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Abstract
We study the deterministic complexity of the 2-Ruling Set problem in the model of Massively Parallel
Computation (MPC) with linear and strongly sublinear local memory.
Linear MPC: We present a constant-round deterministic algorithm for the 2-Ruling Set problem

that matches the randomized round complexity recently settled by Cambus, Kuhn, Pai, and
Uitto [DISC’23], and improves upon the deterministic O(log log n)-round algorithm by Pai and
Pemmaraju [PODC’22]. Our main ingredient is a simpler analysis of CKPU’s algorithm based
solely on bounded independence, which makes its efficient derandomization possible.

Sublinear MPC: We present a deterministic algorithm that computes a 2-Ruling Set in Õ(
√

log n)
rounds deterministically. Notably, this is the first deterministic ruling set algorithm with
sublogarithmic round complexity, improving on the O(log ∆ + log log∗ n)-round complexity that
stems from the deterministic MIS algorithm of Czumaj, Davies, and Parter [TALG’21]. Our
result is based on a simple and fast randomness-efficient construction that achieves the same
sparsification as that of the randomized Õ(

√
log n)-round LOCAL algorithm by Kothapalli and

Pemmaraju [FSTTCS’12].
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1 Introduction

In this paper, we present faster deterministic parallel algorithms for finding 2-ruling sets.
Given an n-vertex m-edge graph G = (V, E) and an integer β ≥ 1, the more general problem
of β-ruling sets consists of finding a subset S ⊆ V of non-adjacent vertices such that each
vertex v ∈ V \ S is at most β hops away from some vertex in S. Thus, a β-ruling set is also
a β + 1 ruling set. This concept serves as a natural generalization of one of the most central
and well-studied problems in distributed graph algorithms, known as Maximal Independent
Set (MIS), which corresponds to a 1-ruling set. Generally, for β ≥ 1, the complexity of a
β-ruling set reduces as the value of β increases.

We design 2-ruling set algorithms for the model of Massively Parallel Computation (MPC)
in the strongly sublinear and linear memory regimes. The study of 2-ruling sets is motivated
by its close relationship with MIS, while still permitting the development of considerably
faster algorithms. Additionally, it is known that for problems utilizing MIS as a subroutine,
a β-ruling set may serve as an alternative for some β > 1 [4].
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29:2 Massively Parallel Ruling Set Made Deterministic

MPC Model. Initially introduced by [32] and later refined in [2, 7, 30], this model is
characterized by a set of M machines each with memory S. The input is distributed across
machines and the computation proceeds in synchronous rounds. Each round machines
perform arbitrary local computation and all-to-all communication, sending and receiving up
to S words. The main goal is to minimize the number of communication rounds required by
the algorithm. A second goal is to minimize the global space needed to solve the problem, i.e.,
the number of machines times the local memory per machine, which is Ω(n + m) for graph
problems. In the linear regime of MPC each machine is assigned local memory S = O(n),
while in the (strongly) sublinear regime of MPC the local memory is O(nα), for constant
0 < α < 1.

Linear MPC. In the linear model of MPC, a series of works showed that several fundamental
problems such as (∆ + 1)-coloring [13, 16] and minimum-spanning tree [42] admit constant-
round deterministic algorithms. Surprisingly, a recent work of [11] provides a randomized
2-ruling set algorithm with constant-round complexity improving on the O(log log log n)
time algorithm by [31] and the O(log log ∆) time bound that stems from the MIS algorithm
by [26]. On the deterministic side, [43] gave an algorithm that computes a 2-ruling set in
O(log log n) time, which improved on the O(log ∆ + log log∗ n) round complexity due to the
deterministic MIS algorithm of [18, 17, 20]. Key challenges in this domain lie in determining
the existence of deterministic algorithms achieving constant-round complexity for 2-ruling
sets and sublogarithmic-round complexity for MIS.

Sublinear MPC. In the sublinear model of MPC, the above O(log ∆ + log log∗ n)-round
algorithm by [18, 17] is the fastest known for both MIS and 2-ruling set. On the randomized
side, [28] show that MIS can be solved in Õ(

√
log ∆ + log log n) rounds and [43] show that

2-ruling set can be solved in Õ(log1/6 ∆ + log log n), where the Õ(·) notation hides poly log(·)
factors. It may be worth noting that if we limit the global space to Õ(n + m), then the
fastest 2-ruling set algorithm has Õ(log1/4 n + log log n) randomized complexity [43] and
O(log ∆ log log n) deterministic complexity [18, 23].

Other Related Work. There is a large body of work studying ruling sets in the LOCAL
model [24, 9, 31, 45, 10, 6]. The most relevant to ours is the randomized LOCAL algorithm
of [35] for computing 2-ruling sets that combined with [25] yields a LOCAL round complexity
of Õ(

√
log n). On the hardness side, in the LOCAL model, there is a lower bound for 2-ruling

set of Ω(min{
√

∆, log∆ n}) deterministic rounds and of Ω(min{
√

∆, log∆ log n) randomized
rounds by [5, 4], which, in terms of its proportion to n, are Ω( log n

log log n ), and Ω( log log n
log log log n ),

respectively. For MIS and maximal matching (MM), the best known deterministic lower
bound is Ω(min{∆, log∆ n}) by [3], and the best known randomized lower bounds are
Ω(min{∆, log∆ log n}) by [3] and Ω(min{ log ∆

log log ∆ , log∆ n}) by [36], which, in terms of its

proportion to n, are Ω( log n
log log n ), Ω( log log n

log log log n ), and Ω(
√

log n
log log n ), respectively. Via the MPC

conditional lower-bound framework by [27, 17], these results give the following component-
stable lower bounds for sublinear MPC algorithms:

Ω(log log n) for deterministic 2-ruling set, deterministic and randomized MIS and MM.

Ω(log log log n) for randomized 2-ruling set.
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1.1 Our Contribution

We design improved deterministic algorithms for the problem of 2-ruling set in the MPC
setting with linear and sublinear local memory.

Linear MPC Regime. We develop a deterministic algorithm that matches the constant-
round complexity of [11] and even its optimal global space usage.

▶ Theorem 1. There is a O(1)-round linear MPC algorithm that computes a 2-ruling set
deterministically using linear global space.

Prior to our work, the best known deterministic complexity was O(log log n) by a result of
[43]. Our algorithm (Section 3) is obtained by derandomizing the O(1)-round algorithm of
[11]. While the derandomization framework of our algorithm has been applied successfully
to numerous MPC graph problems [12, 16, 19, 18, 15, 22, 23, 43], the main challenge lies in
analyzing (a slight variation of) [11]’s algorithm under limited independence, as we overview
later in Section 1.2.1.

Sublinear MPC Regime. We design the first deterministic sublogarithmic algorithm for
finding a 2-ruling set when the memory per machine is strictly sublinear.

▶ Theorem 2. There is a deterministic sublinear MPC algorithm that finds a 2-ruling
set in O(

√
log ∆ · log log ∆ + log log∗ n) rounds using O(n1+ε + m) global space, for any

constant ε > 0. Moreover, the same algorithm runs in O(
√

log ∆ · log log n) using global
space O(n + m).

