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Abstract
Broadcast and Consensus are most fundamental tasks in distributed computing. These tasks are
particularly challenging in dynamic networks where communication across the network links may be
unreliable, e.g., due to mobility or failures. Over the last years, researchers have derived several
impossibility results and high time complexity lower bounds for these tasks. Specifically for the
setting where in each round of communication the adversary is allowed to choose one rooted tree
along which the information is disseminated, there is a lower as well as an upper bound that is linear
in the number n of nodes for Broadcast and for n ≥ 3 the adversary can guarantee that Consensus
never happens. This setting is called the oblivious message adversary for rooted trees. Also note
that if the adversary is allowed to choose a graph that does not contain a rooted tree, then it can
guarantee that Broadcast and Consensus will never happen.

However, such deterministic adversarial models may be overly pessimistic, as many processes in
real-world settings are stochastic in nature rather than worst-case.

This paper studies Broadcast on stochastic dynamic networks and shows that the situation is
very different to the deterministic case. In particular, we show that if information dissemination
occurs along random rooted trees and directed Erdős–Rényi graphs, Broadcast completes in O(log n)
rounds of communication with high probability. The fundamental insight in our analysis is that key
variables are mutually independent.

We then study two adversarial models, (a) one with Byzantine nodes and (b) one where an
adversary controls the edges. (a) Our techniques without Byzantine nodes are general enough so
that they can be extended to Byzantine nodes. (b) In the spirit of smoothed analysis, we introduce
the notion of randomized oblivious message adversary, where in each round, an adversary picks
k ≤ 2n/3 edges to appear in the communication network, and then a graph (e.g. rooted tree or
directed Erdős–Rényi graph) is chosen uniformly at random among the set of all such graphs that
include these edges. We show that Broadcast completes in a finite number of rounds, which is, e.g.,
O(k + log n) rounds in rooted trees.

We then extend these results to All-to-All Broadcast, and Consensus, and give lower bounds
that show that most of our upper bounds are tight.
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1 Introduction

Broadcast and Consensus are two of most fundamental operations in distributed computing
which, in large-scale systems, typically have to be performed over a network. These networks
are likely to be dynamic and change over time due, e.g., to link failures, interference, or
mobility. Understanding how information disseminates in such dynamic networks is hence
important for developing and analyzing efficient distributed systems.

Over the last years, researchers have derived several important insights into information
dissemination in dynamic networks. A natural and popular model assumes an oblivious1

message adversary which controls the information flow between a set of n nodes, by dropping
an arbitrary set of messages sent by some nodes in each round [7]. Specifically, the adversary
is defined by a set of directed communication graphs, one per round, whose edges determine
which node can successfully send a message to which other node in a given round. Based
on this set of graphs, the oblivious message adversary chooses a sequence of graphs over
time, one per round with repetitions allowed, in such a way that the time complexity of the
information dissemination task at hand is maximized. This model is appealing because it is
conceptually simple and still provides a highly dynamic network model: The set of allowed
graphs can be arbitrary, and the nodes that can communicate with one another can vary
greatly from one round to the next. It is, thus, well-suited for settings where significant
transient message loss occurs, such as in wireless networks. As information dissemination
is faster on dense networks, most literature studies oblivious message adversaries on sparse
networks, in particular, on rooted trees [16, 30, 7, 21, 22]. In fact, it is easy to see that
rooted trees are a minimal necessary requirement for a successful Broadcast and Consensus:
if an adversary may choose a graph that does not contain a rooted tree, then it may forever
prevent the dissemination of a piece of information.

Unfortunately, information dissemination can be slow in trees: Broadcast can take time
linear in the number of nodes under the oblivious message adversary [16, 30], even for
constant-height trees (as we show in the full version); and Consensus can even take super-
polynomial time until termination, if it completes at all [7, 21]. Although this is bad news, one
may argue that while the deterministic adversary model is useful in malicious environments,
in real-word applications, the dynamics of communication networks is often more stochastic
in nature. Accordingly, the worst-case model considered in existing literature may be overly
conservative.

This motivates us, in this paper, to study information dissemination, and in particular
Broadcast and Consensus tasks, in a scenario where the communication network is stochastic.
Initially, we study a purely stochastic scenario where in each round, the communication
network is chosen uniformly at random among all rooted trees. We then study several

1 Note that the term oblivious here refers to the property that nodes are oblivious to who their neighbors
are. However, our adversary is actually adaptive.

https://www.doi.org/10.55776/Z422
https://www.doi.org/10.55776/I5982
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https://www.doi.org/10.55776/P33775
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fundamental extensions of this model where the adversary has some limited control. In
a first extension, we consider the case where some nodes (up to 2n

3 ) may be Byzantine,
that is, they may deviate arbitrarily from the protocol (and stop forwarding messages, for
example). In a second extension, in the spirit of smoothed analysis, we study a setting where
an adversary has some limited control over the communication network; we call this adversary
the randomized oblivious message adversary. More specifically, we study the setting where
first a worst-case adversary chooses k directed edges in the dynamic n-node network for some
fixed k with 0 ≤ k < 2n

3 − 12, and then a rooted tree is chosen uniformly at random among
the set of all rooted trees that include these edges.

