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Abstract
The increasing wireless communication capabilities of vehicles creates opportunities for more efficient
intersection management strategies. One promising approach is the replacement of traffic lights with
a system wherein vehicles run protocols among themselves to determine right of way. In this paper,
we define the intersection problem to model this scenario abstractly, without any assumptions on
the specific structure of the intersection or a bound on the number of vehicles. Protocols solving
the intersection problem must guarantee safety (no collisions) and liveness (every vehicle eventually
goes through). In addition, we would like these protocols to satisfy various optimality criteria,
some of which turn out to be achievable only in a subset of the contexts. In particular, we show a
partial equivalence between eliminating unnecessary waiting, a criterion of interest in the distributed
mutual-exclusion literature, and a notion of optimality that we define called lexicographical optimality.
We then introduce a framework to design protocols for the intersection problem by converting an
intersection policy, which is based on a global view of the intersection, to a protocol that can be run
by the vehicles through the use of knowledge-based programs. Our protocols are shown to guarantee
safety and liveness while also being optimal under sufficient conditions on the context. Finally, we
investigate protocols in the presence of faulty vehicles that experience communication failures and
older vehicles with limited communication capabilities. We show that intersection protocols can be
made safe, live and optimal even in the presence of faulty behavior.
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1 Introduction

Traffic lights can slow down traffic significantly, due to their lack of responsiveness to real-time
traffic. If vehicles can communicate with each other (which is already quite feasible with
today’s wireless technology), the door is open for improved protocols, where vehicles can
determine right of way among themselves, depending on traffic conditions, and thereby
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2:2 A Knowledge-Based Analysis of Intersection Protocols

significantly increase throughput at an intersection. In this paper, we formally define the
intersection problem: we assume that agents can communicate with each other via radio
broadcasts, and design protocols that take advantage of this communication to allow agents
to go through the intersection while satisfying safety (no collisions) and liveness (every
vehicle eventually goes through). In addition, we consider optimal protocols, which means,
roughly speaking, that the protocol allows as many vehicles as possible to go through the
intersection at any given time. Finally, we consider the extent to which we can tolerate
communication failures and (older) vehicles that are not equipped with wireless, so cannot
broadcast messages. (It turns out that these two possibilities can be dealt with essentially
the same way.)

While the inefficiencies of traffic-light-based intersection management have long been
recognized [7], prior approaches have mainly focused on specific intersection scenarios [15, 16]
or relied on executing leader-election protocols without considering communication failures
[9, 10]. Furthermore, the protocols have often been evaluated based on simulations of specific
intersections, rather than being proved correct [10, 15]. Given the implications of this
problem for traffic safety, as well as its potential for greatly improving energy efficiency and
productivity, there is a need for formal guarantees on both correctness and optimality.

To the best of our knowledge, prior work did not consider optimality, especially in the
presence of various faults. In designing these protocols, to the extent possible, we want them
to be robust to a variety of communication failures, such as contexts with crash failures,1
where an agent may fail by ceasing to participate in the protocol at a given time, and
omission failures, where arbitrary messages can fail to be broadcast.

Epistemic logic has been shown to provide a high-level abstraction that can be used to
design distributed protocols independent of particular assumptions on the communication
environment and type of failures [8]. Most analyses of distributed-computing problems that
use epistemic logic have used full-information protocols to derive time-optimal algorithms, at
the cost of large message size and memory requirements. Given the limitations of wireless
networks, it is also desirable to bound the amount of information that needs to be exchanged
between agents, while still ensuring that the formal guarantees are still met. To address
this, following [1], we separate the part of the protocol that determines what information
is exchanged between the agents, and the part that determines what action to take based
on the agent’s information. Thus, when we consider optimality, we do so with respect to
protocols that limit information exchange in the same way.

We model the intersection problem as the following scenario. There is a (possibly infinite)
set of agents Ag ⊆ N. The intersection has ℓ lanes, represented by L = {0, . . . , ℓ − 1}. The
set of lanes is partitioned into a set of lanes Lin = {0, . . . , k − 1}, where 1 < k < ℓ by which
vehicles approach the intersection, and a set of lanes Lout by which they depart from the
intersection. Each lane in Lin has a queue of agents waiting to go through the intersection;
at each point in time at most one agent arrives at each of these queues. A move through the
intersection is represented by a pair (ls, lt) ∈ Lin × Lout . Intuitively, executing (ls, lt) means
that the agent arrives through lane ls and departs through lane lt. The symmetric relation
O ⊆ (Lin × Lout)2 describes which moves of the agents are compatible; ((ls, lt), (l′

s, l′
t)) ∈ O

means that both (ls, lt) and (l′
s, l′

t) can be executed in the same round. Broadcasts have a
limited range, given by ρ > 0. We assume that, provided there are no failures, all broadcasts
sent by an agent i will be received by all agents that are within a distance ρ of i. The

1 We follow the distributed-algorithms literature’s interpretation of “crash failure” here: it is not meant
to imply a physical collision.
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Figure 1 An intersection with L = {1, . . . , 8} where Lin = {1, . . . , 4} and Lout = {5, . . . , 8}.
There are currently 4 agents that have arrived in incoming lanes 2 and 3.

problem is then to maximize the rate at which cars move through the intersection while
guaranteeing safety (it is never the case that agents with incompatible moves go through the
intersection simultaneously) and liveness (all agents that arrive at the intersection eventually
move through it). The problem can be thought of as a generalization of distributed mutual
exclusion, where the intersection is the critical section.

The rest of the paper is organized as follows: In Section 2, we briefly review the knowledge-
based framework of [8]. In Section 3, we modify the information-exchange model of [1] and
introduce the sensor model. Section 4 defines models for the adversary which determine the
arrival schedule of vehicles and communication failures. Section 5 combines the information-
exchange and the adversary model, fully specializing the general model of Section 2 to
intersections. Section 6 introduces the various notions of optimality we care about such as
eliminating unnecessary waiting and lexicographical optimality. In Section 7, intersection
policies are introduced as a global view of the intersection. Section 8 proves a construction that
results in an optimal policy even with failures, and explores applications of the construction
in two limited-information contexts. Section 9 concludes with a discussion on connections to
distributed mutual exclusion. We defer most proofs to the full paper.

