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—— Abstract

Chemical reaction networks (CRNs) model systems where molecules interact according to a finite set
of reactions such as A + B — C, representing that if a molecule of A and B collide, they disappear
and a molecule of C' is produced. CRNs can compute Boolean-valued predicates ¢ : N¢ — {0,1} and
integer-valued functions f : N* — N; for instance X1 + X2 — Y computes the function min(z1, z2),
since starting with x; copies of X;, eventually min(z1,z2) copies of Y are produced.

We study the computational power of execution bounded CRNs, in which only a finite number
of reactions can occur from the initial configuration (e.g., ruling out reversible reactions such as
A= B). The power and composability of such CRNs depend crucially on some other modeling
choices that do not affect the computational power of CRNs with unbounded executions, namely
whether an initial leader is present, and whether (for predicates) all species are required to “vote”
for the Boolean output. If the CRN starts with an initial leader, and can allow only the leader to
vote, then all semilinear predicates and functions can be stably computed in O(nlogn) parallel time
by execution bounded CRNs.

However, if no initial leader is allowed, all species vote, and the CRN is “non-collapsing” (does
not shrink from initially large to final O(1) size configurations), then execution bounded CRNs are
severely limited, able to compute only eventually constant predicates. A key tool is a characterization
of execution bounded CRNs as precisely those with a nonnegative linear potential function that is
strictly decreased by every reaction [6].
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1 Introduction

Chemical reaction networks (CRNs) are a fundamental tool for understanding and designing
molecular systems. By abstracting chemical reactions into a set of finite, rule-based transfor-
mations, CRNs allow us to model the behavior of complex chemical systems. For instance,
the CRN with a single reaction 2X — Y, produces one Y every time two X molecules
randomly react together, effectively calculating the function f(x) = |2/2] if the initial count
of X is interpreted as the input and the eventual count of Y as the output. A commonly
studied special case of CRNs is the population protocol model of distributed computing [3], in
which each reaction has exactly two reactants and two products, e.g., A+ B — C + D. This
model assumes idealized conditions where reactions can proceed indefinitely, constrained
only by the availability of reactants in the well-mixed solution.
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Precisely the semilinear predicates ¢ : N¢ — {0, 1} [1] and functions f : N¢ — N [5] can
be computed stably, roughly meaning that the output is correct no matter the order in which
reactions happen. In population protocols or other CRNs with a finite reachable configuration
space, this means that the output is correct with probability 1 under a stochastic scheduler
that picks the next molecules to react at random. However, existing constructions to compute
semilinear predicates and functions use CRNs with unbounded executions, meaning that it
is possible to execute infinitely many reactions from the initial configuration. CRNs with
bounded ezxecutions have several advantages. With an absolute guarantee on how many
reactions will happen before the CRN terminates, wet-lab implementations need only supply
a bounded amount of fuel to power the reactions. Such CRNs are simpler to reason about:
each reaction brings it “closer” to the answer. They also lead to a simpler definition of stable
computation than is typically employed: an execution bounded CRN stably computes a
predicate/function if it gets the correct answer after sufficiently many reactions.

To study this topic, we study networks that must eventually reach a configuration where no
further reactions can occur, regardless of the sequence of reactions executed. This restriction
is nontrivial because the techniques of [5, 7] rely on reversible reactions (leading to unbounded
executions) catalyzed by species we expect to be depleted once a computational step has
terminated. This trick seems to add computational power to our system by undoing certain
reactions as long as a specific species is present. Consider the following CRN computing
f(x1, 2o, x3) = min (x1 — xo, x3). The input values z; are given by the counts of X;, and the
output by the count of Z molecules in the stable state:

X, =Y (1)
Xot+Y 5o (2)
Y4+ X5 2Z (3)
Z+Xo—>Xo+X3+Y (4)

Reactions (1) and (2) compute x1 — x5, storing the result in the count of Y. Next, reaction
(3) can be applied exactly min(y, x3) times. But since the order of reactions is a stochastic
process, we might consume copies of Y in (3), before all of x5 is subtracted from it. Therefore,
we add reaction (4), using X as a catalyst to undo reaction (3) as long as copies of X, are
present, indicating that the first step of computation has not terminated. However, this
means the above CRN does not have bounded exectutions, since reactions (3) and (4) can
be alternated in an infinite execution. A similar technique is used in [5], where semilinear
sets are understood as a finite union of linear sets, shown to be computable in parallel by
CRNs. A reversible, catalyzed reaction finally converts the output of one of the CRNs to the
global output. Among other questions, we explore how the constructions of [5] and [7] can
be modified to provide equal computational power while guaranteeing bounded execution.

The paper is organized as follows. Section 3 defines execution boundedness (Definition 3.1).
We introduce alternative characterizations of the class for use in later proofs, such as the
lack of self-covering execution paths. Section 4 and 5 contain the main positive results
of the paper and provide the concrete constructions used to decide semilinear sets and
functions using execution bounded CRNs whose initial configurations contain a single leader.
Section 6 discusses the limitations of execution bounded CRNs, introducing the concept of
a “linear potential function” as a core characterization of these systems. We demonstrate
that entirely execution bounded CRNs that are leaderless and non-collapsing (such as all
population protocols), can only stably decide trivial semilinear predicates: the eventually
constant predicates (Definition 6.6).
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2 Preliminaries

We use established notation from [5, 7] and stable computation definitions from [3] for
(discrete) chemical reaction networks.