We show that Broadcast completes within time O(log n) with high probability. We then
show that this result even holds with Byzantine nodes. Under our randomized oblivious
message adversary, Broadcast completes in O(k + log n) time with high probability.

It is useful to put our model into perspective with the SI (Susceptible-Infectious) model in
epidemics [13]: while in the SI model interactions occur on a network that equals a clique, our
model revolves around trees which are chosen by an adversary. This tree structure renders
the analytical understanding of the information dissemination process harder, due to the
lack of independence between the edges in the network in a particular round. A key insight
from our paper is that we can prove the independence of a key variable, namely the increase
in the number of “informed” nodes, which is crucial for our analysis. Our proof further relies
on stochastic dominance, which makes it robust to the specific adversarial objective, and
applies to any adversary definition (e.g., whether it aims to maximize the minimum or the
expected number of rounds until the process completes).

We then extend our study to adversaries which are not limited to trees. In particular,
we are interested in how the time complexity of Broadcast and Consensus depends on the
density of the network. To this end, we consider directed Erdős–Rényi graphs, a directed
version of the classic and well-studied random graphs. This graph family is parameterized
by the number of edges m and hence allows us to shed light on the impact of the density.
Specifically in this model, in each round the network is formed by sampling m edges. We
again study two extensions: in the first extension some nodes behave as Byzantine nodes,
while in the second extension, up to k ≤ m edges are chosen by an adversary, and then the
remaining edges are sampled. While results for this model can be found in some cases where
m is chosen so that the graph is an expander w.h.p. in each round by using the results from
Augustine et al [2], in the case where m is small, our results are novel.

We show that all our results extend to multiple other problems, namely All-to-All
Broadcast, Byzantine Consensus and Reliable Broadcast.

1.1 Model

Let n be the number of nodes, and let each node have a unique identifier from [n]. Time
proceeds in a sequence of rounds t = 1, 2, . . . , such that in each round t the communication
network is chosen according to one of the models defined below. In each round, every honest
node sends a message to all of its out-neighbors before receiving one from its in-neighbor.
There is no message size restriction. We will study the following models of communication:

2 We can relax this condition to k ≤ (1 − ϵ)n for a fixed parameter ϵ, which results in a multiplicative
factor of 1

ϵ in the running time.

DISC 2024



21:4 Broadcast and Consensus in Stochastic Dynamic Networks

Uniformly Random Trees

In the Uniformly Random Trees model, let Tn be the set of all directed rooted trees on n

nodes (where all edges are pointed away from the root). In each round, the communication
network is chosen uniformly at random among graphs in Tn, independently from other rounds.
All nodes are honest.

Uniformly Random Trees with Byzantine Nodes

In the Uniformly Random Trees with Byzantine Nodes model, in each round, the commu-
nication network is chosen uniformly at random among graphs in Tn, independently from
other rounds. We have n − f honest nodes, and f nodes are Byzantine, that is, they might
behave arbitrarily (and even coordinate to make the protocol fail). We assume access to
cryptographic tools that allow nodes to sign and encrypt messages. We restrict f ≤ 2n

3 − 1.

Uniformly Random Trees with Adversarial Edges

In the Uniformly Random Trees with Adversarial Edges model, in each round, the commu-
nication network is chosen as follows: A randomized oblivious message adversary chooses
k directed edges, then a graph is chosen uniformly at random among all graphs in Tn that
include those k edges, and the choise is independent from other rounds. All nodes are honest.
We restrict k ≤ 2n

3 − 1.

Directed Erdős–Rényi graphs

In the directed Erdős–Rényi graphs model, let m ∈ [n2]. In each round, the communication
network is chosen by uniformly sampling without replacement m edges out of the possible
n2 edges of the graph, independently from other rounds. All nodes are honest.

Directed Erdős–Rényi graphs with Byzantine Nodes

In the directed Erdős–Rényi graphs with Byzantine nodes model, let m ∈ [n2]. In each round,
the communication network is chosen by uniformly sampling without replacement m edges
out of the possible n2 edges of the graph, independently from other rounds. We have n − k

honest nodes, and k nodes are Byzantine, that is, they might behave arbitrarily (and even
coordinate to make the protocol fail). We assume access to cryptographic tools that allow
nodes to sign and encrypt messages. We restrict k < 2n

3 .

