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Abstract
We introduce the graphical reconfigurable circuits (GRC) model as an abstraction for distributed graph
algorithms whose communication scheme is based on local mechanisms that collectively construct long-
range reconfigurable channels (this is an extension to general graphs of a distributed computational
model recently introduced by Feldmann et al. (JCB 2022) for hexagonal grids). The crux of the
GRC model lies in its modest assumptions: (1) the individual nodes are computationally weak,
with state space bounded independently of any global graph parameter; and (2) the reconfigurable
communication channels are highly restrictive, only carrying information-less signals (a.k.a. beeps).
Despite these modest assumptions, we prove that GRC algorithms can solve many important
distributed tasks efficiently, i.e., in polylogarithmic time. On the negative side, we establish various
runtime lower bounds, proving that for other tasks, GRC algorithms (if they exist) are doomed to
be slow.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases graphical reconfigurable circuits, bounded uniformity, beeping

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.22

Related Version Full Version: https://arxiv.org/pdf/2408.10761 [6]

1 Introduction

The reconfigurable circuits model was introduced recently by Feldmann et al. [7] and studied
further by Padalkin et al. [14, 13]. It extends the popular geometric amoebot model for
(synchronous) distributed algorithms running in the hexagonal grid by providing them with
an opportunity to form long-range communication channels. This is done by means of a
distributed mechanism that allows each node to bind together a subset of its incident edges
(which can be thought of as installing internal “wires” between the corresponding ports); the
long-range channels, a.k.a. circuits, are then formed by taking the transitive closure of these
local bindings (see Sec. 1.1 for details). The circuits serve as beeping channels, enabling their
participating nodes to communicate via information-less signals. The crux of the model is
that the distributed mechanism that controls the circuit formation is invoked in every round
(of the synchronous execution) so that the circuits can be reconfigured.

In contrast to the original geometric amoebot model which is tailored specifically to
planarly embedded (hexagonal) grids, the reconfigurable circuits model can be naturally
generalized to arbitrary graph topologies. The starting point of the current paper is the
formulation of such a generalization that we refer to as the graphical reconfigurable circuits
(GRC) model (formally defined in Sec. 1.1).

An important feature of the GRC model is that it is uniform: the actions of each node v in
the (general) communication graph G are dictated by a (possibly randomized) state machine
whose description is fully determined by the degree of v (and the local input provided to v if
there is such an input), independently of any global parameter of G [2]. A clear advantage of
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22:2 On the Power of Graphical Reconfigurable Circuits

uniform algorithms is that they can be deployed in a “one size fits all” fashion, without any
global knowledge of the graph on which they run. We further require that the aforementioned
state machines admit a finite description, which means, in particular, that the state space
of the state machines are bounded independently of any global graph parameter. This
requirement is an obvious necessary condition for practical implementations; we subsequently
refer to uniform distributed algorithms subject to this requirement as boundedly uniform.

Combining the bounded uniformity with the light demands of the beeping communication
scheme, demands which are known to be easy to meet in practice [4, 8], we conclude
that the GRC model provides an abstraction for distributed (arbitrary topology) graph
algorithms that can be implemented over devices with slim computation and communication
capabilities. In particular, the GRC model may open the gate for a rigorous investigation of
distributed algorithms operating in (natural or artificial) biological cellular networks whose
communication mechanism is based on bioelectric signaling, known to be the basis for long
range (low latency) communication in such networks.

The main technical contribution of this paper is the design of GRC algorithms for various
classic distributed tasks that terminate in polylogarithmic time. Some of these tasks (e.g.,
the construction of a minimum spanning tree) are inherently global and are known to be
subject to congestion bottlenecks, thus demonstrating that despite their limited computation
and communication power, GRC algorithms can overcome both “locality” and “bandwidth”
barriers. In fact, as far as we know, these are the first distributed algorithms that solve such
tasks in polylogarithmic time under any boundedly uniform model.

While GRC algorithms can bypass the congestion bottlenecks of some distributed tasks,
other tasks turn out to be much harder: We prove that under certain conditions, runtime
lower bound constructions, developed originally for the CONGEST model [15], can be
translated, almost directly, to the GRC model, thus establishing runtime lower bounds for a
wide class of tasks.

1.1 The GRC Model
In the current section, we introduce the distributed computational model used throughout
this paper, referred to as the graphical reconfigurable circuits (GRC) model. A GRC algorithm
Alg runs over a (finite simple) undirected graph G = (V, E) so that each node v ∈ V is
associated with its own copy of a (possibly randomized) state machine defined by Alg; for
clarity of the exposition, we often address node v and the state machine that dictates v’s
actions as the same entity (our intention will be clear from the context).

We adopt the port numbering convention [2, 10] stating that from the perspective of a
node v ∈ V , each edge e ∈ E(v) is identified by a unique port number taken from the set
{1, . . . , deg(v)}.1 Every edge e ∈ E is associated with k pins, where k ∈ Z>0 is a constant
determined by the algorithm designer;2 these pins are represented as pairs of the form
p = (e, i) for i ∈ [k]. Let P = E × [k] denote the set of all pins. For a node v ∈ V , let
P(v) = E(v) × [k] denote the set of pins associated with the edges incident on v. The GRC
model is defined so that for each pin p = (e, i) ∈ P(v), node v is aware of the (local) port

1 Given an edge subset F ⊆ E and a node v ∈ V , we denote the set of edges in F incident on v by
F (v) = {e ∈ F | e ∋ v} and the degree of v by deg(v) = |E(v)|.

2 For the (asymptotic) upper bounds established in the current paper, it is actually sufficient to use k = 1
pins per edge. However, this is not true in general (see, e.g., [7, Sections 3.4 and 4.4]) and regardless,
using multiple (yet, O(1)) pins per edge often facilitates the algorithm’s exposition. In any case, we do
not make an effort to optimize the value of k.
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Figure 1 The circuits formed on a communication graph by the local node decisions. The graph
includes 4 nodes, depicted by the black cycles, and 4 edges (not shown explicitly in the figure), each
one of them is associated with k = 2 pins, depicted by the straight lines. The local pin partitions
are presented by the lower-case letters. These local pin partitions result in forming three circuits,
consisting of the red (solid) pins, the blue (dashed) pins, and the green (dotted) pin.

number of edge e as well as the (global) index i ∈ [k]. In particular, the other endpoint
of edge e agrees with v on the index i of pin p although the two nodes may identify e by
different port numbers.