2.1 Notation

Let N denote the nonnegative integers. For any finite set A, we write N* to mean the set
of functions f : A — N. Equivalently, N* can be interpreted as the set of vectors indexed
by the elements of A, and so ¢ € N* specifies nonnegative integer counts for all elements
of A. c(i) denotes the i-th coordinate of ¢, and if ¢ is indexed by elements of A, then c(Y)
denotes the count of species Y € A. We sometimes use multiset notation for such vectors,
e.g., {4, 3C} for the vector (1,0, 3), assuming there are three species A, B,C. If ¥ C A, then
i [ ¥ denotes restriction of i to X.

For two vectors x,y € R¥, we write x = y to denote that x(i) > y(i) for all 1 < i < k,

X >y to denote that x = y but x # y, and x >y to denote that x(i) > y(i) forall 1 <i < k.
In the case that y = 0, we say that x is nonnegative, semipositive, and positive, respectively.

Similarly define <, <, <.

For a matrix or vector x, define ||x|| = ||x[[y = >, |x(¢)], ¢ ranges over all the entries of x.

2.2 Chemical Reaction Networks

A chemical reaction network (CRN) is a pair C = (A, R), where A is a finite set of chemical
species, and R is a finite set of reactions over A, where each reaction is a pair (r,p) € N x NA
indicating the reactants r and products p. A population protocol [1] is a CRN in which all
reactions (r,p) obey ||r|| = ||p|| = 2. (Note that CRNs, including population protocols, do
not assume any underlying “communication graph” and model a well-mixed system in which
each equal-sized of molecules is as likely to collide and react as any other.) We write reactions
such as A + 2B — A + 3C to represent the reaction ({4,2B},{A,3C}). A configuration
c € N® of a CRN assigns integer counts to every species S € A. When convenient, we use the
notation {n1S1,n25s,...,n,Sk} to describe a configuration ¢ with n; € N copies of species
S;, i.e., ¢(S;) = n;, and any species that is not listed is assumed to have a zero count. If
some configuration c is understood from context, for a species S, we write #S to denote
c(S). A reaction (r,p) is said to be applicable in configuration c if r < c. If the reaction
(r,p) is applicable, applying it results in configuration ¢/ = ¢ — r + p, and we write ¢ — ¢'.

An ezecution £ is a finite or infinite sequence of one or more configurations & =
(co,c1,cCa,...) such that, for all i € {1,...,|€] — 1},ci-1 — ¢c; and ¢;—1 A ¢;. X =p Yy
denotes that P is finite, starts at x, and ends at y. In this case we say y is reachable from x.
Let reach(x) = {y | x = y}. Note that the reachability relation is additive: if x =y, then
forallce N* x+c=>y+c.

For a CRN C = (A, R) where |A| = n and |R| = m, define the n x m stoichiometric
matriz M of C as follows. The species are ordered 51, ..., S,, and the reactions are ordered
(ri,p1),--+, (Tm, Pm), and M;; = p;(S;) —r;(S;). In other words, M;; is the net amount of
S; produced when executing the j'th reaction. For instance, if the CRN has two reactions

-1 1
S1— S5 4+ 2535 and 355 + S3—S1 4+ S5 + S3, then M = 1 -2
2 0
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» Remark 2.1. Let u € N, Then the vector Mu € Z” represents the change in species
counts that results from applying reactions by amounts described in u. In the above example,
if u=(2,1), then Mu = (—1,0,4), meaning that executing the first reaction twice (u(1) = 2)
and the second reaction once (u(2) = 1) causes S; to decrease by 1, Sy to stay the same,
and Ss to increase by 4.

2.3 Stable computation with CRNs

To capture the result of computations done by a CRN, we generalize the definitions to include
information about how to interpret the final configuration after letting the CRN run until
the result cannot change anymore (characterized below as stable computation). Computation
primarily involves two classes of functions: 1. evaluating predicates ¢ : N¥ — {0,1} to
determine properties of the input, and 2. executing general functions that map an input
configuration to an output, denoted as f : N¥ — N.

The definitions below reference input species ¥ C A and an initial context s € NMZ | If
s = 0 we say that CRN is leaderless. The initial context may be any constant multiset of
species, though in practice it tends to be a single “leader” molecule. Furthermore, other
initial contexts such as {24,3B} could be produced from a single leader L via a reaction
L — 2A + 3B, so we may assume without loss of generality that the initial context, if it is
nonzero, is simply a single leader. In both cases, we say i € N* is a valid initial configuration
if i = s+ x, where x(S) =0 for all S € A\ %; i.e., iis the initial context plus only input
species.

A chemical reaction decider (CRD) is a tuple D = (A, R, X, T1, Yo, s), where (A, R) is a
CRN, X C A is the set of input species, T1 C A is the set of yes voters, and Ty C A is the
set of no voters, such that T1 N Yo = 0, and s € NM\* is the initial context. If T1 U Ty = A,
we say the CRD is all-voting. We define a global output partial function ® : N* —-» {0,1} as
follows. ®(c) is undefined if either ¢ = 0, or if there exist Sy € Ty and S; € T such that
c(Sp) > 0 and ¢ (S7) > 0. In other words, we require a unanimous vote as our output. We
say c is stable if, for all ¢’ such that ¢ = ¢/, ®(c) = ®(c’). We say a CRD D stably decides
the predicate 1 : N¥ — {0, 1} if, for any valid initial configuration i € N*| letting iy =i | 3,
for all configurations ¢ € N*,i = ¢ implies ¢ = ¢’ such that ¢’ is stable and ® (c) = 1 (ip).
We associate to a predicate v the set A = 1)~1(1) of inputs on which v outputs 1, so we can
equivalently say the CRD stably decides the set A.