Directed Erdős–Rényi graphs with Adversarial Edges

In the directed Erdős–Rényi graphs with Adversarial Edges model, let 0 ≤ k ≤ m ≤ n2.
In each round, the communication network is chosen as follows: A randomized oblivious
message adversary chooses k edges, m − k edges are sampled without replacement out of the
remaining n2 − k edges. All nodes are honest. We restrict k < 3

4 n2.
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In those models, we will study the following problems:

Broadcast

For the Broadcast3 problem, we start by giving a message to one (honest) node. Each honest
node that received the message will replicate it as many times as needed, and start forwarding
it to its neighbors4. Then Broadcast completes when the message has been forwarded to all
other nodes.

All-to-All Broadcast

In the All-to-All Broadcast problem, we start by giving a distinct message to each node.
Each honest node that received a message will replicate it as many times as needed, and
start forwarding it as well. Then All-to-All Broadcast completes when each honest node
receives a copy of every message. In each round, each honest node forwards all the messages
it has received in previous rounds to all its out-neighbors.

Consensus

In the Consensus problem, we start by giving a value vp ∈ {0, 1} to each node p, and
Consensus completes when each honest node decided on a value in {0, 1}. This should satisfy
the following conditions:

Agreement: No two honest nodes decide differently.
Termination: Every honest node eventually decides.
Validity: The value the honest nodes agree on should be one of the input values vp.

1.2 Our Results
We study Broadcast in the above mentioned models, then apply those results to All-to-All
broadcast and Consensus. We prove the following theorems:

▶ Theorem 1. For any c ≥ 1 and n ≥ 5, Broadcast on Uniformly Random Trees completes
within 32 · c · ln n rounds with probability p > 1 − 1

nc .

We also show that these results are asymptotically tight. Indeed, we cannot hope for a
similar probability for a number of rounds that is o(ln n):

▶ Theorem 2. If n ≥ 2, then the probability that Broadcast (and All-to-All Broadcast) on
Uniformly Random Trees fails to complete within log n rounds is at least 1

4 .

We have similar results for all the combinations of model and problem, which we summarize
in Table 1.

Applications

Our results have some interesting applications. In an idea similar to Ghaffari, Kuhn and
Su’s work [23], All-to-All Broadcast allows us, e.g., to implement algorithms that run on a
clique in a synchronous setting in our sparser graphs. Indeed, if All-to-All Broadcast needs

3 The Broadcast problem can also be seen as computing the dynamic eccentricity of the source node.
Other flavors of Broadcast have also been studied under the name dynamic radius [20].

4 This is known as “flooding” or “rumor passing”

DISC 2024
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Broadcast All-to-All Broadcast Consensus
Uniformly
Random O(c · log n), q ≤ n−c O(c · log n), q ≤ n1−c O(c · log n), q ≤ n−c

Trees (URT) Ω(log n) Ω(log n)
URT with
Byzantine O(c · log n), q ≤ n−c O(c · log n), q ≤ n1−c O(f · c · log n), q ≤ n−c

Nodes Ω(log n) Ω(log n)
URT with

Adversarial O(c · (log n + k)), q ≤ n−c O(c · (log n + k)), q ≤ n1−c O(c · (log n + k)), q ≤ n−c

Edges Ω(log n + k) Ω(log n + k)
Directed O
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c

m/n

⌉
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)
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m/n

⌉
log n

)
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n
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n
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(
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)
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with q ≤ n−c log n with q ≤ n1−c log n with q ≤ n−c log n

graphs (DER) Ω
(

log n
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Ω

(
log n
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(⌈
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)
, q ≤ n−c log n O
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c

m/n

⌉
log n

)
, q ≤ n1−c log n O

(
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c

m/n
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log n
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, q ≤ n−c log n

Nodes Ω
(

log n
log(1+m/n)

)
Ω

(
log n

log(1+m/n)

)
DER with O
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c·(n2−k)
(m−k)n

⌉
log n

)
O
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c·(n2−k)
(m−k)n

⌉
log n

)
O

(⌈
c·(n2−k)
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⌉
log n
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Adversarial with q ≤ n−c log n with q ≤ n1−c log n with q ≤ n−c log n

Edges Ω
(

log n
log(1+m/n)

)
Ω

(
log n

log(1+m/n)

)
Figure 1 Our main results, where c > 0 is any constant and q is the failure probability.

