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Abstract
Graph coloring is fundamental to distributed computing. We give the first general treatment of
the coloring of virtual graphs, where the graph H to be colored is locally embedded within the
communication graph G. Besides generalizing classical distributed graph coloring (where H = G),
this captures other previously studied settings, including cluster graphs and power graphs.

We find that the complexity of coloring a virtual graph depends linearly on the edge congestion
of its embedding. The main question of interest is how fast we can color virtual graphs of constant
congestion. We find that, surprisingly, these graphs can be colored nearly as fast as ordinary graphs.
Namely, we give a O(log4 log n)-round algorithm for the deg+1-coloring problem, where each node
is assigned more colors than its degree.

This can be viewed as a case where a distributed graph problem can be solved even when the
operation of each node is decentralized.
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1 Introduction

We give the first full treatment of distributed graph coloring under bandwidth constraints.
Namely, we treat the general case when the input graph H differs from the communication
graph G. Previously, the problem was studied for cases when H = G (e.g., [54, 7, 41])
or when H has a particular layout in G (e.g., H = L(G) [4, 43], H = G2 [39, 40, 19], or
H = Gk [8]).

Most distributed graph algorithms assume that the input graph H is equivalent to the
communication network infrastructure G. In the LOCAL model, this is often without loss
of generality, as simulating a round of LOCAL on H while communicating on G = (VG, EG)
without bandwidth restriction is trivial as long as adjacent vertices in H are O(1)-hops
away in G. When we restrict message size, however, naive simulation is prohibitively
inefficient. The delivery of individual messages to each neighbor of a node can slow down
the algorithm by a factor proportional to degrees, which might be as high as n = |VH |.
Handling cases where H ̸= G is an overarching issue in the design of CONGEST algorithms
(e.g., in [34, 30, 33, 60, 29, 22, 36, 59, 28]) that is salient when using a CONGEST algorithm
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as a subroutine (e.g., local rounding [15] used in [28]) or when modifying the input graph
(e.g., contracting edges [33, 22]). We attempt to study how bandwidth constraints affect
distributed algorithms solving problems on graphs whose description is itself distributed on a
communication network. In this paper, we focus on symmetry breaking and thus ask:

How efficiently can H be colored when distributed on a network G?

Coloring problems are of fundamental importance to distributed graph algorithms. In
fact, in its seminal paper [52], Linial studied the locality of 3-coloring cycles. A long line of
work [52, 54, 61, 7, 45, 10, 60] showed that ∆ + 1-coloring could be achieved in poly(log logn)
rounds of LOCAL. Further work extended the result to local list sizes [42], and small messages
[29, 41, 44]. We extend these results to embedded graphs in nearly the same number of
rounds while using local color lists (in a slightly weaker sense than in [42]).

1.1 Virtual Graphs
Before answering our research question, we clarify the meaning of embedding a graph H into
a network G. We give here a high-level definition and expound on the formal definitions
in Section 2. For clarity, we refer to H = (VH , EH) as the input or virtual graph while
G = (VG, EG) is the communication network. We call elements of VH vertices or nodes while
elements of VG are machines; elements of EH are edges or conflicts while elements of EG are
links.

We set the definition of embedded virtual graphs forth by specifying which machine
knows about which vertex and edge of H. Each vertex v ∈ VH is mapped to a set V (v) ⊆ VG
of machines such that vertices u, v ∈ H are adjacent (in H) only if their support intersect,
i.e., V (v) ∩ V (u) ̸= ∅. We also assume that each support V (v) is equipped with a spanning
tree T (v) (called support tree) that can be used to perform aggregation. We assume that
machines w ∈ VG know about all the supports they belong to – the set of v such that
V (v) ∋ w – as well as which support tree their adjacent links belong to. Each edge uv ∈ EH
is mapped to a machine w ∈ V (u) ∩ V (v) in the intersection of the two nodes’ supports,
which knows about the existence of that edge. Figure 1 exemplifies such an embedding.

G
H

Figure 1 A virtual graph H (on the left) embedded on a network G (on the right). On this example,
there is a unique choice of support trees; they have congestion c = 1 and dilation d = 3.

It is convenient to design algorithms for H as a sequence of (virtual) rounds with the
same three-step structure1: first, broadcast a message to all vertices on the support; second,
machines at intersections of supports perform local computations; third, converge-cast the

1 we emphasize, however, that algorithms are not limited to this scheme and can communicate on the
network more cleverly.
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result of these computations on the support trees. Naturally, the efficiency of any such
algorithm is limited by (1) the diameter of the support trees and (2) the number of trees
using the same edge. We call the former the dilation and the latter the congestion. In some
cases, most of the effort is in computing a good embedding, meaning with small enough
dilation and congestion. For instance, in [22], the struggle is in finding no(1)-congestion
embeddings for various sparsifiers. In this paper, besides direct applications, we assume the
embedding is given as part of the input.

Last but not least, we allow H to be a multi-graph (without self-loops) to capture the fact
that supports can intersect in multiple places. For instance, in Figure 1, the central vertex
is adjacent to the bottom vertex through two paths in the network. While distinguishing
between the number of incident edges and adjacent vertices is not always necessary, it is
crucial for graph coloring, especially when – like in this paper – the number of colors used by
each vertex depends on its degree.

1.2 Our Contributions

Our conceptual contribution is an explicit formalization of the notion of virtual graphs that
captures the aforementioned examples. We show that the key parameters of congestion c
and the dilation d essentially capture the hardness of the coloring problem. On one hand,
they limit the efficiency of any deg +1-coloring algorithm:

▶ Theorem 1. Any constant-error algorithm for 3-coloring a 2-regular virtual graph
H embedded on a network with bandwidth b, congestion c, and dilation d, requires
Ω( c

b + d · log∗ n) rounds in the worst-case.

We emphasize that the lower bound applies to algorithms working for any given embedding.
It applies to all such algorithms, and not just those following the three-step process described
in Section 1.1.

Conversely, we provide a nearly optimal upper bound for coloring virtual graphs. Applied
to the CONGEST model – when H = G – its complexity nearly matches the state-of-the-art
O(log3 logn) round complexity of [41, 44].

▶ Theorem 2. Let H be a virtual graph on network G with |VG| = n machines, bandwidth
b = O(logn), congestion c ⩽ n and dilation d. There exists an algorithm to deg +1-color
H in O(cd · log4 logn) rounds. More precisely, at the end of the algorithm, each vertex
v ∈ VH has a color φ(v) ∈ {1, 2, . . . ,deg(v) + 1} where deg(v) is the number of edges
incident to v in H.