A chemical reaction computer (CRC) is a tuple C = (A, R, XY, s), where (A, R) is a
CRN, X C A is the set of input species, Y € A\X is the output species, and s € NMZ g the
initial context. A configuration o € N* is stable if, for every ¢ such that o = ¢,0(Y) = c(Y),
i.e. the output can never change again. We say that C stably computes a function f : N¥ — N
if for any valid initial configuration i € N* and any ¢ € N*,i = ¢ implies ¢ = o such that o
is stable and f(i | ¥) = o(Y).

2.4 Time model

The following model of stochastic chemical kinetics is widely used in quantitative biology and
other fields dealing with chemical reactions between species present in small counts [8]. It
ascribes probabilities to execution sequences, and also defines the time of reactions, allowing
us to study the computational complexity of the CRN computation in Sections 4 and 5. If
the volume is defined to be the total number of molecules, then the time model is essentially
equivalent to the notion of parallel time studied in population protocols [2]. In this paper,
the rate constants of all reactions are 1, and we define the kinetic model with this assumption.
A reaction is unimolecular if it has one reactant and bimolecular if it has two reactants. We
use no higher-order reactions in this paper.



D. Doty and B. Heckmann

The kinetics of a CRN is described by a continuous-time Markov process as follows. Given
a fixed volume v > 0, the propensity of a unimolecular reaction a: X — ... in configuration
c is p(c,a) = ¢(X). The propensity of a bimolecular reaction o : X +Y — ..., where
X #Y,is p(c,a) = % The propensity of a bimolecular reaction o : X + X — ... is
plc,a) = %w The propensity function determines the evolution of the system as
follows. The time until the next reaction occurs is an exponential random variable with rate
p(c) = > .crplc,a) (note that p(c) = 0 if no reactions are applicable to c). The probability
that next reaction will be a particular apexy is %

The kinetic model is based on the physical assumption of well-mixedness that is valid in a
dilute solution. Thus, we assume the finite density constraint, which stipulates that a volume
required to execute a CRN must be proportional to the maximum molecular count obtained

during execution [12]. In other words, the total concentration (molecular count per volume)

is bounded. This realistically constrains the speed of the computation achievable by CRNs.

For a CRD or CRC stably computing a predicate/function, the stabilization time is the
function ¢ : N — N defined for all n € N as ¢(n) = the worst-case expected time to reach
from any valid initial configuration of size n to a stable configuration.

2.5 Semilinear sets, predicates, functions

» Definition 2.2. A set L C N? is linear if there are vectors b,py,...,pr such that
L={b+nmps+- - -+ngpx | n1,...,nx € N}. A set is semilinear if it is a finite union
of linear sets. A predicate ¢ : N* — {0,1} is semilinear if the set ¢~1(1) is semilinear. A
function f:N?¢ — N is semilinear if its graph {(x,y) € N1 | f(x) = y} is semilinear.

The following is a known characterization of the computational power of CRNs [3, 4].

» Theorem 2.3 ([3, 4]). A predicate/function is stably computable by a CRD/CRC if and
only if it is semilinear.

» Definition 2.4. T C N? is a threshold set is if there are constants c,wy, ..., wq € Z such
that T = {x € N? | w1x(1) + - - - + wax(d) < c}. M C N is a mod set if there are constants
c,m,wi, ..., wq €N such that M = {x € N¢ | w;x(1) + - - + wgx(d) = ¢ mod m}.

The following well-known characterization of semilinear sets is useful.

» Theorem 2.5 ([9]). A set is semilinear if and only if it is a Boolean combination (union,
intersection, complement) of threshold and mod sets.

3 Execution bounded chemical reaction networks

In this section, we define execution bounded CRNs and state an alternate characterization of
the definition.

» Definition 3.1. A CRN C is execution bounded from configuration x if all executions
E = (x,...) starting at x are finite. A CRD or CRC C is execution bounded if it is execution
bounded from every wvalid initial configuration. C is entirely execution bounded if it is
execution bounded from every configuration.

This is a distinct concept from the notion of “bounded” CRNs studied by Rackoff [11]
(studied under the equivalent formalism of vector addition systems). That paper defines a
CRN to be bounded from a configuration x if |reach(x)] is finite (and shows that the decision
problem of determining whether this is true is EXPSPACE-complete.) We use the term
ezecution bounded to avoid confusion with this concept.

20:5
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We first observe an equivalent characterization of execution bounded that will be useful
in the negative results of Section 6.

» Definition 3.2. A ezecution £ = (x1,X2,...) is self-covering if for some i < j, x; < x;.
It is strictly self-covering if x; < x;. We also refer to these as (strict) self-covering paths.!

» Lemma 3.3. A CRN is execution bounded from x if and only if there is no self-covering
path from x.

4 Execution bounded CRDs stably decide all semilinear sets

In this section, we will show that execution bounded CRDs have the same computational
power as unrestricted CRDs. The following is the main result of this section.

» Theorem 4.1. Ezxactly the semilinear sets are stably decidable by execution bounded CRDs.
Furthermore, each can be stably decided with expected stabilization time ©(nlogn).