2 Reasoning about knowledge

In order to reason about the knowledge of the vehicles in the intersection problem, we use
the standard runs-and-systems model [8]. An interpreted system I = (R, π) consists of a
system R, which is a set of runs, and an interpretation π : R × N → P(Prop). Each run
r : N → Le × Πi∈AgLi describes a particular infinite execution of the system where r(m) is
the global state of the system in run r at time m. The global states consist of an environment
state drawn from Le and local states for each agent i drawn from each Li. The local state of
agent i at point (r, m) is denoted ri(m). We call a run and time pair (r, m) a point. The
interpretation π describes which atomic propositions hold at each point in a system R.

We write I, (r, m) |= ϕ if the formula ϕ holds (is satisfied) at point (r, m) in interpreted
system I. A formula ϕ is valid in an interpreted system I, denoted I |= ϕ, if ϕ holds at all
points in I; the formula ϕ is valid if it is valid in all interpreted systems. Satisfaction of
formulas is inductively defined as follows:

I, (r, m) |= p iff p ∈ π(r, m).
I, (r, m) |= ϕ ∧ ϕ′ iff I, (r, m) |= ϕ and I, (r, m) |= ϕ′.
I, (r, m) |= ¬ϕ iff I, (r, m) ̸|= ϕ.

DISC 2024



2:4 A Knowledge-Based Analysis of Intersection Protocols

I, (r, m) |= Kiϕ iff I, (r′, m′) |= ϕ for all points (r′, m′) such that ri(m) = r′
i(m′).

I, (r, m) |= ♢ϕ iff for some m′ ≥ m, I, (r, m′) |= ϕ.
I, (r, m) |= ⃝ϕ iff I, (r, m + 1) |= ϕ.

Agent i knows a formula ϕ at (r, m) if I, (r, m) |= Kiϕ. Intuitively, agent i knows ϕ if ϕ

holds at all points where agent i has the same local state. We say that agent i considers
the point (r′, m′) possible at point (r, m) if ri(m) = r′

i(m′). The relation ∼i is defined as
(r, m) ∼i (r′, m′) iff ri(m) = r′

i(m′). The formula ⃝ϕ means that ϕ holds at the next time,
and ♢ϕ means that ϕ holds eventually. In later sections, we formalize how interpreted systems
for the intersection problem are specified.

3 Information-exchange protocols

Our framework for modeling limited information exchange is similar to that used by Alpturer
et al. [1] to analyze consensus protocols, but we make a number of changes due to the
differences in our setting. Here, global states represent not just the result of messages sent
between the agents, but also facts about a changing external world, from which the agents
obtain sensor readings (e.g., information about their own position and that of nearby vehicles,
from GPS, visual, lidar, or radar sensors). We modify the definition of information-exchange
protocols from [1] to accommodate these sensor readings. Specifically, assume that we are
given a set Le of environment states. Define a sensor model for Le to be a collection of
mappings S = {Si}i∈Ag, where Si : Le → Σi maps states of the environment to a set Σi of
possible sensor readings for agent i.

An information-exchange protocol E for agents Ag and sensor model S is given by the
collection {Ei}i∈Ag consisting of a local information-exchange protocol Ei for each agent i.
Each local information-exchange protocol Ei is a tuple ⟨Li, Meminit

i , Ai, Mi, µi, δi⟩, where
Li = Memi × Σi is a set of local states, where each local state consists of a memory state
from a set Memi and a sensor reading from Σi;
Meminit

i ⊆ Memi is a set of initial memory states. (Typically, there might be a single
initial memory state, containing information such as the agent’s identity.)
Mi is the set of messages that can be sent by agent i;
µi : Li × Ai × Σi → Mi ∪ {⊥} is a function mapping a local state s, an action a, and
a sensor reading o to the message to be broadcast (intuitively, µi(s, a, o) = m means
that when agent i performs action a in state s and obtains new sensor reading o, the
information-exchange protocol broadcasts the message m to the other agents; if m = ⊥,
then no message is sent by i);
δi : Li × Ai × P(∪j∈AgMj) → Memi is a function that updates the local memory as a
function of the previous local state (comprised of the previous memory state and the
previous sensor reading), an action, and a set of messages received.

An action protocol P for an information-exchange protocol E , is a tuple {Pi}i∈Ag contain-
ing, for each agent i, Pi : Li → Ai mapping the local states Li for agent i in Ei to actions in
Ai.

4 Adversary model

Intersection protocols need to operate in an environment with several forms of nondeterminism:
how messages are broadcast through the environment, failures of transmitters and receivers,
and the arrival pattern of vehicles. We model these aspects of the environment in terms of
an adversary.
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The precise physics of the intersection may affect how broadcasts are transmitted through
the environment. Rather than attempt to model Euclidean distances and obstacles, we
abstract the effects of these factors on transmission. A transmission environment is a
relation T ⊆ (Lin × N)2. Intuitively, ((ℓ, p), (ℓ′, p′)) ∈ T represents that, provided the agents’
transmitters and receivers do not fail, a message broadcast by an agent at position p in lane
ℓ, will be received by an agent at position p′ in lane ℓ′. Transmission environments encode
our assumption that the communication range is ρ. We make one assumption about this
relation: that for all ℓ, ℓ′ ∈ Lin, we have ((ℓ, 0), (ℓ′, 0)) ∈ T . That is, messages broadcast by
an agent at the front of some lanes are received (barring failure) by all agents that are at the
front of any lane.

