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Abstract
We exhibit that, when given a classical Byzantine agreement protocol designed in the private-channel
model, it is feasible to construct a quantum agreement protocol that can effectively handle a full-
information adversary. Notably, both protocols have equivalent levels of resilience, round complexity,
and communication complexity. In the classical private-channel scenario, participating players are
limited to exchanging classical bits, with the adversary lacking knowledge of the exchanged messages.
In contrast, in the quantum full-information setting, participating players can exchange qubits, while
the adversary possesses comprehensive and accurate visibility into the system’s state and messages.
By showcasing the reduction from quantum to classical frameworks, this paper demonstrates the
strength and flexibility of quantum protocols in addressing security challenges posed by adversaries
with increased visibility. It underscores the potential of leveraging quantum principles to improve
security measures without compromising on efficiency or resilience.

By applying our reduction, we demonstrate quantum advantages in the round complexity of
asynchronous Byzantine agreement protocols in the full-information model. It is well known that in
the full-information model, any classical protocol requires Ω(n) rounds to solve Byzantine agreement
with probability one even against Fail-stop adversary when resilience t = Θ(n) [2]. We show that
quantum protocols can achieve O(1) rounds (i) with resilience t < n/2 against a Fail-stop adversary,
and (ii) with resilience t < n/(3 + ϵ) against a Byzantine adversary for any constant ϵ > 0, therefore
surpassing the classical lower bound.
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1 Introduction

Byzantine agreement (BA) [32], also referred to as Byzantine fault-tolerant distributed
consensus, is a crucial topic in secure distributed computing. In simple terms, in a BA
protocol, a group of n players who do not trust each other and possess private input bits,
come to a consensus on a shared output bit, even if a subset of size t of the players are
corrupted by a malicious adversary, who can force the corrupt parties to deviate from their
prescribed programs during the protocol execution. The Byzantine agreement problem has
been extensively researched over the past four decades, leading to numerous findings on the
feasibility and potential of BA protocols in various settings [19, 11, 3].

In this paper, we focus on BA that succeeds with probability one in the full-information
model, where the adversary knows the knowledge of all local variables, including quantum
states if applicable. It is well known that in this model, when up to t players may be
corrupted, no classical deterministic protocol can solve synchronous BA in less than t+ 1
rounds even in the presence of a Fail-stop adversary [32]. It is further proved by [5] that
any classical randomized protocol requires at least expected Ω̃(

√
n) rounds. Given these

constraints, it is natural to ask the following question:
Can quantum communication accelerate BA in the full-information model?

The seminal work of [7] provides a confirming answer to the above question by constructing
a constant round synchronous quantum BA protocol against the Byzantine adversary,
surpassing the established round complexity lower bound in [5]. The protocol builds upon
an expected constant round classical BA protocol introduced in [19], which is not resilient
against a full-information adversary and requires a private channel. In their work, [7] proposes
a quantum modification to the original classical protocol to make it robust against a full-
information adversary. They achieve this by introducing a novel approach of deferring coin
flips, substituting them with quantum superpositions until after the adversary has chosen
his actions in a certain round. Notably, the modification does not change the structure of
the original classical protocol and therefore preserves its constant round complexity. [7] also
extends the synchronous quantum protocol to the asynchronous case, but with suboptimal
resilience t < n/4.

[7] demonstrates an elegant method of reducing quantum full-information protocols
to classical private-channel protocols while maintaining key attributes such as resilience,
round complexity, and communication complexity. This approach offers a valuable means
of evaluating the quantum advantage in the full-information model by comparing classical
full-information and classical private-channel models. By highlighting the notable distinctions
between these two classical models, they underscore the substantial quantum advantage
inherent in the full-information domain.

In light of these findings, [7] raises the question of whether their reduction strategy could
be applied to other settings, such as low round complexity asynchronous BA protocols with
resilience n/4 ≤ t < n/3, to further investigate potential quantum advantages. Unfortunately,
limited progress has been made on this issue since its introduction. This paper seeks to tackle
this challenge from a comprehensive viewpoint. Instead of narrowly focusing on the reduction
of quantum protocols to classical protocols in a specific setting (e.g., the asynchronous
protocol with resilience n/4 ≤ t < n/3, which is better than that in [7]), our objective is to
address the following question:

Is it possible to convert any classical private-channel BA protocol to a quantum
full-information BA protocol while preserving the same characteristics such as

resilience, round complexity, and communication complexity?
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Table 1 Round complexity of Byzantine agreement in the full-information model.

Model Adversary Resilience Classical Quantuma)

Upper bound Lower bound Upper bound PC

Sync. Fail-stop t = Θ(n) Õ(
√
n) [5] Ω̃(

√
n) [5] O(1) [7, 24] [16]

Byzantine t < n/3 O(n) [32] O(1) [7] [19]

Async.

Fail-stop t = Θ(n) O(n) [2]

Ω(n) [2]

O(1) (Our work) [3]
Byzantine t < n/4 Õ(n4) [26] O(1) [7] [19]
Byzantine t < n

3+ϵ
b) Õ(n4/ϵ8) [26] O(1/ϵ) (Our work) [4]

Byzantine t < n/3 Õ(n12) [26] O(n) (Our work) [4]

a) Every quantum protocol presented in the table is built upon some classical private-channel protocol
PC . The last two columns of the table show the classical private-channel protocols alongside their
quantum full-information equivalents for comparison and reference purposes.

b) Notice that when ϵ is a constant, the quantum upper bound is O(1/ϵ) = O(1).

1.1 Our Contribution
As our main result, we answer the above question in the affirmative by demonstrating a
general reduction from a quantum full-information BA protocol to a classical private-channel
BA protocol:

▶ Theorem 1. Given a classical synchronous (resp. asynchronous) non-erasing BA protocol
designed to counter a private-channel Fail-stop (resp. Byzantine) adversary, we can construct a
quantum synchronous (resp. asynchronous) BA protocol capable of handling a full-information
Fail-stop (resp. Byzantine) adversary while maintaining the same levels of resilience, round
complexity, and communication complexity.

It is crucial to emphasize that the theorem we present is applicable under the condition
that the classical protocol forming the foundation of our quantum protocol is non-erasing,
which means its security does not rely on the erasure of intermediate states. To the
best of our knowledge, this criterion is met by all existing classical protocols within the
scope of information-theoretic BA with probability one. For a more detailed definition
of this concept, please refer to Definition 3 in Section 4 where we will provide a formal
explanation. Furthermore, throughout our paper, we consistently assume that the adversary
is computationally unlimited and adaptive1, allowing it to modify its strategy based on the
information acquired during the execution of the protocol.

By applying our reduction, we obtain several new quantum advantages related to round
complexity in the full-information setting. As summarized in Table 1, our main result enables
us to quantize existing classical private-channel protocols into some quantum full-information
protocols of which the round complexity surpasses the classical lower bound in the same
setting. In particular, we obtain two new quantum speedups in the asynchronous model:

Fail-stop model: Section 14.3 of [3] presents a constant-round classical BA protocol
with optimal resilience t < n/2 against the Fail-stop adversary in the private-channel
setting. By applying our reduction, we obtain a constant-round quantum full-information
BA protocol with t < n/2, while any classical full-information protocol requires Ω(n)
rounds [2].

