
Byzantine Resilient Distributed Computing on
External Data
John Augustine # Ñ

Indian Institute of Technology Madras, Chennai, India

Jeffin Biju #

Indian Institute of Technology Madras, Chennai, India

Shachar Meir #

Weizmann Institute of Science, Rehovot, Israel

David Peleg #Ñ

Weizmann Institute of Science, Rehovot, Israel

Srikkanth Ramachandran #

Indian Institute of Technology Madras, Chennai, India

Aishwarya Thiruvengadam # Ñ

Indian Institute of Technology Madras, Chennai, India

Abstract

We study a class of problems we call retrieval problems in which a distributed network has read-only
access to a trusted external data source through queries, and each peer is required to output some
computable function of the data. To formalize this, we propose the Data Retrieval Model comprising
two parts: (1) a congested clique network with k peers, up to βk of which can be Byzantine in every
execution (for suitable values of β ∈ [0, 1)); (2) a trusted source of data with no computational
abilities, called the External Data Source (or just source for short). This source stores an array X of
n bits (n≫ k), providing every peer in the congested clique read-only access to X through queries.
It is assumed that a query to the source is significantly more expensive than a message between two
peers in the network. Hence, we prioritize minimizing the number of queries a peer performs over
the number of messages it sends. Retrieval problems are easily solved by having each peer query all
of X , so we focus on designing non-trivial query-efficient protocols for retrieval problems in the DR
network that achieve low query performance per peer. Specifically, to initiate this study, we present
deterministic and randomized upper and lower bounds for two fundamental problems. The first is
the Download problem that requires every peer to output an array of n bits identical to X . The
second problem of focus, Disjunction, requires nodes to learn if some bit in X is set to 1.

2012 ACM Subject Classification Computing methodologies → Distributed algorithms

Keywords and phrases Byzantine Fault Tolerance, Blockchain Oracle, Congested Clique, Data
Retrieval Model

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.3

Related Version Full Version: https://arxiv.org/abs/2309.16359

Funding John Augustine: Supported by the Cybersecurity Centre, IIT Madras.
David Peleg: Venky Harinarayanan and Anand Rajaraman Visiting Chair Professor. The funds from
this professorship enabled exchange visits between IIT Madras, India, and the Weizmann Institute
of Science, Israel.

Acknowledgements We would like to thank Atharva Chougule for useful ideas.

© John Augustine, Jeffin Biju, Shachar Meir, David Peleg, Srikkanth Ramachandran, and Aishwarya
Thiruvengadam;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 3; pp. 3:1–3:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:augustine@cse.iitm.ac.in
https://cse.iitm.ac.in/~augustine/
https://orcid.org/0000-0003-0948-3961
mailto:augustine@cse.iitm.ac.in
mailto:shachar.meir@weizmann.ac.il
https://orcid.org/0009-0003-5007-047X
mailto:david.peleg@weizmann.ac.il
https://www.weizmann.ac.il/math/peleg/
https://orcid.org/0000-0003-1590-0506
mailto:sramach@ucdavis.edu
https://orcid.org/0000-0003-2392-1999
mailto:aishwarya@cse.iitm.ac.in
https://sites.google.com/view/aishwaryat
https://doi.org/10.4230/LIPIcs.DISC.2024.3
https://arxiv.org/abs/2309.16359
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Byzantine Resilient Distributed Computing on External Data

1 Introduction

Background and Motivation

We study distributed systems in which a peer-to-peer (P2P) network retrieves data (or
some boolean function of it) from a trusted source of data that is external to the network.
To formalize this study, we propose a new model called the Data Retrieval (DR) Model
comprising a congested clique network and an External Data Source (or source for short)
with no computational capabilities. The DR model consists of a congested clique network
with k peers, up to βk of which can be Byzantine in every execution (for suitable values of
β ∈ [0, 1)). The source comprises an array X of n bits (n≫ k), providing every peer in the
congested clique read-only access to X through queries. We prioritize minimizing the number
of queries a peer performs over the number of messages it sends as we assume that a query to
the source is significantly more expensive than a message between two peers in the network.

Our DR model is inspired by distributed Blockchain oracles [7, 12]. In such oracle systems,
a decentralized P2P network with some Byzantine corruptions (modeled by our congested
clique network) is tasked with retrieving information from trusted external data sources
(e.g., stock prices, inflation indices, IoT sensors, etc.) through well defined Application
Programming Interface (API) calls. Currently, nodes in state-of-the-art blockchain oracles
do not cooperate, resulting in each node having to read all the information directly from the
data source. These API calls can be expensive with cost scaling directly with their usage.
The DR model provides a framework for designing Byzantine resilient mechanisms for nodes
in such P2P networks to share the workload of queries, thus reducing the cost for each node.

Difference in approach from traditional BFT problems. The theory of Byzantine fault
tolerance has been a fundamental part of distributed computing ever since its introduction
by Pease, Shostak, and Lamport [33, 36] in the early 80’s, and has had a profound influence
on cryptocurrencies, blockchains, distributed ledgers, and other decentralized peer-to-peer
systems. It largely focused on a canonical set of problems like Broadcast [18], Agreement [11,
33, 36, 37], k-set Agreement [14], Common Coin [34], and State Machine Replication [13].
Some studies have injected Byzantine fault tolerance into other related areas (cf. [5, 6, 9, 16,
17]). In most of these studies, the main parameter of interest is the maximum fraction β of
the peers that can be corrupted by the adversary in an execution.

J. Augustine, J. Biju, S. Meir, D. Peleg, S. Ramachandran, and A. Thiruvengadam 3:3

Consider the Byzantine Agreement problem that requires n peers, each with an input bit,
to agree on a common output bit that is valid, in the sense that at least one honest (non-
Byzantine) peer held it as input. In the synchronous setting, even without cryptographic
assumptions, there are agreement algorithms that can tolerate any fraction β < 1/3 of
Byzantine peers [33] (and this extends to asynchronous settings as well [11]). When β ≥ 1/3,
agreement becomes impossible in these settings [33]. However, the bound improves to β < 1/2
with message authentication by cryptographic digital signatures [38]. By the well-known
network partitioning argument (discussed shortly), β < 1/2 is required for any form of
Byzantine agreement. For most of the Byzantine fault tolerance literature, β hovers around
either 1/3 or 1/2, with some notable exceptions like authenticated broadcast [18] that can
tolerate any β < 1.

The main reason for this limitation stems from the inherent coupling of data and
computing. Consider, for instance, any Byzantine Agreement variation with β ≥ 1/2. When
all honest peers have the same input bit (say, 1), the Byzantine peers hold at least half the
input bits and can unanimously claim 0 as their input bits. This ability of Byzantine peers
to spoof input bits makes it fundamentally impossible for honest peers to reach a correct
agreement with the validity requirement intact. At the heart of this impossibility is the
adversary’s power to control information crucial to solving the problem. In fact, this issue
leads to many impossibilities and inability to solve problems exactly (see e.g, [4]).

In contrast, having a reliable source that provides the data in read-only fashion yields
a distributed computing context where access to data cannot be controlled by Byzantine
peers. Taken to the extreme, any honest peer can individually solve all problems by directly
querying the source for all required data. However, queries are charged for, and can be
quite expensive. So the challenge is to design effective and secure collaborative techniques
to solve the problem at hand while minimizing the number of queries made by each honest
peer1. Hence, despite the source being passive (read-only with no computational power), its
reliability makes the model stronger than the common Byzantine model.

The Model

A Data Retrieval model consists of (i) k peers that form a congested clique and (ii) a source
of data that is external to the congested clique called the source that stores the input array
comprising n bits and provides read-only access to its content through queries.

Congested Clique. The k peers are identified by unique ID’s assumed to be from the range
[1, k]. The peers are connected via a complete network. In each round, every peer can send
at most one O(logn) bit message to each of the other peers. This communication mechanism
is referred to as peer-peer communication.

The source. The n-bit input array X = {x1, . . . , xn} (with n≫ k) is stored in the source.
It allows peers to retrieve that data through queries of the form Query(i), for 1 ≤ i ≤ n. The
answer returned by the source would then be xi, the ith element in the array. This type of
communication is referred to as source-peer communication.

1 Note that appointing some individual peers to query each input bit and applying a Byzantine Reliable
Broadcast (BRB) protocol [2, 11, 18] for disseminating the bits to all peers will not do, since the
appointed peers might be Byzantine, in which case the BRB protocol can only guarantee agreement on
some value, but not necessarily the true one. Moreover, Byzantine Reliable Broadcast (BRB) cannot be
solved when β ≥ 1/3 with no authenticated messages.

DISC 2024

3:4 Byzantine Resilient Distributed Computing on External Data

Synchrony and rounds. We consider a synchronous round setting where peers share a
global clock, and the network delay is bounded by ∆. Each round has a total length of 3∆
and consists of two sub-rounds:
1. The query sub-round of length 2∆ of source-peer communication, comprising sending

queries of the form Query(·) from a peer to the source and receiving the responses from
the source. Every peer can send up to n queries per round to the source. (This is merely
an upper limit; our protocols typically send significantly fewer queries).

2. The message-passing sub-round of length ∆ of peer-peer communication, consisting of
messages exchanged between peers. Every message is of size O(logn)

We assume local computation takes 0 time and is performed at the beginning of a round.
We assume that a peer M can choose to ignore (not process) messages received from another
peer during the execution. Such messages incur no communication cost2 for M .