R rounds to complete with high probability, then each round of communication of a clique
can be simulated by R rounds of Uniformly Random Trees with high probability. Essentially,
if an algorithm runs in T rounds, with T ≤ nc−1, in a clique network, we can implement
it with high probability in R · T rounds in the Uniformly Random Trees network, which
is essentially a logarithmic overhead. In particular, in the Uniformly Random Trees with
Byzantine Nodes model, we have:

▶ Theorem 3. Let A be a distributed synchronous algorithm that runs on a static clique
in T rounds, where T ≤ αnx for some constant α, x ∈ R+, and has a probability of success
p. Assume A is robust to f Byzantine nodes, and f ≤ 2

3 n − 1. Then, assuming standard
cryptographic tools5, there exists a distributed algorithm A′ that runs on Uniformly Random
Trees in T · 144 · log n · c rounds, and has a probability of success p′ ≥ p(1 − αn1+x−c), for
any c ≥ 1 + x. Moreover, A′ is robust to f Byzantine nodes.

In particular, we can apply known results on reliable Broadcast and Byzantine Consensus
to show the following results:

▶ Corollary 4. For any c ≥ 1, and f ≤ 2
3 n − 1, in the Uniformly Random Trees with

f Byzantine nodes, there exists an algorithm for Reliable Broadcast, that is robust to f

Byzantine nodes, that runs in (f + 1) · 144 · c · log n rounds, and succeeds with probability
p ≥ 1 − n2−c.

▶ Corollary 5. For any c ≥ 1 and f < n
3 , in the Uniformly Random Trees with f Byzantine

nodes, there exists an algorithm for Byzantine Consensus, that is robust to f Byzantine nodes,
that runs in 3(f + 1) · 144 · c · log n rounds, and succeeds with probability p ≥ 1 − 2n2−c.

Throughout the paper, the filtration of the process is denoted as {Ft}t∈N, that is, Ft is
the amount of information available after timestep t.

5 Specifically, our approach requires authenticated messages. Encryption may also be needed, only if the
protocol A is vulnerable to eavesdropping. Both can be implemented using standard cryptographic
tools.



A. El-Hayek, M. Henzinger, and S. Schmid 21:7

Organization

The paper is organized as follows. First, we review related work in Section 2. Then, due
to space restrictions, we only give a technical overview in Section 3, as further details can
be found in the full version of the paper. In this overview we first discuss a new result on
the number of rooted trees containing a certain set of edges, then discuss how we analyzed
information dissemination in random trees first, and finally in directed Erdős–Rényi graphs.

2 Related Work

Information dissemination in general and Broadcasting and Consensus in particular are
fundamental topics in distributed computing. In contrast to this paper, most classic literature
on network Broadcast as well as on related tasks such as gossiping and Consensus, considers
a static setting, e.g., where in each round each node can send information to one neighbor [24,
19].

Especially the Byzantine setting has received much attention in the literature. Important
results include Dolev and Strong [12] on reliable Broadcast which is robust to f Byzantine
nodes, and runs in T = f + 1 rounds, or Berman, Garay and Perry [3] on King’s algorithm
that solves reliable Broadcast, is robust to f Byzantine nodes, and runs in T = 3(f + 1)
rounds. To just name a few.

In terms of dynamic networks, Kuhn, Lynch and Oshman [25] explore the all-to-all
data dissemination problem (gossiping) in an undirected setting, where nodes do not know
beforehand the total number of nodes and must decide on that number. Dutta, Pandurangan,
Rajaraman, Sun and Viola [14] generalize the model to when not all nodes need to forward
their message, but only k tokens must be forwarded. Augustine, Pandurangan, Robinson
and Upfal [2] show that if the graph is an expander in every round, broadcast is complete
within O(log n) rounds, even if a small enough constant fraction of nodes get churned in each
round. Ahmadi, Kuhn, Kutten, Molla and Pandurangan [1] study the message complexity of
Broadcast also in an undirected dynamic setting, where the adversary pays up a cost for
changing the network.

In dynamic networks, the oblivious message adversary is a commonly considered model,
especially for Broadcast and Consensus problems, first introduced by Charron-Bost and
Schiper [5]. The Broadcast problem under oblivious message adversaries has been studied
for many years. A first key result for this problem was the n log n upper bound by Zeiner,
Schwarz, and Schmid [30] who also gave a

