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Abstract
We consider the problem of coloring graphs of maximum degree ∆ with ∆ colors in the distributed
setting with limited bandwidth. Specifically, we give a poly log log n-round randomized algorithm
in the CONGEST model. This is close to the lower bound of Ω(log log n) rounds from [Brandt et
al., STOC ’16], which holds also in the more powerful LOCAL model. The core of our algorithm
is a reduction to several special instances of the constructive Lovász local lemma (LLL) and the
deg + 1-list coloring problem.
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1 Introduction

The objective in the c-coloring problem is to color the vertices of a graph with c such that any
two adjacent vertices receive different colors. In the distributed setting, the ∆ + 1-coloring
problem has long been the focus of interest as the natural local coloring problem: any partial
solution can be extended to a valid full solution. It has fast poly(log log n)-round algorithms,
both in LOCAL [12] and CONGEST [29], and so does the more general deg+1 -list coloring
problem (d1LC), which is what remains when a subset of the nodes has been ∆ + 1-colored
[30, 34].

The ∆-coloring problem, on the other hand, is non-local: fixing the colors of just two
nodes can make it impossible to form a proper ∆-coloring, see Figure 1 for an example. Due
to its simplicity, it has become the prototypical problem for the frontier of the unknown
[27, 2]. Even the existence of such colorings is non-trivial: a celebrated result by Brooks
from the ’40s shows that ∆-colorings exist for any connected graph that is neither an odd
cycle nor a clique on ∆ + 1 nodes [10].

A poly(log log n)-round ∆-coloring algorithm was recently given in LOCAL [22], but no
non-trivial algorithm is known in CONGEST. It is of natural interest to examine if the
transition from local to non-local problems behaves differently in LOCAL and in CONGEST.
Thus, we set out to answer the following question:

Is there a sublogarithmic time distributed ∆-coloring algorithm using small messages?
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In this work, we answer the question in the affirmative. We prove the following theorem.

▶ Theorem 1. There is a randomized poly log log n-round CONGEST algorithm to ∆-color
any graph with maximum degree ∆ ≥ 3. The algorithm works with high probability.

Theorem 1 nearly matches the lower bound of Ω(log log n) that holds in LOCAL [9]. In
[2], the authors claim that in order to make progress in our understanding of distributed
complexity theory, we require a ∆-coloring algorithm that is genuinely different from the
approaches in [41, 27]. This is due to the fact that the current state-of-the-art runtime for
∆-coloring lies exactly in the regime that is poorly understood. The approaches of [41, 27] are
based on brute-forcing solutions on carefully chosen subgraphs of super-constant diameter. In
contrast, our results are based on a bandwidth-efficient deterministic reduction to a constant
number of “simple” Lovász Local Lemma (LLL) instances and O(log ∆) instances of d1LC;
the LLL is a general solution method applicable to a wide range of problems. It is known
that LLL is complete for sublogarithmic computation on constant-degree graphs, but its role
on general graphs is widely open [13]. Our algorithm adds to the small list of problems (see
the related work section in [33]) that can be solved in sublogarithmic time with an LLL-type
approach, even under the presence of bandwidth restrictions. Before continuing further, let
us first detail the computational model.

In the CONGEST model, a communication network is abstracted as an n-node graph
of maximum degree ∆, where nodes serve as computing entities and edges represent com-
munication links. Initially, a node is unaware of the topology of the graph G, nodes can
communicate with their neighbors in order to coordinate their actions. This communication
happens in synchronous rounds where, in each round, a node can perform arbitrary local
computations and send one message of O(log n) bits over each incident edge. At the end of
the algorithm, each node outputs its own portion of the solution, e.g., its color in coloring
problems. The LOCAL model is identical, except without restrictions on message size.

1.1 Technical Overview on Previous Approaches
Previous fast distributed ∆-coloring algorithms either use huge bandwidth [41, 27] or use
limited bandwidth but only work in the extreme cases of either very high-degree [22] or
super low-degree graphs [40]. Optimally, we would like to take any of these solutions and run
them with minor modifications to obtain an algorithm that uses low bandwidth and works
for all degrees. This approach is entirely infeasible for the highly specialized algorithms in
[41, 27, 28]. These works crucially rely on learning the full topology of non-constant diameter
subgraphs, which is impossible in CONGEST.

For graphs of super-low degree, i.e., at most poly log log n, an efficient ∆-coloring algorithm
with low bandwidth can be deduced from the results in [40]. In fact, the paper takes a
complexity-theoretic approach and shows that any problem can be solved in sublogarithmic
time with low bandwidth as long as 1) the problem is defined on low-degree graphs, 2) a
given solution can be checked efficiently for correctness by a distributed algorithm, and 3)
the problem admits a sublogarithmic time LOCAL model algorithm. As such, the results
are not very constructive for any specific problem like the ∆-coloring problem. In fact, it is
known that these generic techniques cannot be extended to problems defined on graphs with
larger degrees [3], which is the main target of our work.

Our best hope is then the poly log log n-round LOCAL model algorithm of [22]. We discuss
it in detail throughout the next few pages as it motivates the design choices of our solution.
Unfortunately, for maximum degrees that are at most poly-logarithmic, it relies on the prior
O(log ∆) + poly log log n-round LOCAL model algorithm from [27] in a black-box manner.
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For large maximum degrees, however, when ∆ is ω(log3 n), they provide a sophisticated
constant-round randomized reduction to the deg + 1-list coloring problem (d1LC) that also
works with low bandwidth. The central ingredient in this reduction is the notion of slack.

Slack. To reduce the ∆-coloring problem to d1LC, it suffices to obtain a unit amount of
slack for each node. Namely, if two neighbors of a node are assigned the same color, there
are then more colors available to the node than its number of uncolored neighbors. Slack can
be easily generated w.h.p. (for most, but not all, kinds of nodes) with a simple single-round
procedure termed SlackGeneration, as long as the graph has high degree. This observation
has been used in countless papers on various coloring problems, e.g., [18, 35, 12, 29, 22].
For intermediate-degree graphs, this slack generation problem can be formulated as an
instance of the constructive Lovász Local Lemma (LLL), but one that seems inherently
non-implementable in CONGEST, as we explain later.

Recall that the LLL is a general solution method applicable to a wide range of problems.
Defined over a set of independent random variables, it asks for an assignment of the variables
that avoids a set of “bad” events. The original theorem [19] shows that such an assignment
exists as long as the probability of the events to occur is sufficiently small in relation to
the dependence degree of the events, i.e., the number of other events that share a variable.
There is now a general LOCAL algorithm running in O(log n) rounds of LOCAL [39, 15], but
superfast poly(log log n) algorithms are only known for restricted cases [21, 26, 17]. Even
less is known about solvability in CONGEST [31, 33].

In the presented slack generation LLL, there is a bad event for each node that holds if
the respective node does not obtain slack. The mentioned SlackGeneration works as follows.
Each node gets activated with a constant probability, picks a random candidate color that it
keeps if no neighbor wants to get the same color and discards otherwise (see Algorithm 3
in Section 3 for details). Hence, there are random variables for each node depicting its
activation status and candidate color choice. The main reason why this LLL cannot be
directly implemented in CONGEST is that events involve values of variables at distance 2
in the communication graph. This makes it impossible for an event node to obtain full
information on the status of all its variables, an ingredient that essentially is crucial in all
known sublogarithmic-time LLL algorithms. The formal meaning of the word “essential”
in that sentence is extremely technical and is captured by the notion of a simulatable LLL
(see the full version of this paper). In essence, it says that the LLL is easy enough such
that event nodes can learn enough information about their variables to execute some simple
primitives such as evaluating their status (does the event hold or not), resampling their
variables, and computing certain conditional probabilities for the event to hold under partial
variable assignments. The latter condition is the most challenging one to ensure.

