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Abstract
In content-oblivious computation, n nodes wish to compute a given task over an asynchronous network
that suffers from an extremely harsh type of noise, which corrupts the content of all messages across
all channels. In a recent work, Censor-Hillel, Cohen, Gelles, and Sela (Distributed Computing,
2023) showed how to perform arbitrary computations in a content-oblivious way in 2-edge connected
networks but only if the network has a distinguished node (called root) to initiate the computation.

Our goal is to remove this assumption, which was conjectured to be necessary. Achieving this
goal essentially reduces to performing a content-oblivious leader election since an elected leader can
then serve as the root required to perform arbitrary content-oblivious computations. We focus on
ring networks, which are the simplest 2-edge connected graphs. On oriented rings, we obtain a leader
election algorithm with message complexity O(n · IDmax), where IDmax is the maximal assigned ID.
As it turns out, this dependency on IDmax is inherent: we show a lower bound of Ω(n log(IDmax/n))
messages for content-oblivious leader election algorithms. We also extend our results to non-oriented
rings, where nodes cannot tell which channel leads to which neighbor. In this case, however, the
algorithm does not terminate but only reaches quiescence.
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1 Introduction

The field of distributed computing is rich with models helping us understand different types
of architectures and computational hardness by making different kinds of assumptions about
how computations are carried out. A recent work by Censor-Hillel, Cohen, Gelles, and
Sela [8] introduced a particularly weak computational model coined fully defective networks.
This model considers an asynchronous network in which messages may be fully corrupted
and thus not carry any information beyond their sheer existence. Algorithms designed for
this model cannot rely in any way on possible contents of messages, and thus are named
content-oblivious. Instead of relying on the content of messages or on their time of arrival
(since arbitrary delays may occur in asynchronous networks), such algorithms depend solely
on the order in which messages arrive from different neighbors.
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26:2 Content-Oblivious Leader Election on Rings

The aforementioned work by Censor-Hillel et al. [8] showed that any computation possible
in the asynchronous setting with reliable content-carrying messages can be simulated in the
fully defective setting under two assumptions: that the network is 2-edge connected and that
there is a distinguished leader (which they call the root node) in the network. While the
same paper showed 2-edge connectivity to be essential for any kind of nontrivial computation
in fully defective networks, the question of the necessity of a pre-existing leader was not
settled. Censor-Hillel et al. conjectured that general computations in fully defective networks
do indeed require the existence of such a pre-elected leader.

In this paper, we disprove this conjecture, at least for the most fundamental type of
2-edge connected topologies, namely, rings. We design a content-oblivious algorithm that
successfully performs a leader election in oriented rings.

▶ Theorem 1. There is a quiescently terminating content-oblivious algorithm of message
complexity n(2 · IDmax + 1) that elects a leader in oriented rings of n nodes with unique IDs.

Here, IDmax denotes the maximal ID assigned to a node in the network, and quiescent
termination refers to the valuable property of our algorithm that nodes do not receive
messages after termination. We discuss quiescent computations and the issue of composability
in more detail in Section 1.1.

We further extend our result to the case where the ring is non-oriented, albeit under
a weaker definition of computation. Instead of termination, we only require stabilization,
which means that every node eventually settles on a decision (to be or not to be a leader,
in our case) that is never revised again. However, the nodes might not know whether they
have achieved their stable output already and remain ready to receive and potentially send
messages forever. This potential is not actualized for a quiescently stabilizing algorithm,
where all messaging activity ceases after finite time. Our algorithm not only elects a leader
in such a manner but also orients the ring.

▶ Theorem 2. There is a quiescently stabilizing content-oblivious algorithm of message
complexity n(2 · IDmax + 1) that elects a leader and orients a non-oriented ring of n nodes
with unique IDs.

Considering this weaker definition of computation also allows us to perform the same
tasks on the anonymous ring. In this setting, nodes are not given identifiers and they all have
the same initial state, but each of them has access to an independent source of randomness.
Furthermore, the algorithm is allowed to reach an incorrect result as long as it does so with
sufficiently small probability (below an arbitrary constant negative power of n). It follows
from prior work that there is no terminating algorithm for electing a leader in this setting.
However, if we require only quiescent stabilization instead of termination, both electing a
leader and orienting a ring are possible.

▶ Theorem 3. There is a content-oblivious algorithm of complexity nO(1) that elects a leader
and orients an anonymous ring of n nodes, each with access to its own source of randomness,
with high probability. The algorithm reaches quiescence but does not terminate.

Both of our deterministic leader election algorithms, for oriented and non-oriented rings,
have message complexity O(n · IDmax). Since IDmax ≥ n, this implies at least cn2 pulses, for
some constant c. The term IDmax is not very common in message complexities of algorithms,
despite a few exceptions [21, 27].1 Somewhat surprisingly, our analysis shows that this term
is inherent to content-oblivious algorithms. We prove the following lower bound.

1 Some algorithms depend on the IDs assigned to nodes. However, it is common for the complexity
analysis to assume that all IDs are of length O(log n) bits, making the dependence on the IDs implicit.
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▶ Theorem 4. Any deterministic terminating content-oblivious algorithm for leader election
in rings with unique IDs sends at least n⌊log(IDmax/n)⌋ messages.

Note that this Ω(n log(IDmax/n)) lower bound implies that the number of messages in a ring
of size n is unbounded – we can always increase the message complexity by assigning larger
IDs, even when n is a small constant.

1.1 Quiescence and Composability
As mentioned above, we concatenate our content-oblivious leader election algorithm (Theo-
rem 1) with the root-dependent universal content-oblivious algorithm [8, Thm. 1] to obtain
the following powerful corollary.

▶ Corollary 5. Assuming unique IDs, any asynchronous algorithm on rings can be simulated
in a fully defective oriented ring.

However, some subtleties arise when concatenating algorithms in the content-oblivious
setting. With reliable message content, each message could be tagged, indicating the algorithm
it belongs to. However, when concatenating content-oblivious algorithms, messages sent by
the first algorithm may be mistaken for ones sent by the second algorithm, and vice versa.

To make this composition work, we require two properties: (1) termination, i.e., nodes
should have a distinct point in time where they end the first algorithm and switch to the
second one, and (2) message-algorithm attribution, i.e., while a node executes an algorithm, it
only ever receives messages generated by nodes while they were executing the same algorithm.

Our algorithm for oriented rings (Theorem 1) achieves correct message-algorithm attribu-
tion (when composed with the scheme of [8]) by combining two mechanisms. First, it fea-
tures a quiescent termination. In particular, any node terminates eventually, and at that
time no messages are in delivery towards that node anymore, nor will any message be sent
to that node after its termination. Secondly, the nodes terminate in order, so that the leader
is the last to terminate. This makes our algorithm easy to compose with the algorithm of [8],
by replacing the act of termination with the act of switching to the second algorithm. The
leader, which is the last to terminate the first algorithm, is the node that initiates the com-
putation of the scheme in [8] (i.e., it acts as the root), and at the time it sends its first mes-
sage, we are guaranteed that all other nodes have already switched to that algorithm.