Since semilinear sets are Boolean combinations of mod and threshold predicates, we
prove this theorem by showing that execution bounded CRDs can decide mod and threshold
sets individually as well as any Boolean combination in the following lemmas. To ensure
execution boundedness in the last step, we require the following property.

» Definition 4.2. Let D be a CRD with voting species Y. We say D is single-voting if for
any valid initial configuration i € N* and any ¢ € N* s.t. i = c, dvercV) =1, ie,
ezxactly one voter is present in every reachable configuration.

Lemmas 4.3 and 4.4 are proven in the full version of this paper.

» Lemma 4.3. Every mod set M = { (z1,...,zq) | 2?21 w;z; = ¢ mod m} is stably decidable
by an execution bounded, single-voting CRD with expected stabilization time ©(nlogn).

We design a CRD D with exactly one leader present at all times, cycling through m
“states” while consuming the input and accepting on state ¢. Let ¥ = {X3,..., X4} be the
set of input species and start with only one Lg leader, i.e. set the initial context s(Lg) =1
and s(S) = 0 for all other species. For each i € {1,...,d},j € {0,...,m — 1} add the
following reaction: X; + Lj = Ljtw, mod m- Let only L. vote yes and all other species no,
ie. T ={L.}. For any valid initial configuration, D reaches a stable configuration which
votes yes if and only if the input is in the mod set, and no otherwise.

» Lemma 4.4. Every threshold set T = {(z1,...,zaq) | Z?Zl w;x; >t} is stably decidable
by an execution bounded, single-voting CRD with expected stabilization time ©(nlogn).

We design a CRD D which multiplies the input molecules according to their weight and
consumes positive and negative units alternatingly using a single leader. Once no more
reaction is applicable, the leader’s state will indicate whether or not there are positive units
left and the threshold is met. Let ¥ = {X7,..., X4} be the set of input species and T = {Ly }

L Rackoff [11] uses the term “self-covering” to mean what we call strictly self-covering here, and points out
that Karp and Miller [10] showed that |reach(x)| is infinite if and only if there is a strictly self-covering
path from x. The distinction between these concepts is illustrated by the CRN A= B. From any
configuration x, reach(x) is finite (Jreach(x)| = x(A) +x(B)+1), and there is no strict self-covering path.
However, from (say) {A}, there is a (nonstrict) self-covering path {A} = {B} = {A}, and by repeating,
this CRN has an infinite cycling execution within its finite configuration space reach({A}) = {{A}, {B}}.
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the yes voter. We first add reactions to multiply the input species by their respective weights.
For all i € {1,...,d}, add the reaction:

w; P if w; >0
X; = { —wiN ifw; <0 (5)

1] otherwise

P and N represent “positive” and “negative” units respectively. Now add reactions to
consume P and N alternatingly using a leader until we run out of one species:

Ly + N — Ly (6)
Ly +P — Ly (7)

Finally, initialize the CRD with one Ly and the threshold number ¢ copies of P (or —tN
if t is negative), i.e. s(Ly) =1, s(P)=tif ¢t >0, or s(N) = —t if t <0, and s(S) = 0 for
all other species. For any valid initial configuration, D reaches a stable configuration which
votes yes if and only if the weighted sum of inputs is above the threshold, and no otherwise.

» Lemma 4.5. If sets X1, Xo C N? are stably decided by some execution bounded, single-
voting CRD, then so are X1 U Xs, X1 N Xa, and X, with expected stabilization time O(nlogn).

Proof. To stably decide X, swap the yes and no voters.

For U and N, consider a construction where we decide both sets separately and record
both of their votes in a new voter species. For this, we allow the set of all voters to be a
strict subset of all species. We first add reactions to duplicate our input with reactions of
the form

Xi = Xin+ X2 (8)

by two separate CRDs. Subsequently, we add reactions to record the separate votes in one
of four new voter species: Vyn, Vny, Vy N, Vyy. The first and second CRN determine the
first and second subscript respectively. For b € {Y, N} and if Sy, T}, are voters of C; and Co
respectively, add the reactions:

Sb—|—Vg?—>Sb—|—Vb? 9)
Ty + Vo = Tp + Vi (10)

Above, the ? subscript is shorthand for “any bit”; e.g. if N7 is the no voter of the first CRD,
we would add two reactions N1 + Lyny — Ny + Lyy and N1 + Lyy — N1 + Lyy. We let
the yes voters be: T = {Vny, Vyn, Vyy} to stably decide X7 U X5 or T = {Vyy } to stably
decide X1 N Xs.

Reaction (8) will complete in O(logn) time and is clearly execution bounded since the
input Xj; is finite and not produced in any reaction. Consequently, two separate CRNs run
in O(nlogn) time as shown in Lemma 4.3 and Lemma 4.4. After stabilization of the parallel
CRNs, we expect reaction (9) and (10) to happen exactly once. Each molecule involved is a
leader and has count 1 in volume n. This leads to a rate of A = %, so the expected time for
one reaction to happen is O(n). It is important to note that reactions (9) and (10) do not
result in unbounded executions due to the unanimous vote in parallel CRDs. In both mod
sets and threshold sets, the leader changes its vote a maximum of |i|] times, with only ever
one leader present at any time. Again, we start with only one Vj;, voter present initially and
no reaction changes the count of voters, making our construction single-voting. <

20:7
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Since semilinear predicates are exactly Boolean combinations of threshold and mod
predicates, Lemmas 4.3-4.5 imply Theorem 4.1.