The adversarial settings. The behavior of the environment in which our protocols operate
is modeled via an adversary Adv that is in charge of selecting the input data and fixing
the peers’ failure pattern. In executing a protocol, a peer is considered honest if it obeys
the protocol throughout the execution. A Byzantine peer can deviate from the protocol
arbitrarily (controlled by Adv). The adversary Adv can corrupt at most βk peers for some
given3 β ∈ [0, 1). This implies that Adv cannot corrupt all of the peers; our results are stated
under this assumption. Letting γ = 1− β, there is (at least) a γ fraction of honest peers. We
denote the set of Byzantine (respectively, honest) peers in the execution by B. (resp., H).

We design both deterministic and randomized protocols. When the protocol is deter-
ministic, the adversary can be thought of as all-knowing. Thus, Adv knows exactly how the
complete execution will proceed and can select Byzantine nodes from the beginning based
on this knowledge. When the protocol is randomized, the peers may generate random bits
locally. At the beginning of each round i, Adv has knowledge of X , all the local random bits
generated up to round i− 1, and all peer-peer and source-peer communications up to round
i− 1. At the start of round i, it can corrupt as many peers as it desires, provided the total
number of peers corrupted since the beginning of the execution does not exceed βk. Such an
adversary is said to be adaptive.

Complexity measures. The following complexity measures are used to analyze our protocols:
(i) Query Complexity (Q): the maximum number of queries made by an honest peer during
the execution of the protocol, (ii) Message Complexity (M): the total number of messages
sent by honest peers during the execution of the protocol, and (iii) Round Complexity (T):
the number of rounds (or time) it takes for the protocol to terminate.

As queries to the source are expected to be the more expensive component in the
foreseeable future, we primarily focus on optimizing the query complexity Q, only trying to
optimize T andM when Q is optimal (within log(n) factors). Our definition of Q (measuring
the maximum cost per peer rather than the total cost) favors a fair and balanced load of
queries across honest peers.

2 Specifically, an honest peer M can ignore the messages of a known Byzantine peer M ′ and thus thwart
any “denial of service” attack that M ′ attempts on M . Such messages sent by the Byzantine peer M ′

to M will not be counted towards the message complexity.
3 We do not assume β to be a fixed constant (unless mentioned otherwise).

J. Augustine, J. Biju, S. Meir, D. Peleg, S. Ramachandran, and A. Thiruvengadam 3:5

Problems Studied and Their Complexity in the Failure Free Model

We introduce the two main problems we focus on in this paper. To establish a baseline for
our various results, we first outline the best possible complexity measures when there are no
Byzantine failures. For Q, the best bound is the total number of queries required divided by
k, since this work of querying can be distributed evenly.

Download. We begin with the fundamental Download problem, where each of the k peers
needs to obtain a copy of all n input bits from the cloud. This problem is the most fundamental
retrieval problem since every computable function f of the input can be computed by the
peers by first running a download protocol and then computing f(X) locally at no additional
costs. Hence, its query cost serves as a baseline against which to compare the costs of other
specialized algorithms for specific problems. Observe that a Q lower bound for computing
any Boolean function on X serves as a lower bound for Download as well.

To solve this problem in the absence of failures, all n bits need to be queried, and this
workload can be shared evenly among k peers, giving Q = Θ(n/k). The message complexity
is M = Õ(nk) and round complexity is T = Õ(n/k) since Ω(n/k) bits need to be sent along
each communication link when the workload is shared.

Disjunction. In the Disjunction problem, the honest peers must learn whether at least one
of the input bits in X is a 1. We also consider an Explicit Disjunction version where each
peer must learn an index i such that X [i] = 1 (or output 0 if there are no 1’s).

The Disjunction problem is a retrieval problem that illustrates the possibility of achieving
better results than trivially using Download as a subroutine. The complexity of the problem
is closely tied to the density δ (i.e., the fraction of ones) in the input. In fact, the relevant
parameter is often 1/δ where δ = max(1/n, δ) to handle the exceptional case when δ = 0.

Let us consider the Explicit Disjunction problem. In the deterministic setting, at least
n−δn+1 queries are required in total. Consequently, the best deterministic query complexity
is Q = O(n(1 − δ)/k). The round complexity is T = O(1), and message complexity is
M = O(k). Peers that find a 1-bit can send the index to a “leader” peer to broadcast the
answer.

Randomization helps when δ is large. Querying
(
δ−1 · lnn

)
bits uniformly at random in

search for a 1 bit has failure probability of (1− δ)ln n/δ ≤ 1/n. Thus O
(
δ−1 · lnn

)
queries

are sufficient to find a 1 w.h.p. Even without knowledge of δ, one can simply try density
values in decreasing powers of 2, starting with 1/2 and eventually land at a 1 having made
at most O

(
δ−1 · lnn

)
queries. We can distribute the work equally amongst k peers, and

thus Q = O(1 + δ−1 · 1
k · lnn). The time and message analysis is similar to the deterministic

case, i.e, T = O(1), M = O(k). Note that Q = Ω(1
k · δ

−1), for any algorithm that solves the
Disjunction problem with constant probability.

Our Contributions

We initiate the study of the Data Retrieval Model and retrieval problems. We present several
deterministic and randomized protocols and some lower bounds for Download and Disjunction.
Here, we state only simplified bounds, in which the Õ(·) notation hides factors dependent
on β and poly log factors in n. The main results are summarized in Table 1 for convenience.

Download. For the deterministic model, the Download problem turns out to be expensive,
requiring Ω(βn) queries in the worst case. Every peer essentially has to query the entire input
array for itself. In the randomized model, we give an algorithm that solves the Download

DISC 2024

3:6 Byzantine Resilient Distributed Computing on External Data

problem (and consequently any function of the input) for an arbitrary fraction β < 1 of
Byzantine faults while requiring at most Õ(n/k +

√
n) queries per peer. The result is nearly

as efficient as the failure-free model whenever k <
√
n. The time and message costs are

T = O(n) and M = Õ(kn+ k2√n). A natural question then, is whether the additive
√
n

term is necessary for k >
√
n. While we are not able to fully address this question, we show

that for restricted β (< 1/3), we can be fully efficient for all k ∈ [1, n], getting Q = Õ
(

n
k

)
,

T = Õ(n), and M = Õ(nk2).

Disjunction. To show that for specific problems one can be more efficient, we consider
Disjunction when the input bits have density δ. Naturally, the problem becomes easier as δ
gets larger. We first show that any deterministic algorithm requires Ω(n/k + δ−1) queries in
the worst case. Next, we show that for any β < 1, there exists a deterministic algorithm that
makes Õ(n/k + δ−1 + k) queries. This algorithm is nearly optimal whenever k <

√
n. Our

second deterministic algorithm achieves near optimal complexity provided β < 1/2. Both
algorithms require T = Õ(1) and M = Õ(k2).

We then consider the randomized model. It is easy to see that any algorithm requires
Ω(1/k · δ−1) queries per peer. We show that this is nearly tight by presenting an algorithm
that w.h.p. solves the Disjunction problem with Q = Õ

(1
k · δ

−1), T = Õ (1), M = Õ(k2).

Table 1 Our Main Results (with β treated as constant).

Problem & Model Query Lower Bound Round Message Theorem
Download
Randomized β < 1 Õ(n/k +

√
n) Ω(n/k) O(n) Õ(nk + k2√n) Thm 4

Randomized β < 1/3 Õ(n/k) Ω(n/k) O(n) Õ(nk2) Thm 12
Disjunction
Deterministic β < 1 Õ(n/k + δ−1 + k) Ω

(
δ−1 + (1−δ)n

γk

)
Õ(1) Õ(k2) Thm 17

Deterministic β < 1/2 Õ(n/k + δ−1) Ω
(
δ−1 + (1−δ)n

γk

)
Õ(1) Õ(k2) Thm 18

Randomized β < 1 Õ(1/k · δ−1) Ω(1
γk
· δ−1) Õ(1) Õ(k2) Thm 19

2 Methods

Private ρ-Representative Committees. Several of our protocols organize the peers in
committees, assigned to perform a common task. In a private ρ-representative committee,
every peer knows only whether it belongs to the committee and the committee is guaranteed
to have at least ρ honest members, where ρ is known.

We present a probabilistic construction for a ρ-representative committee, where the
guarantee of at least ρ honest members holds w.h.p. To construct such a committee, each
peer adds itself to the committee with probability p. See Algorithm 1. By choosing an
appropriate value of p, we can obtain high probability guarantees on the number of (honest)
peers in a committee using standard Chernoff tail bounds. This yields the following result

▶ Lemma 1. Consider k i.i.d Bernoulli random variables with bias p = min(1, 9 ln n+4ρ
γk),

β ∈ [0, 1), n > 1 and ρ ≤ γk, we have with probability at least 1− 2n−3,
for any subset of γk variables, at least ρ of them are 1.
At most (18 lnn+ 8ρ)/γ variables are 1.

Lemma 1 implies that w.h.p a committee C constructed by Algorithm 1 is indeed a private
ρ-representative committee and it will have at most (18 lnn+ 8ρ)/γ honest members.

J. Augustine, J. Biju, S. Meir, D. Peleg, S. Ramachandran, and A. Thiruvengadam 3:7

Algorithm 1 Procedure Elect_Private.

1: Every peer tosses a biased coin with a probability of heads p = min
{

6 ln n+4ρ
γk , 1

}
2: return C = set of peers that tossed heads.

Commit Verification. Before a peer M commits b as xi, it verifies that xi = b by one of
several ways:

Direct-verification: M directly queries the source and receives a reply that xi = b.
Comm-verification: M collects votes from a private ρ-representative committee Ci. M
learns that xi = b if it receives a message saying that xi = b from at least ρ members of
Ci, and a message saying that xi = 1− b from fewer than ρ members of Ci.
Gossip-verification: M receives messages from βk + 1 or more peers, each testifying that
it verified xi = b. This suffices since necessarily at least one of these senders must have
been an honest peer.