The execution of algorithm Alg advances in synchronous rounds. Each round t = 0, 1, . . .

is associated with a partition Ct of the pin set P into non-empty pairwise disjoint parts,
called circuits. The partition C0 is defined so that each pin forms its own singleton circuit;
for t ≥ 1, the partition Ct is determined by the nodes according to a distributed mechanism
explained soon.

For a round t ≥ 0, a node v ∈ V is said to partake in a circuit C ∈ Ct if P(v) ∩ C ≠ ∅.
Let Ct(v) = {C ∈ Ct | P(v) ∩ C ̸= ∅} denote the set of circuits in which node v partakes.

The communication scheme of the GRC model is defined on top of the circuits so that
each circuit C ∈ Ct serves (during round t) as a beeping channel [4] for the nodes that partake
in C. Before getting into the specifics of this communication scheme, let us explain how the
partition Ct is formed based on the actions of the nodes in round t − 1.

Fix some round t ≥ 1. Towards the end of round t − 1, each node v ∈ V decides on a
partition Rt(v) of P(v), referred to as the local pin partition of v. Let Lt be the symmetric
binary relation over P defined so that pins p = (e, i) and p′ = (e′, i′) are related under Lt

(i.e., (p, p′), (p′, p) ∈ Lt) if and only if there exists a node v ∈ V (incident on both e and e′)
such that p and p′ belong to the same part of Rt(v). Let tc(Lt) be the reflexive transitive
closure of Lt, which is, by definition, an equivalence relation over P. The circuits in Ct are
taken to be the equivalence classes of tc(Lt). See Figure 1 for an illustration.3

3 As presented by Feldmann et al. [7], the physical interpretation of the abstract circuit forming process
is that each node v internally “wires” all pins belonging to the same part R ∈ Rt(v) to each other, thus
ensuring that a signal transmitted over one pin in R is disseminated to all pins in R (and through them,
to the entire circuit that contains R).

DISC 2024



22:4 On the Power of Graphical Reconfigurable Circuits

We are now ready to formally define the operation of each node v ∈ V in round t = 0, 1, . . .

This includes the following three steps, where we denote the state of v in round t by St(v):
(1) Node v decides (possibly in a probabilistic fashion), based on St(v), on a pin subset
Bt(v) ⊆ P(v) and beeps – namely, emits an information-less signal – on every pin in Bt(v);
we say that v beeps on a circuit C ∈ Ct(v) if v beeps on (at least) one of the pins in C.
(2) For each pin p ∈ P(v), node v obtains a bit of information revealing whether at least one
node beeps (in the current round) on the (unique) circuit C ∈ Ct to which p belongs.
(3) Node v decides (possibly in a probabilistic fashion), based on St(v) and the information
obtained in step (2), on the next state St+1(v) and the next local pin partition Rt+1(v).
We emphasize that for each circuit C ∈ Ct(v) and pin p ∈ P(v) ∩ C, node v can distinguish,
based on the information obtained in step (2) for p, between the scenario in which zero nodes
beep on C and the scenario in which a positive number of nodes beep on C, however, node
v cannot tell how large this positive number is. In fact, if v itself decides (in step (1)) to
beep on pin p, then v does not obtain any meaningful information from p in step (2) (in the
beeping model terminology [1], this is referred to as lacking “sender collision detection”).4

An important feature of the GRC model is that Alg is required to be boundedly uniform,
namely, the number of states in the state machine associated with a node v ∈ V , as well as
the description of the transition functions that determine the next state St+1(v) and the
next local pin partition Rt+1(v), are finite and fully determined by the local parameters of
v, independently of any global parameter of the graph G on which Alg runs. These local
parameters include the degree deg(v) of v and, depending on the specific task, any local
input provided to v at the beginning of the execution (e.g., the weights of the edges incident
on v).5 In particular, node v does not “know” (and generally, cannot encode) the number
n = |V | of nodes, the number m = |E| of edges, the maximum degree ∆ = maxv∈V deg(v),
or the diameter D = maxu,v∈V dG(u, v).6 Notice that the uniformity in n means that the
nodes are also anonymous, i.e., they do not (and cannot) have unique identifiers.

The primary performance measure applied to our algorithms is their runtime defined to
be the number of rounds until termination. When the algorithm is randomized, its runtime
may be a random variable, in which case we aim towards bounding it whp.7

Relation to CONGEST. An adversity faced by GRC algorithms is the limited amount of
information that can be sent/received by each node in a single round. Such limitations lie
at the heart of the popular CONGEST [15] model that operates in synchronous message
passing rounds, using messages of size B, where the typical choices for B are B = O(1),
B = Θ(log n), or B = polylog(n) (by definition, the uniform version of CONGEST adopts the
former choice). An important point of similarity between the two models is that per round,
both CONGEST and GRC algorithms can communicate Õ(s) bits of information over a cut of

4 The reader may wonder why the decisions made in step (1) and the information obtained in step (2)
are centered on the pins in P(v), rather than on the circuits in Ct(v). The reason is that node v is not
necessarily aware of the partition induced on P(v) by Ct(v) (i.e., the exact assignment of the pins in
P(v) to the circuits in Ct(v)); indeed, the latter partition depends on the local pin partitions Rt(u) of
other nodes u ∈ V , some of which may be far away from v. For example, in Figure 1, the local pin
partition of the rightmost node separates between its two incident pins; nevertheless, both pins belong
to the same (red) circuit due to local pin partitions decided upon in the other side of the graph.

5 To maintain strict uniformity, we adhere to the convention that numerical values included in the local
inputs (e.g., edge weights) are encoded as bitstrings without “leading zeros”, thus ensuring that the
length of such a bitstring by itself does not reveal any global information.