As a matter of fact, quiescent termination could be relaxed when composing general
algorithms: If we have a bound r on the number of messages of the first algorithm that
might reach a node after it transitions to the second algorithm, we could still concatenate
any algorithm in an altered form where nodes send r + 1 copies of each message, and process
arriving messages in groups of r + 1 messages as well. However, this clearly leads to an
undesired r-fold increase in the message complexity of the composed algorithm.

On the other hand, our algorithm for non-oriented rings (Theorem 2) does not terminate
and cannot be composed with other algorithms. As mentioned above, we only require the
algorithm to reach quiescence in this case.

1.2 Related Work
Leader election is a fundamental task that has been studied by the distributed computing
community since the 1970s. Simple leader election algorithms for asynchronous rings were
proposed by Le Lann [28] and by Chang and Roberts [10]. These algorithms employ O(n2)
messages to ensure that all nodes yield to the node with the maximal ID, which becomes the
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leader. Later work [25, 14, 29] improved this down to O(n log n) messages. This complexity
is tight in asynchronous rings [7, 21]. In synchronous rings, leader election can be performed
by communicating only O(n) messages [21, 17].

For the case of anonymous rings, i.e., with identical nodes without IDs, Angluin [2]
proved that symmetry cannot be broken, and thus no leader election algorithm exists. Attiya,
Snir, and Warmuth [5] examined anonymous asynchronous rings further and characterized
computable tasks. In particular, they showed that many tasks, including ring orientation,
require communicating Ω(n2) messages. Attiya and Snir [4] gave tight bounds on the
complexities of randomized algorithms. Relaxed notions of ring orientation were given by
Attiya, Snir, and Warmuth [5], where the orientation is either consistent with all nodes
or alternating between any two neighbors, and by Syrotiuk and Pachel [31], where nodes
determine whether a majority agrees on the same orientation or not. Orienting a ring and
leader election when n is known to the nodes is presented by Flocchini et al. [19].

The question of termination in anonymous rings was explored by Itai and Rodeh [26],
who discovered that a network cannot compute its size n by a terminating algorithm. As a
consequence, a leader election algorithm that terminates is impossible, too, since it is trivial
to learn n once a leader is given. On the other hand, if the nodes know n or even an upper
bound on n, a randomized leader election algorithm that terminates exists [26]. Afek and
Matias [1] give various leader election algorithms that trade off knowledge, termination, and
number of sent messages.

Censor-Hillel, Gelles, and Haeupler [9] designed a content-oblivious BFS algorithm as
a pre-processing step for their distributed interactive coding scheme [23]. Building on that
idea, Censor-Hillel et al. [8] introduced the concept of content-oblivious computation and
proved that general computations are only possible over 2-edge connected networks. They
designed a compiler that converts any asynchronous algorithm into a content-oblivious one,
assuming a pre-existing leader. They also gave explicit algorithms for content-oblivious DFS,
ear decomposition, and (generalized) Hamiltonian cycle construction.

Computation with fully corrupted messages has been comparatively more studied in
the synchronous setting, where the presence or absence of a message in a given round can
still be used to send one bit of information [30]. A notable example is the Beeping model,
introduced by Cornejo and Kuhn [11], in which each message sent by a node is received by
all its neighbors, and nodes can only distinguish between receiving no message and receiving
at least one message. Among other problems, leader election has been studied in this setting
in a sequence of works [24, 20, 15, 12]. Similar to the fully defective setting, compilers were
devised for transforming algorithms with stronger communication primitives into algorithms
for the Beeping model [16, 3, 13].

1.3 Organization

Section 2 formally introduces the content-oblivious setting and some other notions and
notations. In Section 3 we give our leader election algorithm for oriented rings, deferring some
proofs to the full version of our paper [22]. Section 4 discusses non-oriented rings. In Section 5,
we discuss anonymous rings and design a randomized quiescently stabilizing algorithm with a
high probability of success for both electing a leader and orienting a non-oriented ring, with
some proofs deferred to the full version of our paper [22]. Our lower bound on the number
of messages sent by a content-oblivious leader election algorithm is presented in Section 6.
Section 7 concludes our work with a brief summary and suggests a few follow-up questions.
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2 Preliminaries

Notations. For an integer n, we denote the set {1, 2, . . . , n} by [n]. All logarithms are
binary. For a variable var and a node v, we let var [v] denote the value the variable var holds
at the node v. By the term with high probability we mean a probability of at least 1−n−O(1).

The content-oblivious computation model. Consider a distributed network G = (V, E)
with n = |V | nodes. We usually assume that each node v ∈ V is assigned a positive integer as
its (unless otherwise stated) unique ID, usually denoted by IDv ∈ N. We denote the largest
ID assigned to a node in the network by IDmax, that is, IDmax := maxv∈V IDv, and by ℓ

the node possessing this ID. Note that the subset of natural numbers that can be assigned
to the nodes is not restricted to [n]; it can be chosen arbitrarily, as long as it contains n

distinct IDs. Apart from the IDs, the nodes are identical. Algorithms are uniform by default,
i.e., the nodes neither know the size of the network n nor any bound on it; for non-uniform
algorithms, the nodes may be equipped with such knowledge.

In this paper, we consider rings, i.e., connected graphs where all nodes have degree 2.
Neighboring nodes communicate by sending messages to each other. We assume that all
messages are subject to corruption: the content of any message is completely erased by noise,
resulting in an empty message of length 0, which we call a pulse. Computations that ignore
any potential content of a message and thus work only with pulses are called content-oblivious.

Further, the network is asynchronous: the time it takes a pulse to travel through a
channel and arrive at its end is unpredictable; the delays are unbounded but always finite.
Pulses cannot be dropped or injected by the channel. In such an asynchronous network,
the nodes possess neither a common clock nor any notion of time, and they are assumed
to be event-driven. This means that a node may act once right in the beginning of the
computation and from then on only upon receiving a pulse. As a function of its own ID, the
previously received pulses, and possibly its own source of randomness, it can then change its
state and, for each connected channel, send any number of pulses. Most of our algorithms
are deterministic, except for the ones in Section 5, where we consider a special case where
nodes do not have IDs and use randomness in order to generate them. We say that an
algorithm terminates (sometimes also referred to as process termination, explicit termination,
or termination detection in the literature) if for each node there is a time at which it has
decided on an output and entered a terminating state. Once in a terminating state, a node
ignores all incoming pulses and does not send any new ones. We say that an algorithm
has quiescent termination if at the time the last node terminates it is guaranteed that no
pulses are still in transit. An algorithm’s message complexity is the total number of messages
(pulses) it sends during a worst-case computation until all nodes have terminated or until
the network has reached quiescence.

