
Breaking Through the Ω(n)-Space Barrier:
Population Protocols Decide Double-Exponential
Thresholds
Philipp Czerner # Ñ

Department of Informatics, TU München, Germany

Abstract
Population protocols are a model of distributed computation in which finite-state agents interact
randomly in pairs. A protocol decides for any initial configuration whether it satisfies a fixed
property, specified as a predicate on the set of configurations. A family of protocols deciding
predicates φn is succinct if it uses O(|φn|) states, where φn is encoded as quantifier-free Presburger
formula with coefficients in binary. (All predicates decidable by population protocols can be
encoded in this manner.) While it is known that succinct protocols exist for all predicates, it
is open whether protocols with o(|φn|) states exist for any family of predicates φn. We answer
this affirmatively, by constructing protocols with O(log |φn|) states for some family of threshold
predicates φn(x) ⇔ x ≥ kn, with k1, k2, ... ∈ N. (In other words, protocols with O(n) states that
decide x ≥ k for a k ≥ 22n

.) This matches a known lower bound. Moreover, our construction for
threshold predicates is the first that is not 1-aware, and it is almost self-stabilising.

2012 ACM Subject Classification Theory of computation → Distributed computing models

Keywords and phrases Distributed computing, population protocols, state complexity

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.17

Related Version Full Version: https://arxiv.org/abs/2204.02115 [18]

Funding Philipp Czerner : This work was supported by an ERC Advanced Grant (787367: PaVeS)
and by the Research Training Network of the Deutsche Forschungsgemeinschaft (DFG) (378803395:
ConVeY).

1 Introduction

Population protocols are a distributed model of computation where a large number of
indistinguishable finite-state agents interact randomly in pairs. The goal of the computation
is to decide whether an initial configuration satisfies a given property. The model was
introduced in 2004 by Angluin et al. [4, 5] to model mobile sensor networks with limited
computational capabilities (see e.g. [28, 22]). It is also closely related to the model of chemical
reaction networks, in which agents, representing discrete molecules, interact stochastically [17].

A protocol is a finite set of transition rules according to which agents interact, but it can
be executed on an infinite family of initial configurations. Agents decide collectively whether
the initial configuration fulfils some (global) property by stable consensus; each agent holds
an opinion about the output and may freely change it, but eventually all agents agree.

An example of a property decidable by population protocols is majority: initially all
agents are in one of two states, x and y, and they try to decide whether x has at least as
many agents as y. This property may be expressed by the predicate φ(x, y) ⇔ x ≥ y.

In a seminal paper, Angluin et al. [7] proved that the predicates that can be decided
by population protocols correspond precisely to the properties expressible in Presburger
arithmetic, the first-order theory of addition.

© Philipp Czerner;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 17; pp. 17:1–17:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:czerner@in.tum.de
https://nicze.de/philipp
https://orcid.org/0000-0002-1786-9592
https://doi.org/10.4230/LIPIcs.DISC.2024.17
https://arxiv.org/abs/2204.02115
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Population Protocols Decide Double-Exponential Thresholds

To execute a population protocol, the scheduler picks two agents uniformly at random
and executes a pairwise transition on these agents. These two agents interact and may
change states. The number of agents does not change during the computation. It will be
denoted m throughout this paper.

Population protocols are often extended with a leader – an auxiliary agent not part of the
input, which can assist the computation. It is known that this does not increase the expressive
power of the model, i.e. it can still decide precisely the predicates expressible in Presburger
arithmetic. However, it is known that leaders enable an exponential speed-up [6, 1] in terms
of the time that is needed to come to a consensus.

Space complexity. Many constructions in the literature need a large number of states.
We estimate, for example, that the protocols of [6] need tens of thousands of states. This
is a major obstacle to implementing these protocols in chemical reactions, as every state
corresponds to a chemical compound.

This motivates the study of space complexity, the minimal number of states necessary
for a population protocol to decide a given predicate. Predicates are usually encoded as
quantifier-free Presburger formulae with coefficients in binary. For example, the predicates
φn(x) ⇔ x ≥ 2n have length |φn| ∈ Θ(n). Formally we define space(φ) as the smallest
number of states of any protocol deciding φ, and spaceL(φ) as the analogous function for
protocols with a leader. Clearly, space(φ)L ≤ space(φ).

The original construction in [4] showed space(φ) ∈ O(2|φ|) – impractically large. For
the family of threshold predicates τn(x) ⇔ x ≥ n Blondin, Esparza and Jaax [14] prove
space(τn) ∈ O(|τn|), i.e. they have polynomial space complexity. For several years it was open
whether similarly succinct protocols exist for every predicate. This was answered positively
in [13], showing space(φ) ∈ O(poly(|φ|)) for all φ.

Is it possible to do much better? For most predicates it is not; based on a simple counting
argument one can show that for every family φn with |φn| ∈ O(n) there is an infinite
subfamily (φ′

n)n ⊆ (φn)n with spaceL(φ′
n) ∈ Ω(|φn|1/4−ε), for any ε > 0 [14].

This covers threshold predicates and many other natural families of protocols (e.g.
φn(x) ⇔ x ≡ 0 (mod n) or φn(x, y) ⇔ x ≥ ny). But it is not an impenetrable barrier, even
for the case of threshold protocols: it does not rule out constructions that work for infinitely
many (but not all) thresholds and use only, say, logarithmically many states. Indeed, if
leaders are allowed this is known to be possible: [14] shows spaceL(τ ′

n) ∈ O(log|τ ′
n|) for some

subfamily τ ′
n of threshold predicates.

Recently, general lower bounds have been obtained, showing space(τn) ∈ Ω(log1−ε|τn|)
for all ε > 0 [19, 20]. The same bound (up to ε = 1/2) holds even if the model is extended
with leaders [24].

For leaderless population protocols, these results leave an exponential gap. In this paper
we settle that question and show that, contrary to prevailing opinion, space(τ ′

n) ∈ O(log|τ ′
n|)

for some subfamily τ ′
n of threshold predicates. In other words, we construct the first family of

leaderless population protocols that decide double-exponential thresholds and break through
the polynomial barrier.

Robustness. Since population protocols model computations where large numbers of agents
interact, it is desirable that protocols deal robustly with noise. In a chemical reaction, for
example, there can be trace amounts of unwanted molecules. So the initial configuration of
the protocol would have the form CI + CN , where CI is the “intended” initial configuration,
containing only agents in the designated initial states, and CN is a “noise” configuration,
which can contain agents in arbitrary states.

P. Czerner 17:3

Table 1 Prior results on the state complexity of threshold predicates φ(x) ⇔ x ≥ k, for k ∈ N.
Upper bounds need only hold for infinitely many k. We elide exponentially dominated factors from
lower bounds.

year result type ordinary with leaders

2018 Blondin, Esparza, Jaax [14] construction O(|φ|) O(log|φ|)
2021 Czerner, Esparza [19] impossibility Ω(log log|φ|) Ω(ack−1|φ|)
2021 Czerner, Esparza, Leroux [20] impossibility Ω(log|φ|)
2022 Leroux [24] impossibility Ω(log|φ|)
2024 this paper construction O(log|φ|)

For threshold predicates, specifically, we want to decide whether |CI | + |CN | exceeds
some threshold k ∈ N, under some reasonable restrictions to CI , CN . However, all known
threshold protocols fail even for the case |CN | = 1. Is it possible to do better?