1.2 Our Technical Approach
What we have discussed so far is only half the truth. In fact, the slack generation process
only works for sparse nodes, i.e., nodes with many non-edges in their neighborhood. If the
graph is locally too dense, then slack cannot be obtained via this LLL. Thus, the algorithm
of [22] carefully analyzes the topological structure of the hard instances for ∆-coloring,
combining several different (deterministic and randomized) methods to create slack. Such a
treatment seems to be inherent to the ∆-coloring problem as a very similar classification was
independently and currently discovered in the streaming model [1]. Additionally, it has also
been shown to be useful in different models of computation. In the aftermath of these works,
it has been used to obtain efficient massively parallel algorithms for the problem [16].

DISC 2024



31:4 Distributed Delta-Coloring Under Bandwidth Limitations

Figure 1 This is an example of an almost clique (AC). The depicted nice AC is a clique on ∆ + 1
nodes with a single missing (red) edge. It is essential that the two nodes incident to the missing
edge receive the same color to solve the ∆-coloring problem. All non-nice ACs form proper cliques.

Our algorithm is based on a fine-grained version of this classification equipped with a
sequence of various LLLs for eventual slack generation. Each LLL is easier to solve in the
CONGEST model than the aforementioned slack generation LLL. In the following, we use
the terminology of [22], and explain their algorithm and our solution in more detail.

Like in all recent randomized distributed graph coloring algorithms, they divide the
graph into sparse and dense parts that are referred to as “almost-cliques” (ACs). Then,
they partition the ACs further into different types – ordinary, nice, difficult – each of which
admits a different coloring approach. See Figure 1 for an example of an AC. One challenge is
that all these different types of tricky subgraphs may appear in the same graph and close to
each other. For this overview it is best to imagine each AC as a proper clique on almost ∆
nodes in which each node has a few external neighbors residing in other ACs and creating
lots of dependencies between different ACs. Thus, their algorithm is fragile with regard to
the order in which different types of ACs are colored. The starting point of our work is that
the core step of their algorithm does not work in low-degree graphs. More detailed, the first
step of their algorithm executes SlackGeneration (see Algorithm 3 in Section 3) on a
carefully selected subset of nodes to achieve three objectives: a) giving slack to all sparse
nodes, b) providing a slack-toehold1 for a subclass of the difficult ACs that the authors term
“runaway”, and c) providing each ordinary clique with a node that has slack. Each of these
probabilistic guarantees holds w.h.p. as long as ∆ = ω(log3 n). Their proof shows that, in
essence, all three cases are LLLs but ones that are far from being simulatable. We discuss
our solutions for a)–c), separately.

Solution for a). Providing slack to sparse graphs is the main application of the LLL
algorithm in [33]. In essence, we adapt their techniques to provide slack to sparse nodes but
provide additional guarantees that are needed for other parts of the graph.

Solution for b). For the difficult cliques we propose a solution that eliminates randomness
and solely colors all the nodes via a sequence of d1LC instances. See Figure 2 for an
illustration of our solution. First, we adjust the classification of difficult almost-cliques from
[22]. All nodes in a given difficult clique have the same external degree. We associate with
each such AC C a special node sC on its outside that has many neighbors on the inside
(namely, more than twice the external degree of C’s nodes).

1 A slack-toehold for an AC is an uncolored node that can be stalled to be colored later. All of its
neighbors then lose one competitor for the remaining colors, providing them with temporal slack.
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𝐶1 𝐶2 𝐶3

Figure 2 for part b): The illustration depicts three difficult cliques of different layers. The
external degree of C1 is 1, the external degree of C2 is 2 and the external degree of C3 is 4. C1 has
the lowest layer and its special node (the red node) is part of C2. The blue special node of C2 is
part of C3. So when we color C1 the red node serves as an uncolored toehold providing slack to two
gray nodes of C1. Stalling the coloring of these gray nodes provides slack to the white nodes of C1

so that they can be colored, followed by the gray ones. For illustration purposes, we chose ∆ to be
9, but note that this would actually not classify C3 as a difficult clique. A special node of C3 would
need 2eC3 = 8 neighbors in C3, which is impossible due to C3’s size.

From here, we assign each difficult clique a layer that determines the step in which it gets
colored. Those with a special node that is not contained in another difficult clique are treated
separately and assigned to layer ∞, to be dealt with at the very end. The other difficult
cliques are assigned to layers indexed by the base-2 logarithm of their external degree. The
crucial property that follows is that the cliques in a given layer have their special node in a
higher layer. This allows us to color the cliques layer by layer, starting with smaller layers.
The special node sC is stalled to be colored later, providing a toehold for C. This way, we
color the cliques and special nodes in all layers besides ∞.

This leaves the problem of coloring ACs the ∞ layer and their still uncolored special
nodes. In this exposition, we assume that special nodes are not shared by multiple difficult
cliques. In that case, we pair the special node sC up with some node uC ∈ C that is not
adjacent to sC with the objective to same-color the nodes: assigning both the same color.
This is done via a virtual coloring problem capturing the dependencies between all selected
pairs in the participating difficult cliques and the restrictions imposed by already colored
vertices of the graph. We show that this virtual coloring instance is indeed a d1LC instance
and can be solved efficiently in CONGEST despite being a problem on a virtual graph. As a
result, the clique C obtains an uncolored node yC that is adjacent to both sC and uC , has
slack due to two same-colored neighbors, and can serve as a toehold for C.

Besides removing the need for randomization to solve the difficult cliques, our classification
of difficult cliques also captures significantly more ACs than the definition of difficult cliques
in [22]. The additional structure provided to the remaining ACs is exploited down the line
in the most challenging part of the algorithm, dealing with the ordinary cliques in part c).

Solution for c). The most involved part by far is dealing with case c). We split the ordinary
cliques into the small (of size less than ∆−∆/ poly log log(n)) and large. The small ones
can be handled just like the sparse nodes, as one can show that their induced neighborhoods
are relatively sparse. The main effort then is to manually create slack for the large ordinary
cliques. For this exposition, it is best to imagine an ordinary clique to be a clique on ∆
nodes in which each node of the clique has exactly one external neighbor that is again a
member of a large ordinary clique. See Figure 3 for an illustration.

DISC 2024
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𝐶1 𝐶2 𝐶3

Figure 3 for Part c): For the large ordinary cliques, we find triples of nodes consisting of
a yellow (striped), a light yellow (dotted), and a gray (solid) node. The two yellow nodes are
non-adjacent while the gray node is adjacent to both of them. The goal is to same-color the pairs of
yellow/light-yellow nodes, to which end we form a virtual coloring instance consisting of all pairs and
their dependencies. After same-coloring the yellow nodes, the gray node provides a slack-toehold for
the clique. An important aspect is that triples of different ordinary ACs are non-overlapping and no
neighborhood of the graph contains too many nodes in such pairs, as otherwise we may run into
unsolvable subinstances down the line. We find these triples by a sequence of “simple” LLLs.