We can also prove the same result for all-voting CRDs. Note, however, that such CRDs
cannot be “composed” using the constructions of Lemma 4.5 and Theorem 5.4, which crucially
relied on the assumption that the CRDs being used as “subroutines” are single-voting.

» Theorem 4.6. FEvery semilinear set is stably decidable by an execution bounded, all-voting
CRD, with expected stabilization time O(nlogn).

5 Execution bounded CRCs stably compute all semilinear functions

In this section we shift focus from computing Boolean-valued predicates ¢ : N — {0, 1}
to integer-valued functions f : N¢ — N, showing that execution bounded CRCs can stably
compute the same class of functions (semilinear) as unrestricted CRCs.

Similar to [5, 7], we compute semilinear functions by decomposing them into “affine
pieces”, which we will show can be computed by execution bounded CRNs and combined by
using semilinear predicates to decide which linear function to apply for a given input.?

We say a partial function f : N¥ --s N is affine if there exist vectors a € QF, ¢ € N* with
x—c > 0 and nonnegative integer b € N such that f(x) = a' (x—c)+b. For a partial function
f we write dom f for the domain of f, the set of inputs for which f is defined. This definition
of affine function may appear contrived, but the main utility of the definition is that it satisfies
Lemma 5.3. For convenience, we can ensure to only work with integer valued molecule counts
by multiplying by % after the dot product, where d may be taken to be the least common
multiple of the denominators of the rational coefficients in the original definition such that
ni=d-ai): f(x) =b+ 0, a()(x(i) —c(i) <= f(x)=b+ 530, ni(x(i) —c(i)).

We say that a partial function f : N¥ — N2 is a diff-representation of f if dom f = dom f

A

and, for all x € dom f, if (yp,yc) = f(x), then f(x) = yp —yc, and yp = O(f(x)). In other
words, f represents f as the difference of its two outputs yp and yc, with the larger output
yp possibly being larger than the original function’s output, but at most a multiplicative

constant larger [7].

» Lemma 5.1. Let f : N* — N be an affine partial function. Then there is a diff-
representation f : N¥ — N? of f and an execution bounded CRC that monotonically
stably computes [ in expected stabilization time O(n).

Proof. Define a CRC C with input species ¥ = {Xj,..., X} and output species I' =
{YP Y%}, We need to ensure that after stabilizing, y = #YF — #Y¢

To account for the b offset, start with b copies of Y'¥.

For the ¢; offset, we must reduce the number of X; by ¢;. Since the result will be used in
the next reaction, we want to produce a new species X/ and require X/ to not be consumed
during the computation. We achieve this by adding reactions that let X; consume itself ¢;
times (keeping track with a subscript) and converting X; to X once ¢; has been reached.
For the sake of notation below, assume input species X; is actually named X; ;. For each
ie{l,....,k} and m,p € {1,...,¢}, if m+ p < ¢;, add the reaction

Xi,m + Xi,p - Xi,m+p (11)

2 While this proof generalizes to multivariate output functions as in [5, 7], to simplify notation we focus

on single output functions. Multi-valued functions f : N¥ — N! can be equivalently thought of as [
separate single output functions f; : N — N, which can be computed in parallel by independent CRCs.
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If m + p > ¢;, add the reaction
XLm + Xi,p — XLCi + (m +p— Ci) Xz/ (12)

Runtime: In volume n, the rate of reactions (11) and (12) would be A ~ % (2; molecules

have the chance to react with any of the x; — 1 others), so the expected time for the next

reaction is Z%z. The expected time for the whole process is i E=nYi,%=0(n).

Further, the reactions are execution bounded since both strictly decrease the number of their
reactants and exactly z; — 1 reactions will happen.

To account for the n;/d coefficient, we multiply by n;, then divide by d using similar
reactions as for the subtraction. To multiply by n;, add the following reaction for each
1e{l,...,k}:

iDP, ifn; >0
X/ o (13)
(—n;) DY, ifn; <0
For each m,p € {1,...,d — 1}, if m+p < d — 1, add the reactions
Dy, +D; = Dy, (14)
c c c
Dy, + D, — Dy (15)
If m 4+ p > d, add the reactions
DY +DP Db YT (16)
DS, +DS — DS, ,+YC (17)

Reactions (13) complete in expected time O(logn), while (16) and (17) complete in O(n) by
a similar analysis as for the first two reactions. As for execution boundedness, (13) is only
applicable once for every X/; all other reactions start with a number of reactants which are a
constant factor of X! and decrease the count of their reactants by one in each reaction. <«

We require the following result due to Chen, Doty, Soloveichik [5], guaranteeing that any
semilinear function can be built from affine partial functions.

» Lemma 5.2 ([5]). Let f : N® — N be a semilinear function. Then there is a finite set
{f1 :N? 5 N, ..., fm : N4 = N} of affine partial functions, where each dom f; is a linear
set, such that, for each x € N%, if fi(x) is defined, then f(x) = fi(x), and |J;~, dom f; = N°.

We strengthen Lemma 5.2 to show we may assume each dom f; is disjoint from the others.

This is needed not only to prove Theorem 5.4, but to correct the proof of Lemma 4.4 in [5],
which implicitly assumed the domains are disjoint.

» Lemma 5.3. Let f : N — N be a semilinear function. Then there is a finite set
{f1 :N¢ 5 N, ..., fm : N = N} of affine partial functions, where each dom f; is a linear
set, and dom f; Ndom f; = 0 for all i # j, such that, for each x € N%, if f;(x) is defined,
then f(x) = fi(x), and |J;~, dom f; = N9,

The next theorem shows that semilinear functions can be computed by execution bounded
CRCs in expected time O(nlogn).

