Sorting in One and Two Rounds Using
t-Comparators

Ran Gelles =

Bar-Ilan University, Ramat Gan, Israel

Zvi Lotker =

Bar-Ilan University, Ramat Gan, Israel

Frederik Mallmann-Trenn &
King’s College London, UK

—— Abstract

We examine sorting algorithms for n elements whose basic operation is comparing ¢ elements

simultaneously (a t-comparator). We focus on algorithms that use only a single round or two
rounds — comparisons performed in the second round depend on the outcomes of the first round
comparators. Algorithms with a small number of rounds are well-suited to distributed settings in
which communication rounds are costly.

We design deterministic and randomized algorithms. In the deterministic case, we show an
interesting relation to design theory (namely, to 2-Steiner systems), which yields a single-round
optimal algorithm for n = 2 with any k > 1 and a variety of possible values of t. For some values
of ¢, however, no algorithm can reach the optimal (information-theoretic) bound on the number of
comparators. For this case (and any other n and t), we show an algorithm that uses at most three
times as many comparators as the theoretical bound.

We also design a randomized Las-Vegas two-round sorting algorithm for any n and t. Our
algorithm uses an asymptotically optimal number of O(max("f#, %)) comparators, with high
probability, i.e., with probability at least 1 —1/n. The analysis of this algorithm involves the gradual
unveiling of randomness, using a novel technique which we coin the binary tree of deferred randomness.

2012 ACM Subject Classification Theory of computation — Sorting and searching; Mathematics of
computing — Probabilistic algorithms; Theory of computation — Distributed algorithms

Keywords and phrases Sorting, Steiner-System, Round Complexity, Deferred Randomness
Digital Object ldentifier 10.4230/LIPIcs.DISC.2024.27
Related Version The full version of this work is available in: arXiv:2405.12678 [18]

Funding Ran Gelles: Research supported in part by the United States-Israel Binational Science
Foundation (BSF) through Grant No. 2020277.
Frederik Mallmann-Trenn: Was funded by the EPSRC grant EP/W005573/1.

Acknowledgements R. Gelles would like to thank Paderborn University and CISPA — Helmholtz
Center for Information Security for hosting him while part of this research was done. The authors

would also like to thank the anonymous reviewers for multiple helpful comments.

1 Introduction

Sorting has been a fundamental task for computers (and earlier electronic devices) since
the inception of computer history [24, 13]. Many sorting algorithms are comparison-based,
meaning that there exists some device that compares pairs of elements and decides which of
them is the larger. By comparing multiple pairs, one can obtain a full order of all elements.
It is well known that if pairs are being compared, ©(nlogn) comparisons are needed in order
to fully sort any possible set of n elements. Such sorting, however, assumes one can apply

© Ran Gelles, Zvi Lotker, and Frederik Mallmann-Trenn;

licensed under Creative Commons License CC-BY 4.0
38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 27; pp.27:1-27:20

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:ran.gelles@biu.ac.il
https://orcid.org/0000-0003-3615-3239
mailto:zvi.lotker@biu.ac.il
https://orcid.org/0000-0002-3759-5584
mailto:frederik.mallmann-trenn@kcl.ac.uk
https://orcid.org/0000-0003-0363-8547
https://doi.org/10.4230/LIPIcs.DISC.2024.27
https://arxiv.org/abs/2405.12678
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2

Sorting in One and Two Rounds Using t-Comparators

comparisons in an adaptive manner, i.e., one can determine which pairs of elements to compare
next based on results of previous comparisons. It is not too difficult to see that without this
adaptive selection of elements, (n?) comparisons are needed (see also Lemma 4 below).

In contrast to general-purpose CPUs, which allow fast comparison of two elements, spe-
cialized hardware that can be found in system-on-a-chip systems and GPUs, allows compar-
ing larger sets of elements. Motivated by the above, in this work we explore sorting algo-
rithms that use t-comparators. These blocks allow ¢ elements to be compared simultaneously
to determine their total order, rather than comparing them in pairs. Our initial focus is on
deterministic, non-adaptive sorting algorithms where all comparisons are pre-determined
and independent of prior outcomes. Additionally, we consider randomized algorithms with a
limited degree of adaptiveness. In particular, we design sorting algorithms with two rounds,
where the second round can use the comparison outcomes from the first round. In both cases,
our goal is to minimize the number of t-comparators used.

To further motivate the case of sorting with ¢-comparators (¢-sorting) in a single round,
consider the following scenario, which is very common in the Computer Science community.
A conference program committee (PC) is set to decide on the ranking of the n submitted
papers. Let us assume that there is an “absolute truth”, namely, that there exists a total
ordering of the papers, and that each PC member outputs the “true” ordering of any number
of papers assigned to them.! To balance out the load, the papers are split so that each PC
member receives ¢t papers. Note that the same paper can be sent to multiple PC members.
Each PC member, individually, returns to the chair the total order of the set of papers
assigned to them. The chair collects all these outputs and composes a total ordering of the n
papers, that is consistent with all the partial sets. Assume we wish the chair’s output to be
the “true” ordering of the papers, how many PC members are needed, as a function of n
and t? Note that the chair assigns the papers once, without having any information about
papers, that is, this is a non-adaptive t-sorting with a single round.

1.1 Deterministic Sorting

Consider deterministic ¢-sorting algorithms with a single round. Similar to the case of t = 2,
that requires comparing all (g) possible pairs, it can easily be shown that for any ¢, at least
Vnt = (g) / (;) many t-comparators are needed in order to fully sort n elements. This stems

from the fact that in order to learn the total ordering of n elements, we need to learn the
n
2

(4) different pairs of elements (Corollary 5).

Our first question is whether this bound is achievable, that is, whether there exists a
single round t-sorting algorithm that utilizes exactly +, + comparators. We first show a way
to perform t¢-sorting with at most 3+, ; comparators (Lemma 6). The idea is rather simple:
we divide the elements into disjoint subsets, where each subset contains ¢/2 different elements.
Then, we go through all possible pairs of subsets, and for each such pair we compare the
t elements of their union using a separate t-comparator. This guarantees that any two

relative-order of all () pairs, while each t-comparator gives us information about at most

elements are compared by at least one comparator, so a total-ordering of the n elements can
be deduced from the results of the (["/ (;/ 2”) < 3y, different comparisons.

Our main result is an algorithm with an optimal level of v, ; t-comparators for the case
where ¢ is a power of a prime and n = t2k, for any positive integer £ € N. Namely,

1 We realize that, in real life, no such absolute truth exists, and that PC members are heavily biased, etc.
These extensions make a very interesting direction for followup questions. We briefly discuss future
directions in Section 1.5.

R. Gelles, Z. Lotker, and F. Mallmann-Trenn

» Theorem 1 (main, deterministic). Let t be a power of a prime and let n = tQk, k € N. Then,
there exists a deterministic single-round, t-sorting algorithm that utilizes exactly (g)/(;)

comparators.

In order to obtain the above optimal sorting, we show a connection between sorting
and combinatorial design theory. Consider the case where t is a prime power and k = 1,
that is, n = t2, a setting that attained a lot of interest in the past, especially by hardware-
implementation oriented designs [40, 35, 36]. We essentially show that sorting with -, ; com-
parators is equivalent to an Affine Plane of order ¢. An affine plane (see e.g., [22, 31]) is
a design structure composed of elements (“points”) and subset of elements (“lines”) that
guarantees the following properties: (P1) every two points belong to a unigue line, (P2) ev-
ery line contains at least two points, and (P3) not all points are co-linear. Further, it satis-
fies the Euclidean Property (Al): for every line L and any point p outside L, there exists a
unique line that contains p and is parallel to L. It is known that all lines in an affine plane
contain exactly the same number of points; call this number the order of the plane. It is also
known that an affine plane of order ¢ contains t> + ¢ lines.

If we think about points as the elements we wish to sort and about lines as subsets of ¢
points which we compare via a single comparator, finding an affine plane of order ¢ provides
the property that any two elements are being compared ezactly a single time, i.e., by a single
comparator, leading to the optimal bound of v, ; comparators.

An affine plane of order t is easy to construct for any ¢ that is a power of a prime. Let F
be a finite field with ¢ elements, and consider pairs of elements (z,%), i.e., the plane F2. In
this plane, any two points (21, y1) and (z2, y2), define a unique line that passes through them,
namely y = £A=Y2 5 4 $281701%2 Gf) £ 75 and the line {(z1,y) | y € F}, otherwise. It is easy

xT1—T2 T1—T2
to verify this structure satisfies all the properties of an affine plane (see [31, Section 3.2]).