In order to create slack-toehold in each large AC C, we compute a “vee-shaped” triple
(xC , yC , zC) of nodes, with xC , yC ∈ C and zC /∈ C, but zC ∈ N(yC) and zC is also a
non-neighbor of xC . Then, we set up a virtual list coloring instance with a node for each such
pair with the objective to same-color the pairs (xC , zC). As we ensure that yC is uncolored,
it serves as a slack-toehold for the AC. As many of the important ACs can be mutually
adjacent, the main difficulty lies in finding non-overlapping triples for the ACs. We ensure
this by first computing a suitable candidate set Z from which we then pick the third node
zC of the triple. Finding the set Z can be modeled as an “easy” LLL fitting the framework
of [33]. Finding the node zC ∈ Z can also be modeled as a different type of “easy” LLL. In
essence, the first LLL is easy (in CONGEST) as its bad events only consist of simple bounds
on the number of neighbors in Z. Next, we elaborate on our LLL for finding zC ∈ Z with
slightly more detail; due to further technicalities of the existing LLL algorithms from which
we spare you in this technical overview, our actual solution differs slightly from the one
presented here.

With a given set Z, we model the problem of selecting zC ∈ Z as an LLL as follows.
Each AC C sends a proposal (to serve as its zC node) to each outside neighbor inside Z with
probability poly log log n/∆. The proposal is successful if no other AC proposes to that node.
We show that with a constant probability, no other AC proposes to the same node and that
this is independent for different nodes in Z. Since we ensure C has many neighbors in Z, we
obtain that the probability that none of C’s proposals are successful is bounded above by
p = exp(−Ω(poly log n)). The main benefit is that this LLL and also the LLL for finding the
set Z are simple enough to be simulatable (in contrast to LLLs based on randomized slack
generation for those ACs that can be derived from the proofs in [33]).

Once we have found zC , the structure of large ordinary ACs implies that we can deter-
ministically find the other two nodes xC and yC of the triple. Additional complications arise
in ensuring that the list coloring instance of the pairs is a d1LC instance, i.e., that the size
of the joint available color palette of xC and zC exceeds the maximum degree in the virtual
graph induced by the pairs. The last difficulty that appears is solving the d1LC instance, as
the bandwidth between the nodes within a pair is very limited and existing d1LC algorithms
cannot be run in a black-box manner.
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Further related work. Graph coloring is fundamental to distributed computing as an elegant
way of breaking symmetry and avoiding contention, and was, in fact, the topic of the original
paper introducing the LOCAL model [37]. There is an abundance of efficient deterministic
and randomized ∆ + 1-coloring algorithms in LOCAL and CONGEST for various settings,
e.g., [6, 35, 23, 12, 5, 43, 39, 29, 32, 30, 24]. The excellent monograph on distributed graph
coloring by Barenboim and Elkin is still a great resource for older results [7].

There are significantly fewer results for coloring with fewer than ∆ + 1 colors. A LOCAL
algorithm is known for ∆ − k-coloring in graphs not containing too large cliques [4]. An
O(log log n)-round ∆-coloring algorithm in the LOCAL model is known for trees [11], matching
the lower bound [9] within a constant factor. Additionally, there are works coloring special
graph classes such as coloring planar graphs with 6 or 5 colors in O(log n) rounds with a
deterministic LOCAL algorithm [14, 42].

Outline. In Section 2, we define the notion of slack and state required results from prior
work on solving d1LC and computing an almost clique decomposition (ACD). In Section 3,
we present our ∆-coloring algorithm with essentially all proofs. The algorithm consists of 5
phases and all phases except for Phases 1 (ACD computation) and Phase 2 are deterministic
reductions to various d1LC instances. In Phase 2, we provide slack to sparse nodes and the
nodes in ordinary cliques; this refers to part a) and part c) described in Section 1.2. For
ease of presentation, the (involved) Phase 2 is presented in a top down manner. In Section 4
we present the high level overview of this phase. In essence its a reduction to solving four
different subproblems. The details of the reduction are deferred to Appendix A. The heart of
our approach is actually solving each of these subproblems via an instance of the constructive
Lovász Local Lemma. As this part is extremely technical and cannot fit into the space
constraints of a conference publication we defer this part to the full version of the paper.

2 Preliminaries: d1LC, Slack, Almost-Clique Decomposition, Graytone

In the deg + 1-list coloring (d1LC) problem, each node of a graph receives as input a list
of allowaed colors whose size exceeds its degree. The goal is to compute a proper vertex
coloring in which each node outputs a color from its list. The problem can be solved with a
simple centralized greedy algorithm, and it also admits efficient distributed algorithms.

▶ Lemma 2 (List coloring [30, 34]). There is a randomized CONGEST algorithm to (deg + 1)-
list-color (d1LC) any graph in O(log5 log n) rounds, w.h.p. This reduces to O(log3 log n)
rounds when the degrees and the size of the color space is poly(log n).

The slack of a node (potentially in a subgraph) is defined as the difference between the
size of its palette and the number of uncolored neighbors (in the subgraph).

▶ Definition 3 (Slack). Let v be a node with color palette Ψ(v) in a subgraph H of G. The
slack of v in H is the difference |Ψ(v)| − d, where d is the number of uncolored neighbors of
v in H.

We use the following helpful terminology.

▶ Definition 4 (Graytone [22]). Consider an arbitrary step of the algorithm. A node is gray
if it has unit-slack or a neighbor that will be colored in a later step of the algorithm. A node
is grayish if it is not gray but has a gray neighbor. A set of gray and grayish nodes is said to
be graytone.

DISC 2024
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Any graytone set can be colored as two d1LC instances: first the grayish nodes and then the
gray. We emphasize that the graytone property depends on the order in which nodes are
processed. It always refers to a certain step of the algorithm in which we color the respective
set. Throughout our algorithm we aim at making more and more nodes graytone.

A proof of the following construction central to our approach is given in Appendix B.

▶ Lemma 5 (ACD computation [1, 22]). For any graph G = (V, E), there is a partition
(almost-clique decomposition (ACD) of V into sets Vsparse and C1, C2, . . . , Ct such that each
node in Vsparse is Ω(ϵ2∆)-sparse and for every i ∈ [t],

(i) (1− ε/4)∆ ≤ |Ci| ≤ (1 + ε)∆ ,
(ii) Each v ∈ Ci has at least (1− ε)∆ neighbors in Ci: |N(v) ∩ Ci| ≥ (1− ε)∆ ,
(iii) Each node u ̸∈ Ci has at most (1− ε/2)∆ neighbors in Ci: |N(u) ∩ Ci| ≤ (1− ε/2)∆.

Further, there is an O(1)-round CONGEST algorithm to compute a valid ACD, w.h.p.

We say that nodes in Vsparse are sparse and other nodes are dense. It is immediate from
Lemma 5 that each dense node has external degree (or neighbors outside its AC) at most
ε∆ and at most 2ε∆ non-neighbors in its AC. Also, any pair of nodes in Ci have at least
(1− 3ε)∆ ≥ 3∆/4 common neighbors in Ci.

Notation. For a graph G = (V, E) and two nodes u, v ∈ V , let distG(u, v) denote the
length of a shortest (unweighted) path between u and v in G. For a set S ⊆ V we denote
distG(v, S) = minu∈S distG(v, u). N(v) denotes the set of neighbors of a node v ∈ V .

3 ∆-Coloring in CONGEST

In this subsection, we prove the following theorem.

▶ Theorem 1. There is a randomized poly log log n-round CONGEST algorithm to ∆-color
any graph with maximum degree ∆ ≥ 3. The algorithm works with high probability.

The extreme cases of very large ∆ and very small ∆ can be solved in the claimed runtime
with prior work [22, 40], see the proof of Theorem 1 in Section 3.3. Here, we present an
algorithm for the most challenging regime where ∆ ∈ O(poly log n) ∩ Ω(poly log log n).