Ring’s orientation. In a ring, each node communicates with its two neighbors via Port0
and Port1. Consider a pulse re-sent from Port1 by every node receiving it. If such a pulse
passes through all edges (i.e., is never reflected by a node with misaligned ports), we call the
ring oriented and the pulse clockwise (CW). Port1 of each node is then called its CW port,
leading to its CW neighbor. Counterclockwise (CCW) is defined analogously via Port0. Note
that CW pulses are sent from CW ports but arrive at CCW ports, and vice versa.

However, rings may not be oriented to begin with. In a non-oriented ring, there is no
guarantee that Port0 and Port1 of a node are aligned with a clockwise or counterclockwise
walk on the ring. See Fig. 1 for a demonstration. Algorithms for non-oriented rings must
work correctly for all assignments of the nodes’ ports. In this case the CW/CCW direction is
local per node, and we will use the notion of Port0 and Port1 to avoid confusion.

DISC 2024
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Figure 1 An oriented ring (left) and a non-oriented one (right).

3 Leader Election in an Oriented Ring

In this section, we consider the problem of electing a leader in an oriented ring of size
unknown to the nodes. Recall that in the leader election task, nodes are required to terminate
with an output: Leader or Non-Leader, where a single node ℓ ∈ V outputs Leader, while all
other nodes must output Non-Leader. We design an algorithm to elect a leader that features
quiescent termination and prove the following.

▶ Theorem 1. There is a quiescently terminating content-oblivious algorithm of message
complexity n(2 · IDmax + 1) that elects a leader in oriented rings of n nodes with unique IDs.

For the algorithms in this section, we will use the following methods for sending and
receiving pulses. The method sendCW() sends one pulse over the CW channel. The method
recvCW() checks whether pulses are waiting in the CW incoming queue. If no pulse is in
the queue, the method returns 0. Otherwise, it consumes a single pulse from the queue
and returns 1. The methods sendCCW() and recvCCW() are the analogous CCW versions.
Moreover, for each node v, we introduce counters ρcw and σcw for the total number of received
and sent CW pulses, respectively. Likewise, we introduce ρccw and σccw for CCW pulses. We
assume each of the four methods above updates those counters with every received or sent
pulse. More precisely, every node v has variables ρcw[v] and σcw[v] initially set to 0. Every
time recvCW() processes a pulse from the queue of incoming pulses or sendCW() sends a pulse,
the counters increase according to ρcw[v]← ρcw[v] + 1 and σcw[v]← σcw[v] + 1, respectively.

3.1 Warm-up: Leader Election Without Termination
To demonstrate some of the main ideas of our algorithm, let us begin with a simple quiescently
stabilizing algorithm that uses only clockwise pulses and elects a leader in an oriented ring.
We emphasize that this algorithm is non-terminating. In this algorithm (see Algorithm 1),
each node starts by sending one pulse and then relays every received pulse in the same
direction, except for the single time when the number of received pulses reaches its own ID.
In this event, the node does not relay this one pulse and assigns itself the state of Leader, at
least temporarily. However, any pulses received after this are relayed again, and revert the
node to being a Non-Leader.

The main intuition behind this algorithm is that each node will eventually have sent and
received exactly IDmax pulses: n pulses are being generated at the initialization, and these
pulses keep circulating in the ring, increasing the counter of received pulses until some node
has received as many pulses as its ID. At this point, the node removes one pulse, and we are
left with n− 1 pulses in circulation. Except for the node with IDmax, every node will receive
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more pulses than its ID, ensuring it eventually becomes a follower. This continues until
all nodes, except the one with IDmax, have removed a single pulse from the circulation and
declared themselves followers. The last remaining pulse keeps circulating until all nodes have
received exactly IDmax pulses. As soon as the last node receives its IDmax-th pulse, it sets
itself as a leader and removes the last remaining pulse. Since the network no longer contains
any pulse, which we call quiescence, the states of the event-driven nodes remain unchanged
as well. Note, however, that nodes do not terminate since they do not know whether the
ring has achieved this quiescent state or not, i.e., whether some pulses are still in transit.

Algorithm 1 Quiescently Stabilizing Leader Election for Node v.

1: sendCW()
2: while true do
3: if recvCW() returns 1 then
4: if ρcw = IDv then
5: state← Leader
6: else ▷ v acts as a relay unless ρcw = IDv

7: state← Non-Leader
8: sendCW()

Even though Algorithm 1 does not terminate, analyzing it will help us design our
terminating leader election algorithm (Algorithm 2) later on. We begin by stating some key
invariants of Algorithm 1, used to show the algorithm’s correctness. Their proofs can be
found in the full version of the paper [22].

▶ Lemma 6. For every node v running Algorithm 1, the following invariants hold at the end
of each iteration of the main loop:
1. If ρcw < IDv, then σcw = ρcw + 1, i.e., v has sent exactly one pulse more than it has

received.
2. If ρcw ≥ IDv, then σcw = ρcw, i.e., v has sent exactly as many pulses as it has received.

▶ Lemma 7. Let ℓ be the node with IDℓ = IDmax. If ρcw[ℓ] ≥ IDℓ at some point, then ρcw[v] ≥
IDv holds for every node v at this point. That is, ℓ is the last node to satisfy ρcw[ℓ] ≥ IDℓ.

We now show that quiescence has been reached when ρcw[v] ≥ IDv holds for all nodes.

▶ Lemma 8. If ρcw[v] ≥ IDv holds at every node v, then the network is in quiescence.

Proof. By Lemma 2, we get that σcw[v] = ρcw[v] holds for all v; hence, the total number of
sent pulses is equal to the total number of received pulses. In particular, no pulses are in
transit (sent but not received). ◀

In fact, the converse is also true; that is, a necessary condition for quiescence is that
ρcw[v] ≥ IDv holds at every node v and becomes a relay.

▶ Lemma 9. If the network is in quiescence, then ρcw[v] ≥ IDv holds at every node v.

Proof. If there is quiescence, then
∑

v σcw[v] =
∑

v ρcw[v].
By Lemma 6, every node v has σcw[v] ≥ ρcw[v]. Assuming there is some bad node b with

ρcw[b] < IDb, then by Lemma 1, σcw[b] = ρcw[b] + 1. Therefore,
∑

v σcw[v] =
∑

v ̸=b σcw[v] +
σcw[b] ≥

∑
v ρcw[v] + 1, so this cannot occur. ◀

▶ Corollary 10. There is quiescence at some point of time if and only if each node v has
ρcw[v] ≥ IDv at that point of time.