Blacklisting. During an execution, honest peers can blacklist Byzantine ones, after identify-
ing a deviation from the behavior expected of an honest peer, and subsequently ignore their
messages. A Byzantine peer M ′ can be blacklisted for several reasons. The most common
reason to blacklist is when M ′ is directly “caught” in a lie about the value of some bit. The
two other reasons for blacklisting are as follows.

Blacklisting for requesting unnecessary work: Some of our protocols maintain a
known-to-all list of bits. If M ′ claims that a certain bit xi is unknown to it and requests
to learn it, M can check if xi is listed at M as known to all. If so, M knows that M ′

must be Byzantine.
Blacklisting for over-activity: Lemma 1 implies that the number of honest peers in
our construction of a private ρ-representative committee is bounded from above w.h.p.
M ′ can be blacklisted as Byzantine for being over-active, namely, claiming to have been
randomly selected to many more committees than expected.

3 Results on the Download Problem

3.1 Deterministic Setting
We first note that Download can be solved trivially by having each peer query all n bits
directly from the source. This protocol incurs Q = n, T = 1 andM = 0 and works for β < 1.
However, we can improve the query complexity for β < 1/2. (Some proofs are deferred to
Appendix A.)

▶ Theorem 2. When β < 1/2, there is a deterministic protocol for Download with Q = O(βn),
T = Õ(βn) and M = Õ(βnk2)

The following theorem establishes that one cannot hope to improve the query complexity.

▶ Theorem 3. Any deterministic protocol for the Download problem has Q = Ω(βn).

3.2 Randomized setting
Near Query-Optimal Randomized Protocol for β < 1
We start with a simple randomized algorithm that works for any β < 1. The problem posed
by the randomized model is that the adversary can fail peers online in the randomized setting
based on the protocol’s progress. This implies that if the protocol appoints some random

DISC 2024

3:8 Byzantine Resilient Distributed Computing on External Data

peer M to query a bit xi on some round t of the execution but communicate the bit to other
peers at a later round t′, then we cannot rely on the hope that the randomly selected M

will be honest, say, with probability 1− β = ε, since the adversary gets an opportunity to
learn the identity of the chosen M on round t and subsequently corrupt it before round t′.
Hence in order for us to benefit from the fact that some peer M is randomly chosen for some
sub-task on round t, it is imperative that M completes that sub-task on the same round.

The idea used to overcome this difficulty is as follows. Sequentially, for n rounds, do the
following. At round i we query bit xi from the source to a private ρ-representative committee
(see Algorithm 1) Ci, i.e., xi is queried by each (honest) peer in Ci. Then (still on the same
round), each peer in Ci sends the value of xi to every other peer. Peers not in Ci might
receive incorrect values from the Byzantine peers in Ci. However, if strictly fewer than ρ

incorrect values are received, each peer can be confident of the majority as the right answer
(w.h.p). In case at least ρ peers sent an incorrect value, or more precisely, in case an honest
peer receives at least ρ zeros and at least ρ ones, then peers resort to querying the source
for the answer, forcing at least ρ Byzantine peers to reveal themselves as being Byzantine.
Choosing ρ optimally results in a query complexity of O(n log n

γk +
√
n). See Algorithm 2 for

the pseudocode.

Algorithm 2 Algorithm Blacklist_Download model, Code for peer M .

Output: Array res such that res[i] = xi for i = 1, 2, ...n
1: B ← ∅ ▷ Peers known to be faulty
2: for i = 1, 2, . . . n (in separate rounds) do
3: Form a private ρ-representative committee Ci. ▷ Parameter ρ is fixed later
4: if M ∈ Ci then
5: res[i]← Query(i), send (vote, res[i]) to all peers.
6: Sj ← set of peers not in B that voted j for j ∈ {0, 1}
7: if min(|S0|, |S1|) > ρ then
8: res[i]← Query(i).
9: B ← B ∪ S1−res[i]

10: else res[i]← arg max
j=0,1

|Sj |.

11: return res

▶ Theorem 4. When β < 1, Protocol Blacklist_Download solves the Download problem
w.h.p. with Q = O

(
n log n

γk +
√
n
)

, T = O(n) and M = O(kn logn+ k2√γn).

Proof. The correctness follows from the observation that for each bit xi, each honest peer
either (i) heard fewer than ρ votes for one value in {0, 1} or (ii) queried xi. Since Ci is
ρ-representative (w.h.p), the correct bit value would have been reported by at least ρ peers,
and we can conclude that an honest peer can verify the correct value of xi in both cases.
Next, We analyze the query complexity of Algorithm 2 and choose ρ optimally.

Queries are made in lines 5 and 8 of Algorithm 2. For peer M , the expected number
of queries in line 5 is np where p is the probability of joining a committee. As n > γk, we
have np ≥ 9 lnn. By Chernoff bounds, w.h.p there are no more than 2np queries, similar to
the proof of Lemma 1. Every time a peer reaches Line 8 and queries the source, the size
of its local set B increases by ρ. Therefore, these queries are performed at most βk

ρ times.
Therefore, the total number of queries for peer M (w.h.p.) is at most Q = 18n ln n

γk + 8nρ
γk + βk

ρ ,

and choosing ρ = max
{

1, k
√

γβ
8n

}
, we get Q = O

(
n log n

γk +
√

β
γ · n

)
.

J. Augustine, J. Biju, S. Meir, D. Peleg, S. Ramachandran, and A. Thiruvengadam 3:9

By the description of the protocol. the time complexity T is clearly O(n), the number of
iterations. The message complexity M is calculated as the product of the number of honest
peers that join each Ci (which is O(logn+ k/

√
n)) times O(k) (the number of messages sent

by each honest peer in Ci) time n (the number of iterations). ◀

Observe that there is a trivial Ω(n
γk) lower bound on Q (in the case where Byzantine

peers crash and do not participate in the execution).
The additional

√
n term can be neglected whenever k <

√
n since it is smaller than

the lower bound in these cases. Thus, in a wide range of cases, the above protocol is
“near-optimal”. It is also tolerant against the strongest form of Byzantine adversary, one that
even has knowledge of random bits sampled up until the previous round.

Query-Optimal Randomized Protocol for β < 1/3
The Download protocol of the previous section works when β < 1 but falls short of yielding
optimal query complexity. This section presents a query-optimal protocol for Download when
β < 1/3. For a complete analysis see Appendix A.

The Protocol

Let us first give an overview of the approach. The protocol proceeds in J0 =
⌈
log1/α

k
c log n

⌉
phases, whose goal is to reduce the number of unknown bits by a shrinkage factor α < 1. The
protocol maintains a number of set variables, updated in each phase, including the following.
KM (respectively, UM) is the set of indices i whose value res[i] is already known (resp., still
unknown) to M . At any time during the execution, KM ∪ UM = {1, . . . , n}. res[i] = xi is
the Boolean value of xi for every i ∈ KM . (Slightly abusing notation for convenience, we
sometimes treat KM as a set of pairs (i, res[i]), i.e., we write KM where we actually mean
KM ◦ resM .) Each peer also identifies a set KTAM of known-to-all bits and IM of unknown
indices for at least one peer. Each phase contains four subroutines, each with a specific goal
in mind. First, the Committee_Work subroutine forms private committees where each peer
M joins committee i if i ∈ IM with some probability. Each member of committee i then
reports xi, and each peer decides whether to accept some or no value (updating KM and
UM accordingly). There is also a blacklisting component in which if a peer belongs to too
many committees, it is deemed Byzantine and ignored for the rest of the execution. Second,
the Gossip subroutine has every peer M report its KM to all other peers. If a peer receives
at least βk + 1 reports of the same value for xi, it accepts it. Third, the second invocation
of Gossip repeats the reporting of KM for every peer M , but this time, in addition to the
update of KM , if a value is reported 2βk + 1 times, it adds it to KTAM . The motivation
behind this second invocation is that if a value is reported 2βk+ 1 times, then at least βk+ 1
of those reports are from non-faulty peers. Thus, all peers will accept that value (and add it
to KM). Last, the Collect_Requests subroutine is meant to update IM , i.e., to know which
indices are unknown to at least one peer. This subroutine also has a blacklisting component
in which if a peer sends a request for index i but i ∈ KTAM , M blacklists the requesting
peer.

▶ Remark 5. The communication performed in the various steps of the protocol takes more
than one time unit in the CONGEST model. Hence, the protocol must also ensure that the
different steps are synchronized and that all peers start each step only after the previous step
is completed. Relying solely on reports from each peer concerning its progress might lead to

DISC 2024

3:10 Byzantine Resilient Distributed Computing on External Data

deadlocks caused by the Byzantine peers. Hence, the scheduling must be based on the fact
that the duration of each step is upper-bounded by the maximum amount of communication
the step involves. We omit this aspect from the description of the algorithm.

We next detail the code of the main algorithm and its procedures. (Hereafter, we omit the
superscript J when clear from the context.) We denote by update(i, b) the function that sets
res[i] = b, removes i from Um and adds it to KM . We denote by BlacklistOverWork(wmax,
M) the function that checks the number x of committees M reported to belong to and adds
M to B if x > wmax. We refer to the first and second invocations of Procedure Gossip as
Gossip(1) and Gossip(2) respectively.

Algorithm 3 Algorithm Gossip_Download, β < 1/3, code for peer M .