A key reason for considering the deg +1-coloring problem is that we forgo using some
frequently assumed global knowledge – here, the maximum degree ∆. This is the source of
substantial technical challenges, sketched in Section 1.3. That virtual nodes can be connected
with multiplicity breaks several classic arguments, hence requires novel ideas to reach the
usual goals of providing nodes with excess colors, and classifying them according to their
potential in that respect. Our adaptation of the Ghaffari-Kuhn algorithm (see the full version
[21, Section 7]) to our distributed paradigm might be of independent interest.

DISC 2024
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1.3 Technical Overview
The Lower Bound. We prove lower bounds on the congestion and dilation separately. Since
a o(d log∗ n) round algorithm for coloring virtual graphs implies a o(log∗ n) round LOCAL
algorithm for coloring cycles, the lower bound on the dilation follows from [52, 57]. To
prove the lower bound on the congestion, we provide a probability distribution on gadgets
(a 2-regular 16-vertex graph) where vertices are partitioned between two sets VA and VB.
The gadget is such that if Alice (respectively Bob) knows all vertices and edges incident
to VA (respectively VB), then for Alice and Bob to assign colors to their vertices such that
the coloring is proper, they must communicate Ω(1) bits. A classic direct sum argument
shows that solving k independent copies of this communication problem requires Ω(k) bits of
communication. Finally, we embed the coloring problem on a graph where Alice’s vertices
are separated from Bob’s through a bridge, causing congestion to be c = k.

The Upper Bound: Inaccurate Degrees. The main challenge for coloring virtual graphs is
that vertices do not have direct access to their list of available colors (or palette). Previous
work [40, 19] demonstrated that it was not necessary if vertices could instead estimate
certain local density parameters. While in [39, 19, 20] these density parameters were defined
in term of ∆ – the globally known maximum degree – in this paper, we assume no such
global knowledge and aim to use local list sizes; hence, we require a different notion of local
sparsity/density. We adapt our definition of embedding to encompass each vertex’s local
view of its degree. Concretely, we color a multi-graph H where each vertex uses one more
color than it has incident edges. We call a vertex inaccurate if its number of incident edges
is a constant factor larger than its number of adjacent neighbors. Inaccurate vertices require
special treatment, for they can skew estimates of local sparsity. Since we use a number of
colors dependent on the number of incident edges while each neighbor blocks at most one
color, inaccurate vertices are always guaranteed to have an abundance of free colors. After
detecting them, we defer coloring inaccurate vertices to the very end of the algorithm.

The Upper Bound: Providing Enough Colors. Every sublogarithmic randomized coloring
algorithm [45, 10, 42] has three phases. First, they compute a partial coloring where each
vertex has either low degree or many excess colors compared to its uncolored number of
neighbors. Second, they use randomization and symmetry-breaking techniques to take
advantage of this excess and color high-degree vertices ultrafast. Third, low-degree vertices
are handled fast due to their low degree. In [45, 10, 42], the algorithm produces excess colors
by a single-round randomized color trial. When vertices cannot access their palette [3, 19, 18],
they resort to approximations that require generating more excess colors in the densest
regions on the graph. We follow the same general approach with some major modifications.
First, the use of local-list size partially breaks the analysis of slack generation from [41]
(and the one of [42] cannot be implemented fast on virtual graphs). Our main technical
contribution is to provide sufficient assumptions for a color trial algorithm to generate enough
excess colors even when vertices can have small lists (Lemma 11, see [21, Section 5] of the
full version). In general, these added assumptions introduce substantial modifications to the
accounting of colors throughout the algorithm (see [21, Section 6.1] of the full version).

The Upper Bound: Low-Degree Vertices. Contrary to previous work [40, 19], all high-
degree – larger than some poly(logn) – vertices are colored with high probability (rather
than reducing uncolored degrees to O(logn)). This implies that, for low-degree vertices,
colors can be represented using O(log deg) = O(log logn) bits. The algorithm for coloring
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low-degree nodes follows the shattering framework of [7]. First, vertices try random colors
for O(log logn) rounds. This reduces the uncolored parts of the graph to poly(logn)-sized
components. Since nodes do not know their palette, we provide an algorithm for sampling
colors likely-enough to succeed. Then, uncolored vertices learn a list of uncolored-degree+1
colors from their palette with an algorithm similar to a binary search. Finally, we simulate the
deterministic algorithm of [35] efficiently and complete the coloring. Our main contributions
– our algorithms for sampling colors and learning palettes – can be found in Sections 7.1 and
7.2 of the full version [21], respectively.

1.4 Related Work

Distributed coloring has been intensively studied. See, e.g., [52, 6, 61, 7, 46, 24, 45, 10, 56,
39, 35, 41, 42, 25] and references therein. The focus is usually on simple graphs, where
the degree refers to the number of neighbors. The state-of-the-art LOCAL algorithm for
degree+1-coloring (in terms of n only) is the Õ(log2 logn)-round algorithm obtained by
plugging the Õ(log2 n)-round deterministic algorithm of [27] into the shattering framework of
[42]. In CONGEST, authors of [44] show how to implement shattering with small messages;
hence, using the O(log3 n)-round deterministic algorithm of [35], the resulting complexity is
O(log3 logn). Besides degrees being defined slightly differently, results of [42, 35, 27] are also
more general in the sense that vertices can use any list of degree+1-colors (not necessarily
{1, 2, . . . ,deg(v) + 1}). Handling less constrained lists of colors in virtual graphs appears
out of reach of current techniques; in fact, the problem has yet to be tackled in the simpler
settings of cluster graphs and power graphs.

Virtual Graphs. Virtual graphs are ubiquitous in distributed graph algorithms and we make
no attempt to be exhaustive. They refer to cases where the input graph differs from the
communication network, though the formalism varies by use case. Here, we list occurrences
of greatest relevance.
1. Many algorithms modify the input graph – e.g., by contracting an edge or removing

a vertex and adding an edge between each neighbor – throughout the execution. This
happens, e.g., in [33, 22]. In such cases, the algorithms embed the modified graph into
the network while ensuring low congestion. Authors of [30, 59, 2] show that under some
assumptions on the graph (e.g., planarity or excluded minor) then low-congestion shortcuts
can be found efficiently, leading to drastic improvements on the round complexity.

2. Recent network decomposition algorithms [60, 29, 28] compute clusters – i.e., sets of
vertices – by growing increasingly large sets of vertices. Hence, computations are held
through the three-step aggregation process described in Section 1.1. That is, these
algorithms are computing sequences of virtual graphs (including support trees) with
poly(logn) dilation and congestion.

3. Finally, the local rounding framework introduced in [16] and perfected in [15] runs a
defective-coloring subroutine on virtual graphs. They describe d2-multigraphs, a special
case of virtual graphs used to implement their algorithm in CONGEST. They care for
parallel edges since they compute a coloring, like us. Besides, their rounding algorithm has
been used by network decomposition algorithms [28, 27] and thus had to be implemented
on virtual graphs.