For ∆≫ log∗ n, our algorithm gives an almost quadratic improvement over the runtime
obtained using the MIS algorithm of [20], and gets closer to the Õ(log1/6 ∆+log log n) random-
ized complexity of [33]. It is worth noting that it matches the conditionally-optimal runtime
of Ω(log log n) when ∆ = O(2log2 log n/ log log log n), even though, being it not component-stable,
the lower bound does not apply.

This algorithm (Section 4) is obtained by derandomizing the sparsification developed by
[35] for solving 2-ruling sets in the LOCAL model. Specifically, we show that a randomized
O(1)-LOCAL downsampling step can be carried out in only O(log log ∆) rounds determin-
istically in MPC with strongly sublinear space per machine and optimal global space. To
achieve that, we combine several well-established derandomization tools such as limited
independence, the method of conditional expectation, and coloring for reducing seed length,
as we discuss in Section 1.2.2.

We also note that our techniques may be more general and apply to β-ruling sets for
β > 2. Concretely, one may combine our result with the framework of [10] to obtain faster
MPC β-ruling sets algorithms. This direction is left for future work.

1.2 2-Ruling Sets: Technical Overview

We present the main intuition behind the recent constant-round randomized algorithm by
[11] in the linear regime of MPC and the randomized Õ(

√
log n)-round LOCAL algorithm by

[35], which is also closely followed by subsequent works [31, 33, 43]. Then, we provide an
overview of our deterministic algorithms and the main ideas that lead to randomness-efficient
analyses.

DISC 2024
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1.2.1 Linear Memory Regime
Randomized Constant-Round Algorithm. The constant-round 2-ruling set algorithm by
[11] relies on computing an MIS iteratively on subgraphs of linear size, which can be solved
locally on a single machine. Their algorithm samples each vertex v from V and includes it in
Vsamp independently with probability 1/

√
deg(v). This sampling primitive is shown to give

two useful structural properties, with high probability. First, the induced subgraph G[Vsamp]
has a linear number of edges. Second, a certain MIS computation on G[Vsamp] returns an
independent set that is at distance at most two from all but at most n/

√
d vertices with

degree [d, 2d) in the original graph G, for each d ∈ {2⌊log ∆⌋, 2⌊log ∆⌋−1, . . . , Ω(1)}. Then, it
is shown that, after two repetitions, the number of remaining edges for each degree class d is
at most n/poly(d), which sums up to O(n) over all d’s.

Their analysis of the above sampling process relies on full independence in the sense
that random decisions of any node influence its neighbors at distance at most three. Then,
each node influences only up to n3α many nodes by assuming that any node has degree at
most nα, for constant α > 0. This property is exploited to union bound over large sets of
independent nodes in G7, since nodes at distance 8 are enough far apart not to influence one
another. Clearly, this property breaks apart under our constraint of limited independence
and requires to analyze the sampling process differently.

Constant-Round Derandomization. In a nutshell, we show that the same asymptotic guar-
antees as that provided by the above randomized algorithm can be achieved deterministically.
While it is easy to show that their initial sampling step gives a subgraph with a linear
number of edges in expectation, even under pairwise independence, the main challenge is to
prove that only n/dΩ(1) nodes survive across all O(log ∆) d-degree classes, simultaneously.
Establishing the same polynomial decrease (in dΩ(1)) of the size of each d-degree class ensures
the same constant-round complexity.

Our key modification to [11]’s analysis is to increase the threshold for a node to be called
good. We say that a node of degree d is good if it has at least dΩ(1) neighbors in G[Vsamp],
as opposed to the Θ(log n) requirement of [11]. This leads to the following two properties.

First, in the sampling step, we prove that each good node of degree d is covered with
probability 1 − 1/poly(d) and that suffices. In fact, through the method of conditional
expectation, non-covered nodes will induce at most O(n) edges.

Second, in the MIS step, we prove that remaining “bad” nodes are at most n/dΩ(1) for each
degree class, without any assumption on the maximum degree. To achieve that, we combine
a pairwise independent MIS algorithm (similar to that of [23]) with a pessimistic estimator
that notably expresses the progress made over all degree classes as a single expectation. This
expectation can then be obtained by means of standard derandomization tools.

1.2.2 Strongly Sublinear Memory Regime
Randomized 2-Ruling Set Sparsification. The central step of the 2-ruling set algorithms
by [34, 33] is a sparsification procedure that returns a subgraph G′ of sufficiently small
maximum degree. Then, computing a maximal independent set on G′ has time proportional
to its maximum degree, and yields a 2-ruling set that covers all vertices in G which have a
neighbor in G′.

They construct a subgraph G′ of maximum degree O(f · log n) such that any (high-degree)
node with a degree in [∆, ∆/f ] in G has a neighbor in G′, for some parameter f ≥ log n. It is
easy to see that sampling each vertex v ∈ V with probability f ·log n/∆ independently ensures
that every vertex with degree at least ∆/f will have a sampled vertex in its neighborhood
with high probability.
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We just focused solely on covering vertices with degrees in [∆, ∆/f ]. It turns out that, by
each time removing the subgraph G′ and its neighbors, the same sampling step can be repeated
O(logf ∆) times, where in the j-th step nodes with degrees in [f logf ∆−(j−1), f logf ∆−j ] are
covered, with j ∈ [logf ∆]. This simple process leads to a randomized round complexity of
O(log f + logf ∆ + poly log log n) by applying any MIS algorithm that runs in O(log ∆ +
poly log log n) rounds [25, 28] on the union of all subgraphs, which have no conflicts by
construction. Then, f = 2

√
log ∆ is chosen to achieve a runtime of O(

√
log ∆ + poly log log n).

Deterministic 2-Ruling Set Sparsification. Our goal is to replace the above randomized
sampling with a deterministic sampling that returns a subgraph G′ with the same properties
as those returned by the above construction [34, 33]. We slightly alter the sampling guarantees
to allow for a relaxed maximum degree in G′ of up to poly(f) instead of O(f log n). Instead
of sampling each vertex with probability f · log n/∆ randomly and independently in a single
round, we sample them in a deterministic manner in O(log log ∆) rounds. The way in which
we design this deterministic sampling step is explained next.

The standard approach is to limit the randomness by sampling vertices using a carefully
selected k-wise independent hash function. A naive implementation that samples vertices
with probability poly(f)

∆ would need a family of k-wise independent hash functions with
k = Ω(logf n), since each vertex has poly(f) expected sampled neighbors. The need for
Ω(logf n)-wise independence results in a seed of length Ω(logf n · log ∆). Since in O(1) MPC
rounds only O(log n) bits can be fixed, this one-step process appears to require Ω( log ∆

log f )
many rounds1, which is very far from being sublogarithmic.

Our approach to make this construction randomness-efficient relies on breaking down
the sampling process into O(log log ∆) sub-sampling processes, each of which has weaker
guarantees but requires only O(1) rounds. In particular, the basis of our process is a simple,
deterministic, constant-round routine that decreases the maximum degree by a O(

√
∆)-factor,

while ensuring that the maximum-to-minimum degree ratio of O(f) is maintained, i.e., each
vertex v has degree roughly |NG(v)|/

√
∆ in G′.

