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Abstract
The Iterated Immediate Snapshot model (IIS) is a central model in distributed computing. We
present our work in the message adversary setting. We consider general message adversaries whose
executions are arbitrary subsets of executions M of the IIS message adversary. We present a
complete and explicit characterization of solvable colorless tasks given any submodel of IIS.

Based upon the geometrization mapping geo introduced in [8] to investigate set-agreement in
general submodels, we give a simple necessary and sufficient condition for computability. The
geometrization geo associates to any execution a point in RN . A colorless task (I,O,∆) is solvable
under M if and only if there is a continuous function f : geo(skeln(I) × M) −→ |O| carried by ∆.

This necessary and sufficient condition for colorless tasks was already known for full models
like the Iterated Immediate Snapshot model [14, Th. 4.3.1] so our result is an extension of the
characterization to any arbitrary submodels. It also shows the notion of continuity that is relevant
for distributed computability of submodels is not the one from abstract simplicial complexes but the
standard one from RN . As an example of its effectiveness, we can now derive the characterization
of the computability of set-agreement on submodels from [8] by a direct application of the No-
Retraction theorem of standard topology textbook. We also give a new fully geometric proof of the
known characterization of computable colorless tasks for t−resilient layered snapshot model by using
cross-sections of fiber bundles, a standard tool in algebraic topology.
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1 Introduction

Distributed computability is the general investigation of which tasks could be solved in which
distributed models. It is known since [12], [2] and [9] that some distributed tasks could have
no algorithmic solution valid in all scenarios. Following the seminal works of Herlihy and
Shavit [18], Borowsky and Gafni [5], Saks and Zaharoglou [28], using topological methods has
proved very fruitful for distributed computing and for distributed computability in particular.

A distributed model that is widely used is the Iterated Immediate Snapshot (IIS) model,
which is known to have the same task-computability power as the standard asynchronous read
write wait-free model. In the setting of message adversaries, we consider general submodels
M of the IIS model. These submodels correspond to arbitrary subsets of executions of IIS.
We work on a subclass of distributed tasks, the colorless tasks : intuitively, any process
can replace his input (resp. output) with the input (resp. output) of other processes while
still correctly solving the task. Many important tasks like Consensus, k−set agreement, are
colorless tasks. The ones needing to “break symmetry”, like Election or Renaming, are not.
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16:2 A Simple Computability Theorem for Colorless Tasks

1.1 Related Work in Distributed Computability for IIS and Submodels
Distributed computability is a long time subject in distributed computing and topological
methods are involved since introduced in [18, 28], see also the textbook [14] of Herlihy,
Kozlov and Rajsbaum. We focus on this section on the previous results directly linked to
our investigation, that is distributed computability for arbitrary submodels of the IIS model.

Models, Submodels and Message Adversaries. Topological methods have been first applied
to the wait-free model, to be extended to some computability equivalent layered models,
where these methods are more directly applicable. The Iterated Immediate Snapshot model
appears now as a central model for distributed computing, either as a shared memory model
or as a message adversary model.

We consider arbitrary subsets of executions of IIS, which is a setting that captures a
wide range of models. Numerous submodels of the IIS model have already been investigated,
they are usually called adversaries, see [14, Chap. 5] for results about colorless tasks for
specific adversaries. Another category of adversaries are the affine adversaries of Kuznetsov
and Rieutord [27, 22].

Our result is one of the few general results that can be applied to any submodel of the IIS
model, which subsumes all models cited above. In this line of research, there have been works
of Gafni, Kuznetsov and Manolescu in [10], and a recent extension by Attiya, Castañeda and
Nowak in [3], following the work of Godard and Perdereau [11] for only two processes. In [3],
a general computability theorem is presented for all submodels of the IIS model. Their results
address both colorless and colored tasks, it is expressed using special infinite complexes called
terminating subdivisions. This particular object capture non-uniform termination (to in part
deal with non-compact sub-models) with infinite simplicial complexes. Since in this article
we get rid of terminating subdivision we use the geometrization topology of [3].

Geometrization Topology. To include non-compact submodel we use the geometrization
topology introduced by Godard and Perdereau in [11] for only two processes. It was later
generalized by Coutouly and Godard in [8] to any number of processes in the case of
general submodels of the Iterated Immediate Snapshot model. The geometrization mapping
geo associates to any execution of IIS a point in RN . This induces a topology on IIS by
considering as open sets the pre-images of open sets of RN . In [8], Coutouly and Godard only
investigated the set-agreement task, not general colorless tasks. Moreover, the geometrization
topology is mostly used in a descriptive way, not as a topology per se. This means that the
geometrization topology is introduced in [8], but it is not actually used except as a way to
provide some intuition to the combinatorial descriptions of some classes of executions. The
main result of this paper, summarized in the following section, infers that there was actually
more than an intuition, since we directly use this topology on sub model of IIS to express
our computability results.

1.2 Our Contributions
A Generalized Computability Result. We build upon the geo mapping introduced by [8] and
use it to express a new and simple colorless computability characterization. The geo mapping
associates to any execution of IIS a point in RN by considering an encoding by geometrical
simplicial complexes. We adapt it to the colorless setting and a geometric universal colorless
algorithm is presented, that is coined the Colorless Chromatic Average algorithm. The
characterization is as follows in Theorem 11: a message adversaryM⊂ IISn solves a colorless
task (I,O,∆) if and only if there exists a continuous function f : geo(skeln(I)×M) −→ |O|
carried by ∆.
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This characterization was already known when M = IISn, see [14, Thm. 4.3.1] and note
that geo(I × IISn) = |I|. Our result is therefore a wide extension of this simple topological
characterization to any arbitrary submodel of the IIS model.

We discuss now the relevance of Theorem 11. The continuous function involved in this
Theorem is continuous in the classical sense, i.e. for the topology of RN . In [3], a very
general theorem is shown that relates computability to continuity of some function. However,
this continuity is defined for a well chosen, but quite abstract and involved, topology on the
set of executions. Here, thanks to the geometrization topology, we have basically to only deal
with the standard continuity of the functions of RN , which actually appears more convenient,
like in the Set-Agreement case, detailed below.

To compare to [3, Th 4.1] we focus less general task (only the colorless one) to remove the
need from terminating subdivision. Both article have result on general adversaries of the IIS
model. In this setting, a question of computability can be transformed to the existence of a
continuous function between two classical topological spaces. For instance, we can directly
use results from topology textbook as the No Retraction theorem [13, Cor. 2.15] to obtain a
characterization for the Set-Agreement task. We also give a fully topological proof of the
known characterization of the computable colorless tasks for the t−resilient layered snapshot
protocol model by using cross-sections of fiber bundles.

These applications and their associated simple proofs, fully justifies, in our opinion, the
move from abstract complexes to a fully geometric description of distributed systems by
geometric simplicial complexes embedded in the ambient topology of RN . That is, the
relevant simplicial complexes for distributed computability of colorless tasks are geometric
simplicial complexes, seen as subspaces of RN with its classical topology. It is known that
abstract simplicial complex and geometric simplicial complex coincide when the complexes
are of finite size. However, since dealing with general submodels, in particular so-called
non-compact models, implies to associate a complex of possibly infinite size to distributed
executions, we believe this is necessary.

Applications. As illustrations of our main computability theorem, we give new simple
topological proofs of two known results : the characterization of submodels for which set-
agreement is solvable (as already given in [8]) and the computability of colorless tasks against
adversary. Our application are simple in the sense that we only use textbook theorems for
“classical” topological spaces (like the standard Euclidian space RN or the standard ball Sn).

We investigate colorless tasks for so-called adversary models. These are sub-models of IIS
where the failures can be not homogeneous: there is an arbitrary list F of sets of processes
that can fail simultaneously, F is assumed to be inclusion closed.