An adversary model F is a set of adversaries; formally, an adversary is a tuple α =
(τ, T, Ft, Fr), where τ : Ag → N×Lin ×Lout , T is a transmission environment, Ft : N×Ag →
{0, 1}, and Fr : N × Ag → {0, 1}. Intuitively, τ is an arrival schedule, which describes when
each agent arrives in the system (i.e., enters a queue), its lane of arrival, and its intended
departure lane. The function Ft represents failures of agents’ transmitters and the function
Fr represents failures of agents’ receivers. Ft(k, i) = 1 means that if i tries to broadcast in
round k + 1 (i.e., between time k and time k + 1), then the broadcast will be sent to all
agents within range (i.e., within ρ of i), and perhaps others; similarly, Fr(k, j) = 1 means
that j receives all broadcasts sent in round k + 1 by agents within range (but again, it may
receive other broadcasts as well). Thus, a broadcast by agent i in round k + 1 is received
by a j within range of i in round k + 1 iff Ft(k, i) = Fr(k, j) = 1. The function τ describes
when agents arrive in the system (which we assume is under the control of the adversary).
In more detail, if τ(j) = (k, (l1, l2)), then at time k, agent j arrives in the system on lane
l1 with the intention of departing on lane l2. We assume that τ is conflict-free in the sense
that, for all agents i ̸= j, if τ(i) = (k, (l1, l2)) and τ(j) = (k, (l′

1, l′
2)), then l1 ̸= l′

1. This
ensures that we do not have a conflict of two agents wanting to enter the same queue for lane
l1 simultaneously. (Exactly how this mutual exclusion of queue entry is assured is outside
the scope of the model. One way that it may come about is that vehicles approaching the
intersection are already ordered along an approaching lane.)

We consider adversary models that involve the following types of failures:
No failures (NF): the set of all adversaries (τ, T, Ft, Fr) where Fr(k, i) = Ft(k, i) = 1 for
all i ∈ Ag and k ∈ N.
Crash failures (CR): the set of all adversaries (τ, T, Ft, Fr) where for all i ∈ Ag and k ∈ N,
(1) Ft(k, i) = 0 implies Ft(k′, i) = 0 for all k′ > k, and (2) Fr(k, i) = 1 for all k and i.
Sending omissions (SO): the set of all adversaries (τ, T, Ft, Fr) where for all i ∈ Ag and
k ∈ N, Fr(k, i) = 1.

An adversary model F has a fixed transmission environment if all adversaries in F include
the same transmission environment T . We believe that our techniques can be applied without
change to the general omissions case.

5 Intersection Contexts

A context is a triple (E , F , π) consisting of an information-exchange protocol E , an adversary
model F , and an interpretation π. To deal with intersections, we restrict information-
exchange protocols and interpretations so that they satisfy certain conditions. (E , F , π) is an
intersection context if it satisfies the following conditions:
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2:6 A Knowledge-Based Analysis of Intersection Protocols

The set of environment states Le consists of states of the form se =
(α, t, q1, . . . , q|Lin |, done) where α ∈ F is an adversary, t ∈ N is a time, for each ap-
proach lane l ∈ Lin, ql is a queue (list) of agents, intuitively the ones who have lane i

and not yet departed, and a set done ⊆ Ag, representing the agents that have already
passed through the intersection.
The sensor model, in principle, could be defined to include information from a large
variety of sensors and information sources, such as GPS, in-road or road-side beacons,
lidar, radar, or vision systems. We start with a minimal location-based sensor model,
and leave it open for other fields to be added. Our minimal sensor model S = {Si}i∈Ag
is defined so that the sensor function Si maps environment states to tuples of the form
⟨fronti, lanei, intenti⟩, where fronti ∈ {0, 1}, lanei ∈ Lin ∪ {⊥, ⊤}, and intenti ∈ Lout.
For se = (α, t, q0, q1, . . . , q|Lin |, done), we have Si(se) = ⟨fronti, lanei, intenti⟩, where if τ

is the arrival schedule in the adversary α,
posi maps from global states to N ∪ {⊥, ⊤}; posi(se) = ⊤ if i ∈ done, posi(se) = k if
there exists a queue ℓ such that i is the kth position in queue qℓ (with the front of the
queue counted as position 0), and posi(se) = ⊥ otherwise. (It follows from the state
dynamics given below that i is in at most one queue, so posi is well-defined.)
fronti = 1 iff posi(se) = 0,
if i is in the queue qℓ for lane ℓ, then lanei = ℓ; if i ∈ done then lanei = ⊤; and if
i ̸∈ done then lanei = ⊥.
if τ(i) = (k, (l, l′)) then intenti = l′.

We have modelled an agent’s intended departure lane intenti as being received from the
environment since, from the point of view of protocol design, this is part of the adversary.
The set of possible actions of agent i in Ei is Ai = {go, noop}. Intuitively, go represents
that action of the agent making its planned move through the intersection. This action
can be performed by agent i only if i is at the front of its queue. The action noop
represents that the agent does not move, unless it is either scheduled for arrival in some
queue, or in some position in a queue but not at the front, and the position before it is
being vacated, in which case it advances in the queue.
A global state is a tuple of the form (se, {si}i∈Ag), where se ∈ Le and si ∈ Li for each
agent i ∈ Ag. An initial global state has

se = (α, t, q1, . . . , q|Lin |, done), where t = 0, each queue ql is empty, and done is the
empty set, and
for each agent i ∈ Ag, the local state si = (mi, Si(se)) where mi ∈ Meminit

i is an
initial memory state.

π interprets the following atomic propositions based on the global state in the obvious
way: fronti, lanei = l for l ∈ Lin, intenti = l for l ∈ Lout , posi = k for k ∈ N ∪ {⊥, ⊤}.