Our formalism for virtual graph captures all mentioned examples (with & without congestion,
with & without parallel edges).

DISC 2024
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Scheduling & Routing. Congestion and dilation are natural parameters in routing problems,
where they measure the maximum overlap and length of the delivery paths of a set of packets.
Scheduling, in this context, refers to organizing the packets’ delivery along their paths, taking
into account congestion constraints. Naive scheduling leads to a O(cd) delivery time, which
can be hard to improve upon distributedly. Asymptotically optimal Θ(c + d) schedules exist
and can be computed efficiently given global knowledge of the paths [49, 50].

The routing literature is expansive and growing to this day [48, 51, 26, 32, 38]. While
parallel delivery of information is crucial to our virtual graph algorithms, our problems
are quite distinct from typical routing questions, as we usually aggregate and broadcast
information rather than deliver it from a single source to a single target. In particular, we
often change the information during its delivery. Even for our more complex tasks, a naive
scheduling in O(cd) remains possible. We leave open the question of whether the O(cd)
dependency can be improved to O(c + d) (see Problem 3 in Section 5 for more).

Power Graphs. Recently, there has been a growing interest in bandwidth-efficient algorithms
for power graphs [39, 40, 5, 55, 19, 8]. Theorem 2 improves on previous work about distance-2
coloring [39, 40, 19] by handling a more general problem (see Section 2.1), by reducing the
number of colors used by each vertex to its pseudo-degree (rather than, say, using ∆2 + 1
colors which depends on a global parameter), and by improving the runtime by several
O(log logn) factors.

Other Models. The Congested Clique [53] can be viewed as a virtual graph model on
the opposite end of the spectrum, where the communication graph is a clique. It has a
O(1)-round deterministic algorithm for deg +1-list-coloring [11], building on similar results
for ∆ + 1-coloring [9, 12].

Sibling Paper. In a sibling paper [20], we treat cluster graphs, a particular type of virtual
graphs, focusing on high-degree graphs. We give a O(log∗ n)-round algorithm for ∆ + 1-
coloring cluster graphs when ∆ = Ω(log21 n). A key technical contribution is coloring so-called
put-aside sets in extremely dense subgraphs, which we build on in this paper. That paper
introduces essential primitives that apply to general virtual graphs, particularly operations
on the communication backbone, including broadcast, aggregation, and palette queries. It
also contains a fingerprinting technique for approximating the sizes of neighborhoods.

1.5 Outline of Paper
In the next section, we describe the modeling of virtual graphs and show how they capture
two important settings. We present the main ideas behind the lower bound in Section 3.
The high-level view of the algorithm is given in Section 4.3 along with key definitions, before
describing some open questions in Section 5.

The detailed descriptions of various parts of the algorithm are deferred to the full version
of this paper [21]. In [21, Section 5] we give a result on slack generation, generalizing previous
arguments to deg + 1-colorings (of both sparse and dense nodes). The coloring of different
parts of the graph is split into several sections: the dense-but-not-too-dense part in [21,
Section 6], the low-degree nodes in [21, Section 7], while the extremely-dense are in [21,
Appendix C] as it builds heavily on the sibling paper [20]. The details of the lower bound are
in [21, Appendix D]. Further appendices feature various algorithmic steps that are non-trivial
adaptations or modifications of previous work, including almost-clique decomposition in [21,
Appendix F].
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1.6 Preliminaries
Mathematical Notation. For an integer t ⩾ 1, let [t] def= {1, 2, . . . , t}. For a function
f : X → Y, when X ⊆ X , we write f(X) def= {f(x) : x ∈ X}; and when Y ⊆ Y, we write
f−1(Y ) def= {x ∈ X : f(x) ∈ Y }. We abuse notation and write f−1(y) def= f−1({y}). For
X ⊆ X , we write f|X : X → Y for the restriction of f to X. Throughout the paper, we hide
overhead due to congestion c and dilation d by writing Ô(f) for O(cd · f).

Graphs & Multi-Graphs. A multi-graph H = (VH , EH) is defined by a set of vertices VH
and sets EH(u, v) describing all edges between u and v (and EH(u, v) = ∅ if u and v are not
adjacent). When each set EH(u, v) contains at most one edge (H has no parallel edges), we
say the graph is simple. The neighbors of v in H are NH(v) def= {u ∈ VH : EH(u, v) ̸= ∅}.
The pseudo-degree of v in H is deg(v;H) def=

∑
u∈VH

|EH(u, v)|, its number of incident
edges. Its degree counts its neighbors |NH(v)|. When H is clear from context, we drop the
subscript and write N(v) = NH(v) and deg(v) = deg(v;H). An unordered pair {u, v} ⊆ VH
is called an anti-edge or non-edge if EH(u, v) = ∅.

Colorings. For any integer q ⩾ 1, a partial q-coloring is a function φ : VH → [q] ∪ {⊥}
where ⊥ means “not colored”. The domain domφ

def= {v ∈ VH : φ(v) ̸= ⊥} of φ is the set
of colored nodes. A coloring φ is total when all nodes are colored, i.e., domφ = VH ; and
we say it is proper if ⊥ ∈ φ({u, v}) or φ(v) ̸= φ(u) whenever EH(u, v) ̸= ∅. We write
that ψ ⪰ φ when a partial coloring ψ extends φ: for all v ∈ domφ, we have ψ(v) = φ(v).
The uncolored degree |Nφ(v)| def= |N(v) \ domφ| of v with respect to φ is the number of
uncolored neighbors of v. The uncolored pseudo-degree degφ(v) of v with respect to φ
counts its number of incident edges to uncolored neighbors. The palette of v with respect to
a coloring φ is Lφ(v) = [deg(v) + 1] \ φ(N(v)), the set of colors we can use to extend φ at v.

2 Virtual Graphs

In distributed algorithmics, we consider communication graphs or networks G = (VG, EG)
where elements of VG are machines that communicate by sending messages on incident links
– unordered pairs of EG – simultaneously in synchronous rounds. We assume machine v ∈ VG
is provided a O(log |VG|)-bits unique identifiers IDv to break symmetry. For randomized
algorithms, they can also access local random bits. Messages are limited to b bits, where
b is called the bandwidth of the network. Unless stated explicitly, it is assumed that
b = Θ(log |VG|).

We define our notion of virtual graphs formally. We shall always refer to the conflict
graph by H and to the communication graph by G. Vertices/nodes and edges refer only to
elements of H, while machines and links are used for G.

▶ Definition 3 (Virtual Graph). Let G = (VG, EG) be a simple graph. A virtual graph on G

is a multi-graph H = (VH , EH) where each vertex v ∈ VH is mapped to a set V (v) ⊆ VG of
machines called the support of v. Whenever two nodes are adjacent in H their supports
intersect, i.e., if EH(u, v) ̸= ∅ then V (u) ∩ V (v) ̸= ∅. Each machine w ∈ VG knows the set
V −1(w) of vertices whose supports contains it.