1 Similar reductions can also be made from the quantum non-adaptive full-information model to the
classical non-adaptive private-channel model.
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32:4 Quantum Byzantine Agreement Against Full-Information Adversary

Byzantine model: For any ϵ > 0, [4] presents an O(1/ϵ)-round classical BA protocol
with resilience t < n/(3+ ϵ) against the private-channel Byzantine adversary. By applying
our reduction, we obtain an O(1/ϵ)-round quantum full-information BA protocol with
resilience t < n/(3 + ϵ). When ϵ is a constant independent of n, the quantum BA achieves
constant rounds, while any classical full-information protocol requires Ω(n) rounds [2].
When ϵ ≤ 1/n, ⌈n/(3 + ϵ)⌉ = ⌈n/3⌉, which indicates that t < n/(3 + ϵ) is equivalent to
t < n/3. By substituting ϵ = 1/n into O(1/ϵ), we find that our quantum BA requires
O(1/ϵ) = O(n) rounds. In comparison, the best known classical protocol [26] in the same
setting requires Õ(n12) rounds.

1.2 Technical Overview
We briefly explain the key ideas behind Theorem 1, especially how to quantize a classical
protocol into a quantum one and how to simulate a quantum full-information adversary
in the classical setting. The key idea is utilizing quantum superpositions to turn exposed
randomness into hidden randomness.

A simple motivating example. Before introducing the complicated quantum full-information
BA protocol against the Byzantine adversary, [7] first presents a simple quantum full-
information BA protocol against the Fail-stop adversary, who can corrupt players by halting
it and choosing a subset of their messages to be delivered. This simple protocol follows
a common framework of reducing a BA protocol to a common-coin protocol, where all
uncorrupted players need to output a common random coin with constant success probability.
We will use the common-coin protocol, as demonstrated in the BA protocol against the
Fail-stop adversary in [7], as a motivating example to explain the key idea of our paper. The
common-coin protocol works in the quantum full-information setting and draws inspiration
from a common-coin protocol in the classical private-channel setting [16]. In the following
discussion, we will start by offering a brief overview of the classical private-channel protocol
in [16] and explaining its limitations when confronted with a full-information adversary. We
then explain how [7] effectively resolve this issue by leveraging quantum principles.

The classical private-channel protocol in [16] works as follows: (i) Each player i picks
a random coin ci ∈ {0, 1} and a random leader value li ∈ [n3] and then multicasts (ci, li);
(ii) Each player i outputs the coin cj such that lj is the largest leader value i receives. A
private-channel Fail-stop adversary learns nothing about the values of {ci} and {li}, so the
best it can do is to randomly stop t players. Since there are at least n− t > n/2 uncorrupted
players, the largest leader falls among uncorrupted players with probability 1/2, and the
probability of collision of leader values is negligible. Switching to full-information adversary,
{ci} and {li} become known to the adversary. Then the adversary can corrupt the leader and
let only a subset of players receive the leader’s message so that it can break the common-coin
protocol. However, [7] shows that the problem can be fixed if we allow quantumness. Instead
of choosing random ci and li, we let player i purify randomness, i.e, preparing two n-qudit
superposition states

|ci⟩ := 1√
2

(|00 · · · 0⟩ + |11 · · · 1⟩) and |li⟩ := 1√
n3

n3∑
l=1

|l, l, . . . , l⟩ ,

and then distribute the n qudits of |ci⟩ and |li⟩ among the players. In the next round, the
players measure the qudits they receive and obtain the classical random coins and leader
values. Although the full-information adversary can see the pure state of the system, quantum
mechanics prevents it from knowing the random values before measurement. Thus this simple
purified quantum protocol works against the full-information adversary.
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Generalized reduction in the synchronous model. Inspired by the above example, we give
a general reduction from quantum full-information BA protocols to classical private-channel
BA protocols. For any classical BA protocol PC , the local computation of each player at
round k involves (i) preparing some randomness rk, and (ii) computing a function f to
determine the decided value and messages to be sent. We construct a quantum protocol PQ

by modifying PC ’s local computation to (i) preparing a quantum state
∑

r

√
Pr[rk = r] |r⟩,

(ii) applying a unitary Uf to compute f reversibly i.e., Uf |v⟩ |0⟩ := |v⟩ |f(v)⟩ and send
quantum messages.

We assume that the output of f contains a variable dk ∈ {0, 1,⊥} indicating the decided
value at round k (⊥ if not decided yet). The player in PQ will measure the corresponding
quantum register of dk and decide if dk ̸=⊥. In addition, to prevent a communication blowup,
we also assume the output of f includes the message pattern bk ∈ {0, 1}n where the j-th bit
bk[j] indicates whether to send message to player j. PQ will measure the register of bk and
send messages only to players with bk[j] = 1.

Security analysis. To prove that PQ is secure against a quantum full-information adversary,
we follow the argument that given any quantum full-information adversary AQ attacking PQ,
we can construct a classical adversary AC in the private-channel model that perfectly simulates
(PQ,AQ) when interacting with PC . However, one may question why this simulation is
possible since AQ is apparently more powerful than AC in two aspects:
1. AQ is full-information while AC is private-channel.
2. AQ is quantum while AC is classical.

For the first problem, observe that the randomness of PQ comes solely from players’
measurement results of {bk} and {dk}, of which the corresponding classical variables in PC

are also available to AC .2 The pure state view of PQ is fully determined by {bk} and {dk},
so actually AQ knows no more than AC about the state of the system.

For the second problem, we first consider the Fail-stop adversary case to demonstrate
why it is not a concern. The ability of a Fail-stop adversary AQ is to halt players and choose
a subset of their messages to be delivered, which is essentially classical. Thus AC can easily
simulate those actions.

The Byzantine case is trickier because a Byzantine adversary AQ can apply quantum
operations on the registers of corrupted players. In this case, we let AC classically simulate3

a quantum state on the registers of corrupted players in order to keep track of AQ’s actions.
Moreover, when corrupted players (controlled by AC) send messages to uncorrupted players,
they cannot simply transmit quantum messages in the manner AQ does because players
in PC are not equipped to receive quantum information. To circumvent this challenge, we
let corrupted players first measure the messages and then send the measurement outcomes,
which are classical, to the uncorrupted players. Intuitively, measuring those messages will
not affect the simulation because uncorrupted players always keep a copy of messages they
receive. After a quantum message is sent to a uncorrupted player, corrupted players are
unable to reobtain it, resulting in the message being traced out from the corrupted players’
system, which is equivalent to being measured. There is still one caveat in the simulation
of AQ by AC : because AQ is adaptive, it can corrupt new players during the protocol and

2 Private-channel AC knows message patterns by definition. We can also assume AC knows the decided
values of players because if a uncorrupted player decides in a BA protocol, all other uncorrupted players
will eventually decide the same value.

3 We assume the adversary is computationally unbounded.
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reobtain the quantum messages sent to them previously, while AC will only obtain collapsed
classical messages when corrupting new players. To fix this, we let AC maintain a copy T
of the communication transcript between uncorrupted players and corrupted players. By
following this approach, when AC corrupts some new players, it can replicate the necessary
quantum states as per the content stored in T . In this way, AC can perfectly simulate AQ

in the classical setting.

Round and communication complexity. Our construction of AC actually yields a stronger
result: the probability distribution of executions in (PQ,AQ) is identical to that of executions
in (PC ,AC). This leads to the conclusion presented in Theorem 1.

Extending to the asynchronous model. Our results in the synchronous model can be
extended to the asynchronous model without extra effort. The primary distinction lies in the
measurement metric used; while synchronous protocols are evaluated in rounds, asynchronous
protocols are evaluated in terms of steps. In one step, only one uncorrupted player receives
a message, then performs local computation and possibly sends out messages. It is still
feasible to purify the randomness, perform reversible computation in each step, and develop
a quantum full-information protocol.