A common example of adversary submodels is the t−faulty submodel which is a setting
where at most t processes will eventually crash. In our IIS setting, this corresponds to the
t−resilient layered snapshot protocol model. This is a well studied model, since [17] it is
known such model cannot solve the t−set agreement. Nowadays, we have a nice topological
understanding thanks to [15], a task is solvable in a t−resilient layered snapshot model if
and only there is a continuous map from |skelt(I)| → |O| carried by ∆. From this, it can
be deduced that t-resilient model cannot solve the k-set-Agreement task unless k > t. This
result was also obtained in [4] using an algorithmic construction. A nice overview can be
found in [21], and a comprehensive investigation in [14, Chap. 5]. We present here a new
topological proof of these results that exploits a new topological and geometric interpretation
of the reduction between models by using fiber bundles and cross sections, which are standard
notion of topological spaces.
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2 Models of Computation and Definitions

2.1 Models of Computation
We introduce our notations. Let n ∈ N, we consider systems with n+ 1 processes. We denote
Πn = [0, .., n] the set of processes. Since sending a message is an asymmetric operation, we
will work with directed graphs. We use standard directed graph (or digraph) notations :
given G, V (G) is the set of vertices, A(G) ⊂ V (G)× V (G) is the set of arcs.

▶ Definition 1. We denote by Gn the set of directed graphs with vertices in Πn.
A dynamic graph G is a sequence G1, G2, · · · , Gr, · · · where Gr is a directed graph with

vertices in Πn. We also denote by G(r) the digraph Gr. A message adversary is a set of
dynamic graphs. Since that n will be mostly fixed through the paper, we use Π for the set of
processes and G for the set of graphs with vertices Π when there is no ambiguity.

Intuitively, the graph at position r of the sequence describes whether there will be, or not,
transmission of some messages sent at round r. A formal definition of an execution under a
dynamic graph will be given in Section 2.3. We will use the standard following notations in
order to describe more easily our message adversaries [25].

A dynamic graph is seen as a infinite word over the alphabet G.Given U ⊂ G, U∗ is the set
of all finite sequences of elements of U , Uω is the set of all infinite ones and U∞ = U∗ ∪ Uω.

Given G ∈ Gω, if G = HK, with H ∈ G∗,K ∈ Gω, we say that H is a prefix of G, and K
a suffix. Pref(G) denotes the set of prefixes of G. A message adversary of the form Uω,
with U ⊂ G, is called an oblivious adversary or an iterated adversary. A word in M⊂ Gω is
called a communication scenario (or scenario for short) of message adversary M. Given a
word H ∈ G∗, it is called a partial scenario and len(H) is the length of this word. The prefix
of G of length r is denoted G|r (not to be confused with G(r) which is the r-th letter of G,
it is the digraph at time r).

We show how standard fault environments are conveniently described in our frame-
work.Consider a synchronous system of two processes ◦ and • where at most one of the
processes can crash, the associated adversary is the following (using rational expression):
C1 = {◦↔•ω}∪{◦↔•}∗({◦←•ω, ◦→•ω}). In the system of two processes ◦ and • where, at each
round, only one message can be lost, the associated message adversary is {◦↔•, ◦←•, ◦→•}ω.

2.2 Iterated Immediate Snapshot Message Adversary
The previous example is IIS1, we now detail the main message adversary we consider.
Given a graph G, we denote by InG(a) = {b ∈ V (G) | (b, a) ∈ A(G)} the set of incoming
vertices of a in V (G). A graph G has the containment Property if for all a, b ∈ V (G),
InG(a) ⊂ InG(b) or InG(b) ⊂ InG(a). We say that a graph G has the Immediacy Property
if for all a, b, c ∈ V (G), (a, b), (b, c) ∈ A(G) implies that (a, c) ∈ A(G).

▶ Definition 2 ([14]). We set ImSn = {G ∈ Gn | G has the Immediacy and Containment
properties }. The Iterated Immediate Snapshot message adversary for n+ 1 processes is the
message adversary IISn = ImSωn .

The Iterated Immediate Snapshot model was first introduced as a (shared) memory
model and then has been shown to be equivalent to the above message adversary first as
tournaments and iterated tournaments [6, 1], then as this message adversary [14, 16]. See
also [26] for a survey of the reductions involved in these layered models.
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2.3 Execution of a Distributed Algorithm
Given a message adversary M and a set of initial configurations I, we define what is an
execution of a given algorithm A subject to M with initialization I. An execution is
constituted of an initialization step, and a (possibly infinite) sequence of rounds of messages
exchanges and corresponding local state updates. When the initialization is clear from the
context, we will use scenario and execution interchangeably.

An execution of an algorithm A under scenario w ∈ M and initialization ι ∈ I is the
following. This execution is denoted ι.w. First, ι affects the initial state to all processes of Π.
Then the system progresses in rounds. A round is decomposed in 3 steps : sending, receiving,
updating the local state. At round r ∈ N, messages are sent by the processes using the
SendAll() primitive. The fact that the corresponding receive actions, using the Receive()
primitive, will be successful depends on G = w(r), G is called the instant graph at round r.

Let p, q ∈ Π. The message sent by p is received by q on the condition that the arc
(p, q) ∈ A(G). Then, all processes update their state according to the received values and A.
Note that it is assumed that p always receives its own value, that is (p, p) ∈ A(G) for all p
and G. However, in examples, this might be implicit for clarity and brevity.

Let w ∈ M, ι ∈ I. Given u ∈ Pref(w), we denote by sp(ι.u) the state of process p at
the len(u)-th round of the algorithm A under scenario w with initialization ι. This means
that sp(ι.ε) = ι(p) represents the initial state of p in ι, where ε denotes the empty word.

3 Task Definition

We start by restating some standard definitions of combinatorial topology.

▶ Definition 3 (Abstract simplicial complex). [14, Def 3.2.1] Let V be a set, and C a collection
of finite subsets of V . C is an abstract simplicial complex on V if
1. ∀σ ∈ C, ∀τ ⊆ σ, we have τ ∈ C;
2. ∀v ∈ V, {v} ∈ C.

An element of V is a vertex of C and V (C) denotes the set of vertices of C. A set σ ∈ C
is a simplex where dim σ is the number of vertices in σ minus one. We say that σ is a facet
if there is no other simplex that contains σ. If C1 ⊆ C2 then we say that C1 is a subcomplex
of C2, a complex is pure if all facets have the same dimension. The pair (C1, χC1) is a
chromatic complex if C1 is a complex and the function χC1 : V (C1)→ Π has the property
that ∀σ ∈ C1,∀v1, v2 ∈ V (σ), v1 ̸= v2 ⇔ χC1(v1) ̸= χC1(v2).

The border of a simplex σ, is ∂(σ) = {τ ∈ σ|dim(τ) = dim(σ) − 1}. A ℓ-skeleton of
C1 is the collection of the simplices of dimension equal or less than ℓ, we write skelℓ(C1).
The star of a simplex σ ∈ C1 is St(σ,C1) =

⋃
τ∈C1,σ⊆τ τ , the extended star is St∗(σ,C1) =⋃

v∈σ St(v, C1).

▶ Definition 4 (Simplical map). [14, Def 3.2.2] Let C1, C2 be two simplicial complexes, a
simplicial map is a map Φ : V (C1)→ V (C2) such that ∀σ ∈ C1,Φ(σ) ∈ C2.

▶ Definition 5 (Carrier map). [14, Def 3.4.1] Let C1, C2 be two simplicial complexes, a carrier
map Φ : C1 → 2C2 is a mapping such that ∀σ, τ ∈ C1, and σ ⊆ τ imply Φ(σ) ⊆ Φ(τ).

In addition, a carrier map Φ : C1 → 2C2 is rigid when ∀σ ∈ C1, dim(σ) = d,Φ(σ) is
a pure complex of dimension d. A simplicial map φ : C1 → C2 is carried by Φ if ∀σ ∈
C1, φ(σ) ∈ Φ(σ). A carrier map is chromatic if it is rigid and ∀σ ∈ C1, χC1(σ) = χC2(φ(σ))
where χC2(φ(σ)) = {χC2(v)|v ∈ V (φ(σ))}. We say that Vin is the domain of input values
and Vout the domain of output values.