If CN can be chosen arbitrarily, then the protocol has to work correctly for all input
configurations. This property is known as self-stabilisation, and it has also been investigated
in the context of population protocols [8, 16, 15]. However, it can only be achieved in
extensions of the model (e.g. on specific communication graphs, or with a non-constant
number of states). This is easy to see in the case of threshold predicates: if any configuration
is stably accepting, then any smaller configuration is stably accepting as well. In particular,
there is a stably accepting configuration with k − 1 agents.

While full self-stabilisation is impossible, in this paper we show that one can come
remarkably close. We prove that our construction is almost self-stabilising, meaning that it
computes the correct output for all CI , CN with |CI | ≥ n, where n is the number of states
of the protocol. We do not constraint CN at all. Since n ∈ O(log log k) in our protocol,
this means that one can take an arbitrary configuration CN one wishes to count, add a tiny
amount of agents to the initial state, and the protocol will compute the correct output.

Related work. We consider the space complexity of families of protocols, each of which
decides a different predicate. In another line of research, one considers a family of protocols
for the same predicate, where each protocol is specialised for a fixed population size m.

In the original model of population protocols (which is also the model of this paper), the
set of states is fixed, and the same protocol can be used for an arbitrary number of agents.
Relaxing this requirement has opened up a fruitful avenue of research; here, the number of
states depends on m (e.g. the protocol has O(log m) states, or even O(log log m) states). In
this model, faster protocols can be achieved [3, 26, 27].

It has also led to space-efficient, fast protocols, which stabilise within O(polylog m)
parallel time, using a state-space that grows only slowly with the number of agents, e.g.
O(polylog m) states [1, 12, 2, 10, 9, 11, 21]. These protocols have focused on the majority
predicate. Moreover, lower bounds and results on time-space tradeoffs have been developed
in this model [1, 2].

2 Main result

We construct population protocols (without leaders) for an infinite family of threshold
predicates φn(x) ⇔ x ≥ kn, with k1, ... ∈ N, proving an O(log|φn|) upper bound on their
state complexity. This closes the final gap in the state complexity of threshold predicates.

DISC 2024

17:4 Population Protocols Decide Double-Exponential Thresholds

As in prior work, our result is not a construction for arbitrary thresholds k, only for an
infinite family of them. It is, therefore, easier to formally state by fixing the number of states
n and specifying the largest threshold k that can be decided by a protocol with n states.

▶ Theorem 1. For every n ∈ N there is a population protocol with O(n) states deciding the
predicate φ(x) ⇔ x ≥ k for some k ≥ 22n .

Proof. This will follow from theorems 3 and 5. ◀

The result is surprising, as prevailing opinion was that the existing constructions are
optimal. This was based on the following:

It is intuitive that population protocols with leaders have an advantage. In particular,
one can draw a parallel to time complexity, where an exponential gap is proven: for some
predicates protocols with leaders have O(polylog m) parallel time, while all leaderless
protocols have Ω(m) parallel time.
The O(log log k)-state construction from [14] crucially depends on having leaders.
The technique to show the Ω(log log k) lower bound could, for the most part, also be used
for a Ω(log k) bound. Only the use of Rackoff’s theorem, a general result for Petri nets,
does not extend.
There is a conditional impossibility result, showing that Ω(log k) states are necessary for
leaderless 1-aware protocols. [14] (Essentially, protocols where some agent knows at some
point that the threshold has been exceeded.) All prior constructions are 1-aware.

Regarding the last point, our protocol evades the mentioned conditional impossibility
result by being the first construction that is not 1-aware. Intuitively, our protocol only
accepts provisionally and continues to check that no invariant has been violated. Based on
this, we also obtain the following robustness guarantee:

▶ Theorem 2. The protocols of Theorem 1 are almost self-stabilising.

Overview. We build on the technique of Lipton [25], which describes a double-exponential
counting routine in vector addition systems. Implementing this technique requires the use of
procedure calls; our first contribution are population programs, a model in which population
protocols can be constructed by writing structured programs, in Section 4. Every such
program can be converted into an equivalent population protocol.

However, population programs provide weaker guarantees than the model of parallel
programs used in [25]. Both models access registers with values in N. In a parallel program
these are initialised to 0, while in a population program all registers start with arbitrary
values. This limitation is essential for our conversion into population protocols.

A straightforward implementation is, therefore, impossible. Instead, we have to adapt
the technique to work with arbitrary initial configurations. Our second contribution, and the
main technical difficulty of this result, is extending the original technique with error-checking
routines to work in our model. We use a detect-restart loop, which determines whether
the initial configuration is “bad” and, if so, restarts with a new initial configuration. The
stochastic behaviour of population protocols ensures that a “good” initial configuration is
reached eventually. Standard techniques could be used to avoid restarts with high probability
and achieve an optimal running time, but this is beyond the scope of this paper.

A high level overview of both the original technique as well as our error-checking strategy
is given in Section 5. We then give a detailed description of our construction in Section 6.

P. Czerner 17:5

To get population protocols, we need to convert from population programs. We split this
into two parts. First, we use standard techniques to lower population programs to population
machines, an assembly-like programming language. In a second step we simulate arbitrary
population machines by population protocols. This conversion is described in Section 7.

Finally, we introduce the notion of being almost self-stabilising in Section 8, and prove
that our construction has this property.

To start out, Section 3 introduces the necessary mathematical notation and formally
defines population protocols as well as the notion of stable computation.

3 Preliminaries

Multisets. We assume 0 ∈ N. For a finite set Q we write NQ to denote the set of multisets
containing elements in Q. For such a multiset C ∈ NQ, we write C(S) :=

∑
q∈S C(q) to

denote the total number of elements in some S ⊆ Q, and set |C| := C(Q). Given two
multisets C, C ′ ∈ NQ we write C ≤ C ′ if C(q) ≤ C ′(q) for all q ∈ Q, and we write C + C ′

and C − C ′ for the componentwise sum and difference (the latter only if C ≥ C ′). Abusing
notation slightly, we use an element q ∈ Q to represent the multiset C containing exactly q,
i.e. C(q) = 1 and C(r) = 0 for r ̸= q.

Stable computation. We are going to give a general definition of stable computation not
limited to population protocols, so that we can later reuse it for population programs and
population machines. Let C denote a set of configurations and → a left-total binary relation
on C (i.e. for every C ∈ C there is a C ′ ∈ C with C → C ′). Further, we assume some notion
of output, i.e. some configurations have an output b ∈ {true, false} (but not necessarily all).

A sequence τ = (Ci)i∈N with Ci ∈ C is a run if Ci → Ci+1 for all i ∈ N. We say that τ

stabilises to b, for b ∈ {true, false}, if there is an i s.t. Cj has output b for every j ≥ i. A run
τ is fair if ∩i≥0{Ci, Ci+1, ...} is closed under →, i.e. every configuration that can be reached
infinitely often is.

Population protocols. A population protocol is a tuple PP = (Q, δ, I, O), where
Q is a finite set of states,
δ ⊆ Q4 is a set of transitions,

I ⊆ Q is a set of input states, and
O ⊆ Q is a set of accepting states.