Given an intersection context γ = (E , F , π) and a protocol P , we construct an interpreted
system Iγ,P = (RE,F,P , π) representing all the possible behaviours of the protocol P in
context γ. The set RE,F,P of runs consists of all runs r that satisfy the following properties:

The initial state r(0) of r is an initial global state.
For each k ∈ N, the global state r(k + 1) = (s′

e, {s′
i}i∈Ag) is determined from r(k) =

(se, {si}i∈Ag) by a procedure in which the order of events is as follows. First, the agents
decide their actions (to go through the intersection or not). They then perform these
actions, causing the queues to be updated; any newly arriving agents are also added to
the queues in this step. The agents then take a sensor reading, from which they obtain
new information about their position. This new information may be included in the
message that an agent broadcasts. Finally, each agent updates its memory state, based
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on their previous local state, the action performed, and the messages that were broadcast
in the current round and received by the agent. We then proceed to the next round.
Formally, state transitions are determined by the following procedure:

First, each agent i determines its action Pi(si) according to the protocol P .
If se = (α, m, q1, . . . , q|Lin |, done), then we take s′

e = (α, m + 1, q′
1, . . . , q′

|Lin |, done′),
defined as follows. Note that the adversary α is the same in s′

e, and the time m is
incremented. Each queue q′

ℓ is obtained from qℓ by the following operations:
∗ If qℓ(0) = i and Pi(si) = go, then let q′′

ℓ be the result of dequeueing agent i from qℓ.
Otherwise q′′

ℓ = qℓ.
∗ If τ(i) = (m+1, (l1, l2)) for any agent i, then we define q′

ℓ = enqueue(i, q′′
ℓ ), otherwise

q′
ℓ = q′′

ℓ . (Recall that such an i is unique, by assumption on τ .)
Finally, we take done′ to be the result of adding to the set done all agents i who were
at the front of any queue in se such that Pi(si) = go.

Next, for each agent i, we obtain a new sensor reading Si(s′
e) of the updated state s′

e

of the environment. Using this sensor readings, each agent i constructs the message
mi = µi(si, Pi(si), Si(s′

e)), which it broadcasts.
For each agent i, we determine the set of messages Bm

i that the agent receives in round
m + 1. If agent i is not in any queue in state s′

e, or Fr(m, i) = 0 (agent i’s receiver fails in
round m + 1) then Bm

i = ∅. Otherwise, for each agent i that is in a lane queue, let ℓi be
the lane it is in and pi its position in the queue. We define Bm

i to be the set of messages
mj for which both ((pj , ℓj), (pi, ℓi)) ∈ T (j’s transmission can be heard by agent j, given
their positions) and Ft(m, j) = 1 (j’s transmitter does not fail in this round.)
Finally, if si = (ui, Si(se)), then s′

i = (u′
i, Si(s′

e)), where u′
i = δi(si, Pi(si), Bm

i ). (Note
that we use the old sensor reading Si(se) to determine the new memory state, but not
the new sensor reading Si(s′

e), since the latter will be visible to the agent in its new local
state s′

i.)

P is an intersection protocol for context γ = (E , F , π) if the following are valid in Iγ,P

for all i, j ∈ Ag where i ̸= j, where goingi is an abbreviation for fronti ∧ ⃝¬fronti.
Validity: goingi ⇒ fronti.
Safety: (goingi ∧ goingj) ⇒ ((lanei, intenti), (lanej , intentj)) ∈ O.
Liveness: fronti ⇒ ♢goingi.

Intuitively, Validity states that an agent does not move through the intersection unless
it is at the front of the queue in its lane. Safety states that if two agents go through the
intersection at the same time, their moves are compatible and do not cause a collision. (Note
that the semantics of the action go has been defined so as to ensure that an agent makes its
planned move, and not any other.) Liveness states that an agent eventually gets to make
its move through the intersection. (The model implicitly assumes that vehicles do not have
mechanical failures and block other vehicles in their lane.)

6 Unnecessary waiting and optimality

One desirable property of an intersection protocol is that it never makes agents wait unne-
cessarily. Eliminating unnecessary waiting is also a criterion that has been considered in the
distributed mutual-exclusion literature [14]. Intuitively, unnecessary waiting occurs if, given
what happens in a certain run r, there is a point where if an agent had gone through the
intersection instead of waiting, safety would not be violated. In this section, we define a
notion of optimality that captures eliminating unnecessary waiting.
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2:8 A Knowledge-Based Analysis of Intersection Protocols

We first give some definitions to define unnecessary waiting and a domination-based
notion of optimality. For an intersection context γ and protocol P ,

GO(r, m) is the set of agents that go through the intersection in round m + 1, that is,
the agents i with Iγ,P , (r, m) |= goingi.
Iγ,P , (r, m) |= safe-to-goi if Iγ,P , (r, m) |= posi = 0 and for all agents j, k ∈ GO(r, m)∪{i}
where j ̸= k, (lanej(r, m), intentj(r, m)) and (lanek(r, m), intentk(r, m)) are compatible
moves according to O.
For a run r of a protocol P in context γ, define gotime(r, i) to be the time m ∈ N such
that Iγ,P , (r, m) |= goingi, and ∞ if there is no such time.
front(r, m) is the set of agents that are in front of each queue, that is, the agents i with
fronti(r, m) = 1.

▶ Definition 1 (unnecessary waiting). An intersection protocol P has unnecessary waiting
with respect to an intersection context γ if there exists i ∈ Ag and point (r, m) such that
Iγ,P , (r, m) |= safe-to-goi and i ̸∈ GO(r, m).

▶ Definition 2 (corresponding runs). Given action protocols P, P ′ and context γ, two runs
r ∈ Iγ,P and r′ ∈ Iγ,P ′ correspond if r(0) = r′(0).

Intuitively, corresponding runs have the same adversary, so agents arrive at the intersection
in the same sequence and at the same times in the two runs. We use this notion to define
the following notion of one protocol being better than another if it always ensures a faster
flow of traffic.

▶ Definition 3 (domination). An action protocol P dominates action protocol P ′ with respect
to a context γ if for all pairs of corresponding runs r ∈ Iγ,P and r′ ∈ Iγ,P ′ , all i ∈ Ag, we
have gotime(r, i) ≤ gotime(r′, i). If P dominates P ′ but P ′ does not dominate P , then P

strictly dominates P ′.

▶ Definition 4 (optimality). An intersection protocol P is optimal with respect to an inter-
section context γ if there is no intersection protocol P ′ that strictly dominates P with respect
to γ.

Our goal is to connect the notions of unnecessary waiting and optimality. The following
result shows that the absence of unnecessary waiting is sufficient for optimality.

▶ Proposition 4. If an intersection protocol P has no unnecessary waiting with respect to an
intersection context γ then P is optimal with respect to γ.

