
Parallel Set Cover and Hypergraph Matching
via Uniform Random Sampling
Laxman Dhulipala #

Google Research, New York, NY, USA

Michael Dinitz #

Johns Hopkins University, Baltimore, MD, USA

Jakub Łącki #

Google Research, New York, NY, USA

Slobodan Mitrović #

UC Davis, CA, USA

Abstract
The SetCover problem has been extensively studied in many different models of computation,
including parallel and distributed settings. From an approximation point of view, there are two
standard guarantees: an O(log ∆)-approximation (where ∆ is the maximum set size) and an
O(f)-approximation (where f is the maximum number of sets containing any given element).

In this paper, we introduce a new, surprisingly simple, model-independent approach to solving
SetCover in unweighted graphs. We obtain multiple improved algorithms in the MPC and CRCW
PRAM models. First, in the MPC model with sublinear space per machine, our algorithms can
compute an O(f) approximation to SetCover in Ô(

√
log ∆ + log f) rounds1 and a O(log ∆)

approximation in O(log3/2 n) rounds. Moreover, in the PRAM model, we give a O(f) approximate
algorithm using linear work and O(log n) depth. All these bounds improve the existing round
complexity/depth bounds by a logΩ(1) n factor.

Moreover, our approach leads to many other new algorithms, including improved algorithms for
the HypergraphMatching problem in the MPC model, as well as simpler SetCover algorithms
that match the existing bounds.

2012 ACM Subject Classification Theory of computation → Massively parallel algorithms; Theory
of computation → Shared memory algorithms; Theory of computation → MapReduce algorithms

Keywords and phrases approximate maximum matching, set cover, hypergraph matching, PRAM,
massively parallel computation

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.19

Related Version Full Version: https://arxiv.org/abs/2408.13362

Funding Michael Dinitz: Supported in part by NSF awards CCF-1909111 and CCF-2228995.
Slobodan Mitrović : Supported by the Google Research Scholar and NSF Faculty Early Career
Development Program No. 2340048.

1 Introduction

There is perhaps no more central and important problem in the area of approximation
algorithms than SetCover. It has been a testbed for various algorithmic techniques
that have become central in the field: greedy algorithms, deterministic and randomized
rounding, primal-dual, dual fitting, etc. Due to its importance, ubiquity, and the fact that
many different algorithmic techniques can be used, it is widely considered a “textbook
problem” and, for example, has been used to illustrate the very basics of approximation

1 We use the Ô(x) notation to suppress poly log x and poly log log n terms.

© Laxman Dhulipala, Michael Dinitz, Jakub Łącki, and Slobodan Mitrović;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 19; pp. 19:1–19:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:laxmandhulipala@gmail.com
mailto:mdinitz@cs.jhu.edu
https://orcid.org/0000-0002-2632-966X
mailto:jlacki@google.com
https://orcid.org/0000-0001-9347-0041
mailto:smitrovic@ucdavis.edu
https://doi.org/10.4230/LIPIcs.DISC.2024.19
https://arxiv.org/abs/2408.13362
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Parallel Set Cover and Hypergraph Matching

algorithms [38, Chapter 1]. There are essentially two standard approximation bounds, both
of which can be achieved through a number of different algorithms: an f -approximation,
where f is the frequency (the maximum number of sets containing any given element), and
an H∆ = O(log ∆)-approximation, where ∆ is the maximum set size and Hk is the k’th
harmonic number.2

Unsurprisingly, SetCover has also received significant attention in parallel and dis-
tributed models of computation. However, the simple sequential algorithms for SetCover
are not “obviously” parallelizable, so new algorithms have been developed for these models.
These lines of work range from classical complexity-theoretic models (e.g., showing that it can
be approximated well in NC [7]), classical parallel models such as PRAMs [7, 34, 9], classical
distributed models such as LOCAL [29, 28], and modern models such as MapReduce and
Massively Parallel Computation (MPC) [36, 3]. Much of this work has been model-focused
rather than model-independent, and ideas and techniques from one model can only sometimes
be transferred to a different model.

In this paper, we introduce a new, simple, and model-independent technique for solving
unweighted SetCover in parallel settings. Our technique, which involves careful independent
random sampling of either the sets or elements, yields both a (1 + ϵ)f -approximation and a
(1+ϵ)H∆-approximation and can be efficiently instantiated in multiple models of computation,
including the MPC and PRAM models. Moreover, it can also be extended to solve the
approximate HypergraphMatching problem in unweighted graphs. By applying our
technique, we obtain efficient algorithms for SetCover and HypergraphMatching in
MPC and PRAM models, which either improve upon or (essentially) match state-of-the-art
algorithms for the problems. Importantly, our technique provides a unified and model-
independent approach across HypergraphMatching and two variants of SetCover, and
can be efficiently implemented in two fundamental models of parallel computation.

Our algorithms are obtained by parallelizing two classic f - and O(log ∆)-approximate
SetCover algorithms. The f -approximate algorithm repeatedly picks an uncovered element
and adds all sets containing it to the solution. The O(log ∆)-approximate in each step simply
adds to the solution the set that covers the largest number of uncovered points.

Even though our parallelization of these algorithms is surprisingly direct, to the best of
our knowledge, it has not been analyzed prior to our work. At a high level, our algorithms
perform independent random sampling to find a collection of sets to be added to the solution,
remove all covered elements from the instance, and then repeat. By combining the random
sampling-based approach with modern techniques in parallel algorithms, we are able to give
state-of-the-art bounds.

1.1 Our Contribution
We now present the main contributions of the paper. We study the unweighted version
of SetCover. To formulate the bounds we obtain, we assume the SetCover problem
is represented by a bipartite graph, in which vertices on one side represent the sets, and
vertices on the other side represent elements to be covered. Edges connect elements with all
sets that they belong to. We use ∆ to denote the maximum degree of a vertex representing
a set, and f to denote the maximum degree of a vertex representing an element. We use n

to denote the number of vertices in the graph (equal to the number of sets plus the number
of elements) and m to denote the number of edges (the total size of all sets).

2 This result is often given as an O(log n)-approximation since ∆ ≤ n, but H∆ is a technically stronger
bound.

L. Dhulipala, M. Dinitz, J. Łącki, and S. Mitrović 19:3

Table 1 Round complexity of SetCover algorithms in the Massively Parallel Computation
model. We use n to denote the number of vertices in the graph (which is equal to the number of
sets plus the number of elements) and m to denote the number of edges (the total size of all sets).
δ ∈ (0, 1) is a constant. In [22] ϕ ∈ (0, 1] is any value satisfying m ≤ n1+ϕ and c < ϕ controls the
amount of space per machine. We use ‡ to denote that a bound holds with high probability.

Ref. Space/Machine Total Space Approx. Factor Det. Round Complexity

[9] O(nδ) O(m) (1 + ϵ)H∆ No O(log2 n)‡

Here O(nδ) Õ(m) (1 + ϵ)H∆
‡ No Ô(log ∆ ·

√
log f)‡

Here O(nδ) Õ(m) (1 + ϵ)f‡ No Ô(
√

log ∆)‡

[6] O(nδ) O(m) f + ϵ Yes O(log ∆/ log log ∆)
[16] O(nδ) O(m) (1 + ϵ)f Yes O(log(f∆)/ log log(f∆))

[3] Õ(n) Õ(m) O(log n)‡ No O(log n)‡

Here Õ(n) Õ(m) (1 + ϵ)H∆
‡ No O(log ∆)‡

[22] O(fn1+c) O(m) f No O((ϕ/c)2)

We start by presenting our results in the Massively Parallel Computation (MPC) model [25,
20, 4, 1]. MPC computation proceeds in synchronous rounds over M machines. We assume
that the input to the computation is partitioned arbitrarily across all machines in the first
round. Each machine has a local space of η bits. In one round of computation, a machine first
performs computation on its local data. Then, the machines can communicate by sending
messages: each machine can send messages to any other machine. The messages sent in one
round are delivered at the beginning of the next round. Hence, within a round, the machines,
given the messages received in this round, work entirely independently. Importantly, the
total size of the messages sent or received by a machine in a given round is at most η bits.

In the context of graph algorithms, there are three main regimes of MPC defined with
respect to the relation of the available space on each machine η to the number of vertices of
the graph n. In the super-linear regime, η = n1+c for a constant 0 < c < 1. The nearly-linear
regime requires η = n poly log n. Finally, the most restrictive and challenging sub-linear
regime requires η = nc. In all the regimes, we require that the total space of all machines is
only a poly log n factor larger than what is required to store the input.

In our definition of the SetCover problem, the number of vertices is the number of
sets plus the number of elements. We note that some SetCover algorithms in the linear
space regime (both prior and ours) only require space near-linear in the number of sets plus
sublinear in the number of elements, but we use a single parameter for simplicity.

SetCover in MPC

Our first result is a set of improved MPC algorithms for SetCover.

▶ Result 1. Let ϵ ∈ (0, 1/2) be a constant. Denote by f the maximum number of sets an
element appears in, and by ∆ the largest set size. Then, SetCover can be solved in MPC
with the following guarantees:

(1+ ϵ)H∆-approximation in Ô
(
poly(1/ϵ) · log ∆ ·

√
log f

)
rounds in the sub-linear regime,

(1 + ϵ)H∆-approximation in O(log ∆) rounds in the nearly-linear regime,
(1 + ϵ)f-approximation in Ô

(
poly(1/ϵ) ·

(√
log ∆ + log f

))
rounds in the sub-linear

regime.
The algorithms use Õ(m) total space, and the round complexities hold with high probability.

DISC 2024

19:4 Parallel Set Cover and Hypergraph Matching

Table 2 Parallel cost bounds (work and depth) of f -approximate SetCover algorithms in the
CRCW PRAM. m denotes the sum of the sizes of all sets (or the number of edges in the bipartite
representation of SetCover), n denotes the number of elements, f denotes the maximum number
of sets any element is contained in, and ϵ ∈ (0, 1/2) is an arbitrary constant. We use ∗ to denote
that a bound holds in expectation, and ‡ to denote that a bound holds with high probability.