When bandwidth is not an issue, we can work directly with the representation of
Definition 3. We can compute a breadth-first spanning tree T (v) ⊆ EG on each support V (v)
for distributing information, and then simulate a local algorithm on this support structure.
With bandwidth constraints, we need to be more careful.

DISC 2024
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▶ Definition 4 (Embedded Virtual Graph). Let H be a virtual graph on G such that |VH | ⩽
poly(|VG|). Suppose that (1) for each vertex v ∈ VH , there is a tree T (v) ⊆ EG spanning
V (v); and (2) for each edge e ∈ EH(u, v) there is a machine m(e) ∈ V (u) ∩ V (v). We call
T (v) the support tree of v and m(e) the machine handling edge e. Each machine w

knows the set of edges m−1(w) it handles as well as, for each incident link {w,w′} ∈ EG,
the set T−1(ww′) of support trees it belongs to.

Given support trees, it is convenient to design our algorithms as a sequence of rounds
each consisting of a three-step process: broadcast, local computation on edges, followed
by converge-cast. We use two parameters to quantify the overhead cost of aggregation on
support trees. The congestion c of H is the maximum number of trees using the same link.
The dilation d is the maximum height of a tree T (v) in G. Formally,

c def= max
e∈EG

|T−1(e)| and d def= max
v∈VH

(
max
u∈T (v)

distT (v)(v, u)
)
. (1)

Congestion and dilation are natural bottlenecks for virtual graphs. In Theorem 1, we show
that Ω(c/b + d log∗ n) rounds are needed for our coloring task given b bandwidth in the
communication graph. Conversely, Theorem 2 shows that coloring in O(cd · log4 logn) rounds
is feasible for any embedding.

▶ Remark 5. A few remarks are in order.
1. The degrees in H can be computed as deg(v) =

∑
w∈T (v) |m−1(w)| by aggregation on

support trees, which is why we ask that edges have designated handlers. Counting exactly
the number of distinct neighbors for all vertices appears to be challenging (i.e., requires
Ω̃(|NH(v)|) rounds).

2. By running a BFS from a single source (or from multiple sources but in disjoint subgraphs),
we can count the exact the number of neighbors the source has. However, running this
algorithm from multiple vertices creates congestion proportional to that number of
vertices.

3. It is, per se, easy to compute low-diameter support trees for all vertices, e.g., by BFS,
but a poor selection of edges could easily lead to high congestion. It is an open question
if trees of both low diameter and congestion can be computed efficiently (see Section 5).

2.1 Implications

Our framework captures several models and problems studied in the distributed graph
literature. We review them quickly.

It is helpful to see the communication network G = (VG, EG) through its subdivision
graph: the bipartite graph SG = (VG, EG, {{u, e} : u ∈ e ∈ EG}) with machines on the left,
links on the right, and a link between v ∈ VG and e ∈ EG if and only if v is an endpoint
of e. Simulating a round of communication on SG takes one round of communication of G
(conversely, one round on G takes two rounds of SG). Defining our virtual graphs on SG
rather than G allows us to put conflict on links. We call the links of SG half-links. 2

2 A common alternative representation is to stipulate that edges are between vertices with adjacent
supports, i.e., uv ∈ EH implies that ∃w ∈ V (v), x ∈ V (u) s.t. wx ∈ EG. If we extend each support V (v)
in G to include also the incident link nodes in SG, then two supports in SG intersect whenever they are
adjacent in G. Hence, our formulation encompasses this variant.
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2.1.1 Application 1: Cluster Graphs
A cluster graph C on a communication graph G = (VG, EG) is a graph where vertices
are disjoint sets Cx ⊆ VG called clusters with a designated machine leader(x) ∈ Cx. Each
cluster Cx induces a connected graph of small diameter in G. Two clusters are adjacent
if and only if they are connected by a link. A round of communication on H consists of
1) broadcasting a b-bit message from leader(x) to all machines in Cx, 2) communication
on inter-cluster links, and 3) aggregate a poly logn-bit message (e.g., a sum or a min) to
leader(x). They appear in several places, from maximum flow algorithms [33, 22] to network
decomposition [60, 29].

Clearly, cluster graphs are captured by our definition of virtual graphs: for Cx ∈ VH , let
V (Cx) be Cx plus the half-links going out of Cx and T (Cx) be a BFS tree spanning V (Cx).
Theorem 2 implies we can color cluster graphs fast:

▶ Corollary 6. Cluster graphs can be deg +1-colored, w.h.p., in O(d · log4 logn) CONGEST
rounds where d is the maximum (strong) diameter of a cluster, i.e., of H[Cx] over all Cx.

In [20], we show that ∆ + 1-coloring high-degree cluster graphs (where ∆ ⩽ poly(logn))
can be done in O(log∗ n) rounds. Corollary 6 is the first non-trivial distributed algorithm for
degree+1-coloring cluster graphs.

2.1.2 Application 2: Coloring Power Graphs
For some integer t ⩾ 1, the t-th power graph of G is the graph Gt on vertices VG where
there is an edge {u, v} when distG(u, v) ⩽ t. A distance-t coloring of G is a coloring of
Gt. Concretely, it is a coloring where nodes receive colors different from the ones in their
t-hop neighborhood. Our framework provides a unified view of distance-t colorings: the same
algorithm provides fast algorithms for all values of t ⩾ 1.

▶ Lemma 7. Let t ⩾ 1 and G = (VG, EG) be a graph with maximum (distance-1) degree
∆. We can define a virtual graph H = (VH , EH) on the subdivision graph SG of G such that
VH = VG and a deg +1-coloring of H is a ∆t + 1-coloring of Gt. Moreover, the congestion
is c = O(∆⌊ t−1

2 ⌋), the dilation is d = t, and the embedding is computable in O(tc) rounds.

Proof. For each node v ∈ VG, its support tree T (v) in G is set to be the t-hop BFS tree in
the subdivision graph SG rooted at v. For any pair u, v ∈ VH , the edge set EH(u, v) = ∅ if
and only if distG(u, v) > t. Otherwise, EH(u, v) contains an edge for each simple uv-paths in
T (u) ∪T (v) in G. As there are at most

∑t−1
i=1 ∆(∆ − 1)i ⩽ ∆t simple paths of length at most

t starting from v in G. Hence, each vertex is incident to at most ∆t edges in H. Thus, any
deg +1-coloring on H is a distance-t coloring of G with ∆t + 1 colors and from the definition
of edges in H, a proper coloring on H is also proper on Gt.

The bound on the dilation is immediate. To verify the congestion on a half-link ev,
observe that there are at most ∆⌊ t−1

2 ⌋ nodes (of G) that are within distance t of v in SG,
and therefore at most that many support trees using that half-link.