⌈ 3n−1
2

⌉
− 2 lower bound. Another important result

is by Függer, Nowak, and Winkler [20] who presented an O(log log n) upper bound if the
adversary can only choose nonsplit graphs; combined with the result of Charron-Bost, Függer,
and Nowak [4] that states that one can simulate n − 1 rounds of rooted trees with a round of
a nonsplit graph, this gives the previous O(n log log n) upper bound for Broadcasting on trees.
Dobrev and Vrto [10, 9] give specific results when the adversary is restricted to hypercubic
and tori graphs with some missing edges. El-Hayek, Henzinger, and Schmid [15, 16] recently
settled the question about the asymptotic time complexity of Broadcast by giving a tight O(n)
upper bound, also showing the upper bound still holds in more general models. Regarding
Consensus, Coulouma, Godard and Peters in [7] presented a general characterization on which
dynamic graphs Consensus is solvable, based on Broadcastability. Winkler, Rincon Galeana,
Paz, Schmid, and Schmid [21] recently presented an explicit decision procedure to determine
if Consensus is possible under a given adversary, enabling a time complexity analysis of
Consensus under oblivious message adversaries, both for a centralized decision procedure as
well as for solving distributed Consensus. They also showed that reaching Consensus under
an oblivious message adversary can take exponentially longer than Broadcasting.

DISC 2024



21:8 Broadcast and Consensus in Stochastic Dynamic Networks

In contrast to the above works, in this paper we study a more randomized message
adversary, considering a stochastic model where adversarial graphs are partially chosen
uniformly at random. While a randomized perspective on dynamic networks is natural and
has been considered in many different settings already, existing works on random dynamic
communication networks, e.g., on the radio network model [17], on rumor spreading [6], as
well as on epidemics [13], do not consider oblivious message adversaries. Note, however,
that the information dissemination considered in this paper is similar to the SI model for
virus propagation, with results having implications in both directions [18]. For example,
Doerr and Fouz [11] introduced an information dissemination protocol inspired by epidemics.
More generally, randomized information dissemination protocols can be well-understood
from an epidemiological point-of-view, and are very similar to the SI model which has been
very extensively studied. In contrast to the typical SI models considered in the literature
[28], however, our model in this paper revolves around tree communication structures which
introduce additional technical challenges. Furthermore, existing literature often provides
results in expectation, while we in this paper provide tail bounds.

Many papers have tried to bridge the gap between the deterministic and random case,
using smoothed analysis. In [27], Meir, Paz and Schwartzman study the broadcast problem in
noisy networks, under different definitions on noise. In particular, if in each round the graph
given by the adversary is replaced by a graph chosen uniformly at random among graphs at
hamming distance at most k from the original graph, in the case where the adversary can
suggest any connected graph, then Broadcast is reduced from n rounds to O(min{n, n

√
log n

k })
rounds, in the case of an adaptive adversary. If the adversary is oblivious, then Dinitz,
Fineman, Gilbert and Newport [8] showed that it is further reduced to O(n2/3/k1/3 × log n).

3 Technical Overview

Our paper contains a conceptional contribution, namely the extension of the notion of
oblivious message adversary in a natural way to a randomized setting that limits the power of
the adversary, as well as two technical contributions. We explained already the conceptional
contribution in the introduction, and we sketch in this section now the main technical
contributions of our paper. They are of graph theoretical as well as algorithmic nature. (1)
On the graph theoretic side, we show a new result on the number of rooted trees that satisfy
a certain property. (2) On the algorithmic side we show how to use this result to give an
upper bound on the number of rounds for the models introduced in the introduction. Note
that we study both the conventional as well as the Byzantine setting, where faulty nodes
can stop forwarding, send wrong messages, and even coordinate to make the protocol fail.
However, we assume access to cryptographic tools so that is used by each node to sign its
messages. Thus, when receiving a message, nodes can be confident about the sender of each
message and its content.

3.1 Counting rooted trees

Given a graph consisting of n vertices together with a directed rooted forest F of e edges on
them, Pitman [29] showed in 1999 that there are nn−1−e many directed rooted trees over
these vertices that contain F . While useful, this result is not sufficient for our purposes as
we need to count the number of trees with a given node v as root.
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Thus, we show the following extended result:

▶ Theorem 6. Let us be given a directed rooted forest F on n vertices, let v ∈ [n] be the
root of a component in F , and f be the number of vertices of that component (note that we
can have f = 1 if v is an isolated vertex). Then the number of directed rooted trees T on n

vertices, such that F is contained in T , and such that v is the root of T , is fnn−2−|E|.

Note that our result implies the prior result.
To show our result, we develop techniques which differ significantly from Pitman’s proof.

Indeed, Pitman relies on the symmetry of the vertices in the rooted tree. However, for
our result, the symmetry is broken as one vertex is different from the other with the new
requirement that it is the root. We hence make use of another type of symmetry in the trees
in our analysis that is based on group actions.

We first ignore the orientations of the edges in F and find the set AF of all undirected
trees that contain F . We can compute the cardinality of that set with a result by Lu, Mohr
and Székely [26]. We then root each of those trees at v. This will give a direction to every
edge that might or might not agree with its direction in F . We now want to partition AF

into subsets such that all subsets have the same size and only one tree from each subset has
edges that agree with the direction of F . The number we are looking for is then the number
of subsets, which is the ratio between the cardinality of AF and the size of the subsets.