From here on, we consider contexts that require some conditions on broadcasting. This
is because if not enough information is exchanged or adversaries are too powerful, we cannot
have a protocol that avoids unnecessary waiting. To see why, consider a setting where the
intersection has two incoming lanes and one outgoing lane, each agent has access to a global
clock, and the information-exchange protocol does not send any messages. While a correct
protocol exists that uses the global clock to determine when an agent at the front of a queue
can proceed to the intersection (essentially, we use the global clock to simulate a traffic light,
and have the agents proceed in turns), unnecessary waiting cannot be eliminated, simply
because the agents do not exchange enough information to rule out safety violations.

However, even with full information exchange where each agent broadcasts its entire local
state in each round and records every broadcast it receives, the converse of Proposition 4
still does not hold. A protocol may have unnecessary waiting and still be optimal even with
full information exchange.
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▶ Proposition 4. There exists an intersection context γ with full information exchange and
no failures and an intersection protocol P such that P has unnecessary waiting and is optimal
with respect to γ.

Proposition 4 suggests that the definition of optimality doesn’t exactly capture the lack of
unnecessary waiting. We thus consider another definition that we call lexicographic optimality.

▶ Definition 5 (lexicographical domination). An action protocol P lexicographically dominates
action protocol P ′ with respect to a context γ if for all corresponding runs r ∈ Iγ,P and
r′ ∈ Iγ,P ′ , either GO(r, m) = GO(r′, m) for all times m or, at the first time m when
GO(r, m) ̸= GO(r′, m), we have GO(r′, m) ⊊ GO(r, m). If P lexicographically dominates P ′

but P ′ does not lexicographically dominate P , then P strictly lexicographically dominates P ′.

▶ Definition 6 (lexicographic optimality). An intersection protocol P is lexicographically
optimal with respect to an intersection context γ if there is no intersection protocol P ′ that
strictly lexicographically dominates P with respect to γ.

▶ Proposition 6. If an intersection protocol P has no unnecessary waiting with respect to an
intersection context γ, then P is lexicographically optimal with respect to γ.

The following result provides a partial converse to Proposition 6.

▶ Proposition 6. If an intersection protocol P is lexicographically optimal with respect to
an information context γ with full information exchange and no failures, then P has no
unnecessary waiting with respect to γ.

While considering a full-information context shows that lexicographic optimality captures
the condition on unnecessary waiting better, it is also possible to get a similar result in a
context with much less information exchange, even without a global clock.

We say that an intersection context γ = (E , F , π) is sufficiently rich if E satisfies the
following conditions:

In round m, if agent i is going to be at the front of some lane at time m, then i broadcasts
a message encoding lanei, intenti. (Note that we are here using the fact that in agent’s
message in round m can incorporate the effect of its round m action. Thus, if an agent i

moves to the front of the queue for some lane in round m, then i will sense that it is at
the front of the queue, and i can send a message in round m saying that it is about to be
at the head of the queue for its lane.)
Each agent records the (lane, intent) pair for each agent in the front of a queue, and
either no agents in the queue other than those at the front broadcast, or agents at the
front of a queue tag their messages to indicate that they are at the front of their queue.

Intuitively, if an intersection context is sufficiently rich, in the round m that an agent i

reaches the front of the queue for some lane, it knows about all other agents that are in the
front of their queues at time m, and knows their intentions (if there are no failures).

▶ Lemma 6. If γ is a sufficiently rich intersection context with no failures, P is an intersection
protocol, and fronti(r, m) = 1, then

Iγ,P |= ∀l ∈ Lin(Ki(∃j ∈ Ag ∃l′ ∈ L (frontj ∧ lanej = l ∧ intentj = l′) ∨
Ki(∀j ∈ Ag (lanej ̸= l)))).

Given a sufficiently rich intersection context γ, all protocols that we care about will
depend only on what the agents hear from agents at the front of each queue. We say that an
intersection protocol P depends only on agents in the front of their queues in intersection
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context γ = (E , NF , π) if, for all i ∈ Ag, the following condition holds: for all pairs si, s′
i

of possible local states of agent i drawn from Li in E , if front(r, m) = front(r, m′), then
Pi(ri(m)) = Pi(r′

i(m′)). Note that this condition makes sense only in a sufficiently rich
intersection context in the no-failures setting, since otherwise an agent may not know which
agents are at the front of their queues, so its protocol cannot depend on this fact.

▶ Proposition 6. Let γ be a sufficiently rich intersection context with no failures. If an
intersection protocol P is lexicographically optimal with respect to γ and P depends only on
agents in the front of their queues, then P has no unnecessary waiting with respect to γ.

7 Intersection policies

Intuitively, an intersection policy describes which moves are permitted, as a function of a
history describing what happened in the run until that point in time (in particular, the
nondeterministic choices that have been made by the adversary up to that moment of time),
but excluding details of the agent’s local states and protocol.

We will use intersection policies as a tool to design standard protocols that solve the
intersection problem. Roughly, the methodology is the following. Initially, we will design an
intersection policy σ that guarantees safety and liveness for agents complying with σ. We
will then find standard intersection protocols that implement a knowledge-based program
using σ. Finally, we will show that every intersection protocol can be obtained in this way.

A history captures the nondeterministic choices made by the adversary up to some
moment of time. Given an adversary α = (τ, T, Ft, Fr) for a context γ and natural number
m ∈ N, define the choices of α in round m + 1 to be the tuple αm = (τm, T, F m

r , F m
t ), where

τm = {(i, ℓ, ℓ′) ∈ Ag ×Lin ×Lout | τ(i) = (m+1, ℓ, ℓ′)}, and for a = r and a = t, the function
F m

a : Ag → {0, 1} is defined by F m
a (i) = Fa(m, i). (Recall that the transmission environment

T is fixed for the run, so the same T applies in each round.) An adversary history is a finite
sequence of such tuples; for an adversary α and time m, define H(α, m) = ⟨α0, . . . , αm−1⟩.
(If m = 0, H(α, m) is the empty sequence.) Given a context γ, Hγ is the set of all adversary
histories H(α, m) such that α is an adversary for γ and m ≥ 0. If r is a run of context γ

with adversary α, we also write H(r, m) for H(α, m).