Ref. Approx. Factor Det. Work Depth Notes

[27] (1 + ϵ)f Yes O(fm) O(f log2 n)
[28] 2 No O(m)∗ O(log n)‡ For weighted instances with f = 2.
Here (1 + ϵ)f∗ No O(m) O(log n)

Before our work, the best-known round complexity for the (1 + ϵ)H∆ SetCover in
the sub-linear regime was O(log ∆ · log f); this complexity is implicit in [7]. Our algorithm
improves this bound by a

√
log f factor. In the nearly-linear space regime, it is possible to

achieve O(log n)-approximation in O(log n) rounds by building on [3]. It is unclear how to
transfer this approach to the sub-linear regime. We improve the approximation ratio to H∆,
which is better, especially when ∆≪ n.

In terms of (1 + ϵ)f -approximation, the most efficient SetCover algorithm in MPC
follows by essentially a direct adaption of the Congest/Local O(log ∆/ log log ∆) round
algorithms in [6, 16] to MPC. Hence, for f ≤ 2O(

√
log n), our work improves the MPC round

complexity nearly quadratically.

SetCover in PRAM

Since our main algorithmic ideas are model-independent, they also readily translate to the
PRAM setting, giving a new result for (1 + ϵ)f -approximate SetCover that improves over
the state-of-the-art, and a streamlined (1 + ϵ)H∆-approximation algorithm for SetCover [9].

▶ Result 2. Let ϵ ∈ (0, 1/2) be an absolute constant. Let f be the maximum number of sets
an element appears in, and let ∆ be the largest set size. Then, SetCover can be solved in
CRCW PRAM with the following guarantees:

(1 + ϵ)f -approx. in expectation with deterministic O(n + m) work and O(log n) depth.
(1+ϵ)H∆-approx. in expectation with deterministic O(n+m) work and O(log2 n log log n)
depth.

In the context of (1 + ϵ)f -approximation, our result improves the state-of-the-art [27]
total work by f while depth is improved by an f log n factor. For (1 + ϵ)H∆-approximation,
our result obtaining deterministic O(log2 n log log n) depth and providing the approximation
guarantee in expectation should be compared to the state-of-the-art PRAM algorithm of
Blelloch, Peng, and Tangwongsan [9], which provides a depth guarantee in expectation
and a worst-case guarantee for the approximation ratio. While the expected depth bound
reported in [9] is O(log3 n), we believe it can be improved to O(log2 log log n) using some of
the implementation ideas in our PRAM algorithm (see the full version for more discussion).
A more detailed comparison between the prior and our results in PRAM is given in Table 2.3

3 Our algorithms provide approximation in expectation. Nevertheless, this can be lifted to “with high
probability” guarantees by executing O(log n/ϵ) independent instances of our algorithm and using the
smallest set cover. It incurs an extra O(log n/ϵ) factor in the total work while not affecting the depth
asymptotically.

L. Dhulipala, M. Dinitz, J. Łącki, and S. Mitrović 19:5

HypergraphMatching in MPC

Finally, we also obtain an improved MPC algorithm for finding hypergraph matchings, i.e.,
for finding matchings in graphs where an edge is incident to (at most) h vertices.

▶ Result 3. Let ϵ ∈ (0, 1/2) be an absolute constant. There is an MPC algorithm that,
in expectation, computes a (1 − ϵ)/h approximate maximum matching in a rank h hyper-
graph in the sub-linear space regime. This algorithm succeeds with high probability, runs in
Ô

(
poly(1/ϵ) ·

(
h4 + h ·

√
log ∆

))
MPC rounds and uses a total space of Õ (m).

Prior work [21] shows how to solve HypergraphMatching in rank h hypergraphs in
O(log n) rounds in the nearly-linear space regime. So, for h ∈ O(1), Result 3 improves
quadratically over the known upper bound and, in addition, extends to the sub-linear space
regime at the cost of slightly worsening the approximation ratio. For simple graphs, i.e.,
when h = 2, the work [19] already provides Õ(

√
log ∆) round complexity algorithm for

computing Θ(1)-approximate, and also maximal, matching. Nevertheless, our approach is
arguably simpler than the one in [19] and, as such, lands gracefully into the MPC world.

1.2 Further Related Work
SetCover in the MPC Model

Both SetCover and VertexCover, i.e., SetCover with f = 2, have been extensively
studied in the MPC model. Stergiou and Tsioutsiouliklis [36] studied the SetCover problem
in MapReduce and provided an empirical evaluation. Their main algorithm is based on
bucketing sets to within a (1 + ϵ) factor with respect to the set sizes and then processing all
the sets within the same bucket on one machine. Their algorithm, when translated to the
MPC model, runs in O(log ∆) iterations, but does not come with a bound on the required
space per machine, which in the worst case can be linear in the input size.

Harvey, Liaw, and Liu [22] studied weighted VertexCover and SetCover in the MPC
model and obtained results for both f and (1 + ϵ)H∆-approximation. Their results exhibit a
tradeoff between the round complexity and the space per machine. For f -approximation, they
gave a O((ϕ/c)2) round algorithm with space per machine O(fn1+c) by applying filtering [30]
to a primal dual algorithm. When the space per machine is nearly-linear, i.e., c = O(1/ log n),
this approach results in O(ϕ2 log2 n) rounds, which is quadratically slower than our algorithm.

Bateni, Esfandiari, and Mirrokni [3] developed a MapReduce algorithm for the k-cover
problem that uses Õ(n) space per machine. In this problem, one is given an integer k

and is asked to choose a family of at most k sets that cover as many elements as possible.
The problem, since it is a submodular maximization under cardinality constraint, admits
a Θ(1)-approximation. Their algorithm can be turned into an O(log n)-approximate one
for SetCover that uses O(log n) MPC rounds as follows. Assume that k is the minimum
number of sets that covers all the elements; this assumption can be removed by making
O(log n/ϵ) guesses of the form k = (1 + ϵ)i. Then, each time [3] is invoked, it covers a
constant fraction of the elements. So, repeating that process O(log n) times covers all the
elements using O(k · log n) many sets. Our result provides tighter approximation and, when
∆≪ n, also lower round complexity.

Since k-cover is a submodular maximization problem, the work [32] yields O(log n) MPC
round complexity and O(log n) approximation for SetCover. In the context of k-cover or
SetCover, it is worth noting that the algorithm of [32] sends Θ(

√
nk) sets to a machine. It

is unclear whether all those sets can be compressed to fit in O(n) or smaller memory.

DISC 2024

19:6 Parallel Set Cover and Hypergraph Matching

Ghaffari and Uitto [19] developed a Õ(
√

log ∆) round complexity algorithm for Ver-
texCover in the sub-linear space regime. They first compute a maximal independent set,
which is then used to obtain a maximal matching in the corresponding line graph. Finally,
by outputting the endpoints of the edges in that maximal matchings, the authors provide a
2-approximate VertexCover. Our algorithm has a matching round complexity while, at
the same time, it is arguably simpler. For both f -approximation and H∆-approximation, we
are unaware of any MPC algorithms that run in the sub-linear space regime. However, we
note that the PRAM algorithm of Blelloch, Peng, and Tangwongsan [9] can be simulated in
this setting to obtain a round complexity of O(log2 n) with O(m) total space.

f -Approximate SetCover in PRAM

The first f -approximation algorithms for SetCover in the sequential setting are due to
Hochbaum [23]. In the unweighted case, we can sequentially obtain an f -approximation in
O(m) work by picking any element, adding all of ≤ f sets containing it to the cover, and
removing all newly covered elements. For parallel algorithms aiming for f -approximation,
Khuller, Vishkin, and Young [27] gave the first parallel (1 + ϵ)f -approximation for weighted
SetCover that runs in O(fm log(1/ϵ)) work and O(f log2 n log(1/ϵ)) depth. Their method
uses a deterministic primal-dual approach that in each iteration raises the dual values p(e)
on every uncovered element e until the primal solution, which is obtained by rounding every
set s where

∑
e∈s p(e) ≥ (1− ϵ)w(s), is a valid set cover. Their work analysis bounds the

total number of times an element is processed across all O(f log n) iterations by m, giving a
total work of O(f ·m), which is not work-efficient. Their algorithm also has depth linear in
f , which means that the number of iterations of their algorithm can be as large as O(log2 n)
for f ≤ log n, and the depth therefore as large as O(log3 n).

For weighted VertexCover, Koufogiannakis and Young [28] gave an elegant 2-approxima-
tion that runs in O(m) work in expectation and O(log n) depth. They generalize their
algorithm to work for f -approximate weighted SetCover in the distributed setting using
Linial-Saks decomposition [33]; however, this does not imply an NC or RNC algorithm when
f > 2.4

Unlike the deterministic (1 + ϵ)f -approximation of Khuller et al. [27], our algorithm is
randomized and produces a set cover with the same approximation guarantees in expectation.
By contrast, our algorithm is easy to understand, analyze (with Lemma 3 as a given) and
argue correctness. Our algorithm is well suited for implementation and has small constant
factors, since every element set or element and their incident edges are processed exactly
once when the element is sampled or when the set is chosen. We note that our algorithm
also implies that (1 + ϵ)f -approximate SetCover is in RNC1 for any f ; the work of [27]
only implies this result for f = O(1).

Matching and HypergraphMatching in the Massively Parallel Computation Model

The study of approximate matchings in MPC was initiated by Lattanzi et al. [30], who
developed an O(1) round algorithm for finding a maximal matching when the space per
machine is n1+µ, for any constant µ > 0. In the linear space regime, a line of work [14, 17, 2, 5]

4 NC contains all problems that admit log-space uniform circuits of polynomial size and poly-logarithmic
depth and is the primary complexity class of interest when designing parallel algorithms. RNC extends
NC by allowing the circuit access to randomness. By known simulation results [26], polynomial work
and poly-logarithmic depth (randomized) PRAM algorithms also imply membership in NC (RNC).