Affine planes are a special case of a more general combinatorial structure known as
Steiner systems (Definition 10). Indeed, if we change assumption (A1) so that there exists
no parallel lines at all (also known as the Elliptic Property), but still require that any two
points define a unique line, we would still get a sorting algorithm in which any two elements
are being compared against each other exactly once. In this case, the resulting structure is
again a special case of a Steiner system known as a Projective Plane. Known constructions
of projective planes imply that for any ¢t — 1 being a power of a prime, one can sort ¢ —t + 1
elements using exactly t?> — ¢ + 1 many ¢-comparators, where every pair of elements is being
compared exactly once. These two constructions are summarized as Theorem 12.

We lift the above result from optimally sorting t? elements to optimally sorting tzk,
by developing a composition theorem (Lemma 15) that recursively performs sorting of 2"
elements by utilizing an optimal number of t2l€71—compaumtors7 for any k£ > 1.

1.2 Randomized Sorting

Similar to the deterministic case, if one does not bound the number of adaptive rounds a
randomized sorting algorithm is allowed to make, optimal sorting can easily be achieved. For

instance, Beigel and Gill [8] showed a generalized t-quicksort algorithm that sorts n elements
nlogn
tlogt

(see Theorem 16). However, this algorithm requires O(log, n) adaptive rounds. Indeed, recall

by utilizing at most 4 many t-comparators, which is optimal, maybe up to the constant
that quicksort works in rounds, where at each round the algorithm selects (one or more)
pivot elements. These elements are used to “bucket” the rest of the elements into disjoint
subsets, meaning that all elements greater than one pivot and less than the next pivot belong

27:3

DISC 2024

27:4

Sorting in One and Two Rounds Using t-Comparators

to the same bucket. Then, each such bucket is recursively sorted by the same method. Since
each round depends on the pivots and buckets of the previous rounds, O(log, n) recursive
rounds are needed [8].

Our second question in this work is how to obtain optimal randomized ¢-sorting algorithms
with restricted number of rounds. Since we already analyzed the case of a single round and
reached optimal results, in the second part of this work we address the case of two rounds.
Our goal is to minimize the number of t-comparators used to sort n elements in a Las-Vegas
algorithm, where the output is correct with probability 1 but the number of comparators
used is a random variable that varies between different instances.

Our main result for this part is as follows.

» Theorem 2 (main, randomized). Lett < n be given. There exists a (Las-Vegas) randomized

sorting algorithm for n elements with two rounds, that utilizes O (max (":2{2 , %)) many t-

comparators, with probability at least 1 — 1/n.

We note that for the case where n = t2, our algorithm uses O(t) comparators which
is asymptotically optimal since Z}gi? = O(t). We further note that a result by Alon and
Azar [3] implies that the expected number of comparators used in our algorithm when ¢t <
V/n, is also tight.

The high-level idea of the two-round algorithm is to perform a single round of “quicksort”
and then to optimally (deterministically) sort each resulting bucket, rather than recursively
sorting it. In more details, let m be some fixed parameter. Our algorithm starts by sampling
m elements that will serve as pivots. We bucket all the elements by dividing the rest n —m
elements into subsets of size m elements each, and comparing each such subset, along with
the m pivots by utilizing at most 32y, : many t-comparators (per subset). This step tells us,
for each one of the n — m elements, between which two pivots it resides.

A pseudo code of our 2-round randomized algorithm is given below as Algorithm 1 for
the case t < m. The case t > m is very similar and is covered in Section 4.

Algorithm 1 A randomized 2-round sorting for any n,t with t < m.

Round 1:
1: Let P be a set of m elements from A, each sampled uniformly and independently from A.
2: Partition A\ P into subsets Aj,..., Ay of size at most m each. >k=[(n—m)/m]
3: for all i € [k] do
4: Sort P U A; using the optimal 1-round deterministic algorithm.
5. end for

Round 2:

6: Let P = (p1,...,pm) be the ordered elements in P. For 1 <i <m — 1, set .S; to contain
all the elements which are greater than p; but lower than p;;1. Set Sy to be all the
elements lower than p; and S, be all the elements greater than p,,.

7: for all 0 <i<m do

Sort S; using the optimal 1-round deterministic algorithm.

9: end for

In expectation, each bucket is of size ~ n/m and sorting a bucket of this size takes 3, /m.+

many t-comparators. If all buckets had size exactly n/m, this would lead immediately to the
2

desired result of 37-y2p, ¢ + 3(m + 1)7,/m+ = O(55* + 25z). This quantity is minimal when

R. Gelles, Z. Lotker, and F. Mallmann-Trenn

nd/2
t2

m =~ /n (ignoring constants), leading to the claimed O() bound.? Unfortunately, buckets’
sizes vary, and some of them might be much larger, say, of size (n/m)log(n/m). However, our

analysis shows that this event is very rare and the additional number of comparators needed to
handle these cases is rather small. More specifically, in our analysis, we formulate a balls-into-
bins process to distribute elements into buckets, and bound the number of such bad events
using the balls-into-bins process. Let us now expend on the techniques used in this analysis.

1.2.1 Techniques: The binary tree of deferred randomness

Let us start by describing the balls-into-bins process we use. Consider the n elements,
and rename them ay,...,a, so that they are sorted. Starting with a;, we group together
sequences of ¢n/m consecutive elements, for some sufficiently large constant ¢. We call
each such group a bin; namely, the first bin is by = {a1,...,@cp/m} the second bin is by =
{@cn/m+15- -5 02en/m} and so on, resulting in a total of m/c bins overall. The balls will be
the m elements we pick as pivots. That is, let P = {p1,p2,...,pm} be the elements selected
as pivots. Since each pivot is sampled uniformly at random, the selection of some p; is
equivalent to throwing a ball to bin b; where p; € b;.?

If each bin has a ball, than each “bucket” has at most 2cn/m elements, and the cost,
measured in the number of comparators needed to sort that bucket, is as desired. However,
the absence of a ball in a bin implies larger buckets. That is, the size of the bucket, and
hence the cost of sorting it, is determined by the stretch of bins without balls (up to two
additional bins, one from each side). In other words, in order to bound the cost of the
second round, we throw |P| = m balls uniformly at random into m/c bins and count the
length of consecutive empty bins. Recall that m = /n; we will substitute this value to avoid
cumbersome equations in the following.

A straightforward balls-into-bins analysis shows that there are ¢ pivots per bin in expec-
tation and that the probability of not having a pivot in ¢’ consecutive bins scales as e,
Ideally we would like to use the above probability and obtain a polynomially-small failure
probability by considering all the bins at the same time. Unfortunately, this approach breaks
due to the correlation between empty bins. Indeed, the fact that some bins are empty in-
dicates that the balls went somewhere else, altering the probability of having empty bins
elsewhere. The bins’ loads are negatively correlated. This means that concentration bounds
could potentially be used for negatively correlated variables. However, there are many obsta-
cles to this approach. First, note that while the loads of the bins are negatively correlated,
we actually need to bound different variables, namely, the lengths of consecutive sequences
of empty bin. Second, defining these variables and analyzing their probability function, as
well as proving that they are negatively correlated, seems to be a difficult task. Finally, note
that even the number of these random variables, is itself a random variable.

Instead, we introduce the concept of a binary tree of deferred randomness that enables a
more straightforward analysis of the concentration of empty bins, circumventing difficulties
arising from their dependencies.

2 The term O(n/t) in Theorem 2 stems from the other case, where t > m, i.e., t > \/n.

3 We note that this balls-into-bin process differs slightly from our pivot selection process in the sense that
it samples pivots with replacement, while the original process samples without replacement. However,
one could modify the original process by allowing the same element to be sampled multiple times, and
later ignore these extra copies. It is immediate that sampling without replacement can only create
smaller bins and thus improve the overall complexity.

27:5

DISC 2024

27:6

Sorting in One and Two Rounds Using t-Comparators

uo Sun

127 %2_470,@ 10 (145 /8277 J\ 194 /{194

[6 [[ba] b5 | 50 [br s b0 o o [oua]Basforalous]ouc]

Figure 1 The figure shows the distribution of pivots (balls) on the tree of deferred randomness,
marked as the numbers in each node. Here we have \/n = 1600 pivots and 16 bins (¢ = 100). In the
first two levels, the distribution is about even. The node w11 receives too few balls and so the event
Eus holds. Similarly, by gets too few balls (bin’s balls are not shown in the figure), causing £.,, to
happen. The nodes in gray portray the set END described in detail in the full version.