We map each simple uv-path in T (u) ∪ T (v) to its middle machine in SG. It is unique,
as SG is bipartite and u, v are on the same side. Each machine w ∈ T (u) ∩ T (v) knows its
distances to u in T (u) and to v in T (v), and thereby knows if it is the middle machine. To
compute the embedding, we have each machine learn its distance-t neighborhood in SG, with
the distance it has to each machine in it. This is done as follows: initially, each machine v
prepares a message (IDv, 1), which it sends to its ∆ direct neighbors in G. Then, for each
positive integer i ⩽ ⌊ t−1

2 ⌋, each machine sends a message of the form (IDu, i+ 1) to its direct
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neighbors for each message (IDu, i) it has received, of which there are at most ∆i. Sending
all messages for a fixed i takes O(∆⌊ t−1

2 ⌋) = O(c) rounds, hence a total O(tc) complexity. At
the end of this process, each machine v knows to which support trees T (u) it belongs, and
for each simple path of length at most t in SG between two nodes u, u′ s.t. v ∈ T (u) ∩ T (u′),
v knows whether it is its midpoint and should thus handle the edge. ◀

For any t ⩾ 1, Theorem 2 and Lemma 7 imply that there is a distributed algorithm
communicating on SG with O(logn) bandwidth that computes a ∆t + 1-coloring of Gt. Since
a round of communication on SG can be simulated in one round of communication on G, it
shows the following corollary.

▶ Corollary 8. For any t ⩾ 1, there is a randomized CONGEST algorithm for ∆t+1-coloring
Gt that runs in O(t∆⌊(t−1)/2⌋ log4 logn) rounds w.h.p.

Furthermore, the specific structure of power graphs allows for broadcast and aggregation
over support trees to be done in only O(∆⌊(t−1)/2⌋) = O(c + d) rounds instead of O(cd) =
O(t∆⌊(t−1)/2⌋). The runtime in Corollary 8 can be improved to O(∆⌊(t−1)/2⌋ log4 logn) as a
result.

It is not too difficult to see that – by a reduction to set disjointness – verifying an arbitrary
(or random) distance-t coloring needs Ω̃(∆⌊ t−1

2 ⌋) rounds in CONGEST [23]. However, no
super-constant lower bounds are known for computing distance-t colorings in CONGEST
when t ⩾ 3 and ∆ ≫ logn.

3 Lower Bounds: Overview

In this section, we sketch the main ideas behind our lower bound. We show the following
theorem:

▶ Theorem 1. Any constant-error algorithm for 3-coloring a 2-regular virtual graph H

embedded on a network with bandwidth b, congestion c, and dilation d, requires Ω( c
b +d · log∗ n)

rounds in the worst-case.

This implies as immediate corollary the same lower bound for the more general problem
of deg +1-coloring virtual graphs. The single statement is actually the concatenation of two
independent lower bounds, one relative to congestion and bandwidth, and the other relative
to dilation.

The dilation lower bound is straightforward, following directly from the seminal Ω(log∗ n)
lower bounds on 3-coloring [52, 57]. We refer readers to Appendix D.2 of the full version [21].

As the congestion lower bound makes lengthy use of technical tooling from communication
complexity literature largely unrelated to the rest of the paper, we defer most details to
Appendix D of the full version [21]. Here, we chiefly describe the virtual graphs used for our
lower bound and give intuition behind the complexity of coloring them.

Proof Structure of the Congestion Lower Bound. The congestion-related part of our lower
bound is obtained through a reduction from communication complexity. Our overall proof
plan is as follows:

We introduce a 2-player communication complexity task in which said players must
coordinate to 3-color a 16-node 2-regular graph. Each player only knows the edges
incident to half of the vertices and is in charge of outputting half of the coloring.
We show that this task is nontrivial, and in particular, that it has Ω(1) information
complexity, a complexity measure which lower bounds communication complexity.
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From known direct-sum results on information complexity, we get that solving c/8
independent copies of the task has information complexity Ω(c).
We introduce a virtual graph of congestion c and constant dilation in which we embed
c/8 instances of the task, i.e., deg +1-coloring the virtual graph solves the c/8 instances.
We observe: any T -round algorithm for deg +1-coloring virtual graphs over communication
graphs with congestion c given bandwidth b implies a O(Tb) communication complexity
algorithm for solving c/8 copies of the nontrivial task.
We conclude: the round complexity T of any such distributed algorithm for deg +1-coloring
must necessarily be at least Ω(c/b).

The Communication Complexity Gadget. We define the communication complexity task
we use in Definition 9. While this definition is a generalization with an arbitrary even number
of nodes on both sides, for our purposes, we will only use the gadget with the parameter k
set to k = 4, i.e., with 8 nodes on Alice and Bob’s sides. See Figure 2 for a illustration of our
gadget.

▶ Definition 9 (Matching 3-coloring task). In the M3COLk task, a 4k-node graph is initially
uncolored. Its nodes are split into two equal parts – left and right – given to Alice and Bob.
Alice and Bob receive a perfect matching over their respective sets of 2k nodes. For each
i ∈ [2k], the ith left node is connected to the ith right node. At the end of the communication
protocol, Alice must output a color in {1, 2, 3} for each left node, and Bob must do the same
for the right nodes, such that the coloring is valid with respect to the graph received as input.

vR,1

vR,8

vL,1

vL,8

vR,1

vR,8

vL,1

vL,8

vR,1

vR,8

vL,1

vL,8

Figure 2 Three possible inputs to the communication complexity task.

The crux of the argument is to show that the M3COL4 task cannot be solved without
communication. This can be intuitively seen by noticing that there can be at most 3 nodes
on which Alice always outputs the same color regardless of her input matching (same on
Bob’s side). Indeed, as there are only 3 colors, a fourth node with a fixed color means that
two nodes would receive the same color on Alice’s side regardless of her matching. This
implies an error when said two nodes are connected in Alice’s matching. Generalizing this
idea to randomized algorithms allows us to show that an algorithm without communication
necessarily makes an error with some constant probability 3 .

▶ Lemma 10. Any zero communication protocol for M3COL4 fails with probability at least
1

196 over the uniform input distribution.

Embedding the Gadget. Embedding the gadgets into a virtual graph is then done with the
following communication network: we consider two stars (depth-1 trees) with c leaves; we
connect the two stars by a single link between their roots wL,com and wR,com. The support
of each node on the left is made of an edge of the left star with the central edge, while the

3 This intuition also explains why we take gadgets with 8 nodes on each side and not less: a smaller
gadget would be solvable without communication by fixing the color of (up to) 3 nodes on each side.
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vL,1

vL,8

vR,1

vR,8

wL,com wR,com

V (vL,1)

Figure 3 Examples of a virtual graph H with a single gadget (left), a communication network G

(middle) in which H can be embedded, and the support of the top left virtual node (right).

support of each node on the right is just an edge in the right star. wL,com handles the edges
in the left matching, while wR,com handles the edges of the right matching as well as the
edges between the left and right sides of the virtual graph. See Figure 3 for an illustration.