DISC 2024
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▶ Definition 6 (Colorless Task). [14, Def 4.2.1] A colorless task is a triple (I,O,∆) where :
I is the input complex, where each simplex is a subset of Vin,
O is the output complex, where each simplex is a subset of Vout,
∆ : I → 2O is a carrier map that encodes the specification of the task.

In [14, Chap 4.1], the notion of colorless protocol is presented both operationally and
combinatorially. We will give the corresponding geometric version in Algorithm 1.

▶ Definition 7. An algorithm A solves a colorless task (I,O,∆) for the message adversary
M if for any ι ∈ I, any scenario w ∈M, there exist u a prefix of w such that the state of
the system {s0(ι.u), . . . , sn(ι.u)} = out satisfies the specification of the task, ie out ∈ ∆(ι).

4 Geometric Definition of Simplicial Complexes

4.1 Standard Definitions
In this paper, we actually handle simplicial complexes as geometric complexes, so we present
the standard definitions of simplicial complexes in the geometric setting [24]. We fix N ∈ N.
We note B(x, r) = {y ∈ X|d(x, y) ≤ r} with x ∈ RN , r ∈ R and d(x, y) the Euclidean
distance on RN .

▶ Definition 8 (Geometric Simplex). Let n ∈ N. A finite set σ = {x0, . . . , xn} ⊂ RN is called
a simplex of dimension n if the vectors {x1 − x0, . . . , xn − x0} are linearly independent.

We denote by |σ| the convex hull of σ and Int(σ) is the interior of |σ|. We denote Sn
“the” simplex of dimension n : through this paper we assume a fixed embedding in RN for
Sn = (x∗

0, . . . , x
∗
n). We will also assume that its diameter diam(Sn) is 1. We usually associate

χ such that χ(x∗
i ) = i, to get the chromatic simplex Sn.

▶ Definition 9 ([24]). A simplicial complex is a collection C of simplices such that :
(a) If σ ∈ C and σ′ ⊂ σ, then σ′ ∈ C,
(b) If σ, τ ∈ C and |σ| ∩ |τ | ≠ ∅ then there exists σ′ ∈ C such that

|σ| ∩ |τ | = |σ′|,
σ′ ⊂ σ, σ′ ⊂ τ.

We denote ≀C≀ = ⋃
S∈C
|S|, this is the geometrization of C. Note that the geometrization

here should not be confused with the standard geometric realization. They are the same at
the set level but not at the topological level. A discussion in Appendix A providesx more
information on this subject. Since the difference only appears for infinite complexes, we will
still denote |σ| the convex hull of a simplex σ, instead of ≀σ≀.

We use the same terminology as for abstract complexes, with some additionals concepts.
Let A and B be simplicial complexes. A map f : V (A) → V (B) defines a simplicial map
if it preserves the simplices, i.e. for each simplex σ of A, the image f(σ) is a simplex
of B. By linear combination of the barycentric coordinates, f extends to the barycentric
map ≀f ≀ : ≀A≀ → ≀B≀. This can be done by taking any simplex σ = {x0, . . . , xn} of A.
Since any y ∈ |σ| is obtained as y =

∑n
i=0 ti.xi with ti ∈ [0, 1] and

∑n
i=0 ti = 1, we set

≀f ≀(y) =
∑n
i=0 ti.f(xi).

For any geometric chromatic simplex σ = (v0, v1, . . . , vn) (ie with a fixed order on the
set of vertices), we have an unique affine map called the characteristic map φσ : |Sn| → |σ|
taking the ith vertex of Sn to vi. This is indeed the barycentric map of the simplicial map
taking the ith vertex of Sn to vi.
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Let X ⊂ RN , a function f : X → |C2| respects a carrier map ∆ : C1 → 2C2 with X ⊆ ≀C1≀,
if ∀σ ∈ C1, f(|σ| ∩X) ⊆ ∆(σ). The open star of σ ∈ C1 : St◦(σ,C1) =

⋃
τ∈C1,σ⊆τ Int(τ).

▶ Definition 10 (Subdivision). [14, Def 3.6.1] Let C1, C2 be two geometric simplicial complexes.
We say that C2 is a subdivision of C1 if : ≀C1≀ = ≀C2≀, and each simplex of C1 is the union
of finitely many simplices of C2.

4.2 Geometric Encoding of Iterated Immediate Snapshots
Configurations

Here we present the mapping geo that links points of RN and executions of the Iterated
Immediate Snapshot model. Since this has been introduced in [8], this is only sketched here.
The reader can refer to Appendix B for all the technical details in the setting of this paper.

There are two equivalent ways to define geo. It can be seen as the limit value of running
a specific algorithm, called the Chromatic Average algorithm. Or, for a given execution w, it
can be seen as the limit of iterating the Standard Chromatic Subdivision along the simplices
corresponding to the successive instant graphs w(r). The only difference with [8], is that we
have to adapt to the setting of colorless algorithms by introducing the Reduced Chromatic
Average algorithm. But the ideas and proof techniques are in essence the same as [8].

Algorithm 1 The reduced version of Chromatic Average Algorithm for process i with
initial value x∗

i ∈ RN .

1 x← x∗
i ;

2 Loop forever
3 SendAll(x);
4 V ←Receive() // set of all received values including its own;
5 d← sizeof(V )− 1 // the process received d values, excluding its own ;
6 x = 1

2d+1x+
∑
y∈V \{x}

2
2d+1y;

7 EndLoop

We consider Algorithm 1, which is an adaptation of the Chromatic Average algorithm
of [8]. As proved in [8] and in Appendix B, it is possible to show that the values x of all
processes converge to the same limit geo(w) for any execution w ∈ IISn. It is related to the
known fact that the standard chromatic subdivision is mesh-shrinking [14].

4.3 A Topology for IISn

We present the geometrization topology on the set of execution of IIS as introduced in [8].
It is the topology induced by geo−1 from the standard topology in RN .

The geometrization topology is defined on IISn by considering as open sets the sets
geo−1(Ω) where Ω is an open set of RN . A collection of sets can define a topology when any
union of sets of the collection is in the collection, and when any finite intersection of sets of
the collection is in the collection. This is straightforward for a collection of inverse images of
a collection that satisfies these properties. Note this also makes geo continuous by definition.

By considering the definition of geo from the iterations of the Standard Chromatic
subdivision, we also have geo(IISn) = |Sn|. Now, we want to associate a geometric point
to any execution w ∈ IISn with a specific initial configuration ι. Hence, we extend the
construction on the simplex Sn to any simplicial complex I in the following way: ∀ι ∈ I,∀w ∈
M, geo(ι, w) = φι(geo(w)), where φι is the characteristic map of ι, mapping Sdim(ι) to ι.
We define geo(I ×M) =

⋃
w∈M,σ∈I φσ(geo(w)). This construction into the set of execution

allow us to associate to any message adversary M⊆ IIS a topological space in RN .

DISC 2024
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5 A Generalisation of the Asynchronous Computability Theorem

The main result of this paper is an extension to any submodel of IIS of the result [14, Thm.
4.3.1] about computability of colorless tasks in IIS. Our proof follows the same line as [14]
with adaptation of some key tools. We first express the main result.

▶ Theorem 11 (Colorless-GACT). Let (I,O,∆) be a colorless task. This is solvable on
M⊆ IISn if and only if there is a continuous function f : geo(skelnI ×M)→ |O| carried
by ∆.

The rest of this section is a long proof of the main result. We prove this equivalence in
four inductive steps starting from the right hand side of the above theorem. We only give
here the outline of the proof, that is the properties we want to prove equivalent. All proper
definitions stated here will be introduced along the way :
1. A continuous function f : geo(I×M)→ |O| satisfies an η-star condition for some function

η.
2. From this η-star condition, we construct a IIS-terminating subdivision and a semi-

simplicial approximation of f
3. This semi-simplicial approximation of f yield an algorithm solving the task (I,O,∆)
4. An algorithmic solution forM implies the existence of a continuous map geo(I×M)→ |O|

For the rest of this section, n is fixed, we note I instead of skelnI. We also fix X ⊆ RN .
We will set X = geo(I ×M) in the end. Let O be a finite simplicial complex.