Then, we repeatedly apply this degree-reduction routine to sparsify the neighborhoods of
high-degree vertices until their degree drops to 2O(log f). It is easy to see that this requires at
most O(log log ∆) repetitions. However, in each iteration, some downsampled neighborhoods
may deviate from their expectation, say by an ϵ-factor. Such deviation is amplified each time,
resulting in a potential error of ϵO(log log ∆). Nevertheless, through a suitable f and ϵ, we can
minimize the error and show that the subgraph G′ has poly(f) maximum degree. Therefore,
we can iterate through the O(logf ∆) degree classes (as in the randomized case) and apply
our deterministic degree reduction to achieve the same result, up to a O(log log ∆) factor.

Further Comparison. Several sparsifications for MIS and 2-ruling sets in LOCAL and
low-memory MPC have been studied. We include a brief comparison with the works of
[18, 39, 33].

A deterministic O(1)-round sampling process appeared in the MIS algorithm of [18]. There,
the goal is to reduce the maximum degree to at most nϵ while ensuring that the resulting
subgraph maintains enough edges and the distribution of degrees is still representative of the
original graph. They decrease the maximum degree by an nΩ(1)-factor for O(1) times, until
the desired bound is achieved. Since the expected new maximum degree is still on the order

1 Here, shortening the seed length using a family of ε-approximate k-wise independent hash functions
still requires ω(1) MPC rounds.

DISC 2024



29:6 Massively Parallel Ruling Set Made Deterministic

of nΩ(1), concentration around the expectation can be achieved with O(1)-wise independence,
and thus derandomized in O(1) rounds. In contrast, in 2-ruling set, the main challenge is to
subsample the neighborhoods of nodes with degree d ≪ nΩ(1). In fact, applying a similar
subsampling method would require Ω(logd n)-wise independence and Ω( log ∆

log f ) rounds, as
explained in the paragraph above. Thus, while the method in [18] is effective for high-degree
nodes with d = nΩ(1), handling smaller degrees requires a different approach.

The ruling set algorithm of [39] introduces a CONGEST sparsification that runs in
O(log2 n) rounds and deals with O(log ∆) degree classes. There, a single sampling step
requires a seed of length O(log2 n) as they require guarantees stricter than ours. Specifically,
their sparsification must maintain a low diameter and ensure proper coverage. Although
their derandomization is CONGEST-efficient, it would require O(log n) MPC rounds, making
it unsuitable to our setting.

Finally, we note that the faster randomized 2-ruling set algorithm of [33] relies on
(informally) performing graph exponentiation on a sparsified subgraph. This approach
relies on fixing the randomness of future iterations in advance, which simplifies the process
of speeding up algorithms in LOCAL. The main challenge in adapting this approach to a
deterministic setting is that existing techniques are generally effective at derandomizing
only O(1) steps of an algorithm. They do not easily extend to derandomize algorithms that
simulate Ω(1) randomized rounds locally on each single machine via graph exponentiation.
Consequently, achieving the same speed up deterministically appears to require a novel
approach.

2 Preliminaries

In our analyses, we will use the notation poly(·) to refer to (·)c, for a constant c > 0 at the
exponent that can be made arbitrarily large without affecting asymptotic bounds.

Primitives in MPC. We recall that basic computations can be performed in the MPC model
with strongly sublinear local memory in O(1) rounds deterministically [29, 30].

Therefore, tasks such as computing the degree of each vertex, ensuring neighborhoods
of all vertices are stored on single machines, and collecting certain subgraphs onto a single
machine will be used as black-box tools.

Derandomization Framework. A rich and successful line of research has studied the
derandomization of algorithms in the parallel and distributed setting. In the MPC model,
classic derandomization schemes using limited independence and the method of conditional
expectation [38, 41], can be augmented with the power of local computation and global
communication to achieve the expected result in O(1) rounds.

We will often use the concepts of k-wise independence and family of k-wise independent
hash functions (see, e.g., [40, 44]). Given a randomized process that works under k-wise
independence, it is known how to construct a k-wise independent family of hash functions.

▶ Lemma 3 ([1, 14, 21]). For every N, k, ℓ ∈ N, there is a family of k-wise independent hash
functions H = {h : [N ]→ {0, 1}ℓ} such that choosing a uniformly random function h from
H takes at most k(ℓ + log N) + O(1) random bits, and evaluating a function from H takes
time poly(ℓ, log N) time.

Moreover, to show concentration around the expected value under k-wise independence, we
will use the following tail bound.
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▶ Lemma 4 (Lemma 2.3 of [8]). Let k ≥ 4 be an even integer. Let X1, . . . , Xn be random
variables taking values in [0, 1]. Let X = X1 + . . . + Xn denote their sum and let µ ≤ E[X]
satisfying µ ≥ k. Then, for any ϵ > 0, we have

Pr [|X − E[X]| ≥ ϵ · E[X]] ≤ 8
(

2k

ϵ2µ

)k/2
.

We consider randomized algorithms that succeed in expectation when their random
choices are made using a family of k-wise independent hash functions H. Once our algorithm
(randomly) picks a hash function h, then all choices are made deterministically according
to h. Thus, our problem is that of deterministically finding a hash function that achieves a
result as good as the expectation.

The by-now standard MPC derandomization process can be broken down into two parts:
(i) show that the family of hash functions H has size poly(n) and produces the desired result
in expectation, and (ii) find one good hash function by applying the method of conditional
expectation in a distributed fashion. We will focus on establishing (i), since (ii) can then be
achieved by known MPC derandomization methods introduced by earlier works [12, 15, 18]
to which we refer for further details. It is worth mentioning that for step (ii) to be solved
using earlier tools as a black-box, the aimed expectation should be expressed as a sum of
locally computable quantities by each individual machine, i.e., the individual expectation of
each node that a machine stores.

3 Deterministic 2-Ruling Set in Linear MPC

We first introduce the reader to several sets of nodes that play a crucial role in our algorithm.
These sets of nodes are defined to reflect how a node will be handled by our algorithm.
Specifically, the core of the algorithm is a downsampling procedure that outputs a sufficiently
small subgraph on which we will compute a maximal independent set with the goal of ruling
a large fraction of nodes in the original graph.

Observe that if a node has a neighbor in the downsampled graph, then it will have some
node in the maximal independent set at distance at most two. This means that if a node is
likely to have a sampled neighbor, then it is likely to be ruled, and we call such a node good.
In the following, our definitions and algorithm are parameterized by a constant ε = 1/40,
which has not been optimized.

▶ Definition 5 (Good Node). A node v ∈ G is good if it satisfies
∑

u∈N(v)
1√

deg(u)
≥ deg(v)ε.

If a node v is not good, i.e.,
∑

u∈N(v)
1√

deg(u)
< deg(v)ε, then we say that v is a bad node.

Bad nodes are split into O(log ∆) degree classes as follows. Let d0 be a sufficiently large
constant and dmax = ⌈log ∆⌉.

▶ Definition 6 (Bad Node Classes). For d ∈ {2d0 , 2d0+1, . . . , 2dmax ], the set Bd includes all
bad nodes with degree in [d, 2d).

