert, editor,
35th International Symposium on Distributed Computing, DISC 2021, October 4-8, 2021,
Freiburg, Germany (Virtual Conference), volume 209 of LIPIcs, pages 17:1–17:19. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.DISC.2021.17.

19 Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic,
and Manuel Vidigueira. DARE to agree: Byzantine agreement with optimal resilience and
adaptive communication. In Ran Gelles, Dennis Olivetti, and Petr Kuznetsov, editors,
Proceedings of the 43rd ACM Symposium on Principles of Distributed Computing, PODC
2024, Nantes, France, June 17-21, 2024, pages 145–156. ACM, 2024. doi:10.1145/3662158.
3662792.

20 Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic,
Manuel Vidigueira, and Igor Zablotchi. Error-free near-optimal validated agreement. CoRR,
abs/2403.08374, 2024. doi:10.48550/arXiv.2403.08374.

21 Pierre Civit, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, Anton Paramonov, and
Manuel Vidigueira. All byzantine agreement problems are expensive. In Ran Gelles, Dennis
Olivetti, and Petr Kuznetsov, editors, Proceedings of the 43rd ACM Symposium on Principles
of Distributed Computing, PODC 2024, Nantes, France, June 17-21, 2024, pages 157–169.
ACM, 2024. doi:10.1145/3662158.3662780.

22 Brian A. Coan and Jennifer L. Welch. Modular Construction of a Byzantine Agreement
Protocol with Optimal Message Bit Complexity. Inf. Comput., 97(1):61–85, 1992. doi:
10.1016/0890-5401(92)90004-Y.

23 Shir Cohen, Idit Keidar, and Alexander Spiegelman. Make every word count: Adaptive
byzantine agreement with fewer words. In Eshcar Hillel, Roberto Palmieri, and Etienne
Rivière, editors, 26th International Conference on Principles of Distributed Systems, OPODIS
2022, December 13-15, 2022, Brussels, Belgium, volume 253 of LIPIcs, pages 18:1–18:21. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.OPODIS.2022.18.

24 Miguel Correia. From Byzantine Consensus to Blockchain Consensus. In Essentials of
Blockchain Technology, pages 41–80. Chapman and Hall/CRC, 2019.

25 Tyler Crain, Vincent Gramoli, Mikel Larrea, and Michel Raynal. DBFT: efficient leaderless
byzantine consensus and its application to blockchains. In 17th IEEE International Symposium
on Network Computing and Applications, NCA 2018, Cambridge, MA, USA, November 1-3,
2018, pages 1–8. IEEE, 2018. doi:10.1109/NCA.2018.8548057.

https://atrium.lib.uoguelph.ca/server/api/core/bitstreams/0816af2c-5fd4-4d99-86d6-ced4eef2fb52/content
https://atrium.lib.uoguelph.ca/server/api/core/bitstreams/0816af2c-5fd4-4d99-86d6-ced4eef2fb52/content
https://doi.org/10.1007/3-540-44647-8_31
https://doi.org/10.1145/3519270.3538430
https://doi.org/10.1145/571637.571640
https://doi.org/10.1145/2688073.2688102
https://doi.org/10.4230/LIPIcs.DISC.2021.17
https://doi.org/10.1145/3662158.3662792
https://doi.org/10.1145/3662158.3662792
https://doi.org/10.48550/arXiv.2403.08374
https://doi.org/10.1145/3662158.3662780
https://doi.org/10.1016/0890-5401(92)90004-Y
https://doi.org/10.1016/0890-5401(92)90004-Y
https://doi.org/10.4230/LIPICS.OPODIS.2022.18
https://doi.org/10.1109/NCA.2018.8548057

P. Civit et al. 14:21

26 Carole Delporte-Gallet, Hugues Fauconnier, and Michel Raynal. On the weakest information
on failures to solve mutual exclusion and consensus in asynchronous crash-prone read/write
systems. J. Parallel Distributed Comput., 153:110–118, 2021. doi:10.1016/J.JPDC.2021.03.
015.

27 Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for byzantine agreement.
J. ACM, 32(1):191–204, 1985. doi:10.1145/2455.214112.

28 Danny Dolev, Rüdiger Reischuk, and H. Raymond Strong. Early stopping in byzantine
agreement. J. ACM, 37(4):720–741, 1990. doi:10.1145/96559.96565.