▶ Definition 7 (intersection policy). An intersection policy for a context γ is a mapping
σ : Hγ → P(Lin × Lout).

Intuitively, an intersection policy says which moves are permitted in the given round. An
agent at the front of a queue for lane ℓ may go if its intent is to make move to lane ℓ′ and
the move (ℓ, ℓ′) is permitted. (However, in contexts with failures, the agent may fail to go
because it does not know that its move is permitted.)

An infinite sequence h0, h1, . . . is feasible in a context γ if there exists an adversary α of
γ such that hm = H(α, m) for all m ≥ 0. An intersection policy σ for a context γ is correct
for a context γ if it satisfies the following specification:

Conflict-free: For all histories h ∈ Hγ , and agents i ̸= j, if (li, l′
i), (lj , l′

j) ∈ σ(h) then
(li, l′

i, lj , l′
j) ∈ O.

Fairness: For all feasible infinite sequences of histories h0, h1, h2 . . ., all moves (ℓ, ℓ′) ∈
Lin × Lout , and all m ≥ 0, there exists m′ ≥ m such that (ℓ, ℓ′) ∈ σ(hm′).

Intuitively, an intersection policy σ is conflict-free if σ never permits a conflicting set of
moves to occur simultaneously. An intersection policy σ is fair if, in every feasible infinite
sequence of histories, σ permits every possible move infinitely often. A context γ is σ-aware
for an intersection policy σ if, for all protocols P for γ, agents i, lanes ℓ ∈ Lin and ℓ′ ∈ Lout ,
we have Iγ,P |= ((ℓ, ℓ′) ∈ σ ∧ lanei = ℓ) ⇒ Ki((ℓ, ℓ′) ∈ σ).
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▶ Example 8. A simple correct intersection policy is a cyclic traffic light. Suppose that
the set of all moves Lin × Lout is partitioned into a collection S0, . . . , SK−1, such that each
set Sk is a compatible set of moves. Then the intersection policy defined on histories h

by σ(h) = S|h| mod K is easily seen to be correct (whatever the context γ). Clearly, every
synchronous context is σ-aware for this policy.

▶ Example 9. A more complicated intersection policy is one that prioritizes certain lanes
if they contain specific agents (e.g., an ambulance). Suppose that A ⊆ Ag is a finite set
of higher-priority agents. Consider the intersection policy that allows moves given by a
cyclic traffic-light policy unless there is an agent in A that has arrived and is yet to make
a move. In that case, the policy runs the traffic-light policy restricted to lanes containing
higher-priority agents. This requires considering past moves permitted by the policy and
the adversary history to determine the state of the queues. In a context with no failures,
synchrony, and a transmission environment such that the presence of a higher-priority agent
is known by agents in the front, we get σ-awareness.

Given an intersection policy σ, consider the following knowledge-based program Pσ:
Program Pσ

i .

if Ki(fronti ∧ (lanei, intenti) ∈ σ) then go
else noop

Here the formula (lanei, intenti) ∈ σ is satisfied at a point (r, m) if we have (lanei(r, m),
intenti(r, m)) ∈ σ(H(r, m)).

An action protocol P implements a knowledge-based program of the form “if Kiϕ then
go else noop” in a context γ if, for all points (r, m) of Iγ,P , we have Pi(ri(m)) = go iff
Iγ,P (r, m) |= Kiϕ. (See [8] for the definition for more general program structures.)

We immediately get the following.

▶ Proposition 9. For every synchronous context γ and intersection policy σ for γ, there
exists a behaviorally unique2 P implementing the knowledge-based program Pσ with respect
to γ. If σ is a correct intersection policy with respect to γ, then every implementation P of
the knowledge-based program Pσ with respect to γ satisfies safety and validity.

Proposition 9 provides a way of deriving an intersection protocol from an intersection
policy. We can also show that every intersection protocol can be derived from some intersection
policy in this way.

▶ Proposition 9. If P is a protocol satisfying validity and safety then there exists a conflict-
free intersection policy σ for γ such that P implements Pσ with respect to γ.

▶ Definition 10 (efficient intersection policies). An intersection policy σ for a context γ is
efficient if for all points h ∈ Hγ , we have that σ(h) is a maximal conflict-free set of moves.

8 A Knowledge-Based Program with Lexicographically Optimal
Implementations

We would like to have a way to derive lexicographically optimal protocols under a range of
failure assumptions. Moreover, we want these protocols to be fair to all agents, even if there
are agents present that are not. To satisfy these goals, we start with an intersection policy σ

2 “Behavioral uniqueness” here means that any two implementations take the same actions at all reachable
states, and can differ only on unreachable states.
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that can be run by all vehicles, including those without V2V communications equipment.
One example of such σ is the traffic light policy σT L. In all cases, moves permitted by this
policy will have priority, but we allow vehicles to violate the policy provided that they know
that they can do so safely. To avoid clashes, we establish a priority order on the violations.
Let next be a function from histories such that next(h) ∈ Lin for each history h. Intuitively,
the agent at the front of the queue for lane next(h) will get precedence in going through the
intersection at the point (r, m). The context γ is next-aware if, for all protocols P for γ

and agents i and ℓ ∈ Lin, we have that Iγ,P |= next = ℓ ⇒ Ki(next = ℓ).
Consider the following knowledge-based program P, where Vi is the proposition

(lanei, intenti) ̸∈ σ and the move (lanei, intenti) is compatible with (a) all moves
(lanej , intentj) ∈ σ where j is an agent who is about to enter the intersection (i.e.,
goingj holds) (b) all moves (lanej , intentj) ̸∈ σ where j ̸= i is an agent for which
goingj holds and lanej ∈ [next, lanei). (Here [next, lanei) is the set of lanes from
next(r, m) to lanei (mod |Lin|).)

Program Pi.

if Ki(fronti ∧ ((lanei, intenti) ∈ σ ∨ Vi)) then go
else noop

Intuitively, this knowledge-based program allows all agents permitted by σ to go to do so,
as well as allowing agents not permitted by σ to go, provided they do so in a cyclic priority
order, and each agent that goes knows that its move is compatible with the moves of all
agents of higher priority (including agents permitted to go by σ).