We think of the assignment of a pivot (a ball) to a bin as the bit-string describing the bin
where the pivot ends, that we reveal bit-by-bit. We define a binary tree, where each one of the
v/n/ebins is a leaf. Thus, the tree has a depth of log(y/n/c) (assuming v/n/c is a power of two).
We define the following iterative process of assigning balls to the leaves of the tree: Initially
we have y/n balls at the root. At every step, at every node u, we randomly assign each ball to
one of u’s children. This is equivalent to revealing the next bit in the string representing the
bin to which the pivot belongs to. The advantage of this approach lies in the careful revelation
of the randomness. At every level, we can derive concentration bounds without affecting the
following levels — the only thing that matters at a given node is how many balls arrive at it.

Consider the binary tree of deferred randomness after all balls are assigned and follow an
arbitrary path from the root to a leaf v. There are two cases. In the ideal case, at every node
along the path to v, the number of balls going left and right is close to the expected value,
namely, close to half. If this happens, then enough balls propagate along this path and with
high probability at least one of them will reach the leaf v. This is the good scenario, since if this
holds for many bins, the cost of sorting their elements will be very close to the expected cost.

The second case is when the concentration fails at some node w on the path, and the
assignments of the balls is not close to half. If this happens first at node u, we say that the bad
event &£, occurred, stop the process there (i.e., ignore other nodes in u’s subtree), and charge
a cost as if only a single ball reaches the bins under the node u. In other words, if there are ¢
balls at node u, we assume that all the £ pivot selections ended up picking the same element.
By doing so, we overestimate the size of the resulted bucket to contain all the elements in all
the bins below u. Specifically, we charge this event with the cost of sorting O(¢ - ¢cy/n) >
[bins(u)|-cy/n elements; here we use the fact that, as long as the bad event &, does not happen,
the number of balls reaching u always exceeds the number of bins in the subtree of u, |bins(u)|.

Figure 1 illustrates the infiltration of balls through the tree: a node u at level 7 is
associated to the 2'°8(¢V)~% hing below it. The number inside a node denotes how many
balls are assigned to that node. When w assigns the balls to its children, each ball picks one

R. Gelles, Z. Lotker, and F. Mallmann-Trenn

of the children uniformly at random, so each of the children is assigned half of w’s balls, in
expectation. The process continues until we reach the leaves at level log(cy/n). In the rare
event that balls are distributed in a very skewed manner, the bad event &£, happens. For
instance, while us has 480 balls, they split very unevenly among its children, causing the bad
event &,,. The process stops there, i.e., we do not care how the balls continue in the subtree
of us and in particular, &£, never happens in any of u’s descendants. Since &,, happens
and the process stops there, the analysis charges an amortized cost which is proportional to
sorting a bucket of size of 4 bins (due to the 4 bins bs, bg, b7, bs — for all we know, all the balls
could end up in bg, creating a single bucket that consists all the respective elements). In
fact, we upper bound this cost by the number of balls that arrive to us, whose expectation

in this example is 4¢ > 4. The situation might get even worse, since &5 occurs as well.
This effectively means that a single bucket might consist of all the element in bins bs—b1¢.
The dependency between neighboring nodes with bad events complicates the cost analysis.

However, by summing up the costs of all these events, we can derive the amortized cost per
such bad event and simplify the analysis by considering a single event at a time.

Luckily, the higher up in the tree a node is, the more balls the node holds and the less
likely the concentration bound will fail. The lower in the tree the node is, the lower the cost
is. In particular, once we approach the lower levels of the tree, the bad event &, occurs with
constant probability. This does not pose any trouble, because the cost in this case is only a
constant factor larger than the expected cost of the case where each bin has at least one ball
in it. Overall, we show that for every level of the tree, the cost imposed in our process is very
close to its expectation, with high probability (at least 1 — 1/n?). Taking a union bound

over all the (at most n) levels of the our tree of deferred randomness yields the desired claim.

We give the full details in Section 4.3.

1.3 Related Work

A fundamental task like sorting naturally attracted a lot of attention in numerous variants
and settings. To put our result in the right context, in this section we mention just a few of
these variants and we mainly focus on comparison-based sorting algorithms. We refer the
reader to surveys [27, 16, 38] and books [24, 13, 2] for a more complete treatment on the
background of (general) sorting.

The task of sorting in small number of rounds was initiated by the work of Héggkvist and
Hell [20], who considered the case of sorting n elements in a single round by comparing pairs
of elements (i.e., t = 2). While they do not give any explicit sorting algorithm, they bound
the number of 2-comparators required for sorting in d-rounds by Q(n'*1/?) from below and
by O(n®¢1°8™) from above, for a constant oy that monotonously decreases towards 3/2 as d
grows. Specifically, for d = 2, they prove that the optimal number of comparisons lies within
the range (C1n%/2,Cyn®/?logn) for some constants Cy,Cs. Alon, Azar, and Vishkin [5]
improved the lower bound to Q(n'*'/4(logn)'/?). Alon and Azar [3, 4] lower-bounded the

average number of comparisons by Q(dn'*t!/?), for any d-round algorithm with d < logn.

They also improved the upper bound to O(n'*'/4logn) for a fixed d, and to dn'TOMW/d for
any d < logn. Bollobas and Rosenfeld considered a relaxed sorting task, where the relative
order of en? pairs might still be unknown at the end. They showed that by performing

C.n?/? comparisons, one can learn the order of (g) — en? pairs, where ¢ = 0 as C, — oo.

In contrast to the above existential bounds for 2-comparator based algorithms, our work
provides explicit sorting algorithms. Our algorithms are efficient, they utilize ¢-comparators

(allowing large values of ¢) and are asymptotically optimal, with respect to the above bounds.

27:7

DISC 2024

27:8

Sorting in One and Two Rounds Using t-Comparators

Other related tasks were also considered in the literature. Alon and Azar [4] gave bounds
on the number of comparisons required for approximate sorting and for selecting the median.
Braverman, Mao, and Weinberg [10] considered the task of selecting the k-rank item, in a
single round (and multiple rounds), and of partitioning an unordered array into the k-top
and (n — k)-bottom elements, in a single round. Their algorithms also work in the noisy-
comparison setting, where each comparison is correct with probability 2/3. Braverman, Mao,
and Peres [9] extended the above results and gave an algorithm sorting the k-top elements in
small number of rounds (d = 1,2 and d > 3). They also give lower and upper bounds for
this task, both in the noiseless and noisy-comparison setting.

A related approach for sorting is via sorting networks [7, 1, 25] and in particular, sorting
networks of ¢t-comparators, a task that was raised by Knuth [24, Question 54 in Section 5.3]
and examined in [1, 30, 12, 15]. These are fixed networks of comparators with n inputs (each
element is an input) and n outputs (the sorted elements). One main difference between our
d-round sorting and a sorting network is that in the latter, each element appears exactly
once as an input. Then, any comparator that gets this element as an input must appear in a
different “round”. However, in a sorting algorithm, it is possible to give the same element to
multiple comparators at the same round, and then form the total order out of the outcomes
of all comparators.

Distributed sorting has appeared in the literature before, but it had a different meaning
than the distributed sorting we consider here. Wegner [41] and Rotem, Santoro, and
Sidney [34] considered the task of moving records around in a distributed network, so that
they end up in a sorted manner (i.e., records that end up at the first site have keys which
are strictly smaller than the records in the second site). These works mainly focused on the
number of exchanged messages. We also briefly mention parallel VLSI sorting algorithms,
e.g., [40, 36, 35, 23, 29]. Here the common setting is of n x n parallel processors, usually
connected as a two-dimensional grid. Each processors holds one element at any given time
and can transfer the element to a neighboring processors. The goal is that the elements
will end up in an ordered alignment, i.e., the minimal element at the first processors, etc.
This setting is somewhat similar to our case of n = t2, if we think of a row or a column of
processors as a single unit that can re-order the elements in that row or column according
to their rank. Another sorting variant was considered by Patt-Shamir and Teplitsky [32]
(building on [26]). Here, each computer starts with n records and needs to output their
rankings in the global order of all n? records. Also unlike our task, each computer can sort
any number of records that it holds (i.e., it is not limited to being a t-comparator).