1: KM ← ∅ ▷ Indices of bits known to M
2: KTAM ← ∅ ▷ Indices of bits that are known-to-all
3: UM ← {1, . . . , n} ▷ Indices of bits not known to M
4: IM ← UM ▷ Indices of bits not known to some non-blacklisted peers
5: res← ∅ ▷ Values of bits known to M
6: B ← ∅ ▷ Peers blacklisted by M as Byzantine
7: c← Z/γ ▷ The parameter Z will be fixed later.
8: α← (1+ϵ)β

(1−ϵ)(1−2β) ▷ shrinkage factor, α < 1. The parameter ϵ will be fixed later.
9: J0 ← ⌈log1/α

k
c log n⌉ ▷ Number of phases

10: for J = 0, 1, 2, . . . , J0 − 1 (sequentially) do
11: Invoke Committee_Work
12: Invoke Gossip(1)
13: Invoke Gossip(2)
14: Invoke Collect_Requests.
15: for every i ∈ UM do res[i]← Query(i) ▷ Querying the remaining unknown bits
16: return res

Partial Analysis

Sanity checks. Let us start with the two sanity checks needed to ensure the validity of the
random selection step and the convergence of the protocol.

▶ Observation 6. For β and ϵ satisfying

β <
1− ϵ
3− ϵ (1)

(a) the chosen shrinkage factor satisfies α < 1, and
(b) the chosen probability satisfies p < 1 for every 0 ≤ J ≤ J0 − 1.

Progress tracking variables. Next, we define the notation for the values of the main
variables of the protocol during the different phases.

Denote by KJ
M (respectively, UJ

M) the value of the set KM (resp., UM) at the beginning
of phase J . (Note that it is also the value of KM at the end of phase J − 1)
Denote by KJ,mid

M (resp., UJ,mid
M) the value of the set KM (resp., UM) at the end of the

Gossip(1) step of phase J .
Denote by IJ

M the value of the set IM at the beginning of phase J .
Denote by KTAJ

M the value of the set KTAM at the end of the Gossip(2) step of phase J .

J. Augustine, J. Biju, S. Meir, D. Peleg, S. Ramachandran, and A. Thiruvengadam 3:11

Algorithm 4 Sub routines, code for peer M .

1: procedure Committee_Work
2: ÎM ← ∅ ▷ Set of indices whose committees M joins
3: ρ← (1− ϵ)Z logn/αJ ▷ Also ρ = (1− ϵ)pγk
4: Wmax ← (1 + ϵ)c logn · n

k
▷ Blacklisting “over-active” Byzantine peers

5: for every i = 1, . . . , n sequentially do ▷ Setting up committees
6: if i ∈ IM then
7: Join the private committee Ci at random with probability p = c logn

αJk
.

8: if M was selected to Ci then
9: ÎM ← ÎM ∪ {i}.

10: if i ∈ UM then
11: update(i, Query(i)) ▷ Direct-verification
12: Send the message (vote ,i,res[i]) to every other peer.
13: Collect votes sent by members of Ci. ▷ Ignore messages on bits i ̸∈ IM .
14: for every other peer M ′ do
15: BlacklistOverWork(Wmax, M ′)
16: for every i ∈ IM do
17: Let CM

i be the remaining reduced committee. ▷ Possibly CM
i ̸= CM′

i for M ̸= M ′.
18: for every i ∈ UM do ▷ comm-verification
19: for b ∈ {0, 1} do
20: ψb(i)← number of votes from CM

i members for xi = b.
21: if ψ0(i) ≥ ρ and ψ1(i) < ρ then
22: update(i, 0)
23: if ψ1(i) ≥ ρ and ψ0(i) < ρ then
24: update(i, 1) ▷ If both ψ0(i) ≥ ρ and ψ1(i) ≥ ρ, theni remains unknown
25:
26: procedure Gossip(GossipNum)
27: for every i ∈ KM do
28: send the message (i, res[i]) to all other peers.
29: Receive a list KM′ from every other peer M ′.
30: for every i ∈ UM do
31: φ0(i)← |{M ′ | (i, 0) ∈ KM′}|.
32: if φ0(i) ≥ βk + 1 then
33: update(i, 0)
34: φ1(i)← |{M ′ | (i, 1) ∈ KM′}|.
35: if φ1(i) ≥ βk + 1 then
36: update(i, 1)
37: if GossipNum=2 and (φ0(i) ≥ 2βk + 1 or φ1(i) ≥ 2βk + 1) then
38: KTAM ← KTAM ∪ {i}
39:
40: procedure Collect_Requests
41: Set IM ← UM

42: Send UM to all other peers.
43: Collect lists UM′ from all other peers M ′.
44: for every i = 1, . . . , n do
45: RU (i)← {M ′ | i ∈ UM′}.
46: if i ∈ KTAM then B ← B ∪RU (i) ▷ Blacklisting for requesting known-to-all bits
47: IM ← IM ∪

⋃
M′ ̸∈B UM′ ▷ Indices to be learned, including UM of M itself

DISC 2024

3:12 Byzantine Resilient Distributed Computing on External Data

Note that a bit xi can be unknown for M and known for M ′ for two honest peers M and
M ′. We say that xi is unknown in phase J , and the committee Ci is necessary, if i ∈ UJ

M for
some honest peer M , or equivalently, if i ∈ UJ , where

UJ =
⋃

M∈H
UJ

M

is the set of indices i for which some honest peers request setting up a committee Ci and
querying in the current phase. A bit xi is known once i ∈ KM for every honest peer M . Also
let

UJ,mid =
⋃

M∈H
UJ,mid

M and NKTAJ
M = {1, . . . , n} \KTAJ

M .

Bad events. In an execution ξ of the protocol, there are two types of bad events, whose
occurrence might fail the protocol. Our analysis is based on bounding the probability of bad
events, showing that with high probability, no bad events will occur in the execution, and
then proving that in a clean execution, where none of the bad events occurred, the protocol
succeeds with certainty. The bad events are as follows.

Bad event EV1(J, i): In phase J , the committee Ci selected for an unknown bit xi is not

ρ-representative, for ρ = (1− ϵ)Z logn
αJ

, where Z is a parameter of the algorithm that
must satisfy some constraints described in Lemmas 7 and 8. (If xi is already known, then
this bad event does not affect the correctness or query complexity of the honest peers,
although it might increase the time and message complexity.)

Bad event EV2(J, M): In phase J , an honest peer M has |ÎJ
M | > Wmax, namely, M joins

more than Wmax = (1 + ϵ)c · n logn
k

committees, and subsequently gets blacklisted.

For an integer J ≥ 0, call the execution ξ J-clean if none of the bad events EV1(j, i) or
EV2(j,M) occurred in it for 0 ≤ j ≤ J .

High probability of clean executions. We now argue that with the right choice of parameters
ϵ and Z, the probability for the occurrence of any of the bad events is low.

▶ Lemma 7. For any J ≥ 0, if the execution ξ is (J − 1)-clean, and the parameters ϵ and Z
satisfy

ϵ2Z/2 ≥ 2 + λ (2)

for some constant λ > 0, then the probability that any of the bad events EV1(J, i) occurred in
ξ is at most O(1

n1+λ).

▶ Lemma 8. For any J ≥ 0, if the execution ξ is (J − 1)-clean, and the parameters ϵ and Z
satisfy

ϵ2

2 + ϵ
· Z ≥ 2 + λ (3)

for some constant λ > 0, then the probability that any of the bad events EV2(J,M) occurred
in ξ is at most O(1

n1+λ).

The above two lemmas yield the following:

▶ Corollary 9. Consider an execution ξ. If the parameters ϵ and Z satisfy

Z ·min{ϵ2/2 , ϵ2/(2 + ϵ)} ≥ 2 + λ (4)

for some constant λ > 0, then the probability that ξ is clean is at least 1−O(log n
n1+λ).

J. Augustine, J. Biju, S. Meir, D. Peleg, S. Ramachandran, and A. Thiruvengadam 3:13

Convergence invariants.

▶ Lemma 10. In a J-clean execution, assuming β < 1/3, for every honest M ,

IJ+1
M ⊆ NKTAJ

M ⊆ UJ,mid ⊆ UJ ⊆ IJ
M .

We remark that if xi is known, hence Ci is not necessary, then the inviting peer is Byzantine,
so it may invite only a few honest peers (or none) hence the constructed Ci is not guaranteed
to be ρ-representative, but this will not hurt any honest peer, since, in this case, the honest
peers already know xi and will not listen to the committee.

▶ Lemma 11. In a J-clean execution, for every J ≥ 0 and every honest M ,
(1) |UJ,mid| ≤ αJ+1n, (2) |IJ

M | ≤ αJn, (3) |UJ | ≤ αJn, (4) |UJ
M | ≤ αJn.

Using these convergence invariants, we get the following theorem.

▶ Theorem 12. When β < 1/3, Protocol Gossip_Download solves the Download problem
w.h.p. with4 Q = O

(
n log2 n

γk

)
, T = O

(
n log 1

β

(
γk

log n

))
and M = O

(
nk2 log 1

β

(
γk

log n

))
.

4 Results on the Disjunction Problem

In this section, we consider the problem of computing the Disjunction of the input bits. We
first state some basic lower bounds and then present some upper bound results, along with
an overview of the building blocks used to design protocols that match the upper bounds.
For a complete formal presentation see the full version of the paper.

▶ Theorem 13. When β < 1, any deterministic protocol for the Disjunction(δ) and the
Explicit Disjunction(δ) problems has Q = Ω

(
β · δ−1 + (1−δ)n

γk

)
.

▶ Theorem 14. Any randomized protocol for Disjunction(δ) that succeeds with constant
probability has Q = Ω(1

γk · δ
−1) in expectation.