6 The notation dG(u, v) denotes the distance (in hops) between nodes u and v in G.
7 An event A holds with high probability (whp) if P(A) ≥ 1 − n−c for an arbitrarily large constant c.
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Table 1 Our runtime upper bounds. The corresponding GRC algorithms are randomized and
their correctness and runtime guarantees hold whp; the one exception is the spanner construction,
where the number of edges is bounded in expectation.

task runtime

construction minimum spanning tree (integral edge weights ∈ [1, W ]) O(log(n) · log(n + W ))

(2κ − 1)-spanner with O(n1+(1+ε)/κ) edges in expectation O(κ + log n)

verification minimum spanning tree (integral edge weights ∈ [1, W ]) O(log(n) · log(n + W ))
simple path, connectivity, (s, t)-connectivity, connected span-
ning subgraph, cut, (s, t)-cut, Hamiltonian cycle, e-cycle
containment, edge on all (s, t)-paths

O(log n)

size s.8 As explained in Sec. 3, from the perspective of message exchange per se (regardless of
local computation), T CONGEST rounds can be simulated by O(log n + T · B) GRC rounds
whp, so, ignoring the additive logarithmic term, GRC algorithms are at least as strong as
the boundedly uniform version of CONGEST algorithms. In fact, they are strictly stronger:
the crux of GRC algorithms is that they enjoy the advantage of reconfigurable long-range
communication channels (though highly restrictive ones); this advantage materializes in some
of the GRC algorithms developed in the sequel whose runtime is significantly smaller than
their corresponding (not necessarily uniform) CONGEST lower bounds.

1.2 Our Contribution

The main takeaway from this paper is that many important distributed tasks admit highly
efficient GRC algorithms – see Table 1. Notice that with the exception of the sparse spanner
construction, all tasks mentioned in Table 1 admit Ω̃(

√
n + D) runtime lower bounds under

the (not necessarily uniform) CONGEST model [17, 16], demonstrating that reconfigurable
beeping channels are a powerful tool even for boundedly uniform algorithms.

The polylogarithmic runtime upper bounds presented in Table 1 imply that the Ω̃(
√

n+D)
CONGEST lower bounds for the corresponding tasks fail to transfer to the GRC model (refer
to the full version [6] for further discussion of this “failed transfer”). CONGEST lower bounds
for other distributed tasks on the other hand do transfer, almost directly, to GRC. Indeed,
we develop a generic translation, from CONGEST runtime lower bounds to GRC runtime
lower bounds, which applies to a large class of CONGEST lower bound constructions.

1.3 Paper’s Outline

The remainder of this paper is organized as follows. We start in Sec. 2 with a discussion of
the main technical challenges encountered towards establishing our results and the ideas used
to overcome them. Sec. 3 introduces some preliminary definitions, as well as several basic
procedures used in the later technical sections. The GRC algorithms promised in Table 1 for
the tasks of constructing a minimum spanning tree and a spanner are presented and analyzed
in Sec. 4 and 5, respectively. (Throughout, missing proofs and constructions are deferred to
the full version [6].)

8 The asymptotic notations Õ(·) and Ω̃(·) hide polylog(n) expressions.

DISC 2024



22:6 On the Power of Graphical Reconfigurable Circuits

2 Technical Overview

In this section, we discuss the different challenges that arise in our constructions and present
a brief overview of the technical ideas used to overcome these challenges; see Sec. 4 and 5 for
the full details.

Minimum Spanning Tree. The minimum spanning tree (MST) construction follows the
structure of Boruvka’s classic algorithm [3]. The algorithm maintains a partition of the
node set into clusters that correspond to the connected components of the subgraph induced
by the edges which were already selected for the MST. It operates in phases, where the
main algorithmic task in a phase is to identify a lightest outgoing edge for each cluster. The
clusters are then merged over the identified edges, adding those edges to the output edge set.

If the edge weights are distinct, then no cycles are formed by the cluster merging process
and Boruvka’s algorithm is guaranteed to return an MST of the original graph. This well
known fact is utilized by the existing distributed implementations of Boruvka’s algorithm
that typically use the unique node IDs to “enforce” distinct edge weights.

Unfortunately, obtaining distinct edge weights under our boundedly uniform model is
hopeless. This means that the set L of lightest outgoing edges (of all clusters) cannot be
safely added to the output edge set without the risk of forming cycles, thus forcing us to
come up with an alternative mechanism. The key technical idea here is a procedure that runs
in each phase independently and constructs (whp) a total order T over the set L. Following
that, we identify a T -minimal outgoing edge for each cluster and perform the cluster merger
over the identified edges. As we prove in Sec. 4, selecting the T -minimal outgoing edges
ensures that no cycles are formed, resulting in a valid MST. Notice that for this argument to
work, it is crucial that T is defined globally over all edges in L which is ensured by a careful
design of the aforementioned procedure.

Spanner. The spanner construction is based on the elegant random shifts method of [12].
Particularly, the idea is similar to the distributed algorithm of [9] that uses random shifts to
obtain a (2κ − 1)-spanner of expected size O(n1+1/κ). The heart of the random shift method
is a probabilistic clustering process based on a random variable δv drawn independently by
each node v ∈ V . Specifically, in [9], each node v ∈ V samples δv from the capped geometric
distribution (see Sec. 3 for a definition) with parameters p = 1 − n−1/κ and r = κ − 1. The
main challenge of adapting the algorithm to the boundedly uniform GRC model lies in the
fact that the nodes are unable to sample from a distribution whose parameters depend on n.
Nevertheless, we present a sampling procedure that allows each node v ∈ V to sample δv from
a distribution that is sufficiently close to the aforementioned capped geometric distribution.

As we prove in Sec. 5, the sampling procedure allows us to construct a spanner with
nearly the same properties as those of [9]. More concretely, we extend and adapt the analysis
of [9] to show that our algorithm constructs a spanner with stretch 2κ − 1 whp, and size
O(n1+(1+ε)/κ) in expectation, where ε > 0 is a constant parameter that can be made desirably
small.