As mentioned above, randomized quicksort with t-comparators was given by Beigel and
Gill [8]. This algorithm features an optimal number of comparators, albeit it employs a large
number of rounds, d = O(log, n). A similar quicksort idea appeared earlier by Miiller [28§]
for t = Q(logn), where the t-comparator is based on a systolic approach and takes O(t) time
to complete a single t-tuple sorting. Atallah, Frederickson, and Kosaraju [6] extended this
result to the full range of ¢.

Mergesort with t-comparators is given in [37], and cubesort with t-comparators is presented
in [14].

1.4 Organization

We formally state the problem of sorting with t-comparators, setting the relevant notations
in Section 2. We discuss one-round deterministic sorting in Section 3. Our optimal 2-round
randomized algorithm can be found in Section 4. The detailed analysis and missing proofs
are deferred to the full version of this work. In Appendix A we provide some simulations

R. Gelles, Z. Lotker, and F. Mallmann-Trenn

comparing our 2-round randomized algorithm with the state-of-the-art O(log, n)-round t-
quicksort algorithm, showing that the latter has in fact an expected number of rounds strictly
larger than 4 when n = t2.

1.5 Conclusions and Future Directions

In this work we studied the fundamental task of sorting n elements with t-comparators, where
the sorting algorithm is limited to a small number of interactive rounds. This setting, while
interesting on its own, fits in particular to distributed and parallel settings where interactive
communication is very costly while computation resources are moderately costly.

We dealt with both deterministic and randomized algorithms. In the deterministic case,
we established connections between optimal sorting algorithms in one round and combinatorial
design theory. While this connection allows optimal sorting for certain values of n and ¢,
it also suggests the impossibility for other values (e.g., t = 6). The question of the values
of n,t for which optimal sorting exists is isomorphic to the long-standing combinatorial
question of deciding the values of n, ¢ for which the Steiner system S(2,¢,n) exists. We hope
that an algorithmic approach could shed more light on this open question, e.g. through the
construction of composition theorems similar to Lemma 15, or through explicit constructions
for special cases.

Another interesting question is how the optimal number of t-comparators scales with
the number of rounds. This topic was thoroughly examined in the literature for ¢ = 2, and
we extend the discussion to larger values of t. In the same vein, in the randomized setting,
we design algorithms that use only two rounds but utilize the same asymptotic number of
comparators as the optimal O(log, n)-round t-quicksort algorithm.

We believe our findings might be useful in other distributed settings. For instance, in the
Massively Parallel Computation model (MPC), where each worker machine performs the
actions of one t-comparator, and all machines act in parallel. While our algorithm for d =1
rounds requires a large number of machines (i.e., more than n/t), it might make sense to
consider a larger amount of rounds and how it tradeoffs the number of machines in use. For
instance, could a sublinear number of machines be sufficient for d = O(1) rounds?

2 Preliminaries

Notations. For a positive integer n, we let [n] denote the set {1,2,...,n}. All logarithms
are taken to base 2 unless otherwise noted. We say that an event happens with high probability
in some parameter (usually, in the number of elements n), if the event occurs with probability
at least 1 — 1/n¢ for some positive constant ¢ > 1.

Problem Statement. The elements are A = {a1,as,...,a,}. Each element has a value
val(a;) € [n]. We assume that all values are unique, so that for any i # j, val(i) # val(j),
and all values in [n] are covered.

A t-comparator is a device that gets ¢ elements {a;,, ..., a;,} as an input, and outputs the
respective order of their values. That is, it outputs a list ji,...,j; of indices, such that these
are a permutation of i1, ...,4; and it holds that val(a;,) < val(a;,) < --- < val(a;,). Note
that it is allowed to give as an input the same element multiple times (hence the inequality
in the val() values).

A round of sorting is any assignment of elements to (possibly multiple) comparators. The
output of a single round of sorting is defined to be the output of all the comparators in that
round, i.e., the relative order between any ¢ elements compared by some comparator.

27:9

DISC 2024

27:10

Sorting in One and Two Rounds Using t-Comparators

» Definition 3. Sorting n elements in d rounds via t-comparators is performing d rounds of
sorting, where the assignment of round i < d depends on the outputs of rounds 1,...,i — 1.
The assignment of elements to comparators is such that, for any possible assignment of values
to the elements, there exists a single total ordering of the n elements that is consistent with
all the outputs of the d rounds.

We will usually care about the number of ¢-comparators required to sort n elements. Let
us denote OPT(n,t,d) the minimal number of ¢-comparators required to sort n elements in
d-rounds. In this paper we will focus on small values of d. In particular, in Section 3 we
analyze the case of deterministic sorting in d = 1 rounds. In Section 4 we discuss randomized
sorting with d = 2 rounds.

3 Sorting n elements in a single deterministic round

In this section we analyze sorting n elements with ¢-comparators in a single round. That
is, we seek ways to assign elements to comparators that yield enough information to obtain
a total-ordering of the elements. Since we restrict ourselves to a single round, we cannot
adaptively select elements to compare based on previous result. Instead, all the assignments
must be predetermined.

We begin with a few straightforward observations and facts. The following lemma is
probably a well known folklore: if we are allowed to compare only pairs of elements (t = 2)
and the comparisons are non-adaptive (d = 1), then all pairs of elements must be compared
in order to obtain the total-ordering of the n element.

» Lemma 4. Fort = 2, sorting n elements with 2-comparators in d = 1 rounds requires
learning the relative order of each of the (%) = ©(n?) pairs of elements. Thus, OPT(n,t =

Q’dzl): (g)

Proof. Otherwise, there are two elements a;, a; that are not compared against each other.
Let the two minimal elements (in the ranking) be a;, a;, respectively. Switching their relative
order (i.e., letting the minimal elements be a;, a;, respectively) will not change the outputs of
any of the comparators. Hence, there are two total ordering consistent with all the outputs,
contradicting the fact that this is a sorting of n elements, Definition 3. <

» Corollary 5. OPT(n,t,1) > (3)/(%).

Proof. The proof of Lemma 4 extends to larger comparators. If two elements are not being
compared by some comparator, let them be of minimal value and exchange their relative
order to end up with two consistent total ordering. Thus, OPT(n,t,1) must provide enough
comparators to compare all pairs.

Each t-comparator gives the ranking of ¢ elements among themselves. That is, it allows
us to learn the (pair-wise) order between at most (;) pairs of elements. The statement
immediately follows. <

Note that

() _nn-1) _n
O -y T
2
We can show that sorting with at most twice the amount of optimal comparators of Eq. (1)
can be achieved for certain values of n,t; sorting with at most three times the optimal is
always possible.

(1)

Nl 3

R. Gelles, Z. Lotker, and F. Mallmann-Trenn

» Lemma 6. When (t/2) | n, OPT(n,t,1) < 2(3)/(}). Otherwise, OPT(n,t,1) < 3(3)/(%)-

Proof. Assume (t/2) | n. Split the n elements into 2n/t subsets of size t/2 each, Sy, ..., Sop /4.
Now, for any i,j € [2n/t] compare the elements in S; U S; using a t-comparator. It is
immediate that any two elements will be compared in this process. The total number of
comparators used is

/0y 1 2\ 2
2) 2 t \[t 2t
The above is clearly larger than twice Eq. (1), by noting that n/t > 2n/t? holds for ¢t > 2.
However, when t/2 does not divide n, we need one additional subset Sy, /¢4 for the
leftovers. This results with a total of 2n?/t? + n/t comparators. When t < —1H/1+8n V21+8", this

is still within a factor 2 of (%)/(5). Otherwise, it is easy to see that we are within a factor 3
of the lower bound. Let us bound the ratio

W 1 2p4t

n=D T -1
t(t—1)

The right hand side monotonically increases in ¢, and obtains its maximal value at t =n — 1.

This yields

n—2 3n—1
n—1 n—-1"

This function monotonically increases in n (as can easily be seen from its derivation) and
has a limit of 3 as n — oo. <

3.1 The case of a large t

Let us now give optimal sorting assignments with d = 1 for the case of a large comparator,
t = Q(n). To demonstrate the basic idea, assume t = n — 1. We argue that three comparators
suffice in this case, which makes the bound in Lemma 6 tight for n > 9. First, we compare
{a1,...,a,—1} which gives a total-ordering for all elements but the last element, a,,, so we
need to compare a,, with all the other elements. This can be done with by employing two
additional comparators, e.g., comparing {a,,as...,a,—1} and {a,,a1,...,a;}. Note that
the second comparator is substantially under-utilized. This means that we could still perform
sorting with only three comparators even for smaller values of .