DISC 2024



26:8 Content-Oblivious Leader Election on Rings

Proof. The corollary follows directly from Lemmas 8 and 9. ◀

Another equivalent statement to the ones in Corollary 10 is that every node has sent and
received exactly IDmax pulses.

▶ Lemma 11. In any execution of Algorithm 1, at any point of time, the following statements
are equivalent:
1. The network is in quiescence,
2. ∀v : ρcw[v] ≥ IDv, and
3. ∀v : ρcw[v] = σcw[v] = IDmax.

Proof. The first two statements are equivalent by Corollary 10.
Now, assuming ρcw[v] = IDmax holds for every v, then so does ρcw[v] ≥ IDv. Conversely,

assume ∀v : ρcw[v] ≥ IDv. By Lemma 7, the node ℓ with the largest ID is the last to satisfy
that inequality. After the iteration where this occurs for the first time, we have

ρcw[ℓ] = IDℓ = IDmax.

By the first equivalence, there is quiescence, and no more pulses are sent or received. Any
pulses that have been sent by a node u have been received by its neighbor v, that is, over all
CW edges (u, v), it holds that σcw[u] = ρcw[v].

Also, by Lemma 2, every node v has σcw[v] = ρcw[v]. As the network forms a ring,
combining those equations yields that ρcw[v] = σcw[v] = IDmax holds for every v. ◀

Given the above properties, we are ready to prove that certain interesting events occur in
every execution of Algorithm 1.

First, we show that the inequality ρcw[v] ≥ IDv is eventually satisfied by every v. Due to
the equivalences given by Lemma 11, this leads to a setting where quiescence is achieved,
and every node has sent and received exactly IDmax pulses.

▶ Lemma 12. In any execution of Algorithm 1, for every node v, there is some iteration,
where ρcw[v] ≥ IDv holds.

Proof. Let us track the evolution through time of B, the set of nodes that have not met the
condition yet; that is, at every point of time, for all b ∈ B, ρcw[b] < IDv.

Initially, B contains all nodes, each of which are removed upon meeting the condition.
Since a removed node never enters B again, |B| is monotonically decreasing.

Consider the point of time where |B| reaches a minimum, so B remains fixed. If |B| = 0,
then there is nothing to prove, so assume |B| > 0. At that time, maintain values ∆b :=
IDb − ρcw[b] > 0 for every b ∈ B.

By Lemma 1, for all b ∈ B, we have that σcw[b] = ρcw[b] + 1 always holds. Also, from
that point on, for every v /∈ B, we have σcw[v] = ρcw[v] by Lemma 2.

The number of pulses in transit2 at any given time is the difference between the total
number of sent and received pulses across all nodes. Therefore, since

∑
v σcw[v] =

∑
v ρcw[v]+

|B|, there are still |B| pulses in the network. Since the nodes outside B act as relays, they
maintain the number of pulses in transit and, in particular, never remove a pulse from the
network. Eventually, some node b ∈ B must receive a pulse, which decreases the difference ∆b

by one. If ∆b = 0, then b is removed from B, and |B| decreases beyond its minimum, a
contradiction. Otherwise, b forwards a pulse and the number of pulses in transit remains |B|,
so we can re-apply this argument. At some point, ∆b reaches 0 for some b ∈ B. Thus,
ρcw[b] ≥ IDb holds for b, and b is removed from B, again, a contradiction. ◀

2 Including pulses that are in some node’s queue, but were not processed yet.
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A result of Lemma 12, is that, eventually, all nodes send and receive exactly IDmax pulses,
and no further activity occurs on the network.

▶ Corollary 13. In any execution of Algorithm 1, at some point, every node has sent and
received exactly IDmax pulses, and the network reached quiescence.

Proof. By Lemma 12, there is an iteration, after which ρcw[v] ≥ IDv holds for all nodes v.
The statement then follows directly from Lemma 11. ◀

We also have the following trivial upper bound as a direct corollary.

▶ Corollary 14. In any execution of Algorithm 1, for every node v, at every point of time
ρcw[v] ≤ IDmax.

Proof. Immediate from Corollary 13 and the monotonicity of ρcw[v], which is initially 0. ◀

3.2 Leader Election With Quiescent Termination
Although Algorithm 1 is a quiescently stabilizing algorithm for leader election, more ideas
are needed in order to achieve this with quiescent termination. The main idea is to utilize
the CCW channel to notify all nodes when the leader is elected. The immediate approach
would be to leverage the event ρcw[v] = IDv, which signifies the successful election once it
happens at the node with maximal ID. However, this is impossible, since the same event also
occurs for every other node before the election process has finished.

To be able to detect termination, we require an event that occurs uniquely for the leader,
and never for other nodes. If we managed to run Algorithm 1 over the CCW channel after a
full execution of the same algorithm over the CW channel, then, by symmetry, all nodes would
eventually receive IDmax many CCW pulses. In this scenario, the event ρcw[v] = IDv = ρccw[v]
would, in fact, be unique to the node with the largest ID. Indeed, an initial full execution of
Algorithm 1 over the CW channel guarantees that all other nodes have ρcw[v] > IDv prior to
exchanging CCW pulses, so the above event occurs uniquely at the leader and could be used
as the trigger for termination.

The main remaining difficulty is that we cannot start the CCW algorithm after the CW
one is done since neither the leader nor any other node can infer that the CW algorithm
has stabilized purely from the number of CW pulses received. We overcome this obstacle by
running both algorithms in parallel, ensuring that the CCW one lags behind the CW one.
By subtly prioritizing the execution of the CW algorithm over that of the CCW one, we
enforce that once ρccw[v] = IDv occurs for some Non-Leader node, we already have ρcw[v] >

IDv. Then, the only node v satisfying ρcw[v] = IDv = ρccw[v] is the elected leader. It is the
uniqueness of all IDs, crucially including IDmax, that enables this approach.

The complete algorithm with quiescent termination is given in Algorithm 2. It contains
two instances of Algorithm 1: one over the CW channel (lines 3–8) and one over the CCW
channel (lines 9–13). The CW instance starts, as before, upon initialization, while the CCW
instance starts at node v once it reaches the ρcw[v] = IDv event in the CW instance. This
guarantees that the CCW instance lags behind the CW one. Finally, the last part of the
algorithm (lines 14–17) is executed once the condition ρcw[v] = IDv = ρccw[v] is observed
to be true, which happens only for the leader. At this point, all the nodes have ρcw and
ρccw set to IDmax, and the leader was the last node for which this event occurred, triggering
the following termination process: the leader sends a single CCW pulse. Any node receiving
this extra pulse sees, for the first time, ρccw > ρcw, forwards the pulse and terminates
(Algorithm 2). The extra pulse is forwarded until it returns to the leader, causing it to
terminate without forwarding the pulse. The analysis of Algorithm 2 is deferred to the full
version of the paper [22] due to the space constraints.
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Algorithm 2 Quiescently Terminating Leader Election for Node v.