L. Dhulipala, M. Dinitz, J. Łącki, and S. Mitrović 19:7

culminated in O(log log n) MPC round complexity. In the sublinear space regime, Ghaffari
and Uitto [19] developed a method that finds a maximal matching in Õ(

√
log n) rounds.

When each machine has at least O(nr) space, Hanguir and Stein [21] show how to find a
maximal matching in r-hypergraph in O(log n) MPC rounds. Their approach follows the
filtering idea developed in [30]. Our work does not only provide nearly quadratically lower
round complexity compared to [21], but it also extends to the sub-linear space regime.

H∆-approximate SetCover in PRAM

Sequentially, H∆-approximate SetCover can be solved in O(n + m) work by repeatedly
selecting the set incident to the largest number of uncovered elements. The first parallel
approximation algorithm for SetCover was due to Berger, Rompel and Shor [7], who gave
a (1 + ϵ)H∆-approximation that runs in O(m log5 n) work and O(log5 n) depth whp. Their
algorithm buckets the sets based on their sizes into O(log ∆) buckets. It then runs O(log f)
subphases, where the j-th subphase ensures that all elements have degrees at most (1 + ϵ)j

(the subphases are run in decreasing order). Each subphase performs O(log n) steps that
work by either selecting sets that cover a constant fraction of certain large edges or otherwise
independently sampling the remaining sets with probability (1 + ϵ)−j . Our approach also
uses independent sampling but does not require handling two cases separately. As a result,
our approach can be implemented efficiently by fixing the random choices upfront (see
Section 3.1). Subsequent work by Rajagopalan and Vazirani [34] improved the work and
depth, obtaining a parallel primal-dual algorithm with O(m log3 n) work and O(log3 n) depth
with high probability, but a weaker approximation guarantee of 2(1 + ϵ)H∆.

More recently, Blelloch, Peng and Tangwongsan [9] revisited parallel approximate Set-
Cover with the goal of designing work-efficient algorithms. Their algorithm achieves a
(1 + ϵ)H∆-approximation in O(m) expected work and O(log3 n) depth with high probability
on the CRCW PRAM. They propose a general primitive inspired by the approach of [34]
called a Maximal Nearly-Independent Set (MaNIS), which, given a collection of sets chooses a
subset of them while ensuring that the chosen sets are (1) nearly independent and thus do not
have significant overlap, and (2) maximal, so that any unchosen sets have significant overlap
with chosen ones. Blelloch, Simhadri, and Tangwongsan [10] later studied the algorithm in
the Parallel Cache Oblivious model, and provided an efficient parallel implementation.

Compared to this prior work, we obtain a streamlined (1 + ϵ)H∆-approximate algorithm
that shares some ideas with the previously discussed algorithms. We also bucket the sets by
size, and like [34, 9] each round finds a subset of sets with low overlap; the main difference
is that our method is arguably simpler. Our algorithm is also potentially very efficient in
practice, since after we fix the randomness up-front (see Section 3.1), we process every set in a
bucket exactly once, unlike other implementations of MaNIS which can process a set within
a bucket potentially many times [15]. Overall, our algorithm is work-efficient and runs in
O(log2 n log log n) depth on the CRCW PRAM. Although this is an improvement over known
depth bounds for PRAM algorithms, one can obtain similar bounds (in expectation) for the
algorithm of [9] by applying similar PRAM techniques.We also note that both algorithms
achieve O(log3 n) depth in the binary-forking model [8], and no parallel H∆-approximate
algorithms exist with o(log3 n) depth in this model. Experimentally comparing our algorithm
with existing implementations of [9] is an interesting direction for future work.

DISC 2024

19:8 Parallel Set Cover and Hypergraph Matching

1.3 Outline
The rest of the paper is organized as follows. In Section 2 we introduce notation that we
use in the paper. Section 3 contains a technical overview of our results. In particular, it
describes our algorithms and outlines how they can be analyzed and efficiently implemented
in the MPC and PRAM models. Then, in Section 4 we provide the approximation analysis of
our basic algorithms. Finally, in Appendix A we provide the formal analysis of the random
process which we use to model our algorithms. Due to space constraints, the remaining
details, including the detailed descriptions of the MPC and PRAM algorithms are deferred
to the full version of this paper.

2 Preliminaries

In the SetCover problem, we have a collection of elements T and a family of sets S, which
we can use to cover elements of T . We represent an instance of the problem with a bipartite
graph G = ((S ∪ T), E), where st ∈ E if and only if element t belongs to the set s. For
a vertex x ∈ S ∪ T we use N(x) to denote the set of its neighbors. Since G is bipartite,
x ∈ S implies N(x) ⊆ T and x ∈ T implies N(x) ⊆ S. In particular, for x ∈ S, |N(x)| is the
size of the set x.5 We use ∆ to denote the maximum set size (i.e., the maximum degree of
any vertex in S) and f to denote the largest number of sets that contain any element (the
maximum degree of any vertex in T). Note that some of our algorithms modify the input
graphs along the way, but we assume ∆ and f to be constant and refer to the corresponding
quantities in the input graph.

The VertexCover problem is defined as follows. The input is an undirected graph
G = (V, E) and the goal is to find the smallest set C ⊆ E such that each edge has at least
one endpoint in C. We note that this problem is equivalent to the SetCover problem in
which each element belongs to exactly 2 sets, except that the graph representing an instance
is constructed a bit differently.

In the HypergraphMatching problem, the input is a hypergraph G consisting of a set
of vertices V and a set of edges E. Each edge is a nonempty subset of V . The rank of a
hypergraph G is the maximum size of any edge. In the HypergraphMatching problem
the goal is to find a subset M ⊆ E which contains pairwise disjoint edges and has maximum
possible size. As opposed to SetCover, this is a maximization problem, and thus we say
that the solution M to the HypergraphMatching problem is α-approximate, for α ∈ (0, 1],
when |M | ≥ α · |OPT|, where OPT is an optimal solution to the HypergraphMatching
problem. The Matching problem is the HypergraphMatching problem in simple graphs,
i.e., in graphs with all edges of size 2.

Notation. We use Õ(x) to hide logarithmic factor in x, i.e., Õ(x) denotes O(x · poly log x).
Throughout this paper, we use n to refer to the number of vertices and m to refer to the
number of edges of an input graph. When it is stated that a guarantee holds “with high
probability”, or whp for short, it means that it holds with probability 1− 1/nc, where c is a
constant. In our proofs with whp guarantees, c can be made arbitrarily large by paying a
constant factor in the round, space, total work, or depth complexity. Hence, we often omit
the exact value of c.

5 Technically, |x| is also the size of the set x. However, in our algorithms, we repeatedly remove some
elements from T (together with their incident edges), and so we use |N(x)| to make it clear that we
refer to the current size of the set.

L. Dhulipala, M. Dinitz, J. Łącki, and S. Mitrović 19:9

Probability tools. In our analysis, we extensively apply the following well-known tool from
probability.

▶ Theorem 1 (Chernoff bound). Let X1, . . . , Xk be independent random variables taking
values in [0, 1]. Let X

def=
∑k

i=1 Xi and µ
def= E[X]. Then,

(A) For any δ ∈ [0, 1] it holds Pr [X ≤ (1− δ)µ] ≤ exp
(
−δ2µ/2

)
.

(B) For any δ ∈ [0, 1] it holds Pr [X ≥ (1 + δ)µ] ≤ exp
(
−δ2µ/3

)
.

Work-Depth Model. We study our algorithms in the shared-memory setting using the
concurrent-read concurrent-write (CRCW) parallel random access machine model (PRAM).
We state our results in terms of their work and depth. The work of a PRAM algorithm is
equal to the total number of operations required, and the depth is equal to the number of
time steps required [24]. Algorithms with work W and depth D can be scheduled to run in
W/P + O(D) time [24, 11] on a P processor machine. The main goal in parallel algorithm
design is to obtain work-efficient algorithms with low (ideally poly-logarithmic) depth. A
work-efficient algorithm asymptotically requires the same work as the fastest sequential
algorithm. Since the number of processors, P , is still relatively small on modern multicore
machines, minimizing W by designing work-efficient algorithms is critical in practice. Our
algorithms make use of several PRAM primitives, including parallel prefix sum [24], parallel
integer sort [35], and approximate prefix sums [23].

3 Technical Overview

In this section we demonstrate the main ideas behind our results. We start by presenting our
sequential algorithms for the SetCover problem. For any set X and probability p ∈ [0, 1]
we write Sample(X, p) to denote a procedure that returns a random subsample of X in
which each element of X is included independently with probability p. Our algorithms work
by repeatedly sampling sets or elements independently using a sequence of probabilities pi,
which is defined as follows for any ϵ > 0.

b
def= ⌈log(2 + 2ϵ)/ϵ⌉ (1)

pi
def= (1 + ϵ)−⌈i/b⌉ for any i ∈ N. (2)

Throughout the paper, we use log to denote the natural logarithm function. We can now
present our algorithms for SetCover, which are given as Algorithm 1 and Algorithm 2.

Algorithm 1 is a natural parallelization of the sequential f -approximate algorithm. Instead
of picking one element at a time, we sample multiple elements at random and add to the
solution the sets containing them. The sampling probability is slowly increased in each
step (or, more precisely, every O(1/ϵ) steps). Algorithm 2 in turn parallelizes the O(log ∆)
approximate algorithm. The outer loop iterates over different set sizes (rounded to the power
of 1 + ϵ) starting from the largest ones. For a fixed set size, the inner loop adds to the
solution a uniformly random sample of sets, again slowly increasing the sampling probability.

We start by analyzing Algorithm 1. Clearly, the algorithm runs in O(log n) iterations.
Iteration i samples each element independently with probability pi and adds all sets covering
the sampled elements to the solution. Then, all chosen sets and elements that became
covered are removed. Crucially, the sampling probability in the first step is at most (1 +
ϵ)−⌈log1+ϵ(∆/ϵ)⌉ ≤ ϵ/∆, which implies that the expected number of elements sampled within
each set is at most ϵ. Moreover, the sampling probability increases very slowly, as it increases
by a 1 + ϵ factor every b steps.