» Lemma 7. For anyt > %n, sorting n elements in a single round can be done with three
comparators.

Proof. The inputs to the three comparators are

{a17'~-7at}7 {an7an71u"'7at+1 9 a17a27"‘7a|—t/2-\}a and

{anv Ap—1y-+ -, at+1) a’(t/?“-‘rlv s at}~

Note that any two elements a;, a; are being compared by some comparator, yielding all the
information we need to obtain a single consistent total order of the elements.

Since t > 2n, the second and third comparators get each (n — (t +1) + 1) + [£] <
|2¢] —t+ [L] =t elements as input. Note that the ceiling/flooring matters only when ¢ is
odd. In this case 2t is fractional and since n must be an integer, we have n < |2¢]. <

27:11

DISC 2024

27:12

Sorting in One and Two Rounds Using t-Comparators

The above three comparators construction is tight, as it is impossible to sort n elements
with only two comparators. The proof resembles the approach taken by Lemma 4 for the
case of t = 2.

» Lemma 8. For any t < n, sorting in one round cannot be achieved with two comparators.

Proof. By a pigeonhole principle, there must exist (at least) two elements a;, a; that are not
compared against each other. We make it so Vk € [n]\ {3, j}, val(a;) < val(ax) and val(a;) <
val(ax). Then, it is impossible to determine which one of a;,a; is the minimal element.
Specifically, setting val(a;) < val(a;) gives the same comparator outputs as the case where
val(a;) < wval(a;). This follows since they both are lower than any other element and no
comparator has both of them as input. Then, there exists two total ordering consistent with
the output of the comparators: one with val(a;) < val(a;) and the other with val(a;) <
val(a;), contradicting Definition 3. <

3.2 Minimal sorting for a variety of parameters via design theory

Recall the proof of Corollary 5. It implies that every two elements must be compared against
each other. This leads us to defining minimal sorting as follows.

» Definition 9. Sorting is said to be minimal if equality holds in the equation in Corollary 5.

That is, minimality is obtained when every two elements are compared against each other
exactly once, and all the t-comparators are fully utilized. Then on the one hand there is
no redundancy, and on the other hand all computational resources are fully used. Note
that optimality means the minimal number of comparators needed to get all pairs compared
against each other exactly once, but without requiring that all comparators are fully utilized.

While minimality implies optimality, the other direction does not hold. As demonstrated
above for 2n/3 <t < n, optimality is obtained with 3 comparators. However, minimality is
not obtainable in this case. For instance, when n = 10, and t = 7,8,9 we have (g)/(;) €
[1%, 2%}, but, as we proved, exactly 3 comparators are necessary in all these cases, i.e., some

comparator must be under-utilized regardless of the sorting algorithm.

» Definition 10 (A Steiner System). A Steiner System with parameters 0 < ¢ < t < n,
denoted S(c,t,n), is a set P of n elements (we will call points) and a set L of objects (we
will call lines), where each line is a subset of t points and it holds that any subset of ¢ points
is contained in exactly a single line.

Corollary 5 and the discussion above imply the following.

» Theorem 11. The Steiner system S(2,t,n) is equivalent to a minimal sorting of n elements
via t-comparators.

Proof. Immediate from definitions. Every point is an element to sort, every line is a single
comparator. Since any two points are contained exactly in a single line and since every line
contains exactly ¢ points, we obtain minimality. |

The above equivalence allows us to use known results about S(2,¢,n) to deduce cases for
which minimal sorting is possible. The following is an immediate corollary of the known
state-of-the-art about Steiner systems with ¢ = 2, see e.g., [22, 19, 33].

R. Gelles, Z. Lotker, and F. Mallmann-Trenn

» Theorem 12.

1. Let t be a power of a prime. Minimal sorting of n =t elements is possible by employing
t2 4+t many t-comparators.

2. Lett — 1 be a power of a prime. Minimal sorting of n = t?> —t+ 1 elements is possible by
employing t*> — t + 1 many t-comparators.

Proof. (1) Follows from the fact that every field of size ¢ implies a Steiner system S(2,¢,t2)
(an Affine Plane), see [31, Section 3.2]. (2) Follows from the fact that every field of size ¢ — 1
implies a Steiner system S(2,t,t% —t+ 1) (a Projective Plane), see [31, Section 4.5]. We note
that both constructions are explicit. |

The equivalence stated in Theorem 11 also yields some impossibilities on minimal sorting.
It is well known that the Steiner system S(2,6,36) does not exist. This problem, stated
originally as a question about Latin Squares and known as the 36 officers problem, dates
back to Euler [17] and was proven impossible by Terry [39]. Bruck and Ryster [11] extended
this result and proved that Steiner systems of many other orders are also impossible.

» Corollary 13 ([39, 11]). Minimal sorting of n = t* elements (i.e., with exactly t +t> many
t-comparators) is impossible for infinitely many values of t.

Despite decades of research, a full characterization of values of ¢ that admit a S(2,t,t?)
system does not exist. In 1975, Willson [42] showed that for any ¢, a Steiner S(2,¢,n) system
exists if and only if ¢t | n and t(t — 1) | n(n — 1), except for finitely many values of n. This
implies the following corollary

» Corollary 14. For any t and large enough integer ¢, minimal sorting of n = t¢ elements is
possible with OPT(n,t,1) = (Z)/(;) many t-comparators.

Indeed, for any ¢ > 1 we have that t | t¢ and (t — 1) | (¢ — 1) since t© — 1 = (¢t — 1)(tc~! +
t¢=2 4+ ... +1). Our composition theorem, which is given in the next section (Lemma 15),
gives explicit construction for some values of n,t. Finding explicit constructions for other
values remains open.

3.3 A Composition Theorem

The above Theorem 12 applies only to the cases where n = t2 or n = t2 — t + 1 (for certain
values of t). An interesting question is how to obtain a single-round sorting for other values of
t and n, e.g., for n = t¢ elements, with ¢ > 3. We partially answer this task by constructing
a t?-comparator out of an optimal number of t-comparators. Operating recursively on
larger n’s, this approach leads to the following theorem.

» Lemma 15. Let t be power of a prime and let n = 2" for some k € N. Then, minimal
sorting of n elements with t-comparators is possible and employs OPT(n = 2" 4, 1) = (g)/(;)
many t-comparators.

Proof. We prove that minimal sorting is possible by induction on k. The base case, k =1 is
given by Theorem 12(1).

For the induction step, assume we can sort n’ = 27" elements using (Z/) / (é) many t-
comparators. We show how to sort n = t2° elements with exactly (5)/(5) t-comparators.
Since n' is a power of a prime, Theorem 12 provides us a optimal (minimal) way to sort
n elements using n/-comparators. Each n/-comparator can be implemented via an optimal

27:13

DISC 2024

27:14

Sorting in One and Two Rounds Using t-Comparators

(minimal) number of t-comparators, by induction. The total number of ¢-comparator thus
required to sort n elements is

B () _ ()
(%)

AN
) ()
and this quantity is minimal by Corollary 5. |

As a corollary, the above composition theorem implies an explicit construction of a
S(2,t, tQk) system for ¢ a power of a prime and all integers k& > 0.

4 Optimally sorting n elements in d = 2 randomized rounds

In Section 3, we studied optimal deterministic sorting in d = 1 rounds. We now wish to turn
to the case of d = 2 rounds, trading-off one additional round for fewer comparisons. We study
the randomized case since it allows us to reduce the number of comparisons considerably.
Since for d = 1 we have already obtained an optimal deterministic solution, it makes sense to
discuss randomized algorithms for d > 1. As randomized sorting with O(logn) comparators
are well-known [21, 8], we wish to keep the number of rounds small, and focus on the case
of d = 2. We design a fast randomized t-sorting algorithm, which is asymptotically optimal in
the number of t-comparators used, restricted to algorithms with d = 2 rounds. In certain cases,
for instance when n = t2, the asymptotic number of t-comparators is optimal even without
the round restriction. We discuss lower bounds on the number of t-comparators required for
sorting in Section 4.1. In Section 4.2 we consider the special case of d = 2 and n = ¢ and in
Section 4.3 we consider the more general case of d = 2 and arbitrary n and ¢. The detailed
analysis is deferred to the full version. Our main result is Theorem 2, which we now recall.