The remainder of this section deals with efficient deterministic protocols for Disjunction
and Explicit Disjunction under different settings. A key observation that we rely on is that
single round algorithms exhibit similar properties to bipartite expanders. The connection
is as follows. One can represent the access pattern of the peers to the input array X as a
bipartite graph G(L,R,E), where L represents the n input bits, R represents the k peers,
and an edge (i, j) ∈ E indicates that Mj queries X [i]. We would like to ensure that if the
number of bits set to 1 in X exceeds some value s, then no matter which set S of indices
corresponds to these s 1s, the set Γ(S) of neighbors of S in G will contain at least βk + 1
peers, guaranteeing that at least one honest peer will query at least one of the set bits of S.
This can be ensured by taking G to be a Large Set Expander (LSE), an expander variant
defined formally later on. Not knowing the density δ in advance, we can search for it, starting
with the hypothesis that δ is close to 1 (and hence using a sparse LSE and spending a small
number of queries), and gradually trying denser LSE’s (and spending more queries), until we
reach the correct density level allowing some honest peer to discover and expose a set bit.
Once the set bit is exposed, we have all the honest peers send the new bit to every other

4 We remark that our focus was on optimizing query complexity. The T and M complexities can be
improved further. For example, the current protocol requires the peers to send the entire set of known
bits in each iteration, but clearly, it suffices to send the updates.

DISC 2024

3:14 Byzantine Resilient Distributed Computing on External Data

peer. The peers then query all the bits they received (one per peer) to confirm the answer.
The total query complexity per peer is Õ(n/k + δ−1 + k). Observe that it is near-optimal
when k <

√
n. See Theorem 17. For β < 1/2, we obtain near-optimal query complexity

Õ(n/k + δ−1). The observation leading to this is that one can use expanders as before, and
assign vertices to input bits such that for every possible input and every possible set of
corrupt peers, strictly more than k/2 honest peers query a set bit. Subsequently, whenever
more than 1/2 of the peers found a 1, the remaining honest peers can conclude that the
answer is 1, and because of the stronger guarantee, we no longer have to verify all the bits
sent by the agents. This algorithm, however, only obtains the Disjunction of the input bits,
not the actual index of a set bit. See Theorem 18.

Our definition of LSE ensures that for every possible input configuration of Disjunction
with input density δ and every possible set of peers that can be corrupted by Byzantine
agents, at least one honest peer reads a set bit. To the best of our knowledge, this exact
definition of LSE has not been used in the literature. The definition of samplers [29] to
construct asynchronous Byzantine agreement and leader election protocols is the closest to
LSE. Roughly speaking, samplers ensure there are at most δ fraction of the input bits x
such that their neighborhood has β fraction of Byzantine nodes, for every possible choice of
corruptions that the adversary can make. Even though our definitions are different, we use
similar techniques (the probabilistic method) to show their existence.
▶ Definition 15 (Large Set Expander (LSE)). A bipartite graph G(L,R) is an (n, k, β, δ)-
Large Set Expander (or (n, k, β, δ)-LSE) if n = |L|, k = |R| and |Γ(S)| > βk for all S ⊆ L

with |S| ≥ nδ.
Informally, a large set expander is such that for every large enough subset S, i.e., S ⊆ L

and |S| ≥ δn, its neighborhood cannot be covered fully by any subset of βk vertices, i.e.,
|Γ(S)| > βk. The definition of an LSE is similar to that of expander graphs and we use a
similar probabilistic analysis to prove their existence. We formalize this in the lemma below.
▶ Lemma 16. There exists a bipartite graph G(L,R) that is a (n, k, β, δ) Large Set Expander
such that, (1) Every vertex in L has degree at most d, and (2) Every vertex in R has degree

at most 2nd
k , for all d satisfying d > max

{
1 + log(e · δ−1)

log 1
β

+ βk

δn
·

log e
β

log 1
β

,
3k ln 2k

n

}
.

We use the existence of large set expanders to design algorithms that achieves the results
stated in Theorems 17 and 18.
▶ Theorem 17. When β < 1, There exists a protocol that solves Disjunction with Q =
O
(

n
k ·
(

log 1
β

(e2δ−1) + log k
)
· log δ−1 + δ−1 · (β log 1

β

e
β) + k

)
, T = O(logn) and

M = O(βk2 logn).
Ignoring log factors and constants dependent on β, the resulting query complexity is

Q = Õ(n/k + δ−1 + k), essentially matching the lower bound (except for the additive k
term). The constant factors increase as β gets closer to 1 and reduce to the naive algorithm
when β = 1 − 1/k. We improve on that in the following result, albeit with the cost of β
being at most 1/2.
▶ Theorem 18. When β < 1/2, There exists a protocol that solves Disjunction with Q =
O
(

n log n
k log(2/(2β+1)) + 1

log(2/(2β+1)) · δ
−1 + log2 n

)
, T = O(logn) and M = O(βk2 logn).

Allowing randomization in the protocol design, we achieve the following result.
▶ Theorem 19. When β < 1, There exists a protocol that w.h.p. solves Disjunction with Q =
O
(

log n
γk · δ

−1 + log k log n log(1/δ)
γ

)
, T = O

(
log k · log δ−1) and M = O(k2 log k · log δ−1).

J. Augustine, J. Biju, S. Meir, D. Peleg, S. Ramachandran, and A. Thiruvengadam 3:15

5 Related Work

To the best of our knowledge, we are the first to study retrieval problems in the DR model,
as defined above. We now provide a description of related studies.

As discussed earlier, Byzantine resilience research was largely limited to a few problems
like Byzantine Agreement, Byzantine Broadcast, State Machine Replication, etc. More
recently, we have seen many investigations of Byzantine resilience in other problems and
models. Quite naturally, it has been explored in P2P settings to ensure robust membership
sampling [9] and resilient P2P overlay design [21, 3]. Apart from that, Byzantine resilience
was explored in the context of mobile agents [17, 10, 15] and graph algorithms [5]. In the
last decade, there was quite a bit of interest in Byzantine resilient learning, starting with
multi-armed bandit problems [6]. Finally, there was a recent flurry of works inspired by
the popularity of Byzantine resilient optimization algorithms in federated and distributed
learning [41, 8, 25, 19, 42, 20].

Byzantine Reliable Broadcast (BRB) was first introduced by Bracha [11]. In BRB, a
designated sender holds a message M , and the goal is for every honest peer to output the
same M ′ that must uphold M ′ = M if the sender is honest. The Download problem can be
viewed as a variant of BRB, where the sender is always honest but has no computational
powers and is passive (read-only), and peers are always required to output the correct message
M . These differences make solving Download different than solving BRB. One easy-to-see
difference in results is that Download can be solved trivially even when 1/3 ≤ β < 1 and there
are no authenticated messages, whereas BRB can not be solved under the same conditions
[18]. Another difference is that state-of-the-art BRB protocols like [2] where the sender
uses error-correcting codes and collision-resistant hash functions are inapplicable (when
considering the source to be the sender). In optimal balanced BRB protocols like in [2], the
sender sends O(n

k) bits to each peer whereas Theorem 3 shows that Download requires Ω(βn)
queries (the difference stems from the inability of the source to perform computations).

Most works on Byzantine resilience have focused on models and problems where the data
is integrated into the network, making it difficult to get Byzantine resilience past β < 1/3 or
β < 1/2. However, there have been some exceptions that were observed quite early in the
Byzantine resilience literature, like authenticated broadcast [18] that can be achieved for any
β < 1. More recently, the power of decoupling data and computing came into play in the
context of mobile agents. The gathering problem [17], where mobile agents must gather at
one location, can be solved for all fixed β < 1. Crucially, the honest agents can explore every
part of the graph. The Byzantine agents do not control any portion of the graph.

Our work can be viewed as a step towards understanding the power of oracles with the
data source playing that role. The use of oracles (also called probes, queries, etc.) has been
widespread in classical computing with references dating back to the early seventies [40, 39,
32, 31, 26]. See [28] for an excellent treatment of the various structural complexity theory
results that have been obtained through oracles. The power of oracles has been explored in
distributed computing as well in the context of overcoming challenges posed by failures in
asynchronous settings [35]. On the broader algorithmic front, the property testing model [24]
can be viewed as using oracles to access data that is only available through expensive queries.

In essence, we have proposed a hybrid combination of two communication technologies –
querying the source and P2P message passing. Such hybrid combinations leading to overall
improvements is not new [27]. Friedman et al. [23] studied distributed computing aided by
an external entity that they called cloud. They studied asynchronous consensus with the
cloud providing a common compare-and-swap (CAS) register access. More recently, Afek et

DISC 2024

3:16 Byzantine Resilient Distributed Computing on External Data

al. [1] introduced the computing with cloud (CWC) model wherein traditional distributed
computing models were augmented with one or more cloud nodes that are typically connected
to several regular nodes.

The notion of an External Data Source that multiple peers can access is reminiscent of
the PRAM model [22, 30] where all processors could access a shared memory. Unfortunately,
there has been no work on Byzantine resilience in the PRAM setting. This is not surprising
because the PRAM setting allows writing over the shared memory, and Byzantine processors
can easily overwrite portions of the input, thereby making it impossible to solve problems in
the exact sense.

6 Directions for future work

Our framework adds Byzantine resilience to standard distributed computing with the help of
an External Data Source, an entity external to the network. We initiated this study through
deterministic and randomized models, focusing on the Download and Disjunction problems,
and developing several algorithms, tools, and techniques. Our emphasis was on optimizing
the query complexity but also considered time and message complexities. Extending our
work to other model variations and/or broader classes of problems like graph and geometric
problems, data analytics and peer learning problems are natural next steps.

Our work has shown that this framework is well-suited for Byzantine resilience owing to
decoupling of data and computation that lends well to “trust, but verify” techniques in an
algorithmically rigorous manner. It will be interesting to see the limits to which Byzantine
resilience can be pushed in this framework.