To create the subsets, we introduce a specific group tailored to F , and an action of that
group on AF . It is known that the set of all orbits of the action partition AF , and we show
that exactly one element in each orbit has edges in the same direction as F . To see unicity,
we take an element T of AF that has edges in the same direction as F , and take an element
T ′ ≠ T in its orbit, that is there exists a nontrivial group element g such that T ′ is obtained
from T by applying the action of g to T . We show that this action must change the direction
of at least one edge of F , and thus T ′ does not have edges in the same direction as F . For
existence, we show that for every T ∈ AF , we can find a group element g such that, if applied
to T , yields a tree that has edges in the same direction as F . We then show how to compute
the size of each orbit. This allows us to deduce the number of orbits, which equals the
number of trees that we want to count.

3.2 Analysis of the information dissemination
The main technical challenge is to analyze Broadcast in uniformly random trees (URTs) and
in directed Erdős–Rényi graphs (DERs). Our techniques for both types of graphs are general
and can be extended to adversarial settings, i.e. Byzantine nodes or adversarial edges, as
well as to all-to-all Broadcast and Consensus. We only discuss Broadcast in this overview
and give the technical details for all models in the subsequent sections.

Random Trees

Our analysis for URTs proceeds in steps. (A) First we analyze the uniformly random tree
model, i.e., the model where the adversary controls none of the edges. (B) Second we allow
adversarial, i.e., Byzantine, nodes in the uniformly random tree model. (C) Third we analyze
the randomized oblivious message adversary with parameter k.

We next sketch the main challenges and how to overcome them. We use n to denote the
number of nodes, It, resp. St to denote the set of informed, resp. uninformed nodes after
round t, and set Nt = |It|.
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(A) When choosing a rooted tree T uniformly at random, there is a high dependence
between the events that indicate whether an edge belongs to T or not. Assume that nodes 1,
2, and 3 as well as the edges (1,2) and (2,3) belong to T . Then the edge (1,3) cannot belong
to T . Still, we are able to show that for every node i ∈ St the probability that it is informed
in round t is Nt/n, independently of whether other nodes are informed or not in round t,
using the tree counting results discussed before, i.e., ∆t := Nt+1 − Nt follows a binomial
distribution with parameters (n − Nt, Nt/n):

▶ Lemma 7. For any t > 0, conditioned on Nt Nt+1 − Nt follows a binomial distribution
with parameters

(
n − Nt,

Nt

n

)
.

Thus, in expectation, ∆t is (n − Nt)Nt/n. Now assume for the moment that each round
would perform according to its expectation. Then as long as Nt ≤ n/2, (n−Nt)Nt/n ≥ Nt/2,
i.e., the number of informed nodes increases by a multiplicative factor of at least 3/2
in each round and, thus, there are O(log n) many rounds. As soon as Nt > n/2 then
(n − Nt)Nt/n ≥ (n − Nt)/2, i.e., the distance between the maximum number n and the
current number Nt of informed nodes is halved, and, thus, there are at most O(log n) many
rounds.

However, Nt will not increase in every round according to its expectation. Thus, to make
this intuition formal we define a random variable Xt for each round t with X0 = 1 that
increases by (n − Xt)Xt/n if ∆t is at least by its expected value (such a round is called an
increasing round) and Xt remains unchanged otherwise. It follows from the definition of Xt

that it increases monotonically, never reaches n, and always lower bounds Nt. The number
of increasing rounds needed for Xt to reach a value larger than n − 1 is at most 2 ln n, by a
similar argument to the one above. It remains to show that Xt increases frequently. We show
that the probability that Xt increases in a round is larger than 1/4, as the binomial variable
∆t has a probability larger than 1/4 to be at least at its expectation. Then, Hoeffding’s
inequality for binomial distributions shows that with probability at least 1 − n−c there are
more than 2 ln n increasing rounds within the first 32c ln n rounds giving the desired upper
bound:

▶ Theorem 1. For any c ≥ 1 and n ≥ 5, Broadcast on Uniformly Random Trees completes
within 32 · c · ln n rounds with probability p > 1 − 1

nc .