» Theorem 2 (main, randomized). Lett < n be given. There exists a (Las-Vegas) randomized

sorting algorithm for n elements with two rounds, that utilizes O (max (%2/2, %)) many t-

comparators, with probability at least 1 — 1/n.
4.1 Lower bounds

Before describing our algorithms, let us recall the lower bound on the number of ¢-comparators,
by Beigel and Gill [8].

» Theorem 16 ([8]). Sorting n elements requires utilizing at least llzgg((?!!)) =% }gg?(l +0(1))
many t-comparators.

The proof stems from the fact that log(n!) bits of information are required to sort n elements,
and that each comparator gives log(t!) bits of information. See Section II in [8].

The above lower bound allows any number of rounds. Alon and Azar [3] analyzed the
average number of 2-comparators required to sort n elements in d rounds and proved the
following.

» Theorem 17 ([3]). Sorting n elements in d < logn rounds, requires utilizing at least
Q(dn*+1/4) many 2-comparators on average.

The above theorem could be used to derive lower bounds on sorting with ¢-comparators.
Recall that each t-comparator compares at most (;) pairs of elements. Then, the following
lower bounds on the average number of ¢{-comparators required in any randomized sorting is
immediate.

R. Gelles, Z. Lotker, and F. Mallmann-Trenn

» Corollary 18. Sorting n elements in d < logn rounds, requires utilizing at least
Q(dn+1/4/t2) many t-comparators on average.

Because any average-case lower bound is also a worst-case lower-bound, if we plug in d = 2
in the above corollary, we obtain that our algorithm with O(n3/2/t?) many t-comparator
when t < y/n, is asymptotically tight.

4.2 The simple special case of n = t2

In this section we present Algorithm 2, which performs t-sorting of n = t2 elements in two
rounds and utilizes O(t) many t-comparators. Note that by Theorem 16, this is asymptotically
tight, even without the restriction to d = 2 rounds. Although our Algorithm 3 and Algorithm 4
described in Section 4.3 are strictly more general, as they apply to any n,t, for pedagogical
reasons we first introduce the simplified and very natural Algorithm 2 that assumes the
special case of n = t2.

Algorithm 2 A randomized 2-round sorting of n = > elements with O(t) many t-comparators.

Round 1:

1: Let P be a set of t/2 elements from A, each sampled uniformly and independently from A.
2: Partition A into subsets Ay, ..., Ay of size ¢/2 each.
3: for all i € [k] do
4: Input P U A; into a comparator. > k comparators
5: end for

Round 2:

6: Let P = (p1,...,pi/2) be the ordered elements in P. For 1 <i <¢/2 —1, set S; to
contain all the elements which are greater than p; but lower than p;11. Set Sy to be all
the elements lower than p; and Sy, be all the elements greater than p;/s.

7. for all 0 < ¢ <t/2 do

Sort S; via Lemma 6. > at most Y, 3|S;|?/t? comparators

9: end for

Recall our notations, where we wish to sort a set of n = t? elements, denoted A =
{a1,...,a,}. We assume that ¢ is even and that (¢/2) | n, and set k = n/(¢/2). The algorithm
works as follows. In the first round, we first sample ¢/2 elements uniformly from A. These
will be ours “pivots”. We then take the remaining elements of A and compare them to the

pivots. That is, we split the remaining elements into n/(¢/2) — 1 disjoint subsets of size t/2.

We input each subset to a t-comparator together with (all) the ¢/2 pivots. After this step,
for each element in A we know its relative position with respect to the pivots. Since we used
the same pivots in each comparator, we can see the first round as the pivots splitting A into
t/2 + 1 disjoint “buckets” such that all the elements in one bucket are strictly smaller (or
strictly larger) than all elements in any other bucket. In the second round of the algorithm,
we sort each bucket separately.

The first step utilizes n/(t/2) = 2t comparators, one for each subset of A. In the second
part, the number of comparators in use depends on the size of the buckets we need to
sort, which is a random variable determined by the pivots we sample in the first round. In

27:15

DISC 2024

27:16

Sorting in One and Two Rounds Using t-Comparators

expectation, each bucket is of size approximately® n/(t/2 + 1) ~ 22. If we assumed that the
number of elements per bin is tightly concentrated around its mean, then we could deduce that
sorting a single bucket using Lemma 6 would take O(’;—f) = O(1) comparators, and summing
up over all t/2 4+ 1 buckets results in O(’Z—:) = O(t) comparators overall, in expectation.

However, we cannot make such an assumption, since, while each bucket has ~ 2% elements
in expectation, there might be very large buckets, with, say, O(% logn) elements. Our
analysis (which we perform only to the general case, in Section 4.3 below), is somewhat more
intricate and shows that the event of a large bucket is rare enough so that amortizing across
all the buckets, our algorithm still takes O(t) comparators with high probability.

4.3 The general case: supporting any n,t

Algorithm 2 can be executed with any n,t. The problem is that this would come at a very
high cost (measured in the number of t-comparators used). The main reason for this high
cost is that Algorithm 2 has a tradeoff between the costs of the different rounds: the cost of
the first rounds is O(%) and the cost of the second is O(’Z—;) While these two costs equal O(¥)
for n = t2, for arbitrary n and ¢ these costs are no longer balanced and one of the rounds
would have a relatively high cost. The idea behind Algorithm 3 depicted below,® is to balance
the costs of the phases, by carefully choosing the size of the pivot set and, as a result, the
expected sizes of the buckets they yield.

Algorithm 3 A randomized 2-round sorting for any n,t with ¢t < \/n.

Round 1:
1: Let P be a set of m = y/n elements from A, each sampled uniformly and independently
from A.
Partition A \ P into subsets Ay,..., Ay of size at most m each. >k=1[(n—m)/m]
for all i € [k] do

Sort P U A; via Lemma 6.
end for

Round 2:

6: Let P = (p1,...,pm) be the ordered elements in P. For 1 < i <m — 1, set .S; to contain
all the elements which are greater than p; but lower than p;;1. Set Sy to be all the
elements lower than p; and S, be all the elements greater than p,,.

7: for all 0 <i <m do

Sort S; via Lemma, 6.

9: end for

Assume that the first round randomly selects m pivots, which we denote by the set P. In
order to “bucket” the n elements according to the pivots we need to compare them all with all
the pivots. To that end, we split the set A into subsets Ay, ..., Ay of size m (maybe except

To bound the expected size of each bucket, consider the sorted array of elements and uniformly select
t pivots. Connect the beginning of the array to its end to form a cycle. Now consider all intervals
between the pivots. The expected sum of the intervals, is roughly n. By linearity of expectation, we
can consider disjoint “chunks” of intervals, each composed of ¢ consecutive intervals. By symmetry,
the expected lengths of all chunks are the same. Thus, each chunk must be, in expectation, about n/t
elements long (ignoring constants).

Algorithm 3 is identical to Algorithm 1 described in the introduction and repeated here for convenience.

R. Gelles, Z. Lotker, and F. Mallmann-Trenn

for the last subset), and compare each subset with the pivots. In contrary to Algorithm 2,
we can no longer input A; U P into a t comparator. Instead, we need to implement a 2m-
comparator out of t-comparators. We do so via Lemma 6, at the cost of 8m?/t?> many t-
comparators for a single simulated 2m-comparator.

Let us now analyze the expected cost of Algorithm 3. To calculate the cost of the first
round, note that we now need n/(2m) many (simulated) 2m-comparators each costing us
O(m?/t?) many t-comparators. Thus, the first round results in a total cost of O(%5*). The
expected cost of the second round is given as follows: since the set of pivots is sampled
uniformly, the expected size of each bucket is ~ 2n/t (Footnote 4). Oversimplifying again
and assuming the number of elements per bin is tightly concentrated (which is not necessarily
true for each bin), we get the following. By Lemma 6, each one of the m + 1 buckets
costs O((n/m)?/t?) comparators in expectation. Overall, the expected cost in the second

round is O("’;:2). Summing the costs of the two rounds, the expected cost of Algorithm 3

is O(58* + :722) Interestingly, this value is minimized when m = /n, irrespective of ¢. In

the reminder, we simply set m = y/n, and the cost becomes O(

/
n:’;)-

The case of t > y/n. The above analysis needs a little tweak to support the case of
t > y/n. In this case, the number of comparators-per-bucket given by the terms O(m?/t?)
and O(n/m?t?) for the first and second round, respectively, is lower bounded by a single
comparator, and thus should read max {1,0(m?/t?)} and max {1, 0(n/m?t*)}, respectively.
Therefore, the choice of parameters needs to be adjusted. In the following we show a selection
of parameters that optimize the case of ¢ > /n, which yields Algorithm 4. We only give here
a sketch of the (simplified) expected cost analysis, since the precise high-probability analysis
see the full version.