» Theorem 5.4. Let f : N© — N be a semilinear function. Then there is an execution
bounded CRC that stably computes f with expected stabilization time O(nlogn).
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Proof. We employ the same construction of [5] with minor alterations. A CRC with input
species ¥ = {X1,..., Xy} and output species I' = {Y}. By Lemma 5.3, we decompose
our semilinear function into partial affine functions (with linear, disjoint domains), which
can be computed in parallel by Lemma 5.1. Further, we decide which function to use by
computing the predicate ¢; = “x € dom f;” (Theorem 4.1). We interpret each 571313 and }A/ic
as an “inactive” version of “active” output species Y;7 and Y,. Let LY, LY be the yes and
no voters respectively voting whether x lies in the domain of i-th partial function. Now, we
convert the function result of the applicable partial affine function to the global output by

adding the following reactions for each i € {1,...,m}.
LY +YP LY +YP +Y (18)
LN +YFP - LN + M (19)
M;+Y =Y (20)

Reaction (18) produces an output copy of species Y and (19) and (20) reverse the first reaction
using only bimolecular reactions. Both are catalyzed by the vote of the i-th predicate result.
Also add reactions

LY +YC —» LY +YF (21)

LN +v° 5 LN +Y° (22)
and

K+Y > o (24)

Reactions (21) and (22) activate and deactivate the “negative” output values and reactions
(23) and (24) allow two active partial outputs to cancel out and consume the excess Y in
the process. When the input is in the domain of function i, exactly one copy of LY will
be present, otherwise one copy of LY. Since we know that the predicate computation is
execution bounded and produces at most one voter, the catalytic reaction will also happen
at most as often as the leader changes its vote. Therefore, it is also execution bounded.
The underlying CRNs computing the predicates and functions have expected stabilization
time O(nlogn). Once they have stabilized, the slowest reactions described above are those
where a leader (LY or L) must convert all outputs, which also takes expected time O(nlogn)
by a coupon collector argument. <

6 Limitations of execution bounded CRNs

The main positive results of the paper (Theorems 4.1 and 5.4) rely on the assumption that
valid initial configurations have a single leader (in particular, they are execution bounded only
from configurations with a single leader, but not from arbitrary configurations). Theorem 4.6
shows that we may assume the CRD deciding a semilinear set is all-voting. However, for the
“constructive” results Lemma 4.5 and Theorem 5.4, which compose the output of a CRD D
with downstream computation, using D as a “subroutine” to stably compute a more complex
set/function, the constructions crucially use the assumption that D is single-voting (i.e., only
the leader of D votes) to argue the resulting composed CRN is execution bounded. In this
section we show these assumptions are necessary, proving that execution bounded CRNs
without those constraints are severely limited in their computational abilities.
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We use a result of Czerner, Guttenberg, Helfrich, and Esparza [6], showing that entirely
execution bounded CRNs (from every configuration) can be characterized by a simpler
property of having a “linear potential function” that essentially measures how close the CRN
is to reaching a terminal configuration. We use this characterization to prove that entirely
execution bounded CRNs can stably decide only limited semilinear predicates (eventually
constant, Definition 6.6), assuming all species vote, and that molecular counts cannot decrease
to O(1) in stable configurations (see Definition 6.4).

6.1 Linear potential functions

We define a linear potential function of a CRN to be a nonnegative linear function of
configurations that each reaction strictly decreases.

» Definition 6.1. A linear potential function & : RJZ\O — R>¢ for a CRN is a nonnegative
linear function, such that for each reaction (r,p), ®(p) — @(r) < 0.

Note that for a configuration x, since ®(x) = > g5 vs5%(S) > 0, it must be nondecreasing
in each species, i.e., all coeflicients vg must be nonnegative (though some are permitted to
be 0). Intuitively, we can think of ® as assigning a nonnegative “mass” to each species (the

mass of S is vg), such that each reaction removes a positive amount of mass from the system.

Note also that since ® is linear, the above is equivalent to requiring that ®(p — r) < 0, if we
extend ® to a linear function ® : R — R on vectors with negative elements.

A CRN may or may not have a linear potential function. Although it is not straightforward
to “syntactically check” a CRN to see if has a linear potential function, it is efficiently decidable:
a CRN has a linear potential function if and only if the following system of linear inequalities
has a solution (which can be solved in polynomial time using linear programming techniques;
the variables to solve for are the vg for each S € A), where the ¢’th reaction has reactants r;
and products p;, and species S € A has mass vg > 0: (Vi) > g p[Pi(S) — 1i(S)]vs < 0. For
example, for the reactions A+ A — B+C and B+ B — A, for each reaction to strictly decrease
the potential function ®(x) = vax(A) + vpx(B) + vex(C), ® must satisfy 2v4 > vp + vo
and 2vg > v4. In this case, vq4 = 1,v = 1,vc = 0 works.

» Remark 6.2. A system of linear inequalities with rational coefficients has a real solution if
and only if it has a rational solution. For any homogeneous system (where all inequalities
are comparing to 0), any positive scalar multiple of a solution is also a solution. By clearing
denominators, a system has a rational solution if and only if it has an integer solution. Thus,
one can equivalently define a linear potential function to be a function ®(x) = 3¢, vsx(S)
such that each vg € N, i.e., we may assume ® : N* — N. In particular, since ® is decreased
by each reaction, it is decreased by at least 1.