Therefore, bad nodes are likely to have few sampled nodes. This fact motivates the following
observation. If a (bad) node has many bad nodes within its 2-hop neighborhood, then it is
likely that at least one of such bad ones is in the maximal independent set. If that is the
case, we call such nodes lucky bad nodes, as specified in the following definition.

▶ Definition 7 (Lucky Bad Nodes). For d ∈ {2d0 , 2d0+1, . . . , 2dmax ], the set Bd ⊆ Bd includes
each node u ∈ Bd such that u has a neighbor w with |N(w)∩Bd| ≥ 6d0.6. If there are multiple
such w’s, pick one arbitrarily and let Su be an arbitrarily chosen subset of N(w) ∩Bd such
that |Su| = 6d0.6.

DISC 2024



29:8 Massively Parallel Ruling Set Made Deterministic

With these definitions in mind, we are now ready to present our deterministic constant-
round 2-Ruling Set algorithm in the linear regime of MPC.

The algorithm operates in three simple steps: Sampling, Gathering, and MIS Computation.
The first step of the algorithm samples each node v with probability deg−1/2(v). The sampling
probability is chosen to ensure that the downsampled graph has a linear number of edges.
Moreover, we will slightly alter the downsampled graph to include all nodes that do not satisfy
certain requirements, without affecting the asymptotic size of this subgraph. Therefore, in
the second step, we will be able to collect such subgraph onto a single machine. Then, the
MIS computation begins by running one iteration of Luby’s MIS on (part of) the subgraph
from the previous step and continues by extending such independent set to a maximal one
locally.

We will prove several desirable properties about the three-step algorithm above that
lead to a reduction of a dΩ(1)-factor for each degree class d. Therefore, by repeating this
three-step algorithm O(1) times, the number of edges over all degree classes converges to
O(n) and thus can be collected and solved locally, completing the proof of Theorem 1.

Next, we present the algorithm in more detail and then proceed to analyzing its three
steps with a particular focus on randomness efficiency. In fact, such randomness-efficient
analyses will allow for a simple derandomization.

3.1 The Algorithm
Sampling Step. Let G = (V, E) be the input graph with n vertices and m edges. Let Vsamp
denote the set of sampled vertices. We include each vertex v ∈ V in Vsamp with probability
pv = 1√

deg(v)
, according to a family of k-wise independent random variables with k = O(1).

Gathering Step. We gather several subsets of nodes whose (combined) induced subgraph
will be shown to have a linear number of edges. Gathered nodes are those either sampled
in the previous step or not satisfying certain properties as formally defined below. Let V ∗

denote the union of the following node subsets, which are being gathered locally onto a single
machine:
1. The set of sampled nodes Vsamp;
2. Every good node that is not sampled and has no sampled neighbors;
3. For each d, every lucky bad node u ∈ Bd that has either less than d0.1 sampled nodes in

Su or one of the sampled nodes in Su has more than d2ε sampled neighbors; as formalized
in Lemma 10.

MIS Computation. Our goal is now to compute a maximal independent set on the locally
gathered subgraph G[V ∗] to rule all but roughly at most a ∆Ω(1)-fraction of nodes in G. We
achieve this by first computing a partial MIS on the sampled bad vertices, i.e.,

⋃
d Bd∩Vsamp,

using a variation of Luby’s algorithm as detailed in the proof of Lemma 12. Afterward, we
can simply compute an MIS locally (and thus sequentially) on the remaining vertices, which
are not incident to the partial MIS computed earlier.

Output Properties. We expect that the output given by the derandomization of the above
three-step process satisfies the following properties. We will later use these properties to
achieve a deterministic constant-round complexity. Observe that we can ignore constant-
degree nodes since they can be gathered and dealt with locally at last.

Good nodes: All good nodes in G are ruled after the MIS step.
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Uncovered lucky bad nodes: For each d, after the computation of a partial MIS, only
a dΩ(1)-fraction of lucky bad nodes remains uncovered.
Uncovered bad nodes: For each d, the number of bad nodes in Bd \ Bd is only a
dΩ(1)-fraction of all nodes with initial degree at least d in G .

3.2 Analysis
We first establish that good nodes are likely to have a neighbor in Vsamp. Since we will
compute an MIS on V ∗ ⊇ Vsamp, such good nodes will be at distance at most 2 from a
node in the MIS. Moreover, good nodes that have no sampled neighbor will be shown to be
incident to a linear number of edges, allowing us to gather them as part of V ∗.

▶ Lemma 8. Every good vertex v has a neighbor in Vsamp with probability at least 1 −
1

poly(deg(v)) .

Proof. For any vertex u, let Xu be the indicator random variable for the event u ∈ Vsamp,
and X be the random number of neighbors of v in Vsamp. Further, let µ := E[X] =∑

u∈N(v) E[Xu] =
∑

u∈N(v) Pr[Xu = 1] ≥ deg(v)ε ≫ k, since nodes of constant degree can
be ignored and dealt with separately at last by collecting them onto a single machine. By
applying Lemma 4, we have

Pr[X = 0] ≤ Pr[|X − µ| ≥ µ] ≤ 8 ·
(

kµ + k2

µ2

)k/2

≤ 8 ·
(

2k

µ

)k/2
= 1

poly(deg(v)) ,

which proves the lemma. ◀

Toward the goal of ruling lucky bad nodes, we next show that bad nodes are likely to
have few sampled neighbors. This means that sampled bad nodes, by having a low degree in
the sampled graph, will have higher chances of being in the partial MIS computed later.

▶ Lemma 9. Any node u ∈ Bd has at most d2ε sampled neighbors with probability at least
1− 1

poly(d) .

Proof. Recall that for any u ∈ Bd, it holds that
∑

w∈N(u)
1√

deg(w)
< deg(u)ε. We will

use this fact to prove that the number of sampled neighbors does not deviate by more
than O(d2ε) with probability at least 1− 1

poly(d) . Let Xw be the indicator random variable
for the event w ∈ Vsamp, and X be the random number of neighbors of u in Vsamp. Let
µ = E[X] =

∑
w∈N(u) E[Xw] =

∑
w∈N(u) Pr[Xw = 1] < deg(u)ε < 2dε. By applying

Lemma 4, we get

Pr[|X − µ| ≥ d2ε − µ] ≤ 8 ·
(

k2 + kµ

(d2ε − µ)2

)k/2

≤ 8 ·
(

2k2

dε

)k/2

= 1
poly(d) .

Note that for small values of d, our constant d0 can be chosen such that 2d0·ε = Ω(k2). ◀

The next lemma proves that each lucky bad node u has a large number of nodes sampled
out of its set Su. Specifically, we need to show that the number of sampled nodes in Su is
higher than the degree of such nodes in the sampled graph. This fact will be used to ensure
that lucky bad nodes have a vertex, within their 2-hop neighborhoods, in the MIS, thereby,
ensuring their coverage.

▶ Lemma 10. For any lucky bad node u, its set Su ⊆ Bd of cardinality 6d0.6 contains at
least d0.1 sampled nodes and each sampled node in Su has at most d2ε sampled neighbors
with probability at least 1− 1

poly(d) .
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Proof. By Lemma 9 and a union bound over the set Su of 6d0.6 nodes, none of them has
more than d2ε sampled neighbors with probability at least 1− 1

poly(d) . Our goal is now to
prove that the number of sampled vertices within Su is less than d0.1 with probability at
most 1

poly(deg(u)) = 1
poly(d) .