Although our results are inspired by the Fail-stop protocol in [7], our techniques are new
compared with [7], especially in the Byzantine model. In the Byzantine model, [7] involves
an intricate procedure of modifying the original classical protocol by replacing its classical
verifiable secret sharing (VSS) component with a quantum VSS. In contrast, our approach
focuses on demonstrating the efficacy of extracting purified classical randomness, a feature
that is applicable to any classical protocol exhibiting a non-erasing property. Therefore, we
expect our technique to have a broader range of applications.

2 Related Work

We address the construction of a quantum full-information protocol from a classical private-
channel protocol. In this section, we discuss existing results in closely related contexts and
provide a brief overview of their techniques.

BA protocols with private channels. The private-channel model is frequently studied
in BA problems. In this model, the adversary is unable to access the contents of the
messages exchanged between the participating players. A seminal work [19] presents a
synchronous BA protocol that can withstand up to t < n/3 failures and operates within an
expected constant number of rounds. Additional randomized protocols [35, 11] addressing
scenarios where n/3 ≤ t < n/2 are known, which require extra assumptions like a public-
key infrastructure and a trusted dealer. Due to their dependency on these supplementary
assumptions, these protocols cannot be adapted to the information-theoretic setting. In the
information-theoretic setting, [3] presents an asynchronous BA protocol that can withstand
up to t < n/2 failures while maintaining a constant running time, particularly effective
against the Fail-stop adversary. For the Byzantine adversary, [1] introduces a concept called
shunning verifiable secret sharing and gives an asynchronous BA protocol with optimal
resilience t < n/3 and O(n2) running time, which is later improved to O(n) by [4].

The full-information model. The full-information model, as introduced by [8], serves as
a framework for investigating collective coin-flipping within a network of n players with t

failures. This model has spurred a series of research efforts aimed at enhancing fault tolerance
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and reducing round complexity in protocols such as those proposed by [34] and [18]. [23]
considers the problem of multiparty computation in the full-information model. [27] gives
the first asynchronous leader election protocol in the full information model with constant
success probability against a constant fraction of corrupted players. Asynchronous BA in the
full-information model used to require exponential time to be solved with linear resilience
[6, 10], which is recently improved to polynomial time by a sequence of works [29, 25, 26].

Quantum Byzantine protocols. Besides the work of [7], many works have applied quantum
principles to Byzantine fault tolerance problems, which has led to significant advancements in
the field. A key contribution is made by [20], who introduces quantum elements to Byzantine
problems by addressing a weaker version called Detectable Byzantine Agreement (DBA).
Their protocol involves three parties and is based on the Aharonov state. Building upon this
work, [22] proposes a 3-party DBA protocol utilizing four-particle entangled qubits. Further
research by [21] shows that the DBA protocol can reach any tolerance found. Other variants
of the problem setting [15, 30, 33] are considered to ensure feasibility of the problem against
strong Byzantine adversaries. It is also worth mentioning that a recent work [24] improves
the communication complexity of the synchronous Fail-stop protocol of [7] from O(n2) to
O(n1+ϵ) for any constant ϵ > 0 while maintaining constant running time.

3 Preliminaries

3.1 Quantum Computation
In this section, we will briefly discuss quantum computation. For a more in-depth explanation,
readers are encouraged to refer to [31].

In quantum computing, a qubit serves as the fundamental unit of quantum information,
analogous to a classical bit. A pure quantum state in a quantum system comprising n qubits,
is represented by a unit-length vector in the 2n-dimensional Hilbert space. A commonly used
basis of the space is the computational basis {|i⟩ = |i1, i2, . . . , in⟩ : i1, . . . , in ∈ {0, 1}}. Then
any pure state |ψ⟩ can be expressed as

∑2n−1
i=0 αi |i⟩ , where αi are complex numbers known

as amplitudes, satisfying the condition
∑

i |αi|2 = 1. A mixed quantum state, also known as
a density matrix, represents a probability mixture of pure states. If a quantum system is in
state |ψi⟩ with probability pi, then its density matrix ρ :=

∑
i pi |ψi⟩ ⟨ψi| where ⟨ψi| denotes

the conjugate transpose of |ψi⟩. Any density matrix is Hermitian and trace one. In this
paper, we also use density matrix to describe classical probability distribution: If a random
variable X takes value xi with probability pi, then it can be described by the density matrix∑

i pi |xi⟩ ⟨xi|.
Transformations in an n-qubit quantum system are described by unitary transformations

in the 2n-dimensional Hilbert space. Such a transformation is depicted by a unitary matrix
U , which satisfies UU† = I where † is conjugate transpose and I is identity matrix. If U is
applied to a pure state |ψ⟩, the state becomes U |ψ⟩. If U is applied to a mixed state ρ, the
state becomes UρU†.

Another important operation is quantum measurement. We will only use projective
measurement in our paper. A projective measurement M is described by a collection of
orthogonal projectors {Πi} such that

∑
i Πi = I. When M is applied on a pure state |φ⟩,

it collapses to state 1√
β

Πi |φ⟩ with probability β = ⟨φ| Πi |φ⟩. In the language of density
matrix, we have M(ρ) =

∑
i ΠiρΠi. In particular, the computational basis measurement has

projectors {|i⟩ ⟨i| : 0 ≤ i < 2n}. If a quantum state
∑

i αi |i⟩ is measured in computational

DISC 2024
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basis, it collapses to state |i⟩ with probability |αi|2. Measurement can also be conducted on
a portion of the system or on select qubits within the system. For instance, the measurement
restricted on the first qubit of a n-qubit system has projectors {|0⟩ ⟨0| ⊗ I2n−1 , |1⟩ ⟨1| ⊗ I2n−1}
where I2n−1 is the identity operator on the last n− 1 qubits.

3.2 Byzantine Agreement Problem
In a Byzantine agreement problem, n distinct players labeled from 1 to n need to reach a
decision on the value of a bit. Each player i inputs a bit xi ∈ {0, 1} and must decide an
output bit in {0, 1} that satisfies the following conditions:
1. Agreement: All uncorrupted players decide the same value.
2. Validity: If all xi are the same bit y, then all uncorrupted players decide y.
3. Termination: All uncorrupted players terminate with probability 1.
The problem was introduced by Pease, Shostak and Lamport [32] in 1980. One can consider
different network models, models of inter-player communication, models of local computation,
and fault models. In this paper, the following models are of interest.

Network Models. We will consider both synchronous network, where all messages are
guaranteed to be delivered within some known time ∆ from when they are sent, and
asynchronous network where messages may be arbitrarily delayed.
Models of Inter-player Communications. Every two players are connected by a
transmit reliable4 channel. We consider two different communication paradigms: classical
and quantum. In the classical model, players can communicate classical messages, while
in the quantum model, they can communicate quantum messages.5
Models of Local Computation. In the field of Byzantine protocols, there is a common
tendency to overlook the intricacies of local computations. We assume players have
unbounded computational power and local memory.
Fault models. We model the faulty behavior of the system by an adversary. The
adversary can corrupt participating players and make them deviate from their prescribed
programs. Once a player has been corrupted, it remains corrupted permanently. The
uncorrupted players are referred to as “good” and sometimes the corrupted players are
labeled as “bad”. In our work, we consider the following types of adversarial behavior:

Adaptive. We will consider adaptive adversaries in this paper. An adaptive adversary
corrupts players dynamically based on its current information at any time of the
protocol.
Unbound Computation. Just like good players, the adversary has unlimited
computational power and memory.
Private-channel and Full-information. We will consider both private-channel and
full-information adversaries. An adversary in the private-channel model is characterized
by its lack of adaptation based on the specific contents of messages exchanged within a
system. Essentially, this type of adversary can only discern patterns of communication,
such as the timing and players involved in message exchanges, without access to
the actual message contents. By contrast, a full-information adversary possesses
comprehensive knowledge of all local variables associated with the players involved in
the system. In the context of the quantum model, a full information adversary knows
at each point the exact pure state of the system.