The following theorem due to Czerner, Guttenberg, Helfrich, and Esparza, is crucial to
proving limitations on execution bounded CRNs such as Theorem 6.5 and Theorem 6.7.

» Theorem 6.3 ([6]). A CRN has a linear potential function if and only if it is entirely
ezecution bounded.

6.2 Impossibility of stably deciding majority and parity

In this section, we prove Theorem 6.5, which is a special case of our main negative result,
Theorem 6.7. We give a self-contained proof of Theorem 6.5 because it is simpler and serves
as an intuitive warmup to some of the key ideas used in proving Theorem 6.7, without the
complexities of dealing with arbitrary semilinear sets.

20:11

DISC 2024



20:12

Execution Bounded Chemical Reaction Networks

Theorem 6.5 shows a limitation on the computational power of entirely execution bounded,
all-voting CRNSs, but it requires an additional constraint on the CRN for the result to hold
(and we later give counterexamples showing that this extra hypothesis is provably necessary),
described in the following definition.

» Definition 6.4. Let D be a CRD. The output size of D is the function s : N — N defined
s(n) = ming y{|ly| | x = ¥, [|x]| = n,x is a valid initial configuration,y is stable}, the size
of the smallest stable configuration reachable from any valid initial configuration of size n. A
CRD is non-collapsing if lim,,_,+ s(n) = co.

Put another way, D is collapsing if there is a constant ¢ such that, from infinitely many
initial configurations x, D can reach a stable configuration of size at most c¢. All population
protocols are non-collapsing, since every reaction preserves the configuration size.

» Theorem 6.5. No non-collapsing, all-voting, entirely execution bounded CRD can stably
decide the magjority predicate [ X1 > X57] or the parity predicate [X =1 mod 27].

Proof. Let D = (A, R,%, Ty, Tn,s) be a CRD obeying the stated conditions, and suppose
for the sake of contradiction that D stably decides the majority predicate (so ¥ = {X7, X5}).

We consider the sequence of stable configurations a;, by, as,bo, ... defined as follows.
Let a; be a stable configuration reachable from initial configuration s + {X7, X2}; since the
correct answer is yes, all species present in a; vote yes. Now add a single copy of Xs. By
additivity, the configuration a; + { X2} is reachable from s+ {X7,2X5}, for which the correct
answer in this case is no. Thus, since D stably decides majority, from a; + { X5}, a stable
“no” configuration is reachable; call this b;. Now add a single X;. Since the correct answer
is yes, from b; + {X;} a stable “yes” configuration is reachable, call it as.

Continuing in this way, we have a sequence of stable configurations a;,by,as,bs,...
where all species in a; vote yes and all species in b; vote no. Since D is non-collapsing, the size
of the configurations a; and b; increases without bound as ¢ — co. (Possibly ||a;11]| < ||ail|,
i.e., the size is not necessarily monotonically increasing, but for all sufficiently large 5 > ¢,
we have ||a;|| > ||a;||.) Since all species vote, for some constant § > 0, to get from a; + {Xo}
to b;, at least d||a;|| reactions must occur. This is because all species in a; must be removed
since they vote yes, and each reaction removes at most O(1) molecules. (Concretely, let
§ = 1/max( pyer [Ir] — [P, i.e., 1 over the most net molecules consumed in any reaction.)
Similarly, to get from b; + {X1} to a;+1, at least d|/b;|| reactions must occur.

Since D is entirely execution bounded, by Theorem 6.3, D has a linear potential function
®(x) = v-x, where v > 0. Adding a single X5 to a; increases ® by the constant v(X5). Since
la;|| grows without bound, the number of reactions to get from a; + {Xs} to b; increases
without bound as ¢ — 0o, and since each reaction strictly decreases ® by at least 1, the total
change in ® that results from adding X5 and then going from a; + { X3} to b; is unbounded
in i, so unboundedly negative for sufficiently large i (negative once ¢ is large enough that
dljas|| > v(X2) + 2). Similarly, adding a single X; to b, and going from b; + {X1} to a;41,
the resulting total change in ® is unbounded and (for large enough ) negative.

® starts this process at the constant ®(s + {X1, X2}). Before ||a;|| and ||b;|| are large
enough that d|la;|| > v(X2) + 2 and §||b;|| > v(X71) + 2 (i.e., large enough that the net
change in ® is negative resulting from adding a single input and going to the next stable
configuration), ® could increase, if ®({X1}) (resp. ®({X2})) is larger than the net decrease
in ® due to following reactions to get from a; + {Xs} to b; (resp. from b; + {X1} to a;).
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However, since D is non-collapsing, this can only happen for a constant number of i
(so @ never reaches more than a constant above its initial value ®(s + {X7, X5})), after
which ® strictly decreases after each round of this process. At some point in this process, D
will not be able to reach all the way to the next a; or b; without ® becoming negative, a
contradiction.