Let X be the random number of sampled vertices in Su, and let µ = E[X] ≥ 3d0.1, since
each vertex in Bd is sampled with probability at least 1/

√
2d. By applying Lemma 4, the

probability of X deviating by more than d0.1 from its expected value is

Pr[|X − µ| ≥ µ− d0.1] ≤ 8 ·
(

2kµ

(µ− d0.1)2

)k/2
≤ 8 ·

(
2k

d0.1

)k/2
= 1

poly(deg(u)) . ◀

We now use the above lemmas, together with a bound on the number of edges induced
by the sampling step, to prove that our gathering step effectively collects O(n) edges.

▶ Lemma 11. The subgraph induced by G[V ∗] has O(n) edges in expectation.

Proof. Our goal is to prove that the expected sum of the original degrees of nodes in V ∗ is
O(n), which clearly upper bounds the number of edges in the induced subgraph. To do so,
we analyze each subset individually.

We first analyze the expected number of edges induced by Vsamp. Let X denote the
random number of edges within the subgraph G[Vsamp]. Let Ye be an indicator random
variable for the event that edge e is in G[Vsamp]. To aid our analysis, we orient each edge in
the graph from the endpoint with lower degree to the endpoint with higher degree. Now,
consider an edge e = (u, v) with deg(u) ≤ deg(v). Vertices u and v are each sampled
with probability at most 1√

deg(u)
. By pairwise independence, the probability of edge e

being in G[Vsamp] is bounded by 1
deg(u) . Consequently, the expected number of edges is

E[X] =
∑

v∈V

∑
e∈out(v) E[Ye] ≤

∑
v∈V

∑
e∈out(v)

1
deg(u) = O(n).

Next, let V good denote the set of good nodes that have no sampled neighbor and Y the
random number of edges incident to V good in G. By Lemma 8, each good node v is in V good
with probability at most 1/poly(deg(v)). Thus,

E[Y ] ≤
∑
v∈V

deg(v) · Pr[v ∈ V good] ≤
∑
v∈V

deg(v)
poly(deg(v)) = O(n).

Finally, let the set B′
d ⊆ Bd include each unlucky bad node u such that either less than

d0.1 vertices in Su are sampled or any sampled node in Su has more than 2dε sampled
neighbors. By Lemma 10, each node u is in B′

d with probability at most 1/poly(d). Let Z

be the random number of edges incident to B′
d. We have

E[Z] ≤
dmax∑
i=d0

∑
u∈B2i

deg(u) · Pr[u ∈ B′
2i ] ≤

dmax∑
i=d0

∑
u∈B2i

2d

poly(d) ≤
dmax∑
i=d0

|B2i | = O(n). ◀

Derandomize Sampling and Gathering Steps. We are now ready to discuss how the above
Sampling and Gathering steps can be turned into a deterministic linear MPC algorithm.
Recall that each vertex is sampled according to a family of k-wise independent random
variables with k = O(1). A family H of k-wise independent hash functions such that
h ∈ H : [n] → [n3] can be specified using a random seed of length O(log n), meaning that
|H| = poly(n). Each h maps the n vertex IDs (assumed to be from 1 up to n) to an integer
in [n3]. Then, each vertex is sampled and belongs to Vsamp iff its ID is mapped to an
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integer that is at most
⌊
n3/

√
deg(v)

⌋
with respect to h, where the floor affects results only

asymptotically. Each vertex can now locally check whether it will be included in V ∗ for a
specified hash function h. In fact, the machine that v is assigned to stores all v’s neighbors
and the set Sv if v is a lucky bad node. Therefore, it is easy to see that each node can
computed the objective function |E(G[V ∗])| locally, and we can thus apply the distributed
method of conditional expectation. Since |H| = poly(n), after a constant number of rounds
we will find a h that ensures |E(G[V ∗])| = O(n).

We now turn to analyzing the MIS step. Recall that we first compute a partial MIS on
the sampled bad nodes in order to rule all but a small fraction of lucky bad nodes. The next
lemma explains how such an independent set is being computed.

▶ Lemma 12. Let B̂d include each node u ∈ Bd that satisfies the property of Lemma 10.
After the partial MIS computation, each node u ∈ B̂d will be ruled with probability at least
1− 45

dε for all d ∈ [d0, dmax]. This result depends only on the randomness used in the MIS
computation.

The proof of Lemma 12 is provided in Appendix A.
The above lemma turns out not to be sufficient to derandomize our MIS step. In fact, we

need to show that all degree classes of lucky bad nodes have a high enough chance of being
ruled simultaneously. This is due to the fact that in the derandomization process, we can
control only one objective function and not O(log ∆) as the number of degree classes would
appear to require. In the next lemma, we show how to define a pessimistic estimator that
solves this issue.

▶ Lemma 13. After the partial MIS computation, all but at most |Bd|
dΩ(1) nodes will be ruled

in expectation, for all d simultaneously.

Proof. Let us first reason about a fixed d and then about all d’s simultaneously.
Recall that B̂d include each node u ∈ Bd that satisfies the property of Lemma 10. There

are at most |Bd|
poly(d) vertices in Bd \ B̂d by Lemma 10. Then, any vertex in B̂d is ruled with

probability at least 1− 45
dε by Lemma 12. Therefore, by linearity of expectation, the number

of non-ruled vertices in is at most 45|Bd|/dε.
Our goal is now to define a single objective function whose expected value ensures that

the same asymptotic result holds for all d simultaneously. Let Xd be the random number of
unruled nodes in Bd, for each d. We define our objective function Q, which will serve as a
“pessimistic estimator”, as a weighted sum of the Xd’s as follows.

Q =
dmax∑
i=d0

X2i · 2i· ε
2

|B2i |
,

so that we get

E[Q] =
dmax∑
i=d0

E[X2i ] · 2i· ε
2

|B2i |
≤

dmax∑
i=d0

45|B2i |
2iε

· 2i· ε
2

|B2i |
=

dmax∑
i=d0

45
2iε/2 = O(1),

where the convergency follows from choosing a sufficiently large constant d0 = O(ε−1).
Observe that the expected value of Q ensures that, for each set Bd, the number of nodes
which are not ruled after running our Luby’s step is Xd ≤ E[Q] · |Bd|

dε/2 = |Bd|
dΩ(1) . ◀
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Deterministic MIS Step. We now present an efficient derandomization of the above partial
MIS computation in the linear MPC regime. As discussed in Lemma 12, our family H of
pairwise independent hash functions has size |H| = poly(n). Note that each lucky bad
node u can store in a single machine its set Su and all of their sampled neighbors since
|Su| · d2ε = O(d) = O(deg(u)). Then, each vertex u can check whether it will be ruled under
a specified hash function h. Therefore, we can compute u’s contribution to Q(h) locally,
where Q(h) is the objective function of Lemma 13 under a specified hash function h. This
allows us to apply the distributed method of conditional expectation with objective Q to
find a good hash function with Q(h) = O(1) in a constant number of rounds.