The proof of Lemma 10, with its implication for the information complexity of the task,
and ultimately, our Ω(c/b) lower bound for 3-coloring graphs of degree 2 (Theorem 1), are
all deferred to Appendix D.1 of the full version [21].

4 Coloring Algorithm

The goal of this section is to present the main technical ideas behind Theorem 2.

▶ Theorem 2. Let H be a virtual graph on network G with |VG| = n machines, bandwidth
b = O(logn), congestion c ⩽ n and dilation d. There exists an algorithm to deg +1-color H
in O(cd · log4 logn) rounds. More precisely, at the end of the algorithm, each vertex v ∈ VH
has a color φ(v) ∈ {1, 2, . . . ,deg(v) + 1} where deg(v) is the number of edges incident to v
in H.

We give necessary definitions and self-contained statements of each of the main steps of
our algorithm. First, we discuss the concept of slack and present the means by which we
measure and produce it. We then introduce a version of the sparse-dense decomposition
tailored to our needs. Finally, we describe the main steps of our algorithm. For more details
on individual steps of the algorithm, we refer readers to the full version of this paper [21].

4.1 Slack
Intuitively, the slack measures how easily a vertex gets colored. More formally, it is used to
bound from below the number of colors available to a vertex when its neighbors are trying
to get colored. There are several types of slack that occur.

Savings. Whenever a neighbor uses a color that is either outside v’s palette or the same
color as another neighbor, then v saves a color. Under a given partial coloring φ, this is
quantified by the savings slack of v from coloring φ:

ξφ(v, S) def= |S ∩ domφ| − |φ(S) ∩ [deg(v) + 1]| (2)

We write ξφ(v) for ξφ(v,N(v)).

Redundancy. In degree+1-coloring (unlike ∆ + 1-coloring), slack can also occur when v has
a shortage of neighbors with a high enough degree. We measure this with the redundancy
of v defined as

ρv
def= max

t⩽|N(v)|/12
|NH(v)| − t− |{u ∈ N(v) : deg(u) + 1 > t}| . (3)

In other words, there is a t ⩽ |N(v)|/12 such that, even if all high-degree neighbors (larger
than t) use different colors, at least ρv colors remain available to v.
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Inaccuracy. The difference between the palette size and the number of neighbors is the
inaccuracy of the node:

δv = deg(v) − |NH(v)| . (4)

In our setting, this is caused by parallel edges. A vertex with δv > δ is called δ-inaccurate
and δ-accurate otherwise.

Permanent & Temporary slack. The aforementioned forms of slack (savings, redundancy,
and inaccuracy) are permanent, meaning that they do not decrease as we extend the
coloring. Another way to provide slack to a vertex is by keeping some of its uncolored
neighbors inactive. This artificially reduces degrees – thus contention – without reducing the
number of available colors, thereby providing slack. This is called temporary slack as it
perishes when we eventually color the inactive neighbors.

Slack Generation. While redundancy and inaccuracies do not depend on the coloring,
vertices get savings only if we manage to same-color its neighbors. We show in [21, Section
5] that a classic one-round algorithm of “trying a random color” creates enough slack for
deg+1-colorings. This generalizes results for ∆ + 1-coloring [58, 14, 41]. It also generalizes a
method of [1, Lemma 4.10] for deg+1-coloring that applies to the sparse and uneven nodes
(assuming deg(v) = |NH(v)|). SlackGeneration creates color savings probabilistically. The
savings expected from a random color trial are measured by the unevenness and sparsity,
which we now define.

The savings we expect due to high-degree neighbors using colors beyond deg(v) + 1 is
captured by the unevenness of v. Within a subgraph induced by a set S ⊆ VH , it is defined
as

ηv(S) def=
∑
u∈S

[deg(u) + 1] \ [deg(v) + 1]
[deg(u) + 1] =

∑
u∈S

(deg(u) − deg(v))+

deg(u) + 1 . (5)

We write ηv = ηv(N(v)) for succinctness. A vertex such that ηv > η is called η-uneven and
η-balanced otherwise.

The savings we expect from colors reused by multiple neighbors is quantified by the
sparsity of v. The sparsity of v is defined as

ζv
def= 1

|NH(v)|

(
|NH(v)|

2

)
− 1

2
∑

u∈NH (v)

|NH(u) ∩NH(v)|

 . (6)

Note that 1
2

∑
u∈NH (v)|NH(u) ∩NH(v)| counts the number of edges in NH(v) without multi-

plicity, even if H is not simple. Hence ζv · |NH(v)| counts the number of edges missing in
NH(v), without multiplicity. A vertex such that ζv > ζ is called ζ-sparse and ζ-dense
otherwise.

▶ Lemma 11 (Slack Generation). Let Vsg ⊆ VH and let φsg be the coloring produced by
running Algorithm 2 in H[Vsg] avoiding colors ⩽ r. Let v ∈ Vsg be a node satisfying
deg(v) ⩽ 3|NH(v)|/2, |N(v) \ Vsg| < (ζv + ηv)/4, ζv ⩾ 48r, and ρv ⩽ (ζv + ηv)/12. Then

ξφsg(v) ⩾ γ11 · (ζv + ηv) with probability 1 − exp(−Θ(ζv + ηv))
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4.2 Almost-Clique Decomposition
In Lemma 12, we describe a structural decomposition partitioning vertices according to their
ability to receive slack and of which type. All sub-logarithmic distributed coloring algorithms
[45, 10, 42, 20] use such a decomposition. We adapt [1] to account for inaccuracies in degrees
(Property 2). Lemma 12 partitions vertices into high- and low-degree vertices based on the
threshold ∆low = Θ

(
log21 n

)
. Each requires a different approach and, in particular, we do not

need to argue that low-degree vertices receive slack. We prove Lemma 12 in [21, Appendix
F] to preserve the flow of the paper.

▶ Lemma 12. There exists an algorithm that, for any multi-graph H = (VH , EH) and
ε ∈ (0, 1/100), computes in Ô(1/ε6) rounds an ε-almost-clique decomposition: a partition
VH = Vlow ∪ Vhigh and Vhigh = Vin ∪ V⋆ ∪ Vdense such that
1. each v ∈ Vlow has deg(v) ⩽ 2∆low and v ∈ Vhigh has deg(v) ⩾ ∆low;
2. each v ∈ Vin is Ω(ε3|N(v)|)-inaccurate and each v ∈ Vhigh \Vin has deg(v) ⩽ (1+ε3)|N(v)|;
3. each v ∈ V⋆ has ζv + ηv + |N(v) ∩ Vin| ⩾ γ12 · deg(v) for a constant γ12 = γ12(ε) ∈ (0, 1);
4. Vdense is partitioned into ε-almost-cliques: sets K ⊆ Vhigh such that

a. |NH(v) ∩K| ⩾ (1 − ε)|K|, for each v ∈ K,
b. deg(v) ⩽ (1 + ε)|K|, for each v ∈ K, and
c. |NH(v) \K| ⩽ Oε(ζv + ηv + |N(v) ∩ Vin|).