29 Juan Garay, Aggelos Kiayias, Rafail M. Ostrovsky, Giorgos Panagiotakos, and Vassilis
Zikas. Resource-Restricted Cryptography: Revisiting MPC Bounds in the Proof-of-Work
Era. Lecture Notes in Computer Science (including subseries Lecture Notes in Artifi-
cial Intelligence and Lecture Notes in Bioinformatics), 12106 LNCS:129–158, 2020. doi:
10.1007/978-3-030-45724-2_5.

30 Sanjam Garg, Aarushi Goel, and Abhishek Jain. The broadcast message complexity of secure
multiparty computation. In Steven D. Galbraith and Shiho Moriai, editors, Advances in
Cryptology - ASIACRYPT 2019 - 25th International Conference on the Theory and Application
of Cryptology and Information Security, Kobe, Japan, December 8-12, 2019, Proceedings,
Part I, volume 11921 of Lecture Notes in Computer Science, pages 426–455. Springer, 2019.
doi:10.1007/978-3-030-34578-5_16.

31 Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Sonnino, Alexander Spiegelman, and Zhuolun
Xiang. Jolteon and ditto: Network-adaptive efficient consensus with asynchronous fallback.
In Ittay Eyal and Juan A. Garay, editors, Financial Cryptography and Data Security -
26th International Conference, FC 2022, Grenada, May 2-6, 2022, Revised Selected Papers,
volume 13411 of Lecture Notes in Computer Science, pages 296–315. Springer, 2022. doi:
10.1007/978-3-031-18283-9_14.

32 Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand:
Scaling Byzantine Agreements for Cryptocurrencies. In Proceedings of the 26th Symposium on
Operating Systems Principles, SOSP ’17, pages 51–68, New York, NY, USA, 2017. Association
for Computing Machinery. doi:10.1145/3132747.3132757.

33 Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred V. Aho, editor, Proceedings
of the 19th Annual ACM Symposium on Theory of Computing, 1987, New York, New York,
USA, pages 218–229. ACM, 1987. doi:10.1145/28395.28420.

34 Vincent Gramoli, Zhenliang Lu, Qiang Tang, and Pouriya Zarbafian. Optimal asynchronous
byzantine consensus with fair separability. IACR Cryptol. ePrint Arch., page 545, 2024. URL:
https://eprint.iacr.org/2024/545.

35 Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. Order-fairness for byzantine
consensus. In Daniele Micciancio and Thomas Ristenpart, editors, Advances in Cryptology -
CRYPTO 2020 - 40th Annual International Cryptology Conference, CRYPTO 2020, Santa
Barbara, CA, USA, August 17-21, 2020, Proceedings, Part III, volume 12172 of Lecture Notes
in Computer Science, pages 451–480. Springer, 2020. doi:10.1007/978-3-030-56877-1_16.

36 Hannah Keller, Claudio Orlandi, Anat Paskin-Cherniavsky, and Divya Ravi. MPC with Low
Bottleneck-Complexity: Information-Theoretic Security and More. In 4th Conference on
Information-Theoretic Cryptography (ITC), volume 267, pages 1–21, Aarhus, Denmark, 2023.
doi:10.4230/LIPIcs.ITC.2023.11.

37 Ramakrishna Kotla, Lorenzo Alvisi, Michael Dahlin, Allen Clement, and Edmund L. Wong.
Zyzzyva: speculative byzantine fault tolerance. In Thomas C. Bressoud and M. Frans
Kaashoek, editors, Proceedings of the 21st ACM Symposium on Operating Systems Principles
2007, SOSP 2007, Stevenson, Washington, USA, October 14-17, 2007, pages 45–58. ACM,
2007. doi:10.1145/1294261.1294267.

38 Ramakrishna Kotla and Michael Dahlin. High throughput byzantine fault tolerance. In
2004 International Conference on Dependable Systems and Networks (DSN 2004), 28 June

DISC 2024

https://doi.org/10.1016/J.JPDC.2021.03.015
https://doi.org/10.1016/J.JPDC.2021.03.015
https://doi.org/10.1145/2455.214112
https://doi.org/10.1145/96559.96565
https://doi.org/10.1007/978-3-030-45724-2_5
https://doi.org/10.1007/978-3-030-45724-2_5
https://doi.org/10.1007/978-3-030-34578-5_16
https://doi.org/10.1007/978-3-031-18283-9_14
https://doi.org/10.1007/978-3-031-18283-9_14
https://doi.org/10.1145/3132747.3132757
https://doi.org/10.1145/28395.28420
https://eprint.iacr.org/2024/545
https://doi.org/10.1007/978-3-030-56877-1_16
https://doi.org/10.4230/LIPIcs.ITC.2023.11
https://doi.org/10.1145/1294261.1294267

14:22 Efficient Signature-Free Validated Agreement

- 1 July 2004, Florence, Italy, Proceedings, pages 575–584. IEEE Computer Society, 2004.
doi:10.1109/DSN.2004.1311928.