▶ Proposition 10. Let σ be a conflict-free intersection policy. If context γ is synchronous,
next-aware, and σ-aware, then there exists a unique implementation P of P that satisfies
safety and validity, is lexicographically optimal with respect to γ, and lexicographically
dominates the unique implementation of Pσ. Moreover, if σ is fair then P satisfies liveness.

We can also obtain liveness of the implementations of P under some other conditions.
Define the function next to be fair if, for all feasible sequences of histories h0, h1, . . ., all
m ≥ 0 and all lanes ℓ ∈ Lin , there exists m′ ≥ m such that next(hm′) = ℓ. Intuitively, fairness
of next will ensure that next fairly selects the first agent that can violate the intersection
policy according to P when this can be done safely.

We also need to ensure that it is not the case that σ always gives priority to other
lanes whenever the lane ℓ is selected by next. For this, define a pair (σ, next), consisting
of an intersection policy σ and a function next, to be fair if for all feasible sequences of
histories h0, h1, . . ., all m ≥ 0 and all moves (ℓ, ℓ′) ∈ Lin, there exists m′ ≥ m such that
either (ℓ, ℓ′) ∈ σ(hm′), or next(hm′) = ℓ and (ℓ, ℓ′) is compatible with all the moves in σ(hm′)

▶ Proposition 10. Let P be an implementation of P with respect to a synchronous, next-aware
and σ-aware context. If the pair (σ, next) is fair, then P satisfies liveness.

Note that if next is fair, and the σ∅ is the (unfair) intersection policy defined by σ∅(h) = ∅
for all histories h, then the pair (σ∅, next) is fair. For examples in which σ is not trivial,
consider the following properties of σ. Say that σ is cyclic (with cycle length k) if for all
histories h and h′ with |h| ≡ |h′| mod k, we have σ(h) = σ(h′). Say that σ is non-excluding
if for all moves (ℓ, ℓ′), there exists a history h such that (ℓ, ℓ′) is compatible with all moves in
σ(h). Given a non-excluding σ with cycle length k, let next be defined by next(h) = ⌊h/k⌋
mod k. Then (σ, next) is fair. This is because the value of next cycles through all values in
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Lin, but is held constant through each cycle of σ. Thus, for each move (ℓ, ℓ′), eventually a
point in these combined cycles will be reached for which the value of next is ℓ and (ℓ, ℓ′) is
compatible with all moves permitted by σ.

8.1 Implementing P when there is no communication
We now consider standard implementations of P in two particular contexts of interest. Since
we would like the implementations to be correct and lexicographically optimal, we use next
and σ defined as next(h) = m mod |Lin| and σ(h) = ∅ for all histories h of length m. Using
this choice of next and σ in the construction of P ensures that in any synchronous intersection
context, both next-awareness and σ-awareness hold; moreover, the pair (next, σ) is fair.
Therefore, implementations P of P in such contexts are correct and lexicographically optimal,
by Propositions 10 and 10.

We have taken σ to be empty for ease of exposition. For practical implementations, the
construction given by the proof of Proposition 10 can be used to get other implementations
that prioritize moves permitted by σ. (For example, in an intersection where certain lanes
are often busier, moves originating from those lanes can be prioritized.) Note that for empty
σ, the condition Ki(fronti ∧ ((lanei, intenti) ∈ σ ∨ Vi)) reduces to Ki(fronti ∧ V ′

i ), where V ′
i

is the proposition

“the move (lanei, intenti) is compatible with all moves (lanej , intentj) of agents j ≠ i

with lanej ∈ [next, lanei) such that goingj”,

since σ is empty. Consider the following context with no communication. Let γ∅ be a
synchronous intersection context where agents do not broadcast messages. Formally, for a
failure model F , we define γ∅(F) = (E∅, F , π∅), where

(E∅)i is an information-exchange protocol where the following hold:
The set of memory states is a singleton so, effectively, local states consist only of the
sensor reading Li = Σi.
No messages are sent, so Mi = ∅, µi is the constant function with value ⊥, and δi is
omitted.
The sensor model is defined as in the definition of intersection contexts. The only
modification is that the sensor model now maps environment states to tuples of the
form ⟨fronti, lanei, intenti, timei⟩, where timei is determined by the time encoded in
the environment state.

π∅ interprets the propositions defined for intersection contexts in the obvious way.

We now define a procedure to compute a set Posi of moves that agent i believes may be
performed as a function of next and the structure of the intersection represented by O. We
capture stages of the construction of this set as sets of moves Posl

I for l ∈ [next − 1, lanei).
(By next-awareness, next is computable from the agent’s local state. For brevity, we interpret
next − 1 as next − 1( mod |Lin|).)
1. Start with Posi = Posnext−1

i = ∅
2. For l ∈ [next, lanei) do

a. Let L be the set of moves (l, l′) where l′ ∈ Lout such that (l, l′) is compatible with
Posi, and let Posl

i := Posi ∪ L and Posi := Posl
i.

3. Output Posi.

Let P ∅ be the standard protocol given by the following program, where move (l, l′) is
compatible with a set of moves S if it is compatible with all moves in S according to O.
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Program P ∅
i .

if fronti ∧ (lanei, intenti) is compatible with Posi then go
else noop

▶ Proposition 10. P ∅ implements P with respect to γ∅(F) for F ∈ {NF , CR, SO}.

Proposition 10 shows that, without communication, a protocol that essentially implements
traffic lights is lexicographically optimal.