Algorithm 4 A randomized 2-round sorting for any n,t with ¢ > \/n.

Round 1:

1: m = [n/t]
2: Let P be a set of m elements from A, each sampled uniformly and independently from A.
3: Partition A\ P into subsets Ay, ..., Ay of size at most t each. >k=[(n—m)/t]
4: for all i € [k] do
5: Sort P U A; via Lemma 6.
6: end for

Round 2:

7. Let P = (p1,...,pm) be the ordered elements in P. For 1 <14 <m — 1, set .S; to contain
all the elements which are greater than p; but lower than p;;1. Set Sy to be all the
elements lower than p; and Sy be all the elements greater than p;.

8: for all 0 < i <m do

] Sort S; via Lemma 6.
10: end for

In Algorithm 4, We set the number of pivots to be m = [n/t], and group the rest of the
elements into subsets {4;} of size t each (instead of size 7). We then continue with the
sorting as before.

In the first round of the algorithm, we sort kK = O(n/t) sets, each of size t +m = O(t).
Thus, by Lemma 6 sorting each such bucket can be done using ¢/ = O(1) comparators
resulting in ¢’k = O(n/t) comparators in total. In the second round, each S; has O(n/m) =
O(t) elements, in expectation. Assuming again our oversimplification that the number of

27:17

DISC 2024

27:18

Sorting in One and Two Rounds Using t-Comparators

elements in each bin is tightly concentrated around its mean, we get by Lemma 6 that
sorting each S; takes O(1) comparators. Since there are 7 + 1 such sets, the total number of
comparators used in the second round is also bounded by O(n/t).

In the full version we formally analyze the number of comparators used by these schemes
(without the oversimplifying assumption) and show that it is concentrated around the stated
value, i.e., we prove Theorem 2. As mentioned above, we only analyze Algorithm 3 since the
analysis of Algorithm 4 is analogous. We stress again that the expected analysis presented
above is oversimplified. Further, even with a simple and straightforward expected analysis,
the dependencies of the events make it difficult to obtain high-probability concentration
bounds, i.e., bounds that hold except with a polynomially small probability.

—— References

1 M. Ajtai, J. Komlés, and E. Szemerédi. An O(nlogn) sorting network. In Proceedings of
the Fifteenth Annual ACM Symposium on Theory of Computing, STOC 83, pages 1-9, 1983.
doi:10.1145/800061.808726.

2 Selim G Akl. Parallel sorting algorithms, volume 12. Academic press, 1985.

3 N. Alon and Y. Azar. The average complexity of deterministic and randomized parallel
comparison sorting algorithms. In 28th Annual Symposium on Foundations of Computer
Science (SFCS 1987), pages 489-498, 1987. doi:10.1109/SFCS.1987.54.

4 Noga Alon and Yossi Azar. Sorting, approximate sorting, and searching in rounds. SIAM
Journal on Discrete Mathematics, 1(3):269-280, 1988. doi:10.1137/0401028.

5 Noga Alon, Yossi Azar, and Uzi Vishkin. Tight complexity bounds for parallel comparison
sorting. In 27th Annual Symposium on Foundations of Computer Science (SFCS 1986), pages
502-510, 1986. doi:10.1109/SFCS.1986.57.

6 Mikhail J. Atallah, Greg N. Frederickson, and S.Rao Kosaraju. Sorting with efficient use
of special-purpose sorters. Information Processing Letters, 27(1):13-15, 1988. doi:10.1016/
0020-0190(88)90075-0.

7 K. E. Batcher. Sorting networks and their applications. In Proceedings of the April 30-May
2, 1968, Spring Joint Computer Conference, AFIPS ’68 (Spring), pages 307-314, 1968. doi:
10.1145/1468075.1468121.

8 Richard Beigel and John Gill. Sorting n objects with a k-sorter. IEEE Transactions on
Computers, 39(5):714-716, 1990. doi:10.1109/12.53587.

9 Mark Braverman, Jieming Mao, and Yuval Peres. Sorted top-k in rounds. In Proceedings of
the Thirty-Second Conference on Learning Theory, volume 99 of PMLR, pages 342-382, 2019.
URL: https://proceedings.mlr.press/v99/bravermani9a.html.

10 Mark Braverman, Jieming Mao, and S. Matthew Weinberg. Parallel algorithms for select and
partition with noisy comparisons. In Proceedings of the Forty-Eighth Annual ACM Symposium
on Theory of Computing, STOC ’16, pages 851-862, 2016. doi:10.1145/2897518.2897642.

11 Richard H. Bruck and Herbert J. Ryser. The nonexistence of certain finite projective planes.
Canadian Journal of Mathematics, 1(1):88-93, 1949. doi:10.4153/CIM-1949-009-2.

12 YB Chiang. Sorting networks using k-comparators. PhD thesis, University of Cape Town,
2001. URL: http://hdl.handle.net/11427/4871.

13 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to algorithms. MIT press, 4th edition, 2022.

14 Robert Cypher and Jorge L.C. Sanz. Cubesort: A parallel algorithm for sorting n data items
with s-sorters. Journal of Algorithms, 13(2):211-234, 1992. doi:10.1016/0196-6774(92)
90016-6.

15 Natalia Dobrokhotova-Maikova, Alexander Kozachinskiy, and Vladimir Podolskii. Constant-
Depth Sorting Networks. In 14th Innovations in Theoretical Computer Science Conference
(ITCS 2023), volume 251 of LIPIcs, pages 43:1-43:19, 2023. doi:10.4230/LIPIcs.ITCS.2023.
43.

https://doi.org/10.1145/800061.808726
https://doi.org/10.1109/SFCS.1987.54
https://doi.org/10.1137/0401028
https://doi.org/10.1109/SFCS.1986.57
https://doi.org/10.1016/0020-0190(88)90075-0
https://doi.org/10.1016/0020-0190(88)90075-0
https://doi.org/10.1145/1468075.1468121
https://doi.org/10.1145/1468075.1468121
https://doi.org/10.1109/12.53587
https://proceedings.mlr.press/v99/braverman19a.html
https://doi.org/10.1145/2897518.2897642
https://doi.org/10.4153/CJM-1949-009-2
http://hdl.handle.net/11427/4871
https://doi.org/10.1016/0196-6774(92)90016-6
https://doi.org/10.1016/0196-6774(92)90016-6
https://doi.org/10.4230/LIPIcs.ITCS.2023.43
https://doi.org/10.4230/LIPIcs.ITCS.2023.43

R. Gelles, Z. Lotker, and F. Mallmann-Trenn

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Vladmir Estivill-Castro and Derick Wood. A survey of adaptive sorting algorithms. ACM
Comput. Surv., 24(4):441-476, December 1992. doi:10.1145/146370.146381.

Leonhard Euler. Recherches sur un nouvelle espéce de quarrés magiques. Verhandelingen
uitgegeven door het zeeuwsch Genootschap der Wetenschappen te Vlissingen, pages 85—239, 1782.
Ran Gelles, Zvi Lotker, and Frederik Mallmann-Trenn. Sorting in one and two rounds using
t-comparators. CoRR, abs/2405.12678, 2024. arXiv:2405.12678, doi:10.48550/arXiv.2405.
12678.

Mike Grannell and Terry Griggs. An introduction to steiner systems. Mathematical Spectrum,
26(3):74-80, 1994.

Roland Héggkvist and Pavol Hell. Parallel sorting with constant time for comparisons. SIAM
Journal on Computing, 10(3):465-472, 1981. doi:10.1137/0210034.