Let ∆K
def= maxv∈K deg(v). From Lemma 12, it holds for each almost-clique K that

(1 − ε)|K| ⩽ ∆K ⩽ (1 + ε)|K|, and that for every v ∈ K, deg(v) ⩾ (1 − 2ε)∆K . Every
pair of vertices in K has (1 − 2ε)|K| neighbors in common in K, and hence H[K] has
(strong-)diameter at most two.

For v ∈ Vdense, let Kv denote the almost-clique containing v. We denote by Av =
Kv \NH(v) its anti-neighborhood and by av = |Kv| − deg(v,H ∩Kv) its pseudo-anti-
degree. We call Ev = NH(v) \ Kv the external-neighborhood and ev = deg(v,H \ Kv)
its pseudo-external-degree. Importantly, pseudo-external and pseudo-anti-degrees count
multiplicities of edges in the conflict graph. We split the contribution to δv (Equation (4))
between external and internal neighbors:

δv = δev + δav , where δev
def= ev − |Ev| and δav

def= |Av| − av . (7)

For almost-cliqueK, we denote average values by aK =
∑
v∈K av/|K| and eK =

∑
v∈K ev/|K|.

4.3 The High-Level Algorithm
We can now describe the main steps of our algorithm. At high level, we compute the
decomposition of Lemma 12, run slack generation in Vsg = Vhigh \ (Vcabal ∪ Vin) and color each
part of the decomposition in a precise order. Necessary conditions and guarantees for each
step of Algorithm 1 are given in the corresponding propositions.

Parameters. Let C1 be some large universal constant. Let us set the following parameters

ε = 1/2000 , ℓ = C1 · log1.2 n , and r = C1 · log1.1 n , (8)

where ℓ is chosen to asymptotically dominate Θ(log1.1 n), which is the minimum palette
size for MultiColor Trial, and r sets the number of reserved colors. We call colors from
[r] = {1, 2, . . . , r} reserved because we use them exclusively for multicolor trials. Let
Vlow, Vin, V⋆, Vdense be an ε-almost-clique decomposition of the high-degree vertices. We define

Kcabal = {K : eK < ℓ} , Vcabal = {v ∈ Vdense : Kv ∈ Kcabal} and Vsg = Vhigh\(Vcabal∪Vin) .
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Algorithm 1 The deg +1-coloring algorithm.

1 ComputeACD (Lemma 12)
2 SlackGeneration in Vsg = Vhigh \ (Vcabal ∪ Vin) without using colors [r] (Lemma 11)
3 ColoringVstar without using colors [r] (Proposition 13)
4 ColoringNonCabals (Proposition 14)
5 ColoringCabals (Proposition 15)
6 ColoringInaccurate (Proposition 16)
7 ColoringLowDegree (Proposition 17)

After running Slack Generation in Vsg, w.h.p., all the vertices in V⋆ have enough slack
to get colored by MultiColor Trial. Proposition 13 achieves this coloring with additional
post-conditions necessary for coloring non-cabals (Proposition 14). In words, we extend
the coloring φsg produced by slack generation such that V⋆ is totally colored, the coloring
in VH \ V⋆ coincides with φsg and reserved colors are not used (not even in V⋆). Proof of
Proposition 13 is given in [21, Section 4].

▶ Proposition 13 (Coloring V⋆). Suppose φsg is the coloring produced by slack generation.
In Ô(log∗ n) rounds, we compute φ ⪰ φsg such that, w.h.p., we have V⋆ ⊆ domφ, φ|VH \V⋆

=
φsg|VH \V⋆

and φ(VH) ∩ [r] = ∅.

Non-cabal dense vertices are colored by Algorithm 3 in [21, Section 6]. They are colored
immediately after coloring V⋆, and the conditions needed for Proposition 14 follow from
those guaranteed by Proposition 13. The algorithm combines primitives from various recent
randomized coloring algorithms [42, 17, 19] (and [20]), all needing non-trivial adaptation to
the current setting. Instead of applying MultiColor Trials directly after the synchronized
color trial, we use the slower O(log logn)-round Slice Color algorithm of [19] to find an
orientation where nodes have O(logn) uncolored out-neighbors. This allows us to use a fixed
number of only r = Θ(log1.1 n) reserved colors in the final application of MultiColor Trials,
simplifying the (already intricate) treatment. Finally, a significant effort is needed to add
up all sources of slack and show that dense vertices always have enough colors in the clique
palette (see [21, Section 6.1]).

▶ Proposition 14 (Coloring Non-Cabals). Suppose φ is a coloring such that domφ ⊆ Vsg,
φ|Vdense = φsg|Vdense

and φ(VH) ∩ [r] = ∅. In Ô(log logn · log∗ n) rounds, we color all vertices
in Vdense \ Vcabal.

Cabals are colored by Algorithm 4 in [21, Appendix C]. The approach to color Vcabal is
similar to Proposition 14 except for two major differences. First, vertices do not receive slack
from slack generation, so we instead resort to put-aside sets [42]. Second, coloring put-aside
sets requires a different approach that was developed in [20].

▶ Proposition 15 (Coloring Cabals). Suppose φ is a coloring such that Vcabal ∩ domφ = ∅.
Then, there exists a Ô(log logn · log∗ n)-round algorithm coloring all nodes in Vcabal with high
probability.

The inaccurate nodes have enough slack regardless of the coloring (Equation (4)) and are
easily colored at the end in the same way as V⋆.

▶ Proposition 16 (Coloring Inaccurate Nodes). We can color all vertices in Vin in Ô(log∗ n)
rounds.
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Proof Sketch. The inaccuracy means that each vertex v in Vin has Ω(ε3 deg(v)) colors
available in [deg(v) + 1] under any (possibly partial) coloring. Like for V⋆, we color Vin
with O(ε−12 log ε−1) = O(1) iterations of Random Color Trial and O(log∗ n) iterations of
MultiColor Trial where C(v) = [deg(v) + 1] and γ = Θ(ε3). ◀

Low-degree nodes are colored in [21, Section 7].

▶ Proposition 17 (Coloring Low-Degree Nodes). Suppose φ is a coloring such that Vhigh =
VH \ Vlow = domφ. In Ô(log4 logn) rounds, we compute a total coloring of H.