We write transitions as (q, r 7→ q′, r′), for q, r, q′, r′ ∈ Q. A configuration of PP is a
multiset C ∈ NQ with |C| > 0. A configuration C is initial if C(q) = 0 for q /∈ I (one might
also say C ∈ NI instead). It has output true if C(q) = 0 for q /∈ O, and output false if
C(q) = 0 for q ∈ O. For two configurations C, C ′ we write C → C ′ if C = C ′ or if there is a
transition (q, r 7→ q′, r′) ∈ δ s.t. C ≥ q + r and C ′ = C − q − r + q′ + r′.

Let φ : NI → {true, false} denote a predicate. We say that PP decides φ, if every fair run
starting at an initial configuration C ∈ NI stabilises to φ(C), where fair run and stabilisation
are defined as above.

4 Population Programs

We introduce population programs, which allows us to specify population protocols using
structured programs. An example is shown in Figure 1.

Formally, a population program is a tuple P = (Q, Proc), where Q is a finite set of registers
and Proc is a list of procedures. Each procedure has a name and consists of (possibly nested)
while-loops, if-statements and instructions. These are described in detail below.

DISC 2024

17:6 Population Protocols Decide Double-Exponential Thresholds

1: procedure Main
2: OF := false
3: while ¬Test(4) do
4: Clean
5: OF := true
6: while ¬Test(7) do
7: Clean
8: OF := false
9: while true do

10: Clean

1: procedure Test(i)
2: for j = 1, ..., i do
3: if detect x > 0 then
4: x 7→ y

5: else
6: return false
7: return true

1: procedure Clean
2: if detect z > 0 then
3: restart
4: swap x, y

5: while detect y > 0 do
6: y 7→ x

Figure 1 A population program for φ(x) ⇔ 4 ≤ x < 7 using registers x, y, z. Main is run initially
and decides the predicate, Test(i) tries to move i units from x to y and reports whether it succeeded,
and Clean checks whether z is empty and moves some number of units from y to x. If Clean detects
an agent in z, it restarts the computation. As every run calls Clean infinitely often, this serves to
reject initial configurations where z is nonzero; eventually the protocol will be restarted with z = 0.
This is an illustrative example and some simplifications are possible. E.g. the instruction (swap x, y)
in Clean is superfluous; additionally, instead of checking z > 0 one could omit that register entirely.

Primitives. Each register x ∈ Q can take values in N. Only three operations on these
registers are supported.

The move instruction (x 7→ y), for x, y ∈ Q, decreases the value of x by one, and increases
the value of y by one. We also say that it moves one unit from x to y. If x is empty, i.e.
its value is zero, the programs hangs and makes no further progress
The nondeterministic nonzero-check (detect x > 0), for x ∈ Q, nondeterministically
returns either false or whether x > 0. In other words, if it does return true, it certifies that
x is nonzero. If it returns false, however, no information has been gained. We consider
only fair runs, so if x is nonzero the check cannot return false infinitely often.
A swap (swap x, y) exchanges the values of the two registers x, y. This primitive is not
necessary, but it simplifies the implementation.

Loops and branches. Population programs use while-loops and if-statements, which function
as one would expect.

We also use for-loops. These, however, are just a macro and expand into multiple copies
of their body. For example, in the program in Figure 1 the for-loop in Test expands into i

copies of the contained if-statement.

Procedures. Our model has procedure calls, but no recursion. Procedures have no argu-
ments, but we may have parameterised copies of a procedure. The program in Figure 1, for
example, has four procedures: Main, Clean, Test(4), and Test(7).

Procedure calls must be acyclic. It is thus not possible for a procedure to call itself, and
the size of the call stack remains bounded. We remark that one could inline every procedure
call. The main reason to make use of procedures at all is succinctness: if our program
contains too many instructions, the resulting population protocol has too many states.

Procedures may return a single boolean value, and procedure calls can be used as
expressions in conditions of while- or if-statements.

Output flag. There is an output flag OF , which can be modified only via the instructions
OF := true and OF := false. (These are special instructions; it is not possible to assign
values to registers.) The output flag determines the output of the computation.

P. Czerner 17:7

Initialisation and restarts. The only guarantee on the initial configuration is that execution
starts at Main. In particular, all registers may have arbitrary values.

There is one final kind of instruction: restart. As the name suggests, it restarts the
computation. It does so by nondeterministically picking any initial configuration s.t. the sum
of all registers does not change.

Size. The size of P is defined as |Q| + L + S, where L is the number of instructions and
S is the swap-size. The latter is defined as the number of pairs (x, y) ∈ Q2 for which it is
syntactically possible for x to swap with y via any sequence of swaps. 1 For example, in
Figure 1 the swap-size is two: (x, y), (y, x) can be swapped, but e.g. (x, z) cannot. If we add
a (swap y, z) instruction at any point, then (x, z) can be swapped (transitively), and the
swap-size would be 6.

Configurations and Computation. A configuration of P is a tuple D = (C, OF , σ), where
C ∈ NQ is the register configuration, OF ∈ {true, false} is the value of the output flag, and
σ ∈ (Proc × N)∗ is the call stack, storing names and currently executed instructions of
called procedures. (E.g. σ = ((Main, 3), (Test(4), 1)) when Test is first called in Figure 1.) A
configuration is initial if σ = ((Main, 1)) and it has output OF . For two configurations D, D′

we write D → D′ if D can move to D′ after executing one instruction.
Using the general notion of stable computation defined in Section 3, we say that P

decides a predicate φ(x), for k ∈ N, if every run started at an initial configuration (C, OF , σ)
stabilises to φ(|C|). Note that this definition limits population programs to decide only
unary predicates.

Notation. When analysing population programs it often suffices to consider only the register
configuration Let C, C ′ ∈ NQ, b ∈ {false, true} and let f ∈ Proc denote a procedure. We
consider the possible outcomes when executing f in a configuration with registers C. Note
that the program is nondeterministic, so multiple outcomes are possible. If f may return b

with register configuration C ′, we write C, f → C ′, b. For procedures not returning a value,
we use C, f → C ′ instead. If f may initiate a restart, we write C, f → restart. If f may
hang or not terminate, we write C, f → ⊥. Finally, we define post(C, f) := {S : C, f → S}.

5 High-level Overview

We give an intuitive explanation of our construction. This section has two parts. As
mentioned, we use the technique of Lipton [25] to count to 22n using 4n registers. We will
give a brief explanation of the original technique in Section 5.1. Readers might also find the
restatement of Liptons proof in [23] instructive – the Petri net programs introduced therein
are closer to our approach, and more similar to models used in the recent Petri net literature.

A straightforward application of the above technique only works if some guarantees
are provided for the initial configuration (e.g. that the 4n registers used are empty, while
an additional register holds all input agents). No such guarantees are given in our model.
Instead, we have to deal with adversarial initialisation, i.e. the notion that registers hold
arbitrary values in the initial configuration. Section 5.2 describes the problems that arise, as
well as our strategies for dealing with them.

1 Unfortunately, without restrictions we would convert swaps to population protocols with a quadratic
blow-up in states, so we introduce this technical notion to quantify the overhead.

DISC 2024

17:8 Population Protocols Decide Double-Exponential Thresholds

5.1 Double-exponential counting

The biggest limitation of population programs is their inability to detect absence of agents.
This is reflected in the (detect x > 0) primitive; it may return true and thereby certify that
x is nonzero, but it may always return false, regardless of whether x = 0 actually holds. In
particular, it is impossible to implement a zero-check.