1: sendCW()
2: repeat
3: if recvCW() returns 1 then ▷ Run Algorithm 1 over the CW channel
4: if ρcw = IDv then
5: state← Leader
6: else
7: state← Non-Leader
8: sendCW()
9: if ρcw ≥ IDv then ▷ Run Algorithm 1 over the CCW channel, once ρcw ≥ IDv

10: if σccw = 0 then sendCCW() end if
11: if recvCCW() returns 1 then
12: if ρccw ̸= IDv then
13: sendCCW()
14: if ρcw = IDv = ρccw then ▷ Initiate a termination pulse
15: sendCCW()
16: while recvCCW() returns 0 do
17: pass ▷ Wait for return of termination pulse
18: until ρccw > ρcw
19: output state

4 Leader Election in Non-Oriented Rings

A natural follow-up question to the above leader election algorithm in oriented rings is
whether the same holds for non-oriented rings. In this setting, nodes do not possess a
predefined CW channel and CCW channel anymore. Instead, they have two ports, Port0 and
Port1, connecting them to their two neighbors in an arbitrary order.

The straightforward approach would be to first orient the ring with a quiescently termi-
nating algorithm and then use our leader election algorithm from Section 3. Since orienting
the ring is easy with leader elected by quiescent termination, orientation and leader election
are essentially equivalent tasks from the perspective of quiescently terminating algorithms.

In this section, we instead present a quiescently stabilizing algorithm for non-oriented
rings, which both elects a leader and orients the ring. Recall that the difference from quiescent
termination is that the nodes do not need to terminate explicitly; it suffices for all pulse
activity to cease with the correctly computed output still present. Recall our main theorem
for this part.

▶ Theorem 2. There is a quiescently stabilizing content-oblivious algorithm of message
complexity n(2 · IDmax + 1) that elects a leader and orients a non-oriented ring of n nodes
with unique IDs.

We emphasize again that this algorithm does not terminate in the usual sense. Instead,
its success is defined as reaching quiescence while guaranteeing that at that time only a
single node has set its internal state to Leader, while all other nodes have set their state to
Non-Leader. Additionally, we require that nodes achieve a consistent orientation of the ring
as follows: each node has to label exactly one of its two ports as the port leading to the CW
neighbor such that starting at some node and repeatedly moving to node connected to CW
port lets us pass through all edges in the ring.
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For ease of exposure, we first present an algorithm of slightly worse complexity but
whose analysis is almost fully captured by results from earlier sections. We then improve its
complexity by proving an additional property about Algorithm 1, our main building block
for our algorithm for non-oriented rings (Algorithm 3). Namely, we show that executing
Algorithm 1 on a ring with non-unique IDs essentially achieves the same guarantees as
when used on a ring with unique IDs (Lemma 16). This observation allows us to halve the
complexity of Algorithm 3, as we shall see, and also has implications for solving the same
tasks on anonymous rings with access to randomness. As this extension to anonymous rings
is a minor effort and follows from standard techniques, we defer it to Section 5.

Algorithm overview. At a high level, Algorithm 3 consists of two parallels executions of
Algorithm 1, each one using each channel in the ring in a single direction. For an intuition
of how that is possible, consider a setting where the network has a single pulse in transit.
Suppose that all nodes execute the same algorithm that sends a pulse on Port1 whenever one
is received on Port0, and vice versa. Forwarding the pulse in this manner has it travel the
entire ring, since every time a pulse is received by a given node v from one of its neighbors,
it is sent to its other neighbor. If adding another pulse going in the other direction to the
network, the two pulses independently travel around the ring in opposite directions. The
nodes can thus effectively run two algorithms in parallel without them interfering with one
another, as long as one only works with clockwise pulses and the other with counterclockwise
pulses. As Algorithm 1 only uses pulses going in one direction, it satisfies this requirement.
The major caveat is that the nodes cannot be certain which of the two algorithms they
execute is working with clockwise pulses and which is working with counterclockwise pulses.

Our algorithm has essentially two parts: one in which the node reacts to pulses and
possibly forwards them (Lines 5 to 7), and one in which it computes its output depending on
the number of pulses it received from each port (Lines 8 to 16). From the point of view of
analyzing how many pulses are eventually sent in the network, only the first part is relevant.
It is the part that simulates two executions of Algorithm 1. For the nodes to settle on a
consistent ring orientation in the second part, we break symmetry between the two options
by having strictly more pulses sent in one orientation of the ring than in the other.

We distinguish the two parallel executions of Algorithm 1 by having each node v pick
two distinct virtual IDs for itself, ID(0)

v and ID(1)
v (Algorithm 3). ID(1)

v affects how v behaves
regarding pulses received from its Port0, and symmetrically for ID(0)

v and Port1. While nodes
do not know which of their two virtual IDs is used in the clockwise or counterclockwise
execution of Algorithm 1, they use a distinct ID in both executions. Eventually, in each
direction, the number of pulses received by each node stabilizes to the largest ID in that
direction. The choice of IDs ensures that the two parallel executions have distinct largest
IDs, so eventually all nodes see strictly more pulses being sent in one direction than the
other. This allows nodes to agree on a common orientation of the ring, and elect as leader
the node who was the source of the largest ID.

The nodes use the following methods for sending and receiving pulses. Let i ∈ {0, 1}.
1. sendPorti(): sends a pulse through Porti,
2. recvPorti(): check whether a pulse is waiting in the incoming queue of Porti. If not,

return 0. Otherwise, consume a single pulse from the queue and return 1.

▶ Proposition 15. Algorithm 3 elects a leader and consistently orients the ring using
n(4IDmax − 1) pulses. It achieves quiescence but does not terminate.
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Algorithm 3 Quiescently Stabilizing Leader Election on Non-Oriented Rings for Node v.

1: for i ∈ {0, 1} do
2: ID(i)

v ← 2 · IDv − 1 + i

3: sendPorti()
4: while true do
5: for i ∈ {0, 1} do
6: if recvPort1−i() returns 1 and ρ1−i ̸= ID(i)

v then
7: sendPorti() ▷ Pulses received at one port are sent forward at the opposite one
8: if max(ρ0, ρ1) ≥ ID(1)

v then
9: if ρ0 = ID(1)

v and ρ1 < ID(1)
v then

10: state ← Leader
11: else
12: state ← Non-Leader
13: if ρ0 > ρ1 then
14: name Port0 := CCW and Port1 := CW ▷ Port0 connects the CCW neighbor
15: else
16: name Port0 := CW and Port1 := CCW

Proof. Consider ℓ, the node of largest ID. We define as clockwise the direction of a pulse sent
from ℓ’s Port1 and forwarded by all other nodes (i.e., sent from Porti after arriving at Port1−i).
We call the ports sending such a pulse clockwise, and those receiving it counterclockwise. We
show the our algorithm elects ℓ as a leader and all nodes declare the correct port as clockwise.