5.1 From continuous function to η-star condition

We adapt the notion of star-condition.

▶ Definition 12 (Star Condition for η). Let η : X −→]0,+∞[ and let f : X → |O|, f satisfies
the star condition for η if ∀x ∈ X,∃v ∈ V (O), f(B(x, η(x)) ∩X) ⊆ St◦(v).

We also say f satisfies the η−star condition when we have a given η for the star condition
above. See Figure 3 in Appendix D for an illustration.

▶ Proposition 13. Let f : X → |O| a continuous function. Then there is η : X −→]0,+∞[
such that f satisfies the η-star condition.

Proof. We recall the standard definition of continuity : ∀x ∈ X,∀ϵ > 0,∃δϵ(x) > 0 such
that ∀x0, x0 ∈ B(x, δϵ(x)) ⇒ f(x0) ∈ B(f(x), ϵ). Let y ∈ |O| and σy ∈ O the simplex of
minimal dimension such that y ∈ |σy|. Let ϵ(y) = d(y, |O| \St◦(σy)). We know that ϵ(y) ̸= 0
because y ∈ St◦(σy), which is an open space. From there, the η-star condition is obtained
with η(x) = δϵ(f(x))(x) since f(B(x, η(x)) ∩X) ⊆ B(f(x), ϵ(f(x))) ⊆ St◦(σf(x)). ◀

5.2 From η-star condition to semi-simplicial approximation

We say that a simplicial complex is compatible with a subspace X if it covers X entirely
with every simplex needed for such a cover.

▶ Definition 14 (Complex compatible with a subspace). Let X ⊆ RN and C a simplicial
complex. We say that C is compatible with X if X ⊆ ≀C≀, and for all facet σ of C, |σ|∩X ̸= ∅.
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We use the notion of terminating subdivisions, that were introduced in [10, 3]. Here we
present a more complete and explicit definition, this is needed since we are in the geometric
context. The intuition behind this construction is that we want to associate a complex with
the set of executions of a given algorithm on M. As the termination of this algorithm could
be not uniform (even with a fixed initial configuration), the associated complex may be of
infinite size. Since a subdivision of a simplex cannot be infinite, we have to define an adapted
construction from the iterated application of the Standard Chromatic subdivision.

Given a complex C, let C(T ) =
⋃
σ∈C,V (σ)⊆T σ with T ⊆ V (C) to represent the subcom-

plex of C formed by the vertices in T . Moreover, JOIN(C1, C2) = {|σ ∪ τ ||σ ∈ C1, τ ∈ C2}
is the usual join of simplices [19]. We define EChr as the following operator, given C and
T ⊆ V (C). Intuitively, the vertex marked as terminated are in T . We note U = V (C) \ T .
The operator EChr subdivides with the standard chromatic subdivision the facets that are
fully in U , does not modify the ones that are fully in T and subdivides in an adequate way
the facets in between.

EChr(T,C) = (
⋃
σ∈C

Chr σ(U)) ∪ (
⋃
σ∈C

JOIN(Chr σ(U), σ(T )) (1)

▶ Definition 15 (IIS-Terminating subdivision). Let I a simplicial complex. The sequences
C0, C1, . . . (collection of simplices) and T0, T1, . . . (collection of increasing set of vertices)
form a IIS-terminating subdivision of I, if we have for all i ∈ N :
1. C0 = I, T0 = ∅
2. Ci+1 ⊆ EChr(Ti, Ci)
3. Ti ⊆ V (Ci)
We say that

⋃
Ci(Ti) is an IIS-terminating subdivision complex. This is actually a simplicial

complex, as proved in Appendix C.

A simplicial approximation is a standard topological construct that is the basis of the proof
technique of the similar computability theorem in [14, Th 4.3.1]. A simplicial approximation
is a simplicial function that approximates (in some sense) a function where the domain and
the co-domain are simplicial complexes. We have to adapt this definition since here we only
have that the co-domain as a simplicial complex.

▶ Definition 16 (semi-simplicial approximation). Let f : X → |O| a function. The function
ψ : V (C)→ V (O) is a semi-simplicial approximation for f if C a IIS-terminating subdivision
compatible with X, and ψ is a simplicial map such that ∀σ ∈ C, f(St◦(σ) ∩X) ⊆ St◦(ψ(σ)).

In order to construct an IIS-terminating subdivision of I compatible with X, we need
a predicate to “set in a terminating state”. Let η : X −→]0,+∞[, C a simplicial complex
and v ∈ V (C), we define Pη(v, C) = {∃x ∈ X, | |St(v, C)| ⊆ B(x, η(x))}. Let C0 = I the
simplicial complex to subdivide, U0 = V (C0), T0 = ∅. For all i ∈ N we set :
1. Di+1 = EChr(Ti, Ci)
2. Ci+1 = {σ ∈ Di+1| |σ| ∩X ̸= ∅ and σ is a facet of Di+1}
3. Ti+1 = {v ∈ V (Ci+1)|Pη(v, Ci+1)}

The final complex is Cη =
⋃
i∈N Ci(Ti). In Figure 1 the vertices marked in red are the

ones in Ti. On the left, the subdivided simplex is the one without vertices in red. On the
right, some simplices are added with a JOIN operation. Then the simplices in blue and in
dotted lines are the ones that will be removed at step 2, since they do not intersect X.

▶ Proposition 17. Cη is a simplicial complex.

Proof. We have Di is a simplicial complex. In Ci, removing facets of Di still yields a
simplicial complex. ◀
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X X

Figure 1 Construction of the IIS-Terminating Subdivision compatible with a space X.

▶ Proposition 18. The subdivision Cη is compatible with X.

Proof. For the inclusion property, ∀x ∈ X, since x ∈ |C0|,∀r ∈ N,∃σr ∈ Cr such that
x ∈ |σr|. The subdivision operator Chr is mesh-shrinking, this means that ∃r0 ∈ N,∀v ∈
V (σr0),mesh(St(v, Cr0)) < η(x). Then St(v, Cr0) ⊆ B(x, η(x)), which means that all vertex
of σr0 are in Tr0 hence σr0 is in Cη so x ∈ ≀Cη≀ and X ⊆ ≀Cη≀. Since we only remove facet
σ ∈ Cη such that |σ|∩X = ∅ in the second step of the construction we have the compatibility
of Cη with X ◀

We can now construct a semi-simplicial approximation with Cη.

▶ Proposition 19. Let η : X −→]0,+∞[ and let f : X → |O| a function that satisfies the
η-star condition, then f has a semi-simplicial approximation ψη : V (Cη)→ V (O).

Proof. Let Cη be the IIS-terminating subdivision of I defined above from η. Let σ a simplex
of Cη, v a vertex of V (σ), Since Pη(v, Cη) is satisfied, ∃xv ∈ X such that |St(v, Cη)| ⊆
B(xv, η(x)). By the η-star property we have that ∃yv ∈ V (O), f(B(xv, η(xv)) ∩ X) ⊆
St◦(yv,O). Let ψη(v) = yv. Let’s prove that ψη is indeed a semi-simplicial approximation.

We know that ∀σ ∈ Cη,∀v ∈ V (σ),Pη(v, Cη) is true, then we have that
:

⋂
v∈V (σ) |St(v, Cη)| ⊆

⋂
v∈V (σ) B(xv, η(xv)). The η-star condition gives that⋂

v∈V (σ) f(B(xv, η(xv))) ⊆ St◦(yv,O). By noticing that St◦(v, Cη) ⊆ |St(v, Cη)|, we can
combine theses inclusions and obtain that :

⋂
v∈V (σ) f(St◦(v, Cη)) ⊆

⋂
v∈V (σ) St

◦(yv,O)
since

⋂
v∈V (σ) St(v) = St(σ).