C. A. R. Hoare. Quicksort. The Computer Journal, 5(1):10-16, January 1962. doi:10.1093/
comjnl/5.1.10.

D. R. Hughes and F. Piper. Design Theory. Cambridge University Press, 1985.

Christos Kaklamanis and Danny Krizanc. Optimal sorting on mesh-connected processor
arrays. In Proceedings of the Fourth Annual ACM Symposium on Parallel Algorithms and
Architectures, SPAA ’92, pages 5059, 1992. doi:10.1145/140901.140907.

Donald E. Knuth. Art of computer programming, volume 8: Sorting and Searching. Addison-
Wesley Professional, 2nd edition, April 1998.

Tom Leighton. Tight bounds on the complexity of parallel sorting. IEEE Transactions on
Computers, C-34(4):344-354, 1985. doi:10.1109/TC.1985.5009385.

Christoph Lenzen and Roger Wattenhofer. Tight bounds for parallel randomized load balancing:
extended abstract. In Proceedings of the Forty-Third Annual ACM Symposium on Theory of
Computing, STOC ’11, pages 11-20, 2011. doi:10.1145/1993636.1993639.

W. A. Martin. Sorting. ACM Comput. Surv., 3(4):147-174, December 1971. doi:10.1145/
356593.356594.

Heinrich Miiller. Sorting numbers using limited systolic coprocessors. Information Processing
Letters, 24(6):351*354, 1987. d0i:10.1016/0020-0190(87)90109-8.

S. Olarin and S.Q. Zheng. Sorting n items using a p-sorter in optimal time. In Proceedings of
SPDP ’96: 8th IEEE Symposium on Parallel and Distributed Processing, pages 264-272, 1996.
d0i:10.1109/SPDP.1996.570343.

Bruce Parker and Ian Parberry. Constructing sorting networks from k-sorters. Information
Processing Letters, 33(3):157-162, 1989. doi:10.1016/0020-0190(89)90196-8.

Abraham Pascoe. Affine and projective planes. Master’s thesis, Missouri State University,
2018. MSU Graduate Theses. 3233. https://bearworks.missouristate.edu/theses/3233.

Boaz Patt-Shamir and Marat Teplitsky. The round complexity of distributed sorting: extended
abstract. In Proceedings of the 30th Annual ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing, PODC ’11, pages 249-256, 2011. doi:10.1145/1993806.1993851.
Colin Reid and Alex Rosa. Steiner systems s(2,4,v)-a survey. The Electronic Journal of
Combinatorics, pages DS18-Feb, 2012.

Doron Rotem, Nicola Santoro, and Jeffrey B. Sidney. Distributed sorting. IEEFE Transactions
on Computers, C-34(4):372-376, 1985. doi:10.1109/TC.1985.5009389.

Isaac D. Scherson, Sandeep Sen, and Adi Shamir. Shear sort: a true two-dimensional sorting
technique for VLSI networks. In International Conference on Parallel Processing, pages 903—
908, 1986.

Claus-Peter Schnorr and Adi Shamir. An optimal sorting algorithm for mesh connected
computers. In Proceedings of the eighteenth annual ACM symposium on Theory of computing,
pages 255—263, 1986. doi:10.1145/12130.12156.

Feng Shi, Zhiyuan Yan, and Meghanad Wagh. An enhanced multiway sorting network based on
n-sorters. In 2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP),
pages 60—64, 2014. doi:10.1109/GlobalSIP.2014.7032078.

27:19

DISC 2024

https://doi.org/10.1145/146370.146381
https://arxiv.org/abs/2405.12678
https://doi.org/10.48550/arXiv.2405.12678
https://doi.org/10.48550/arXiv.2405.12678
https://doi.org/10.1137/0210034
https://doi.org/10.1093/comjnl/5.1.10
https://doi.org/10.1093/comjnl/5.1.10
https://doi.org/10.1145/140901.140907
https://doi.org/10.1109/TC.1985.5009385
https://doi.org/10.1145/1993636.1993639
https://doi.org/10.1145/356593.356594
https://doi.org/10.1145/356593.356594
https://doi.org/10.1016/0020-0190(87)90109-8
https://doi.org/10.1109/SPDP.1996.570343
https://doi.org/10.1016/0020-0190(89)90196-8
https://bearworks.missouristate.edu/theses/3233
https://doi.org/10.1145/1993806.1993851
https://doi.org/10.1109/TC.1985.5009389
https://doi.org/10.1145/12130.12156
https://doi.org/10.1109/GlobalSIP.2014.7032078

27:20

Sorting in One and Two Rounds Using t-Comparators

38 Dhirendra Pratap Singh, Ishan Joshi, and Jaytrilok Choudhary. Survey of gpu based sorting
algorithms. International Journal of Parallel Programming, 46:1017-1034, 2018. doi:10.1007/
S10766-017-0502-5.

39 G. Tarry. Le probléeme de 36 officiers. Compte Rendu de l’Association Frangaise pour
l’Avancement de Science Naturel, 1900. vol. 1 (1900), 122-123; vol. 2 (1901), 170-203.

40 C. D. Thompson and H. T. Kung. Sorting on a mesh-connected parallel computer. Commun.
ACM, 20(4):263-271, April 1977. doi:10.1145/359461.359481.

41 Lutz M. Wegner. Sorting a distributed file in a network. Computer Networks (1976), 8(5):451—
461, 1984. d0i:10.1016/0376-5075(84)90007-2.

42 Richard M. Wilson. An existence theory for pairwise balanced designs, III: Proof of the
existence conjectures. Journal of Combinatorial Theory, Series A, 18(1):71-79, 1975. doi:
10.1016/0097-3165(75)90067-9.

APPENDIX

A Simulations: Our algorithm and the state-of-the-art algorithm

Let us compare our Algorithm 1 to the state-of-the-art quicksort algorithm with ¢-comparators,
developed by Beigel and Gill [8]. Their algorithm works essentially as follows: randomly
select t/logt pivot elements and use them to split all the elements into disjoint subsets. Now,
recursively sort any subset of size exceeding t.

80 100

60

count
IS
3

count

40

20

1 2 3 4 7 1 2 3 4 5

number of rounds number of rounds

(a) t = 10, n = 100. (b) ¢ = 100, n = 10000.

Figure 2 A histogram of the number of rounds required to the completion of the algorithm in [8]
for the case of n = t* with (a) t = 10 and (b) ¢t = 100. Each histogram is based on 100 repeated
independent instances. In both t values, the average number of rounds is above 4.

The analysis in [8] proves that the number of ¢-comparators utilized throughout this
algorithm is = ﬁg? (1+ o(1)), which is asymptotically optimal. The same analysis suggests
the algorithm takes log,, »(n) rounds, where m = t/(2log(t)In(t)). (The basis of the log
in m is not defined in [8] and we take it to base e, yielding m = t/2In*t.) It is easy to verify
that this function approaches 11‘;% rounds, for sufficiently large ¢. In particular, for n = t¢,
the function approaches ¢ rounds as t — co. We would like to compare this to our algorithm,
that guarantees d = 2 rounds, regardless of t.

To be concrete, let us consider the case of n = t2. In this case, 10gm/2(t2) tends
asymptotically to 2 when t — co. To demonstrate the behavior of the recursive algorithm
we have performed Monte-Carlo simulations that measure the number of rounds it takes to
sort n = t? elements, with ¢ = 10 and ¢ = 100. The results are depicted in Figure 2. Our
findings indicate that, for these values of ¢, the average number of rounds for n = ¢? is not 2,

but rather 4.

https://doi.org/10.1007/S10766-017-0502-5
https://doi.org/10.1007/S10766-017-0502-5
https://doi.org/10.1145/359461.359481
https://doi.org/10.1016/0376-5075(84)90007-2
https://doi.org/10.1016/0097-3165(75)90067-9
https://doi.org/10.1016/0097-3165(75)90067-9

	1 Introduction
	1.1 Deterministic Sorting
	1.2 Randomized Sorting
	1.2.1 Techniques: The binary tree of deferred randomness

	1.3 Related Work
	1.4 Organization
	1.5 Conclusions and Future Directions

	2 Preliminaries
	3 Sorting n elements in a single deterministic round
	3.1 The case of a large t
	3.2 Minimal sorting for a variety of parameters via design theory
	3.3 A Composition Theorem

	4 Optimally sorting n elements in d=2 randomized rounds
	4.1 Lower bounds
	4.2 The simple special case of n=t²
	4.3 The general case: supporting any n,t

	A Simulations: Our algorithm and the state-of-the-art algorithm