However, Lipton observes that if we have two registers x, x and ensure that the invariant
x + x = k holds, for some fixed k ∈ N, then x = 0 is equivalent to x ≥ k. Crucially, it is
possible to certify the latter property; if we have a procedure for checking x ≥ k, we can run
both checks (x > 0 and x ≥ k) in a loop until one of them succeeds. Therefore, we may treat
x as k-bounded register with deterministic zero-checks.

This seems to present a chicken-and-egg problem: to implement this register we require a
procedure for x ≥ k, but checking such a threshold is already the overall goal of the program.
Lipton solves this by implementing a bootstrapping sequence. For small k, e.g. k = 2, one
can easily implement the required x ≥ k check. We use that as subroutine for two k-bounded
registers, x and y. Using the deterministic zero-checks, x and y can together simulate a
single k2-bounded register with deterministic zero-check; this then leads to a procedure for
checking z ≥ k2 (for some other register z).

Lipton iterates this construction n times. We have n levels of registers, with four registers
xi, yi, xi, yi on each level i ∈ {1, ..., n}. For each level we have a constant Ni ∈ N and ensure
that xi + xi = yi + yi = Ni holds. These constants grow by repeated squaring, so e.g. N1 = 2
and Ni+1 = N2

i . Clearly, Nn = 22n . (Our actual construction uses slightly different Ni.)
We have not yet broached the topic of initialising these registers s.t. the necessary invariants

hold. For our purposes, having a separate initialisation step is superfluous. Instead, we check
whether the invariants hold in the initial configuration and restart (nondeterministically
choosing a new initial configuration) if they do not.

5.2 Error detection

Our model provides only weak guarantees. In particular, we must deal with adversarial
initialisation, meaning that the initial configuration can assign arbitrary values to any register.
This is not limited to a designated set of initial registers; all registers used in the computation
are affected.

Let us first discuss how the above construction behaves if its invariants are violated. As
above, let x, x denote registers for which we want to keep the invariant x + x = k, for some
k ∈ N. If instead x + x > k, the “zero-check” described above is still guaranteed to terminate,
as either x > 0 or x ≥ k must hold. However, it might falsely return x = 0 when it is not.
The procedure we use above, to combine two k-bounded counter to simulate a k2-bounded
counter, exhibits erratic behaviour under these circumstances. When we try to use it to
count to k2 we might instead only count to some lower value k′ < k2, even k′ ∈ O(k).

If the invariant is violated in the other direction, i.e. x + x < k holds, we can never detect
x = 0 and will instead run into an infinite loop.

The latter case is more problematic, as detecting it would require detecting absence. For
the former, we can ensure that we check x + x ≥ k + 1 infinitely often; if x + x > k, this
check will eventually return true and we can initiate a restart. For the x + x > k case the
crucial insight is that we cannot detect it, but we can exclude it: we issue a single check
x + x ≥ k in the beginning. If it fails, we restart immediately.

P. Czerner 17:9

A simplified model. In the full construction, we have many levels of registers that rely on
each other. Instead, we first consider a simplified model here to explain the main ideas.

In our simplified model there is only a single register xi per level i ∈ {1, ..., n} as well as
one “level n + 1” register R. For i ∈ {1, ..., n} we are given subroutines Check(xi ≥ Ni) and
Check(xi > Ni) which we use to check thresholds; however, they are only guaranteed to
work if x1 = N1, x2 = N2, ..., xi−1 = Ni−1 hold.

Our goal is to decide the threshold predicate m ≥
∑

i Ni, where m :=
∑

i xi + R is the
sum of all registers. For each possible value of m we pick one initial configuration Cm and
design our procedure s.t.

every initial configuration different from Cm will cause a restart, and
if started on Cm it is possible that the procedure enters a state where it cannot restart.

The structure of Cm is simple: we pick the largest i s.t. we can set xj := Nj for j ≤ i and
put the remaining units into xi+1 (or R, if i = n). The procedure works as follows:
1. We nondeterministically guess i ∈ {0, ..., n}.
2. We run Check(xj ≥ Nj) for all j ∈ {1, ..., i}. If one of these checks fails, we restart.
3. According to i = n we set the output flag to true or false.
4. To verify that we are in Cm, we check the following infinitely often. For j ∈ {1, ..., i} we run

Check(xj > Nj) and restart if it succeeds. If i < n we also restart if Check(xi+1 ≥ Ni+1)
or one of xi+2, ..., xn, R is nonempty.

Clearly, when started in Cm and i is guessed correctly, it is possible for step 2 to succeed,
and it is impossible for step 4 to restart. If i is too large, step 2 cannot work, and if i is
too small step 4 will detect xi+1 ≥ Ni+1. So the procedure will restart until the right i is
guessed and step 4 is reached.

Consider an initial configuration C ̸= Cm, |C| = m. There are two cases: either there is
a k with C(xk) < Cm(xk), or some k has C(xk) > Cm(xk). Pick a minimal such k.

In the former case, step 2 can only pass if i < k, but then one of xi+2, ..., xn, R is nonempty
and step 4 will eventually restart.

The latter case is more problematic. Step 2 can pass regardless of i (for i > k the
precondition of Check is not met). In step 4, either i < k and then xi+1 ≥ Ni+1 or one of
xi+2, ..., xn, R is nonempty, or i ≥ k and one of the checks Check(xj > Nj) will eventually
restart, for j = k.

This would be what we are looking for, but note that we implicitly made assumptions
about the behaviour of Check when called without its precondition being met. We need
two things: all calls to Check terminate and they do not change the values of any register.
The second is the simpler one to deal with: later, we will have multiple registers per level
and our procedures only need to move agents between registers of the same level. This keeps
the sum of registers of one level constant, this weaker property suffices for correctness.

Ensuring that all calls terminate is more difficult. It runs into the problem discussed
above, where a zero-check might not terminate if the invariant of its register is violated. In
this simplified model it corresponds to the case xi < Ni.

However, we note that Check(xi ≥ Ni) and Check(xi > Ni) are only called if
(x1, ..., xi−1) ≥lex (N1, ..., Ni−1), where ≥lex denotes lexicographical ordering. So if the
precondition is violated, there must be a j < i with (x1, ..., xj−1) = (N1, ..., Nj−1) and
xj > Nj . This can be detected within the execution of Check by calling itself recursively.
In this manner, we can implement Check in a way that avoids infinite loops as long as the
weaker precondition (x1, ..., xi−1) ≥lex (N1, ..., Ni−1) holds.

DISC 2024

17:10 Population Protocols Decide Double-Exponential Thresholds

Our actual construction follows the above closely; of course, instead of a single register
per level we have four, making the necessary invariants more complicated. Additional issues
arise when implementing Check, as registers cannot be detected erroneous while in use.
Certain subroutines must hence take care to ensure termination, even when the registers
they use are not working properly.

6 A Succinct Population Program

In this section, we construct a population program P = (Q, Proc) to prove the following:

▶ Theorem 3. Let n ∈ N. There exists a population program deciding φ(x) ⇔ x ≥ k with
size O(n), for some k ≥ 22n−1 .

Full proofs and formal definitions of this section can be found in the full version of the
paper [18].

We use registers Q := Q1 ∪ ... ∪ Qn ∪ {R}, where Qi := {xi, yi, xi, yi} are level i registers
and R is a level n + 1 register. For convenience, we identify x with x for any register x.