This can be rewritten as : f(St◦(σ,Cη)) ⊆
⋂
v∈V (σ) St

◦(ψη(v),O), which is the property of
the definition 16. Furthermore, because Cη is compatible with X we have that ∃x ∈ X,x ∈ |σ|.
Since |σ| ⊆ |St(σ)| which implies f(x) ∈ |ψη(σ)| then

⋂
v∈V (σ) St

◦(ψη(v),O) is non-empty
therefore ψη(σ) is a simplex, the function ψη is simplicial. ◀

We need to prove that the semi-simplicial approximation ψη : V (Cη) → V (O) of f is
carried by the carrier map of f .

▶ Lemma 20 (semi-simplicial approximation and carrier map). Let η : X −→]0,+∞[ and
let f : X → |O| a continuous function that respects ∆ : I → 2O a carrier map. Then the
semi-simplicial approximation ψη : Cη → O of f respects also ∆.

Proof. Let σ ∈ Cη, with σ = {v0, v1 . . . vk}, ψη(σ) = {y0, y1, . . . yk} and {x0, x1, . . . xk} a
points of X such that |St(vi)| ⊆ B(xi, η(xi)). Also, we have that f(|σ|) ⊆ |∆(σ)| because f
respects ∆ and by construction of Cη, f(B(xi, η(xi))) ⊆ St◦(yi). By way of contradiction,
assume that ψη(vi) /∈ ∆(σ), by the Pη property we have that xi covers |St(vi)|. When we
apply the function f , we obtain that f(|σ|) ⊆ f(B(xi, η(xi)) ∩X) ⊆ St◦(ψη(vi)). We can
remark that ψη(vi) /∈ ∆(σ) ⇒ St◦(ψη(vi)) ⊈ ∆(σ). We can conclude that f(σ) ⊈ ∆(σ),
which contradicts our hypothesis. ◀
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5.3 From semi-simplicial approximation to an algorithm
Now we show that a semi-simplicial approximation can be used to define an algorithm.

▶ Proposition 21. Let f : geo(I ×M)→ |O| a continuous function which respects a carrier
∆ then the task (I,O,∆) is solvable by an algorithm in M.

We define the following Algorithm 2 from the Chromatic Averaging Algorithm and using
Cη and ψη, xp is the initial position of p in the complex I.

Algorithm 2 Aψη : algorithm derived from ψη : Cη → O.

1 x← xp;
2 i← 0;
3 while x /∈ Ti do
4 i← i+ 1;
5 SendAll(x);
6 V ←Receive() // set of all received values including its own;
7 d← sizeof(V )− 1 // the process received d values, excluding its own ;
8 x = 1

2d+1x+
∑
y∈V \{x}

2
2d+1y;

9 end
10 return ψη(x);

▶ Proposition 22. The Algorithm Aψη terminates for all executions in I ×M.

Proof. We set X = geo(I×M) and the corresponding Cη is compatible with X which implies
that X ⊆ ≀Cη≀. Then ∀w ∈ I ×M, geo(w) ∈ X. We can deduce that ∃σ ∈ Cη, geo(w) ∈ |σ|.
By construction of Cη, ∃i ∈ N such that x ∈ Ti, hence every processes terminate. ◀

▶ Proposition 23. Algorithm Aψη respects the specification described by ∆

Proof. The decision is given by ψη, a semi-simplicial approximation of f that respects ∆. ◀

5.4 From an algorithm to a continuous function
We conclude this proof by constructing a continuous function from a given algorithm. We
will need to normalize this algorithm first. In the colorless setting, a normalized algorithm is
an algorithm where when a process sees any decision value, it decides instantly one of these
values. If an algorithm is correct, its normalized version is also correct for this colorless task.

▶ Proposition 24. Let A a normalized algorithm for solving the task (I,O,∆) in the submodel
M then there exists a continuous function f : geo(skeln(I)×M)→ |O| that respects ∆.

Proof. An algorithm solving a task (I,O,∆) provides a decision function φA : Y → V (O),
where Y ⊂ |skeln(I| (Y is the set of vertices of Chrr(I), for all r). We use this decision
function φA to construct a IIS-terminating subdivision. Let C0, C1, C2, . . . be a sequence of
complexes and T0, T1, T2, . . . a sequence of vertices of these complexes. We fix T0 = ∅ and
C0 = I which immediately satisfies the condition 1). A vertex is added in Ti if the algorithm
decide on the couple (Process, V iew) at the round i. Since every decision of process are
permanent we have the properties 3) and 4) of IIS-terminating subdivision. At the round
i of the algorithm we construct the complex Ci using the EChr operator, this operation
corresponds to one round of IIS while allowing non-uniform termination and compatibility
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with M. If we take CA =
⋃
i∈N Ci(Ti), this correspond to the set of processes that will

terminate in our algorithm and yields a IIS-terminating subdivision. Furthermore, CA is
compatible with X, because φA is a decision function on every execution of I ×M then
we have that X ⊆ CA. Also, if σ ∈ CA, |σ| ∩X = ∅ then this means that we decide on a
execution that is not inM, which is outside of our algorithm scope. Hence CA is compatible
with X. Since every vertex in V (CA) correspond to an execution in I ×M, from φA we
obtain a simplicial function φ : V (CA)→ V (O) that respect ∆.

Then we have that φ(St(v, CA)) ⊆ St(φ(v),O). We can now classically extend the
simplicial function φ to a function φC : ≀CA≀→ |O| by linear extension on the barycentric
coordinates. This extension guaranties that φC respects ∆ : φC(|σ|) ⊆ |∆(σ)| since
φ(σ) ∈ ∆(σ). We need to prove the continuity1 of φC : ∀x ∈ ≀CA≀,∃σ ∈ CA, x ∈ |σ|,∃r ∈
N, V (σ) ⊆ Tr and V (σ) ⊈ Tr−1. Then if x ∈ Int(σ) the continuity can be obtained directly
because the barycentric extension is always continuous on a given simplex. If x ∈ ∂(σ) then
because the algorithm is normalized we have that ∀v ∈ V (σ), St(v, Cr+1(Tr+1)) = St(v, Cr+1).
Since this a finite simplicial complex we obtain the continuity with a barycentric extension. ◀

6 Application to Set-Agreement

We give here a direct, and therefore simpler than [8], proof for general set-agreement
computability. For all n ∈ N, the set-agreement problem is defined by the following properties
[23]. Given initial init values in [0, n], each process outputs a value such that

Agreement the size of the set of output values is at most n,
Validity the output values are initial values of some processes,
Termination All processes terminates.

▶ Theorem 25 ([8]). It is possible to solve Set-Agreement on M⊂ IISn iff geo(M) ̸= |Sn|.

Proof. We denote by (Isa,Osa,∆sa) the colorless task for set-agreement. We have skelnIsa =
Sn. For the necessary condition, we first get from Thm. 11 that there exists a continuous
function from geo(Sn ×M), i.e. a continuous function from geo(M) to |Osa|. Osa is ∂Sn,
the boundary of Sn. The No Retraction theorem [13, Cor. 2.15] states that there is no
continuous function from |Sn| to |∂Sn|. This means that geo(M) cannot be equal to |Sn|.

In the reverse direction, if geo(M) ⊊ |Sn|, we note x0 a point in |§n| that is not in
geo(M). We can construct in a standard way a continuous function from geo(M) to |∂Sn|
by using x0 as a base point to “project” points x of geo(M) onto |∂Sn| : the image of x
is the intersection of the half-line x0x with |∂Sn| (in the special case where x0 ∈ |∂Sn|, we
project on the complex obtained by removing from ∂Sn the simplexes that contains x0) . ◀

This characterization is quite expected, it is known the No-Retraction theorem is the
topological obstruction for solving set-agreement in models such as the Iterated Immediate
Snapshot model. We underline that this proof is way simpler that the proof of Coutouly and
Godard in [8], that used Sperner and König lemmas in very involved ways. We underline that
having at least one missing point from |Sn|, ie a hole in geo(Isa ×M), does not mean that
M is Gωn minus one execution. Since geo is not injective, many executions could be removed,
that is all executions that maps to some x0. These pre-images are called geo−classes, they
are fully described in [8]. Some geo−classes are of infinite size when n ≥ 2.