This framework can be interpreted in multiple ways and applied to a wide variety of
contexts. Ideas from oracle based computation such as property testing [24] can be easily
adapted to our context. One can also envision variants in which the External Data Source
offers a richer set of services that may include computation or data re-organization at its end
that the peers may need to pay for. Such dynamics can potentially uncover many algorithmic
and game theoretic issues like pricing mechanisms and coalition formation. Our approach
is thus relevant in contexts like blockchain oracles [7, 12] where a distributed set of peers
wish to perform computation on multiple public data sources at different locations (like news
outlets, government portals, think-tank reports, etc.) with disparate access costs, access
controls and varying levels of trustworthiness. We therefore believe that our work will lead
to several other follow-up work exploring all these variations.

In this paper we studied a strong adversarial model. If the source is allowed to provide
also a source of global randomness, then our results may be improved further. Specifically,
with such service, one can deploy committees guaranteed to have an honest majority w.h.p.,
which may lead to efficient algorithms for additional problems.

References
1 Yehuda Afek, Gal Giladi, and Boaz Patt-Shamir. Distributed computing with the cloud. In

23rd Int. Symp. on Stabilization, Safety, and Security of Distributed Systems (SSS). Springer,
2021. doi:10.1007/978-3-030-91081-5_1.

2 Nicolas Alhaddad, Sourav Das, Sisi Duan, Ling Ren, Mayank Varia, Zhuolun Xiang, and
Haibin Zhang. Balanced byzantine reliable broadcast with near-optimal communication
and improved computation. In Proceedings of the 2022 ACM Symposium on Principles of
Distributed Computing, PODC’22, pages 399–417, New York, NY, USA, 2022. Association for
Computing Machinery. doi:10.1145/3519270.3538475.

https://doi.org/10.1007/978-3-030-91081-5_1
https://doi.org/10.1145/3519270.3538475

J. Augustine, J. Biju, S. Meir, D. Peleg, S. Ramachandran, and A. Thiruvengadam 3:17

3 John Augustine, Soumyottam Chatterjee, and Gopal Pandurangan. A fully-distributed scalable
peer-to-peer protocol for byzantine-resilient distributed hash tables. In 34th ACM SPAA,
pages 87–98, 2022. doi:10.1145/3490148.3538588.

4 John Augustine, Anisur Rahaman Molla, and Gopal Pandurangan. Byzantine agreement
and leader election: From classical to the modern. In ACM PODC, pages 569–571, 2021.
doi:10.1145/3465084.3467484.

5 John Augustine, Anisur Rahaman Molla, Gopal Pandurangan, and Yadu Vasudev. Byzantine
Connectivity Testing in the Congested Clique. In 36th DISC, pages 7:1–7:21, 2022. doi:
10.4230/LIPICS.DISC.2022.7.

6 Baruch Awerbuch and Robert Kleinberg. Competitive collaborative learning. JCSS, 74(8):1271–
1288, 2008. doi:10.1016/J.JCSS.2007.08.004.

7 Abdeljalil Beniiche. A study of blockchain oracles, 2020. arXiv:2004.07140.
8 Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. Ma-

chine learning with adversaries: Byzantine tolerant gradient descent. In NeurIPS,
pages 119–129, 2017. URL: https://proceedings.neurips.cc/paper/2017/hash/
f4b9ec30ad9f68f89b29639786cb62ef-Abstract.html.

9 Edward Bortnikov, Maxim Gurevich, Idit Keidar, Gabriel Kliot, and Alexander Shraer. Brahms:
Byzantine resilient random membership sampling. Computer Networks, 53(13):2340–2359,
2009. doi:10.1016/J.COMNET.2009.03.008.

10 Sébastien Bouchard, Yoann Dieudonné, and Anissa Lamani. Byzantine gathering in polynomial
time. Distributed Comput., 35(3):235–263, 2022. doi:10.1007/S00446-022-00419-9.

11 Gabriel Bracha. Asynchronous byzantine agreement protocols. Information & Computation,
75:130–143, 1987. doi:10.1016/0890-5401(87)90054-X.

12 Giulio Caldarelli. Overview of blockchain oracle research. Future Internet, 14:175, June 2022.
doi:10.3390/fi14060175.

13 Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In 3rd Symp. on
Operating Systems Design and Implementation, OSDI, pages 173–186. USENIX Assoc., 1999.
URL: https://dl.acm.org/citation.cfm?id=296824.

14 Soma Chaudhuri, Maurice Erlihy, Nancy A Lynch, and Mark R Tuttle. Tight bounds for k-set
agreement. J. ACM, 47(5):912–943, 2000. doi:10.1145/355483.355489.

15 Arnhav Datar, Nischith Shadagopan M. N, and John Augustine. Gathering of anonymous
agents. In AAMAS, pages 1457–1465, 2023. doi:10.5555/3545946.3598798.

16 Arnhav Datar, Arun Rajkumar, and John Augustine. Byzantine spectral ranking. In NeurIPS,
volume 35, pages 27745–27756, 2022.

17 Yoann Dieudonné, Andrzej Pelc, and David Peleg. Gathering despite mischief. ACM Trans.
Algorithms, 11(1), August 2014. doi:10.1145/2629656.

18 D. Dolev and H. R. Strong. Authenticated algorithms for byzantine agreement. SIAM J.
Computing, 12(4):656–666, 1983. doi:10.1137/0212045.

19 El-Mahdi El-Mhamdi, Sadegh Farhadkhani, Rachid Guerraoui, Arsany Guirguis, Lê-
Nguyên Hoang, and Sébastien Rouault. Collaborative learning in the jungle (decen-
tralized, byzantine, heterogeneous, asynchronous and nonconvex learning). In NeurIPS,
pages 25044–25057, 2021. URL: https://proceedings.neurips.cc/paper/2021/hash/
d2cd33e9c0236a8c2d8bd3fa91ad3acf-Abstract.html.

20 Sadegh Farhadkhani, Rachid Guerraoui, Lê Nguyên Hoang, and Oscar Villemaud. An
equivalence between data poisoning and byzantine gradient attacks. In ICML, pages 6284–
6323. PMLR, 2022. URL: https://proceedings.mlr.press/v162/farhadkhani22b.html.

21 Amos Fiat, Jared Saia, and Maxwell Young. Making chord robust to byzantine attacks. In
13th ESA, pages 803–814. Springer, 2005. doi:10.1007/11561071_71.

22 Steven Fortune and James Wyllie. Parallelism in random access machines. In Proc. Tenth
Annual ACM Symposium on Theory of Computing, STOC ’78, pages 114–118, 1978. doi:
10.1145/800133.804339.

DISC 2024

https://doi.org/10.1145/3490148.3538588
https://doi.org/10.1145/3465084.3467484
https://doi.org/10.4230/LIPICS.DISC.2022.7
https://doi.org/10.4230/LIPICS.DISC.2022.7
https://doi.org/10.1016/J.JCSS.2007.08.004
https://arxiv.org/abs/2004.07140
https://proceedings.neurips.cc/paper/2017/hash/f4b9ec30ad9f68f89b29639786cb62ef-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/f4b9ec30ad9f68f89b29639786cb62ef-Abstract.html
https://doi.org/10.1016/J.COMNET.2009.03.008
https://doi.org/10.1007/S00446-022-00419-9
https://doi.org/10.1016/0890-5401(87)90054-X
https://doi.org/10.3390/fi14060175
https://dl.acm.org/citation.cfm?id=296824
https://doi.org/10.1145/355483.355489
https://doi.org/10.5555/3545946.3598798
https://doi.org/10.1145/2629656
https://doi.org/10.1137/0212045
https://proceedings.neurips.cc/paper/2021/hash/d2cd33e9c0236a8c2d8bd3fa91ad3acf-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/d2cd33e9c0236a8c2d8bd3fa91ad3acf-Abstract.html
https://proceedings.mlr.press/v162/farhadkhani22b.html
https://doi.org/10.1007/11561071_71
https://doi.org/10.1145/800133.804339
https://doi.org/10.1145/800133.804339

3:18 Byzantine Resilient Distributed Computing on External Data

23 Roy Friedman, Gabriel Kliot, and Alex Kogan. Hybrid distributed consensus. In Proc. 17th
Int. Conference on Principles of Distributed Systems, OPODIS 2013., pages 145–159, 2013.
doi:10.1007/978-3-319-03850-6_11.

24 Oded Goldreich. Introduction to Property Testing. Cambridge Univ. Press, 2017.
25 Nirupam Gupta and Nitin H. Vaidya. Fault-tolerance in distributed optimization: The case of

redundancy. In ACM PODC, pages 365–374, 2020. doi:10.1145/3382734.3405748.
26 Péter Hajnal. An ω (n 4/3) lower bound on the randomized complexity of graph properties.

Combinatorica, 11:131–143, 1991.
27 Daniel Halperin, Srikanth Kandula, Jitendra Padhye, Paramvir Bahl, and David Wetherall.

Augmenting data center networks with multi-gigabit wireless links. SIGCOMM Comput.
Commun. Rev., 41(4):38–49, August 2011. doi:10.1145/2018436.2018442.

28 Lane A Hemaspaandra and Mitsunori Ogihara. The complexity theory companion. Acm
Sigact News, 32(4):66–68, 2001. doi:10.1145/568425.568436.

29 Bruce M. Kapron, David Kempe, Valerie King, Jared Saia, and Vishal Sanwalani. Fast
asynchronous byzantine agreement and leader election with full information. In Proc. 19th
ACM-SIAM Symp. on Discrete Algorithms, SODA 2008, pages 1038–1047, 2008. URL:
http://dl.acm.org/citation.cfm?id=1347082.1347196.

30 Richard M Karp. A survey of parallel algorithms for shared-memory machines. University of
California at Berkeley, 1988.

31 Valerie King. Lower bounds on the complexity of graph properties. In Proc. 20th ACM
Symposium on Theory of Computing, STOC ’88, pages 468–476, 1988. doi:10.1145/62212.
62258.