Proof of Theorem 2. By Lemma 12, we compute the ε-almost-clique decomposition in
Ô(1/ε6) = Ô(1) rounds. Running Slack Generation takes Ô(1) rounds (see Algorithm 2).
By Propositions 13–15, we extend the coloring to all vertices of Vhigh in Ô(log logn · log∗ n)
rounds. By Proposition 17, low-degree vertices are colored in Ô(log4 logn) rounds. Overall,
the round complexity is dominated by the coloring of low-degree vertices. ◀

5 Open Problems

The most natural immediate question following our work is:

▶ Problem 1. Can we color virtual graphs in cd · poly(log logn) rounds using lists
{1, 2, . . . , |NH(v)| + 1} for each v ∈ VH?

The issue is with dense vertices whose anti-degree is hard to approximate accurately. In
[20], we show that it is possible to ∆ + 1-color in Ô(log∗ n) rounds when ∆ = maxv |NH(v)|
is the maximum number of neighbors (and ∆ ≫ log21 n). However, whether the technique
used to approximate anti-degrees can be generalized to |N(v)| + 1-coloring is unclear. Using
MultiColor Trials, it is possible to (1 + ε)|NH(v)|-color in cd · poly(log logn) rounds.

▶ Problem 2. When is it possible to compute low-congestion support trees efficiently?

We assumed that a support tree was given in G for each node of H (or could be easily
deduced, as in the case of distance-2 coloring). It is easy, per se, to find some support
tree for each node, e.g., by BFS, but this could significantly affect the congestion. It is
known [30, 37, 47, 31] that for some families of graph, one can compute embeddings with
low congestion. Conversely, for some problems (such as MST), on general graphs Ω(

√
n)

congestion is unavoidable [13]. It is a highly interesting question whether low-congestion
support trees could be computed efficiently for local problems.

▶ Problem 3. Can we color virtual graphs in O((c + d) poly(log logn)) rounds?

Throughout the paper, our main goal was showing that coloring can be achieved in
poly(log logn) rounds of broadcast and aggregation over the supports of the virtual nodes.
We mostly ignored the runtime of these broadcast and aggregation operations, known to be
achievable in O(cd) rounds, and requiring Ω(c + d). The naive runtime is already optimal
in some restricted cases (when c ∈ O(1) or d ∈ O(1)), but not in general. While O(c + d)
schedules are known to exist for standard packet routing (with fixed paths), our problem
is a proper generalization of the usual routing scenario. We also need schedules that are
distributedly computable. Problem 3 asks whether our subroutines can be performed faster,
possibly also pipelined, certainly an exciting open question. It is essentially an independent
scheduling question, despite its implications for the main results of our paper.
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▶ Problem 4. Can we ∆O(t)-color Gt in O(∆⌊(t−1)/2⌋−Ω(1) poly logn) rounds of CONGEST?

We showed that the complexity of coloring needs to grow linearly with the congestion, but
this was only shown existentially for a specific class of instances. Can this dependence on
congestion be avoided? In particular, the complexity of distance-3 coloring is a major open
question, where congestion is necessarily linear in ∆.
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▶ Lemma 18 (Random Color Trial). Let γ ∈ (0, 1) be universal constants known to all nodes.
Let φ be a coloring, S ⊆ V \ domφ a set of uncolored nodes, and sets C(v) ⊆ [deg(v) + 1] for
each v ∈ S such that
1. v can sample a uniform color in C(v) in O(1) rounds,
2. |C(v)| ⩾ Θ(γ−1 logn),
3. |Lφ(v) ∩ C(v)| ⩾ γ|C(v)|, and
4. |Lφ(v) ∩ C(v)| ⩾ γ|Nφ(v) ∩ S|.
Let ψ ⪰ φ be the coloring produced by TryColor. Then, w.h.p., each w ∈ VH has uncolored
degree in S

|Nψ(w) ∩ S| ⩽ max
{

(1 − γ4/64)|Nφ(w) ∩ S|, Θ(γ−4 logn)
}
.

The algorithm ends after Ô(1) rounds and ψ(v) ∈ C(v) for all v /∈ domφ.

The MultiColorTrial in Lemma 19 is adapted from [43] to sample colors from a restricted
known color space.

▶ Lemma 19 (MultiColorTrial, adapted from [43]). Let φ be a (partial) coloring of H,
S ⊆ VH \ domφ, and C(v) ⊆ [deg(v) + 1] be a color space for each node. Suppose that there
exists some constant γ > 0 known to all nodes such that
1. C(v) is known to all machines in V (v); and
2. |Lφ(v) ∩ C(v)| − |Nφ(v) ∩ S| ⩾ max{2|Nφ(v) ∩ S|,Θ(log1.1 n)} + γ|C(v)|.

Then, there exists an algorithm computing a coloring ψ ⪰ φ such that, w.h.p., all nodes of S
are colored and ψ(v) ∈ C(v) for each v ∈ S. The algorithm runs in Ô(γ−1 log∗ n) rounds.

B Pseudo-Code

Algorithm 2 SlackGeneration.

1 Each v ∈ Vsg joins V active w.p. pg = 1/20.
2 Each v ∈ V active samples c(v) ∈ {r + 1, r + 2, . . . ,deg(v) + 1} uniformly at random.
3 Let φsg(v) = c(v) if v ∈ V active and c(v) /∈ c(N+

H (v)). Otherwise, set φsg(v) = ⊥.

Algorithm 3 ColoringNonCabals.

Input: A coloring φ such as described in Proposition 14
Output: A coloring ψ ⪰ φ such that Vdense \ Vcabal = domψ

1 ColorfulMatching when aK ⩾ Ω(logn) // Let φcm be the coloring produced
2 ColoringOutliers with C(v) = [r + 1,deg(v) + 1]
3 SynchronizedColorTrial
4 TryColor for O(1) rounds with C(v) = Lφ(Kv) ∩ [r + 1,deg(v) + 1]
5 SliceColor with C(v) = Lφ(Kv) ∩ [r + 1,deg(v) + 1]

Let L1, . . . ,LO(log logn) be the layers produced by SliceColor.
6 for i = O(log logn) to 1 do
7 MultiColorTrial with C(v) = [r] in Li
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Algorithm 4 Cabals.

Let r′ def= 150ℓ, where ℓ = C1 log1.2 n is as described in Equation (8).
1 ColorfulMatching.
2 ColoringOutliers with C(v) = [deg(v) + 1] \ [r′].
3 ComputePutAside PK ⊆ IK .
4 SynchronizedColorTrial with SK = K \ (domφ ∪ PK)
5 SliceColor with C(v) = [deg(v) + 1] \ [r′]

Let L1, . . . ,LO(log logn) be the layers produced by SliceColor
6 for i = O(log logn) to 1 do
7 MultiColorTrial with C(v) = [r′] in Li

8 ColorPutAsideSets
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