3 Preliminaries

Graph Theoretic Definitions. Consider a connected graph G = (V, E). Given an edge-
weight function w : E → R, a minimum spanning tree (MST) of G with respect to w is
an edge subset T ⊆ E such that (V, T ) is a spanning tree of G that minimizes the weight
w(T ) =

∑
e∈T w(e).
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For an edge subset H ⊆ E, let dH(u, v) denote the distance in the graph (V, H) between
two nodes u, v ∈ V . For an integer σ > 0, we say that H ⊆ E is a σ-spanner of G if
dH(u, v) ≤ σ · dG(u, v) for all u, v ∈ V . Equivalently, H is a σ-spanner if and only if
dH(u, v) ≤ σ for every edge (u, v) ∈ E. The stretch of H is defined as the smallest value σ

for which H is a σ-spanner.
The parts of a partition P of the node set V are often referred to as clusters. We say that

clusters S and S′, S ̸= S′, are neighboring clusters if there exists an edge (v, v′) ∈ E such
that v ∈ S and v′ ∈ S′. In this case, we say that edge (v, v′) bridges the clusters S and S′,
and more broadly, refer to (v, v′) as a bridging edge of P. We say that an edge (u, v) ∈ E is
an outgoing edge of cluster S if u ∈ S and v /∈ S. For a cluster S, let ∂S ⊆ E denote the set
of edges outgoing from S.

Capped Geometric Distribution. For parameters p ∈ [0, 1] and r ∈ Z>0, the capped
geometric distribution, denoted by GeomCap(p, r), is defined by taking P[GeomCap(p, r) = i]
to be p(1 − p)i if i ∈ {0, . . . , r − 1}; (1 − p)r if i = r; and 0 otherwise. Intuitively, the
distribution relates to r Bernoulli experiments indexed by 0, . . . , r − 1, each with success
probability p. A random variable sampled from the capped geometric distribution represents
the index of the first successful experiment, whereas it is equal to r if all experiments fail.
The capped geometric distribution admits a memoryless property for the values 0 ≤ i ≤ r − 1.
In particular, a useful identity that follows is P[X = i | X ≥ i] = P[X = 0] = p for a random
variable X ∼ GeomCap(p, r) and an index 0 ≤ i ≤ r − 1.

3.1 Auxiliary Procedures
Global Circuits. The algorithms presented in this paper utilize a global circuit, i.e., a circuit
in which every node v ∈ V partakes. A global circuit can be constructed in round t ≥ 0 as
follows. For some index 1 ≤ i ≤ k, every node v ∈ V partitions its pin set in round t such
that E(v) × {i} ∈ Rt(v).

Procedure CountingToLogn. We next present a procedure referred to as CountingToLogn,
whose runtime is Θ(log n) rounds whp. While the uniformity in n prevents the nodes from
counting log n rounds individually, the duration of this procedure can indicate to the nodes
that whp, Θ(log n) rounds have passed. The nodes first construct a global circuit, as described
above. Throughout the procedure, the nodes maintain a node set M ⊆ V of competitors,
where initially M = V . In each round, each competitor v ∈ M tosses a fair coin and beeps
through the global circuit if the coin lands heads. If the coin lands tails, v removes itself
from M . The procedure terminates when no competitor beeps through the global circuit.

We show the following useful property regarding the runtime of the described procedure.

▶ Lemma 3.1. For an integer r > 0, consider 2r − 1 independent executions of
CountingToLogn and let τ be the median runtime of these executions (i.e., the r-th fastest
runtime). For any constant 0 < ρ < 1, it holds that P[(1 − ρ) log n ≤ τ ≤ (1 + ρ) log n] ≥
1 − 2n−ρr.

Simulating a Message-Passing Network. In a message-passing network, in each round,
every pair of neighboring nodes may exchange single bit messages with each other (cf. the
CONGEST(1) model [15]). One can simulate a message-passing network in the GRC model
using relatively standard techniques as cast in the following theorem.

DISC 2024



22:8 On the Power of Graphical Reconfigurable Circuits

▶ Theorem 3.2. Let Alg be a GRC algorithm where additionally, in each round, each node
is able to exchange 1-bit messages with its neighbors. If the runtime of Alg is T , then it
can be transformed into an algorithm Alg′ in the GRC model (without messages between
neighbors) with a runtime of O(log n) + 4T whp.

For simplicity of presentation, we subsequently utilize Thm. 3.2 and describe our al-
gorithms as if the nodes can exchange 1-bit messages with their neighbors in each round.

Leader Election. In the leader election task, the goal is for a single node in a given node set
I ⊆ V to be selected as a leader, whereas all other nodes of I are selected to be non-leaders.
Leader election is used as a procedure in some of our algorithms. To that end, we use a
leader election algorithm presented by Feldmann et al. [7] in the context of reconfigurable
circuits in the geometric amoebot model. We note that this leader election algorithm only
uses a global circuit (as described above) and thus can be applied as-is in the GRC model.
Hence, the following theorem is established.

▶ Theorem 3.3 ([7]). The leader election task can be solved within O(log n) rounds whp.

Outgoing Edge Detection. Consider a graph G = (V, E) and let H ⊆ E be a subset of
edges such that each node v ∈ V knows the set of incident edges H(v). Define a partition
of V into clusters according to the connected components of (V, H). The objective of this
procedure is for each node v ∈ V to determine for each neighbor u ∈ N(v), whether u

belongs to the same cluster as v. To that end, the nodes first construct a circuit for each
cluster. This is done by each node v ∈ V including the pin subset H(v) × {i} as part of its
local pin partition for some i ∈ [k] (i is the same for all nodes). Then, each cluster elects a
leader utilizing the leader election algorithm mentioned above. The selected leader of each
cluster tosses Θ(log n) bits and beeps them through the cluster’s circuit, one at a time (a
beep represents 1 and silence represents 0). Since the nodes cannot count Θ(log n) rounds,
Proc. CountingToLogn is executed in parallel through a global circuit for (a sufficiently large)
c > 1 times, indicating to the clusters’ leaders how long to continue with the bit tossing
process. Every node v ∈ V sends every bit received through its cluster’s circuit in a direct
message to all its neighbors (messages between neighbors are executed by means of the
simulation method described in Sec. 3.1). For every incident edge e ∈ E(v), node v checks if
the bit received differs from the bit sent. If so, e is classified by v as an outgoing edge.