Counting the bad nodes. Let V≥d denote the set of all nodes in G with initial degree at
least d, and let the set B∗

d
def= Bd \ Bd. It remains to prove that the set B∗

d contains only
a small fraction of nodes. The next lemma is equivalent to Lemma 9 of [11] up to some
parameters change.

▶ Lemma 14. For any degree d ∈ [2d0 , 2dmax ], we have that |B∗
d | ≤ 12|V≥d|/d0.4.

Proof. For a bad node v, it is easy to see by contradiction that at least d/2 of v’s neighbors
have degree at least d2(1−ε)/4 (see also Lemma 8 of [11]). Let d′ = d2(1−ε)

4 . Therefore, any
node v ∈ B∗

d has at least d/2 neighbors in V≥d′ . Furthermore, any node in V≥d′ neighboring
a node in B∗

d has at most 6d0.6 edges connecting to nodes in Bd ⊇ B∗
d . As a result of these

observations, we derive the following inequality:

d/2 · |B∗
d | ≤ 6|V≥d′ | · d0.6,

which together with the fact that d′ ≥ d, for d large enough, proves the lemma. ◀

Bounding Total Runtime. In the above paragraphs, we showed how to achieve determinis-
tically the properties required by our three-step algorithm outlined at the beginning of this
section. We now rove that repeating this process O(1) times reduces the size of the graph to
O(n/∆), implying that the remaining nodes can be collected and solved for locally.

▶ Lemma 15. At the end of the first iteration, the number of remaining uncovered vertices
with degree at least d, denoted by V

(1)
≥d , satisfies

|V (1)
≥d | ≤ |V≥d|/dε′

.

Proof. The remaining uncovered vertices are only bad nodes. An uncovered bad node of
degree [d, 2d) can be either in B∗

d (Lemma 14) or remained uncovered after running the
deterministic MIS step (Lemma 13). Over all d, . . . , 2dmax , this leads to:

|V (1)
≥d | ≤

dmax∑
i=log d

|B∗
2i |+

|Bd|
2Ω(i) ≤

dmax∑
i=log d

12|V≥2i |
20.4·i + |Bd|

2Ω(i) ≤ |V≥d|
dmax∑

i=log d

1
2Ω(i) = |V≥d|

dΩ(1) ,

where the last inequality follows from |Bd| ≤ |V≥d|, and the final bound is due to the
geometric sum being asymptotically dominated by the first term. ◀

Having established, in Lemma 15, the progress made at each iteration by our three-step
process, we can now apply a simple induction to show the desired bound on the progress
made after several iterations.
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▶ Lemma 16. After O(1) iterations, the graph induced by uncovered nodes has O(n) edges.

Proof. Let V
(k)

≥d denote the number of remaining uncovered vertices with degree at least d

at iteration k. Our goal is to prove that after k iterations, it holds that V
(k)

≥d ≤ V≥d/dkε′

so that for k = O(1/ε′), we get V
(k)

≥d ≤ V≥d/d1.1. The base case for k = 1 follows from
Lemma 15. Now, let us assume that V

(k−1)
≥d ≤ V≥d/d(k−1)ε′ . By a straightforward application

of Lemma 15, we have that V
(k)

≥d ≤ |V
(k)

≥d |/dε′ ≤ V≥d/dkε′ , as desired. Now, since the number
of nodes with degree [d, 2d) is upper bounded by |V≥d|, the total number of edges is at most∑log dmax

i=log d0
V≥d · 2i+1−1.1·i =

∑log dmax
i=log d0

O(n/20.1·i) = O(n). ◀

4 Deterministic 2-Ruling Set in Sublinear MPC

In this section, we show that for an input graph with maximum degree ∆, a 2-ruling set
can be computed deterministically in the strongly sublinear memory regime of MPC in
Õ(log1/2 n) rounds.

We start by introducing a simple, deterministic, constant-round routine that reduces the
size of each high-degree neighborhood by a

√
∆-factor, where high-degree refers to node with

degree at least log(n) ·∆0.6. For ease of exposition, assume that high-degree vertices form a
set U , and that V is the set of all vertices (including high-degree vertices) that are being
downsampled. Therefore, we reason about a bipartite graph G = (U ⊔ V, E), where each
node in u ∈ U is connected to each vertex v ∈ NG(u) in the other part. Our goal is to ensure
that each vertex u has roughly NG(u)/

√
∆ neighbors deterministically. For simplicity, in

the next lemma, we make two assumptions: (i) the neighbors of each vertex fit into a single
machine, and defer the other case to Lemma 18; (ii) we are given a certain coloring of G

that we discuss how to achieve at the end of this section.

▶ Lemma 17. Let G be a graph with bipartition V (G) = U ⊔ V and ∆ be an upper bound on
the maximum degree of any node in U such that ∆ ∈ O(nα) for some α < 1. Furthermore,
assume that each node in V is given a color out of a palette of O(∆6) colors, such that any
two distinct nodes v, v′ ∈ V that have a common neighbor in U are assigned distinct colors.
Then, there exists a deterministic constant-round sublinear MPC algorithm that computes a
subset V sub ⊆ V such that for any node u ∈ U with degG(u) ≥ log(n) ·∆0.6, it holds that
|NG(u) ∩ V sub| ∈

[
1

3
√

∆
|NG(u)|, 1√

∆
|NG(u)|

]
. The global space usage is linear in the input

size.

Proof. Let us assume that each node v ∈ V knows its own color cv of a coloring satisfying
the above properties. Then, nodes in V apply a hash function h from a k-wise independent
family H that maps each color to an integer in [⌈3

√
∆/2⌉]. A node v is then sampled under h

iff h(v) = 1, which occurs with probability 1/⌈3
√

∆/2⌉, where the ceil affects our results only
asymptotically. We choose k = 4c log∆ n, for constant c > 0, so that the seed length to select
a hash function from H is at most ℓ = O(log∆ n) ·max{O(log ∆6), O(log

√
∆)} = O(log n),

i.e., the family H has size poly(n).
We prove that for each vertex u ∈ U with degree larger than log n ·∆0.6, the probability

of having between 1
3

√
∆
|N(u)| and |N(u)|/

√
∆ neighbors within V sub is at least 1− 1

nc , i.e.,
the count of v’s neighbors in V sub deviates by at most 1

3
√

∆
|N(u)|. For each neighbor v of u,

let Xv be an indicator random variable for the event v ∈ V sub. Define X =
∑

v∈N(u) Xv as
the number of neighbors of u in V sub. Then, µ = E[X] = 2|N(u)|

3
√

∆
≥ c log n∆0.1. By applying
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Lemma 4, we have:

Pr[|X − µ| ≥ µ/2] ≤ 8
(

4kµ + 4k2

µ2

)k/2

≤ 8
(

16c2∆0.1 log2 n + 32c2 log2 n

∆0.2c2 log2 n

)k/2

≤ 8
(

1
∆0.1

) 4c
2 · log n

log ∆

≤ 1
n2c

.