4 Messages will not be corrupted or lost during transmission.
5 Since classical messages can also be encoded by qubits, no additional classical channels are required.
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Fail-stop and Byzantine. We will consider both Fail-stop and Byzantine adversaries.
The players corrupted by the Fail-stop adversary will no longer take part in the protocol.
We remark that a private-channel Fail-stop adversary cannot read the local memory
of corrupted players.6 However, the players corrupted by a Byzantine adversary can
deviate arbitrarily from the protocol.

We are interested in several metrics that measure the performance of BA protocols:
Resilience: the maximum number of parties that can be corrupted within the protocol.
Round Complexity: Assume there is a virtual “global clock” within the network that
is not accessible to any player. In this context, the term delay refers to the time taken
from sending a message to its reception. The number of rounds7 in an execution refers to
the total execution time divided by the longest message delay. The round complexity of
a protocol P is defined as the maximum expected number of rounds in P’s executions,
considering all inputs and potential adversaries.
Communication Complexity: the maximum expected number of messages sent by
good players throughout the protocol, considering all inputs and potential adversaries.

3.3 Helper lemmas
The following two lemmas will be used, of which the proofs are given in Appendix A.

▶ Lemma 1. Let M be the computational basis measurement of a Hilbert space H. Then M
commutes with
1. any permutation unitary U acting on H;
2. any orthogonal projector Π on H in computational basis.

▶ Lemma 2. Let G be good players’ registers, B be bad players’ registers. Initially G and B
are independent and then they make quantum communication for several rounds. Assume G
keeps a local copy of the communication transcript between G and B. Then the pure state of
the system GB can be written as

∑
m αm |m,ϕm⟩G ⊗ |ψm⟩B where |m⟩ are the communication

transcripts, |ϕm⟩ are states of G besides the communication transcripts, and |ψm⟩ are states
of B.

4 Proof of Main Theorem

In this section, we prove our main theorem by giving a general reduction from quantum
full-information BA protocols to classical private-channel protocols.

▶ Theorem 1. Given a classical synchronous (resp. asynchronous) non-erasing BA protocol
designed to counter a private-channel Fail-stop (resp. Byzantine) adversary, we can construct a
quantum synchronous (resp. asynchronous) BA protocol capable of handling a full-information
Fail-stop (resp. Byzantine) adversary while maintaining the same levels of resilience, round
complexity, and communication complexity.

Our reduction requires a “non-erasing” property of classical private-channel protocols:

6 Some BA protocols consider a stronger Fail-stop adversary who can read the memory of corrupted
players, but our Theorem 1 still applies to those protocols because we only require security against a
weaker Fail-stop adversary.

7 In the synchronous model, this definition is equivalent to the number of synchronous rounds during the
execution.
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▶ Definition 3 (Non-erasing BA protocol). In the context of a classical BA protocol denoted as
P, each computational step performed by a player can be seen as the evaluation of a function
f(s) where s is the internal state of the player. Consider a modified protocol, denoted as P ′,
which follows the structure of P except that players in P ′ keep a copy of their previous state
s in their local memory subsequent to each evaluation of f(s).

A BA protocol such as P is called non-erasing if the adjusted protocol P ′ maintains the
characteristics of being a BA protocol while preserving the same level of resilience, round and
communication complexity as P.

To the best of our knowledge, this non-erasing property is considered a reasonable
assumption as it is met by all existing protocols within the scope of information-theoretic BA
with probability one, e.g., [16, 19, 3, 4]. Beyond our scope, there exist BA protocols requiring
the ability to securely erase intermediate secrets, often referred to as the memory-erasure
model [17]. Those protocols either rely on cryptographic assumptions [13] or succeed only
with high probability [28].

The rest of this section is to prove Theorem 1. For simplicity, we will only give a full
proof for the synchronous model (Section 4.1) and then briefly discuss how to extend it to
the asynchronous case (Section 4.2).

4.1 Synchronous Model
In this subsection, we prove Theorem 1 for the synchronous model. Without loss of generality,
we assume a synchronous classical non-erasing private-channel BA protocol PC has the
following normal form.

Classical protocol PC . Let k denote the round number, m(i,j)
k denote the message sent from

i to j and m
′(i,j)
k denote a copy of m(i,j)

k to be kept by i, b(i,j)
k ∈ {0, 1} denote the message

pattern which is 1 if m(i,j)
k is non-empty, and d(i) ∈ {0, 1,⊥} denote the decided value of i

(⊥ if not decided yet). We also use m(∗,i)
k to denote the vector

(
m

(1,i)
k ,m

(2,i)
k , . . . ,m

(n,i)
k

)
and m

′(i,∗)
k ,m

(i,∗)
k , b

(i,∗)
k are defined similarly. At round k, player i on input xi executes the

following steps.

PC for player i at round k

1. Receive messages m(∗,i)
k−1 from other players if k > 1.

2. Sample randomness r(i)
k .

3. Compute a function fP : View(i)
k →

(
m

(i,∗)
k ,m

′(i,∗)
k , b

(i,∗)
k , d

(i)
k

)
wherea

View(i)
k :=


(
i, xi, r

(i)
1

)
if k = 1(

View(i)
k−1,m

′(i,∗)
k−1 ,m

(∗,i)
k−1 , r

(i)
k

)
otherwise

.

4. If the decided value d(i)
k ̸=⊥, output value d(i)

k and terminate.b

5. For j ∈ [n], send messages m(i,j)
k to player j if b(i,j)

k = 1.

a Keeping View(i)
k in memory does not lose generality beacuse PC is non-erasing.

b We assume a player decides and terminates at the same time, since otherwise we can always defer
the decision until the player terminates.
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Then we construct a quantum BA protocol PQ by quantizing PC as follows. The essential
idea is to purify the local randomness, compute everything reversibly, and do as little
measurement as possible. In this way, only a superposition of all possible local information
is revealed to the quantum full-information adversary. Formally,

Quantum protocol PQ. Let k denote the round number, M(i,j)
k ,M′(i,j)

k ,B(i,j)
k ,D(i)

k ,R(i)
k

denote the quantum registers holding the message from player i to player j, the copy of the
message, the message pattern, the decided value of player i, and the randomness of player i
respectively. At round k, player i on input xi executes the following steps.

PQ for player i at round k

1. Receive quantum messages M(∗,i)
k−1 from other players if k > 1.

2. Prepare a quantum state
∑

r

√
Pr[r(i)

k = r] |r⟩ in a new quantum register R(i)
k .

3. Let U (i)
P denote the unitary |v⟩ |y⟩ → |v⟩ |y + fP (v)⟩ which reversibly computes

function fP . Execute UP on register View(i)
k and an empty ancilla register A(i)

k :=(
M(i,∗)

k ,M′(i,∗)
k ,B(i,∗)

k ,D(i)
k

)
where

View(i)
k :=

|i⟩ ⟨i| ⊗ |xi⟩ ⟨xi| ⊗ R(i)
1 if k = 1(

View(i)
k−1,M

′(i,∗)
k−1 ,M

(∗,i)
k−1 ,R

(i)
k

)
otherwise

.

4. Measure register D(i)
k . If the result d(i)

k ̸=⊥, output d(i)
k and terminate.

5. For each j ∈ [n], measure B(i,j)
k . If the result b(i,j)

k = 1, send the M(i,j)
k to player j.

In the rest of this subsection, for both Fail-stop and Byzantine cases, we prove that PQ is
a quantum full-information BA protocol with the same resilience, round and communication
complexity as PC . The proof follows the argument that assuming there is quantum full-
information adversary AQ attacking PQ, we can construct a classical adversary AC in the
private-channel model attacking PC .