Types of Configurations. As explained in the previous section, x and x are supposed to
sum to a constant Ni, for a level i register x ∈ {xi, yi}, which we define via N1 := 1 and
Ni+1 := (Ni + 1)2. If this invariant holds, we can use x, x to simulate a Ni-bounded register,
which has value x.

We cannot guarantee that this invariant always holds, so our program must deal with
configurations that deviate from this. For this purpose, we classify configurations based on
which registers fulfil the invariant, and based on the type of deviation.

A configuration C ∈ NQ is i-proper, if the invariant holds on levels 1, ..., i, and their
simulated registers have value 0. This is a precondition for most routines. Sometimes we
relax the latter requirement on the level i registers; C is weakly i-proper if it is (i − 1)-proper
and the invariant holds on level i.

If C is (i − 1)-proper and not i-proper, then there are essentially two possibilities. Either
C ≤ C ′ for some i-proper C ′ and we call C i-low, or C(x) ≥ C ′ for a weakly i-proper C ′

and we call C i-high. Note that it is possible that C is neither i-low nor i-high – these
configurations are easy to exclude and play only a minor role. We can mostly ensure that
i-low configurations do not occur, but procedures must provide guarantees when run on
i-high configurations.

Finally, we say that C is i-empty if all registers on levels i, ..., n + 1 are empty.

x1 x1 y1 y1 ... xi−1 xi−1 yi−1 yi−1 xi xi yi yi ...

i-proper 0 N1 0 N1 ... 0 Ni−1 0 Ni−1 0 Ni 0 Ni ...
weakly i-proper 0 N1 0 N1 ... 0 Ni−1 0 Ni−1 3 Ni − 3 Ni − 7 7 ...
i-low 0 N1 0 N1 ... 0 Ni−1 0 Ni−1 0 Ni − 3 0 Ni ...
i-high 0 N1 0 N1 ... 0 Ni−1 0 Ni−1 3 Ni 7 Ni − 5 ...
i-empty 2 4 8 3 ... 5 3 0 7 0 0 0 0 ...

Figure 2 Example configurations exhibiting the different types.

Summary. We use the following procedures.
Main. Computation starts by executing this procedure, and Main ultimately decides the
predicate φ(x) ⇔ x ≥ 2

∑n
i=1 Ni.

P. Czerner 17:11

Algorithm AssertEmpty.

Parameter: i ∈ {1, ..., n + 1}
Effect: If i-empty, do nothing, else it may re-

start
1: procedure AssertEmpty.(i) [i ≤ n]
2: AssertEmpty(i + 1)
3: for x ∈ Qi do
4: if detect x > 0 then
5: restart
6: procedure AssertEmpty.(i) [i = n+1]
7: if detect R > 0 then
8: restart

Algorithm AssertProper.

Parameter: i ∈ {1, ..., n}
Effect: If i-proper or i-low, do nothing, else

it may restart.
1: procedure AssertProper.(i)
2: AssertProper(i − 1)
3: for x ∈ {xi, yi} do
4: if detect x > 0 then
5: restart
6: Large(x)
7: if detect x > 0 then
8: restart

Algorithm Zero Check whether a register is
equal to 0.

Parameter: x ∈ {xi, xi, yi, yi}
Output: whether x = 0

1: procedure Zero(x)
2: while true do
3: AssertProper(i − 1)
4: if detect x > 0 then
5: return false
6: if Large(x) then
7: return true

Algorithm IncrPair Decrement a two-digit,
base β := Ni + 1 register.

Parameter: x ∈ {xi, xi}, y ∈ {yi, yi}
Effect: βx + y (mod β2) decreases by 1

1: procedure IncrPair(x, y)
2: if Zero(y) then
3: swap y, y

4: if Zero(x) then
5: swap x, x

6: else x 7→ x

7: else y 7→ y

AssertEmpty.. Check whether a configuration is i-empty and initiate a restart if not.
AssertProper.. Check whether a configuration is i-proper or i-low, initiate a restart if not.
Large. Nondeterministically check whether a register x ∈ Qi is at least Ni.
Zero. Perform a deterministic zero-check on a register x ∈ Qi.
IncrPair. As described in Section 5.1, we use two level i registers (which are Ni bounded) to
simulate an Ni+1-bounded register. This procedure implements the increment operation
for the simulated register.

Procedures AssertEmpty., AssertProper.. The procedure AssertEmpty. is supposed to de-
termine whether a configuration is i-empty, which can easily be done by checking whether
the relevant registers are nonempty.

Similarly, AssertProper. is used to ensure that the current configuration is not i-high. If
it is, it may initiate a restart. We remark that calls to AssertProper.(0) have no effect and
can simply be omitted.

Procedure Zero. This procedure implements a deterministic zero-check, as long as the
register configuration is weakly i-proper. To ensure termination, AssertProper. is called
within the loop.

DISC 2024

17:12 Population Protocols Decide Double-Exponential Thresholds

Algorithm Large Nondeterministically check whether a register is maximal.
Parameter: x ∈ {xi, xi, yi, yi}, x ̸= y

Output: if x ≥ Ni return true and swap
units of x − Ni and x; or return false

1: procedure Large(x) [for i = 1]
2: if detect x > 0 then
3: x 7→ x

4: swap x, x

5: return true
6: else
7: return false

8: procedure Large(x) [for i > 1]
9: if ¬Zero(xi−1) ∨ ¬Zero(yi−1) then

10: restart
11: while true do
12: CheckProper(i − 2)
13: if detect x > 0 then
14: x 7→ x

15: IncrPair(xi−1, yi−1)
16: if Zero(xi−1) ∧ Zero(yi−1) then
17: swap x, x

18: return true
19: else
20: if Zero(xi−1) ∧ Zero(yi−1) then
21: return false
22: if detect x > 0 then
23: x 7→ x

24: IncrPair(xi−1, yi−1)

Procedure IncrPair. This is a helper procedure to increment the “virtual”, Ni+1-bounded
counter simulated by x and y. It works by first incrementing the second digit, i.e. y. If an
overflow occurs, x is incremented as well. It is also be used to decrement the counter, by
running it on x and y.

As we show later, IncrPair is “reversible” under only the weak assumption that the configur-
ation C ∈ NQ is i-high. More precisely, C, IncrPair(x, y) → C ′ implies C ′, IncrPair(x, y) → C.
Using this, we can show that Large, which calls IncrPair in a loop, terminates.

Procedure Large. This is the last of the subroutines, and the most involved one. The
goal is to determine whether x ≥ Ni, by using the registers of level i − 1 to simulate a
“virtual” Ni-bounded register. To ensure termination, we use a “random” walk, which
nondeterministically moves either up or down. More concretely, at each step either x is
found nonempty, one unit is moved to x and the virtual register is incremented, or conversely
x is nonempty, one unit moved to x, and the virtual register decremented. If the virtual
register reaches 0 from above, Large had no effect and returns false. Once the virtual register
overflows, a total of Ni units have been moved. These are put back into x by swapping x

and x and true is returned.
As mentioned above, IncrPair is reversible even under weak assumptions. This ensures

that the random walk terminates, as it can always retrace its prior steps to go back to its
starting point.

Procedure Main. Finally, we put things together to arrive at the complete program. The
implementation is very close to the steps described in Section 5.2 in the simplified model,
but instead of guessing an i we iterate through the possibilities.