In the extreme case that ∆ = ω(log21 n), the ∆-coloring algorithm from [22] even runs
in O(log∗ n) rounds. A lower bound of Ω(log∆ log n) rounds in the LOCAL model for the
∆-coloring problem [9] rules out a O(log∗ n) algorithm for small ∆. Hence, in this section, we
aim for an algorithm using poly log log n rounds. In fact, we reduce the ∆-coloring problem to
a few list coloring instances and a few LLL instances, each of which we solve in poly log log n

rounds.

3.1 Fine-Grained ACD Partition
The following definitions of types of almost-cliques are crucial for all results of the paper.
The reader is hereby warned to read them slowly!

▶ Definition 6 (Types of almost-cliques). For an AC C, let eC = ∆ − |C| + 1. An AC is
easy if it contains a non-edge or a node of degree less than ∆. A node v /∈ C is an intrusive
neighbor of a non-easy C if v has at least 2eC neighbors in C. A non-easy AC is difficult
if it has an intrusive neighbor. Each difficult AC C arbitrarily selects one of its intrusive
neighbors as its special node sC . An AC is nice if it is easy or if it is both non-difficult and
contains a special node (necessarily for another AC). An AC is ordinary if it is neither nice
nor difficult.
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Note that all ACs except the easy are proper cliques and all nodes in such a clique C

have external degree eC . We say that a node is ordinary (difficult, nice) if it belongs to an
ordinary (difficult, nice) AC, respectively. The difficult ACs are divided into levels.

▶ Definition 7 (Levels of difficult ACs). The maximum level ∞ contains all difficult ACs
whose special node is not contained in a difficult AC. A difficult AC C that is not at the
maximum level has level ℓ(C) = ⌈log2 eC⌉.

Observe that ℓ(C) ≤ log2 ∆ = O(log log n) for all difficult ACs.

▶ Definition 8 (Node classification). The nodes are partitioned into the following sets:
1. S: the set of special nodes that are not in difficult ACs,
2. Dℓ: nodes in difficult ACs of level ℓ, ℓ ∈ [lg ∆] ∪ {∞} (might include special nodes),
3. N : nodes in nice ACs, excluding those in S,
4. O: nodes in ordinary ACs, and
5. V∗: nodes in Vsparse, excluding those in S.

Our classification is built on [22] but is subtly different and more fine-grained. We
are driven by a need to limit the reach of probabilistic arguments, being that we are in
the challenging sub-logarithmic degree range. Thus, a strictly smaller set of dense nodes
(the ordinary) needs probabilistic slack in our formulation. On the other hand, the easy,
difficult, and nice definitions are more inclusive here. The difficult ones are here divided into
super-constant number of levels, as opposed to only two types in [22].

The underlying idea is to ensure that every node gets at least one unit of slack, ensuring
that it can be colored as part of a d1LC instance. Easy nodes have such slack from the start;
difficult ones get it from their special nodes (special nodes are used in several different ways
to provide slack); sparse and ordinary nodes get it from probabilistic slack generation; and
non-easy nice ones get it from same-coloring a non-edge it contains. The most challenging
part of the low-degree regime is the probabilistic part. That has guided our definition,
resulting in the ordinary ACs being defined as restrictively as possible and, in fact, much
more restrictive than the ordinary ACs in [22].

3.2 Algorithm for ∆-coloring
Our ∆-coloring algorithm consists of the following five phases.

Algorithm 1 ∆-coloring.

1: Compute an ACD (ε = 1/172) and form the ordered partition of the nodes.
2: Color sparse nodes V∗ and ordinary nodes O
3: Color nice nodes N
4: For increasing 1 ≤ ℓ <∞ :

Color difficult nodes Dℓ in level ℓ

5: Color difficult nodes in D∞ and special nodes in S

The remainder of the paper describes these phases in detail. Only Phases 1 and 2 are
randomized. Phase 2 is also the most involved part of our algorithm. For ease of presentation,
we defer its details when ∆ is at most logarithmic to Section 4. In this section, we present
Phase 2 in the case of ∆ ≥ c log n for a sufficiently large constant c, where Phase 2 does
not require any LLL and which is sufficient to understand how Phase 2 interacts with the
remaining phases. The remaining phases are identical in both cases.
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3.2.1 Phase 1: Partitioning the Nodes
We first apply Lemma 5 to compute an ACD for ε = 1/172 and break the graph into nice
ACs, difficult ACs, ordinary ACs, and the remaining nodes in V∗ according to Definition 8.

3.2.2 Phase 2: Sparse and Ordinary Nodes (∆ ≫ log n)
In this subsection, we prove the following lemma.

▶ Lemma 9. There exists a poly log log n-round CONGEST algorithm that w.h.p. colors the
sparse nodes and nodes in ordinary cliques if ∆ ≥ c log n for a sufficiently large constant c.

Lemma 9 essentially follows from the proof of Lemma 3.5 in [22, arxiv version]. However, as
we have changed the definition of ordinary cliques, we spell out the required details.

Slack generation is based on trying a random color for a subset of nodes. Sample a set of
nodes and a random color for each of the sampled nodes. Nodes keep the random color if
none of their neighbors choose the same color. See Algorithm 3 for a pseudocode. If there are
enough non-edges in a node’s neighborhood, then it probabilistically gets significant slack.

Algorithm 2 Phase 2: Coloring Sparse and Ordinary Nodes (when ∆ ≫ log n).

1: Run SlackGeneration on V∗ ∪ O
2: Color the remaining ordinary nodes O
3: Color the remaining sparse nodes V∗

Algorithm 3 SlackGeneration.

Input: S ⊆ V

1: Each node in v ∈ S is active w.p. 1/20
2: Each active node v samples a color rv u.a.r. from [χ].
3: v keeps the color rv if no neighbor tried the same color.

We also require the following lemma from [22].

▶ Lemma 10 ([22]). Let C be a non-easy AC, S ⊆ V be a subset of nodes containing C,
and M be an arbitrary matching between C and N(C) \ C. Then, after SlackGeneration
is run on S, C contains Ω(|M |) uncolored nodes with unit-slack in G[S], with probability
1− exp(−Ω(|M |)).

There exists a large matching satisfying the hypothesis of Lemma 10,

▶ Lemma 11. For each ordinary AC C, there exists a matching MC between C and N(C)\C

of size 2∆/5.

Proof. We use the following combinatorial result that is proven in Appendix B for complete-
ness.

▷ Claim 12. Let B = (Y, U, EB) be a bipartite graph where nodes in Y have degree at least
k and nodes in U have degree at most 2k. There exists a matching of size |Y |/2 in B.

Proof. Let M be a maximum matching in B and suppose that more than half the nodes in
Y are unmatched. Let S be the set of nodes reachable from the unmatched nodes Y \ V (M).
Since M has no augmenting path, S contains no unmatched node of U . All of the |Y ∩ S| · k
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edges incident on Y ∩ S have their other endpoint in U ∩ S. By the degree bound on U ,
there are fewer than |U ∩ S|2k such edges. Thus, |Y ∩ S| < 2|U ∩ S|. Every node in U ∩ S

is matched to a node in Y ∩ S, while all unmatched nodes in Y are in Y ∩ S. Thus, the
number of unmatched nodes in Y is at most |Y ∩ S| − |U ∩ S| < |U ∩ S| ≤ |M |. This is a
contradiction, and hence, at least half the nodes in Y are matched. ◁

As C is not easy, all its nodes have external degree eC , while nodes in N(C) \ C

are by assumption not intrusive neighbors of C, so they have at most 2eC neighbors in
C. Claim 12 then implies that there exists a matching between C and N(C) \ C of size
|C|/2 ≥ (1− ϵ)∆/2 ≥ 2∆/5. ◀

The properties of Phase 2 are summarized in the following lemma.