39 Leslie Lamport. Paxos Made Simple. ACM SIGACT News (Distributed Computing Column)
32, 4 (Whole Number 121, December 2001), pages 51–58, 2001.

40 Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine Generals Problem. ACM
Transactions on Programming Languages and Systems, 4(3):382–401, 1982. doi:10.1145/
357172.357176.

41 Leslie Lamport, Robert Shostak, and Marshall Pease. Concurrency: The works of leslie
lamport. Association for Computing Machinery, pages 203–226, 2019.

42 Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzantine generals problem.
ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982. doi:10.1145/357172.357176.

43 Christoph Lenzen and Sahar Sheikholeslami. A recursive early-stopping phase king protocol.
In Alessia Milani and Philipp Woelfel, editors, PODC ’22: ACM Symposium on Principles
of Distributed Computing, Salerno, Italy, July 25 - 29, 2022, pages 60–69. ACM, 2022.
doi:10.1145/3519270.3538425.

44 Yuan Lu, Zhenliang Lu, and Qiang Tang. Bolt-dumbo transformer: Asynchronous consensus
as fast as the pipelined BFT. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi,
editors, Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2022, Los Angeles, CA, USA, November 7-11, 2022, pages 2159–2173. ACM,
2022. doi:10.1145/3548606.3559346.

45 Yuan Lu, Zhenliang Lu, Qiang Tang, and Guiling Wang. Dumbo-MVBA: Optimal Multi-
Valued Validated Asynchronous Byzantine Agreement, Revisited. In Yuval Emek and Christian
Cachin, editors, PODC ’20: ACM Symposium on Principles of Distributed Computing, Virtual
Event, Italy, August 3-7, 2020, pages 129–138. ACM, 2020. doi:10.1145/3382734.3405707.

46 Loi Luu, Viswesh Narayanan, Kunal Baweja, Chaodong Zheng, Seth Gilbert, and Prateek
Saxena. SCP: A Computationally-Scalable Byzantine Consensus Protocol For Blockchains.
Cryptology ePrint Archive, 2015.

47 Florence Jessie MacWilliams and Neil James Alexander Sloane. The Theory of Error-Correcting
Codes, volume 16. Elsevier, 1977.

48 Dahlia Malkhi, Kartik Nayak, and Ling Ren. Flexible byzantine fault tolerance. In Lorenzo
Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications Security, CCS 2019,
London, UK, November 11-15, 2019, pages 1041–1053. ACM, 2019. doi:10.1145/3319535.
3354225.

49 Ralph C. Merkle. A digital signature based on a conventional encryption function. In Carl
Pomerance, editor, Advances in Cryptology - CRYPTO ’87, A Conference on the Theory and
Applications of Cryptographic Techniques, Santa Barbara, California, USA, August 16-20,
1987, Proceedings, volume 293 of Lecture Notes in Computer Science, pages 369–378. Springer,
1987. doi:10.1007/3-540-48184-2_32.

50 Atsuki Momose and Ling Ren. Multi-threshold byzantine fault tolerance. In Yongdae Kim,
Jong Kim, Giovanni Vigna, and Elaine Shi, editors, CCS ’21: 2021 ACM SIGSAC Conference
on Computer and Communications Security, Virtual Event, Republic of Korea, November 15 -
19, 2021, pages 1686–1699. ACM, 2021. doi:10.1145/3460120.3484554.

51 Atsuki Momose and Ling Ren. Optimal Communication Complexity of Authenticated Byzan-
tine Agreement. In Seth Gilbert, editor, 35th International Symposium on Distributed Com-
puting, DISC 2021, October 4-8, 2021, Freiburg, Germany (Virtual Conference), volume
209 of LIPIcs, pages 32:1–32:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.DISC.2021.32.