As mentioned before, Main considers a small set of initial configurations “good” and may
stabilise. The following lemma formalises this.

▶ Lemma 4. Main, run on register configuration C ∈ NQ, can only restart or stabilise, and
(a) it may stabilise to false if C is j-low and (j + 1)-empty, for some j ∈ {1, ..., n},
(b) it may stabilise to true if C is n-proper, and
(c) it always restarts otherwise.

P. Czerner 17:13

Algorithm Main Decide whether there are at least 2
∑

i
Ni agents.

1: procedure Main
2: OF := false
3: for i = 1, ..., n do
4: while ¬Large(xi) ∨ ¬Large(yi) do
5: AssertProper(i)
6: AssertEmpty(i + 1)
7: OF := true
8: while true do
9: AssertProper(n)

7 Converting Population Programs into Protocols

In the previous section we constructed succinct population programs for the threshold
predicate. We now justify our model and prove that we can convert population programs
into population protocols, keeping the number of states low. We do this in two steps; first we
introduce population machines, which are a low-level representation of population programs,
then we convert these into population protocols. This results in the following theorem:

▶ Theorem 5. If a population program deciding φ with size n exists, then there is a population
protocol deciding φ′(x) ⇔ φ(x − i) ∧ x ≥ i with O(n) states, for an i ∈ O(n).

Population machines are introduced in Section 7.1, they serve to provide a simplified
model. Converting population programs into machines is straightforward and uses standard
techniques, similar to how one would convert a structured program to use only goto-statements.
We will describe this in Section 7.2. The conversion to population protocols is finally described
in Section 7.3. Here, we only highlight the key ideas of the conversion. The details can be
found in the full version of the paper [18].

7.1 Formal Model
▶ Definition 6. A population machine is a tuple A = (Q, F, F , I), where Q is a finite set of
registers, F a finite set of pointers, F = (Fi)i∈F a list of pointer domains, each of which
is a nonempty finite set, and I = (I1, ..., IL) is a sequence of instructions, with L ∈ N.
Additionally, OF , CF , IP ∈ F , FOF = FCF = {false, true} and FIP = {1, .., L}. For x ∈ Q ∪
{□} we also require Vx ∈ F , and x ∈ FVx

⊆ Q. The size of A is |Q|+ |F |+
∑

X∈F |FX |+ |I|.
Let x, y ∈ Q, x ̸= y, X, Y ∈ F , i ∈ {1, ..., L} and f : FY → FX . There are three types of

instructions: Ii = (x 7→ y), Ii = (detect x > 0), or Ii = (X := f(Y)).

A population machine has a number of registers, as usual, and a number of pointers.
While each register can take any value in N, a pointer is associated with a finite set of values
it may assume. There are three special pointers: the output flag OF , which we have already
seen in population programs and is used to indicate the result of the computation, the
condition flag CF used to implement branches, and the instruction pointer IP, storing the
index of the next instruction to execute. To implement swap instructions we use a register
map; the pointer Vx, for a register x ∈ Q, stores the register x is actually referring to. (V□ is
a temporary pointer for swapping.) The model allows for arbitrary additional pointers, we
will use a one per procedure to store the return address.

There are only three kinds of instructions: (x 7→ y) and (detect x > 0) are present
in population programs as well and have the same meaning here. (With the slight caveat
that x and y are first transformed according to the register map. The instructions do not

DISC 2024

17:14 Population Protocols Decide Double-Exponential Thresholds

operate on the actual registers x, y, but on the registers pointed to by Vx and Vy.) The third,
(X := f(Y)) is a general-purpose instruction for pointers. It can change IP and will be used
to implement control flow constructs.

A precise definition of the semantics can be found in the full version of the paper [18].

7.2 From Population Programs to Machines
Population machines do not have high-level constructs such as loops or procedures, but these
can be implemented as macros using standard techniques. We show only an example here, a
detailed description of the conversion can be found in the full version of the paper [18].

procedure Main
while detect x > 0 do

x 7→ y

swap x, y

⇝

1: detect x > 0
2: IP :=

{ 5 if CF
3 else

3: x 7→ y

4: IP := 1
5: V□ := Vx

6: Vx := Vy

7: Vy := V□

Figure 3 Conversion to a population machine.

Control-flow, i.e. if, while and procedure calls are implemented via direct assignment to
IP, the instruction pointer, as in lines 2 and 4 above. The statements (detect x > 0) and
(x 7→ y) are translated one-to-one, but note that in the population machine their operands
are first translated via the register map. For example, (detect x > 0) in line 1 checks
whether the register pointed to by Vx is nonzero. Correspondingly, swap statements result
in direct modifications to the register map: lines 5-7 swap the pointers Vx and Vy (and leave
the registers they point to unchanged).

7.3 Conversion to Population Protocols
In this section, we only present a simplified version of our construction. In particular, we
make use of multiway transitions to have more than two agents interact at a time. Our actual
construction, described in the full version of the paper [18], avoids them and the associated
overhead.

Let A = (Q, F, F , I) denote a population machine. To convert this into a population
protocol, we use two types of agents: register agents to store the values of the registers, and
pointer agents to store the pointers. For a register we have many identical agents, and the
value of the register corresponds to the total number of those agents. They use states Q. For
each pointer we use a unique agent, storing the value of the pointer in its state; they use
states {Xv : X ∈ F, v ∈ FX}.

Let X1, ..., X|F | denote some enumeration of F with X|F | = IP, and let vi denote the
initial value of Xi. We use X1 as initial state of the protocol. To goal is to have a unique
agent for each pointer, so we implement a simple leader election. We use ∗ as wildcard.

X∗
i , X∗

i 7→ Xvi
i , X

vi+1
i+1 IP∗, IP∗ 7→ Xv1

1 , x

with i ∈ {1, ..., |F | − 1}. If two agents store the value of a single pointer, they eventually
meet and one of them is moved to another state. When this happens, the computation is

P. Czerner 17:15

restarted – but note that the values of the registers are not reset. Eventually, the protocol
will thus reach a configuration with exactly one agent in Xvi

i , for each i, and the remaining
agents in Q.

Starting from this configuration, the instructions can be executed. We illustrate the
mapping from instructions to transitions in the following example:

1: x 7→ y

2: detect x > 0
3: IP :=

{ 1 if CF
4 else

4: OF := ¬CF

⇝

IP1, V v
x , V w

y , v 7→ IP2, V v
x , V w

y , w for v, w ∈ Q

IP2, CF∗, V v
x , v 7→ IP3, CF true, V v

x , v for v ∈ Q

IP2, CF∗, V v
x , w 7→ IP3, CF false, V v

x , w for w ̸= v

IP3, CF true 7→ IP1, CF true

IP3, CF false 7→ IP4, CF false

IP4, OF∗, CF true 7→ IP5, OF false, CF true

IP4, OF∗, CF false 7→ IP5, OF true, CF false

Figure 4 Converting instructions into transitions.

For example, in line 1 we want to move one agent from x to y and set the instruction
pointer to 2 (from 1). Recall that the registers map to states of the population protocol via
the register map, stored in pointers Vx, where x ∈ Q is a register. We thus have the following
agents initiating the transition:

IP1; the agents storing the instruction pointer currently stores the value 1,
V v

x ; the register x ∈ Q is currently mapped to state v ∈ Q,
v; an agent in state v, i.e. representing one unit in register x,
V w

y ; register y is mapped to state w.
The transition then moves v to state w, and increments the instruction pointer.