▶ Lemma 13. If ∆ ≥ c log n for a sufficiently large constant c, the following properties hold
w.h.p. after Step 1 of Algorithm 2:
(†) Each sparse node has unit-slack in G[V∗],
(††) Each ordinary AC has an uncolored unit-slack node in G[V∗ ∪ O].

Proof. We run SlackGeneration on the node set S = V ∗ ∪ O. Nodes with neighbors
outside V ∗ ∪ O have slack while the rest of the graph is stalled. We focus on the remaining
nodes. Each sparse node gets the respective slack with probability at least 1− exp(Ω(∆))
[18, Lemma 3.1], implying (†). By Lemma 11, there is a matching between C and N(C) \ C

of size 2∆/5. Thus, (††) holds with probability at least 1− exp(−Ω(∆)), by Lemma 10.
Both probabilities become w.h.p. guarantees if ∆ ≥ c log n for a sufficiently large constant

c. For ∆ ≥ ∆0 for a sufficiently large constant ∆0 we obtain an LLL. ◀

Proof of Lemma 9. By Lemma 13 w.h.p. all sparse nodes become gray as they have unit
slack. Also, the unit-slack node in each ordinary AC becomes gray and all other nodes of the
AC become grayish as ordinary ACs induce cliques. This is sufficient to color all nodes with
O(1) d1LC instances. ◀

Forward pointer. The main difficulty of Phase 2 for smaller values of ∆ is to mimic the
properties of Lemma 13. Section 4 are devoted to ensuring these properties via several LLLs
and d1LC instances that can be solved in a bandwidth-efficient manner.

3.2.3 Phase 3: Nice ACs
We give a simpler treatment than [22]. We want a toehold in each nice AC: a node with
permanent or temporary slack. With a toehold, the rest is easy. Namely, ACs have all
nodes of internal degree at least (1− ε)∆, of which none are colored in previous phases. The
neighbors of a toehold are gray, and there are at least (1− ε/4)∆ of them by Lemma 5, all
uncolored. The remaining nodes in the AC are then grayish, so the AC is graytone.

Nice ACs come in three types, depending on if they contain a special node, a non-edge, or
a degree-below-∆ node. The first and third types immediately give us a toehold. It remains
then to consider nice ACs with a non-edge but with no special node, which we call hollow.

For a hollow AC C, we identify an arbitrary non-edge (uC , wC) and call it the pair for C.
We color the pairs for hollow ACs as a d1LC instance. The two nodes in a pair have at least
∆/2 common neighbors within C and any of them can function as a toehold. It remains to
argue that we can find a valid coloring of the pairs efficiently.

▶ Lemma 14. The pairs of hollow ACs can be colored in the CONGEST model in O(log3 log n)
rounds.
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Proof. As the nodes of a hollow C were uncolored, the only nodes that can conflict with the
coloring of the pair are the at most 2 · ε∆ ≤ ∆/2 external neighbors. The ∆ + 1 colors we
have to work with significantly exceed that. Thus, the pairs are deg + 1-list colorable.

Both nodes of the pair (uC , wC) have at least (1− ϵ)∆ neighbors in C, so they have at
least (1− ϵ)∆− (|C| − (1− ϵ)∆) > (1− 3ϵ)∆ ≥ ∆/2 common neighbors in C. They provide
the bandwidth to transmit to one node all the colors adjacent to the other node. Also, all
messages to and from uC vis-a-vis its external neighbors can be forwarded in two rounds.
Hence, we can simulate any CONGEST coloring algorithm on the pairs with O(1)-factor
slowdown; in particular, we can simulate the algorithm from Lemma 2. ◀

3.2.4 Phase 4: Difficult ACs in a Non-Maximum Level
By Definition 7, the special node sC of any difficult AC C at a level other than D∞ is
contained in another difficult AC C ′ ≠ C. The next lemma shows that the level of C ′ must be
strictly larger than the level of C, which allows us to color C fast while C ′ remains uncolored.

▷ Claim 15. For an AC C with ℓ(C) < ∞, let C ′ be the difficult AC that contains the
special node sC . Then we have ℓ(C) < ℓ(C ′).

Proof. The special node sC has external degree of at least 2eC as it is connected to at least
2eC nodes of C that do not lie within C ′. Hence, we obtain that the external degree eC′ in
AC C ′ is at least eC′ ≥ 2eC , so ℓ(C ′) > ℓ(C). ◁

We color all ACs of a level in parallel, in increasing order of levels. Due to the previous
claim, the special node of an AC is contained in a difficult clique in a larger level or not
contained in a difficult clique at all. Hence, the special node is uncolored when the clique is
processed. So, when processing some level 1 ≤ i ≤ O(log log n), we color all nodes in ACs of
that level, but we do not color their respective special nodes. Thus, the respective special
node provides a toehold for the respective clique.

3.2.5 Phase 5: Difficult ACs in the Maximum Level
The maximum level is processed last and differently from the other levels. By definition, the
special node sC of an AC in ∞ level is not contained in a difficult AC. Also, all nodes in
D∞ and their special nodes are still uncolored at the beginning of this phase.

The algorithm has four steps: (1) Form pairs of selected non-adjacent nodes, (2) Color
the nodes in each pair consistently, (3) Graytone color the remaining nodes of the AC, and
(4) Color the special nodes S. We explain each step in detail.

First, we form the following pairs. For each special node sC that is special for only one
AC C at level ∞: Form a type-1 pair Ts = (sC , uC) with a non-neighbor of sC in C. For
each special node s that is special for more than one ACs at level ∞, form a type-2 pair
Ts = (w1, w2), where w1 and w2 are arbitrary non-adjacent nodes in two of the ACs for
which s is special. Let E be the set of the latter special nodes.

▷ Claim 16. The pairs can be properly formed.

Proof. Type-1: An (uncolored) non-neighbor uC of pC exists as pC can have at most (1−ε/2)∆
neighbors in C by Lemma 5 (4), but the AC C has at least (1− ε/4)∆ vertices.

Type-2: Let C1 and C2 be two ACs at level∞ for which s is special, where e(C1) ≤ e(C2).
By definition, s has at least 2e(C1) (2e(C2)) neighbors in C1 (C2), respectively. Pick w1 to
be any neighbor of s in C1. Node w1 has at most e(C1) neighbors in C1. Thus, there are at
least 2e(C2)− e(C1) > 0 nodes in C2 that are neighbors of s and non-neighbors of w1, and
we can pick any such node as w2. ◁
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▶ Lemma 17. Coloring the pairs is a (deg + 1)-list coloring instance that can be solved in
poly log log n rounds in CONGEST, w.h.p.

Proof. Type-1 pair T = {sC , uC}, sC /∈ C, uC ∈ C: We say that a node conflicts with the
pair {sC , uC} if the node is already colored or is contained in an adjacent pair of the same
phase. As C does not contain a special node, uC is the only node of C participating in the
phase and all other nodes of C are still uncolored. The node uC can only be adjacent to
eC conflicting nodes as it has external degree at most eC . As sC has at least 2eC neighbors
in C, it can conflict with at most ∆ − 2eC nodes. Thus, the pair conflicts with at most
eC + ∆− 2eC = ∆− eC nodes, which is less than ∆, the number of colors initially available.
Thus, the problem of coloring such pairs is a (deg + 1)-list coloring problem.

Type-2 pair T = {w1, w2}: Each such pair (w1, w2) is adjacent to at most e(C1)+e(C2) ≤
2ϵ∆ nodes in other ACs. Further, all nodes in the ACs C1 and C2 are still uncolored, so
both nodes have at least (1− 2ϵ)∆ colors in their palette, and each pair is adjacent to at
most 2ε∆ other pairs or already colored neighbors, that is, the palette exceeds the degree.