4.1.1 Fail-stop adversary
Without loss of generality, we assume the adversary launches attacks at the beginning of
each round for both PC and PQ. The Fail-stop adversary has the ability to adaptively halt
some players and choose only a subset of their messages in this round to be received. Now
consider a quantum full-information Fail-stop adversary AQ attacking PQ, which can be
formalized as follows.

Quantum full-information adversary AQ. Assume AQ samples its randomness rA before
the protocol starts. Then at round k, AQ first chooses the set of corrupted players Sk up to
round k such that |Sk| ≤ t and Sk ⊇ Sk−1, and then AQ decides only a subset of Sk \ Sk−1’s
messages to be sent. Here, we model the message exchanging step as a permutation unitary
Vk which swaps the registers M(i,j)

k and the receiving register of player j for i, j ∈ [n]. Then
AQ’s attack can be modeled by choosing an appropriate Vk. Thus AQ can be viewed as a
function fA : rA,View1,View2, . . . ,Viewk−1 → (Sk, Vk) where Viewj is the pure state view of
the system at round j.

Let bj := (b(1,1)
j , . . . , b

(n,n)
j ) and dj := (d(1)

j , . . . , d
(n)
j ). Observe that the random-

ness of the system comes only from classical variables rA, {bj}, {dj}, so the pure state
Viewk is fully determined by those variables. Thus there exists a function fV such that
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fV (rA, b1, d1, b2, d2, . . . , bk, dk) = Viewk. Since the variables {bj} and {dj} in PC are also
available to classical private-channel adversaries, now we construct a classical private-channel
adversary AC attacking PC .

Classical adversary AC in the private-channel model. First sample the same randomness
rA as AQ before the protocol starts. Then at round k, compute its action by the following
steps.
1. For each j ∈ [k − 1], compute quantum state |ψj⟩ := fV (rA, b1, d1, b2, d2, . . . , bj , dj).
2. Compute action (Sk, Vk) := fA (rA, |ψ1⟩ , |ψ2⟩ , . . . , |ψk−1⟩).

Then we prove that AC perfectly simulates the execution of (PQ,AQ) when interacting
with PC , which is characterized by Lemma 5.

▶ Definition 4. A k-round execution E of (PC ,AC) is a sequence
rA, (b1, d1), (b2, d2), . . . , (bk, dk). E is also a k-round execution of (PQ,AQ) since the
pure states of the system at each round can completely determined by E using fV .

▶ Lemma 5. Any k-round execution E occurs in (PQ,AQ) and (PC ,AC) with the same prob-
ability. Furthermore, if the pure state after E in (PQ,AQ) is

∑
u αu |u⟩, then the distribution

of the system’s possible states after E in (PC ,AC) conditioned on E is
∑

u |αu|2 |u⟩ ⟨u|.8

Proof. See Appendix B. ◀

By the above lemma, we have:

▶ Proposition 6. In the synchronous Fail-stop model, given a non-erasing classical private-
channel BA protocol PC , there exists a quantum full-information BA protocol PQ with the
same resilience, round and communication complexity as PC .

Proof. Assuming there exists an adversary AQ that can cause an inconsistent, invalid or
non-terminating execution E in (PQ,AQ) with probability p > 0 by corrupting ≤ t players,
then E also occurs in (PC ,AC) with probability p by Lemma 5, which gives a contradiction.
Thus the resilience of PQ is at least the resilience of PC .

Given an execution E , let |E| be the number of rounds of E , and CC(E) :=∑|E|
k=1

∑
i∈S̄k,j∈[n] b

(i,j)
k denote the number of messages in E . Then by Lemma 5,9

RC(PQ) := max
AQ

E
execution E

Pr[E ∈ (PQ,AQ)] · |E|

= max
AC ∈Q

E
execution E

Pr[E ∈ (PC ,AC)] · |E| ≤ RC(PC),

CC(PQ) := max
AQ

E
execution E

Pr[E ∈ (PQ,AQ)] · CC(E)

= max
AC ∈Q

E
execution E

Pr[E ∈ (PC ,AC)] · CC(E) ≤ CC(PC)

where RC(·) denotes round complexity, CC(·) denotes communication complexity, and Q
denotes the set of classical private-channel adversaries that are constructed from some
quantum full-information adversary in the beyond way. ◀

8 We use density matrix to represent classical probability distribution. See Section 3.1 for details.
9 For simplicity, we can assume players’ input of is chosen by the adversary, so there is no need to take

maximum over the input.
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4.1.2 Byzantine adversary

For the Byzantine case, we also assume the adversary launches attacks at the beginning
of each round. Unlike the Fail-stop adversary, the Byzantine adversary can manipulate
corrupted players in an arbitrary way. Now consider a quantum full-information Byzantine
adversary AQ attacking PQ, which can be formalized as follows.

Quantum full-information adversary AQ. Assume AQ samples its randomness rA before
the protocol starts. Let Sk denote the corrupted players up to round k such that |Sk| ≤
t, Sk ⊇ Sk−1, and S̄k := [n]\Sk denote good players. Here, we model the message-exchanging
step differently from the Fail-stop case. When player j receives the message from i, the
register M(i,j)

k is simply appended to j’s workspace. Then at round k, AQ acts as follows.
1. First let current corrupted players Sk−1 receive all the messages sent to them.
2. Apply arbitrary quantum operation on Sk−1, which can be decomposed as a unitary

Uk and a measurement operator Mk on the registers of Sk−1 by Stinespring dilation
theorem.10 Let ak denote the measurement outcome.

3. Choose an enlarged set Sk of corrupted players and corrupt Sk \ Sk−1.
4. Apply arbitrary quantum operation on Sk, which can be decomposed as applying a

unitary U ′
k and a measurement operator M′

k on the registers of Sk. Let a′
k denote the

measurement outcome.

We remark that step 4 is necessary because an adaptive adversary can decide to corrupt
a player i and stop (or change) the message just sent by i in step 5 of the previous round.

Similar to the Fail-stop case, the adversary’s operations Uk,Mk, U
′
k,M′

k and the corrupted
set Sk are all functions of randomness rA and the system’s pure states at each step. And the
system’s pure states can be fully determined by classical variables rA, {aj}, {a′

j}, {bj} and
{dj}. Thus we can define two functions gA and fA such that

gA

(
rA, a1, a

′
1, b1, d1, . . . , ak−1, a

′
k−1, bk−1, dk−1

)
= (Uk,Mk), and

fA

(
rA, a1, a

′
1, b1, d1, . . . , ak−1, a

′
k−1, bk−1, dk−1, ak

)
= (Sk, U

′
k,M′

k).

Additionally, we define Φ
(
rA, a1, a

′
1, b1, d1, . . . , ak−1, a

′
k−1, bk−1, dk−1, ak

)
to be the sys-

tem’s pure state right after step 3 of AQ at round k. Then by Lemma 2, we have

Φ
(
rA, a1, a

′
1, b1, d1, . . . , ak−1, a

′
k−1, bk−1, dk−1, ak

)
=

∑
m

αm |m,ϕm⟩S̄k
|ψm⟩Sk

(1)

where |m⟩ are the copy of messages between S̄k and Sk kept by S̄k, |ϕm⟩ are states of S̄k

besides the copy, and |ψm⟩ are states of Sk.
Since classical variables {bk}, {dk} in PC are also available to the adversary in the

private-channel model, we can construct a classical Byzantine adversary AC attacking PC as
follows.