DISC 2024

19:10 Parallel Set Cover and Hypergraph Matching

Algorithm 1 (1 + ϵ)f -approximate algorithm for SetCover.

1: function SetCover(G, ϵ) ▷ G = (S ∪ T, E)
2: C ← ∅
3: for i = b⌈log1+ϵ(∆/ϵ)⌉ down to 0 do
4: D ← Sample(T, pi)
5: C ← C ∪N(D)
6: Remove from G all sets in N(D) and all elements they cover
7: return C

Algorithm 2 (1 + ϵ)H∆-approximate algorithm for SetCover.

1: function SetCover(G, ϵ) ▷ G = (S ∪ T, E)
2: C ← ∅
3: for j = ⌊log1+ϵ ∆⌋ down to 0 do
4: for i = b⌈log1+ϵ(f/ϵ)⌉ down to 0 do
5: D ← Sample({s ∈ S | |N(s)| ≥ (1 + ϵ)j}, pi)
6: C ← C ∪D

7: Remove from G all sets in D and all elements they cover
8: return C

Let us now present the main ideas behind the analysis of the approximation ratio of
the algorithm. For simplicity of presentation, let us consider the case when each element
is contained in exactly two sets (which implies f = 2). In other words, we consider the
VertexCover problem. Specifically, since the degree of each vertex of T is 2, we can dissolve
vertices of T (equivalently, contract each such vertex into its arbitrary neighbor) and obtain a
graph H = (V, E) (where V = S) on which we would like to solve the VertexCover problem.
We note that the solution and analysis of Algorithm 1 for VertexCover generalizes easily
to the case of arbitrary f .

If we translate Algorithm 1 to an algorithm running on H, we see that it repeatedly
samples a set of edges of H, and for each sampled edge e adds both endpoints of e to the
solution, and removes both endpoints of e from H together with their incident edges. In
order to prove the approximation guarantee, we show the following.

▶ Lemma 2. Let D be the subset of T picked across all iterations of Algorithm 1. For each
vertex v, E[degD(v))] ≤ 1 + O(ϵ).

Here degD(v) denotes the number of elements of D contained in v. We prove this lemma
formally in Section 4 (see Lemma 6).

Notice that when an element x ∈ T is sampled to D in Algorithm 1, all the sets containing
x are added to C. So if w sampled elements belong to the same set, then the algorithm
could add Θ(wf) many sets, although only one of the sets suffices to cover all the w sampled
elements. Intuitively, Lemma 2 states that the value of w is at most 1 + O(ϵ) in expectation,
which we turn into an approximation guarantee in Lemma 7.

To prove Lemma 2, we model the sampling process in the algorithm as follows. Fix a
vertex v ∈ V . Let A be the set of edges incident to v in G. Algorithm 1 runs a sequence
of b⌈log1+ϵ(∆/ϵ)⌉ + 1 steps, indexed by b⌈log1+ϵ(∆/ϵ)⌉, . . . , 0. Note that the step indices
are decreasing. Moreover, ∆ ≥ |A|, since ∆ is the maximum vertex degree in G. In step i,
each element of A is sampled independently with probability pi. As soon as at least one
element of A is sampled, v is added to the cover. When this happens all elements of A are

L. Dhulipala, M. Dinitz, J. Łącki, and S. Mitrović 19:11

deleted and the random process stops. Moreover, even if no element of A is sampled, due to
other random choices of the algorithm some elements of A may get deleted. In particular,
when a neighbor w of v is added to the set cover, the edge wv is deleted from A. Hence, it is
possible that all elements of A are deleted before any of them is sampled.

To analyze this we introduce the following set sampling process, henceforth denoted as
SSP, which gives a more abstract version of the above sampling. The analysis of this process
forms our core sampling lemma, which will be useful not just for Lemma 2 but to analyze all
of our algorithms. Let A be a fixed set and k be an integer. The process proceeds in k + 1
steps indexed k, k−1, . . . , 0 and constructs a family of sets A = Ak ⊇ Ak−1 ⊇ · · · ⊇ A1 ⊇ A0
as well as a family Rk, . . . , R0, such that Ri ⊆ Ai. In each step i (k ≥ i ≥ 0) we first
construct a set Ai. We have that Ak = A, and for i ∈ [0, k) the set Ai ⊆ Ai+1 is constructed
by a (possibly randomized) adversary, who is aware of the sets Aj and Rj for j > i. In our
analysis of SSP, the goal is to argue that certain guarantees hold regardless of what the
adversary does. After the adversary constructs Ai, we sample Ri = Sample(Ai, pi).

We note that we assume that the updates are adversarial to simplify the overall proof.
This makes our claims about SSP more robust, and analyzing SSP with an adversary does
not introduce significant complications.

For i ∈ [0, k], we define ni
def= |Ai|. Whenever we apply SSP we have that k ≥

b⌈log1+ϵ(nk/ϵ)⌉, and for simplicity we make this assumption part of the construction. Note
that this condition simply ensures that the initial sampling probability is at most ϵ/nk.
Finally, we let z be the maximum index such that Rz ̸= ∅. We stress that the SSP steps
are indexed in decreasing order, and hence z is the index of the first step such that Rz is
nonempty. If all Ri are empty, we set z = −1 and assume R−1 = ∅. We say that z is the
step when the SSP stops.

Observe that in order to analyze the properties of the set of sampled edges in Algorithm 1,
it suffices to analyze the properties of the set Rz. Our main lemma analyzing SSP is given
below. It captures the single property of SSP which suffices to prove the approximation
ratio of both Algorithm 1 and Algorithm 2. In particular, it directly implies Lemma 2.

▶ Lemma 3. Consider the SSP using any adversary and ϵ > 0. Then, E[|Rz|] ≤ 1 + 4ϵ.

Let us now describe the intuition behind the proof of Lemma 3. To simplify presentation,
let us assume that the sets A0, . . . , Ak are fixed upfront (i.e., before any set Ri is sampled).
We show in Observation 11 that if we are interested in analyzing the properties of Rz, this
can be assumed without loss of generality. Observe that as long as the process executes steps
where pi · ni ≤ ϵ, the desired property holds. Indeed, with this assumption we have that
E[|Ri| | Ri ̸= ∅] ≤ 1 + ϵ. This is because even if one element is sampled, the expected size of
the sample among all remaining elements is at most ϵ (for a formal proof, see Claim 16).

In order to complete the proof, we show that reaching a step where pi · ni ≫ ϵ is unlikely.
Specifically, the value of pi · ni can increase very slowly in consecutive steps, as pi increases
only by (1 + ϵ) factor every b steps, and ni can only decrease. By picking a large enough
value of b, we can ensure that the process most likely stops before pj · nj becomes large,
i.e., the expected value of pz · nz is O(ϵ). Indeed, in each step where pi · ni ≥ ϵ, the process
stops with probability Ω(ϵ). Hence, if we repeat such a step roughly 1/ϵ times (which can be
achieved by tweaking b), the process will stop with constant probability (independent of ϵ).
In the end we fix b, such that the probability of pi · ni increasing by a factor of 1 + ϵ is at
most 1/(2 + 2ϵ). As a result, thanks to a geometric sum argument, the expected value of
pz · nz is O(ϵ), which implies Lemma 3.

DISC 2024

19:12 Parallel Set Cover and Hypergraph Matching

Algorithm 3 (1 + ϵ)f -approximate algorithm for SetCover.

1: function SetCover(G, ϵ) ▷ G = (S ∪ T, E)
2: C ← ∅
3: k ← b⌈log1+ϵ(∆/ϵ)⌉
4: Bi ← ∅ for all i ∈ [0, k]
5: for each element t ∈ T do
6: Sample Xt ∈ [0, k], where P (Xt = i) = p̃i and add t to BXt

7: for i = k down to 0 do
8: D ← all elements of Bi which are not marked
9: C ← C ∪N(D)

10: Remove from G all sets in N(D) and mark all elements they cover
11: return C

3.1 Fixing the Random Choices Upfront

In order to obtain efficient implementations of our algorithms, we reformulate them into
equivalent versions where the sampling happens upfront. Specifically, consider the main loop
of Algorithm 1. Observe that each element is sampled at most once across all iterations, since
as soon as an element is sampled it is removed from further consideration. A similar property
holds for each set across all iterations of the inner for loop of Algorithm 2. Moreover, in both
cases, the probability of being sampled in a given iteration is fixed upfront and independent
of the algorithm’s actions in prior iterations. It follows easily that we can make these
per-element or per-set random choices upfront. Specifically, let k = b⌈log1+ϵ(∆/ϵ)⌉. Then,
Algorithm 1 executes k + 1 iterations indexed k, k − 1, . . . , 0. We can randomly partition the
input elements into k + 1 buckets Bk, . . . , B0 using a properly chosen distribution and then
in iteration i consider the elements of Bi which have not been previously removed as the
sample to be used in this iteration.

Observe that since p0 = 1 (see Equation (2)), each element that is not removed before
the last step is sampled. Specifically, let p̃0, . . . , p̃k be a probability distribution such that
p̃i = pi ·

∏k
j=i+1(1− pj). Observe that p̃i is the probability that an element should be put

into bucket Bi.
Algorithm 3 shows a version of Algorithm 1 in which the random choices are made upfront.

It should be clear that Algorithms 1 and 3 produce the same output. Moreover, an analogous
transformation can be applied to the inner loop of Algorithm 2. The benefit of making the
random choices upfront is twofold. In the MPC model, we use the sampling to simulate
r iterations of the algorithms in O(log r) MPC rounds. The efficiency of this simulation
crucially relies on the fact that we only need to consider the edges sampled within the phase
and we can determine (a superset of) these edges upfront.

In the PRAM model, the upfront sampling allow us to obtain an improved work bound:
instead of tossing a coin for each element separately in each iteration, we can bucket the
elements initially and then consider each element in exactly one iteration. In order to bucket
the elements efficiently we can use the following lemma.