32 Daniel J Kleitman and David Joseph Kwiatkowski. Further results on the aanderaa-rosenberg
conjecture. Journal of Combinatorial Theory, Series B, 28(1):85–95, 1980. doi:10.1016/
0095-8956(80)90057-X.

33 Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM
Trans. Program. Lang. Syst., 4(3):382–401, July 1982. doi:10.1145/357172.357176.

34 Silvio Micali and Tal Rabin. Collective coin tossing without assumptions nor broadcasting. In
CRYPTO, pages 253–266, Berlin, Heidelberg, 1991. Springer. doi:10.1007/3-540-38424-3_
18.

35 Achour Mostefaoui, Eric Mourgaya, and Michel Raynal. An introduction to oracles for
asynchronous distributed systems. Future Generation Computer Systems, 18(6):757–767, 2002.
doi:10.1016/S0167-739X(02)00048-1.

36 M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. J. ACM,
27(2):228–234, April 1980. doi:10.1145/322186.322188.

37 Michael O. Rabin. Randomized byzantine generals. In 24th FOCS, pages 403–409, 1983.
doi:10.1109/SFCS.1983.48.

38 R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Commun. ACM, 21(2):120–126, February 1978. doi:10.1145/
359340.359342.

39 Ronald L. Rivest and Jean Vuillemin. On recognizing graph properties from adjacency matrices.
Theoretical Computer Science, 3(3):371–384, 1976. doi:10.1016/0304-3975(76)90053-0.

40 Arnold L. Rosenberg. On the time required to recognize properties of graphs: a problem.
SIGACT News, 5(4):15–16, October 1973. doi:10.1145/1008299.1008302.

41 Lili Su and Nitin H. Vaidya. Multi-agent optimization in the presence of byzantine adversaries:
Fundamental limits. In American Control Conf, ACC, pages 7183–7188. IEEE, 2016. doi:
10.1109/ACC.2016.7526806.

42 Lili Su and Nitin H. Vaidya. Byzantine-resilient multiagent optimization. IEEE Trans. Autom.
Control., 66(5):2227–2233, 2021. doi:10.1109/TAC.2020.3008139.

https://doi.org/10.1007/978-3-319-03850-6_11
https://doi.org/10.1145/3382734.3405748
https://doi.org/10.1145/2018436.2018442
https://doi.org/10.1145/568425.568436
http://dl.acm.org/citation.cfm?id=1347082.1347196
https://doi.org/10.1145/62212.62258
https://doi.org/10.1145/62212.62258
https://doi.org/10.1016/0095-8956(80)90057-X
https://doi.org/10.1016/0095-8956(80)90057-X
https://doi.org/10.1145/357172.357176
https://doi.org/10.1007/3-540-38424-3_18
https://doi.org/10.1007/3-540-38424-3_18
https://doi.org/10.1016/S0167-739X(02)00048-1
https://doi.org/10.1145/322186.322188
https://doi.org/10.1109/SFCS.1983.48
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.1016/0304-3975(76)90053-0
https://doi.org/10.1145/1008299.1008302
https://doi.org/10.1109/ACC.2016.7526806
https://doi.org/10.1109/ACC.2016.7526806
https://doi.org/10.1109/TAC.2020.3008139

J. Augustine, J. Biju, S. Meir, D. Peleg, S. Ramachandran, and A. Thiruvengadam 3:19

A Some missing proofs

Proof of Theorem 2

Proof. To perform Download deterministically, we use public majority committees. In this
type of committee, public means that every peer knows the committee members, and majority
that the committee is guaranteed to have a strict majority of honest members. The algorithm
creates n public majority committees (one per input bit). The committee Ci is constructed by
assigning it 2βk+ 1 for 1 ≤ i ≤ n in a round robin fashion with wrap-around. See Algorithm
5. This ensures that
1. each committee gets 2βk + 1 members, thereby establishing majority, and
2. each peer appears in at most O(βn+ n/k)= O(βn) committees (since β ≥ 1/k).

Algorithm 5 Elect Public Majority Committee Ci.

1: for 0 ≤ j < 2βk + 1 do
2: Assign peer (i− 1)(2βk + 1) + j (mod k) + 1, to Ci.

The key observation is that it suffices if each bit i is queried by a public majority committee
Ci since when such a committee sends votes on the value bit to every other peer, each other
(honest) peer can trust the majority vote of the committee. Constructing public majority
committees is done as described in Algorithm 5, and complexity measures follow from the
properties of the construction (see Sect. 2). ◀

Proof of Theorem 3

Proof. To establish this, we prove a slightly stronger claim. Consider a deterministic protocol
P for the Download problem. For an n-bit input X , let E(X) denote the (unique) execution
of P on X in which none of the peers has failed. Then, the following holds.

▶ Lemma 20. For every X , every bit xi (1 ≤ i ≤ n) is queried by at least βk + 1 peers
during the execution E(X).

Proof. Towards contradiction, suppose there exists an input X = {x1, . . . , xn} and an index
1 ≤ i ≤ n such that in the execution E = E(X), the set M̂ of peers that queried the bit xi is
of size |M̂ | ≤ βk. Without loss of generality, let xi = 0.

The adversary can now apply the following strategy. It first simulates the protocol P
on X and identifies the set M̂ . It now generates an execution E ′ similar to E except for
the following changes: (a) The input X ′ = {x′

1, . . . , x
′
n} in E ′ is the same as X except that

x′
i = 1. (b) The peers of M̂ are Byzantine; all other peers are honest. (c) Each Byzantine

peer M ∈ M̂ behaves according to P except that it pretends that x′
i = 0, or in other words,

it behaves as if the input is X (and the execution is E).
One can verify (e.g., by induction on the rounds) that the honest peers cannot distinguish

between the executions E and E ′. Therefore, they end up with the same output in both
executions. This contradicts the fact that their output in E must be X , and their output in
E ′ must be X ′. ◀

The lemma implies that for every input X , the total query complexity of the protocol is
greater than βkn. Theorem 3 follows. ◀

DISC 2024

3:20 Byzantine Resilient Distributed Computing on External Data

In the remainder of this section we present the analysis of the main body of Theorem 12.
When M joins (in Procedure Committee_Work) the committee Ci for some i ∈ UJ

M , M is
required to actively query the source for the value of xi. We then say that Ci is an active
committee for M . (In contrast, when M joins a committee Ci for i ∈ KJ

M , it costs it nothing
since it already has the value of xi stored in res[i], so it does not need to spend another
query.) We define the following size variables.

Let ñJ
M denote the number of active committees for M in phase J .

Let n̂J
M = |ÎJ

M | denote the total number of committees that M joins by Procedure
Committee_Work in phase J . (Note that ñJ

M ≤ n̂J
M)

Let nJ
M = |IJ

M | denote the total number of requests received by M by Procedure
Collect_Requests in phase J .

▶ Lemma 21. If some honest M adds i to its set KTAJ
M of known-to-all bits at the end of

the Gossip(2) step of phase J , then i ∈ KJ+1
M ′ for every honest M ′.

▶ Note 22. the sets KTAM might not be all equal. Namely, every honest peer might be aware
of a different subset of the known-to-all bits. Note, however, that as shown later in Lemma
27, the sets KTAM of all honest peers contain the set CORE discussed in the high-level
overview, and the fast growth of CORE is essentially the cause for the fast shrinkage of the
set of unknown bits.

Proof. Suppose i ∈ KTAJ
M for some honest M . Then in Gossip(2) of phase J , M counted

at least 2βk + 1 messages containing (i, b) (for b ∈ {0, 1}). At least βk + 1 of these messages
were sent by honest peers, and therefore, in the Gossip(2) step of phase J , all honest peers
will count at least βk + 1 messages containing (i, b). Consequently, every honest peer M ′

will move i to KM ′ at that step, so i ∈ KJ+1
M ′ . ◀

Properties of clean executions.

▶ Observation 23. In a J-clean execution, if i ∈ UJ (i.e., xi is still unknown in phase J),
then for every honest peer M , the reduced committee CM

i is ρ-representative.

▶ Remark 24. Note that once a committee is selected, the adversary can corrupt all of
its members in the very next round. By then, however, the committee had completed its
querying and communication actions, so the fact that it is no longer representative does
not harm the execution. Note also that the need to complete all committee actions in a
single round is the reason why it is required to perform the querying sequentially, spending
a round for each bit xi. The querying operations of all committees could, in principle, be
parallelized, but the subsequent communication step might require more than a single round
in the CONGEST model, giving the adversary an opportunity to intervene and corrupt an
entire committee before it has completed sending its messages.

Note that those bits that were not moved from UM to KM during the main phases J of
the protocol were directly-verified in the final step of the protocol. This implies the following.

▶ Observation 25. By the end of the execution, every honest peer has the value res[i] for
every bit xi.

It remains to show that for every xi, the res[i] value obtained by each honest peer is correct.

▶ Lemma 26. In a J-clean execution, whenever an honest peer learns an input bit xi in
phases 0 to J , the learned value res[i] is correct.

J. Augustine, J. Biju, S. Meir, D. Peleg, S. Ramachandran, and A. Thiruvengadam 3:21

Proof. Consider an input bit xi. Order the honest peers that learned xi during phases 0 to
J according to the time by which they acquired xi. the proof is by induction on this order.

For the induction basis, note that the first peer to acquire xi must have directly verified
it, so the value it has obtained is clearly correct.

Now consider the t-th peer M in this order, and suppose M knows that xi = b. there are
several cases to consider.

Case 1. M directly-verified xi, either on the last step of the protocol or in Procedure
Committee_Work during some phase J . Then again, res[i] is clearly correct.