10 Stinespring dilation theorem [14] states that for any quantum operation E , there exists a unitary U and
an environment space E such that E(ρ) = TrE

(
U(ρ⊗ |0⟩ ⟨0|E)U†

)
. The partial trace TrE is equivalent

to measuring E. We can assume players start with large enough empty workspace so there is no need to
append new ancilla space in order to perform U .
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Classical adversary AC in the private-channel model. First sample the same randomness
rA as AQ before the protocol starts. During the protocol, AC maintains a communication
transcript T between good players S̄k and bad players Sk. Also, AC classically simulates a
quantum state of the registers of Sk, which is denoted by |φk⟩ after round k. At round k,
AC acts as follows.
1. Let Sk−1 receive all the messages m(∗,Sk−1)

k−1 sent to them and record in T .
2. Compute (Uk,Mk) by gA. Then apply Uk and Mk on |φk−1⟩ ⊗ |m(∗,Sk−1)

k−1 ⟩ and obtain
the measurement outcome ak.

3. Compute (Sk, U
′
k,M′

k) by fA. Corrupt players Sk and update T as the communication
transcript between new sets S̄k and Sk. Then according to T , AC discards old state
|φk−1⟩ and simulates a new state |ψT ⟩ which is defined in Eq. (1).

4. Apply U ′
k and M′

k to |ψT ⟩ and obtain measurement outcome a′
k. Then apply a computa-

tional basis measurement Mmsg on messages to be sent from Sk to S̄k and add those
messages to T . Let |φk⟩ be the pure state after applying U ′

k, M′
k and Mmsg.

▶ Definition 7. A k-round execution E of (PC ,AC) is a sequence rA, (a1, a
′
1, b1, d1), . . .,

(ak, a
′
k, bk, dk). E is also a k-round execution of (PQ,AQ) since the pure states of the system

can be determined by E.

▶ Lemma 8. Any k-round execution E occurs in (PQ,AQ) and (PC ,AC) with the same
probability. Furthermore, if the pure state in (PQ,AQ) after E is |Qk⟩, then the distribution of
system’s state in (PC ,AC) after E is Ck := MS̄k

(|Qk⟩ ⟨Qk|) where MS̄k
is the computational

basis measurement on good players S̄k’s registers.11

Proof. See Appendix C. ◀

By the above lemma, we conclude Theorem 1 for the synchronous Byzantine case, which
can be proven the same way as the Fail-stop case (Proposition 6).

▶ Proposition 9. In the synchronous Byzantine model, given a non-erasing classical private-
channel BA protocol PC , there exists a quantum full-information BA protocol PQ with the
same resilience, round and communication complexity as PC .

4.2 Asynchronous Model
The techniques used in the proof above can be extended to the asynchronous model as
well. However, a key distinction lies in the terminology used to characterize the execution:
while the synchronous model employs “rounds”, the asynchronous model employs “steps”. In
this context, a step involves a single good player receiving only one message, carrying out
computations, and potentially transmitting messages. The order in which players receive
messages is determined by the adversary. For simplicity, we assume that each player initially
receives its input as its first message, and each message contains the sender’s ID.

In alignment with the synchronous model, our approach involves first giving a normal
form to any asynchronous classical non-erasing private-channel BA protocol PC and then
quantizing it into a quantum protocol PQ against the full-information adversary.

11 Density matrix Ck represents a distribution of system’s states with classical S̄k and quantum Sk. It is
classically feasible because Sk’s quantum state is classically simulated, and the correlation between S̄k

and Sk is classical, i.e., there is no quantum entanglement.
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Classical protocol PC . Each player is activated each time it receives a message. Let π(i)
k

denote the k-th message player i receives, where the first message π(i)
1 is its input xi. The

notations m(i,j)
k ,m

′(i,j)
k , b

(i)
k , d

(i)
k are defined similarly as in synchronous model (Section 4.1).

PC for player i upon receiving the k-th message π
(i)
k

1. Sample randomness r(i)
k .

2. Compute a function fP : View(i)
k →

(
m

(i,∗)
k ,m

′(i,∗)
k , b

(i,∗)
k , d

(i)
k

)
where

View(i)
k :=


(
i, xi, r

(i)
1

)
if k = 1(

View(i)
k−1,m

′(i,∗)
k−1 , π

(i)
k , r

(i)
k

)
otherwise

.

3. If the decided value d(i)
k ̸=⊥, output value d(i)

k and terminate.
4. For j ∈ [n], send messages m(i,j)

k to player j if b(i,j)
k = 1.

Quantum protocol PQ. Each player is activated each time it receives a message. Let Π(i)
k

denote the k-th quantum message player i receives. The notations M(i,j)
k ,M′(i,j)

k ,B(i,j)
k ,D(i)

k

are defined similarly as in synchronous model (Section 4.1). We remark that Π(i)
k is an alias

of register M(j′,i)
k′ for some j′, k′.

PQ for player i upon receiving the k-th message Π(i)
k

1. Prepare a quantum state
∑

r

√
Pr[r(i)

k = r] |r⟩ in a new quantum register R(i)
k .

2. Let U (i)
P denote the unitary |v⟩ |y⟩ → |v⟩ |y + fP (v)⟩ which reversibly computes

function fP . Execute U (i)
P on register View(i)

k and an empty ancilla register A(i)
k :=(

M(i,∗)
k ,M′(i,∗)

k ,B′(i,∗)
k ,D(i)

k

)
where

View(i)
k :=

|i⟩ ⟨i| ⊗ |xi⟩ ⟨xi| ⊗ R(i)
1 if k = 1(

View(i)
k−1,M

′(i,∗)
k−1 ,Π

(i)
k ,R(i)

k

)
otherwise

.

3. Measure register D(i)
k . If the result d(i)

k ̸=⊥, output d(i)
k and terminate.

4. For each j ∈ [n], measure B(i,j)
k . If the result b(i,j)

k = 1, send the M(i,j)
k to player j.

Then we claim that PQ is a quantum BA protocol against the quantum full-information
adversary in the asynchronous model with the same round and communication complexity as
PC . The proof is almost the same as the synchronous case, so we only sketch the proof here.

Assuming there is a quantum full-information Fail-stop (resp. Byzantine) adversary
AQ attacking PQ, we can construct a classical private-channel Fail-stop (resp. Byzantine)
adversary AC attacking PC as in Section 4.1.1 (resp. Section 4.1.2). Then we can define
execution execution in the asynchronous model.

▶ Definition 10 (Informal). A k-step execution E is defined to be a sequence rA, (a1, b1, d1),
(a2, b2, d2), . . . , (ak, bk, dk) where rA is the adversary’s randomness, aj is some classical
information the adversary obtains at step j, bj ∈ {0, 1}n is the message pattern, and
dj ∈ {0, 1,⊥} is the decided value of the player activated at step j.

Then similar to Lemma 5 (resp. Lemma 8), we prove that any execution occurs in
(PQ,AQ) with the same probability.
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▶ Lemma 11 (Informal). Any k-step execution E occurs in (PQ,AQ) and (PC ,AC) with the
same probability.

Since the information contained in an execution E fully determines the properties, number
of rounds, and number of messages of the protocol, we can conclude Theorem 1 in the
asynchronous case. This can be proven similarly to the synchronous case (Proposition 6 and
Proposition 9).

▶ Proposition 12. In the asynchronous Fail-stop (or Byzantine) model, given a non-erasing
classical private-channel BA protocol PC , there exists a quantum full-information BA protocol
PQ with the same resilience, round and communication complexity as PC .