The above protocol does not come to a consensus. For this to happen, we use a standard
output broadcast: we add a single bit to all states. In this bit an agent stores its current
opinion. When any agent meets the pointer agent of the output flag OF , the former will
assume the opinion of the latter. Eventually, the value of the output flag has stabilised and
will propagate throughout the entire population, at which point a consensus has formed.

8 Robustness of Threshold Protocols

A major motivation behind the construction of succinct protocols for threshold predicates is
the application to chemical reactions. In this, as in other environments, computations must
be able to deal with errors. Prior research has considered self-stabilising protocols [8, 16, 15].
Such a protocol must converge to a desired output regardless of the input configuration.
However, it is easy to see that no population protocol for e.g. a threshold predicate can
be self-stabilising (and prior research has thus focused on investigating extensions of the
population protocol model).

In our definition of population programs, the program cannot rely on any guarantees
about its input configuration, so they are self-stabilising by definition. However, when we
convert to population protocols, we retain only a slightly weaker property, defined as follows:

▶ Definition 7. Let PP = (Q, δ, I, O) denote a population protocol deciding φ with |I| = 1.
We say that PP is almost self-stabilising, if every fair run starting at a configuration C ∈ NQ

with C(I) ≥ |Q| stabilises to φ(|C|).

DISC 2024

17:16 Population Protocols Decide Double-Exponential Thresholds

So the initial configuration can be almost arbitrary, but it must contain a small number
of agents in the initial state. In many contexts, this is a mild restriction. In a chemical
reaction, for example, the number of agents (i.e. the number of molecules) is many orders of
magnitude larger than the number of states (i.e. the number of species of molecules).

In particular, this is also much stronger than any prior construction. All known protocols
for threshold predicates are 1-aware [14], and can thus be made to accept by placing a single
agent in an accepting state.

▶ Theorem 2. The protocols of Theorem 1 are almost self-stabilising.

9 Conclusions

We have shown an O(log log n) upper bound on the state complexity of threshold predicates
for leaderless population protocols, closing the last remaining gap. Our result is based on
a new model, population programs, which enable the specification of leaderless population
protocols using structured programs.

As defined, our model of population programs can only decide unary predicates and it
seems impossible to decide even quite simple remainder predicates (e.g. “is the total number
of agents even”). Is this a fundamental limitation, or simply a shortcoming of our specific
choices? We tend towards the latter, and hope that other very succinct constructions for
leaderless population protocols can make use of a similar approach.

Our construction is almost self-stabilising, which shows that it is possible to construct
protocols that are quite robust against addition of agents in arbitrary states. A natural next
step would be to investigate the removal of agents: can a protocol provide guarantees in the
case that a small number of agents disappear during the computation?

Threshold predicates can be considered the most important family for the study of space
complexity, as they are the simplest way of encoding a number into the protocol. The precise
space complexity of other classes of predicates, however, is still mostly open. The existing
results generalise somewhat; the construction presented in this paper, for example, can also
be used to decide φ(x) ⇔ x = k for k ≥ 22n with O(n) states. As mentioned, there also exist
succinct constructions for arbitrary predicates, but – to the extent of our knowledge – it is
still open whether, for example, φ(x) ⇔ x = 0 (mod k) can be decided for k ≥ 22n , both
with and without leaders.

References

1 Dan Alistarh, James Aspnes, David Eisenstat, Rati Gelashvili, and Ronald L. Rivest. Time-
space trade-offs in population protocols. In Philip N. Klein, editor, Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona,
Spain, Hotel Porta Fira, January 16-19, pages 2560–2579. SIAM, 2017. doi:10.1137/1.
9781611974782.169.

2 Dan Alistarh, James Aspnes, and Rati Gelashvili. Space-optimal majority in population
protocols. In Artur Czumaj, editor, Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018,
pages 2221–2239. SIAM, 2018. doi:10.1137/1.9781611975031.144.

3 Dan Alistarh, Rati Gelashvili, and Milan Vojnovic. Fast and exact majority in population
protocols. In Chryssis Georgiou and Paul G. Spirakis, editors, Proceedings of the 2015 ACM
Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San Sebastián,
Spain, July 21 - 23, 2015, pages 47–56. ACM, 2015. doi:10.1145/2767386.2767429.

https://doi.org/10.1137/1.9781611974782.169
https://doi.org/10.1137/1.9781611974782.169
https://doi.org/10.1137/1.9781611975031.144
https://doi.org/10.1145/2767386.2767429

P. Czerner 17:17

4 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Computation
in networks of passively mobile finite-state sensors. In PODC, pages 290–299. ACM, 2004.
doi:10.1145/1011767.1011810.

5 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Computation
in networks of passively mobile finite-state sensors. Distributed Comput., 18(4):235–253, 2006.
doi:10.1007/S00446-005-0138-3.

6 Dana Angluin, James Aspnes, and David Eisenstat. Fast computation by population protocols
with a leader. Distributed Comput., 21(3):183–199, 2008. doi:10.1007/S00446-008-0067-Z.

7 Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational
power of population protocols. Distributed Comput., 20(4):279–304, 2007. doi:10.1007/
S00446-007-0040-2.

8 Dana Angluin, James Aspnes, Michael J. Fischer, and Hong Jiang. Self-stabilizing population
protocols. In James H. Anderson, Giuseppe Prencipe, and Roger Wattenhofer, editors,
Principles of Distributed Systems, 9th International Conference, OPODIS 2005, Pisa, Italy,
December 12-14, 2005, Revised Selected Papers, volume 3974 of Lecture Notes in Computer
Science, pages 103–117. Springer, 2005. doi:10.1007/11795490_10.

9 Stav Ben-Nun, Tsvi Kopelowitz, Matan Kraus, and Ely Porat. An O(log3/2 n) parallel time
population protocol for majority with O(log n) states. In Yuval Emek and Christian Cachin,
editors, PODC ’20: ACM Symposium on Principles of Distributed Computing, Virtual Event,
Italy, August 3-7, 2020, pages 191–199. ACM, 2020. doi:10.1145/3382734.3405747.

10 Petra Berenbrink, Robert Elsässer, Tom Friedetzky, Dominik Kaaser, Peter Kling, and Tomasz
Radzik. A population protocol for exact majority with o(log5/3 n) stabilization time and
theta(log n) states. In Ulrich Schmid and Josef Widder, editors, 32nd International Symposium
on Distributed Computing, DISC 2018, New Orleans, LA, USA, October 15-19, 2018, volume
121 of LIPIcs, pages 10:1–10:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPIcs.DISC.2018.10.

11 Petra Berenbrink, Robert Elsässer, Tom Friedetzky, Dominik Kaaser, Peter Kling, and Tomasz
Radzik. Time-space trade-offs in population protocols for the majority problem. Distributed
Comput., 34(2):91–111, 2021. doi:10.1007/s00446-020-00385-0.

12 Andreas Bilke, Colin Cooper, Robert Elsässer, and Tomasz Radzik. Population protocols for
leader election and exact majority with o(logˆ2 n) states and o(logˆ2 n) convergence time.
CoRR, abs/1705.01146, 2017. arXiv:1705.01146.