CONGEST Implementation. A type-1 pair has at least e(C) common neighbors (the
special node sC has 2e(C) neighbors inside the clique by its definition that are all connected
to uC), which suffices to communicate the colors and all messages of external neighbors of
uC to sC (uC has at most eC external neighbors). Hence, the coloring can be achieved in
CONGEST.

Let s be the common special node of a type-2 pair {w1, w2} and let C1 and C2 be the
respective cliques. For i = 1, 2 the node wi has at most eCi

outside neighbors and s has
2eCi

≥ eCi
neighbors in Ci, denote these by Xi. We simulate the pair by s. The node wi

can forward all initial colors of outside neighbors as well as all messages from them to s by
relaying them through Xi. ◀

After coloring the pairs, each difficult AC C has a node with unit-slack in G[V \ E ], either
because the clique contains an uncolored node with two neighbors appearing in a consistently
colored type-1 pair T = {sC , uC}, or because it contains an uncolored node with a neighbor
in E . In the former case, the uncolored node exists because sC has at least one neighbor
in C that is also a neighbor of uC . In the latter case, the special node s with type-2 pair
T = {w1, w2} has by definition further neighbors besides w1 and w2 in each clique that are
all uncolored.

Thus, we color all nodes in difficult cliques via the graytone property. At the end, we
color the nodes in E , which have unit-slack as they are adjacent to a type-2 pair.

3.3 Proof of Theorem 1
Proof of Theorem 1. There are five cases, depending on the relation of ∆ and n. Generally,
we use Lemma 2 to solve d1LC instances in poly log log n rounds. Whenever the d1LC
instances require additional arguments to be solved in the respective time, e.g., because they
are defined on a virtual graph, we reason their runtime when they are introduced.

If ∆ = ω(log4 n), we use the algorithm from [22] to ∆-color the graph.
For c log n ≤ ∆ = O(log4 n) for a sufficiently large constant c, the result follows by
executing Algorithm 1 with the arguments of this section. Phases 1–3 only require O(1)
rounds and a constant number of d1LC instances. In Phase 4, we iterate through the
O(log ∆) = O(log log n) levels and solve a constant number of d1LC instances for each
level. Phase 5 can be executed in poly log log n time by Lemma 17.
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When poly log log n ≤ ∆ ≤ c log n, we use Algorithm 1 from this section and replace
Phase 2 with Algorithm 4 (presented in Section 4) whose correctness and runtime we
prove in Section 4.
If ∆0 ≤ ∆ ≤ poly log log n, we use the algorithm of this section together with the LLL
representation from the proof of Lemma 13. The LLL can be solved with the CONGEST
LLL solver of [40] in poly ∆ poly log log n = poly log log n rounds. Here, ∆0 is a sufficiently
large constant such that the LLL guarantees from Lemma 13 hold.
If 3 ≤ ∆ ≤ ∆0, that is, for constant ∆, there is an existing algorithm from [40].

In all cases, the algorithm runs in poly log log n rounds. ◀

4 Phase 2 (∆ = O(log n)): Sparse Nodes and Ordinary Cliques

In this section, we deal with Phase 2 for the most challenging regime of ∆ ∈ O(log n) ∩
Ω(poly log log n). The following lemma follows from all proofs in this section, together with
Lemmas 20, 22, and 23 stated in Appendix A and proven in the full version of this paper.

▶ Lemma 18 (Phase 2). There exists a poly log log n-round CONGEST algorithm that w.h.p.
color the sparse nodes and nodes in ordinary cliques if log10 log n ≤ ∆ ≤ O(log n).

We first give high-level ideas of our method. We divide the ordinary cliques into the
small, of size at most ∆(1− 1/(10 log3 log n)), and the large. Nodes in small ordinary cliques
have significant sparsity (i.e., non-edges in their induced neighborhood), which means that
the one-round procedure of trying a random color has a good probability of successfully
generating slack. The natural LLL formulation of that step is therefore well-behaved enough
that it can be solved fast in CONGEST with a few additional tweaks.Large nodes need a
different approach.

For each large AC, we produce unit slack for a single node. See Figure 3 for an illustration
of the process we will describe. We identify for each such AC a triplet of nodes (x, y, z) with
the objective to color x and z with the same color, while y remains uncolored. This way, y

receives unit slack, which gives us a toehold to color the whole AC.
Computing such triplets is non-trivial. We do so by breaking it into three steps, each

solvable by a different LLL formulation. In brief, we first compute a set Z of candidate
z-nodes; next partition Z into two sets; and then select the actual z-nodes to be used from
these two sets. The split of Z into two sets is required to make the process of finally finding
the z-nodes fit the LLL solver from [33]. The properties of the set Z imply that it is then
much easier to identify compatible x- and y-nodes, and once we find such triplets, we set up
a virtual coloring instance for same-coloring x- and z-nodes in each triple. We show that this
instance is d1LC and can be solved with low bandwidth despite being defined on a virtual
graph. This provides a slack-toehold to the y-node of each triple and the coloring can be
extended via d1LC instances to the whole instance.

Algorithm. The first step of the algorithm is to compute a large matching MC between
each ordinary clique C and N(C) \ C in parallel. We then classify the ordinary cliques as
follows. Fix the parameter q(n) = 10 log3 log n throughout this section.

▶ Definition 19 (Small, Large, Unimportant and Important Ordinary cliques.). An ordinary
AC is large if it contains more than ∆−∆/q(n) nodes, and small otherwise. A large AC is
important if |(V (MC) \ C) ∩ Ol| ≥ ∆/12, and unimportant otherwise.
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We say that a node is small/large/important/unimportant if it belongs to an AC of the
corresponding type. Let Oi, Ou, Ol = Oi∪Ou, and Os be the set of important, unimportant,
large, and small nodes, respectively.

Next, we summarize the high level steps of the algorithm.

Algorithm 4 Phase 2: Coloring Sparse and Ordinary Nodes (∆ = O(log n)).

1: Step 0: For each ordinary AC C in parallel, compute a matching MC ⊆ C × (N(C) \C).
Classify ordinary ACs into important, unimportant, and small ACs.

2: Step 1: Generate slack for sparse and small nodes (via LLL, see full version)
3: Step 2: Compute candidate sets Z = Z1 ∪ Z2 ⊆ Ol (via LLL, see full version)
4: Step 3: Form triples (xC , yC , zC) ∈ C × C × Z (via LLL, see full version)
5: Step 4: Same-color (x, z)-pairs via virtual coloring instance
6: Step 5: Color the remainder of V ∗ ∪ O (via d1LC instances).

Steps 0,4, and 5 are detailed in Appendix A. While Steps 1–3 are the heart of this paper,
their treatment is extremely technical and requires setting up several involved LLLs that
are then solved with the LLL solvers of [33]. Thus, the complete treatment of these steps
is defered to the full version of the paper and Appendix A only focuses on presenting the
guarantees provided by these steps (Lemmas 20, 22, and 23).
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A Details of Phase 2

Step 0: Classifying ACs and computing matchings. We compute a matching MC for
each ordinary clique C between the vertices in C and the ones in N(C) \ C. We use a
2.5-approximate algorithm of [20] running in O(log2 ∆ + log∗ n) = O(log2 log n) rounds,
obtaining that |MC | ≥ (2∆/5)/2.5 = ∆/10, using Lemma 11.

We view the edges of MC as being directed arcs with a head in C and tail in V \ C.
Each AC can determine its size and the size of V (MC) ∩ Ol in O(1) rounds and hence the
classification of Definition 19 can be computed in O(1) rounds.