Case 2. M comm-verifies xi, in Procedure Committee_Work. Then M found ψb(i) ≥ ρ and
ψ1−b(i) < ρ. Since the execution is J-clean, CM

i is ρ-representative by Lemma 23. This
implies that if xi = 1− b then all the honest peers in CM

i would return 1− b, and M would
find ψ1−b(i) ≥ ρ, which did not happen. Hence, xi = b.

Case 3. M gossip-verifies xi, in the Gossip(1) or Gossip(2) step. Then M has received
messages from βk+ 1 or more peers stating that they already know that xi = b. At least one
of those peers, M ′, is honest, and it acquired xi prior to M . Hence the inductive hypothesis
applies to it, yielding that indeed xi = b. ◀

Proofs of Convergence invariants

Proof of Lemma 10.

Proof. Consider a bit index i /∈ NKTAJ
M . Then xi is marked known-to-all by M in the

Gossip(2) step. Consequently, M ignores xi in phase J even if it receives it in some request
message in Procedure Collect_Requests. Hence i /∈ IJ+1

M . The first containment follows
Consider a bit index i ∈ NKTAJ

M . Then xi is not listed as known-to-all in M , i.e.,
i /∈ KTAM , so M had φ0(i) ≤ 2βk and φ1(i) ≤ 2βk.

Let b = xi, i.e., the correct value of xi, and let 0 ≤ δ ≤ 1 be the fraction of faulty
peers that reported knowing i. Since the execution is J-clean, by Lemma 26, we know
that φ1−b(i) ≤ δβk. Therefore φ0(i) + φ1(i) ≤ (2 + δ)βk. Hence, the number of peers that
informed M that they do not know xi satisfies k−(φ0(i)+φ1(i)) ≥ (1−(2+δ)β)k > (1−δ)βk,
where the second inequality follows since β < 1/3.

Hence, there is at least one honest peer M ′ that did not send xi as part of its KJ,mid
M ′ , so

i ∈ UJ,mid
M ′ , and hence i ∈ UJ,mid. The second containment follows.

The next containment follows from the fact that for an honest peer M , UM is monotone,
decreasing in time.

Consider an index i ∈ UJ . Then some honest M ′ ∈ H has i ∈ UJ
M ′ . This has two implica-

tions when J ≥ 1. First, M ′ will send a request to learn i in Procedure Collect_Requests
of phase J−1. Second, by Lemma 21 i /∈ KTAJ−1

M (otherwise i ∈ KJ
M ′). Hence M will respect

the request by M ′ and add i to IJ
M . When J = 0, UJ = {1, . . . , n} = UJ

M = IJ
M . The fourth

containment follows. ◀

Define the core of 2-common-knowledge after phase J as follows. For every index i, let
numJ

V (i) denote the number of honest peers M that comm-verified i and updated it in
Procedure Committee_Work of phase J . Then

COREJ = {i | numJ
V (i) ≥ βk + 1}.

The name is justified by the following lemma.

DISC 2024

3:22 Byzantine Resilient Distributed Computing on External Data

▶ Lemma 27. If i ∈ COREJ then, i ∈ KJ,mid
M and i ∈ KTAJ

M , for every honest peer M

Proof. Consider an index i ∈ COREJ . By definition, xi was comm-verified by at least βk+ 1
honest peers during Procedure Committee_Work of phase J . Each of these peers will send i

(along with its value) to every other peer during the Gossip(1) step. Subsequently, at the
end of this round, i ∈ KJ,mid

M for every honest M . Consequently, in Gossip(2) of phase J ,
all honest peers will report knowing xi , so every honest peer M will add it to KTAJ

M ◀

Proof of Lemma 11.

Proof. We first prove part (1), by considering iteration J ≥ 0 and bounding |UJ,end| at its
end.

The purpose of blacklisting Byzantine peers that claim to participate in too many
committees, via defining reduced committees, is to curb the influence of the Byzantine peers
on votes, by bounding the extent of Byzantine infiltration into committees. For every honest
peer M and Byzantine peer M ′, denote by BIM (M ′) the number of reduced committees
CM

i that M ′ claimed to belong to. (Note that for peers M ′ that were not blacklisted, this
value is the same as Work(M ′).) Denote the total number of Byzantine infiltrations into
reduced committees of M by BIM =

∑
M ′∈B BIM (M ′). Denote the total number of Byzantine

infiltrations into reduced committees of honest peers by BI =
∑

M∈H BIM . By the way M
constructs the reduced committees in Procedure Committee_Work, every peer appears in at
most Wmax reduced committees of M , hence BIM ≤ βk ·Wmax, and therefore

BI ≤ γk · BIM ≤ γk · βk ·Wmax = (1 + ϵ)cβγ · kn logn.

Consider a bit xi ∈ UJ . By the fourth containment of Lemma 10, xi ∈ IJ
M for every honest

peer M . Hence every honest M will set up a committee Ci, which will be ρ-representative
since the execution is J-clean.

A necessary condition for xi to remain in UJ,mid is that at most βk honest peers directly
verify it in Procedure Committee_Work of phase J . This is because otherwise,i ∈ COREJ

and by lemma 27, it will belong to KJ,mid
M for every honest M .

Hence, in order to keep i in UJ,mid, the adversary must prevent at least (1− 2β)k honest
peers from directly- or comm-verifying xi. To achieve that, at least ρ Byzantine peers must
infiltrate the reduced committee CM

i for at least (1− 2β)k honest peers. This incurs at least
(1− 2β)kρ work. Hence, the number of bits xi for which this can happen is at most

|UJ,mid| ≤ BI
(1− 2β)kρ ≤

(1 + ϵ)cβγ · kn logn
(1− 2β)k · (1− ϵ)Z logn/αJ

= (1 + ϵ)βZ · αJn

(1− 2β)(1− ϵ)Z = α·αJn ,

where the last equality is by the definition of α. This yields Part (1).
By Lemma 10, Part (2) follows from part (1) upon noting that nJ

M = |IJ
M | ≤ |UJ−1,mid|,

and Part (3) follows from part (2). Part (4) follows from part (3), noting that UJ
M ⊆ UJ . ◀

Proofs of high probability of clean executions

Proof of Lemma 7.

Proof. We first show that for every bit xi, IP[EV1(J, i)] ≤ 1/n2+λ.
Consider an index i ∈ UJ . By Lemma 10, UJ ⊆ IJ

M , and hence i ∈ IJ
M ,

Therefore, all honest peers join the committee Ci with probability p. Hence, denoting the
number of honest peers in Ci by X,

IE[X] = p|H| ≥ p · γk = γc logn
αJ

= Z logn
αJ

.

J. Augustine, J. Biju, S. Meir, D. Peleg, S. Ramachandran, and A. Thiruvengadam 3:23

IP[EV1(J, i)] = IP[X < ρ] = IP[X ≤ (1− ϵ) · Z logn/αJ] ≤ IP[X ≤ (1− ϵ)IE[X]] (5)

By Chernoff’s bound,

IP[X ≤ (1− ϵ)IE[X]] ≤ exp
(
−ϵ

2IE[X]
2

)
≤ exp

(
−ϵ

2

2 ·
Z logn
αJ

)
, (6)

and by Eq. (2) it follows that

IP[EV1(J, i)] ≤ exp
(
−(2 + λ) · logn

αJ

)
≤ n−2−λ.

By the union bound, the probability that any bad event of type EV1 occurred in the execution
is at most O(1

n1+λ). ◀

Proof of Lemma 8.

Proof. We first show that for every honest peer M , IP[EV2(J,M)] ≤ 1/n8/3. The bad
event EV2(J,M) occurs if n̂J

M > Wmax in phase J . In Procedure Committee_Work, M tries
(randomly) to join the committee Ci for every xi ∈ IJ

M , hence IE[n̂J
M] = pnJ

M . Applying
Lemma 11(2), we get that

IE[n̂J
M] ≤ pαJn

We introduce a variable X ∈ (0, 1] such that

IE[n̂J
M] = X · pαJn = X · c logn · n

k
= X ·Wmax

1 + ϵ
.

We can see now that

IP[EV2(J,M)] = IP[n̂J
M > Wmax] ≤ IP

[
n̂J

M >
1 + ϵ

X
· IE[n̂J

M]
]

Using the variation of Chernoff’s bound that says that, for δ > 0,

IP [A > (1 + δ)IE[A]] ≤ exp
(
− δ2

2 + δ
· IE[A]

)
and setting δ = 1+ϵ

X − 1, we get

IP[EV2(J,M)] ≤ exp
(
−

(1+ϵ−X
X)2

2 + 1+ϵ
X − 1

· IE[n̂J
M]
)

= exp
(
− (1 + ϵ−X)2

X2(1+ϵ
X + 1)

·Xc logn · n
k

)
= exp

(
− (1 + ϵ−X)2

X + 1 + ϵ
· c logn · n

k

)
= exp

(
−f(X) · c logn · n

k

)
,

where f(x) = (1+ϵ−x)2

x+1+ϵ . It is easily verifiable that f(x) is monotone decreasing in the range
[0, 1], attaining a minimum value of ϵ2

2+ϵ , i.e, f(x) ≥ ϵ2/2 + ϵ for every x ∈ [0, 1]. Therefore,
we get

IP
[
n̂J

M >
1 + ϵ

X
· IE[n̂J

M]
]

≤ exp
(
− ϵ2

2 + ϵ
· c logn · n

k

)
≤ n−cϵ2/(2+ϵ)

≤ n−Zϵ2/(2+ϵ) ≤ 1
n2+λ

,

where the last inequality follows by Eq. (3). The lemma now follows by the union bound. ◀

DISC 2024

	1 Introduction
	2 Methods
	3 Results on the Download Problem
	3.1 Deterministic Setting
	3.2 Randomized setting

	4 Results on the Disjunction Problem
	5 Related Work
	6 Directions for future work
	A Some missing proofs