▶ Lemma 4 ([37]). Let r0, r1, . . . , rk be a sequence of nonnegative real numbers which
sum up to 1. Let X → [0, k] be a discrete random variable, such that for each i ∈ [k],
P (X = i) = ri. Then, there exists an algorithm which, after preprocessing in O(k) time, can
generate independent samples of X in O(1) time.

L. Dhulipala, M. Dinitz, J. Łącki, and S. Mitrović 19:13

3.2 MPC Algorithms

Simulating Algorithm 3 in the sub-linear MPC model is a relatively straightforward application
of the graph exponentiation technique [31, 19, 18, 13, 12]. For simplicity, let us again consider
the VertexCover problem. We will show how to simulate r = O(

√
log n) iterations of

the for loop in only O(log r) = O(log log n) MPC rounds. Let us call these r iterations
of the algorithm a phase. We first observe that to execute a phase we only need to know
edges in the buckets corresponding to the iterations within the phase. Let us denote by Gr

the graph consisting of all such edges. Moreover, let p be the sampling probability used
in the first iteration of the phase. The crucial observation is that the maximum degree
in Gr is 2Õ(

√
log n) with high probability. This can be proven in three steps. First, we

show that by the start of the phase the maximum degree in the original graph G drops
to O(1/p · log n) with high probability. Indeed, for any vertex v with a higher degree the
algorithm samples an edge incident to v with high probability, which causes v to be removed.
Second, we observe that the sampling probability increases to at most p · 2O(

√
log n) within

the phase, and so the expected number of edges incident to any vertex of Gr is at most
O(1/p · log n) · p · 2O(

√
log n) = 2Õ(

√
log n). Third, we apply a Chernoff bound.

At this point, it suffices to observe that running r iterations of the algorithm can be
achieved by computing for each vertex v of Gr a subgraph Sv consisting of all vertices at
distance O(r) from v and then running the algorithm separately on each Sv. In other words,
running r iterations of the algorithm is a O(r) round Local algorithm. Computing Sr can be
done using graph exponentiation in log r = O(log log n) MPC rounds using 2O(

√
log n)·r = nα

space per machine and n1+α total space, where α > 0 is an arbitrary constant.
The space requirement can also be reduced to Õ(m). We now sketch the high-level

ideas behind this improvement. We leverage the fact that if we sample each edge of an
m-edge graph independently with probability p, then only O(p ·m) vertices have an incident
sampled edge, and we can ignore all the remaining vertices when running our algorithm.
Hence, we only need to run the algorithm for O(p · m) vertices and thus have at least
S = m/O(p ·m) = Ω(1/p) available space per vertex, even if we assume that the total space
is O(m). As argued above, with space per vertex S, we can simulate roughly

√
log S steps

of the algorithm. In each of these steps, the sampling probability increases by a constant
factor, so overall, it increases by a factor of 2Ω(

√
log S) across the

√
log S steps that we

simulate. After repeating this simulation t =
√

log S = O(
√

log ∆) times, the sampling
probability increases by a factor of at least 2Ω(t·

√
log S) = 2Ω(log S) = SΩ(1). Overall, after

roughly O(
√

log ∆) repetitions the space per vertex reduces from S to S1−Ω(1). Similarly,
the sampling probability increases from p to p1+Ω(1). Hence, it suffices to repeat this overall
process log log ∆ times to simulate all O(log ∆) steps.

3.3 PRAM algorithms

Algorithm 3 also almost immediately yields a work-efficient algorithm with O(log n) depth in
the CRCW PRAM. Obtaining a work-efficient and low-depth implementation of Algorithm 2
is only a little more involved. One challenge is that the set sizes change as elements get
covered. Since we run O(log n) steps per round, we can afford to exactly compute the sizes
at the start of a round, but cannot afford to do so on every step without incurring an
additional O(log n) factor in the depth. We first use the randomness fixing idea described
in Section 3.1 to identify the step in the algorithm when a set will be sampled. Then, in
every step, for the sets sampled in this step, we approximate the set sizes up to a (1 + δ)

DISC 2024

19:14 Parallel Set Cover and Hypergraph Matching

Algorithm 4 Algorithm for HypergraphMatching.

1: function HypergraphMatching(G, ϵ) ▷ G = (V, E)
2: ∆← the maximum degree in G

3: C ← ∅
4: for i = b⌈log1+ϵ(∆/ϵ)⌉ down to 0 do
5: D ← Sample(E(G), pi)
6: C ← C ∪D

7: Remove from G all endpoints of edges in D

8: return edges independent in C

factor, which can be done deterministically and work-efficiently in O(log log n) depth and use
these estimates in our implementation of Algorithm 2. The resulting algorithm still obtains
a (1 + ϵ)H∆-approximation in expectation while deterministically ensuring work efficiency
and O(log2 n log log n) depth.

3.4 HypergraphMatching in MPC

We show that our techniques for solving SetCover can be further applied to solve approxi-
mate HypergraphMatching. For the purpose of this high-level overview we consider the
special case of approximate Matching in simple graphs, i.e., hypergraphs in which each
edge has exactly 2 endpoints. Generalizing our approach to arbitrary hypergraphs does
not require any additional ideas. Our algorithm for HypergraphMatching is shown as
Algorithm 4, and works similarly to Algorithm 1. Specifically, if we consider the simple
graph setting and the VertexCover problem, Algorithm 1 samples a set of edges of the
graph and then returns the set of endpoints of these edges as the solution. Algorithm 4 also
samples a set of edges, but the difference is in how it computes the final solution. Namely, it
returns all sampled edges which are independent, i.e., not adjacent to any other sampled
edge. Clearly, the set of edges returned this way forms a valid matching. To argue about its
cardinality, we show that the number of edges that are returned is a constant factor of all
edges that have been sampled. To this end, we show a second fact about the SSP, which
says that any sampled element is not sampled by itself with only small constant probability.

▶ Lemma 5. Let a ∈ Ak and let ϵ ≤ 1/2. Then P (|Rz| > 1 | a ∈ Rz) ≤ 6ϵ.

The high-level idea behind the proof of Lemma 5 is similar to the proof of Lemma 2:
in the steps where the expected number of sampled elements is ≤ ϵ, the property follows
in a relatively straightforward way. Moreover, we are unlikely to reach any step where
the expected number of sampled elements is considerably larger, and so to complete the
proof we also apply a geometric sum-based argument. With the above Lemma, the analysis
of Algorithm 4 becomes straightforward and shows that the approximation ratio of the
algorithm is 1−h·6ϵ

h (see Lemma 10), where h is the rank of the hypergraph.
Algorithm 4 can be seen as a simplification of the “warm-up” algorithm of [19], which

alternates between sampling edges incident to high-degree vertices and peeling high-degree
vertices. Our algorithm simply samples from all edges and does not peel vertices. This
makes the proof of the approximation ratio trickier since there is less structure to leverage.
However, the simplification results in a straightforward application of round compression
and enables extending the algorithm to hypergraphs.

L. Dhulipala, M. Dinitz, J. Łącki, and S. Mitrović 19:15

minimize
∑
s∈S

xs

subject to
∑
s∋t

xs ≥ 1 for t ∈ T

xs ≥ 0 for s ∈ S

maximize
∑
t∈T

yt

subject to
∑
t∈s

yt ≤ 1 for s ∈ S

yt ≥ 0 for t ∈ T

Figure 1 LP relaxation of the SetCover LP (left) and its dual (right).

4 Approximation Analysis of the Algorithms

In this section, we analyze the approximation ratio and analysis of our algorithms. We note
that the correctness of all algorithms is essentially immediate. Specifically, in Algorithm 1
and Algorithm 2 we only remove an element when it is covered, and in the last iteration of
the inner for loop in both algorithms (which in Algorithm 1 is the only loop) the sampling
probability is 1, so we add all remaining sets (in Algorithm 2, limited to the large enough
size) to the solution. Similarly, Algorithm 4 clearly outputs a valid matching, thanks to the
final filtering step in the return statement.

▶ Lemma 6. Let D̄ be the union of all elements picked in all iterations of Algorithm 1. For
each set s ∈ S we have E[|s ∩ D̄|] ≤ 1 + 4ϵ.

Proof. This follows from Lemma 3 applied to the set s. ◀

▶ Lemma 7. Algorithm 1, called with e′ = ϵ/4, computes an (1 + ϵ)f -approximate solution
to SetCover.

Proof. The key property that we utilize in the analysis is stated in Lemma 6. The proof is a
relatively simple generalization of the dual fitting analysis of the standard f -approximate
SetCover algorithm. The generalization needs to capture two aspects: the fact that the
property stated in Lemma 6 holds only in expectation and allows for a slack of 4ϵ.

We use the relaxation of the SetCover IP and its dual given in Figure 1. Let D̄ be the
union of all elements picked in all iterations of Algorithm 1. We construct a dual solution
that corresponds to D̄ as follows. First, for each t ∈ D̄, we set ȳt = 1/(1 + 4ϵ), and for t ̸∈ D̄

we set ȳt = 0. Recall that Algorithm 1 returns a solution of size |C|. For any run of the
algorithm we have |C| ≤ f

∑
t∈T ȳt(1 + 4ϵ).

We now define a set dual of variables by setting yt = E[ȳt] for each t ∈ T . This set forms
a feasible dual solution, since for every s ∈ S we have∑

t∈s

yt =
∑
t∈s

E[ȳt] = E[|s ∩ D̄|/(1 + 4ϵ)] ≤ 1,

where in the last inequality we used Lemma 6. Moreover, we have

E[|C|] ≤ f ·
∑
t∈T

yt(1 + 4ϵ),

which implies that the solution’s expected size is at most f(1+4ϵ) times larger than a feasible
dual solution. Hence, the lemma follows from weak LP duality. ◀

Now let us consider Algorithm 2.