Step 1: Slack for sparse and small nodes. In this step, we create slack for sparse nodes
and all nodes in Os. The key property of small nodes is that they are relatively sparse (with
many non-edges in their neighborhoods), so randomly trying colors is likely to produce slack.
That leads to an LLL formulation that we can make simulatable and can therefore implement
in CONGEST.

The properties are summarized by the following lemma. Besides providing slack to all
sparse nodes and the nodes in small ordinary ACs, it also guarantees that each neighborhood
(and hence also each AC) does not have too many nodes colored and that the matching MC

of each AC does not get too many nodes colored.

▶ Lemma 20. Assume that we are given a matching MC of size at least ∆/10 between C and
N(C) \ C for each ordinary AC C. There is a poly log log n-round (LLL-based) CONGEST
algorithm that w.h.p. colors a subset S ⊆ V ∗ ∪ O and ensures that:
1. Each uncolored node in V ∗ ∪ Os has unit-slack in G[V ∗ ∪ O].
2. In each of the following subsets, at most O(log4 log n · log ∆) nodes are colored: N(v) for

each v ∈ V ∗ ∪ O and V (MC) for each AC C .

Step 2: Compute triple candidate set via LLL. Let X = Ol\{v ∈ Ol : v colored in Step 1}.
The goal of this step is to compute two disjoint sets Z1, Z2 of uncolored nodes such that

each important AC has sufficiently many matching edges satisfying the following definition
of usefulness.

▶ Definition 21 (useful edge). Given a subset Z ⊆ X and important AC C, a matched arc
−→vu ∈MC is useful for C if v ∈ (X \Z) and u ∈ Z. Refer to Z as the black nodes and X \Z

as the white nodes. An edge is white if both endpoints are white.

An arc −→vz cannot be useful for the AC containing v; only the one containing z.
Formally, Step 2 provides the following lemma. For an AC C and set Z, let U(C, Z)

denote the arcs of MC with one endpoint in Z (and the other in C).

https://doi.org/10.1007/BF01200759
https://doi.org/10.1109/FOCS.2019.00060
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▶ Lemma 22. Let q = 1/30. There is a poly log log n-round (LLL-based) CONGEST algorithm
computing disjoint subsets Z1, Z2 ⊆ Ol satisfying the following properties, w.h.p.:
1. |U(C, Zi)| ≥ q2(1− q)3∆/60, for i = 1, 2 and for each important AC C, and
2. |(Z1 ∪ Z2) ∩N(v)| ≤ ∆/10, for all v ∈ O.

Step 3: Forming triples via LLL. The goal of this step is to compute a triple (xC , yC , zC) ∈
C × C × Z of nodes that satisfy the conditions of the next lemma. These triple nodes are
distinct for different ACs.

▶ Lemma 23. Given sets Z1, Z2 ⊆ Ol with the properties as in Lemma 22, there is a
poly log log n-round (LLL-based) CONGEST algorithm that computes for each large important
AC C a triple (xC , yC , zC) of uncolored nodes such that w.h.p.:
1. xC , yC ∈ C and zC /∈ C,
2. yCxC , yCzC ∈ E, xCzC ̸∈ E (xC and zC are non-adjacent; yc is adjacent to both xC and

zC) and
3. the graph induced by {zC : C is important} has maximum degree ≤ ∆/10.

We model the problem of selecting zC for each important AC C as a disjoint variable set
LLL.

Step 4: Same-coloring (xC , zC) pairs. Given a triple (xC , yC , zC), we will create a toehold
for the AC C at yC by coloring its non-adjacent neighbors xC and zC with the same color.

Let HP (P for pair) be the virtual graph consisting of one vertex for each pair (sC , zC)
and an edge between two pairs (sC , zC) and (sC′ , zC′) if there is any edge in G between
{sC , zC} and {sC′ , zC′}. The list of available colors L((sC , zC)) consists of all colors that
are not used by the already colored neighbors in G of sC and zC .

▶ Lemma 24. The maximum degree ∆HP
of HP is upper bounded by ∆/9.

Proof. By Lemma 23, each node has at most ∆/10 neighbors in Z. Define the set X ′ =
{xC : C is an important AC}. As X ′ contains at most one node per AC, the number of
neighbors that a node in Ol can have in U is upper bounded by its external degree plus
1, which is upper bounded by ∆/q(n) + 1. Thus, the maximum degree ∆HP

of the virtual
graph HP is at most ∆/10 + ∆/q(n) + 1 ≤ ∆/9 for sufficiently large n. ◀

▶ Lemma 25. Coloring HP – i.e., same-coloring the pairs – is a deg+1-list coloring instance.

Proof. By Lemma 24 we obtain ∆HP
≤ ∆/9. As we colored at most x = O(log5 log n)

vertices in each neighborhood in Step 1, the list of available colors of each pair has at least
∆ − 2x ≫ ∆/9 = ∆HP

colors available in their joint list. Hence, we obtain a deg + 1-list
coloring instance. ◀

CONGEST implementation. Our algorithm is based on the deg + 1-list coloring algorithm
from [25, 8]. Before we show how to color the nodes in HP , we need to define a slow (it takes
O(log n) rounds) randomized algorithm. The algorithm is used in our analysis and it works
as follows. In each iteration, each uncolored pair executes the following procedure that may
result in the pair to try to get colored with a color or to not try a color (also see Algorithm 5
for pseudocode of the algorithm). Throughout the algorithm, nodes xC and zC maintain
lists L(xC) and L(zC) consisting of all colors not used by their respective neighbors in G.
Then, in one iteration node xC selects a color c u.a.r. from its list of available colors L(xC),
and sends it to the other endpoint through node yC . The other endpoint zC checks whether
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c ∈ L(zC); if so, both nodes agree on trying color c, and the color is sent to their neighbors.
If no incident pair tries the same color, the pair gets permanently colored with the color.
Lastly, both nodes individually update their lists by removing colors from adjacent vertices
that got colored from their respective list. There is no explicit coordination between the two
vertices in maintaining a joint list of available colors.

Algorithm 5 Randomized Pair Coloring.

1: Each node xC selects a color c u.a.r. from L(xC) and sends c to zC

2: If c ∈ L(zC) then TryColor(c)
3: Update lists L(xC) ← L(xC) \ {c(v) : v ∈ NG(xC)} and L(zC) ← L(zC) \ {c(v) : v ∈

NG(zC)}

The next lemma shows that each pair gets colored with constant probability.

▶ Lemma 26. Consider an arbitrary iteration of Algorithm 5 and an arbitrary pair (xC , zC)
for a hiding AC C that is uncolored at the start of the iteration. Then, we have

Pr((xC , zC) gets colored in the iteration) ≥ 1/2 . (1)

The bound on the probability holds regardless of the outcome of previous iterations.

Proof. Note 2 that throughout the execution of Algorithm 5 the respective lists of nodes
xC and zC are always of size at least ∆−∆HP

− Ω(log5 log n) ≥ 4∆/5 as ∆ = ω(log5 log n)
and ∆HP

≤ ∆/9, by Lemma 24. Note, that both nodes keep their individual list of available
colors in which they only remove the colors of immediate neighbors in G from the list of
available colors. Thus, at all times we have |L(xC)| ∩ L(zC)| ≥ 3∆/5. Let X be the set of
colors tried by one of the ∆HP

≤ ∆/9 pairs incident to (sC , zC) in the current iteration. We
obtain |(L(sC) ∩ L(zC)) \X| ≥ ∆/2. As these colors are at least half of L(xC)’s palette, the
probability that the pair (xC , zC) gets colored is at least 1/2. ◀

▶ Lemma 27. There is a randomized poly log log n-round CONGEST algorithm that w.h.p.
colors the pairs of HP .