1 we emphasize that the underlying topology here is not that of standard geometric realizations of
complexes, therefore being simplicial does not imply the linear extension to be continuous in the sense
we have to prove here.



Y. Coutouly and E. Godard 16:13

7 Application to Adversaries Submodels

An adversary, in the sense of [14, Chap. 5.4], is a message adversary where the executions
are exactly defined by the set of possible simultaneous failures.

Formally, we say that a process p is influencing a time t a process q, if there is a sequence
of messages starting at time t from p that eventually reaches q. Finally, given w ∈ IISn, we
denote by Q(w) the set of processes that are influencing infinitely many times in w all the
other processes. In IISn, this set is always non empty. In the message adversary setting,
the set of “failed” processes is the set Π \Q(w). An adversary A is defined by a set F (A)
of subsets of Π that is inclusion-closed. The set of corresponding executions is denoted as
MA = {w ∈ IISn|∃P ∈ F (A), Q(w) = Π \ P}. A well investigated case is the adversary Rt,
given t ≤ n, where F (Rt) is the set of subsets of size at most t. It is the t−resilient layered
immediate snapshot protocol submodel.

As in [14, Chap. 5.4], we define a core as a minimal set of processes that will not all fail
in any execution. For the t−resilient layered snapshot protocol model, a core is any subset
of size t + 1. Even if processes are independent of the set of input values in the colorless
setting, we will be able to assign a set of input value to any core C. Hence, we choose a core
C = {p0, . . . pc} of size c+ 1 and we will construct an application π∗

c : I ×MA → |skelcI|.
Let G a graph of ImSn, given a set of vertices C, we denote by G[C] the subgraph

induced by C, that is V (G[C]) = C and E(G[C]) = E(G)∩ (C×C). We extend this notation
to executions, ∀w ∈ IISn,, with w = G1, G2, . . . , we set w[C] = G1[C], G2[C], . . . .

The function π∗
c is constructed by applying this reduction for a chosen Cw to every

execution of MA. We fix an order on the processes. We set Cw to be the set Π \ Q(w)
together with the q lowest processes of Q(w), where q = c+ 1− |Π \Q(w)|. The set Cw is
always of size c+ 1 and is therefore not in F (A). Finally, we set π∗(w) = geo(w[Cw]).

▶ Proposition 26. The function π∗
c : I ×MA → |skelcI| has the following properties :

1. it is continuous and surjective,
2. ∀w,w′ ∈MA, geo(w) = geo(w′)⇒ π∗

c (w) = π∗
c (w′)

Proof. The property (1) is directly obtained by construction. For the second property, first
we remark that geo(w) = geo(w′) implies Q(w) = Q(w′). Indeed, consider p ∈ Π, such that
p ∈ Q(w). The process p cannot distinguish w from w′ otherwise all other processes will
eventually distinguish the executions. It means that the set of processes that influence p
infinitely many times is the same in both executions. By definition, this set includes Q(w′) in
the execution w′. Since p is influencing infinitely many times all processes in w, and influence
is transitive, we have Q(w′) ⊂ Q(w). Symmetrically, we get Q(w) ⊂ Q(w′).

Therefore Cw = Cw′ . We conclude by a simple case by case analysis from the different
cases where geo(w) = geo(w′) as given in [8, Th. 25]. ◀

So we can also define a function π : geo(I ×MA)→ |skelcI| by setting π(x) = π∗
c (w),

where w is any element of geo−1(x). We will now show that a restriction of π actually enjoys
a very interesting topological property. First, we give a standard definition.

▶ Definition 27 (Fiber Bundle [13]). Let E,B, F topological spaces. (E,B, π, F ) is a fiber
bundle with base B and fiber F if π : E → B is a continuous surjection such that for every
x ∈ B, there is an open neighborhood U ⊆ B of x such that there is a homeomorphism
φ : π−1(U)→ U × F , and U × F is the product space in such a way that π agrees with the
projection proj onto the first factor, i.e. π|π−1(U) = φ ◦ proj.
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One example of a classic example of fiber bundle is in Appendix E. We say that a run
w ∈MA is special if w has a suffix w′ (after step j) where all the instant graphs have their
sources in Q(w) and for all i ≥ j G(i) is such that the arcs between Q(w) ∩ Cw and its
complement Q(w) \ Cw are all from Q(w) ∩ Cw when i is even, and to Q(w) ∩ Cw when i is
odd. We denote SpeA the set of special runs of MA.

▶ Proposition 28. The function π : E −→ skelc(I) is a fiber bundle with E = geo(SpeA),
B = skelc(I) and F = Sn−c−1.

Proof. For any point x ∈ |skelcI|, there is a special run w in MA such that geo(w) = x.
Indeed, given C a core of size c + 1 with c + 1 different initial values, it is possible to
complement the execution w∗ ∈ IISC such that π(geo(w∗)) = x in a special way : after the
step j∗ where only processes in Q(w∗) influence all others in C, in instant graph Gi, i ≥ j∗,
processes from Π \ C have an arc to processes in C \ Q(w∗) and arcs between Π \ C and
Q(w∗) alternate direction if i is even or odd. The arcs between processes of Π \ C can be
any pattern from ImSΠ\C . This means that the restriction of π on E is surjective.

Now we focus on the neighborhood condition. As previously, we consider x ∈ |skelcI|,
and the corresponding w∗ and j∗. We set U to be the neighbourhood of x where executions
share the prefix of w∗ up to step j∗. In the previous section, we have said that we can
define w by complementing w∗ choosing any pattern in ImSΠ\C . We remark that there is
actually no other way to complement w∗ to get a special execution. So the fiber π−1(x) is
homeomorphic to geo(IISΠ\C), that is exactly Sn−c−1. ◀

Concluding, from the main theorem, a colorless task (I,O,∆) is solvable on MA if and
only if there exists a continuous function f : geo(I ×MA) −→ |O| carried by ∆. We will
show that this is equivalent to the existence of a continuous function g : |skelcI| −→ |O|
carried by ∆ so we can get an alternative and fully topological proof of the following.

▶ Theorem 29 ([14, Th.5.4.3]). A colorless task (I,O,∆) is solvable onMA for an adversary
A with a core of size c if and only if there exists a continuous function g : |skelcI| −→ |O|
carried by ∆.

Proof. We show that the existence of f is equivalent to the existence of g. We assume c < n

otherwise the statement are equal and g is f . We start with the easy direction, assuming there
exists g a continuous function g : |skelcI| −→ |O| carried by ∆. For a given facet S of skelnI,
since c < n, there exists x1 ∈ |S| such that x1 /∈ geo(S×MA), it is therefore possible to have
a retract from |S| \ {x1} onto |Skeln−1(S)|. We can repeat this until reaching |Skelc(S)|.
We consider µ the composition of this sequence of retracts of |Skeln(I)| \ {x1, x2, ...} onto
|skelcS|. We set f = g ◦ µ. Such f is continuous by composition. Since this is a retract, µ is
the identity on |skelcS| and f is carried by ∆.

Now, we assume that we have a continuous function f : geo(I ×MA) −→ |O| carried
by ∆. We would like to define g = f ◦ s where s would be a kind of right inverse for π as
defined above. In order to show that, we will use the fact that π is a fiber bundle for E and
B = |skelcI|. In the context of fiber bundles, what we are looking for is called a (cross)
section s, that is, a continuous function s : B −→ E such that π ◦ s = IdB . Cross-sections do
not always exist, however since the fiber F is Sd, we get that there is indeed a section s, see
e.g. [7, Cor. 7.13], as a corollary of Whitehead Obstruction theorem. Since f is continuous, g
is also continuous. By construction of π, g is also carried by ∆ on skelcI since f also is. ◀

We have this immediate corollary for the t−resilient layered snapshot protocol model Rt.