DISC 2024

19:16 Parallel Set Cover and Hypergraph Matching

▶ Lemma 8. Algorithm 2 adds sets to the solution in batches. When a batch of sets D is
added to the solution we have that (a) the residual size of each set in D is at most (1 + ϵ)
smaller than the maximum residual size of any set at that moment, and (b) for each newly
covered element t, the expected number of sets in a batch that cover it is at most (1 + 4ϵ).

Proof. Observe that for i = 0 and the current value of j, each of the remaining sets of size
(1 + ϵ)j or more is included in D. By applying this observation inductively, we see that each
iteration of the outer loops starts with the maximum set size being less than (1 + ϵ)j+1 and
results in all sets of size at least (1 + ϵ)j being either added to the solution or removed from
the graph. This implies claim (a). Claim (b) follows directly from Lemma 3. ◀

To bound the approximation guarantee of Algorithm 2, we show the following, which,
similarly to the proof of Lemma 7, uses a dual-fitting analysis.

▶ Lemma 9. Any algorithm that computes a valid SetCover solution and satisfies the
property of Lemma 8, computes an (1 + ϵ)(1 + 4ϵ)H∆-approximate (in expectation) solution
to SetCover.

▶ Lemma 10. Algorithm 4 ran on a rank h hypergraph in expectation computes a 1−h·6ϵ
h

approximate matching.

Proof. Let G = (V, E) be input to Algorithm 4, and let C ′ be the set C after the execution
of the for-loop. Observe that V (C ′) is a vertex cover of G: all the edges not covered by the
time we reach i = 0 are included in D and, so, in C.

We want also to lower-bound the size of independent edges in C ′. Fix an edge e and
consider a vertex v ∈ e. Once e is included in C, all the endpoints of e are removed from G.
Hence, if e is not independent in C ′, then it is the case because, in the same iteration, an
edge e′ adjacent to e is also included in D. To upper-bound the probability of e′ and e being
included in D, we use Lemma 5. How do we use Lemma 5 in the context of Algorithm 4?
For a fixed vertex v, Ai is the set of edges incident to v at the i-th iteration of the for-loop
of Algorithm 4. In particular, the set Ak = A defined in Appendix A equals all the edges of
the input graph G containing v.

By Lemma 5, the probability of v being incident to more than one sampled edge is
at most 6ϵ. Thus, by union bound, e and an edge adjacent to e are included in D with
probability at most h · 6ϵ. Therefore, with probability 1− h · 6ϵ at least, a fixed edge in C ′ is
independent. This implies that in expectation |C ′|(1− h · 6ϵ) edges in C ′ are independent
and, so, Algorithm 4 outputs a matching that in expectation has size at least |C ′|(1− h · 6ϵ).
Since there is a vertex cover of size |V (C ′)| ≤ h|C ′| at most, it implies that Algorithm 4 in
expectation produces a 1−h·6ϵ

h -approximate maximum matching. ◀

References
1 Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory Yaroslavtsev. Parallel

algorithms for geometric graph problems. In ACM Symposium on Theory of Computing
(STOC), pages 574–583, 2014. doi:10.1145/2591796.2591805.

2 Sepehr Assadi, MohammadHossein Bateni, Aaron Bernstein, Vahab Mirrokni, and Cliff
Stein. Coresets meet EDCS: algorithms for matching and vertex cover on massive graphs.
In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1616–1635. SIAM, 2019.
doi:10.1137/1.9781611975482.98.

3 MohammadHossein Bateni, Hossein Esfandiari, and Vahab Mirrokni. Optimal distributed
submodular optimization via sketching. In ACM International Conference on Knowledge
Discovery & Data Mining (KDD), pages 1138–1147, 2018. doi:10.1145/3219819.3220081.

https://doi.org/10.1145/2591796.2591805
https://doi.org/10.1137/1.9781611975482.98
https://doi.org/10.1145/3219819.3220081

L. Dhulipala, M. Dinitz, J. Łącki, and S. Mitrović 19:17

4 Paul Beame, Paraschos Koutris, and Dan Suciu. Communication steps for parallel query
processing. Journal of the ACM (JACM), 64(6):1–58, 2017. doi:10.1145/3125644.

5 Soheil Behnezhad, Mohammad Taghi Hajiaghayi, and David G Harris. Exponentially faster
massively parallel maximal matching. In IEEE Symposium on Foundations of Computer
Science (FOCS), pages 1637–1649. IEEE, 2019.

6 Ran Ben Basat, Guy Even, Ken-ichi Kawarabayashi, and Gregory Schwartzman. Optimal
distributed covering algorithms. In ACM Symposium on Principles of Distributed Computing
(PODC), pages 104–106, 2019. doi:10.1145/3293611.3331577.

7 Bonnie Berger, John Rompel, and Peter W Shor. Efficient NC algorithms for set cover
with applications to learning and geometry. Journal of Computer and System Sciences,
49(3):454–477, 1994. doi:10.1016/S0022-0000(05)80068-6.

8 Guy E Blelloch, Jeremy T Fineman, Yan Gu, and Yihan Sun. Optimal parallel algorithms in
the binary-forking model. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 89–102, 2020. doi:10.1145/3350755.3400227.

9 Guy E Blelloch, Richard Peng, and Kanat Tangwongsan. Linear-work greedy parallel approxi-
mate set cover and variants. In Proceedings of the twenty-third annual ACM symposium on Par-
allelism in algorithms and architectures, pages 23–32, 2011. doi:10.1145/1989493.1989497.

10 Guy E Blelloch, Harsha Vardhan Simhadri, and Kanat Tangwongsan. Parallel and i/o efficient
set covering algorithms. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 82–90, 2012. doi:10.1145/2312005.2312024.

11 Robert D Blumofe and Charles E Leiserson. Scheduling multithreaded computations by work
stealing. Journal of the ACM (JACM), 46(5):720–748, 1999. doi:10.1145/324133.324234.

12 Sebastian Brandt, Manuela Fischer, and Jara Uitto. Breaking the linear-memory barrier in
MPC: Fast MIS on trees with strongly sublinear memory. Theoretical Computer Science,
849:22–34, 2021. doi:10.1016/J.TCS.2020.10.007.

13 Yi-Jun Chang, Manuela Fischer, Mohsen Ghaffari, Jara Uitto, and Yufan Zheng. The com-
plexity of (δ+ 1) coloring in congested clique, massively parallel computation, and centralized
local computation. In ACM Symposium on Principles of Distributed Computing (PODC),
pages 471–480, 2019. doi:10.1145/3293611.3331607.

14 Artur Czumaj, Jakub Łącki, Aleksander Mądry, Slobodan Mitrović, Krzysztof Onak, and
Piotr Sankowski. Round compression for parallel matching algorithms. In ACM Symposium
on Theory of Computing (STOC), pages 471–484, 2018.

15 Laxman Dhulipala, Guy Blelloch, and Julian Shun. Julienne: A framework for parallel graph
algorithms using work-efficient bucketing. In ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), pages 293–304, 2017. doi:10.1145/3087556.3087580.

16 Guy Even, Mohsen Ghaffari, and Moti Medina. Distributed set cover approximation: primal-
dual with optimal locality. In International Symposium on Distributed Computing (DISC).
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.

17 Mohsen Ghaffari, Themis Gouleakis, Christian Konrad, Slobodan Mitrović, and Ronitt Ru-
binfeld. Improved massively parallel computation algorithms for MIS, matching, and vertex
cover. In ACM Symposium on Principles of Distributed Computing, pages 129–138, 2018.
doi:10.1145/3212734.3212743.

18 Mohsen Ghaffari, Silvio Lattanzi, and Slobodan Mitrović. Improved parallel algorithms for
density-based network clustering. In International Conference on Machine Learning (ICML),
pages 2201–2210. PMLR, 2019. URL: http://proceedings.mlr.press/v97/ghaffari19a.
html.

19 Mohsen Ghaffari and Jara Uitto. Sparsifying distributed algorithms with ramifications in mas-
sively parallel computation and centralized local computation. In ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1636–1653. SIAM, 2019. doi:10.1137/1.9781611975482.
99.

DISC 2024

https://doi.org/10.1145/3125644
https://doi.org/10.1145/3293611.3331577
https://doi.org/10.1016/S0022-0000(05)80068-6
https://doi.org/10.1145/3350755.3400227
https://doi.org/10.1145/1989493.1989497
https://doi.org/10.1145/2312005.2312024
https://doi.org/10.1145/324133.324234
https://doi.org/10.1016/J.TCS.2020.10.007
https://doi.org/10.1145/3293611.3331607
https://doi.org/10.1145/3087556.3087580
https://doi.org/10.1145/3212734.3212743
http://proceedings.mlr.press/v97/ghaffari19a.html
http://proceedings.mlr.press/v97/ghaffari19a.html
https://doi.org/10.1137/1.9781611975482.99
https://doi.org/10.1137/1.9781611975482.99

19:18 Parallel Set Cover and Hypergraph Matching

20 Michael T Goodrich, Nodari Sitchinava, and Qin Zhang. Sorting, searching, and simulation
in the mapreduce framework. In International Symposium on Algorithms and Computation,
pages 374–383. Springer, 2011. doi:10.1007/978-3-642-25591-5_39.

21 Oussama Hanguir and Clifford Stein. Distributed algorithms for matching in hypergraphs. In
Workshop on Approximation and Online Algorithms (WAOA), pages 30–46. Springer, 2021.

22 Nicholas JA Harvey, Christopher Liaw, and Paul Liu. Greedy and local ratio algorithms in
the mapreduce model. In Proceedings of the 30th on Symposium on Parallelism in Algorithms
and Architectures, pages 43–52, 2018.

23 Dorit S Hochbaum. Approximation algorithms for the set covering and vertex cover problems.
SIAM Journal on Computing, 11(3):555–556, 1982. doi:10.1137/0211045.

24 Joseph JáJá. An Introduction to Parallel Algorithms. Addison Wesley Longman Publishing
Co., Inc., USA, 1992.

25 Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation for mapreduce.
In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 938–948. SIAM, 2010.
doi:10.1137/1.9781611973075.76.