Proof. Consider the well-understood color trial algorithm in which nodes repeatedly try a
color from their list of available colors, keep their color permanently if no neighbor tries the
same color, and remove colors of permanently colored neighbors from their list of available
colors. It is known that this algorithm colors each node with a constant probability in each
iteration [8, 36]. Thus, it requires O(log n) rounds to color all vertices of a graph. The
shattering-based CONGEST algorithm from [25] for d1LC runs in poly log log n rounds. It
requires three subroutines: a) A color trial algorithm like the one from [8, 36], b) a network
decomposition algorithm that can run on small subgraphs (the ones in [43, 40, 38] do the
job), and c) the possibility to run O(log n) instances of the color trial algorithm in parallel.
In our setting we want to solve the same problem, but on the virtual graph Hp while the
communication network is still the original graph G. The subroutine for part b) can be taken
from prior work as the same issue is dealt with formally in [40, 38, 33]. We refer to these
works for the details and also the definition of a network decomposition. Let us sketch the
main ingredient for the informed reader. Instead of computing a network decomposition of
small subgraphs of HP , the subgraphs are first projected to G, and a network decomposition

2 The constants in this proof are not chosen optimally in order to improve readability.



M. M. Halldórsson and Y. Maus 31:21

of G is computed afterwards. This only requires an increased distance between clusters such
that the preimage of the decomposition induces a proper network decomposition of HP .

For ingredients a) and c), we observe that Ghaffari’s algorithm only requires the following
properties for the color trial algorithm: i) one iteration can be executed in constant time
and with poly log log n bandwidth, allowing to execute O(log n) instances in parallel in the
CONGEST model, and ii) each node gets colored with a constant probability in each iteration.
Thus, we can replace the color trial algorithm with the color trial algorithm for HP given
in Algorithm 5. We have already argued that it can be implemented with poly log log n

bandwidth showing i) and Lemma 26 provides its constant success probability for ii). ◀

Step 5: Completing the coloring. To finish the coloring, we first color the unimportant
nodes and then the important, small, and sparse nodes.

▶ Lemma 28. Unimportant nodes are graytone as long as the other ordinary nodes (small,
sparse, important) are inactive.

Proof. The only steps so far in which we colored vertices are Steps 1 and 4. In Step 1 we
color at most O(log5 log n) vertices per AC and per matching MC of each ordinary AC C.
In Step 4 we only color (a subset of) the vertices in Z and one vertex per important AC (the
vertex xC for AC C). As |Z ∩ C| ≤ ∆/10, we color at most ∆/10 + O(log5 log n) ≤ ∆/9
vertices in each unimportant AC.

Fix some unimportant AC C. Recall that the algorithm of [20] finds a 2.5-approximate
matching, which by Lemma 11 implies that |MC | ≥ ∆/10. As an unimportant AC has
fewer than ∆/12 nodes in (V (MC) \ C) ∩ Ol, we obtain that V (MC) \ C contains at least
∆/10 − ∆/12 = 7∆/60 nodes that are not contained in Ol. By Lemma 20, at most
O(log5 log n) of these get colored in Step 1; denote the uncolored nodes of these by S and let
S′ = N(S) ∩ C. By the earlier argument, at most ∆/9 nodes of S′ are already colored, that
is, there exists some v ∈ S′ that is still uncolored and has an uncolored neighbor u /∈ Ol. As
u is stalled to be colored later, v is gray and other nodes of the AC are grayish. ◀

▶ Lemma 29. Small, sparse, and important nodes are graytone.

Proof. By Lemma 20, each small or sparse node has slack in G[V ∗ ∪O] and is therefore gray
(and stays gray until colored).

For an important AC C with triple (xC , yC , zC), the node yC is gray as xC and zC are
same-colored. Hence, the remaining uncolored nodes of C are either already colored or
graytone as they are adjacent to v. ◀

B Computing the ACD

We adapt a proof from [22] that, as stated, applies only to the case when ∆ is sufficiently
large. Technically, the argument differs only in that we build on [34] instead of [29] in the
first step of the argument, where we compute a decomposition with weaker properties. We
have opted to rephrase it, given the different constants in the definitions of these works and
in order to make it more self-contained.

▶ Lemma 5 (ACD computation [1, 22]). For any graph G = (V, E), there is a partition
(almost-clique decomposition (ACD) of V into sets Vsparse and C1, C2, . . . , Ct such that each
node in Vsparse is Ω(ϵ2∆)-sparse and for every i ∈ [t],

(i) (1− ε/4)∆ ≤ |Ci| ≤ (1 + ε)∆ ,
(ii) Each v ∈ Ci has at least (1− ε)∆ neighbors in Ci: |N(v) ∩ Ci| ≥ (1− ε)∆ ,
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(iii) Each node u ̸∈ Ci has at most (1− ε/2)∆ neighbors in Ci: |N(u) ∩ Ci| ≤ (1− ε/2)∆.
Further, there is an O(1)-round CONGEST algorithm to compute a valid ACD, w.h.p.

Proof. We first use a O(1)-round CONGEST algorithm of [HNT22] to compute a weaker form
of ACD with parameter ε/4.3 Namely, it computes w.h.p. a partition (V ′, D1, D2, . . . , Dk)
where nodes in V ′ are Ω(∆)-sparse and we have, for each i ∈ [k]:
(a) |Di| ≤ (1 + ε/4)∆, and
(b) |N(v) ∩Di| ≥ (1− ε/4)∆, for each v ∈ Di.
What this construction does not satisfy is condition (iii).

We form a modified decomposition (Vsparse, C1, · · · , Ck) as follows. For each i ∈ [t], let
Ci consist of Di along with the nodes in V ′ with at least (1 − ε)∆ neighbors in Di. Let
Vsparse = V \ ∪iCi. Observe that the decomposition is well-defined, as a node u ∈ V ′ cannot
have (1− ε)∆ > ∆/2 neighbors in more than one Di.

We first bound from above the number of nodes added to each part Ci. Each node in Di

has at most ε∆/4 outside neighbors, so the number of edges with exactly one endpoint in
Di is at most ε∆|Di|/4 ≤ ε(1 + ε/4)∆2/4, using (a) to bound |Di|. Each node in Ci \Di is
incident on at least (1− ε)∆ such edges (by definition). Thus,

|Ci \Di| ≤ ε/4 · (1 + ε/4)∆/(1− ε) ≤ ε∆/2 . (2)

Now, (iii) holds since a node outside Ci has at most (1− ε)∆ neighbors in Di (by the
definition of Ci) and at most |Ci \Di| ≤ ϵ∆/2 other neighbors in Ci (by Equation (2)). Also,
(ii) holds for nodes in Di by (b) and for nodes in Ci \Di by the definition of Ci. For the
lower bound in (i), |Ci| ≥ |Di| ≥ (1− ε/4)∆, by (b). For the upper bound of (i), we have
|Ci| ≤ |Di|+ |Ci \Di| ≤ (1 + 3ϵ/4)∆ (by (a) and Equation (2)).

Finally, the claim about Vsparse follows from the definition of V ′, as Vsparse ⊆ V ′. ◀

3 While such a statement is used in the paper, it is not explicitly stated. Alternatively, we may use an
alternative (slower) implementation (Lemma 4.4) in [Flin et al (FGHKN22), arXiv:2301.06457]] that
runs O(log log n) rounds for ∆ = poly(log n) and still suffices for our main result. The slowdown in
[FGHKN22] comes from working with sparsified graphs, while a CONGEST version also runs in O(1)
rounds.
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