8.2 Implementing P in a context with limited communication
If we allow messages regarding the current lane and agents’ intentions by agents that reach the
front, this changes how implementations of P behave. Roughly speaking, in runs where the
intersection gets crowded, a much larger set of agents can proceed through the intersection.
Let γintent be a synchronous context with communication failures such that if an agent is in
the front of some lane, it broadcasts (lane, intent). (This information exchange broadcasts a
lot less information than a full-information exchange.) More formally,3 for a failure model F ,
we define γintent(F) = (Eintent , F , πintent), where

(Eintent)i is defined as an information-exchange protocol where the following hold:
The local states maintain a set of moves M in the memory component in addition to
the sensor readings. Intuitively, this set represents the set of moves from broadcasts
that were received by i in the current round. Note that Mi may not contain i’s move
since i’s broadcast may fail.
The set of messages is Mi = Lin × Lout , and µi broadcasts the message (lanei, intenti)
by reading lanei and intenti from the sensor reading, if fronti, and broadcasts no
message otherwise. Note that these variable references are from S (s′

e) where s′
e is the

new environment state that the system moves to in the course of the round.
The sensor model is defined as in the definition of intersection contexts (while including
time as a sensor reading as in E∅).
δi maps the set of received messages directly into the memory with i’s own move; that
is, δi(si, a, Mes) = Mes. Note that an agent can determine from this set whether its
own broadcast was successful.

πintent interprets the propositions defined for interpretation contexts in the obvious way.

We now proceed as in Subsection 8.1 and define a procedure to compute from an agent
i’s local state si = (Mi, (lanei, intenti, timei)) a set Posi of moves that agent i believes may
be performed by higher-priority agents in the next round. We again capture stages of the
construction of this set as sets of moves Posl

I for l ∈ [next − 1, lanei).
1. Start with Posi = Posnext−1

i = ∅
2. For l ∈ [next, lanei) do

a. If for some l′ ∈ Lout , the move (l, l′) is in Mi then
if (l, l′) is compatible with Posi

then Posl
i := Posi ∪ {(l, l′)} and Posi := Posl

i

else Posl
i := Posi.

3 This context satisfies the sufficiently rich condition of Section 6.
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b. Otherwise, let L be the set of moves (l, l′) where l′ ∈ Lout such that (l, l′) is compatible
with Posi, and let Posl

i := Posi ∪ L and Posi := Posl
i.4

3. Output Posi.

Let the output of running this procedure on a local state with memory state Mi be denoted
by Posi, and let P intent be the standard protocol defined using the following program:

Program P intent
i .

if fronti ∧ (lanei, intenti) is compatible with Posi then go
else noop

▶ Proposition 10. P intent implements P with respect to γintent(F) for F ∈ {CR, SO}.

Again, by Proposition 10, it follows that the intersection protocol P intent is lexicograph-
ically optimal with respect to the contexts γintent(F) for for F ∈ {CR, SO}.

9 Discussion

We introduced the intersection problem, identified the appropriate notion of optimality called
lexicographical optimality, and designed protocols that are optimal in a variety of contexts.
A knowledge-based analysis and the use of intersection policies were crucial in this process.

Previous work has considered many models ranging from computing individual trajectories
of vehicles to relying on centralized schedulers [6]. In [16, 15], a four-way intersection is
considered in a context with failures. [10, 17] consider virtual traffic lights; the approach is
evaluated using a large-scale simulation. [9] solves the same problem probabilistically, in
contexts with failures. Work in the control theory literature has focused on vehicle dynamics
when going through an intersection [11] to avoid collision. Efforts have also been made to
build distributed intersection management systems through V2V communication [5].

While there has been considerable effort in designing protocols for specific intersections
or designing architectures for intersection management systems, we aim to develop a context-
and architecture-independent approach. Our goal in this paper is to lay the theoretical
foundations of optimal intersection protocol design in a variety of contexts, including contexts
with failures. We do so abstractly by defining the model to capture any intersection topology
with minimal requirements on V2V communication range. While the protocols we design
do not require sensors such as lidar and radar, the use of a knowledge-based program P
provides a direct method to develop optimal implementations in contexts with extra sensors.

The problem we study in this paper can be viewed as a generalization of the classical
problem of mutual exclusion, which requires that two distinct agents are not simultaneously
in a critical section of their code. Indeed, a variant of mutual exclusion called group mutual
exclusion [12] is strictly weaker than the intersection problem. In group mutual exclusion,
each process is assigned a session when entering the critical section and processes are allowed
to enter the critical section simultaneously provided that they share the same session. If
agents form an equivalence relation based on their move compatibility according to O, we
can identify each equivalence class to be in the same session and think of the intersection as
the critical section. However, our setting differs in some critical ways:

4 Intuitively, since M is the set of moves that i hears about from agents in the front of some lane, in
this case i did not hear from anyone in lane l. However, in settings with sending omissions, there may
nevertheless be an agent at the front of lane l′′. Such an agent will move only if it can do so safely.
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Intersections often have an O relation that is not an equivalence relation. For instance,
the fact that agents’ moves conflict in lanes A-B and in lanes B-C does not imply that
their moves in lanes A and C conflict (e.g., if agents want to move straight in a four-way
intersection with two lanes in each direction).
We take the set Ag of agents to be unbounded, while group mutual exclusion (and
equivalent problems such as room synchronization [3]) consider a bounded number of
agents.
Our agents arrive according to a (possibly infinite) schedule determined by the adversary.
To the best of our knowledge, fault-tolerance has not been considered in the group
mutual-exclusion setting.

The mutual-exclusion problem is generally studied with respect to an interleaving model of
asynchronous computation, but as Lamport [13] noted, this model is not physically realistic,
and already builds in a notion of mutual exclusion between the actions of distinct agents. The
Bakery mutual-exclusion protocol [13] is correct with respect to models allowing simultaneous
read and write operations. Moses and Patkin [14] develop an improvement of Lamport’s
Bakery algorithm for the mutual-exclusion problem using a knowledge-based analysis, noting
that there are situations in which Lamport’s protocol could enter the critical section, but
fails to do so. A weaker knowledge-based condition for mutual exclusion is used by Bonollo
et al. [4]; it states that an agent i may enter its critical section when it knows that no other
agent will enter its critical section until agent i has exited from its critical section. Clearly
these knowledge-based approaches are similar in spirit to ours. We hope to study the exact
relationship between these problems in the near future.

There are several directions that we hope to explore in the future. One involves extending
the current results to contexts with stronger adversaries and evaluating implementations
of P in other contexts. Another is considering strategic agents, who may deviate from a
protocol to cross the intersection earlier.
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