Proof of Theorem 1. Theorem 1 can be obtained by integrating the results from Proposi-
tion 6, Proposition 9 and Proposition 12. ◀

5 Discussions

In this paper, we present a general reduction from quantum full-information BA protocols to
classical private-channel BA protocols that preserves resilience, round and communication
complexity. Utilizing this reduction, we make progress towards the open question posed
by [7] of whether quantum BA can achieve O(1) round complexity and optimal resilience
t < n/3 simultaneously in the asynchronous full-information model. We show that O(1)
round complexity and suboptimal resilience t < n/(3 + ϵ) is possible for any constant ϵ > 0.
Our reduction also suggests that designing a better classical private-channel protocol may
finally lead to the resolution of this open question.

There are several interesting directions for future research. Firstly, it would be valuable
to explore whether the reverse of our reduction is possible, i.e., whether any quantum
full-information BA protocol can be converted to a classical private-channel BA protocol
without compromising key attributes like resilience. Existing techniques in this paper do not
apply due to the ability of good players to employ quantum operations. Secondly, it is worth
considering the potential generalization of our results to less strict models, such as BA that
terminates only with high probability [12, 28], or BA that requires erasing intermediate states
[28, 13]. Thirdly, it is worthwhile to explore the potential for developing BA protocols with
improved performance by granting quantum players the ability to utilize private memory,
thereby shifting the adversary from a position of full-information to one of limited knowledge.
This model presents an intriguing opportunity for innovation, especially considering the
existence of quantum key distribution in such a framework [9]. Finally, while our primary
focus is on addressing the BA problem as it stands as a fundamental challenge in this field, we
anticipate that our methods can also be applied to other fault-tolerant distributed computing
tasks like coin toss and leader election.
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A Proofs of helper lemmas

A.1 Proof of Lemma 1
Proof.
1. Since U is a permutation unitary, there exists a permutation π such that U |i⟩ = |π(i)⟩

for any computational basis |i⟩ in H. Given any density matrix ρ =
∑

i,j ρi,j |i⟩ ⟨j| in H,
we have

M(UρU†) = M

∑
i,j

ρi,j |π(i)⟩ ⟨π(j)|


=

∑
k

|k⟩ ⟨k|
∑
i,j

ρi,j |π(i)⟩ ⟨π(j)| |k⟩ ⟨k| =
∑

k

ρk,k |π(k)⟩ ⟨π(k)| ,

UM(ρ)U† = U
∑

k

|k⟩ ⟨k|
∑
i,j

ρi,j |i⟩ ⟨j| |k⟩ ⟨k|U†

= U
∑

k

ρk,k |k⟩ ⟨k|U† =
∑

k

ρk,k |π(k)⟩ ⟨π(k)| .

Thus M(UρU†) = UM(ρ)U†.
2. Since Π is an orthogonal projector in the computational basis, we have Π =

∑
i∈S |i⟩ ⟨i|

for some set S. For any state ρ ∈ H, one can verify that M(ΠρΠ†) = ΠM(ρ)Π†. ◀

A.2 Proof of Lemma 2
Proof. Proof by induction on the number of messages. Initially, G and B are independent, so
the state of GB is |ϕ0⟩G ⊗ |ψ0⟩B. Assuming currently the state of GB is

∑
m αm |m,ϕm⟩G ⊗

|ψm⟩B, consider the next message. First G and B apply a local unitary UG ⊗ UB to generate
messages. Note that UG will not change the previous transcripts |m⟩. Then the state becomes∑

m

αmUG |m,ϕm⟩G ⊗ UB |ψm⟩B =
∑
m

αm |m,ϕ′
m⟩G ⊗ |ψ′

m⟩B .

If the message is sent by G, then the system can be written as∑
m

αm

∑
m′

βm′ |m,m′,m′, ϕ′
m,m′⟩G ⊗ |ψ′

m⟩B

where the second m′ is the message to be sent to B and the first m′ is a copy to be kept
by G. After sending the message, the system becomes∑

m,m′

αmβm′ |m,m′, ϕ′
m,m′⟩G ⊗ |m′, ψ′

m⟩B .

If the message is sent by B, then the system can be written as∑
m

αm |m,ϕm⟩G ⊗
∑
m′

βm′ |m′, ψ′
m,m′⟩B .

After sending the message, the system becomes∑
m,m′

αmβm′ |m,m′, ϕm⟩G ⊗ |ψ′
m,m′⟩B . ◀
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B Proof of Lemma 5

Proof. Prove by induction on k. When k = 0, the execution E0 = rA occurs in (PQ,AQ) and
(PC ,AC) both with the probability of rA. Assume the lemma holds for k − 1. Consider a k-
round execution Ek := rA, (b1, d1), (b2, d2), . . . , (bk−1, dk−1), (bk, dk). By inductive hypothesis,
the (k−1)-round prefix Ek−1 := rA, (b1, d1), (b2, d2), . . . , (bk−1, dk−1) occurs with probability p
in both (PQ,AQ) and (PC ,AC), and the state before round k is |Qk−1⟩ :=

∑
u αu |u⟩ and

Ck−1 :=
∑

u |αu|2 |u⟩ ⟨u| for (PQ,AQ) and (PC ,AC) respectively.

Round k of (PQ, AQ). After AQ’s action and players receiving messages, the state of
the system becomes Vk |Qk−1⟩. Then good players first prepare a superposition state |rk⟩
of randomness in a new register Rk and prepare |0⟩ in a new register Ak. Note that here
Rk := (R(1)

k , . . . ,R(n)
k ), Ak := (A(1)

k , . . . ,A(n)
k ) and all other notations without superscript are

defined similarly.
Then the players apply the unitary operator UP := ⊗n

i=1U
(i)
P followed by a measurement

which outputs (bk, dk). The measurement can be viewed as an orthogonal projector Πbk,dk
in

computational basis that projects the quantum state of registers (Bk,Dk) into values (bk, dk).
Then the state after round k becomes

|Qk⟩ := 1√
β

Πbk,dk
UP (Vk |Qk−1⟩ ⊗ |0⟩A ⊗ |rk⟩R)

where β is the probability of getting measurement outcome (bk, dk).

Round k of (PC , AC). The first observation is that Ck can be viewed as first applying
the same operation as (PQ,AQ) and then applying computational basis measurement M on
the whole system:

Ck := M
(

1
β′ Πbk,dk

UPVk (Ck−1 ⊗ |0, rk⟩ ⟨0, rk|AR)V †
k U

†
P Π†

bk,dk

)
where β′ is the probability of getting measurement outcome (bk, dk). The second observation
is that Ck−1 = M′(|Qk−1⟩ ⟨Qk−1|) where M′ denotes the computational basis measurement
in |Qk−1⟩’s space. Then

Ck = M
(

1
β′ Πbk,dk

UPVk (M′ (|Qk−1⟩ ⟨Qk−1|) ⊗ |0, rk⟩ ⟨0, rk|AR)V †
k U

†
P Π†

bk,dk

)
= 1
β′ Πbk,dk

UPVkM (M′ (|Qk−1⟩ ⟨Qk−1|) ⊗ |0, rk⟩ ⟨0, rk|AR)V †
k U

†
P Π†

bk,dk
.

The second equality is because UP , Vk are all permutation unitaries and Πbk,dk
is an orthogonal

projector in computational basis, which all commute with M by Lemma 1. Since M measures
a larger space than M′, M′ can be absorbed into M, i.e., MM′ ≡ M. Thus

Ck = 1
β′ Πbk,dk

UPVkM (|Qk−1⟩ ⟨Qk−1| ⊗ |0, rk⟩ ⟨0, rk|AR)V †
k U

†
P Π†

bk,dk

= M
(

1
β′ Πbk,dk

UPVk (|Qk−1⟩ ⟨Qk−1| ⊗ |0, rk⟩ ⟨0, rk|AR)V †
k U

†
P Π†

bk,dk

)
= β

β′ M (|Qk⟩ ⟨Qk|) .