▶ Corollary 30. Let t ≤ n. A colorless task (I,O,∆) is solvable on Rt if and only if there
exists a continuous function g : |skeltI| −→ |O| carried by ∆.
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8 Conclusion

In this work, we have presented a simple characterization of computability of colorless tasks
for any submodels of the IIS model. We believe that this theorem will have many applications,
from simpler proof of known results to new characterisation of some colorless tasks. Note also
that it is possible to extend the presented technique to submodels of models corresponding
to mesh-shrinking subdivisions (like the barycentric subdivision), we underline it would
change the definition of geo, therefore this would not mean that a colorless task would be
solvable for the same submodels. Together with the kind of classical topology approaches
that we have shown to be effective in the two applications suggest that this work opens many
perpespective to investigate computability in more general distributed models.

Since we are actually using the geometrization topology in this paper, we complement
the remarks from [8] by some important points about this topology. In a topological space,
a neighbourhood for point x is an open set containing x. The set of neighbourhoods
of x is denoted Nx. A topological space is said to satisfy the T0 separation axiom if
x ̸= y =⇒ Nx ̸= Ny. When Nx = Ny, we say that x and y are not (topology) distinguishable.

Since the topology we are building upon for ≀IISn≀ is the one induced by the standard
space RN , which satisfies T0, via the geo−1 mapping, it is straightforward to see that non-
distinguishable sets are exactly the geo-equivalence classes that are not singletons, since any
neighbourhood of w in the geometrization topology will be a neighbourhood of w′, when
geo(w) = geo(w′). A description of theses geo-equivalence classes can be found in [8], and it is
shown that there always exists non-singleton classes. By construction, the topology on IISn
is therefore not T0. However, if we quotient this space by the classes of indistinguishability,
which is called the Kolmogorov quotient, we obtain a topological space homeomorphic to
|Sn|. So up to Kolmogorov quotient, the topology introduced here for investigating colorless
tasks on IISn can be considered classical.

We are also looking forward to address colored tasks by an extension of these results.
Since it is known that a statement like Thm. 11 is not strong enough for some non-coloured
task, there needs to have some additional conditions in the theorem statement. Another line
of research would be to characterize, in a topological way, the colored tasks that admit a
characterization à la Thm. 11, related to a better understanding of the relationship between
the set of executions seen as a topological space with the geometrization topology, which is
quite simple, and seen as a topological space with the general topology of [3].
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A A Counter-Example about Geometric Realizations

We remind the reader that the geometrization of C, denoted ≀C≀, that is the union of the
convex hulls |σ| of the simplices σ of C, is endowed with the standard topology from RN .

This should not be confused with the geometric realization, that is endowed of what is
called a weak topology.

In this section, we provide an example of a simplicial complex whodse topology as a
geometric realization is different from the topology it has as geometrization, that is in the
ambient RN space. That means that there exists infinite complex for which the topological
spaces ≀C≀ and |C| are not necessarily homeomorphic. This is actually quite well known, see
e.g. [19]. This example can actually be translated exactly to the distributed executions that
exhibit an error from [10] in [11, Sect. 5.1].

The example is given with N = 1 but that can be generalized to any N . We consider
C = {0} ∪ {[ 1

r+1 ,
1
r ] | r ∈ N∗}.

We denote |C| the topological space of C defined as a geometric realization. The closed
sets of |C| are the sets F such that F ∩S is closed (in R) for all S ∈ C, see [24]. Therefore |C|
has two connected components. We have F =]0, 1] is closed in |C| since F∩[ 1

r+1 ,
1
r ] = [ 1

r+1 ,
1
r ],

hence is closed for all r. Moreover, F ∩ {0} = ∅ which is also closed in R. We also have
that {0} is closed in |C|, so C can be covered by two disjoint closed sets, it is therefore not
connected.

On the other end, at the set level, ≀C≀ is exactly [0, 1]. So within the standard ambient
topology of R, ≀C≀ is connected.

Since they do not have the same number of connected components, the two spaces ≀C≀
and |C| cannot be homeomorphic.

This type of problem can happend in many distributed situation, as in [11] :let M1 =
IIS \ {{◦↔•, ◦←•ω}, {◦→•, ◦←•ω}} andM2 = IIS \ {◦→•, ◦←•ω} to remark that onlyM1
can solve the binary consensus task.

B The Standard Chromatic Subdivision

Here we present the standard chromatic subdivision, [14] and [19], as a geometric complex.
We start with chromatic subdivisions.
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x•

x◦
x•=ζ{x•}(x•)

ζ{x◦,x•,x•}(x•)

ζ{x◦,x•}(x•) ζ{x◦,x•}(x◦)

(a) Encoding of the pair (process,view) to a point.

G

µG(S2)

(b) Association between an instant graph of ImS2
(top) and a simplex of Chr(S2) is illustrated.

Figure 2 Construction of Chr(S2) as a geometric encoding for IIS2.

▶ Definition 31 (Chromatic Subdivision). Given (S,P) a chromatic simplex, a chromatic
subdivision of S is a chromatic simplicial complex (C,PC) such that

C is a subdivision of S ( i.e. ≀C≀ = |S|),
∀x ∈ V (S),PC(x) = P(x).

Note that it is not necessary to assume V (S) ⊂ V (C) here, since the vertices of the
simplex S being extremal points, they are necessarily in V (C).

We start by defining some geometric transformations of simplices (here seen as sets of
points). The choice of the coefficients will be justified later.

▶ Definition 32. Consider a simplex V = (y0, . . . , yd) of size d+ 1 in RN . We define the
function ζV : V −→ RN by, for all i ∈ [0, d]

ζV (yi) = 1
2d+ 1yi +

∑
j ̸=i

2
2d+ 1yj

We now define directly in a geometric way the standard chromatic subdivision of simplex
(S,P), where S = (x0, x1, . . . , xn) and P(xi) = i.

The chromatic subdivision Chr(S) for the chromatic simplex S = (x0, . . . , xn) is a
simplicial complex defined by the set of vertices V (Chr(S)) = {ζV (xi) | i ∈ [0, n], V ⊂
V (S), xi ∈ V }.

From the previous definition, for each pair (i, V ), i ∈ [0, n] and V ⊂ V (S) with i ∈ V ,
there is an associated vertex x = ζV (xi) of Chr(S), and conversely each vertex has an
associated pair. The color of (i, V ) is i. The set V is called the view. We define Φ the
following presentation of a vertex x, Φ(x) = (P(x), Vx) where P(x) = i and Vx = V .

The simplices of Chr(S) are the set of d+ 1 points {ζV0(xi0), · · · , ζVd
(xid)} where

there exists a permutation π on [0, d] such that Vπ(0) ⊆ · · · ⊆ Vπ(d),
If ij ∈ P(Vℓ) then Vj ⊂ Vℓ.

In Fig. 2, we present the construction for Chr(S2). For convenience, we associate
◦, •, • to the processes 0, 1, 2 respectively. In Fig. 2a, we consider the triangle x◦, x•, x•
in R2, with x◦ = (0, 0), x• = (1, 0), x• = ( 1

2 ,
√

3
2 ). We have that ζ{x◦,x•}(x•) = ( 1

3 , 0),
ζ{x◦,x•}(x◦) = ( 2

3 , 0) and ζ{x◦,x•,x•}(x•) = ( 1
2 ,

√
3

10 ). The relation between instant graph G

(top) and simplex
{

( 2
3 , 0), (1, 0), ( 1

2 ,
√

3
10 )

}
(grey area in Fig. 2b) is detailed in the section 4.2.
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In the following, we will be interested in iterations of Chr(Sn,P). The last property of
the definition of chromatic subdivision means with we can drop the C index in the coloring
of complex C and use P to denote the coloring at all steps. From its special role, it is called
the process color and we sometimes drop P in Chr(S,P) using in the following Chr(S) for
all simplices S of iterations of Chr(Sn).