26 Richard M Karp and Vijaya Ramachandran. A survey of parallel algorithms for shared-memory
machines, 1988.

27 Samir Khuller, Uzi Vishkin, and Neal Young. A primal-dual parallel approximation technique
applied to weighted set and vertex covers. Journal of Algorithms, 17(2):280–289, 1994.
doi:10.1006/JAGM.1994.1036.

28 Christos Koufogiannakis and Neal E Young. Distributed algorithms for covering, packing
and maximum weighted matching. Distributed Computing, 24:45–63, 2011. doi:10.1007/
S00446-011-0127-7.

29 Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. The price of being near-sighted.
In ACM-SIAM Symposium on Discrete Algorithms (SODA), 2006.

30 Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, and Sergei Vassilvitskii. Filtering: a
method for solving graph problems in mapreduce. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 85–94, 2011. doi:10.1145/1989493.1989505.

31 Christoph Lenzen and Roger Wattenhofer. Brief announcement: Exponential speed-up of local
algorithms using non-local communication. In ACM Symposium on Principles of Distributed
Computing (PODC), pages 295–296, 2010. doi:10.1145/1835698.1835772.

32 Paul Liu and Jan Vondrak. Submodular optimization in the mapreduce model. In 2nd
Symposium on Simplicity in Algorithms (SOSA 2019). Schloss-Dagstuhl-Leibniz Zentrum für
Informatik, 2019.

33 Alessandro Panconesi and Aravind Srinivasan. On the complexity of distributed network
decomposition. Journal of Algorithms, 20(2):356–374, 1996. doi:10.1006/JAGM.1996.0017.

34 Sridhar Rajagopalan and Vijay V Vazirani. Primal-dual RNC approximation algorithms for
set cover and covering integer programs. SIAM Journal on Computing, 28(2):525–540, 1998.
doi:10.1137/S0097539793260763.

35 Sanguthevar Rajasekaran and John H Reif. Optimal and sublogarithmic time randomized
parallel sorting algorithms. SIAM Journal on Computing, 18(3):594–607, 1989. doi:10.1137/
0218041.

36 Stergios Stergiou and Kostas Tsioutsiouliklis. Set cover at web scale. In ACM International
Conference on Knowledge Discovery & Data Mining (KDD), pages 1125–1133, 2015. doi:
10.1145/2783258.2783315.

37 Alastair J Walker. New fast method for generating discrete random numbers with arbitrary
frequency distributions. Electronics Letters, 8(10):127–128, 1974.

38 David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, USA, 1st edition, 2011.

https://doi.org/10.1007/978-3-642-25591-5_39
https://doi.org/10.1137/0211045
https://doi.org/10.1137/1.9781611973075.76
https://doi.org/10.1006/JAGM.1994.1036
https://doi.org/10.1007/S00446-011-0127-7
https://doi.org/10.1007/S00446-011-0127-7
https://doi.org/10.1145/1989493.1989505
https://doi.org/10.1145/1835698.1835772
https://doi.org/10.1006/JAGM.1996.0017
https://doi.org/10.1137/S0097539793260763
https://doi.org/10.1137/0218041
https://doi.org/10.1137/0218041
https://doi.org/10.1145/2783258.2783315
https://doi.org/10.1145/2783258.2783315

L. Dhulipala, M. Dinitz, J. Łącki, and S. Mitrović 19:19

A Analysis of the Set Sampling Process

In this section we prove two properties of the SSP, which are key in analyzing our algorithms.
Recall the set sampling process SSP: initially Ak = A, and Rk is obtained by including each
element of Ak independently with probability pk. Then, for every i from k − 1 down to 0,
an adversary chooses Ai ⊆ Ai+1 (possibly with randomization) and then Ri is obtained by
including every element of Ai independently with probability pi.

Note two things about this process. First, the adversary can be randomized. Second, the
adversary can be adaptive: its choice of Ai can depend on Aj and Rj for j > i. Recall that
after running this process, z is the largest index such that Rz is nonempty. Our goal in this
section is to prove the following lemma:

▶ Lemma 3. Consider the SSP using any adversary and ϵ > 0. Then, E[|Rz|] ≤ 1 + 4ϵ.

To get some intuition for why Lemma 3 might be true, observe that the sampling
probability pi increases very slowly; specifically, it increases by a (1 + ϵ) factor every b steps.
So the algorithm gets many chances at each (low) probability to obtain a non-empty Ri, and
so it is not very likely to get more than 1 element in Rz.

To prove this lemma, we start with a simple but extremely useful observation: we may
assume without loss of generality that the adversary is nonadaptive: its choice of Ai does not
depend on Rj for j > i (it can still depend on Aj for j > i). In other words, a nonadaptive
adversary must pick the entire sequence of Ai’s before seeing the results of any of the Ri’s.
Moreover, we may assume that the adversary is deterministic.

▶ Observation 11. Without loss of generality, the adversary is nonadaptive and deterministic,
i.e., it is a single fixed sequence Ak, Ak−1, . . . , A0.

Proof. We begin by showing that the adversary is nonadaptive without loss of generality.
To see this, suppose there is some adaptive adversary P . Then let P ′ be the nonadaptive
adversary obtained by simply running P under the assumption that every Ri = ∅. Clearly,
this gives a (possibly randomized) sequence Ak, Ak−1, . . . , A0 without needing to see the
Ri’s, and so is nonadaptive. Clearly, P and P ′ behave identically until z − 1, i.e., until just
after the first time that some Ri is nonempty (since P ′ is just P under the assumption that
all Ri’s are empty). But indices z − 1 down to 0 make no difference in Lemma 3! Hence if
Lemma 3 holds for nonadaptive adversaries, it also holds for adaptive adversaries.

So we assume that the adversary is nonadaptive, i.e., the adversarial choice is simply a
distribution over sequences Ak, Ak−1, . . . , A0. This means that the expectation in Lemma 3 is
taken over both the adversary’s random choices and the randomness from sampling the Ri’s
once the Ai’s are fixed. These are intermixed for an adaptive adversary but for a nonadaptive
adversary, which we may assume WLOG, we can separate these out by first choosing the
random Ai’s and then subsampling to get the Ri’s. So we want to prove that

EAk,...,A0 [ERk,...R0 [|Rz|]] ≤ 1 + 4ϵ.

Suppose we could prove Lemma 3 for a deterministic nonadaptive adversary, i.e., for a fixed
Ak, Ak−1, . . . , A0. In other words, suppose that ERk,...,R0 |Rz| ≤ 1 + 4ϵ for all sequences
Ak, Ak−1, . . . , A0. Then clearly

EAk,...,A0 [ERk,...R0 [|Rz|]] ≤ EAk,...,A0 [1 + 4ϵ] = 1 + 4ϵ.

Thus if we can prove Lemma 3 against a nonadaptive deterministic adversary, we have
proved Lemma 3 against an adaptive and randomized adversary, as desired. ◀

DISC 2024

19:20 Parallel Set Cover and Hypergraph Matching

So from now on, we may assume that the family Ak, Ak−1, . . . , A0 is fixed. Note that in
this setting, the sets Ri are independent of each other; this holds as the sets Ai are fixed,
and the randomness used to obtain Ri is independent of the randomness used to sample
other Rj sets. Before proving Lemma 3, we first show several auxiliary observations (all of
which are in the setting where Ak, Ak−1, . . . , A0 are fixed).

Our first observation is that for the first b rounds of the SSP, the expected number of
sampled elements is small.

▶ Observation 12. Assume that k ≥ b⌈log1+ϵ(nk/ϵ)⌉. Then, for each j ∈ (k−b, k], pj ·nj ≤ ϵ.

Proof. We have

⌈j/b⌉ = ⌈k/b⌉ ≥ log1+ϵ(nk/ϵ),

which gives

pj · nj = (1 + ϵ)−⌈j/b⌉ · nj ≤ (1 + ϵ)− log1+ϵ(nk/ϵ) · nk = ϵ. ◀

We can also show that probabilities and the expected number of sampled elements do
not increase much in any consecutive b steps.

▶ Observation 13. For each i ∈ [0, k), and any j ∈ [i + 1, i + b], pi ≤ (1 + ϵ)pj and
pi · ni ≤ (1 + ϵ)pj · nj.

Proof. This first claim follows from the definition of pi. The second claim additionally uses
the fact that n0, . . . , nk is a non-decreasing sequence. ◀

This observation now allows us to show that if we have a relatively large expected number
of elements in Ri, then the probability that we have not yet sampled any elements in Rj for
j > i is notably smaller than the probability that we haven’t sampled any elements in Rj for
j > i + b.

▶ Lemma 14. Assume that pi ·ni ≥ ϵ(1 + ϵ) for some i ∈ [0, k− b]. Then, P (z ≤ i) ≤ P (z ≤
i + b)/(2 + 2ϵ).

Proof. Denote by Ej the event that Rj = ∅. Recall that z is the maximum index such that
Rz ≠ ∅. Observe that the event that z ≤ x is equivalent to

⋂
j>x Ej and the individual

events Ej are independent. Hence P (z ≤ i) = P (z ≤ i + b) ·
∏i+b

j=i+1 P (Ej). To complete the
proof we will show that

∏i+b
j=i+1 P (Ej) ≤ 1/(2 + 2ϵ).

By Observation 13, we have that for j ∈ [i + 1, . . . , b], (1 + ϵ)pj · nj ≥ pi · ni ≥ ϵ(1 + ϵ),
which implies pj · nj ≥ ϵ. Hence,

P (Ej) = (1− pj)nj ≤ e−pj ·nj ≤ e−ϵ.

By using the above, we get

i+b∏
j=i+1

P (Ej) ≤ e−b·ϵ = e−⌈log(2(1+ϵ))/ϵ⌉ϵ ≤ e− log(2(1+ϵ)) = 1
2 + 2ϵ

which finishes the proof. ◀

This now allows us to give an absolute bound on the probability that we have not sampled
any elements before we sample Rj , assuming that we have a pretty high probability of
sampling an element in Rj .