▶ Lemma 3.4. In the outgoing edge detection procedure, every edge e = (u, v) ∈ E is
classified correctly whp by both u and v.

▶ Lemma 3.5. The outgoing edge detection procedure takes Θ(log n) rounds whp.

4 A Fast Minimum Spanning Tree Algorithm

In this section, we present a randomized MST algorithm that operates in the GRC model.
As common in the distributed setting, we assume the edge-weights are integers from the set
{1, . . . , W} for some positive integer W . Each node v ∈ V initially knows only the weights
of edges in E(v). In particular, as dictated by the GRC model, node v does not know the
value of W or any other information about W .

Our algorithm can be seen as an adaptation of Boruvka’s classical MST algorithm [3] to
the GRC model. Throughout its execution, Boruvka’s algorithm maintains an edge set T

and a cluster partition defined such that each cluster is a connected component of (V, T ).
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Initially, T = ∅ (and each node is a cluster). At each iteration of the algorithm, each cluster S

adds a lightest outgoing edge e∗ = arg mine∈∂S
{w(e)} to T . This means that S merges with

the neighboring cluster S′ that is incident on e∗. It is well-known that if the edge weights
are unique, then Boruvka’s algorithm computes an MST of G. Notice that in our case, edge
weights are not necessarily unique, so we construct a symmetry-breaking mechanism based
on a total order of the lightest outgoing edges as explained later on.

The algorithm begins with an empty set of tree edges and operates in phases. The goal
of each phase is to add tree edges similarly to Boruvka’s algorithm. Let Ti ⊆ E denote the
tree edges at the end of phase i ≥ 0. As in Boruvka’s algorithm, the connected components
of (V, Ti) are defined to be the clusters at the beginning of phase i + 1. The nodes construct
a designated circuit for each cluster formed during the algorithm. Additionally, the nodes
communicate through a global circuit and exchange messages with their neighbors using the
methods described in Sec. 3. The operation of each phase is divided into the following stages.

Outgoing Edge Detection. The purpose of this stage is to allow the nodes to identify which
of their incident edges is an outgoing edge. To that end, the nodes execute the outgoing
edge detection procedure described in Sec. 3.1. When the procedure terminates, each node
detecting an outgoing edge beeps through the global circuit. The algorithm terminates if no
node beeps in this round through the global circuit. Otherwise, the nodes advance to the
next stage. Denote by Out(v) the set of edges classified as outgoing by node v ∈ V .

Lightest Edge Detection. In this stage, each cluster searches for its lightest outgoing edges.
Fix some cluster S. At the beginning of this stage, every node v ∈ S such that Out(v) ̸= ∅
marks a single edge e ∈ Out(v) with weight w(e) = mine′∈Out(v) w(e′) as a candidate. The
comparison between weights of the candidate edges incident on the nodes of S is done in two
steps.

First, the nodes compare the lengths of the candidate edge weights (i.e., the number of
bits in the edge-weight representation). Consider a node v ∈ S incident on a candidate edge
e, and let ℓv = ⌊log w(e)⌋ + 1 be the length of w(e). Node v counts ℓv − 1 rounds. If v hears
a beep on the cluster’s circuit during those ℓv − 1 rounds, then v unmarks e as a candidate.
Otherwise, v beeps through the cluster’s circuit in round ℓv and keeps e as a candidate edge.
Following the first step, all remaining candidate edges of S have weights of the same length.
In the second step, the weights of the candidate edges of S are compared bit by bit, starting
from the most significant bit. Let v ∈ S be a node that still has an incident candidate edge
e. The second step runs for ℓv rounds indexed by j = 1, . . . , ℓv. In round j, if e is still a
candidate, then v beeps through the cluster’s circuit if and only if the j-th most significant
bit of w(e) is 0. If v did not beep but heard a beep through the cluster’s circuit, it unmarks
e as a candidate edge. Notice that at the end of the second step, only the lightest edges that
were classified as outgoing remain candidates.

In parallel, v beeps through the global circuit at every round of the stage in which e

is still a candidate. Once v finishes the stage (either because e was marked as a lightest
outgoing edge or e was unmarked as a candidate), it stops beeping through the global circuit.
The stage terminates when no beep is transmitted through the global circuit.

Single Edge Selection. At this point, only the edges marked as lightest outgoing edges of
each cluster remained candidates. However, there may be more than one candidate edge for
some clusters. The goal of this stage is to select a single edge for each cluster while avoiding
the formation of a cycle in the output edge set (as we will show in the analysis). To that
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end, every node v ∈ V with an incident candidate edge (u, v) informs u that (u, v) is still a
candidate. Then, each of u and v draws a random bit denoted by u.bit and v.bit, respectively.
Node u sends u.bit to v and v calculates the bitwise XOR of u.bit and v.bit. Node v beeps
through the cluster’s circuit if the XOR result is 1. If node v does not beep for edge e but
hears a beep through the cluster’s circuit, it unmarks e as a candidate. Notice that if (u, v) is
lightest with regard to u’s cluster as well, then the same operation is performed also by u using
the same drawn bits. This edge selection process is done in parallel to Proc. CountingToLogn
over the global circuit, executed (a sufficiently large) c > 1 times. The nodes continue to
draw bits for their incident candidate edges as long as Proc. CountingToLogn continues. If a
node v ∈ V has an incident candidate edge e = (u, v) at the end of this stage, then it informs
u, and both endpoints mark e as a tree edge.

Updating the Local Pin Partition. Every node v ∈ V sets its local pin partition to include
the pin subset T (v) × {j} for some j ∈ [k], where T (v) is the set of edges incident on v that
were marked as tree edges (either in the current or a prior phase). Observe that this local
pin partition by the nodes constructs a circuit for every cluster.