52 Kartik Nayak, Ling Ren, Elaine Shi, Nitin H. Vaidya, and Zhuolun Xiang. Improved extension
protocols for byzantine broadcast and agreement. In Hagit Attiya, editor, 34th International
Symposium on Distributed Computing, DISC 2020, October 12-16, 2020, Virtual Conference,

https://doi.org/10.1109/DSN.2004.1311928
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/3519270.3538425
https://doi.org/10.1145/3548606.3559346
https://doi.org/10.1145/3382734.3405707
https://doi.org/10.1145/3319535.3354225
https://doi.org/10.1145/3319535.3354225
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1145/3460120.3484554
https://doi.org/10.4230/LIPIcs.DISC.2021.32

P. Civit et al. 14:23

volume 179 of LIPIcs, pages 28:1–28:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2020. doi:10.4230/LIPIcs.DISC.2020.28.

53 Irving S Reed and Gustave Solomon. Polynomial codes over certain finite fields. Journal of
the society for industrial and applied mathematics, 8(2):300–304, 1960.

54 Victor Shoup. Practical threshold signatures. In Bart Preneel, editor, Advances in Cryptology -
EUROCRYPT 2000, International Conference on the Theory and Application of Cryptographic
Techniques, Bruges, Belgium, May 14-18, 2000, Proceeding, volume 1807 of Lecture Notes in
Computer Science, pages 207–220. Springer, 2000. doi:10.1007/3-540-45539-6_15.

55 Anping Song and Cenhao Zhou. Flexbft: A flexible and effective optimistic asynchronous bft
protocol. Applied Sciences, 14(4):1461, 2024.

56 Alexander Spiegelman. In search for an optimal authenticated byzantine agreement. arXiv
preprint arXiv:2002.06993, 2020.

57 T. K. Srikanth and Sam Toueg. Optimal clock synchronization. In Michael A. Malcolm and
H. Raymond Strong, editors, Proceedings of the Fourth Annual ACM Symposium on Principles
of Distributed Computing, Minaki, Ontario, Canada, August 5-7, 1985, pages 71–86. ACM,
1985. doi:10.1145/323596.323603.

58 T. K. Srikanth and Sam Toueg. Optimal clock synchronization. J. ACM, 34(3):626–645, 1987.
doi:10.1145/28869.28876.

59 Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, Lau Cheuk Lung, and
Paulo Veríssimo. Efficient byzantine fault-tolerance. IEEE Trans. Computers, 62(1):16–30,
2013. doi:10.1109/TC.2011.221.

60 Lei Yang, Seo Jin Park, Mohammad Alizadeh, Sreeram Kannan, and David Tse. Dispers-
edledger: High-throughput byzantine consensus on variable bandwidth networks. In Amar
Phanishayee and Vyas Sekar, editors, 19th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2022, Renton, WA, USA, April 4-6, 2022, pages 493–512. USENIX
Association, 2022. URL: https://www.usenix.org/conference/nsdi22/presentation/yang.

61 You Zhou, Zongyang Zhang, Haibin Zhang, Sisi Duan, Bin Hu, Licheng Wang, and Jianwei
Liu. Dory: Asynchronous BFT with reduced communication and improved efficiency. IACR
Cryptol. ePrint Arch., page 1709, 2022. URL: https://eprint.iacr.org/2022/1709.

DISC 2024

https://doi.org/10.4230/LIPIcs.DISC.2020.28
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1145/323596.323603
https://doi.org/10.1145/28869.28876
https://doi.org/10.1109/TC.2011.221
https://www.usenix.org/conference/nsdi22/presentation/yang
https://eprint.iacr.org/2022/1709

	1 Introduction
	1.1 Contributions
	1.2 Overview & Technical Challenges

	2 System Model & Preliminaries
	2.1 System Model
	2.2 Complexity Measures
	2.3 Building Blocks

	3 HashExt: Optimal Early-Stopping Hash-Based Solution
	3.1 Building Blocks
	3.2 Pseudocode
	3.3 Proof Sketch

	4 ErrorFreeExt: Near-Optimal Early-Stopping Error-Free Solution
	4.1 Building Blocks
	4.2 SlowExt: Achieving Near-Optimality Without Early-Stopping
	4.3 ErrorFreeExt: Overview
	4.4 Proof Sketch

	5 Concluding Remarks