13 Michael Blondin, Javier Esparza, Blaise Genest, Martin Helfrich, and Stefan Jaax. Succinct
population protocols for Presburger arithmetic. In STACS, volume 154 of LIPIcs, pages
40:1–40:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPICS.
STACS.2020.40.

14 Michael Blondin, Javier Esparza, and Stefan Jaax. Large flocks of small birds: On the minimal
size of population protocols. In STACS, volume 96 of LIPIcs, pages 16:1–16:14. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPICS.STACS.2018.16.

15 Janna Burman, Ho-Lin Chen, Hsueh-Ping Chen, David Doty, Thomas Nowak, Eric E. Severson,
and Chuan Xu. Time-optimal self-stabilizing leader election in population protocols. In Avery
Miller, Keren Censor-Hillel, and Janne H. Korhonen, editors, PODC ’21: ACM Symposium
on Principles of Distributed Computing, Virtual Event, Italy, July 26-30, 2021, pages 33–44.
ACM, 2021. doi:10.1145/3465084.3467898.

16 Shukai Cai, Taisuke Izumi, and Koichi Wada. How to prove impossibility under global fairness:
On space complexity of self-stabilizing leader election on a population protocol model. Theory
Comput. Syst., 50(3):433–445, 2012. doi:10.1007/s00224-011-9313-z.

17 Ho-Lin Chen, Rachel Cummings, David Doty, and David Soloveichik. Speed faults in
computation by chemical reaction networks. Distributed Comput., 30(5):373–390, 2017.
doi:10.1007/s00446-015-0255-6.

18 Philipp Czerner. Breaking through the ω(n)-space barrier: Population protocols decide
double-exponential thresholds, 2024. arXiv:2204.02115.

DISC 2024

https://doi.org/10.1145/1011767.1011810
https://doi.org/10.1007/S00446-005-0138-3
https://doi.org/10.1007/S00446-008-0067-Z
https://doi.org/10.1007/S00446-007-0040-2
https://doi.org/10.1007/S00446-007-0040-2
https://doi.org/10.1007/11795490_10
https://doi.org/10.1145/3382734.3405747
https://doi.org/10.4230/LIPIcs.DISC.2018.10
https://doi.org/10.1007/s00446-020-00385-0
https://arxiv.org/abs/1705.01146
https://doi.org/10.4230/LIPICS.STACS.2020.40
https://doi.org/10.4230/LIPICS.STACS.2020.40
https://doi.org/10.4230/LIPICS.STACS.2018.16
https://doi.org/10.1145/3465084.3467898
https://doi.org/10.1007/s00224-011-9313-z
https://doi.org/10.1007/s00446-015-0255-6
https://arxiv.org/abs/2204.02115

17:18 Population Protocols Decide Double-Exponential Thresholds

19 Philipp Czerner and Javier Esparza. Lower bounds on the state complexity of population
protocols. In Avery Miller, Keren Censor-Hillel, and Janne H. Korhonen, editors, PODC ’21:
ACM Symposium on Principles of Distributed Computing, Virtual Event, Italy, July 26-30,
2021, pages 45–54. ACM, 2021. doi:10.1145/3465084.3467912.

20 Philipp Czerner, Javier Esparza, and Jérôme Leroux. Lower bounds on the state complexity
of population protocols. CoRR, 2021. doi:10.48550/arXiv.2102.11619.

21 David Doty, Mahsa Eftekhari, Leszek Gasieniec, Eric E. Severson, Przemyslaw Uznanski,
and Grzegorz Stachowiak. A time and space optimal stable population protocol solving
exact majority. In 62nd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 1044–1055. IEEE, 2021. doi:
10.1109/FOCS52979.2021.00104.

22 Moez Draief and Milan Vojnovic. Convergence speed of binary interval consensus. SIAM J.
Control. Optim., 50(3):1087–1109, 2012. doi:10.1137/110823018.

23 Javier Esparza. Decidability and complexity of petri net problems - an introduction. In
Wolfgang Reisig and Grzegorz Rozenberg, editors, Lectures on Petri Nets I: Basic Models,
Advances in Petri Nets, the volumes are based on the Advanced Course on Petri Nets, held in
Dagstuhl, September 1996, volume 1491 of Lecture Notes in Computer Science, pages 374–428.
Springer, 1996. doi:10.1007/3-540-65306-6_20.

24 Jérôme Leroux. State complexity of protocols with leaders. In Alessia Milani and Philipp
Woelfel, editors, PODC ’22: ACM Symposium on Principles of Distributed Computing, Salerno,
Italy, July 25 - 29, 2022, pages 257–264. ACM, 2022. doi:10.1145/3519270.3538421.

25 Richard J. Lipton. The reachability problem requires exponential space. Technical report, Yale
University, Dept. of CS, 1976. URL: http://www.cs.yale.edu/publications/techreports/
tr63.pdf.

26 Yves Mocquard, Emmanuelle Anceaume, James Aspnes, Yann Busnel, and Bruno Sericola.
Counting with population protocols. In D. R. Avresky and Yann Busnel, editors, 14th IEEE
International Symposium on Network Computing and Applications, NCA 2015, Cambridge,
MA, USA, September 28-30, 2015, pages 35–42. IEEE Computer Society, 2015. doi:10.1109/
NCA.2015.35.

27 Yves Mocquard, Emmanuelle Anceaume, and Bruno Sericola. Optimal proportion computation
with population protocols. In Alessandro Pellegrini, Aris Gkoulalas-Divanis, Pierangelo
di Sanzo, and Dimiter R. Avresky, editors, 15th IEEE International Symposium on Network
Computing and Applications, NCA 2016, Cambridge, Boston, MA, USA, October 31 - November
2, 2016, pages 216–223. IEEE Computer Society, 2016. doi:10.1109/NCA.2016.7778621.

28 Etienne Perron, Dinkar Vasudevan, and Milan Vojnovic. Using three states for binary
consensus on complete graphs. In INFOCOM 2009. 28th IEEE International Conference on
Computer Communications, Joint Conference of the IEEE Computer and Communications
Societies, 19-25 April 2009, Rio de Janeiro, Brazil, pages 2527–2535. IEEE, 2009. doi:
10.1109/INFCOM.2009.5062181.

https://doi.org/10.1145/3465084.3467912
https://doi.org/10.48550/arXiv.2102.11619
https://doi.org/10.1109/FOCS52979.2021.00104
https://doi.org/10.1109/FOCS52979.2021.00104
https://doi.org/10.1137/110823018
https://doi.org/10.1007/3-540-65306-6_20
https://doi.org/10.1145/3519270.3538421
http://www.cs.yale.edu/publications/techreports/tr63.pdf
http://www.cs.yale.edu/publications/techreports/tr63.pdf
https://doi.org/10.1109/NCA.2015.35
https://doi.org/10.1109/NCA.2015.35
https://doi.org/10.1109/NCA.2016.7778621
https://doi.org/10.1109/INFCOM.2009.5062181
https://doi.org/10.1109/INFCOM.2009.5062181

	1 Introduction
	2 Main result
	3 Preliminaries
	4 Population Programs
	5 High-level Overview
	5.1 Double-exponential counting
	5.2 Error detection

	6 A Succinct Population Program
	7 Converting Population Programs into Protocols
	7.1 Formal Model
	7.2 From Population Programs to Machines
	7.3 Conversion to Population Protocols

	8 Robustness of Threshold Protocols
	9 Conclusions