Therefore, the expected number of high-degree vertices in U whose count of sampled neighbors
deviates by more than µ/2 is at most n2c−1 < 1. This means that we can apply the method
of conditional expectation in a distributed fashion with as objective function the number of
bad nodes, i.e., those whose sampled neighborhood deviates from the expectation by more
than half. Since the memory capacity of each machine is O(nα), each machine can compute
locally the contribution to the objective of all the vertices (and their neighbors) it stores.
Therefore, after O(1) rounds, we find a hash function such that all high-degree vertices in U

have the desired number of sampled neighbors. ◀

Next, we discuss how to extend Lemma 17 to handle the case in which not all neighbors of
a vertex in U can be collected onto a single machine. In particular, if ∆≫ nα, then aiming
for a reduction of a

√
∆-factor might not be viable, given the constrained local memory. Due

to that, we slightly relax our goal and reduce our high-degree neighborhoods by a nε-factor,
for some constant ε < α. To achieve that, we split edges into groups so that each machine is
assigned nc·ε edges, for c > 1. While we can only control the deviation of each single group
of edges, we will be able to bound the overall number of neighbors, i.e., edges per node, using
the fact that there are at most ∆/nc·ε groups.

▶ Lemma 18. Let G be a graph with bipartition V (G) = U ⊔ V . Let ∆ be an upper bound
on the maximum degree of any node in U such that ∆ ≥ n10ε, for some constant ε > 0.
Then, there exists a deterministic constant-round sublinear MPC algorithm that computes a
subset V sub ⊆ V such that for any node u ∈ U with degG(u) ≥ log(n) ·∆0.6, it holds that
|NG(u) ∩ V sub| ∈

[ 1
2nε |NG(u)|, 3

2nε |NG(u)|
]
. The global space usage is linear in the input

size.

Proof. Consider an arbitrary vertex u ∈ U with degree at least log(n) · ∆0.6. The idea
is to split edges of u into groups of size at most n4ε, which fits into the memory of one
machine. Specifically, each machine holds n4ε edges except for a single machine that holds
any remaining edges, which are at most n4ε. Then, we sample nodes in V with probability
n−ε according to a family of O(1)-wise independent hash function. Using a calculation
similar to that of Lemma 17, we can find a hash function such that all groups of n4ε edges
have n3ε ± n2ε sampled edges. Then, the total number of sampled neighbors is at least∑

machine i

n3ε − n2ε ≥
⌊
|NG(u)|

n4ε

⌋
·
(
n3ε − n2ε

)
≥ |NG(u)|

nε
− |NG(u)|

n2ε
− n3ε ≥ |NG(u)|

2nε
,

where n3ε = o( |NG(u)|
2nε ) since NG(u) ≥ n6ε. An analogous calculation shows that the total

number of sampled neighbors for any vertex u is at most 3|NG(u)|
2nε . ◀

We are now ready to present our O(log log ∆) sparsification. We show that we can find
a subset of nodes incident to all nodes in U such that their induced maximum degree is
2O(log f) for f = 2

√
log ∆. This is achieved by repeating the sampling processes of Lemmas 17

and 18 for O(log log ∆) times. Here, one key observation to bound the deviation is that in
each run of Lemma 17 only the lower tail may deviate up to a 1/3-factor from |NG(u)|√

∆
. So,

the final multiplicative error will be 3O(log log ∆) = poly log ∆.
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▶ Lemma 19. Let G be a graph with bipartition V (G) = U ⊔ V . Let ∆ and ∆
f be an upper

bound on the maximum degree and a lower bound on the minimum degree, respectively, of
any node in U for any parameter f ≤ ∆0.4

log n and f ≥ poly(log n). There exists a sublinear
MPC algorithm that computes in O(log log ∆) rounds a subset V sub ⊆ V such that for any
node u ∈ U with degG(u) ≥ ∆

f , it holds that |NG(u) ∩ V sub| ∈ [1, 2O(log f)]. The algorithm
global space usage is linear in the input size.

Proof. Our goal is to find a suitable set V sub by applying the sparsification outlined in
Lemma 17. If ∆ ≥ nα, we first apply Lemma 18 for O(1/ε) = O(1) times until the maximum
degree in U is within the memory capacity of a single machine O(nα), which can be achieved
by setting ε ≤ α

10 , i.e., nα ≥ n10ε. Define ∆′ ≤ nα as the maximum degree in U after
downsampling vertices in V for O(1) iterations as per Lemma 18. Notice that the minimum
degree in U is now c · ∆′

f , for some constant c > 0. Then, we run the algorithm of Lemma
17 for k = O(log log ∆) iterations, and stop as soon as the minimum degree in U is within
2O(log f). We prove by induction that after k iterations nodes have degrees in[

c

f · 3k
(∆′)1/2k

, (∆′)1/2k

]
.

The base case follows from Lemma 17. The induction step then follows from[
c

f · 3(k−1) (∆′)1/2(k−1)
· 1

3(∆′)1/2k , (∆′)1/2(k−1)
· 1

(∆′)1/2k

]
=

[
c

f · 3k
(∆′)1/2k

, (∆′)1/2k

]
.

By choosing k = ⌊log log ∆′ − log(2 log(f · log ∆′))⌋, one can verify that, for any vertex in
U , the minimum degree in the downsampled graph will be at least one, and the maximum
degree at most 2O(log(f ·log ∆)) = 2O(log f). ◀

Our 2-ruling set algorithm is paramterized by f = 2
√

log ∆. On a high-level, we mimic
the randomized local 2-ruling set algorithm of [35]. In each iteration i, 0 ≤ i ≤ ⌊log f⌋, we
address the set of vertices with degree in (∆/f i+1, ∆/f i]. We apply the sparsification of
Lemma 19 on each set of high-degree vertices, one set at a time sequentially. Each sparsified
subgraph is then put aside and, together with all incident nodes in G, is removed from further
consideration before starting the next iteration. At the end, the union of all subgraphs of
induced maximum degree 2O(log f) and possibly some remaining low-degree vertices are given
in input to an MIS algorithm, whose solution is effectively a 2-ruling set. We detail the
algorithm in the following pseudocode and proceed to its analysis below.

Algorithm 1 Sublinear 2-Ruling Set.

f ← 2
√

log ∆; M ← ∅
for i← 0, 1, · · · , ⌊log f⌋ do

U ← {v ∈ V | degG(v) ∈ ( ∆
fi+1 , ∆

fi ]}; V ′ ← V

G′ ← (U ⊔ V ′, E′ = {(u, v) | u ∈ U, v ∈ V ′, (u, v) ∈ E}) ▷ Bipartition for sparsification
for j ← 1, 2, · · · , O(log log ∆) do ▷ See also Lemma 19

∆′ ← maximum degree in G′

V ′ ← sample v ∈ V ′ with prob. max{ 2
3

√
∆′ , 1

nε }

M ←M ∪ V ′

V ← V \ (V ′ ∪NG(V ′)) ▷ Remove neighbors of sampled set
Return MIS on G[M ∪ V ]

The proofs of the next two lemmas are fairly standard and deferred to Appendix B.
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▶ Lemma 20. At the end of iteration i, 1 ≤ i ≤ ⌊log f⌋, all vertices still in V have degree at
most max{∆

fi , 2O(log f)}.