The output of the algorithm is the set of all tree edges.

4.1 Analysis
In this section, we prove the correctness and analyze the runtime of the MST algorithm
presented above, establishing the following theorem.

▶ Theorem 4.1. The algorithm constructs an MST of G whp and runs in O(log n·log(n+W ))
rounds whp.

Recall that Ti ⊆ E is the set of tree edges at the end of phase i = 0, 1, . . . and let i∗ be
the last phase of the algorithm. Let qi be the number of clusters maintained by the algorithm
at the beginning of phase i, that is, the number of connected components in (V, Ti).

▶ Lemma 4.2. Consider a phase 0 ≤ i ≤ i∗. If qi = 1, then the algorithm terminates in
phase i whp; otherwise, qi+1 ≤ 1

2 qi whp.

Notice that since the algorithm starts with n clusters, Lem. 4.2 implies the following
corollary.

▶ Corollary 4.3. The algorithm terminates after i∗ = O(log n) phases whp. Moreover, the
subgraph (V, Ti∗) is connected whp.

Denote by Di ⊆ E the set of edges that are candidates for some (at least one) cluster at
the end of the single edge selection stage of phase i (to be marked as tree edges).

▶ Lemma 4.4. The subgraph (V, Ti∗) is a spanning tree of G whp.

Proof. By Cor. 4.3, (V, Ti∗) is connected whp. So, it is left to show that (V, Ti∗) is a forest
whp. We prove by induction over the phases that (V, Ti) is a forest whp for all 0 ≤ i ≤ i∗.
Cor. 4.3 also guarantees that there are O(log n) phases whp; hence the statement follows by
applying union bound over the phases.

For the base of the induction, notice that T0 = ∅, and thus (V, T0) is a forest. Now,
suppose that (V, Ti) is a forest for some 0 ≤ i < i∗. We show that (V, Ti+1) = (V, Ti ∪ Di)
is a forest whp. For every edge e ∈ Di, let Bi(e) be the integer obtained from the binary
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representation of the bit sequence drawn for e by its endpoints (i.e., the sequence of XORed
bits) in the single edge selection stage of phase i. Define the binary relation ≺i for every two
edges e, e′ ∈ Di as:

e ≺i e′ ⇐⇒ w(e) < w(e′) ∨ (w(e) = w(e′) ∧ Bi(e) > Bi(e′)) .

Notice that by repeating the CountingToLogn for a sufficiently large number of times, we get
that the Bi(·) values are unique whp. By the construction of the single edge selection stage,
this means that each cluster selects exactly one outgoing edge whp – the lightest outgoing
edge which is minimal with respect to ≺i. To complete our proof, we show that if the Bi(·)
values are unique and (V, Ti) is a forest, then (V, Ti+1) = (V, Ti ∪ Di) is a forest.

Assume by contradiction that there exists at least one cycle in (V, Ti ∪ Di) and let Y be
a simple cycle in (V, Ti ∪ Di). By the induction hypothesis we know that (V, Ti) is a forest,
therefore Y ∩ Di ≠ ∅. Let e ∈ Y ∩ Di be the (unique) largest edge (with respect to ≺i) of
Y ∩ Di, and let S be the cluster that selected e. Observe that since (V, Ti) is a forest and
Y is a cycle, there exists another edge e′ ∈ Y ∩ Di − {e} which is an outgoing edge of S.
However, by the choice of e, we know that e′ ≺i e, in contradiction to the selection of e

by S. ◀

The following lemma asserts the correctness of our MST algorithm.

▶ Lemma 4.5. The graph (V, Ti∗) is an MST of G whp.

Proof. By Lem. 4.4, the graph (V, Ti∗) is a spanning tree of G whp. The proof of Lem. 4.4
shows that every cluster selects a single lightest outgoing edge in each phase whp. The
statement then follows from the correctness of Boruvka’s algorithm [3]. ◀

It remains to analyze the runtime of the algorithm.

▶ Lemma 4.6. The MST algorithm runs in O(log n · log(n + W )) rounds whp.

Proof. By Corollary 4.3, the algorithm runs for O(log n) phases whp. We are left to
bound the runtime of each phase. Every execution of the leader election algorithm and
Proc. CountingToLogn takes O(log n) rounds whp. Hence, the outgoing edge detection and
single edge selection stages each take O(log n) rounds whp. The lightest edge detection
stage completes in O(log W ) rounds, and updating the local pin partition does not require
any communication. Therefore, every phase of the algorithm completes in O(log n + log W )
rounds whp. Overall, we get a runtime bound of O(log n(log n + log W )) = O(log n ·
log(n · W )) = O(log n · log(n + W )) rounds whp, where the last equality hods because
log(n · W ) = log n + log W = O(log(n + W )). ◀

5 A Sparse Spanner Algorithm

In this section, we present a randomized spanner algorithm that operates in the GRC model.
Given a parameter κ ∈ Z>0 and a constant 0 < ε < 1, the algorithm constructs a spanner
with a stretch of (2κ − 1) whp and O(n1+(1+ε)/κ) edges in expectation. More concretely, we
prove the following theorem.

▶ Theorem 5.1. There exists an algorithm in the GRC model that computes a set H ⊆ E

of edges such that H is a (2κ − 1)-spanner whp, and E[|H|] = O(n1+ 1+ε
κ ). The runtime of

the algorithm is O(κ + log n) rounds whp, and the memory space used by each node v ∈ V is
O(deg(v) + κ).
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In the full version [6], we present a modification of our algorithm to accommodate a
memory space of only O(deg(v) + log κ) for each node v ∈ V , at the cost of a slightly slower
O(κ log n)-round algorithm. We now describe the algorithm stated in Thm. 5.1.

The algorithm is based on the random shift concept introduced by Miller et al. in [12]
and studied further in various works (see, e.g., [11, 5, 9]). We now give a high-level overview
of a spanner construction algorithm based on the random shift approach (see [9] for the full
details).