We also show that the bound is asymptotically tight by proving that with constant
probability at least log n rounds are needed. To do so let Zt := Xut

, where ut is the
number of increasing rounds up to round t. Thus, intuitively Zt is Xt with non-increasing
rounds omitted. We first show inductively that E[Nt] ≤ Zt. The intuitive reason is that
initially Z0 = N0 = E[Nt] and, inductively, in each round Zt increases by at least as much
as E[Nt]. Then we show by induction that Zt = n(1 − (n − 1/n))2t , which implies that
Zlog n = n(1 − (n − 1/n))n ≤ n(1 − 1/4) = 3n/4. Thus, E[Nlog n] ≤ 3n/4 and the lower bound
follows by applying Markov’s inequality:

▶ Theorem 2. If n ≥ 2, then the probability that Broadcast (and All-to-All Broadcast) on
Uniformly Random Trees fails to complete within log n rounds is at least 1

4 .

(B) We extend the above model by allowing f < 2n/3 Byzantine nodes that might forward
wrong or no messages, and that can coordinate to make the protocol fail. The process that
chooses the communication network, i.e., the random tree, does not know which nodes are
Byzantine and, thus, they are part of the network as before, i.e., the tree still consists of
n nodes. Furthermore, we assume access to cryptographic tools so that every node can be
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Figure 2 Shaded nodes are informed nodes. The adversary will choose the right tree over the left
tree.

confident about the sender of each message and its content. Here the goal is to inform all
n − f honest nodes, i.e., it does not matter whether the Byzantine nodes are informed or not.
Almost the same argument as for (A) shows that Nt+1 − Nt follows a binomial distribution
with parameters (n − f − Nt, Nt/n) and also the rest of the analysis, including the lower
bound go through.

▶ Theorem 8. For any c ≥ 1, and f ≤ 2
3 n − 1, Broadcast on Uniformly Random Trees with

f Byzantine nodes completes within 144 · c · log n rounds with probability p > 1 − 1
nc .

(C) In the uniformly random trees with adversarial edges model an adversary chooses first
up to k directed edges and then a random tree containing these edges is selected. As before
we want to show that the probability that an uninformed node i is informed in round t is
independent from other uninformed nodes being informed. This, however, is only true if the
adversary uses a specific optimal strategy. For an example where the probabilities are not
independent, consider a graph with 4 nodes, 2 informed and 2 uninformed. If the adversary
introduces an edge from each uninformed node to a different informed node, then for each
uninformed node the probability that it is informed in the tree of this round is 1/4. However,
the probability that both uninformed nodes are informed in the tree of this round is zero,
as only one random edge can be added, which will cause at most one uninformed node to
become informed.

(C1) Thus, we first determine the optimal strategy for the adversary: Recall that the
adversary wants to maximize the number of rounds. As we show, this implies that a greedy
strategy, where the adversary minimizes the increase of Nt in each round t, is an optimal
strategy for the adversary. To do so, we use a coupling argument comparing the number of
informed nodes of the greedy strategy to a non-greedy strategy and showing that a greedy
strategy informs all n nodes no later than a non-greedy strategy.

▶ Lemma 9 (Distribution Domination). Let t be a round. Let E1, E2 be two sets of edges
the adversaries could choose for round t. Let N

(1)
t (resp. I

(1)
t ) be the number (resp. set) of

informed nodes after round t if E1 is chosen, and N
(2)
t (resp. I

(2)
t ) if E2 is chosen. Then

if P(N (1)
t ≥ m) ≥ P(N (2)

t ≥ m) for every m ∈ N (that is, if N
(1)
t stochastically dominates

N
(2)
t ), then choosing E2 is a better strategy for the adversary than choosing E1.

Next we analyze what edges are selected by a greedy strategy using three steps: (a) As
an edge from an informed node to an uninformed node causes the uninformed node to be
informed, the greedy strategy will never put such an edge. Thus, the adversary will only
construct trees that do not contain such edges, which we call non-increasing trees. This is
illustrated in Figure 2.

(b) We show that there is no advantage for the adversary to choose multiple trees. To
show this we use a carefully chosen merge operation between any two non-increasing trees
that guarantees that the resulting tree is non-increasing together with our new counting
theorem for rooted trees. Thus, we can assume that the greedy strategy that is chosen always
chooses just one non-increasing rooted tree, which we call U . This is illustrated in Figure 3.
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Figure 3 Merging examples. The adversary will always choose the right option over the left one.

Figure 4 The best strategy for the adversary A, with k = 6. Shaded nodes are informed nodes.
In the top example, nodes 5, 6, 7, 8, 9 and 10 are safe from being informed, whereas node 1 can still
be informed. In the bottom example, nodes 5, 6, 7, 8, and 9 are safe, whereas node 1 can still be
informed. However, node 1 is safe from being informed by node 10.