The argument for parity is similar, but instead of alternating adding X; then X5, in each
round we always add one more X to flip the correct answer. |

Theorem 6.5 is false without the non-collapsing hypothesis. The following collapsing,
leaderless (but all-voting and entirely execution bounded) CRD stably decides majority:
Species X1, x1 vote yes, while X5, z2 vote no:

X1 +Xo—=21 + 22
X1+£C2—>X1
Xo+21— Xy

T+ 29— 21

It has bounded executions from every configuration: min(#X7,#X2) of the first reaction
can occur, and the other reactions decrease molecular count, so are limited by the total
configuration size. However, it is collapsing since, for any n, there exists an input of size n that
reaches a stable configuration of size 1. Theorem 6.5 is similarly false without the all-voting
hypothesis; for each of the reactions with one product above, add another non-voting product
W. This converts the CRD to be non-collapsing but not all-voting. Of course, the execution
bounded hypothesis is also necessary: the original population protocols paper [1] showed that
all-voting, non-collapsing, leaderless population protocols can stably decide all semilinear
predicates.

The following collapsing, all-voting, leaderless (but entirely execution bounded) CRD
stably decides parity. Let the input species be named X;. Species X; votes yes, X votes no:

X1 +X1—>X0
X1 +Xo— X4
X0+X0*>X0

6.3 Impossibility of stably deciding not eventually constant predicates

We now present our main negative result, Theorem 6.7, which generalizes Theorem 6.5 to
show that such CRNs can stably decide only very limited (eventually constant) predicates.

» Definition 6.6. Let ¢ : N — {0,1} be a predicate. We say ¢ is eventually constant if
there is ng € N such that ¢ is constant on N‘éno ={xeN|(Vie{l,...,d}) x(i) > no},
i.e., either =1 (0)NNL, =0 or ¢~ (1)NNL, = 0.

>no

In other words, although ¢ may have an infinite number of each output, “sufficiently far from
the boundary of the positive orthant” (where all coordinates exceed ng), only one output
appears. A complete proof appears in the full version of this paper.

» Theorem 6.7. If a non-collapsing, all-voting, entirely execution bounded CRD stably
decides a predicate ¢, then ¢ is eventually constant.

Proof sketch. This proof is similar to that of Theorem 6.5. In that proof, we repeatedly
add a “constant amount of additional input { X5} or {X;}, which flips the output” For more
general semilinear, but not eventually constant, predicates, we dig into the structure of the
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semilinear set to find a sequence of constant-size vectors representing additional inputs that
flip the correct output. Any predicate that is not eventually constant has infinitely many yes
inputs and infinitely many no inputs, but in general they could be increasingly far apart:
e.g., (x) = 1 if and only if 2" < ||x|| < 2" for even n. For the potential function argument
to work, each subsequent input needs to be at most a constant larger than the previous.
But if ¢ is semilinear (and not eventually constant) then we can show that there is a
sequence of increasing inputs xg < x1 < x3 < ..., each a constant distance from the next
(IIxj+1 — x;|| = O(1)), flipping the output (¢(x;) # ¢#(x;41)). Roughly, this is true for one
of two reasons. Using Theorem 2.5, ¢ is a Boolean combination of threshold and mod sets.
Either the mod sets are not combined to be trivially ¢ or N, in which case we can find
some vector v that, followed infinitely far from some starting point xg (so x; = xg + iv)
periodically hits both yes inputs (¢(x;) = 1) and no inputs (¢(x;) = 0). Otherwise, the mod
sets can be removed and simplify the Boolean combination to only threshold sets, in which
case the infinite sequence x¢,x1, ... can be obtained by moving along a threshold hyperplane
that separates yes from no inputs. <

The statement of Theorem 6.5 does not mention the concept of a leader, but it would
typically apply to leaderless CRDs. A CRD may be execution bounded from configurations
with a single leader, but not execution bounded when multiple leaders are present (preventing
the use of Theorem 6.3, which requires the CRD to be execution bounded from all configura-
tions). For example, in Lemma 4.5, reaction (9) occurs finitely many times if the leader/voter
Sy or Sy has count 1. However, if Sy and Sy can be present simultaneously (e.g., if we start
with two leaders), then the reactions Sy + Vyny — Sy + Vyn and Sy + Vi vy = Sy + Van
can flip between Vyx and Vy y infinitely often in an unbounded execution.

If the CRN is leaderless, however, we have the following, which says that if it is execution
bounded from wvalid initial configurations, then it is execution bounded from all configurations.

» Lemma 6.8. If a leaderless CRD or CRC is execution bounded, then it is entirely execution
bounded.

Proof sketch. Since C is leaderless, the sum of two valid initial configurations is also valid.
Thus if we can produce some species from a valid initial configuration, we can produce
arbitrarily large counts of all species by adding up sufficiently many initial configurations.
This means that for any configuration x, from any sufficiently large valid initial configuration
i, some y = x is reachable from i. But if C is execution bounded from i, since i = vy, it
must also be execution bounded from y, thus also from x since by additivity any reactions
applicable to x are also applicable to y. |

Lemma 6.8 lets us replace “entirely execution bounded” in Theorem 6.7 with “leaderless
and execution bounded”:

» Corollary 6.9. If a non-collapsing, all-voting, leaderless, execution bounded CRD stably
decides a predicate ¢, then ¢ is eventually constant.

In particular, since the original model of population protocols [1] defined them as leaderless
and all-voting — and since population protocols are non-collapsing — we have the following.

» Corollary 6.10. If an execution bounded population protocol stably decides a predicate ¢,
then ¢ is eventually constant.
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7

Conclusion

A key question remains open: Can execution bounded CRNs compute semilinear functions
and predicates within polylogarithmic time? Angluin, Aspnes and Eisenstat [2] introduced a
fast population protocol that simulates a register machine with high probability, and can be
made probability 1 with semilinear predicates. However, this construction seems inherently

unbounded in executions.
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