We show that the network eventually achieves quiescence and all nodes receive the same
number of clockwise and counterclockwise pulses. Let us argue this for clockwise pulses; the
property for counterclockwise pulses will follow by symmetry. For every node v whose Port1
connects it to its clockwise neighbor, let us rename sendPort1() to sendCW() and recvPort0()
to recvCW() in its code. Let us also define IDcw

v = ID1
v for such nodes. For the other nodes,

which are connected to their clockwise neighbors through Port0, rename sendPort0() to
sendCW() and recvPort1() to recvCW() in their code, and let IDcw

v = ID0
v. We emphasize that

this renaming is done purely for our analysis and is not an operation performed by the nodes,
which are oblivious to what the clockwise direction is. Consider an execution of Algorithm 3.
Whenever the scheduler delivers a clockwise pulse, this pulse is read by a recvCW() method,
and if forwarded (which depends on IDcw

v ), it is re-sent by a sendCW() method, according
to our renaming. Other methods are never activated by clockwise pulses and never emit a
clockwise pulse. As such, Algorithm 3 executes the exact same code on clockwise pulses as
Algorithm 1 and thus has the same guarantees as Algorithm 1 regarding clockwise pulses.
By Corollary 13, this means that we achieve quiescence for clockwise pulses, with all nodes
eventually having sent and received exactly the same number maxv IDcw

v of clockwise pulses.
The same holds symmetrically for maxv IDccw

v pulses counterclockwise pulses per node, where
IDccw

v is defined similarly to IDcw
v .

Since ℓ picks as identifiers 2 · IDmax and 2 · IDmax − 1 for the two directions, we have
maxv IDcw

v = 2 · IDmax and maxv IDccw
v = 2 · IDmax − 1. Hence, all nodes have sent and

received 2 · IDmax clockwise pulses and 2 · IDmax − 1 counterclockwise pulses. This yields a
bound of n(4 · IDmax − 1) pulses, ensuring a consistent orientation according to the test on
Algorithm 3. ◀
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Improving the message complexity. We now show how to improve the complexity of
Algorithm 3 to n(2 · IDmax + 1). Since nodes send pulses according to their IDs, Algorithm 3
effectively doubles the number of pulses sent by the algorithm. To avoid this doubling,
one can generate the two IDs in a different manner; for instance, ID(1)

v ← IDv + 1, and
ID(0)

v ← IDv. However, this leads to assigning the same ID to multiple nodes. We argue that
Algorithm 3 works correctly even when IDs are not unique as long as the largest clockwise
and counterclockwise IDs are different. To that goal, we need to re-analyze Algorithm 1 in
such case, which we do in the next two technical lemmas.

▶ Lemma 16. Corollary 13 still holds if nodes run Algorithm 1 with non-unique IDs. This
includes the case in which multiple nodes v have IDv = IDmax.

Note that Lemma 16 is about Algorithm 1, the implicit main subroutine of Algorithm 3,
not Algorithm 3 itself. Most elements of the proof of Corollary 13 make no reference to the
node of largest ID. Most importantly, the invariants of Lemma 6 (that σcw[v] = ρcw[v] + 1
while ρcw[v] < IDv, and σcw[v] = ρcw[v] once ρcw[v] ≥ IDv) are consequences of how each node
reacts to the pulses it receives, and changing the distribution of IDs does not change that.
Lemma 7, however, makes an explicit reference to a node of largest ID, which requires us to
change the argument somewhat. Lemma 17, which we shall now prove, generalizes Lemma 7
to the setting with non-unique IDs.

clockwise
xi+1,ki+1

xi,1

xi−1,2

xi−1,1

xi,2xi,3

vi
vi−1

Figure 2 The naming of nodes between nodes of largest ID in the proof of Lemma 17.

▶ Lemma 17. Consider the set of nodes of largest ID, Vmax = {v : IDv = IDmax}. In
Algorithm 1, if ρcw[v] ≥ IDv for all v ∈ Vmax at some point, then ρcw[v] ≥ IDv holds for every
node v at this point. That is, one of the nodes in Vmax is the last node to satisfy ρcw[v] ≥ IDv.

Proof. Let m = |Vmax| be the number of nodes that hold IDmax. Denote these nodes
v1, . . . , vm, ordered clockwise from an arbitrary one of them. Let us identify vm+1 = v1 for
ease of notation. For each i ∈ [m], let ki ∈ {0, . . . , n − 1} be the number of consecutive
nodes with IDv < IDmax preceding vi in the ring. For each j ∈ [ki], let xi,j be the node j

counterclockwise hops from vi in the ring. See Figure 2 for an illustration.
We show that if ρcw[vi] ≥ IDvi holds at vi, then it also holds at all xi,j , j ∈ [ki]. Since

every node v ̸∈ Vmax has a node of largest ID in its clockwise direction later in the ring, this
implies that when ρcw[v] ≥ IDv holds at all vi ∈ Vmax, it also holds at every node v ∈ V .

Consider vi ∈ Vmax s.t. ρcw[vi] ≥ IDvi
= IDmax. Suppose ki > 0, as otherwise the

result is trivial. Let xi,0 = vi. For each j ∈ [0, ki), we show that ρcw[xi,j ] ≥ IDmax implies
ρcw[xi,j+1] ≥ IDmax. As the base case ρcw[xi,0] = ρcw[vi] ≥ IDmax holds, we get our result by
induction. Let j ∈ [0, ki) and suppose ρcw[xi,j ] ≥ IDmax. Since ρcw[xi,j ] ≤ σcw[xi,j+1], we
have that σcw[xi,j+1] ≥ IDmax. Since IDmax > IDxi,j+1 , by Lemma 6, it needs to hold that
ρcw[xi,j+1] = σcw[xi,j+1]. Therefore, ρcw[xi,j+1] ≥ IDmax. ◀

Equipped with Lemma 17, the proof of Lemma 16 follows quite naturally.
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Proof of Lemma 16. Let us review the proof of Corollary 13, and see which elements of it
could be affected by multiple nodes having the same ID. Let Vmax = {v : IDv = IDmax} be
the set of nodes of largest ID.

As already stated, the invariants of Lemma 6 still hold, and arguments relying on Lemma 7
must be amended to rely on Lemma 17 instead. Lemmas 8 and 9 and Corollary 10, about
how the network is in quiescence if and only if each node v has received (and, by Lemma 6,
also sent) at least IDv pulses, are immediate consequences of Lemma 6, and hence still hold.