The algorithm starts with each node v ∈ V sampling a value δv ∼ GeomCap(1−n−1/κ, κ−
1) (see Sec. 3 for the capped geometric distribution definition). Then, the nodes conceptually
add a virtual node s. Each node v ∈ V adds an edge (s, v) of weight w(s, v) = κ − δv to
form the graph G′, where all other edges are assigned a unit weight. Following that, the
nodes construct a shortest path tree T rooted at s. The nodes of G are partitioned into
clusters defined by the connected components of T after removing s and its incident edges.
To construct the spanner H, the nodes first add the (non-virtual) edges of T . Then, the
nodes add edges to H such that for each edge (u, v) ∈ E − T , at least one of the following
is satisfied: (1) H contains exactly one edge between u and a node in v’s cluster; or (2)
H contains exactly one edge between v and a node in u’s cluster. As discussed in [9], the
constructed edge-set H is a (2κ − 1)-spanner of expected size O(n1+1/κ).

Our algorithm works in three stages as described below.

Sampling Procedure. Recall that the algorithm of [9] begins with each node v ∈ V sampling
δv ∼ GeomCap(1 − n−1/κ, κ − 1). Note that sampling from GeomCap(1 − n−1/κ, κ − 1)
requires the nodes to know the value of n, which is not possible in the GRC model. Hence,
we devise a designated sampling procedure for each node v ∈ V .

Let us first present the intuition behind the sampling procedure. The idea is for each
node v ∈ V to simulate κ − 1 experiments, each with success probability close to 1 −
n−1/κ, and compute δv accordingly. To achieve such success probability without knowing
n, Proc. CountingToLogn is utilized. In order to enhance the proximity to 1 − n−1/κ,
Proc. CountingToLogn is executed numerous times in parallel, and δv is computed based on
the run with median runtime.

For ease of presentation, we describe the sampling procedure in two stages. First, a
sub-procedure referred to as the basic scheme is described. We later explain how this basic
scheme is used in the sampling procedure. The basic scheme runs during an execution of
Proc. CountingToLogn. For each node v ∈ V , let bv = (bv[0], . . . , bv[κ − 2]) be a vector
of κ − 1 bits initialized to bv = (0, . . . , 0). The purpose of entry bv[j] is to represent the
success/failure of the i-th experiment for each 0 ≤ j ≤ κ − 2. Let ε′ be the largest value such
that 1/(1 − ε′) is an integer and ε′ ≤ ε/(2 + ε). In each round j such that j mod κ ̸= 0, each
node v draws 1/(1 − ε′) bits uniformly at random and sets bv[(j − 1) mod κ] = 1 if any of
those bits are 1.

In the sampling procedure, the nodes perform c′ = 2 · ⌈c/ε′⌉ − 1 executions of the basic
scheme, where c > 0 is a constant. Let us index these executions by i = 0, . . . , c′ −1. Starting
from the execution indexed 0, the rounds of the executions are done alternately, i.e., a
round of the run indexed by i is followed by a round of the run indexed by (i + 1) mod c′.
Accordingly, each node v ∈ V maintains c′ vectors, b0

v, . . . , bc′−1
v , each of size κ − 1 bits,

such that bi
v is the vector maintained by v during the i-th execution of the basic scheme.

Additionally, v maintains a counter initialized to 0, whose goal is to count the executions
that terminated. Whenever an execution terminates, the counter is increased by 1. Following
the termination, during the rounds that are associated with that execution, the nodes do
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nothing. The nodes halt the executions when the counter reaches ⌈c/ε′⌉ (notice that the
counter is updated in the same manner for all nodes, thus they halt at the same time). Let ĩ

denote the index of the execution in which the counter reached ⌈c/ε′⌉. Observe that this is
the ⌈c/ε′⌉-th fastest execution, i.e., the execution with median runtime. Each node v ∈ V

defines δv to be the smallest index 0 ≤ j ≤ κ − 2 for which bĩ
v[j] = 1 if such an index exists,

or δv = κ − 1 otherwise.

Partition Into Clusters. Let G′ be the graph formed by adding a virtual node s and edge
(s, v) of weight w(s, v) = κ − δv for every v ∈ V . To compute the cluster partition, the nodes
first construct a shortest path tree T rooted at s. The idea is simple: If w(s, v) = 1, then v

sends a message to all its neighbors and marks itself as the center of its cluster. Otherwise,
assume first that v receives a message in at least one of the rounds 2, . . . , w(s, v) − 1 and let
2 ≤ i < w(s, v) − 1 be the first such round. After receiving a message in round i, node v

(arbitrarily) chooses a neighbor u that sent v a message in that round and adds the edge
(u, v) into T . Then, in round i + 1, node v sends a message to all neighbors from which
it did not receive a message in round i. Otherwise, if v does not receive a message after
w(s, v) − 1 rounds, then in round w(s, v) node v sends a message to all its neighbors and sets
itself as the center of its cluster. Notice that after at most κ rounds, T is a shortest path
tree rooted at s. The edges of T are added to the spanner H. The clusters are defined to be
the connected components of (V, T ) (i.e., the connected components formed by removing s

and its incident edges). The nodes then construct a circuit for each cluster (similarly to the
MST algorithm of Sec. 4). Observe that by design, each cluster has exactly one center. Note
that every message sent in each round of this stage is of size one bit.

Addition of Bridging Edges. The construction of H is completed by the following procedure
whose goal is to augment H with some of the edges that bridge between clusters. This is done
by each cluster randomly drawing an ID. Then, each node v ∈ V identifies its neighboring
clusters with smaller IDs and adds a single edge to each such cluster into H.