L. Dhulipala, M. Dinitz, J. Łącki, and S. Mitrović 19:21

▶ Lemma 15. Let j ∈ [0, k] be such that pj ·nj ≥ ϵ(1 + ϵ)c for a nonnegative integer c. Then
P (z ≤ j) ≤ (2 + 2ϵ)−c.

Proof. We prove the claim using induction on c. For c = 0, (2 + 2ϵ)−c is 1, and the claim is
trivially true.

Now, fix c ≥ 1. By Observation 12, we have that j ≤ k − b, and so we apply Lemma 14
to obtain P (z ≤ j) ≤ P (z ≤ j + b)/(2 + 2ϵ). Hence, to complete the proof, it suffices to show
P (z ≤ j + b) ≤ (2 + 2ϵ)−c+1.

We achieve that by applying the induction hypothesis to j′ = j + b. Indeed, by Observa-
tion 13, pj′ · nj′ ≥ ϵ(1 + ϵ)c−1, and so the assumptions of the inductive hypothesis hold. As
a result, we obtain P (z ≤ j + b) = P (z ≤ j′) ≤ (2 + 2ϵ)−c+1, as required. ◀

Before finally proving Lemma 3, we first show two more useful claims.

▷ Claim 16. For each i ∈ [0, k], it holds that E[|Ri| | Ri ̸= ∅] ≤ 1 + pi · ni.

Proof. We have

E[|Ri| | Ri ̸= ∅] = E[|Ri|]
P (Ri ̸= ∅) = pi · ni

1 − (1 − pi)ni
≤ pi · ni

1 − 1
epi·ni

≤ pi · ni

1 − 1
1+pi·ni

= pi · ni
pi·ni

1+pi·ni

= 1+pi ·ni.

Note that in the first inequality we used the fact that 1− pi ≤ e−pi , while in the second we
used epi·ni ≥ 1 + pi · ni. ◁

▷ Claim 17. Recall that z is the maximum index such that Rz ̸= ∅. It holds that
E[|Rz|] ≤ 1 + E[pz · nz].

Proof. Denote by Xi the event that Rj = ∅ for all j ∈ [i + 1, k]. Note that z = i is the
intersection of events Ri ̸= ∅ and Xi.

E[|Rz|] =
k∑

i=0

E[|Ri| | z = i] · P (z = i)

=
k∑

i=0

E[|Ri| | Ri ̸= ∅ ∩ Xi] · P (z = i) =
k∑

i=0

E[|Ri| | Ri ̸= ∅] · P (z = i)

≤
k∑

i=0

(1 + pi · ni) · P (z = i) =
k∑

i=0

P (z = i) +
k∑

i=0

pi · ni · P (z = i) = 1 + E[pz · nz],

where the final inequality is from Claim 16. We used the fact that E[|Ri| | Ri ≠ ∅ ∩Xi] =
E[|Ri| | Ri ̸= ∅], which follows from the fact that Ri is independent from Xi. ◁

We are now ready to prove Lemma 3.

Proof of Lemma 3. We know from Observation 11 that without loss of generality, the
sequence Ak, Ak−1, . . . , A0 is fixed. By Claim 17 it suffices to show that E[pz · nz] ≤ 4ϵ. Let
us define X := pz · nz to shorten notation.

E[X] ≤ P (X < ϵ) · ϵ +
∞∑

c=0
P

(
X ∈

[
ϵ(1 + ϵ)c, ϵ(1 + ϵ)c+1))

· ϵ(1 + ϵ)c+1

≤ ϵ +
∞∑

c=0
P (X ≥ ϵ(1 + ϵ)c) · ϵ(1 + ϵ)c+1

≤ ϵ +
∞∑

c=0
2−c(1 + ϵ)−c · ϵ(1 + ϵ)c+1

≤ ϵ(1 + 2(1 + ϵ)) ≤ 4ϵ.

DISC 2024

19:22 Parallel Set Cover and Hypergraph Matching

Note that we used the bound on P (X ≥ ϵ(1 + ϵ)c) ≤ (2 + 2ϵ)−c which follows directly from
Lemma 15. ◀

A.1 Probability of the Sampled Element Being Not Unique
We use the following lemma to analyze our HypergraphMatching algorithm. Specifically, it
upper bounds the probability that an edge is sampled in Algorithm 4, but not included in the
final matching. In the proof of Lemma 10, we specify how to map our HypergraphMatching
algorithm to the setup in this section.

▶ Lemma 5. Let a ∈ Ak and let ϵ ≤ 1/2. Then P (|Rz| > 1 | a ∈ Rz) ≤ 6ϵ.

Proof. As for the previous proof in this section, first assume that the sets A0, . . . , Ak are
fixed.

Our goal is to upper bound

P (|Rz| > 1 | a ∈ Rz) = P (|Rz| > 1 ∩ a ∈ Rz)
P (a ∈ Rz) (3)

Let ma = min{i ∈ [0, k] | a ∈ Ai} be the index of the last step before a is removed from
the sets A0, . . . , Ak. We obtain:

P (|Rz| > 1 ∩ a ∈ Rz) =
k∑

i=ma

P (z = i ∩ |Ri| > 1 ∩ a ∈ Ri)

=
k∑

i=ma

P (z ≤ i ∩ |Ri| > 1 ∩ a ∈ Ri) since a ∈ Ri implies z ≥ i

=
k∑

i=ma

P (z ≤ i)P (|Ri| > 1 ∩ a ∈ Ri) z≤i is equivalent to Rj =∅ for all j>i

these events are independent of Ri

Observe that the event |Ri| > 1∩ a ∈ Ri happens when a is sampled and at least one out
of the remaining ni − 1 elements of Ai are sampled. Hence,

P (|Ri| > 1 ∩ a ∈ Ri) = pi · (1− (1− pi)ni−1) ≤ pi · (1− (1− pi · (ni − 1))) ≤ p2
i · ni,

and so we finally obtain P (|Rz| > 1 ∩ a ∈ Rz) ≤
∑k

i=ma
P (z ≤ i)p2

i · ni. For the first
inequality above, we used Bernoulli’s inequality which states that (1 + x)r ≥ 1 + rx for every
integer r ≥ 1 and a real number x ≥ −1. Analogous reasoning allows us to show a similar
identity for the denominator:

P (a ∈ Rz) =
k∑

i=ma

P (z ≤ i)P (a ∈ Ri) =
k∑

i=ma

P (z ≤ i)pi

Hence we can upper bound Equation (3) as follows

P (|Rz| > 1 | a ∈ Rz) ≤
∑k

i=ma
P (z ≤ i)P (a ∈ Ai)p2

i · ni∑k
i=ma

P (z ≤ i)P (a ∈ Ai)pi

. (4)

▷ Claim 18. Let I = {i ∈ [ma, k] | pi ·ni < ϵ(1 + ϵ)} be a set of indices. Then
∑k

i=ma
P (z ≤

i)p2
i · ni ≤ 2/(1− ϵ)

∑
i∈I P (z ≤ i)p2

i · ni

L. Dhulipala, M. Dinitz, J. Łącki, and S. Mitrović 19:23

Proof. Consider the sum
k∑

i=ma

P (z ≤ i)p2
i · ni.

We are going to charge the summands indexed by [ma, k] \ I to the summands indexed by I.
Formally, the charging is defined by a function f : [ma, k]→ [ma, k]. We define f(i) to be
the smallest index j ∈ {i, i + b, i + 2b, . . .} such that j ∈ I, that is pj · nj < ϵ(1 + ϵ). We note
that f(i) is well-defined since by Observation 12 we have that (k − b, k] ⊆ I.

Now we charge each summand i to f(i) ∈ I and show that the total charge of each
summand in I increases by at most a constant factor. Let us now fix any j ∈ I and consider
the sum

∑
i∈f−1(j) P (z ≤ i)p2

i ·ni. Let h := |f−1(j)|. Then f−1(j) = {j, j−b, . . . , j−(h−1)b}.
We now show that the summands in the considered sum are geometrically decreasing (if we
consider the indices in decreasing order). Indeed, consider x ∈ f−1(j) \ {j}. We are now
going to use the following facts.

By Lemma 14 we have P (z ≤ x) ≤ P (z ≤ x + b)/(2 + 2ϵ).
By Observation 13, px · nx ≤ (1 + ϵ)px+b · nx+b.
By Observation 13, px ≤ (1 + ϵ)px+b.

These three facts together imply that for any x ∈ f−1(j) \ {j}

P (z ≤ x)p2
x · nx ≤ (1 + ϵ)/2 · P (z ≤ x + b)p2

x+b · nx+b.

Hence, the summands in f−1(j) can be arranged into a sequence in which the largest element
is the summand corresponding to j, and each subsequent summand is at least a factor of
(1+ϵ)/2 smaller. As a result, the total charge of the summand j is 1/(1−(1+ϵ)/2) = 2/(1−ϵ).

◁

Using the above claim, we upper bound Equation (4).∑k

i=ma
P (z ≤ i)p2

i · ni∑k

i=ma
P (z ≤ i)pi

≤
2 ·

∑
i∈I

P (z ≤ i)p2
i · ni

(1 − ϵ) ·
∑

i∈I
P (z ≤ i)pi

<
2 · ϵ(1 + ϵ) ·

∑
i∈I

P (z ≤ i)pi

(1 − ϵ) ·
∑

i∈I
P (z ≤ i)pi

≤ 6ϵ.

The proofs are stated while assuming that the sets A0, . . . , Ak are fixed. As given by
Observation 11, this assumption can be made without loss of generality. ◀

DISC 2024

	1 Introduction
	1.1 Our Contribution
	1.2 Further Related Work
	1.3 Outline

	2 Preliminaries
	3 Technical Overview
	3.1 Fixing the Random Choices Upfront
	3.2 MPC Algorithms
	3.3 PRAM algorithms
	3.4 HypergraphMatching in MPC

	4 Approximation Analysis of the Algorithms
	A Analysis of the Set Sampling Process
	A.1 Probability of the Sampled Element Being Not Unique