We now get to Lemmas 11 and 12, which are two lemmas from which Corollary 13 follows
most directly. Lemma 11 shows equivalences between three properties: quiescence, that
ρcw[v] ≥ IDv at each v, and that ρcw[v] = σcw[v] = IDmax at each v. Again, the arguments
still hold if IDs are not unique: the connection between quiescence and all nodes satisfying
ρcw[v] ≥ IDv was shown in Corollary 10; while some node v ∈ Vmax has received less than
IDmax pulses, the network is not in quiescence; for all nodes in Vmax to have received IDmax
pulses, other nodes in the network need to have sent this many pulses, which implies they
have also received IDmax pulses.

Lemma 12 shows that the network cannot permanently remain in a state in which some
nodes have ρcw[v] < IDv. The argument again does not rely on the uniqueness of the IDs,
and only uses that if some non-empty set B of nodes satisfies ρcw[v] < IDv for each v ∈ B,
then since for those nodes σcw[v] = ρcw[v] + 1 (Lemma 6) the network has pulses still in
transit. These pulses must eventually reach nodes in B, increase the number of received
pulses ρcw of nodes in it, and eventually to the point that for a node in B, ρcw[v] ≥ IDv.

Put together, the whole argument still holds with non-unique IDs. ◀

The proof of our second main theorem is a corollary of the above.

Proof of Theorem 2. Let us modify Algorithm 3 as follows:
In Algorithm 3, we set as IDs ID(1)

v ← IDv + 1, and ID(0)
v ← IDv.

Similar to the argument in the proof of Proposition 15, this amounts to running two parallel
instances of Algorithm 1 over each channel. As in that proof, consider the maximal clockwise
and counterclockwise IDs, maxv IDcw

v = IDmax +1 and maxv IDccw
v = IDmax. From Lemma 16,

we know that the number of clockwise pulses sent and received by each node eventually
stabilizes at IDmax + 1, and similarly stabilizes at IDmax for the counterclockwise direction.
This results in a single leader being elected and a consistent orientation as before. The upper
bound of n(2IDmax + 1) follows from n(IDmax + 1) pulses being exchanged in one direction,
and n · IDmax in the other. ◀

5 Anonymous Rings

In this section, we consider the setting where a ring consists of n identical nodes without
IDs, each with access to its own independent source of randomness. We call such a ring
anonymous. As is standard in the literature about randomized algorithms, we aim to solve
our computational task with high probability, defined as bounding the probability of failure
by an arbitrary negative power of the network size n. That is, we present an algorithm
parameterized by a value c > 0, such that for any n, the algorithm correctly elects a leader
in rings of size n with probability at least 1−O(n−c). Our algorithm also correctly orients a
non-oriented ring with high probability.

Similar to other sections of this paper, proofs omitted from this section can be found in
the full version of this paper [22].
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As alluded to in the introduction, electing a leader with quiescent termination is impossible
under the assumptions of this section, even if we relax the objective to succeed with only
some arbitrary small constant probability. This follows from a negative result by Itai and
Rodeh [26, Thm. 4.1] about counting the number of nodes in an anonymous ring because
computing this number is easy in a ring with an elected leader. Consequently, we only aim
for a quiescently stabilizing algorithm.

As in Section 4, observe that despite assuming the uniqueness of all IDs in Section 3.1 to
elect the node with the largest ID, the task remains well-defined even if only the largest ID is
unique. Lemma 16 showed that on a ring with possibly non-unique IDs, Algorithm 1 elects
as leader all nodes v such that IDv = IDmax. Hence, if a single node satisfies IDv = IDmax, a
single leader is elected. Algorithm 3 is simply two parallel executions of Algorithm 1. As
we already showed in the proof of Theorem 2, those two parallel executions still yield the
desired result as long as the maximal ID in the two executions is unique. Hence, providing
an algorithm for sampling IDs with the guarantee that the maximal ID is unique with high
probability is sufficient to obtain a variant of Theorem 2 for anonymous rings.

We outline in Algorithm 4 a process by which nodes can utilize their access to randomness
to sample random IDs with the guarantee that, with high probability, the maximal ID
is unique and of order nO(1). The algorithm terminates quiescently – in fact, it uses no
communication – enabling composition: any algorithm can be performed afterwards with
the sampled IDs. As a result, with high probability, the anonymous setting reduces to the
one considered in Lemma 16. As explained previously, such an algorithm for sampling IDs
immediately implies the following result.

▶ Theorem 3. There is a content-oblivious algorithm of complexity nO(1) that elects a leader
and orients an anonymous ring of n nodes, each with access to its own source of randomness,
with high probability. The algorithm reaches quiescence but does not terminate.

At a high level, the algorithm for sampling IDs has each node first sample the number of
bits in its ID from a geometric distribution with parameter p = 2−1/Θ(c) before sampling
said bits uniformly at random. While each ID is of expected length Θ(c) and value 2Θ(c) at
the end of this process, the maximal ID is of length Θ(c2 log n) and value nΘ(c2), with high
probability. See [6]. Intuitively, while sampling a large ID is an unlikely event, this unlikely
event becomes more and more likely to occur somewhere in the network as the network
grows. Similar ideas have previously appeared in the literature, e.g., in [1, 18].

Algorithm 4 Message-Free Algorithm for Sampling an ID of Order nO(c2) for Node v, c > 0.

1: p← 2−1/(c+2)

2: Sample BitCount ∼ Geo(1 − p), i.e., according to the geometric distribution with
parameter 1− p

3: Sample IDv uniformly at random from {0, 1}BitCount

▶ Lemma 18. For any constant c > 0, with high probability, running Algorithm 4 in an
anonymous ring of n nodes assigns each one an ID of size nO(c2) such that the maximal ID
is attained uniquely by one node and is at least nΩ(c).

Proof sketch. Each node has a probability of px to have their BitCount variable exceed some
value x. With x ∈ Θ(logp n), this probability is of order 1/ poly(n). Doing a union bound
over all nodes, we get that with high probability, all nodes’ BitCount variables stay below
some value x ∈ Θ(logp n). It follows that the largest ID is of order at most poly(n). Since
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nodes do their sampling independently, the probability that all nodes’ BitCount variables
stay below some value x is (1− px)n. For x ∈ Θ(logp n), this is 1/ poly(n). As a result, at
least one node’s BitCount variable exceeds Θ(logp n), with high probability. Such nodes
then sample their random bits uniformly at random from poly(n) choices, which makes a
collision at the highest value very unlikely. ◀

The proof of Theorem 3 follows immediately from Lemma 18.
Finally, we note that a slight modification of Algorithm 3 would also allow us to sample a

unique ID for each node (Proposition 19), with high probability. As a result, the three settings
of (1) the anonymous ring, (2) the ring with a leader, and (3) the ring with unique IDs and
an orientation, are crucially separated by the possibility of quiescent termination. Leader
election, orienting the ring, and assigning unique IDs can all be computed in setting (1).
However, they can only be done without termination, while in settings (2) and (3), the same
tasks and more can be performed with quiescent termination.