(c) We then argue that U should contain as many uniformed nodes as possible. The basic
intuition is that if an uninformed node is the child of another uninformed node, it cannot
become informed in this round, i.e., it is “protected”. Given k edges, the adversary “protects”
as many uninformed nodes as possible by building U from min(|St|, k + 1) uninformed and
max(k + 1 − |St|, 0) informed nodes. The fact that U is also non-increasing implies that the
root of U is an uninformed node. This gives the optimal strategy, illustrated in Figure 4.
We show all the above steps using stochastic dominance.

(C2) Finally we show that with this specific optimal strategy, the adversary can only
force O(k + log n) many rounds with high probability. It follows that with high probability,
the adversary cannot achieve more rounds with any other - optimal or non-optimal - strategy.
To do so, we break the rounds into phases: (i) The first phase consists of all rounds where
|Sk| ≥ k +1. In this case, the adversary forms one tree with k +1 uninformed nodes and there
are |Sk|−k − 1 = n−Nt −k − 1 additional uniformed singleton nodes, as well as Nt informed
singleton nodes in the forest. Thus, we can apply exactly the same argument as in (A) to
show that Nt+1 − Nt follows a binomial distribution with parameters (n − k − Nt, Nt/n). (ii)
The second phase consists of all rounds where |Sk| ≤ k. Thus U consists of all uninformed
nodes and at least one informed node. Thus, Nt+1 − Nt can increase by at most 1, namely if
the root s of U receives a parent in the tree, and, using our new counting theorem for rooted
trees, we show that the probability of that is (Nt − (k + 1 − |St|))/n = (n − k − 1)/n, i.e.
Nt+1 − Nt is a binomial distribution with parameters (1, (n − k − 1)/n). Using Hoeffding’s
inequality for binomial distributions similar to (A) we then show the result:

▶ Theorem 10. If the adversary controls k edges in each round, for k ≤ 2
3 n − 1, then for

any c ≥ 1, with probability p ≥ 1 − n−c, Broadcast completes within O(k + log n) rounds.
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Directed Erdős–Rényi graphs

Directed Erdős–Rényi graphs consist of m edges chosen uniformly at random among the n2

potential edges. Intuitively they have less structure than uniformly random trees, which
makes the analysis of Broadcast simpler. We present the main ideas below. Note that we
also analyze Byzantine nodes and adversarial edges in that model, but omit these extensions
in this overview.

Sampling a directed Erdős–Rényi graph is equivalent to choosing m edges without re-
placement from the set of all possible edges. We call that Scheme 1. Then we observe,
using a coupling argument, that Scheme 1 requires no more rounds than Scheme 2, where
in each round m edges are chosen with replacement. Finally, to analyze Scheme 2, we
basically partition the sequence of rounds of Scheme 2 into 2 ⌈(log n)/2⌉ phases, such
that for each of the first ⌈(log n)/2⌉ phases the number of informed nodes doubles in
each phase and for each of the last ⌈(log n)/2⌉ phases the number of uninformed nodes
halves in each phase. Note that Broadcast completes after the last phase. Using Hoeffd-
ing’s inequality for binomial distributions we show that phase i for 1 ≤ i ≤ ⌈log n/2⌉
requires with high probability at most O(max{log n, 2i−1}n/2i−1) sampled edges, and, thus,
O(

⌈
max{log n, 2i−1}/(2i−1m/n)

⌉
) rounds, and for ⌈log n/2⌉ + 1 ≤ i ≤ 2 ⌈log n/2⌉ phase i

requires with high probability at most O(max{log n, 2j−2}n/2j−1) sampled edges with with
j := 2 ⌈log n/2⌉ − i, and, thus, O(

⌈
max{log n, 2j−1}/(2j−1m/n)

⌉
) rounds. Summed over all

phases this shows that with high probability O(⌈n/m⌉ log n) rounds suffice for Scheme 2 to
reach Broadcast. Note that the analysis extends to the setting when the graph in each round
contains at least m edges. We also show that a lower bound that implies that this upper
bound is tight for m ≤ n. We also give somewhat different analysis where the number of
informed resp. uninformed nodes does not double, but increases by (1 + m/n) that is tight
for m ≥ n ln n. Our results can thus be summarized by the following theorems:

▶ Theorem 11. For any c ≥ 1, in scheme 2, and therefore scheme 1, Broadcast completes
within O

(⌈
cn
m

⌉
log n

)
rounds with probability p ≥ 1 − n−c log n.

▶ Theorem 12. For any c ≥ 1 and m ∈ [n2] such that m/n ≥ ln n, in scheme 2 and in scheme
1, Broadcast completes within O

(
c·log n

log(1+m/n)

)
rounds with probability p ≥ 1 − n−c log n.

▶ Theorem 13. In scheme 1, and thus in scheme 2, Broadcast fails to complete within
log(n)−1

log(1+m/n) rounds with probability at least 1
2 .
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