Formally, each node v ∈ V maintains a set Seq(v) initialized to be N(v), and a set
Ssml(v) initialized to be ∅. Additionally, throughout the execution, v maintains a partition
of Ssml(v) into subsets according to the (randomly drawn) cluster IDs. The nodes engage in
a process that runs in parallel to 4c + 7 iterations of Proc. CountingToLogn. In each round
of this process, every cluster center tosses a coin and communicates the outcome through
the cluster’s circuit to all the nodes in its cluster. Then, every node v ∈ V sends a message
with the coin toss received from its cluster’s center to all neighbors. Let Seq

i (v) be the set
Seq(v) at the beginning of round i. For each u ∈ Seq

i (v), if u and v sent the same bit, then u

stays in Seq(v); otherwise, u is removed. Additionally, if u’s bit is smaller than v’s, then u

is added to Ssml(v). The partition of the nodes in Ssml(v) is defined so that u and u′ are
in the same subset by the end of round i if and only if they were in the same subset at the
beginning of round i and sent the same bit in round i. Let s1, . . . , sq be the partition of
Ssml(v) at the end of the process. For each j ∈ [q], node v (arbitrarily) selects a single node
u ∈ sj and adds the edge (u, v) into H.

This completes the construction of H. We now turn to analyzing the algorithm.

5.1 Analysis
This section is dedicated to proving Thm. 5.1. To that end, we start with a structural lemma
about the capped geometric distribution.
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▶ Lemma 5.2. For arbitrary values q1, . . . , qn and for X1, . . . , Xn ∼ GeomCap(ϕ, κ − 1),
define M = maxi∈[n]{Xi − qi}. For the set I = {i | Xi < κ − 1 ∧ Xi − qi ∈ {M − 1, M}},
it holds that E[|I|] ≤ 2

1−ϕ .

Recall that in the sampling procedure of our algorithm, the value δv is computed for each
node v ∈ V based on the ĩ-th execution of the basic scheme, i.e., the execution that admits
the median runtime. Particularly, within that execution, δv is defined as the first successful
experiment out of 0, . . . , κ − 2; or κ − 1 if all experiments failed. Let ϕ be the success
probability of each such experiment and notice that ϕ itself is a random variable that depends
on the execution’s length. Define A to be the event that 1 − n−1/κ ≤ ϕ ≤ 1 − n−(1+ε)/κ. We
prove the following lemma.

▶ Lemma 5.3. P[A] ≥ 1 − 2n−c.

We now consider the bridging edges addition stage of the algorithm. Let B denote the event
that for every edge (u, v) ∈ E − T , at least one of the following is satisfied: (1) H contains
exactly one edge between u and a node in v’s cluster; or (2) H contains exactly one edge
between v and a node in u’s cluster. We state the following.

▶ Lemma 5.4. P[B] ≥ 1 − 3n−c.

For each node v ∈ V , let Mv = maxu∈V {δu − dG(u, v)} and R(v) = {u ∈ V | Mv − 1 ≤
δu − dG(u, v) ≤ Mv}. We obtain the following observation.

▶ Observation 5.5. Consider an edge (u, v) ∈ H such that u and v belong to clusters centered
at nodes u′ and v′, respectively. Then, u′ ∈ R(v) or v′ ∈ R(u).

We are now prepared to bound the expected number of edges in the spanner.

▶ Lemma 5.6. E[|H|] ≤ 2n1+(1+ε)/κ + n1+1/κ + 1.

Proof. By the law of total expectation,

E[|H|] = E[|H| | A ∧ B] · P[A ∧ B] + E[|H| | ¬A ∨ ¬B] · P[¬A ∨ ¬B] .

Combining Lem. 5.3 with Lem. 5.4, we get P[¬A∨¬B] ≤ 5n−c, and since E[|H| | ¬A∨¬B] ≤
m < n2, it follows that

E[|H|] ≤ E[|H| | A ∧ B] · P[A ∧ B] + n2 · 5n−c ≤ E[|H| | A ∧ B] + 1 ,

where the final inequality holds for, e.g., c ≥ 3. Therefore, we are left to bound the term
E[|H| | A ∧ B].

Obs. 5.5 implies that the sum
∑

v∈V |R(v)| accounts for every edge in H at least once,
i.e.,

∑
v∈V |R(v)| ≥ |H|. Fix some node v ∈ V , we seek to bound E[|R(v)|]. Partition the

set R(v) into R1(v) = {u ∈ R(v) | δu = κ − 1} and R2(v) = R(v) − R1(v). Notice that the
events δu = κ − 1 and B are independent. Thus, we get

E[|R1(v)| | A ∧ B] ≤ n · P[δu = κ − 1 | A ∧ B] = n · P[δu = κ − 1 | A] .

Observe that E[|R1(v)|] ≤ n · P[δu = κ − 1] = n(1 − ϕ)κ−1, and recall that if event A occurs,
then ϕ ≥ 1 − n−1/κ. Hence, it follows that

n · P[δu = κ − 1 | A] = n(1 − ϕ)κ−1 ≤ n · n(−1/κ)·(κ−1) = n1/κ .
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As for R2, applying Lem. 5.2, we get E[|R2(v)|] ≤ 2/(1 − ϕ). Once again, we condition on A

and B to get

E[|R2(v)| | A ∧ B] = E[|R2(v)| | A] ≤ 2/n−(1+ε)/κ = 2n(1+ε)/κ .

Overall, we conclude that

E[|H|] ≤ n · E[R(v)] ≤ n · E[|R1(v)| | A ∧ B] + n · E[|R2(v)| | A ∧ B] + 1

≤ 2n1+(1+ε)/κ + n1+1/κ + 1 . ◀

Next, we bound the stretch of H.

▶ Lemma 5.7. H is a (2κ − 1)-spanner whp.

Proof. We now argue that if event B occurs, then H has stretch 2κ − 1, which implies
the stated claim due to Lem. 5.4. To see that, consider an edge (u, v) ∈ E. Observe
that the diameter within each cluster is at most 2κ − 2. This is because every node
is at distance at most κ − 1 from its cluster’s center. Hence, if u and v belong to the
same cluster, then dH(u, v) ≤ 2κ − 2. Otherwise, if event B occurs, then either there
is an edge (ũ, v) ∈ H between v and a node ũ in u’s cluster, or an edge (u, ṽ) ∈ H

between u and a node ṽ in v’s cluster. Assume w.l.o.g. that (ũ, v) ∈ H. It follows that
dH(u, v) ≤ dH(u, ũ) + dH(ũ, v) ≤ 1 + 2κ − 2 = 2κ − 1. ◀

This concludes the analysis of our algorithm.
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