▶ Proposition 19. Let IDv be the ID sampled by nodes in Algorithm 4, before running
Algorithm 3. Modify Algorithm 3 so that whenever a node receives a pulse, if min(ρ0, ρ1) > IDv,
node v updates its ID to a new ID sampled uniformly at random between 1 and min(ρ0, ρ1)−1.
Then, with high probability, all nodes have distinct IDs when reaching quiescence.

6 Lower Bound on Message Complexity in Content-Oblivious Rings

In this section, we show that the dependency of the message complexity of our algorithms
on IDmax is natural and inevitable by providing a lower bound showing that the number of
pulses sent increases indefinitely with the number of available IDs.

▶ Theorem 20. Let k and n be arbitrary positive integers, k ≥ n. If k distinct IDs are
assignable to the n nodes of the ring, at least n⌊log(k/n)⌋ pulses are sent by any leader
election algorithm for some assignment of IDs. In particular, an unbounded number of pulses
is sent for an infinite supply of IDs even on rings with just a single node.

The proof of this theorem makes use of the following definition.

▶ Definition 21 (Solitude pattern). Consider a ring with a single node (n = 1), and fix a
specific algorithm. Assume a scheduler that delivers pulses one by one, keeping the order in
which they were sent (breaking ties by prioritizing CW pulses). Define the solitude pattern
as the sequence of incoming pulses observed by the node, encoded as a binary string where 0
and 1 encode CW and CCW pulses, respectively. We denote the solitude pattern of a node
with ID = i by pi.

Besides this crucial definition, we make use of the following lemma telling us that each ID
has its own, unique solitude pattern. Essentially, the proof relies on matching all possible
pairs of IDs against each other in a ring of two nodes. If any two IDs had the same solitude
pattern, they would send and receive pulses in this ring (n = 2) exactly as they would in
solitude (n = 1). Thus, in one of these execution they give an invalid output.

▶ Lemma 22. For any uniform content-oblivious leader election algorithm, each solitude
pattern is unique. In other words, for any pair of distinct IDs i ̸= j, we have pi ̸= pj.

Proof. Fix a content-oblivious leader election algorithm on uniform rings. Seeking contradic-
tion, assume that two nodes with distinct IDs, i ̸= j, have the same solitude pattern, pi = pj .
Note that each of these nodes outputs Leader when run in isolation (n = 1).
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Consider a ring with n = 2 nodes, which are assigned the IDs i and j, respectively.
Assume a scheduler behaving the same way as in the definition of a solitude pattern for
each node individually. That is, pulses arrive one by one in the order they were sent out.
Moreover, we assume that the same delay is applied to all pulses. Since the two nodes’
solitude patterns are identical, and the scheduler maintains order, each node will receive
(and thus generate) exactly its solitude pattern. Indeed, since pi = pj , both nodes send their
first pulse in the same direction, and hence both receive it from the same direction as they
would when alone and then send their next pulse accordingly; thus both receive and send
exactly the pattern pi = pj . This means that both nodes output Leader as they must in their
solitude situation, contradicting the guarantees of the leader election task. ◀

Having established that each ID has its own unique solitude pattern, a lower bound arises
from properties of binary strings, namely the length required to avoid repeating patterns.
We begin with the following simple property following from the pigeon-hole principle.

▶ Lemma 23. For any s, n ≥ 1, any set of n2s distinct binary strings contains n strings
sharing a common prefix of length at least s.

Proof. Let s and n be positive integers. There are only 2s − 1 distinct binary strings shorter
than s. Therefore, in a set of n2s distinct binary strings at least n2s − 2s − 1 = (n− 1)2s + 1
of them have length at least s, implying that they contain a prefix string of length s. There
are only 2s distinct binary prefixes of length s, thus the pigeon-hole principle implies that at
least one prefix of length s is shared by at least ⌈((n− 1)2s + 1)/2s⌉ = ⌈n− 1 + 2−s⌉ = n of
the strings in the set. ◀

After deducing another corollary, we are ready to prove the lower bound of Theorem 20.

▶ Corollary 24. For any integers k ≥ n ≥ 1, any set of k distinct binary strings contains n

strings sharing a common prefix of length at least ⌊log(k/n)⌋.

Proof. Apply Lemma 23 with the given n and s = ⌊log(k/n)⌋. Note that the given set is
large enough since n2s ≤ n2log(k/n) = n(k/n) = k. ◀

Proof of Theorem 20. Assume that we have a uniform leader election algorithm, a ring
with n nodes, and at least k assignable IDs for any positive integers k ≥ n. Due to Lemma 22
we know that each ID has its own unique solitude pattern, which is just a binary string.
By Corollary 24, there are at least n IDs whose solitude patterns share a common prefix of
length s = ⌊log(k/n)⌋. Assume a scheduler that behaves as described in Lemma 22, for all
n nodes. It follows that all nodes send and receive pulses in exactly the same way as in their
respective solitude situations for the first ⌊log(k/n)⌋ time steps, sending one pulse in each
time step. Consequently, at least n · s = n⌊log(k/n)⌋ pulses are sent in total, proving the
first part of the theorem. The last statement in the theorem follows for an infinite set of
assignable IDs because n⌊log(k/n)⌋ grows indefinitely with increasing k, even for n = 1. ◀

Theorem 4 is then an immediate corollary of the above since the number of distinct IDs
is bounded by IDmax. This lower bound complements the upper bound of Theorem 1 and
proves that the IDmax term is not an artifact of our analysis or algorithm design but, rather,
an inherent property of the problem in this setting.
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7 Conclusion and Open Questions

As our main result, we have presented a quiescently terminating algorithm for leader election
in oriented rings with unique IDs that communicates n(2 · IDmax + 1) pulses. This implies
that any content-oblivious computation can be performed on rings without assuming a pre-
existing leader. We have also provided a lower bound showing that the message complexity
depending on IDmax is not a fluke but inherent to the problem.

An immediate candidate for future work is to extend our results from rings to general
networks, i.e., to design a content-oblivious leader election algorithm in arbitrary 2-edge
connected networks or, alternatively, prove this task impossible. Considering non-oriented
rings may be useful towards that goal since there is no sense of direction in general networks.
Our content-oblivious leader election for non-oriented rings does not terminate, and we
conjecture that this is inherent to the model. It remains as an open task for future work to
prove this or find a terminating algorithm.
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