▶ Lemma 21. After ⌊log f⌋ iterations, the subgraph induced by M together with vertices still
in V , i..e, G[M ∪ V ], has maximum degree 2O(log f).

Proof of Theorem 2. As proved in Lemma 19, each iteration of the algorithm runs in
O(log log ∆) rounds. Since there are O(

√
log ∆) iterations for f = 2

√
log ∆, the total number

of rounds is O(
√

log ∆ · log log ∆). From Lemma 21, we see that the sparsified graph
given by M together with vertices still in V has degree at most 2O(

√
log ∆). Therefore, the

MIS computation at the end of the algorithm takes O(
√

log ∆ + log log∗ n) by using the
deterministic MIS algorithm from Lemma 27 of [20] that runs in O(log ∆′ + log log∗ n) on a
∆′-maximum degree graph, provided that the allowed global space is O(n1+δ +m). Otherwise,
we use the variation given in [23] that runs in O(

√
log ∆ · log log n) and uses linear global

space. ◀

Lastly, we need to show how to achieve a poly(∆) coloring of G2 to fulfill the assumption
made in Lemma 17. Due to space constraints, it is deferred to Appendix B.1.
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A Missing Proofs for Linear MPC Result

Proof of Lemma 12. We analyze one step of (a variation of) Luby’s algorithm that builds
an independent set I on the set of sampled bad vertices

⋃
d Bd ∩ Vsamp. We will fix a seed

specifying a hash function from a pairwise independent family H. Let v ∈ (
⋃

d Bd ∩ Vsamp).
An hash function h maps node v to a value zv ∈ [n3]. Then, v joins the independent set I iff
zv < zw for all w ∼ v and zv < n3

d3ε , where w ∈ N(v) ∩ (
⋃

d Bd ∩ Vsamp).
By Lemma 10, each node u ∈ B̂d has at least d0.1 nodes from Su that are sampled, each

of which has at most d2ε sampled neighbors. For the purpose of the analysis, let the set Au

include exactly d0.1 = d4ε of such nodes and let {Xv}v∈Au
be the random variables denoting

the event that v joins I. We denote X =
∑

v∈Au
Xv as their sum. For any v, we have

1
d3ε
− 1

n3 ≤ Pr
[
zv <

n3

d3ε

]
≤ 1

d3ε
.

By pairwise independence,

Pr[Xv = 1] ≥ Pr
[

zv <
n3

d3ε

]
−

∑
v′∈N(v)∩S(B)

Pr
[

zv′ ≤ zv <
n3

d3ε

]
≥ 1

d3ε
− 1

n3 − d2ε

d6ε
≥ 1

3d3ε
.

It follows that E[X] =
∑

v∈Au
Pr[Xv = 1] ≥ dε

3 . Our goal is now to bound Pr [X = 0].
Observe that for any two vertices v, v′ ∈ Au, we have that

E[XvXv′ ] ≤ Pr
[
zv <

n3

d3ε
∩ zv′ <

n3

d3ε

]
≤ d−6ε,

by pairwise independence. Thus, we get

Var[X]
E[X]2 ≤

∑
v∈Au

Var[Xv] +
∑

v,v′∈Au
Cov[Xv, Xv′ ]

E[X]2 .
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We know that∑
v∈Au

Var[Xv] ≤ d4ε · Pr[Xv = 1](1− Pr[Xv = 1]) ≤ d4ε · 1
3d3ε

= dε

3 ,

∑
v,v′∈Au

Cov[Xv, Xv′ ] ≤ d8ε(E[XvXv′ ]− E[Xv]E[Xv′ ]) ≤ d8ε(d−6ε − 1/9d6ε) ≤ d2ε.

Therefore,

Var[X] ≤ dε

3 + d2ε ≤ 4dε

3 , and Var[X]
E[X]2 ≤

4dε

3(
dε

3
)2 = 4dε

3 ·
9

d2ε
= 36

dε
.

Applying Chebyshev’s inequality, we have

Pr[X = 0] ≤ Pr [|X − E[X]| ≥ E[X]] ≤ Var[X]
E[X]2 ≤

45
dε

. ◀

B Missing Proofs for Low-Memory MPC Result

Proof of Lemma 20. Consider a high-degree vertex u ∈ U at the start of the i-th iteration.
By Lemma 19, each node in U is incident to a node that joins the set M by the end of this
iteration. Since all vertices incident to M are removed from V , the lemma follows. ◀

Proof of Lemma 21. First, consider a vertex v that joins the set M at some iteration j.
Observe that no neighbor of v in G had joined M earlier, otherwise, u would have been
removed. By Lemma 19, all vertices that join M at iteration j have induced degree at most
2O(log f). Then, the neighbors of M are removed from V and, thus, cannot join M anymore.
This proves that vertices in M have degree at most 2O(log f). Second, consider a vertex w

that at the end of the ⌊log f⌋-th iteration is still in V . This means that w does not neighbor
M and that, by Lemma 20, w has degree at most 2O(log f), finishing the claim. ◀

B.1 Coloring of G2

Here, we discuss how to compute a poly(∆) coloring of G2 to fulfill the assumption made in
Lemma 17.

Whenever ∆ = nΩ(1), the initial assignment of IDs to vertices, typically from 1 to n,
effectively serves as a poly(∆) coloring of G2. In the case where ∆ ≤ nδ for constant δ < α/2,
we ensure ∆2 ≪ nα. This implies that the 2-hop neighborhood of every node can be stored
within the local memory of a single machine. Storing the 2-hop neighbors on a single machine
permits the use of Linial’s coloring reduction technique [37], which achieves a O(∆6) coloring
in O(1) rounds. However, this approach necessitates of a global space usage of O(n1+2δ),
potentially exceeding O(n + m). To improve the global space usage, after three runs of
Lemma 17, the degree of each vertex which has not been removed is at most ∆0.22. Since
each sampled vertex is incident to a high-degree vertex of initial degree at least O(∆/f), we
can charge high-degree vertices O(∆0.66)≪ ∆/f space consumption. This reduction allows
us to gather the 2-hop neighbors of all active nodes onto single machines without breaching
the global space limit. A further optimization involves substituting the first three runs of
Lemma 17 with a weaker version, detailed below, addressing all but at most n

∆0.01 vertices.
The proof follows from that of Lemma 17.
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▶ Lemma 22. Let G = (V, E) be a graph with an upper bound ∆ on the maximum degree.
There is a sublinear MPC algorithm that computes in O(1) rounds a subset V ′ ⊆ V ensuring
that, for all but at most n

∆0.01 vertices v ∈ V with degG(v) ≥ log(n) · ∆0.6, it holds that
|NG(v) ∩ V ′| ∈

[
1

3
√

∆
|NG(v)|, 1√

∆
|NG(v)|

]
.

Applying Lemma 22 initially and excluding up to n
∆Ω(1) vertices not meeting our criteria

allows for the execution of O(log log ∆) iterations for the well-behaved vertices. The excluded
vertices are subsequently addressed by repeating the same process. After O(1) iterations,
the remaining vertex count drops to O( n

∆2 ), fitting the global space needed to store their
2-hop neighborhoods within O(n). Consequently, after O(log log ∆) rounds, all vertices are
processed without affecting the asymptotic total number of rounds.
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