Finally, we have β = β′ because Ck has trace 1. Thus Ck = M (|Qk⟩ ⟨Qk|) and the probability
of the Ek occurring is pβ for both (PQ,AQ) and (PC ,AC). ◀
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C Proof of Lemma 8

Proof. Prove by induction on k. The base case k = 0 is trivial. Assume the proposition holds
for k−1. Consider a k-round execution Ek := rA, (a1, a

′
1, b1, d1), . . . , (ak, a

′
k, bk, dk). By induct-

ive hypothesis, the (k−1)-round prefix Ek−1 := rA, (a1, a
′
1, b1, d1), . . . , (ak−1, a

′
k−1, bk−1, dk−1)

occurs with probability p in both (PQ,AQ) and (PC ,AC), and the state before round k is
|Qk−1⟩ and Ck−1 := MSk−1 (|Qk−1⟩ ⟨Qk−1|) for (PQ,AQ) and (PC ,AC) respectively. Since
good players’ messages are fully determined by their local variables, MSk−1 can be restricted
to a measurement M′

Sk−1
which does not measure the messages S̄k−1 are about to send

out, i.e., M(S̄k−1,∗)
k . Then Ck−1 := M′

Sk−1
(|Qk−1⟩ ⟨Qk−1|). In the following, we consider the

evolution of |Qk−1⟩ and Ck−1 in round k.

Step 1 and 2 of the adversary. Both AQ and AC apply Uk and Mk on Sk−1 along with
the messages M(∗,Sk−1)

k−1 sent to them. Since we know Mk will output ak, it can be viewed as
an orthogonal projector Πak

that projects into the space of ak. Since Πak
and Uk act only

on Sk−1’s registers and the messages S̄k−1 will send to Sk−1, they commute with M′
S̄k−1

.
Thus the states of (PQ,AQ) and (PC ,AC) become

|Qk−0.5⟩ := 1
√
γ

Πak
Uk |Qk−1⟩ , and

Ck−0.5 := 1
γ′ Πak

UkCk−1U
†
kΠ†

ak
= 1
γ′ Πak

UkM′
S̄k−1

(|Qk−1⟩ ⟨Qk−1|)U†
kΠ†

ak

= M′
S̄k−1

(
1
γ′ Πak

Uk |Qk−1⟩ ⟨Qk−1|U†
kΠ†

ak

)
= γ

γ′ M′
S̄k−1

(|Qk−0.5⟩ ⟨Qk−0.5|).

where γ and γ′ are probabilites of |Qk−1⟩ and Ck−1 outputting ak. Since Ck−0.5 has trace 1,
we have γ = γ′ and thus Ck−0.5 = M′

S̄k−1
(|Qk−0.5⟩ ⟨Qk−0.5|).

Step 3 of the adversary. Both AQ and AC choose an enlarged set Sk of corrupted players.
This step does not affect the state |Qk−0.5⟩ of (PQ,AQ). By Lemma 2, we have |Qk−0.5⟩ =∑

m αm |m,ϕm⟩S̄k
|ψm⟩Sk

. Since M′
S̄k−1

can be decomposed as M′
S̄k−1

≡ M1 ⊗ M2 ⊗ M3,
where M1 acts on transcript |m⟩, M2 acts on registers of S̄k−1 besides |m⟩, and M3 acts
on registers newly corrupted players Sk \ Sk−1, we have

Ck−0.5 = M′
S̄k−1

(|Qk−0.5⟩ ⟨Qk−0.5|) =
∑

m

|αm|2 |m⟩ ⟨m| ⊗ M2 (|ϕm⟩ ⟨ϕm|) ⊗ M3 (|ψm⟩ ⟨ψm|) .

In step 3 of AC , AC has recorded the transcript m and will discard the old state
M3 (|ψm⟩ ⟨ψm|) and simulate a new state |ψm⟩. After that, the state of (PC ,AC) becomes

C ′
k−0.5 :=

∑
m

|αm|2 |m⟩ ⟨m| ⊗ M2 (|ϕm⟩ ⟨ϕm|) ⊗ |ψm⟩ ⟨ψm| = M′
S̄k

(|Qk−0.5⟩ ⟨Qk−0.5|) .

Note that we use M′
S̄k

to distinguish from operator MS̄k
which also measures the newly

appended registers Ak,Rk, and M(Sk,S̄k)
k−1 of S̄k at round k.

Step 4 of the adversary and good players’ action. Step 4 of AQ applies U ′
k followed by

measurement M′
k which outputs a′

k on Sk’s registers. The measurement can be viewed as a
projector Πa′

k
that projects into the space of a′

k. Then good players apply unitary UP and
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projector Πbk,dk
which projects the state of registers (Bk,Dk) into values (bk, dk). Thus the

state of (PQ,AQ) after round k becomes

|Qk⟩ := 1√
β

Πbk,dk
UP

(
Πa′

k
U ′

k |Qk−0.5⟩ ⊗ |0⟩A ⊗ |rk⟩R

)
.

where β is the probability of outputting a′
k, bk, and dk.

Step 4 of AC will additionally apply a measurement Mmsg on messages M(Sk,S̄k)
k−1 sent

from Sk to S̄k. The good players’ action of PC can be viewed as applying the same operation
as PQ and then measuring good players S̄k’s space in computational basis. Thus the state of
(PC ,AC) becomes

Ck := MS̄k

(
1
β′ Πbk,dkUP

(
Mmsg(Πa′

k
U ′

kC
′
k−0.5U

′†
k Π†

a′
k

) ⊗ |0, rk⟩ ⟨0, rk|AR

)
U†

P Π†
bk,dk

)
= MS̄k

(
1
β′ Πbk,dkUP

(
Mmsg(Πa′

k
U ′

kM′
S̄k

(|Qk−0.5⟩ ⟨Qk−0.5|)U ′†
k Π†

a′
k

) ⊗ |0, rk⟩ ⟨0, rk|AR

)
U†

P Π†
bk,dk

)
where β′ is the probability of outputting a′

k, bk, and dk. Similar to Fail-stop case, MS̄k
and

UP Πbk,dk
commute by Lemma 1. M′

S̄k
and Πa′

k
U ′

k also commute because they act on S̄k

and Sk separately. Thus

Ck = 1
β′ Πbk,dkUP MS̄k

MmsgM′
S̄k

(
Πa′

k
U ′

k |Qk−0.5⟩ ⟨Qk−0.5|U ′†
k Π†

a′
k

⊗ |0, rk⟩ ⟨0, rk|AR

)
U†

P Π†
bk,dk

= 1
β′ Πbk,dkUP

(
MS̄k

(Πa′
k
U ′

k |Qk−0.5⟩ ⟨Qk−0.5|U ′†
k Π†

a′
k

) ⊗ |0, rk⟩ ⟨0, rk|AR

)
U†

P Π†
bk,dk

= MS̄k

(
1
β′ Πbk,dkUP

(
Πa′

k
U ′

k |Qk−0.5⟩ ⟨Qk−0.5|U ′†
k Π†

a′
k

⊗ |0, rk⟩ ⟨0, rk|AR

)
U†

P Π†
bk,dk

)
= β

β′ MS̄k
(|Qk⟩ ⟨Qk|) .

where the second equality is because MS̄k
measures a larger space than MmsgM′

S̄k
, thus

MS̄k
MmsgM′

S̄k
≡ MS̄k

.
Finally, since Ck has trace 1, we have β = β′ and thus Ck = MS̄k

(|Qk⟩ ⟨Qk|). The
probability of Ek occurring is pγβ for both cases. ◀
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