In [20], Kozlov showed how the standard chromatic subdivision complex relates to
Schlegel diagrams (special projections of cross-polytopes), and used this relation to prove the
standard chromatic subdivision was actually a subdivision. In [14, section 3.6.3], a general
embedding in Rn parameterized by ϵ ∈ R is given for the standard chromatic subdivision.
The geometrization here is done choosing ϵ = d

2d+1 in order to have “well balanced” drawings.

B.1 Colorless Algorithms in the Iterated Immediate Snapshots Model

It is well known, see [14, Chap. 3&4, Def. 3.6.3], that each maximal simplex S =
{ζV0(xi0), · · · , ζVn

(xin)} from the chromatic subdivision of Sn can be associated with a
graph of ImSn denoted Θ(S). In [8], a suitable geometric encoding of the standard chromatic
subdivision has been given, this is also detailed here.We can transpose the previous geometric
presentation with an averaging algorithm called the Chromatic Average Algorithm, presented
in Algorithm 1, in a way that encode the IIS model. It was first introduced in [8], here we
present the colorless adaptation where only the set of values that is received is taken into
account. That is, if two processes send the same value (i.e. they are associated to the same
point in RN ), this is considered only once in the averaging. Since it still use the formula of
31 this yield again the standard chromatic subdivision.

Executing one round of the loop in Chromatic Average for instant graph G, the state of
process i is x′

i = ζVi
(x∗
i ), where Vi is the view of i on this round, that is the set of (j, xj) it

has received. It use the instant graph of the IIS model that are encoding in the following
way : We have V (Θ(S)) = Πn = [0, n] and set Θ(ζVj

(xij )) = P(xij ). The arcs are defined
using the representation Φ of points, A(Θ(S)) = {(i, j) | i ̸= j, Vi ⊆ Vj}. The mapping θ will
denote Θ−1. Then Θ({ζV0(x∗

0), · · · , ζVn
(x∗
n)}) = G. See eg. in Fig. 2a in the Appendix B.

Adjacency for a given i corresponds to the smallest subset containing xi. This one round
transformation for the canonical Sn can actually be done for any simplex S of dimension n

of RN .
By iterating, the chromatic subdivisions Chrr(Sn) are given by the global state under

all possible r rounds of the Chromatic Average Algorithm. Finite rounds give the Iterated
Chromatic Subdivision (hence the name). This is an algorithm that is not meant to terminate
(like the full information protocol). The executions of this algorithm are used below to define
a topology on IISn.

For G ∈ ImSn, we denote µG(S) the geometric simplex that is the image of S by one
round the Chromatic average algorithm under instant graph G.

To start defining this topology we need to define the function geo. Let w ∈ IISn,
w = G1G2 · · · . For the prefix of w of size r, S a simplex of dimension n, we define
geo(w|r)(S) = µGr

◦ µGr−1 ◦ · · · ◦ µG1(S). Finally, we set geo(w) = lim
r−→∞

geo(w|r)

The Chromatic Average algorithm is therefore the geometric counterpart to the Full
Information Protocol that is associated with Chr [14]. In particular, any algorithm can be
presented as the Chromatic Average together with a terminating condition and a decision
function of x.

DISC 2024
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C Proof that an IIS-terminating subdivision is a simplicial complex

We will use the following lemma to prove that an IIS-terminating subdivision is a simplicial
complex. Note that since we are in the geometric setting, this is not as straightforward as in
the abstract setting. We need to carefully check that everything “glues” nicely.

▶ Lemma 33. Let σ a simplex with vertices partitioned in two disjoints set U and T . Then
the collection JOIN(Chr(σ(U)), σ(T )) is a simplicial complex.

Proof. Let τ = Chr σ(U) it’s a simplicial complex. We have that |σ(U)| = |τ | ⊆ |σ|. Let
α = JOIN(τ, σ(T )), the facets of α are the facets of τ in union with the facets of σ(T ). All
off these simplices are closed by inclusion which implies the first property of Def 9. For
the intersection property of 9, we take β1, β2 ∈ α such that |β1| ∩ |β2| = |β3| and |β3| ≠ ∅,
τi = {v ∈ V (βi)|v ∈ |τ |}. If V (β3) ⊆ T then β3 remain unchanged. If V (β3) = V (τi) then
because Chr is a subdivision β3 is a simplicial complex. Else V (β3) is partitioned in V (τ) and
T (σ), since τi is a subdivision, JOIN(τi, σ(T )) is a simplicial complex. Moreover, |τi| ⊆ |σ|
and |σ(T )| ⊆ |σ|, hence β3 is a simplicial complex. All of this gives that JOIN(τ, σ(T )) is
indeed a simplicial complex. ◀

▶ Proposition 34. C =
⋃
Ci(Ti) is a simplicial complex.

For convenience of the reader, we rewrite here the definition of EChr :
EChr(Ti, Ci) = (

⋃
σ∈Ci

Chr σ(Ui)) ∪ (
⋃
σ∈Ci

JOIN(Chr σ(Ui), σ(Ti)).

Proof. We start be proving that for all i ∈ N, the objects Ci and Ci(Ti) are simplicial
complexes.

The first step constructs Ci+1, it is a union of two operations. The first one
(
⋃
σ∈Ci

Chr(σ(Ui))) takes simplices and apply a mesh-shrinking subdivision, which by def-
inition yields a simplicial complex. The second one (

⋃
σ∈Ci

JOIN(V (Chr σ(Ui), Tσ) is an
union of JOIN on a partition of vertices of a simplex, which by lemma 33 yield again a
simplicial complex. We have to prove now that all of this simplices “glues back together
nicely”. Let σ1, σ2 ∈ Ci such that |σ1| ∩ |σ2| ̸= ∅, then by induction we know that Ci is a
simplicial complex then ∃|σ3| ∈ Ci, |σ1| ∩ |σ2| = |σ3|. We can make a disjunction of case the
vertices of σ3 to prove that the simplices are intersecting correctly.
1. If V (σ3) ⊆ Ti then the simplex σ3 is not modified in Ci+1
2. If V (σ3) ⊆ Ui, the subdivision Chr restricted to α is the same if we look from σ or τ ,

hence we keep the property of simplicial complexes in Ci+1.
3. if V (σ3) = V (σ3(Ti)) ∪ V (σ3(Ui)) with V (σ3) ∩ Ti ̸= ∅ and V (σ3) ∩ Ui ̸= ∅. Then by the

two later cases, we know that σ3(Ti) and σ3(Ui) preserve the simplicial complex. After
that we are doing a JOIN between vertices in the same simplex σ3 which by lemma 33
yield a simplicial complex.

We can deduce from those 3 cases that Ci+1 is indeed a simplicial complex, which means
that C is also a simplicial complex. ◀

D Additional figure

In Fig. 3 we have x ∈ X, B(x, η(x)) is in green. We apply the function f and because it
satisfies the η-star condition we can exhibit vx ∈ O such that f(B(x, η(x) ∩X) ⊆ St◦(vx),
St◦(vx)) is colored in light blue.

The figure 4 outline the relation between the main object of the proof of the proposition 28.
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X

x

O

f

vy
vx

Figure 3 An η-star condition representation.

SpeA
geo

E

SkelcI

ππ−1

Figure 4 Illustration of proof 28.

E Example of simple fiber bundle and link to distributed system

We acknoledge that fiber bundle might not be a well know mathematical object for some
reader, in this section we attempt to adress this difficulty.

One good example of fiber bundle is a Möbius strip. It can be seen as a fiber bundle with
a cirlce as B and segment as fiber F . With E the möbius strip, the function π : E → B is
a projection of the segment into the base. It is easy to check that for small portion of the
circle there is an homeomorphism to a slice of the möbius strip.
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Figure 5 A Möbius Strip.
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